The effect of the external medium on the gravitropic curvature of rice (Oryza sativa, Poaceae) roots
Staves, M. P.; Wayne, R.; Leopold, A. C.
1997-01-01
The roots of rice seedlings, growing in artificial pond water, exhibit robust gravitropic curvature when placed perpendicular to the vector of gravity. To determine whether the statolith theory (in which intracellular sedimenting particles are responsible for gravity sensing) or the gravitational pressure theory (in which the entire protoplast acts as the gravity sensor) best accounts for gravity sensing in rice roots, we changed the physical properties of the external medium with impermeant solutes and examined the effect on gravitropism. As the density of the external medium is increased, the rate of gravitropic curvature decreases. The decrease in the rate of gravicurvature cannot be attributed to an inhibition of growth, since rice roots grown in 100 Osm/m3 (0.248 MPa) solutions of different densities all support the same root growth rate but inhibit gravicurvature increasingly with increasing density. By contrast, the sedimentation rate of amyloplasts in the columella cells is unaffected by the external density. These results are consistent with the gravitational pressure theory of gravity sensing, but cannot be explained by the statolith theory.
Jiang, Jinglong; Su, Miao; Wang, Liyan; Jiao, Chengjin; Sun, Zhengxi; Cheng, Wei; Li, Fengmin; Wang, Chongying
2012-04-01
During germination in distilled water (dH(2)O) on a horizontally positioned Petri dish, emerging primary roots of grass pea (Lathyrus sativus L.) grew perpendicular to the bottom of the Petri dish, due to gravitropism. However, when germinated in exogenous hydrogen peroxide (H(2)O(2)), the primary roots grew parallel to the bottom of the Petri dish and asymmetrically, forming a horizontal curvature. Time-course experiments showed that the effect was strongest when H(2)O(2) was applied prior to the emergence of the primary root. H(2)O(2) failed to induce root curvature when applied post-germination. Dosage studies revealed that the frequency of primary root curvature was significantly enhanced with increased H(2)O(2) concentrations. This curvature could be directly counteracted by dimethylthiourea (DMTU), a scavenger of H(2)O(2), but not by diphenylene iodonium (DPI) and pyridine, inhibitors of H(2)O(2) production. Exogenous H(2)O(2) treatment caused both an increase in the activities of H(2)O(2)-scavenging enzymes [including ascorbate peroxidase (APX: EC 1.11.1.11), catalase (CAT: EC 1.11.1.6) and peroxidase (POD: EC 1.11.1.7)] and a reduction in endogenous H(2)O(2) levels and root vitality. Although grass pea seeds absorbed exogenous H(2)O(2) during seed germination, DAB staining of paraffin sections revealed that exogenous H(2)O(2) only entered the root epidermis and not inner tissues. These data indicated that exogenously applied H(2)O(2) could lead to a reversible loss of the root gravitropic response and a horizontal curvature in primary roots during radicle emergence of the seedling. Copyright © 2012 Elsevier Masson SAS. All rights reserved.
Early development and gravitropic response of lateral roots in Arabidopsis thaliana.
Guyomarc'h, S; Léran, S; Auzon-Cape, M; Perrine-Walker, F; Lucas, M; Laplaze, L
2012-06-05
Root system architecture plays an important role in determining nutrient and water acquisition and is modulated by endogenous and environmental factors, resulting in considerable developmental plasticity. The orientation of primary root growth in response to gravity (gravitropism) has been studied extensively, but little is known about the behaviour of lateral roots in response to this signal. Here, we analysed the response of lateral roots to gravity and, consistently with previous observations, we showed that gravitropism was acquired slowly after emergence. Using a lateral root induction system, we studied the kinetics for the appearance of statoliths, phloem connections and auxin transporter gene expression patterns. We found that statoliths could not be detected until 1 day after emergence, whereas the gravitropic curvature of the lateral root started earlier. Auxin transporters modulate auxin distribution in primary root gravitropism. We found differences regarding PIN3 and AUX1 expression patterns between the lateral root and the primary root apices. Especially PIN3, which is involved in primary root gravitropism, was not expressed in the lateral root columella. Our work revealed new developmental transitions occurring in lateral roots after emergence, and auxin transporter expression patterns that might explain the specific response of lateral roots to gravity.
Young, L. M.; Evans, M. L.; Hertel, R.
1990-01-01
We compared the kinetics of auxin redistribution across the caps of primary roots of 2-day-old maize (Zea mays, cv Merit) seedlings with the time course of gravitropic curvature. [3H] indoleacetic acid was applied to one side of the cap in an agar donor and radioactivity moving across the cap was collected in an agar receiver applied to the opposite side. Upon gravistimulation the roots first curved upward slightly, then returned to the horizontal and began curving downward, reaching a final angle of about 67 degrees. Movement of label across the caps of gravistimulated roots was asymmetric with preferential downward movement (ratio downward/upward = ca. 1.6, radioactivity collected during the 90 min following beginning of gravistimulation). There was a close correlation between the development of asymmetric auxin movement across the root cap and the rate of curvature, with both values increasing to a maximum and then declining as the roots approached the final angle of curvature. In roots preadapted to gravity (alternate brief stimulation on opposite flanks over a period of 1 hour) the initial phase of upward curvature was eliminated and downward bending began earlier than for controls. The correlation between asymmetric auxin movement and the kinetics of curvature also held in comparisons between control and preadapted roots. Both downward auxin transport asymmetry and downward curvature occurred earlier in preadapted roots than in controls. These findings are consistent with suggestions that the root cap is not only the site of perception but also the location of the initial redistribution of effectors that ultimately leads to curvature.
Nelson, A. J.; Evans, M. L.
1986-01-01
A computer-based video digitizer system is described which allows automated tracking of markers placed on a plant surface. The system uses customized software to calculate relative growth rates at selected positions along the plant surface and to determine rates of gravitropic curvature based on the changing pattern of distribution of the surface markers. The system was used to study the time course of gravitropic curvature and changes in relative growth rate along the upper and lower surface of horizontally-oriented roots of maize (Zea mays L.). The growing region of the root was found to extend from about 1 mm behind the tip to approximately 6 mm behind the tip. In vertically-oriented roots the relative growth rate was maximal at about 2.5 mm behind the tip and declined smoothly on either side of the maximum. Curvature was initiated approximately 30 min after horizontal orientation with maximal (50 degrees) curvature being attained in 3 h. Analysis of surface extension patterns during the response indicated that curvature results from a reduction in growth rate along both the upper and lower surfaces with stronger reduction along the lower surface.
Actin cytoskeleton rearrangements in Arabidopsis roots under stress and during gravitropic response
Pozhvanov, Gregory; Medvedev, Sergei; Suslov, Dmitry; Demidchik, Vadim
Among environmental factors, gravity vector is the only one which is constant in direction and accompanies the whole plant ontogenesis. That said, gravity vector can be considered as an essential factor for correct development of plants. Gravitropism is a plant growth response against changing its position relative to the gravity vector. It is well estableshed that gravitropism is directed by auxin redistribution across the gravistimulated organ. In addition to auxin, actin cytoskeleton was shown to be involved in gravitropism at different stages: gravity perception, signal transduction and gravitropic bending formation. However, the relationship between IAA and actin is still under discussion. In this work we studied rearrangements of actin cytoskeleton during root gravitropic response. Actin microfilaments were visualized in vivo in GFP-fABD2 transgenic Arabidopsis plants, and their angle distribution was acquired from MicroFilament Analyzer software. The curvature of actin microfilaments in root elongation zone was shown to be increased within 30-60 min of gravistimulation, the fraction of axially oriented microfilaments decreased with a concomitant increase in the fraction of oblique and transversally oriented microfilaments. In particular, the fraction of transversally oriented microfilaments (i.e. parallel to the gravity vector) increased 3-5 times. Under 10 min of sub-lethal salt stress impact, actin microfilament orientations widened from an initial axial orientation to a set of peaks at 15(°) , 45(°) and 90(°) . We conclude that the actin cytoskeleton rearrangements observed are associated with the regulation of basic mechanisms of cell extension growth by which the gravitropic bending is formed. Having common stress-related features, gravity-induced actin cytoskeleton rearrangement is slower but results in higher number of g-vector-parallel microfilaments when compared to salt stress-induced rearrangement. Also, differences in gravistimulated root
Ramiro París
2018-04-01
Full Text Available High-resolution and automated image analysis of individual roots demonstrated that endogenous nitric oxide (NO contribute significantly to gravitropism of Arabidopsis roots. Lowering of endogenous NO concentrations strongly reduced and even reversed gravitropism, resulting in upward bending, without affecting root growth rate. Notably, the asymmetric accumulation of NO along the upper and lower sides of roots correlated with a positive gravitropic response. Detection of NO by the specific DAF-FM DA fluorescent probe revealed that NO was higher at the lower side of horizontally-oriented roots returning to initial values 2 h after the onset of gravistimulation. We demonstrate that NO promotes plasma membrane re-localization of PIN2 in epidermal cells, which is required during the early root gravitropic response. The dynamic and asymmetric localization of both auxin and NO is critical to regulate auxin polar transport during gravitropism. Our results collectively suggest that, although auxin and NO crosstalk occurs at different levels of regulation, they converge in the regulation of PIN2 membrane trafficking in gravistimulated roots, supporting the notion that a temporally and spatially coordinated network of signal molecules could participate in the early phases of auxin polar transport during gravitropism.
Enhanced gravitropism of roots with a disrupted cap actin cytoskeleton
Hou, Guichuan; Mohamalawari, Deepti R.; Blancaflor, Elison B.
2003-01-01
The actin cytoskeleton has been proposed to be a major player in plant gravitropism. However, understanding the role of actin in this process is far from complete. To address this problem, we conducted an analysis of the effect of Latrunculin B (Lat B), a potent actin-disrupting drug, on root gravitropism using various parameters that included detailed curvature kinetics, estimation of gravitropic sensitivity, and monitoring of curvature development after extended clinorotation. Lat B treatment resulted in a promotion of root curvature after a 90 degrees reorientation in three plant species tested. More significantly, the sensitivity of maize (Zea mays) roots to gravity was enhanced after actin disruption, as determined from a comparison of presentation time of Lat B-treated versus untreated roots. A short 10-min gravistimulus followed by extended rotation on a 1-rpm clinostat resulted in extensive gravitropic responses, manifested as curvature that often exceeded 90 degrees. Application of Lat B to the cap or elongation zone of maize roots resulted in the disruption of the actin cytoskeleton, which was confined to the area of localized Lat B application. Only roots with Lat B applied to the cap displayed the strong curvature responses after extended clinorotation. Our study demonstrates that disrupting the actin cytoskeleton in the cap leads to the persistence of a signal established by a previous gravistimulus. Therefore, actin could function in root gravitropism by providing a mechanism to regulate the proliferation of a gravitropic signal originating from the cap to allow the root to attain its correct orientation or set point angle.
Jaffe, M. J.; Leopold, A. C.
1984-01-01
In etiolated corn (Zea mays L.) and etiolated pea (Pisum sativum L.) seedlings, a gravitropic stimulation induces the deposition of callose. In the corn coleoptiles this occurs within 5 min of gravity stimulation, and prior to the beginning of curvature. Both gravitropic curvature and callose deposition reach their maxima by 12 h. Within the first 2 h more callose is deposited on the upper (concave) side, but after 2-3 h, this deposition pattern is reversed. An inhibitor of protein glycosylation, 2-deoxy-D-glucose (DDG), inhibits callose production and considerably retards gravitropic bending in both species of plants. Mannose can relieve the inhibition of gravitropic bending by DDG. The pea mutant "Ageotropum", which does not respond to gravity when etiolated, also fails to produce callose in response to a gravitic stimulus. These correlations indicate that callose deposition may be a biochemical component of gravitropism in plant shoots.
Early development and gravitropic response of lateral roots in Arabidopsis thaliana
Guyomarc'h, S.; Leran, S.; Auzon-Cape, M.; Perrine-Walker, F.; Lucas, Mikaël; Laplaze, Laurent
2012-01-01
Root system architecture plays an important role in determining nutrient and water acquisition and is modulated by endogenous and environmental factors, resulting in considerable developmental plasticity. The orientation of primary root growth in response to gravity (gravitropism) has been studied extensively, but little is known about the behaviour of lateral roots in response to this signal. Here, we analysed the response of lateral roots to gravity and, consistently with previous observati...
Auxin-induced nitric oxide, cGMP and gibberellins were involved in the gravitropism
Cai, Weiming; Hu, Liwei; Hu, Xiangyang; Cui, Dayong; Cai, Weiming
Gravitropism is the asymmetric growth or curvature of plant organs in response to gravistimulation. There is a complex signal transduction cascade which involved in the differential growth of plants in response to changes in the gravity vector. The role of auxin in gravitropism has been demonstrated by many experiments, but little is known regarding the molecular details of such effects. In our studies before, mediation of the gravitropic bending of soybean roots and rice leaf sheath bases by nitric oxide, cGMP and gibberellins, are induced by auxin. The asymmetrical distribution of nitric oxide, cGMP and gibberellins resulted from the asymmetrical synthesis of them in bending sites. In soybean roots, inhibitions of NO and cGMP synthesis reduced differential NO and cGMP accumulation respectively, which both of these effects can lead to the reduction of gravitropic bending. Gibberellin-induced OsXET, OsEXPA4 and OsRWC3 were also found involved in the gravitropic bending. These data indicated that auxin-induced nitric oxide, cGMP and gibberellins were involved in the gravitropism. More experiments need to prove the more detailed mechanism of them.
Lee, J. S.; Mulkey, T. J.; Evans, M. L.
1984-01-01
Primary roots of maize (Zea mays L.) and pea (Pisum sativum L.) exhibit strong positive gravitropism. In both species, gravistimulation induces polar movement of calcium across the root tip from the upper side to the lower side. Roots of onion (Allium cepa L.) are not responsive to gravity and gravistimulation induces little or no polar movement of calcium across the root tip. Treatment of maize or pea roots with inhibitors of auxin transport (morphactin, naphthylphthalamic acid, 2,3,5-triiodobenzoic acid) prevents both gravitropism and gravity-induced polar movement of calcium across the root tip. The results indicate that calcium movement and auxin movement are closely linked in roots and that gravity-induced redistribution of calcium across the root cap may play an important role in the development of gravitropic curvature.
Holonomy Attractor Connecting Spaces of Different Curvature Responsible for ``Anomalies''
Binder, Bernd
2009-03-01
SO(3). MAP can be extended to a neural network, where the synaptic connection of the holonomy attractor is just the mathematical condition adjusting and bridging spaces with positive (spherical) and negative (hyperbolic) curvature allowing for lossless/supra spin currents. Another strategy is to look for existing spin/precession anomalies and corresponding nonlinear holonomy conditions at the most fundamental level from the quark level to the cosmic scale. In these sceneries the geodesic attractor could control holonomy and curvature near the fixed points. It was proposed in 2002 that this should happen with electrons in atomic orbits showing a Berry phase part of the Rydberg or Sommerfeld fine structure constant and in 2003 that this effect could be responsible for (in)stabilities in the nuclear range and in superconductors. In 2008 it was shown that the attractor is part of the chaotic mechanical dynamics successfully at work in the Gyro-twister fitness device, and in 2007-2009 that there could be some deep relevance to "anomalies" in many scenarios even on the cosmic scales. Thus, we will point to and discuss some possible future applications that could be utilized for metric engineering: generating artificial holonomy and curvature (DC effect) for propulsion, or forcing holonomy waves (AC effect) in hyperbolic space-time, which are just gravitational waves interesting for communication.
Lee, J. S.; Evans, M. L.
1990-01-01
We tested the involvement of ethylene in maize (Zea mays L.) root gravitropism by measuring the kinetics of curvature and lateral auxin movement in roots treated with ethylene, inhibitors of ethylene synthesis, or inhibitors of ethylene action. In the presence of ethylene the latent period of gravitropic curvature appeared to be increased somewhat. However, ethylene-treated roots continued to curve after control roots had reached their final angle of curvature. Consequently, maximum curvature in the presence of ethylene was much greater in ethylene-treated roots than in controls. Inhibitors of ethylene biosynthesis or action had effects on the kinetics of curvature opposite to that of ethylene, i.e. the latent period appeared to be shortened somewhat while total curvature was reduced relative to that of controls. Label from applied 3H-indole-3-acetic acid was preferentially transported toward the lower side of stimulated roots. In parallel with effects on curvature, ethylene treatment delayed the development of gravity-induced asymmetric auxin movement across the root but extended its duration once initiated. The auxin transport inhibitor, 1-N-naphthylphthalamic acid reduced both gravitropic curvature and the effect of ethylene on curvature. Since neither ethylene nor inhibitors of ethylene biosynthesis or action prevented curvature, we conclude that ethylene does not mediate the primary differential growth response causing curvature. Because ethylene affects curvature and auxin transport in parallel, we suggest that ethylene modifies curvature by affecting gravity-induced lateral transport of auxin, perhaps by interfering with adaptation of the auxin transport system to the gravistimulus.
Linear response to long wavelength fluctuations using curvature simulations
Baldauf, Tobias; Zaldarriaga, Matias [School of Natural Sciences, Institute for Advanced Study, Princeton, NJ (United States); Seljak, Uroš [Physics Department, Astronomy Department and Lawrence Berkeley National Laboratory, University of California, Berkeley, CA (United States); Senatore, Leonardo, E-mail: baldauf@ias.edu, E-mail: useljak@berkeley.edu, E-mail: senatore@stanford.edu, E-mail: matiasz@ias.edu [Stanford Institute for Theoretical Physics, Stanford University, Stanford, CA (United States)
2016-09-01
We study the local response to long wavelength fluctuations in cosmological N -body simulations, focusing on the matter and halo power spectra, halo abundance and non-linear transformations of the density field. The long wavelength mode is implemented using an effective curved cosmology and a mapping of time and distances. The method provides an alternative, more direct, way to measure the isotropic halo biases. Limiting ourselves to the linear case, we find generally good agreement between the biases obtained from the curvature method and the traditional power spectrum method at the level of a few percent. We also study the response of halo counts to changes in the variance of the field and find that the slope of the relation between the responses to density and variance differs from the naïve derivation assuming a universal mass function by approximately 8–20%. This has implications for measurements of the amplitude of local non-Gaussianity using scale dependent bias. We also analyze the halo power spectrum and halo-dark matter cross-spectrum response to long wavelength fluctuations and derive second order halo bias from it, as well as the super-sample variance contribution to the galaxy power spectrum covariance matrix.
Yamamoto, Kazuyoshi; Kiss, John Z.
2002-01-01
The actin cytoskeleton is hypothesized to play a major role in gravity perception and transduction mechanisms in roots of plants. To determine whether actin microfilaments (MFs) are involved in these processes in stem-like organs, we studied gravitropism in Arabidopsis inflorescence stems and hypocotyls. Localization studies using Alexa Fluor-phalloidin in conjugation with confocal microscopy demonstrated a longitudinally and transversely oriented actin MF network in endodermal cells of stems and hypocotyls. Latrunculin B (Lat-B) treatment of hypocotyls caused depolymerization of actin MFs in endodermal cells and a significant reduction of hypocotyl growth rates. Actin MFs in Lat-B-treated inflorescence stems also were disrupted, but growth rates were not affected. Despite disruption of the actin cytoskeleton in these two organs, Lat-B-treated stems and hypocotyls exhibited a promotion of gravitropic curvature in response to reorientation. In contrast, Lat-B reduced gravitropic curvature in roots but also reduced the growth rate. Thus, in contrast to prevailing hypotheses, our results suggest that actin MFs are not a necessary component of gravitropism in inflorescence stems and hypocotyls. Furthermore, this is the first study to demonstrate a prominent actin MF network in endodermal cells in the putative gravity-perceiving cells in stems.
Effect of Plate Curvature on Blast Response of Structural Steel Plates
Veeredhi, Lakshmi Shireen Banu; Ramana Rao, N. V.; Veeredhi, Vasudeva Rao
2018-04-01
In the present work an attempt is made, through simulation studies, to determine the effect of plate curvature on the blast response of a door structure made of ASTM A515 grade 50 steel plates. A door structure with dimensions of 5.142 m × 2.56 m × 10 mm having six different radii of curvatures is analyzed which is subjected to blast load. The radii of curvature investigated are infinity (flat plate), 16.63, 10.81, 8.26, 6.61 and 5.56 m. In the present study, a stand-off distance of 11 m is considered for all the cases. Results showed that the door structure with smallest radius of curvature experienced least plastic deformation and yielding when compared to a door with larger radius of curvature with same projected area. From the present Investigation, it is observed that, as the radius of curvature of the plate increases, the deformation mode gradually shifts from indentation mode to flexural mode. The plates with infinity and 16.63 m radius of curvature have undergone flexural mode of deformation and plates with 6.61 and 5.56 m radius of curvature undergo indentation mode of deformation. Whereas, mixed mode of deformation that consists of both flexural and indentation mode of deformations are seen in the plates with radius of curvature 10.81 and 8.26 m. As the radius of curvature of the plate decreases the ability of the plate to mitigate the effect the blast loads increased. It is observed that the plate with smaller radius of curvature deflects most of the blast energy and results in least indentation mode of deformation. The most significant observation made in the present investigation is that the strain energy absorbed by the steel plate gets reduced to 1/3 rd when the radius of curvature is approximately equal to the stand-off distance which could be the critical radius of curvature.
Migliaccio, F.; Galston, A.W.
1987-01-01
Seven day old etiolated pea epicotyls were loaded symmetrically with 3 H-indole 3-acetic acid (IAA) or 45 Ca 2+ , then subjected to 1.5 hours of 1g gravistimulation. Epidermal peels taken from top and bottom surfaces after 90 minutes showed an increase in IAA on the lower side and of Ca 2+ on the upper side. Inhibitors of IAA movement (TIBA, 9-hydroxyfluorene carboxylic acid) block the development of both IAA and Ca 2+ asymmetries, but substances known to interfere with normal Ca 2+ transport do not significantly alter either IAA or Ca 2+ asymmetries. These substances, however, are active in modifying both Ca 2+ uptake and efflux through oat and pea leaf protoplast membranes. The authors conclude that the 45 Ca 2+ fed to pea epicotyls occurs largely in the cell wall, and that auxin movement is primary and Ca 2+ movement secondary in gravitropism. They hypothesize that apoplastic Ca 2+ changes during the graviresponse because it is displaced by H + secreted through auxin-induced proton release. This proposed mechanism is supported by localized pH experiments, in which filter paper soaked in various buffers was applied to one side of a carborundum-abraded epicotyls. Buffer at pH 3 increased calcium loss from the side to which it is applied, whereas pH 7 buffer decreases it. Moreover, 10 micromolar IAA and 1 micromolar fusicoccin, which promote H + efflux, increase Ca 2+ release from pea epicotyl segments, whereas cycloheximide, which inhibits H + efflux, has the reverse effect
Curvature distribution within hillslopes and catchments and its effect on the hydrological response
Bogaart, P.W.; Troch, P.A.A.
2006-01-01
Topographic convergence and divergence are first order controls on the hillslope and catchment hydrological response, as evidenced by similarity parameter analyses. Hydrological models often do not take convergence as measured by contour curvature directly into account; instead they use comparable
The cytoskeleton and gravitropism in higher plants
Blancaflor, Elison B.
2002-01-01
The cellular and molecular mechanisms underlying the gravitropic response of plants have continued to elude plant biologists despite more than a century of research. Lately there has been increased attention on the role of the cytoskeleton in plant gravitropism, but several controversies and major gaps in our understanding of cytoskeletal involvement in gravitropism remain. A major question in the study of plant gravitropism is how the cytoskeleton mediates early sensing and signal transduction events in plants. Much has been made of the actin cytoskeleton as the cellular structure that sedimenting amyloplasts impinge upon to trigger the downstream signaling events leading to the bending response. There is also strong molecular and biochemical evidence that the transport of auxin, an important player in gravitropism, is regulated by actin. Organizational changes in microtubules during the growth response phase of gravitropism have also been well documented, but the significance of such reorientations in controlling differential cellular growth is unclear. Studies employing pharmacological approaches to dissect cytoskeletal involvement in gravitropism have led to conflicting results and therefore need to be interpreted with caution. Despite the current controversies, the revolutionary advances in molecular, biochemical, and cell biological techniques have opened up several possibilities for further research into this difficult area. The myriad proteins associated with the plant cytoskeleton that are being rapidly characterized provide a rich assortment of candidate regulators that could be targets of the gravity signal transduction chain. Cytoskeletal and ion imaging in real time combined with mutant analysis promises to provide a fresh start into this controversial area of research.
Gravitropism in caulonemata of the moss Pottia intermedia
Chaban, C. I.; Kern, V. D.; Ripetskyj, R. T.; Demkiv, O. T.; Sack, F. D.
1998-01-01
The gravitropism of caulonemata of Pottia intermedia is described and compared with that of other mosses. Spore germination produces primary protonemata including caulonemata which give rise to buds that form the leafy moss plant, the gametophore. Primary caulonemata are negatively gravitropic but their growth and the number of filaments are limited in the dark. Axenic culture of gametophores results in the production of secondary caulonemata that usually arise near the leaf base. Secondary protonemata that form in the light are agravitropic. Secondary caulonemata that form when gametophores are placed in the dark for several days show strong negative gravitropism and grow well in the dark. When upright caulonemata are reorientated to the horizontal or are inverted, upward bending can be detected after 1 h and caulonemata reach the vertical within 1-2 d. Clear amyloplast sedimentation occurs 10-15 minutes after horizontal placement and before the start of upward curvature. This sedimentation takes place in a sub-apical zone. Amyloplast sedimentation also takes place along the length of upright and inverted Pottia protonemata. These results support the hypothesis that amyloplast sedimentation functions in gravitropic sensing since sedimentation occurs before gravitropism in Pottia and since the location and presence of a unique sedimentation zone is conserved in all four mosses known to gravitropic protonomata.
Isolation of new gravitropic mutants under hypergravity conditions
Akiko Mori
2016-09-01
Full Text Available Forward genetics is a powerful approach used to link genotypes and phenotypes, and mutant screening/analysis has provided deep insights into many aspects of plant physiology. Gravitropism is a tropistic response in plants, in which hypocotyls and stems sense the direction of gravity and grow upwards. Previous studies of gravitropic mutants have suggested that shoot endodermal cells in Arabidopsis stems and hypocotyls are capable of sensing gravity (i.e., statocytes. In the present study, we report a new screening system using hypergravity conditions to isolate enhancers of gravitropism mutants, and we also describe a rapid and efficient genome mapping method, using Next-Generation Sequencing (NGS and Single Nucleotide Polymorphism (SNP-based markers. Using the endodermal-amyloplast less 1 (eal1 mutant, which exhibits defective development of endodermal cells and gravitropism, we found that hypergravity (10 g restored the reduced gravity responsiveness in eal1 hypocotyls and could, therefore, be used to obtain mutants with further reduction in gravitropism in the eal1 background. Using the new screening system, we successfully isolated six ene (enhancer of eal1 mutants that exhibited little or no gravitropism under hypergravity conditions, and using NGS and map-based cloning with SNP markers, we narrowed down the potential causative genes, which revealed a new genetic network for shoot gravitropism in Arabidopsis.
Isolation of New Gravitropic Mutants under Hypergravity Conditions.
Mori, Akiko; Toyota, Masatsugu; Shimada, Masayoshi; Mekata, Mika; Kurata, Tetsuya; Tasaka, Masao; Morita, Miyo T
2016-01-01
Forward genetics is a powerful approach used to link genotypes and phenotypes, and mutant screening/analysis has provided deep insights into many aspects of plant physiology. Gravitropism is a tropistic response in plants, in which hypocotyls and stems sense the direction of gravity and grow upward. Previous studies of gravitropic mutants have suggested that shoot endodermal cells in Arabidopsis stems and hypocotyls are capable of sensing gravity (i.e., statocytes). In the present study, we report a new screening system using hypergravity conditions to isolate enhancers of gravitropism mutants, and we also describe a rapid and efficient genome mapping method, using next-generation sequencing (NGS) and single nucleotide polymorphism (SNP)-based markers. Using the endodermal-amyloplast less 1 ( eal1 ) mutant, which exhibits defective development of endodermal cells and gravitropism, we found that hypergravity (10 g) restored the reduced gravity responsiveness in eal1 hypocotyls and could, therefore, be used to obtain mutants with further reduction in gravitropism in the eal1 background. Using the new screening system, we successfully isolated six ene ( enhancer of eal1 ) mutants that exhibited little or no gravitropism under hypergravity conditions, and using NGS and map-based cloning with SNP markers, we narrowed down the potential causative genes, which revealed a new genetic network for shoot gravitropism in Arabidopsis .
Mechanisms of gravitropism in single-celled systems
Greuel, Nicole; Braun, Markus; Hauslage, Jens; Wiemann, Katharina
higher plant statocytes was also found to be not dependent on mechanical pressure but on direct interactions between gravireceptors and statoliths. In contrast to Chara rhizoids, however, the actin system of higher plant statocytes is not essentially required for gravity-sensing. Parabolic flight experiments and ground controls indicated that disruption of the actin cytoskeleton in root statocytes by using Latrunculin B results in an increased gravisensitivity and in a promoted gravitropic curvature rather than in an inhibition. It is speculated that the actomyosin system in statocytes has a fine-tuning function in the early phases of gravity sensing. Actin in higher plant statocytes may be required to optimize statolith-receptor interactions and to keep the sensing system highly sensitive on one hand, but on the other hand actomyosin-statolith interactions seem to avoid unfavourable responses to only transient stimuli.Investigating the unicellular characean rhizoid has greatly enhanced our understanding of gravity sensing processes in plants and there is increasing evidence that higher plants and characean rhizoids share common processes in the signalling pathway of gravity-oriented growth.
Regulation of auxin transport during gravitropism
Rashotte, A.; Brady, S.; Kirpalani, N.; Buer, C.; Muday, G.
Plants respond to changes in the gravity vector by differential growth across the gravity-stimulated organ. The plant hormone auxin, which is normally basipetally transported, changes in direction and auxin redistribution has been suggested to drive this differential growth or gravitropism. The mechanisms by which auxin transport directionality changes in response to a change in gravity vector are largely unknown. Using the model plant, Arabidopsis thaliana, we have been exploring several regulatory mechanisms that may control auxin transport. Mutations that alter protein phosphorylation suggest that auxin transport in arabidopsis roots may be controlled via phosphorylation and this signal may facilitate gravitropic bending. The protein kinase mutant pinoid (pid9) has reduced auxin transport; whereas the protein phosphatase mutant, rcn1, has elevated transport, suggesting reciprocal regulation of auxin transport by reversible protein phosphorylation. In both of these mutants, the auxin transport defects are accompanied by gravitropic defects, linking phosphorylation signaling to gravity-induced changes in auxin transport. Additionally, auxin transport may be regulated during gravity response by changes in an endogenous auxin efflux inhibitor. Flavonoids, such as quercetin and kaempferol, have been implicated in regulation of auxin transport in vivo and in vitro. Mutants that make no flavonoids have reduced root gravitropic bending. Furthermore, changes in auxin-induced gene expression and flavonoid accumulation patterns have been observed during gravity stimulation. Current studies are examining whether there are spatial and temporal changes in flavonoid accumulation that precede gravitropic bending and whether the absence of these changes are the cause of the altered gravity response in plants with mutations that block flavonoid synthesis. These results support the idea that auxin transport may be regulated during gravity response by several mechanisms including
Isolation of new gravitropic mutants under hypergravity conditions
Akiko Mori; Masatsugu Toyota; Masatsugu Toyota; Masayoshi Shimada; Mika Mekata; Tetsuya Kurata; Masao Tasaka; Miyo Terao Morita
2016-01-01
Forward genetics is a powerful approach used to link genotypes and phenotypes, and mutant screening/analysis has provided deep insights into many aspects of plant physiology. Gravitropism is a tropistic response in plants, in which hypocotyls and stems sense the direction of gravity and grow upwards. Previous studies of gravitropic mutants have suggested that shoot endodermal cells in Arabidopsis stems and hypocotyls are capable of sensing gravity (i.e., statocytes). In the present study, we ...
Isolation of New Gravitropic Mutants under Hypergravity Conditions
Mori, Akiko; Toyota, Masatsugu; Shimada, Masayoshi; Mekata, Mika; Kurata, Tetsuya; Tasaka, Masao; Morita, Miyo T.
2016-01-01
Forward genetics is a powerful approach used to link genotypes and phenotypes, and mutant screening/analysis has provided deep insights into many aspects of plant physiology. Gravitropism is a tropistic response in plants, in which hypocotyls and stems sense the direction of gravity and grow upward. Previous studies of gravitropic mutants have suggested that shoot endodermal cells in Arabidopsis stems and hypocotyls are capable of sensing gravity (i.e., statocytes). In the present study, we r...
Bastien, Renaud; Bohr, Tomas; Moulia, Bruno
2012-01-01
Gravitropism, the slow reorientation of plant growth in response to gravity, is a key determinant of the form and posture of land plants. Shoot gravitropism is triggered when statocysts sense the local angle of the growing organ relative to the gravitational field. Lateral transport of the hormone...... is thus as important as gravisensing in gravitropic control, and the B ratio can be measured as phenotype in genetic studies....
Amyloplast Distribution Directs a Root Gravitropic Reaction
Kordyum, Elizabeth
with regard to the participation of calcium ions and cytoskeletal elements in these processes is therefore substantial but still circumstantial and requires new experimental data. Using a new model - weak combined magnetic fields (CMFs), which elicit a variety of responses in plants, growth rate and fresh weight, seed germination, Ca2+ concentration, membrane permeability, with a frequency resonance to cyclotron frequency of calcium ions, we firstly showed that a root positive gravitropic reaction changes on a negative one. In this case, the paradoxical displacement of amylopasts-statoliths to the upper longitudinal cell wall of statocytes occurred in the direction opposite to a gravitational vector. Displacement of amyloplasts, which contain the abundance of free Ca2+ in the stroma, was accompanied with Ca2+ redistribution in the same direction in the cytosol and increasing around amyloplasts in comparison with the state magnetic field. In the elongation zone, calcium ions accumulated in the upper site of a gravistimulated root unlike a positive gravitropic reaction, and a root is bending in the same direction in which amyloplasts are displacing. It seems that a root gravitropic reaction, if it began, occurs by an usual physiological way resulting in root bending with an opposite sign. It is of a special interest that a root is bending to the same direction with displacing of amyloplasts: in positive gravitropism - downwards, in negative gravitropism - upwards. Peculiarities of calcium ion redistribution in statocytes under gravistimulation in such combined magnetic field are a new additional evidence of a Ca2+ ion significant role in gravitropism. Thus, our data support the starch-statolith hypothesis but also pose the question as to which forces displace amyloplasts against the gravity vector? We hope that these data will stimulate new research to better understand the mechanisms of plant graviperception and graviresponse. Gravistimulation of a root in the CMF with
Effects of abscisic acid and xanthoxin on elongation and gravitropism in primary roots of Zea mays
Lee, J. S.; Hasenstein, K. H.; Mulkey, T. J.; Yang, R. L.; Evans, M. L.
1990-01-01
We examined the involvement of abscisic acid (ABA) and xanthoxin (Xan) in maize root gravitropism by (1) testing the ability of ABA to allow positive gravitropism in dark-grown seedlings of the maize cultivar LG11, a cultivar known to require light for positive gravitropism of the primary root, (2) comparing curvature in roots in which half of the cap had been excised and replaced with agar containing either ABA or indole-3-acetic acid (IAA), (3) measuring gravitropism in roots of seedlings submerged in oxygenated solutions of ABA or IAA and (4) testing the effect of Xan on root elongation. Using a variety of methods of applying ABA to the root, we found that ABA did not cause horizontally-oriented primary roots of dark-grown seedlings to become positively gravitropic. Replacing half of the root cap of vertically oriented roots with an agar block containing ABA had little or no effect on curvature relative to that of controls in which the half cap was replaced by a plain agar block. Replacement of the removed half cap with IAA either canceled or reversed the curvature displayed by controls. When light-grown seedlings were submerged in ABA they responded strongly to gravistimulation while those in IAA did not. Xan (up to 0.1 mM) did not affect root elongation. The results indicate that ABA is not a likely mediator of root gravitropism and that the putative ABA precursor, Xan, lacks the appropriate growth-inhibiting properties to serve as a mediator of root gravitropism.
Curvature Induced by Amyloplast Magnetophoresis in Protonemata of the Moss Ceratodon purpureus1
Kuznetsov, Oleg A.; Schwuchow, Jochen; Sack, Fred D.; Hasenstein, Karl H.
1999-01-01
After gravistimulation of Ceratodon purpureus (Hedw.) Brid. protonemata in the dark, amyloplast sedimentation was followed by upward curvature in the wild-type (WT) and downward curvature in the wwr mutant (wrong way response). We used ponderomotive forces induced by high-gradient magnetic fields (HGMF) to simulate the effect of gravity and displace the presumptive statoliths. The field was applied by placing protonemata either between two permanent magnets at the edge of the gap, close to the edge of a magnetized ferromagnetic wedge, or close to a small (<1 mm) permanent magnet. Continuous application of an HGMF in all three configurations resulted in plastid displacement and induced curvature in tip cells of WT and wwr protonemata. WT cells curved toward the HGMF, and wwr cells curved away from the HGMF, comparable to gravitropism. Plastids isolated from protonemal cultures had densities ranging from 1.24 to 1.38 g cm−3. Plastid density was similar for both genotypes, but the mutant contained larger plastids than the WT. The size difference might explain the stronger response of the wwr protonemata to the HGMF. Our data support the plastid-based theory of gravitropic sensing and suggest that HGMF-induced ponderomotive forces can substitute for gravity. PMID:9952461
Scott, A. C.; Allen, N. S.; Davies, E. (Principal Investigator)
1999-01-01
Ratiometric wide-field fluorescence microscopy with 1',7'- bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein (BCECF)-dextran demonstrated that gravistimulation leads to rapid changes in cytoplasmic pH (pHc) in columella cells of Arabidopsis roots. The pHc of unstimulated columella cells in tiers 2 and 3, known sites of graviperception (E.B. Blancaflor, J.B. Fasano, S. Gilroy [1998] Plant Physiol 116: 213-222), was 7.22 +/- 0.02 pH units. Following gravistimulation, the magnitude and direction of pHc changes in these cells depended on their location in the columella. Cells in the lower side of tier 2 became more alkaline by 0.4 unit within 55 s of gravistimulation, whereas alkalinization of the cells on the upper side was slower (100 s). In contrast, all cells in tier 3 acidified by 0.4 pH unit within 480 s after gravistimulation. Disrupting these pHc changes in the columella cells using pHc modifiers at concentrations that do not affect root growth altered the gravitropic response. Acidifying agents, including bafilomycin A1, enhanced curvature, whereas alkalinizing agents disrupted gravitropic bending. These results imply that pHc changes in the gravisensing cells and the resultant pH gradients across the root cap are important at an early stage in the signal cascade leading to the gravitropic response.
Yamamoto, Kotaro T; Watahiki, Masaaki K; Matsuzaki, Jun; Satoh, Soichirou; Shimizu, Hisayo
2017-07-01
Imaging analysis was carried out during the gravitropic response of etiolated Arabidopsis hypocotyls, using an IAA19 promoter fusion of destabilized luciferase as a probe. From the bright-field images we obtained the local deflection angle to the vertical, A, local curvature, C, and the partial derivative of C with respect to time, [Formula: see text]. These were determined every 19.9 µm along the curvilinear length of the hypocotyl, at ~10 min intervals over a period of ~6 h after turning hypocotyls through 90° to the horizontal. Similarly from the luminescence images we measured the luminescence intensity of the convex and concave flanks of the hypocotyl as well as along the median of the hypocotyl, to determine differential expression of auxin-inducible IAA19. Comparison of these parameters as a function of time and curvilinear length shows that the gravitropic response is composed of three successive elements: the first and second curving responses and a decurving response (autostraightening). The maximum of the first curving response occurs when A is 76° along the entire length of the hypocotyl, suggesting that A is the sole determinant in this response; in contrast, the decurving response is a function of both A and C, as predicted by the newly-proposed graviproprioception model (Bastien et al., Proc Natl Acad Sci USA 110:755-760, 2013). Further, differential expression of IAA19, with higher expression in the convex flank, is observed at A = 44°, and follows the Sachs' sine law. This also suggests that IAA19 is not involved in the first curving response. In summary, the gravitropic response of Arabidopsis hypocotyls consists of multiple elements that are each determined by separate principles.
Parminder Kaur; Ivan W. Mott; Steven R. Larson; B. Shaun Bushman; Alvaro G. Hernandez; W. Ryan Kim; Lei Liu; Mark A. Mikel
2008-01-01
Negatively orthogeotropic (NOGT) tiller and diageotropic (DGT) rhizome meristems develop from the same type of lateral axillary meristems and phytomer structure. Although subterranean NOGT and DGT buds appear similar, they display different responses to gravity and perhaps other cues governing branch angle and overall growth habit (GH). Leymus wildryes show remarkable...
The involvement of ethylene in regulation of Arabidopsis gravitropism
Li, Ning; Zhu, Lin
Plant gravitropism is a directional response to gravity stimulus. This response involves a com-plex signaling network. Ethylene, a major plant hormone, has been found to modulate grav-itropism. The biosynthesis of ethylene is induced by the gravi-stimulus and the requirement for ethylene during gravitropism is tissue-dependent. While ethylene plays a modulating role in inflorescence stems, the light-grown hypocotyls of Arabidopsis requires ethylene to achieve a maximum gravicurvature. Because both inhibitory and stimulatory effects of ethylene on gravitropism have been overwhelmingly documented, there is a need to postulate a new theory to consolidate the apparently contradictory results. A dual-and-opposing effects (DOE) theory is therefore hypothesized to address how ethylene is involved in regulation of Arabidopsis grav-itropism, in which it is suggested that both stimulatory and inhibitory effects act on the same organ of a plant and co-exist at the same time in a mutually opposing manner. The final out-come of gravitropic response is determined by the dynamic display between the two opposing effects. A prolonged pretreatment of ethylene promotes the gravitropism in both inflorescence and light-grown hypocotyls, while a short ethylene pretreatment inhibits gravitropism. Gener-ally speaking, the inhibitory effect of ethylene is dominant over the expression of the stimula-tory effect in light-grown hypocotyls, whereas the stimulatory effect is dominant in inflorescence stem. Each effect is also positively correlated with concentrations of ethylene and in a time-dependent manner. The stimulatory effect occurs slowly but continues to react after the removal of ethylene, whereas the inhibitory effect takes place abruptly and diminishes shortly after its removal. Forward genetic screening based on the DOE phenotype of ethylene-treated Arabidop-sis has revealed a novel component in gravity signaling pathway: EGY1 (ethylene-dependent gravitropism-deficient and yellow
LaMotte, Clifford E.; Pickard, Barbara G.
2004-01-01
Plant organs may respond to gravity by vertical (orthogravitropic), oblique (plagiogravitropic) or horizontal (diagravitropic) growth. Primary roots of maize (Zea mays L.) provide a good system for studying such behaviours because they are reportedly capable of displaying all three responses. In current work using maize seedlings of the Silver Queen cultivar, stabilisation of growth at an oblique orientation was commonplace. Hypothetically, plagiogravitropism may be accomplished either by a process we call graded orthogravitropism or by hunting about a sensed non-vertical setpoint. In graded orthotropism primary bending is unidirectional and depends on facilitative stimuli that determine its extent. The hallmark of the setpoint mechanism is restorative curvature of either sign following a displacement; both diagravitropism and orthogravitropism are based on setpoints. Roots settled in a plagiogravitropic orientation were tested with various illumination and displacement protocols designed to distinguish between these two hypotheses. The tests refuted the setpoint hypothesis and supported that of graded orthotropism. No evidence of diagravitropism could be found, thus, earlier claims were likely based on inadequately controlled observations of graded orthotropism. We propose that orthotropism is graded by the sequential action of dual gravity receptors: induction of a vectorial gravitropic response requires gravitational induction of a separate facilitative response, whose decay in the absence of fresh stimuli can brake gravitropism at plagiotropic angles.
Sayed, Alaa El-Din Hamid; Mitani, Hiroshi
2016-11-01
In the present work, the destructive effects of ultraviolet A (UVA; 366nm) irradiation on the developmental stages of Japanese medaka (Oryzias latipes) are revealed in terms of hatching success, mortality rate, and morphological malformations (yolk sac edema, body curvature, fin blistering, and dwarfism). Fertilized eggs in stage 4 were exposed to 15, 30, and 60min/day UVA for 3days in replicates. Fish were staged and aged following the stages established by Iwamatsu [1]. We observed and recorded the hatching time and deformed and dead embryos continuously. The hatching time was prolonged and the deformed and dead embryos numbers were increased by UVA dose increase. At stage 40, samples from each group were fixed to investigate their morphology and histopathology. Some morphological malformations were recorded after UVA exposure in both strains. Histopathological changes were represented as different shapes of curvature in notochord with collapse. The degree of collapsation was depended on the dose and time of UVA exposure. Our findings show that exposure to UVA irradiation caused less vertebral column curvature in medaka fry. Moreover, p53-deficient embryos were more tolerant than those of wild-type (Hd-rR) Japanese medaka. This study indicated the dangerous effects of the UVA on medaka. Copyright © 2016 Elsevier B.V. All rights reserved.
Fondren, W. M.; Moore, R.
1987-01-01
We placed agar blocks adjacent to tips of electrotropically stimulated primary roots of Zea mays. Blocks placed adjacent to the anode-side of the roots for 3 h induced significant curvature when subsequently placed asymmetrically on tips of vertically-oriented roots. Curvature was always toward the side of the root unto which the agar block was placed. Agar blocks not contacting roots and blocks placed adjacent to the cathode-side of electrotropically stimulated roots did not induce significant curvature when placed asymmetrically on tips of vertically-oriented roots. Atomic absorption spectrophotometry indicated that blocks adjacent to the anode-side of electrotropically-stimulated roots contained significantly more calcium than (1) blocks not contacting roots, and (2) blocks contacting the cathode-side of roots. These results demonstrate the presence of a gradient of endogenous Ca in mucilage of electrotropically-stimulated roots (i.e. roots undergoing gravitropic-like curvature).
Morohashi, Keita; Okamoto, Miki; Yamazaki, Chiaki; Fujii, Nobuharu; Miyazawa, Yutaka; Kamada, Motoshi; Kasahara, Haruo; Osada, Ikuko; Shimazu, Toru; Fusejima, Yasuo; Higashibata, Akira; Yamazaki, Takashi; Ishioka, Noriaki; Kobayashi, Akie; Takahashi, Hideyuki
2017-09-01
Roots of land plants show gravitropism and hydrotropism in response to gravity and moisture gradients, respectively, for controlling their growth orientation. Gravitropism interferes with hydrotropism, although the mechanistic aspects are poorly understood. Here, we differentiated hydrotropism from gravitropism in cucumber roots by conducting clinorotation and spaceflight experiments. We also compared mechanisms regulating hydrotropism and auxin-regulated gravitropism. Clinorotated or microgravity (μG)-grown cucumber seedling roots hydrotropically bent toward wet substrate in the presence of moisture gradients, but they grew straight in the direction of normal gravitational force at the Earth's surface (1G) on the ground or centrifuge-generated 1G in space. The roots appeared to become hydrotropically more sensitive to moisture gradients under μG conditions in space. Auxin transport inhibitors significantly reduced the hydrotropic response of clinorotated seedling roots. The auxin efflux protein CsPIN5 was differentially expressed in roots of both clinorotated and μG-grown seedlings; with higher expression in the high-humidity (concave) side than the low-humidity (convex) side of hydrotropically responding roots. Our results suggest that roots become hydrotropically sensitive in μG, and CsPIN5-mediated auxin transport has an important role in inducing root hydrotropism. Thus, hydrotropic and gravitropic responses in cucumber roots may compete via differential auxin dynamics established in response to moisture gradients and gravity. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.
Actin is an essential component of plant gravitropic signaling pathways
Braun, Markus; Hauslage, Jens; Limbach, Christoph
2003-08-01
A role of the actin cytoskeleton in the different phases of gravitropism in higher plant organs seems obvious, but experimental evidence is still inconclusive and contradictory. In gravitropically tip-growing rhizoids and protonemata, however, it is well documented that actin is an essential component of the tip-growth machinery and is involved either in the cellular mechanisms that lead to gravity sensing and in the processes of the graviresponses that result in the reorientation of the growth direction. All these processes depend on a complexly organized and highly dynamic organization of actin filaments whose diverse functions are coordinated by numerous associated proteins. Actin filaments and myosins mediate the transport of secretory vehicles to the growing tip and precisely control the delivery of cell wall material. In addition, both cell types use a very efficient actomyosin-based system to control and correct the position of their statoliths and to direct sedimenting statoliths to confined graviperception sites at the plasma membrane. The studies presented in this paper provide evidence for the essential role of actin in plant gravity sensing and the gravitropic responses. A unique actin-organizing center exists in the tip of characean rhizoids and protonemata which is associated with and dynamically regulated by a specific set of actin-dynamizing proteins. It is concluded that this highly dynamic apical actin array is an essential prerequisite for gravity sensing and gravity-oriented tip growth.
Assessing potential targets of calcium action in light-modulated gravitropism
Roux, S. J.
1995-01-01
Light, through the mediation of the pigment phytochrome, modulates the gravitropic response of the shoots and roots of many plants. The transduction of both light and gravity stimuli appears to involve Ca(2+)-regulated steps, one or more of which may represent points of intersection between the two transduction chains. To be confident that Ca2+ plays a critical role in stimulus-response coupling for gravitropism, it will be important to identify specific targets of Ca2+ action whose function can be clearly linked to the regulation of growth. Calcium typically exerts its influence on cell metabolism through binding to and activating key regulatory proteins. The three best characterized of these proteins in plants are the calmodulins, calcium-dependent protein kinases, and annexins. In this review we summarize what is known about the structure and function of these proteins and speculate on how their activation by Ca2+ could influence the differential growth response of gravitropism.
New moss species with gravitropic protonemata
Lobachevska, O. V.
Gravitropism of 30 moss species was analysed at different stages of development: germination of spores, protonemata, gametophore and sporophyte formation. Spores were sowed in sterile conditions from the closed capsules on 1 % bactoagar with 0,2 % glucose and cultivated in the dark in vertically oriented petri dishes. In the same conditions fragments of protonemata and gametophores were grown being transferred aseptically from sterile cultures of spores germinated in controled light conditions. To assess gravity sensitivity the dishes were kept upright for 7 10 days in darkness and then 90o turned. After 20 h gravistimulation the angles of apical cell gravity bending were determined. The amount of amyloplasts and their distribution during growth and spatial reorientation of sporophytes selected from nature samples on different stages of species-specific capsule formation were analyzed after JK2J staining. The gravitropic sensing was established in 7 new moss species only. The general traits of all such species were the ark-like cygneous seta bending and inclined, to pendulous, capsules. JK2J staining of young isolated sporophytes has shown, that twisting and bending of seta as well as the spatial capsule reorientation result from the changes of distribution of amyloplasts in the direction of gravitropic growth or caused by their lateral sedimentation. In the dark protonemata of investigated mosses grew upwards on agar surface giving rise to bundles of negatively gravitropic stolons in 7-10 days. During germination at first negatively gravitropic primary chloronema and then positively gravitropic primary rizoid appeared. In 3 days, however, the growth of all primary filaments was negatively gravitropic. In Dicranella cerviculata majority of primary filaments were negatively gravitropic from the very beginning. After 20 h gravistimulation of protonemata of different moss species the following mean values of gravity bending (degrees) were established: Leptobryum
Identification and analysis of novel genes involved in gravitropism of Arabidopsis thaliana.
Morita, Miyo T.; Tasaka, Masao; Masatoshi Taniguchi, .
2012-07-01
Gravitropism is a continuous control with regard to the orientation and juxtaposition of the various parts of the plant body in response to gravity. In higher plants, the relative directional change of gravity is mainly suscepted in specialized cells called statocytes, followed by signal conversion from physical information into physiological information within the statocytes. We have studied the early process of shoot gravitropism, gravity sensing and signaling process, mainly by molecular genetic approach. In Arabidopsis shoot, statocytes are the endodermal cells. sgr1/scarcrow (scr) and sgr7/short-root (shr) mutants fail to form the endodermis and to respond to gravity in their inflorescence stems. Since both SGR1/SCR and SGR7/SHR are transcriptional factors, at least a subset of their downstream genes can be expected to be involved in gravitropism. In addition, eal1 (endodermal-amyloplast less 1), which exhibits no gravitropism in inflorescence stem but retains ability to form endodermis, is a hypomorphic allele of sgr7/shr. Take advantage of these mutants, we performed DNA microarray analysis and compared gene expression profiles between wild type and the mutants. We found that approx. 40 genes were commonly down-regulated in these mutants and termed them DGE (DOWN-REGULATED GENE IN EAL1) genes. DGE1 has sequence similarity to Oryza sativa LAZY1 that is involved in shoot gravitropism of rice. DGE2 has a short region homologous to DGE1. DTL (DGE TWO-LIKE}) that has 54% identity to DGE2 is found in Arabidopsis genome. All three genes are conserved in angiosperm but have no known functional domains or motifs. We analyzed T-DNA insertion for these genes in single or multiple combinations. In dge1 dge2 dtl triple mutant, gravitropic response of shoot, hypocotyl and root dramatically reduced. Now we are carrying out further physiological and molecular genetic analysis of the triple mutant.
Transcriptional and Hormonal Regulation of Gravitropism of Woody Stems in Populus
Suzanne Gerttula; Matthew S. Zinkgraf; Gloria K. Muday; Daniel R. Lewis; Farid M. Ibatullin; Harry Brumer; Foster Hart; Shawn D. Mansfield; Vladimir Filkov; Andrew Groover
2015-01-01
Angiosperm trees reorient their woody stems by asymmetrically producing a specialized xylem tissue, tension wood, which exerts a strong contractile force resulting in negative gravitropism of the stem. Here, we show, in Populus trees, that initial gravity perception and response occurs in specialized cells through sedimentation of starch-filled...
Feldman, L. J.; Hidaka, H.
1993-01-01
Light is essential for root gravitropism in Zea mays L., cultivar Merit. It is hypothesized that calcium mediates this light-regulated response. KN-93, an inhibitor of calcium/calmodulin kinase II (CaMK II), inhibits light-regulated root gravitropism but does not affect light perception. We hypothesize that CaMK II, or a homologue, operates late in the light/gravity signal transduction chain. Here we provide evidence suggesting a possible physiological involvement of CaMK II in root gravitropism in plants.
Genetic analysis of the gravitropic set-point angle in lateral roots of arabidopsis
Mullen, J. L.; Hangarter, R. P.
2003-05-01
Research on gravity responses in plants has mostly focused on primary roots and shoots, which typically orient to a vertical orientation. However, the distribution of lateral organs and their characteristically non-vertical growth orientation are critical for the determination of plant form. For example, in Arabidopsis, when lateral roots emerge from the primary root, they grow at a nearly horizontal orientation. As they elongate, the roots slowly curve until they eventually reach a vertical orientation. The regulation of this lateral root orientation is an important component affecting overall root system architecture. We found that this change in orientation is not simply due to the onset of gravitropic competence, as non-vertical lateral roots are capable of both positive and negative gravitropism. Thus, the horizontal growth of new lateral roots appears to be determined by what is called the gravitropic set-point angle (GSA). This developmental control of the GSA of lateral roots in Arabidopsis provides a useful system for investigating the components involved in regulating gravitropic responses. Using this system, we have identified several Arabidopsis mutants that have altered lateral root orientations but maintain normal primary root orientation.
Little, Mark P.; Stovall, Marilyn; Smith, Susan A.; Kleinerman, Ruth A.
