WorldWideScience

Sample records for gravitationally stratified atmosphere

  1. Propagation of acoustic waves in a stratified atmosphere, 1

    Science.gov (United States)

    Kalkofen, W.; Rossi, P.; Bodo, G.; Massaglia, S.

    1994-01-01

    This work is motivated by the chromospheric 3 minute oscillations observed in the K(sub 2v) bright points. We study acoustic gravity waves in a one-dimensional, gravitationally stratified, isothermal atmosphere. The oscillations are excited either by a velocity pulse imparted to a layer in an atmosphere of infinite vertical extent, or by a piston forming the lower boundary of a semi-infinite medium. We consider both linear and non-linear waves.

  2. A Fast MHD Code for Gravitationally Stratified Media using Graphical Processing Units: SMAUG

    Science.gov (United States)

    Griffiths, M. K.; Fedun, V.; Erdélyi, R.

    2015-03-01

    Parallelization techniques have been exploited most successfully by the gaming/graphics industry with the adoption of graphical processing units (GPUs), possessing hundreds of processor cores. The opportunity has been recognized by the computational sciences and engineering communities, who have recently harnessed successfully the numerical performance of GPUs. For example, parallel magnetohydrodynamic (MHD) algorithms are important for numerical modelling of highly inhomogeneous solar, astrophysical and geophysical plasmas. Here, we describe the implementation of SMAUG, the Sheffield Magnetohydrodynamics Algorithm Using GPUs. SMAUG is a 1-3D MHD code capable of modelling magnetized and gravitationally stratified plasma. The objective of this paper is to present the numerical methods and techniques used for porting the code to this novel and highly parallel compute architecture. The methods employed are justified by the performance benchmarks and validation results demonstrating that the code successfully simulates the physics for a range of test scenarios including a full 3D realistic model of wave propagation in the solar atmosphere.

  3. White dwarf stars with chemically stratified atmospheres

    Science.gov (United States)

    Muchmore, D.

    1982-01-01

    Recent observations and theory suggest that some white dwarfs may have chemically stratified atmospheres - thin layers of hydrogen lying above helium-rich envelopes. Models of such atmospheres show that a discontinuous temperature inversion can occur at the boundary between the layers. Model spectra for layered atmospheres at 30,000 K and 50,000 K tend to have smaller decrements at 912 A, 504 A, and 228 A than uniform atmospheres would have. On the basis of their continuous extreme ultraviolet spectra, it is possible to distinguish observationally between uniform and layered atmospheres for hot white dwarfs.

  4. Computational Fluid Dynamics model of stratified atmospheric boundary-layer flow

    DEFF Research Database (Denmark)

    Koblitz, Tilman; Bechmann, Andreas; Sogachev, Andrey

    2015-01-01

    For wind resource assessment, the wind industry is increasingly relying on computational fluid dynamics models of the neutrally stratified surface-layer. So far, physical processes that are important to the whole atmospheric boundary-layer, such as the Coriolis effect, buoyancy forces and heat...

  5. Impact of variations of gravitational acceleration on the general circulation of the planetary atmosphere

    Science.gov (United States)

    Kilic, Cevahir; Raible, Christoph C.; Stocker, Thomas F.; Kirk, Edilbert

    2017-01-01

    Fundamental to the redistribution of energy in a planetary atmosphere is the general circulation and its meridional structure. We use a general circulation model of the atmosphere in an aquaplanet configuration with prescribed sea surface temperature and investigate the influence of the gravitational acceleration g on the structure of the circulation. For g =g0 = 9.81 ms-2 , three meridional cells exist in each hemisphere. Up to about g /g0 = 1.4 all cells increase in strength. Further increasing this ratio results in a weakening of the thermally indirect cell, such that a two- and finally a one-cell structure of the meridional circulation develops in each hemisphere. This transition is explained by the primary driver of the thermally direct Hadley cell: the diabatic heating at the equator which is proportional to g. The analysis of the energetics of the atmospheric circulation based on the Lorenz energy cycle supports this finding. For Earth-like gravitational accelerations transient eddies are primarily responsible for the meridional heat flux. For large gravitational accelerations, the direct zonal mean conversion of energy dominates the meridional heat flux.

  6. Magnetoacoustic Waves in a Stratified Atmosphere with a Magnetic Null Point

    Energy Technology Data Exchange (ETDEWEB)

    Tarr, Lucas A.; Linton, Mark; Leake, James, E-mail: lucas.tarr.ctr@nrl.navy.mil [U.S. Naval Research Laboratory, 4555 Overlook Ave. SW, Washington, DC 20375 (United States)

    2017-03-01

    We perform nonlinear MHD simulations to study the propagation of magnetoacoustic waves from the photosphere to the low corona. We focus on a 2D system with a gravitationally stratified atmosphere and three photospheric concentrations of magnetic flux that produce a magnetic null point with a magnetic dome topology. We find that a single wavepacket introduced at the lower boundary splits into multiple secondary wavepackets. A portion of the packet refracts toward the null owing to the varying Alfvén speed. Waves incident on the equipartition contour surrounding the null, where the sound and Alfvén speeds coincide, partially transmit, reflect, and mode-convert between branches of the local dispersion relation. Approximately 15.5% of the wavepacket’s initial energy ( E {sub input}) converges on the null, mostly as a fast magnetoacoustic wave. Conversion is very efficient: 70% of the energy incident on the null is converted to slow modes propagating away from the null, 7% leaves as a fast wave, and the remaining 23% (0.036 E {sub input}) is locally dissipated. The acoustic energy leaving the null is strongly concentrated along field lines near each of the null’s four separatrices. The portion of the wavepacket that refracts toward the null, and the amount of current accumulation, depends on the vertical and horizontal wavenumbers and the centroid position of the wavepacket as it crosses the photosphere. Regions that refract toward or away from the null do not simply coincide with regions of open versus closed magnetic field or regions of particular field orientation. We also model wavepacket propagation using a WKB method and find that it agrees qualitatively, though not quantitatively, with the results of the numerical simulation.

  7. Turbulent circulation above the surface heat source in stably stratified atmosphere

    Science.gov (United States)

    Kurbatskii, A. F.; Kurbatskaya, L. I.

    2016-10-01

    The 3-level RANS approach for simulating a turbulent circulation over the heat island in a stably stratified environment under nearly calm conditions is formulated. The turbulent kinetic energy its spectral consumption (dissipation) and the dispersion of turbulent fluctuations of temperature are found from differential equations, thus the correct modeling of transport processes in the interface layer with the counter-gradient heat flux is assured. The three-parameter turbulence RANS approach minimizes difficulties in simulating the turbulent transport in a stably stratified environment and reduces efforts needed for the numerical implementation of the 3-level RANS approach. Numerical simulation of the turbulent structure of the penetrative convection over the heat island under conditions of stably stratified atmosphere demonstrates that the three-equation model is able to predict the thermal circulation induced by the heat island. The temperature distribution, root-mean-square fluctuations of the turbulent velocity and temperature fields and spectral turbulent kinetic energy flux are in good agreement with the experimental data. The model describes such thin physical effects, as a crossing of vertical profiles of temperature of a thermal plume with the formation of the negative buoyancy area testifying to development of the dome-shaped form at the top part of a plume in the form of "hat".

  8. Precise atmospheric parameters for the shortest-period binary white dwarfs: gravitational waves, metals, and pulsations

    International Nuclear Information System (INIS)

    Gianninas, A.; Kilic, Mukremin; Dufour, P.; Bergeron, P.; Brown, Warren R.; Hermes, J. J.

    2014-01-01

    We present a detailed spectroscopic analysis of 61 low-mass white dwarfs and provide precise atmospheric parameters, masses, and updated binary system parameters based on our new model atmosphere grids and the most recent evolutionary model calculations. For the first time, we measure systematic abundances of He, Ca, and Mg for metal-rich, extremely low mass white dwarfs and examine the distribution of these abundances as a function of effective temperature and mass. Based on our preliminary results, we discuss the possibility that shell flashes may be responsible for the presence of the observed He and metals. We compare stellar radii derived from our spectroscopic analysis to model-independent measurements and find good agreement except for white dwarfs with T eff ≲ 10,000 K. We also calculate the expected gravitational wave strain for each system and discuss their significance to the eLISA space-borne gravitational wave observatory. Finally, we provide an update on the instability strip of extremely low mass white dwarf pulsators.

  9. Precise atmospheric parameters for the shortest-period binary white dwarfs: gravitational waves, metals, and pulsations

    Energy Technology Data Exchange (ETDEWEB)

    Gianninas, A.; Kilic, Mukremin [Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, 440 West Brooks Street, Norman, OK 73019 (United States); Dufour, P.; Bergeron, P. [Département de Physique, Université de Montréal, C.P. 6128, Succ. Centre-Ville, Montréal, Québec H3C 3J7 (Canada); Brown, Warren R. [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States); Hermes, J. J., E-mail: alexg@nhn.ou.edu [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom)

    2014-10-10

    We present a detailed spectroscopic analysis of 61 low-mass white dwarfs and provide precise atmospheric parameters, masses, and updated binary system parameters based on our new model atmosphere grids and the most recent evolutionary model calculations. For the first time, we measure systematic abundances of He, Ca, and Mg for metal-rich, extremely low mass white dwarfs and examine the distribution of these abundances as a function of effective temperature and mass. Based on our preliminary results, we discuss the possibility that shell flashes may be responsible for the presence of the observed He and metals. We compare stellar radii derived from our spectroscopic analysis to model-independent measurements and find good agreement except for white dwarfs with T {sub eff} ≲ 10,000 K. We also calculate the expected gravitational wave strain for each system and discuss their significance to the eLISA space-borne gravitational wave observatory. Finally, we provide an update on the instability strip of extremely low mass white dwarf pulsators.

  10. The Fragmentation Criteria in Local Vertically Stratified Self-gravitating Disk Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Baehr, Hans; Klahr, Hubert [Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany); Kratter, Kaitlin M., E-mail: baehr@mpia.de [Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States)

    2017-10-10

    Massive circumstellar disks are prone to gravitational instabilities, which trigger the formation of spiral arms that can fragment into bound clumps under the right conditions. Two-dimensional simulations of self-gravitating disks are useful starting points for studying fragmentation because they allow high-resolution simulations of thin disks. However, convergence issues can arise in 2D from various sources. One of these sources is the 2D approximation of self-gravity, which exaggerates the effect of self-gravity on small scales when the potential is not smoothed to account for the assumed vertical extent of the disk. This effect is enhanced by increased resolution, resulting in fragmentation at longer cooling timescales β . If true, it suggests that the 3D simulations of disk fragmentation may not have the same convergence problem and could be used to examine the nature of fragmentation without smoothing self-gravity on scales similar to the disk scale height. To that end, we have carried out local 3D self-gravitating disk simulations with simple β cooling with fixed background irradiation to determine if 3D is necessary to properly describe disk fragmentation. Above a resolution of ∼40 grid cells per scale height, we find that our simulations converge with respect to the cooling timescale. This result converges in agreement with analytic expectations which place a fragmentation boundary at β {sub crit} = 3.

  11. Magnetic Field in the Gravitationally Stratified Coronal Loops B. N. ...

    Indian Academy of Sciences (India)

    field for the longest (L = 406 Mm) coronal loops. The magnetic fields Bstr and Babs also increase with the number density, if the loop length does not vary much. The increment in the magnetic field due to gravitational stratification is small at the lower number densities, however, it is large at the higher number densities.

  12. Gravitational separation of major atmospheric components observed in the stratosphere over Syowa Station, Antarctica, Kiruna, Sweden and Sanriku, Japan.

    Directory of Open Access Journals (Sweden)

    Shigeyuki Ishidoya

    2010-12-01

    Full Text Available To investigate the gravitational separation of atmospheric components in the stratosphere, air samples collected using an aircraft during the Arctic Airborne Measurement Program 2002 (AAMP02 were analyzed for the O_2 N_2 ratios (δ(O_2 N_2, δ^N of N_2, δ^O of O_2 and Ar N_2 ratio (δ(Ar N_2. The relationship between observed stratospheric δ^N of N_2, δ^O of O_2 and δ(Ar N_2 over the Svalbard Islands and Barrow showed mass-dependent fractionation of atmospheric components in the stratosphere, which suggested that gravitational separation could be observable in the lowermost stratosphere inside the polar vortex. By examining the rates of change in δ(O_2 Nv and δ^C of CO_2 relative to the CO_2 concentration, such observed correlations were bound to be mainly attributable to upward propagation of their seasonal cycles produced in the troposphere and height-dependent air age as well as gravitational separation in the stratosphere. Air samples collected over Syowa Station, Antarctica, Kiruna, Sweden and Sanriku, Japan using balloon-borne cryogenic air samplers were analyzed for δ^N of Nv and δ^O of O_2. Strength of the gravitational separation was a function of latitude, showing the largest separation inside the polar vortex over Kiruna. It is suggested that information on increase of gravitational separation with height is useful in understanding the vertical transport of air masses in the stratosphere. By comparing the gravitational separations, mean age of air and N_2O concentration at two height intervals with N_2O concentrations > 125 ppb and < 45 ppb, the effect of descending air was found to be more significant over Kiruna than over Syowa Station and Sanriku. The variation in the gravitational separation with height is found to be weaker in the region with N_2O concentrations between 45 and 125 ppb than in other regions, which might suggest that vertical mixing of air occurred in this region.

  13. Seasonal Variations of the Earth's Gravitational Field: An Analysis of Atmospheric Pressure, Ocean Tidal, and Surface Water Excitation

    Science.gov (United States)

    Dong, D,; Gross, R.S.; Dickey, J.

    1996-01-01

    Monthly mean gravitational field parameters (denoted here as C(sub even)) that represent linear combinations of the primarily even degree zonal spherical harmonic coefficients of the Earth's gravitational field have been recovered using LAGEOS I data and are compared with those derived from gridded global surface pressure data of the National meteorological center (NMC) spanning 1983-1992. The effect of equilibrium ocean tides and surface water variations are also considered. Atmospheric pressure and surface water fluctuations are shown to be the dominant cause of observed annual C(sub even) variations. Closure with observations is seen at the 1sigma level when atmospheric pressure, ocean tide and surface water effects are include. Equilibrium ocean tides are shown to be the main source of excitation at the semiannual period with closure at the 1sigma level seen when both atmospheric pressure and ocean tide effects are included. The inverted barometer (IB) case is shown to give the best agreement with the observation series. The potential of the observed C(sub even) variations for monitoring mass variations in the polar regions of the Earth and the effect of the land-ocean mask in the IB calculation are discussed.

  14. Large eddy simulation of stably stratified turbulence

    International Nuclear Information System (INIS)

    Shen Zhi; Zhang Zhaoshun; Cui Guixiang; Xu Chunxiao

    2011-01-01

    Stably stratified turbulence is a common phenomenon in atmosphere and ocean. In this paper the large eddy simulation is utilized for investigating homogeneous stably stratified turbulence numerically at Reynolds number Re = uL/v = 10 2 ∼10 3 and Froude number Fr = u/NL = 10 −2 ∼10 0 in which u is root mean square of velocity fluctuations, L is integral scale and N is Brunt-Vaïsälä frequency. Three sets of computation cases are designed with different initial conditions, namely isotropic turbulence, Taylor Green vortex and internal waves, to investigate the statistical properties from different origins. The computed horizontal and vertical energy spectra are consistent with observation in atmosphere and ocean when the composite parameter ReFr 2 is greater than O(1). It has also been found in this paper that the stratification turbulence can be developed under different initial velocity conditions and the internal wave energy is dominated in the developed stably stratified turbulence.

  15. Free Falling in Stratified Fluids

    Science.gov (United States)

    Lam, Try; Vincent, Lionel; Kanso, Eva

    2017-11-01

    Leaves falling in air and discs falling in water are examples of unsteady descents due to complex interaction between gravitational and aerodynamic forces. Understanding these descent modes is relevant to many branches of engineering and science such as estimating the behavior of re-entry space vehicles to studying biomechanics of seed dispersion. For regularly shaped objects falling in homogenous fluids, the motion is relatively well understood. However, less is known about how density stratification of the fluid medium affects the falling behavior. Here, we experimentally investigate the descent of discs in both pure water and in stable linearly stratified fluids for Froude numbers Fr 1 and Reynolds numbers Re between 1000 -2000. We found that stable stratification (1) enhances the radial dispersion of the disc at landing, (2) increases the descent time, (3) decreases the inclination (or nutation) angle, and (4) decreases the fluttering amplitude while falling. We conclude by commenting on how the corresponding information can be used as a predictive model for objects free falling in stratified fluids.

  16. Oscillations Excited by Plasmoids Formed During Magnetic Reconnection in a Vertical Gravitationally Stratified Current Sheet

    Science.gov (United States)

    Jelínek, P.; Karlický, M.; Van Doorsselaere, T.; Bárta, M.

    2017-10-01

    Using the FLASH code, which solves the full set of the 2D non-ideal (resistive) time-dependent magnetohydrodynamic (MHD) equations, we study processes during the magnetic reconnection in a vertical gravitationally stratified current sheet. We show that during these processes, which correspond to processes in solar flares, plasmoids are formed due to the tearing mode instability of the current sheet. These plasmoids move upward or downward along the vertical current sheet and some of them merge into larger plasmoids. We study the density and temperature structure of these plasmoids and their time evolution in detail. We found that during the merging of two plasmoids, the resulting larger plasmoid starts to oscillate with a period largely determined by L/{c}{{A}}, where L is the size of the plasmoid and c A is the Alfvén speed in the lateral parts of the plasmoid. In our model, L/{c}{{A}} evaluates to ˜ 25 {{s}}. Furthermore, the plasmoid moving downward merges with the underlying flare arcade, which causes oscillations of the arcade. In our model, the period of this arcade oscillation is ˜ 35 {{s}}, which also corresponds to L/{c}{{A}}, but here L means the length of the loop and c A is the average Alfvén speed in the loop. We also show that the merging process of the plasmoid with the flare arcade is a complex process as presented by complex density and temperature structures of the oscillating arcade. Moreover, all these processes are associated with magnetoacoustic waves produced by the motion and merging of plasmoids.

  17. Study of MRI in stratified viscous plasma configuration

    Science.gov (United States)

    Carlevaro, Nakia; Montani, Giovanni; Renzi, Fabrizio

    2017-02-01

    We analyze the morphology of the magneto-rotational instability (MRI) for a stratified viscous plasma disk configuration in differential rotation, taking into account the so-called corotation theorem for the background profile. In order to select the intrinsic Alfvénic nature of MRI, we deal with an incompressible plasma and we adopt a formulation of the local perturbation analysis based on the use of the magnetic flux function as a dynamical variable. Our study outlines, as consequence of the corotation condition, a marked asymmetry of the MRI with respect to the equatorial plane, particularly evident in a complete damping of the instability over a positive critical height on the equatorial plane. We also emphasize how such a feature is already present (although less pronounced) even in the ideal case, restoring a dependence of the MRI on the stratified morphology of the gravitational field.

  18. Shocks and currents in stratified atmospheres with a magnetic null point

    Science.gov (United States)

    Tarr, Lucas A.; Linton, Mark

    2017-08-01

    We use the resistive MHD code LARE (Arber et al 2001) to inject a compressive MHD wavepacket into a stratified atmosphere that has a single magnetic null point, as recently described in Tarr et al 2017. The 2.5D simulation represents a slice through a small ephemeral region or area of plage. The strong gradients in field strength and connectivity related to the presence of the null produce substantially different dynamics compared to the more slowly varying fields typically used in simple sunspot models. The wave-null interaction produces a fast mode shock that collapses the null into a current sheet and generates a set of outward propagating (from the null) slow mode shocks confined to field lines near each separatrix. A combination of oscillatory reconnection and shock dissipation ultimately raise the plasma's internal energy at the null and along each separatrix by 25-50% above the background. The resulting pressure gradients must be balanced by Lorentz forces, so that the final state has contact discontinuities along each separatrix and a persistent current at the null. The simulation demonstrates that fast and slow mode waves localize currents to the topologically important locations of the field, just as their Alfvenic counterparts do, and also illustrates the necessity of treating waves and reconnection as coupled phenomena.

  19. Alfven wave resonances and flow induced by nonlinear Alfven waves in a stratified atmosphere

    International Nuclear Information System (INIS)

    Stark, B. A.; Musielak, Z. E.; Suess, S. T.

    1996-01-01

    A nonlinear, time-dependent, ideal MHD code has been developed and used to compute the flow induced by nonlinear Alfven waves propagating in an isothermal, stratified, plane-parallel atmosphere. The code is based on characteristic equations solved in a Lagrangian frame. Results show that resonance behavior of Alfven waves exists in the presence of a continuous density gradient and that the waves with periods corresponding to resonant peaks exert considerably more force on the medium than off-resonance periods. If only off-peak periods are considered, the relationship between the wave period and induced longitudinal velocity shows that short period WKB waves push more on the background medium than longer period, non-WKB, waves. The results also show the development of the longitudinal waves induced by finite amplitude Alfven waves. Wave energy transferred to the longitudinal mode may provide a source of localized heating

  20. Exploring the role of wave drag in the stable stratified oceanic and atmospheric bottom boundary layer in the cnrs-toulouse (cnrm-game) large stratified water flume

    NARCIS (Netherlands)

    Kleczek, M.; Steeneveld, G.J.; Paci, A.; Calmer, R.; Belleudy, A.; Canonici, J.C.; Murguet, F.; Valette, V.

    2014-01-01

    This paper reports on a laboratory experiment in the CNRM-GAME (Toulouse) stratified water flume of a stably stratified boundary layer, in order to quantify the momentum transfer due to orographically induced gravity waves by gently undulating hills in a boundary layer flow. In a stratified fluid, a

  1. Crystallization of a compositionally stratified basal magma ocean

    Science.gov (United States)

    Laneuville, Matthieu; Hernlund, John; Labrosse, Stéphane; Guttenberg, Nicholas

    2018-03-01

    Earth's ∼3.45 billion year old magnetic field is regenerated by dynamo action in its convecting liquid metal outer core. However, convection induces an isentropic thermal gradient which, coupled with a high core thermal conductivity, results in rapid conducted heat loss. In the absence of implausibly high radioactivity or alternate sources of motion to drive the geodynamo, the Earth's early core had to be significantly hotter than the melting point of the lower mantle. While the existence of a dense convecting basal magma ocean (BMO) has been proposed to account for high early core temperatures, the requisite physical and chemical properties for a BMO remain controversial. Here we relax the assumption of a well-mixed convecting BMO and instead consider a BMO that is initially gravitationally stratified owing to processes such as mixing between metals and silicates at high temperatures in the core-mantle boundary region during Earth's accretion. Using coupled models of crystallization and heat transfer through a stratified BMO, we show that very high temperatures could have been trapped inside the early core, sequestering enough heat energy to run an ancient geodynamo on cooling power alone.

  2. Tumbleweeds and airborne gravitational noise sources for LIGO

    International Nuclear Information System (INIS)

    Creighton, Teviet

    2008-01-01

    The relative positions of the test masses in gravitational-wave detectors will be influenced not only by astrophysical gravitational waves, but also by the fluctuating Newtonian gravitational forces of moving masses in the ground and air around the detector. These effects are often referred to as gravity gradient noise. This paper considers the effects of gravity gradients from density perturbations in the atmosphere, and from massive airborne objects near the detector. These have been discussed previously by Saulson (1984 Phys. Rev. D 30 732), who considered the effects of background acoustic pressure waves and of massive objects moving smoothly past the interferometer; the gravity gradients he predicted would be too small to be of serious concern even for advanced interferometric gravitational-wave detectors. In this paper, I revisit these phenomena, considering transient atmospheric shocks, and estimating the effects of sound waves or objects colliding with the ground or buildings around the test masses. I also consider another source of atmospheric density fluctuations: temperature perturbations that are advected past the detector by the wind. I find that background acoustic noise and temperature fluctuations still produce gravity gradient noise that is below the noise floor even of advanced interferometric detectors, although temperature perturbations carried along non-laminar streamlines could produce noise that is within an order of magnitude of the projected noise floor at 10 Hz. A definitive study of this effect may require better models of the wind flow past a given instrument. I also find that transient shockwaves in the atmosphere could potentially produce large spurious signals, with signal-to-noise ratios in the hundreds in an advanced interferometric detector. These signals could be vetoed by means of acoustic sensors outside of the buildings. Massive wind-borne objects such as tumbleweeds could also produce gravity gradient signals with signal

  3. Optical-Gravitation Nonlinearity: A Change of Gravitational Coefficient G induced by Gravitation Field

    OpenAIRE

    R. Vlokh; M. Kostyrko

    2006-01-01

    Nonlinear effect of the gravitation field of spherically symmetric mass on the gravitational coefficient G has been analysed. In frame of the approaches of parametric optics and gravitation nonlinearity we have shown that the gravitation field of spherically symmetric mass can lead to changes in the gravitational coefficient G.

  4. Age and gravitational separation of the stratospheric air over Indonesia

    Directory of Open Access Journals (Sweden)

    S. Sugawara

    2018-02-01

    Full Text Available The gravitational separation of major atmospheric components, in addition to the age of air, would provide additional useful information about stratospheric circulation. However, observations of the age of air and gravitational separation are still geographically sparse, especially in the tropics. In order to address this issue, air samples were collected over Biak, Indonesia in February 2015 using four large plastic balloons, each loaded with two compact cryogenic samplers. With a vertical resolution of better than 2 km, air samples from seven different altitudes were analyzed for CO2 and SF6 mole fractions, δ15N of N2, δ18O of O2, and δ(Ar∕N2 to examine the vertically dependent age and gravitational separation of air in the tropical tropopause layer (TTL and the equatorial stratosphere. By comparing their measured mole fractions with aircraft observations in the upper tropical troposphere, we have found that CO2 and SF6 ages increase gradually with increasing altitude from the TTL to 22 km, and then rapidly from there up to 29 km. The CO2 and SF6 ages agree well with each other in the TTL and in the lower stratosphere, but show a significant difference above 24 km. The average values of δ15N of N2, δ18O of O2, and δ(Ar∕N2 all show a small but distinct upward decrease due to the gravitational separation effect. Simulations with a two-dimensional atmospheric transport model indicate that the gravitational separation effect decreases as tropical upwelling is enhanced. From the model calculations with enhanced eddy mixing, it is also found that the upward increase in air age is magnified by horizontal mixing. These model simulations also show that the gravitational separation effect remains relatively constant in the lower stratosphere. The results of this study strongly suggest that the gravitational separation, combined with the age of air, can be used to diagnose air transport processes in the stratosphere.

  5. Gravitational Waves from Gravitational Collapse

    Directory of Open Access Journals (Sweden)

    Chris L. Fryer

    2011-01-01

    Full Text Available Gravitational-wave emission from stellar collapse has been studied for nearly four decades. Current state-of-the-art numerical investigations of collapse include those that use progenitors with more realistic angular momentum profiles, properly treat microphysics issues, account for general relativity, and examine non-axisymmetric effects in three dimensions. Such simulations predict that gravitational waves from various phenomena associated with gravitational collapse could be detectable with ground-based and space-based interferometric observatories. This review covers the entire range of stellar collapse sources of gravitational waves: from the accretion-induced collapse of a white dwarf through the collapse down to neutron stars or black holes of massive stars to the collapse of supermassive stars.

  6. Gravitational waves from gravitational collapse

    Energy Technology Data Exchange (ETDEWEB)

    Fryer, Christopher L [Los Alamos National Laboratory; New, Kimberly C [Los Alamos National Laboratory

    2008-01-01

    Gravitational wave emission from stellar collapse has been studied for nearly four decades. Current state-of-the-art numerical investigations of collapse include those that use progenitors with more realistic angular momentum profiles, properly treat microphysics issues, account for general relativity, and examine non-axisymmetric effects in three dimensions. Such simulations predict that gravitational waves from various phenomena associated with gravitational collapse could be detectable with ground-based and space-based interferometric observatories. This review covers the entire range of stellar collapse sources of gravitational waves: from the accretion induced collapse of a white dwarf through the collapse down to neutron stars or black holes of massive stars to the collapse of supermassive stars.

  7. Gravitational Waves from Gravitational Collapse.

    Science.gov (United States)

    Fryer, Chris L; New, Kimberly C B

    2011-01-01

    Gravitational-wave emission from stellar collapse has been studied for nearly four decades. Current state-of-the-art numerical investigations of collapse include those that use progenitors with more realistic angular momentum profiles, properly treat microphysics issues, account for general relativity, and examine non-axisymmetric effects in three dimensions. Such simulations predict that gravitational waves from various phenomena associated with gravitational collapse could be detectable with ground-based and space-based interferometric observatories. This review covers the entire range of stellar collapse sources of gravitational waves: from the accretion-induced collapse of a white dwarf through the collapse down to neutron stars or black holes of massive stars to the collapse of supermassive stars. Supplementary material is available for this article at 10.12942/lrr-2011-1.

  8. Stratified coastal ocean interactions with tropical cyclones

    Science.gov (United States)

    Glenn, S. M.; Miles, T. N.; Seroka, G. N.; Xu, Y.; Forney, R. K.; Yu, F.; Roarty, H.; Schofield, O.; Kohut, J.

    2016-01-01

    Hurricane-intensity forecast improvements currently lag the progress achieved for hurricane tracks. Integrated ocean observations and simulations during hurricane Irene (2011) reveal that the wind-forced two-layer circulation of the stratified coastal ocean, and resultant shear-induced mixing, led to significant and rapid ahead-of-eye-centre cooling (at least 6 °C and up to 11 °C) over a wide swath of the continental shelf. Atmospheric simulations establish this cooling as the missing contribution required to reproduce Irene's accelerated intensity reduction. Historical buoys from 1985 to 2015 show that ahead-of-eye-centre cooling occurred beneath all 11 tropical cyclones that traversed the Mid-Atlantic Bight continental shelf during stratified summer conditions. A Yellow Sea buoy similarly revealed significant and rapid ahead-of-eye-centre cooling during Typhoon Muifa (2011). These findings establish that including realistic coastal baroclinic processes in forecasts of storm intensity and impacts will be increasingly critical to mid-latitude population centres as sea levels rise and tropical cyclone maximum intensities migrate poleward. PMID:26953963

  9. Gravitational Waves

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Jonah Maxwell [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-10-18

    This report has slides on Gravitational Waves; Pound and Rebka: A Shocking Fact; Light is a Ruler; Gravity is the Curvature of Spacetime; Gravitational Waves Made Simple; How a Gravitational Wave Affects Stuff Here; LIGO; This Detection: Neutron Stars; What the Gravitational Wave Looks Like; The Sound of Merging Neutron Stars; Neutron Star Mergers: More than GWs; The Radioactive Cloud; The Kilonova; and finally Summary, Multimessenger Astronomy.

  10. RANS Modeling of Stably Stratified Turbulent Boundary Layer Flows in OpenFOAM®

    Directory of Open Access Journals (Sweden)

    Wilson Jordan M.

    2015-01-01

    Full Text Available Quantifying mixing processes relating to the transport of heat, momentum, and scalar quantities of stably stratified turbulent geophysical flows remains a substantial task. In a stably stratified flow, such as the stable atmospheric boundary layer (SABL, buoyancy forces have a significant impact on the flow characteristics. This study investigates constant and stability-dependent turbulent Prandtl number (Prt formulations linking the turbulent viscosity (νt and diffusivity (κt for modeling applications of boundary layer flows. Numerical simulations of plane Couette flow and pressure-driven channel flow are performed using the Reynolds-averaged Navier-Stokes (RANS framework with the standard k-ε turbulence model. Results are compared with DNS data to evaluate model efficacy for predicting mean velocity and density fields. In channel flow simulations, a Prandtl number formulation for wall-bounded flows is introduced to alleviate overmixing of the mean density field. This research reveals that appropriate specification of Prt can improve predictions of stably stratified turbulent boundary layer flows.

  11. On gravitational wave energy in Einstein gravitational theory

    International Nuclear Information System (INIS)

    Folomeshkin, V.N.; Vlasov, A.A.

    1978-01-01

    By the example of precise wave solutions for the Einstein equations it is shown that a standard commonly adopted formulation of energy-momentum problem with pseudotensors provides us either with a zero or sign-variable values for the energy of gravitational waves. It is shown that if in the Einstein gravitational theory a strict transition to the limits of weak fields is realised then the theory gives us an unambiguous zero result for weak gravitational waves. The well-known non-zero result arises due to incorrect transition to weak field approximation in the Einstein gravitation theory

  12. Relativistic gravitation theory

    International Nuclear Information System (INIS)

    Logunov, A.A.; Mestvirishvili, M.A.

    1984-01-01

    On the basis of the special relativity and geometrization principle a relativistic gravitation theory (RGT) is unambiguously constructed with the help of a notion of a gravitational field as a physical field in Faraday-Maxwell spirit, which posesses energy momentum and spins 2 and 0. The source of gravitation field is a total conserved energy-momentum tensor for matter and for gravitation field in Minkowski space. In the RGT conservation laws for the energy momentum and angular momentum of matter and gravitational field hold rigorously. The theory explains the whole set of gravitation experiments. Here, due to the geometrization principle the Riemannian space is of a field origin since this space arises effectively as a result of the gravitation field origin since this space arises effectively as a result of the gravitation field action on the matter. The RGT astonishing prediction is that the Universe is not closed but ''flat''. It means that in the Universe there should exist a ''missing'' mass in some form of matter

  13. Longevity of Compositionally Stratified Layers in Ice Giants

    Science.gov (United States)

    Friedson, A. J.