2013-01-01
Purpose: To assess the shape of the dose response for various cancer endpoints and modifiers by age and time. Methods and Materials: Reanalysis of the US peptic ulcer data testing for heterogeneity of radiogenic risk by cancer endpoint (stomach, pancreas, lung, leukemia, all other). Results: There are statistically significant (P −1 of 0.024 (95% confidence interval [CI] 0.011, 0.039), 0.559 (95% CI 0.221, 1.021), 0.042 (95% CI −0.002, 0.119), and 1.087 (95% CI −0.018, 4.925), respectively. There is statistically significant (P=.007) excess risk of pancreatic cancer when adjusted for dose-response curvature. General downward curvature is apparent in the dose response, statistically significant (P<.05) for all cancers, pancreatic cancer, and all other cancers (ie, other than stomach, pancreas, lung, leukemia). There are indications of reduction in relative risk with increasing age at exposure (for all cancers, pancreatic cancer), but no evidence for quadratic variations in relative risk with age at exposure. If a linear-exponential dose response is used, there is no significant heterogeneity in the dose response among the 5 endpoints considered or in the speed of variation of relative risk with age at exposure. The risks are generally consistent with those observed in the Japanese atomic bomb survivors and in groups of nuclear workers. Conclusions: There are excess risks for various malignancies in this data set. Generally there is a marked downward curvature in the dose response and significant reduction in relative risk with increasing age at exposure. The consistency of risks with those observed in the Japanese atomic bomb survivors and in groups of nuclear workers implies that there may be little sparing effect of fractionation of dose or low-dose-rate exposure.
The curvature coordinate system
Almegaard, Henrik
2007-01-01
The paper describes a concept for a curvature coordinate system on regular curved surfaces from which faceted surfaces with plane quadrangular facets can be designed. The lines of curvature are used as parametric lines for the curvature coordinate system on the surface. A new conjugate set of lin...
Little, Mark P., E-mail: mark.little@nih.gov [Radiation Epidemiology Branch, National Cancer Institute, Rockville, Maryland (United States); Stovall, Marilyn; Smith, Susan A. [Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Kleinerman, Ruth A. [Radiation Epidemiology Branch, National Cancer Institute, Rockville, Maryland (United States)
2013-02-01
Purpose: To assess the shape of the dose response for various cancer endpoints and modifiers by age and time. Methods and Materials: Reanalysis of the US peptic ulcer data testing for heterogeneity of radiogenic risk by cancer endpoint (stomach, pancreas, lung, leukemia, all other). Results: There are statistically significant (P<.05) excess risks for all cancer and for lung cancer and borderline statistically significant risks for stomach cancer (P=.07), and leukemia (P=.06), with excess relative risks Gy{sup -1} of 0.024 (95% confidence interval [CI] 0.011, 0.039), 0.559 (95% CI 0.221, 1.021), 0.042 (95% CI -0.002, 0.119), and 1.087 (95% CI -0.018, 4.925), respectively. There is statistically significant (P=.007) excess risk of pancreatic cancer when adjusted for dose-response curvature. General downward curvature is apparent in the dose response, statistically significant (P<.05) for all cancers, pancreatic cancer, and all other cancers (ie, other than stomach, pancreas, lung, leukemia). There are indications of reduction in relative risk with increasing age at exposure (for all cancers, pancreatic cancer), but no evidence for quadratic variations in relative risk with age at exposure. If a linear-exponential dose response is used, there is no significant heterogeneity in the dose response among the 5 endpoints considered or in the speed of variation of relative risk with age at exposure. The risks are generally consistent with those observed in the Japanese atomic bomb survivors and in groups of nuclear workers. Conclusions: There are excess risks for various malignancies in this data set. Generally there is a marked downward curvature in the dose response and significant reduction in relative risk with increasing age at exposure. The consistency of risks with those observed in the Japanese atomic bomb survivors and in groups of nuclear workers implies that there may be little sparing effect of fractionation of dose or low-dose-rate exposure.
Genetics of the gravitropic set-point angle in lateral organs of Arabidopsis
Mullen, J.; Hangarter, R.
Research on gravity responses in plants has mostly focused on primary roots and shoots, which typically orient to a vertical orientation. However, the distribution of lateral organs and their typically non-vertical growth orientation are critical for the determination of plant form. For example, in Arabidopsis, when lateral roots emerge from the primary root, they grow at a nearly horizontal orientation. As they elongate, the roots slowly curve until they eventually reach a vertical orientation. The regulation of this lateral root orientation is an important component affecting the overall root system architecture. We found that this change in orientation is not simply due to the onset of gravitropic competence, as non-vertical lateral roots are capable of both positive and negative gravitropism. Thus, the horizontal growth the new lateral roots is determined by what is called the gravitropic set-point angle (GSA). This developmental control of the GSA of lateral roots in Arabidopsis provides a useful system for investigating the components involved in regulating gravitropic responses. Using this system, we have identified several Arabidopsis mutants that have altered lateral root orientations but maintain normal primary root orientation. Two of these mutants also have altered orientation of their rosette leaves, indicating some common mechanisms in the positioning of root and shoot lateral organs. Rosette leaves and lateral roots also have in common a regulation of orientation by red light that may be due to red-light-dependent changes in the GSA. Further molecular and physiological analyses of the GSA mutants will provide insight into the basis of GSA regulation and, thus, a better understanding of how gravity controls plant architecture. [This work was supported by the National Aeronautics and Space Administration through grant no. NCC 2-1200.
Implementing quantum Ricci curvature
Klitgaard, N.; Loll, R.
2018-05-01
Quantum Ricci curvature has been introduced recently as a new, geometric observable characterizing the curvature properties of metric spaces, without the need for a smooth structure. Besides coordinate invariance, its key features are scalability, computability, and robustness. We demonstrate that these properties continue to hold in the context of nonperturbative quantum gravity, by evaluating the quantum Ricci curvature numerically in two-dimensional Euclidean quantum gravity, defined in terms of dynamical triangulations. Despite the well-known, highly nonclassical properties of the underlying quantum geometry, its Ricci curvature can be matched well to that of a five-dimensional round sphere.
Hofmann, E.; Schäfer, E.
1987-01-01
The fluence-response curve for first positive phototropic curvture of dark-grown maize coleoptiles is shifted to ten-fold higher fluences if the coieoptiles are irradiated with red light 2 h prior to the phototropic induction with blue light. Fluence-response curves for this red-induced shift were obtained with unilateral red irradiations 2 h prior to inductive blue pulses of different fluences. They differ significantly depending on whether the red light was given from the same side as or the opposite side to the respective inductive blue pulse, thus demonstrating that the red light effect is a local response of the coleoptile. The fluence-response curves for an inductive blue pulse in the ascending part were compared with those for an inductive blue pulse in the descending part of the fluence-response curve for blue light induced phototropism. They are quite different in threshold of red light sensitivity and shape for irradiations from both the same and the opposite sides. This offers evidence for the hypothesis that at least two different photosystems are involved in phototropism, and that they are modulated differently by a red light preirradiation. All these fluence-response curves indicate that it is possible to increase the response in the coleoptile, if the red light preirradiation is given opposite to the inductive blue pulse. This is supported by blue light fluence-response curves obtained after a weak unilateral red preirradiation. (author)
Introducing quantum Ricci curvature
Klitgaard, N.; Loll, R.
2018-02-01
Motivated by the search for geometric observables in nonperturbative quantum gravity, we define a notion of coarse-grained Ricci curvature. It is based on a particular way of extracting the local Ricci curvature of a smooth Riemannian manifold by comparing the distance between pairs of spheres with that of their centers. The quantum Ricci curvature is designed for use on non-smooth and discrete metric spaces, and to satisfy the key criteria of scalability and computability. We test the prescription on a variety of regular and random piecewise flat spaces, mostly in two dimensions. This enables us to quantify its behavior for short lattices distances and compare its large-scale behavior with that of constantly curved model spaces. On the triangulated spaces considered, the quantum Ricci curvature has good averaging properties and reproduces classical characteristics on scales large compared to the discretization scale.
Modern approaches to discrete curvature
Romon, Pascal
2017-01-01
This book provides a valuable glimpse into discrete curvature, a rich new field of research which blends discrete mathematics, differential geometry, probability and computer graphics. It includes a vast collection of ideas and tools which will offer something new to all interested readers. Discrete geometry has arisen as much as a theoretical development as in response to unforeseen challenges coming from applications. Discrete and continuous geometries have turned out to be intimately connected. Discrete curvature is the key concept connecting them through many bridges in numerous fields: metric spaces, Riemannian and Euclidean geometries, geometric measure theory, topology, partial differential equations, calculus of variations, gradient flows, asymptotic analysis, probability, harmonic analysis, graph theory, etc. In spite of its crucial importance both in theoretical mathematics and in applications, up to now, almost no books have provided a coherent outlook on this emerging field.
Inducing gravitropic curvature of primary roots of Zea mays cv Ageotropic
Moore, R.; Evans, M. L.; Fondren, W. M.
1990-01-01
Primary roots of the mutant 'Ageotropic' cultivar of Zea mays are nonresponsive to gravity. Their root caps secrete little or no mucilage and touch the root only at the extreme apex. A gap separates the cap and root at the periphery of the cap. Applying mucilage from normal roots or substances with a consistency similar to that of mucilage to tips of mutant roots causes these roots to become strongly graviresponsive. Gravicurvature stops when these substances are removed. Caps of some mutants secrete small amounts of mucilage and are graviresponsive. These results indicate that (a) the lack of graviresponsiveness in the mutant results from disrupting the transport pathway between the cap and root, (b) movement of the growth-modifying signal from the cap to the root occurs via an apoplastic pathway, and (c) mucilage is necessary for normal communication between the root cap and root in Zea mays cv Ageotropic.
Analysis of magnetic gradients to study gravitropism.
Hasenstein, Karl H; John, Susan; Scherp, Peter; Povinelli, Daniel; Mopper, Susan
2013-01-01
Gravitropism typically is generated by dense particles that respond to gravity. Experimental stimulation by high-gradient magnetic fields provides a new approach to selectively manipulate the gravisensing system. The movement of corn, wheat, and potato starch grains in suspension was examined with videomicroscopy during parabolic flights that generated 20 to 25 s of weightlessness. During weightlessness, a magnetic gradient was generated by inserting a wedge into a uniform, external magnetic field that caused repulsion of starch grains. The resultant velocity of movement was compared with the velocity of sedimentation under 1 g conditions. The high-gradient magnetic fields repelled the starch grains and generated a force of at least 0.6 g. Different wedge shapes significantly affected starch velocity and directionality of movement. Magnetic gradients are able to move diamagnetic compounds under weightless or microgravity conditions and serve as directional stimulus during seed germination in low-gravity environments. Further work can determine whether gravity sensing is based on force or contact between amyloplasts and statocyte membrane system.
Advanced Curvature Deformable Mirrors
2010-09-01
ORGANIZATION NAME(S) AND ADDRESS(ES) University of Hawaii ,Institute for Astronomy,640 North A‘ohoku Place, #209 , Hilo ,HI,96720-2700 8. PERFORMING...Advanced Curvature Deformable Mirrors Christ Ftaclas1,2, Aglae Kellerer2 and Mark Chun2 Institute for Astronomy, University of Hawaii
Marcum, H.; Moore, R.
1990-01-01
Primary roots of Zea mays cv. Yellow Dent growing in an electric field curve towards the anode. Roots treated with EDTA and growing in electric field do not curve. When root cap mucilage is applied asymmetrically to tips of vertically-oriented roots, the roots curve toward the mucilage. Roots treated with EDTA curve toward the side receiving mucilage and toward blocks containing 10 mM CaCl2, but not toward "empty" agar blocks or the cut surfaces of severed root tips. These results suggest that 1) free calcium (Ca) is necessary for root electrotropism, 2) mucilage contains effector(s) that induce gravitropiclike curvature, and 3) mucilage can replace gravitropic effectors chelated by EDTA. These results are consistent with the hypothesis that the downward movement of gravitropic effectors to the lower sides of tips of horizontally-oriented roots occurs at least partially in the apoplast.
Andreeva, Zornitza; Barton, Deborah; Armour, William J; Li, Min Y; Liao, Li-Fen; McKellar, Heather L; Pethybridge, Kylie A; Marc, Jan
2010-10-01
The phospholipase protein superfamily plays an important role in hormonal signalling and cellular responses to environmental stimuli. There is also growing evidence for interactions between phospholipases and the cytoskeleton. In this report we used a pharmacological approach to investigate whether inhibiting a member of the phospholipase superfamily, phospholipase C (PLC), affects microtubules and actin microfilaments as well as root growth and morphology of Arabidopsis thaliana seedlings. Inhibiting PLC activity using the aminosteroid U73122 significantly inhibited root elongation and disrupted root morphology in a concentration-dependent manner, with the response being saturated at 5 μM, whereas the inactive analogue U73343 was ineffective. The primary root appeared to lose growth directionality accompanied by root waving and formation of curls. Immunolabelling of roots exposed to increasingly higher U73122 concentrations revealed that the normal transverse arrays of cortical microtubules in the elongation zone became progressively more disorganized or depolymerized, with the disorganization appearing within 1 h of incubation. Likewise, actin microfilament arrays also were disrupted. Inhibiting PLC using an alternative inhibitor, neomycin, caused similar disruptions to both cytoskeletal organization and root morphology. In seedlings gravistimulated by rotating the culture plates by 90°, both U73122 and neomycin disrupted the normal gravitropic growth of roots and etiolated hypocotyls. The effects of PLC inhibitors are therefore consistent with the notion that, as with phospholipases A and D, PLC likewise interacts with the cytoskeleton, alters growth morphology, and is involved in gravitropism.
Regularized strings with extrinsic curvature
Ambjoern, J.; Durhuus, B.
1987-07-01
We analyze models of discretized string theories, where the path integral over world sheet variables is regularized by summing over triangulated surfaces. The inclusion of curvature in the action is a necessity for the scaling of the string tension. We discuss the physical properties of models with extrinsic curvature terms in the action and show that the string tension vanishes at the critical point where the bare extrinsic curvature coupling tends to infinity. Similar results are derived for models with intrinsic curvature. (orig.)
Brane cosmology with curvature corrections
Kofinas, Georgios; Maartens, Roy; Papantonopoulos, Eleftherios
2003-01-01
We study the cosmology of the Randall-Sundrum brane-world where the Einstein-Hilbert action is modified by curvature correction terms: a four-dimensional scalar curvature from induced gravity on the brane, and a five-dimensional Gauss-Bonnet curvature term. The combined effect of these curvature corrections to the action removes the infinite-density big bang singularity, although the curvature can still diverge for some parameter values. A radiation brane undergoes accelerated expansion near the minimal scale factor, for a range of parameters. This acceleration is driven by the geometric effects, without an inflation field or negative pressures. At late times, conventional cosmology is recovered. (author)
Johnson, C. F.; Brown, C. S.; Wheeler, R. M.; Sager, J. C.; Chapman, D. K.; Deitzer, G. F.
1996-01-01
Oat (Avena sativa cv Seger) seedlings were irradiated with IR light-emitting diode (LED) radiation passed through a visible-light-blocking filter. Infrared LED irradiated seedlings exhibited differences in growth and gravitropic response when compared to seedlings grown in darkness at the same temperature. Thus, the oat seedlings in this study were able to detect IR LED radiation. These findings call into question the use of IR LED as a safe-light for some photosensitive plant response experiments. These findings also expand the defined range of wavelengths involved in radiation-gravity (light-gravity) interactions to include wavelengths in the IR region of the spectrum.
Mohammed Larbi Labbi
2007-12-01
Full Text Available The $(2k$-th Gauss-Bonnet curvature is a generalization to higher dimensions of the $(2k$-dimensional Gauss-Bonnet integrand, it coincides with the usual scalar curvature for $k = 1$. The Gauss-Bonnet curvatures are used in theoretical physics to describe gravity in higher dimensional space times where they are known as the Lagrangian of Lovelock gravity, Gauss-Bonnet Gravity and Lanczos gravity. In this paper we present various aspects of these curvature invariants and review their variational properties. In particular, we discuss natural generalizations of the Yamabe problem, Einstein metrics and minimal submanifolds.
Moore, R.; McClelen, C. E.
1989-01-01
Plasmodesmata linking the root cap and root in primary roots Zea mays are restricted to approx. 400 protodermal cells bordering approx. 110000 microns2 of the calyptrogen of the root cap. This area is less than 10% of the cross-sectional area of the root-tip at the cap junction. Therefore, gravitropic effectors moving from the root cap to the root can move symplastically only through a relatively small area in the centre of the root. Decapped roots are non-responsive to gravity. However, decapped roots whose caps are replaced immediately after decapping are strongly graviresponsive. Thus, gravicurvature occurs only when the root cap contacts the root, and symplastic continuity between the cap and root is not required for gravicurvature. Completely removing mucilage from the root tip renders the root non-responsive to gravity. Taken together, these data suggest that gravitropic effectors move apoplastically through mucilage from the cap to the root.
Manifolds of positive scalar curvature
Stolz, S [Department of Mathematics, University of Notre Dame, Notre Dame (United States)
2002-08-15
This lecture gives an survey on the problem of finding a positive scalar curvature metric on a closed manifold. The Gromov-Lawson-Rosenberg conjecture and its relation to the Baum-Connes conjecture are discussed and the problem of finding a positive Ricci curvature metric on a closed manifold is explained.
Some Inequalities for the -Curvature Image
Daijun Wei
2009-01-01
Full Text Available Lutwak introduced the notion of -curvature image and proved an inequality for the volumes of convex body and its -curvature image. In this paper, we first give an monotonic property of -curvature image. Further, we establish two inequalities for the -curvature image and its polar, respectively. Finally, an inequality for the volumes of -projection body and -curvature image is obtained.
Rorabaugh, P. A.; Salisbury, F. B.
1989-01-01
Although the Cholodny-Went model of auxin redistribution has been used to explain the transduction phase of gravitropism for over 60 years, problems are apparent, especially with dicot stems. An alternative to an auxin gradient is a physiological gradient in which lower tissues of a horizontal stem become more sensitive than upper tissues to auxin already present. Changes in tissue sensitivity to auxin were tested by immersing marked Glycine max Merrill (soybean) hypocotyl sections in buffered auxin solutions (0, 10(-8) to 10(-2) molar indoleacetic acid) and observing bending and growth of upper and lower surfaces. The two surfaces of horizontal hypocotyl sections responded differently to the same applied auxin stimulus; hypocotyls bent up (lower half grew more) in buffer alone or in low auxin levels, but bent down (upper half grew more) in high auxin. Dose-response curves were evaluated with Michaelis-Menten kinetics, with auxin-receptor binding analogous to enzyme-substrate binding. Vmax for the lower half was usually greater than that for the upper half, which could indicate more binding sites in the lower half. Km of the upper half was always greater than that of the lower half (unmeasurably low), which could indicate that upper-half binding sites had a much lower affinity for auxin than lower-half sites. Dose-response curves were also obtained for sections scrubbed' (cuticle abraded) on top or bottom before immersion in auxin, and gravitropic memory' experiments of L. Brauner and A. Hagar (1958 Planta 51: 115-147) were duplicated. [1-14C]Indoleacetic acid penetration was equal into the two halves, and endogenous plus exogenously supplied (not radiolabeled) free auxin in the two halves (by gas chromatography-selected ion monitoring-mass spectrometry) was also equal. Thus, differential growth occurred without free auxin redistribution, contrary to Cholodny-Went but in agreement with a sensitivity model.
Lectures on mean curvature flows
Zhu, Xi-Ping
2002-01-01
"Mean curvature flow" is a term that is used to describe the evolution of a hypersurface whose normal velocity is given by the mean curvature. In the simplest case of a convex closed curve on the plane, the properties of the mean curvature flow are described by Gage-Hamilton's theorem. This theorem states that under the mean curvature flow, the curve collapses to a point, and if the flow is diluted so that the enclosed area equals \\pi, the curve tends to the unit circle. In this book, the author gives a comprehensive account of fundamental results on singularities and the asymptotic behavior of mean curvature flows in higher dimensions. Among other topics, he considers in detail Huisken's theorem (a generalization of Gage-Hamilton's theorem to higher dimension), evolution of non-convex curves and hypersurfaces, and the classification of singularities of the mean curvature flow. Because of the importance of the mean curvature flow and its numerous applications in differential geometry and partial differential ...
Environmental influences on DNA curvature
Ussery, David; Higgins, C.F.; Bolshoy, A.
1999-01-01
DNA curvature plays an important role in many biological processes. To study environmentalinfluences on DNA curvature we compared the anomalous migration on polyacrylamide gels ofligation ladders of 11 specifically-designed oligonucleotides. At low temperatures (25 degreesC and below) most......, whilst spermine enhanced theanomalous migration of a different set of sequences. Sequences with a GGC motif exhibitedgreater curvature than predicted by the presently-used angles for the nearest-neighbour wedgemodel and are especially sensitive to Mg2+. The data have implications for models...... for DNAcurvature and for environmentally-sensitive DNA conformations in the regulation of geneexpression....
Curvature force and dark energy
Balakin, Alexander B; Pavon, Diego; Schwarz, Dominik J; Zimdahl, Winfried
2003-01-01
A curvature self-interaction of the cosmic gas is shown to mimic a cosmological constant or other forms of dark energy, such as a rolling tachyon condensate or a Chaplygin gas. Any given Hubble rate and deceleration parameter can be traced back to the action of an effective curvature force on the gas particles. This force self-consistently reacts back on the cosmological dynamics. The links between an imperfect fluid description, a kinetic description with effective antifriction forces and curvature forces, which represent a non-minimal coupling of gravity to matter, are established
Dynamic curvature sensing employing ionic-polymer–metal composite sensors
Bahramzadeh, Yousef; Shahinpoor, Mohsen
2011-01-01
A dynamic curvature sensor is presented based on ionic-polymer–metal composite (IPMC) for curvature monitoring of deployable/inflatable dynamic space structures. Monitoring the curvature variation is of high importance in various engineering structures including shape monitoring of deployable/inflatable space structures in which the structural boundaries undergo a dynamic deployment process. The high sensitivity of IPMCs to the applied deformations as well as its flexibility make IPMCs a promising candidate for sensing of dynamic curvature changes. Herein, we explore the dynamic response of an IPMC sensor strip with respect to controlled curvature deformations subjected to different forms of input functions. Using a specially designed experimental setup, the voltage recovery effect, phase delay, and rate dependency of the output voltage signal of an IPMC curvature sensor are analyzed. Experimental results show that the IPMC sensor maintains the linearity, sensitivity, and repeatability required for curvature sensing. Besides, in order to describe the dynamic phenomena such as the rate dependency of the IPMC sensor, a chemo-electro-mechanical model based on the Poisson–Nernst–Planck (PNP) equation for the kinetics of ion diffusion is presented. By solving the governing partial differential equations the frequency response of the IPMC sensor is derived. The physical model is able to describe the dynamic properties of the IPMC sensor and the dependency of the signal on rate of excitations
The Ca2+ pump inhibitor, thapsigargin, inhibits root gravitropism in Arabidopsis thaliana
DANIELA C URBINA
2006-01-01
Full Text Available Thapsigargin, a specific inhibitor of most animal intracellular SERCA-type Ca2+ pumps present in the sarcoplasmic/endoplasmic reticulum, was originally isolated from the roots of the Mediterranean plant Thapsia gargancia L. Here, we demonstrate that this root-derived compound is capable of altering root gravitropism in Arabidopsis thaliana. Thapsigargin concentrations as low as 0.1 µM alter root gravitropism whereas under similar conditions cyclopiazonic acid does not. Furthermore, a fluorescently conjugated thapsigargin (BODIPY FL thapsigargin suggests that target sites for thapsigargin are located in intracellular organelles in the root distal elongation zone and the root cap, regions known to regulate root gravitropism
Identification of a Gravitropism-Deficient Mutant in Rice
He Yan
2017-03-01
Full Text Available A gravitropism-deficient mutant M96 was isolated from a mutant bank, generated by ethyl methane sulfonate (EMS mutagenesis of indica rice accession ZJ100. The mutant was characterized as prostrate growth at the beginning of germination, and the prostrate growth phenotype ran through the whole life duration. Tiller angle and tiller number of M96 increased significantly in comparison with the wild type. Tissue section observation analysis indicated that asymmetric stem growth around the second node occurred in M96. Genetic analysis and gene mapping showed that M96 was controlled by a single recessive nuclear gene, tentatively termed as gravitropism-deficient M96 (gdM96, which was mapped to a region of 506 kb flanked by markers RM5960 and InDel8 on the long arm of chromosome 11. Sequencing analysis of the open reading frames in this region revealed a nucleotide substitution from G to T in the third exon of LOC_Os11g29840. Additionally, real-time fluorescence quantitative PCR analysis showed that the expression level of LOC_Os11g29840 in the stems was much higher than in the roots and leaves in M96. Furthermore, the expression level was more than four times in M96 stem than in the wild type stem. Our results suggested that the mutant gene was likely a new allele to the reported gene LAZY1. Isolation of this new allele would facilitate the further characterization of LAZY1.
Discrete Curvature Theories and Applications
Sun, Xiang
2016-08-25
Discrete Di erential Geometry (DDG) concerns discrete counterparts of notions and methods in di erential geometry. This thesis deals with a core subject in DDG, discrete curvature theories on various types of polyhedral surfaces that are practically important for free-form architecture, sunlight-redirecting shading systems, and face recognition. Modeled as polyhedral surfaces, the shapes of free-form structures may have to satisfy di erent geometric or physical constraints. We study a combination of geometry and physics { the discrete surfaces that can stand on their own, as well as having proper shapes for the manufacture. These proper shapes, known as circular and conical meshes, are closely related to discrete principal curvatures. We study curvature theories that make such surfaces possible. Shading systems of freeform building skins are new types of energy-saving structures that can re-direct the sunlight. From these systems, discrete line congruences across polyhedral surfaces can be abstracted. We develop a new curvature theory for polyhedral surfaces equipped with normal congruences { a particular type of congruences de ned by linear interpolation of vertex normals. The main results are a discussion of various de nitions of normality, a detailed study of the geometry of such congruences, and a concept of curvatures and shape operators associated with the faces of a triangle mesh. These curvatures are compatible with both normal congruences and the Steiner formula. In addition to architecture, we consider the role of discrete curvatures in face recognition. We use geometric measure theory to introduce the notion of asymptotic cones associated with a singular subspace of a Riemannian manifold, which is an extension of the classical notion of asymptotic directions. We get a simple expression of these cones for polyhedral surfaces, as well as convergence and approximation theorems. We use the asymptotic cones as facial descriptors and demonstrate the
Curvature bound from gravitational catalysis
Gies, Holger; Martini, Riccardo
2018-04-01
We determine bounds on the curvature of local patches of spacetime from the requirement of intact long-range chiral symmetry. The bounds arise from a scale-dependent analysis of gravitational catalysis and its influence on the effective potential for the chiral order parameter, as induced by fermionic fluctuations on a curved spacetime with local hyperbolic properties. The bound is expressed in terms of the local curvature scalar measured in units of a gauge-invariant coarse-graining scale. We argue that any effective field theory of quantum gravity obeying this curvature bound is safe from chiral symmetry breaking through gravitational catalysis and thus compatible with the simultaneous existence of chiral fermions in the low-energy spectrum. With increasing number of dimensions, the curvature bound in terms of the hyperbolic scale parameter becomes stronger. Applying the curvature bound to the asymptotic safety scenario for quantum gravity in four spacetime dimensions translates into bounds on the matter content of particle physics models.
Abe, K; Takahashi, H; Suge, H
1996-12-01
Using an isogenic line of rice having lazy gene (la), we studied the correlation between the agravitropic response at the young seedling stage and the lazy habit (prostrate growth of tillers) at the more advanced stage of growth. In this study, it was found that both agravitropism and lazy habit were controlled by the single recessive la gene. That is, F2 segregants of Kamenoo x lazy-Kamenoo, which had an agravitropic response at their young seedling stage, showed a lazy habit of growth in the more advanced stage of vegetative growth. On the other hand, seedlings that showed normal gravitropic curvature at their early stage of growth had an upright growth in the mature stage.
Calcium movements and the cellular basis of gravitropism
Roux, S. J.; Biro, R. L.; Hale, C. C.
An early gravity-transduction event in oat coleoptiles which precedes any noticeable bending is the accumulation of calcium on their prospective slower-growing side. Sub-cellular calcium localization studies indicate that the gravity-stimulated redistribution of calcium results in an increased concentration of calcium in the walls of responding cells. Since calcium can inhibit the extension growth of plant cell walls, this selective accumulation of calcium in walls may play a role in inducing the asymmetry of growth which characterizes gravitropism. The active transport of calcium from cells into walls is performed by a calcium-dependent ATPase localized in the plasma membrane. Evidence is presented in support of the hypothesis that this calcium pump is regulated by a feed-back mechanism which includes the participation of calmodulin.
Surface meshing with curvature convergence
Li, Huibin; Zeng, Wei; Morvan, Jean-Marie; Chen, Liming; Gu, Xianfengdavid
2014-01-01
Surface meshing plays a fundamental role in graphics and visualization. Many geometric processing tasks involve solving geometric PDEs on meshes. The numerical stability, convergence rates and approximation errors are largely determined by the mesh qualities. In practice, Delaunay refinement algorithms offer satisfactory solutions to high quality mesh generations. The theoretical proofs for volume based and surface based Delaunay refinement algorithms have been established, but those for conformal parameterization based ones remain wide open. This work focuses on the curvature measure convergence for the conformal parameterization based Delaunay refinement algorithms. Given a metric surface, the proposed approach triangulates its conformal uniformization domain by the planar Delaunay refinement algorithms, and produces a high quality mesh. We give explicit estimates for the Hausdorff distance, the normal deviation, and the differences in curvature measures between the surface and the mesh. In contrast to the conventional results based on volumetric Delaunay refinement, our stronger estimates are independent of the mesh structure and directly guarantee the convergence of curvature measures. Meanwhile, our result on Gaussian curvature measure is intrinsic to the Riemannian metric and independent of the embedding. In practice, our meshing algorithm is much easier to implement and much more efficient. The experimental results verified our theoretical results and demonstrated the efficiency of the meshing algorithm. © 2014 IEEE.
Surface meshing with curvature convergence
Li, Huibin
2014-06-01
Surface meshing plays a fundamental role in graphics and visualization. Many geometric processing tasks involve solving geometric PDEs on meshes. The numerical stability, convergence rates and approximation errors are largely determined by the mesh qualities. In practice, Delaunay refinement algorithms offer satisfactory solutions to high quality mesh generations. The theoretical proofs for volume based and surface based Delaunay refinement algorithms have been established, but those for conformal parameterization based ones remain wide open. This work focuses on the curvature measure convergence for the conformal parameterization based Delaunay refinement algorithms. Given a metric surface, the proposed approach triangulates its conformal uniformization domain by the planar Delaunay refinement algorithms, and produces a high quality mesh. We give explicit estimates for the Hausdorff distance, the normal deviation, and the differences in curvature measures between the surface and the mesh. In contrast to the conventional results based on volumetric Delaunay refinement, our stronger estimates are independent of the mesh structure and directly guarantee the convergence of curvature measures. Meanwhile, our result on Gaussian curvature measure is intrinsic to the Riemannian metric and independent of the embedding. In practice, our meshing algorithm is much easier to implement and much more efficient. The experimental results verified our theoretical results and demonstrated the efficiency of the meshing algorithm. © 2014 IEEE.
A prescribing geodesic curvature problem
Chang, K.C.; Liu, J.Q.
1993-09-01
Let D be the unit disk and k be a function on S 1 = δD. Find a flat metric which is pointwise conformal to the standard metric and has k as the geodesic curvature of S 1 . A sufficient condition for the existence of such a metric is that the harmonic extension of k in D has saddle points. (author). 11 refs
Cosmic curvature tested directly from observations
Denissenya, Mikhail; Linder, Eric V.; Shafieloo, Arman
2018-03-01
Cosmic spatial curvature is a fundamental geometric quantity of the Universe. We investigate a model independent, geometric approach to measure spatial curvature directly from observations, without any derivatives of data. This employs strong lensing time delays and supernova distance measurements to measure the curvature itself, rather than just testing consistency with flatness. We define two curvature estimators, with differing error propagation characteristics, that can crosscheck each other, and also show how they can be used to map the curvature in redshift slices, to test constancy of curvature as required by the Robertson-Walker metric. Simulating realizations of redshift distributions and distance measurements of lenses and sources, we estimate uncertainties on the curvature enabled by next generation measurements. The results indicate that the model independent methods, using only geometry without assuming forms for the energy density constituents, can determine the curvature at the ~6×10‑3 level.
Curvature Entropy for Curved Profile Generation
Ujiie, Yoshiki; Kato, Takeo; Sato, Koichiro; Matsuoka, Yoshiyuki
2012-01-01
In a curved surface design, the overall shape features that emerge from combinations of shape elements are important. However, controlling the features of the overall shape in curved profiles is difficult using conventional microscopic shape information such as dimension. Herein two types of macroscopic shape information, curvature entropy and quadrature curvature entropy, quantitatively represent the features of the overall shape. The curvature entropy is calculated by the curvature distribu...
A remark about the mean curvature
Zhang Weitao.
1992-11-01
In this paper, we give an integral identity about the mean curvature in Sobolev space H 0 1 (Ω) intersection H 2 (Ω). Suppose the mean curvature on Γ=δΩ is positive, we prove some inequalities of the positive mean curvature and propose some open problems. (author). 4 refs
Barenboim, Gabriela; Martínez, Enrique Fernández; Mena, Olga; Verde, Licia
2010-01-01
Geometrical tests such as the combination of the Hubble parameter H(z) and the angular diameter distance d A (z) can, in principle, break the degeneracy between the dark energy equation of state parameter w(z), and the spatial curvature Ω k in a direct, model-independent way. In practice, constraints on these quantities achievable from realistic experiments, such as those to be provided by Baryon Acoustic Oscillation (BAO) galaxy surveys in combination with CMB data, can resolve the cosmic confusion between the dark energy equation of state parameter and curvature only statistically and within a parameterized model for w(z). Combining measurements of both H(z) and d A (z) up to sufficiently high redshifts z ∼ 2 and employing a parameterization of the redshift evolution of the dark energy equation of state are the keys to resolve the w(z)−Ω k degeneracy
The microtubule cytoskeleton does not integrate auxin transport and gravitropism in maize roots
Hasenstein, K. H.; Blancaflor, E. B.; Lee, J. S.
1999-01-01
The Cholodny-Went hypothesis of gravitropism suggests that the graviresponse is controlled by the distribution of auxin. However, the mechanism of auxin transport during the graviresponse of roots is still unresolved. To determine whether the microtubule (MT) cytoskeleton is participating in auxin transport, the cytoskeleton was examined and the movement of 3H-IAA measured in intact and excised taxol, oryzalin, and naphthylphthalamic acid (NPA)-treated roots of Zea mays cv. Merit. Taxol and oryzalin did not inhibit the graviresponse of roots but the auxin transport inhibitor NPA greatly inhibited both auxin transport and graviresponse. NPA had no effect on MT organization in vertical roots, but caused MT reorientation in horizontally placed roots. Regardless of treatment, the organization of MTs in intact roots differed from that in root segments. The MT inhibitors, taxol and oryzalin had opposite effects on the MTs, namely, depolymerization (oryzalin) and stabilization and thickening (taxol), but both treatments caused swelling of the roots. The data indicate that the MT cytoskeleton does not directly interfere with auxin transport or auxin-mediated growth responses in maize roots.
Curvature Entropy for Curved Profile Generation
Koichiro Sato
2012-03-01
Full Text Available In a curved surface design, the overall shape features that emerge from combinations of shape elements are important. However, controlling the features of the overall shape in curved profiles is difficult using conventional microscopic shape information such as dimension. Herein two types of macroscopic shape information, curvature entropy and quadrature curvature entropy, quantitatively represent the features of the overall shape. The curvature entropy is calculated by the curvature distribution, and represents the complexity of a shape (one of the overall shape features. The quadrature curvature entropy is an improvement of the curvature entropy by introducing a Markov process to evaluate the continuity of a curvature and to approximate human cognition of the shape. Additionally, a shape generation method using a genetic algorithm as a calculator and the entropy as a shape generation index is presented. Finally, the applicability of the proposed method is demonstrated using the side view of an automobile as a design example.
Interactions between red light, abscisic acid, and calcium in gravitropism
Leopold, A. C.; LaFavre, A. K.
1989-01-01
The effect of red light on orthogravitropism of Merit corn (Zea mays L.) roots has been attributed to its effects on the transduction phase of gravitropism (AC Leopold, SH Wettlaufer [1988] Plant Physiol 87:803-805). In an effort to characterize the orthogravitropic transduction system, comparative experiments have been carried out on the effects of red light, calcium, and abscisic acid (ABA). The red light effect can be completely satisfied with added ABA (100 micromolar) or with osmotic shock, which is presumed to increase endogenous ABA. The decay of the red light effect is closely paralleled by the decay of the ABA effect. ABA and exogenous calcium show strong additive effects when applied to either Merit or a line of corn which does not require red light for orthogravitropism. Measurements of the ABA content show marked increases in endogenous ABA in the growing region of the roots after red light. The interpretation is offered that red light or ABA may serve to increase the cytoplasmic concentrations of calcium, and that this may be an integral part of orthogravitropic transduction.
Discrimination of curvature from motion during smooth pursuit eye movements and fixation.
Ross, Nicholas M; Goettker, Alexander; Schütz, Alexander C; Braun, Doris I; Gegenfurtner, Karl R
2017-09-01
Smooth pursuit and motion perception have mainly been investigated with stimuli moving along linear trajectories. Here we studied the quality of pursuit movements to curved motion trajectories in human observers and examined whether the pursuit responses would be sensitive enough to discriminate various degrees of curvature. In a two-interval forced-choice task subjects pursued a Gaussian blob moving along a curved trajectory and then indicated in which interval the curve was flatter. We also measured discrimination thresholds for the same curvatures during fixation. Motion curvature had some specific effects on smooth pursuit properties: trajectories with larger amounts of curvature elicited lower open-loop acceleration, lower pursuit gain, and larger catch-up saccades compared with less curved trajectories. Initially, target motion curvatures were underestimated; however, ∼300 ms after pursuit onset pursuit responses closely matched the actual curved trajectory. We calculated perceptual thresholds for curvature discrimination, which were on the order of 1.5 degrees of visual angle (°) for a 7.9° curvature standard. Oculometric sensitivity to curvature discrimination based on the whole pursuit trajectory was quite similar to perceptual performance. Oculometric thresholds based on smaller time windows were higher. Thus smooth pursuit can quite accurately follow moving targets with curved trajectories, but temporal integration over longer periods is necessary to reach perceptual thresholds for curvature discrimination. NEW & NOTEWORTHY Even though motion trajectories in the real world are frequently curved, most studies of smooth pursuit and motion perception have investigated linear motion. We show that pursuit initially underestimates the curvature of target motion and is able to reproduce the target curvature ∼300 ms after pursuit onset. Temporal integration of target motion over longer periods is necessary for pursuit to reach the level of precision found
Dynamic Double Curvature Mould System
Jepsen, Christian Raun; Kristensen, Mathias Kræmmergaard; Kirkegaard, Poul Henning
2011-01-01
The present paper describes a concept for a reconfigurable mould surface which is designed to fit the needs of contemporary architecture. The core of the concept presented is a dynamic surface manipulated into a given shape using a digital signal created directly from the CAD drawing of the design....... This happens fast, automatic and without production of waste, and the manipulated surface is fair and robust, eliminating the need for additional, manual treatment. Limitations to the possibilities of the flexible form are limited curvature and limited level of detail, making it especially suited for larger...
Curvature-Controlled Topological Defects
Luka Mesarec
2017-05-01
Full Text Available Effectively, two-dimensional (2D closed films exhibiting in-plane orientational ordering (ordered shells might be instrumental for the realization of scaled crystals. In them, ordered shells are expected to play the role of atoms. Furthermore, topological defects (TDs within them would determine their valence. Namely, bonding among shells within an isotropic liquid matrix could be established via appropriate nano-binders (i.e., linkers which tend to be attached to the cores of TDs exploiting the defect core replacement mechanism. Consequently, by varying configurations of TDs one could nucleate growth of scaled crystals displaying different symmetries. For this purpose, it is of interest to develop a simple and robust mechanism via which one could control the position and number of TDs in such atoms. In this paper, we use a minimal mesoscopic model, where variational parameters are the 2D curvature tensor and the 2D orientational tensor order parameter. We demonstrate numerically the efficiency of the effective topological defect cancellation mechanism to predict positional assembling of TDs in ordered films characterized by spatially nonhomogeneous Gaussian curvature. Furthermore, we show how one could efficiently switch among qualitatively different structures by using a relative volume v of ordered shells, which represents a relatively simple naturally accessible control parameter.
Higher curvature supergravity and cosmology
Ferrara, Sergio [Th-Ph Department, CERN, Geneva (Switzerland); U.C.L.A., Los Angeles, CA (United States); INFN - LNF, Frascati (Italy); Sagnotti, Augusto [Scuola Normale Superiore, Pisa (Italy); INFN, Pisa (Italy)
2016-04-15
In this contribution we describe dual higher-derivative formulations of some cosmological models based on supergravity. Work in this direction started with the R + R{sup 2} Starobinsky model, whose supersymmetric extension was derived in the late 80's and was recently revived in view of new CMB data. Models dual to higher-derivative theories are subject to more restrictions than their bosonic counterparts or standard supergravity. The three sections are devoted to a brief description of R + R{sup 2} supergravity, to a scale invariant R{sup 2} supergravity and to theories with a nilpotent curvature, whose duals describe non-linear realizations (in the form of a Volkov-Akulov constrained superfield) coupled to supergravity. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
SLED phenomenology: curvature vs. volume
Niedermann, Florian; Schneider, Robert
2016-01-01
We assess the question whether the SLED (Supersymmetric Large Extra Dimensions) model admits phenomenologically viable solutions with 4D maximal symmetry. We take into account a finite brane width and a scale invariance (SI) breaking dilaton-brane coupling, both of which should be included in a realistic setup. Provided that the brane tension and the microscopic size of the brane take generic values set by the fundamental bulk Planck scale, we find that either the 4D curvature or the size of the extra dimensions is unacceptably large. Since this result is independent of the dilaton-brane couplings, it provides the biggest challenge to the SLED program. In addition, to quantify its potential with respect to the cosmological constant problem, we infer the amount of tuning on model parameters required to obtain a sufficiently small 4D curvature. A first answer was recently given in http://dx.doi.org/10.1007/JHEP02(2016)025, showing that 4D flat solutions are only ensured in the SI case by imposing a tuning relation, even if a brane-localized flux is included. In this companion paper, we find that the tuning can in fact be avoided for certain SI breaking brane-dilaton couplings, but only at the price of worsening the phenomenological problem. Our results are obtained by solving the full coupled Einstein-dilaton system in a completely consistent way. The brane width is implemented using a well-known ring regularization. In passing, we note that for the couplings considered here the results of http://dx.doi.org/10.1007/JHEP02(2016)025 (which only treated infinitely thin branes) are all consistently recovered in the thin brane limit, and how this can be reconciled with the concerns about their correctness, recently brought up in http://dx.doi.org/10.1007/JHEP01(2016)017.
Weyl tensors for asymmetric complex curvatures
Oliveira, C.G.
Considering a second rank Hermitian field tensor and a general Hermitian connection the associated complex curvature tensor is constructed. The Weyl tensor that corresponds to this complex curvature is determined. The formalism is applied to the Weyl unitary field theory and to the Moffat gravitational theory. (Author) [pt
The curvature function in general relativity
Hall, G S; MacNay, Lucy
2006-01-01
A function, here called the curvature function, is defined and which is constructed explicitly from the type (0, 4) curvature tensor. Although such a function may be defined for any manifold admitting a metric, attention is here concentrated on this function on a spacetime. Some properties of this function are explored and compared with a previous discussion of it given by Petrov
Intracellular magnetophoresis of amyloplasts and induction of root curvature
Kuznetsov, O. A.; Hasenstein, K. H.
1996-01-01
High-gradient magnetic fields (HGMFs) were used to induce intracellular magnetophoresis of amyloplasts. The HGMFs were generated by placing a small ferromagnetic wedge into a uniform magnetic field or at the gap edge between two permanent magnets. In the vicinity of the tip of the wedge the dynamic factor of the magnetic field, delta(H2/2), was about 10(9) Oe2.cm-1, which subjected the amyloplasts to a force comparable to that of gravity. When roots of 2-d-old seedlings of flax (Linum usitatissimum L.) were positioned vertically and exposed to an HGMF, curvature away from the wedge was transient and lasted approximately 1 h. Average curvature obtained after placing magnets, wedge and seedlings on a 1-rpm clinostat for 2 h was 33 +/- 5 degrees. Roots of horizontally placed control seedlings without rotation curved about 47 +/- 4 degrees. The time course of curvature and changes in growth rate were similar for gravicurvature and for root curvature induced by HGMFs. Microscopy showed displacement of amyloplasts in vitro and in vivo. Studies with Arabidopsis thaliana (L.) Heynh. showed that the wild type responded to HGMFs but the starchless mutant TC7 did not. The data indicate that a magnetic force can be used to study the gravisensing and response system of roots.
Forelimb bone curvature in terrestrial and arboreal mammals
Keith Henderson
2017-04-01
Full Text Available It has recently been proposed that the caudal curvature (concave caudal side observed in the radioulna of terrestrial quadrupeds is an adaptation to the habitual action of the triceps muscle which causes cranial bending strains (compression on cranial side. The caudal curvature is proposed to be adaptive because longitudinal loading induces caudal bending strains (increased compression on the caudal side, and these opposing bending strains counteract each other leaving the radioulna less strained. If this is true for terrestrial quadrupeds, where triceps is required for habitual elbow extension, then we might expect that in arboreal species, where brachialis is habitually required to maintain elbow flexion, the radioulna should instead be cranially curved. This study measures sagittal curvature of the ulna in a range of terrestrial and arboreal primates and marsupials, and finds that their ulnae are curved in opposite directions in these two locomotor categories. This study also examines sagittal curvature in the humerus in the same species, and finds differences that can be attributed to similar adaptations: the bone is curved to counter the habitual muscle action required by the animal’s lifestyle, the difference being mainly in the distal part of the humerus, where arboreal animals tend have a cranial concavity, thought to be in response the carpal and digital muscles that pull cranially on the distal humerus.
Gao, Dengliang
2013-03-01
In 3D seismic interpretation, curvature is a popular attribute that depicts the geometry of seismic reflectors and has been widely used to detect faults in the subsurface; however, it provides only part of the solutions to subsurface structure analysis. This study extends the curvature algorithm to a new curvature gradient algorithm, and integrates both algorithms for fracture detection using a 3D seismic test data set over Teapot Dome (Wyoming). In fractured reservoirs at Teapot Dome known to be formed by tectonic folding and faulting, curvature helps define the crestal portion of the reservoirs that is associated with strong seismic amplitude and high oil productivity. In contrast, curvature gradient helps better define the regional northwest-trending and the cross-regional northeast-trending lineaments that are associated with weak seismic amplitude and low oil productivity. In concert with previous reports from image logs, cores, and outcrops, the current study based on an integrated seismic curvature and curvature gradient analysis suggests that curvature might help define areas of enhanced potential to form tensile fractures, whereas curvature gradient might help define zones of enhanced potential to develop shear fractures. In certain fractured reservoirs such as at Teapot Dome where faulting and fault-related folding contribute dominantly to the formation and evolution of fractures, curvature and curvature gradient attributes can be potentially applied to differentiate fracture mode, to predict fracture intensity and orientation, to detect fracture volume and connectivity, and to model fracture networks.
Nakamoto, T
1995-03-01
The growth of the primary seminal root of maize (Zea mays L.) is characterized by an initial negative gravitropic reaction and a later positive one that attains a plagiotropic liminal angle. The effects of temperature and water potential of the surrounding soil on these gravitropic reactions were studied. Temperatures of 32, 25, and 18C and soil water potentials of -5, -38, and -67 kPa were imposed and the direction of growth was measured for every 1 cm length of the root. The initial negative gravitropic reaction extended to a distance of about 10 cm from the grain. Higher temperatures reduced the initial negative gravitropic reaction. Lower soil water potential induced a downward growth at root emergence. A mathematical model, in which it was assumed that the rate of the directional change of root growth was a sum of a time-dependent negative gravitropic reaction and an establishment of the liminal angle, adequately fitted the distance-angle relations. It was suggested that higher temperatures and/or a lower water potential accelerated the diminution of the initial negative gravitropic reaction.
Palme, Klaus; Aubry, D.; Bensch, M.; Schmidt, T.; Ronneberger, O.; Neu, C.; Li, X.; Wang, H.; Santos, F.; Wang, B.; Paponov, I.; Ditengou, F. A.; Teale, W. T.; Volkmann, D.; Baluska, F.; Nonis, A.; Trevisan, S.; Ruperti, B.; Dovzhenko, A.
Gravity plays a fundamental role in plant growth and development. Up to now, little is known about the molecular organisation of the signal transduction cascades and networks which co-ordinate gravity perception and response. By using an integrated systems biological approach, a systems analysis of gravity perception and the subsequent tightly-regulated growth response is planned in the model plant Arabidopsis thaliana. This approach will address questions such as: (i) what are the components of gravity signal transduction pathways? (ii) what are the dynamics of these components? (iii) what is their spatio-temporal regulation in different tis-sues? Using Arabidopsis thaliana as a model-we use root growth to obtain insights in the gravity response. New techniques enable identification of the individual genes affected by grav-ity and further integration of transcriptomics and proteomics data into interaction networks and cell communication events that operate during gravitropic curvature. Using systematic multiscale analysis we have identified regulatory networks consisting of transcription factors, the protein degradation machinery, vesicle trafficking and cellular signalling during the gravire-sponse. We developed approach allowing to incorporate key features of the root system across all relevant spatial and temporal scales to describe gene-expression patterns and correlate them with individual gene and protein functions. Combination of high-resolution microscopy and novel computational tools resulted in development of the root 3D model in which quantitative descriptions of cellular network properties and of multicellular interactions important in root growth and gravitropism can be integrated for the first time.
Curvature function and coarse graining
Diaz-Marin, Homero; Zapata, Jose A.
2010-01-01
A classic theorem in the theory of connections on principal fiber bundles states that the evaluation of all holonomy functions gives enough information to characterize the bundle structure (among those sharing the same structure group and base manifold) and the connection up to a bundle equivalence map. This result and other important properties of holonomy functions have encouraged their use as the primary ingredient for the construction of families of quantum gauge theories. However, in these applications often the set of holonomy functions used is a discrete proper subset of the set of holonomy functions needed for the characterization theorem to hold. We show that the evaluation of a discrete set of holonomy functions does not characterize the bundle and does not constrain the connection modulo gauge appropriately. We exhibit a discrete set of functions of the connection and prove that in the abelian case their evaluation characterizes the bundle structure (up to equivalence), and constrains the connection modulo gauge up to ''local details'' ignored when working at a given scale. The main ingredient is the Lie algebra valued curvature function F S (A) defined below. It covers the holonomy function in the sense that expF S (A)=Hol(l=∂S,A).
Curvature and torsion in growing actin networks
Shaevitz, Joshua W; Fletcher, Daniel A
2008-01-01
Intracellular pathogens such as Listeria monocytogenes and Rickettsia rickettsii move within a host cell by polymerizing a comet-tail of actin fibers that ultimately pushes the cell forward. This dense network of cross-linked actin polymers typically exhibits a striking curvature that causes bacteria to move in gently looping paths. Theoretically, tail curvature has been linked to details of motility by considering force and torque balances from a finite number of polymerizing filaments. Here we track beads coated with a prokaryotic activator of actin polymerization in three dimensions to directly quantify the curvature and torsion of bead motility paths. We find that bead paths are more likely to have low rather than high curvature at any given time. Furthermore, path curvature changes very slowly in time, with an autocorrelation decay time of 200 s. Paths with a small radius of curvature, therefore, remain so for an extended period resulting in loops when confined to two dimensions. When allowed to explore a three-dimensional (3D) space, path loops are less evident. Finally, we quantify the torsion in the bead paths and show that beads do not exhibit a significant left- or right-handed bias to their motion in 3D. These results suggest that paths of actin-propelled objects may be attributed to slow changes in curvature, possibly associated with filament debranching, rather than a fixed torque
Right thoracic curvature in the normal spine
Masuda Keigo
2011-01-01
Full Text Available Abstract Background Trunk asymmetry and vertebral rotation, at times observed in the normal spine, resemble the characteristics of adolescent idiopathic scoliosis (AIS. Right thoracic curvature has also been reported in the normal spine. If it is determined that the features of right thoracic side curvature in the normal spine are the same as those observed in AIS, these findings might provide a basis for elucidating the etiology of this condition. For this reason, we investigated right thoracic curvature in the normal spine. Methods For normal spinal measurements, 1,200 patients who underwent a posteroanterior chest radiographs were evaluated. These consisted of 400 children (ages 4-9, 400 adolescents (ages 10-19 and 400 adults (ages 20-29, with each group comprised of both genders. The exclusion criteria were obvious chest and spinal diseases. As side curvature is minimal in normal spines and the range at which curvature is measured is difficult to ascertain, first the typical curvature range in scoliosis patients was determined and then the Cobb angle in normal spines was measured using the same range as the scoliosis curve, from T5 to T12. Right thoracic curvature was given a positive value. The curve pattern was organized in each collective three groups: neutral (from -1 degree to 1 degree, right (> +1 degree, and left ( Results In child group, Cobb angle in left was 120, in neutral was 125 and in right was 155. In adolescent group, Cobb angle in left was 70, in neutral was 114 and in right was 216. In adult group, Cobb angle in left was 46, in neutral was 102 and in right was 252. The curvature pattern shifts to the right side in the adolescent group (p Conclusions Based on standing chest radiographic measurements, a right thoracic curvature was observed in normal spines after adolescence.
Investigating undergraduate students’ ideas about the curvature of the Universe
Kim Coble
2018-06-01
Full Text Available [This paper is part of the Focused Collection on Astronomy Education Research.] As part of a larger project studying undergraduate students’ understanding of cosmology, we explored students’ ideas about the curvature of the Universe. We investigated preinstruction ideas held by introductory astronomy (ASTRO 101 students at three participating universities and postinstruction ideas at one. Through thematic analysis of responses to questions on three survey forms and preinstruction interviews, we found that prior to instruction a significant fraction of students said the Universe is round. Students’ reasoning for this included that the Universe contains round objects, therefore it must also be round, or an incorrect idea that the big bang theory describes an explosion from a central point. We also found that a majority of students think that astronomers use the term curvature to describe properties, such as dimensions, angles, or size, of the Universe or objects in the Universe, or that astronomers use the term curvature to describe the bending of space due to gravity. Students are skeptical that the curvature of the Universe can be measured, to a greater or lesser degree depending on question framing. Postinstruction responses to a multiple-choice exam question and interviews at one university indicate that students are more likely to correctly respond that the Universe as a whole is not curved postinstruction, though the idea that the Universe is round still persists for some students. While we see no evidence that priming with an elliptical or rectangular map of the cosmic microwave background on a postinstruction exam affects responses, students do cite visualizations such as diagrams among the reasons for their responses in preinstruction surveys.
Discrete Curvatures and Discrete Minimal Surfaces
Sun, Xiang
2012-01-01
This thesis presents an overview of some approaches to compute Gaussian and mean curvature on discrete surfaces and discusses discrete minimal surfaces. The variety of applications of differential geometry in visualization and shape design leads
Higher Curvature Supergravity, Supersymmetry Breaking and Inflation
Ferrara, Sergio
2017-01-01
In these lectures, after a short introduction to cosmology, we discuss the supergravity embedding of higher curvature models of inflation. The supergravity description of such models is presented for the two different formulations of minimal supergravity.
Curvature of Indoor Sensor Network: Clustering Coefficient
2009-03-01
Full Text Available We investigate the geometric properties of the communication graph in realistic low-power wireless networks. In particular, we explore the concept of the curvature of a wireless network via the clustering coefficient. Clustering coefficient analysis is a computationally simplified, semilocal approach, which nevertheless captures such a large-scale feature as congestion in the underlying network. The clustering coefficient concept is applied to three cases of indoor sensor networks, under varying thresholds on the link packet reception rate (PRR. A transition from positive curvature (“meshed” network to negative curvature (“core concentric” network is observed by increasing the threshold. Even though this paper deals with network curvature per se, we nevertheless expand on the underlying congestion motivation, propose several new concepts (network inertia and centroid, and finally we argue that greedy routing on a virtual positively curved network achieves load balancing on the physical network.
The spinning particle with extrinsic curvature
Dhar, A.
1988-01-01
We construct and analyse an action for the spinning particle which contains an extrinsic curvature term. A possible generalization of this construction to the case of the spinning string is also discussed. (orig.)
High-resolution mapping and genetic characterization of the Lazy-2 gravitropic mutant of tomato
Behringer, F. J.; Lomax, T. L.
1999-01-01
Mutation of the Lazy-2 (Lz-2) gene in tomato (Lycopersicon esculentum mill.) produces a phytochrome-dependent reversal of shoot gravitropism, providing a unique genetic resource for investigating how signals from light modulate gravitropism. We mapped the Lz-2 gene using RFLPs and a PCR-based technique to assess the feasibility of positional cloning. Analysis of a 1338 plant backcross population between L. esculentum and L. pennellii placed Lz-2 within a 1.2 cM interval on chromosome 5, 0.4 cM from TG504-CT201A interval. The inabililty to resolve these markers indicates that Lz-2 resides in a centromeric region in which recombination is highly suppressed. Lazy-2 is tightly linked to but does not encode the gene for ACC4, an enzyme involved in ethylene biosynthesis. We also observed that Lz-2 is partially dominant under certain conditions and stages of development.
GDP growth and the yield curvature
Møller, Stig Vinther
2014-01-01
This paper examines the forecastability of GDP growth using information from the term structure of yields. In contrast to previous studies, the paper shows that the curvature of the yield curve contributes with much more forecasting power than the slope of yield curve. The yield curvature also...... predicts bond returns, implying a common element to time-variation in expected bond returns and expected GDP growth....
Straight-line string with curvature
Solov'ev, L.D.
1995-01-01
Classical and quantum solutions for the relativistic straight-line string with arbitrary dependence on the world surface curvature are obtained. They differ from the case of the usual Nambu-Goto interaction by the behaviour of the Regge trajectory which in general can be non-linear. A regularization of the action is considered and a comparison with relativistic point with curvature is made. 5 refs
Curvature-Induced Instabilities of Shells
Pezzulla, Matteo; Stoop, Norbert; Steranka, Mark P.; Bade, Abdikhalaq J.; Holmes, Douglas P.
2018-01-01
Induced by proteins within the cell membrane or by differential growth, heating, or swelling, spontaneous curvatures can drastically affect the morphology of thin bodies and induce mechanical instabilities. Yet, the interaction of spontaneous curvature and geometric frustration in curved shells remains poorly understood. Via a combination of precision experiments on elastomeric spherical shells, simulations, and theory, we show how a spontaneous curvature induces a rotational symmetry-breaking buckling as well as a snapping instability reminiscent of the Venus fly trap closure mechanism. The instabilities, and their dependence on geometry, are rationalized by reducing the spontaneous curvature to an effective mechanical load. This formulation reveals a combined pressurelike term in the bulk and a torquelike term in the boundary, allowing scaling predictions for the instabilities that are in excellent agreement with experiments and simulations. Moreover, the effective pressure analogy suggests a curvature-induced subcritical buckling in closed shells. We determine the critical buckling curvature via a linear stability analysis that accounts for the combination of residual membrane and bending stresses. The prominent role of geometry in our findings suggests the applicability of the results over a wide range of scales.
Okamoto, Keishi; Ueda, Haruko; Shimada, Tomoo; Tamura, Kentaro; Koumoto, Yasuko; Tasaka, Masao; Morita, Miyo Terao; Hara-Nishimura, Ikuko
2016-01-01
A significant feature of plant cells is the extensive motility of organelles and the cytosol, which was originally defined as cytoplasmic streaming. We suggested previously that a three-way interaction between plant-specific motor proteins myosin XIs, actin filaments, and the endoplasmic reticulum (ER) was responsible for cytoplasmic streaming. (1) Currently, however, there are no reports of molecular components for cytoplasmic streaming other than the actin-myosin-cytoskeleton and ER-related proteins. In the present study, we found that elongated cells of inflorescence stems of Arabidopsis thaliana exhibit vigorous cytoplasmic streaming. Statistical analysis showed that the maximal velocity of plastid movements is 7.26 µm/s, which is much faster than the previously reported velocities of organelles. Surprisingly, the maximal velocity of streaming in the inflorescence stem cells was significantly reduced to 1.11 µm/s in an Arabidopsis mutant, abcb19-101, which lacks ATP BINDING CASSETTE SUBFAMILY B19 (ABCB19) that mediates the polar transport of the phytohormone auxin together with PIN-FORMED (PIN) proteins. Polar auxin transport establishes the auxin concentration gradient essential for plant development and tropisms. Deficiency of ABCB19 activity eventually caused enhanced gravitropic responses of the inflorescence stems and abnormally flexed inflorescence stems. These results suggest that ABCB19-mediated auxin transport plays a role not only in tropism regulation, but also in cytoplasmic streaming.
Small RNA Deep Sequencing and the Effects of microRNA408 on Root Gravitropic Bending in Arabidopsis
Li, Huasheng; Lu, Jinying; Sun, Qiao; Chen, Yu; He, Dacheng; Liu, Min
2015-11-01
MicroRNA (miRNA) is a non-coding small RNA composed of 20 to 24 nucleotides that influences plant root development. This study analyzed the miRNA expression in Arabidopsis root tip cells using Illumina sequencing and real-time PCR before (sample 0) and 15 min after (sample 15) a 3-D clinostat rotational treatment was administered. After stimulation was performed, the expression levels of seven miRNA genes, including Arabidopsis miR160, miR161, miR394, miR402, miR403, miR408, and miR823, were significantly upregulated. Illumina sequencing results also revealed two novel miRNAsthat have not been previously reported, The target genes of these miRNAs included pentatricopeptide repeat-containing protein and diadenosine tetraphosphate hydrolase. An overexpression vector of Arabidopsis miR408 was constructed and transferred to Arabidopsis plant. The roots of plants over expressing miR408 exhibited a slower reorientation upon gravistimulation in comparison with those of wild-type. This result indicate that miR408 could play a role in root gravitropic response.
Curvature constraints from the causal entropic principle
Bozek, Brandon; Albrecht, Andreas; Phillips, Daniel
2009-01-01
Current cosmological observations indicate a preference for a cosmological constant that is drastically smaller than what can be explained by conventional particle physics. The causal entropic principle (Bousso et al.) provides an alternative approach to anthropic attempts to predict our observed value of the cosmological constant by calculating the entropy created within a causal diamond. We have extended this work to use the causal entropic principle to predict the preferred curvature within the 'multiverse'. We have found that values larger than ρ k =40ρ m are disfavored by more than 99.99% peak value at ρ Λ =7.9x10 -123 and ρ k =4.3ρ m for open universes. For universes that allow only positive curvature or both positive and negative curvature, we find a correlation between curvature and dark energy that leads to an extended region of preferred values. Our universe is found to be disfavored to an extent depending on the priors on curvature. We also provide a comparison to previous anthropic constraints on open universes and discuss future directions for this work.
Some Inequalities for the Lp-Curvature Image
Xiang Yu
2009-01-01
Full Text Available Lutwak introduced the notion of Lp-curvature image and proved an inequality for the volumes of convex body and its Lp-curvature image. In this paper, we first give an monotonic property of Lp-curvature image. Further, we establish two inequalities for the Lp-curvature image and its polar, respectively. Finally, an inequality for the volumes of Lp-projection body and Lp-curvature image is obtained.
Generic Properties of Curvature Sensing through Vision and Touch
Birgitta Dresp-Langley
2013-01-01
Full Text Available Generic properties of curvature representations formed on the basis of vision and touch were examined as a function of mathematical properties of curved objects. Virtual representations of the curves were shown on a computer screen for visual scaling by sighted observers (experiment 1. Their physical counterparts were placed in the two hands of blindfolded and congenitally blind observers for tactile scaling. The psychophysical data show that curvature representations in congenitally blind individuals, who never had any visual experience, and in sighted observers, who rely on vision most of the time, are statistically linked to the same mathematical properties of the curves. The perceived magnitude of object curvature, sensed through either vision or touch, is related by a mathematical power law, with similar exponents for the two sensory modalities, to the aspect ratio of the curves, a scale invariant geometric property. This finding supports biologically motivated models of sensory integration suggesting a universal power law for the adaptive brain control and balance of motor responses to environmental stimuli from any sensory modality.
Berry Curvature and Nonlocal Transport Characteristics of Antidot Graphene
Jie Pan
2017-09-01
Full Text Available Antidot graphene denotes a monolayer of graphene structured by a periodic array of holes. Its energy dispersion is known to display a gap at the Dirac point. However, since the degeneracy between the A and B sites is preserved, antidot graphene cannot be described by the 2D massive Dirac equation, which is suitable for systems with an inherent A/B asymmetry. From inversion and time-reversal-symmetry considerations, antidot graphene should therefore have zero Berry curvature. In this work, we derive the effective Hamiltonian of antidot graphene from its tight-binding wave functions. The resulting Hamiltonian is a 4×4 matrix with a nonzero intervalley scattering term, which is responsible for the gap at the Dirac point. Furthermore, nonzero Berry curvature is obtained from the effective Hamiltonian, owing to the double degeneracy of the eigenfunctions. The topological manifestation is shown to be robust against randomness perturbations. Since the Berry curvature is expected to induce a transverse conductance, we have experimentally verified this feature through nonlocal transport measurements, by fabricating three antidot graphene samples with a triangular array of holes, a fixed periodicity of 150 nm, and hole diameters of 100, 80, and 60 nm. All three samples display topological nonlocal conductance, with excellent agreement with the theory predictions.
Curvature effects on the electronic and transport properties of semiconductor films
Batista, F. F.; Chaves, Andrey; da Costa, D. R.; Farias, G. A.
2018-05-01
Within the effective mass approximation, we study the curvature effects on the electronic and transport properties of semiconductor films. We investigate how the geometry-induced potential resulting exclusively from periodic ripples in the film induces electronic confinement and a superlattice band structure. For fixed curvature parameters, such a confinement can be easily tuned by an external electric field, hence features of the superlattice band structure such as its energy gaps and band curvature can be controlled by an external parameter. We also show that, for some values of curvature and electric field, it is possible to obtain massless Dirac bands for a smooth curved structure. Moreover, we use a wave packet propagation method to demonstrate that the ripples are responsible for a significant inter-sub-band transition, specially for moderate values of the ripple height.
Extrinsic and intrinsic curvatures in thermodynamic geometry
Hosseini Mansoori, Seyed Ali, E-mail: shossein@bu.edu [Department of Physics, Boston University, 590 Commonwealth Ave., Boston, MA 02215 (United States); Department of Physics, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Mirza, Behrouz, E-mail: b.mirza@cc.iut.ac.ir [Department of Physics, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Sharifian, Elham, E-mail: e.sharifian@ph.iut.ac.ir [Department of Physics, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of)
2016-08-10
We investigate the intrinsic and extrinsic curvatures of a certain hypersurface in thermodynamic geometry of a physical system and show that they contain useful thermodynamic information. For an anti-Reissner–Nordström-(A)de Sitter black hole (Phantom), the extrinsic curvature of a constant Q hypersurface has the same sign as the heat capacity around the phase transition points. The intrinsic curvature of the hypersurface can also be divergent at the critical points but has no information about the sign of the heat capacity. Our study explains the consistent relationship holding between the thermodynamic geometry of the KN-AdS black holes and those of the RN (J-zero hypersurface) and Kerr black holes (Q-zero hypersurface) ones [1]. This approach can easily be generalized to an arbitrary thermodynamic system.
Extrinsic and intrinsic curvatures in thermodynamic geometry
Hosseini Mansoori, Seyed Ali; Mirza, Behrouz; Sharifian, Elham
2016-01-01
We investigate the intrinsic and extrinsic curvatures of a certain hypersurface in thermodynamic geometry of a physical system and show that they contain useful thermodynamic information. For an anti-Reissner–Nordström-(A)de Sitter black hole (Phantom), the extrinsic curvature of a constant Q hypersurface has the same sign as the heat capacity around the phase transition points. The intrinsic curvature of the hypersurface can also be divergent at the critical points but has no information about the sign of the heat capacity. Our study explains the consistent relationship holding between the thermodynamic geometry of the KN-AdS black holes and those of the RN (J-zero hypersurface) and Kerr black holes (Q-zero hypersurface) ones [1]. This approach can easily be generalized to an arbitrary thermodynamic system.
Substrate curvature gradient drives rapid droplet motion.
Lv, Cunjing; Chen, Chao; Chuang, Yin-Chuan; Tseng, Fan-Gang; Yin, Yajun; Grey, Francois; Zheng, Quanshui
2014-07-11
Making small liquid droplets move spontaneously on solid surfaces is a key challenge in lab-on-chip and heat exchanger technologies. Here, we report that a substrate curvature gradient can accelerate micro- and nanodroplets to high speeds on both hydrophilic and hydrophobic substrates. Experiments for microscale water droplets on tapered surfaces show a maximum speed of 0.42 m/s, 2 orders of magnitude higher than with a wettability gradient. We show that the total free energy and driving force exerted on a droplet are determined by the substrate curvature and substrate curvature gradient, respectively. Using molecular dynamics simulations, we predict nanoscale droplets moving spontaneously at over 100 m/s on tapered surfaces.
Cosmic curvature from de Sitter equilibrium cosmology.
Albrecht, Andreas
2011-10-07
I show that the de Sitter equilibrium cosmology generically predicts observable levels of curvature in the Universe today. The predicted value of the curvature, Ω(k), depends only on the ratio of the density of nonrelativistic matter to cosmological constant density ρ(m)(0)/ρ(Λ) and the value of the curvature from the initial bubble that starts the inflation, Ω(k)(B). The result is independent of the scale of inflation, the shape of the potential during inflation, and many other details of the cosmology. Future cosmological measurements of ρ(m)(0)/ρ(Λ) and Ω(k) will open up a window on the very beginning of our Universe and offer an opportunity to support or falsify the de Sitter equilibrium cosmology.
Radion stabilization in higher curvature warped spacetime
Das, Ashmita [Indian Institute of Technology, Department of Physics, Guwahati, Assam (India); Mukherjee, Hiya; Paul, Tanmoy; SenGupta, Soumitra [Indian Association for the Cultivation of Science, Department of Theoretical Physics, Kolkata (India)
2018-02-15
We consider a five dimensional AdS spacetime in presence of higher curvature term like F(R) = R + αR{sup 2} in the bulk. In this model, we examine the possibility of modulus stabilization from the scalar degrees of freedom of higher curvature gravity free of ghosts. Our result reveals that the model stabilizes itself and the mechanism of modulus stabilization can be argued from a geometric point of view. We determine the region of the parametric space for which the modulus (or radion) can to be stabilized. We also show how the mass and coupling parameters of radion field are modified due to higher curvature term leading to modifications of its phenomenological implications on the visible 3-brane. (orig.)
Longitudinal surface curvature effect in magnetohydrodynamics
Bodas, N.G.
1975-01-01
The two-dimensional motion of an incompressible and electrically conducting fluid past an electrically insulated body surface (having curvature) is studied for a given O(1) basic flow and magnetic field, when (i) the applied magnetic field is aligned with the velocity in the basic flow, and (ii) the applied magnetic field is within the body surface. 01 and 0(Re sup(1/2)) mean the first and second order approximations respectively in an exansion scheme in powers of Resup(-1/2), Re being the Reynolds number). The technique of matched asymptotic expansions is used to solve the problem. The governing partial differential equations to 0(Resup(-1/2)) boundary layer approximation are found to give similarity solutions for a family of surface curvature and pressure gradient distributions in case (i), and for uniform basic flow with analytic surface curvature distributions in case (ii). The equations are solved numerically. In case (i) it is seen that the effect of the magnetic field on the skin-friction- correction due to the curvature is very small. Also the magnetic field at the wall is reduced by the curvature on the convex side. In case (ii) the magnetic field significantly increases the skin-friction-correction due to the curvature. The effect of the magnetic field on the O(1) and O(Resup(-1/2)) skin friction coefficients increases with the increase of the electrical conductivity of the fluid. Also, at higher values of the magnetic pressure, moderate changes in the electrical conductivity do not influence the correction to the skin-friction significantly. (Auth.)
Evans, M. L.; Mulkey, T. J.
1984-01-01
In order to test the idea that auxin action on root growth may be mediated by H(+) movement, the correlation of auxin action on growth and H(+) movement in roots was examined along with changes in H(+) efflux patterns associated with the asymmetric growth which occurs during gravitropism. The effects of indoleacetic acid (IAA) and abscisic acid (AbA) on growth, H(+) secretion, and gravitropism in roots were compared. Results show a close correlation existent between H(+) efflux and growth in maize roots. In intact roots there is strong H(+) efflux from the elongation zone. Growth-promoting concentrations of IAA stimulate H(+) efflux. During gravitropism the H(+) efflux from the elongation zone becomes asymmetric; the evidence indicates that auxin redistribution contributes to the development of acid efflux asymmetry. That AbA stimulates root growth is reflected in its ability to stimulate H(+) efflux from apical root segments.
Connections and curvatures on complex Riemannian manifolds
Ganchev, G.; Ivanov, S.
1991-05-01
Characteristic connection and characteristic holomorphic sectional curvatures are introduced on a complex Riemannian manifold (not necessarily with holomorphic metric). For the class of complex Riemannian manifolds with holomorphic characteristic connection a classification of the manifolds with (pointwise) constant holomorphic characteristic curvature is given. It is shown that the conformal geometry of complex analytic Riemannian manifolds can be naturally developed on the class of locally conformal holomorphic Riemannian manifolds. Complex Riemannian manifolds locally conformal to the complex Euclidean space are characterized with zero conformal fundamental tensor and zero conformal characteristic tensor. (author). 12 refs
Curvature recognition and force generation in phagocytosis
Prassler Jana
2010-12-01
Full Text Available Abstract Background The uptake of particles by actin-powered invagination of the plasma membrane is common to protozoa and to phagocytes involved in the immune response of higher organisms. The question addressed here is how a phagocyte may use geometric cues to optimize force generation for the uptake of a particle. We survey mechanisms that enable a phagocyte to remodel actin organization in response to particles of complex shape. Results Using particles that consist of two lobes separated by a neck, we found that Dictyostelium cells transmit signals concerning the curvature of a surface to the actin system underlying the plasma membrane. Force applied to a concave region can divide a particle in two, allowing engulfment of the portion first encountered. The phagosome membrane that is bent around the concave region is marked by a protein containing an inverse Bin-Amphiphysin-Rvs (I-BAR domain in combination with an Src homology (SH3 domain, similar to mammalian insulin receptor tyrosine kinase substrate p53. Regulatory proteins enable the phagocyte to switch activities within seconds in response to particle shape. Ras, an inducer of actin polymerization, is activated along the cup surface. Coronin, which limits the lifetime of actin structures, is reversibly recruited to the cup, reflecting a program of actin depolymerization. The various forms of myosin-I are candidate motor proteins for force generation in particle uptake, whereas myosin-II is engaged only in retracting a phagocytic cup after a switch to particle release. Thus, the constriction of a phagocytic cup differs from the contraction of a cleavage furrow in mitosis. Conclusions Phagocytes scan a particle surface for convex and concave regions. By modulating the spatiotemporal pattern of actin organization, they are capable of switching between different modes of interaction with a particle, either arresting at a concave region and applying force in an attempt to sever the particle
Zero curvature conditions and conformal covariance
Akemann, G.; Grimm, R.
1992-05-01
Two-dimensional zero curvature conditions were investigated in detail, with special emphasis on conformal properties, and the appearance of covariant higher order differential operators constructed in terms of a projective connection was elucidated. The analysis is based on the Kostant decomposition of simple Lie algebras in terms of representations with respect to their 'principal' SL(2) subalgebra. (author) 27 refs
Norm of the Riemannian Curvature Tensor
We consider the Riemannian functional R p ( g ) = ∫ M | R ( g ) | p d v g defined on the space of Riemannian metrics with unit volume on a closed smooth manifold where R ( g ) and d v g denote the corresponding Riemannian curvature tensor and volume form and p ∈ ( 0 , ∞ ) . First we prove that the Riemannian metrics ...
Constraining inverse curvature gravity with supernovae
Mena, Olga; Santiago, Jose; /Fermilab; Weller, Jochen; /University Coll., London /Fermilab
2005-10-01
We show that the current accelerated expansion of the Universe can be explained without resorting to dark energy. Models of generalized modified gravity, with inverse powers of the curvature can have late time accelerating attractors without conflicting with solar system experiments. We have solved the Friedman equations for the full dynamical range of the evolution of the Universe. This allows us to perform a detailed analysis of Supernovae data in the context of such models that results in an excellent fit. Hence, inverse curvature gravity models represent an example of phenomenologically viable models in which the current acceleration of the Universe is driven by curvature instead of dark energy. If we further include constraints on the current expansion rate of the Universe from the Hubble Space Telescope and on the age of the Universe from globular clusters, we obtain that the matter content of the Universe is 0.07 {le} {omega}{sub m} {le} 0.21 (95% Confidence). Hence the inverse curvature gravity models considered can not explain the dynamics of the Universe just with a baryonic matter component.
On Mass, Spacetime Curvature, and Gravity
Janis, Allen I.
2018-01-01
The frequently used analogy of a massive ball distorting an elastic sheet, which is used to illustrate why mass causes spacetime curvature and gravitational attraction, is criticized in this article. A different analogy that draws on the students' previous knowledge of spacetime diagrams in special relativity is suggested.
Curvature tensor copies in affine geometry
Srivastava, P.P.
1981-01-01
The sets of space-time and spin-connections which give rise to the same curvature tensor are constructed. The corresponding geometries are compared. Results are illustrated by an explicit calculation and comment on the copies in Einstein-Cartan and Weyl-Cartan geometries. (Author) [pt
Gaussian curvature on hyperelliptic Riemann surfaces
Indian Acad. Sci. (Math. Sci.) Vol. 124, No. 2, May 2014, pp. 155–167. c Indian Academy of Sciences. Gaussian curvature on hyperelliptic Riemann surfaces. ABEL CASTORENA. Centro de Ciencias Matemáticas (Universidad Nacional Autónoma de México,. Campus Morelia) Apdo. Postal 61-3 Xangari, C.P. 58089 Morelia,.
Resolving curvature singularities in holomorphic gravity
Mantz, C.L.M.; Prokopec, T.
2011-01-01
We formulate a holomorphic theory of gravity and study how the holomorphy symmetry alters the two most important singular solutions of general relativity: black holes and cosmology. We show that typical observers (freely) falling into a holomorphic black hole do not encounter a curvature
Curvature driven instabilities in toroidal plasmas
Andersson, P.
1986-11-01
The electromagnetic ballooning mode, the curvature driven trapped electron mode and the toroidally induced ion temperature gradient mode have been studies. Eigenvalue equations have been derived and solved both numerically and analytically. For electromagnetic ballooning modes the effects of convective damping, finite Larmor radius, higher order curvature terms, and temperature gradients have been investigated. A fully toroidal fluid ion model has been developed. It is shown that a necessary and sufficient condition for an instability below the MHD limit is the presence of an ion temperature gradient. Analytical dispersion relations giving results in good agreement with numerical solutions are also presented. The curvature driven trapped electron modes are found to be unstable for virtually all parameters with growth rates of the order of the diamagnetic drift frequency. Studies have been made, using both a gyrokinetic ion description and the fully toroidal ion model. Both analytical and numerical results are presented and are found to be in good agreement. The toroidally induced ion temperature gradients modes are found to have a behavior similar to that of the curvature driven trapped electron modes and can in the electrostatic limit be described by a simple quadratic dispersion equation. (author)
Random paths with curvature dependent action
Ambjoern, J.; Durhuus, B.
1986-11-01
We study discretized random paths with a curvature dependent action. The scaling limits of the corresponding statistical mechanical models can be constructed explicitly and are either usual Brownian motion or a theory where the correlations of tangents are nonzero and described by diffusion on the unit sphere. In the latter case the two point function has an anomalous dimension η = 1. (orig.)
2008 ULTRASONIC BENCHMARK STUDIES OF INTERFACE CURVATURE--A SUMMARY
Schmerr, L. W.; Huang, R.; Raillon, R.; Mahaut, S.; Leymarie, N.; Lonne, S.; Song, S.-J.; Kim, H.-J.; Spies, M.; Lupien, V.
2009-01-01
In the 2008 QNDE ultrasonic benchmark session researchers from five different institutions around the world examined the influence that the curvature of a cylindrical fluid-solid interface has on the measured NDE immersion pulse-echo response of a flat-bottom hole (FBH) reflector. This was a repeat of a study conducted in the 2007 benchmark to try to determine the sources of differences seen in 2007 between model-based predictions and experiments. Here, we will summarize the results obtained in 2008 and analyze the model-based results and the experiments.
Comparative effectiveness of metal ions in inducing curvature of primary roots of Zea mays
Hasenstein, K. H.; Evans, M. L.; Stinemetz, C. L.; Moore, R.; Fondren, W. M.; Koon, E. C.; Higby, M. A.; Smucker, A. J.
1988-01-01
We used five cultivars of Zea mays (Bear Hybrid WF9 * 38MS, B73 * Missouri 17, Yellow Dent, Merit, and Great Lakes Hybrid 422) to reinvestigate the specificity of metal ions for inducing root curvature. Of 17 cations tested, 6 (Al3+, Ba2+, Ca2+, Cd2+, Cu2+, Zn2+) induced curvature. Roots curved away from Al3+, Ba2+, and Cd2+. Roots curved away from low (0.1 millimolar) concentrations of Cu2+ but toward higher (1-5 millimolar) concentrations. Roots initially curved away from Zn2+ but the direction of the subsequent curvature was unpredictable. In most cases, roots of all cultivars curved towards calcium. However, in some tests there was no response to calcium or even (especially in the cultivars Merit and B73 * Missouri 17) substantial curvature away from calcium. The results indicate that the induction of root curvature is not specific for calcium. The results are discussed relative to the possible role of calmodulin as a mediator of ion-induced root curvature.
Diagnostic of Gravitropism-like Stabilizer of Inspection Drone Using Neural Networks
Kruglova, Tatyana; Sayfeddine, Daher; Bulgakov, Alexey
2018-03-01
This paper discusses the enhancement of flight stability of using an inspection drone to scan the condition of buildings on low and high altitude. Due to aerial perturbations and wakes, the drone starts to shake and may be damaged. One of the mechanical optimization methods it so add a built-in stabilizing mechanism. However, the performance of this supporting device becomes critical on certain flying heights, thus to avoid losing the drone. The paper is divided in two parts: the description of the gravitropism-like stabilizer and the diagnostic of its status using wavelet transformation and neural network classification.
Leal-Junior, Arnaldo G.; Frizera, Anselmo; José Pontes, Maria
2018-03-01
Polymer optical fibers (POFs) are suitable for applications such as curvature sensors, strain, temperature, liquid level, among others. However, for enhancing sensitivity, many polymer optical fiber curvature sensors based on intensity variation require a lateral section. Lateral section length, depth, and surface roughness have great influence on the sensor sensitivity, hysteresis, and linearity. Moreover, the sensor curvature radius increase the stress on the fiber, which leads on variation of the sensor behavior. This paper presents the analysis relating the curvature radius and lateral section length, depth and surface roughness with the sensor sensitivity, hysteresis and linearity for a POF curvature sensor. Results show a strong correlation between the decision parameters behavior and the performance for sensor applications based on intensity variation. Furthermore, there is a trade-off among the sensitive zone length, depth, surface roughness, and curvature radius with the sensor desired performance parameters, which are minimum hysteresis, maximum sensitivity, and maximum linearity. The optimization of these parameters is applied to obtain a sensor with sensitivity of 20.9 mV/°, linearity of 0.9992 and hysteresis below 1%, which represent a better performance of the sensor when compared with the sensor without the optimization.
A curvature theory for discrete surfaces based on mesh parallelity
Bobenko, Alexander Ivanovich; Pottmann, Helmut; Wallner, Johannes
2009-01-01
We consider a general theory of curvatures of discrete surfaces equipped with edgewise parallel Gauss images, and where mean and Gaussian curvatures of faces are derived from the faces' areas and mixed areas. Remarkably these notions are capable
Lu, Y. T.; Hidaka, H.; Feldman, L. J.
1996-01-01
Roots of many species respond to gravity (gravitropism) and grow downward only if illuminated. This light-regulated root gravitropism is phytochrome-dependent, mediated by calcium, and inhibited by KN-93, a specific inhibitor of calcium/calmodulin-dependent protein kinase II (CaMK II). A cDNA encoding MCK1, a maize homolog of mammalian CaMK, has been isolated from roots of maize (Zea mays L.). The MCK1 gene is expressed in root tips, the site of perception for both light and gravity. Using the [35S]CaM gel-overlay assay we showed that calmodulin-binding activity of the MCK1 is abolished by 50 microM KN-93, but binding is not affected by 5 microM KN-93, paralleling physiological findings that light-regulated root gravitropism is inhibited by 50 microM KN-93, but not by 5 microM KN-93. KN-93 inhibits light-regulated gravitropism by interrupting transduction of the light signal, not light perception, suggesting that MCK1 may play a role in transducing light. This is the first report suggesting a physiological function for a CaMK homolog in light signal transduction.
Collineations of the curvature tensor in general relativity
Curvature collineations for the curvature tensor, constructed from a fundamental Bianchi Type-V metric, are studied. We are concerned with a symmetry property of space-time which is called curvature collineation, and we briefly discuss the physical and kinematical properties of the models.
Translating solitons to symplectic and Lagrangian mean curvature flows
Han Xiaoli; Li Jiayu
2007-05-01
In this paper, we construct finite blow-up examples for symplectic mean curvature flows and we study symplectic translating solitons. We prove that there is no translating solitons with vertical bar α vertical bar ≤ α 0 to the symplectic mean curvature flow or to the almost calibrated Lagrangian mean curvature flow for some α 0 . (author)
Integration of length and curvature in haptic perception
Panday, V.; Bergmann Tiest, W.M.; Kappers, A.M.L.
2014-01-01
We investigated if and how length and curvature information are integrated when an object is explored in one hand. Subjects were asked to explore four types of objects between thumb and index finger. Objects differed in either length, curvature, both length and curvature correlated as in a circle,
Weyl curvature tensor in static spherical sources
Ponce de Leon, J.
1988-01-01
The role of the Weyl curvature tensor in static sources of the Schwarzschild field is studied. It is shown that in general the contribution from the Weyl curvature tensor (the ''purely gravitational field energy'') to the mass-energy inside the body may be positive, negative, or zero. It is proved that a positive (negative) contribution from the Weyl tensor tends to increase (decrease) the effective gravitational mass, the red-shift (from a point in the sphere to infinity), as well as the gravitational force which acts on a constituent matter element of a body. It is also proved that the contribution from the Weyl tensor always is negative in sources with surface gravitational potential larger than (4/9. It is pointed out that large negative contributions from the Weyl tensor could give rise to the phenomenon of gravitational repulsion. A simple example which illustrates the results is discussed
Discrete Curvatures and Discrete Minimal Surfaces
Sun, Xiang
2012-06-01
This thesis presents an overview of some approaches to compute Gaussian and mean curvature on discrete surfaces and discusses discrete minimal surfaces. The variety of applications of differential geometry in visualization and shape design leads to great interest in studying discrete surfaces. With the rich smooth surface theory in hand, one would hope that this elegant theory can still be applied to the discrete counter part. Such a generalization, however, is not always successful. While discrete surfaces have the advantage of being finite dimensional, thus easier to treat, their geometric properties such as curvatures are not well defined in the classical sense. Furthermore, the powerful calculus tool can hardly be applied. The methods in this thesis, including angular defect formula, cotangent formula, parallel meshes, relative geometry etc. are approaches based on offset meshes or generalized offset meshes. As an important application, we discuss discrete minimal surfaces and discrete Koenigs meshes.
On a curvature-statistics theorem
Calixto, M; Aldaya, V
2008-01-01
The spin-statistics theorem in quantum field theory relates the spin of a particle to the statistics obeyed by that particle. Here we investigate an interesting correspondence or connection between curvature (κ = ±1) and quantum statistics (Fermi-Dirac and Bose-Einstein, respectively). The interrelation between both concepts is established through vacuum coherent configurations of zero modes in quantum field theory on the compact O(3) and noncompact O(2; 1) (spatial) isometry subgroups of de Sitter and Anti de Sitter spaces, respectively. The high frequency limit, is retrieved as a (zero curvature) group contraction to the Newton-Hooke (harmonic oscillator) group. We also make some comments on the physical significance of the vacuum energy density and the cosmological constant problem.
On a curvature-statistics theorem
Calixto, M [Departamento de Matematica Aplicada y Estadistica, Universidad Politecnica de Cartagena, Paseo Alfonso XIII 56, 30203 Cartagena (Spain); Aldaya, V [Instituto de Astrofisica de Andalucia, Apartado Postal 3004, 18080 Granada (Spain)], E-mail: Manuel.Calixto@upct.es
2008-08-15
The spin-statistics theorem in quantum field theory relates the spin of a particle to the statistics obeyed by that particle. Here we investigate an interesting correspondence or connection between curvature ({kappa} = {+-}1) and quantum statistics (Fermi-Dirac and Bose-Einstein, respectively). The interrelation between both concepts is established through vacuum coherent configurations of zero modes in quantum field theory on the compact O(3) and noncompact O(2; 1) (spatial) isometry subgroups of de Sitter and Anti de Sitter spaces, respectively. The high frequency limit, is retrieved as a (zero curvature) group contraction to the Newton-Hooke (harmonic oscillator) group. We also make some comments on the physical significance of the vacuum energy density and the cosmological constant problem.
Cosmological signatures of anisotropic spatial curvature
Pereira, Thiago S.; Marugán, Guillermo A. Mena; Carneiro, Saulo
2015-01-01
If one is willing to give up the cherished hypothesis of spatial isotropy, many interesting cosmological models can be developed beyond the simple anisotropically expanding scenarios. One interesting possibility is presented by shear-free models in which the anisotropy emerges at the level of the curvature of the homogeneous spatial sections, whereas the expansion is dictated by a single scale factor. We show that such models represent viable alternatives to describe the large-scale structure of the inflationary universe, leading to a kinematically equivalent Sachs-Wolfe effect. Through the definition of a complete set of spatial eigenfunctions we compute the two-point correlation function of scalar perturbations in these models. In addition, we show how such scenarios would modify the spectrum of the CMB assuming that the observations take place in a small patch of a universe with anisotropic curvature
Cosmological signatures of anisotropic spatial curvature
Pereira, Thiago S. [Departamento de Física, Universidade Estadual de Londrina, 86057-970, Londrina – PR (Brazil); Marugán, Guillermo A. Mena [Instituto de Estructura de la Materia, IEM-CSIC, Serrano 121, 28006, Madrid (Spain); Carneiro, Saulo, E-mail: tspereira@uel.br, E-mail: mena@iem.cfmac.csic.es, E-mail: saulo.carneiro@pq.cnpq.br [Instituto de Física, Universidade Federal da Bahia, 40210-340, Salvador – BA (Brazil)
2015-07-01
If one is willing to give up the cherished hypothesis of spatial isotropy, many interesting cosmological models can be developed beyond the simple anisotropically expanding scenarios. One interesting possibility is presented by shear-free models in which the anisotropy emerges at the level of the curvature of the homogeneous spatial sections, whereas the expansion is dictated by a single scale factor. We show that such models represent viable alternatives to describe the large-scale structure of the inflationary universe, leading to a kinematically equivalent Sachs-Wolfe effect. Through the definition of a complete set of spatial eigenfunctions we compute the two-point correlation function of scalar perturbations in these models. In addition, we show how such scenarios would modify the spectrum of the CMB assuming that the observations take place in a small patch of a universe with anisotropic curvature.
The Riemann-Lovelock curvature tensor
Kastor, David
2012-01-01
In order to study the properties of Lovelock gravity theories in low dimensions, we define the kth-order Riemann-Lovelock tensor as a certain quantity having a total 4k-indices, which is kth order in the Riemann curvature tensor and shares its basic algebraic and differential properties. We show that the kth-order Riemann-Lovelock tensor is determined by its traces in dimensions 2k ≤ D < 4k. In D = 2k + 1 this identity implies that all solutions of pure kth-order Lovelock gravity are 'Riemann-Lovelock' flat. It is verified that the static, spherically symmetric solutions of these theories, which are missing solid angle spacetimes, indeed satisfy this flatness property. This generalizes results from Einstein gravity in D = 3, which corresponds to the k = 1 case. We speculate about some possible further consequences of Riemann-Lovelock curvature. (paper)
Harmonic curvatures and generalized helices in En
Camci, Cetin; Ilarslan, Kazim; Kula, Levent; Hacisalihoglu, H. Hilmi
2009-01-01
In n-dimensional Euclidean space E n , harmonic curvatures of a non-degenerate curve defined by Ozdamar and Hacisalihoglu [Ozdamar E, Hacisalihoglu HH. A characterization of Inclined curves in Euclidean n-space. Comm Fac Sci Univ Ankara, Ser A1 1975;24:15-23]. In this paper, we give some characterizations for a non-degenerate curve α to be a generalized helix by using its harmonic curvatures. Also we define the generalized Darboux vector D of a non-degenerate curve α in n-dimensional Euclidean space E n and we show that the generalized Darboux vector D lies in the kernel of Frenet matrix M(s) if and only if the curve α is a generalized helix in the sense of Hayden.
Gravitational curvature an introduction to Einstein's theory
Frankel, Theodore Thomas
1979-01-01
This classic text and reference monograph applies modern differential geometry to general relativity. A brief mathematical introduction to gravitational curvature, it emphasizes the subject's geometric essence, replacing the often-tedious analytical computations with geometric arguments. Clearly presented and physically motivated derivations express the deflection of light, Schwarzchild's exterior and interior solutions, and the Oppenheimer-Volkoff equations. A perfect choice for advanced students of mathematics, this volume will also appeal to mathematicians interested in physics. It stresses
Curvature controlled wetting in two dimensions
Gil, Tamir; Mikheev, Lev V.
1995-01-01
. As the radius of the substrate r0→∞, the leading effect of the curvature is adding the Laplace pressure ΠL∝r0-1 to the pressure balance in the film. At temperatures and pressures under which the wetting is complete in planar geometry, Laplace pressure suppresses divergence of the mean thickness of the wetting...... term reduces the thickness by the amount proportional to r0-1/3...
The Riemann-Lovelock Curvature Tensor
Kastor, David
2012-01-01
In order to study the properties of Lovelock gravity theories in low dimensions, we define the kth-order Riemann-Lovelock tensor as a certain quantity having a total 4k-indices, which is kth-order in the Riemann curvature tensor and shares its basic algebraic and differential properties. We show that the kth-order Riemann-Lovelock tensor is determined by its traces in dimensions 2k \\le D
Inflationary scenario from higher curvature warped spacetime
Banerjee, Narayan; Paul, Tanmoy
2017-01-01
We consider a five dimensional warped spacetime, in presence of the higher curvature term like F(R) = R + αR 2 in the bulk, in the context of the two-brane model. Our universe is identified with the TeV scale brane and emerges as a four dimensional effective theory. From the perspective of this effective theory, we examine the possibility of ''inflationary scenario'' by considering the on-brane metric ansatz as an FRW one. Our results reveal that the higher curvature term in the five dimensional bulk spacetime generates a potential term for the radion field. Due to the presence of radion potential, the very early universe undergoes a stage of accelerated expansion and, moreover, the accelerating period of the universe terminates in a finite time. We also find the spectral index of curvature perturbation (n s ) and the tensor to scalar ratio (r) in the present context, which match with the observational results based on the observations of Planck (Astron. Astrophys. 594, A20, 2016). (orig.)
Inflationary scenario from higher curvature warped spacetime
Banerjee, Narayan [Indian Institute of Science Education and Research Kolkata, Department of Physical Sciences, Nadia, West Bengal (India); Paul, Tanmoy [Indian Association for the Cultivation of Science, Department of Theoretical Physics, Kolkata (India)
2017-10-15
We consider a five dimensional warped spacetime, in presence of the higher curvature term like F(R) = R + αR{sup 2} in the bulk, in the context of the two-brane model. Our universe is identified with the TeV scale brane and emerges as a four dimensional effective theory. From the perspective of this effective theory, we examine the possibility of ''inflationary scenario'' by considering the on-brane metric ansatz as an FRW one. Our results reveal that the higher curvature term in the five dimensional bulk spacetime generates a potential term for the radion field. Due to the presence of radion potential, the very early universe undergoes a stage of accelerated expansion and, moreover, the accelerating period of the universe terminates in a finite time. We also find the spectral index of curvature perturbation (n{sub s}) and the tensor to scalar ratio (r) in the present context, which match with the observational results based on the observations of Planck (Astron. Astrophys. 594, A20, 2016). (orig.)
Codimension two branes and distributional curvature
Traschen, Jennie
2009-01-01
In general relativity, there is a well-developed formalism for working with the approximation that a gravitational source is concentrated on a shell, or codimension one surface. In contrast, there are obstacles to concentrating sources on surfaces that have a higher codimension, for example, a string in a spacetime with a dimension greater than or equal to four. Here it is shown that, by giving up some of the generality of the codimension one case, curvature can be concentrated on submanifolds that have codimension two. A class of metrics is identified such that (1) the scalar curvature and Ricci densities exist as distributions with support on a codimension two submanifold, and (2) using the Einstein equation, the distributional curvature corresponds to a concentrated stress-energy with equation of state p = -ρ, where p is the isotropic pressure tangent to the submanifold, and ρ is the energy density. This is the appropriate stress-energy to describe a self-gravitating brane that is governed by an area action, or a braneworld deSitter cosmology. The possibility of having a different equation of state arise from a wider class of metrics is discussed.
Distributed mean curvature on a discrete manifold for Regge calculus
Conboye, Rory; Miller, Warner A; Ray, Shannon
2015-01-01
The integrated mean curvature of a simplicial manifold is well understood in both Regge Calculus and Discrete Differential Geometry. However, a well motivated pointwise definition of curvature requires a careful choice of the volume over which to uniformly distribute the local integrated curvature. We show that hybrid cells formed using both the simplicial lattice and its circumcentric dual emerge as a remarkably natural structure for the distribution of this local integrated curvature. These hybrid cells form a complete tessellation of the simplicial manifold, contain a geometric orthonormal basis, and are also shown to give a pointwise mean curvature with a natural interpretation as the fractional rate of change of the normal vector. (paper)
Distributed mean curvature on a discrete manifold for Regge calculus
Conboye, Rory; Miller, Warner A.; Ray, Shannon
2015-09-01
The integrated mean curvature of a simplicial manifold is well understood in both Regge Calculus and Discrete Differential Geometry. However, a well motivated pointwise definition of curvature requires a careful choice of the volume over which to uniformly distribute the local integrated curvature. We show that hybrid cells formed using both the simplicial lattice and its circumcentric dual emerge as a remarkably natural structure for the distribution of this local integrated curvature. These hybrid cells form a complete tessellation of the simplicial manifold, contain a geometric orthonormal basis, and are also shown to give a pointwise mean curvature with a natural interpretation as the fractional rate of change of the normal vector.
A curvature theory for discrete surfaces based on mesh parallelity
Bobenko, Alexander Ivanovich
2009-12-18
We consider a general theory of curvatures of discrete surfaces equipped with edgewise parallel Gauss images, and where mean and Gaussian curvatures of faces are derived from the faces\\' areas and mixed areas. Remarkably these notions are capable of unifying notable previously defined classes of surfaces, such as discrete isothermic minimal surfaces and surfaces of constant mean curvature. We discuss various types of natural Gauss images, the existence of principal curvatures, constant curvature surfaces, Christoffel duality, Koenigs nets, contact element nets, s-isothermic nets, and interesting special cases such as discrete Delaunay surfaces derived from elliptic billiards. © 2009 Springer-Verlag.
Integration of length and curvature in haptic perception.
Panday, Virjanand; Tiest, Wouter M Bergmann; Kappers, Astrid M L
2014-01-24
We investigated if and how length and curvature information are integrated when an object is explored in one hand. Subjects were asked to explore four types of objects between thumb and index finger. Objects differed in either length, curvature, both length and curvature correlated as in a circle, or anti-correlated. We found that when both length and curvature are present, performance is significantly better than when only one of the two cues is available. Therefore, we conclude that there is integration of length and curvature. Moreover, if the two cues are correlated in a circular cross-section instead of in an anti-correlated way, performance is better than predicted by a combination of two independent cues. We conclude that integration of curvature and length is highly efficient when the cues in the object are combined as in a circle, which is the most common combination of curvature and length in daily life.
Characterizing Suspension Plasma Spray Coating Formation Dynamics through Curvature Measurements
Chidambaram Seshadri, Ramachandran; Dwivedi, Gopal; Viswanathan, Vaishak; Sampath, Sanjay
2016-12-01
Suspension plasma spraying (SPS) enables the production of variety of microstructures with unique mechanical and thermal properties. In SPS, a liquid carrier (ethanol/water) is used to transport the sub-micrometric feedstock into the plasma jet. Considering complex deposition dynamics of SPS technique, there is a need to better understand the relationships among spray conditions, ensuing particle behavior, deposition stress evolution and resultant properties. In this study, submicron yttria-stabilized zirconia particles suspended in ethanol were sprayed using a cascaded arc plasma torch. The stresses generated during the deposition of the layers (termed evolving stress) were monitored via the change in curvature of the substrate measured using an in situ measurement apparatus. Depending on the deposition conditions, coating microstructures ranged from feathery porous to dense/cracked deposits. The evolving stresses and modulus were correlated with the observed microstructures and visualized via process maps. Post-deposition bi-layer curvature measurement via low temperature thermal cycling was carried out to quantify the thermo-elastic response of different coatings. Lastly, preliminary data on furnace cycle durability of different coating microstructures were evaluated. This integrated study involving in situ diagnostics and ex situ characterization along with process maps provides a framework to describe coating formation mechanisms, process parametrics and microstructure description.
Induction of Plant Curvature by Magnetophoresis and Cytoskeletal Changes during Root Graviresponse
Hasenstein, Karl H.; Kuznetsov, Oleg A.; Blancaflor, Eilson B.
1996-01-01
High gradient magnetic fields (HGMF) induce curvature in roots and shoots. It is considered that this response is likely to be based on the intracellular displacement of bulk starch (amyloplasts) by the ponderomotive force generated by the HGMF. This process is called magnetophoresis. The differential elongation during the curvature along the concave and convex flanks of growing organs may be linked to the microtubular and/or microfilament cytoskeleton. The possible existence of an effect of the HGMF on the cytoskeleton was tested for, but none was found. The application of cytoskeletal stabilizers or depolymerizers showed that neither microtubules, nor microfilaments, are involved in the graviresponse.
Zero curvature-surface driven small objects
Dou, Xiaoxiao; Li, Shanpeng; Liu, Jianlin
2017-08-01
In this study, we investigate the spontaneous migration of small objects driven by surface tension on a catenoid, formed by a layer of soap constrained by two rings. Although the average curvature of the catenoid is zero at each point, the small objects always migrate to the position near the ring. The force and energy analyses have been performed to uncover the mechanism, and it is found that the small objects distort the local shape of the liquid film, thus making the whole system energetically favorable. These findings provide some inspiration to design microfluidics, aquatic robotics, and miniature boats.
Spacetime Curvature and Higgs Stability after Inflation.
Herranen, M; Markkanen, T; Nurmi, S; Rajantie, A
2015-12-11
We investigate the dynamics of the Higgs field at the end of inflation in the minimal scenario consisting of an inflaton field coupled to the standard model only through the nonminimal gravitational coupling ξ of the Higgs field. Such a coupling is required by renormalization of the standard model in curved space, and in the current scenario also by vacuum stability during high-scale inflation. We find that for ξ≳1, rapidly changing spacetime curvature at the end of inflation leads to significant production of Higgs particles, potentially triggering a transition to a negative-energy Planck scale vacuum state and causing an immediate collapse of the Universe.
Constraining inverse-curvature gravity with supernovae.
Mena, Olga; Santiago, José; Weller, Jochen
2006-02-03
We show that models of generalized modified gravity, with inverse powers of the curvature, can explain the current accelerated expansion of the Universe without resorting to dark energy and without conflicting with solar system experiments. We have solved the Friedmann equations for the full dynamical range of the evolution of the Universe and performed a detailed analysis of supernovae data in the context of such models that results in an excellent fit. If we further include constraints on the current expansion of the Universe and on its age, we obtain that the matter content of the Universe is 0.07baryonic matter component.
Amplification of curvature perturbations in cyclic cosmology
Zhang Jun; Liu Zhiguo; Piao Yunsong
2010-01-01
We analytically and numerically show that through the cycles with nonsingular bounce, the amplitude of curvature perturbation on a large scale will be amplified and the power spectrum will redden. In some sense, this amplification will eventually destroy the homogeneity of the background, which will lead to the ultimate end of cycles of the global universe. We argue that for the model with increasing cycles, it might be possible that a fissiparous multiverse will emerge after one or several cycles, in which the cycles will continue only at corresponding local regions.
Curvature, zero modes and quantum statistics
Calixto, M [Departamento de Matematica Aplicada y EstadIstica, Universidad Politecnica de Cartagena, Paseo Alfonso XIII 56, 30203 Cartagena (Spain); Aldaya, V [Instituto de AstrofIsica de AndalucIa, Apartado Postal 3004, 18080 Granada (Spain)
2006-08-18
We explore an intriguing connection between the Fermi-Dirac and Bose-Einstein statistics and the thermal baths obtained from a vacuum radiation of coherent states of zero modes in a second quantized (many-particle) theory on the compact O(3) and noncompact O(2, 1) isometry subgroups of the de Sitter and anti-de Sitter spaces, respectively. The high frequency limit is retrieved as a (zero-curvature) group contraction to the Newton-Hooke (harmonic oscillator) group. We also make some comments on the vacuum energy density and the cosmological constant problem. (letter to the editor)
Differential geometry bundles, connections, metrics and curvature
Taubes, Clifford Henry
2011-01-01
Bundles, connections, metrics and curvature are the 'lingua franca' of modern differential geometry and theoretical physics. This book will supply a graduate student in mathematics or theoretical physics with the fundamentals of these objects. Many of the tools used in differential topology are introduced and the basic results about differentiable manifolds, smooth maps, differential forms, vector fields, Lie groups, and Grassmanians are all presented here. Other material covered includes the basic theorems about geodesics and Jacobi fields, the classification theorem for flat connections, the
Curvature and temperature of complex networks.
Krioukov, Dmitri; Papadopoulos, Fragkiskos; Vahdat, Amin; Boguñá, Marián
2009-09-01
We show that heterogeneous degree distributions in observed scale-free topologies of complex networks can emerge as a consequence of the exponential expansion of hidden hyperbolic space. Fermi-Dirac statistics provides a physical interpretation of hyperbolic distances as energies of links. The hidden space curvature affects the heterogeneity of the degree distribution, while clustering is a function of temperature. We embed the internet into the hyperbolic plane and find a remarkable congruency between the embedding and our hyperbolic model. Besides proving our model realistic, this embedding may be used for routing with only local information, which holds significant promise for improving the performance of internet routing.
Omid Bavi
2016-02-01
Full Text Available Mechanosensitive (MS channels are ubiquitous molecular force sensors that respond to a number of different mechanical stimuli including tensile, compressive and shear stress. MS channels are also proposed to be molecular curvature sensors gating in response to bending in their local environment. One of the main mechanisms to functionally study these channels is the patch clamp technique. However, the patch of membrane surveyed using this methodology is far from physiological. Here we use continuum mechanics to probe the question of how curvature, in a standard patch clamp experiment, at different length scales (global and local affects a model MS channel. Firstly, to increase the accuracy of the Laplace’s equation in tension estimation in a patch membrane and to be able to more precisely describe the transient phenomena happening during patch clamping, we propose a modified Laplace’s equation. Most importantly, we unambiguously show that the global curvature of a patch, which is visible under the microscope during patch clamp experiments, is of negligible energetic consequence for activation of an MS channel in a model membrane. However, the local curvature (RL < 50 and the direction of bending are able to cause considerable changes in the stress distribution through the thickness of the membrane. Not only does local bending, in the order of physiologically relevant curvatures, cause a substantial change in the pressure profile but it also significantly modifies the stress distribution in response to force application. Understanding these stress variations in regions of high local bending is essential for a complete understanding of the effects of curvature on MS channels.
Sheykina, Nadezhda; Bogatina, Nina
The new science direction nanotechnologies initiated a big jump in the pharmacology and medicine. This leads to the big development of homeopathy. The most interest appeared while investigating of the reaction of biological object on the nano dose of iologically substances. The changing of concentration (in nmol/l) of biologically active material is also possible during weak energy action. For instance, weak combined magnetic field may change a little the concentration of ions that are oriented parallel to the external magnetic field and, by the analogy with said above, lead to the similar effects. Simple estimations give the value for the threshold to the magnetic field by two orders smaller than the geomagnetic field. By this investigation we wanted to understand whether the analogy in the action of nano dose of biologically active substances and weak combined magnetic field presents and whether the action of one of these factors may be replaced by other one. The effect of one of biologically active substances NPA (Naphtyl-Phtalame Acid) solution with the concentration 0.01 mol/l on the gravitropic reaction of cress roots was investigated. It was shown that its effect was the inhibition of cress roots gravitropic reaction. The same inhibition was achieved by the combined magnetic field action on the cress roots, germinated in water. The alternative component of the combined magnetic field coincided formally with the cyclotron frequency of NPA ions. So the analogy in the action of nano dose of biologically active substances and weak combined magnetic field was shown. The combined magnetic field using allows to decrease sufficiently the dose of biologically active substances. This fact can be of great importance in pharmacy and medicine.
Polarized curvature radiation in pulsar magnetosphere
Wang, P. F.; Wang, C.; Han, J. L.
2014-07-01
The propagation of polarized emission in pulsar magnetosphere is investigated in this paper. The polarized waves are generated through curvature radiation from the relativistic particles streaming along curved magnetic field lines and corotating with the pulsar magnetosphere. Within the 1/γ emission cone, the waves can be divided into two natural wave-mode components, the ordinary (O) mode and the extraordinary (X) mode, with comparable intensities. Both components propagate separately in magnetosphere, and are aligned within the cone by adiabatic walking. The refraction of O mode makes the two components separated and incoherent. The detectable emission at a given height and a given rotation phase consists of incoherent X-mode and O-mode components coming from discrete emission regions. For four particle-density models in the form of uniformity, cone, core and patches, we calculate the intensities for each mode numerically within the entire pulsar beam. If the corotation of relativistic particles with magnetosphere is not considered, the intensity distributions for the X-mode and O-mode components are quite similar within the pulsar beam, which causes serious depolarization. However, if the corotation of relativistic particles is considered, the intensity distributions of the two modes are very different, and the net polarization of outcoming emission should be significant. Our numerical results are compared with observations, and can naturally explain the orthogonal polarization modes of some pulsars. Strong linear polarizations of some parts of pulsar profile can be reproduced by curvature radiation and subsequent propagation effect.
Emergent gravity in spaces of constant curvature
Alvarez, Orlando; Haddad, Matthew [Department of Physics, University of Miami,1320 Campo Sano Ave, Coral Gables, FL 33146 (United States)
2017-03-07
In physical theories where the energy (action) is localized near a submanifold of a constant curvature space, there is a universal expression for the energy (or the action). We derive a multipole expansion for the energy that has a finite number of terms, and depends on intrinsic geometric invariants of the submanifold and extrinsic invariants of the embedding of the submanifold. This is the second of a pair of articles in which we try to develop a theory of emergent gravity arising from the embedding of a submanifold into an ambient space equipped with a quantum field theory. Our theoretical method requires a generalization of a formula due to by Hermann Weyl. While the first paper discussed the framework in Euclidean (Minkowski) space, here we discuss how this framework generalizes to spaces of constant sectional curvature. We focus primarily on anti de Sitter space. We then discuss how such a theory can give rise to a cosmological constant and Planck mass that are within reasonable bounds of the experimental values.
Lecture notes on mean curvature flow, barriers and singular perturbations
Bellettini, Giovanni
2013-01-01
The aim of the book is to study some aspects of geometric evolutions, such as mean curvature flow and anisotropic mean curvature flow of hypersurfaces. We analyze the origin of such flows and their geometric and variational nature. Some of the most important aspects of mean curvature flow are described, such as the comparison principle and its use in the definition of suitable weak solutions. The anisotropic evolutions, which can be considered as a generalization of mean curvature flow, are studied from the view point of Finsler geometry. Concerning singular perturbations, we discuss the convergence of the Allen–Cahn (or Ginsburg–Landau) type equations to (possibly anisotropic) mean curvature flow before the onset of singularities in the limit problem. We study such kinds of asymptotic problems also in the static case, showing convergence to prescribed curvature-type problems.