    2017-12-01

    In the hydrogen-rich atmospheres of gas giants, a decrease with radius in the mixing ratio of a heavy species (e.g. He, CH4, H2O) has the potential to produce a density stratification that is convectively stable if the heavy species is sufficiently abundant. Formation of stable layers in the interiors of these planets has important implications for their internal structure, chemical mixing, dynamics, and thermal evolution, since vertical transport of heat and constituents in such layers is greatly reduced in comparison to that in convecting layers. Various processes have been suggested for creating compositionally stratified layers. In the interiors of Jupiter and Saturn, these include phase separation of He from metallic hydrogen and dissolution of dense core material into the surrounding metallic-H envelope. Condensation of methane and water has been proposed as a mechanism for producing stable zones in the atmospheres of Saturn and the ice giants. However, if a stably stratified layer is formed adjacent to an active region of convection, it may be susceptible to progressive erosion as the convection intrudes and entrains fluid into the unstable envelope. We discuss the principal factors that control the rate of entrainment and associated erosion and present a specific example concerning the longevity of stable layers formed by condensation of methane and water in Uranus and Neptune. We also consider whether the temporal variability of such layers may engender episodic behavior in the release of the internal heat of these planets. This research is supported by a grant from the NASA Solar System Workings Program.

  14. From Near-Neutral to Strongly Stratified: Adequately Modelling the Clear-Sky Nocturnal Boundary Layer at Cabauw.

    Science.gov (United States)

    Baas, P; van de Wiel, B J H; van der Linden, S J A; Bosveld, F C

    2018-01-01

    The performance of an atmospheric single-column model (SCM) is studied systematically for stably-stratified conditions. To this end, 11 years (2005-2015) of daily SCM simulations were compared to observations from the Cabauw observatory, The Netherlands. Each individual clear-sky night was classified in terms of the ambient geostrophic wind speed with a [Formula: see text] bin-width. Nights with overcast conditions were filtered out by selecting only those nights with an average net radiation of less than [Formula: see text]. A similar procedure was applied to the observational dataset. A comparison of observed and modelled ensemble-averaged profiles of wind speed and potential temperature and time series of turbulent fluxes showed that the model represents the dynamics of the nocturnal boundary layer (NBL) at Cabauw very well for a broad range of mechanical forcing conditions. No obvious difference in model performance was found between near-neutral and strongly-stratified conditions. Furthermore, observed NBL regime transitions are represented in a natural way. The reference model version performs much better than a model version that applies excessive vertical mixing as is done in several (global) operational models. Model sensitivity runs showed that for weak-wind conditions the inversion strength depends much more on details of the land-atmosphere coupling than on the turbulent mixing. The presented results indicate that in principle the physical parametrizations of large-scale atmospheric models are sufficiently equipped for modelling stably-stratified conditions for a wide range of forcing conditions.

  15. From Near-Neutral to Strongly Stratified: Adequately Modelling the Clear-Sky Nocturnal Boundary Layer at Cabauw

    Science.gov (United States)

    Baas, P.; van de Wiel, B. J. H.; van der Linden, S. J. A.; Bosveld, F. C.

    2018-02-01

    The performance of an atmospheric single-column model (SCM) is studied systematically for stably-stratified conditions. To this end, 11 years (2005-2015) of daily SCM simulations were compared to observations from the Cabauw observatory, The Netherlands. Each individual clear-sky night was classified in terms of the ambient geostrophic wind speed with a 1 m s^{-1} bin-width. Nights with overcast conditions were filtered out by selecting only those nights with an average net radiation of less than - 30 W m^{-2}. A similar procedure was applied to the observational dataset. A comparison of observed and modelled ensemble-averaged profiles of wind speed and potential temperature and time series of turbulent fluxes showed that the model represents the dynamics of the nocturnal boundary layer (NBL) at Cabauw very well for a broad range of mechanical forcing conditions. No obvious difference in model performance was found between near-neutral and strongly-stratified conditions. Furthermore, observed NBL regime transitions are represented in a natural way. The reference model version performs much better than a model version that applies excessive vertical mixing as is done in several (global) operational models. Model sensitivity runs showed that for weak-wind conditions the inversion strength depends much more on details of the land-atmosphere coupling than on the turbulent mixing. The presented results indicate that in principle the physical parametrizations of large-scale atmospheric models are sufficiently equipped for modelling stably-stratified conditions for a wide range of forcing conditions.

  16. Solar gravitational redshift

    International Nuclear Information System (INIS)

    Lopresto, J.C.; Chapman, R.D.

    1980-01-01

    Wavelengths of solar spectrum lines should be shifted toward the red by the Sun's gravitational field as predicted by metric theories of gravity according to the principle of equivalence. Photographic wavelengths of 738 solar Fe 1 lines and their corresponding laboratory wavelengths have been studied. The measured solar wavelength minus the laboratory wavelength (Δlambdasub(observed)) averaged for the strong lines agrees well with the theoretically predicted shift (Δlambdasub(theoretical)). Studies show that the departures depend on line strength. No dependence of the departures on wavelength was found within the existing data. By studying strong lines over a wide spectral range, velocity shifts caused by the complex motions in the solar atmosphere seem to affect the results in a minimal fashion. (orig.)

  17. Why turbulence sustains in supercritically stratified free atmosphere?

    Science.gov (United States)

    Zilitinkevich, Sergej

    2016-04-01

    It is widely believed that in very stable stratifications, at Richardson numbers (Ri) exceeding critical value Ric ˜ 0.25 turbulence decays and flow becomes laminar. This is so at low Reynolds numbers (Re), e.g., in lab experiments; but this is not true in very-high-Re geophysical flows. Free atmosphere and deep ocean are turbulent in spite of strongly supercritical stratifications: 1 role of negative buoyancy flux, Fb > 0, in turbulence energetics was treated in terms of the turbulent kinetic energy (TKE) budget equation and understood as just consumption of TKE by the buoyancy forces. This has led to the conclusion that sufficiently strong static stability causes the negative buoyancy flux sufficiently strong to exceed the TKE generation rate and thus to kill turbulence. However, considering TKE equation together with budget equation for turbulent potential energy (TPE proportional to the squared buoyancy fluctuations) shows that the role of Fb in turbulence energetics is nothing but conversion of TKE into TPE (Fb just quantifies the rate of this conversion); so that Fb does not affect total turbulent energy (TTE = TKE + TPE). Moreover, as follows from the buoyancy-flux budget equation, TPE generates positive (directed upward) buoyancy flux irrespective of the sign of the buoyancy gradient. Indeed, the warmer fluid particles (with positive buoyancy fluctuation) rise up, whereas the cooler particles sink down, so that both contribute to the positive buoyancy flux opposing to the usual, negative flux generated by mean buoyancy gradient. In this context, strengthening the negative buoyancy flux leads to decreasing TKE and increasing TPE. The latter enhances the counter-gradient share of the total flux, thus reduces |Fb| and, eventually, increases TKE. The above negative feedback was disregarded in the conventional concept of down-gradient turbulent transport. This mechanism imposes a limit on the maximal (independent of the buoyancy gradient) value of |Fb| and thus

  18. Gravitational effects in field gravitation theory

    International Nuclear Information System (INIS)

    Denisov, V.I.; Logunov, A.A.; Mestvirishvili, M.A.; Vlasov, A.A.

    1979-01-01

    The possibilities to describe various gravitation effects of field gravitation theory (FGT) are considered. Past-Newtonian approximation of the FGT has been constructed and on the basis of this approximation it has been shown that the field theory allows one to describe the whole set of experimental facts. The comparison of post-Newtonian parameters in FGT with those in the Einstein's theory makes it clear that these two; theories are undistinguishable from the viewpoint of any experiments, realized with post-Newtonian accuracy. Gravitational field of an island type source with spherically symmetrical distribution of matter and unstationary homogeneous model of Universe, which allows to describe the effect of cosmological red shift, are considered

  19. Radionuclide dispersion in the atmosphere

    International Nuclear Information System (INIS)

    Moura Neto, C. de; Amorim, E.S. do; Panetta, J.

    1979-05-01

    The instantaneous liberation of radionuclides in the atmosphere is studied in three dimensions, according to the formalism of the diffusion theory. The analytical solution, expose to gravitational and an atmospherical effects, is combined with the discretization of space and time in the calculation of levels of exposure. A typical inventory (for a PWR) was considered in the calculation of immersion doses, and the results permitted a comparative analysis among the different existing models. (Author) [pt

  20. Heat and Gravitation: The Action Principle

    Directory of Open Access Journals (Sweden)

    Christian Frønsdal

    2014-03-01

    Full Text Available Some features of hydro- and thermo-dynamics, as applied to atmospheres and to stellar structures, are puzzling: (1 the suggestion, first made by Laplace, that our atmosphere has an adiabatic temperature distribution, is confirmed for the lower layers, but the explanation for this is very controversial; (2 the standard treatment of relativistic thermodynamics does not favor a systematic treatment of mixtures, such as the mixture of a perfect gas with radiation; (3 the concept of mass density in applications of general relativity to stellar structures is less than completely satisfactory; and (4 arguments in which a concept of energy and entropy play a role, in the context of hydro-thermodynamical systems and gravitation, are not always convincing. It is proposed that a formulation of thermodynamics as an action principle may be a suitable approach to adopt for a new investigation of these matters. This paper formulates the thermodynamics of ideal gases in a constant gravitational field in terms of the Gibbsean action principle. This approach, in the simplest cases, does not deviate from standard practice, but it lays the foundations for a more systematic approach to the various extensions, such as the incorporation of radiation, the consideration of mixtures and the integration with general relativity. We study the interaction between an ideal gas and the photon gas and the propagation of sound in a vertical, isothermal column. We determine the entropy that allows for the popular isothermal equilibrium and introduce the study of the associated adiabatic dynamics. This leads to the suggestion that the equilibrium of an ideal gas must be isentropic, in which case, the role of solar radiation would be merely to compensate for the loss of energy by radiation into the cosmos. An experiment with a centrifuge is proposed, to determine the influence of gravitation on the equilibrium distribution with a very high degree of precision.

  1. Complete synthetic seismograms based on a spherical self-gravitating Earth model with an atmosphere-ocean-mantle-core structure

    Science.gov (United States)

    Wang, Rongjiang; Heimann, Sebastian; Zhang, Yong; Wang, Hansheng; Dahm, Torsten

    2017-09-01

    A hybrid method is proposed to calculate complete synthetic seismograms based on a spherically symmetric and self-gravitating Earth with a multilayered structure of atmosphere, ocean, mantle, liquid core and solid core. For large wavelengths, a numerical scheme is used to solve the geodynamic boundary-value problem without any approximation on the deformation and gravity coupling. With decreasing wavelength, the gravity effect on the deformation becomes negligible and the analytical propagator scheme can be used. Many useful approaches are used to overcome the numerical problems that may arise in both analytical and numerical schemes. Some of these approaches have been established in the seismological community and the others are developed for the first time. Based on the stable and efficient hybrid algorithm, an all-in-one code QSSP is implemented to cover the complete spectrum of seismological interests. The performance of the code is demonstrated by various tests including the curvature effect on teleseismic body and surface waves, the appearance of multiple reflected, teleseismic core phases, the gravity effect on long period surface waves and free oscillations, the simulation of near-field displacement seismograms with the static offset, the coupling of tsunami and infrasound waves, and free oscillations of the solid Earth, the atmosphere and the ocean. QSSP is open source software that can be used as a stand-alone FORTRAN code or may be applied in combination with a Python toolbox to calculate and handle Green's function databases for efficient coding of source inversion problems.

  2. Effect of Earth gravitational field on the detection of gravitational waves

    International Nuclear Information System (INIS)

    Denisov, V.I.; Eliseev, V.A.

    1987-01-01

    Results of laboratory detection of high-frequency gravitational waves from the view point of gravitation theories formulated on the basis of pseudoeuclidean space-time are calculated. Peculiarities due to different effects of the Earth gravitational field on the rates of gravitational and electromagnetic wave propagation in these theories are analysed. Experiments on check of predictions of the given class of theories are suggested

  3. Anisotropic gravitational instability

    International Nuclear Information System (INIS)

    Polyachenko, V.L.; Fridman, A.M.

    1988-01-01

    Exact solutions of stability problems are obtained for two anisotropic gravitational systems of different geometries - a layer of finite thickness at rest and a rotating cylinder of finite radius. It is shown that the anisotropic gravitational instability which develops in both cases is of Jeans type. However, in contrast to the classical aperiodic Jeans instability, this instability is oscillatory. The physics of the anisotropic gravitational instability is investigated. It is shown that in a gravitating layer this instability is due, in particular, to excitation of previously unknown interchange-Jeans modes. In the cylinder, the oscillatory Jeans instability is associated with excitation of a rotational branch, this also being responsible for the beam gravitational instability. This is the reason why this instability and the anisotropic gravitational instability have so much in common

  4. Formation of the lunar helium corona and atmosphere

    Science.gov (United States)

    Hodges, R. R., Jr.

    1977-01-01

    Helium is one of the dominant gases of the lunar atmosphere. Its presence is easily identified in data from the mass spectrometer at the Apollo 17 landing site. The major part of these data was obtained in lunar nighttime, where helium concentration reaches the maximum of its diurnal cyclic variation. The large night to day concentration ratio agrees with the basic theory of exospheric lateral transport reported by Hodges and Johnson (1968). A reasonable fraction of atmospheric helium atoms has a velocity in excess of the gravitational escape velocity. The result is a short average lifetime and a tenuous helium atmosphere. A description is presented of an investigation which shows that the atmosphere of the moon has two distinct components including low energy atoms, which are gravitationally bound in trajectories that intersect the lunar surface, and higher energy atoms, which are trapped in satellite orbits. The total helium abundance in the lunar corona is shown to be about 1.3 times 10 to the 30th power atoms.

  5. The gravitational Schwinger effect and attenuation of gravitational waves

    Science.gov (United States)

    McDougall, Patrick Guarneri

    This paper will discuss the possible production of photons from gravitational waves. This process is shown to be possible by examining Feynman diagrams, the Schwinger Effect, and Hawking Radiation. The end goal of this project is to find the decay length of a gravitational wave and assert that this decay is due to photons being created at the expense of the gravitational wave. To do this, we first find the state function using the Klein Gordon equation, then find the current due to this state function. We then take the current to be directly proportional to the production rate per volume. This is then used to find the decay length that this kind of production would produce, gives a prediction of how this effect will change the distance an event creating a gravitational wave will be located, and shows that this effect is small but can be significant near the source of a gravitational wave.

  6. National Coral Reef Monitoring Program: Benthic Images Collected from Stratified Random Sites (StRS) across American Samoa in 2015

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The data described here are benthic habitat imagery that result from benthic photo-quadrat surveys conducted along transects at stratified random sites across...

  7. Effect of the Earth's gravitational field on the detection of gravitational waves

    International Nuclear Information System (INIS)

    Denisov, V.I.; Eliseev, V.A.

    1988-01-01

    We consider the laboratory detection of high-frequency gravitational waves in theories of gravitation based on a pseudo-Euclidean space-time. We analyze the effects due to the Earth's gravitational field on the propagation velocities of gravitational and electromagnetic waves in these theories. Experiments to test the predictions of this class of theories are discussed

  8. Gravitation Waves

    CERN Multimedia

    CERN. Geneva

    2005-01-01

    We will present a brief introduction to the physics of gravitational waves and their properties. We will review potential astrophysical sources of gravitational waves, and the physics and astrophysics that can be learned from their study. We will survey the techniques and technologies for detecting gravitational waves for the first time, including bar detectors and broadband interferometers, and give a brief status report on the international search effort, with special emphasis on the LIGO detectors and search results.

  9. Atmospheric stability in CFD &NDASH; Representation of the diurnal cycle in the atmospheric boundary layer

    DEFF Research Database (Denmark)

    Koblitz, Tilman; Bechmann, Andreas; Sogachev, Andrey

    2012-01-01

    For wind resource assessment, the wind industry is increasingly relying on Computational Fluid Dynamics (CFD) models that focus primarily on modeling the airflow in a neutrally stratified surface layer. So far, physical processes that are specific to the atmospheric boundary layer (ABL), for exam......For wind resource assessment, the wind industry is increasingly relying on Computational Fluid Dynamics (CFD) models that focus primarily on modeling the airflow in a neutrally stratified surface layer. So far, physical processes that are specific to the atmospheric boundary layer (ABL......), for example the Coriolis force, buoyancy forces and heat transport, are mostly ignored in state-of-the-art CFD models. In order to decrease the uncertainty of wind resource assessment, especially in complex terrain, the effect of thermal stratification on the ABL should be included in such models. The present...

  10. Einstein-Rosen gravitational waves

    International Nuclear Information System (INIS)

    Astefanoaei, Iordana; Maftei, Gh.

    2001-01-01

    In this paper we analyse the behaviour of the gravitational waves in the approximation of the far matter fields, considering the indirect interaction between the matter sources and the gravitational field, in a cosmological model based on the Einstein-Rosen solution, Because the properties of the gravitational waves obtained as the solutions of Einstein fields equations (the gravitational field equations) are most obvious in the weak gravitational fields we consider here, the gravitational field in the linear approximation. Using the Newman-Penrose formalism, we calculate in the null-tetradic base (e a ), the spin coefficients, the directional derivates and the tetradic components of Ricci and Weyl tensors. From the Einstein field equations we obtained the solution for b(z, t) what described the behaviour of gravitational wave in Einstein-Rosen Universe and in the particular case, when t → ∞, p(z, t) leads us to the primordial gravitational waves in the Einstein-Rosen Universe. (authors)

  11. Gravitational waves from inflation

    International Nuclear Information System (INIS)

    Guzzetti, M.C.; Bartolo, N.; Liguori, M.; Matarrese, S.

    2016-01-01

    The production of a stochastic background of gravitational waves is a fundamental prediction of any cosmological inflationary model. The features of such a signal encode unique information about the physics of the Early Universe and beyond, thus representing an exciting, powerful window on the origin and evolution of the Universe. We review the main mechanisms of gravitational-wave production, ranging from quantum fluctuations of the gravitational field to other mechanisms that can take place during or after inflation. These include e.g. gravitational waves generated as a consequence of extra particle production during inflation, or during the (p)reheating phase. Gravitational waves produced in inflation scenarios based on modified gravity theories and second-order gravitational waves are also considered. For each analyzed case, the expected power spectrum is given. We discuss the discriminating power among different models, associated with the validity/violation of the standard consistency relation between tensor-to-scalar ratio r and tensor spectral index ηT. In light of the prospects for (directly/indirectly) detecting primordial gravitational waves, we give the expected present-day gravitational radiation spectral energy-density, highlighting the main characteristics imprinted by the cosmic thermal history, and we outline the signatures left by gravitational waves on the Cosmic Microwave Background and some imprints in the Large-Scale Structure of the Universe. Finally, current bounds and prospects of detection for inflationary gravitational waves are summarized.

  12. Gravitation and relativity

    CERN Document Server

    Hoffmann, William F

    1964-01-01

    Remarks on the observational basis of general relativity ; Riemannian geometry ; gravitation as geometry ; gravitational waves ; Mach's principle and experiments on mass anisotropy ; the many faces of Mach ; the significance for the solar system of time-varying gravitation ; relativity principles and the role of coordinates in physics ; the superdense star and the critical nucleon number ; gravitation and light ; possible effects on the solar system of φ waves if they exist ; the Lyttleton-Bondi universe and charge equality ; quantization of general relativity ; Mach's principle as boundary condition for Einstein's equations.

  13. Gravitational waves — A review on the theoretical foundations of gravitational radiation

    Science.gov (United States)

    Dirkes, Alain

    2018-05-01

    In this paper, we review the theoretical foundations of gravitational waves in the framework of Albert Einstein’s theory of general relativity. Following Einstein’s early efforts, we first derive the linearized Einstein field equations and work out the corresponding gravitational wave equation. Moreover, we present the gravitational potentials in the far away wave zone field point approximation obtained from the relaxed Einstein field equations. We close this review by taking a closer look on the radiative losses of gravitating n-body systems and present some aspects of the current interferometric gravitational waves detectors. Each section has a separate appendix contribution where further computational details are displayed. To conclude, we summarize the main results and present a brief outlook in terms of current ongoing efforts to build a spaced-based gravitational wave observatory.

  14. Water Tank Experiments on Stratified Flow over Double Mountain-Shaped Obstacles at High-Reynolds Number

    Directory of Open Access Journals (Sweden)

    Ivana Stiperski

    2017-01-01

    Full Text Available In this article, we present an overview of the HyIV-CNRS-SecORo (Hydralab IV-CNRS-Secondary Orography and Rotors Experiments laboratory experiments carried out in the CNRM (Centre National de Recherches Météorologiques large stratified water flume. The experiments were designed to systematically study the influence of double obstacles on stably stratified flow. The experimental set-up consists of a two-layer flow in the water tank, with a lower neutral and an upper stable layer separated by a sharp density discontinuity. This type of layering over terrain is known to be conducive to a variety of possible responses in the atmosphere, from hydraulic jumps to lee waves and highly turbulent rotors. In each experiment, obstacles were towed through the tank at a constant speed. The towing speed and the size of the tank allowed high Reynolds-number flow similar to the atmosphere. Here, we present the experimental design, together with an overview of laboratory experiments conducted and their results. We develop a regime diagram for flow over single and double obstacles and examine the parameter space where the secondary obstacle has the largest influence on the flow. Trapped lee waves, rotors, hydraulic jumps, lee-wave interference and flushing of the valley atmosphere are successfully reproduced in the stratified water tank. Obstacle height and ridge separation distance are shown to control lee-wave interference. Results, however, differ partially from previous findings on the flow over double ridges reported in the literature due to the presence of nonlinearities and possible differences in the boundary layer structure. The secondary obstacle also influences the transition between different flow regimes and makes trapped lee waves possible for higher Froude numbers than expected for an isolated obstacle.

  15. Gravitational Casimir–Polder effect

    Directory of Open Access Journals (Sweden)

    Jiawei Hu

    2017-04-01

    Full Text Available The interaction due to quantum gravitational vacuum fluctuations between a gravitationally polarizable object modelled as a two-level system and a gravitational boundary is investigated. This quantum gravitational interaction is found to be position-dependent, which induces a force in close analogy to the Casimir–Polder force in the electromagnetic case. For a Dirichlet boundary, the quantum gravitational potential for the polarizable object in its ground-state is shown to behave like z−5 in the near zone, and z−6 in the far zone, where z is the distance to the boundary. For a concrete example, where a Bose–Einstein condensate is taken as a gravitationally polarizable object, the relative correction to the radius of the BEC caused by fluctuating quantum gravitational waves in vacuum is found to be of order 10−21. Although the correction is far too small to observe in comparison with its electromagnetic counterpart, it is nevertheless of the order of the gravitational strain caused by a recently detected black hole merger on the arms of the LIGO.

  16. Theory of gravitational interactions

    CERN Document Server

    Gasperini, Maurizio

    2017-01-01

    This is the second edition of a well-received book that is a modern, self-contained introduction to the theory of gravitational interactions. The new edition includes more details on gravitational waves of cosmological origin, the so-called brane world scenario, and gravitational time-delay effects. The first part of the book follows the traditional presentation of general relativity as a geometric theory of the macroscopic gravitational field, while the second, more advanced part discusses the deep analogies (and differences) between a geometric theory of gravity and the “gauge” theories of the other fundamental interactions. This fills a gap within the traditional approach to general relativity which usually leaves students puzzled about the role of gravity. The required notions of differential geometry are reduced to the minimum, allowing room for aspects of gravitational physics of current phenomenological and theoretical interest, such as the properties of gravitational waves, the gravitational inter...

  17. Mathematical analysis of a viscoelastic-gravitational layered earth model for magmatic intrusion in the dynamic case

    Directory of Open Access Journals (Sweden)

    Alicia Arjona

    2015-11-01

    Full Text Available Volcanic areas present a lower effective viscosity than usually in the Earth's crust. It makes necessary to consider inelastic properties in deformation modelling. As a continuation of work done previously by some of the authors, this work is concerned with the proof that the perturbed equations representing the viscoelastic-gravitational displacements resulting from body forces embedded in a layered Earth model leads to a well-posed problem even for any kind of domains, with the natural boundary and transmission conditions. A homogeneous or stratified viscoelastic half-space has often been used as a simple earth model to calculate the displacements and gravity changes. Here we give a constructive proof of the existence of weak solutions and we show the uniqueness and the continuous dependence with respect to the initial data of weak solutions of the dynamic coupled viscoelastic-gravitational field equations.

  18. Measuring mixing efficiency in experiments of strongly stratified turbulence

    Science.gov (United States)

    Augier, P.; Campagne, A.; Valran, T.; Calpe Linares, M.; Mohanan, A. V.; Micard, D.; Viboud, S.; Segalini, A.; Mordant, N.; Sommeria, J.; Lindborg, E.

    2017-12-01

    Oceanic and atmospheric models need better parameterization of the mixing efficiency. Therefore, we need to measure this quantity for flows representative of geophysical flows, both in terms of types of flows (with vortices and/or waves) and of dynamical regimes. In order to reach sufficiently large Reynolds number for strongly stratified flows, experiments for which salt is used to produce the stratification have to be carried out in a large rotating platform of at least 10-meter diameter.We present new experiments done in summer 2017 to study experimentally strongly stratified turbulence and mixing efficiency in the Coriolis platform. The flow is forced by a slow periodic movement of an array of large vertical or horizontal cylinders. The velocity field is measured by 3D-2C scanned horizontal particles image velocimetry (PIV) and 2D vertical PIV. Six density-temperature probes are used to measure vertical and horizontal profiles and signals at fixed positions.We will show how we rely heavily on open-science methods for this study. Our new results on the mixing efficiency will be presented and discussed in terms of mixing parameterization.

  19. Gravitational mass and Newton's universal gravitational law under relativistic conditions

    International Nuclear Information System (INIS)

    Vayenas, Constantinos G; Grigoriou, Dimitrios; Fokas, Athanasios

    2015-01-01

    We discuss the predictions of Newton's universal gravitational law when using the gravitational, m g , rather than the rest masses, m o , of the attracting particles. According to the equivalence principle, the gravitational mass equals the inertial mass, m i , and the latter which can be directly computed from special relativity, is an increasing function of the Lorentz factor, γ, and thus of the particle velocity. We consider gravitationally bound rotating composite states, and we show that the ratio of the gravitational force for gravitationally bound rotational states to the force corresponding to low (γ ≈ 1) particle velocities is of the order of (m Pl /m o ) 2 where mpi is the Planck mass (ħc/G) 1/2 . We also obtain a similar result, within a factor of two, by employing the derivative of the effective potential of the Schwarzschild geodesics of GR. Finally, we show that for certain macroscopic systems, such as the perihelion precession of planets, the predictions of this relativistic Newtonian gravitational law differ again by only a factor of two from the predictions of GR. (paper)

  20. Instability of combined gravity-inertial-Rossby waves in atmospheres and oceans

    Directory of Open Access Journals (Sweden)

    J. F. McKenzie

    2011-06-01

    Full Text Available The properties of the instability of combined gravity-inertial-Rossby waves on a β-plane are investigated. The wave-energy exchange equation shows that there is an exchange of energy with the background stratified medium. The energy source driving the instability lies in the background enthalpy released by the gravitational buoyancy force. It is shown that if the phase speed of the westward propagating low frequency-long wavelength Rossby wave exceeds the Poincaré-Kelvin (or "equivalent" shallow water wave speed, instability arises from the merging of Rossby and Poincaré modes. There are two key parameters in this instability condition; namely, the equatorial/rotational Mach (or Froude number M and the latitude θ0 of the β-plane. In general waves equatorward of a critical latitude for given M can be driven unstable, with corresponding growth rates of the order of a day or so. Although these conclusions may only be safely drawn for short wavelengths corresponding to a JWKB wave packet propagating internally and located far from boundaries, nevertheless such a local instability may play a significant role in atmosphere-ocean dynamics.

  1. Relativistic theory of gravitation

    International Nuclear Information System (INIS)

    Logunov, A.A.; Mestvirishvilli, M.A.

    1985-01-01

    In the present paper a relativistic theory of gravitation (RTG) is constructed in a unique way on the basis of the special relativity and geometrization principle. In this, a gravitational field is treated as the Faraday-Maxwell spin-2 and spin-0 physical field possessing energy and momentum. The source of a gravitational field is the total conserved energy-momentum tensor of matter and of a gravitational field in Minkowski space. In the RTG, the conservation laws are strictly fulfilled for the energy-momentum and for the angular momentum of matter and a gravitational field. The theory explains the whole available set of experiments on gravitation. In virtue of the geometrization principle, the Riemannian space in our theory is of field origin, since it appears as an effective force space due to the action of a gravitational field on matter. The RTg leads to an exceptionally strong prediction: The Universe is not closed but just ''flat''. This suggests that in the Universe a ''hidden mass'' should exist in some form of matter

  2. Gravitation Waves seminar

    CERN Multimedia

    CERN. Geneva HR-RFA

    2006-01-01

    We will present a brief introduction to the physics of gravitational waves and their properties. We will review potential astrophysical sources of gravitational waves, and the physics and astrophysics that can be learned from their study. We will survey the techniques and technologies for detecting gravitational waves for the first time, including bar detectors and broadband interferometers, and give a brief status report on the international search effort.

  3. Testing gravitational parity violation with coincident gravitational waves and short gamma-ray bursts

    International Nuclear Information System (INIS)

    Yunes, Nicolas; O'Shaughnessy, Richard; Owen, Benjamin J.; Alexander, Stephon

    2010-01-01

    Gravitational parity violation is a possibility motivated by particle physics, string theory, and loop quantum gravity. One effect of it is amplitude birefringence of gravitational waves, whereby left and right circularly polarized waves propagate at the same speed but with different amplitude evolution. Here we propose a test of this effect through coincident observations of gravitational waves and short gamma-ray bursts from binary mergers involving neutron stars. Such gravitational waves are highly left or right circularly polarized due to the geometry of the merger. Using localization information from the gamma-ray burst, ground-based gravitational wave detectors can measure the distance to the source with reasonable accuracy. An electromagnetic determination of the redshift from an afterglow or host galaxy yields an independent measure of this distance. Gravitational parity violation would manifest itself as a discrepancy between these two distance measurements. We exemplify such a test by considering one specific effective theory that leads to such gravitational parity violation, Chern-Simons gravity. We show that the advanced LIGO-Virgo network and all-sky gamma-ray telescopes can be sensitive to the propagating sector of Chern-Simons gravitational parity violation to a level roughly 2 orders of magnitude better than current stationary constraints from the LAGEOS satellites.

  4. METRIC: A Dedicated Earth-Orbiting Spacecraft for Investigating Gravitational Physics and the Space Environment

    Directory of Open Access Journals (Sweden)

    Roberto Peron

    2017-07-01

    Full Text Available A dedicated mission in low Earth orbit is proposed to test predictions of gravitational interaction theories and to directly measure the atmospheric density in a relevant altitude range, as well as to provide a metrological platform able to tie different space geodesy techniques. The concept foresees a small spacecraft to be placed in a dawn-dusk eccentric orbit between 450 and 1200 km of altitude. The spacecraft will be tracked from the ground with high precision, and a three-axis accelerometer package on-board will measure the non-gravitational accelerations acting on its surface. Estimates of parameters related to fundamental physics and geophysics should be obtained by a precise orbit determination, while the accelerometer data will be instrumental in constraining the atmospheric density. Along with the mission scientific objectives, a conceptual configuration is described together with an analysis of the dynamical environment experienced by the spacecraft and the accelerometer.

  5. Relativity theory and gravitation

    International Nuclear Information System (INIS)

    Bondi, H.

    1986-01-01

    The paper on relativity theory and gravitation is presented as a preface to the first of the articles submitted to the Journal on general relativity. Newtonian gravitation and and observation, relativity, and the sources of the gravitational field, are all discussed. (UK)

  6. Stratified flow model for convective condensation in an inclined tube

    International Nuclear Information System (INIS)

    Lips, Stéphane; Meyer, Josua P.

    2012-01-01

    Highlights: ► Convective condensation in an inclined tube is modelled. ► The heat transfer coefficient is the highest for about 20° below the horizontal. ► Capillary forces have a strong effect on the liquid–vapour interface shape. ► A good agreement between the model and the experimental results was observed. - Abstract: Experimental data are reported for condensation of R134a in an 8.38 mm inner diameter smooth tube in inclined orientations with a mass flux of 200 kg/m 2 s. Under these conditions, the flow is stratified and there is an optimum inclination angle, which leads to the highest heat transfer coefficient. There is a need for a model to better understand and predict the flow behaviour. In this paper, the state of the art of existing models of stratified two-phase flows in inclined tubes is presented, whereafter a new mechanistic model is proposed. The liquid–vapour distribution in the tube is determined by taking into account the gravitational and the capillary forces. The comparison between the experimental data and the model prediction showed a good agreement in terms of heat transfer coefficients and pressure drops. The effect of the interface curvature on the heat transfer coefficient has been quantified and has been found to be significant. The optimum inclination angle is due to a balance between an increase of the void fraction and an increase in the falling liquid film thickness when the tube is inclined downwards. The effect of the mass flux and the vapour quality on the optimum inclination angle has also been studied.

  7. Gravitation

    CERN Document Server

    Misner, Charles W; Wheeler, John Archibald

    2017-01-01

    First published in 1973, Gravitation is a landmark graduate-level textbook that presents Einstein’s general theory of relativity and offers a rigorous, full-year course on the physics of gravitation. Upon publication, Science called it “a pedagogic masterpiece,” and it has since become a classic, considered essential reading for every serious student and researcher in the field of relativity. This authoritative text has shaped the research of generations of physicists and astronomers, and the book continues to influence the way experts think about the subject. With an emphasis on geometric interpretation, this masterful and comprehensive book introduces the theory of relativity; describes physical applications, from stars to black holes and gravitational waves; and portrays the field’s frontiers. The book also offers a unique, alternating, two-track pathway through the subject. Material focusing on basic physical ideas is designated as Track 1 and formulates an appropriate one-semester graduate-level...