The curvature calculation mechanism based on simple cell model.
Yu, Haiyang; Fan, Xingyu; Song, Aiqi
2017-07-20
A conclusion has not yet been reached on how exactly the human visual system detects curvature. This paper demonstrates how orientation-selective simple cells can be used to construct curvature-detecting neural units. Through fixed arrangements, multiple plurality cells were constructed to simulate curvature cells with a proportional output to their curvature. In addition, this paper offers a solution to the problem of narrow detection range under fixed resolution by selecting an output value under multiple resolution. Curvature cells can be treated as concrete models of an end-stopped mechanism, and they can be used to further understand "curvature-selective" characteristics and to explain basic psychophysical findings and perceptual phenomena in current studies.
Curvature-driven morphing of non-Euclidean shells
Pezzulla, Matteo; Stoop, Norbert; Jiang, Xin; Holmes, D. P.
2017-05-01
We investigate how thin structures change their shape in response to non-mechanical stimuli that can be interpreted as variations in the structure's natural curvature. Starting from the theory of non-Euclidean plates and shells, we derive an effective model that reduces a three-dimensional stimulus to the natural fundamental forms of the mid-surface of the structure, incorporating expansion, or growth, in the thickness. Then, we apply the model to a variety of thin bodies, from flat plates to spherical shells, obtaining excellent agreement between theory and numerics. We show how cylinders and cones can either bend more or unroll, and eventually snap and rotate. We also study the nearly isometric deformations of a spherical shell and describe how this shape change is ruled by the geometry of a spindle. As the derived results stem from a purely geometrical model, they are general and scalable.
On Riemannian manifolds (Mn, g) of quasi-constant curvature
Rahman, M.S.
1995-07-01
A Riemannian manifold (M n , g) of quasi-constant curvature is defined. It is shown that an (M n , g) in association with other class of manifolds gives rise, under certain conditions, to a manifold of quasi-constant curvature. Some observations on how a manifold of quasi-constant curvature accounts for a pseudo Ricci-symmetric manifold and quasi-umbilical hypersurface are made. (author). 10 refs
Statistical mechanics of paths with curvature dependent action
Ambjoern, J.; Durhuus, B.; Jonsson, T.
1987-01-01
We analyze the scaling limit of discretized random paths with curvature dependent action. For finite values of the curvature coupling constant the theory belongs to the universality class of simple random walk. It is possible to define a non-trivial scaling limit if the curvature coupling tends to infinity. We compute exactly the two point function in this limit and discuss the relevance of our results for random surfaces and string theories. (orig.)
Evolution of the curvature perturbations during warm inflation
Matsuda, Tomohiro
2009-01-01
This paper considers warm inflation as an interesting application of multi-field inflation. Delta-N formalism is used for the calculation of the evolution of the curvature perturbations during warm inflation. Although the perturbations considered in this paper are decaying after the horizon exit, the corrections to the curvature perturbations sourced by these perturbations can remain and dominate the curvature perturbations at large scales. In addition to the typical evolution of the curvature perturbations, inhomogeneous diffusion rate is considered for warm inflation, which may lead to significant non-Gaussianity of the spectrum
3D face recognition with asymptotic cones based principal curvatures
Tang, Yinhang; Sun, Xiang; Huang, Di; Morvan, Jean-Marie; Wang, Yunhong; Chen, Liming
2015-01-01
The classical curvatures of smooth surfaces (Gaussian, mean and principal curvatures) have been widely used in 3D face recognition (FR). However, facial surfaces resulting from 3D sensors are discrete meshes. In this paper, we present a general framework and define three principal curvatures on discrete surfaces for the purpose of 3D FR. These principal curvatures are derived from the construction of asymptotic cones associated to any Borel subset of the discrete surface. They describe the local geometry of the underlying mesh. First two of them correspond to the classical principal curvatures in the smooth case. We isolate the third principal curvature that carries out meaningful geometric shape information. The three principal curvatures in different Borel subsets scales give multi-scale local facial surface descriptors. We combine the proposed principal curvatures with the LNP-based facial descriptor and SRC for recognition. The identification and verification experiments demonstrate the practicability and accuracy of the third principal curvature and the fusion of multi-scale Borel subset descriptors on 3D face from FRGC v2.0.
Robust estimation of adaptive tensors of curvature by tensor voting.
Tong, Wai-Shun; Tang, Chi-Keung
2005-03-01
Although curvature estimation from a given mesh or regularly sampled point set is a well-studied problem, it is still challenging when the input consists of a cloud of unstructured points corrupted by misalignment error and outlier noise. Such input is ubiquitous in computer vision. In this paper, we propose a three-pass tensor voting algorithm to robustly estimate curvature tensors, from which accurate principal curvatures and directions can be calculated. Our quantitative estimation is an improvement over the previous two-pass algorithm, where only qualitative curvature estimation (sign of Gaussian curvature) is performed. To overcome misalignment errors, our improved method automatically corrects input point locations at subvoxel precision, which also rejects outliers that are uncorrectable. To adapt to different scales locally, we define the RadiusHit of a curvature tensor to quantify estimation accuracy and applicability. Our curvature estimation algorithm has been proven with detailed quantitative experiments, performing better in a variety of standard error metrics (percentage error in curvature magnitudes, absolute angle difference in curvature direction) in the presence of a large amount of misalignment noise.
3D face recognition with asymptotic cones based principal curvatures
Tang, Yinhang
2015-05-01
The classical curvatures of smooth surfaces (Gaussian, mean and principal curvatures) have been widely used in 3D face recognition (FR). However, facial surfaces resulting from 3D sensors are discrete meshes. In this paper, we present a general framework and define three principal curvatures on discrete surfaces for the purpose of 3D FR. These principal curvatures are derived from the construction of asymptotic cones associated to any Borel subset of the discrete surface. They describe the local geometry of the underlying mesh. First two of them correspond to the classical principal curvatures in the smooth case. We isolate the third principal curvature that carries out meaningful geometric shape information. The three principal curvatures in different Borel subsets scales give multi-scale local facial surface descriptors. We combine the proposed principal curvatures with the LNP-based facial descriptor and SRC for recognition. The identification and verification experiments demonstrate the practicability and accuracy of the third principal curvature and the fusion of multi-scale Borel subset descriptors on 3D face from FRGC v2.0.
Cholera toxin B subunit induces local curvature on lipid bilayers
Pezeshkian, Weria; Nåbo, Lina J.; Ipsen, John H.
2017-01-01
B induces a local membrane curvature that is essential for its clathrin-independent uptake. Using all-atom molecular dynamics, we show that CTxB induces local curvature, with the radius of curvature around 36 nm. The main feature of the CTxB molecular structure that causes membrane bending is the protruding...... alpha helices in the middle of the protein. Our study points to a generic protein design principle for generating local membrane curvature through specific binding to their lipid anchors....
Hair curvature: a natural dialectic and review.
Nissimov, Joseph N; Das Chaudhuri, Asit Baran
2014-08-01
Although hair forms (straight, curly, wavy, etc.) are present in apparently infinite variations, each fibre can be reduced to a finite sequence of tandem segments of just three types: straight, bent/curly, or twisted. Hair forms can thus be regarded as resulting from genetic pathways that induce, reverse or modulate these basic curvature modes. However, physical interconversions between twists and curls demonstrate that strict one-to-one correspondences between them and their genetic causes do not exist. Current hair-curvature theories do not distinguish between bending and twisting mechanisms. We here introduce a multiple papillary centres (MPC) model which is particularly suitable to explain twisting. The model combines previously known features of hair cross-sectional morphology with partially/completely separated dermal papillae within single follicles, and requires such papillae to induce differential growth rates of hair cortical material in their immediate neighbourhoods. The MPC model can further help to explain other, poorly understood, aspects of hair growth and morphology. Separate bending and twisting mechanisms would be preferentially affected at the major or minor ellipsoidal sides of fibres, respectively, and together they exhaust the possibilities for influencing hair-form phenotypes. As such they suggest dialectic for hair-curvature development. We define a natural-dialectic (ND) which could take advantage of speculative aspects of dialectic, but would verify its input data and results by experimental methods. We use this as a top-down approach to first define routes by which hair bending or twisting may be brought about and then review evidence in support of such routes. In particular we consider the wingless (Wnt) and mammalian target of rapamycin (mTOR) pathways as paradigm pathways for molecular hair bending and twisting mechanisms, respectively. In addition to the Wnt canonical pathway, the Wnt/Ca(2+) and planar cell polarity (PCP) pathways
Response to gravity by Zea mays seedlings. I. Time course of the response
Bandurski, R. S.; Schulze, A.; Dayanandan, P.; Kaufman, P. B.
1984-01-01
Gravistimulation induces an asymmetric distribution of free indole-3-acetic acid (IAA) in the cortex-epidermis of the Zea mays L. cv 'Stowells Evergreen' mesocotyl within 15 minutes, the shortest time tested. IAA was measured by an isotope dilution method as the pentaflurobenzyl ester. The per cent IAA in the lower half of the mescotyl cortex was 56 to 57% at 15, 30, and 90 minutes after stimulus initiation. Curvature is detectable in the mescotyl within 3 minutes after beginning gravitropic stimulation. The rate of curvature of the mesocotyl increases during the first 60 minutes to maximum of about 30 degrees per hour. Thus, the growth asymmetry continues to increase for 45 minutes after hormone asymmetry is established. Free IAA occurs predominantly in the stele of the mesocotyl whereas esterified IAA is mainly in the mesocotyl cortex-epidermis. This compartmentation may permit determining in which tissue the hormone asymmetry arises. Current data suggest the asymmetry originated in the stele.
Hawking temperature of constant curvature black holes
Cai Ronggen; Myung, Yun Soo
2011-01-01
The constant curvature (CC) black holes are higher dimensional generalizations of Banados-Teitelboim-Zanelli black holes. It is known that these black holes have the unusual topology of M D-1 xS 1 , where D is the spacetime dimension and M D-1 stands for a conformal Minkowski spacetime in D-1 dimensions. The unusual topology and time-dependence for the exterior of these black holes cause some difficulties to derive their thermodynamic quantities. In this work, by using a globally embedding approach, we obtain the Hawking temperature of the CC black holes. We find that the Hawking temperature takes the same form when using both the static and global coordinates. Also, it is identical to the Gibbons-Hawking temperature of the boundary de Sitter spaces of these CC black holes.
Differential geometry connections, curvature, and characteristic classes
Tu, Loring W
2017-01-01
This text presents a graduate-level introduction to differential geometry for mathematics and physics students. The exposition follows the historical development of the concepts of connection and curvature with the goal of explaining the Chern–Weil theory of characteristic classes on a principal bundle. Along the way we encounter some of the high points in the history of differential geometry, for example, Gauss' Theorema Egregium and the Gauss–Bonnet theorem. Exercises throughout the book test the reader’s understanding of the material and sometimes illustrate extensions of the theory. Initially, the prerequisites for the reader include a passing familiarity with manifolds. After the first chapter, it becomes necessary to understand and manipulate differential forms. A knowledge of de Rham cohomology is required for the last third of the text. Prerequisite material is contained in author's text An Introduction to Manifolds, and can be learned in one semester. For the benefit of the reader and to establ...
Curvature radiation by bunches of particles
Saggion, A.
1975-01-01
A bunch of relativistic particles moving on a curved trajectory is considered. The coherent emission of curvature radiation is described with particular regard to the role played by the 'shape' of the bunch as a function of its dimensions. It is found that the length of the bunch strongly affects the spectrum of the radiation emitted, with no effect on its polarization. For wavelengths shorter than the length of the bunch, the emitted intensity as a function of frequency shows recurrent maxima and minima, the height of the maxima being proportional to νsup(-5/3). The bunch dimensions perpendicular to the plane of the orbit affect both the spectral intensity and the polarization of the radiation. (orig./BJ) [de
Natural curvature for manifest T-duality
Poláček, Martin; Siegel, Warren
2014-01-01
We reformulate the manifestly T-dual description of the massless sector of the closed bosonic string, directly from the geometry associated with the (left and right) affine Lie algebra of the coset space Poincaré/Lorentz. This construction initially doubles not only the (spacetime) coordinates for translations but also those for Lorentz transformations (and their “dual”). As a result, the Lorentz connection couples directly to the string (as does the vielbein), rather than being introduced ad hoc to the covariant derivative as previously. This not only reproduces the old definition of T-dual torsion, but automatically gives a general, covariant definition of T-dual curvature (but still with some undetermined connections)
Nonminimal coupling of perfect fluids to curvature
Bertolami, Orfeu; Lobo, Francisco S. N.; Paramos, Jorge
2008-01-01
In this work, we consider different forms of relativistic perfect fluid Lagrangian densities that yield the same gravitational field equations in general relativity (GR). A particularly intriguing example is the case with couplings of the form [1+f 2 (R)]L m , where R is the scalar curvature, which induces an extra force that depends on the form of the Lagrangian density. It has been found that, considering the Lagrangian density L m =p, where p is the pressure, the extra-force vanishes. We argue that this is not the unique choice for the matter Lagrangian density, and that more natural forms for L m do not imply the vanishing of the extra force. Particular attention is paid to the impact on the classical equivalence between different Lagrangian descriptions of a perfect fluid.
Topological photonic crystals with zero Berry curvature
Liu, Feng; Deng, Hai-Yao; Wakabayashi, Katsunori
2018-02-01
Topological photonic crystals are designed based on the concept of Zak's phase rather than the topological invariants such as the Chern number and spin Chern number, which rely on the existence of a nonvanishing Berry curvature. Our photonic crystals (PCs) are made of pure dielectrics and sit on a square lattice obeying the C4 v point-group symmetry. Two varieties of PCs are considered: one closely resembles the electronic two-dimensional Su-Schrieffer-Heeger model, and the other continues as an extension of this analogy. In both cases, the topological transitions are induced by adjusting the lattice constants. Topological edge modes (TEMs) are shown to exist within the nontrivial photonic band gaps on the termination of those PCs. The high efficiency of these TEMs transferring electromagnetic energy against several types of disorders has been demonstrated using the finite-element method.
A Field Theory with Curvature and Anticurvature
M. I. Wanas
2014-01-01
Full Text Available The present work is an attempt to construct a unified field theory in a space with curvature and anticurvature, the PAP-space. The theory is derived from an action principle and a Lagrangian density using a symmetric linear parameterized connection. Three different methods are used to explore physical contents of the theory obtained. Poisson’s equations for both material and charge distributions are obtained, as special cases, from the field equations of the theory. The theory is a pure geometric one in the sense that material distribution, charge distribution, gravitational and electromagnetic potentials, and other physical quantities are defined in terms of pure geometric objects of the structure used. In the case of pure gravity in free space, the spherical symmetric solution of the field equations gives the Schwarzschild exterior field. The weak equivalence principle is respected only in the case of pure gravity in free space; otherwise it is violated.
Rood, S. B.; Kaufman, P. B.; Abe, H.; Pharis, R. P.
1987-01-01
from these lower leaf sheath pulvini by capillary gas chromatography-selected ion monitoring. Results from all of these experiments are consistent with a role for GAs in the differential shoot growth that follows gravitropism, although the results do not eliminate the possibility that the redistribution of GAs results from the gravitropic response.
Patel, Ajay M.; Joshi, Anand Y.
2016-10-01
This paper deals with the nonlinear vibration analysis of a double walled carbon nanotube based mass sensor with curvature factor or waviness, which is doubly clamped at a source and a drain. Nonlinear vibrational behaviour of a double-walled carbon nanotube excited harmonically near its primary resonance is considered. The double walled carbon nanotube is harmonically excited by the addition of an excitation force. The modelling involves stretching of the mid plane and damping as per phenomenon. The equation of motion involves four nonlinear terms for inner and outer tubes of DWCNT due to the curved geometry and the stretching of the central plane due to the boundary conditions. The vibrational behaviour of the double walled carbon nanotube with different surface deviations along its axis is analyzed in the context of the time response, Poincaré maps and Fast Fourier Transformation diagrams. The appearance of instability and chaos in the dynamic response is observed as the curvature factor on double walled carbon nanotube is changed. The phenomenon of Periodic doubling and intermittency are observed as the pathway to chaos. The regions of periodic, sub-harmonic and chaotic behaviour are clearly seen to be dependent on added mass and the curvature factors in the double walled carbon nanotube. Poincaré maps and frequency spectra are used to explicate and to demonstrate the miscellany of the system behaviour. With the increase in the curvature factor system excitations increases and results in an increase of the vibration amplitude with reduction in excitation frequency.
Fractional charge and inter-Landau-level states at points of singular curvature.
Biswas, Rudro R; Son, Dam Thanh
2016-08-02
The quest for universal properties of topological phases is fundamentally important because these signatures are robust to variations in system-specific details. Aspects of the response of quantum Hall states to smooth spatial curvature are well-studied, but challenging to observe experimentally. Here we go beyond this prevailing paradigm and obtain general results for the response of quantum Hall states to points of singular curvature in real space; such points may be readily experimentally actualized. We find, using continuum analytical methods, that the point of curvature binds an excess fractional charge and sequences of quantum states split away, energetically, from the degenerate bulk Landau levels. Importantly, these inter-Landau-level states are bound to the topological singularity and have energies that are universal functions of bulk parameters and the curvature. Our exact diagonalization of lattice tight-binding models on closed manifolds demonstrates that these results continue to hold even when lattice effects are significant. An important technological implication of these results is that these inter-Landau-level states, being both energetically and spatially isolated quantum states, are promising candidates for constructing qubits for quantum computation.
Nonlinear damping of drift waves by strong flow curvature
Sidikman, K.L.; Carreras, B.A.; Garcia, L.; Diamond, P.H.
1993-01-01
A single-equation model has been used to study the effect of a fixed poloidal flow (V 0 ) on turbulent drift waves. The electron dynamics come from a laminar kinetic equation in the dissipative trapped-electron regime. In the past, the authors have assumed that the mode frequency is close to the drift-wave frequency. Trapped-electron density fluctuations are then related to potential fluctuations by an open-quotes iδclose quotes term. Flow shear (V 0 ') and curvature (V 0 double-prime) both have a stabilizing effect on linear modes for this open-quotes iδclose quotes model. However, in the nonlinear regime, single-helicity effects inhibit the flow damping. Neither V 0 ' nor V 0 double-prime produces a nonlinear damping effect. The above assumption on the frequency can be relaxed by including the electron time-response in the linear part of the evolution. In this time-dependent model, instability drive due to trapped electrons is reduced when mode frequency is greater than drift-wave frequency. Since V 0 double-prime produces such a frequency shift, its linear effect is enhanced. There is also nonlinear damping, since single-helicity effects do not eliminate the shift. Renormalized theory for this model predicts nonlinear stability for sufficiently large curvature. Single-helicity calculations have already shown nonlinear damping, and this strong V 0 double-prime regime is being explored. In the theory, the Gaussian shape of the nonlinear diffusivity is expanded to obtain a quadratic potential. The implications of this assumption will be tested by solving the full renormalized equation using a shooting method
On harmonic curvatures of a Frenet curve in Lorentzian space
Kuelahci, Mihriban; Bektas, Mehmet; Erguet, Mahmut
2009-01-01
In this paper, we consider curves of AW(k)-type, 1 ≤ k ≤ 3, in Lorentzian space. We give curvature conditions of these kind of curves. Furthermore, we study harmonic curvatures of curves of AW(k)-type. We investigate that under what conditions AW(k)-type curves are helix. Some related theorems and corollaries are also proved.
The scalar curvature problem on the four dimensional half sphere
Ben-Ayed, M; El-Mehdi, K
2003-01-01
In this paper, we consider the problem of prescribing the scalar curvature under minimal boundary conditions on the standard four dimensional half sphere. We provide an Euler-Hopf type criterion for a given function to be a scalar curvature for some metric conformal to the standard one. Our proof involves the study of critical points at infinity of the associated variational problem.
Statistical mechanics of surfaces with curvature dependent action
Jonsson, T.
1987-01-01
We review recent results about discretized random surfaces whose action (energy) depends on the extrinsic curvature. The surface tension scales to zero at an appropriate critical point if the coupling constant of the curvature term is taken to infinity. At this critical point one expects to be able to construct a continuum theory of smooth surfaces. (orig.)
Curvature of random walks and random polygons in confinement
Diao, Y; Ernst, C; Montemayor, A; Ziegler, U
2013-01-01
The purpose of this paper is to study the curvature of equilateral random walks and polygons that are confined in a sphere. Curvature is one of several basic geometric properties that can be used to describe random walks and polygons. We show that confinement affects curvature quite strongly, and in the limit case where the confinement diameter equals the edge length the unconfined expected curvature value doubles from π/2 to π. To study curvature a simple model of an equilateral random walk in spherical confinement in dimensions 2 and 3 is introduced. For this simple model we derive explicit integral expressions for the expected value of the total curvature in both dimensions. These expressions are functions that depend only on the radius R of the confinement sphere. We then show that the values obtained by numeric integration of these expressions agrees with numerical average curvature estimates obtained from simulations of random walks. Finally, we compare the confinement effect on curvature of random walks with random polygons. (paper)
Curvature collineations for the field of gravitational waves
Singh, K.P.; Singh, Gulab
1981-01-01
It has been shown that the space-times formed from a plane-fronted gravity wave and from a plane sandwich wave with constant polarisation admit proper curvature collineation in general. The curvature collineation vectors have been determined explicitly. (author)
Robust modal curvature features for identifying multiple damage in beams
Ostachowicz, Wiesław; Xu, Wei; Bai, Runbo; Radzieński, Maciej; Cao, Maosen
2014-03-01
Curvature mode shape is an effective feature for damage detection in beams. However, it is susceptible to measurement noise, easily impairing its advantage of sensitivity to damage. To deal with this deficiency, this study formulates an improved curvature mode shape for multiple damage detection in beams based on integrating a wavelet transform (WT) and a Teager energy operator (TEO). The improved curvature mode shape, termed the WT - TEO curvature mode shape, has inherent capabilities of immunity to noise and sensitivity to damage. The proposed method is experimentally validated by identifying multiple cracks in cantilever steel beams with the mode shapes acquired using a scanning laser vibrometer. The results demonstrate that the improved curvature mode shape can identify multiple damage accurately and reliably, and it is fairly robust to measurement noise.
INVESTIGATION OF CURVES SET BY CUBIC DISTRIBUTION OF CURVATURE
S. A. Ustenko
2014-03-01
Full Text Available Purpose. Further development of the geometric modeling of curvelinear contours of different objects based on the specified cubic curvature distribution and setpoints of curvature in the boundary points. Methodology. We investigate the flat section of the curvilinear contour generating under condition that cubic curvature distribution is set. Curve begins and ends at the given points, where angles of tangent slope and curvature are also determined. It was obtained the curvature equation of this curve, depending on the section length and coefficient c of cubic curvature distribution. The analysis of obtained equation was carried out. As well as, it was investigated the conditions, in which the inflection points of the curve are appearing. One should find such an interval of parameter change (depending on the input data and the section length, in order to place the inflection point of the curvature graph outside the curve section borders. It was determined the dependence of tangent slope of angle to the curve at its arbitrary point, as well as it was given the recommendations to solve a system of integral equations that allow finding the length of the curve section and the coefficient c of curvature cubic distribution. Findings. As the result of curves research, it is found that the criterion for their selection one can consider the absence of inflection points of the curvature on the observed section. Influence analysis of the parameter c on the graph of tangent slope angle to the curve showed that regardless of its value, it is provided the same rate of angle increase of tangent slope to the curve. Originality. It is improved the approach to geometric modeling of curves based on cubic curvature distribution with its given values at the boundary points by eliminating the inflection points from the observed section of curvilinear contours. Practical value. Curves obtained using the proposed method can be used for geometric modeling of curvilinear
Haptic perception of object curvature in Parkinson's disease.
Jürgen Konczak
2008-07-01
Full Text Available The haptic perception of the curvature of an object is essential for adequate object manipulation and critical for our guidance of actions. This study investigated how the ability to perceive the curvature of an object is altered by Parkinson's disease (PD.Eight healthy subjects and 11 patients with mild to moderate PD had to judge, without vision, the curvature of a virtual "box" created by a robotic manipulandum. Their hands were either moved passively along a defined curved path or they actively explored the curved curvature of a virtual wall. The curvature was either concave or convex (bulging to the left or right and was judged in two locations of the hand workspace--a left workspace location, where the curved hand path was associated with curved shoulder and elbow joint paths, and a right workspace location in which these joint paths were nearly linear. After exploring the curvature of the virtual object, subjects had to judge whether the curvature was concave or convex. Based on these data, thresholds for curvature sensitivity were established. The main findings of the study are: First, 9 out 11 PD patients (82% showed elevated thresholds for detecting convex curvatures in at least one test condition. The respective median threshold for the PD group was increased by 343% when compared to the control group. Second, when distal hand paths became less associated with proximal joint paths (right workspace, haptic acuity was reduced substantially in both groups. Third, sensitivity to hand trajectory curvature was not improved during active exploration in either group.Our data demonstrate that PD is associated with a decreased acuity of the haptic sense, which may occur already at an early stage of the disease.
Belyavskaya, N.
The role for calcium in the regulation of a wide variety of cellular events in plants is well known. Calcium signaling has been implicated in plant gravitropism. A carboxylic acid antibiotic A23187 (calcimycin) has been widely used in biological studies since it can translocate calcium across membranes. Seedlings of Pisum sativum L. cv. Uladovsky germinated in a vertically oriented cylinder of moist filter paper soaked in water during 4.5 day had been treated with 10-5 M A23187 for 12 hr. Tips of primary roots of control and A23187-treated pea seedlings were fixed for electron microscopy and electron cytochemistry. Experiments with Pisum sativum 5- day seedlings placed horizontally for 4 h after treatment with 10 μM A23187 during 12 h found that the graviresponsiveness of their primary roots was lost completely (91 % of roots) or inhibited (24 +/- 6° in comparison with 88 +/- 8° in control). At ultrastructural level, there were observed distribution of amyloplasts around the nucleus, remarkable lengthening of statocytes, advanced vacuolization, changes in dictyosome structure, ER fragmentation, cell wall thinning in A23187-treated statocytes. Cytochemical study has indicated that statocytes exposed to calcimycin have contained a number of Ca-pyroantimonate granules detected Ca 2 + ions in organelles and hyaloplasm (unlike the control ones). The deposits were mainly associated with the plasma membrane. Among organelles, mitochondria were notable for their ability to accumulate Ca 2 +. In amyloplasts, a fine precipitate was predominately located in their stroma and envelope lumens. In cell walls, deposits of the reaction product were observed along the periphery and in the median zone. Localization of electron-dense granules of lead phosphate, which indicated Ca 2 +- ATPase activities in pea statocytes exposed to A23187, was generally consistent with that in untreated roots. Apart from plasma membrane, chromatin, and nucleolus components, the cytochemical reaction
Gregory, A L; Agarwal, A; Lasenby, J
2017-11-01
We present a novel application of rotors in geometric algebra to represent the change of curvature tensor that is used in shell theory as part of the constitutive law. We introduce a new decomposition of the change of curvature tensor, which has explicit terms for changes of curvature due to initial curvature combined with strain, and changes in rotation over the surface. We use this decomposition to perform a scaling analysis of the relative importance of bending and stretching in flexible tubes undergoing self-excited oscillations. These oscillations have relevance to the lung, in which it is believed that they are responsible for wheezing. The new analysis is necessitated by the fact that the working fluid is air, compared to water in most previous work. We use stereographic imaging to empirically measure the relative importance of bending and stretching energy in observed self-excited oscillations. This enables us to validate our scaling analysis. We show that bending energy is dominated by stretching energy, and the scaling analysis makes clear that this will remain true for tubes in the airways of the lung.
Magnetic vortices in nanocaps induced by curvature
Abdelgawad, Ahmed M.; Nambiar, Nikhil; Bapna, Mukund; Chen, Hao; Majetich, Sara A.
2018-05-01
Magnetic nanoparticles with room temperature remanent magnetic vortices stabilized by their curvature are very intriguing due to their potential use in biomedicine. In the present study, we investigate room temperature magnetic chirality in 100 nm diameter permalloy spherical caps with 10 nm and 30 nm thicknesses. Micromagnetic OOMMF simulations predict the equilibrium spin structure for these caps to form a vortex state. We fabricate the permalloy caps by sputtering permalloy on both close-packed and sparse arrays of polystyrene nanoparticles. Magnetic force microscopy scans show a clear signature of a vortex state in close-packed caps of both 10 nm and 30 nm thicknesses. Alternating gradient magnetometry measurements of the caps are consistent with a remnant vortex state in 30 nm thick caps and a transition to an onion state followed by a vortex state in 10 nm thick caps. Out-of-plane measurements supported by micromagnetic simulations shows that an out-of-plane field can stabilize a vortex state down to a diameter of 15 nm.
Face recognition based on depth maps and surface curvature
Gordon, Gaile G.
1991-09-01
This paper explores the representation of the human face by features based on the curvature of the face surface. Curature captures many features necessary to accurately describe the face, such as the shape of the forehead, jawline, and cheeks, which are not easily detected from standard intensity images. Moreover, the value of curvature at a point on the surface is also viewpoint invariant. Until recently range data of high enough resolution and accuracy to perform useful curvature calculations on the scale of the human face had been unavailable. Although several researchers have worked on the problem of interpreting range data from curved (although usually highly geometrically structured) surfaces, the main approaches have centered on segmentation by signs of mean and Gaussian curvature which have not proved sufficient in themselves for the case of the human face. This paper details the calculation of principal curvature for a particular data set, the calculation of general surface descriptors based on curvature, and the calculation of face specific descriptors based both on curvature features and a priori knowledge about the structure of the face. These face specific descriptors can be incorporated into many different recognition strategies. A system that implements one such strategy, depth template comparison, giving recognition rates between 80% and 90% is described.
Apoplastic pH in corn root gravitropism: a laser scanning confocal microscopy measurement
Taylor, D.P.; Slattery, J.; Leopold, A.C.
1996-01-01
The ability to measure the pH of the apoplast in situ is of special interest as a test of the cell wall acidification theory. Optical sectioning of living seedlings of corn roots using the laser scanning confocal microscope (LSCM) permits us to make pH measurements in living tissue. The pH of the apoplast of corn roots was measured by this method after infiltration with CI-NERF, a pH-sensitive dye, along with Texas Red Dextran 3000, a pH-insensitive dye, as an internal standard. In the elongation zone of corn roots, the mean apoplastic pH was 4.9. Upon gravitropic stimulation, the pH on the convex side of actively bending roots was 4.5. The lowering of the apoplastic pH by 0.4 units appears to be sufficient to account for the increased growth on that side. This technique provides site-specific evidence for the acid growth theory of cell elongation. The LSCM permits measurements of the pH of living tissues, and has a sensitivity of approximately 0.2 pH units. (author)
National Oceanic and Atmospheric Administration, Department of Commerce — Profile curvature was calculated from the bathymetry surface for each raster cell using the ArcGIS 3D Analyst "Curvature" Tool. Profile curvature describes the rate...
National Oceanic and Atmospheric Administration, Department of Commerce — Curvature was calculated from the bathymetry surface for each raster cell using the ArcGIS 3D Analyst "Curvature" Tool. Curvature describes the rate of change of...
Influence of Coanda surface curvature on performance of bladeless fan
Li, Guoqi; Hu, Yongjun; Jin, Yingzi; Setoguchi, Toshiaki; Kim, Heuy Dong
2014-10-01
The unique Coanda surface has a great influence on the performance of bladeless fan. However, there is few studies to explain the relationship between the performance and Coanda surface curvature at present. In order to gain a qualitative understanding of effect of the curvature on the performance of bladeless fan, numerical studies are performed in this paper. Firstly, three-dimensional numerical simulation is done by Fluent software. For the purpose to obtain detailed information of the flow field around the Coanda surface, two-dimensional numerical simulation is also conducted. Five types of Coanda surfaces with different curvature are designed, and the flow behaviour and the performance of them are analyzed and compared with those of the prototype. The analysis indicates that the curvature of Coanda surface is strongly related to blowing performance, It is found that there is an optimal curvature of Coanda surfaces among the studied models. Simulation result shows that there is a special low pressure region. With increasing curvature in Y direction, several low pressure regions gradually enlarged, then begin to merge slowly, and finally form a large area of low pressure. From the analyses of streamlines and velocity angle, it is found that the magnitude of the curvature affects the flow direction and reasonable curvature can induce fluid flow close to the wall. Thus, it leads to that the curvature of the streamlines is consistent with that of Coanda surface. Meanwhile, it also causes the fluid movement towards the most suitable direction. This study will provide useful information to performance improvements of bladeless fans.
Hawes Martha C
2006-03-01
Full Text Available Abstract Background This review summarizes what is known about the pathological processes (e.g. structural and functional changes, by which spinal curvatures develop and evolve into spinal deformities. Methods Comprehensive review of articles (English language only published on 'scoliosis,' whose content yielded data on the pathological changes associated with spinal curvatures. Medline, Science Citation Index and other searches yielded > 10,000 titles each of which was surveyed for content related to 'pathology' and related terms such as 'etiology,' 'inheritance,' 'pathomechanism,' 'signs and symptoms.' Additional resources included all books published on 'scoliosis' and available through the Arizona Health Sciences Library, Interlibrary Loan, or through direct contact with the authors or publishers. Results A lateral curvature of the spine–'scoliosis'–can develop in association with postural imbalance due to genetic defects and injury as well as pain and scarring from trauma or surgery. Irrespective of the factor that triggers its appearance, a sustained postural imbalance can result, over time, in establishment of a state of continuous asymmetric loading relative to the spinal axis. Recent studies support the longstanding hypothesis that spinal deformity results directly from such postural imbalance, irrespective of the primary trigger, because the dynamics of growth within vertebrae are altered by continuous asymmetric mechanical loading. These data suggest that, as long as growth potential remains, evolution of a spinal curvature into a spinal deformity can be prevented by reversing the state of continuous asymmetric loading. Conclusion Spinal curvatures can routinely be diagnosed in early stages, before pathological deformity of the vertebral elements is induced in response to asymmetric loading. Current clinical approaches involve 'watching and waiting' while mild reversible spinal curvatures develop into spinal deformities with
Positive spatial curvature does not falsify the landscape
Horn, B.
2017-12-01
We present a simple cosmological model where the quantum tunneling of a scalar field rearranges the energetics of the matter sector, sending a stable static ancestor vacuum with positive spatial curvature into an inating solution with positive curvature. This serves as a proof of principle that an observation of positive spatial curvature does not falsify the hypothesis that our current observer patch originated from false vacuum tunneling in a string or field theoretic landscape. This poster submission is a summary of the work, and was presented at the 3rd annual ICPPA held in Moscow from October 2 to 5, 2017, by Prof. Rostislav Konoplich on behalf of the author.
Curvature perturbation and waterfall dynamics in hybrid inflation
Abolhasani, Ali Akbar; Firouzjahi, Hassan; Sasaki, Misao
2011-01-01
We investigate the parameter spaces of hybrid inflation model with special attention paid to the dynamics of waterfall field and curvature perturbations induced from its quantum fluctuations. Depending on the inflaton field value at the time of phase transition and the sharpness of the phase transition inflation can have multiple extended stages. We find that for models with mild phase transition the induced curvature perturbation from the waterfall field is too large to satisfy the COBE normalization. We investigate the model parameter space where the curvature perturbations from the waterfall quantum fluctuations vary between the results of standard hybrid inflation and the results obtained here
Curvature perturbation and waterfall dynamics in hybrid inflation
Abolhasani, Ali Akbar [Department of Physics, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Firouzjahi, Hassan [School of Physics, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of); Sasaki, Misao, E-mail: abolhasani@mail.ipm.ir, E-mail: firouz@mail.ipm.ir, E-mail: misao@yukawa.kyoto-u.ac.jp [Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502 (Japan)
2011-10-01
We investigate the parameter spaces of hybrid inflation model with special attention paid to the dynamics of waterfall field and curvature perturbations induced from its quantum fluctuations. Depending on the inflaton field value at the time of phase transition and the sharpness of the phase transition inflation can have multiple extended stages. We find that for models with mild phase transition the induced curvature perturbation from the waterfall field is too large to satisfy the COBE normalization. We investigate the model parameter space where the curvature perturbations from the waterfall quantum fluctuations vary between the results of standard hybrid inflation and the results obtained here.
Geometry-specific scaling of detonation parameters from front curvature
Jackson, Scott I.; Short, Mark
2011-01-01
It has previously been asserted that classical detonation curvature theory predicts that the critical diameter and the diameter-effect curve of a cylindrical high-explosive charge should scale with twice the thickness of an analogous two-dimensional explosive slab. The varied agreement of experimental results with this expectation have led some to question the ability of curvature-based concepts to predict detonation propagation in non-ideal explosives. This study addresses such claims by showing that the expected scaling relationship (hereafter referred to d = 2w) is not consistent with curvature-based Detonation Shock Dynamics (DSD) theory.
Numerical studies of transverse curvature effects on transonic flow stability
Macaraeg, M. G.; Daudpota, Q. I.
1992-01-01
A numerical study of transverse curvature effects on compressible flow temporal stability for transonic to low supersonic Mach numbers is presented for axisymmetric modes. The mean flows studied include a similar boundary-layer profile and a nonsimilar axisymmetric boundary-layer solution. The effect of neglecting curvature in the mean flow produces only small quantitative changes in the disturbance growth rate. For transonic Mach numbers (1-1.4) and aerodynamically relevant Reynolds numbers (5000-10,000 based on displacement thickness), the maximum growth rate is found to increase with curvature - the maximum occurring at a nondimensional radius (based on displacement thickness) between 30 and 100.
Public and private space curvature in Robertson-Walker universes.
Rindler, W.
1981-05-01
The question is asked: what space curvature would a fundamental observer in an ideal Robertson-Walker universe obtain by direct local spatial measurements, i.e., without reference to the motion pattern of the other galaxies? The answer is that he obtains the curvatureK of his “private” space generated by all the geodesics orthogonal to his world line at the moment in question, and that ˜K is related to the usual curvatureK=k/R 2 of the “public” space of galaxies byK=K+H 2/c2, whereH is Hubble's parameter.
Higher Curvature Gravity from Entanglement in Conformal Field Theories
Haehl, Felix M.; Hijano, Eliot; Parrikar, Onkar; Rabideau, Charles
2018-05-01
By generalizing different recent works to the context of higher curvature gravity, we provide a unifying framework for three related results: (i) If an asymptotically anti-de Sitter (AdS) spacetime computes the entanglement entropies of ball-shaped regions in a conformal field theory using a generalized Ryu-Takayanagi formula up to second order in state deformations around the vacuum, then the spacetime satisfies the correct gravitational equations of motion up to second order around the AdS background. (ii) The holographic dual of entanglement entropy in higher curvature theories of gravity is given by the Wald entropy plus a particular correction term involving extrinsic curvatures. (iii) Conformal field theory relative entropy is dual to gravitational canonical energy (also in higher curvature theories of gravity). Especially for the second point, our novel derivation of this previously known statement does not involve the Euclidean replica trick.
On the projective curvature tensor of generalized Sasakian-space ...
space-forms under some conditions regarding projective curvature tensor. All the results obtained in this paper are in the form of necessary and sufficient conditions. Keywords: Generalized Sasakian-space-forms; projectively flat; ...
Inverse curvature flows in asymptotically Robertson Walker spaces
Kröner, Heiko
2018-04-01
In this paper we consider inverse curvature flows in a Lorentzian manifold N which is the topological product of the real numbers with a closed Riemannian manifold and equipped with a Lorentzian metric having a future singularity so that N is asymptotically Robertson Walker. The flow speeds are future directed and given by 1 / F where F is a homogeneous degree one curvature function of class (K*) of the principal curvatures, i.e. the n-th root of the Gauss curvature. We prove longtime existence of these flows and that the flow hypersurfaces converge to smooth functions when they are rescaled with a proper factor which results from the asymptotics of the metric.
On a class of graphs with prescribed mean curvature
Duong Minh Duc; Costa Salavessa, I.M. de
1989-11-01
We study a class of quasilinear elliptic equations on the unit ball of R n and apply these results to get the existence of graphs with prescribed mean curvature on n-hyperbolic spaces. (author). 18 refs
Higher-order curvature terms and extended inflation
Wang Yun
1990-01-01
We consider higher-order curvature terms in context of the Brans-Dicke theory of gravity, and investigate the effects of these terms on extended inflationary theories. We find that the higher-order curvature terms tend to speed up inflation, although the original extended-inflation solutions are stable when these terms are small. Analytical solutions are found for two extreme cases: when the higher-order curvature terms are small, and when they dominate. A conformal transformation is employed in solving the latter case, and some of the subtleties in this technique are discussed. We note that percolation is less likely to occur when the higher-order curvature terms are present. An upper bound on α is expected if we are to avoid excessive and inadequate percolation of true-vacuum bubbles
Gauge and non-gauge curvature tensor copies
Srivastava, P.P.
1982-10-01
A procedure for constructing curvature tensor copies is discussed using the anholonomic geometrical framework. The corresponding geometries are compared and the notion of gauge copy is elucidated. An explicit calculation is also made. (author)
Bacterial cell curvature through mechanical control of cell growth
Cabeen, M.; Charbon, Godefroid; Vollmer, W.
2009-01-01
The cytoskeleton is a key regulator of cell morphogenesis. Crescentin, a bacterial intermediate filament-like protein, is required for the curved shape of Caulobacter crescentus and localizes to the inner cell curvature. Here, we show that crescentin forms a single filamentous structure...... that collapses into a helix when detached from the cell membrane, suggesting that it is normally maintained in a stretched configuration. Crescentin causes an elongation rate gradient around the circumference of the sidewall, creating a longitudinal cell length differential and hence curvature. Such curvature...... can be produced by physical force alone when cells are grown in circular microchambers. Production of crescentin in Escherichia coli is sufficient to generate cell curvature. Our data argue for a model in which physical strain borne by the crescentin structure anisotropically alters the kinetics...
Constant scalar curvature hypersurfaces in extended Schwarzschild space-time
Pareja, M. J.; Frauendiener, J.
2006-01-01
We present a class of spherically symmetric hypersurfaces in the Kruskal extension of the Schwarzschild space-time. The hypersurfaces have constant negative scalar curvature, so they are hyperboloidal in the regions of space-time which are asymptotically flat
Translating Solitons of Mean Curvature Flow of Noncompact Submanifolds
Li Guanghan; Tian Daping; Wu Chuanxi
2011-01-01
We prove the existence and asymptotic behavior of rotationally symmetric solitons of mean curvature flow for noncompact submanifolds in Euclidean and Minkowski spaces, which generalizes part of the corresponding results for hypersurfaces of Jian.
Curvature and elasticity of substitution: what is the link?
Matveenko, Andrei; Matveenko, V.
2014-01-01
Roč. 10, č. 2 (2014), s. 7-20 ISSN 1800-5845 Grant - others:UK(CZ) GAUK 308214 Institutional support: PRVOUK-P23 Keywords : curvature * elasticity of substitution * production function Subject RIV: AH - Economics
Cosmic censorship, persistent curvature and asymptotic causal pathology
Newman, R.P.A.C.
1984-01-01
The paper examines cosmic censorship in general relativity theory. Conformally flat space-times; persistent curvature; weakly asymptotically simple and empty asymptotes; censorship conditions; and the censorship theorem; are all discussed. (U.K.)
Wang, Tuo; Cady, Sarah D.; Hong, Mei
2012-01-01
The M2 protein of the influenza A virus acts both as a drug-sensitive proton channel and mediates virus budding through membrane scission. The segment responsible for causing membrane curvature is an amphipathic helix in the cytoplasmic domain of the protein. Here, we use 31P and 13C solid-state NMR to examine M2-induced membrane curvature. M2(22–46), which includes only the transmembrane (TM) helix, and M2(21–61), which contains an additional amphipathic helix, are studied. 31P chemical shift lineshapes indicate that M2(21–61) causes a high-curvature isotropic phase to both cholesterol-rich virus-mimetic membranes and 1,2-dimyristoyl-sn-glycero-3-phosphocholine bilayers, whereas M2(22–46) has minimal effect. The lamellar and isotropic domains have distinct 31P isotropic chemical shifts, indicating perturbation of the lipid headgroup conformation by the amphipathic helix. 31P- and 13C-detected 1H T2 relaxation and two-dimensional peptide-lipid correlation spectra show that M2(21–61) preferentially binds to the high-curvature domain. 31P linewidths indicate that the isotropic vesicles induced by M2(21–61) are 10–35 nm in diameter, and the virus-mimetic vesicles are smaller than the 1,2-dimyristoyl-sn-glycero-3-phosphocholine vesicles. A strong correlation is found between high membrane curvature and weak drug-binding ability of the TM helix. Thus, the M2 amphipathic helix causes membrane curvature, which in turn perturbs the TM helix conformation, abolishing drug binding. These NMR experiments are applicable to other curvature-inducing membrane proteins such as fusion proteins and antimicrobial peptides. PMID:22385849
No Large Scale Curvature Perturbations during Waterfall of Hybrid Inflation
Abolhasani, Ali Akbar; Firouzjahi, Hassan
2010-01-01
In this paper the possibility of generating large scale curvature perturbations induced from the entropic perturbations during the waterfall phase transition of standard hybrid inflation model is studied. We show that whether or not appreciable amounts of large scale curvature perturbations are produced during the waterfall phase transition depend crucially on the competition between the classical and the quantum mechanical back-reactions to terminate inflation. If one considers only the clas...
Existence of conformal metrics on spheres with prescribed Paneitz curvature
Ben Ayed, Mohamed; El Mehdi, Khalil
2003-07-01
In this paper we study the problem of prescribing a fourth order conformal invariant (the Paneitz curvature) on the n-spheres, with n ≥ 5. Using tools from the theory of critical points at infinity, we provide some topological conditions on the level sets of a given function defined on the sphere, under which we prove the existence of conformal metric with prescribed Paneitz curvature. (author)
Inflation in a shear-or curvature-dominated universe
Steigman, G.; Turner, M.S.
1983-01-01
We show that new inflation occurs even if the universe is shear-or (negative) curvature-dominated when the phase transition begins. In such situations the size of a causally coherent region, after inflation, is only slightly smaller (by powers, but not by exponential factors) than the usual result. The creation and evolution of density perturbations is unaffected. This result is marked contrast to 'old' inflation, where shear- or curvature-domination could quench inflation. (orig.)
Curvature-driven acceleration: a utopia or a reality?
Das, Sudipta; Banerjee, Narayan; Dadhich, Naresh
2006-01-01
The present work shows that a combination of nonlinear contributions from the Ricci curvature in Einstein field equations can drive a late time acceleration of expansion of the universe. The transit from the decelerated to the accelerated phase of expansion takes place smoothly without having to resort to a study of asymptotic behaviour. This result emphasizes the need for thorough and critical examination of models with nonlinear contribution from the curvature
Curvature-driven acceleration: a utopia or a reality?
Das, Sudipta [Relativity and Cosmology Research Centre, Department of Physics, Jadavpur University, Calcutta-700 032 (India); Banerjee, Narayan [Relativity and Cosmology Research Centre, Department of Physics, Jadavpur University, Calcutta-700 032 (India); Dadhich, Naresh [Inter University Centre for Astronomy and Astrophysics, Post Bag 4, Ganeshkhind, Pune 411 007 (India)
2006-06-21
The present work shows that a combination of nonlinear contributions from the Ricci curvature in Einstein field equations can drive a late time acceleration of expansion of the universe. The transit from the decelerated to the accelerated phase of expansion takes place smoothly without having to resort to a study of asymptotic behaviour. This result emphasizes the need for thorough and critical examination of models with nonlinear contribution from the curvature.
Existence of conformal metrics on spheres with prescribed Paneitz curvature
Ben-Ayed, M
2003-01-01
In this paper we study the problem of prescribing a fourth order conformal invariant (the Paneitz curvature) on the n-spheres, with n >= 5. Using tools from the theory of critical points at infinity, we provide some topological conditions on the level sets of a given function defined on the sphere, under which we prove the existence of conformal metric with prescribed Paneitz curvature.
Curvature effects in carbon nanomaterials: Exohedral versus endohedral supercapacitors
Huang, Jingsong; Bobby,; Sumpter, Bobby G.; Meunier, Vincent; Yushin, Gleb; Portet, Cristelle; Gogotsi, Yury
2010-01-01
Capacitive energy storage mechanisms in nanoporous carbon supercapacitors hinge on endohedral interactions in carbon materials with macro-, meso-, and micropores that have negative surface curvature. In this article, we show that because of the positive curvature found in zero-dimensional carbon onions or one-dimensional carbon nanotube arrays, exohedral interactions cause the normalized capacitance to increase with decreasing particle size or tube diameter, in sharp contrast to the behavior ...
Atomic fine structure in a space of constant curvature
Bessis, N.; Bessis, G.; Shamseddine, R.
1982-01-01
As a contribution to a tentative formulation of atomic physics in a curved space, the determination of atomic fine structure energies in a space of constant curvature is investigated. Starting from the Dirac equation in a curved space-time, the analogue of the Pauli equation in a general coordinate system is derived. The theoretical curvature induced shifts and splittings of the fine structure energy levels are put in evidence and examined for the particular case of the hydrogenic n=2 levels. (author)
On $L_p$ Affine Surface Area and Curvature Measures
Zhao, Yiming
2015-01-01
The relationship between $L_p$ affine surface area and curvature measures is investigated. As a result, a new representation of the existing notion of $L_p$ affine surface area depending only on curvature measures is derived. Direct proofs of the equivalence between this new representation and those previously known are provided. The proofs show that the new representation is, in a sense, "polar" to that of Lutwak's and "dual" to that of Sch\\"utt & Werner's.
Curvature reduces bending strains in the quokka femur
Kyle McCabe
2017-03-01
Full Text Available This study explores how curvature in the quokka femur may help to reduce bending strain during locomotion. The quokka is a small wallaby, but the curvature of the femur and the muscles active during stance phase are similar to most quadrupedal mammals. Our hypothesis is that the action of hip extensor and ankle plantarflexor muscles during stance phase place cranial bending strains that act to reduce the caudal curvature of the femur. Knee extensors and biarticular muscles that span the femur longitudinally create caudal bending strains in the caudally curved (concave caudal side bone. These opposing strains can balance each other and result in less strain on the bone. We test this idea by comparing the performance of a normally curved finite element model of the quokka femur to a digitally straightened version of the same bone. The normally curved model is indeed less strained than the straightened version. To further examine the relationship between curvature and the strains in the femoral models, we also tested an extra-curved and a reverse-curved version with the same loads. There appears to be a linear relationship between the curvature and the strains experienced by the models. These results demonstrate that longitudinal curvature in bones may be a manipulable mechanism whereby bone can induce a strain gradient to oppose strains induced by habitual loading.
Takahashi, Hideyuki; Kobayashi, Akie; Fujii, Nobuharu; Yano, Sachiko; Shimazu, Toru; Kim, Hyejeong; Tomita, Yuuta; Miyazawa, Yutaka
Plant organs display helical growth movement known as circumnutation. This movement helps plant organs find suitable environmental cues. The amplitude, period and shape of the circumnutation differ depending on plant species or organs. Although the mechanism for circumnutation is unclear, it has long been argued whether circumnutation is involved with gravitropic response. Previously, we showed that shoots of weeping morning glory (we1 and we2) are impaired in not only the differentiation of endodermis (gravisensing cells) and gravitropic response, but also winding and circumnutation (Kitazawa et al., PNAS 102: 18742-18747, 2005). Here, we report a reduced circumnutation in the shoots of rice and the roots of pea mutants defective in gravitropic response. Coleoptiles of clinorotated rice seedlings and decapped roots of pea seedlings also showed a reduction of their circumnutational movement. These results suggest that circumnutation is tightly related with gravitropic response. In the proposed spaceflight experiments, “Plant Rotation”, we will verify the hypothesis that circumnutation requires gravity response, by using microgravity environment in KIBO module of the International Space Station. We will grow rice and morning glory plants under both muG and 1G conditions on orbit and monitor their growth by a camera. The downlinked images will be analyzed for the measurements of plant growth and nutational movements. This experiment will enable us to answer the question whether circumnutation depends on gravity response or not.
Gomes Leal-Junior, Arnaldo; Frizera-Neto, Anselmo; José Pontes, Maria; Rodrigues Botelho, Thomaz
2017-12-01
Polymer optical fiber (POF) curvature sensors present some advantages over conventional techniques for angle measurements, such as their light weight, compactness and immunity to electromagnetic fields. However, high hysteresis can occur in POF curvature sensors due to the polymer viscoelastic response. In order to overcome this limitation, this paper shows how the hysteresis sensor can be compensated by a calibration equation relating the measured output signal to the sensor’s angular velocity. The proposed method is validated using an exoskeleton with an active joint on the knee for flexion and extension rehabilitation exercises. The results show a decrease in sensor hysteresis and a decrease by more than two times in the error between the POF sensor and the potentiometer, which is employed for the angle measurement of the exoskeleton knee joint.
A Numerical Study on the Impeller Meridional Curvature of High Pressure Multistage Pump
Kim, Deok Su; Jean, Sang Gyu; Mamatov, Sanjar [Hyosung Goodsprings, Inc., Busan (Korea, Republic of); Park, Warn Gyu [Pusan Nat’l Univ., Busan (Korea, Republic of)
2017-07-15
This paper presents the hydraulic design an impeller and radial diffuser of a high-pressure multistage pump for reverse osmosis. The flow distribution and hydraulic performance for the meridional design of the impeller were analyzed numerically. Optimization was conducted based on the response surface method by varying the hub and shroud meridional curvatures, while maintaining the impeller outlet diameter, outlet width, and eye diameter constant. The analysis results of the head and efficiency with the variation in the impeller meridional profile showed that angle of the front shroud near the impeller outlet (εDs) had the highest effect on head increase, while the hub inlet length (d1i) and shroud curvature (Rds) had the highest effect on efficiency. From the meridional profile variation, an approximately 0.5% increase in efficiency was observed compared with the base model (case 25).
Nakamura, Moritaka; Toyota, Masatsugu; Tasaka, Masao; Morita, Miyo Terao
2011-01-01
Higher plants use the sedimentation of amyloplasts in statocytes as statolith to sense the direction of gravity during gravitropism. In Arabidopsis thaliana inflorescence stem statocyte, amyloplasts are in complex movement; some show jumping-like saltatory movement and some tend to sediment toward the gravity direction. Here, we report that a RING-type E3 ligase SHOOT GRAVITROPISM9 (SGR9) localized to amyloplasts modulates amyloplast dynamics. In the sgr9 mutant, which exhibits reduced gravitropism, amyloplasts did not sediment but exhibited increased saltatory movement. Amyloplasts sometimes formed a cluster that is abnormally entangled with actin filaments (AFs) in sgr9. By contrast, in the fiz1 mutant, an ACT8 semidominant mutant that induces fragmentation of AFs, amyloplasts, lost saltatory movement and sedimented with nearly statically. Both treatment with Latrunculin B, an inhibitor of AF polymerization, and the fiz1 mutation rescued the gravitropic defect of sgr9. In addition, fiz1 decreased saltatory movement and induced amyloplast sedimentation even in sgr9. Our results suggest that amyloplasts are in equilibrium between sedimentation and saltatory movement in wild-type endodermal cells. Furthermore, this equilibrium is the result of the interaction between amyloplasts and AFs modulated by the SGR9. SGR9 may promote detachment of amyloplasts from AFs, allowing the amyloplasts to sediment in the AFs-dependent equilibrium of amyloplast dynamics. PMID:21602290
Ng, Y. K.; Moore, R.
1985-01-01
The effect of ABA on root growth, secondary-root formation and root gravitropism in seedlings of Zea mays was investigated by using Fluridone-treated seedlings and a viviparous mutant, both of which lack carotenoids and ABA. Primary roots of seedlings grown in the presence of Fluridone grew significantly slower than those of control (i.e. untreated) roots. Elongation of Fluridone-treated roots was inhibited significantly by the exogenous application of 1 mM ABA. Exogenous application of 1 micromole and 1 nmole ABA had either no effect or only a slight stimulatory effect on root elongation, depending on the method of application. The absence of ABA in Fluridone-treated plants was not an important factor in secondary-root formation in seedlings less than 9-10 d old. However, ABA may suppress secondary-root formation in older seedlings, since 11-d-old control seedlings had significantly fewer secondary roots than Fluridone-treated seedlings. Roots of Fluridone-treated and control seedlings were graviresponsive. Similar data were obtained for vp-9 mutants of Z. mays, which are phenotypically identical to Fluridone-treated seedlings. These results indicate that ABA is necessary for neither secondary-root formation nor for positive gravitropism by primary roots.
Novel tilt-curvature coupling in lipid membranes
Terzi, M. Mert; Deserno, Markus
2017-08-01
On mesoscopic scales, lipid membranes are well described by continuum theories whose main ingredients are the curvature of a membrane's reference surface and the tilt of its lipid constituents. In particular, Hamm and Kozlov [Eur. Phys. J. E 3, 323 (2000)] have shown how to systematically derive such a tilt-curvature Hamiltonian based on the elementary assumption of a thin fluid elastic sheet experiencing internal lateral pre-stress. Performing a dimensional reduction, they not only derive the basic form of the effective surface Hamiltonian but also express its emergent elastic couplings as trans-membrane moments of lower-level material parameters. In the present paper, we argue, though, that their derivation unfortunately missed a coupling term between curvature and tilt. This term arises because, as one moves along the membrane, the curvature-induced change of transverse distances contributes to the area strain—an effect that was believed to be small but nevertheless ends up contributing at the same (quadratic) order as all other terms in their Hamiltonian. We illustrate the consequences of this amendment by deriving the monolayer and bilayer Euler-Lagrange equations for the tilt, as well as the power spectra of shape, tilt, and director fluctuations. A particularly curious aspect of our new term is that its associated coupling constant is the second moment of the lipid monolayer's lateral stress profile—which within this framework is equal to the monolayer Gaussian curvature modulus, κ¯ m. On the one hand, this implies that many theoretical predictions now contain a parameter that is poorly known (because the Gauss-Bonnet theorem limits access to the integrated Gaussian curvature); on the other hand, the appearance of κ¯ m outside of its Gaussian curvature provenance opens opportunities for measuring it by more conventional means, for instance by monitoring a membrane's undulation spectrum at short scales.
Spinal curvature and characteristics of postural change in pregnant women.
Okanishi, Natsuko; Kito, Nobuhiro; Akiyama, Mitoshi; Yamamoto, Masako
2012-07-01
Pregnant women often report complaints due to physiological and postural changes. Postural changes during pregnancy may cause low back pain and pelvic girdle pain. This study aimed to compare the characteristics of postural changes in pregnant compared with non-pregnant women. Prospective case-control study. Pregnancy care center. Fifteen women at 17-34 weeks pregnancy comprised the study group, while 10 non-pregnant female volunteers comprised the control group. Standing posture was evaluated in the sagittal plane with static digital pictures. Two angles were measured by image analysis software: (1) between the trunk and pelvis; and (2) between the trunk and lower extremity. Spinal curvature was measured with Spinal Mouse® to calculate the means of sacral inclination, thoracic and lumbar curvature and inclination. The principal components were calculated until eigenvalues surpassed 1. Three distinct factors with eigenvalues of 1.00-2.49 were identified, consistent with lumbosacral spinal curvature and inclination, thoracic spine curvature, and inclination of the body. These factors accounted for 77.2% of the total variance in posture variables. Eleven pregnant women showed postural characteristics of lumbar kyphosis and sacral posterior inclination. Body inclination showed a variety of patterns compared with those in healthy women. Spinal curvature demonstrated a tendency for lumbar kyphosis in pregnant women. Pregnancy may cause changes in spinal curvature and posture, which may in turn lead to relevant symptoms. Our data provide a basis for investigating the effects of spinal curvature and postural changes on symptoms during pregnancy. © 2012 The Authors Acta Obstetricia et Gynecologica Scandinavica© 2012 Nordic Federation of Societies of Obstetrics and Gynecology.
Sequence periodicity in nucleosomal DNA and intrinsic curvature.
Nair, T Murlidharan
2010-05-17
Most eukaryotic DNA contained in the nucleus is packaged by wrapping DNA around histone octamers. Histones are ubiquitous and bind most regions of chromosomal DNA. In order to achieve smooth wrapping of the DNA around the histone octamer, the DNA duplex should be able to deform and should possess intrinsic curvature. The deformability of DNA is a result of the non-parallelness of base pair stacks. The stacking interaction between base pairs is sequence dependent. The higher the stacking energy the more rigid the DNA helix, thus it is natural to expect that sequences that are involved in wrapping around the histone octamer should be unstacked and possess intrinsic curvature. Intrinsic curvature has been shown to be dictated by the periodic recurrence of certain dinucleotides. Several genome-wide studies directed towards mapping of nucleosome positions have revealed periodicity associated with certain stretches of sequences. In the current study, these sequences have been analyzed with a view to understand their sequence-dependent structures. Higher order DNA structures and the distribution of molecular bend loci associated with 146 base nucleosome core DNA sequence from C. elegans and chicken have been analyzed using the theoretical model for DNA curvature. The curvature dispersion calculated by cyclically permuting the sequences revealed that the molecular bend loci were delocalized throughout the nucleosome core region and had varying degrees of intrinsic curvature. The higher order structures associated with nucleosomes of C.elegans and chicken calculated from the sequences revealed heterogeneity with respect to the deviation of the DNA axis. The results points to the possibility of context dependent curvature of varying degrees to be associated with nucleosomal DNA.
Toyota, Masatsugu; Ikeda, Norifumi; Sawai-Toyota, Satoe; Kato, Takehide; Gilroy, Simon; Tasaka, Masao; Morita, Miyo Terao
2013-11-01
The starch-statolith hypothesis proposes that starch-filled amyloplasts act as statoliths in plant gravisensing, moving in response to the gravity vector and signaling its direction. However, recent studies suggest that amyloplasts show continuous, complex movements in Arabidopsis shoots, contradicting the idea of a so-called 'static' or 'settled' statolith. Here, we show that amyloplast movement underlies shoot gravisensing by using a custom-designed centrifuge microscope in combination with analysis of gravitropic mutants. The centrifuge microscope revealed that sedimentary movements of amyloplasts under hypergravity conditions are linearly correlated with gravitropic curvature in wild-type stems. We next analyzed the hypergravity response in the shoot gravitropism 2 (sgr2) mutant, which exhibits neither a shoot gravitropic response nor amyloplast sedimentation at 1 g. sgr2 mutants were able to sense and respond to gravity under 30 g conditions, during which the amyloplasts sedimented. These findings are consistent with amyloplast redistribution resulting from gravity-driven movements triggering shoot gravisensing. To further support this idea, we examined two additional gravitropic mutants, phosphoglucomutase (pgm) and sgr9, which show abnormal amyloplast distribution and reduced gravitropism at 1 g. We found that the correlation between hypergravity-induced amyloplast sedimentation and gravitropic curvature of these mutants was identical to that of wild-type plants. These observations suggest that Arabidopsis shoots have a gravisensing mechanism that linearly converts the number of amyloplasts that settle to the 'bottom' of the cell into gravitropic signals. Further, the restoration of the gravitropic response by hypergravity in the gravitropic mutants that we tested indicates that these lines probably have a functional gravisensing mechanism that is not triggered at 1 g. © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.
The role of curvature in silica mesoporous crystals
Miyasaka, Keiichi; Bennett, Alfonso Garcia; Han, Lu; Han, Yu; Xiao, Changhong; Fujita, Nobuhisa; Castle, Toen; Sakamoto, Yasuhiro; Che, Shunai; Terasaki, Osamu
2012-01-01
Silica mesoporous crystals (SMCs) offer a unique opportunity to study micellar mesophases. Replication of non-equilibrium mesophases into porous silica structures allows the characterization of surfactant phases under a variety of chemical and physical perturbations, through methods not typically accessible to liquid crystal chemists. A poignant example is the use of electron microscopy and crystallography, as discussed herein, for the purpose of determining the fundamental role of amphiphile curvature, namely mean curvature and Gaussian curvature, which have been extensively studied in various fields such as polymer, liquid crystal, biological membrane, etc. The present work aims to highlight some current studies devoted to the interface curvature on SMCs, in which electron microscopy and electron crystallography (EC) are used to understand the geometry of silica wall surface in bicontinuous and cage-type mesostructures through the investigation of electrostatic potential maps. Additionally, we show that by altering the synthesis conditions during the preparation of SMCs, it is possible to isolate particles during micellar mesophase transformations in the cubic bicontinuous system, allowing us to view and study epitaxial relations under the specific synthesis conditions. By studying the relationship between mesoporous structure, interface curvature and micellar mesophases using electron microscopy and EC, we hope to bring new insights into the formation mechanism of these unique materials but also contribute a new way of understanding periodic liquid crystal systems. © 2012 The Royal Society.
The role of curvature in silica mesoporous crystals
Miyasaka, Keiichi
2012-02-08
Silica mesoporous crystals (SMCs) offer a unique opportunity to study micellar mesophases. Replication of non-equilibrium mesophases into porous silica structures allows the characterization of surfactant phases under a variety of chemical and physical perturbations, through methods not typically accessible to liquid crystal chemists. A poignant example is the use of electron microscopy and crystallography, as discussed herein, for the purpose of determining the fundamental role of amphiphile curvature, namely mean curvature and Gaussian curvature, which have been extensively studied in various fields such as polymer, liquid crystal, biological membrane, etc. The present work aims to highlight some current studies devoted to the interface curvature on SMCs, in which electron microscopy and electron crystallography (EC) are used to understand the geometry of silica wall surface in bicontinuous and cage-type mesostructures through the investigation of electrostatic potential maps. Additionally, we show that by altering the synthesis conditions during the preparation of SMCs, it is possible to isolate particles during micellar mesophase transformations in the cubic bicontinuous system, allowing us to view and study epitaxial relations under the specific synthesis conditions. By studying the relationship between mesoporous structure, interface curvature and micellar mesophases using electron microscopy and EC, we hope to bring new insights into the formation mechanism of these unique materials but also contribute a new way of understanding periodic liquid crystal systems. © 2012 The Royal Society.
Studying biomolecule localization by engineering bacterial cell wall curvature.
Lars D Renner
Full Text Available In this article we describe two techniques for exploring the relationship between bacterial cell shape and the intracellular organization of proteins. First, we created microchannels in a layer of agarose to reshape live bacterial cells and predictably control their mean cell wall curvature, and quantified the influence of curvature on the localization and distribution of proteins in vivo. Second, we used agarose microchambers to reshape bacteria whose cell wall had been chemically and enzymatically removed. By combining microstructures with different geometries and fluorescence microscopy, we determined the relationship between bacterial shape and the localization for two different membrane-associated proteins: i the cell-shape related protein MreB of Escherichia coli, which is positioned along the long axis of the rod-shaped cell; and ii the negative curvature-sensing cell division protein DivIVA of Bacillus subtilis, which is positioned primarily at cell division sites. Our studies of intracellular organization in live cells of E. coli and B. subtilis demonstrate that MreB is largely excluded from areas of high negative curvature, whereas DivIVA localizes preferentially to regions of high negative curvature. These studies highlight a unique approach for studying the relationship between cell shape and intracellular organization in intact, live bacteria.
The speed-curvature power law of movements: a reappraisal.
Zago, Myrka; Matic, Adam; Flash, Tamar; Gomez-Marin, Alex; Lacquaniti, Francesco
2018-01-01
Several types of curvilinear movements obey approximately the so called 2/3 power law, according to which the angular speed varies proportionally to the 2/3 power of the curvature. The origin of the law is debated but it is generally thought to depend on physiological mechanisms. However, a recent paper (Marken and Shaffer, Exp Brain Res 88:685-690, 2017) claims that this power law is simply a statistical artifact, being a mathematical consequence of the way speed and curvature are calculated. Here we reject this hypothesis by showing that the speed-curvature power law of biological movements is non-trivial. First, we confirm that the power exponent varies with the shape of human drawing movements and with environmental factors. Second, we report experimental data from Drosophila larvae demonstrating that the power law does not depend on how curvature is calculated. Third, we prove that the law can be violated by means of several mathematical and physical examples. Finally, we discuss biological constraints that may underlie speed-curvature power laws discovered in empirical studies.
Non-Euclidean geometry and curvature two-dimensional spaces, volume 3
Cannon, James W
2017-01-01
This is the final volume of a three volume collection devoted to the geometry, topology, and curvature of 2-dimensional spaces. The collection provides a guided tour through a wide range of topics by one of the twentieth century's masters of geometric topology. The books are accessible to college and graduate students and provide perspective and insight to mathematicians at all levels who are interested in geometry and topology. Einstein showed how to interpret gravity as the dynamic response to the curvature of space-time. Bill Thurston showed us that non-Euclidean geometries and curvature are essential to the understanding of low-dimensional spaces. This third and final volume aims to give the reader a firm intuitive understanding of these concepts in dimension 2. The volume first demonstrates a number of the most important properties of non-Euclidean geometry by means of simple infinite graphs that approximate that geometry. This is followed by a long chapter taken from lectures the author gave at MSRI, wh...
Lee, Sin-Doo
2015-10-01
Soft matters such as liquid crystals and biological molecules exhibit a variety of interesting physical phenomena as well as new applications. Recently, in mimicking biological systems that have the ability to sense, regulate, grow, react, and regenerate in a highly responsive and self-adaptive manner, the significance of the liquid crystal order in living organisms, for example, a biological membrane possessing the lamellar order, is widely recognized from the viewpoints of physics and chemistry of interfaces and membrane biophysics. Lipid bilayers, resembling cell membranes, provide primary functions for the transport of biological components of ions and molecules in various cellular activities, including vesicle budding and membrane fusion, through lateral organization of the membrane components such as proteins. In this lecture, I will describe how the liquid crystal-analog curvature elasticity of a lipid bilayer plays a critical role in developing a new platform for understanding diverse biological functions at a cellular level. The key concept is to manipulate the local curvature at an interface between a solid substrate and a model membrane. Two representative examples will be demonstrated: one of them is the topographic control of lipid rafts in a combinatorial array where the ligand-receptor binding event occurs and the other concerns the reconstitution of a ring-type lipid raft in bud-mimicking architecture within the framework of the curvature elasticity.
Nap, Rikkert J; Gonzalez Solveyra, Estefania; Szleifer, Igal
2018-05-01
When engineering nanomaterials for application in biological systems, it is important to understand how multivalent ions, such as calcium, affect the structural and chemical properties of polymer-modified nanoconstructs. In this work, a recently developed molecular theory was employed to study the effect of surface curvature on the calcium-induced collapse of end-tethered weak polyelectrolytes. In particular, we focused on cylindrical and spherical nanoparticles coated with poly(acrylic acid) in the presence of different amounts of Ca2+ ions. We describe the structural changes that grafted polyelectrolytes undergo as a function of calcium concentration, surface curvature, and morphology. The polymer layers collapse in aqueous solutions that contain sufficient amounts of Ca2+ ions. This collapse, due to the formation of calcium bridges, is not only controlled by the calcium ion concentration but also strongly influenced by the curvature of the tethering surface. The transition from a swollen to a collapsed layer as a function of calcium concentration broadens and shifts to lower amounts of calcium ions as a function of the radius of cylindrical and spherical nanoparticles. The results show how the interplay between calcium binding and surface curvature governs the structural and functional properties of the polymer molecules. This would directly impact the fate of weak polyelectrolyte-coated nanoparticles in biological environments, in which calcium levels are tightly regulated. Understanding such interplay would also contribute to the rational design and optimization of smart interfaces with applications in, e.g., salt-sensitive and ion-responsive materials and devices.
Waterfall field in hybrid inflation and curvature perturbation
Gong, Jinn-Ouk; Sasaki, Misao
2011-01-01
We study carefully the contribution of the waterfall field to the curvature perturbation at the end of hybrid inflation. In particular we clarify the parameter dependence analytically under reasonable assumptions on the model parameters. After calculating the mode function of the waterfall field, we use the δN formalism and confirm the previously obtained result that the power spectrum is very blue with the index 4 and is absolutely negligible on large scales. However, we also find that the resulting curvature perturbation is highly non-Gaussian and hence we calculate the bispectrum. We find that the bispectrum is at leading order independent of momentum and exhibits its peak at the equilateral limit, though it is unobservably small on large scales. We also present the one-point probability distribution function of the curvature perturbation
Waterfall field in hybrid inflation and curvature perturbation
Gong, Jinn-Ouk [Instituut-Lorentz for Theoretical Physics, Universiteit Leiden, 2333 CA Leiden (Netherlands); Sasaki, Misao, E-mail: jgong@lorentz.leidenuniv.nl, E-mail: misao@yukawa.kyoto-u.ac.jp [Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502 (Japan)
2011-03-01
We study carefully the contribution of the waterfall field to the curvature perturbation at the end of hybrid inflation. In particular we clarify the parameter dependence analytically under reasonable assumptions on the model parameters. After calculating the mode function of the waterfall field, we use the δN formalism and confirm the previously obtained result that the power spectrum is very blue with the index 4 and is absolutely negligible on large scales. However, we also find that the resulting curvature perturbation is highly non-Gaussian and hence we calculate the bispectrum. We find that the bispectrum is at leading order independent of momentum and exhibits its peak at the equilateral limit, though it is unobservably small on large scales. We also present the one-point probability distribution function of the curvature perturbation.
Evolution of curvature perturbation in generalized gravity theories
Matsuda, Tomohiro
2009-01-01
Using the cosmological perturbation theory in terms of the δN formalism, we find the simple formulation of the evolution of the curvature perturbation in generalized gravity theories. Compared with the standard gravity theory, a crucial difference appears in the end-boundary of the inflationary stage, which is due to the non-ideal form of the energy-momentum tensor that depends explicitly on the curvature scalar. Recent study shows that ultraviolet-complete quantum theory of gravity (Horava-Lifshitz gravity) can be approximated by using a generalized gravity action. Our paper may give an important step in understanding the evolution of the curvature perturbation during inflation, where the energy-momentum tensor may not be given by the ideal form due to the corrections from the fundamental theory.
On the scalar curvature of self-dual manifolds
Kim, J.
1992-08-01
We generalize LeBrun's explicit ''hyperbolic ansatz'' construction of self-dual metrics on connected sums of conformally flat manifolds and CP 2 's through a systematic use of the theory of hyperbolic geometry and Kleinian groups. (This construction produces, for example, all self-dual manifolds with semi-free S 1 -action and with either nonnegative scalar curvature or positive-definite intersection form.) We then point out a simple criterion for determining the sign of the scalar curvature of these conformal metrics. Exploiting this, we then show that the sign of the scalar curvature can change on connected components of the moduli space of self-dual metrics, thereby answering a question raised by King and Kotschick. (author). Refs
CURVATURE-DRIVEN MOLECULAR FLOW ON MEMBRANE SURFACE.
Mikucki, Michael; Zhou, Y C
2017-01-01
This work presents a mathematical model for the localization of multiple species of diffusion molecules on membrane surfaces. Morphological change of bilayer membrane in vivo is generally modulated by proteins. Most of these modulations are associated with the localization of related proteins in the crowded lipid environments. We start with the energetic description of the distributions of molecules on curved membrane surface, and define the spontaneous curvature of bilayer membrane as a function of the molecule concentrations on membrane surfaces. A drift-diffusion equation governs the gradient flow of the surface molecule concentrations. We recast the energetic formulation and the related governing equations by using an Eulerian phase field description to define membrane morphology. Computational simulations with the proposed mathematical model and related numerical techniques predict (i) the molecular localization on static membrane surfaces at locations with preferred mean curvatures, and (ii) the generation of preferred mean curvature which in turn drives the molecular localization.
Vibration Analysis of Circular Arch Element Using Curvature
H. Saffari
2008-01-01
Full Text Available In this paper, a finite element technique was used to determine the natural frequencies, and the mode shapes of a circular arch element was based on the curvature, which can fully represent the bending energy and by the equilibrium equations, the shear and axial strain energy were incorporated into the formulation. The treatment of general boundary conditions dose need a consideration when the element is incorporated by the curvature-based formula. This can be obtained by the introduction of a transformation matrix between nodal curvatures and nodal displacements. The equation of the motion for the element was obtained by the Lagrangian equation. Four examples are presented in order to verify the element formulation and its analytical capability.
Linearized curvatures for auxiliary fields in the de Sitter space
Vasiliev, M A
1988-09-19
New consistent linearized curvatures in the de Sitter space are constructed. The sequence of actions, describing bosonic and fermionic gauge auxiliary fields, is found based on these curvatures. The proposed actions are parametrized by two integer parameters, n greater than or equal to 0 and m greater than or equal to 0. The simplest case n=m=0 corresponds in the flat limit to the auxiliary fields of 'new minimal' supergravity. The hamiltonian formulation is developed for the auxiliary fields suggested; hamiltonians and first- and second-class constraints are constructed. Using these results, it is shown that the systems of fields proposed possess no dynamical degrees of freedom in de Sitter and flat spaces. In addition the hamiltonian formalism is analysed for some free dynamical systems based on linearized higher-spin curvatures introduced previously.
Local divergence and curvature divergence in first order optics
Mafusire, Cosmas; Krüger, Tjaart P. J.
2018-06-01
The far-field divergence of a light beam propagating through a first order optical system is presented as a square root of the sum of the squares of the local divergence and the curvature divergence. The local divergence is defined as the ratio of the beam parameter product to the beam width whilst the curvature divergence is a ratio of the space-angular moment also to the beam width. It is established that the beam’s focusing parameter can be defined as a ratio of the local divergence to the curvature divergence. The relationships between the two divergences and other second moment-based beam parameters are presented. Their various mathematical properties are presented such as their evolution through first order systems. The efficacy of the model in the analysis of high power continuous wave laser-based welding systems is briefly discussed.
Model-independent Constraints on Cosmic Curvature and Opacity
Wang, Guo-Jian; Li, Zheng-Xiang; Xia, Jun-Qing; Zhu, Zong-Hong [Department of Astronomy, Beijing Normal University, Beijing 100875 (China); Wei, Jun-Jie, E-mail: gjwang@mail.bnu.edu.cn, E-mail: zxli918@bnu.edu.cn, E-mail: xiajq@bnu.edu.cn, E-mail: zhuzh@bnu.edu.cn, E-mail: jjwei@pmo.ac.cn [Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008 (China)
2017-09-20
In this paper, we propose to estimate the spatial curvature of the universe and the cosmic opacity in a model-independent way with expansion rate measurements, H ( z ), and type Ia supernova (SNe Ia). On the one hand, using a nonparametric smoothing method Gaussian process, we reconstruct a function H ( z ) from opacity-free expansion rate measurements. Then, we integrate the H ( z ) to obtain distance modulus μ {sub H}, which is dependent on the cosmic curvature. On the other hand, distances of SNe Ia can be determined by their photometric observations and thus are opacity-dependent. In our analysis, by confronting distance moduli μ {sub H} with those obtained from SNe Ia, we achieve estimations for both the spatial curvature and the cosmic opacity without any assumptions for the cosmological model. Here, it should be noted that light curve fitting parameters, accounting for the distance estimation of SNe Ia, are determined in a global fit together with the cosmic opacity and spatial curvature to get rid of the dependence of these parameters on cosmology. In addition, we also investigate whether the inclusion of different priors for the present expansion rate ( H {sub 0}: global estimation, 67.74 ± 0.46 km s{sup −1} Mpc{sup −1}, and local measurement, 73.24 ± 1.74 km s{sup −1} Mpc{sup −1}) exert influence on the reconstructed H ( z ) and the following estimations of the spatial curvature and cosmic opacity. Results show that, in general, a spatially flat and transparent universe is preferred by the observations. Moreover, it is suggested that priors for H {sub 0} matter a lot. Finally, we find that there is a strong degeneracy between the curvature and the opacity.
Some curvature properties of quarter symmetric metric connections
Rastogi, S.C.
1986-08-01
A linear connection Γ ji h with torsion tensor T j h P i -T i h P j , where T j h is an arbitrary (1,1) tensor field and P i is a 1-form, has been called a quarter-symmetric connection by Golab. Some properties of such connections have been studied by Rastogi, Mishra and Pandey, and Yano and Imai. In this paper based on the curvature tensor of quarter-symmetric metric connection we define a tensor analogous to conformal curvature tensor and study some properties of such a tensor. (author)
Vertex Normals and Face Curvatures of Triangle Meshes
Sun, Xiang
2016-08-12
This study contributes to the discrete differential geometry of triangle meshes, in combination with discrete line congruences associated with such meshes. In particular we discuss when a congruence defined by linear interpolation of vertex normals deserves to be called a ŉormal’ congruence. Our main results are a discussion of various definitions of normality, a detailed study of the geometry of such congruences, and a concept of curvatures and shape operators associated with the faces of a triangle mesh. These curvatures are compatible with both normal congruences and the Steiner formula.
Berry Curvature in Magnon-Phonon Hybrid Systems.
Takahashi, Ryuji; Nagaosa, Naoto
2016-11-18
We study theoretically the Berry curvature of the magnon induced by the hybridization with the acoustic phonons via the spin-orbit and dipolar interactions. We first discuss the magnon-phonon hybridization via the dipolar interaction, and show that the dispersions have gapless points in momentum space, some of which form a loop. Next, when both spin-orbit and dipolar interactions are considered, we show anisotropic texture of the Berry curvature and its divergence with and without gap closing. Realistic evaluation of the consequent anomalous velocity is given for yttrium iron garnet.
Prescribed curvature tensor in locally conformally flat manifolds
Pina, Romildo; Pieterzack, Mauricio
2018-01-01
A global existence theorem for the prescribed curvature tensor problem in locally conformally flat manifolds is proved for a special class of tensors R. Necessary and sufficient conditions for the existence of a metric g ¯ , conformal to Euclidean g, are determined such that R ¯ = R, where R ¯ is the Riemannian curvature tensor of the metric g ¯ . The solution to this problem is given explicitly for special cases of the tensor R, including the case where the metric g ¯ is complete on Rn. Similar problems are considered for locally conformally flat manifolds.
Black hole production in particle collisions and higher curvature gravity
Rychkov, Vyacheslav S.
2004-01-01
The problem of black hole production in trans-Planckian particle collisions is revisited, in the context of large extra dimensions scenarios of TeV-scale gravity. The validity of the standard description of this process (two colliding Aichelburg-Sexl shock waves in classical Einstein gravity) is questioned. It is observed that the classical spacetime has large curvature along the transverse collision plane, as signaled by the curvature invariant (R μνλσ ) 2 . Thus quantum gravity effects, and in particular higher curvature corrections to the Einstein gravity, cannot be ignored. To give a specific example of what may happen, the collision is reanalyzed in the Einstein-Lanczos-Lovelock gravity theory, which modifies the Einstein-Hilbert Lagrangian by adding a particular 'Gauss-Bonnet' combination of curvature squared terms. The analysis uses a series of approximations, which reduce the field equations to a tractable second order nonlinear PDE of the Monge-Ampere type. It is found that the resulting spacetime is significantly different from the pure Einstein case in the future of the transverse collision plane. These considerations cast serious doubts on the geometric cross section estimate, which is based on the classical Einstein gravity description of the black hole production process
On conformal Paneitz curvature equations in higher dimensional spheres
El Mehdi, Khalil
2004-11-01
We study the problem of prescribing the Paneitz curvature on higher dimensional spheres. Particular attention is paid to the blow-up points, i.e. the critical points at infinity of the corresponding variational problem. Using topological tools and a careful analysis of the gradient flow lines in the neighborhood of such critical points at infinity, we prove some existence results. (author)
Continuous-Curvature Path Generation Using Fermat's Spiral
Anastasios M. Lekkas
2013-10-01
Full Text Available This paper proposes a novel methodology, based on Fermat's spiral (FS, for constructing curvature-continuous parametric paths in a plane. FS has a zero curvature at its origin, a property that allows it to be connected with a straight line smoothly, that is, without the curvature discontinuity which occurs at the transition point between a line and a circular arc when constructing Dubins paths. Furthermore, contrary to the computationally expensive clothoids, FS is described by very simple parametric equations that are trivial to compute. On the downside, computing the length of an FS arc involves a Gaussian hypergeometric function. However, this function is absolutely convergent and it is also shown that it poses no restrictions to the domain within which the length can be calculated. In addition, we present an alternative parametrization of FS which eliminates the parametric speed singularity at the origin, hence making the spiral suitable for path-tracking applications. A detailed description of how to construct curvature-continuous paths with FS is given.
Eigenvalue estimates for submanifolds with bounded f-mean curvature
GUANGYUE HUANG
1College of Mathematics and Information Science, Henan Normal University,. Xinxiang 453007 ... submanifolds in a hyperbolic space with the norm of their mean curvature vector bounded above by a constant. ..... [2] Batista M, Cavalcante M P and Pyo J, Some isoperimetric inequalities and eigenvalue estimates in ...
Multiple spinal curvatures in a captive African dwarf crocodile ...
A 4 year old African dwarf crocodile that had been domiciled at the Zoological Gardens, University of Ibadan for 2 years was presented with a history of anorexia of two weeks' duration and reluctance to move for about a week prior to presentation. Physical examination revealed body curvatures and radiography was ...
Zero mean curvature surfaces of mixed type in Minkowski space
Klyachin, V A
2003-01-01
We investigate zero mean curvature surfaces in the Minkowski space R 3 1 such that their first fundamental quadratic form changes signature. Part of such a surface is space-like and part is time-like. We obtain complete information about the structure of the set of points where the surface changes type and prove the related existence and uniqueness theorems
On the Curvature and Heat Flow on Hamiltonian Systems
Ohta Shin-ichi
2014-01-01
Full Text Available We develop the differential geometric and geometric analytic studies of Hamiltonian systems. Key ingredients are the curvature operator, the weighted Laplacian, and the associated Riccati equation.We prove appropriate generalizations of the Bochner-Weitzenböck formula and Laplacian comparison theorem, and study the heat flow.
The Paneitz curvature problem on lower dimensional spheres
Ben-Ayed, M
2003-01-01
In this paper we prescribe a fourth order conformal invariant (the Paneitz curvature) on the n-spheres, with n is an element of left brace 5, 6 right brace. Using dynamical and topological methods involving the study of critical points at infinity of the associated variational problem, we prove some existence results.
Axial Length/Corneal Radius of Curvature Ratio and Refractive ...
2017-12-05
Dec 5, 2017 ... variously described as determined by the ocular biometric variables. There have been many studies on the relationship between refractive error and ocular axial length (AL), anterior chamber depth, corneal radius of curvature (CR), keratometric readings as well as other ocular biometric variables such as ...
GEOMETRY OF COMPLETE HYPERSURFACES EVOLVED BY MEAN CURVATURE FLOW
盛为民
2003-01-01
Some geometric behaviours of complete solutions to mean curvature flow before the singu-larities occur are studied. The author obtains the estimates of the rate of the distance betweentwo fixed points and the derivatives of the second fundamental form. By use of a new maximumprinciple, some geometric properties at infinity are obtained.
Cosmological models with positive scalar spatial curvature and Λ>0
Ponce de Leon, J.
1987-12-01
Some exact spherically symmetric solutions of the Einstein field equations with Λ>0 and positive three-curvature are given. They have reasonable physical properties and represent universes which do not undergo inflation but have a non-de Sitter behaviour for large times. This paper extends some previous results in the literature. Permanent address: Apartado 2816, Caracas 1010-A, Venezuela.
Critical dimension of strings with an extrinsic curvature
Matsuki, T.; Viswanathan, K.S.
1988-01-01
The conformal anomaly is calculated by using the path-integral method to determine the critical dimension for a string theory with an extrinsic curvature by appropriately defining the first-order form of this Lagrangian. The critical dimension, defined by the vanishing of the Liouville kinetic term, is found to be D = 26, the same as for the ordinary bosonic string theory
Distributional curvature of time-dependent cosmic strings
Wilson, J P
1997-01-01
Colombeau's theory of generalised functions is used to calculate the contributions, at the rotation axis, to the distributional curvature for a time-dependent radiating cosmic string, and hence the mass per unit length of the string source. This mass per unit length is compared with the mass at null infinity, giving evidence for a global energy conservation law.
Automatic quantification of local and global articular cartilage surface curvature
Folkesson, Jenny; Dam, Erik B; Olsen, Ole F
2008-01-01
The objective of this study was to quantitatively assess the surface curvature of the articular cartilage from low-field magnetic resonance imaging (MRI) data, and to investigate its role in populations with varying radiographic signs of osteoarthritis (OA), cross-sectionally and longitudinally...
Directable weathering of concave rock using curvature estimation.
Jones, Michael D; Farley, McKay; Butler, Joseph; Beardall, Matthew
2010-01-01
We address the problem of directable weathering of exposed concave rock for use in computer-generated animation or games. Previous weathering models that admit concave surfaces are computationally inefficient and difficult to control. In nature, the spheroidal and cavernous weathering rates depend on the surface curvature. Spheroidal weathering is fastest in areas with large positive mean curvature and cavernous weathering is fastest in areas with large negative mean curvature. We simulate both processes using an approximation of mean curvature on a voxel grid. Both weathering rates are also influenced by rock durability. The user controls rock durability by editing a durability graph before and during weathering simulation. Simulations of rockfall and colluvium deposition further improve realism. The profile of the final weathered rock matches the shape of the durability graph up to the effects of weathering and colluvium deposition. We demonstrate the top-down directability and visual plausibility of the resulting model through a series of screenshots and rendered images. The results include the weathering of a cube into a sphere and of a sheltered inside corner into a cavern as predicted by the underlying geomorphological models.
Generalized Curvature-Matter Couplings in Modified Gravity
Tiberiu Harko
2014-07-01
Full Text Available In this work, we review a plethora of modified theories of gravity with generalized curvature-matter couplings. The explicit nonminimal couplings, for instance, between an arbitrary function of the scalar curvature R and the Lagrangian density of matter, induces a non-vanishing covariant derivative of the energy-momentum tensor, implying non-geodesic motion and, consequently, leads to the appearance of an extra force. Applied to the cosmological context, these curvature-matter couplings lead to interesting phenomenology, where one can obtain a unified description of the cosmological epochs. We also consider the possibility that the behavior of the galactic flat rotation curves can be explained in the framework of the curvature-matter coupling models, where the extra terms in the gravitational field equations modify the equations of motion of test particles and induce a supplementary gravitational interaction. In addition to this, these models are extremely useful for describing dark energy-dark matter interactions and for explaining the late-time cosmic acceleration.
Curvature-induced symmetry breaking in nonlinear Schrodinger models
Gaididei, Yuri Borisovich; Mingaleev, S. F.; Christiansen, Peter Leth
2000-01-01
We consider a curved chain of nonlinear oscillators and show that the interplay of curvature and nonlinearity leads to a symmetry breaking when an asymmetric stationary state becomes energetically more favorable than a symmetric stationary state. We show that the energy of localized states...
Other Earths: Search for Life and the Constant Curvature
Khoshyaran M. M.
2015-07-01
Full Text Available The objective of this paper is to propose a search methodology for finding other exactly similar earth like planets (or sister earths. The theory is based on space consisting of Riemann curves or highways. A mathematical model based on constant curvature, a moving frame bundle, and gravitational dynamics is introduced.
Supported lipid bilayers with controlled curvature via colloidal lithography
Sundh, Maria; Manandhar, Michal; Svedhem, Sofia
2011-01-01
Supported lipid bilayers (SLBs) at surfaces provide a route to quantitatively study molecular interactions with and at lipid membranes via different surface-based analytical techniques. Here, a method to fabricate SLBs with controlled curvatures, in the nanometer regime over large areas, is prese...
Papapetrou's naked singularity is a strong curvature singularity
Hollier, G.P.
1986-01-01
Following Papapetrou [1985, a random walk in General Relativity ed. J. Krishna-Rao (New Delhi: Wiley Eastern)], a spacetime with a naked singularity is analysed. This singularity is shown to be a strong curvature singularity and thus a counterexample to a censorship conjecture. (author)
Remarks on the boundary curve of a constant mean curvature topological disc
Brander, David; Lopéz, Rafael
2017-01-01
We discuss some consequences of the existence of the holomorphic quadratic Hopf differential on a conformally immersed constant mean curvature topological disc with analytic boundary. In particular, we derive a formula for the mean curvature as a weighted average of the normal curvature of the bo......We discuss some consequences of the existence of the holomorphic quadratic Hopf differential on a conformally immersed constant mean curvature topological disc with analytic boundary. In particular, we derive a formula for the mean curvature as a weighted average of the normal curvature...
Projectile Balloting Attributable to Gun Tube Curvature
Michael M. Chen
2010-01-01
Full Text Available Transverse motion of a projectile during launch is detrimental to firing accuracy, structural integrity, and/or on-board electronics performance of the projectile. One manifest contributing factor to the undesired motion is imperfect bore centerline straightness. This paper starts with the presentation of a deterministic barrel model that possesses both vertical and lateral deviations from centerline in accordance with measurement data, followed by a novel approach to simulating comprehensive barrel centerline variations for the investigation of projectile balloting^1 motions. A modern projectile was adopted for this study. In-bore projectile responses at various locations of the projectile while traveling through the simulated gun tubes were obtained. The balloting was evaluated in both time and frequency domains. Some statistical quantities and the significance were outlined.
Physical and Geometric Interpretations of the Riemann Tensor, Ricci Tensor, and Scalar Curvature
Loveridge, Lee C.
2004-01-01
Various interpretations of the Riemann Curvature Tensor, Ricci Tensor, and Scalar Curvature are described. Also, the physical meanings of the Einstein Tensor and Einstein's Equations are discussed. Finally a derivation of Newtonian Gravity from Einstein's Equations is given.
A 1 + 5-dimensional gravitational-wave solution. Curvature singularity and spacetime singularity
Chen, Yu-Zhu [Tianjin University, Department of Physics, Tianjin (China); Li, Wen-Du [Tianjin University, Department of Physics, Tianjin (China); Nankai University, Theoretical Physics Division, Chern Institute of Mathematics, Tianjin (China); Dai, Wu-Sheng [Nankai University, Theoretical Physics Division, Chern Institute of Mathematics, Tianjin (China); Nankai University and Tianjin University, LiuHui Center for Applied Mathematics, Tianjin (China)
2017-12-15
We solve a 1 + 5-dimensional cylindrical gravitational-wave solution of the Einstein equation, in which there are two curvature singularities. Then we show that one of the curvature singularities can be removed by an extension of the spacetime. The result exemplifies that the curvature singularity is not always a spacetime singularity; in other words, the curvature singularity cannot serve as a criterion for spacetime singularities. (orig.)
Effect of nano-scale curvature on the intrinsic blood coagulation system
Kushida, Takashi; Saha, Krishnendu; Subramani, Chandramouleeswaran; Nandwana, Vikas; Rotello, Vincent M.
2014-01-01
The intrinsic coagulation activity of silica nanoparticles strongly depends on their surface curvature. Nanoparticles with higher surface curvature do not denature blood coagulation factor XII on its surface, providing a coagulation ‘silent’ surface, while nanoparticles with lower surface curvature shows denaturation and concomitant coagulation. PMID:25341004
Extrinsic Isoperimetric Analysis on Submanifolds with Curvatures bounded from below
Markvorsen, Steen; Palmer, Vicente
2010-01-01
and on the radial part of the intrinsic unit normals at the boundaries of the extrinsic spheres, respectively. In the same vein we also establish lower bounds on the mean exit time for Brownian motions in the extrinsic balls, i.e. lower bounds for the time it takes (on average) for Brownian particles to diffuse......We obtain upper bounds for the isoperimetric quotients of extrinsic balls of submanifolds in ambient spaces which have a lower bound on their radial sectional curvatures. The submanifolds are themselves only assumed to have lower bounds on the radial part of the mean curvature vector field...... within the extrinsic ball from a given starting point before they hit the boundary of the extrinsic ball. In those cases, where we may extend our analysis to hold all the way to infinity, we apply a capacity comparison technique to obtain a sufficient condition for the submanifolds to be parabolic, i...
Curvature effects on carbon nanomaterials: Exohedral versus endhohedral supercapacitors
Huang, J; Sumpter, B. G.; Meunier, V.; Yushin, G.; Portet, C.; Gogotsi, Y.
2011-01-31
Capacitive energy storage mechanisms in nanoporous carbon supercapacitors hinge on endohedral interactions in carbon materials with macro-, meso-, and micropores that have negative surface curvature. In this article, we show that because of the positive curvature found in zero-dimensional carbon onions or one-dimensional carbon nanotube arrays, exohedral interactions cause the normalized capacitance to increase with decreasing particle size or tube diameter, in sharp contrast to the behavior of nanoporous carbon materials. This finding is in good agreement with the trend of recent experimental data. Our analysis suggests that electrical energy storage can be improved by exploiting the highly curved surfaces of carbon nanotube arrays with diameters on the order of 1 nm.
Non-linear realizations and higher curvature supergravity
Farakos, F. [Dipartimento di Fisica e Astronomia ' ' Galileo Galilei' ' , Universita di Padova (Italy); INFN, Sezione di Padova (Italy); Ferrara, S. [Department of Theoretical Physics, Geneva (Switzerland); INFN - Laboratori Nazionali di Frascati, Frascati (Italy); Department of Physics and Astronomy, Mani L. Bhaumik Institute for Theoretical Physics, U.C.L.A., Los Angeles, CA (United States); Kehagias, A. [Physics Division, National Technical University of Athens (Greece); Luest, D. [Arnold Sommerfeld Center for Theoretical Physics, Muenchen (Germany); Max-Planck-Institut fuer Physik, Muenchen (Germany)
2017-12-15
We focus on non-linear realizations of local supersymmetry as obtained by using constrained superfields in supergravity. New constraints, beyond those of rigid supersymmetry, are obtained whenever curvature multiplets are affected as well as higher derivative interactions are introduced. In particular, a new constraint, which removes a very massive gravitino is introduced, and in the rigid limit it merely reduces to an explicit supersymmetry breaking. Higher curvature supergravities free of ghosts and instabilities are also obtained in this way. Finally, we consider direct coupling of the goldstino multiplet to the super Gauss-Bonnet multiplet and discuss the emergence of a new scalar degree of freedom. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Curvature properties of four-dimensional Walker metrics
Chaichi, M; Garcia-Rio, E; Matsushita, Y
2005-01-01
A Walker n-manifold is a semi-Riemannian manifold, which admits a field of parallel null r-planes, r ≤ n/2. In the present paper we study curvature properties of a Walker 4-manifold (M, g) which admits a field of parallel null 2-planes. The metric g is necessarily of neutral signature (+ + - -). Such a Walker 4-manifold is the lowest dimensional example not of Lorentz type. There are three functions of coordinates which define a Walker metric. Some recent work shows that a Walker 4-manifold of restricted type whose metric is characterized by two functions exhibits a large variety of symplectic structures, Hermitian structures, Kaehler structures, etc. For such a restricted Walker 4-manifold, we shall study mainly curvature properties, e.g., conditions for a Walker metric to be Einstein, Osserman, or locally conformally flat, etc. One of our main results is the exact solutions to the Einstein equations for a restricted Walker 4-manifold
Curvature effects in carbon nanomaterials: Exohedral versus endohedral supercapacitors
Huang, Jingsong [ORNL; Sumpter, Bobby G [ORNL; Meunier, Vincent [ORNL; Gogotsi, Yury G. [Drexel University; Yushin, Gleb [Georgia Institute of Technology; Portet, Cristelle [Drexel University
2010-01-01
Capacitive energy storage mechanisms in nanoporous carbon supercapacitors hinge on endohedral interactions in carbon materials with macro-, meso-, and micropores that have negative surface curvature. In this article, we show that because of the positive curvature found in zero-dimensional carbon onions or one-dimensional carbon nanotube arrays, exohedral interactions cause the normalized capacitance to increase with decreasing particle size or tube diameter, in sharp contrast to the behavior of nanoporous carbon materials. This finding is in good agreement with the trend of recent experimental data. Our analysis suggests that electrical energy storage can be improved by exploiting the highly curved surfaces of carbon nanotube arrays with diameters on the order of 1 nm.
On M-theory fourfold vacua with higher curvature terms
Grimm, Thomas W.; Pugh, Tom G.; Weißenbacher, Matthias
2015-01-01
We study solutions to the eleven-dimensional supergravity action, including terms quartic and cubic in the Riemann curvature, that admit an eight-dimensional compact space. The internal background is found to be a conformally Kähler manifold with vanishing first Chern class. The metric solution, however, is non-Ricci-flat even when allowing for a conformal rescaling including the warp factor. This deviation is due to the possible non-harmonicity of the third Chern-form in the leading order Ricci-flat metric. We present a systematic derivation of the background solution by solving the Killing spinor conditions including higher curvature terms. These are translated into first-order differential equations for a globally defined real two-form and complex four-form on the fourfold. We comment on the supersymmetry properties of the described solutions
Substrate Curvature Regulates Cell Migration -A Computational Study
He, Xiuxiu; Jiang, Yi
Cell migration in host microenvironment is essential to cancer etiology, progression and metastasis. Cellular processes of adhesion, cytoskeletal polymerization, contraction, and matrix remodeling act in concert to regulate cell migration, while local extracellular matrix architecture modulate these processes. In this work we study how stromal microenvironment with native and cell-derived curvature at micron-meter scale regulate cell motility pattern. We developed a 3D model of single cell migration on a curved substrate. Mathematical analysis of cell morphological adaption to the cell-substrate interface shows that cell migration on convex surfaces deforms more than on concave surfaces. Both analytical and simulation results show that curved surfaces regulate the cell motile force for cell's protruding front through force balance with focal adhesion and cell contraction. We also found that cell migration on concave substrates is more persistent. These results offer a novel biomechanical explanation to substrate curvature regulation of cell migration. NIH 1U01CA143069.
Glauber theory and the quantum coherence of curvature inhomogeneities
Giovannini, Massimo
2017-01-12
The curvature inhomogeneities are systematically scrutinized in the framework of the Glauber approach. The amplified quantum fluctuations of the scalar and tensor modes of the geometry are shown to be first-order coherent while the interference of the corresponding intensities is larger than in the case of Bose-Einstein correlations. After showing that the degree of second-order coherence does not suffice to characterize unambiguously the curvature inhomogeneities, we argue that direct analyses of the degrees of third and fourth-order coherence are necessary to discriminate between different correlated states and to infer more reliably the statistical properties of the large-scale fluctuations. We speculate that the moments of the multiplicity distributions of the relic phonons might be observationally accessible thanks to new generations of instruments able to count the single photons of the Cosmic Microwave Background in the THz region.
Generating ekpyrotic curvature perturbations before the big bang
Lehners, Jean-Luc; Turok, Neil; McFadden, Paul; Steinhardt, Paul J.
2007-01-01
We analyze a general mechanism for producing a nearly scale-invariant spectrum of cosmological curvature perturbations during a contracting phase preceding a big bang, which can be entirely described using 4D effective field theory. The mechanism, based on first producing entropic perturbations and then converting them to curvature perturbations, can be naturally incorporated in cyclic and ekpyrotic models in which the big bang is modeled as a brane collision, as well as other types of cosmological models with a pre-big bang phase. We show that the correct perturbation amplitude can be obtained and that the spectral tilt n s tends to range from slightly blue to red, with 0.97 s <1.02 for the simplest models, a range compatible with current observations but shifted by a few percent towards the blue compared to the prediction of the simplest, large-field inflationary models
Quantum Deformations and Superintegrable Motions on Spaces with Variable Curvature
Orlando Ragnisco
2007-02-01
Full Text Available An infinite family of quasi-maximally superintegrable Hamiltonians with a common set of (2N-3 integrals of the motion is introduced. The integrability properties of all these Hamiltonians are shown to be a consequence of a hidden non-standard quantum sl(2,R Poisson coalgebra symmetry. As a concrete application, one of this Hamiltonians is shown to generate the geodesic motion on certain manifolds with a non-constant curvature that turns out to be a function of the deformation parameter z. Moreover, another Hamiltonian in this family is shown to generate geodesic motions on Riemannian and relativistic spaces all of whose sectional curvatures are constant and equal to the deformation parameter z. This approach can be generalized to arbitrary dimension by making use of coalgebra symmetry.
Imprint of spatial curvature on inflation power spectrum
Masso, Eduard; Zsembinszki, Gabriel; Mohanty, Subhendra; Nautiyal, Akhilesh
2008-01-01
If the Universe had a large curvature before inflation there is a deviation from the scale invariant perturbations of the inflaton at the beginning of inflation. This may have some effect on the cosmic microwave background anisotropy at large angular scales. We calculate the density perturbations for both open and closed universe cases using the Bunch-Davies vacuum condition on the initial state. We use our power spectrum to calculate the temperature anisotropy spectrum and compare the results with the Wilkinson microwave anisotropy map five year data. We find that our power spectrum gives a lower quadrupole anisotropy when Ω-1>0, but matches the temperature anisotropy calculated from the standard Ratra-Peebles power spectrum at large l. The determination of spatial curvature from temperature anisotropy data is not much affected by the different power spectra which arise from the choice of different boundary conditions for the inflaton perturbation.
Thermodynamic curvature of soft-sphere fluids and solids
Brańka, A. C.; Pieprzyk, S.; Heyes, D. M.
2018-02-01
The influence of the strength of repulsion between particles on the thermodynamic curvature scalar R for the fluid and solid states is investigated for particles interacting with the inverse power (r-n) potential, where r is the pair separation and 1 /n is the softness. Exact results are obtained for R in certain limiting cases, and the R behavior determined for the systems in the fluid and solid phases. It is found that in such systems the thermodynamic curvature can be positive for very soft particles, negative for steeply repulsive (or large n ) particles across almost the entire density range, and can change sign between negative and positive at a certain density. The relationship between R and the form of the interaction potential is more complex than previously suggested, and it may be that R is an indicator of the relative importance of energy and entropy contributions to the thermodynamic properties of the system.
Non-linear temperature-dependent curvature of a phase change composite bimorph beam
Blonder, Greg
2017-06-01
Bimorph films curl in response to temperature. The degree of curvature typically varies in proportion to the difference in thermal expansion of the individual layers, and linearly with temperature. In many applications, such as controlling a thermostat, this gentle linear behavior is acceptable. In other cases, such as opening or closing a valve or latching a deployable column into place, an abrupt motion at a fixed temperature is preferred. To achieve this non-linear motion, we describe the fabrication and performance of a new bilayer structure we call a ‘phase change composite bimorph (PCBM)’. In a PCBM, one layer in the bimorph is a composite containing small inclusions of phase change materials. When the inclusions melt, their large (generally positive and >1%) expansion coefficient induces a strong, reversible step function jump in bimorph curvature. The measured jump amplitude and thermal response is consistent with theory, and can be harnessed by a new class of actuators and sensors.
Encoding of complexity, shape and curvature by macaque infero-temporal neurons
Greet eKayaert
2011-07-01
Full Text Available We recorded responses of macaque infero-temporal (IT neurons to a stimulus set of Fourier Boundary Descriptor shapes wherein complexity, general shape and curvature were systematically varied. We analyzed the response patterns of the neurons to the different stimuli using multi-dimensional scaling. The resulting neural shape space differed in important ways from the physical, image-based shape space. We found a particular sensitivity for the presence of curved versus straight contours that existed only for the simple but not for the medium and highly complex shapes. Also, IT neurons could linearly separate the simple and the complex shapes within a low-dimensional neural shape space, but no distinction was found between the medium and high levels of complexity. None of these effects could be derived from physical image metrics, either directly or by comparing the neural data with similarities yielded by two models of low-level visual processing (one using wavelet-based filters and one that models position and size invariant object selectivity through four hierarchically organized neural layers. This study highlights the relevance of complexity to IT neural encoding, both as a neurally independently represented shape property and through its influence on curvature detection.
Reheating via a generalized nonminimal coupling of curvature to matter
Bertolami, Orfeu; Frazao, Pedro; Paramos, Jorge
2011-01-01
In this work, one shows that a generalized nonminimal coupling between geometry and matter is compatible with Starobinsky inflation and leads to a successful process of preheating, a reheating scenario based on the production of massive particles via parametric resonance. The model naturally extends the usual preheating mechanism, which resorts to an ad hoc scalar curvature-dependent mass term for a scalar field χ, and also encompasses a previously studied preheating channel based upon a nonstandard kinetic term.
On the concircular curvature tensor of Riemannian manifolds
Rahman, M.S.; Lal, S.
1990-06-01
Definition of the concircular curvature tensor, Z hijk , along with Z-tensor, Z ij , is given and some properties of Z hijk are described. Tensors identical with Z hijk are shown. A necessary and sufficient condition that a Riemannian V n has zero Z-tensor is found. A number of theorems on concircular symmetric space, concircular recurrent space (Z n -space) and Z n -space with zero Z-tensor are deduced. (author). 6 refs
Torsion and curvature in higher dimensional supergravity theories
Smith, A.W.; Pontificia Univ. Catolica do Rio de Janeiro
1983-01-01
This work is an extension of Dragon's theorems to higher dimensional space-time. It is shown that the first set of Bianchi identities allow us to express the curvature components in terms of torsion components and its covariant derivatives. It is also shown that the second set of Bianchi identities does not give any new information which is not already contained in the first one. (Author) [pt
Global and local curvature in density functional theory.
Zhao, Qing; Ioannidis, Efthymios I; Kulik, Heather J
2016-08-07
Piecewise linearity of the energy with respect to fractional electron removal or addition is a requirement of an electronic structure method that necessitates the presence of a derivative discontinuity at integer electron occupation. Semi-local exchange-correlation (xc) approximations within density functional theory (DFT) fail to reproduce this behavior, giving rise to deviations from linearity with a convex global curvature that is evidence of many-electron, self-interaction error and electron delocalization. Popular functional tuning strategies focus on reproducing piecewise linearity, especially to improve predictions of optical properties. In a divergent approach, Hubbard U-augmented DFT (i.e., DFT+U) treats self-interaction errors by reducing the local curvature of the energy with respect to electron removal or addition from one localized subshell to the surrounding system. Although it has been suggested that DFT+U should simultaneously alleviate global and local curvature in the atomic limit, no detailed study on real systems has been carried out to probe the validity of this statement. In this work, we show when DFT+U should minimize deviations from linearity and demonstrate that a "+U" correction will never worsen the deviation from linearity of the underlying xc approximation. However, we explain varying degrees of efficiency of the approach over 27 octahedral transition metal complexes with respect to transition metal (Sc-Cu) and ligand strength (CO, NH3, and H2O) and investigate select pathological cases where the delocalization error is invisible to DFT+U within an atomic projection framework. Finally, we demonstrate that the global and local curvatures represent different quantities that show opposing behavior with increasing ligand field strength, and we identify where these two may still coincide.
Reflectionlessness, kurtosis and top curvature of potential barriers
Ahmed, Zafar
2006-01-01
Apart from the rectangular barrier, other barriers having a single maximum generally display reflectivity, R(E), as a smoothly decreasing function of energy. We conjecture that symmetric potential barriers with a single maximum entail zeros or sharp minima in R(E) provided they have either their coefficient of kurtosis lying in the range (1.8, 3.0), or their top curvature as zero, or both
Tachyonless models of relativistic particles with curvature and torsion
Kuznetsov, Yu.A.; Plyushchaj, M.S.
1992-01-01
The problem of construction (2+1)-dimensional tachyonless models of relativistic particles with an action depending on the world-trajectory curvature and torsion is investigated. The special class of models, described by maximum symmetric action and comprising only spin internal degrees of freedom is found. The examples of systems from the special class are given, whose classical and quantum spectra contain only massive states. 23 refs
Curvature of super Diff(S1)/S1
Oh, P.; Ramond, P.
1987-01-01
Motivated by the work of Bowick and Rajeev, we calculate the curvature of the infinite-dimensional flag manifolds Diff(S 1 )/S 1 and Super Diff(S 1 )/S 1 using standard finite-dimensional coset space techniques. We regularize the infinite by ζ-function regularization and recover the conformal and superconformal anomalies respectively for a specific choice of the torsion. (orig.)
ON THE CURVATURE OF DUST LANES IN GALACTIC BARS
Comeron, Sebastien; MartInez-Valpuesta, Inma; Knapen, Johan H.; Beckman, John E.