  8. Gravitational wave astronomy

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    In the past year, the LIGO-Virgo Collaboration announced the first secure detection of gravitational waves. This discovery heralds the beginning of gravitational wave astronomy: the use of gravitational waves as a tool for studying the dense and dynamical universe. In this talk, I will describe the full spectrum of gravitational waves, from Hubble-scale modes, through waves with periods of years, hours and milliseconds. I will describe the different techniques one uses to measure the waves in these bands, current and planned facilities for implementing these techniques, and the broad range of sources which produce the radiation. I will discuss what we might expect to learn as more events and sources are measured, and as this field matures into a standard part of the astronomical milieu.

  9. Gravitational Wave Astronomy

    CERN Multimedia

    CERN. Geneva

    2006-01-01

    Gravitational wave astronomy is expected to become an observational field within the next decade. First direct detection of gravitational waves is possible with existing terrestrial-based detectors, and highly probable with proposed upgrades. In this three-part lecture series, we give an overview of the field, including material on gravitional wave sources, detection methods, some details of interferometric detectors, data analysis methods, and current results from observational data-taking runs of the LIGO and GEO projects.

  10. Underdevelopment’s gravitation

    Directory of Open Access Journals (Sweden)

    Marin Dinu

    2013-09-01

    Full Text Available The energy necessary to escape the gravitational pull of underdevelopment and to enter an evolutional trajectory dependent on the gravitational pull of development is unintelligible in economic terms.

  11. Gravitational decoherence

    International Nuclear Information System (INIS)

    Bassi, Angelo; Großardt, André; Ulbricht, Hendrik

    2017-01-01

    We discuss effects of loss of coherence in low energy quantum systems caused by or related to gravitation, referred to as gravitational decoherence. These effects, resulting from random metric fluctuations, for instance, promise to be accessible by relatively inexpensive table-top experiments, way before the scales where true quantum gravity effects become important. Therefore, they can provide a first experimental view on gravity in the quantum regime. We will survey models of decoherence induced both by classical and quantum gravitational fluctuations; it will be manifest that a clear understanding of gravitational decoherence is still lacking. Next we will review models where quantum theory is modified, under the assumption that gravity causes the collapse of the wave functions, when systems are large enough. These models challenge the quantum-gravity interplay, and can be tested experimentally. In the last part we have a look at the state of the art of experimental research. We will review efforts aiming at more and more accurate measurements of gravity ( G and g ) and ideas for measuring conventional and unconventional gravity effects on nonrelativistic quantum systems. (topical review)

  12. Turbulent fluxes in stably stratified boundary layers

    International Nuclear Information System (INIS)

    L'vov, Victor S; Procaccia, Itamar; Rudenko, Oleksii

    2008-01-01

    We present here an extended version of an invited talk we gave at the international conference 'Turbulent Mixing and Beyond'. The dynamical and statistical description of stably stratified turbulent boundary layers with the important example of the stable atmospheric boundary layer in mind is addressed. Traditional approaches to this problem, based on the profiles of mean quantities, velocity second-order correlations and dimensional estimates of the turbulent thermal flux, run into a well-known difficulty, predicting the suppression of turbulence at a small critical value of the Richardson number, in contradiction to observations. Phenomenological attempts to overcome this problem suffer from various theoretical inconsistencies. Here, we present an approach taking into full account all the second-order statistics, which allows us to respect the conservation of total mechanical energy. The analysis culminates in an analytic solution of the profiles of all mean quantities and all second-order correlations, removing the unphysical predictions of previous theories. We propose that the approach taken here is sufficient to describe the lower parts of the atmospheric boundary layer, as long as the Richardson number does not exceed an order of unity. For much higher Richardson numbers, the physics may change qualitatively, requiring careful consideration of the potential Kelvin-Helmoholtz waves and their interaction with the vortical turbulence.

  13. National Coral Reef Monitoring Program: Benthic Images Collected from Stratified Random Sites (StRS) across American Samoa in 2015 (NCEI Accession 0159168)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The data described here are benthic habitat imagery that result from benthic photo-quadrat surveys conducted along transects at stratified random sites across...

  14. On the gravitational radiation formula

    International Nuclear Information System (INIS)

    Schaefer, G.; Dehnen, H.

    1980-01-01

    For electromagnetically as well as gravitationally bound quantum mechanical many-body systems the coefficients of absorption and induced emission of gravitational radiation are calculated in the first-order approximation. The results are extended subsequently to systems with arbitrary non-Coulomb-like two-particle interaction potentials;it is shown explicitly that in all cases the perturbation of the binding potentials of the bound systems by the incident gravitational wave field itself must be taken into account. With the help of the thermodynamic equilibrium of gravitational radiation and quantised matter, the coefficients for spontaneous emission of gravitational radiation are derived and the gravitational radiation formula for emission of gravitational quadrupole radiation by bound quantum mechanical many-body systems is given. According to the correspondence principle the present result is completely identical with the well known classical radiation formula, by which recent criticism against this formula is refuted. Finally the quantum mechanical absorption cross section for gravitational quadrupole radiation is deduced and compared with the corresponding classical expressions. As a special example the vibrating two-mass quadrupole is treated explicitly. (author)

  15. Random forcing of geostrophic motion in rotating stratified turbulence

    Science.gov (United States)

    Waite, Michael L.

    2017-12-01

    Random forcing of geostrophic motion is a common approach in idealized simulations of rotating stratified turbulence. Such forcing represents the injection of energy into large-scale balanced motion, and the resulting breakdown of quasi-geostrophic turbulence into inertia-gravity waves and stratified turbulence can shed light on the turbulent cascade processes of the atmospheric mesoscale. White noise forcing is commonly employed, which excites all frequencies equally, including frequencies much higher than the natural frequencies of large-scale vortices. In this paper, the effects of these high frequencies in the forcing are investigated. Geostrophic motion is randomly forced with red noise over a range of decorrelation time scales τ, from a few time steps to twice the large-scale vortex time scale. It is found that short τ (i.e., nearly white noise) results in about 46% more gravity wave energy than longer τ, despite the fact that waves are not directly forced. We argue that this effect is due to wave-vortex interactions, through which the high frequencies in the forcing are able to excite waves at their natural frequencies. It is concluded that white noise forcing should be avoided, even if it is only applied to the geostrophic motion, when a careful investigation of spontaneous wave generation is needed.

  16. Gravitation in Material Media

    Science.gov (United States)

    Ridgely, Charles T.

    2011-01-01

    When two gravitating bodies reside in a material medium, Newton's law of universal gravitation must be modified to account for the presence of the medium. A modified expression of Newton's law is known in the literature, but lacks a clear connection with existing gravitational theory. Newton's law in the presence of a homogeneous material medium…

  17. Detection of gravitational radiation

    Energy Technology Data Exchange (ETDEWEB)

    Holten, J.W. van [ed.

    1994-12-31

    In this report the main contributions presented at the named symposium are collected. These concern astrophysical sources of gravitational radiation, ultracryogenic gravitational wave experiments, read out and data analysis of gravitational wave antennas, cryogenic aspects of large mass cooling to mK temperatures, and metallurgical and engineering aspects of large Cu structure manufacturing. (HSI).

  18. Detection of gravitational radiation

    International Nuclear Information System (INIS)

    Holten, J.W. van

    1994-01-01

    In this report the main contributions presented at the named symposium are collected. These concern astrophysical sources of gravitational radiation, ultracryogenic gravitational wave experiments, read out and data analysis of gravitational wave antennas, cryogenic aspects of large mass cooling to mK temperatures, and metallurgical and engineering aspects of large Cu structure manufacturing. (HSI)

  19. Relativistic theory of gravitation

    International Nuclear Information System (INIS)

    Logunov, A.A.; Mestvirishvili, M.A.

    1986-01-01

    In the present paper a relativistic theory of gravitation (RTG) is unambiguously constructed on the basis of the special relativity and geometrization principle. In this a gravitational field is treated as the Faraday--Maxwell spin-2 and spin-0 physical field possessing energy and momentum. The source of a gravitational field is the total conserved energy-momentum tensor of matter and of a gravitational field in Minkowski space. In the RTG the conservation laws are strictly fulfilled for the energy-moment and for the angular momentum of matter and a gravitational field. The theory explains the whole available set of experiments on gravity. By virtue of the geometrization principle, the Riemannian space in our theory is of field origin, since it appears as an effective force space due to the action of a gravitational field on matter. The RTG leads to an exceptionally strong prediction: The universe is not closed but just ''flat.'' This suggests that in the universe a ''missing mass'' should exist in a form of matter

  20. Acoustic-gravity modons in the atmosphere

    Directory of Open Access Journals (Sweden)

    L. Stenflo

    Full Text Available It is shown that the equations governing low-frequency acoustic-gravity waves in a stable stratified atmosphere can have localized dipole-vortex solutions (modons. They propagate in the horizontal direction with a speed that is larger than that of all possible linear internal waves.

  1. Gravitation in material media

    International Nuclear Information System (INIS)

    Ridgely, Charles T

    2011-01-01

    When two gravitating bodies reside in a material medium, Newton's law of universal gravitation must be modified to account for the presence of the medium. A modified expression of Newton's law is known in the literature, but lacks a clear connection with existing gravitational theory. Newton's law in the presence of a homogeneous material medium is herein derived on the basis of classical, Newtonian gravitational theory and by a general relativistic use of Archimedes' principle. It is envisioned that the techniques presented herein will be most useful to graduate students and those undergraduate students having prior experience with vector analysis and potential theory.

  2. Gravitational radiation reaction

    International Nuclear Information System (INIS)

    Tanaka, Takahiro

    2006-01-01

    We give a short personally-biased review on the recent progress in our understanding of gravitational radiation reaction acting on a point particle orbiting a black hole. The main motivation of this study is to obtain sufficiently precise gravitational waveforms from inspiraling binary compact starts with a large mass ratio. For this purpose, various new concepts and techniques have been developed to compute the orbital evolution taking into account the gravitational self-force. Combining these ideas with a few supplementary new ideas, we try to outline a path to our goal here. (author)

  3. A gravitational entropy proposal

    International Nuclear Information System (INIS)

    Clifton, Timothy; Tavakol, Reza; Ellis, George F R

    2013-01-01

    We propose a thermodynamically motivated measure of gravitational entropy based on the Bel–Robinson tensor, which has a natural interpretation as the effective super-energy–momentum tensor of free gravitational fields. The specific form of this measure differs depending on whether the gravitational field is Coulomb-like or wave-like, and reduces to the Bekenstein–Hawking value when integrated over the interior of a Schwarzschild black hole. For scalar perturbations of a Robertson–Walker geometry we find that the entropy goes like the Hubble weighted anisotropy of the gravitational field, and therefore increases as structure formation occurs. This is in keeping with our expectations for the behaviour of gravitational entropy in cosmology, and provides a thermodynamically motivated arrow of time for cosmological solutions of Einstein’s field equations. It is also in keeping with Penrose’s Weyl curvature hypothesis. (paper)

  4. Vector-tensor interaction of gravitation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Yuan-zhong; Guo han-ying

    1982-11-01

    In the paper, by using the equation of motion a particle, we show that the antigravity exist in the vector-tensor model of gravitation. Thus the motion of a particle deviates from the geodesic equation. In Newtonian approximation and weak gravitational field, acceleration of a particle in a spherically symmetric and astatic gravitation field is zero. The result is obviously not in agreement with gravitational phenomena.

  5. Projective relativity, cosmology and gravitation

    International Nuclear Information System (INIS)

    Arcidiacono, G.

    1986-01-01

    This book describes the latest applications of projective geometry to cosmology and gravitation. The contents of the book are; the Poincare group and Special Relativity, the thermodynamics and electromagnetism, general relativity, gravitation and cosmology, group theory and models of universe, the special projective relativity, the Fantappie group and Big-Bang cosmology, a new cosmological projective mechanics, the plasma physics and cosmology, the projective magnetohydrodynamics field, projective relativity and waves propagation, the generalizations of the gravitational field, the general projective relativity, the projective gravitational field, the De Sitter Universe and quantum physics, the conformal relativity and Newton gravitation

  6. Numerical modelling of disintegration of basin-scale internal waves in a tank filled with stratified water

    Directory of Open Access Journals (Sweden)

    N. Stashchuk

    2005-01-01

    Full Text Available We present the results of numerical experiments performed with the use of a fully non-linear non-hydrostatic numerical model to study the baroclinic response of a long narrow tank filled with stratified water to an initially tilted interface. Upon release, the system starts to oscillate with an eigen frequency corresponding to basin-scale baroclinic gravitational seiches. Field observations suggest that the disintegration of basin-scale internal waves into packets of solitary waves, shear instabilities, billows and spots of mixed water are important mechanisms for the transfer of energy within stratified lakes. Laboratory experiments performed by D. A. Horn, J. Imberger and G. N. Ivey (JFM, 2001 reproduced several regimes, which include damped linear waves and solitary waves. The generation of billows and shear instabilities induced by the basin-scale wave was, however, not sufficiently studied. The developed numerical model computes a variety of flows, which were not observed with the experimental set-up. In particular, the model results showed that under conditions of low dissipation, the regimes of billows and supercritical flows may transform into a solitary wave regime. The obtained results can help in the interpretation of numerous observations of mixing processes in real lakes.

  7. Ground Target Overflight and Orbital Maneuvering via Atmospheric Maneuvers

    Science.gov (United States)

    2014-03-27

    Total deceleration m ∙ s−2 Gravitational acceleration m ∙ s−2 ℎ Altitude m Inclination angle rad Vehicle mass kg Geocentric ...total atmospheric inclination change approached the limit of approximately 36.2° as the number of atmospheric passes increased. This inclination...determine the longitude. By expanding and simplifying Eqs. (3.1) and (3.5) for a circular orbit, the position can be written in the Geocentric Equatorial

  8. Gravitationally confined relativistic neutrinos

    Science.gov (United States)

    Vayenas, C. G.; Fokas, A. S.; Grigoriou, D.

    2017-09-01

    Combining special relativity, the equivalence principle, and Newton’s universal gravitational law with gravitational rather than rest masses, one finds that gravitational interactions between relativistic neutrinos with kinetic energies above 50 MeV are very strong and can lead to the formation of gravitationally confined composite structures with the mass and other properties of hadrons. One may model such structures by considering three neutrinos moving symmetrically on a circular orbit under the influence of their gravitational attraction, and by assuming quantization of their angular momentum, as in the Bohr model of the H atom. The model contains no adjustable parameters and its solution, using a neutrino rest mass of 0.05 eV/c2, leads to composite state radii close to 1 fm and composite state masses close to 1 GeV/c2. Similar models of relativistic rotating electron - neutrino pairs give a mass of 81 GeV/c2, close to that of W bosons. This novel mechanism of generating mass suggests that the Higgs mass generation mechanism can be modeled as a latent gravitational field which gets activated by relativistic neutrinos.

  9. Probing gravitational parity violation with gravitational waves from stellar-mass black hole binaries

    Science.gov (United States)

    Yagi, Kent; Yang, Huan

    2018-05-01

    The recent discovery of gravitational-wave events has offered us unique test beds of gravity in the strong and dynamical field regime. One possible modification to General Relativity is the gravitational parity violation that arises naturally from quantum gravity. Such parity violation gives rise to the so-called amplitude birefringence in gravitational waves, in which one of the circularly polarized modes is amplified while the other one is suppressed during their propagation. In this paper, we study how well one can measure gravitational parity violation via the amplitude birefringence effect of gravitational waves sourced by stellar-mass black hole binaries. We choose Chern-Simons gravity as an example and work within an effective field theory formalism to ensure that the approximate theory is well posed. We consider gravitational waves from both individual sources and stochastic gravitational-wave backgrounds. Regarding bounds from individual sources, we estimate such bounds using a Fisher analysis and carry out Monte Carlo simulations by randomly distributing sources over their sky location and binary orientation. We find that the bounds on the scalar field evolution in Chern-Simons gravity from the recently discovered gravitational-wave events are too weak to satisfy the weak Chern-Simons approximation, while aLIGO with its design sensitivity can place meaningful bounds. Regarding bounds from stochastic gravitational-wave backgrounds, we set the threshold signal-to-noise ratio for detection of the parity-violation mode as 5 and estimate projected bounds with future detectors assuming that signals are consistent with no parity violation. In an ideal situation in which all the source parameters and binary black hole merger-rate history are known a priori, we find that a network of two third-generation detectors is able to place bounds that are comparable to or slightly stronger than binary pulsar bounds. In a more realistic situation in which one does not have

  10. Limiting the effects of earthquakes on gravitational-wave interferometers

    Science.gov (United States)

    Coughlin, Michael; Earle, Paul; Harms, Jan; Biscans, Sebastien; Buchanan, Christopher; Coughlin, Eric; Donovan, Fred; Fee, Jeremy; Gabbard, Hunter; Guy, Michelle; Mukund, Nikhil; Perry, Matthew

    2017-01-01

    Ground-based gravitational wave interferometers such as the Laser Interferometer Gravitational-wave Observatory (LIGO) are susceptible to ground shaking from high-magnitude teleseismic events, which can interrupt their operation in science mode and significantly reduce their duty cycle. It can take several hours for a detector to stabilize enough to return to its nominal state for scientific observations. The down time can be reduced if advance warning of impending shaking is received and the impact is suppressed in the isolation system with the goal of maintaining stable operation even at the expense of increased instrumental noise. Here, we describe an early warning system for modern gravitational-wave observatories. The system relies on near real-time earthquake alerts provided by the U.S. Geological Survey (USGS) and the National Oceanic and Atmospheric Administration (NOAA). Preliminary low latency hypocenter and magnitude information is generally available in 5 to 20 min of a significant earthquake depending on its magnitude and location. The alerts are used to estimate arrival times and ground velocities at the gravitational-wave detectors. In general, 90% of the predictions for ground-motion amplitude are within a factor of 5 of measured values. The error in both arrival time and ground-motion prediction introduced by using preliminary, rather than final, hypocenter and magnitude information is minimal. By using a machine learning algorithm, we develop a prediction model that calculates the probability that a given earthquake will prevent a detector from taking data. Our initial results indicate that by using detector control configuration changes, we could prevent interruption of operation from 40 to 100 earthquake events in a 6-month time-period.

  11. Limiting the effects of earthquakes on gravitational-wave interferometers

    International Nuclear Information System (INIS)

    Coughlin, Michael; Earle, Paul; Harms, Jan; Biscans, Sebastien; Donovan, Fred; Buchanan, Christopher; Coughlin, Eric; Fee, Jeremy; Guy, Michelle; Gabbard, Hunter; Mukund, Nikhil; Perry, Matthew

    2017-01-01

    Ground-based gravitational wave interferometers such as the Laser Interferometer Gravitational-wave Observatory (LIGO) are susceptible to ground shaking from high-magnitude teleseismic events, which can interrupt their operation in science mode and significantly reduce their duty cycle. It can take several hours for a detector to stabilize enough to return to its nominal state for scientific observations. The down time can be reduced if advance warning of impending shaking is received and the impact is suppressed in the isolation system with the goal of maintaining stable operation even at the expense of increased instrumental noise. Here, we describe an early warning system for modern gravitational-wave observatories. The system relies on near real-time earthquake alerts provided by the U.S. Geological Survey (USGS) and the National Oceanic and Atmospheric Administration (NOAA). Preliminary low latency hypocenter and magnitude information is generally available in 5 to 20 min of a significant earthquake depending on its magnitude and location. The alerts are used to estimate arrival times and ground velocities at the gravitational-wave detectors. In general, 90% of the predictions for ground-motion amplitude are within a factor of 5 of measured values. The error in both arrival time and ground-motion prediction introduced by using preliminary, rather than final, hypocenter and magnitude information is minimal. By using a machine learning algorithm, we develop a prediction model that calculates the probability that a given earthquake will prevent a detector from taking data. Our initial results indicate that by using detector control configuration changes, we could prevent interruption of operation from 40 to 100 earthquake events in a 6-month time-period. (paper)

  12. Presenting Newtonian gravitation

    International Nuclear Information System (INIS)

    Counihan, Martin

    2007-01-01

    The basic principles of the Newtonian theory of gravitation are presented in a way which students may find more logically coherent, mathematically accessible and physically interesting than other approaches. After giving relatively simple derivations of the circular hodograph and the elliptical orbit from the inverse-square law, the concept of gravitational energy is developed from vector calculus. It is argued that the energy density of a gravitational field may reasonably be regarded as -g 2 /8πG, and that the inverse-square law may be replaced by a Schwarzschild-like force law without the need to invoke non-Euclidean geometry

  13. Design of dry sand soil stratified sampler

    Science.gov (United States)

    Li, Erkang; Chen, Wei; Feng, Xiao; Liao, Hongbo; Liang, Xiaodong

    2018-04-01

    This paper presents a design of a stratified sampler for dry sand soil, which can be used for stratified sampling of loose sand under certain conditions. Our group designed the mechanical structure of a portable, single - person, dry sandy soil stratified sampler. We have set up a mathematical model for the sampler. It lays the foundation for further development of design research.

  14. Gravitation and source theory

    International Nuclear Information System (INIS)

    Yilmaz, H.

    1975-01-01

    Schwinger's source theory is applied to the problem of gravitation and its quantization. It is shown that within the framework of a flat-space the source theory implementation leads to a violation of probability. To avoid the difficulty one must introduce a curved space-time hence the source concept may be said to necessitate the transition to a curved-space theory of gravitation. It is further shown that the curved-space theory of gravitation implied by the source theory is not equivalent to the conventional Einstein theory. The source concept leads to a different theory where the gravitational field has a stress-energy tensor t/sup nu//sub mu/ which contributes to geometric curvatures

  15. Nuclear Quantum Gravitation - The Correct Theory

    Science.gov (United States)

    Kotas, Ronald

    2016-03-01

    Nuclear Quantum Gravitation provides a clear, definitive Scientific explanation of Gravity and Gravitation. It is harmonious with Newtonian and Quantum Mechanics, and with distinct Scientific Logic. Nuclear Quantum Gravitation has 10 certain, Scientific proofs and 21 more good indications. With this theory the Physical Forces are obviously Unified. See: OBSCURANTISM ON EINSTEIN GRAVITATION? http://www.santilli- Foundation.org/inconsistencies-gravitation.php and Einstein's Theory of Relativity versus Classical Mechanics http://www.newtonphysics.on.ca/einstein/

  16. The Theory of Vortical Gravitational Fields

    Directory of Open Access Journals (Sweden)

    Rabounski D.

    2007-04-01

    Full Text Available This paper treats of vortical gravitational fields, a tensor of which is the rotor of the general covariant gravitational inertial force. The field equations for a vortical gravitational field (the Lorentz condition, the Maxwell-like equations, and the continuity equation are deduced in an analogous fashion to electrodynamics. From the equations it is concluded that the main kind of vortical gravitational fields is “electric”, determined by the non-stationarity of the acting gravitational inertial force. Such a field is a medium for traveling waves of the force (they are different to the weak deformation waves of the space metric considered in the theory of gravitational waves. Standing waves of the gravitational inertial force and their medium, a vortical gravitational field of the “magnetic” kind, are exotic, since a non-stationary rotation of a space body (the source of such a field is a very rare phenomenon in the Universe.

  17. Gravitational lensing

    CERN Document Server

    Dodelson, Scott

    2017-01-01

    Gravitational lensing is a consequence of general relativity, where the gravitational force due to a massive object bends the paths of light originating from distant objects lying behind it. Using very little general relativity and no higher level mathematics, this text presents the basics of gravitational lensing, focusing on the equations needed to understand the phenomena. It then applies them to a diverse set of topics, including multiply imaged objects, time delays, extrasolar planets, microlensing, cluster masses, galaxy shape measurements, cosmic shear, and lensing of the cosmic microwave background. This approach allows undergraduate students and others to get quickly up to speed on the basics and the important issues. The text will be especially relevant as large surveys such as LSST and Euclid begin to dominate the astronomical landscape. Designed for a one semester course, it is accessible to anyone with two years of undergraduate physics background.

  18. Quantum phenomena in gravitational field

    Science.gov (United States)

    Bourdel, Th.; Doser, M.; Ernest, A. D.; Voronin, A. Yu.; Voronin, V. V.

    2011-10-01

    The subjects presented here are very different. Their common feature is that they all involve quantum phenomena in a gravitational field: gravitational quantum states of ultracold antihydrogen above a material surface and measuring a gravitational interaction of antihydrogen in AEGIS, a quantum trampoline for ultracold atoms, and a hypothesis on naturally occurring gravitational quantum states, an Eötvös-type experiment with cold neutrons and others. Considering them together, however, we could learn that they have many common points both in physics and in methodology.

  19. Quantum phenomena in gravitational field

    International Nuclear Information System (INIS)

    Bourdel, Th.; Doser, M.; Ernest, A.D.; Voronin, A.Y.; Voronin, V.V.

    2010-01-01

    The subjects presented here are very different. Their common feature is that they all involve quantum phenomena in a gravitational field: gravitational quantum states of ultracold anti-hydrogen above a material surface and measuring a gravitational interaction of anti-hydrogen in AEGIS, a quantum trampoline for ultracold atoms, and a hypothesis on naturally occurring gravitational quantum states, an Eoetvoes-type experiment with cold neutrons and others. Considering them together, however, we could learn that they have many common points both in physics and in methodology. (authors)

  20. Large-eddy simulation of stratified atmospheric flows with the CFD code Code-Saturne

    International Nuclear Information System (INIS)

    Dall'Ozzo, Cedric

    2013-01-01

    Large-eddy simulation (LES) of the physical processes in the atmospheric boundary layer (ABL) remains a complex subject. LES models have difficulties to capture the evolution of the turbulence in different conditions of stratification. Consequently, LES of the whole diurnal cycle of the ABL including convective situations in daytime and stable situations in the nighttime is seldom documented. The simulation of the stable atmospheric boundary layer which is characterized by small eddies and by weak and sporadic turbulence is especially difficult. Therefore The LES ability to well reproduce real meteorological conditions, particularly in stable situations, is studied with the CFD code developed by EDF R and D, Code-Saturne. The first study consist in validate LES on a quasi-steady state convective case with homogeneous terrain. The influence of the sub-grid-scale models (Smagorinsky model, Germano-Lilly model, Wong-Lilly model and Wall-Adapting Local Eddy-viscosity model) and the sensitivity to the parametrization method on the mean fields, flux and variances are discussed. In a second study, the diurnal cycle of the ABL during Wangara experiment is simulated. The deviation from the measurement is weak during the day, so this work is focused on the difficulties met during the night to simulate the stable atmospheric boundary layer. The impact of the different sub-grid-scale models and the sensitivity to the Smagorinsky constant are been analysed. By coupling radiative forcing with LES, the consequences of infra-red and solar radiation on the nocturnal low level jet and on thermal gradient, close to the surface, are exposed. More, enhancement of the domain resolution to the turbulence intensity and the strong atmospheric stability during the Wangara experiment are analysed. Finally, a study of the numerical oscillations inherent to Code-Saturne is realized in order to decrease their effects. (author) [fr

  1. Gravitational capture

    International Nuclear Information System (INIS)

    Bondi, H.

    1979-01-01

    In spite of the strength of gravitational focres between celestial bodies, gravitational capture is not a simple concept. The principles of conservation of linear momentum and of conservation of angular momentum, always impose severe constraints, while conservation of energy and the vital distinction between dissipative and non-dissipative systems allows one to rule out capture in a wide variety of cases. In complex systems especially those without dissipation, long dwell time is a more significant concept than permanent capture. (author)

  2. Maser Emission from Gravitational States on Isolated Neutron Stars

    Science.gov (United States)

    Tepliakov, Nikita V.; Vovk, Tatiana A.; Rukhlenko, Ivan D.; Rozhdestvensky, Yuri V.

    2018-04-01

    Despite years of research on neutron stars, the source of their radio emission is still under debate. Here we propose a new coherent mechanism of pulsar radio emission based on transitions between gravitational states of electrons confined above the pulsar atmosphere. Our mechanism assumes that the coherent radiation is generated upon the electric and magnetic dipole transitions of electrons falling onto the polar caps of the pulsar, and predicts that this radiation occurs at radio frequencies—in full agreement with the observed emission spectra. We show that while the linearly polarized electric dipole radiation propagates parallel to the neutron star surface and has a fan-shape angular spectrum, the magnetic dipole emission comes from the magnetic poles of the pulsar in the form of two narrow beams and is elliptically polarized due to the spin–orbit coupling of electrons confined by the magnetic field. By explaining the main observables of the pulsar radio emission, the proposed mechanism indicates that gravitational quantum confinement plays an essential role in the physics of neutron stars.

  3. Interaction of gravitational waves with superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Inan, N.A.; Thompson, J.J. [University of California, Schools of Natural Sciences, Merced, CA (United States); Chiao, R.Y. [University of California, Schools of Natural Sciences and Engineering, Merced, CA (United States)

    2017-06-15

    Applying the Helmholtz Decomposition theorem to linearized General Relativity leads to a gauge-invariant formulation where the transverse-traceless part of the metric perturbation describes gravitational waves in matter. Gravitational waves incident on a superconductor can be described by a linear London-like constituent equation characterized by a ''gravitational shear modulus'' and a corresponding plasma frequency and penetration depth. Electric-like and magnetic-like gravitational tensor fields are defined in terms of the strain field of a gravitational wave. It is shown that in the DC limit, the magnetic-like tensor field is expelled from the superconductor in a gravitational Meissner-like effect. The Cooper pair density is described by the Ginzburg-Landau theory embedded in curved space-time. The ionic lattice is modeled by quantum harmonic oscillators coupled to gravitational waves and characterized by quasi-energy eigenvalues for the phonon modes. The formulation predicts the possibility of a dynamical Casimir effect since the zero-point energy of the ionic lattice phonons is found to be modulated by the gravitational wave, in a quantum analog of a ''Weber-bar effect.'' Applying periodic thermodynamics and the Debye model in the low-temperature limit leads to a free energy density for the ionic lattice. Lastly, we relate the gravitational strain of space to the strain of matter to show that the response to a gravitational wave is far less for the Cooper pair density than for the ionic lattice. This predicts a charge separation effect in the superconductor as a result of the gravitational wave. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. The Influence of atmospheric conditions to probabilistic calculation of impact of radiology accident on PWR 1000 MWe

    International Nuclear Information System (INIS)

    Pande Made Udiyani; Sri Kuntjoro

    2015-01-01

    The calculation of the radiological impact of the fission products releases due to potential accidents that may occur in the PWR (Pressurized Water Reactor) is required in a probabilistic. The atmospheric conditions greatly contribute to the dispersion of radionuclides in the environment, so that in this study will be analyzed the influence of atmospheric conditions on probabilistic calculation of the reactor accidents consequences. The objective of this study is to conduct an analysis of the influence of atmospheric conditions based on meteorological input data models on the radiological consequences of PWR 1000 MWe accidents. Simulations using PC-Cosyma code with probabilistic calculations mode, the meteorological data input executed cyclic and stratified, the meteorological input data are executed in the cyclic and stratified, and simulated in Muria Peninsula and Serang Coastal. Meteorological data were taken every hour for the duration of the year. The result showed that the cumulative frequency for the same input models for Serang coastal is higher than the Muria Peninsula. For the same site, cumulative frequency on cyclic input models is higher than stratified models. The cyclic models provide flexibility in determining the level of accuracy of calculations and do not require reference data compared to stratified models. The use of cyclic and stratified models involving large amounts of data and calculation repetition will improve the accuracy of statistical calculation values. (author)

  5. Are the gravitational waves quantised?

    International Nuclear Information System (INIS)

    Lovas, Istvan

    1997-01-01

    If the gravitational waves are classical objects then the value of their correlation function is 1. If they are quantised, then there exist two possibilities: the gravitational waves are either completely coherent, then their correlation function is again 1, or they are only partially coherent, then their correlation function is expected to deviate from 1. Unfortunately such a deviation is not a sufficient proof for the quantised character of the gravitational waves. If the gravitational waves are quantised and generated by the change of the background metrical then they can be in a squeezed state. In a squeezed state there is a chance for the correlation between the phase of the wave and the quantum fluctuations. The observation of such a correlation would be a genuine proof of the quantised character of the gravitational wave

  6. General relativity and gravitation, 1989

    International Nuclear Information System (INIS)

    Ashby, N.; Bartlett, D.F.; Wyss, W.

    1990-01-01

    This volume records the lectures and symposia of the 12th International Conference on General Relativity and Gravitation. Plenary lecturers reviewed the major advances since the previous conference in 1986. The reviews cover classical and quantum theory of gravity, colliding gravitational waves, gravitational lensing, relativistic effects on pulsars, tests of the inverse square law, numerical relativity, cosmic microwave background radiation, experimental tests of gravity theory, gravitational wave detectors, and cosmology. The plenary lectures are complemented by summaries of symposia, provided by the chairmen. Almost 700 contributed papers were presented at these and they cover an even wider range of topics than the plenary talks. The book provides a comprehensive guide to research activity in both experimental and theoretical gravitation and its applications in astrophysics and cosmology. It will be essential reading for research workers in these fields, as well as theoretical and experimental physicists, astronomers, and mathematicians who wish to be acquainted with modern developments in gravitational theory and general relativity. All the papers and summaries of the workshop sessions are indexed separately. (16 united talks, 20 workshop sessions). (author)

  7. Gravitational Physics

    OpenAIRE

    Schäfer, G.; Schutz, B.

    1996-01-01

    Gravity is truly universal. It is the force that pulls us to the Earth, that keeps the planets and moons in their orbits, and that causes the tides on the Earth to ebb and flow. It even keeps the Sun shining. Yet on a laboratory scale gravity is extremely weak. The Coulomb force between two protons is 1039 times stronger than the gravitational force between them. Moreover, Newton's gravitational constant is the least accurately known of the fundamental constants: it has been measured to 1 par...

  8. Measurement of gravitational acceleration of antimatter

    International Nuclear Information System (INIS)

    Rouhani, S.