2009-01-01
We test the theoretical prediction that the straightest dust lanes in bars are found in strongly barred galaxies, or more specifically, that the degree of curvature of the dust lanes is inversely proportional to the strength of the bar. The test uses archival images of barred galaxies for which a reliable nonaxisymmetric torque parameter (Q b ) and the radius at which Q b has been measured (r(Q b )) have been published in the literature. Our results confirm the theoretical prediction but show a large spread that cannot be accounted for by measurement errors. We simulate 238 galaxies with different bar and bulge parameters in order to investigate the origin of the spread in the dust lane curvature versus Q b relation. From these simulations, we conclude that the spread is greatly reduced when describing the bar strength as a linear combination of the bar parameters Q b and the quotient of the major and minor axes of the bar, a/b. Thus, we conclude that the dust lane curvature is predominantly determined by the parameters of the bar.
Curvature profiles as initial conditions for primordial black hole formation
Polnarev, Alexander G; Musco, Ilia
2007-01-01
This work is part of an ongoing research programme to study possible primordial black hole (PBH) formation during the radiation-dominated era of the early universe. Working within spherical symmetry, we specify an initial configuration in terms of a curvature profile, which represents initial conditions for the large amplitude metric perturbations, away from the homogeneous Friedmann-Robertson-Walker model, which are required for PBH formation. Using an asymptotic quasi-homogeneous solution, we relate the curvature profile with the density and velocity fields, which at an early enough time, when the length scale of the configuration is much larger than the cosmological horizon, can be treated as small perturbations of the background values. We present general analytic solutions for the density and velocity profiles. These solutions enable us to consider in a self-consistent way the formation of PBHs in a wide variety of cosmological situations with the cosmological fluid being treated as an arbitrary mixture of different components with different equations of state. We obtain the analytical solutions for the density and velocity profiles as functions of the initial time. We then use two different parametrizations for the curvature profile and follow numerically the evolution of initial configurations
Finger vein extraction using gradient normalization and principal curvature
Choi, Joon Hwan; Song, Wonseok; Kim, Taejeong; Lee, Seung-Rae; Kim, Hee Chan
2009-02-01
Finger vein authentication is a personal identification technology using finger vein images acquired by infrared imaging. It is one of the newest technologies in biometrics. Its main advantage over other biometrics is the low risk of forgery or theft, due to the fact that finger veins are not normally visible to others. Extracting finger vein patterns from infrared images is the most difficult part in finger vein authentication. Uneven illumination, varying tissues and bones, and changes in the physical conditions and the blood flow make the thickness and brightness of the same vein different in each acquisition. Accordingly, extracting finger veins at their accurate positions regardless of their thickness and brightness is necessary for accurate personal identification. For this purpose, we propose a new finger vein extraction method which is composed of gradient normalization, principal curvature calculation, and binarization. As local brightness variation has little effect on the curvature and as gradient normalization makes the curvature fairly uniform at vein pixels, our method effectively extracts finger vein patterns regardless of the vein thickness or brightness. In our experiment, the proposed method showed notable improvement as compared with the existing methods.
Curvature-driven instabilities in the Elmo Bumpy Torus (EBT)
Abe, H.; Spong, D.A.; Antonsen, T.M. Jr.; Tsang, K.T.; Nguyen, K.T.
1982-01-01
Curvature-driven instabilities are analyzed for an EBT configuration which consists of plasma interacting with a hot electron ring whose drift frequencies are larger than the growth rates predicted from conventional magnetohydrodynamic (MHD) theory. Stability criteria are obtained for five possible modes: the conventional hot electron interchange, a high-frequency hot electron interchange (at frequencies greater than the ion-cyclotron frequency), a compressional instability, a background plasma interchange, and an interacting pressure-driven interchange. A wide parameter regime for stable operation is found, which, however, severely deteriorates for a band of intermediate mode numbers. Finite Larmor radius effects can eliminate this deterioration; moreover, all short-wavelength curvature-driven modes are stabilized if the hot electron Larmor radius rho/sub h/ satisfies (kappa/sub perpendicular/rho/sub h/) 2 > 2Δ/[Rβ/sub h/(1 + P'/sub parallel//P'/sub perpendicular/)], where kappa/sub perpendicular/ is the transverse wavenumber, Δ is the ring half-width, R is the mid-plane radius of curvature, β/sub h/ is the hot electron beta value, and P' is the pressure gradient. Resonant wave-particle instabilities predicted by a new low frequency variational principle show that a variety of remnant instabilities may still persist
Factors affecting root curvature of mandibular first molar
Choi, Hang Moon; Yi, Won Jin; Heo, Min Suk; Kim, Jung Hwa; Choi, Soon Chul; Park, Tae Won
2006-01-01
To find the cause of root curvature by use of panoramic and lateral cephalometric radiograph. Twenty six 1st graders whose mandibular 1st molars just emerged into the mouth were selected. Panoramic and lateral cephalometric radiograph were taken at grade 1 and 6, longitudinally. In cephalometric radio graph, mandibular plane angle, ramus-occlusal place angle, gonial angle, and gonion-gnathion distance(Go-Gn distance) were measured. In panoramic radiograph, elongated root length and root angle were measured by means of digital subtraction radiography. Occlusal plane-tooth axis angle was measured, too. Pearson correlations were used to evaluate the relationships between root curvature and elongated length and longitudinal variations of all variables. Multiple regression equation using related variables was computed. The pearson correlation coefficient between curved angle and longitudinal variations of occlusal plane-tooth axis angle and ramus-occlusal plane angle was 0.350 and 0.401, respectively (p 1 +0.745X 2 (Y: root angle, X 1 : variation of occlusal plane-tooth axis angle, X 2 : variation of ramus-occlusal plane angle). It was suspected that the reasons of root curvature were change of tooth axis caused by contact with 2nd deciduous tooth and amount of mesial and superior movement related to change of occlusal plane
Rand, R.P.; Fuller, N.L.; Gruner, S.M.; Parsegian, V.A.
1990-01-01
Amphiphiles respond both to polar and to nonpolar solvents. In this paper X-ray diffraction and osmotic stress have been used to examine the phase behavior, the structural dimensions, and the work of deforming the monolayer-lined aqueous cavities formed by mixtures of dioleoylphosphatidylethanolamine (DOPE) and dioleoylphosphatidylcholine (DOPC) as a function of the concentration of two solvents, water and tetradecane (td). In the absence of td, most PE/PC mixtures show only lamellar phases in excess water; all of these become single reverse hexagonal (H II ) phases with addition of excess td. The spontaneous radius of curvature R 0 of lipid monolayers, as expressed in these H II phases, is allowed by the relief of hydrocarbon chain stress by td; R 0 increases with the ratio DOPC/DOPE. Single H II phases stressed by limited water or td show several responses. (a) the molecular area is compressed at the polar end of the molecule and expanded at the hydrocarbon ends. (b) For circularly symmetrical water cylinders, the degrees of hydrocarbon chain splaying and polar group compression are different for molecules aligned in different directions around the water cylinder. (c) A pivotal position exists along the length of the phospholipid molecule where little area change occurs as the monolayer is bent to increasing curvatures. (d) By defining R 0 at the pivotal position, the authors find that measured energies are well fit by a quadratic bending energy. (e) For lipid mixtures, enforced deviation of the H II monolayer from R 0 is sufficiently powerful to cause demixing of the phospholipids in a way suggesting that the DOPE/DOPC ratio self-adjusts so that its R 0 matches the amount of td or water available, i.e., that curvature energy is minimized
An Improved Method to Measure the Cosmic Curvature
Wei, Jun-Jie; Wu, Xue-Feng, E-mail: jjwei@pmo.ac.cn [Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008 (China)
2017-04-01
In this paper, we propose an improved model-independent method to constrain the cosmic curvature by combining the most recent Hubble parameter H ( z ) and supernovae Ia (SNe Ia) data. Based on the H ( z ) data, we first use the model-independent smoothing technique, Gaussian processes, to construct a distance modulus μ {sub H} ( z ), which is susceptible to the cosmic curvature parameter Ω{sub k}. In contrary to previous studies, the light-curve-fitting parameters, which account for the distance estimation of SN (μ {sub SN}( z )), are set free to investigate whether Ω {sub k} has a dependence on them. By comparing μ {sub H} ( z ) to μ {sub SN}(z), we put limits on Ω {sub k}. Our results confirm that Ω {sub k} is independent of the SN light-curve parameters. Moreover, we show that the measured Ω {sub k} is in good agreement with zero cosmic curvature, implying that there is no significant deviation from a flat universe at the current observational data level. We also test the influence of different H(z) samples and different Hubble constant H {sub 0} values, finding that different H(z) samples do not have a significant impact on the constraints. However, different H {sub 0} priors can affect the constraints of Ω {sub k} to some degree. The prior of H {sub 0} = 73.24 ± 1.74 km s{sup −1} Mpc{sup −1} gives a value of Ω {sub k}, a little bit above the 1 σ confidence level away from 0, but H{sub 0} = 69.6 ± 0.7 km s{sup −1} Mpc{sup −1} gives it below 1 σ .
A Japanese Stretching Intervention Can Modify Lumbar Lordosis Curvature.
Kadono, Norio; Tsuchiya, Kazushi; Uematsu, Azusa; Kamoshita, Hiroshi; Kiryu, Kazunori; Hortobágyi, Tibor; Suzuki, Shuji
2017-08-01
Eighteen healthy male adults were assigned to either an intervention or control group. Isogai dynamic therapy (IDT) is one of Japanese stretching interventions and has been practiced for over 70 years. However, its scientific quantitative evidence remains unestablished. The objective of this study was to determine whether IDT could modify lumbar curvature in healthy young adults compared with stretching exercises used currently in clinical practice. None of previous studies have provided data that conventional stretching interventions could modify spinal curvatures. However, this study provides the first evidence that a specific form of a Japanese stretching intervention can acutely modify the spinal curvatures. We compared the effects of IDT, a Japanese stretching intervention (n=9 males), with a conventional stretching routine (n=9 males) used widely in clinics to modify pelvic tilt and lumbar lordosis (LL) angle. We measured thoracic kyphosis (TK) and LL angles 3 times during erect standing using the Spinal Mouse before and after each intervention. IDT consisted of: (1) hip joint correction, (2) pelvic tilt correction, (3) lumbar alignment correction, and (4) squat exercise stretch. The control group performed hamstring stretches while (1) standing and (2) sitting. IDT increased LL angle to 25.1 degrees (±5.9) from 21.2 degrees (±6.9) (P=0.047) without changing TK angle (pretest: 36.8 degrees [±6.9]; posttest: 36.1 degrees [±6.5]) (P=0.572). The control group showed no changes in TK (P=0.819) and LL angles (P=0.744). IDT can thus be effective for increasing LL angle, hence anterior pelvic tilt. Such modifications could ameliorate low back pain and improve mobility in old adults with an unfavorable pelvic position.
Curvature fluctuations as progenitors of large scale holes
Vittorio, N.; Santangelo, P.; Occhionero, F.
1984-01-01
The authors extend previous work to study the formation and evolution of deep holes, under the assumption that they arise from curvature or energy perturbations in the Hubble flow. Their algorithm, which makes use of the spherically symmetric and pressureless Tolman-Bondi solution, can embed a perturbation in any cosmological background. After recalling previous results on the central depth of the hole and its radial dimension, they give here specific examples of density and peculiar velocity profiles, which may have a bearing on whether galaxy formation is a dissipative or dissipationless process. (orig.)
Curvature effect on tearing modes in presence of neoclassical friction
Maget, Patrick; Mellet, Nicolas; Meshcheriakov, Dmytro; Garbet, Xavier [CEA, IRFM, F-13108 Saint Paul-lez-Durance (France); Lütjens, Hinrich [Centre de Physique Théorique, Ecole Polytechnique, CNRS (France)
2013-11-15
Neoclassical physics (here associated to the poloidal variation of the magnetic field strength along field lines in a tokamak) is well known for driving self-generated plasma current and nonlinear magnetic islands associated to it in high performance, ITER relevant plasma discharges. It is demonstrated that the neoclassical friction between a magnetic perturbation and plasma flow already impacts magnetic islands in the linear regime, by inducing a weakening of curvature stabilization for tearing modes. This conclusion holds in particular for regimes where convection is influencing the pressure dynamics, as shown using a simple analytical model and confirmed in full Magneto-Hydro-Dynamics simulations.
The natural selection of metabolism explains curvature in allometric scaling
Witting, Lars
2016-01-01
I simulate the evolution of metabolism and mass to explain the curvature in the metabolic allometry for placental and marsupial mammals. I assume that the release of inter-specific competition by the extinction of dinosaurs 65 million years ago made it possible for each clade to diversity into a multitude of species across a wide range of niches. The natural selection of metabolism and mass was then fitted to explain the maximum observed body masses over time, as well as the current inter-spe...
The evolution of space curves by curvature and torsion
Richardson, G; King, J R
2002-01-01
We apply Lie group based similarity methods to the study of a new, and widely relevant, class of objects, namely motions of a space curve. In particular, we consider the motion of a curve evolving with a curvature κ and torsion τ dependent velocity law. We systematically derive the Lie point symmetries of all such laws of motion and use these to catalogue all their possible similarity reductions. This calculation reveals special classes of law with high degrees of symmetry (and a correspondingly large number of similarity reductions). Of particular note is one class which is invariant under general linear transformations in space. This has potential applications in pattern and signal recognition
Rigid particle revisited: Extrinsic curvature yields the Dirac equation
Deriglazov, Alexei, E-mail: alexei.deriglazov@ufjf.edu.br [Depto. de Matemática, ICE, Universidade Federal de Juiz de Fora, MG (Brazil); Laboratory of Mathematical Physics, Tomsk Polytechnic University, 634050 Tomsk, Lenin Ave. 30 (Russian Federation); Nersessian, Armen, E-mail: arnerses@ysu.am [Yerevan State University, 1 Alex Manoogian St., Yerevan 0025 (Armenia); Laboratory of Mathematical Physics, Tomsk Polytechnic University, 634050 Tomsk, Lenin Ave. 30 (Russian Federation)
2014-03-01
We reexamine the model of relativistic particle with higher-derivative linear term on the first extrinsic curvature (rigidity). The passage from classical to quantum theory requires a number of rather unexpected steps which we report here. We found that, contrary to common opinion, quantization of the model in terms of so(3.2)-algebra yields massive Dirac equation. -- Highlights: •New way of canonical quantization of relativistic rigid particle is proposed. •Quantization made in terms of so(3.2) angular momentum algebra. •Quantization yields massive Dirac equation.
Field equations for gravity quadratic in the curvature
Rose, B.
1992-01-01
Vacuum field equations for gravity are studied having their origin in a Lagrangian quadratic in the curvature. The motivation for this choice of the Lagrangian-namely the treating of gravity in a strict analogy to gauge theories of Yang-Mills type-is criticized, especially the implied view of connections as gauge potentials with no dynamical relation to the metric. The correct field equations with respect to variation of the connections and the metric independently are given. We deduce field equations which differs from previous ones by variation of the metric, the torsion, and the nonmetricity from which the connections are built. 6 refs
Yin Song
2014-12-01
Full Text Available Though the importance of curvature continuity on compressor blade performances has been realized, there are two major questions that need to be solved, i.e., the respective effects of curvature continuity at the leading-edge blend point and the main surface, and the contradiction between the traditional theory and experimental observations in the effect of those novel leading-edge shapes with smaller curvature discontinuity and sharper nose. In this paper, an optimization method to design continuous-curvature blade profiles which deviate little from datum blades is proposed, and numerical and theoretical analysis is carried out to investigate the continuous-curvature effect on blade performances. The results show that the curvature continuity at the leading-edge blend point helps to eliminate the separation bubble, thus improving the blade performance. The main-surface curvature continuity is also beneficial, although its effects are much smaller than those of the blend-point curvature continuity. Furthermore, it is observed that there exist two factors controlling the leading-edge spike, i.e., the curvature discontinuity at the blend point which dominates at small incidences, and the nose curvature which dominates at large incidences. To the authors’ knowledge, such mechanisms have not been reported before, and they can help to solve the sharp-leading-edge paradox.
Memory for curvature of objects: haptic touch vs. vision.
Ittyerah, Miriam; Marks, Lawrence E
2007-11-01
The present study examined the role of vision and haptics in memory for stimulus objects that vary along the dimension of curvature. Experiment 1 measured haptic-haptic (T-T) and haptic-visual (T-V) discrimination of curvature in a short-term memory paradigm, using 30-second retention intervals containing five different interpolated tasks. Results showed poorest performance when the interpolated tasks required spatial processing or movement, thereby suggesting that haptic information about shape is encoded in a spatial-motor representation. Experiment 2 compared visual-visual (V-V) and visual-haptic (V-T) short-term memory, again using 30-second delay intervals. The results of the ANOVA failed to show a significant effect of intervening activity. Intra-modal visual performance and cross-modal performance were similar. Comparing the four modality conditions (inter-modal V-T, T-V; intra-modal V-V, T-T, by combining the data of Experiments 1 and 2), in a global analysis, showed a reliable interaction between intervening activity and experiment (modality). Although there appears to be a general tendency for spatial and movement activities to exert the most deleterious effects overall, the patterns are not identical when the initial stimulus is encoded haptically (Experiment 1) and visually (Experiment 2).
Constant curvature algebras and higher spin action generating functions
Hallowell, K.; Waldron, A.
2005-01-01
The algebra of differential geometry operations on symmetric tensors over constant curvature manifolds forms a novel deformation of the sl(2,R)-bar R 2 Lie algebra. We present a simple calculus for calculations in its universal enveloping algebra. As an application, we derive generating functions for the actions and gauge invariances of massive, partially massless and massless (for both Bose and Fermi statistics) higher spins on constant curvature backgrounds. These are formulated in terms of a minimal set of covariant, unconstrained, fields rather than towers of auxiliary fields. Partially massless gauge transformations are shown to arise as degeneracies of the flat, massless gauge transformation in one dimension higher. Moreover, our results and calculus offer a considerable simplification over existing techniques for handling higher spins. In particular, we show how theories of arbitrary spin in dimension d can be rewritten in terms of a single scalar field in dimension 2d where the d additional dimensions correspond to coordinate differentials. We also develop an analogous framework for spinor-tensor fields in terms of the corresponding superalgebra
Limited capacity for contour curvature in iconic memory.
Sakai, Koji
2006-06-01
We measured the difference threshold for contour curvature in iconic memory by using the cued discrimination method. The study stimulus consisting of 2 to 6 curved contours was briefly presented in the fovea, followed by two lines as cues. Subjects discriminated the curvature of two cued curves. The cue delays were 0 msec. and 300 msec. in Exps. 1 and 2, respectively, and 50 msec. before the study offset in Exp. 3. Analysis of data from Exps. 1 and 2 showed that the Weber fraction rose monotonically with the increase in set size. Clear set-size effects indicate that iconic memory has a limited capacity. Moreover, clear set-size effect in Exp. 3 indicates that perception itself has a limited capacity. Larger set-size effects in Exp. 1 than in Exp. 3 suggest that iconic memory after perceptual process has limited capacity. These properties of iconic memory at threshold level are contradictory to the traditional view that iconic memory has a high capacity both at suprathreshold and categorical levels.
Nonlinear quantum gravity on the constant mean curvature foliation
Wang, Charles H-T
2005-01-01
A new approach to quantum gravity is presented based on a nonlinear quantization scheme for canonical field theories with an implicitly defined Hamiltonian. The constant mean curvature foliation is employed to eliminate the momentum constraints in canonical general relativity. It is, however, argued that the Hamiltonian constraint may be advantageously retained in the reduced classical system to be quantized. This permits the Hamiltonian constraint equation to be consistently turned into an expectation value equation on quantization that describes the scale factor on each spatial hypersurface characterized by a constant mean exterior curvature. This expectation value equation augments the dynamical quantum evolution of the unconstrained conformal three-geometry with a transverse traceless momentum tensor density. The resulting quantum theory is inherently nonlinear. Nonetheless, it is unitary and free from a nonlocal and implicit description of the Hamiltonian operator. Finally, by imposing additional homogeneity symmetries, a broad class of Bianchi cosmological models are analysed as nonlinear quantum minisuperspaces in the context of the proposed theory
Conversion of radius of curvature to power (and vice versa)
Wickenhagen, Sven; Endo, Kazumasa; Fuchs, Ulrike; Youngworth, Richard N.; Kiontke, Sven R.
2015-09-01
Manufacturing optical components relies on good measurements and specifications. One of the most precise measurements routinely required is the form accuracy. In practice, form deviation from the ideal surface is effectively low frequency errors, where the form error most often accounts for no more than a few undulations across a surface. These types of errors are measured in a variety of ways including interferometry and tactile methods like profilometry, with the latter often being employed for aspheres and general surface shapes such as freeforms. This paper provides a basis for a correct description of power and radius of curvature tolerances, including best practices and calculating the power value with respect to the radius deviation (and vice versa) of the surface form. A consistent definition of the sagitta is presented, along with different cases in manufacturing that are of interest to fabricators and designers. The results make clear how the definitions and results should be documented, for all measurement setups. Relationships between power and radius of curvature are shown that allow specifying the preferred metric based on final accuracy and measurement method. Results shown include all necessary equations for conversion to give optical designers and manufacturers a consistent and robust basis for decision-making. The paper also gives guidance on preferred methods for different scenarios for surface types, accuracy required, and metrology methods employed.
Observational constraints on dark energy and cosmic curvature
Wang Yun; Mukherjee, Pia
2007-01-01
Current observational bounds on dark energy depend on our assumptions about the curvature of the universe. We present a simple and efficient method for incorporating constraints from cosmic microwave background (CMB) anisotropy data and use it to derive constraints on cosmic curvature and dark energy density as a free function of cosmic time using current CMB, Type Ia supernova (SN Ia), and baryon acoustic oscillation data. We show that there are two CMB shift parameters, R≡√(Ω m H 0 2 )r(z CMB ) (the scaled distance to recombination) and l a ≡πr(z CMB )/r s (z CMB ) (the angular scale of the sound horizon at recombination), with measured values that are nearly uncorrelated with each other. Allowing nonzero cosmic curvature, the three-year WMAP (Wilkinson Microwave Anisotropy Probe) data give R=1.71±0.03, l a =302.5±1.2, and Ω b h 2 =0.02173±0.00082, independent of the dark energy model. The corresponding bounds for a flat universe are R=1.70±0.03, l a =302.2±1.2, and Ω b h 2 =0.022±0.00082. We give the covariance matrix of (R,l a ,Ω b h 2 ) from the three-year WMAP data. We find that (R,l a ,Ω b h 2 ) provide an efficient and intuitive summary of CMB data as far as dark energy constraints are concerned. Assuming the Hubble Space Telescope (HST) prior of H 0 =72±8 (km/s) Mpc -1 , using 182 SNe Ia (from the HST/GOODS program, the first year Supernova Legacy Survey, and nearby SN Ia surveys), (R,l a ,Ω b h 2 ) from WMAP three-year data, and SDSS (Sloan Digital Sky Survey) measurement of the baryon acoustic oscillation scale, we find that dark energy density is consistent with a constant in cosmic time, with marginal deviations from a cosmological constant that may reflect current systematic uncertainties or true evolution in dark energy. A flat universe is allowed by current data: Ω k =-0.006 -0.012-0.025 +0.013+0.025 for assuming that the dark energy equation of state w X (z) is constant, and Ω k =-0.002 -0.018-0.032 +0.018+0.041 for w X (z
Yang, B. J.; Souri, H.; Lee, H. K.; Kim, Sunghwan; Ryu, Seunghwa
2014-01-01
In this study, analytical expressions are introduced to provide a better understanding of carbon nanotubes (CNTs) curvature on the overall behavior of nanocomposites. The curviness of CNT is modeled as the wave geometries, and the transformed physical characteristics are applied to micromechanical framework. Since five independent elastic constants of CNTs are essential to derive the waviness effect, atomistic molecular statics simulations with varying nanotube radii are conducted. Influences of CNT curviness on the effective stiffness of the nanocomposites are analyzed, noting that the curvature effect is significantly influential on the effective stiffness of the nanocomposites, and it may improve or reduce the reinforcing effect depending on the orientation of CNTs. In addition, the predictions are compared with experimental data of the CNT-reinforced nanocomposites to assess the reliability of the proposed method. The developed constitutive model is expected to be used to determine the volume concentration of the reinforcing CNTs and mechanical responses of CNT-reinforced composites under various CNT curvature, radius, and orientation conditions.
Effect of nano-scale curvature on the intrinsic blood coagulation system
Kushida, Takashi; Saha, Krishnendu; Subramani, Chandramouleeswaran; Nandwana, Vikas; Rotello, Vincent M.
2014-11-01
The intrinsic coagulation activity of silica nanoparticles strongly depends on their surface curvature. Nanoparticles with higher surface curvature do not denature blood coagulation factor XII on its surface, providing a coagulation `silent' surface, while nanoparticles with lower surface curvature show denaturation and concomitant coagulation.The intrinsic coagulation activity of silica nanoparticles strongly depends on their surface curvature. Nanoparticles with higher surface curvature do not denature blood coagulation factor XII on its surface, providing a coagulation `silent' surface, while nanoparticles with lower surface curvature show denaturation and concomitant coagulation. Electronic supplementary information (ESI) available: Physical properties and scanning electron micrographs (SEM) of silica NPs, intrinsic coagulation activity after 3 h. See DOI: 10.1039/c4nr04128c
Higher order statistics of curvature perturbations in IFF model and its Planck constraints
Fujita, Tomohiro; Yokoyama, Shuichiro
2013-01-01
We compute the power spectrum P ζ and non-linear parameters f NL and τ NL of the curvature perturbation induced during inflation by the electromagnetic fields in the kinetic coupling model (IFF model). By using the observational result of P ζ ,f NL and τ NL reported by the Planck collaboration, we study the constraint on the model comprehensively. Interestingly, if the single slow-rolling inflaton is responsible for the observed P ζ , the constraint from τ NL is most stringent. We also find a general relationship between f NL and τ NL generated in this model. Even if f NL ∼ O(1), a detectable τ NL can be produced
Quantifying the Relationship Between Curvature and Electric Potential in Lipid Bilayers
Bruhn, Dennis Skjøth; Lomholt, Michael Andersen; Khandelia, Himanshu
2016-01-01
Cellular membranes mediate vital cellular processes by being subject to curvature and transmembrane electrical potentials. Here we build upon the existing theory for flexoelectricity in liquid crystals to quantify the coupling between lipid bilayer curvature and membrane potentials. Using molecular...... dynamics simulations, we show that head group dipole moments, the lateral pressure profile across the bilayer and spontaneous curvature all systematically change with increasing membrane potentials. In particu- lar, there is a linear dependence between the bending moment (the product of bending rigidity...
Wasnik, Vaibhav; Wingreen, Ned; Mukhopadhyay, Ranjan
2012-02-01
Recent experiments suggest that in the bacterium, B. subtilis, the cue for the localization of small sporulation protein, SpoVM, that plays a central role in spore coat formation, is curvature of the bacterial plasma membrane. This curvature-dependent localization is puzzling given the orders of magnitude difference in lengthscale of an individual protein and radius of curvature of the membrane. Here we develop a minimal model to study the relationship between curvature-dependent membrane absorption of SpoVM and clustering of membrane-associated SpoVM and compare our results with experiments.
Measurement of curvature and twist of a deformed object using digital holography
Chen Wen; Quan Chenggen; Cho Jui Tay
2008-01-01
Measurement of curvature and twist is an important aspect in the study of object deformation. In recent years, several methods have been proposed to determine curvature and twist of a deformed object using digital shearography. Here we propose a novel method to determine the curvature and twist of a deformed object using digital holography and a complex phasor. A sine/cosine transformation method and two-dimensional short time Fourier transform are proposed subsequently to process the wrapped phase maps. It is shown that high-quality phase maps corresponding to curvature and twist can be obtained. An experiment is conducted to demonstrate the validity of the proposed method
Carlo Ciulla
2015-11-01
Full Text Available This research presents signal-image post-processing techniques called Intensity-Curvature Measurement Approaches with application to the diagnosis of human brain tumors detected through Magnetic Resonance Imaging (MRI. Post-processing of the MRI of the human brain encompasses the following model functions: (i bivariate cubic polynomial, (ii bivariate cubic Lagrange polynomial, (iii monovariate sinc, and (iv bivariate linear. The following Intensity-Curvature Measurement Approaches were used: (i classic-curvature, (ii signal resilient to interpolation, (iii intensity-curvature measure and (iv intensity-curvature functional. The results revealed that the classic-curvature, the signal resilient to interpolation and the intensity-curvature functional are able to add additional information useful to the diagnosis carried out with MRI. The contribution to the MRI diagnosis of our study are: (i the enhanced gray level scale of the tumor mass and the well-behaved representation of the tumor provided through the signal resilient to interpolation, and (ii the visually perceptible third dimension perpendicular to the image plane provided through the classic-curvature and the intensity-curvature functional.
A major QTL controls susceptibility to spinal curvature in the curveback guppy
Dreyer Christine
2011-01-01
Full Text Available Abstract Background Understanding the genetic basis of heritable spinal curvature would benefit medicine and aquaculture. Heritable spinal curvature among otherwise healthy children (i.e. Idiopathic Scoliosis and Scheuermann kyphosis accounts for more than 80% of all spinal curvatures and imposes a substantial healthcare cost through bracing, hospitalizations, surgery, and chronic back pain. In aquaculture, the prevalence of heritable spinal curvature can reach as high as 80% of a stock, and thus imposes a substantial cost through production losses. The genetic basis of heritable spinal curvature is unknown and so the objective of this work is to identify quantitative trait loci (QTL affecting heritable spinal curvature in the curveback guppy. Prior work with curveback has demonstrated phenotypic parallels to human idiopathic-type scoliosis, suggesting shared biological pathways for the deformity. Results A major effect QTL that acts in a recessive manner and accounts for curve susceptibility was detected in an initial mapping cross on LG 14. In a second cross, we confirmed this susceptibility locus and fine mapped it to a 5 cM region that explains 82.6% of the total phenotypic variance. Conclusions We identify a major QTL that controls susceptibility to curvature. This locus contains over 100 genes, including MTNR1B, a candidate gene for human idiopathic scoliosis. The identification of genes associated with heritable spinal curvature in the curveback guppy has the potential to elucidate the biological basis of spinal curvature among humans and economically important teleosts.
Xiang Shen
2017-03-01
Full Text Available This article presents computational algorithms for the design, analysis, and optimization of airfoil aerodynamic performance. The prescribed surface curvature distribution blade design (CIRCLE method is applied to a symmetrical airfoil NACA0012 and a non-symmetrical airfoil E387 to remove their surface curvature and slope-of-curvature discontinuities. Computational fluid dynamics analysis is used to investigate the effects of curvature distribution on aerodynamic performance of the original and modified airfoils. An inviscid–viscid interaction scheme is introduced to predict the positions of laminar separation bubbles. The results are compared with experimental data obtained from tests on the original airfoil geometry. The computed aerodynamic advantages of the modified airfoils are analyzed in different operating conditions. The leading edge singularity of NACA0012 is removed and it is shown that the surface curvature discontinuity affects aerodynamic performance near the stalling angle of attack. The discontinuous slope-of-curvature distribution of E387 results in a larger laminar separation bubble at lower angles of attack and lower Reynolds numbers. It also affects the inherent performance of the airfoil at higher Reynolds numbers. It is shown that at relatively high angles of attack, a continuous slope-of-curvature distribution reduces the skin friction by suppressing both laminar and turbulent separation, and by delaying laminar-turbulent transition. It is concluded that the surface curvature distribution has significant effects on the boundary layer behavior and consequently an improved curvature distribution will lead to higher aerodynamic efficiency.
Spectral combination of spherical gravitational curvature boundary-value problems
PitoÅák, Martin; Eshagh, Mehdi; Šprlák, Michal; Tenzer, Robert; Novák, Pavel
2018-04-01
Four solutions of the spherical gravitational curvature boundary-value problems can be exploited for the determination of the Earth's gravitational potential. In this article we discuss the combination of simulated satellite gravitational curvatures, i.e., components of the third-order gravitational tensor, by merging these solutions using the spectral combination method. For this purpose, integral estimators of biased- and unbiased-types are derived. In numerical studies, we investigate the performance of the developed mathematical models for the gravitational field modelling in the area of Central Europe based on simulated satellite measurements. Firstly, we verify the correctness of the integral estimators for the spectral downward continuation by a closed-loop test. Estimated errors of the combined solution are about eight orders smaller than those from the individual solutions. Secondly, we perform a numerical experiment by considering the Gaussian noise with the standard deviation of 6.5× 10-17 m-1s-2 in the input data at the satellite altitude of 250 km above the mean Earth sphere. This value of standard deviation is equivalent to a signal-to-noise ratio of 10. Superior results with respect to the global geopotential model TIM-r5 are obtained by the spectral downward continuation of the vertical-vertical-vertical component with the standard deviation of 2.104 m2s-2, but the root mean square error is the largest and reaches 9.734 m2s-2. Using the spectral combination of all gravitational curvatures the root mean square error is more than 400 times smaller but the standard deviation reaches 17.234 m2s-2. The combination of more components decreases the root mean square error of the corresponding solutions while the standard deviations of the combined solutions do not improve as compared to the solution from the vertical-vertical-vertical component. The presented method represents a weight mean in the spectral domain that minimizes the root mean square error
Surface Curvature in Island Groups and Discontinuous Cratonic Structures
McDowell, M. S.
2002-05-01
The Canadian Archipelago includes eight major islands and a host of smaller ones. They are separated by water bodies, of varying widths attributable to glacial activity and ocean currents. Land form varies from relatively rugged mountains (~2000 m) in eastern, glacial, islands, to low lying western, similar to the continental topography adjacent. The Arctic region is thought to have been low average elevation before the Pleistocene. To a picture puzzler, it all looks like it fit together. Experimentally cutting apart the islands from large scale maps shows that the rough edges match fairly well. However, when those independent pieces are sutured together, without restraint, as in free air, the fit is far better. Far more importantly, they consistently form a noticeably concave surface. This tendency is not at all apparent in flat surface or computer screen manipulation; the pieces need to be "hand joined" or on a molded surface to allow the assembly to freely form as it will. Fitting together the coastlines above 60 \\deg north, from 120 \\deg west to 45 \\deg east, and comparing the resulting contracted area to the original, obtains an 8 percent area reduction. The curvature "humps" a trial planar section of 15 cms by 1.6 cm, a substantial difference in the radius of curvature. If you rashly suggest applying that formula globally, the resulting sphere would have a surface area of 4.7 x108,(down from 5 x108), and therefore radius of 6117 km, down from 6400, which is a rather preposterous conclusion. As nobody would believe it, I tested the idea elsewhere. The Huronian succession of six named cratons is adjacent on the south. I cut this map apart, too, and fit it together, once again getting a curvature, this time more pronounced. I am trying it with the Indonesian Archipelago, although this area has volcanic complications, and with Precambrian Basins in western Australia and Nimibia, Africa. Indications are - an essentially similar pattern of fit, but non uniform
Converting entropy to curvature perturbations after a cosmic bounce
Fertig, Angelika; Lehners, Jean-Luc; Mallwitz, Enno; Wilson-Ewing, Edward [Max Planck Institute for Gravitational Physics, Albert Einstein Institute,14476 Potsdam-Golm (Germany)
2016-10-04
We study two-field bouncing cosmologies in which primordial perturbations are created in either an ekpyrotic or a matter-dominated contraction phase. We use a non-singular ghost condensate bounce model to follow the perturbations through the bounce into the expanding phase of the universe. In contrast to the adiabatic perturbations, which on large scales are conserved across the bounce, entropy perturbations can grow significantly during the bounce phase. If they are converted into adiabatic/curvature perturbations after the bounce, they typically form the dominant contribution to the observed temperature fluctuations in the microwave background, which can have several beneficial implications. For ekpyrotic models, this mechanism loosens the constraints on the amplitude of the ekpyrotic potential while naturally suppressing the intrinsic amount of non-Gaussianity. For matter bounce models, the mechanism amplifies the scalar perturbations compared to the associated primordial gravitational waves.
Observational constraints on the primordial curvature power spectrum
Emami, Razieh; Smoot, George F.
2018-01-01
CMB temperature fluctuation observations provide a precise measurement of the primordial power spectrum on large scales, corresponding to wavenumbers 10‑3 Mpc‑1 lesssim k lesssim 0.1 Mpc‑1, [1-7, 11]. Luminous red galaxies and galaxy clusters probe the matter power spectrum on overlapping scales (0.02 Mpc‑1 lesssim k lesssim 0.7 Mpc‑1 [10, 12-20]), while the Lyman-alpha forest reaches slightly smaller scales (0.3 Mpc‑1 lesssim k lesssim 3 Mpc‑1 [22]). These observations indicate that the primordial power spectrum is nearly scale-invariant with an amplitude close to 2 × 10‑9, [5, 23-28]. These observations strongly support Inflation and motivate us to obtain observations and constraints reaching to smaller scales on the primordial curvature power spectrum and by implication on Inflation. We are able to obtain limits to much higher values of k lesssim 105 Mpc‑1 and with less sensitivity even higher k lesssim 1019‑ 1023 Mpc‑1 using limits from CMB spectral distortions and other limits on ultracompact minihalo objects (UCMHs) and Primordial Black Holes (PBHs). PBHs are one of the known candidates for the Dark Matter (DM). Due to their very early formation, they could give us valuable information about the primordial curvature perturbations. These are complementary to other cosmological bounds on the amplitude of the primordial fluctuations. In this paper, we revisit and collect all the published constraints on both PBHs and UCMHs. We show that unless one uses the CMB spectral distortion, PBHs give us a very relaxed bounds on the primordial curvature perturbations. UCMHs, on the other hand, are very informative over a reasonable k range (3 lesssim k lesssim 106 Mpc‑1) and lead to significant upper-bounds on the curvature spectrum. We review the conditions under which the tighter constraints on the UCMHs could imply extremely strong bounds on the fraction of DM that could be PBHs in reasonable models. Failure to satisfy these conditions would
Reachability by paths of bounded curvature in a convex polygon
Ahn, Heekap; Cheong, Otfried; Matoušek, Jiřǐ; Vigneron, Antoine E.
2012-01-01
Let B be a point robot moving in the plane, whose path is constrained to forward motions with curvature at most 1, and let P be a convex polygon with n vertices. Given a starting configuration (a location and a direction of travel) for B inside P, we characterize the region of all points of P that can be reached by B, and show that it has complexity O(n). We give an O(n2) time algorithm to compute this region. We show that a point is reachable only if it can be reached by a path of type CCSCS, where C denotes a unit circle arc and S denotes a line segment. © 2011 Elsevier B.V.
Constraints on amplitudes of curvature perturbations from primordial black holes
Bugaev, Edgar; Klimai, Peter
2009-01-01
We calculate the primordial black hole (PBH) mass spectrum produced from a collapse of the primordial density fluctuations in the early Universe using, as an input, several theoretical models giving the curvature perturbation power spectra P R (k) with large (∼10 -2 -10 -1 ) values at some scale of comoving wave numbers k. In the calculation we take into account the explicit dependence of gravitational (Bardeen) potential on time. Using the PBH mass spectra, we further calculate the neutrino and photon energy spectra in extragalactic space from evaporation of light PBHs, and the energy density fraction contained in PBHs today (for heavier PBHs). We obtain the constraints on the model parameters using available experimental data (including data on neutrino and photon cosmic backgrounds). We briefly discuss the possibility that the observed 511 keV line from the Galactic center is produced by annihilation of positrons evaporated by PBHs.
The metric and curvature properties of H-space
Hansen, R.O.; Newman, E.T.; Penrose, R.; Tod, K.P.
1978-01-01
The space H of asymptotically (left-) shear-free cuts of the future null infinity (good cuts) of an asymptotically flat space-time M is defined. The connection between this space and the asymptotic projective twistor space of M is discussed, and this relation is used to prove that H is four-complex-dimensional for sufficiently 'calm' gravitational radiation in M. The metric on H-space is defined by a simple contour integral expression and is found to be complex Riemannian. The good cut equation governing H-space is solved to three orders by a Taylor series and the solution is used to demonstrate that the curvature of H-space is always a self dual (left flat) solution of the Einstein vacuum equations. (author)
Generalized curvature and the equations of D=11 supergravity
Bandos, Igor A. [Departamento de Fisica Teorica, Universidad de Valencia and IFIC (CSIC-UVEG), 46100-Burjassot (Valencia) (Spain); Institute for Theoretical Physics, NSC ' Kharkov Institute of Physics and Technology' , UA-61108 Kharkov (Ukraine); Azcarraga, Jose A. de [Departamento de Fisica Teorica, Universidad de Valencia and IFIC (CSIC-UVEG), 46100-Burjassot (Valencia) (Spain)]. E-mail: j.a.de.azcarraga@ific.uv.es; Picon, Moises [Departamento de Fisica Teorica, Universidad de Valencia and IFIC (CSIC-UVEG), 46100-Burjassot (Valencia) (Spain); Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089-2535 (United States); Varela, Oscar [Departamento de Fisica Teorica, Universidad de Valencia and IFIC (CSIC-UVEG), 46100-Burjassot (Valencia) (Spain); Michigan Center for Theoretical Physics, Randall Laboratory, Department of Physics, University of Michigan, Ann Arbor, MI 48109-1120 (United States)
2005-05-26
It is known that, for zero fermionic sector, {psi}{sub {mu}}{sup {alpha}}(x)=0, the bosonic equations of Cremmer-Julia-Scherk eleven-dimensional supergravity can be collected in a compact expression, Rab{alpha}{gamma}{gamma}b{gamma}{beta}=0, which is a condition on the curvature R{alpha}{beta} of the generalized connection w. In this Letter we show that the equation Rbc{alpha}{gamma}{gamma}abc{gamma}{beta}=4i((D-bar {psi}){sub bc}{gamma}{sup [abc{sub {beta}({psi}{sub d}{gamma}{sup d}]){sub {alpha}}), where D-bar is the covariant derivative for the generalized connection w, collects all the bosonic equations of D=11 supergravity when the gravitino is nonvanishing, {psi}{sub {mu}}{sup {alpha}}(x)<>0.
Higher-curvature corrections to holographic entanglement with momentum dissipation
Tanhayi, M.R. [Islamic Azad University Central Tehran Branch (IAUCTB), Department of Physics, Faculty of Basic Science, Tehran (Iran, Islamic Republic of); Institute for Research in Fundamental Sciences (IPM), School of Physics, Tehran (Iran, Islamic Republic of); Vazirian, R. [Islamic Azad University Central Tehran Branch (IAUCTB), Department of Physics, Faculty of Basic Science, Tehran (Iran, Islamic Republic of)
2018-02-15
We study the effects of Gauss-Bonnet corrections on some nonlocal probes (entanglement entropy, n-partite information and Wilson loop) in the holographic model with momentum relaxation. Higher-curvature terms as well as scalar fields make in fact nontrivial corrections to the coefficient of the universal term in entanglement entropy. We use holographic methods to study such corrections. Moreover, holographic calculation indicates that mutual and tripartite information undergo a transition beyond which they identically change their values. We find that the behavior of the transition curves depends on the sign of the Gauss-Bonnet coupling λ. The transition for λ > 0 takes place in larger separation of subsystems than that of λ < 0. Finally, we examine the behavior of modified part of the force between external point-like objects as a function of Gauss-Bonnet coupling and its sign. (orig.)
Canonical quantization of a relativistic particle with curvature and torsion
Nesterenko, V.V.
1991-01-01
A generalization of the relativistic particle action is considered. It contain, in addition to the length of the world trajectory, the integrals along the world curve of its curvature and torsion. The generalized Hamiltonian formalism for this model in the D-dimensional space-time is constructed. A complete set of the constraints in the phase space is obtained and their division into the first-class and the second-class constraints is accomplished. On this basis the canonical quantization of the model is fulfilled. For D=3 the mass spectrum is obtained in the sector without tachyonic states, the mass of the state being dependent on its spin. It is shown that in the framework of this model when D=3 the possibility to describe the states with integral, half-odd-integral and continuous spins is derived. Interaction with an external Abelian gauge field introduced in the geometrical way. 21 refs
The string model with the extrinsic curvature term
Itoi, C.; Kubota, Hiroshi
1988-01-01
The string model with the extrinsic curvature is studied which is a gauge invariant field theory with higher order derivatives. We present an equivalent action without any higher order derivatives which keeps the gauge invariance. We point out the difficulty caused by the second class constraints in Dirac's canonical method. Following a new method for dynamical systems with second class constraints, we construct a equivalent model which has no second class constraints but has a new gauge invariance. This gauge invariance guarantees the equivalence between the original model and new one. We show that the model can be quantized in this formalism. In a simple model, we show the nilpotence of the BRST charge under certain conditions, and discuss the unitarity of the theory. (author)
Inflation in non-minimal matter-curvature coupling theories
Gomes, C.; Bertolami, O. [Departamento de Física e Astronomia and Centro de Física do Porto, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto (Portugal); Rosa, J.G., E-mail: claudio.gomes@fc.up.pt, E-mail: joao.rosa@ua.pt, E-mail: orfeu.bertolami@fc.up.pt [Departamento de Física da Universidade de Aveiro and CIDMA, Campus de Santiago, 3810-183 Aveiro (Portugal)
2017-06-01
We study inflationary scenarios driven by a scalar field in the presence of a non-minimal coupling between matter and curvature. We show that the Friedmann equation can be significantly modified when the energy density during inflation exceeds a critical value determined by the non-minimal coupling, which in turn may considerably modify the spectrum of primordial perturbations and the inflationary dynamics. In particular, we show that these models are characterised by a consistency relation between the tensor-to-scalar ratio and the tensor spectral index that can differ significantly from the predictions of general relativity. We also give examples of observational predictions for some of the most commonly considered potentials and use the results of the Planck collaboration to set limits on the scale of the non-minimal coupling.
Design of footbridge with double curvature made of UHPC
Kněž, P.; Tej, P.; Čítek, D.; Kolísko, J.
2017-09-01
This paper presents design of footbridge with double curvature made of UHPC. The structure is designed as a single-span bridge. The span of the bridge is 10.00 m, and the width of the deck is 1.50 m. The thickness of shell structure is 0.03 m for walls and 0.045 m for deck. The main structure of the bridge is one arch shell structure with sidewalls made of UHPC with dispersed steel fibers with conventional reinforcement only at anchoring areas. The structure was designed on the basis of the numerical model. Model was subsequently clarified on the basis of the first test elements. Paper presents detailed course on design of the bridge and presentation will contain also installation in landscape and results of static and dynamic loading tests.
Iacovino, Chiara; Ditommaso, Rocco; Auletta, Gianluca; Ponzo, Felice C.
2017-04-01
Continuous monitoring based on vibrational identification methods is increasingly employed for the evaluation of the state of health of existing buildings after strong motion earthquake. Different damage identification methods are based on the variations of damage indices defined in terms modal (eigenfrequencies, mode shapes, and modal damping) and/or non-modal parameters. Most of simplified methods for structural health monitoring and damage detection are based on the evaluation of the dynamic characteristics evolution associated to the fundamental mode of vibration of a monitored structure. Aim of this work is the upgrade of an existing method for damage localization on framed structures during a moderate/destructive earthquake. The existing version of the method is based on the comparison of the geometric characteristics (with particular reference to the mode curvature) exhibited by the structures, related to fundamental mode of vibration, before and during an earthquake. The approach is based on the use of a nonlinear filter, the band-variable filter, based on the Stockwell Transform able to extract the nonlinear response of each mode of vibration. The new version of the method provides the possibility to quantify a possible damage occurred on the monitored structure linking the mode curvature variation with the maximum inter-story drift. This paper shows the preliminary results obtained from several simulations on nonlinear numerical models of reinforced concrete framed structures, designed for only gravity loads, without and with the presence of infill panels. Furthermore, a correlation between maximum mode curvature difference and maximum inter-story drift has been defined for the different numerical models in order to quantify the structural damage. Acknowledgements This study was partially funded by the Italian Department of Civil Protection within the project DPC-RELUIS 2016 - RS4 ''Seismic observatory of structures and health monitoring'' and by the
Non-Gaussianities and curvature perturbations from hybrid inflation
Clesse, Sébastien; Garbrecht, Björn; Zhu, Yi
2014-03-01
For the original hybrid inflation as well as the supersymmetric F-term and D-term hybrid models, we calculate the level of non-Gaussianities and the power spectrum of curvature perturbations generated during the waterfall, taking into account the contribution of entropic modes. We focus on the regime of mild waterfall, in which inflation continues for more than about 60 e-folds N during the waterfall. We find that the associated fNL parameter goes typically from fNL≃-1/Nexit in the regime with N ≫60, where Nexit is the number of e-folds between the time of Hubble exit of a pivot scale and the end of inflation, down to fNL˜-0.3 when N ≳60, i.e., much smaller in magnitude than the current bound from Planck. Considering only the adiabatic perturbations, the power spectrum is red, with a spectral index ns=1-4/Nexit in the case N ≫60, whereas in the case N≳60, it increases up to unity. Including the contribution of entropic modes does not change observable predictions in the first case, and the spectral index is too low for this regime to be viable. In the second case, entropic modes are a relevant source for the power spectrum of curvature perturbations, of which the amplitude increases by several orders of magnitude. When spectral index values are consistent with observational constraints, the primordial spectrum amplitude is much larger than the observed value and can even lead to black hole formation. We conclude that, due to the important contribution of entropic modes, the parameter space leading to a mild waterfall phase is excluded by cosmic microwave background observations for all the considered models.
Li, Zhigang; Ji, Cheng; Wang, Lishu
2018-07-01
Although analytical models have been used to quickly predict head response under impact condition, the existing models generally took the head as regular shell with uniform thickness which cannot account for the actual head geometry with varied cranial thickness and curvature at different locations. The objective of this study is to develop and validate an analytical model incorporating actual cranial thickness and curvature for child aged 0-1YO and investigate their effects on child head dynamic responses at different head locations. To develop the new analytical model, the child head was simplified into an irregular fluid-filled shell with non-uniform thickness and the cranial thickness and curvature at different locations were automatically obtained from CT scans using a procedure developed in this study. The implicit equation of maximum impact force was derived as a function of elastic modulus, thickness and radius of curvature of cranium. The proposed analytical model are compared with cadaver test data of children aged 0-1 years old and it is shown to be accurate in predicting head injury metrics. According to this model, obvious difference in injury metrics were observed among subjects with the same age, but different cranial thickness and curvature; and the injury metrics at forehead location are significant higher than those at other locations due to large thickness it owns. The proposed model shows good biofidelity and can be used in quickly predicting the dynamics response at any location of head for child younger than 1 YO. Copyright © 2018 Elsevier B.V. All rights reserved.
Gravity response mechanisms of lateral organs and the control of plant architecture in Arabidopsis
Mullen, J.; Hangarter, R.
Most research on gravity responses in plants has focused on primary roots and shoots, which typically grow in a vertical orientation. However, the patterns of lateral organ formation and their growth orientation, which typically are not vertical, govern plant architecture. For example, in Arabidopsis, when lateral roots emerge from the primary root, they grow at a nearly horizontal orientation. As they elongate, the roots slowly curve until they eventually reach a vertical orientation. The regulation of this lateral root orientation is an important component affecting the overall root system architecture. We have found that this change in orientation is not simply due to the onset of gravitropic competence, as non-vertical lateral roots are capable of both positive and negative gravitropism. Thus, the horizontal growth of the new lateral roots is determined by what is called the gravitropic set-point angle (GSA). In Arabidopsis shoots, rosette leaves and inflorescence branches also display GSA-dependent developmental changes in their orientation. The developmental control of the GSA of lateral organs in Arabidopsis provides us with a useful system for investigating the components involved in regulating directionality of tropistic responses. We have identified several Arabidopsis mutants that have either altered lateral root orientations, altered orientation of lateral organs in the shoot, or both, but maintain normal primary organ orientation. The mgsa ({m}odified {g}ravitropic {s}et-point {a}ngle) mutants with both altered lateral root and shoot orientation show that there are common components in the regulation of growth orientation in the different organs. Rosette leaves and lateral roots also have in common a regulation of positioning by red light. Further molecular and physiological analyses of the GSA mutants will provide insight into the basis of GSA regulation and, thus, a better understanding of how gravity controls plant architecture. [This work was
van der Horst, Sander; van de Wiel, Jelmer E.; Ferreira, Carlos Simao
2016-01-01
Blades on a Vertical Axis Wind Turbine (VAWT) experience curved streamlines, caused by the rotation of the turbine. This phenomenon is known as flow curvature and has effects on the aerodynamic loading of the blades. Several authors have proposed methods to account for flow curvature, resulting...
Gigli, Nicola
2018-01-01
The author discusses in which sense general metric measure spaces possess a first order differential structure. Building on this, spaces with Ricci curvature bounded from below a second order calculus can be developed, permitting the author to define Hessian, covariant/exterior derivatives and Ricci curvature.
Protein shape and crowding drive domain formation and curvature in biological membranes
Frese, R.N.; Pamies, Josep C.; Olsen, John D.; Bahatyrova, S.; van der Weij-de Wit, Chantal D.; Aartsma, Thijs J.; Otto, Cornelis; Hunter, C. Neil; Frenkel, Daan; van Grondelle, Rienk
2007-01-01
Folding, curvature, and domain formation are characteristics of many biological membranes. Yet the mechanisms that drive both curvature and the formation of specialized domains enriched in particular protein complexes are unknown. For this reason, studies in membranes whose shape and organization
Measurements of the Curvature of Protrusions/Retrusions on Migrating Recrystallization Boundaries
Zhang, Yubin; Godfrey, A.; Juul Jensen, Dorte
2009-01-01
Two methods to quantify protrusions/retrusions and to estimate local boundary curvature from sample plane sections are proposed. The methods are used to evaluate the driving force due to curvature of the protrusions/retrusions for partially recrystallized pure nickel cold rolled to 96% reduction...
The zero curvature formulation of the KP and the sKP equations
Barcelos Neto, J.; Das, A.; Panda, S.; Roy, S.
1992-01-01
The Kadomtsev-Petviashvili equation is derived from the zero curvature condition associated with the gauge group SL(2,R) in 2+1 dimensions. A fermionic extension of the KP equation is also obtained using the zero curvature condition of the super group OS p (2/1), which reduces upon appropriate restriction to the Kupershmidt equation. (author). 17 refs
Folkesson, Jenny; Dam, Erik B; Olsen, Ole F
2007-01-01
for intersubject comparisons. Digital phantoms were created to establish the accuracy of the curvature estimation methods. RESULTS: A comparison of the two curvature estimation methods to ground truth yielded absolute pairwise differences of 1.1%, and 4.8%, respectively. The interscan reproducibility for the two...
Single Lipid Molecule Dynamics on Supported Lipid Bilayers with Membrane Curvature
Philip P. Cheney
2017-03-01
Full Text Available The plasma membrane is a highly compartmentalized, dynamic material and this organization is essential for a wide variety of cellular processes. Nanoscale domains allow proteins to organize for cell signaling, endo- and exocytosis, and other essential processes. Even in the absence of proteins, lipids have the ability to organize into domains as a result of a variety of chemical and physical interactions. One feature of membranes that affects lipid domain formation is membrane curvature. To directly test the role of curvature in lipid sorting, we measured the accumulation of two similar lipids, 1,2-Dihexadecanoyl-sn-glycero-3-phosphoethanolamine (DHPE and hexadecanoic acid (HDA, using a supported lipid bilayer that was assembled over a nanopatterned surface to obtain regions of membrane curvature. Both lipids studied contain 16 carbon, saturated tails and a head group tag for fluorescence microscopy measurements. The accumulation of lipids at curvatures ranging from 28 nm to 55 nm radii was measured and fluorescein labeled DHPE accumulated more than fluorescein labeled HDA at regions of membrane curvature. We then tested whether single biotinylated DHPE molecules sense curvature using single particle tracking methods. Similar to groups of fluorescein labeled DHPE accumulating at curvature, the dynamics of single molecules of biotinylated DHPE was also affected by membrane curvature and highly confined motion was observed.
Biharmonic Submanifolds with Parallel Mean Curvature Vector in Pseudo-Euclidean Spaces
Fu, Yu, E-mail: yufudufe@gmail.com [Dongbei University of Finance and Economics, School of Mathematics and Quantitative Economics (China)
2013-12-15
In this paper, we investigate biharmonic submanifolds in pseudo-Euclidean spaces with arbitrary index and dimension. We give a complete classification of biharmonic spacelike submanifolds with parallel mean curvature vector in pseudo-Euclidean spaces. We also determine all biharmonic Lorentzian surfaces with parallel mean curvature vector field in pseudo-Euclidean spaces.