    1989-12-01

    The minute yet effective impact of gravitational potential in the central region of a long tube magnetic container of non-neutral plasmas can be utilized for the measurement of the gravitational acceleration of antimatter particles. The slight change in distribution of plasma particles along the gravitational field affects the internal electric field of the plasma, which in turn affects the frequency of the magnetron motion of its particles. Thus, a rather straightforward relation is established between the gravitational acceleration of the particles and their magnetron frequencies, which is measurable directly, determining the value of the gravitational acceleration. (author). 7 refs, 3 figs

  9. Prevention of gravitational collapse

    International Nuclear Information System (INIS)

    Moffat, J.W.; Taylor, J.G.

    1981-01-01

    We apply a new theory of gravitation to the question of gravitational collapse to show that collapse is prevented in this theory under very reasonable conditions. This result also extends to prevent ultimate collapse of the Universe. (orig.)

  10. Weight, gravitation, inertia, and tides

    Science.gov (United States)

    Pujol, Olivier; Lagoute, Christophe; Pérez, José-Philippe

    2015-11-01

    This paper deals with the factors that influence the weight of an object near the Earth's surface. They are: (1) the Earth's gravitational force, (2) the centrifugal force due to the Earth's diurnal rotation, and (3) tidal forces due to the gravitational field of the Moon and Sun, and other solar system bodies to a lesser extent. Each of these three contributions is discussed and expressions are derived. The relationship between weight and gravitation is thus established in a direct and pedagogical manner readily understandable by undergraduate students. The analysis applies to the Newtonian limit of gravitation. The derivation is based on an experimental (or operational) definition of weight, and it is shown that it coincides with the Earth’s gravitational force modified by diurnal rotation around a polar axis and non-uniformity of external gravitational bodies (tidal term). Two examples illustrate and quantify these modifications, respectively the Eötvös effect and the oceanic tides; tidal forces due to differential gravitation on a spacecraft and an asteroid are also proposed as examples. Considerations about inertia are also given and some comments are made about a widespread, yet confusing, explanation of tides based on a centrifugal force. Finally, the expression of the potential energy of the tide-generating force is established rigorously in the appendix.

  11. Weight, gravitation, inertia, and tides

    International Nuclear Information System (INIS)

    Pujol, Olivier; Lagoute, Christophe; Pérez, José-Philippe

    2015-01-01

    This paper deals with the factors that influence the weight of an object near the Earth's surface. They are: (1) the Earth's gravitational force, (2) the centrifugal force due to the Earth's diurnal rotation, and (3) tidal forces due to the gravitational field of the Moon and Sun, and other solar system bodies to a lesser extent. Each of these three contributions is discussed and expressions are derived. The relationship between weight and gravitation is thus established in a direct and pedagogical manner readily understandable by undergraduate students. The analysis applies to the Newtonian limit of gravitation. The derivation is based on an experimental (or operational) definition of weight, and it is shown that it coincides with the Earth’s gravitational force modified by diurnal rotation around a polar axis and non-uniformity of external gravitational bodies (tidal term). Two examples illustrate and quantify these modifications, respectively the Eötvös effect and the oceanic tides; tidal forces due to differential gravitation on a spacecraft and an asteroid are also proposed as examples. Considerations about inertia are also given and some comments are made about a widespread, yet confusing, explanation of tides based on a centrifugal force. Finally, the expression of the potential energy of the tide-generating force is established rigorously in the appendix. (paper)

  12. Gravitational Grating

    Science.gov (United States)

    Rahvar, Sohrab

    2018-05-01

    In this work, we study the interaction of the electromagnetic wave (EW) from a distant quasar with the gravitational wave (GW) sourced by the binary stars. While in the regime of geometric optics, the light bending due to this interaction is negligible, we show that the phase shifting on the wavefront of an EW can produce the diffraction pattern on the observer plane. The diffraction of the light (with the wavelength of λe) by the gravitational wave playing the role of gravitational grating (with the wavelength of λg) has the diffraction angle of Δβ ˜ λe/λg. The relative motion of the observer, the source of gravitational wave and the quasar results in a relative motion of the observer through the interference pattern on the observer plane. The consequence of this fringe crossing is the modulation in the light curve of a quasar with the period of few hours in the microwave wavelength. The optical depth for the observation of this phenomenon for a Quasar with the multiple images strongly lensed by a galaxy where the light trajectory of some of the images crosses the lensing galaxy is τ ≃ 0.2. By shifting the time-delay of the light curves of the multiple images in a strong lensed quasar and removing the intrinsic variations of a quasar, our desired signals, as a new method for detection of GWs can be detected.

  13. Data processing technique for multiangle lidar sounding of poorly stratified polluted atmospheres: Theory and experiment

    Science.gov (United States)

    Cyle E. Wold; Vladimir A. Kovalev; Alexander P. Petkov; Wei Min Hao

    2012-01-01

    Scanning elastic lidar, which can operate in different slant directions, is the most appropriate remote sensing tool for investigating the optical properties of smoke-polluted atmospheres. However, the commonly used methodologies of multiangle measurements are based on the assumption of horizontal stratification of the searched atmosphere1,2. When working in real...

  14. National Coral Reef Monitoring Program: Benthic Cover Derived from Analysis of Benthic Images Collected during Stratified Random Surveys (StRS) across American Samoa in 2015

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The data described here result from benthic photo-quadrat surveys conducted along transects at stratified random sites across American Samoa in 2015 as a part of...

  15. Gravitational radiation quadrupole formula is valid for gravitationally interacting systems

    International Nuclear Information System (INIS)

    Walker, M.; Will, C.M.

    1980-01-01

    An argument is presented for the validity of the quadrupole formula for gravitational radiation energy loss in the far field of nearly Newtonian (e.g., binary stellar) systems. This argument differs from earlier ones in that it determines beforehand the formal accuracy of approximation required to describe gravitationally self-interacting systems, uses the corresponding approximate equation of motion explicitly, and evaluate the appropriate asymptotic quantities by matching along the correct space-time light cones

  16. The effect of surfactant on stratified and stratifying gas-liquid flows

    Science.gov (United States)

    Heiles, Baptiste; Zadrazil, Ivan; Matar, Omar

    2013-11-01

    We consider the dynamics of a stratified/stratifying gas-liquid flow in horizontal tubes. This flow regime is characterised by the thin liquid films that drain under gravity along the pipe interior, forming a pool at the bottom of the tube, and the formation of large-amplitude waves at the gas-liquid interface. This regime is also accompanied by the detachment of droplets from the interface and their entrainment into the gas phase. We carry out an experimental study involving axial- and radial-view photography of the flow, in the presence and absence of surfactant. We show that the effect of surfactant is to reduce significantly the average diameter of the entrained droplets, through a tip-streaming mechanism. We also highlight the influence of surfactant on the characteristics of the interfacial waves, and the pressure gradient that drives the flow. EPSRC Programme Grant EP/K003976/1.

  17. Electromagnetic waves in stratified media

    CERN Document Server

    Wait, James R; Fock, V A; Wait, J R

    2013-01-01

    International Series of Monographs in Electromagnetic Waves, Volume 3: Electromagnetic Waves in Stratified Media provides information pertinent to the electromagnetic waves in media whose properties differ in one particular direction. This book discusses the important feature of the waves that enables communications at global distances. Organized into 13 chapters, this volume begins with an overview of the general analysis for the electromagnetic response of a plane stratified medium comprising of any number of parallel homogeneous layers. This text then explains the reflection of electromagne

  18. Gravitational wave reception by a sphere

    International Nuclear Information System (INIS)

    Ashby, N.; Dreitlein, J.

    1975-01-01

    The reception of gravitational waves by an elastic self-gravitating spherical detector is studied in detail. The equations of motion of a detector driven by a gravitational wave are presented in the intuitively convenient coordinate system of Fermi. An exact analytic solution is given for the homogeneous isotropic sphere. Nonlinear effects of a massive self-gravitating system are computed for a body of mass equal to that of the earth, and are shown to be numerically important

  19. Experimental investigation and CFD simulation of horizontal stratified two-phase flow phenomena

    International Nuclear Information System (INIS)

    Vallee, Christophe; Hoehne, Thomas; Prasser, Horst-Michael; Suehnel, Tobias

    2008-01-01

    For the investigation of stratified two-phase flow, two horizontal channels with rectangular cross-section were built at Forschungszentrum Dresden-Rossendorf (FZD). The channels allow the investigation of air/water co-current flows, especially the slug behaviour, at atmospheric pressure and room temperature. The test-sections are made of acrylic glass, so that optical techniques, like high-speed video observation or particle image velocimetry (PIV), can be applied for measurements. The rectangular cross-section was chosen to provide better observation possibilities. Moreover, dynamic pressure measurements were performed and synchronised with the high-speed camera system. CFD post-test simulations of stratified flows were performed using the code ANSYS CFX. The Euler-Euler two fluid model with the free surface option was applied on grids of minimum 4 x 10 5 control volumes. The turbulence was modelled separately for each phase using the k-ω-based shear stress transport (SST) turbulence model. The results compare very well in terms of slug formation, velocity, and breaking. The qualitative agreement between calculation and experiment is encouraging and shows that CFD can be a useful tool in studying horizontal two-phase flow

  20. Experimental investigation and CFD simulation of horizontal stratified two-phase flow phenomena

    International Nuclear Information System (INIS)

    Vallee, Christophe; Hohne, Thomas; Prasser, Horst-Michael; Suhnel, Tobias

    2007-01-01

    For the investigation of stratified two-phase flow, two horizontal channels with rectangular cross-section were built at Forschungszentrum Rossendorf. The channels allow the investigation of air/water co-current flows, especially the slug behaviour, at atmospheric pressure and room temperature. The test-sections are made of acrylic glass, so that optical techniques, like high-speed video observation or particle image velocimetry (PIV), can be applied for measurements. The rectangular cross-section was chosen to provide better observation possibilities. Moreover, dynamic pressure measurements were performed and synchronized with the high-speed camera system. CFD post test simulations of stratified flows were performed using the code ANSYS CFX. The Euler- Euler two fluid model with the free surface option was applied on grids of minimum 4.10 5 control volumes. The turbulence was modelled separately for each phase using the k-ω based shear stress transport (SST) turbulence model. The results compare very well in terms of slug formation, velocity, and breaking. The qualitative agreement between calculation and experiment is encouraging and shows that CFD can be a useful tool in studying horizontal two-phase flow. (authors)

  1. Experimental investigation and CFD simulation of horizontal stratified two-phase flow phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Vallee, Christophe [Forschungszentrum Dresden-Rossendorf e.V., Dresden (Germany)], E-mail: c.vallee@fzd.de; Hoehne, Thomas; Prasser, Horst-Michael; Suehnel, Tobias [Forschungszentrum Dresden-Rossendorf e.V., Dresden (Germany)

    2008-03-15

    For the investigation of stratified two-phase flow, two horizontal channels with rectangular cross-section were built at Forschungszentrum Dresden-Rossendorf (FZD). The channels allow the investigation of air/water co-current flows, especially the slug behaviour, at atmospheric pressure and room temperature. The test-sections are made of acrylic glass, so that optical techniques, like high-speed video observation or particle image velocimetry (PIV), can be applied for measurements. The rectangular cross-section was chosen to provide better observation possibilities. Moreover, dynamic pressure measurements were performed and synchronised with the high-speed camera system. CFD post-test simulations of stratified flows were performed using the code ANSYS CFX. The Euler-Euler two fluid model with the free surface option was applied on grids of minimum 4 x 10{sup 5} control volumes. The turbulence was modelled separately for each phase using the k-{omega}-based shear stress transport (SST) turbulence model. The results compare very well in terms of slug formation, velocity, and breaking. The qualitative agreement between calculation and experiment is encouraging and shows that CFD can be a useful tool in studying horizontal two-phase flow.

  2. Are the gravitational waves quantised?

    International Nuclear Information System (INIS)

    Lovas, I.

    1998-01-01

    The question whether gravitational waves are quantised or not can be investigated by the help of correlation measurements. If the gravitational waves are classical objects then the value of their correlation function is 1. However, if they are quantised, then there exist two possibilities: the gravitational waves are either completely coherent, then the correlation function is again 1, or they are partially coherent, then the correlation function is expected to deviate from 1. If the gravitational waves are generated by the change of the background metrics then they can be in a squeezed state. In a squeezed state there is a chance for the correlation between the phase of the wave and the quantum fluctuations. (author)

  3. Cooling the center-of-mass motion of a diamond nanocrystal in a magneto-gravitational trap

    Science.gov (United States)

    Hsu, Jen-Feng

    A magneto-gravitational trap for micro/nanometer sized diamagnetic particles, such as diamond nanocrystals, is tested and characterized. After exploring various other systems, such as a suspended graphene beam and an optical trap, this magneto-gravitational nanomechanical trapping system for diamond with nitrogen-vacancy (NV) centers presents unique advantages for experiments in fundamental quantum mechanics. Those include, for example, the generation of large quantum superposition states and tests of quantum gravity. Features are demonstrated for this system, such as stable and passive levitation from atmospheric pressure to high vacuum, low resonant frequencies and damping rates, and cooling of the center-of-mass motions to below 1 K. The construction of the trap, vacuum system, optics, and motion detection electronics are described in detail.

  4. Transient multimessenger astronomy with gravitational waves

    International Nuclear Information System (INIS)

    Marka, S

    2011-01-01

    Comprehensive multimessenger astronomy with gravitational waves is a pioneering field bringing us interesting results and presenting us with exciting challenges for the future. During the era of the operation of advanced interferometric gravitational wave detectors, we will have the opportunity to investigate sources of gravitational waves that are also expected to be observable through other messengers, such as gamma rays, x-rays, optical, radio, and/or neutrino emission. Multimessenger searches for gravitational waves with the LIGO-GEO600-Virgo interferometer network have already produced insights on cosmic events and it is expected that the simultaneous observation of electromagnetic or neutrino emission could be a crucial aspect for the first direct detection of gravitational waves in the future. Trigger time, direction and expected frequency range enhances our ability to search for gravitational wave signatures with amplitudes closer to the noise floor of the detector. Furthermore, multimessenger observations will enable the extraction of otherwise unaccessible scientific insight. We summarize the status of transient multimessenger detection efforts as well as mention some of the open questions that might be resolved by advanced or third generation gravitational wave detector networks.

  5. Gravitational lensing of quasars

    CERN Document Server

    Eigenbrod, Alexander

    2013-01-01

    The universe, in all its richness, diversity and complexity, is populated by a myriad of intriguing celestial objects. Among the most exotic of them are gravitationally lensed quasars. A quasar is an extremely bright nucleus of a galaxy, and when such an object is gravitationally lensed, multiple images of the quasar are produced – this phenomenon of cosmic mirage can provide invaluable insights on burning questions, such as the nature of dark matter and dark energy. After presenting the basics of modern cosmology, the book describes active galactic nuclei, the theory of gravitational lensing, and presents a particular numerical technique to improve the resolution of astronomical data. The book then enters the heart of the subject with the description of important applications of gravitational lensing of quasars, such as the measurement of the famous Hubble constant, the determination of the dark matter distribution in galaxies, and the observation of the mysterious inner parts of quasars with much higher r...

  6. Sulphur isotope variations in the atmosphere

    International Nuclear Information System (INIS)

    Newman, L.; Krouse, H.R.; Grinenko, V.A.

    1991-01-01

    The measurement of the isotope ratios of sulphur and oxygen can in principal be used to assess sulphur inputs into, transformation within, and removal from the atmosphere. Major inputs arise from both anthropogenic and biogenic activities. Transformations arise from oxidation, neutralization, and other chemical reactions. Advection causes dilution and the main removal processes are dry deposition (governed by gravitation and diffusion) and rain. The admixture of sources can be discerned from their isotopic signatures whereas transformations and removal can be followed from the isotopic fractionation that might occur. In this chapter, the atmospheric sulphur cycle and the associated chemistry are summarized. Also presented is information on natural isotopic variations and fundamental concepts relating to the use of isotopic data to delineate anthropogenic S in the atmosphere. Examples of successful applications of these concepts are given. Finally, consideration is given to the potential of using isotopically enriched sulphur to study transport and transformation of atmospheric S compounds. Refs, figs and tabs

  7. Turbulent transport of passive scalar behind line sources in an unstably stratified open channel flow

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chun-Ho [The Hong Kong Polytechnic University, Kowloon (Hong Kong). Department of Building and Real Estate; Leung, Dennis Y.C. [The University of Hong Kong (Hong Kong). Department of Mechanical Engineering

    2006-11-15

    This study employs a direct numerical simulation (DNS) technique to study the flow, turbulence structure, and passive scalar plume transport behind line sources in an unstably stratified open channel flow. The scalar transport behaviors for five emission heights (z{sub s}=0, 0.25H, 0.5H, 0.75H, and H, where H is the channel height) at a Reynolds number of 3000, a Prandtl number and a Schmidt number of 0.72, and a Richardson number of -0.2 are investigated. The vertically meandering mean plume heights and dispersion coefficients calculated by the current DNS model agree well with laboratory results and field measurements in literature. It is found that the plume meandering is due to the movement of the positive and negative vertical turbulent scalar fluxes above and below the mean plume heights, respectively. These findings help explaining the plume meandering mechanism in the unstably stratified atmospheric boundary layer. (author)

  8. Gravitation and spacetime

    CERN Document Server

    Ohanian, Hans C

    2013-01-01

    The third edition of this classic textbook is a quantitative introduction for advanced undergraduates and graduate students. It gently guides students from Newton's gravitational theory to special relativity, and then to the relativistic theory of gravitation. General relativity is approached from several perspectives: as a theory constructed by analogy with Maxwell's electrodynamics, as a relativistic generalization of Newton's theory, and as a theory of curved spacetime. The authors provide a concise overview of the important concepts and formulas, coupled with the experimental results underpinning the latest research in the field. Numerous exercises in Newtonian gravitational theory and Maxwell's equations help students master essential concepts for advanced work in general relativity, while detailed spacetime diagrams encourage them to think in terms of four-dimensional geometry. Featuring comprehensive reviews of recent experimental and observational data, the text concludes with chapters on cosmology an...

  9. The Hot Horizontal-Branch Stars in NGC288 - Effects of Diffusion and Stratification on Their Atmospheric Parameters*

    Science.gov (United States)

    Moehler, S.; Dreizler, S.; LeBlanc, F.; Khalack, V.; Michaud, G.; Richer, J.; Sweigart, Allen V.; Grundahl, F.

    2014-01-01

    Context. NGC288 is a globular cluster with a well developed blue horizontal branch covering the so-called u-jump which indicates the onset of diffusion. It is therefore well suited to study the effects of diffusion in blue horizontal branch (HB) stars. Aims. We compare observed abundances to predictions from stellar evolution models calculated with diffusion and from stratified atmospheric models. We verify the effect of using stratified model spectra to derive atmospheric parameters. In addition we investigate the nature of the overluminous blue HB stars around the u-jump. Methods. We define a new photometric index sz from uvby measurements that is gravity sensitive between 8 000K and 12 000 K. Using medium-resolution spectra and Stroemgren photometry we determine atmospheric parameters (Teff, logg) and abundances for the blue HB stars. We use both homogeneous and stratified model spectra for our spectroscopic analyses. Results. The atmospheric parameters and masses of the hot HB stars in NGC288 show a behaviour seen also in other clusters for temperatures between 9 000K and 14 000 K. Outside this temperature range, however, they follow rather the results found for such stars in (omega)Cen. The abundances derived from our observations are for most elements (except He and P) within the abundance range expected from evolutionary models that include the effects of atomic diffusion and assume a surface mixed mass of 10(exp -7) M. The abundances predicted by stratified model atmospheres are generally significantly more extreme than observed, except for Mg. The use of stratified model spectra to determine effective temperatures, surface gravities and masses moves the hotter stars to a closer agreement with canonical evolutionary predictions. Conclusions. Our results show definite promise towards solving the long-standing issue of surface gravity and mass discrepancies for hot HB stars, but there is still much work needed to arrive at a self-consistent solution.

  10. Gravitation and vacuum field

    International Nuclear Information System (INIS)

    Tevikyan, R.V.

    1986-01-01

    This paper presents equations that describe particles with spins s = 0, 1/2, 1 completely and which also describe 2s + 2 limiting fields as E → ∞. It is shown that the ordinary Hilbert-Einstein action for the gravitation field must be augmented by the action for the Bose vacuum field. This means that one must introduce in the gravitational equations a cosmological term proportional to the square of the strength of the Bose vacuum field. It is shown that the theory of gravitation describes three realities: matter, field, and vacuum field. A new form of matter--the vacuum field--is introduced into field theory

  11. Atmospheric stability and complex terrain: comparing measurements and CFD

    DEFF Research Database (Denmark)

    Koblitz, Tilman; Bechmann, Andreas; Berg, Jacob

    2014-01-01

    For wind resource assessment, the wind industry is increasingly relying on Computational Fluid Dynamics models that focus on modeling the airflow in a neutrally stratified surface layer. So far, physical processes that are specific to the atmospheric boundary layer, for example the Coriolis force...

  12. Analysis of Turbulent Combustion in Simplified Stratified Charge Conditions

    Science.gov (United States)

    Moriyoshi, Yasuo; Morikawa, Hideaki; Komatsu, Eiji

    The stratified charge combustion system has been widely studied due to the significant potentials for low fuel consumption rate and low exhaust gas emissions. The fuel-air mixture formation process in a direct-injection stratified charge engine is influenced by various parameters, such as atomization, evaporation, and in-cylinder gas motion at high temperature and high pressure conditions. It is difficult to observe the in-cylinder phenomena in such conditions and also challenging to analyze the following stratified charge combustion. Therefore, the combustion phenomena in simplified stratified charge conditions aiming to analyze the fundamental stratified charge combustion are examined. That is, an experimental apparatus which can control the mixture distribution and the gas motion at ignition timing was developed, and the effects of turbulence intensity, mixture concentration distribution, and mixture composition on stratified charge combustion were examined. As a result, the effects of fuel, charge stratification, and turbulence on combustion characteristics were clarified.

  13. Those Elusive Gravitational Waves

    Science.gov (United States)

    MOSAIC, 1976

    1976-01-01

    The presence of gravitational waves was predicted by Einstein in his theory of General Relativity. Since then, scientists have been attempting to develop a detector sensitive enough to measure these cosmic signals. Once the presence of gravitational waves is confirmed, scientists can directly study star interiors, galaxy cores, or quasars. (MA)

  14. Probing Positron Gravitation at HERA

    International Nuclear Information System (INIS)

    Gharibyan, Vahagn

    2015-07-01

    An equality of particle and antiparticle gravitational interactions holds in general relativity and is supported by indirect observations. Here I develop a method based on high energy Compton scattering to measure the gravitational interaction of accelerated charged particles. Within that formalism the Compton spectra measured at HERA rule out the positron's anti-gravity and hint for a positron's 1.3(0.2)% weaker coupling to the gravitational field relative to an electron.

  15. Quantum Emulation of Gravitational Waves.

    Science.gov (United States)

    Fernandez-Corbaton, Ivan; Cirio, Mauro; Büse, Alexander; Lamata, Lucas; Solano, Enrique; Molina-Terriza, Gabriel

    2015-07-14

    Gravitational waves, as predicted by Einstein's general relativity theory, appear as ripples in the fabric of spacetime traveling at the speed of light. We prove that the propagation of small amplitude gravitational waves in a curved spacetime is equivalent to the propagation of a subspace of electromagnetic states. We use this result to propose the use of entangled photons to emulate the evolution of gravitational waves in curved spacetimes by means of experimental electromagnetic setups featuring metamaterials.

  16. Probing Positron Gravitation at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Gharibyan, Vahagn

    2015-07-15

    An equality of particle and antiparticle gravitational interactions holds in general relativity and is supported by indirect observations. Here I develop a method based on high energy Compton scattering to measure the gravitational interaction of accelerated charged particles. Within that formalism the Compton spectra measured at HERA rule out the positron's anti-gravity and hint for a positron's 1.3(0.2)% weaker coupling to the gravitational field relative to an electron.

  17. The energy-momentum problem and gravitation theory

    International Nuclear Information System (INIS)

    Logunov, A.A.; Folomeshkin, V.N.

    1977-01-01

    General properties of geometrized gravitation theories are considered. A covariant formulation of conservation laws in an arbitrary Riemann space-time is presented. In the Einstein theory both symmetric and canonical energy-momentum tensors of the matter and gravitational field system and, in particular, energy-momentum of free gravitational waves prove to be equal to zero. Since gravitational waves carry the curvature and, consequently, affect the detector, this bears witness to an intrinsic contradiction of the Einstein theory. To realize the sources of difficulties concerning energy-momentum in the Einstein theory the gravitational field is treated in the same way as all the other physical fields, i.e. in terms of usual Lorentz-invariant field theory. Unification of this approach with the Einstein idea of geometrization enables to construct the geometrized theory, which is free from contradictions, has clearly defined the notions of gravitation field energy-momentum and satisfactorily describes all known experimental facts. To construct a logically consistent theory one should geometrize only the density of the matter Lagrangian. The gravitation field equations are formulated in terms of the Euclidean space-time with a metric tensor γsub(ik), while the matter motion may be completely described in terms of the non-Euclidean space-time with a metric tensor gsub(ik). For strong gravitational fields the predictions of the quasi-linear theory under consideration appriciably differ from those of the Einstein formulation of the gravitation theory. No black holes are present in the theory. The results of the calculation for the energy flow of gravitational waves are rigorously unambiguous and show that gravitational waves carry positively definite energy

  18. Radiative instabilities of atmospheric jets and boundary layers

    International Nuclear Information System (INIS)

    Candelier, J.

    2010-01-01

    Complex flows occur in the atmosphere and they can be source of internal gravity waves. We focus here on the sources associated with radiative and shear (or Kelvin-Helmholtz) instabilities. Stability studies of shear layers in a stably stratified fluid concern mainly cases where shear and stratification are aligned along the same direction. In these cases, Miles (1961) and Howard (1961) found a necessary condition for stability based on the Richardson number: Ri ≥ 1/4. In this thesis, we show that this condition is not necessary when shear and stratification are not aligned: we demonstrate that a two-dimensional planar Bickley jet can be unstable for all Richardson numbers. Although the most unstable mode remains 2D, we show there exists an infinite family of 3D unstable modes exhibiting a radiative structure. A WKBJ theory is found to provide the main characteristics of these modes. We also study an inviscid and stratified boundary layer over an inclined wall with non-Boussinesq and compressible effects. We show that this flow is unstable as soon as the wall is not horizontal for all Froude numbers and that strongly stratified 3D perturbations behave exactly like compressible 2D perturbations. Applications of the results to the jet stream and the atmospheric boundary layer are proposed. (author) [fr

  19. Relic gravitational waves and cosmology

    International Nuclear Information System (INIS)

    Grishchuk, Leonid P

    2005-01-01

    The paper begins with a brief recollection of interactions of the author with Ya B Zeldovich in the context of the study of relic gravitational waves. The principles and early results on the quantum-mechanical generation of cosmological perturbations are then summarized. The expected amplitudes of relic gravitational waves differ in various frequency windows, and therefore the techniques and prospects of their detection are distinct. One section of the paper describes the present state of efforts in direct detection of relic gravitational waves. Another section is devoted to indirect detection via the anisotropy and polarization measurements of the cosmic microwave background (CMB) radiation. It is emphasized throughout the paper that the inference about the existence and expected amount of relic gravitational waves is based on a solid theoretical foundation and the best available cosmological observations. It is also explained in great detail what went wrong with the so-called 'inflationary gravitational waves', whose amount is predicted by inflationary theorists to be negligibly small, thus depriving them of any observational significance. (reviews of topical problems)

  20. Modified entropic gravitation in superconductors

    International Nuclear Information System (INIS)

    Matos, Clovis Jacinto de

    2012-01-01

    Verlinde recently developed a theoretical account of gravitation in terms of an entropic force. The central element in Verlinde’s derivation is information and its relation with entropy through the holographic principle. The application of this approach to the case of superconductors requires to take into account that information associated with superconductor’s quantum vacuum energy is not stored on Planck size surface elements, but in four volume cells with Planck-Einstein size. This has profound consequences on the type of gravitational force generated by the quantum vacuum condensate in superconductors, which is closely related with the cosmological repulsive acceleration responsible for the accelerated expansion of the Universe. Remarkably this new gravitational type force depends on the level of breaking of the weak equivalence principle for cooper pairs in a given superconducting material, which was previously derived by the author starting from similar principles. It is also shown that this new gravitational force can be interpreted as a surface force. The experimental detection of this new repulsive gravitational-type force appears to be challenging.

  1. Sensitivity of a combined gravitational antenna

    International Nuclear Information System (INIS)

    Kulagin, V.V.; Rudenko, V.N.

    1986-01-01

    A modification of a combined optico-acoustic gravitational antenna: a long-base laser interferometer, where free masses are changed by Weber resonators, is suggested. The combined gravitational antenna can possess sensitivity h min ∼ 10 -18 without deep cooling of Weber resonators and h min ∼ 10 -19 at helium temperaure of the resonators. This antenna has the following new quantities: presence of three independent responses, that permits to a considerable extent to exclude non-gravitational effects; presence of responses of two separated Weber resonators, that permits to register the wave character of gravitational perturbation by measuring phase shift between relaxation ''tails''. It means that one may with certainty register the wave structure of gravitational radiation for perturbation of metrics h, exceeding the threshold sensitivity of the known detectors by an order

  2. Theory and experiment in gravitational physics

    Science.gov (United States)

    Will, C. M.

    New technological advances have made it feasible to conduct measurements with precision levels which are suitable for experimental tests of the theory of general relativity. This book has been designed to fill a new need for a complete treatment of techniques for analyzing gravitation theory and experience. The Einstein equivalence principle and the foundations of gravitation theory are considered, taking into account the Dicke framework, basic criteria for the viability of a gravitation theory, experimental tests of the Einstein equivalence principle, Schiff's conjecture, and a model theory devised by Lightman and Lee (1973). Gravitation as a geometric phenomenon is considered along with the parametrized post-Newtonian formalism, the classical tests, tests of the strong equivalence principle, gravitational radiation as a tool for testing relativistic gravity, the binary pulsar, and cosmological tests.

  3. Gravitational waves from self-ordering scalar fields

    CERN Document Server

    Fenu, Elisa; Durrer, Ruth; Garcia-Bellido, Juan

    2009-01-01

    Gravitational waves were copiously produced in the early Universe whenever the processes taking place were sufficiently violent. The spectra of several of these gravitational wave backgrounds on subhorizon scales have been extensively studied in the literature. In this paper we analyze the shape and amplitude of the gravitational wave spectrum on scales which are superhorizon at the time of production. Such gravitational waves are expected from the self ordering of randomly oriented scalar fields which can be present during a thermal phase transition or during preheating after hybrid inflation. We find that, if the gravitational wave source acts only during a small fraction of the Hubble time, the gravitational wave spectrum at frequencies lower than the expansion rate at the time of production behaves as $\\Omega_{\\rm GW}(f) \\propto f^3$ with an amplitude much too small to be observable by gravitational wave observatories like LIGO, LISA or BBO. On the other hand, if the source is active for a much longer tim...

  4. Gravitational Waves: The Evidence Mounts

    Science.gov (United States)

    Wick, Gerald L.

    1970-01-01

    Reviews the work of Weber and his colleagues in their attempts at detecting extraterrestial gravitational waves. Coincidence events recorded by special detectors provide the evidence for the existence of gravitational waves. Bibliography. (LC)

  5. Gravitational Wave Speed: Undefined. Experiments Proposed

    Directory of Open Access Journals (Sweden)

    Daniel Russell

    2018-04-01

    Full Text Available Since changes in all 4 dimensions of spacetime are components of displacement for gravitational waves, a theoretical result is presented that their speed is undefined, and that the Theory of Relativity is not reliable to predict their speed. Astrophysical experiments are proposed with objectives to directly measure gravitational wave speed, and to verify these theoretical results. From the circumference of two merging black hole's final orbit, it is proposed to make an estimate of a total duration of the last ten orbits, before gravitational collapse, for comparison with durations of reported gravitational wave signals. It is proposed to open a new field of engineering of spacetime wave modulation with an objective of faster and better data transmission and communication through the Earth, the Sun, and deep space. If experiments verify that gravitational waves have infinite speed, it is concluded that a catastrophic gravitational collapse, such as a merger of quasars, today, would re-define the geometry and curvature of spacetime on Earth, instantly, without optical observations of this merger visible, until billions of years in the future.

  6. Progress in the determination of the gravitational coefficient of the earth

    Science.gov (United States)

    Ries, J. C.; Eanes, R. J.; Shum, C. K.; Watkins, M. M.

    1992-01-01

    In most of the recent determinations of the geocentric gravitational coefficient (GM) of the earth, the laser ranging data to the Lageos satellite have had the greatest influence on the solution. These data, however, have generally been processed with a small but significant error in one of the range corrections. In a new determination of GM using the corrected center-of-mass offset, a value of 398600.4415 cu km/sq sec (including the mass of the atmosphere) has been obtained, with an estimated uncertainty (1 sigma of 0.0008 cu km/sq sec.

  7. Resonant-bar gravitational radiation antennas

    International Nuclear Information System (INIS)

    Blair, D.G.

    1987-01-01

    This paper reviews the concept of gravitational radiation, and describes the worldwide research programme for the development of high-sensitivity resonant-bar antennas which are aimed at detecting gravitational radiation from astrophysical sources. (author)

  8. On disturbances in the atmosphere produced by solar heating and by earth rotation

    International Nuclear Information System (INIS)

    Somsikov, V.M.

    1980-01-01

    Using solar terminator as an example analyzed are the problems connected with generation of various disturbances in atmosphere resulted from solar heating and earth rotation. An equation for atmosphere pressure disturbance in the spherical system of coordinates is obtained. The Green function of this equation is found for isothermal atmosphere. A spectrum of space harmonics of disturbances is found and its diagram is presented. It is shown that disturbances of large and small scales can arize in atmosphere simultaneously. They can be refferred to acoustic, gravitational and tidal waves. It is noted that the obtained equation solution permits to obtain a full spectrum of atmosphere vibrations, conditioned by its solar heating

  9. Problem of energy-momentum and theory of gravitation

    International Nuclear Information System (INIS)

    Logunov, A.A.; Folomeshkin, V.N.

    1977-01-01

    General properties of geometrised theories of gravitation are considered. Covariant formulation of conservation laws in arbitrary riemannian space-time is given. In the Einstein theory the symmetric as well as canonical energy-momentum tensor of the system ''matter plus gravitational field'' and in particular, the energy-momentum of free gravitational waves, turns out to be equal to zero. To understand the origin of the problems and difficulties concerning the energy-momentum in the Einstein theory, the gravitational filed is considered in the usual framework of the Lorentz invariant field theory, just like any other physical field. Combination of the approach proposed with the Einstein's idea of geometrization makes it possible to formulate the geometrised gravitation theory, in which there are no inner contradictions, the energy-momentum of gravitational field is defined precisely and all the known experimental facts are described successfully. For strong gravitational fields the predictions of the quasilinear geometrised theory under consideration are different from those of the gravitational theory in the Einstein formulation. Black holes are absent in the theory. Evaluation of the energy-flux of gravitational waves leads to unambiguous results and shows that the gravitational waves transfer the positive-definite energy

  10. Well-balanced compressible cut-cell simulation of atmospheric flow.

    Science.gov (United States)

    Klein, R; Bates, K R; Nikiforakis, N

    2009-11-28

    Cut-cell meshes present an attractive alternative to terrain-following coordinates for the representation of topography within atmospheric flow simulations, particularly in regions of steep topographic gradients. In this paper, we present an explicit two-dimensional method for the numerical solution on such meshes of atmospheric flow equations including gravitational sources. This method is fully conservative and allows for time steps determined by the regular grid spacing, avoiding potential stability issues due to arbitrarily small boundary cells. We believe that the scheme is unique in that it is developed within a dimensionally split framework, in which each coordinate direction in the flow is solved independently at each time step. Other notable features of the scheme are: (i) its conceptual and practical simplicity, (ii) its flexibility with regard to the one-dimensional flux approximation scheme employed, and (iii) the well-balancing of the gravitational sources allowing for stable simulation of near-hydrostatic flows. The presented method is applied to a selection of test problems including buoyant bubble rise interacting with geometry and lee-wave generation due to topography.

  11. Grain distinct stratified nanolayers in aluminium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Donatus, U., E-mail: uyimedonatus@yahoo.com [School of Materials, The University of Manchester, Manchester, M13 9PL, England (United Kingdom); Thompson, G.E.; Zhou, X.; Alias, J. [School of Materials, The University of Manchester, Manchester, M13 9PL, England (United Kingdom); Tsai, I.-L. [Oxford Instruments NanoAnalysis, HP12 2SE, High Wycombe (United Kingdom)

    2017-02-15

    The grains of aluminium alloys have stratified nanolayers which determine their mechanical and chemical responses. In this study, the nanolayers were revealed in the grains of AA6082 (T6 and T7 conditions), AA5083-O and AA2024-T3 alloys by etching the alloys in a solution comprising 20 g Cr{sub 2}O{sub 3} + 30 ml HPO{sub 3} in 1 L H{sub 2}O. Microstructural examination was conducted on selected grains of interest using scanning electron microscopy and electron backscatter diffraction technique. It was observed that the nanolayers are orientation dependent and are parallel to the {100} planes. They have ordered and repeated tunnel squares that are flawed at the sides which are aligned in the <100> directions. These flawed tunnel squares dictate the tunnelling corrosion morphology as well as appearing to have an affect on the arrangement and sizes of the precipitation hardening particles. The inclination of the stratified nanolayers, their interpacing, and the groove sizes have significant influence on the corrosion behaviour and seeming influence on the strengthening mechanism of the investigated aluminium alloys. - Highlights: • Stratified nanolayers in aluminium alloy grains. • Relationship of the stratified nanolayers with grain orientation. • Influence of the inclinations of the stratified nanolayers on corrosion. • Influence of the nanolayers interspacing and groove sizes on hardness and corrosion.

  12. On black holes and gravitational waves

    CERN Document Server

    Loinger, Angelo

    2002-01-01

    Black holes and gravitational waves are theoretical entities of today astrophysics. Various observed phenomena have been associated with the concept of black hole ; until now, nobody has detected gravitational waves. The essays contained in this book aim at showing that the concept of black holes arises from a misinterpretation of general relativity and that gravitational waves cannot exist.

  13. The Japanese space gravitational wave antenna - DECIGO

    International Nuclear Information System (INIS)

    Kawamura, S; Seto, N; Sato, S; Arai, K; Ando, M; Tsubono, K; Agatsuma, K; Akutsu, T; Akutsu, T; Arase, Y; Nakamura, T; Tanaka, T; Funaki, I; Takashima, T; Numata, K; Ioka, K; Kanda, N; Aoyanagi, Koh-Suke; Araya, A; Asada, H

    2008-01-01

    DECi-hertz Interferometer Gravitational wave Observatory (DECIGO) is the future Japanese space gravitational wave antenna. The goal of DECIGO is to detect gravitational waves from various kinds of sources mainly between 0.1 Hz and 10 Hz and thus to open a new window of observation for gravitational wave astronomy. DECIGO will consist of three drag-free spacecraft, 1000 km apart from each other, whose relative displacements are measured by a Fabry-Perot Michelson interferometer. We plan to launch DECIGO pathfinder first to demonstrate the technologies required to realize DECIGO and, if possible, to detect gravitational waves from our galaxy or nearby galaxies

  14. National Coral Reef Monitoring Program: Benthic Images Collected from Stratified Random Sites (StRS) across Wake Island from 2014-03-16 to 2014-03-20 (NCEI Accession 0159157)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The data described here are benthic habitat imagery that result from benthic photo-quadrat surveys conducted along transects at stratified random sites across Wake...

  15. Gravitational waves in cold dark matter

    Science.gov (United States)

    Flauger, Raphael; Weinberg, Steven

    2018-06-01

    We study the effects of cold dark matter on the propagation of gravitational waves of astrophysical and primordial origin. We show that the dominant effect of cold dark matter on gravitational waves from astrophysical sources is a small frequency dependent modification of the propagation speed of gravitational waves. However, the magnitude of the effect is too small to be detected in the near future. We furthermore show that the spectrum of primordial gravitational waves in principle contains detailed information about the properties of dark matter. However, depending on the wavelength, the effects are either suppressed because the dark matter is highly nonrelativistic or because it contributes a small fraction of the energy density of the universe. As a consequence, the effects of cold dark matter on primordial gravitational waves in practice also appear too small to be detectable.

  16. Anisotropic solutions by gravitational decoupling

    Science.gov (United States)

    Ovalle, J.; Casadio, R.; da Rocha, R.; Sotomayor, A.

    2018-02-01

    We investigate the extension of isotropic interior solutions for static self-gravitating systems to include the effects of anisotropic spherically symmetric gravitational sources by means of the gravitational decoupling realised via the minimal geometric deformation approach. In particular, the matching conditions at the surface of the star with the outer Schwarzschild space-time are studied in great detail, and we describe how to generate, from a single physically acceptable isotropic solution, new families of anisotropic solutions whose physical acceptability is also inherited from their isotropic parent.

  17. Anisotropic solutions by gravitational decoupling

    Energy Technology Data Exchange (ETDEWEB)

    Ovalle, J. [Silesian University in Opava, Institute of Physics and Research Centre of Theoretical Physics and Astrophysics, Faculty of Philosophy and Science, Opava (Czech Republic); Universidad Simon Bolivar, Departamento de Fisica, Caracas (Venezuela, Bolivarian Republic of); Casadio, R. [Alma Mater Universita di Bologna, Dipartimento di Fisica e Astronomia, Bologna (Italy); Istituto Nazionale di Fisica Nucleare, Bologna (Italy); Rocha, R. da [Universidade Federal do ABC (UFABC), Centro de Matematica, Computacao e Cognicao, Santo Andre, SP (Brazil); Sotomayor, A. [Universidad de Antofagasta, Departamento de Matematicas, Antofagasta (Chile)

    2018-02-15

    We investigate the extension of isotropic interior solutions for static self-gravitating systems to include the effects of anisotropic spherically symmetric gravitational sources by means of the gravitational decoupling realised via the minimal geometric deformation approach. In particular, the matching conditions at the surface of the star with the outer Schwarzschild space-time are studied in great detail, and we describe how to generate, from a single physically acceptable isotropic solution, new families of anisotropic solutions whose physical acceptability is also inherited from their isotropic parent. (orig.)

  18. Gravitation and Electricity

    Directory of Open Access Journals (Sweden)

    Stavroulakis N.

    2008-04-01

    Full Text Available The equations of gravitation together with the equations of electromagnetism in terms of the General Theory of Relativity allow to conceive an interdependence between the gravitational field and the electromagnetic field. However the technical difficulties of the relevant problems have precluded from expressing clearly this interdependence. Even the simple problem related to the field generated by a charged spherical mass is not correctly solved. In the present paper we reexamine from the outset this problem and propose a new solution.

  19. Gravitational states of antihydrogen near material surface

    Energy Technology Data Exchange (ETDEWEB)

    Voronin, Alexei Yu., E-mail: dr.a.voronin@gmail.com [P.N. Lebedev Physical Institute (Russian Federation); Froelich, Piotr [Uppsala University, Department of Quantum Chemistry (Sweden); Nesvizhevsky, Valery V. [Institut Laue-Langevin (ILL) (France)

    2012-12-15

    We present a theoretical study of the motion of antihydrogen atoms in the Earth's gravitational field near a material surface. We predict the existence of long-living quasistationary states of antihydrogen in a superposition of the gravitational and Casimir-van der Waals potentials of the surface. We suggest an interferometric method of measuring the energy difference between such gravitational states, hence the gravitational mass of antihydrogen.

  20. Rapid shelf-wide cooling response of a stratified coastal ocean to hurricanes.

    Science.gov (United States)

    Seroka, Greg; Miles, Travis; Xu, Yi; Kohut, Josh; Schofield, Oscar; Glenn, Scott

    2017-06-01

    Large uncertainty in the predicted intensity of tropical cyclones (TCs) persists compared to the steadily improving skill in the predicted TC tracks. This intensity uncertainty has its most significant implications in the coastal zone, where TC impacts to populated shorelines are greatest. Recent studies have demonstrated that rapid ahead-of-eye-center cooling of a stratified coastal ocean can have a significant impact on hurricane intensity forecasts. Using observation-validated, high-resolution ocean modeling, the stratified coastal ocean cooling processes observed in two U.S. Mid-Atlantic hurricanes were investigated: Hurricane Irene (2011)-with an inshore Mid-Atlantic Bight (MAB) track during the late summer stratified coastal ocean season-and Tropical Storm Barry (2007)-with an offshore track during early summer. For both storms, the critical ahead-of-eye-center depth-averaged force balance across the entire MAB shelf included an onshore wind stress balanced by an offshore pressure gradient. This resulted in onshore surface currents opposing offshore bottom currents that enhanced surface to bottom current shear and turbulent mixing across the thermocline, resulting in the rapid cooling of the surface layer ahead-of-eye-center. Because the same baroclinic and mixing processes occurred for two storms on opposite ends of the track and seasonal stratification envelope, the response appears robust. It will be critical to forecast these processes and their implications for a wide range of future storms using realistic 3-D coupled atmosphere-ocean models to lower the uncertainty in predictions of TC intensities and impacts and enable coastal populations to better respond to increasing rapid intensification threats in an era of rising sea levels.

  1. A new theory of space-time and gravitation

    International Nuclear Information System (INIS)

    Denisov, V.I.; Logunov, A.A.

    1982-01-01

    Field theory of gravitation is constructed. It uses a symmetrical second rank tensor field in pseudoeuclidean space-time for describing the gravitational field. The theory is based on the condition of the presence of conservation laws for gravitational field and matter taken together and on the geometrization principle. The field theory of gravitation has the same post-newtonian parame-- ters as the general relativity theory (GRT) which implies that both theories are indistinguishable from the viewpoint of any post- newtonian experiment. The description of the effects in strong gravitational fields as well as properties of gravitational waves in the field theory of gravitation and GRT differ significantly from each other. The distinctions between two theories include also the itational red shifti curving of light trajectories and timabsence in the field theory of gravitation of the effects of grav.. delay/ in processes of propagation of gravitational waves in external fields. These distinctions made it possible to suggest a number of experiments with gravitational waves in which the predictions of the field theory of gravitation can be compared with those of the GRT. Model of the Universe in the field theory of gravitation makes it possible to describe the cosmological red shift of the frequency. Character of the evolution in this mode is determined by the delay parameter q 0 : at q 0 0 >4-3/2xα the ''expansion'' at some moment will ''change'' to contraction'' and the Universe will return to the singular state, where α=8πepsilon 0 /3M 2 (H is the Hubble constant) [ru

  2. Gravitational waves from self-ordering scalar fields

    International Nuclear Information System (INIS)

    Fenu, Elisa; Durrer, Ruth; Figueroa, Daniel G.; García-Bellido, Juan

    2009-01-01

    Gravitational waves were copiously produced in the early Universe whenever the processes taking place were sufficiently violent. The spectra of several of these gravitational wave backgrounds on subhorizon scales have been extensively studied in the literature. In this paper we analyze the shape and amplitude of the gravitational wave spectrum on scales which are superhorizon at the time of production. Such gravitational waves are expected from the self ordering of randomly oriented scalar fields which can be present during a thermal phase transition or during preheating after hybrid inflation. We find that, if the gravitational wave source acts only during a small fraction of the Hubble time, the gravitational wave spectrum at frequencies lower than the expansion rate at the time of production behaves as Ω GW (f) ∝ f 3 with an amplitude much too small to be observable by gravitational wave observatories like LIGO, LISA or BBO. On the other hand, if the source is active for a much longer time, until a given mode which is initially superhorizon (kη * 1, we find that the gravitational wave energy density is frequency independent, i.e. scale invariant. Moreover, its amplitude for a GUT scale scenario turns out to be within the range and sensitivity of BBO and marginally detectable by LIGO and LISA. This new gravitational wave background can compete with the one generated during inflation, and distinguishing both may require extra information

  3. A new geometrical gravitational theory

    International Nuclear Information System (INIS)

    Obata, T.; Chiba, J.; Oshima, H.

    1981-01-01

    A geometrical gravitational theory is developed. The field equations are uniquely determined apart from one unknown dimensionless parameter ω 2 . It is based on an extension of the Weyl geometry, and by the extension the gravitational coupling constant and the gravitational mass are made to be dynamical and geometrical. The fundamental geometrical objects in the theory are a metric gsub(μν) and two gauge scalars phi and psi. The theory satisfies the weak equivalence principle, but breaks the strong one generally. u(phi, psi) = phi is found out on the assumption that the strong one keeps holding good at least for bosons of low spins. Thus there is the simple correspondence between the geometrical objects and the gravitational objects. Since the theory satisfies the weak one, the inertial mass is also dynamical and geometrical in the same way as is the gravitational mass. Moreover, the cosmological term in the theory is a coscalar of power -4 algebraically made of psi and u(phi, psi), so it is dynamical, too. Finally spherically symmetric exact solutions are given. The permissible range of the unknown parameter ω 2 is experimentally determined by applying the solutions to the solar system. (author)

  4. Gravitational waves from supernova matter

    International Nuclear Information System (INIS)

    Scheidegger, S; Whitehouse, S C; Kaeppeli, R; Liebendoerfer, M

    2010-01-01

    We have performed a set of 11 three-dimensional magnetohydrodynamical (MHD) core-collapse supernova simulations in order to investigate the dependences of the gravitational wave signal on the progenitor's initial conditions. We study the effects of the initial central angular velocity and different variants of neutrino transport. Our models are started up from a 15M o-dot progenitor and incorporate an effective general relativistic gravitational potential and a finite temperature nuclear equation of state. Furthermore, the electron flavour neutrino transport is tracked by efficient algorithms for the radiative transfer of massless fermions. We find that non- and slowly rotating models show gravitational wave emission due to prompt- and lepton driven convection that reveals details about the hydrodynamical state of the fluid inside the protoneutron stars. Furthermore we show that protoneutron stars can become dynamically unstable to rotational instabilities at T/|W| values as low as ∼2% at core bounce. We point out that the inclusion of deleptonization during the postbounce phase is very important for the quantitative gravitational wave (GW) prediction, as it enhances the absolute values of the gravitational wave trains up to a factor of ten with respect to a lepton-conserving treatment.

  5. Gravitational scattering of electromagnetic radiation

    Science.gov (United States)

    Brooker, J. T.; Janis, A. I.

    1980-01-01

    The scattering of electromagnetic radiation by linearized gravitational fields is studied to second order in a perturbation expansion. The incoming electromagnetic radiation can be of arbitrary multipole structure, and the gravitational fields are also taken to be advanced fields of arbitrary multipole structure. All electromagnetic multipole radiation is found to be scattered by gravitational monopole and time-varying dipole fields. No case has been found, however, in which any electromagnetic multipole radiation is scattered by gravitational fields of quadrupole or higher-order multipole structure. This lack of scattering is established for infinite classes of special cases, and is conjectured to hold in general. The results of the scattering analysis are applied to the case of electromagnetic radiation scattered by a moving mass. It is shown how the mass and velocity may be determined by a knowledge of the incident and scattered radiation.

  6. Bipolar outflows as a repulsive gravitational phenomenon - Azimuthally Symmetric Theory of Gravitation (II)

    International Nuclear Information System (INIS)

    Nyambuya, Golden Gadzirayi

    2010-01-01

    This paper is part of a series on the Azimuthally Symmetric Theory of Gravitation (ASTG). This theory is built on Laplace-Poisson's well known equation and it has been shown that the ASTG is capable of explaining, from a purely classical physics standpoint, the precession of the perihelion of solar planets as a consequence of the azimuthal symmetry emerging from the spin of the Sun. This symmetry has and must have an influence on the emergent gravitational field. We show herein that the emergent equations from the ASTG, under some critical conditions determined by the spin, do possess repulsive gravitational fields in the polar regions of the gravitating body in question. This places the ASTG on an interesting pedestal to infer the origins of outflows as a repulsive gravitational phenomenon. Outflows are a ubiquitous phenomenon found in star forming systems and their true origin is a question yet to be settled. Given the current thinking on their origin, the direction that the present paper takes is nothing short of an asymptotic break from conventional wisdom; at the very least, it is a complete paradigm shift because gravitation is not at all associated with this process, but rather it is thought to be an all-attractive force that only tries to squash matter together onto a single point. Additionally, we show that the emergent Azimuthally Symmetric Gravitational Field from the ASTG strongly suggests a solution to the supposed Radiation Problem that is thought to be faced by massive stars in their process of formation. That is, at ∼ 8-10 M sun , radiation from the nascent star is expected to halt the accretion of matter. We show that in-falling material will fall onto the equatorial disk and from there, this material will be channeled onto the forming star via the equatorial plane, thus accretion of mass continues well past the value of ∼ 8-10 M sun , albeit via the disk. Along the equatorial plane, the net force (with the radiation force included) on any

  7. The stratified H-index makes scientific impact transparent

    DEFF Research Database (Denmark)

    Würtz, Morten; Schmidt, Morten

    2017-01-01

    The H-index is widely used to quantify and standardize researchers' scientific impact. However, the H-index does not account for the fact that co-authors rarely contribute equally to a paper. Accordingly, we propose the use of a stratified H-index to measure scientific impact. The stratified H......-index supplements the conventional H-index with three separate H-indices: one for first authorships, one for second authorships and one for last authorships. The stratified H-index takes scientific output, quality and individual author contribution into account....

  8. Gravitational effects of global textures

    International Nuclear Information System (INIS)

    Noetzold, D.

    1990-03-01

    A solution for the dynamics of global textures is obtained. Their gravitational field during the collapse and the subsequent evolution is found to be given solely by a space-time dependent ''deficit solid angle.'' The frequency shift of photons traversing this gravitational field is calculated. The space-time dependent texture metric locally contracts the volume of three-space and thereby induces overdensities in homogeneous matter distributions. There are no gravitational forces unless matter has a nonzero angular momentum with respect to the texture origin which would be the case for moving textures

  9. Interaction of gravitational plane waves

    International Nuclear Information System (INIS)

    Ferrari, V.

    1988-01-01

    The mathematical theory of colliding, infinite-fronted, plane gravitational waves is presented. The process of focusing, the creation of singularities and horizons, due to the interaction, and the lens effect due to a beam-like gravitational wave are discussed

  10. Laboratory generation of gravitational waves

    International Nuclear Information System (INIS)

    Pinto, I.M.; Rotoli, G.

    1988-01-01

    The authors have performed calculations on the basic type of gravitational wave electromagnetic laboratory generators. Their results show that laboratory generations of gravitational wave is at limit of state-of-the-art of present-day giant electromagnetic field generation

  11. Gravitationally coupled electroweak monopole

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Y.M., E-mail: ymcho7@konkuk.ac.kr [Administration Building 310-4, Konkuk University, Seoul 143-701 (Korea, Republic of); School of Physics and Astronomy, Seoul National University, Seoul 151-742 (Korea, Republic of); Kimm, Kyoungtae [Faculty of Liberal Education, Seoul National University, Seoul 151-747 (Korea, Republic of); Yoon, J.H. [Department of Physics, College of Natural Sciences, Konkuk University, Seoul 143-701 (Korea, Republic of)

    2016-10-10

    We present a family of gravitationally coupled electroweak monopole solutions in Einstein–Weinberg–Salam theory. Our result confirms the existence of globally regular gravitating electroweak monopole which changes to the magnetically charged black hole as the Higgs vacuum value approaches to the Planck scale. Moreover, our solutions could provide a more accurate description of the monopole stars and magnetically charged black holes.

  12. National Coral Reef Monitoring Program: Benthic Cover Derived from Analysis of Benthic Images Collected during Stratified Random Surveys (StRS) across American Samoa in 2015 (NCEI Accession 0157752)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The data described here result from benthic photo-quadrat surveys conducted along transects at stratified random sites across American Samoa in 2015 as a part of...

  13. E25 stratified torch ignition engine emissions and combustion analysis

    International Nuclear Information System (INIS)

    Rodrigues Filho, Fernando Antonio; Baêta, José Guilherme Coelho; Teixeira, Alysson Fernandes; Valle, Ramón Molina; Fonseca de Souza, José Leôncio

    2016-01-01

    Highlights: • A stratified torch ignition (STI) engine was built and tested. • The STI engines was tested in a wide range of load and speed. • Significant reduction on emissions was achieved by means of the STI system. • Low cyclic variability characterized the lean combustion process of the torch ignition engine. • HC emission is the main drawback of the stratified torch ignition engine. - Abstract: Vehicular emissions significantly increase atmospheric air pollution and greenhouse gases (GHG). This fact associated with fast global vehicle fleet growth calls for prompt scientific community technological solutions in order to promote a significant reduction in vehicle fuel consumption and emissions, especially of fossil fuels to comply with future legislation. To meet this goal, a prototype stratified torch ignition (STI) engine was built from a commercial existing baseline engine. In this system, combustion starts in a pre-combustion chamber, where the pressure increase pushes the combustion jet flames through calibrated nozzles to be precisely targeted into the main chamber. These combustion jet flames are endowed with high thermal and kinetic energy, being able to generate a stable lean combustion process. The high kinetic and thermal energy of the combustion jet flame results from the load stratification. This is carried out through direct fuel injection in the pre-combustion chamber by means of a prototype gasoline direct injector (GDI) developed for a very low fuel flow rate. In this work the engine out-emissions of CO, NOx, HC and CO_2 of the STI engine are presented and a detailed analysis supported by the combustion parameters is conducted. The results obtained in this work show a significant decrease in the specific emissions of CO, NOx and CO_2 of the STI engine in comparison with the baseline engine. On the other hand, HC specific emission increased due to wall wetting from the fuel hitting in the pre-combustion chamber wall.

  14. A radiometer for stochastic gravitational waves

    International Nuclear Information System (INIS)

    Ballmer, Stefan W

    2006-01-01

    The LIGO Scientific Collaboration recently reported a new upper limit on an isotropic stochastic background of gravitational waves obtained based on the data from the third LIGO science run (S3). Here I present a new method for obtaining directional upper limits on stochastic gravitational waves that essentially implements a gravitational wave radiometer. The LIGO Scientific Collaboration intends to use this method for future LIGO science runs

  15. Detecting gravitational waves from accreting neutron stars

    NARCIS (Netherlands)

    Watts, A.L.; Krishnan, B.

    2009-01-01

    The gravitational waves emitted by neutron stars carry unique information about their structure and composition. Direct detection of these gravitational waves, however, is a formidable technical challenge. In a recent study we quantified the hurdles facing searches for gravitational waves from the

  16. National Coral Reef Monitoring Program: benthic images collected from stratified random sites (StRS) across the Hawaiian Archipelago from 2016-07-13 to 2016-09-27 (NCEI Accession 0164293)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The data described here are benthic habitat imagery that result from benthic photo-quadrat surveys conducted along transects at stratified random sites across the...

  17. National Coral Reef Monitoring Program: Benthic Images Collected from Stratified Random Sites (StRS) across the Hawaiian Archipelago from 2013-05-01 to 2013-10-31 (NCEI Accession 0159144)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The data described here are benthic habitat imagery that result from benthic photo-quadrat surveys conducted along transects at stratified random sites across the...

  18. National Coral Reef Monitoring Program: Benthic Images Collected from Stratified Random Sites (StRS) across the Mariana Archipelago from 2014-03-25 to 2014-05-07 (NCEI Accession 0159142)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The data described here are benthic habitat imagery that result from benthic photo-quadrat surveys conducted along transects at stratified random sites across the...

  19. The Japanese space gravitational wave antenna; DECIGO

    OpenAIRE

    Kawamura, Seiji; Ando, Masaki; Nakamura, Takashi; Tsubono, Kimio; Tanaka, Takahiro; Funaki, Ikkoh; Seto, Naoki; Numata, Kenji; Sato, Shuichi; Ioka, Kunihito; Kanda, Nobuyuki; Takashima, Takeshi; Agatsuma, Kazuhiro; Akutsu, Tomotada; Akutsu, Tomomi

    2008-01-01

    DECi-hertz Interferometer Gravitational wave Observatory (DECIGO) is the future Japanese space gravitational wave antenna. The goal of DECIGO is to detect gravitational waves from various kinds of sources mainly between 0.1 Hz and 10 Hz and thus to open a new window of observation for gravitational wave astronomy. DECIGO will consist of three drag-free spacecraft, 1000 km apart from each other, whose relative displacements are measured by a Fabry—Perot Michelson interferometer. We plan to lau...

  20. The Japanese space gravitational wave antenna - DECIGO

    OpenAIRE

    Kawamura, Seiji; Ando, Masaki; Nakamura, Takashi; Tsubono, Kimio; Tanaka, Takahiro; Funaki, Iklkoh; Seto, Naoki; Numata, Kenji; Sato, Shuichi; Ioka, Kunihito; Kanda, Nobuyuki; Takashima, Takeshi; Agatsuma, Kazuhiro; Akutsu, Tomotada; Akutsu, Tomomi

    2008-01-01

    DECi-hertz Interferometer Gravitational wave Observatory (DECIGO) is the future Japanese space gravitational wave antenna. The goal of DECIGO is to detect gravitational waves from various kinds of sources mainly between 0.1 Hz and 10 Hz and thus to open a new window of observation for gravitational wave astronomy. DECIGO will consist of three drag-free spacecraft, 1000 km apart from each other, whose relative displacements are measured by a Fabry—Perot Michelson interferometer. We plan to lau...

  1. Gravitational waves from instabilities in relativistic stars

    International Nuclear Information System (INIS)

    Andersson, Nils

    2003-01-01

    This paper provides an overview of stellar instabilities as sources of gravitational waves. The aim is to put recent work on secular and dynamical instabilities in compact stars in context, and to summarize the current thinking about the detectability of gravitational waves from various scenarios. As a new generation of kilometre length interferometric detectors is now coming online this is a highly topical theme. The review is motivated by two key questions for future gravitational-wave astronomy: are the gravitational waves from various instabilities detectable? If so, what can these gravitational-wave signals teach us about neutron star physics? Even though we may not have clear answers to these questions, recent studies of the dynamical bar-mode instability and the secular r-mode instability have provided new insights into many of the difficult issues involved in modelling unstable stars as gravitational-wave sources. (topical review)

  2. The gravitational-wave memory effect

    International Nuclear Information System (INIS)

    Favata, Marc

    2010-01-01

    The nonlinear memory effect is a slowly growing, non-oscillatory contribution to the gravitational-wave amplitude. It originates from gravitational waves that are sourced by the previously emitted waves. In an ideal gravitational-wave interferometer a gravitational wave with memory causes a permanent displacement of the test masses that persists after the wave has passed. Surprisingly, the nonlinear memory affects the signal amplitude starting at leading (Newtonian-quadrupole) order. Despite this fact, the nonlinear memory is not easily extracted from current numerical relativity simulations. After reviewing the linear and nonlinear memory I summarize some recent work, including (1) computations of the memory contribution to the inspiral waveform amplitude (thus completing the waveform to third post-Newtonian order); (2) the first calculations of the nonlinear memory that include all phases of binary black hole coalescence (inspiral, merger, ringdown); and (3) realistic estimates of the detectability of the memory with LISA.

  3. Highlights in gravitation and cosmology

    International Nuclear Information System (INIS)

    Iyer, B.R.; Kembhavi, Ajit; Narlikar, J.V.; Vishveshwara, C.V.

    1988-01-01

    This book assesses research into gravitation and cosmology by examining the subject from various viewpoints: the classical and quantum pictures, along with the cosmological and astrophysical applications. There are 35 articles by experts of international standing. Each defines the state of the art and contains a concise summary of our present knowledge of a facet of gravitational physics. These edited papers are based on those first given at an international conference held in Goa, India at the end of 1987. The following broad areas are covered: classical relativity, quantum gravity, cosmology, black holes, compact objects, gravitational radiation and gravity experiments. In this volume there are also summaries of discussions on the following special topics: exact solutions of cosmological equations, mathematical aspects of general relativity, the early universe, and quantum gravity. For research workers in cosmology and gravitation this reference book provides a broad view of present achievements and current problems. (author)

  4. Advanced interferometric gravitational-wave detectors

    CERN Document Server

    Saulson, Peter R

    2019-01-01

    Gravitational waves are one of the most exciting and promising emerging areas of physics and astrophysics today. The detection of gravitational waves will rank among the most significant physics discoveries of the 21st century.Advanced Interferometric Gravitational-Wave Detectors brings together many of the world's top experts to deliver an authoritative and in-depth treatment on current and future detectors. Volume I is devoted to the essentials of gravitational-wave detectors, presenting the physical principles behind large-scale precision interferometry, the physics of the underlying noise sources that limit interferometer sensitivity, and an explanation of the key enabling technologies that are used in the detectors. Volume II provides an in-depth look at the Advanced LIGO and Advanced Virgo interferometers that have just finished construction, as well as examining future interferometric detector concepts. This two-volume set will provide students and researchers the comprehensive background needed to und...

  5. Gravitational waves from scalar field accretion

    International Nuclear Information System (INIS)

    Nunez, Dario; Degollado, Juan Carlos; Moreno, Claudia

    2011-01-01

    Our aim in this work is to outline some physical consequences of the interaction between black holes and scalar field halos in terms of gravitational waves. In doing so, the black hole is taken as a static and spherically symmetric gravitational source, i.e. the Schwarzschild black hole, and we work within the test field approximation, considering that the scalar field lives in the curved space-time outside the black hole. We focused on the emission of gravitational waves when the black hole is perturbed by the surrounding scalar field matter. The symmetries of the space-time and the simplicity of the matter source allow, by means of a spherical harmonic decomposition, to study the problem by means of a one-dimensional description. Some properties of such gravitational waves are discussed as a function of the parameters of the infalling scalar field, and allow us to make the conjecture that the gravitational waves carry information on the type of matter that generated them.

  6. Fundamentals of interferometric gravitational wave detectors

    CERN Document Server

    Saulson, Peter R

    2017-01-01

    LIGO's recent discovery of gravitational waves was headline news around the world. Many people will want to understand more about what a gravitational wave is, how LIGO works, and how LIGO functions as a detector of gravitational waves.This book aims to communicate the basic logic of interferometric gravitational wave detectors to students who are new to the field. It assumes that the reader has a basic knowledge of physics, but no special familiarity with gravitational waves, with general relativity, or with the special techniques of experimental physics. All of the necessary ideas are developed in the book.The first edition was published in 1994. Since the book is aimed at explaining the physical ideas behind the design of LIGO, it stands the test of time. For the second edition, an Epilogue has been added; it brings the treatment of technical details up to date, and provides references that would allow a student to become proficient with today's designs.

  7. Gravitational-Wave Astronomy

    Science.gov (United States)

    Kelly, Bernard J.

    2010-01-01

    Einstein's General Theory of Relativity is our best classical description of gravity, and informs modern astronomy and astrophysics at all scales: stellar, galactic, and cosmological. Among its surprising predictions is the existence of gravitational waves -- ripples in space-time that carry energy and momentum away from strongly interacting gravitating sources. In my talk, I will give an overview of the properties of this radiation, recent breakthroughs in computational physics allowing us to calculate the waveforms from galactic mergers, and the prospect of direct observation with interferometric detectors such as LIGO and LISA.

  8. Gravitational-wave detector realized by a superconductor

    International Nuclear Information System (INIS)

    Ishidoshiro, K.; Ando, M.; Takamori, A.; Okada, K.; Tsubono, K.