Constant scalar curvature hypersurfaces in (3 + 1) -dimensional GHMC Minkowski spacetimes
Smith, Graham
2018-06-01
We prove that every (3 + 1) -dimensional flat GHMC Minkowski spacetime which is not a translation spacetime or a Misner spacetime carries a unique foliation by spacelike hypersurfaces of constant scalar curvature. In other words, we prove that every such spacetime carries a unique time function with isochrones of constant scalar curvature. Furthermore, this time function is a smooth submersion.
Biharmonic Submanifolds with Parallel Mean Curvature Vector in Pseudo-Euclidean Spaces
Fu, Yu
2013-01-01
In this paper, we investigate biharmonic submanifolds in pseudo-Euclidean spaces with arbitrary index and dimension. We give a complete classification of biharmonic spacelike submanifolds with parallel mean curvature vector in pseudo-Euclidean spaces. We also determine all biharmonic Lorentzian surfaces with parallel mean curvature vector field in pseudo-Euclidean spaces
Amphipathic motifs in BAR domains are essential for membrane curvature sensing
Bhatia, Vikram K; Madsen, Kenneth L; Bolinger, Pierre-Yves
2009-01-01
BAR (Bin/Amphiphysin/Rvs) domains and amphipathic alpha-helices (AHs) are believed to be sensors of membrane curvature thus facilitating the assembly of protein complexes on curved membranes. Here, we used quantitative fluorescence microscopy to compare the binding of both motifs on single...... nanosized liposomes of different diameters and therefore membrane curvature. Characterization of members of the three BAR domain families showed surprisingly that the crescent-shaped BAR dimer with its positively charged concave face is not able to sense membrane curvature. Mutagenesis on BAR domains showed...... that membrane curvature sensing critically depends on the N-terminal AH and furthermore that BAR domains sense membrane curvature through hydrophobic insertion in lipid packing defects and not through electrostatics. Consequently, amphipathic motifs, such as AHs, that are often associated with BAR domains...
Moore, Joan G.; Moore, John
1992-01-01
The flow in the NASA Low-Speed Impeller is affected by both curvature and rotation. The flow curves due to the following: (1) geometric curvature, e.g. the curvature of the hub and shroud profiles in the meridional plane and the curvature of the backswept impeller blades; and (2) secondary flow vortices, e.g. the tip leakage vortex. Changes in the turbulence and effective turbulent viscosity in the impeller are investigated. The effects of these changes on three-dimensional flow development are discussed. Two predictions of the flow in the impeller, one with, and one without modification to the turbulent viscosity due to rotation and curvature, are compared. Some experimental and theoretical background for the modified mixing length model of turbulent viscosity will also be presented.
McDonald, Christopher; Jovanovic, Goran; Ces, Oscar; Buck, Martin
2015-09-01
Phage shock protein A (PspA), which is responsible for maintaining inner membrane integrity under stress in enterobacteria, and vesicle-inducting protein in plastids 1 (Vipp1), which functions for membrane maintenance and thylakoid biogenesis in cyanobacteria and plants, are similar peripheral membrane-binding proteins. Their homologous N-terminal amphipathic helices are required for membrane binding; however, the membrane features recognized and required for expressing their functionalities have remained largely uncharacterized. Rigorously controlled, in vitro methodologies with lipid vesicles and purified proteins were used in this study and provided the first biochemical and biophysical characterizations of membrane binding by PspA and Vipp1. Both proteins are found to sense stored curvature elastic (SCE) stress and anionic lipids within the membrane. PspA has an enhanced sensitivity for SCE stress and a higher affinity for the membrane than Vipp1. These variations in binding may be crucial for some of the proteins' differing roles in vivo. Assays probing the transcriptional regulatory function of PspA in the presence of vesicles showed that a relief of transcription inhibition occurs in an SCE stress-specific manner. This in vitro recapitulation of membrane stress-dependent transcription control suggests that the Psp response may be mounted in vivo when a cell's inner membrane experiences increased SCE stress. All cell types maintain the integrity of their membrane systems. One widely distributed membrane stress response system in bacteria is the phage shock protein (Psp) system. The central component, peripheral membrane protein PspA, which mitigates inner membrane stress in bacteria, has a counterpart, Vipp1, which functions for membrane maintenance and thylakoid biogenesis in plants and photosynthetic bacteria. Membrane association of both these proteins is accepted as playing a pivotal role in their functions. Here we show that direct membrane binding by
The hybrid inflation waterfall and the primordial curvature perturbation
Lyth, David H.
2012-01-01
Without demanding a specific form for the inflaton potential, we obtain an estimate of the contribution to the curvature perturbation generated during the linear era of the hybrid inflation waterfall. The spectrum of this contribution peaks at some wavenumber k = k * , and goes like k 3 for k * , making it typically negligible on cosmological scales. The scale k * can be outside the horizon at the end of inflation, in which case ζ = −(g 2 −(g 2 )) with g gaussian. Taking this into account, the cosmological bound on the abundance of black holes is likely to be satisfied if the curvaton mass m much bigger than the Hubble parameter H, but is likely to be violated if m∼< H. Coming to the contribution to ζ from the rest of the waterfall, we are led to consider the use of the 'end-of-inflation' formula, giving the contribution to ζ generated during a sufficiently sharp transition from nearly-exponential inflation to non-inflation, and we state for the first time the criterion for the transition to be sufficiently sharp. Our formulas are applied to supersymmetric GUT inflation and to supernatural/running-mass inflation
Entropy bound and causality violation in higher curvature gravity
Neupane, Ishwaree P; Dadhich, Naresh
2009-01-01
In any quantum theory of gravity we do expect corrections to Einstein gravity to occur. Yet, at a fundamental level, it is not apparent what the most relevant corrections are. We argue that the generic curvature square corrections present in the lower dimensional actions of various compactified string theories provide a natural passage between the classical and quantum realms of gravity. The Gauss-Bonnet and (Riemann) 2 gravities, in particular, provide concrete examples in which inconsistency of a theory, such as a violation of microcausality, and a classical limit on black hole entropy are correlated. In such theories the ratio of the shear viscosity to the entropy density, η/s, can be smaller than for a boundary conformal field theory with Einstein gravity dual. This result is interesting from the viewpoint that nuclear matter or quark-gluon plasma produced (such as at RHIC) under extreme densities and temperatures may violate the conjectured KSS bound η/s ≥ 1/4π, albeit marginally so.
Warps, grids and curvature in triple vector bundles
Flari, Magdalini K.; Mackenzie, Kirill
2018-06-01
A triple vector bundle is a cube of vector bundle structures which commute in the (strict) categorical sense. A grid in a triple vector bundle is a collection of sections of each bundle structure with certain linearity properties. A grid provides two routes around each face of the triple vector bundle, and six routes from the base manifold to the total manifold; the warps measure the lack of commutativity of these routes. In this paper we first prove that the sum of the warps in a triple vector bundle is zero. The proof we give is intrinsic and, we believe, clearer than the proof using decompositions given earlier by one of us. We apply this result to the triple tangent bundle T^3M of a manifold and deduce (as earlier) the Jacobi identity. We further apply the result to the triple vector bundle T^2A for a vector bundle A using a connection in A to define a grid in T^2A . In this case the curvature emerges from the warp theorem.
Higher curvature self-interaction corrections to Hawking radiation
Fairoos, C.; Sarkar, Sudipta; Yogendran, K. P.
2017-07-01
The purely thermal nature of Hawking radiation from evaporating black holes leads to the information loss paradox. A possible route to its resolution could be if (enough) correlations are shown to be present in the radiation emitted from evaporating black holes. A reanalysis of Hawking's derivation including the effects of self-interactions in general relativity shows that the emitted radiation does deviate from pure thermality; however no correlations exist between successively emitted Hawking quanta. We extend the calculations to Einstein-Gauss-Bonnet gravity and investigate if higher curvature corrections to the action lead to some new correlations in the Hawking spectra. The effective trajectory of a massless shell is determined by solving the constraint equations and the semiclassical tunneling probability is calculated. As in the case of general relativity, the radiation is no longer thermal and there is no correlation between successive emissions. The absence of any extra correlations in the emitted radiations even in Gauss-Bonnet gravity suggests that the resolution of the paradox is beyond the scope of semiclassical gravity.
Membrane curvature stress and antibacterial activity of lactoferricin derivatives.
Zweytick, Dagmar; Tumer, Sabine; Blondelle, Sylvie E; Lohner, Karl
2008-05-02
We have studied correlation of non-lamellar phase formation and antimicrobial activity of two cationic amphipathic peptides, termed VS1-13 and VS1-24 derived from a fragment (LF11) of human lactoferricin on Escherichia coli total lipid extracts. Compared to LF11, VS1-13 exhibits minor, but VS1-24 significantly higher antimicrobial activity. X-ray experiments demonstrated that only VS1-24 decreased the onset of cubic phase formation of dispersions of E. coli lipid extracts, significantly, down to physiological relevant temperatures. Cubic structures were identified to belong to the space groups Pn3m and Im3m. Formation of latter is enhanced in the presence of VS1-24. Additionally, the presence of this peptide caused membrane thinning in the fluid phase, which may promote cubic phase formation. VS1-24 containing a larger hydrophobic volume at the N-terminus than its less active counterpart VS1-13 seems to increase curvature stress in the bilayer and alter the behaviour of the membrane significantly enhancing disruption.
Cosmology of a holographic induced gravity model with curvature effects
Bouhmadi-Lopez, Mariam; Errahmani, Ahmed; Ouali, Taoufiq
2011-01-01
We present a holographic model of the Dvali-Gabadadze-Porrati scenario with a Gauss-Bonnet term in the bulk. We concentrate on the solution that generalizes the normal Dvali-Gabadadze-Porrati branch. It is well known that this branch cannot describe the late-time acceleration of the universe even with the inclusion of a Gauss-Bonnet term. Here, we show that this branch in the presence of a Gauss-Bonnet curvature effect and a holographic dark energy with the Hubble scale as the infrared cutoff can describe the late-time acceleration of the universe. It is worthwhile to stress that such an energy density component cannot do the same job on the normal Dvali-Gabadadze-Porrati branch (without Gauss-Bonnet modifications) nor in a standard four-dimensional relativistic model. The acceleration on the brane is also presented as being induced through an effective dark energy which corresponds to a balance between the holographic one and geometrical effects encoded through the Hubble parameter.
Scalar brane backgrounds in higher order curvature gravity
Charmousis, Christos; Davis, Stephen C.; Dufaux, Jean-Francois
2003-01-01
We investigate maximally symmetric brane world solutions with a scalar field. Five-dimensional bulk gravity is described by a general lagrangian which yields field equations containing no higher than second order derivatives. This includes the Gauss-Bonnet combination for the graviton. Stability and gravitational properties of such solutions are considered, and we particularly emphasise the modifications induced by the higher order terms. In particular it is shown that higher curvature corrections to Einstein theory can give rise to instabilities in brane world solutions. A method for analytically obtaining the general solution for such actions is outlined. Generically, the requirement of a finite volume element together with the absence of a naked singularity in the bulk imposes fine-tuning of the brane tension. A model with a moduli scalar field is analysed in detail and we address questions of instability and non-singular self-tuning solutions. In particular, we discuss a case with a normalisable zero mode but infinite volume element. (author)
The geometry of plane waves in spaces of constant curvature
Tran, H.V.
1988-01-01
We examined the geometry of possible plane wave fronts in spaces of constant curvature for three cases in which the cosmological constant is positive, zero, or negative. The cosmological constant and a second-order invariant determined by a congruence of null rays were used in the investigation. We embedded the spaces under investigation in a flat five-dimensional space, and studied the null hyperplanes passing through the origin of the flat five-dimensional space. The embedded spaces are represented by quadrics in the five-dimensional space. The plane wave fronts are represented by the intersection of the quadric with null hyperplanes passing through the origin of the five-dimensional space. We concluded that in Minkowski spaces (zero cosmological constant), the plane-fronted waves will intersect if and only if the second-order invariant mentioned above is non-zero. For deSitter spaces (positive cosmological constant), plane-fronted waves will always intersect. For anti-deSitter spaces (negative cosmological constant), plane-fronted waves may but need not intersect
Dual curvature acoustically damped concentrating collector. Final technical report
Smith, G.A.; Rausch, R.A.
1980-05-01
A development program was conducted to investigate the design and performance parameters of a novel, dual curvature, concentrating solar collector. The reflector of the solar collector is achieved with a stretched-film reflective surface that approximates a hyperbolic paraboloid and is capable of line-focusing at concentration ratios ranging from 10 to 20X. A prototype collector was designed based on analytical and experimental component trade-off activities as well as economic analyses of solar thermal heating and cooling systems incorporating this type of collector. A prototype collector incorporating six 0.66 x 1.22 m (2 x 4 ft) was fabricated and subjected to a limited thermal efficiency test program. A peak efficiency of 36% at 121/sup 0/C (250/sup 0/F) was achieved based upon the gross aperture area. Commercialization activities were conducted, including estimated production costs of $134.44/m/sup 2/ ($12.49/ft/sup 2/) for the collector assembly (including a local suntracker and controls) and $24.33/m/sup 2/ ($2.26/ft/sup 2/) for the reflector subassembly.
Phase separation in artificial vesicles driven by light and curvature
Rinaldin, Melissa; Pomp, Wim; Schmidt, Thomas; Giomi, Luca; Kraft, Daniela; Physics of Life Processes Team; Soft; Bio Mechanics Collaboration; Self-Assembly in Soft Matter Systems Collaboration
The role of phase-demixing in living cells, leading to the lipid-raft hypothesis, has been extensively studied. Lipid domains of higher lipid chain order are proposed to regulate protein spatial organization. Giant Unilamellar Vesicles provide an artificial model to study phase separation. So far temperature was used to initiate the process. Here we introduce a new methodology based on the induction of phase separation by light. To this aim, the composition of the lipid membrane is varied by photo-oxidation of lipids. The control of the process gained by using light allowed us to observe vesicle shape fluctuations during phase-demixing. The presence of fluctuations near the critical mixing point resembles features of a critical process. We quantitatively analyze these fluctuations using a 2d elastic model, from which we can estimate the material parameters such as bending rigidity and surface tension, demonstrating the non-equilibrium critical behaviour. Finally, I will describe recent attempts toward tuning the membrane composition by controlling the vesicle curvature.
The hybrid inflation waterfall and the primordial curvature perturbation
Lyth, David H.
2012-05-01
Without demanding a specific form for the inflaton potential, we obtain an estimate of the contribution to the curvature perturbation generated during the linear era of the hybrid inflation waterfall. The spectrum of this contribution peaks at some wavenumber k = k*, and goes like k3 for k Lt k*, making it typically negligible on cosmological scales. The scale k* can be outside the horizon at the end of inflation, in which case ζ = -(g2-langg2rang) with g gaussian. Taking this into account, the cosmological bound on the abundance of black holes is likely to be satisfied if the curvaton mass m much bigger than the Hubble parameter H, but is likely to be violated if mlsimH. Coming to the contribution to ζ from the rest of the waterfall, we are led to consider the use of the `end-of-inflation' formula, giving the contribution to ζ generated during a sufficiently sharp transition from nearly-exponential inflation to non-inflation, and we state for the first time the criterion for the transition to be sufficiently sharp. Our formulas are applied to supersymmetric GUT inflation and to supernatural/running-mass inflation. A preliminary version of this paper appeared as arXiv:1107.1681.
The speed-curvature power law in Drosophila larval locomotion.
Zago, Myrka; Lacquaniti, Francesco; Gomez-Marin, Alex
2016-10-01
We report the discovery that the locomotor trajectories of Drosophila larvae follow the power-law relationship between speed and curvature previously found in the movements of human and non-human primates. Using high-resolution behavioural tracking in controlled but naturalistic sensory environments, we tested the law in maggots tracing different trajectory types, from reaching-like movements to scribbles. For most but not all flies, we found that the law holds robustly, with an exponent close to three-quarters rather than to the usual two-thirds found in almost all human situations, suggesting dynamic effects adding on purely kinematic constraints. There are different hypotheses for the origin of the law in primates, one invoking cortical computations, another viscoelastic muscle properties coupled with central pattern generators. Our findings are consistent with the latter view and demonstrate that the law is possible in animals with nervous systems orders of magnitude simpler than in primates. Scaling laws might exist because natural selection favours processes that remain behaviourally efficient across a wide range of neural and body architectures in distantly related species. © 2016 The Authors.
The hybrid inflation waterfall and the primordial curvature perturbation
Lyth, David H., E-mail: d.lyth@lancaster.ac.uk [Consortium for Fundamental Physics, Cosmology and Astroparticle Group, Department of Physics, Lancaster University, Lancaster LA1 4YB (United Kingdom)
2012-05-01
Without demanding a specific form for the inflaton potential, we obtain an estimate of the contribution to the curvature perturbation generated during the linear era of the hybrid inflation waterfall. The spectrum of this contribution peaks at some wavenumber k = k{sub *}, and goes like k{sup 3} for k << k{sub *}, making it typically negligible on cosmological scales. The scale k{sub *} can be outside the horizon at the end of inflation, in which case ζ = −(g{sup 2}−(g{sup 2})) with g gaussian. Taking this into account, the cosmological bound on the abundance of black holes is likely to be satisfied if the curvaton mass m much bigger than the Hubble parameter H, but is likely to be violated if m∼
Effects on Buildings of Surface Curvature Caused by Underground Coal Mining
Haifeng Hu
2016-08-01
Full Text Available Ground curvature caused by underground mining is one of the most obvious deformation quantities in buildings. To study the influence of surface curvature on buildings and predict the movement and deformation of buildings caused by ground curvature, a prediction model of the influence function on mining subsidence was used to establish the relationship between surface curvature and wall deformation. The prediction model of wall deformation was then established and the surface curvature was obtained from mining subsidence prediction software. Five prediction lines were set up in the wall from bottom to top and the predicted deformation of each line was used to calculate the crack positions in the wall. Thus, the crack prediction model was obtained. The model was verified by a case study from a coalmine in Shanxi, China. The results show that when the ground curvature is positive, the crack in the wall is shaped like a “V”; when the ground curvature is negative, the crack is shaped like a “∧”. The conclusion provides the basis for a damage evaluation method for buildings in coalmine areas.
Mehdi Safari
2016-09-01
Full Text Available In this work, laser forming of cylindrical surfaces with arbitrary radius of curvature is investigated experimentally and numerically. For laser forming of cylindrical surfaces with arbitrary radius of curvature, a new and comprehensive method is proposed in this paper. This method contains simple linear irradiating lines and using an analytical method, required process parameters for laser forming of a cylindrical surface with a specific radius of curvature is proposed. In this method, laser output power, laser scanning speed and laser beam diameter are selected based on laser machine and process limitations. As in the laser forming of a cylindrical surface, parallel irradiating lines are needed; therefore key parameter for production of a cylindrical surface with a specific radius of curvature is the number of irradiating lines. Hence, in the proposed analytical method, the required number of irradiating lines for production of a cylindrical surface with a specific radius of curvature is suggested. Performance of the proposed method for production of cylindrical surface with a specific radius of curvature is verified with experimental tests. The results show that using proposed analytical method, cylindrical surfaces with any radius of curvature can be produced successfully.
Long-term Results of Ventral Penile Curvature Repair in Childhood.
Golomb, Dor; Sivan, Bezalel; Livne, Pinhas M; Nevo, Amihay; Ben-Meir, David
2018-02-01
To assess the postpubertal outcome of ventral penile curvature repaired in infancy in terms of recurrence and aesthetics. Postpubertal patients treated for hypospadias and ventral penile curvature in infancy at a tertiary medical center were invited to undergo assessment of the quality of the repair. Findings were compared between patients with a straight penis after skin release and patients who required dorsal plication. The cohort included 27 patients of mean age 16.5 years who were reported with straight penis after surgery. Postpubertal curvature was found in 6 of 14 patients (43%) successfully treated by skin release and 10 of 13 patients (77%) who underwent dorsal plication (P = .087). Significant curvature (≥30 degrees) was found in 1 of 14 patients in the skin-release group and 4 of 13 in the dorsal plication group (P = .16). Rates of redo urethroplasty were 2 of 14 (14%) and 5 of 10 (50%), respectively. Patient satisfaction with the appearance of the penis did not differ significantly. Ventral penile curvature repaired in infancy often recurs after puberty. The need for dorsal plication has a trend-level association with recurrence of penile curvature in puberty. It might also be related to the degree of postpubertal penile curvature and the need for redo urethroplasty. Procedure type does not affect patient satisfaction with the postpubertal appearance of the penis. Copyright © 2017 Elsevier Inc. All rights reserved.
Quantitative analysis and prediction of curvature in leucine-rich repeat proteins.
Hindle, K Lauren; Bella, Jordi; Lovell, Simon C
2009-11-01
Leucine-rich repeat (LRR) proteins form a large and diverse family. They have a wide range of functions most of which involve the formation of protein-protein interactions. All known LRR structures form curved solenoids, although there is large variation in their curvature. It is this curvature that determines the shape and dimensions of the inner space available for ligand binding. Unfortunately, large-scale parameters such as the overall curvature of a protein domain are extremely difficult to predict. Here, we present a quantitative analysis of determinants of curvature of this family. Individual repeats typically range in length between 20 and 30 residues and have a variety of secondary structures on their convex side. The observed curvature of the LRR domains correlates poorly with the lengths of their individual repeats. We have, therefore, developed a scoring function based on the secondary structure of the convex side of the protein that allows prediction of the overall curvature with a high degree of accuracy. We also demonstrate the effectiveness of this method in selecting a suitable template for comparative modeling. We have developed an automated, quantitative protocol that can be used to predict accurately the curvature of leucine-rich repeat proteins of unknown structure from sequence alone. This protocol is available as an online resource at http://www.bioinf.manchester.ac.uk/curlrr/.
Yamasaki, K; Iwayama, T; Yajima, T
2011-01-01
The Okubo-Weiss field, frequently used for partitioning incompressible two-dimensional (2D) fluids into coherent and incoherent regions, corresponds to the Gaussian curvature of the stream function. Therefore, we consider the differential geometric structures of stream functions and calculate the Gaussian curvatures of some basic flows. We find the following. (I) The vorticity corresponds to the mean curvature of the stream function. Thus, the stream-function surface for an irrotational flow and that for a parallel shear flow correspond to the minimal surface and a developable surface, respectively. (II) The relationship between the coherency and the magnitude of the vorticity is interpreted by the curvatures. (III) Using the Gaussian curvature, stability of single and double point vortex streets is analyzed. The results of this analysis are compared with the well-known linear stability analysis. (IV) Conformal mapping in fluid mechanics is the physical expression of the geometric fact that the sign of the Gaussian curvature does not change in conformal mapping. These findings suggest that the curvatures of stream functions are useful for understanding the geometric structure of an incompressible 2D flow.
Ohkitani, K.
2010-05-01
We study some of the key quantities arising in the theory of [Arnold "Sur la geometrie differentielle des groupes de Lie de dimension infinie et ses applications a l'hydrodynamique des fluides parfaits," Annales de l'institut Fourier 16, 319 (1966)] of the incompressible Euler equations both in two and three dimensions. The sectional curvatures for the Taylor-Green vortex and the ABC flow initial conditions are calculated exactly in three dimensions. We trace the time evolution of the Jacobi fields by direct numerical simulations and, in particular, see how the sectional curvatures get more and more negative in time. The spatial structure of the Jacobi fields is compared to the vorticity fields by visualizations. The Jacobi fields are found to grow exponentially in time for the flows with negative sectional curvatures. In two dimensions, a family of initial data proposed by Arnold (1966) is considered. The sectional curvature is observed to change its sign quickly even if it starts from a positive value. The Jacobi field is shown to be correlated with the passive scalar gradient in spatial structure. On the basis of Rouchon's physical-space based expression for the sectional curvature (1984), the origin of negative curvature is investigated. It is found that a "potential" αξ appearing in the definition of covariant time derivative plays an important role, in that a rapid growth in its gradient makes a major contribution to the negative curvature.
The Influence of Shoreline Curvature on Rates of Shoreline Change on Sandy Coasts
Murray, A. B.; Lauzon, R.; Cheng, S.; Liu, J.; Lazarus, E.
2017-12-01
The sandy, low-lying barrier islands which characterize much of the US East and Gulf coasts are popular spots to live and vacation, and are often heavily developed. However, sandy shorelines and barriers are also naturally mobile landforms, which are vulnerable to sea level rise and storms and can experience high rates of shoreline change. Many previous studies have attempted to understand and quantify the factors that contribute to those rates of shoreline change, such as grain size, underlying geology, sea level rise, and anthropogenic modification. Shoreline curvature has not been considered in such analyses, but previous research has demonstrated that subtle coastline curvature (and therefore alongshore variation in relative offshore wave angle) can result in gradients in net alongshore transport that cause significant shoreline erosion or accretion. Here we present the results of a spatially extensive analysis of the correlation between shoreline curvature and shoreline change rates for the sandy shorelines of the US East and Gulf coasts. We find that, for wave-dominated sandy coasts where nourishment and shoreline stabilization do not dominate the shoreline change signal (such as parts of Texas, North Carolina, and Florida), there is a significant negative correlation between shoreline curvature and shoreline change rates over 1 - 5 km and decadal to centurial space and time scales. This correlation indicates that a portion of the coastal erosion (and accretion) observed in these areas can be explained by the smoothing of subtle coastline curvature by gradients in alongshore transport, and suggests that shoreline curvature should be included in future attempts to understand historical and future rates of shoreline change. Shoreline stabilization, especially through beach nourishment, complicates the relationship between curvature and shoreline change. Beach construction during nourishment creates a seaward convex curvature in the part of the shoreline moves
Influence of firing time and framework thickness on veneered Y-TZP discs curvature.
Jakubowicz-Kohen, Boris D; Sadoun, Michaël J; Douillard, Thierry; Mainjot, Amélie K
2014-02-01
The objective of the present work was to study the curvature of very thinly, veneered Y-TZP discs of different framework thicknesses submitted to different firing times. Fifteen 20-mm-wide Y-TZP discs were produced in three different thicknesses: 0.75, 1, 1.5mm. One disc from each group was left unveneered while the others were layered with a 0.1mm veneering ceramic layer. All discs underwent five firing cycles for a total cumulative firing time of 30 min, 1, 2, 5 and 10h at 900°C. The curvature profile was measured using a profilometer after the veneering process and after each firing cycle respectively. A fitted curve was then used to estimate the, curvature radius. The coefficient of thermal expansion (CTE) measurements were taken on veneering, ceramic and Y-TZP beam samples that underwent the same firing schedule. Those data were used to calculate the curvature generated by CTE variations over firing time. All bilayered samples exhibited a curvature that increased over firing time inversely to framework thickness. However non-veneered samples did not exhibit any curvature modification. The results of the present study reveal that even a very thin veneer layer (0.1mm) can induce a significant curvature of Y-TZP discs. The dilatometric results showed that Tg and CTE, variations are not sufficient to explain this curvature. A chemical-induced zirconia volume, augmentation located at the framework sub-surface near the interface could explain the sample, curvature and its increase with firing time. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Plan curvature and landslide probability in regions dominated by earth flows and earth slides
Ohlmacher, G.C.
2007-01-01
Damaging landslides in the Appalachian Plateau and scattered regions within the Midcontinent of North America highlight the need for landslide-hazard mapping and a better understanding of the geomorphic development of landslide terrains. The Plateau and Midcontinent have the necessary ingredients for landslides including sufficient relief, steep slope gradients, Pennsylvanian and Permian cyclothems that weather into fine-grained soils containing considerable clay, and adequate precipitation. One commonly used parameter in landslide-hazard analysis that is in need of further investigation is plan curvature. Plan curvature is the curvature of the hillside in a horizontal plane or the curvature of the contours on a topographic map. Hillsides can be subdivided into regions of concave outward plan curvature called hollows, convex outward plan curvature called noses, and straight contours called planar regions. Statistical analysis of plan-curvature and landslide datasets indicate that hillsides with planar plan curvature have the highest probability for landslides in regions dominated by earth flows and earth slides in clayey soils (CH and CL). The probability of landslides decreases as the hillsides become more concave or convex. Hollows have a slightly higher probability for landslides than noses. In hollows landslide material converges into the narrow region at the base of the slope. The convergence combined with the cohesive nature of fine-grained soils creates a buttressing effect that slows soil movement and increases the stability of the hillside within the hollow. Statistical approaches that attempt to determine landslide hazard need to account for the complex relationship between plan curvature, type of landslide, and landslide susceptibility. ?? 2007 Elsevier B.V. All rights reserved.
A high resolution electron microscopy investigation of curvature in carbon nanotubes
Weldon, D. N.; Blau, W. J.; Zandbergen, H. W.
1995-07-01
Evidence for heptagon inclusion in multi-walled carbon nanotubes was sought in arc-produced carbon deposits. Transmission electron microscopy revealed many curved nanotubes although their relative abundance was low. Close examination of the micrographs in the regions of expected heptagon inclusion shows that the curvature is accomplished by folding or fracture of the lattice planes. This observed phenomenon contradicts the theoretical modelling studies which predict stable structures with negative curvature accomplished by heptagon/pentagon pairs. A possible explanation for curvature in single-walled tubes is presented based on a molecular mechanics geometry optimisation study of spa inclusion in a graphite sheet.
Embedded positive constant r-mean curvature hypersurfaces in Mm × R
Cheng Xu
2005-01-01
Full Text Available Let M be an m-dimensional Riemannian manifold with sectional curvature bounded from below. We consider hypersurfaces in the (m + 1-dimensional product manifold M x R with positive constant r-mean curvature. We obtain height estimates of certain compact vertical graphs in M x R with boundary in M x {0}. We apply this to obtain topological obstructions for the existence of some hypersurfaces. We also discuss the rotational symmetry of some embedded complete surfaces in S² x R of positive constant 2-mean curvature.
Curvature contributions to the static electrical properties of push-pull molecules
Squitieri, Emilio
2005-01-01
Calculations of the curvature contribution to the diagonals components of the static dipole moment (μ), polarizability (α), first (β) and second (γ) hyperpolarizability of push-pull molecules are presented. This contribution was obtained from the analytical evaluation of electrical properties method using the harmonic zero-point energy. The valence-bond charge-transfer model was employed to obtain the field-dependent force constant and their derivates with respect to electric field. Our results show a relationship between the curvature and electronic contributions. We have also found that the curvature contribution is important in a numerical estimation of β and γ
Curvature effects in two-dimensional optical devices inspired by transformation optics
Yuan, Shuhao
2016-11-14
Light transport in curved quasi two-dimensional waveguides is considered theoretically. Within transformation optics and tensor theory, a concise description of curvature effects on transverse electric and magnetic waves is derived. We show that the curvature can induce light focusing and photonic crystal properties, which are confirmed by finite element simulations. Our results indicate that the curvature is an effective parameter for designing quasi two-dimensional optical devices in the fields of micro and nano photonics. Â© 2016 Author(s).
Shape discrimination by total curvature, with a view to cancer diagnostics
Gardner, R.J.; Hobolth, Asger; Jensen, Eva Bjørn Vedel
2005-01-01
This paper investigates the use of total curvature for shape discrimination of objects via profiles of their planar sections (not assumed to be star shaped). Methods of estimating total curvature from observation of a finite number of points on the boundary of the object are investigated, includi...... a simple discrete approximation method and various interpolation methods. Total curvature is capable of revealing shape differences on a local scale, as demonstrated by the analysis of two data sets of malignant and normal or benign tumour cell nuclear profiles....
Influence of implant rod curvature on sagittal correction of scoliosis deformity.
Salmingo, Remel Alingalan; Tadano, Shigeru; Abe, Yuichiro; Ito, Manabu
2014-08-01
Deformation of in vivo-implanted rods could alter the scoliosis sagittal correction. To our knowledge, no previous authors have investigated the influence of implanted-rod deformation on the sagittal deformity correction during scoliosis surgery. To analyze the changes of the implant rod's angle of curvature during surgery and establish its influence on sagittal correction of scoliosis deformity. A retrospective analysis of the preoperative and postoperative implant rod geometry and angle of curvature was conducted. Twenty adolescent idiopathic scoliosis patients underwent surgery. Average age at the time of operation was 14 years. The preoperative and postoperative implant rod angle of curvature expressed in degrees was obtained for each patient. Two implant rods were attached to the concave and convex side of the spinal deformity. The preoperative implant rod geometry was measured before surgical implantation. The postoperative implant rod geometry after surgery was measured by computed tomography. The implant rod angle of curvature at the sagittal plane was obtained from the implant rod geometry. The angle of curvature between the implant rod extreme ends was measured before implantation and after surgery. The sagittal curvature between the corresponding spinal levels of healthy adolescents obtained by previous studies was compared with the implant rod angle of curvature to evaluate the sagittal curve correction. The difference between the postoperative implant rod angle of curvature and normal spine sagittal curvature of the corresponding instrumented level was used to evaluate over or under correction of the sagittal deformity. The implant rods at the concave side of deformity of all patients were significantly deformed after surgery. The average degree of rod deformation Δθ at the concave and convex sides was 15.8° and 1.6°, respectively. The average preoperative and postoperative implant rod angle of curvature at the concave side was 33.6° and 17.8
The persistence of the gravity signal in flax roots
Hasenstein, Karl H.
Although the presentation time of gravitropism has been studied, no data exist as to how long a reorientation stimulus affects the gravitropic response of a root. We tested the duration of gravitropic curvature in roots of Linum usitatissimum after reversing a one hour, 90 degree gravistimulus by increasing time intervals in vertical orientation before clinorotating the roots and acquiring infrared digital images. Clinorotation was performed either parallel or perpendicular to the gravity vector. Under either condition the gravistimulus affected curvature during clinorotation only between two to three minutes. Maximal curvature after one minute of vertical reorientation was 15 degrees within one hour. After three minutes in vertical orientation the observed curvature was not statistically different from vertically growing roots. In both orientations, maximum curvature occurred after 1hr. Perpendicular (horizontal) clinorotation showed decreasing curvature with increasing reorientation time. Parallel (vertical) clinorotation resulted in greater variability to the reorientation time. These data indicate that the gravity stimulus operates essentially memory free and that clinorotation affects the gravity response. Therefore all aspects of clinorotation need to be studied before an assessment of clinostats for the simulation of microgravity is possible and a time limit for memory effects of mechanostimulation can be determined.
Short, Daniel J.
There are many applications that rely on the propagation of light through the atmosphere - all of which are subject to atmospheric conditions. While there are obvious processes such as scattering due to particulates like clouds and dust that affect the received intensity of the radiation, the clear atmosphere can also cause significant effects. Refraction is a clear air effect that can cause a variety of phenomena such as apparent relocation, stretching and compression of objects when viewed through the atmosphere. Recently, there has been significant interest in studying the refractive effects for low angle paths within the troposphere, and in particular, near-horizontal paths in the Earth's boundary layer, which is adjacent to the ground. Refractive effects in this case become problematic for many terrestrial optical applications. For example, the pointing of a free space optical communication or a remote sensing system can suffer wandering effects, high-resolution imagery can present distorted and/or dislocated targets, optical tracking of targets can be inaccurate, and optical geodetic surveying accuracy is also very sensitive to the effects of refraction. The work in this dissertation was inspired by data from a time-lapse camera system that collects images of distant targets over a near-horizontal path along the ground. This system was used previously to study apparent diurnal image displacement and this dissertation extends that work by exploring the higher order effects that result from curvature in the vertical refractive index profile of the atmosphere. There are surprisingly few experiments involving atmospheric refractive effects that carefully correlate field data to analytical expressions and other factors such as meteorological data. In working with the time-lapse data, which is comprised of sequences of hundreds or thousands of images collected over durations of weeks or months, it is important to develop straightforward analysis techniques that can
Curvature perturbation spectra from waterfall transition, black hole constraints and non-Gaussianity
Bugaev, Edgar; Klimai, Peter, E-mail: bugaev@pcbai10.inr.ruhep.ru, E-mail: pklimai@gmail.com [Institute for Nuclear Research, Russian Academy of Sciences, 60th October Anniversary Prospect 7a, 117312 Moscow (Russian Federation)
2011-11-01
We carried out numerical calculations of a contribution of the waterfall field to the primordial curvature perturbation (on uniform density hypersurfaces) ζ, which is produced during waterfall transition in hybrid inflation scenario. The calculation is performed for a broad interval of values of the model parameters. We show that there is a strong growth of amplitudes of the curvature perturbation spectrum in the limit when the bare mass-squared of the waterfall field becomes comparable with the square of Hubble parameter. We show that in this limit the primordial black hole constraints on the curvature perturbations must be taken into account. It is shown that, in the same limit, peak values of the curvature perturbation spectra are far beyond horizon, and the spectra are strongly non-Gaussian.
Curvature perturbation spectra from waterfall transition, black hole constraints and non-Gaussianity
Bugaev, Edgar; Klimai, Peter
2011-01-01
We carried out numerical calculations of a contribution of the waterfall field to the primordial curvature perturbation (on uniform density hypersurfaces) ζ, which is produced during waterfall transition in hybrid inflation scenario. The calculation is performed for a broad interval of values of the model parameters. We show that there is a strong growth of amplitudes of the curvature perturbation spectrum in the limit when the bare mass-squared of the waterfall field becomes comparable with the square of Hubble parameter. We show that in this limit the primordial black hole constraints on the curvature perturbations must be taken into account. It is shown that, in the same limit, peak values of the curvature perturbation spectra are far beyond horizon, and the spectra are strongly non-Gaussian
The effects of curvature on the flow field in rapidly rotating gas centrifuges
Wood, H.G.; Jordan, J.A.
1984-01-01
The effects of curvature on the fluid dynamics of rapidly rotating gas centrifuges are studied. A governing system of a linear partial differential equation and boundary conditions is derived based on a linearization of the equations for viscous compressible flow. This system reduces to the Onsager pancake model if the effects of curvature are neglected. Approximations to the solutions of the governing equations with and without curvature terms are obtained via a finite-element method. Two examples are considered: first where the flow is driven by a thermal gradient at the wall of the centrifuge, and then for the flow being driven by the introduction and removal of mass through the ends of the centrifuge. Comparisons of the results obtained show that, especially for the second example, the inclusion of the terms due to curvature in the model can have an appreciable effect on the solution. (author)
A non-differential elastomer curvature sensor for softer-than-skin electronics
Majidi, C; Kramer, R; Wood, R J
2011-01-01
We extend soft lithography microfabrication and design methods to introduce curvature sensors that are elastically soft (modulus 0.1–1 MPa) and stretchable (100–1000% strain). In contrast to existing curvature sensors that measure differential strain, sensors in this new class measure curvature directly and allow for arbitrary gauge factor and film thickness. Moreover, each sensor is composed entirely of a soft elastomer (PDMS (polydimethylsiloxane) or Ecoflex ® ) and conductive liquid (eutectic gallium indium, eGaIn) and thus remains functional even when stretched to several times its natural length. The electrical resistance in the embedded eGaIn microchannel is measured as a function of the bending curvature for a variety of sensor designs. In all cases, the experimental measurements are in reasonable agreement with closed-form algebraic approximations derived from elastic plate theory and Ohm's law
A non-differential elastomer curvature sensor for softer-than-skin electronics
Majidi, C.; Kramer, R.; Wood, R. J.
2011-10-01
We extend soft lithography microfabrication and design methods to introduce curvature sensors that are elastically soft (modulus 0.1-1 MPa) and stretchable (100-1000% strain). In contrast to existing curvature sensors that measure differential strain, sensors in this new class measure curvature directly and allow for arbitrary gauge factor and film thickness. Moreover, each sensor is composed entirely of a soft elastomer (PDMS (polydimethylsiloxane) or Ecoflex®) and conductive liquid (eutectic gallium indium, eGaIn) and thus remains functional even when stretched to several times its natural length. The electrical resistance in the embedded eGaIn microchannel is measured as a function of the bending curvature for a variety of sensor designs. In all cases, the experimental measurements are in reasonable agreement with closed-form algebraic approximations derived from elastic plate theory and Ohm's law.
Phase-space curvature in spin-orbit-coupled ultracold atomic systems
Armaitis, J.; Ruseckas, J.; Anisimovas, E.
2017-04-01
We consider a system with spin-orbit coupling and derive equations of motion which include the effects of Berry curvatures. We apply these equations to investigate the dynamics of particles with equal Rashba-Dresselhaus spin-orbit coupling in one dimension. In our derivation, the adiabatic transformation is performed first and leads to quantum Heisenberg equations of motion for momentum and position operators. These equations explicitly contain position-space, momentum-space, and phase-space Berry curvature terms. Subsequently, we perform the semiclassical approximation and obtain the semiclassical equations of motion. Taking the low-Berry-curvature limit results in equations that can be directly compared to previous results for the motion of wave packets. Finally, we show that in the semiclassical regime, the effective mass of the equal Rashba-Dresselhaus spin-orbit-coupled system can be viewed as a direct effect of the phase-space Berry curvature.
Amilal Bhat
2010-01-01
Conclusions : Preputioplasty with TIP is feasible in proximal hypospadias with curvature without increasing the complication rate. Postoperative phimosis can be prevented by on-table testing of the adequacy of preputial skin by 3 stay sutures.
Spinal curvatures of children and adolescents – a cross-sectional study
Grabara Małgorzata
2017-02-01
Full Text Available Study aim: The aim was to assess the spinal curvatures of primary and lower secondary male and female students from Silesia and to identify individual variations that can determine spinal posture.
The Lp Lp Lp-curvature images of convex bodies and Lp Lp Lp
Associated with the Lp-curvature image defined by Lutwak, some inequali- ... theory. With it, Lutwak [10] generalized many affine isoperimetric inequalities from their ... For quick reference, we recall some basic properties of Lp-mixed and dual ...
The Explicit Construction of Einstein Finsler Metrics with Non-Constant Flag Curvature
Enli Guo
2009-04-01
Full Text Available By using the Hawking Taub-NUT metric, this note gives an explicit construction of a 3-parameter family of Einstein Finsler metrics of non-constant flag curvature in terms of navigation representation.
New curvature-torsion relations through decomposition of the Bianchi identities
Davies, J.B.
1988-01-01
The Bianchi Identities relating asymmetric curvature to torsion are obtained as a new set of equations governing second-order curvature tensors. The usual contribution of symmetric curvature to the gravitational field is found to be a subset of these identities though with an added contribution due to torsion gradients. The antisymmetric curvature two-tensor is shown to be related to the divergence of the torsion. Using a model of particle-antiparticle pair production, identification of certain torsion components with electroweak fields is proposed. These components obey equations, similar to Maxwell's that are subsets of these linear Bianchi identities. These results are shown to be consistent with gauge and other previous analyses
Remirez, Andria A.; Webster, Robert J.
2016-03-01
Many applications in medicine require flexible surgical manipulators and endoscopes capable of reaching tight curvatures. The maximum curvature these devices can achieve is often restricted either by a strain limit, or by a maximum actuation force that the device's components can tolerate without risking mechanical failure. In this paper we propose the use of precurvature to "bias" the workspace of the device in one direction. Combined with axial shaft rotation, biasing increases the size of the device's workspace, enabling it to reach tighter curvatures than a comparable device without biasing can achieve, while still being able to fully straighten. To illustrate this effect, we describe several example prototype devices which use flexible nitinol strips that can be pushed and pulled to generate bending. We provide a statics model that relates the manipulator curvature to actuation force, and validate it experimentally.
Curvature effects in two-dimensional optical devices inspired by transformation optics
Yuan, Shuhao; Zhang, Yongyou; Zhang, Qingyun; Zou, Bingsuo; Schwingenschlö gl, Udo
2016-01-01
Light transport in curved quasi two-dimensional waveguides is considered theoretically. Within transformation optics and tensor theory, a concise description of curvature effects on transverse electric and magnetic waves is derived. We show
Principal Curvature Measures Estimation and Application to 3D Face Recognition
Tang, Yinhang; Li, Huibin; Sun, Xiang; Morvan, Jean-Marie; Chen, Liming
2017-01-01
-based local shape descriptors using the sparse representation-based reconstruction method. The proposed method was evaluated on three public databases, i.e. FRGC v2.0, Bosphorus, and Gavab. Experimental results demonstrated that the three principle curvature
On the asymptotically Poincaré-Einstein 4-manifolds with harmonic curvature
Hu, Xue
2018-06-01
In this paper, we discuss the mass aspect tensor and the rigidity of an asymptotically Poincaré-Einstein (APE) 4-manifold with harmonic curvature. We prove that the trace-free part of the mass aspect tensor of an APE 4-manifold with harmonic curvature and normalized Einstein conformal infinity is zero. As to the rigidity, we first show that a complete noncompact Riemannian 4-manifold with harmonic curvature and positive Yamabe constant as well as a L2-pinching condition is Einstein. As an application, we then obtain that an APE 4-manifold with harmonic curvature and positive Yamabe constant is isometric to the hyperbolic space provided that the L2-norm of the traceless Ricci tensor or the Weyl tensor is small enough and the conformal infinity is a standard round 3-sphere.
Donghoon Kang
2013-01-01
Full Text Available This study is focused on the verification of the key idea of a newly developed steel-concrete composite bridge. The key idea of the proposed bridge is to reduce the design moment by applying vertical prestressing force to steel girders, so that a moment distribution of a continuous span bridge is formed in a simple span bridge. For the verification of the key technology, curvature changes of the bridge should be monitored sequentially at every construction stage. A pair of multiplexed FBG sensor arrays is proposed in order to measure curvature changes in this study. They are embedded in a full-scale test bridge and measured local strains, which are finally converted to curvatures. From the result of curvature changes, it is successfully ensured that the key idea of the proposed bridge, expected theoretically, is viable.
Measuring the composition-curvature coupling in binary lipid membranes by computer simulations
Barragán Vidal, I. A., E-mail: vidal@theorie.physik.uni-goettingen.de; Müller, M., E-mail: mmueller@theorie.physik.uni-goettingen.de [Institut für Theoretische Physik, Georg-August-Universität, Friedrich-Hund-Platz 1, 37077 Göttingen (Germany); Rosetti, C. M., E-mail: carla@dqb.fcq.unc.edu.ar [Centro de Investigaciones en Química Biológica de Córdoba, Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba (Argentina); Pastorino, C., E-mail: pastor@cnea.gov.ar [Departamento de Física de la Materia Condensada, Centro Atómico Constituyentes, CNEA/CONICET, Av. Gral. Paz 1499, 1650 Pcia. de Buenos Aires (Argentina)
2014-11-21
The coupling between local composition fluctuations in binary lipid membranes and curvature affects the lateral membrane structure. We propose an efficient method to compute the composition-curvature coupling in molecular simulations and apply it to two coarse-grained membrane models—a minimal, implicit-solvent model and the MARTINI model. Both the weak-curvature behavior that is typical for thermal fluctuations of planar bilayer membranes as well as the strong-curvature regime corresponding to narrow cylindrical membrane tubes are studied by molecular dynamics simulation. The simulation results are analyzed by using a phenomenological model of the thermodynamics of curved, mixed bilayer membranes that accounts for the change of the monolayer area upon bending. Additionally the role of thermodynamic characteristics such as the incompatibility between the two lipid species and asymmetry of composition are investigated.
Generalization of the swelling method to measure the intrinsic curvature of lipids
Barragán Vidal, I. A.; Müller, M.
2017-12-01
Via computer simulation of a coarse-grained model of two-component lipid bilayers, we compare two methods of measuring the intrinsic curvatures of the constituting monolayers. The first one is a generalization of the swelling method that, in addition to the assumption that the spontaneous curvature linearly depends on the composition of the lipid mixture, incorporates contributions from its elastic energy. The second method measures the effective curvature-composition coupling between the apposing leaflets of bilayer structures (planar bilayers or cylindrical tethers) to extract the spontaneous curvature. Our findings demonstrate that both methods yield consistent results. However, we highlight that the two-leaflet structure inherent to the latter method has the advantage of allowing measurements for mixed lipid systems up to their critical point of demixing as well as in the regime of high concentration (of either species).
The curvature and the algebra of Killing vectors in five-dimensional space
Rcheulishvili, G.
1990-12-01
This paper presents the Killing vectors for a five-dimensional space with the line element. The algebras which are formed by these vectors are written down. The curvature two-forms are described. (author). 10 refs
Measuring the composition-curvature coupling in binary lipid membranes by computer simulations
Barragán Vidal, I. A.; Müller, M.; Rosetti, C. M.; Pastorino, C.
2014-01-01
The coupling between local composition fluctuations in binary lipid membranes and curvature affects the lateral membrane structure. We propose an efficient method to compute the composition-curvature coupling in molecular simulations and apply it to two coarse-grained membrane models—a minimal, implicit-solvent model and the MARTINI model. Both the weak-curvature behavior that is typical for thermal fluctuations of planar bilayer membranes as well as the strong-curvature regime corresponding to narrow cylindrical membrane tubes are studied by molecular dynamics simulation. The simulation results are analyzed by using a phenomenological model of the thermodynamics of curved, mixed bilayer membranes that accounts for the change of the monolayer area upon bending. Additionally the role of thermodynamic characteristics such as the incompatibility between the two lipid species and asymmetry of composition are investigated
Bhat, Amilal; Gandhi, Ajay; Saxena, Gajendra; Choudhary, Gautam Ram
2010-01-01
Aims : Objective of this study was to assess the feasibility and results of preputial reconstruction and tubularized incised plate urethroplasty (TIP) in patients of proximal hypospadias with ventral penile curvature. Materials and Methods : Twenty-seven patients of proximal hypospadias who underwent preputioplasty with TIP were evaluated retrospectively. Ventral curvature was corrected by mobilization of the urethral plate with the corpus spongiosum and the proximal urethra; dorsal plica...
Isometric surfaces with a common mean curvature and the problem of Bonnet pairs
Sabitov, Idzhad Kh
2012-01-01
Simple methods are used to give new proofs, and sometimes to make them more precise, of basic theorems on isometric surfaces with a common mean curvature, which are usually called Bonnet pairs. The considerations are conducted under the assumption of minimally admissible smoothness of the objects in question, and certain necessary or sufficient criteria are given for the non-existence of Bonnet pairs with a common non-constant mean curvature among compact surfaces. Bibliography: 26 titles.
Asymmetric vibrations of shells of revolution having meridionally varying curvature and thickness
Suzuki, Katsuyoshi; Kosawada, Tadashi; Miura, Kazuyuki.
1988-01-01
An exact method using power series expansions is presented for solving asymmetric free vibration problems for shells of revolution having meridionally varying curvature and thickness. The gaverning equations of motion and the boundary conditions are derived from the stationary conditions of the Lagrangian of the shells of revolution. The method is demonstrated for shells of revolution having elliptical, cycloidal, parabolical, catenary and hyperbolical meridional curvature. The natural frequencies are numerically calculated for these shells having second degree thickness variation. (author)
First contact: understanding the relationship between hominoid incisor curvature and diet.
Deane, Andrew
2009-03-01
Accurately interpreting fossil primate dietary behaviour is necessary to fully understand a species' ecology and connection to its environment. Traditional methods developed to infer diet from hominoid teeth successfully group taxa into broad dietary categories (i.e., folivore, frugivore) but often fail to represent the range of dietary variability characteristic of living apes. This oversimplification is not only a consequence of poor resolution, but may also reflect the use of similar fallback resources by closely related taxa with dissimilar diets. This study demonstrates that additional dietary specificity can be achieved using a morphometric approach to hominoid incisor curvature. High-resolution polynomial curve fitting (HR-PCF) was used to quantify the incisor curvatures of closely related hominoid taxa that have dissimilar diets but similar morphological adaptations to specific keystone resources (e.g., Gorilla gorilla beringei vs. G. g. gorilla). Given the key role of incisors in food processing, it is reasonable to assume that these teeth will be at least partially influenced by the unique selective pressures imposed by the mechanical loading specific to individual diets. Results from this study identify a strong correlation between hominoid dietary proportions and incisor linear dimensions and curvature, indicating that more pronounced incisor curvature is positively correlated with higher levels of frugivory. Hard-object frugivores have the greatest mesiodistal and cervico-incisal curvature and dedicated folivores have the least curved incisors. Mixed folivore/frugivores are morphological intermediates between dedicated folivores and hard- and soft-object frugivores. Mesiodistal curvature varied only in the degree of curvature; however, cervico-incisal curvature was shown to differ qualitatively between more frugivorous and more folivorous taxa. In addition to identifying a greater range of dietary variability among hominoids, this study also
Freund, L.B.; Floro, J.A.; Chason, E.
1999-01-01
Two main assumptions which underlie the Stoney formula relating substrate curvature to mismatch strain in a bonded thin film are that the film is very thin compared to the substrate, and the deformations are infinitesimally small. Expressions for the curvature - strain relationship are derived for cases in which these assumptions are relaxed, thereby providing a basis for interpretation of experimental observations for a broader class of film - substrate configurations. copyright 1999 American Institute of Physics
Distal root curvatures in mandibular molars: analysis using digital panoramic X-rays.
Fuentes, R; Farfán, C; Astete, N; Navarro, P; Arias, A
2018-01-01
The aim of this study was to describe the degree of curvature in distal roots in the first and second permanent mandibular molars in a Chilean patient sample. A cross-sectional descriptive study was conducted in which digital panoramic X-rays were analysed. Examinations of patients under 18 years, with signs of distortion or alteration in the contrast or the presence of pathologies that affected visualisation of the roots and pulp-chamber floor of the teeth to be analysed were excluded. Using the AutoCad software, an angle was drawn to represent the curve of the root in its different thirds, drawing lines inside the root canal from the pulp-chamber floor to the dental apex. Using the classic definition of dilaceration (root curvature > 90°), its prevalence was established. 412 teeth and roots were analysed, finding a dilaceration prevalence of 0.73% (n = 3). 84.72% of the roots presented some type of curvature. The middle third had the highest percentage of curvatures and the greatest average of angular curvature, whereas the cervical third was the straightest. No significant differences were found between the degree of curvature and the gender of the subjects, except for the apical third of tooth 3.6. The analysis of curvature by root third offers to the clinician a better perspective of the directional change of the roots and does not limit it to just the presence of curves in the apical third. The report of the angular degree of the curvatures, in addition to the prevalence of dilacerations, informs to the clinicians about the likelihood of finding difficulties when treating root canals. (Folia Morphol 2018; 77, 1: 131-137).
Sun Zong-Li; Kang Yan-Shuang
2011-01-01
Classical density functional theory is used to study the associating Lennard—Jones fluids in contact with spherical hard wall of different curvature radii. The interfacial properties including contact density and fluid-solid interfacial tension are investigated. The influences of associating energy, curvature of hard wall and the bulk density of fluids on these properties are analyzed in detail. The results may provide helpful clues to understand the interfacial properties of other complex fluids. (condensed matter: structure, mechanical and thermal properties)
Role of parallel flow curvature on the mitigation of Rayleigh-Taylor instability
Sarmah, D.; Sen, S.; Cairns, R.A.
2001-01-01
The effect of a radially varying parallel equilibrium flow on the stability of the Rayleigh-Taylor (RT) mode is studied analytically in the presence of a sheared magnetic field. It is shown that the parallel flow curvature can completely stabilize the RT mode. The flow curvature also has a robust effect on the radial structure of the mode. Possible implications of these theoretical findings to recent experiments are also discussed
ORNL Interim Progress Report on Static CIRFT Testing Curvature Data Update
Wang, Jy-An John [ORNL; Wang, Hong [ORNL
2016-10-10
Since the CIRFT tests reported in NUREG-7198 were generated, a number of factors that influence the recorded curvature measurement data were identified. In 2016, a data reanalysis task was undertaken to implement the lessons learned. This letter report provides the revised results of previous CIRFT tests, after implementing the following data reanalysis procedures: (A) experimental data smoothing and LVDT reset, (B) LVDT probe contact and sensor spacing correction for curvature data, and (C) LVDT probe dynamic vibration adjustment procedure development.