    2010-01-01

    In this article, we present a new gravitational-wave detector based on superconducting magnetic levitation and results of its prototype test. Our detector is composed of the suspended test mass that is rotated by gravitational waves. Gravitational wave signals are readout by monitoring its angular motion. Superconducting magnetic levitation is used for the suspension of the test mass, since it has many advantages, such as zero mechanical loss and resonant frequency around its suspension axis in an ideal situation. For the study of actual performance of such gravitational-wave detector, a prototype detector has been developed. Using the prototype detector, the actual loss factor and resonant frequency are measured as 1.2 x 10 -8 Nms/rad and 5 mHz respectively. A detector noise is also evaluated. The current noise level is determined by the magnetic coupling with external magnetic field and mechanical coupling between translation and angular motion. The prototype detector has already one of the lowest noise levels for gravitational waves at 0.1 Hz among current gravitational-wave detectors. We have succeeded at the demonstration of the advantages of our torsion gravitational-wave detector.

  9. National Coral Reef Monitoring Program: Benthic Cover Derived from Analysis of Benthic Images Collected during Stratified Random Surveys (StRS) across the Hawaiian Archipelago in 2013 (NCEI Accession 0159140)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The data described here result from benthic photo-quadrat surveys conducted along transects at stratified random sites across the Hawaiian archipelago in 2013 as a...

  10. Exact piecewise flat gravitational waves

    NARCIS (Netherlands)

    van de Meent, M.

    2011-01-01

    We generalize our previous linear result (van de Meent 2011 Class. Quantum Grav 28 075005) in obtaining gravitational waves from our piecewise flat model for gravity in 3+1 dimensions to exact piecewise flat configurations describing exact planar gravitational waves. We show explicitly how to

  11. Experimental hint for gravitational CP violation

    Energy Technology Data Exchange (ETDEWEB)

    Gharibyan, Vahagn [Deutsches Elektronen-Synchrotron, Hamburg (Germany). MDI Group

    2016-01-15

    An equality of particle and antiparticle gravitational interactions holds in general relativity and is supported by indirect observations. Gravity dependence on rotation or spin direction is experimentally constrained only at low energies. Here a method based on high energy Compton scattering is developed to measure the gravitational interaction of accelerated charged particles. Within that formalism the Compton spectra measured at HERA rule out the positron's anti-gravity and hint for a gravitational CP violation around 13 GeV energies, at a maximal level of 1.3±0.2% for the charge and 0.68±0.09% for the space parity. A stronger gravitational coupling to left helicity electrons relative to right helicity positrons is detected.

  12. Experimental hint for gravitational CP violation

    International Nuclear Information System (INIS)

    Gharibyan, Vahagn

    2016-01-01

    An equality of particle and antiparticle gravitational interactions holds in general relativity and is supported by indirect observations. Gravity dependence on rotation or spin direction is experimentally constrained only at low energies. Here a method based on high energy Compton scattering is developed to measure the gravitational interaction of accelerated charged particles. Within that formalism the Compton spectra measured at HERA rule out the positron's anti-gravity and hint for a gravitational CP violation around 13 GeV energies, at a maximal level of 1.3±0.2% for the charge and 0.68±0.09% for the space parity. A stronger gravitational coupling to left helicity electrons relative to right helicity positrons is detected.

  13. Gravitation. [Book on general relativity

    Science.gov (United States)

    Misner, C. W.; Thorne, K. S.; Wheeler, J. A.

    1973-01-01

    This textbook on gravitation physics (Einstein's general relativity or geometrodynamics) is designed for a rigorous full-year course at the graduate level. The material is presented in two parallel tracks in an attempt to divide key physical ideas from more complex enrichment material to be selected at the discretion of the reader or teacher. The full book is intended to provide competence relative to the laws of physics in flat space-time, Einstein's geometric framework for physics, applications with pulsars and neutron stars, cosmology, the Schwarzschild geometry and gravitational collapse, gravitational waves, experimental tests of Einstein's theory, and mathematical concepts of differential geometry.

  14. Non-Euclidean Geometry and Gravitation

    Directory of Open Access Journals (Sweden)

    Stavroulakis N.

    2006-04-01

    Full Text Available A great deal of misunderstandings and mathematical errors are involved in the currently accepted theory of the gravitational field generated by an isotropic spherical mass. The purpose of the present paper is to provide a short account of the rigorous mathematical theory and exhibit a new formulation of the problem. The solution of the corresponding equations of gravitation points out several new and unusual features of the stationary gravitational field which are related to the non-Euclidean structure of the space. Moreover it precludes the black hole from being a mathematical and physical notion.

  15. Hydrodynamics, fields and constants in gravitational theory

    International Nuclear Information System (INIS)

    Stanyukovich, K.P.; Mel'nikov, V.N.

    1983-01-01

    Results of original inveatigations into problems of standard gravitation theory and its generalizations are presented. The main attention is paid to the application of methods of continuous media techniques in the gravitation theory; to the specification of the gravitation role in phenomena of macro- and microworld, accurate solutions in the case, when the medium is the matter, assigned by hydrodynamic energy-momentum tensor; and to accurate solutions for the case when the medium is the field. GRT generalizations are analyzed, such as the new cosmologic hypothesis which is based on the gravitation vacuum theory. Investigations are performed into the quantization of cosmological models, effects of spontaneous symmetry violation and particle production in cosmology. Graeity theory with fundamental Higgs field is suggested in the framework of which in the atomic unit number one can explain possible variations of the effective gravitational bonds, and in the gravitation bond, variations of masses of all particles

  16. Thermodynamics of gravitational clustering phenomena: N-body self-gravitating gas on the sphere {{{S}}^{3}}\\subset {{{R}}^{4}}

    Science.gov (United States)

    Tello-Ortiz, F.; Velazquez, L.

    2016-10-01

    This work is devoted to the thermodynamics of gravitational clustering, a collective phenomenon with a great relevance in the N-body cosmological problem. We study a classical self-gravitating gas of identical non-relativistic particles defined on the sphere {{{S}}3}\\subset {{{R}}4} by considering gravitational interaction that corresponds to this geometric space. The analysis is performed within microcanonical description of an isolated Hamiltonian system by combining continuum approximation and the steepest descend method. According to numerical solution of resulting equations, the gravitational clustering can be associated with two microcanonical phase transitions. A first phase transition with a continuous character is associated with breakdown of SO(4) symmetry of this model. The second one is the gravitational collapse, whose continuous or discontinuous character crucially depends on the regularization of short-range divergence of gravitation potential. We also derive the thermodynamic limit of this model system, the astrophysical counterpart of the Gibbs-Duhem relation, the order parameters that characterize its phase transitions and the equation of state. Other interesting behavior is the existence of states with negative heat capacities, which appear when the effects of gravitation turn dominant for energies sufficiently low. Finally, we comment on the relevance of some of these results in the study of astrophysical and cosmological situations. Special interest deserves the gravitational modification of the equation of state due to the local inhomogeneities of matter distribution. Although this feature is systematically neglected in studies about universe expansion, the same one is able to mimic an effect that is attributed to the dark energy: a negative pressure.

  17. Spinor approach to gravitational motion and precession

    International Nuclear Information System (INIS)

    Hestenes, D.

    1986-01-01

    The translational and rotational equations of motion for a small rigid body in a gravitational field are combined in a single spinor equation. Besides its computational advantages, this unifies the description of gravitational interaction in classical and quantum theory. Explicit expressions for gravitational precession rates are derived. (author)

  18. Physics, Astrophysics and Cosmology with Gravitational Waves.

    Science.gov (United States)

    Sathyaprakash, B S; Schutz, Bernard F

    2009-01-01

    Gravitational wave detectors are already operating at interesting sensitivity levels, and they have an upgrade path that should result in secure detections by 2014. We review the physics of gravitational waves, how they interact with detectors (bars and interferometers), and how these detectors operate. We study the most likely sources of gravitational waves and review the data analysis methods that are used to extract their signals from detector noise. Then we consider the consequences of gravitational wave detections and observations for physics, astrophysics, and cosmology.

  19. The confrontation between gravitation theory and experiment

    International Nuclear Information System (INIS)

    Will, C.M.

    1979-01-01

    After an introductory section, an analysis is given of the foundations of gravitation theory - principles of equivalence, the fundamental criteria for the viability of a gravitational theory, and the experiments that support those criteria. One of the principal conclusions is that the correct, viable theory of gravity must in all probability be a 'metric' theory. Attention is focussed on solar-system tests, using a 'theory of theories' known as the parametrized post-Newtonian formalism that encompasses most metric theories of gravity and that is ideally suited to the solar-system arena. Gravitational radiation is discussed as a possible tool for testing gravitational theory. The binary pulsar, a new , 'stellar-system' testing ground is studied. Tests of gravitation theory in a cosmic arena are described. (U.K.)

  20. A new theory of gravitation

    International Nuclear Information System (INIS)

    Logunov, A.A.

    1989-01-01

    The author believes that the General Relativity Theory (GRT) suffers from a substantial deficiency since it ignors the fundamental laws of conservation of energy. Einstein neglected the classical concept of the field due to his belief in the truth of the principle of equivalence between forces of inertid gravitation. This equivalence leads, as the author says, to nonequivalence of these forces, making GRT logically contradictory from the physical point of view. The author considers GRT as a certain stage in the course of the study of space-time and gravitation, and suggests a new theory called the Relativistic Theory of Gravitation (RTG) which obeys the fundamental laws of conservation, and which is justified in some of its aspects by astronomical observations. RTG does not suffer from some deficiencies met in Einsteins theory. One is nonunique predictions of gravitation effects within the boundaries of the solar system. Also, RTG refuses some hypothesis as that of black holes. 7 refs

  1. Academic Training: Gravitational Waves Astronomy

    CERN Multimedia

    2006-01-01

    2006-2007 ACADEMIC TRAINING PROGRAMME LECTURE SERIES 16, 17, 18 October from 11:00 to 12:00 - Main Auditorium, bldg. 500 Gravitational Waves Astronomy M. LANDRY, LIGO Hanford Observatory, Richland, USA Gravitational wave astronomy is expected to become an observational field within the next decade. First direct detection of gravitational waves is possible with existing terrestrial-based detectors, and highly probable with proposed upgrades. In this three-part lecture series, we give an overview of the field, including material on gravitional wave sources, detection methods, some details of interferometric detectors, data analysis methods, and current results from observational data-taking runs of the LIGO and GEO projects. ENSEIGNEMENT ACADEMIQUE ACADEMIC TRAINING Françoise Benz 73127 academic.training@cern.ch If you wish to participate in one of the following courses, please tell to your supervisor and apply electronically from the course description pages that can be found on the Web at: http://www...

  2. Academic Training: Gravitational Waves Astronomy

    CERN Multimedia

    2006-01-01

    2006-2007 ACADEMIC TRAINING PROGRAMME LECTURE SERIES 16, 17, 18 October from 11:00 to 12:00 - Main Auditorium, bldg. 500 Gravitational Waves Astronomy M. LANDRY, LIGO Hanford Observatory, Richland, USA Gravitational wave astronomy is expected to become an observational field within the next decade. First direct detection of gravitational waves is possible with existing terrestrial-based detectors, and highly probable with proposed upgrades. In this three-part lecture series, we give an overview of the field, including material on gravitional wave sources, detection methods, some details of interferometric detectors, data analysis methods, and current results from observational data-taking runs of the LIGO and GEO projects.ENSEIGNEMENT ACADEMIQUE ACADEMIC TRAINING Françoise Benz 73127 academic.training@cern.ch If you wish to participate in one of the following courses, please tell to your supervisor and apply electronically from the course description pages that can be found on the Web at: http://www.cern...

  3. Bunge on gravitational waves

    OpenAIRE

    Romero, Gustavo E.

    2017-01-01

    I discuss the recent claims made by Mario Bunge on the philosophical implications of the discovery of gravitational waves. I think that Bunge is right when he points out that the detection implies the materiality of spacetime, but I reject his identification of spacetime with the gravitational field. I show that Bunge's analysis of the spacetime inside a hollow sphere is defective, but this in no way affects his main claim.

  4. Rapid Monte Carlo Simulation of Gravitational Wave Galaxies

    Science.gov (United States)

    Breivik, Katelyn; Larson, Shane L.

    2015-01-01

    With the detection of gravitational waves on the horizon, astrophysical catalogs produced by gravitational wave observatories can be used to characterize the populations of sources and validate different galactic population models. Efforts to simulate gravitational wave catalogs and source populations generally focus on population synthesis models that require extensive time and computational power to produce a single simulated galaxy. Monte Carlo simulations of gravitational wave source populations can also be used to generate observation catalogs from the gravitational wave source population. Monte Carlo simulations have the advantes of flexibility and speed, enabling rapid galactic realizations as a function of galactic binary parameters with less time and compuational resources required. We present a Monte Carlo method for rapid galactic simulations of gravitational wave binary populations.

  5. Physics, Astrophysics and Cosmology with Gravitational Waves

    Directory of Open Access Journals (Sweden)

    Sathyaprakash B. S.

    2009-03-01

    Full Text Available Gravitational wave detectors are already operating at interesting sensitivity levels, and they have an upgrade path that should result in secure detections by 2014. We review the physics of gravitational waves, how they interact with detectors (bars and interferometers, and how these detectors operate. We study the most likely sources of gravitational waves and review the data analysis methods that are used to extract their signals from detector noise. Then we consider the consequences of gravitational wave detections and observations for physics, astrophysics, and cosmology.

  6. Feasibility analysis of gravitational experiments in space

    Science.gov (United States)

    Everitt, C. W. F.

    1977-01-01

    Experiments on gravitation and general relativity suggested by different workers in the past ten or more years are reviewed, their feasibility examined, and the advantages of performing them in space were studied. The experiments include: (1) the gyro relativity experiment; (2) experiments to test the equivalence of gravitational and inertial mass; (3) an experiment to look for nongeodesic motion of spinning bodies in orbit around the earth; (4) experiments to look for changes of the gravitational constant G with time; (5) a variety of suggestions; laboratory tests of experimental gravity; and (6) gravitational wave experiments.

  7. Gravitational Wave Astrophysics: Opening the New Frontier

    Science.gov (United States)

    Centrella, Joan

    2012-01-01

    A new era in astronomy will begin when the gravitational wave window onto the universe opens in approx. 5 years, as ground-based detectors make the first detections in the high-frequency regime. Since the universe is nearly transparent to gravitational waves, these signals carry direct information about their sources - such as masses, spins, luminosity distances, and orbital parameters - through dense, obscured regions across cosmic time. This talk will explore gravitational waves as cosmic messengers, highlighting key sources and opportunities for multi-messenger astronomy across the gravitational wave spectrum.

  8. The gravitational properties of antimatter

    International Nuclear Information System (INIS)

    Goldman, T.; Hughes, R.J.; Nieto, M.M.

    1986-09-01

    It is argued that a determination of the gravitational acceleration of antimatter towards the earth is capable of imposing powerful constraints on modern quantum gravity theories. Theoretical reasons to expect non-Newtonian non-Einsteinian effects of gravitational strength and experimental suggestions of such effects are reviewed. 41 refs

  9. GRAVITATIONAL INSTABILITY OF ROTATING, PRESSURE-CONFINED, POLYTROPIC GAS DISKS WITH VERTICAL STRATIFICATION

    International Nuclear Information System (INIS)

    Kim, Jeong-Gyu; Kim, Woong-Tae; Seo, Young Min; Hong, Seung Soo

    2012-01-01

    We investigate the gravitational instability (GI) of rotating, vertically stratified, pressure-confined, polytropic gas disks using a linear stability analysis as well as analytic approximations. The disks are initially in vertical hydrostatic equilibrium and bounded by a constant external pressure. We find that the GI of a pressure-confined disk is in general a mixed mode of the conventional Jeans and distortional instabilities, and is thus an unstable version of acoustic-surface-gravity waves. The Jeans mode dominates in weakly confined disks or disks with rigid boundaries. On the other hand, when the disk has free boundaries and is strongly pressure confined, the mixed GI is dominated by the distortional mode that is surface-gravity waves driven unstable under their own gravity and thus incompressible. We demonstrate that the Jeans mode is gravity-modified acoustic waves rather than inertial waves and that inertial waves are almost unaffected by self-gravity. We derive an analytic expression for the effective sound speed c eff of acoustic-surface-gravity waves. We also find expressions for the gravity reduction factors relative to a razor-thin counterpart that are appropriate for the Jeans and distortional modes. The usual razor-thin dispersion relation, after correcting for c eff and the reduction factors, closely matches the numerical results obtained by solving a full set of linearized equations. The effective sound speed generalizes the Toomre stability parameter of the Jeans mode to allow for the mixed GI of vertically stratified, pressure-confined disks.

  10. Gravitational Waves and Time Domain Astronomy

    Science.gov (United States)

    Centrella, Joan; Nissanke, Samaya; Williams, Roy

    2012-01-01

    The gravitational wave window onto the universe will open in roughly five years, when Advanced LIGO and Virgo achieve the first detections of high frequency gravitational waves, most likely coming from compact binary mergers. Electromagnetic follow-up of these triggers, using radio, optical, and high energy telescopes, promises exciting opportunities in multi-messenger time domain astronomy. In the decade, space-based observations of low frequency gravitational waves from massive black hole mergers, and their electromagnetic counterparts, will open up further vistas for discovery. This two-part workshop featured brief presentations and stimulating discussions on the challenges and opportunities presented by gravitational wave astronomy. Highlights from the workshop, with the emphasis on strategies for electromagnetic follow-up, are presented in this report.

  11. Vacuum polarization and non-Newtonian gravitation

    International Nuclear Information System (INIS)

    Long, D.R.

    1980-01-01

    Gell-Mann and Low have emphasized that, as first pointed out by Uehling and Serber, vacuum polarization effects produce a logarithmic modification to the Coulomb potential at small distances. Here, it is pointed out that, if these same considerations are applied to gravitation, the logarithmic term will have a sign opposite to that in the Coulomb case and in agreement with recent laboratory results on the gravitational ''constant''. Of considerable importance is the fact that such vacuum polarization effects cannot be observed in null experiments to test the gravitational inverse square law because the polarizing field is absent. It is a striking circumstance that the coefficient of the logarithm in QED is nearly the same as that found in gravitational experiments. (author)

  12. Gravitational Waves: A New Observational Window

    Science.gov (United States)

    Camp, Jordan B.

    2010-01-01

    The era of gravitational wave astronomy is rapidly approaching, with a likely start date around the middle of this decade ' Gravitational waves, emitted by accelerated motions of very massive objects, provide detailed information about strong-field gravity and its sources, including black holes and neutron stars, that electromagnetic probes cannot access. In this talk I will discuss the anticipated sources and the status of the extremely sensitive detectors (both ground and space based) that will make gravitational wave detections possible. As ground based detectors are now taking data, I will show some initial science results related to measured upper limits on gravitational wave signals. Finally Z will describe new directions including advanced detectors and joint efforts with other fields of astronomy.

  13. Thermal gravitational waves in accelerating universe

    Directory of Open Access Journals (Sweden)

    B Ghayour

    2013-10-01

    Full Text Available Gravitational waves are considered in thermal vacuum state. The amplitude and spectral energy density of gravitational waves are found enhanced in thermal vacuum state compared to its zero temperature counterpart. Therefore, the allowed amount of enhancement depends on the upper bound of WMAP-5 and WMAP-7 for the amplitude and spectral energy density of gravitational waves. The enhancement of amplitude and spectral energy density of the waves in thermal vacuum state is consistent with current accelerating phase of the universe. The enhancement feature of amplitude and spectral energy density of the waves is independent of the expansion model of the universe and hence the thermal effect accounts for it. Therefore, existence of thermal gravitational waves is not ruled out

  14. Hydrodynamical equations for spherical gravitational collapse in terms of a generalized theory of gravitation with higher derivatives

    International Nuclear Information System (INIS)

    Nariai, Hidekazu.

    1986-06-01

    In similar to Misner and Sharp's formalism in general relativity for a spherical gravitational collapse, a formalism for the spherical gravitational collapse is presented on the basis of a generalized theory of gravitation in the sense of Utiyama-DeWitt (which was later extended by Parker's school and Zel'dovich's one). The resulted formalism is somewhat similar to that developed by me in 1972 based on the scalar-tensor theory of gravity. (author)

  15. Particle production in a gravitational wave background

    Science.gov (United States)

    Jones, Preston; McDougall, Patrick; Singleton, Douglas

    2017-03-01

    We study the possibility that massless particles, such as photons, are produced by a gravitational wave. That such a process should occur is implied by tree-level Feynman diagrams such as two gravitons turning into two photons, i.e., g +g →γ +γ . Here we calculate the rate at which a gravitational wave creates a massless scalar field. This is done by placing the scalar field in the background of a plane gravitational wave and calculating the 4-current of the scalar field. Even in the vacuum limit of the scalar field it has a nonzero vacuum expectation value (similar to what occurs in the Higgs mechanism) and a nonzero current. We associate this with the production of scalar field quanta by the gravitational field. This effect has potential consequences for the attenuation of gravitational waves since the massless field is being produced at the expense of the gravitational field. This is related to the time-dependent Schwinger effect, but with the electric field replaced by the gravitational wave background and the electron/positron field quanta replaced by massless scalar "photons." Since the produced scalar quanta are massless there is no exponential suppression, as occurs in the Schwinger effect due to the electron mass.

  16. Production of Purely Gravitational Dark Matter

    OpenAIRE

    Ema, Yohei; Nakayama, Kazunori; Tang, Yong

    2018-01-01

    In the purely gravitational dark matter scenario, the dark matter particle does not have any interaction except for gravitational one. We study the gravitational particle production of dark matter particle in such a minimal setup and show that correct amount of dark matter can be produced depending on the inflation model and the dark matter mass. In particular, we carefully evaluate the particle production rate from the transition epoch to the inflaton oscillation epoch in a realistic inflati...

  17. Merging Black Holes and Gravitational Waves

    Science.gov (United States)

    Centrella, Joan

    2009-01-01

    This talk will focus on simulations of binary black hole mergers and the gravitational wave signals they produce. Applications to gravitational wave detection with LISA, and electronagnetic counterparts, will be highlighted.

  18. Gravitational Wave Experiments - Proceedings of the First Edoardo Amaldi Conference

    Science.gov (United States)

    Coccia, E.; Pizzella, G.; Ronga, F.

    1995-07-01

    The Table of Contents for the full book PDF is as follows: * Foreword * Notes on Edoardo Amaldi's Life and Activity * PART I. INVITED LECTURES * Sources and Telescopes * Sources of Gravitational Radiation for Detectors of the 21st Century * Neutrino Telescopes * γ-Ray Bursts * Space Detectors * LISA — Laser Interferometer Space Antenna for Gravitational Wave Measurements * Search for Massive Coalescing Binaries with the Spacecraft ULYSSES * Interferometers * The LIGO Project: Progress and Prospects * The VIRGO Experiment: Status of the Art * GEO 600 — A 600-m Laser Interferometric Gravitational Wave Antenna * 300-m Laser Interferometer Gravitational Wave Detector (TAMA300) in Japan * Resonant Detectors * Search for Continuous Gravitational Wave from Pulsars with Resonant Detector * Operation of the ALLEGRO Detector at LSU * Preliminary Results of the New Run of Measurements with the Resonant Antenna EXPLORER * Operation of the Perth Cryogenic Resonant-Bar Gravitational Wave Detector * The NAUTILUS Experiment * Status of the AURIGA Gravitational Wave Antenna and Perspectives for the Gravitational Waves Search with Ultracryogenic Resonant Detectors * Ultralow Temperature Resonant-Mass Gravitational Radiation Detectors: Current Status of the Stanford Program * Electromechanical Transducers and Bandwidth of Resonant-Mass Gravitational-Wave Detectors * Fully Numerical Data Analysis for Resonant Gravitational Wave Detectors: Optimal Filter and Available Information * PART II. CONTRIBUTED PAPERS * Sources and Telescopes * The Local Supernova Production * Periodic Gravitational Signals from Galactic Pulsars * On a Possibility of Scalar Gravitational Wave Detection from the Binary Pulsars PSR 1913+16 * Kazan Gravitational Wave Detector “Dulkyn”: General Concept and Prospects of Construction * Hierarchical Approach to the Theory of Detection of Periodic Gravitational Radiation * Application of Gravitational Antennae for Fundamental Geophysical Problems * On

  19. Testing the gravitational instability hypothesis?

    Science.gov (United States)

    Babul, Arif; Weinberg, David H.; Dekel, Avishai; Ostriker, Jeremiah P.

    1994-01-01

    We challenge a widely accepted assumption of observational cosmology: that successful reconstruction of observed galaxy density fields from measured galaxy velocity fields (or vice versa), using the methods of gravitational instability theory, implies that the observed large-scale structures and large-scale flows were produced by the action of gravity. This assumption is false, in that there exist nongravitational theories that pass the reconstruction tests and gravitational theories with certain forms of biased galaxy formation that fail them. Gravitational instability theory predicts specific correlations between large-scale velocity and mass density fields, but the same correlations arise in any model where (a) structures in the galaxy distribution grow from homogeneous initial conditions in a way that satisfies the continuity equation, and (b) the present-day velocity field is irrotational and proportional to the time-averaged velocity field. We demonstrate these assertions using analytical arguments and N-body simulations. If large-scale structure is formed by gravitational instability, then the ratio of the galaxy density contrast to the divergence of the velocity field yields an estimate of the density parameter Omega (or, more generally, an estimate of beta identically equal to Omega(exp 0.6)/b, where b is an assumed constant of proportionality between galaxy and mass density fluctuations. In nongravitational scenarios, the values of Omega or beta estimated in this way may fail to represent the true cosmological values. However, even if nongravitational forces initiate and shape the growth of structure, gravitationally induced accelerations can dominate the velocity field at late times, long after the action of any nongravitational impulses. The estimated beta approaches the true value in such cases, and in our numerical simulations the estimated beta values are reasonably accurate for both gravitational and nongravitational models. Reconstruction tests

  20. Self-gravitation in Saturn's rings

    International Nuclear Information System (INIS)

    Salo, H.; Lukkari, J.

    1982-01-01

    In a ring-shaped collisional system self-gravitation reduces the equilibrium values of the geometric and optical thickness. In Saturn's rings both effects are appreciable. The previously found discrepancy between the calculated profile and the observed profile of the rings is chiefly caused by the omission of self-gravitation. (Auth.)

  1. Method to measure a relative transverse velocity of a source-lens-observer system using gravitational lensing of gravitational waves

    International Nuclear Information System (INIS)

    Itoh, Yousuke; Futamase, Toshifumi; Hattori, Makoto

    2009-01-01

    Gravitational waves propagate along null geodesics like light rays in the geometrical optics approximation, and they may have a chance to suffer from gravitational lensing by intervening objects, as is the case for electromagnetic waves. Long wavelengths of gravitational waves and compactness of possible sources may enable us to extract information in the interference among the lensed images. We point out that the interference term contains information of relative transverse velocity of the source-lens-observer system, which may be obtained by possible future space-borne gravitational wave detectors such as BBO/DECIGO.

  2. Gravity Waves in the Martian Atmosphere detected by the Radio Science Experiment MaRS on Mars Express

    Science.gov (United States)

    Tellmann, S.; Pätzold, M.; Häusler, B.; Tyler, G. L.; Hinson, D. P.

    2013-09-01

    Gravity waves are an ubiquitous feature in all stably stratified planetary atmospheres. They are known to play a significant role in the energy and momentum budget of the Earth, and they are assumed to be of importance for the redistribution of energy and momentum throughout the Martian atmosphere.

  3. The Hottest Hot Jupiters May Host Atmospheric Dynamos

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, T. M. [Department of Mathematics and Statistics, Newcastle University, Newcastle upon Tyne (United Kingdom); McElwaine, J. N. [Planetary Science Institute, Tucson, AZ 85721 (United States)

    2017-06-01

    Hot Jupiters have proven themselves to be a rich class of exoplanets that test our theories of planetary evolution and atmospheric dynamics under extreme conditions. Here, we present three-dimensional magnetohydrodynamic simulations and analytic results that demonstrate that a dynamo can be maintained in the thin, stably stratified atmosphere of a hot Jupiter, independent of the presumed deep-seated dynamo. This dynamo is maintained by conductivity variations arising from strong asymmetric heating from the planets’ host star. The presence of a dynamo significantly increases the surface magnetic field strength and alters the overall planetary magnetic field geometry, possibly affecting star–planet magnetic interactions.

  4. Progress in gravitational wave detection: Interferometers

    International Nuclear Information System (INIS)

    Kuroda, Kazuaki

    2002-01-01

    A gravitational wave (GW) is a physical entity of space-time derived from Einstein's theory of general relativity. Challenging projects to observe gravitational waves are being conducted throughout the world. A Japanese project involving a 300 m baseline laser interferometer, TAMA, achieved 1000 hr of continuous observation with the best sensitivity in the world during the summer of 2001. After achieving promising results, the realization of LCGT (Large-scale Cryogenic Gravitational wave Telescope) will become possible in the near future

  5. To theory of gravitational interaction

    OpenAIRE

    Minkevich, A. V.

    2008-01-01

    Some principal problems of general relativity theory and attempts of their solution are discussed. The Poincare gauge theory of gravity as natural generalization of Einsteinian gravitation theory is considered. The changes of gravitational interaction in the frame of this theory leading to the solution of principal problems of general relativity theory are analyzed.

  6. Possible role of torsion in gravitational theories

    International Nuclear Information System (INIS)

    Nieh, H.T.

    1983-01-01

    Torsion is of interest in an indirect way, in that it has the potential of being an important ingredient in a future successful quantum theory of gravitation. Einstein's theory of gravitation, despite its simplicity and elegance, and its successes in large-scale gravitational phenomena, can only be regarded as a macroscopic classical theory. It is a non-renormalizable quantum field theory, and, therefore, lacks the status of a good microscopic theory. It is the search for a successful quantum field theory of gravitation that poses as one of the great challenges to theoretical physics today. (Auth.)

  7. The Japanese space gravitational wave antenna-DECIGO

    International Nuclear Information System (INIS)

    Kawamura, Seiji; Nakamura, Takashi; Ando, Masaki

    2006-01-01

    DECi-hertz Interferometer Gravitational wave Observatory (DECIGO) is the future Japanese space gravitational wave antenna. It aims at detecting various kinds of gravitational waves between 1 mHz and 100 Hz frequently enough to open a new window of observation for gravitational wave astronomy. The pre-conceptual design of DECIGO consists of three drag-free satellites, 1000 km apart from each other, whose relative displacements are measured by a Fabry-Perot Michelson interferometer. We plan to launch DECIGO in 2024 after a long and intense development phase, including two pathfinder missions for verification of required technologies

  8. Konishi anomaly approach to gravitational F-terms

    International Nuclear Information System (INIS)

    David, Justin R.; Gava, Edi; Narain, K.S.

    2003-04-01

    We study gravitational corrections to the effective superpotential in theories with a single adjoint chiral multiplet, using the generalized Konishi anomaly and the gravitationally deformed chiral ring. We show that the genus one correction to the loop equation in the corresponding matrix model agrees with the gravitational corrected anomaly equations in the gauge theory. An important ingredient in the proof is the lack of factorization of chiral gauge invariant operators in presence of a supergravity background. We also find a genus zero gravitational correction to the superpotential, which can be removed by a field redefinition. (author)

  9. Actuality of the Einstein theory of gravitation

    International Nuclear Information System (INIS)

    Ivanenko, D.D.

    1982-01-01

    Problems of actuality of the Einstein theory of gravitation are lightened. The great Einstein theory of gravitation is shown to remain a reliable base of understanding of modern physical world pattern and its inevitable further inexhaustible precising. The main GRT difficulties are enumirated: determination of reference systems, presence of singularities in the theory, absence of consistent determination of the gravity energy, impossibility of accounting the relations between atomic, gravitational and cosmological characteristics. The attention is paid to gauge, twistor problems and to unified interaction theory. The great contribution of the soviet science in the theory of gravitation is stressed

  10. Essay on gravitation: The cosmological constant problem in brane-worlds and gravitational Lorentz violations

    International Nuclear Information System (INIS)

    Csaki, Csaba; Erlich, Joshua; Grojean, Christophe

    2001-01-01

    Brane worlds are theories with extra spatial dimensions in which ordinary matter is localized on a (3+1) dimensional submanifold. Such theories could have interesting consequences for particle physics and gravitational physics. In this essay we concentrate on the cosmological constant (CC) problem in the context of brane worlds. We show how extra-dimensional scenarios may violate Lorentz invariance in the gravity sector of the effective 4D theory, while particle physics remains unaffected. In such theories the usual no-go theorems for adjustment of the CC do not apply, and we indicate a possible explanation of the smallness of the CC. Lorentz violating effects would manifest themselves in gravitational waves travelling with a speed different from light, which can be searched for in gravitational wave experiments

  11. Gravitational Waves from Oscillons after Inflation.

    Science.gov (United States)

    Antusch, Stefan; Cefalà, Francesco; Orani, Stefano

    2017-01-06

    We investigate the production of gravitational waves during preheating after inflation in the common case of field potentials that are asymmetric around the minimum. In particular, we study the impact of oscillons, comparatively long lived and spatially localized regions where a scalar field (e.g., the inflaton) oscillates with large amplitude. Contrary to a previous study, which considered a symmetric potential, we find that oscillons in asymmetric potentials associated with a phase transition can generate a pronounced peak in the spectrum of gravitational waves that largely exceeds the linear preheating spectrum. We discuss the possible implications of this enhanced amplitude of gravitational waves. For instance, for low scale inflation models, the contribution from the oscillons can strongly enhance the observation prospects at current and future gravitational wave detectors.

  12. Gravitational perturbation theory and synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Breuer, R A [Max-Planck-Institut fuer Physik und Astrophysik, Muenchen (F.R. Germany). Inst. fuer Astrophysik

    1975-01-01

    This article presents methods and results for a gravitational perturbation theory which treats massless fields as linearized perturbations of an arbitrary gravitational vacuum background spacetime. The formalism is outlined for perturbations of type (22) spacetimes. As an application, high-frequency radiation emitted by particles moving approximately on relativistic circular geodesic orbits is computed. More precisely, the test particle assumption is made; throughout it is therefore assumed that the reaction of the radiation on the particle motion is negligible. In particular, these orbits are studied in the gravitational field of a spherically symmetric (Schwarzschild-) black hole as well as of a rotating (Kerr-) black hole. In this model, the outgoing radiation is highly focussed and of much higher fequency than the orbital frequency, i.e. one is dealing with 'gravitational synchrotron radiation'.

  13. Gravitation

    International Nuclear Information System (INIS)

    Fennelly, A.J.

    1978-01-01

    Investigations of several problems of gravitation are discussed. The question of the existence of black holes is considered. While black holes like those in Einstein's theory may not exist in other gravity theories, trapped surfaces implying such black holes certainly do. The theories include those of Brans-Dicke, Lightman-Lee, Rosen, and Yang. A similar two-tensor theory of Yilmaz is investigated and found inconsistent and nonviable. The Newman-Penrose formalism for Riemannian geometries is adapted to general gravity theories and used to implement a search for twisting solutions of the gravity theories for empty and nonempty spaces. The method can be used to find the gravitational fields for all viable gravity theories. The rotating solutions are of particular importance for strong field interpretation of the Stanford/Marshall gyroscope experiment. Inhomogeneous cosmologies are examined in Einstein's theory as generalizations of homogeneous ones by raising the dimension of the invariance groups by one more parameter. The nine Bianchi classifications are extended to Rosen's theory of gravity for homogeneous cosmological models

  14. Gravitational wave emission from oscillating millisecond pulsars

    Science.gov (United States)

    Alford, Mark G.; Schwenzer, Kai

    2015-02-01

    Neutron stars undergoing r-mode oscillation emit gravitational radiation that might be detected on the Earth. For known millisecond pulsars the observed spin-down rate imposes an upper limit on the possible gravitational wave signal of these sources. Taking into account the physics of r-mode evolution, we show that only sources spinning at frequencies above a few hundred Hertz can be unstable to r-modes, and we derive a more stringent universal r-mode spin-down limit on their gravitational wave signal. We find that this refined bound limits the gravitational wave strain from millisecond pulsars to values below the detection sensitivity of next generation detectors. Young sources are therefore a more promising option for the detection of gravitational waves emitted by r-modes and to probe the interior composition of compact stars in the near future.

  15. The Discovery of Gravitational Repulsion by Johannes Droste

    Science.gov (United States)

    McGruder, Charles Hosewell; VanDerMeer, B. Wieb

    2018-01-01

    In 1687 Newton published his universal law of gravitation, which states that the gravitational force is always attractive. This law is based on our terrestrial experience with slowly moving bodies (v Einstein completed his theory of general relativity (also referred to as Einstein’s Theory of Gravitation), which is valid not just for slowly moving bodies but also for those with relativistic velocities. In 1916 Johannes Droste submitted a PhD thesis on general relativity to his advisor, H.A. Lorentz. In it he calculated the motion of a particle in what he called a “single center” and today we call the Schwarzschild field and found that highly relativistic particles experience gravitational repulsion. Thus, his thesis written in Dutch and never before translated contains the discovery of gravitational repulsion. Because of its historical importance we translate the entire section of his thesis containing the discovery of gravitational repulsion. We also translate his thesis in the hope of clearing up a major historical misconception. Namely, that David Hilbert in 1917 discovered gravitational repulsion. In fact, Hilbert rediscovered it, apparently completely independent of Droste’s work. Finally we note that one of the biggest mysteries of astrophysics is the question of how highly energetic particles in relativistic jets and cosmic rays are accelerated. It has been suggested that gravitational repulsion is the mechanism responsible for these phenomena. An historical understanding of gravitational repulsion is therefore pertinent.

  16. Numerical investigations of gravitational collapse

    Energy Technology Data Exchange (ETDEWEB)

    Csizmadia, Peter; Racz, Istvan, E-mail: iracz@rmki.kfki.h [RMKI, Budapest, Konkoly Thege Miklos ut 29-33, H-1121 (Hungary)

    2010-03-01

    Some properties of a new framework for simulating generic 4-dimensional spherically symmetric gravitating systems are discussed. The framework can be used to investigate spacetimes that undergo complete gravitational collapse. The analytic setup is chosen to ensure that our numerical method is capable to follow the time evolution everywhere, including the black hole region.

  17. Conservation laws and gravitational radiation

    International Nuclear Information System (INIS)

    Rastall, P.

    1977-01-01

    A total stress-momentum is defined for gravitational fields and their sources. The Lagrangian density is slightly different from that in the previous version of the theory, and the field equations are considerably simplified. The post-Newtonian approximation of the theory is unchanged. The existence and nature of weak gravitational waves are discussed. (author)

  18. Gravitational wave signals and cosmological consequences of gravitational reheating

    Science.gov (United States)

    Artymowski, Michał; Czerwińska, Olga; Lalak, Zygmunt; Lewicki, Marek

    2018-04-01

    Reheating after inflation can proceed even if the inflaton couples to Standard Model (SM) particles only gravitationally. However, particle production during the transition between de-Sitter expansion and a decelerating Universe is rather inefficient and the necessity to recover the visible Universe leads to a non-standard cosmological evolution initially dominated by remnants of the inflaton field. We remain agnostic to the specific dynamics of the inflaton field and discuss a generic scenario in which its remnants behave as a perfect fluid with a general barotropic parameter w. Using CMB and BBN constraints we derive the allowed range of inflationary scales. We also show that this scenario results in a characteristic primordial Gravitational Wave (GW) spectrum which gives hope for observation in upcoming runs of LIGO as well as in other planned experiments.

  19. Normalization of Gravitational Acceleration Models

    Science.gov (United States)

    Eckman, Randy A.; Brown, Aaron J.; Adamo, Daniel R.

    2011-01-01

    Unlike the uniform density spherical shell approximations of Newton, the con- sequence of spaceflight in the real universe is that gravitational fields are sensitive to the nonsphericity of their generating central bodies. The gravitational potential of a nonspherical central body is typically resolved using spherical harmonic approximations. However, attempting to directly calculate the spherical harmonic approximations results in at least two singularities which must be removed in order to generalize the method and solve for any possible orbit, including polar orbits. Three unique algorithms have been developed to eliminate these singularities by Samuel Pines [1], Bill Lear [2], and Robert Gottlieb [3]. This paper documents the methodical normalization of two1 of the three known formulations for singularity-free gravitational acceleration (namely, the Lear [2] and Gottlieb [3] algorithms) and formulates a general method for defining normalization parameters used to generate normalized Legendre Polynomials and ALFs for any algorithm. A treatment of the conventional formulation of the gravitational potential and acceleration is also provided, in addition to a brief overview of the philosophical differences between the three known singularity-free algorithms.

  20. Post-Newtonian gravitational bremsstrahlung

    International Nuclear Information System (INIS)

    Turner, M.; Will, C.M.

    1978-01-01

    We present formulae and numerical results for the gravitational radiation emitted during a low-deflection encounter between two massive bodies (''gravitational bremsstrahlung''). Our results are valid through post-Newtonian order within general relativity. We discuss in detail the gravitational waveform (transverse-traceless part of the metric perturbation tensor), the toal luminosity and total emitted energy, the angular distribution of emitted energy (antenna pattern), and the frequency spectrum. We also present a method of ''boosting'' the accuracy of these quantities to post-3/2-Newtonian order. A numerical comparison of our results with those of Peters and of Kovacs and Thorne shows that the post-Newtonian method is reliable to better than 0.1% at v=0.1c, to a few percent at v=0.35c, and to 10--20% at v=0.5c. We also compare our results with those of Smarr

  1. Gravitational collapse and evolution of holographic black holes

    Energy Technology Data Exchange (ETDEWEB)

    Casadio, R [Dipartimento di Fisica, Universita di Bologna and I.N.F.N., Sezione di Bologna, via Irnerio 46, 40126 Bologna (Italy); Germani, C [D.A.M.T.P., Centre for Mathematical Sciences, University of Cambridge, Wilberforce road, Cambridge CB3 0WA (United Kingdom)

    2006-03-01

    Gravitational collapse is analyzed in the Brane-World by arguing that regularity of five-dimensional geodesics require that stars on the brane have an atmosphere. For the simple case of a spherically symmetric cloud of non-dissipating dust, conditions are found for which the collapsing star evaporates and approaches the Hawking behavior as the (apparent) horizon is being formed. The effective energy of the star vanishes at a finite radius and the star afterwards re-expands and 'anti-evaporates'. Israel junction conditions across the brane (holographically related to the matter trace anomaly) and the projection of the Weyl tensor on the brane (holographically interpreted as the quantum back-reaction on the brane metric) contribute to the total energy as, respectively, an 'anti-evaporation' and an 'evaporation' term.

  2. Quantum field theory in gravitational background

    International Nuclear Information System (INIS)

    Narnhofer, H.

    1986-01-01

    The author suggests ignoring the influence of the quantum field on the gravitation as the first step to combine quantum field theory and gravitation theory, but to consider the gravitational field as fixed and thus study quantum field theory on a manifold. This subject evoked interest when thermal radiation of a black hole was predicted. The author concentrates on the free quantum field and can split the problem into two steps: the Weyl-algebra of the free field and the Wightman functional on the tangent space

  3. Parametric mechanisms for detecting gravitational waves

    International Nuclear Information System (INIS)

    Pustovoit, V.I.; Chernozatonskii, L.A.

    1981-01-01

    An intense electromagnetic wave and a gravitational wave can interact to effectively generate electromagnetic waves at sum and difference frequencies. The self-effect of a monochromatic electromagnetic wave through a gravitational field leads to third-harmonic generation

  4. Critical Effects in Gravitational Collapse

    International Nuclear Information System (INIS)

    Chmaj, T.

    2000-01-01

    The models of gravitational collapse of a dynamical system are investigated by means of the Einstein equations. Different types conjunctions to gravitational field are analyzed and it is shown that in the case of week scalar field (low energy density) the system evaluated to flat space while in the case of strong field (high energy density) to black hole

  5. Cooling the Motion of Diamond Nanocrystals in a Magneto-Gravitational Trap in High Vacuum.

    Science.gov (United States)

    Hsu, Jen-Feng; Ji, Peng; Lewandowski, Charles W; D'Urso, Brian

    2016-07-22

    Levitated diamond nanocrystals with nitrogen-vacancy (NV) centres in high vacuum have been proposed as a unique system for experiments in fundamental quantum mechanics, including the generation of large quantum superposition states and tests of quantum gravity. This system promises extreme isolation from its environment while providing quantum control and sensing through the NV centre spin. While optical trapping has been the most explored method of levitation, recent results indicate that excessive optical heating of the nanodiamonds under vacuum may make the method impractical with currently available materials. Here, we study an alternative magneto-gravitational trap for diamagnetic particles, such as diamond nanocrystals, with stable levitation from atmospheric pressure to high vacuum. Magnetic field gradients from permanent magnets confine the particle in two dimensions, while confinement in the third dimension is gravitational. We demonstrate that feedback cooling of the centre-of-mass motion of a trapped nanodiamond cluster results in cooling of one degree of freedom to less than 1 K.

  6. Gravitational Mass, Its Mechanics - What It Is; How It Operates

    OpenAIRE

    Ellman, Roger

    1999-01-01

    The earlier paper, Inertial Mass, Its Mechanics - What It Is; How It Operates, developed the mechanics of inertial mass. The present paper is for the purpose of equivalently developing gravitation. The behavior of gravitation is well known, as described by Newton's Law of Gravitation. But just what gravitational mass is, how gravitational behavior comes about, what in material reality produces the effects of gravitational mass, has been little understood. The only extant hypotheses involve th...

  7. PRESSURE SHIFT AND GRAVITATIONAL REDSHIFT OF BALMER LINES IN WHITE DWARFS: REDISCUSSION

    Energy Technology Data Exchange (ETDEWEB)

    Halenka, Jacek; Olchawa, Wieslaw [Institute of Physics, University of Opole, ul. Oleska 48, 45-052, Opole (Poland); Madej, Jerzy [Astronomical Observatory, University of Warsaw, Al. Ujazdowskie 4, 00-478 Warszawa (Poland); Grabowski, Boleslaw, E-mail: halenka@uni.opole.pl, E-mail: wolch@uni.opole.pl, E-mail: jm@astrouw.edu.pl, E-mail: bgrab@uni.opole.pl [Wroclaw School of Information Technology WWSIS “Horyzont,” ul. Wejherowska 28, 54-239 Wroclaw (Poland)

    2015-08-01

    The Stark-induced shift and asymmetry, the so-called pressure shift (PS) of H{sub α} and H{sub β} Balmer lines in spectra of DA white dwarfs (WDs), have been examined in detail as masking effects in measurements of the gravitational redshift in WDs. The results are compared with our earlier ones from a quarter of a century ago. In these earlier papers, the standard, symmetrical Stark line profiles, as a dominant constituent of the Balmer line profiles but shifted as a whole by the PS effect, were applied to all spectrally active layers of the WD atmosphere. At present, in each of the WD layers, the Stark line profiles (especially of H{sub β}) are inherently asymmetrical and shifted due to the effects of strong inhomogeneity of the perturbing fields in plasma. To calculate the Stark line profiles in successive layers of the WD atmosphere we used the modified Full Computer Simulation Method, able to take adequately into account the complexity of local elementary quantum processes in plasma. In the case of the H{sub α} line, the present value of Stark-induced shift of the synthetic H{sub α} line profile is about half the previous one and it is negligible in comparison with the gravitational redshift. In the case of the H{sub β} line, the present value of Stark-induced shift of the synthetic H{sub β} line profile is about twice the previous one. The source of this extra shift is the asymmetry of H{sub β} peaks.

  8. Gravitational-Wave Stochastic Background from Cosmic Strings

    International Nuclear Information System (INIS)

    Siemens, Xavier; Creighton, Jolien; Mandic, Vuk

    2007-01-01

    We consider the stochastic background of gravitational waves produced by a network of cosmic strings and assess their accessibility to current and planned gravitational wave detectors, as well as to big bang nucleosynthesis (BBN), cosmic microwave background (CMB), and pulsar timing constraints. We find that current data from interferometric gravitational wave detectors, such as Laser Interferometer Gravitational Wave Observatory (LIGO), are sensitive to areas of parameter space of cosmic string models complementary to those accessible to pulsar, BBN, and CMB bounds. Future more sensitive LIGO runs and interferometers such as Advanced LIGO and Laser Interferometer Space Antenna (LISA) will be able to explore substantial parts of the parameter space

  9. Cosmic matter-antimatter asymmetry and gravitational force

    Science.gov (United States)

    Hsu, J. P.

    1980-01-01

    Cosmic matter-antimatter asymmetry due to the gravitational interaction alone is discussed, considering the gravitational coupling of fermion matter related to the Yang-Mills (1954) gauge symmetry with the unique generalization of the four-dimensional Poincare group. Attention is given to the case of weak static fields which determines the space-time metric where only large source terms are retained. In addition, considering lowest-order Feynman diagrams, there are presented gravitational potential energies between fermions, between antifermions, and between a fermion and an antifermion. It is concluded that the gravitational force between matter is different from that between antimatter; implications from this concerning the evolution of the universe are discussed.

  10. Chiral primordial gravitational waves from a Lifshitz point.

    Science.gov (United States)

    Takahashi, Tomohiro; Soda, Jiro

    2009-06-12

    We study primordial gravitational waves produced during inflation in quantum gravity at a Lifshitz point proposed by Horava. Assuming power-counting renormalizability, foliation-preserving diffeomorphism invariance, and the condition of detailed balance, we show that primordial gravitational waves are circularly polarized due to parity violation. The chirality of primordial gravitational waves is a quite robust prediction of quantum gravity at a Lifshitz point which can be tested through observations of cosmic microwave background radiation and stochastic gravitational waves.

  11. Gravitational perturbations of the hydrogen atom

    International Nuclear Information System (INIS)

    Parker, L.

    1983-01-01

    The strength of a gravitational field is characterized by the Riemann curvature tensor. It is of interest to know how the curvature of space-time at the position of an atom affects its spectrum. The author gives a brief summary of work on the effects of curvature on the hydrogen atom. The results refer to an arbitrary metric and can be evaluated for particular space-times of interest. The possibility of using the effect of gravitational waves on the electromagnetic spectrum of hydrogen as a means of detecting gravitational waves is also investigated. (Auth.)

  12. Displacement-noise-free gravitational-wave detection

    International Nuclear Information System (INIS)

    Kawamura, Seiji; Chen Yanbei

    2004-01-01

    We present a new idea that allows us to detect gravitational waves without being disturbed by any kind of displacement noise, based on the fact that gravitational waves and test-mass motions affect the propagations of light differently. We demonstrate this idea by analyzing a simple toy model consisting of three equally-separated objects on a line. By taking a certain combination of light travel times between these objects, we construct an observable free from the displacement of each object, which has a reasonable sensitivity to gravitational waves

  13. Listening music of gravitation

    International Nuclear Information System (INIS)

    Anon.

    2001-01-01

    Achievements of precision experiments in Japan (TAMA project) and USA (LIGO Laboratory) in the field of registration of gravitation waves using interferometric gravitational wave detectors are described. Works of the GEO groups in Hannover (Germany) and Vigro (Italy) are noted. Interferometer operation in synchronization during 160 hours demonstrating viability of the technique and its reliability is recorded. Advances in the field of the data analysis with the aim of recording of cosmic signal from noise of the interferometer are noted [ru

  14. Gravitational-wave mediated preheating

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, Stephon [Center for Cosmic Origins and Department of Physics and Astronomy, Dartmouth College, Hanover, NH 03755 (United States); Cormack, Sam, E-mail: samuel.c.cormack.gr@dartmouth.edu [Center for Cosmic Origins and Department of Physics and Astronomy, Dartmouth College, Hanover, NH 03755 (United States); Marcianò, Antonino [Center for Field Theory and Particle Physics & Department of Physics, Fudan University, 200433 Shanghai (China); Yunes, Nicolás [Department of Physics, Montana State University, Bozeman, MT 59717 (United States); Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106 (United States)

    2015-04-09

    We propose a new preheating mechanism through the coupling of the gravitational field to both the inflaton and matter fields, without direct inflaton–matter couplings. The inflaton transfers power to the matter fields through interactions with gravitational waves, which are exponentially enhanced due to an inflation–graviton coupling. One such coupling is the product of the inflaton to the Pontryagin density, as in dynamical Chern–Simons gravity. The energy scales involved are constrained by requiring that preheating happens fast during matter domination.

  15. A background-dependent approach to the theory of gravitation

    International Nuclear Information System (INIS)

    Goldoni, R.

    1976-01-01

    Using the covariant formulation of Newton's gravitational equation as derived previously by the present author (Goldoni, Gen. Relativ. Gravitation; 7:731 (1976)) as a starting point, relativistic gravitational equations are found which are supposed to hold in any conceivable universe, describe a purely geometrical theory of gravitation and explicitly incorporate Mach's principle. (U.K.)

  16. Iz ''general relativity'' necessary for the Einstein gravitation theory gravitation theory

    International Nuclear Information System (INIS)

    Bondi, G.

    1982-01-01

    Main principles of relativity and gravitation theories are deeply analyzed. Problems of boundaries of applicability for these theories and possible ways of their change and generalization are discussed. It is shown that the notion of general relativity does not introduce any post-newton physics - it only deals with coordinate transformations. It is supposed that ''general relativity'' is a physically senseless phrase which can be considered only as a historical remainder of an interesting philosophic discourse. The paper reveals that there exists appropriate physical substantiation of the Einstein gravitation theory not including a physically senseless concept of general relativity and promoting its fundamental relations with the experiment

  17. Gravitational waves and antennas

    CERN Multimedia

    CERN. Geneva

    2003-01-01

    Gravitational waves and their detection represent today a hot topic, which promises to play a central role in astrophysics, cosmology and theoretical physics. Technological developments have enabled the construction of such sensitive detectors that the detection of gravitational radiation and the start of a new astronomy could become a reality during the next few years. This is expected to bring a revolution in our knowledge of the universe by allowing the observation of hiterto unseen phenomena such as coalescence of compact objects (neutron stars and black holes) fall of stars into supermassive black holes, stellar core collapses, big bang relics and the new and unexpected. In these lectures I give a brief overview of this challenging field of modern physics. Topics : Basic properties of gravitational radiation. Astrophysical sources. Principle of operation of detectors. Interferometers (both ground based and space-based), bars and spheres. Present status of the experiments, their recent results and their f...

  18. Vignettes in Gravitation and Cosmology

    CERN Document Server

    Sriramkumar, L

    2012-01-01

    This book comprises expository articles on different aspects of gravitation and cosmology that are aimed at graduate students. The topics discussed are of contemporary interest assuming only an elementary introduction to gravitation and cosmology. The presentations are to a certain extent pedagogical in nature, and the material developed is not usually found in sufficient detail in recent textbooks in these areas.

  19. Sparse representation of Gravitational Sound

    Science.gov (United States)

    Rebollo-Neira, Laura; Plastino, A.

    2018-03-01

    Gravitational Sound clips produced by the Laser Interferometer Gravitational-Wave Observatory (LIGO) and the Massachusetts Institute of Technology (MIT) are considered within the particular context of data reduction. We advance a procedure to this effect and show that these types of signals can be approximated with high quality using significantly fewer elementary components than those required within the standard orthogonal basis framework. Furthermore, a local measure sparsity is shown to render meaningful information about the variation of a signal along time, by generating a set of local sparsity values which is much smaller than the dimension of the signal. This point is further illustrated by recourse to a more complex signal, generated by Milde Science Communication to divulge Gravitational Sound in the form of a ring tone.

  20. Gravity's kiss the detection of gravitational waves

    CERN Document Server

    Collins, Harry

    2017-01-01

    Scientists have been trying to confirm the existence of gravitational waves for fifty years. Then, in September 2015, came a "very interesting event" (as the cautious subject line in a physicist's email read) that proved to be the first detection of gravitational waves. In Gravity's Kiss, Harry Collins -- who has been watching the science of gravitational wave detection for forty-three of those fifty years and has written three previous books about it -- offers a final, fascinating account, written in real time, of the unfolding of one of the most remarkable scientific discoveries ever made. Predicted by Einstein in his theory of general relativity, gravitational waves carry energy from the collision or explosion of stars. Dying binary stars, for example, rotate faster and faster around each other until they merge, emitting a burst of gravitational waves. It is only with the development of extraordinarily sensitive, highly sophisticated detectors that physicists can now confirm Einstein's prediction. This is...

  1. Possibility of Landau damping of gravitational waves

    International Nuclear Information System (INIS)

    Gayer, S.; Kennel, C.F.

    1979-01-01

    There is considerable uncertainty in the literature concerning whether or not transverse traceless gravitational waves can Landau damp. Physically, the issue is whether particles of nonzero mass can comove with surfaces of constant wave phase, and therefore, loosely, whether gravitational waves can have phase speeds less than that of light. We approach the question of Landau damping in various ways. We consider first the propagation of small-amplitude gravitational waves in an ideal fluid-filled Robertson-Walker universe of zero spatial curvature. We argue that the principle of equivalence requires those modes to be lightlike. We show that a freely moving particle interacting only with the collective fields cannot comove with such waves if it has nonzero mass. The equation for gravitational waves in collisionless kinetic gases differs from that for fluid media only by terms so small that deviations from lightlike propagation are unmeasurable. Thus, we conclude that Landau damping of small-amplitude, transverse traceless gravitational waves is not possible

  2. Gravitational instability of thermally anisotropic plasma

    International Nuclear Information System (INIS)

    Singh, B.; Kalra, G.L.

    1986-01-01

    The equations of Chew, Goldberger, and Low (1956) modified to include the heat flux vector and self-gravitation are used to study the gravitational instability of unbounded plasma placed in a uniform static magnetic field. The linear stability analysis shows that some of the additional terms which arise as a result of higher moments are of the same order of magnitude as the terms in the original Chew, Goldberger, and Low theory. The influence of these terms on the gravitational instability has been specially examined. It is found that the gravitational instability sets in at a comparatively shorter wavelength and the growth rate is enhanced owing to the inclusion of these terms in the case where the propagation vector is along the magnetic field. The condition for instability is, however, unaltered when the direction of propagation is transverse to the direction of magnetic field. 19 references

  3. Aligning the Economic Value of Companion Diagnostics and Stratified Medicines

    Directory of Open Access Journals (Sweden)

    Edward D. Blair

    2012-11-01

    Full Text Available The twin forces of payors seeking fair pricing and the rising costs of developing new medicines has driven a closer relationship between pharmaceutical companies and diagnostics companies, because stratified medicines, guided by companion diagnostics, offer better commercial, as well as clinical, outcomes. Stratified medicines have created clinical success and provided rapid product approvals, particularly in oncology, and indeed have changed the dynamic between drug and diagnostic developers. The commercial payback for such partnerships offered by stratified medicines has been less well articulated, but this has shifted as the benefits in risk management, pricing and value creation for all stakeholders become clearer. In this larger healthcare setting, stratified medicine provides both physicians and patients with greater insight on the disease and provides rationale for providers to understand cost-effectiveness of treatment. This article considers how the economic value of stratified medicine relationships can be recognized and translated into better outcomes for all healthcare stakeholders.

  4. Gravitational lensing of gravitational waves: a statistical perspective

    Science.gov (United States)

    Li, Shun-Sheng; Mao, Shude; Zhao, Yuetong; Lu, Youjun

    2018-05-01

    In this paper, we study the strong gravitational lensing of gravitational waves (GWs) from a statistical perspective, with particular focus on the high frequency GWs from stellar binary black hole coalescences. These are most promising targets for ground-based detectors such as Advanced Laser Interferometer Gravitational Wave Observatory (aLIGO) and the proposed Einstein Telescope (ET) and can be safely treated under the geometrical optics limit for GW propagation. We perform a thorough calculation of the lensing rate, by taking account of effects caused by the ellipticity of lensing galaxies, lens environments, and magnification bias. We find that in certain GW source rate scenarios, we should be able to observe strongly lensed GW events once per year (˜1 yr-1) in the aLIGO survey at its design sensitivity; for the proposed ET survey, the rate could be as high as ˜80 yr-1. These results depend on the estimate of GW source abundance, and hence can be correspondingly modified with an improvement in our understanding of the merger rate of stellar binary black holes. We also compute the fraction of four-image lens systems in each survey, predicting it to be ˜30 per cent for the aLIGO survey and ˜6 per cent for the ET survey. Finally, we evaluate the possibility of missing some images due to the finite survey duration, by presenting the probability distribution of lensing time delays. We predict that this selection bias will be insignificant in future GW surveys, as most of the lens systems ({˜ } 90{per cent}) will have time delays less than ˜1 month, which will be far shorter than survey durations.

  5. Problems of generation and reception of gravitational waves

    International Nuclear Information System (INIS)

    Pisarev, A.F.

    1975-01-01

    The present day status of the problems of gravitation, wave radiation and reception is surveyed. The physical presentation and mathematical description of the processes of radiation, propagation and interaction of gravitation waves with matter and the electromagnetic field are given. The experiments on the search for gravitation waves of astophysical nature are analysed. The laboratory and cosmic sources of these waves and the methods of their reception are described. Special attention is drawn to the analysis of the proposals to perform a complete laboratory gravitation wave experiment

  6. Environmental Effects for Gravitational-wave Astrophysics

    International Nuclear Information System (INIS)

    Barausse, Enrico; Cardoso, Vitor; Pani, Paolo

    2015-01-01

    The upcoming detection of gravitational waves by terrestrial interferometers will usher in the era of gravitational-wave astronomy. This will be particularly true when space-based detectors will come of age and measure the mass and spin of massive black holes with exquisite precision and up to very high redshifts, thus allowing for better understanding of the symbiotic evolution of black holes with galaxies, and for high-precision tests of General Relativity in strong-field, highly dynamical regimes. Such ambitious goals require that astrophysical environmental pollution of gravitational-wave signals be constrained to negligible levels, so that neither detection nor estimation of the source parameters are significantly affected. Here, we consider the main sources for space-based detectors - the inspiral, merger and ringdown of massive black-hole binaries and extreme mass-ratio inspirals - and account for various effects on their gravitational waveforms, including electromagnetic fields, cosmological evolution, accretion disks, dark matter, “firewalls” and possible deviations from General Relativity. We discover that the black-hole quasinormal modes are sharply different in the presence of matter, but the ringdown signal observed by interferometers is typically unaffected. The effect of accretion disks and dark matter depends critically on their geometry and density profile, but is negligible for most sources, except for few special extreme mass-ratio inspirals. Electromagnetic fields and cosmological effects are always negligible. We finally explore the implications of our findings for proposed tests of General Relativity with gravitational waves, and conclude that environmental effects will not prevent the development of precision gravitational-wave astronomy. (paper)

  7. The electromagnetic interferent antennae for gravitational waves detection

    International Nuclear Information System (INIS)

    Kulak, A.

    1984-01-01

    An electromagnetic wave propagating in the toroidal waveguide is considered as an electromagnetic gravitational antenna. An interferometric method is applied to measure the disturbances of phase of the electromagnetic field caused by the incident gravitational wave. The calculations presented take into account the dispersive and dissipative phenomena occurring during the interaction between electromagnetic and gravitational fields. The active cross-section of the antenna interacting with coherent and pulsed gravitational radiation is estimated. Experimental possibilities presently available are discussed. Limiting fluxes in the astrophysical range of frequencies measured by the interferometric electromagnetic antenna are a factor of ten or so smaller than in the case of a classic mechanical antenna. Moreover the antenna could be used for carrying out a gravitational Hertz experiment. (author)

  8. Testing the Speed of Gravitational Waves over Cosmological Distances with Strong Gravitational Lensing.

    Science.gov (United States)

    Collett, Thomas E; Bacon, David

    2017-03-03

    Probing the relative speeds of gravitational waves and light acts as an important test of general relativity and alternative theories of gravity. Measuring the arrival time of gravitational waves (GWs) and electromagnetic (EM) counterparts can be used to measure the relative speeds, but only if the intrinsic time lag between emission of the photons and gravitational waves is well understood. Here we suggest a method that does not make such an assumption, using future strongly lensed GW events and EM counterparts; Biesiada et al. [J. Cosmol. Astropart. Phys.10 (2014) 080JCAPBP1475-751610.1088/1475-7516/2014/10/080] forecast that 50-100 strongly lensed GW events will be observed each year with the Einstein Telescope. A single strongly lensed GW event would produce robust constraints on c_{GW}/c_{γ} at the 10^{-7} level, if a high-energy EM counterpart is observed within the field of view of an observing γ-ray burst monitor.

  9. Fundamentals of the relativistic theory of gravitation

    International Nuclear Information System (INIS)

    Logunov, A.A.; Mestvirishvili, M.A.

    1986-01-01

    An extended exposition of the relativistic theory of gravitation (RTG) proposed by Logunov, Vlasov, and Mestvirishvili is presented. The RTG was constructed uniquely on the basis of the relativity principle and the geometrization principle by regarding the gravitational field as a physical field in the spirit of Faraday and Maxwell possessing energy, momentum, and spins 2 and 0. In the theory, conservation laws for the energy, momentum, and angular momentum for the matter and gravitational field taken together are strictly satisfied. The theory explains all the existing gravitational experiments. When the evolution of the universe is analyzed, the theory leads to the conclusion that the universe is infinite and flat, and it is predicted to contain a large amount of hidden mass. This missing mass exceeds by almost 40 times the amount of matter currently observed in the universe. The RTG predicts that gravitational collapse, which for a comoving observer occurs after a finite proper time, does not lead to infinite compression of matter but is halted at a certain finite density of the collapsing body. Therefore, according to the RTG there cannot be any objects in nature in which the gravitational contraction of matter to infinite density occurs, i.e., there are no black holes

  10. Gravitational consequences of modern field theories

    Science.gov (United States)

    Horowitz, Gary T.

    1989-01-01

    Some gravitational consequences of certain extensions of Einstein's general theory of relativity are discussed. These theories are not alternative theories of gravity in the usual sense. It is assumed that general relativity is the appropriate description of all gravitational phenomena which were observed to date.

  11. Holographic entanglement entropy and gravitational anomalies

    NARCIS (Netherlands)

    Castro, A.; Detournay, S.; Iqbal, N.; Perlmutter, E.

    2014-01-01

    We study entanglement entropy in two-dimensional conformal field theories with a gravitational anomaly. In theories with gravity duals, this anomaly is holographically represented by a gravitational Chern-Simons term in the bulk action. We show that the anomaly broadens the Ryu-Takayanagi minimal

  12. Radiation and detection of gravitational waves in laboratory conditions

    International Nuclear Information System (INIS)

    Bogolyubov, P.N.; Pisarev, A.F.; Shavokhina, N.S.

    1981-01-01

    Two variants are proposed and analyzed for an experiment on radiation and detection of gravitational waves in laboratory conditions in the optical and superhigh frequency range (band). In the first variant the laser light is parametrically transformed to the gravitational wave in the optical-inhomogeneous medium. The gravitational flux produced is registered by the inverse parametric transformation of the gravitational to light wave. In the second variant the radiation of gravitational waves is realized through hypersonic oscillations in piezocrystals, and the reception of waves is made by the superconducting coaxial resonator in which the gravitational wave resonantly transforms into the electromag= . netic wave. The analysis performed testifies to the possibility of an experiment of this type at the present time [ru

  13. Gravitation is a Gradient in the Velocity of Light

    Science.gov (United States)

    Froedge, Dt

    2017-01-01

    It is well known that a photon moving in a gravitational field has a trajectory that can be defined by Fermat's principle with a variable speed of light and no other gravitational influence. If it can be shown that a particle composed of speed of light sub-particles has the same acceleration in a variable index of refraction as a particle in a gravitational field, then there is no need to ascribe any other mechanism to gravitation than a gradient in c. This makes gravitation an electromagnetic phenomenon, and if QFT can illustrate a gradient in c can be produced by the internal motion of lightspeed sub-particles then the unification of QM and gravitation becomes more straightforward. http://www.arxdtf.org/css/GravAPS.pdf.