No large scale curvature perturbations during the waterfall phase transition of hybrid inflation
Abolhasani, Ali Akbar; Firouzjahi, Hassan
2011-01-01
In this paper the possibility of generating large scale curvature perturbations induced from the entropic perturbations during the waterfall phase transition of the standard hybrid inflation model is studied. We show that whether or not appreciable amounts of large scale curvature perturbations are produced during the waterfall phase transition depends crucially on the competition between the classical and the quantum mechanical backreactions to terminate inflation. If one considers only the classical evolution of the system, we show that the highly blue-tilted entropy perturbations induce highly blue-tilted large scale curvature perturbations during the waterfall phase transition which dominate over the original adiabatic curvature perturbations. However, we show that the quantum backreactions of the waterfall field inhomogeneities produced during the phase transition dominate completely over the classical backreactions. The cumulative quantum backreactions of very small scale tachyonic modes terminate inflation very efficiently and shut off the curvature perturbation evolution during the waterfall phase transition. This indicates that the standard hybrid inflation model is safe under large scale curvature perturbations during the waterfall phase transition.
On the curvature of transmitted intensity plots in broad beam studies
El-Kateb, A.H.
2000-01-01
Transmission of a broad beam of gamma rays of 81- and 356-keV energies from 133 Ba is studied singly and dually. This study is the first to deal with the curvatures of the intensity plots. The targets are dextrose solutions of percentage concentrations up to 0.125 and soil containing water with concentrations up to 0.319. The logarithmic intensity plots are expressed in terms of a polynomial in the concentration. The curvatures of the plots are measured and calculated on the basis of the theoretical mass attenuation coefficients. The results are discussed in conjunction with buildup factors and the probability of photoelectric and Compton interactions. The curvatures show maxima when incoherent interaction prevails. This is evidently proved in case of the single 356-keV and of the dual 81- and 356-keV applied energies. Comparison is performed between the measured and calculated curvatures. The concept of curvature is applied and discussed for published results of narrow beam geometry. Correspondingly, this is the first search to introduce curvature instead of buildup as a measure for transmitted collided photons
A geometric construction of the Riemann scalar curvature in Regge calculus
McDonald, Jonathan R.; Miller, Warner A.
2008-10-01
The Riemann scalar curvature plays a central role in Einstein's geometric theory of gravity. We describe a new geometric construction of this scalar curvature invariant at an event (vertex) in a discrete spacetime geometry. This allows one to constructively measure the scalar curvature using only clocks and photons. Given recent interest in discrete pre-geometric models of quantum gravity, we believe is it ever so important to reconstruct the curvature scalar with respect to a finite number of communicating observers. This derivation makes use of a new fundamental lattice cell built from elements inherited from both the original simplicial (Delaunay) spacetime and its circumcentric dual (Voronoi) lattice. The orthogonality properties between these two lattices yield an expression for the vertex-based scalar curvature which is strikingly similar to the corresponding hinge-based expression in Regge calculus (deficit angle per unit Voronoi dual area). In particular, we show that the scalar curvature is simply a vertex-based weighted average of deficits per weighted average of dual areas.
A geometric construction of the Riemann scalar curvature in Regge calculus
McDonald, Jonathan R; Miller, Warner A
2008-01-01
The Riemann scalar curvature plays a central role in Einstein's geometric theory of gravity. We describe a new geometric construction of this scalar curvature invariant at an event (vertex) in a discrete spacetime geometry. This allows one to constructively measure the scalar curvature using only clocks and photons. Given recent interest in discrete pre-geometric models of quantum gravity, we believe is it ever so important to reconstruct the curvature scalar with respect to a finite number of communicating observers. This derivation makes use of a new fundamental lattice cell built from elements inherited from both the original simplicial (Delaunay) spacetime and its circumcentric dual (Voronoi) lattice. The orthogonality properties between these two lattices yield an expression for the vertex-based scalar curvature which is strikingly similar to the corresponding hinge-based expression in Regge calculus (deficit angle per unit Voronoi dual area). In particular, we show that the scalar curvature is simply a vertex-based weighted average of deficits per weighted average of dual areas
Moment-Curvature Behaviors of Concrete Beams Singly Reinforced by Steel-FRP Composite Bars
Zeyang Sun
2017-01-01
Full Text Available A steel-fiber-reinforced polymer (FRP composite bar (SFCB is a kind of rebar with inner steel bar wrapped by FRP, which can achieve a better anticorrosion performance than that of ordinary steel bar. The high ultimate strength of FRP can also provide a significant increase in load bearing capacity. Based on the adequate simulation of the load-displacement behaviors of concrete beams reinforced by SFCBs, a parametric analysis of the moment-curvature behaviors of concrete beams that are singly reinforced by SFCB was conducted. The critical reinforcement ratio for differentiating the beam’s failure mode was presented, and the concept of the maximum possible peak curvature (MPPC was proposed. After the ultimate curvature reached MPPC, it decreased with an increase in the postyield stiffness ratio (rsf, and the theoretical calculation method about the curvatures before and after the MPPC was derived. The influence of the reinforcement ratio, effective depth, and FRP ultimate strain on the ultimate point was studied by the dimensionless moment and curvature. By calculating the envelope area under the moment-curvature curve, the energy ductility index can obtain a balance between the bearing capacity and the deformation ability. This paper can provide a reference for the design of concrete beams that are reinforced by SFCB or hybrid steel bar/FRP bar.
Incorporating contact angles in the surface tension force with the ACES interface curvature scheme
Owkes, Mark
2017-11-01
In simulations of gas-liquid flows interacting with solid boundaries, the contact line dynamics effect the interface motion and flow field through the surface tension force. The surface tension force is directly proportional to the interface curvature and the problem of accurately imposing a contact angle must be incorporated into the interface curvature calculation. Many commonly used algorithms to compute interface curvatures (e.g., height function method) require extrapolating the interface, with defined contact angle, into the solid to allow for the calculation of a curvature near a wall. Extrapolating can be an ill-posed problem, especially in three-dimensions or when multiple contact lines are near each other. We have developed an accurate methodology to compute interface curvatures that allows for contact angles to be easily incorporated while avoiding extrapolation and the associated challenges. The method, known as Adjustable Curvature Evaluation Scale (ACES), leverages a least squares fit of a polynomial to points computed on the volume-of-fluid (VOF) representation of the gas-liquid interface. The method is tested by simulating canonical test cases and then applied to simulate the injection and motion of water droplets in a channel (relevant to PEM fuel cells).
The effect of curvature on the undulation spectrum of Red Blood Cell membranes
Kuriabova, Tatiana; Henle, Mark L.; Levine, Alex J.
2009-03-01
The human red blood cell (RBC) membrane has a composite structure of a fluid lipid bilayer tethered to an elastic 2D spectrin network. The study of the mechanical properties of RBCs is crucial to our understanding of their ability withstand large amplitude deformations during their passage through the microvasculature. The linear mechanical response of this composite membrane can be measured by observing its undulatory dynamics in thermal equilibrium, i.e. microrheology. Previous models of these dynamics postulated an effective surface tension. In this talk, we show that surface tension is not necessary. Rather, the coupling of membrane bending to spectrin network compression by curvature can account for the observed dynamics. We use a simplified theoretical model to describe the undulatory dynamics of RBCs, measured experimentally by the Popescu group.ootnotetextG. Popescu et al. ``Imaging red blood cell dynamics by quantitative phase microscopy, Blood Cells, Molecules, and Diseases, (2008), in print'' Analyzing their data using our model, we observe dramatic changes in RBC membrane elasticity associated with cells' morphological transition from discocytes to echinocyte to spherocyte.
Sedbrook, J. C.; Chen, R.; Masson, P. H.
1999-01-01
Gravitropism allows plant organs to direct their growth at a specific angle from the gravity vector, promoting upward growth for shoots and downward growth for roots. Little is known about the mechanisms underlying gravitropic signal transduction. We found that mutations in the ARG1 locus of Arabidopsis thaliana alter root and hypocotyl gravitropism without affecting phototropism, root growth responses to phytohormones or inhibitors of auxin transport, or starch accumulation. The positional cloning of ARG1 revealed a DnaJ-like protein containing a coiled-coil region homologous to coiled coils found in cytoskeleton-interacting proteins. These data suggest that ARG1 participates in a gravity-signaling process involving the cytoskeleton. A combination of Northern blot studies and analysis of ARG1-GUS fusion-reporter expression in transgenic plants demonstrated that ARG1 is expressed in all organs. Ubiquitous ARG1 expression in Arabidopsis and the identification of an ortholog in Caenorhabditis elegans suggest that ARG1 is involved in other essential processes.
Anatomical study of the radius and center of curvature of the distal femoral condyle
Kosel, Jü rgen; Giouroudi, Ioanna; Scheffer, Cornie; Dillon, Edwin Mark; Erasmus, Pieter J.
2010-01-01
In this anatomical study, the anteroposterior curvature of the surface of 16 cadaveric distal femurs was examined in terms of radii and center point. Those two parameters attract high interest due to their significance for total knee arthroplasty. Basically, two different conclusions have been drawn in foregoing studies: (1) The curvature shows a constant radius and (2) the curvature shows a variable radius. The investigations were based on a new method combining three-dimensional laser-scanning and planar geometrical analyses. This method is aimed at providing high accuracy and high local resolution. The high-precision laser scanning enables the exact reproduction of the distal femurs - including their cartilage tissue - as a three-dimensional computer model. The surface curvature was investigated on intersection planes that were oriented perpendicularly to the surgical epicondylar line. Three planes were placed at the central part of each condyle. The intersection of either plane with the femur model was approximated with the help of a b-spline, yielding three b-splines on each condyle. The radii and center points of the circles, approximating the local curvature of the b-splines, were then evaluated. The results from all three b-splines were averaged in order to increase the reliability of the method. The results show the variation in the surface curvatures of the investigated samples of condyles. These variations are expressed in the pattern of the center points and the radii of the curvatures. The standard deviations of the radii for a 90 deg arc on the posterior condyle range from 0.6 mm up to 5.1 mm, with an average of 2.4 mm laterally and 2.2 mm medially. No correlation was found between the curvature of the lateral and medial condyles. Within the range of the investigated 16 samples, the conclusion can be drawn that the condyle surface curvature is not constant and different for all specimens when viewed along the surgical epicondylar axis. For the portion
Regional surface geometry of the rat stomach based on three-dimensional curvature analysis
Liao Donghua [Center of Excellence in Visceral Biomechanics and Pain, Aalborg Hospital, DK-9100 Aalborg (Denmark); Zhao Jingbo [Center of Excellence in Visceral Biomechanics and Pain, Aalborg Hospital, DK-9100 Aalborg (Denmark); Gregersen, Hans [Center of Excellence in Visceral Biomechanics and Pain, Aalborg Hospital, DK-9100 Aalborg (Denmark)
2005-01-21
A better understanding of gastric accommodation and gastric perception requires knowledge of regional gastric geometry and local gastric tension throughout the stomach. An analytic method based on medical imaging data was developed in this study to describe the three-dimensional (3D) rat stomach geometry and tension distribution. The surface principal radii of curvatures were simulated and the surface tension was calculated in the glandular and non-glandular region of the stomach at pressures from 0 Pa to 800 Pa. The radii of curvature and tension distribution in the stomach were non-homogeneous. The radii of curvature in the glandular stomach were larger than those in the non-glandular region at pressures less than 100 Pa (P < 0.001). When the pressure increased to more than 200 Pa, the radii of curvature in the non-glandular stomach was larger than in the glandular stomach (P < 0.05). The curvature and tension distribution mapping using medical imaging technology and 3D models can be used to characterize and distinguish the physical behaviour in separate regions of the stomach.
Regional surface geometry of the rat stomach based on three-dimensional curvature analysis
Liao Donghua; Zhao Jingbo; Gregersen, Hans
2005-01-01
A better understanding of gastric accommodation and gastric perception requires knowledge of regional gastric geometry and local gastric tension throughout the stomach. An analytic method based on medical imaging data was developed in this study to describe the three-dimensional (3D) rat stomach geometry and tension distribution. The surface principal radii of curvatures were simulated and the surface tension was calculated in the glandular and non-glandular region of the stomach at pressures from 0 Pa to 800 Pa. The radii of curvature and tension distribution in the stomach were non-homogeneous. The radii of curvature in the glandular stomach were larger than those in the non-glandular region at pressures less than 100 Pa (P < 0.001). When the pressure increased to more than 200 Pa, the radii of curvature in the non-glandular stomach was larger than in the glandular stomach (P < 0.05). The curvature and tension distribution mapping using medical imaging technology and 3D models can be used to characterize and distinguish the physical behaviour in separate regions of the stomach
The geometric curvature of the lumbar spine during restricted and unrestricted squats.
Hebling Campos, Mário; Furtado Alaman, Laizi I; Seffrin-Neto, Aldo A; Vieira, Carlos A; Costa de Paula, Marcelo; Barbosa de Lira, Claudio A
2017-06-01
The main purpose of this study was to analyze the behavior of the geometric curvature of the lumbar spine during restricted and unrestricted squats, using a novel investigative method. The rationale for our hypothesis is that the lumbar curvature has different patterns at different spine levels depending on the squat technique used. Spine motion was collected via stereo-photogrammetric analysis in nineteen participants (11 males, 8 females). The reconstructed spine points at the upright neutral position and at the deepest position of the squat exercise were projected onto the sagittal plane of the trunk, a polynomial was fitted to the data, and were quantified the two-dimensional geometric curvature at lower, central and higher lumbar levels, besides the inclination of trunk and lumbosacral region, the overall geometric curvature and overall angle of the lumbar spine. The mean values for each variable were analysed with paired t-test (Psquat techniques and these effects are also reduced in unrestricted squats. The data collected in the study are evidence that during barbell squats the lumbar curvature has different patterns at different spinal levels depending on the exercise technique. The lower lumbar spine appears to be less overloaded during unrestricted squats.
Kieokaew, Rungployphan; Foullon, Claire; Lavraud, Benoit
2018-01-01
Four-spacecraft missions are probing the Earth's magnetospheric environment with high potential for revealing spatial and temporal scales of a variety of in situ phenomena. The techniques allowed by these four spacecraft include the calculation of vorticity and the magnetic curvature analysis (MCA), both of which have been used in the study of various plasma structures. Motivated by curved magnetic field and vortical structures induced by Kelvin- Helmholtz (KH) waves, we investigate the robustness of the MCA and vorticity techniques when increasing (regular) tetrahedron sizes, to interpret real data. Here for the first time, we test both techniques on a 2.5-D MHD simulation of KH waves at the magnetopause. We investigate, in particular, the curvature and flow vorticity across KH vortices and produce time series for static spacecraft in the boundary layers. The combined results of magnetic curvature and vorticity further help us to understand the development of KH waves. In particular, first, in the trailing edge, the magnetic curvature across the magnetopause points in opposite directions, in the wave propagation direction on the magnetosheath side and against it on the magnetospheric side. Second, the existence of a "turnover layer" in the magnetospheric side, defined by negative vorticity for the duskside magnetopause, which persists in the saturation phase, is reminiscent of roll-up history. We found significant variations in the MCA measures depending on the size of the tetrahedron. This study lends support for cross-scale observations to better understand the nature of curvature and its role in plasma phenomena.
Awareness Becomes Necessary Between Adaptive Pattern Coding of Open and Closed Curvatures
Sweeny, Timothy D.; Grabowecky, Marcia; Suzuki, Satoru
2012-01-01
Visual pattern processing becomes increasingly complex along the ventral pathway, from the low-level coding of local orientation in the primary visual cortex to the high-level coding of face identity in temporal visual areas. Previous research using pattern aftereffects as a psychophysical tool to measure activation of adaptive feature coding has suggested that awareness is relatively unimportant for the coding of orientation, but awareness is crucial for the coding of face identity. We investigated where along the ventral visual pathway awareness becomes crucial for pattern coding. Monoptic masking, which interferes with neural spiking activity in low-level processing while preserving awareness of the adaptor, eliminated open-curvature aftereffects but preserved closed-curvature aftereffects. In contrast, dichoptic masking, which spares spiking activity in low-level processing while wiping out awareness, preserved open-curvature aftereffects but eliminated closed-curvature aftereffects. This double dissociation suggests that adaptive coding of open and closed curvatures straddles the divide between weakly and strongly awareness-dependent pattern coding. PMID:21690314
Experimental study of curvature effects on jet impingement heat transfer on concave surfaces
Ying Zhou
2017-04-01
Full Text Available Experimental study of the local and average heat transfer characteristics of a single round jet impinging on the concave surfaces was conducted in this work to gain in-depth knowledge of the curvature effects. The experiments were conducted by employing a piccolo tube with one single jet hole over a wide range of parameters: jet Reynolds number from 27000 to 130000, relative nozzle to surface distance from 3.3 to 30, and relative surface curvature from 0.005 to 0.030. Experimental results indicate that the surface curvature has opposite effects on heat transfer characteristics. On one hand, an increase of relative nozzle to surface distance (increasing jet diameter in fact enhances the average heat transfer around the surface for the same curved surface. On the other hand, the average Nusselt number decreases as relative nozzle to surface distance increases for a fixed jet diameter. Finally, experimental data-based correlations of the average Nusselt number over the curved surface were obtained with consideration of surface curvature effect. This work contributes to a better understanding of the curvature effects on heat transfer of a round jet impingement on concave surfaces, which is of high importance to the design of the aircraft anti-icing system.
Badial, Peres R; Cisneros-Àlvarez, Luis Emiliano; Brandão, Cláudia Valéria S; Ranzani, José Joaquim T; Tomaz, Mayana A R V; Machado, Vania M; Borges, Alexandre S
2015-09-01
The aim of this study was to compare ocular dimensions, corneal curvature, and corneal thickness between horses affected with hereditary equine regional dermal asthenia (HERDA) and unaffected horses. Five HERDA-affected quarter horses and five healthy control quarter horses were used. Schirmer's tear test, tonometry, and corneal diameter measurements were performed in both eyes of all horses prior to ophthalmologic examinations. Ultrasonic pachymetry was performed to measure the central, temporal, nasal, dorsal, and ventral corneal thicknesses in all horses. B-mode ultrasound scanning was performed on both eyes of each horse to determine the dimensions of the ocular structures and to calculate the corneal curvature. Each corneal region examined in this study was thinner in the affected group compared with the healthy control group. However, significant differences in corneal thickness were only observed for the central and dorsal regions. HERDA-affected horses exhibited significant increases in corneal curvature and corneal diameter compared with unaffected animals. The ophthalmologic examinations revealed mild corneal opacity in one eye of one affected horse and in both eyes of three affected horses. No significant between-group differences were observed for Schirmer's tear test, intraocular pressure, or ocular dimensions. Hereditary equine regional dermal asthenia-affected horses exhibit decreased corneal thickness in several regions of the cornea, increased corneal curvature, increased corneal diameter, and mild corneal opacity. Additional research is required to determine whether the increased corneal curvature significantly impacts the visual accuracy of horses with HERDA. © 2014 American College of Veterinary Ophthalmologists.
Berookhim, Boback M; Karpman, Edward; Carrion, Rafael
2015-11-01
The surgical treatment of comorbid erectile dysfunction and Peyronie's disease has long included the implantation of an inflatable penile prosthesis as well as a number of adjuvant maneuvers to address residual curvature after prosthesis placement. To review the various surgical options for addressing curvature after prosthesis placement, with specific attention paid to an original article by Wilson et al. reporting on modeling over a penile prosthesis for the management of Peyronie's disease. A literature review was performed analyzing articles reporting the management of penile curvature in patients undergoing implantation of an inflatable penile prosthesis. Reported improvement in Peyronie's deformity as well as the complication rate associated with the various surgical techniques described. Modeling is a well-established treatment modality among patients with Peyronie's disease undergoing penile prosthesis implantation. A variety of other adjuvant maneuvers to address residual curvature when modeling alone is insufficient has been presented in the literature. Over 20 years of experience with modeling over a penile prosthesis have proven the efficacy and safety of this treatment option, providing the surgeon a simple initial step for the management of residual curvature after penile implantation which allows for the use of additional adjuvant maneuvers in those with significant deformities. © 2015 International Society for Sexual Medicine.
Scalar curvature in conformal geometry of Connes-Landi noncommutative manifolds
Liu, Yang
2017-11-01
We first propose a conformal geometry for Connes-Landi noncommutative manifolds and study the associated scalar curvature. The new scalar curvature contains its Riemannian counterpart as the commutative limit. Similar to the results on noncommutative two tori, the quantum part of the curvature consists of actions of the modular derivation through two local curvature functions. Explicit expressions for those functions are obtained for all even dimensions (greater than two). In dimension four, the one variable function shows striking similarity to the analytic functions of the characteristic classes appeared in the Atiyah-Singer local index formula, namely, it is roughly a product of the j-function (which defines the A ˆ -class of a manifold) and an exponential function (which defines the Chern character of a bundle). By performing two different computations for the variation of the Einstein-Hilbert action, we obtain deep internal relations between two local curvature functions. Straightforward verification for those relations gives a strong conceptual confirmation for the whole computational machinery we have developed so far, especially the Mathematica code hidden behind the paper.
Numerical Investigation on Fluid Flow in a 90-Degree Curved Pipe with Large Curvature Ratio
Yan Wang
2015-01-01
Full Text Available In order to understand the mechanism of fluid flows in curved pipes, a large number of theoretical and experimental researches have been performed. As a critical parameter of curved pipe, the curvature ratio δ has received much attention, but most of the values of δ are very small (δ<0.1 or relatively small (δ≤0.5. As a preliminary study and simulation this research studied the fluid flow in a 90-degree curved pipe of large curvature ratio. The Detached Eddy Simulation (DES turbulence model was employed to investigate the fluid flows at the Reynolds number range from 5000 to 20000. After validation of the numerical strategy, the pressure and velocity distribution, pressure drop, fluid flow, and secondary flow along the curved pipe were illustrated. The results show that the fluid flow in a curved pipe with large curvature ratio seems to be unlike that in a curved pipe with small curvature ratio. Large curvature ratio makes the internal flow more complicated; thus, the flow patterns, the separation region, and the oscillatory flow are different.
Frame-Covariant Formulation of Inflation in Scalar-Curvature Theories
Burns, Daniel; Pilaftsis, Apostolos
2016-01-01
We develop a frame-covariant formulation of inflation in the slow-roll approximation by generalizing the inflationary attractor solution for scalar-curvature theories. Our formulation gives rise to new generalized forms for the potential slow-roll parameters, which enable us to examine the effect of conformal transformations and inflaton reparameterizations in scalar-curvature theories. We find that cosmological observables, such as the power spectrum, the spectral indices and their runnings, can be expressed in a concise manner in terms of the generalized potential slow-roll parameters which depend on the scalar-curvature coupling function, the inflaton wavefunction, and the inflaton potential. We show how the cosmological observables of inflation are frame-invariant in this generalized potential slow-roll formalism, as long as the end-of-inflation condition is appropriately extended to become frame-invariant as well. We then apply our formalism to specific scenarios, such as the induced gravity inflation, H...
Keller, Brad M.; Reeves, Anthony P.; Barr, R. Graham; Yankelevitz, David F.; Henschke, Claudia I.
2010-03-01
CT scans allow for the quantitative evaluation of the anatomical bases of emphysema. Recently, a non-density based geometric measurement of lung diagphragm curvature has been proposed as a method for the quantification of emphysema from CT. This work analyzes variability of diaphragm curvature and evaluates the effectiveness of a compensation methodology for the reduction of this variability as compared to emphysema index. Using a dataset of 43 scan-pairs with less than a 100 day time-interval between scans, we find that the diaphragm curvature had a trend towards lower overall variability over emphysema index (95% CI:-9.7 to + 14.7 vs. -15.8 to +12.0), and that the variation of both measures was reduced after compensation. We conclude that the variation of the new measure can be considered comparable to the established measure and the compensation can reduce the apparent variation of quantitative measures successfully.
A curvature-based weighted fuzzy c-means algorithm for point clouds de-noising
Cui, Xin; Li, Shipeng; Yan, Xiutian; He, Xinhua
2018-04-01
In order to remove the noise of three-dimensional scattered point cloud and smooth the data without damnify the sharp geometric feature simultaneity, a novel algorithm is proposed in this paper. The feature-preserving weight is added to fuzzy c-means algorithm which invented a curvature weighted fuzzy c-means clustering algorithm. Firstly, the large-scale outliers are removed by the statistics of r radius neighboring points. Then, the algorithm estimates the curvature of the point cloud data by using conicoid parabolic fitting method and calculates the curvature feature value. Finally, the proposed clustering algorithm is adapted to calculate the weighted cluster centers. The cluster centers are regarded as the new points. The experimental results show that this approach is efficient to different scale and intensities of noise in point cloud with a high precision, and perform a feature-preserving nature at the same time. Also it is robust enough to different noise model.
Controllable soliton propagation based on phase-front curvature in asymmetrical nonlocal media
Zhang, Huafeng; Lü, Hua; Luo, Jianghua; Sun, Lihui
2016-08-01
The influence of phase-front curvature on the dynamical behavior of the fundamental mode soliton during its transmission in asymmetrical nonlocal media is studied in detail and the phase-front curvature can be imposed on the fundamental mode soliton by reshaping or phase imprinting technologies. By changing the phase-front curvature or its imposed position, controllable soliton propagation in asymmetrical nonlocal media can be achieved. Project supported by the National Natural Science Foundation of China (Grants Nos. 11547007 and 11304024), the Innovation Personnel Training Plan for Excellent Youth of Guangdong University Project (Grant No. 2013LYM_0023), and the Yangtze Fund for Youth Teams of Science and Technology Innovation (Grant No. 2015cqt03).
Correlation Functions of the Energy Momentum Tensor on Spaces of Constant Curvature
Osborn, H
2000-01-01
An analysis of one and two point functions of the energy momentum tensor on homogeneous spaces of constant curvature is undertaken. The possibility of proving a c-theorem in this framework is discussed, in particular in relation to the coefficients c,a, which appear in the energy momentum tensor trace on general curved backgrounds in four dimensions. Ward identities relating the correlation functions are derived and explicit expressions are obtained for free scalar, spinor field theories in general dimensions and also free vector fields in dimension four. A natural geometric formalism which is independent of any choice of coordinates is used and the role of conformal symmetries on such constant curvature spaces is analysed. The results are shown to be constrained by the operator product expansion. For negative curvature the spectral representation, involving unitary positive energy representations of $O(d-1,2)$, for two point functions of vector currents is derived in detail and extended to the energy momentu...
Inﬂuence of implant rod curvature on sagittal correction of scoliosis deformity
Salmingo, Remel A.; Tadano, Shigeru; Abe, Yuichiro
2014-01-01
of the implant rod’s angle of curvature during surgery and establish its influence on sagittal correction of scoliosis deformity. STUDY DESIGN: A retrospective analysis of the preoperative and postoperative implant rod geometry and angle of curvature was conducted. PATIENT SAMPLE: Twenty adolescent idiopathic......BACKGROUND CONTEXT: Deformation of in vivo–implanted rods could alter the scoliosis sagittal correction. To our knowledge, no previous authors have investigated the influence of implanted-rod deformation on the sagittal deformity correction during scoliosis surgery. PURPOSE: To analyze the changes...... scoliosis patients underwent surgery. Average age at the time of operation was 14 years. OUTCOME MEASURES: The preoperative and postoperative implant rod angle of curvature expressed in degrees was obtained for each patient. METHODS: Two implant rods were attached to the concave and convex side...
Curvature vector smart sensing with a long-period fibre grating probed by artificial intelligence
Costa, R Z V; Possetti, G R C; De Arruda, L V R; Muller, M; Fabris, J L
2010-01-01
This work shows a curvature vector sensing device based on a single long-period grating written in a commercial photosensitive optical fibre. The sensing approach uses an artificial neural network based on multilayer perceptrons for data analysis. Curvatures from 0.00 to 3.13 m −1 and angular orientations from 0 to 180° were measured with the device, with combined standard uncertainties of 0.05 m −1 and 1.5°, respectively. The root mean square errors for curvature and angular orientation were 0.0008 m −1 and 0.3° in the training stage and 0.002 m −1 and 0.9° in the test stage, respectively
Catoni, Francesco; Cannata, Roberto; Zampetti, Paolo
2005-08-01
The Riemann and Lorentz constant curvature surfaces are investigated from an Euclidean point of view. The four surfaces (constant positive and constant negative curvatures with definite and non-definite fine elements) are represented as surfaces in a Riemannian or in a particular semi-Riemannian flat space and it is shown that the complex and the hyperbolic numbers allow to obtain the same equations for the corresponding Riemann and Lorentz surfaces, respectively. Moreover it is shown that the geodesics on the Lorentz surfaces states, from a physical point of view, a link between curvature and fields. This result is obtained just as a consequence of the space-time geometrical symmetry, without invoking the famous Einstein general relativity postulate [it
Higher curvature corrections to primordial fluctuations in slow-roll inflation
Satoh, Masaki; Soda, Jiro
2008-01-01
We study higher curvature corrections to the scalar spectral index, the tensor spectral index, the tensor-to-scalar ratio, and the polarization of gravitational waves. We find that there are cases where the higher curvature corrections cannot be negligible in the dynamics of the scalar field, although they are always negligible energetically. Indeed, it turns out that the tensor-to-scalar ratio could be enhanced and the tensor spectral index could be blue due to the Gauss–Bonnet term. We estimate the degree of circular polarization of gravitational waves generated during the slow-roll inflation. We argue that the circular polarization could be observable with the help of both the Gauss–Bonnet and the parity violating terms. We also present several examples to reveal observational implications of higher curvature corrections for chaotic inflationary models
Lee, Jong-Ki; Ha, Byung-Hyun; Choi, Jeong-Ho; Heo, Seok-Mo; Perinpanayagam, Hiran
2006-10-01
In endodontic therapy, access and instrumentation are strongly affected by root canal curvature. However, the few studies that have actually measured curvature are mostly from two-dimensional radiographs. The purpose of this study was to measure the three-dimensional (3D) canal curvature in maxillary first molars using micro-computed tomography (microCT) and mathematical modeling. Extracted maxillary first molars (46) were scanned by microCT (502 image slices/tooth, 1024 X 1024 pixels, voxel size of 19.5 x 19.5 x 39.0 microm) and their canals reconstructed by 3D modeling software. The intersection of major and minor axes in the canal space of each image slice were connected to create an imaginary central axis for each canal. The radius of curvature of the tangential circle was measured and inverted as a measure of curvature using custom-made mathematical modeling software. Root canal curvature was greatest in the apical third and least in the middle third for all canals. The greatest curvatures were in the mesiobuccal (MB) canal (0.76 +/- 0.48 mm(-1)) with abrupt curves, and the least curvatures were in the palatal (P) canal (0.38 +/- 0.34 mm(-1)) with a gradual curve. This study has measured the 3D curvature of root canals in maxillary first molars and reinforced the value of microCT with mathematical modeling.
Mean cortical curvature reflects cytoarchitecture restructuring in mild traumatic brain injury
Jace B. King
2016-01-01
Full Text Available In the United States alone, the number of persons living with the enduring consequences of traumatic brain injuries is estimated to be between 3.2 and 5 million. This number does not include individuals serving in the United States military or seeking care at Veterans Affairs hospitals. The importance of understanding the neurobiological consequences of mild traumatic brain injury (mTBI has increased with the return of veterans from conflicts overseas, many of who have suffered this type of brain injury. However, identifying the neuroanatomical regions most affected by mTBI continues to prove challenging. The aim of this study was to assess the use of mean cortical curvature as a potential indicator of progressive tissue loss in a cross-sectional sample of 54 veterans with mTBI compared to 31 controls evaluated with MRI. It was hypothesized that mean cortical curvature would be increased in veterans with mTBI, relative to controls, due in part to cortical restructuring related to tissue volume loss. Mean cortical curvature was assessed in 60 bilateral regions (31 sulcal, 29 gyral. Of the 120 regions investigated, nearly 50% demonstrated significantly increased mean cortical curvature in mTBI relative to controls with 25% remaining significant following multiple comparison correction (all, pFDR < .05. These differences were most prominent in deep gray matter regions of the cortex. Additionally, significant relationships were found between mean cortical curvature and gray and white matter volumes (all, p < .05. These findings suggest potentially unique patterns of atrophy by region and indicate that changes in brain microstructure due to mTBI are sensitive to measures of mean curvature.
A high resolution electron microscopy investigation of curvature in multilayer graphite sheets
Wang Zhenxia; Hu Jun; Wang Wenmin; Yu Guoqing
1998-01-01
Here the authors report a carbon sample generated by ultrasonic wave high oriented pyrolytic graphite (HOPG) in ethanol, water or ethanol-water mixed solution. High resolution transmission electron microscopy (HRTEM) revealed many multilayer graphite sheets with a total curved angle that is multiples of θ 0 (= 30 degree C). Close examination of the micrographs showed that the curvature is accomplished by bending the lattice planes. A possible explanation for the curvature in multilayer graphite sheets is discussed based on the conformation of graphite symmetry axes and the formation of sp 3 -like line defects in the sp 2 graphitic network
FY 2016 Status Report: CIRFT Testing Data Analyses and Updated Curvature Measurements
Wang, Jy-An John [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wang, Hong [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
2016-08-01
This report provides a detailed description of FY15 test result corrections/analysis based on the FY16 Cyclic Integrated Reversible-Bending Fatigue Tester (CIRFT) test program methodology update used to evaluate the vibration integrity of spent nuclear fuel (SNF) under normal transportation conditions. The CIRFT consists of a U-frame testing setup and a real-time curvature measurement method. The three-component U-frame setup of the CIRFT has two rigid arms and linkages to a universal testing machine. The curvature of rod bending is obtained through a three-point deflection measurement method. Three linear variable differential transformers (LVDTs) are used and clamped to the side connecting plates of the U-frame to capture the deformation of the rod. The contact-based measurement, or three-LVDT-based curvature measurement system, on SNF rods has been proven to be quite reliable in CIRFT testing. However, how the LVDT head contacts the SNF rod may have a significant effect on the curvature measurement, depending on the magnitude and direction of rod curvature. It has been demonstrated that the contact/curvature issues can be corrected by using a correction on the sensor spacing. The sensor spacing defines the separation of the three LVDT probes and is a critical quantity in calculating the rod curvature once the deflections are obtained. The sensor spacing correction can be determined by using chisel-type probes. The method has been critically examined this year and has been shown to be difficult to implement in a hot cell environment, and thus cannot be implemented effectively. A correction based on the proposed equivalent gauge-length has the required flexibility and accuracy and can be appropriately used as a correction factor. The correction method based on the equivalent gauge length has been successfully demonstrated in CIRFT data analysis for the dynamic tests conducted on Limerick (LMK) (17 tests), North Anna (NA) (6 tests), and Catawba mixed oxide (MOX
Curvature tensors and unified field equations on SEX/sub n/
Chung, K.T.; Lee, I.L.
1988-01-01
We study the curvature tensors and field equations in the n-dimensional SE manifold SEX/sub n/. We obtain several basic properties of the vectors S/subλ/ and U/sub λ/ and then of the SE curvature tensor and its contractions, such as a generalized Ricci identity, a generalized Bianchi identity, and two variations of the Bianchi identity satisfied by the SE Einstein tensor. Finally, a system of field equations is discussed in SEX/sub n/ an done of its particular solutions is constructed and displayed
Curved nanocarbon materials: probing the curvature and topology effects using phonon spectra
Saxena, Avadh Baheri [Los Alamos National Laboratory; Gupta, Sanju [UNIV OF MISSOURI
2008-01-01
In spite of detailed structural characterization of nanoscale carbons, they still possess some features that are not entirely understood particularly in terms of topological characteristics. By means of resonance Raman spectroscopy, we elucidated the notion of global topology and curvature by determining the prominent Raman bands variation for various carbon nanostructures including tubular (single-, double- and multiwalled nanotubes, peapod), spherical (hypo- and hyperfullerenes, onion-like carbon) and complex (nanocones, nanohorns, nanodisks and nanorings) geometries. This knowledge points to an unprecedented emergent paradigm of global topology/curvature {yields} property {yields} functionality relationship.
On the non-Gaussian correlation of the primordial curvature perturbation with vector fields
Kumar Jain, Rajeev; Sloth, Martin Snoager
2013-01-01
We compute the three-point cross-correlation function of the primordial curvature perturbation generated during inflation with two powers of a vector field in a model where conformal invariance is broken by a direct coupling of the vector field with the inflaton. If the vector field is identified...... with the electromagnetic field, this correlation would be a non-Gaussian signature of primordial magnetic fields generated during inflation. We find that the signal is maximized for the flattened configuration where the wave number of the curvature perturbation is twice that of the vector field and in this limit...
Bertolami, Orfeu; Paramos, Jorge
2011-01-01
The purpose of this study is to describe a perfect fluid matter distribution that leads to a constant curvature region, thanks to the effect of a nonminimal coupling. This distribution exhibits a density profile within the range found in the interstellar medium and an adequate matching of the metric components at its boundary. By identifying this constant curvature with the value of the cosmological constant and superimposing the spherical distributions arising from different matter sources throughout the universe, one is able to mimic a large-scale homogeneous cosmological constant solution.
Recursion Formulae for Obtaining Surfaces with Constant Mean Curvature in R2,1
Tian Yongbo; Nan Zhijie; Tian Chou
2007-01-01
Though the Baecklund transformation on time-like surfaces with constant mean curvature surfaces in R 2,1 has been obtained, it is not easy to obtain corresponding surfaces because the procedure of solving the related integrable system cannot be avoided when the Baecklund transformation is used. For sake of this, in this article, some special work is done to reform the Baecklund transformation to a recursion formula, by which we can construct time-like surfaces with constant mean curvature form known ones just by quadrature procedure.
Prediction of the Critical Curvature for LX-17 with the Time of Arrival Data from DNS
Yao, Jin [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Fried, Laurence E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Moss, William C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2017-01-10
We extract the detonation shock front velocity, curvature and acceleration from time of arrival data measured at grid points from direct numerical simulations of a 50mm rate-stick lit by a disk-source, with the ignition and growth reaction model and a JWL equation of state calibrated for LX-17. We compute the quasi-steady (D, κ) relation based on the extracted properties and predicted the critical curvatures of LX-17. We also proposed an explicit formula that contains the failure turning point, obtained from optimization for the (D, κ) relation of LX-17.
Convective mass transfer in helical pipes: effect of curvature and torsion
Litster, S.; Djilali, N. [University of Victoria, Department of Mechanical Engineering, Victoria, BC (Canada); Pharoah, J.G. [University of Victoria, Department of Mechanical Engineering, Victoria, BC (Canada); Queen' s University at Kingston, Department of Mechanical Engineering, Kingston, ON (Canada)
2006-03-01
A 3D numerical analysis of the flow and mass transfer in helical pipes is presented. The interpretation of the flow patterns and their impact on mass transfer is shown to require a non-orthogonal pseudo-stream function based visualization. The strong coupling between torsion and curvature effects, and the resulting secondary flow regimes are well characterized by a parameter combining both the Dean (Dn) and Germano numbers (Gn). For membrane separation applications, helical modules combining high curvature with low torsion would alleviate concentration polarization and yield appreciable flux improvement. (orig.)
Abdelsalam, D. G.; Shaalan, M. S.; Eloker, M. M.; Kim, Daesuk
2010-06-01
In this paper a method is presented to accurately measure the radius of curvature of different types of curved surfaces of different radii of curvatures of 38 000,18 000 and 8000 mm using multiple-beam interference fringes in reflection. The images captured by the digital detector were corrected by flat fielding method. The corrected images were analyzed and the form of the surfaces was obtained. A 3D profile for the three types of surfaces was obtained using Zernike polynomial fitting. Some sources of uncertainty in measurement were calculated by means of ray tracing simulations and the uncertainty budget was estimated within λ/40.
Asymmetric vibrations of thick shells of revolution having meridionally varying curvature
Suzuki, Katsuyoshi; Kosawada, Tadashi; Yachita, Takumi.
1988-01-01
An exact method using power series expansions is presented for solving asymmetric free vibration problems for thick shells of revolution having meridionally varying curvature. Based on the improved thick shell theory, the Lagrangian of the shells of revolution are obtained, and the equations of motion and the boundary conditions are derived from the stationary condition of the Lagrangian. The method is demonstrated for thick shells of revolution having elliptical, cycloidal, parabolical, catenary and hyperbolical meridional curvature. The results by the present method are compared with those by the thin shell theory and the effects of the rotatory inertia and the shear deformation upon the natural frequencies are clarified. (author)
Large-scale magnetic fields, curvature fluctuations, and the thermal history of the Universe
Giovannini, Massimo
2007-01-01
It is shown that gravitating magnetic fields affect the evolution of curvature perturbations in a way that is reminiscent of a pristine nonadiabatic pressure fluctuation. The gauge-invariant evolution of curvature perturbations is used to constrain the magnetic power spectrum. Depending on the essential features of the thermodynamic history of the Universe, the explicit derivation of the bound is modified. The theoretical uncertainty in the constraints on the magnetic energy spectrum is assessed by comparing the results obtained in the case of the conventional thermal history with the estimates stemming from less conventional (but phenomenologically allowed) post-inflationary evolutions
Higgins, Chris
2012-01-01
This article presents the author's response to the reviews of his book, "The Good Life of Teaching: An Ethics of Professional Practice." He begins by highlighting some of the main concerns of his book. He then offers a brief response, doing his best to address the main criticisms of his argument and noting where the four reviewers (Charlene…
de Haan, Seraphine; Reis, Cláudia; Ndlovu, Junior; Serrenho, Catarina; Akhtar, Ifrah; Garcia, José Antonio; Linde, Daniël; Thorskog, Martine; Franco, Loris; Hogg, Peter
2015-01-01
This review aims to identify strategies to optimise radiography practice using digital technologies, for full spine studies on paediatrics focusing particularly on methods used to diagnose and measure severity of spinal curvatures. The literature search was performed on different databases (PubMed,
Singh, Harkirat; Wahi, Pankaj
2017-08-01
The motion of a string in the presence of a doubly curved obstacle is investigated. A mathematical model has been developed for a general shape of the obstacle. However, detailed analysis has been performed for a shape relevant to the Indian stringed musical instruments like Tanpura and Sitar. In particular, we explore the effect of obstacle's curvature in the plane perpendicular to the string axis on its motion. This geometrical feature of the obstacle introduces a coupling between motions in mutually perpendicular directions over and above the coupling due to the stretching nonlinearity. We find that only one planar motion is possible for our system. Small amplitude planar motions are stable to perturbations in the perpendicular direction resulting in non-whirling motions while large amplitude oscillations lead to whirling motions. The critical amplitude of oscillations, across which there is a transition in the qualitative behavior of the non-planar trajectories, is determined using Floquet theory. Our analysis reveals that a small obstacle curvature in a direction perpendicular to the string axis leads to a considerable reduction in the critical amplitudes required for initiation of whirling motions. Hence, this obstacle curvature has a destabilizing effect on the planar motions in contrast to the curvature along the string axis which stabilizes planar motions.
Comprehensive Use of Curvature for Robust and Accurate Online Surface Reconstruction.
Lefloch, Damien; Kluge, Markus; Sarbolandi, Hamed; Weyrich, Tim; Kolb, Andreas
2017-12-01
Interactive real-time scene acquisition from hand-held depth cameras has recently developed much momentum, enabling applications in ad-hoc object acquisition, augmented reality and other fields. A key challenge to online reconstruction remains error accumulation in the reconstructed camera trajectory, due to drift-inducing instabilities in the range scan alignments of the underlying iterative-closest-point (ICP) algorithm. Various strategies have been proposed to mitigate that drift, including SIFT-based pre-alignment, color-based weighting of ICP pairs, stronger weighting of edge features, and so on. In our work, we focus on surface curvature as a feature that is detectable on range scans alone and hence does not depend on accurate multi-sensor alignment. In contrast to previous work that took curvature into consideration, however, we treat curvature as an independent quantity that we consistently incorporate into every stage of the real-time reconstruction pipeline, including densely curvature-weighted ICP, range image fusion, local surface reconstruction, and rendering. Using multiple benchmark sequences, and in direct comparison to other state-of-the-art online acquisition systems, we show that our approach significantly reduces drift, both when analyzing individual pipeline stages in isolation, as well as seen across the online reconstruction pipeline as a whole.
L2-Harmonic Forms on Incomplete Riemannian Manifolds with Positive Ricci Curvature
Junya Takahashi
2018-05-01
Full Text Available We construct an incomplete Riemannian manifold with positive Ricci curvature that has non-trivial L 2 -harmonic forms and on which the L 2 -Stokes theorem does not hold. Therefore, a Bochner-type vanishing theorem does not hold for incomplete Riemannian manifolds.
Curvature-Continuous 3D Path-Planning Using QPMI Method
Seong-Ryong Chang
2015-06-01
Full Text Available It is impossible to achieve vertex movement and rapid velocity control in aerial robots and aerial vehicles because of momentum from the air. A continuous-curvature path ensures such robots and vehicles can fly with stable and continuous movements. General continuous path-planning methods use spline interpolation, for example B-spline and Bézier curves. However, these methods cannot be directly applied to continuous path planning in a 3D space. These methods use a subset of the waypoints to decide curvature and some waypoints are not included in the planned path. This paper proposes a method for constructing a curvature-continuous path in 3D space that includes every waypoint. The movements in each axis, x, y and z, are separated by the parameter u. Waypoint groups are formed, each with its own continuous path derived using quadratic polynomial interpolation. The membership function then combines each continuous path into one continuous path. The continuity of the path is verified and the curvature-continuous path is produced using the proposed method.
3D Facial Similarity Measure Based on Geodesic Network and Curvatures
Junli Zhao
2014-01-01
Full Text Available Automated 3D facial similarity measure is a challenging and valuable research topic in anthropology and computer graphics. It is widely used in various fields, such as criminal investigation, kinship confirmation, and face recognition. This paper proposes a 3D facial similarity measure method based on a combination of geodesic and curvature features. Firstly, a geodesic network is generated for each face with geodesics and iso-geodesics determined and these network points are adopted as the correspondence across face models. Then, four metrics associated with curvatures, that is, the mean curvature, Gaussian curvature, shape index, and curvedness, are computed for each network point by using a weighted average of its neighborhood points. Finally, correlation coefficients according to these metrics are computed, respectively, as the similarity measures between two 3D face models. Experiments of different persons’ 3D facial models and different 3D facial models of the same person are implemented and compared with a subjective face similarity study. The results show that the geodesic network plays an important role in 3D facial similarity measure. The similarity measure defined by shape index is consistent with human’s subjective evaluation basically, and it can measure the 3D face similarity more objectively than the other indices.
Fang Fang
2018-05-01
Full Text Available In geometrically frustrated clusters of polyhedra, gaps between faces can be closed without distorting the polyhedra by the long established method of discrete curvature, which consists of curving the space into a fourth dimension, resulting in a dihedral angle at the joint between polyhedra in 4D. An alternative method—the twist method—has been recently suggested for a particular case, whereby the gaps are closed by twisting the cluster in 3D, resulting in an angular offset of the faces at the joint between adjacent polyhedral. In this paper, we show the general applicability of the twist method, for local clusters, and present the surprising result that both the required angle of the twist transformation and the consequent angle at the joint are the same, respectively, as the angle of bending to 4D in the discrete curvature and its resulting dihedral angle. The twist is therefore not only isomorphic, but isogonic (in terms of the rotation angles to discrete curvature. Our results apply to local clusters, but in the discussion we offer some justification for the conjecture that the isomorphism between twist and discrete curvature can be extended globally. Furthermore, we present examples for tetrahedral clusters with three-, four-, and fivefold symmetry.
A. H. ELBATRAN
2015-07-01
Full Text Available Helical channels have a wide range of applications in petroleum engineering, nuclear, heat exchanger, chemical, mineral and polymer industries. They are used in the separation processes for fluids of different densities. The centrifugal force, free surface and geometrical effects of the helical channel make the flow pattern more complicated; hence it is very difficult to perform physical experiment to predict channel performance. Computational Fluid Dynamics (CFD can be suitable alternative for studying the flow pattern characteristics in helical channels. The different ranges of dimensional parameters, such as curvature and torsion, often cause various flow regimes in the helical channels. In this study, the effects of physical parameters such as curvature, torsion, Reynolds number, Froude number and Dean Number on the characteristics of the turbulent flow in helical rectangular channels have been investigated numerically, using a finite volume RANSE code Fluent of Ansys workbench 10.1 UTM licensed. The physical parameters were reported for range of curvature (δ of 0.16 to 0.51 and torsion (λ of 0.032 to 0.1 .The numerical results of this study showed that the decrease in the channel curvature and the increase in the channel torsion numbers led to the increase of the flow velocity inside the channel and the change in the shape of water free surface at given Dean, Reynolds and Froude numbers.
Test of the FLRW Metric and Curvature with Strong Lens Time Delays
Liao, Kai [School of Science, Wuhan University of Technology, Wuhan 430070 (China); Li, Zhengxiang; Wang, Guo-Jian [Department of Astronomy, Beijing Normal University, Beijing 100875 (China); Fan, Xi-Long, E-mail: liaokai@whut.edu.cn, E-mail: xilong.fan@glasgow.ac.uk [Department of Physics and Mechanical and Electrical Engineering, Hubei University of Education, Wuhan 430205 (China)
2017-04-20
We present a new model-independent strategy for testing the Friedmann–Lemaître–Robertson–Walker (FLRW) metric and constraining cosmic curvature, based on future time-delay measurements of strongly lensed quasar-elliptical galaxy systems from the Large Synoptic Survey Telescope and supernova observations from the Dark Energy Survey. The test only relies on geometric optics. It is independent of the energy contents of the universe and the validity of the Einstein equation on cosmological scales. The study comprises two levels: testing the FLRW metric through the distance sum rule (DSR) and determining/constraining cosmic curvature. We propose an effective and efficient (redshift) evolution model for performing the former test, which allows us to concretely specify the violation criterion for the FLRW DSR. If the FLRW metric is consistent with the observations, then on the second level the cosmic curvature parameter will be constrained to ∼0.057 or ∼0.041 (1 σ ), depending on the availability of high-redshift supernovae, which is much more stringent than current model-independent techniques. We also show that the bias in the time-delay method might be well controlled, leading to robust results. The proposed method is a new independent tool for both testing the fundamental assumptions of homogeneity and isotropy in cosmology and for determining cosmic curvature. It is complementary to cosmic microwave background plus baryon acoustic oscillation analyses, which normally assume a cosmological model with dark energy domination in the late-time universe.
On the mean curvature of semi-Riemannian graphs in semi ...
The study of the mean curvature of graph-like surfaces has a long history, but it is still a .... where, here and in the sequel, ∇h stands for the gradient of h on M, and ¯∇(¯h) the .... Then (1) follows by applying Proposition 17 of Chapter 4 in [12].
Curvature effect on nuclear 'pasta': Is it helpful for gyroid appearance?
Nakazato, Ken'ichiro; Iida, Kei; Oyamatsu, Kazuhiro
2011-01-01
In supernova cores and neutron star crusts, nuclei are thought to deform to rodlike and slablike shapes, which are often called nuclear pasta. We study the equilibrium properties of the nuclear pasta by using a liquid-drop model with curvature corrections. It is confirmed that the curvature effect acts to lower the transition densities between different shapes. We also examine the gyroid structure, which was recently suggested as a different type of nuclear pasta by analogy with the polymer systems. The gyroid structure investigated in this paper is approximately formulated as an extension of the periodic minimal surface whose mean curvature vanishes. In contrast to our expectations, we find, from the present approximate formulation, that the curvature corrections act to slightly disfavor the appearance of the gyroid structure. By comparing the energy corrections in the gyroid phase and the hypothetical phases composed of d-dimensional spheres, where d is a general dimensionality, we show that the gyroid is unlikely to belong to a family of the generalized dimensional spheres.
Wormholes and time-machines in nonminimally coupled matter-curvature theories of gravity
Bertolami, O.; Ferreira, R. Z.
2013-01-01
In this work we show the existence of traversable wormhole and time-machine solutions in a modified theory of gravity where matter and curvature are nonminimally coupled. Those solutions present a nontrivial redshift function and exist even in the presence of ordinary matter which satisfies...
Wormholes in higher dimensions with non-linear curvature terms from quantum gravity corrections
El-Nabulsi, Ahmad Rami [Neijiang Normal University, Neijiang, Sichuan (China)
2011-11-15
In this work, we discuss a 7-dimensional universe in the presence of a static traversable wormhole and a decaying cosmological constant and dominated by higher-order curvature effects expected from quantum gravity corrections. We confirmed the existence of wormhole solutions in the form of the Lovelock gravity. Many interesting and attractive features are discussed in some detail.
Wormholes and Time-Machines in Nonminimally Coupled Matter-Curvature Theories of Gravity
Bertolami Orfeu
2013-09-01
Full Text Available In this work we show the existence of traversable wormhole and time-machine solutions in a modified theory of gravity where matter and curvature are nonminimally coupled. Those solutions present a nontrivial redshift function and exist even in the presence of ordinary matter which satisfies the dominant energy condition.
Zhang, X. F.; Hu, S. D.; Tzou, H. S.
2014-12-01
Converting vibration energy to useful electric energy has attracted much attention in recent years. Based on the electromechanical coupling of piezoelectricity, distributed piezoelectric zero-curvature type (e.g., beams and plates) energy harvesters have been proposed and evaluated. The objective of this study is to develop a generic linear and nonlinear piezoelectric shell energy harvesting theory based on a double-curvature shell. The generic piezoelectric shell energy harvester consists of an elastic double-curvature shell and piezoelectric patches laminated on its surface(s). With a current model in the closed-circuit condition, output voltages and energies across a resistive load are evaluated when the shell is subjected to harmonic excitations. Steady-state voltage and power outputs across the resistive load are calculated at resonance for each shell mode. The piezoelectric shell energy harvesting mechanism can be simplified to shell (e.g., cylindrical, conical, spherical, paraboloidal, etc.) and non-shell (beam, plate, ring, arch, etc.) distributed harvesters using two Lamé parameters and two curvature radii of the selected harvester geometry. To demonstrate the utility and simplification procedures, the generic linear/nonlinear shell energy harvester mechanism is simplified to three specific structures, i.e., a cantilever beam case, a circular ring case and a conical shell case. Results show the versatility of the generic linear/nonlinear shell energy harvesting mechanism and the validity of the simplification procedures.
Membrane curvature enables N-Ras lipid anchor sorting to liquid-ordered membrane phases
Larsen, Jannik Bruun; Jensen, Martin Borch; Bhatia, Vikram Kjøller
2015-01-01
Trafficking and sorting of membrane-anchored Ras GTPases are regulated by partitioning between distinct membrane domains. Here, in vitro experiments and microscopic molecular theory reveal membrane curvature as a new modulator of N-Ras lipid anchor and palmitoyl chain partitioning. Membrane...
On the model of the relativistic particle with curvature and torsion
Nesterenko, V.V.
1992-01-01
Two integrals along the world trajectory of its curvature and torsion are added to the standard action for the point-like spinless relativistic particle. This enables one to quantize the model canonically and to derive exactly the relation between the spin and mass of the states. 10 refs
Curvature histogram features for retrieval of images of smooth 3D objects
Zhdanov, I; Scherbakov, O; Potapov, A; Peterson, M
2014-01-01
We consider image features on the base of histograms of oriented gradients (HOG) with addition of contour curvature histogram (HOG-CH), and also compare it with results of known scale-invariant feature transform (SIFT) approach in application to retrieval of images of smooth 3D objects.
An optomechatronic curvature measurement array based on fiber Bragg gratings
Chang, Hsing-Cheng; Lin, Shyan-Lung; Hung, San-Shan; Chang, I-Nan; Chen, Ya-Hui; Lin, Jung-Chih; Liu, Wen-Fung
2014-01-01
This study investigated an optomechatronic array-integrated signal processing module and a human–machine interface based on fiber Bragg grating sensing elements embedded in an elastic support matrix that involves using a self-located electromagnetic mechanism for curvature sensing and solid contour reconstruction. Using bilinear interpolation and average calculation methods, the smooth and accurate surface contours of convex and concave lenses are reconstructed in real-time. The elastic supporting optical sensing array is self-balanced to reduce operational errors. Compared with our previous single-head sensor, the sensitivity of the proposed array is improved by more than 15%. In the curvature range from −20.15 to +27.09 m −1 , the sensitivities are 3.53 pm m for the convex measurement and 2.15 pm m for the concave measurement with an error rate below 8.89%. The curvature resolutions are 0.283 and 0.465 m −1 for convex and concave lenses, respectively. This array could be applied in the curvature measurement of solar collectors to monitor energy conversion efficiency or could be used to monitor the wafer-level thin-film fabrication process. (paper)