  14. Gravitational waves from cosmic bubble collisions

    International Nuclear Information System (INIS)

    Kim, Dong-Hoon; Lee, Bum-Hoon; Lee, Wonwoo; Yang, Jongmann; Yeom, Dong-han

    2015-01-01

    Cosmic bubbles are nucleated through the quantum tunneling process. After nucleation they would expand and undergo collisions with each other. In this paper, we focus in particular on collisions of two equal-sized bubbles and compute gravitational waves emitted from the collisions. First, we study the mechanism of the collisions by means of a real scalar field and its quartic potential. Then, using this model, we compute gravitational waves from the collisions in a straightforward manner. In the quadrupole approximation, time-domain gravitational waveforms are directly obtained by integrating the energy-momentum tensors over the volume of the wave sources, where the energy-momentum tensors are expressed in terms of the scalar field, the local geometry and the potential. We present gravitational waveforms emitted during (i) the initial-to-intermediate stage of strong collisions and (ii) the final stage of weak collisions: the former is obtained numerically, in full General Relativity and the latter analytically, in the flat spacetime approximation. We gain qualitative insights into the time-domain gravitational waveforms from bubble collisions: during (i), the waveforms show the non-linearity of the collisions, characterized by a modulating frequency and cusp-like bumps, whereas during (ii), the waveforms exhibit the linearity of the collisions, featured by smooth monochromatic oscillations. (orig.)

  15. Spherically symmetric radiation in gravitational collapse

    International Nuclear Information System (INIS)

    Bridy, D.J.

    1983-01-01

    This paper investigates a previously neglected mode by which a star may lose energy in the late stages of gravitational collapse to the black hole state. A model consisting of a Schwarzschild exterior matched to a Friedman interior of collapsing pressureless dust is studied. The matter of the collapsing star is taken as the source of a massive vector boson field and a detailed boundary value problem is carried out. Vector mesons are strongly coupled to all nucleons and will be radiated by ordinary matter during the collapse. The time dependent coupling between interior and exterior modes matched across the moving boundary of the collapsing star and the presence of the gravitational fields and their gradients in the field equations may give rise to a parametric amplification mechanism and permit the gravitational field to pump energy into the boson field, greatly enhancing the amount of boson radiation. The significance of a radiative mechanism driven by collapse is that it can react back upon the collapsing source and deprive it of some of the very mass that drives the collapse via its self gravitation. If the mass loss is great enough, this may provide a mechanism to slow or even halt gravitational collapse in some cases

  16. Stratified medicine and reimbursement issues

    NARCIS (Netherlands)

    Fugel, Hans-Joerg; Nuijten, Mark; Postma, Maarten

    2012-01-01

    Stratified Medicine (SM) has the potential to target patient populations who will most benefit from a therapy while reducing unnecessary health interventions associated with side effects. The link between clinical biomarkers/diagnostics and therapies provides new opportunities for value creation to

  17. Recent developments on high-energy gravitational scattering

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    After a quick reminder of earlier results I will discuss some recent progress in the high-energy gravitational scattering of particles, strings, and branes and, in particular: 1. Gravitational bremsstrahlung; 2. Causality constraints in the presence of higher derivative corrections; 3. Absorption of an energetic closed string by a stack of D-branes. These developments should eventually help us understand how information is preserved in the quantum analog of classical gravitational collapse.

  18. Nondissipative gravitational turbulence

    International Nuclear Information System (INIS)

    Gurevich, A.V.; Zybin, K.P.

    1988-01-01

    The nonlinear stage of development of the Jeans instability in a cold nondissipative gravitating gas is considered. It is shown that for a time exceeding the Jeans time a nondissipative gravitational singularity (NGS) is formed in the vicinity of a local density maximum. The NGS is a stationary dynamic structure, the basis of which is the singularity. The density of the gas at the center of the NGS (for r → 0) tends to infinity, and the field potential and the mean velocity of the trapped gas, possess a power singularity. The turbulent state arises as the result of development of the instability in the case of an irregular initial density distribution. It is an hierarchic structure consisting of nested moving NGS of various sizes, the NGS of smaller dimensions being trapped in the field of a NGS of larger dimensions. The scaling relations for each given NGS in this case hold for both the gas density and density of smaller size trapped NGS. A brief comparison with the observational data shows that the real hierarchic structure of the Universe ranging from scales pertaining to spherical stellar clusters up to those of rich galaxy clusters is apparently a developed gravitational turbulence

  19. Theory of gravitational-inertial field of universe. 2

    International Nuclear Information System (INIS)

    Davtyan, O.K.

    1978-01-01

    Application of the equations of the gravitational-inertial field to the problem of free motion in the inertial field (to the cosmologic problem) leads to results according to which (1) all Galaxies in the Universe 'disperse' from each other according to Hubble's law, (2) the 'dispersion' of bodies represents a free motion in the inertial field and Hubble's law represents a law of motion of free body in the inertial field, (3) for arbitrary mean distribution densities of space masses different from zero the space is Lobachevskian. All critical systems (with Schwarzschild radius) are specific because they exist in maximal-inertial and gravitational potentials. The Universe represents a critical system, it exists under the Schwarzschild radius. In high-potential inertial and gravitational fields the material mass in a static state or in motion with deceleration is subject to an inertial and gravitational 'annihilation'. At the maximal value of inertial and gravitational potentials (= c 2 ) the material mass is being completely 'evaporated' transforming into radiation mass. The latter is being concentrated in the 'horizon' of the critical system. All critical systems-black holes-represent geon systems, i.e. local formations of gravitational-electromagnetic radiations, held together by their own gravitational and inertial fields. The Universe, being a critical system, is 'wrapped' in a geon crown. (author)

  20. Three-point statistics of cosmological stochastic gravitational waves

    International Nuclear Information System (INIS)

    Adshead, Peter; Lim, Eugene A.

    2010-01-01

    We consider the three-point function (i.e. the bispectrum or non-Gaussianity) for stochastic backgrounds of gravitational waves. We estimate the amplitude of this signal for the primordial inflationary background, gravitational waves generated during preheating, and for gravitational waves produced by self-ordering scalar fields following a global phase transition. To assess detectability, we describe how to extract the three-point signal from an idealized interferometric experiment and compute the signal to noise ratio as a function of integration time. The three-point signal for the stochastic gravitational wave background generated by inflation is unsurprisingly tiny. For gravitational radiation generated by purely causal, classical mechanisms we find that, no matter how nonlinear the process is, the three-point correlations produced vanish in direct detection experiments. On the other hand, we show that in scenarios where the B-mode of the cosmic microwave background is sourced by gravitational waves generated by a global phase transition, a strong three-point signal among the polarization modes is also produced. This may provide another method of distinguishing inflationary B-modes. To carry out this computation, we have developed a diagrammatic approach to the calculation of stochastic gravitational waves sourced by scalar fluids, which has applications beyond the present scenario.

  1. Stability of merons in gravitational models

    International Nuclear Information System (INIS)

    Akdeniz, K.G.; Hacinliyan, A.; Kalayci, J.

    1982-11-01

    The stability properties of merons are investigated in gravitational models by taking the DeAFF model as a theoretical laboratory. We find that in gravitational models containing Yang-Mills fields merons are unstable. Stability might be possible in N=4 supergravity models with Asub(μ)=0. (author)

  2. Considerations concerning the definition and distribution of gravitational energy

    International Nuclear Information System (INIS)

    Gottlieb, I.; Ionescu-Pallas, N.

    1986-01-01

    In this paper the author reviews Einstein's gravitational field equations in a covariant form in a flat space-time. Several equations are examined for gravitational energy distribution. For a single pointlike gravitational source at rest, of mass, M/sub o/, they obtain E = M/sub o/c/sup 2/. For the case of Cartesian coordinates, agreement is obtained with Landau-Fock formulation of gravitational energy

  3. Chirality and gravitational parity violation.

    Science.gov (United States)

    Bargueño, Pedro

    2015-06-01

    In this review, parity-violating gravitational potentials are presented as possible sources of both true and false chirality. In particular, whereas phenomenological long-range spin-dependent gravitational potentials contain both truly and falsely chiral terms, it is shown that there are models that extend general relativity including also coupling of fermionic degrees of freedom to gravity in the presence of torsion, which give place to short-range truly chiral interactions similar to that usually considered in molecular physics. Physical mechanisms which give place to gravitational parity violation together with the expected size of the effects and their experimental constraints are discussed. Finally, the possible role of parity-violating gravity in the origin of homochirality and a road map for future research works in quantum chemistry is presented. © 2015 Wiley Periodicals, Inc.

  4. Gravitational Waves and Dark Energy

    Directory of Open Access Journals (Sweden)

    Peter L. Biermann

    2014-12-01

    Full Text Available The idea that dark energy is gravitational waves may explain its strength and its time-evolution. A possible concept is that dark energy is the ensemble of coherent bursts (solitons of gravitational waves originally produced when the first generation of super-massive black holes was formed. These solitons get their initial energy as well as keep up their energy density throughout the evolution of the universe by stimulating emission from a background, a process which we model by working out this energy transfer in a Boltzmann equation approach. New Planck data suggest that dark energy has increased in strength over cosmic time, supporting the concept here. The transit of these gravitational wave solitons may be detectable. Key tests include pulsar timing, clock jitter and the radio background.

  5. Experimental signatures of gravitational wave bursters

    International Nuclear Information System (INIS)

    Dubath, Florian; Foffa, Stefano; Gasparini, Maria Alice; Maggiore, Michele; Sturani, Riccardo

    2005-01-01

    Gravitational wave bursters are sources which emit repeatedly bursts of gravitational waves, and have been recently suggested as potentially interesting candidates for gravitational wave (GW) detectors. Mechanisms that could give rise to a GW burster can be found for instance in highly magnetized neutron stars (the 'magnetars' which explain the phenomenon of soft gamma repeaters), in accreting neutron stars and in hybrid stars with a quark core. We point out that these sources have very distinctive experimental signatures. In particular, as already observed in the γ-ray bursts from soft gamma repeaters, the energy spectrum of the events is a power-law, dN∼E -γ dE with γ≅1.6, and they have a distribution of waiting times (the times between one outburst and the next) significantly different from the distribution of uncorrelated events. We discuss possible detection strategies that could be used to search for these events in existing gravitational wave detectors

  6. Nonlinear coupled Alfven and gravitational waves

    International Nuclear Information System (INIS)

    Kaellberg, Andreas; Brodin, Gert; Bradley, Michael

    2004-01-01

    In this paper we consider nonlinear interaction between gravitational and electromagnetic waves in a strongly magnetized plasma. More specifically, we investigate the propagation of gravitational waves with the direction of propagation perpendicular to a background magnetic field and the coupling to compressional Alfven waves. The gravitational waves are considered in the high-frequency limit and the plasma is modeled by a multifluid description. We make a self-consistent, weakly nonlinear analysis of the Einstein-Maxwell system and derive a wave equation for the coupled gravitational and electromagnetic wave modes. A WKB-approximation is then applied and as a result we obtain the nonlinear Schroedinger equation for the slowly varying wave amplitudes. The analysis is extended to 3D wave pulses, and we discuss the applications to radiation generated from pulsar binary mergers. It turns out that the electromagnetic radiation from a binary merger should experience a focusing effect, that in principle could be detected

  7. The effect of gravitational wave on electromagnetic field and the possibility about electromagnetic detection of gravitational wave

    International Nuclear Information System (INIS)

    Tao Fuzhen; He Zhiqiang

    1983-01-01

    If the effect of gravitational wave on electromagnetic fields is used, and the gravitational wave is detected through the changes in electromagnetic fields, one can expect that the difficulty about the weakness of the signal of mechanical receiver can be avoided. Because of the effect of gravitational wave, the electromagnetic field emits energy, therefore, the energy which is detected will be higher than that by the mechanical receiver. The authors consider the Maxwell equations on the curved spacetime. They give solutions when the detecting fields are a free electromagnetic wave, standing wave and a constant field. (Auth.)

  8. Japanese space gravitational wave antenna DECIGO and DPF

    Science.gov (United States)

    Musha, Mitsuru

    2017-11-01

    The gravitational wave detection will open a new gravitational wave astronomy, which gives a fruitful insight about early universe or birth and death of stars. In order to detect gravitational wave, we planed a space gravitational wave detector, DECIGO (DECi-heltz Interferometer Gravitational wave Observatory), which consists of three drag-free satellites forming triangle shaped Fabry-Perot laser interferometer with the arm length of 1000 km, and whose strain sensitivity is designed to be 2x10-24 /√Hz around 0.1 Hz. Before launching DECIGO around 2030, a milestone mission named DECIGO pathfinder (DPF) is planed to be launched whose main purpose is the feasibility test of the key technologies for DECIGO. In the present paper, the conceptual design and current status of DECIGO and DPF are reviewed.

  9. Hunting for dark particles with gravitational waves

    Energy Technology Data Exchange (ETDEWEB)

    Giudice, Gian F.; McCullough, Matthew; Urbano, Alfredo [CERN, Theoretical Physics Department,Geneva (Switzerland)

    2016-10-03

    The LIGO observation of gravitational waves from a binary black hole merger has begun a new era in fundamental physics. If new dark sector particles, be they bosons or fermions, can coalesce into exotic compact objects (ECOs) of astronomical size, then the first evidence for such objects, and their underlying microphysical description, may arise in gravitational wave observations. In this work we study how the macroscopic properties of ECOs are related to their microscopic properties, such as dark particle mass and couplings. We then demonstrate the smoking gun exotic signatures that would provide observational evidence for ECOs, and hence new particles, in terrestrial gravitational wave observatories. Finally, we discuss how gravitational waves can test a core concept in general relativity: Hawking’s area theorem.

  10. Hunting for Dark Particles with Gravitational Waves

    Science.gov (United States)

    Giudice, Gian F.

    2017-12-01

    The LIGO observation of gravitational waves from a binary black hole merger has begun a new era in fundamental physics. If new dark sector particles, be they bosons or fermions, can coalesce into exotic compact objects (ECOs) of astronomical size, then the first evidence for such objects, and their underlying microphysical description, may arise in gravitational wave observations. In this work we study how the macroscopic properties of ECOs are related to their microscopic properties, such as dark particle mass and couplings. We then demonstrate the smoking gun exotic signatures that would provide observational evidence for ECOs, and hence new particles, in terrestrial gravitational wave observatories. Finally, we discuss how gravitational waves can test a core concept in general relativity: Hawking's area theorem.

  11. Hunting for dark particles with gravitational waves

    International Nuclear Information System (INIS)

    Giudice, Gian F.; McCullough, Matthew; Urbano, Alfredo

    2016-01-01

    The LIGO observation of gravitational waves from a binary black hole merger has begun a new era in fundamental physics. If new dark sector particles, be they bosons or fermions, can coalesce into exotic compact objects (ECOs) of astronomical size, then the first evidence for such objects, and their underlying microphysical description, may arise in gravitational wave observations. In this work we study how the macroscopic properties of ECOs are related to their microscopic properties, such as dark particle mass and couplings. We then demonstrate the smoking gun exotic signatures that would provide observational evidence for ECOs, and hence new particles, in terrestrial gravitational wave observatories. Finally, we discuss how gravitational waves can test a core concept in general relativity: Hawking’s area theorem.

  12. Gravitational waves from freely precessing neutron stars

    International Nuclear Information System (INIS)

    Jones, D.I.

    2001-01-01

    The purpose of this study is to assess the likely detectability of gravitational waves from freely precessing neutron stars. We begin by presenting a neutron star model of sufficient complexity to take into account both the elasticity and fluidity of a realistic neutron star. We then examine the effect of internal dissipation (i.e. heat generation within the star) and gravitational radiation reaction on the wobble. This is followed by an examination of various astrophysical scenarios where some mechanism might pump the precessional motion. We estimate the gravitational wave amplitude in these situations. Finally, we conclude that gravitational radiation from freely precessing neutron stars is almost certainly limited to a level undetectable by a LIGO II detector by internal dissipation. (author)

  13. Hunting for Dark Particles with Gravitational Waves

    CERN Document Server

    Giudice, Gian F.; Urbano, Alfredo

    2016-01-01

    The LIGO observation of gravitational waves from a binary black hole merger has begun a new era in fundamental physics. If new dark sector particles, be they bosons or fermions, can coalesce into exotic compact objects (ECOs) of astronomical size, then the first evidence for such objects, and their underlying microphysical description, may arise in gravitational wave observations. In this work we study how the macroscopic properties of ECOs are related to their microscopic properties, such as dark particle mass and couplings. We then demonstrate the smoking gun exotic signatures that would provide observational evidence for ECOs, and hence new particles, in terrestrial gravitational wave observatories. Finally, we discuss how gravitational waves can test a core concept in general relativity: Hawking's area theorem.

  14. Compensation for gravitational sag of bent mirror

    Energy Technology Data Exchange (ETDEWEB)

    Mao, Chengwen; Jiang, Hui; He, Yan; Liang, Dongxu; Lan, Xuying; Yan, Shuai [Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, CAS, Shanghai 201800 (China); Shu, De-ming [Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439 (United States); Li, Aiguo, E-mail: aiguo.li@sinap.ac.cn [Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, CAS, Shanghai 201800 (China)

    2017-05-01

    The gravitational sag of aspheric bent mirrors with face-up or face-down geometry produces a nonnegligible optical error. As an effective compensation, width optimization is used to match the combined effects of the gravitational and bending moments. This method is described by analytical expressions and two calculation algorithms. The results of theoretical simulations and finite element analysis have proved that this method can reduce the slope error resulting from gravitational sag to the level of nano radians.

  15. New theory of space-time and gravitation

    International Nuclear Information System (INIS)

    Denisov, V.I.; Logunov, A.A.

    1982-01-01

    It is shown that the general theory of relativity is not satisfactory physical theory, since in it there are no laws of conservation for the matter and gravitational field taken together and it does not satisfy the principle of correspondence with Newton's theory. In the present paper, we construct a new theory of gravitation which possesses conservation laws, can describe all the existing gravitational experiments, satisfies the correspondence principle, and predicts a number of fundamental consequences

  16. Compensation for gravitational sag of bent mirror

    International Nuclear Information System (INIS)

    Mao, Chengwen; Jiang, Hui; He, Yan; Liang, Dongxu; Lan, Xuying; Yan, Shuai; Shu, De-ming; Li, Aiguo

    2017-01-01

    The gravitational sag of aspheric bent mirrors with face-up or face-down geometry produces a nonnegligible optical error. As an effective compensation, width optimization is used to match the combined effects of the gravitational and bending moments. This method is described by analytical expressions and two calculation algorithms. The results of theoretical simulations and finite element analysis have proved that this method can reduce the slope error resulting from gravitational sag to the level of nano radians.

  17. The Stratified Legitimacy of Abortions.

    Science.gov (United States)

    Kimport, Katrina; Weitz, Tracy A; Freedman, Lori

    2016-12-01

    Roe v. Wade was heralded as an end to unequal access to abortion care in the United States. However, today, despite being common and safe, abortion is performed only selectively in hospitals and private practices. Drawing on 61 interviews with obstetrician-gynecologists in these settings, we examine how they determine which abortions to perform. We find that they distinguish between more and less legitimate abortions, producing a narrative of stratified legitimacy that privileges abortions for intended pregnancies, when the fetus is unhealthy, and when women perform normative gendered sexuality, including distress about the abortion, guilt about failure to contracept, and desire for motherhood. This stratified legitimacy can perpetuate socially-inflected inequality of access and normative gendered sexuality. Additionally, we argue that the practice by physicians of distinguishing among abortions can legitimate legislative practices that regulate and restrict some kinds of abortion, further constraining abortion access. © American Sociological Association 2016.

  18. Spatially modulated instabilities of holographic gauge-gravitational anomaly

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yan [Department of Space Science, and International Research Institute of Multidisciplinary Science,Beihang University,Beijing 100191 (China); Instituto de Fisica Teorica UAM/CSIC, Universidad Autonoma de Madrid,Cantoblanco, 28049 Madrid (Spain); Pena-Benitez, Francisco [Dipartimento di Fisica, Università di Perugia, I.N.F.N. Sezione di Perugia,Via A. Pascoli, I-06123 Perugia (Italy)

    2017-05-19

    We performed a study of the perturbative instabilities in Einstein-Maxwell-Chern-Simons theory with a gravitational Chern-Simons term, which is dual to a strongly coupled field theory with both chiral and mixed gauge-gravitational anomaly. With an analysis of the fluctuations in the near horizon regime at zero temperature, we found that there might be two possible sources of instabilities. The first one corresponds to a real mass-squared which is below the BF bound of AdS{sub 2}, and it leads to the bell-curve phase diagram at finite temperature. The effect of mixed gauge-gravitational anomaly is emphasised. Another source of instability is independent of gauge Chern-Simons coupling and exists for any finite gravitational Chern-Simons coupling. There is a singular momentum close to which unstable mode appears. The possible implications of this singular momentum are discussed. Our analysis suggests that the theory with a gravitational Chern-Simons term around Reissner-Nordström black hole is unreliable unless the gravitational Chern-Simons coupling is treated as a small perturbative parameter.

  19. Neutrino bursts and gravitational waves experiments

    Energy Technology Data Exchange (ETDEWEB)

    Castagnoli, C; Galeotti, P; Saavedra, O [Consiglio Nazionale delle Ricerche, Turin (Italy). Lab. di Cosmo-Geofisica

    1978-05-01

    Several experiments have been performed in many countries to observe gravitational waves or neutrino bursts. Since their simultaneous emission may occur in stellar collapse, the authors evaluate the effect of neutrino bursts on gravitational wave antennas and suggest the usefulness of a time correlation among the different detectors.

  20. Physics of interferometric gravitational wave detectors

    Indian Academy of Sciences (India)

    The Caltech-MIT joint LIGO project is operating three long-baseline interferometers (one of 2 km and two of 4 km) in order to unambiguously measure the infinitesimal displacements of isolated test masses which convey the signature of gravitational waves from astrophysical sources. An interferometric gravitational wave ...

  1. Stratified charge rotary engine for general aviation

    Science.gov (United States)

    Mount, R. E.; Parente, A. M.; Hady, W. F.

    1986-01-01

    A development history, a current development status assessment, and a design feature and performance capabilities account are given for stratified-charge rotary engines applicable to aircraft propulsion. Such engines are capable of operating on Jet-A fuel with substantial cost savings, improved altitude capability, and lower fuel consumption by comparison with gas turbine powerplants. Attention is given to the current development program of a 400-hp engine scheduled for initial operations in early 1990. Stratified charge rotary engines are also applicable to ground power units, airborne APUs, shipboard generators, and vehicular engines.

  2. Quantum biological gravitational wave detectors

    International Nuclear Information System (INIS)

    Kopvillem, U.Kh.

    1985-01-01

    A possibility of producing biological detectors of gravitational waves is considered. High sensitivity of biological systems to outer effects can be ensured by existence of molecule subgroups in Dicke states. Existence of clusters in Dicke state-giant electric dipoles (GED) is supposed in the Froehlich theory. Comparison of biological and physical detectors shows that GED systems have unique properties for detection of gravitational waves if the reception range is narrow

  3. Numerical simulation of idealized front motion in neutral and stratified atmosphere with a hyperbolic system of equations

    Science.gov (United States)

    Yudin, M. S.

    2017-11-01

    In the present paper, stratification effects on surface pressure in the propagation of an atmospheric gravity current (cold front) over flat terrain are estimated with a non-hydrostatic finite-difference model of atmospheric dynamics. Artificial compressibility is introduced into the model in order to make its equations hyperbolic. For comparison with available simulation data, the physical processes under study are assumed to be adiabatic. The influence of orography is also eliminated. The front surface is explicitly described by a special equation. A time filter is used to suppress the non-physical oscillations. The results of simulations of surface pressure under neutral and stable stratification are presented. Under stable stratification the front moves faster and shows an abrupt pressure jump at the point of observation. This fact is in accordance with observations and the present-day theory of atmospheric fronts.

  4. Relic gravitational waves and the generalized second law

    International Nuclear Information System (INIS)

    Izquierdo, German; Pavon, Diego

    2004-01-01

    The generalized second law of gravitational thermodynamics is applied to the present era of accelerated expansion of the Universe. In spite of the fact that the entropy of matter and relic gravitational waves inside the event horizon diminish, the mentioned law is fulfilled provided that the expression for the entropy density of the gravitational waves satisfies a certain condition

  5. Implications of Stably Stratified Atmospheric Boundary Layer Turbulence on the Near-Wake Structure of Wind Turbines

    Directory of Open Access Journals (Sweden)

    Kiran Bhaganagar

    2014-09-01

    Full Text Available Turbulence structure in the wake behind a full-scale horizontal-axis wind turbine under the influence of real-time atmospheric inflow conditions has been investigated using actuator-line-model based large-eddy-simulations. Precursor atmospheric boundary layer (ABL simulations have been performed to obtain mean and turbulence states of the atmosphere under stable stratification subjected to two different cooling rates. Wind turbine simulations have revealed that, in addition to wind shear and ABL turbulence, height-varying wind angle and low-level jets are ABL metrics that influence the structure of the turbine wake. Increasing stability results in shallower boundary layers with stronger wind shear, steeper vertical wind angle gradients, lower turbulence, and suppressed vertical motions. A turbulent mixing layer forms downstream of the wind turbines, the strength and size of which decreases with increasing stability. Height dependent wind angle and turbulence are the ABL metrics influencing the lateral wake expansion. Further, ABL metrics strongly impact the evolution of tip and root vortices formed behind the rotor. Two factors play an important role in wake meandering: tip vortex merging due to the mutual inductance form of instability and the corresponding instability of the turbulent mixing layer.

  6. Gravitational waves

    CERN Document Server

    Ciufolini, I; Moschella, U; Fre, P

    2001-01-01

    Gravitational waves (GWs) are a hot topic and promise to play a central role in astrophysics, cosmology, and theoretical physics. Technological developments have led us to the brink of their direct observation, which could become a reality in the coming years. The direct observation of GWs will open an entirely new field: GW astronomy. This is expected to bring a revolution in our knowledge of the universe by allowing the observation of previously unseen phenomena, such as the coalescence of compact objects (neutron stars and black holes), the fall of stars into supermassive black holes, stellar core collapses, big-bang relics, and the new and unexpected.With a wide range of contributions by leading scientists in the field, Gravitational Waves covers topics such as the basics of GWs, various advanced topics, GW detectors, astrophysics of GW sources, numerical applications, and several recent theoretical developments. The material is written at a level suitable for postgraduate students entering the field.

  7. A 3D spectral anelastic hydrodynamic code for shearing, stratified flows

    Science.gov (United States)

    Barranco, Joseph A.; Marcus, Philip S.

    2006-11-01

    We have developed a three-dimensional (3D) spectral hydrodynamic code to study vortex dynamics in rotating, shearing, stratified systems (e.g., the atmosphere of gas giant planets, protoplanetary disks around newly forming protostars). The time-independent background state is stably stratified in the vertical direction and has a unidirectional linear shear flow aligned with one horizontal axis. Superposed on this background state is an unsteady, subsonic flow that is evolved with the Euler equations subject to the anelastic approximation to filter acoustic phenomena. A Fourier Fourier basis in a set of quasi-Lagrangian coordinates that advect with the background shear is used for spectral expansions in the two horizontal directions. For the vertical direction, two different sets of basis functions have been implemented: (1) Chebyshev polynomials on a truncated, finite domain, and (2) rational Chebyshev functions on an infinite domain. Use of this latter set is equivalent to transforming the infinite domain to a finite one with a cotangent mapping, and using cosine and sine expansions in the mapped coordinate. The nonlinear advection terms are time-integrated explicitly, the pressure/enthalpy terms are integrated semi-implicitly, and the Coriolis force and buoyancy terms are treated semi-analytically. We show that internal gravity waves can be damped by adding new terms to the Euler equations. The code exhibits excellent parallel performance with the message passing interface (MPI). As a demonstration of the code, we simulate the merger of two 3D vortices in the midplane of a protoplanetary disk.

  8. Gravitation in the 'quasi-classical' theory

    International Nuclear Information System (INIS)

    Wignall, J.W.G.; Zangari, M.

    1990-01-01

    The 'quasi-classical' picture of particles as extendend periodic disturbances in a classical nonlinear field, previously shown to imply all the equations of Maxwell electrodynamics with very little formal input, is here applied to the other known long-range force, gravitation. It is shown that the picture's absolute interpretation of inertial mass and four-potential as measures of the local spacing between equal-phase hypersurfaces, together with the empirically established proportionality of gravitational 'charge' to inertial mass, leads naturally to the gravitational red-shift formula, and it thus provides a physical basis for the spacetime curvature that is the central idea of Einstein's general theory of relativity. 16 refs., 1 fig

  9. Structure of gauge and gravitational anomalies*

    International Nuclear Information System (INIS)

    Alvarez-Gaume, L.; Ginsparg, P.

    1985-01-01

    It is shown how the form of the gauge and gravitational anomalies in quantum field theories may be derived from classical index theorems. The gravitational anomaly in both Einstein and Lorentz form is considered and their equivalence is exhibited. The formalism of gauge and gravitational theories is reviewed using the language of differential geometry, and notions from the theory of characteristic classes necessary for understanding the classical index theorems are introduced. The treatment of known topological results includes a pedagogical derivation of the Wess-Zumino effective Lagrangian in abitrary even dimension. The relation between various forms of the anomaly present in the literature is also clarified

  10. Gravitational waves from binary black holes

    Indian Academy of Sciences (India)

    It is almost a century since Einstein predicted the existence of gravitational waves as one of the consequences of his general theory of relativity. A brief historical overview including Chandrasekhar's contribution to the subject is first presented. The current status of the experimental search for gravitational waves and the ...

  11. A generalized variational principle of gravitation

    International Nuclear Information System (INIS)

    El-Tahir, A.

    1987-09-01

    Generalized fourth order differential equations of gravitation are derived. Though similar to those earlier obtained by Lanczos, the present derivation is based on more general assumptions. The geometry-gravity dualism is discussed and the nonlinearity of gravitation is shown to be constrained by the curvature of space. (author). 5 refs

  12. Dark Energy and Inflation from Gravitational Waves

    Directory of Open Access Journals (Sweden)

    Leonid Marochnik

    2017-10-01

    Full Text Available In this seven-part paper, we show that gravitational waves (classical and quantum produce the accelerated de Sitter expansion at the start and at the end of the cosmological evolution of the Universe. In these periods, the Universe contains no matter fields but contains classical and quantum metric fluctuations, i.e., it is filled with classical and quantum gravitational waves. In such evolution of the Universe, dominated by gravitational waves, the de Sitter state is the exact solution to the self-consistent equations for classical and quantum gravitational waves and background geometry for the empty space-time with FLRW metric. In both classical and quantum cases, this solution is of the instanton origin since it is obtained in the Euclidean space of imaginary time with the subsequent analytic continuation to real time. The cosmological acceleration from gravitational waves provides a transparent physical explanation to the coincidence, threshold and “old cosmological constant” paradoxes of dark energy avoiding recourse to the anthropic principle. The cosmological acceleration from virtual gravitons at the start of the Universe evolution produces inflation, which is consistent with the observational data on CMB anisotropy. Section 1 is devoted to cosmological acceleration from classical gravitational waves. Section 2 is devoted to the theory of virtual gravitons in the Universe. Section 3 is devoted to cosmological acceleration from virtual gravitons. Section 4 discusses the consistency of the theory with observational data on dark energy and inflation. The discussion of mechanism of acceleration and cosmological scenario are contained in Sections 5 and 6. Appendix contains the theory of stochastic nonlinear gravitational waves of arbitrary wavelength and amplitude in an isotropic Universe.

  13. The sky pattern of the linearized gravitational memory effect

    International Nuclear Information System (INIS)

    Mädler, Thomas; Winicour, Jeffrey

    2016-01-01

    The gravitational memory effect leads to a net displacement in the relative positions of test particles. This memory is related to the change in the strain of the gravitational radiation field between infinite past and infinite future retarded times. There are three known sources of the memory effect: (i) the loss of energy to future null infinity by massless fields or particles, (ii) the ejection of massive particles to infinity from a bound system and (iii) homogeneous, source-free gravitational waves. In the context of linearized theory, we show that asymptotic conditions controlling these known sources of the gravitational memory effect rule out any other possible sources with physically reasonable stress–energy tensors. Except for the source-free gravitational waves, the two other known sources produce gravitational memory with E -mode radiation strain, characterized by a certain curl-free sky pattern of their polarization. Thus our results show that the only known source of B -mode gravitational memory is of primordial origin, corresponding in the linearized theory to a homogeneous wave entering from past null infinity. (paper)

  14. Gravitational wave memory in ΛCDM cosmology

    International Nuclear Information System (INIS)

    Bieri, Lydia; Garfinkle, David; Yunes, Nicolás

    2017-01-01

    We examine gravitational wave memory in the case where sources and detector are in a ΛCDM cosmology. We consider the case where the Universe can be highly inhomogeneous, but gravitational radiation is treated in the short wavelength approximation. We find results very similar to those of gravitational wave memory in an asymptotically flat spacetime; however, the overall magnitude of the memory effect is enhanced by a redshift-dependent factor. In addition, we find the memory can be affected by lensing. (paper)

  15. Gravitational wave searches using the DSN (Deep Space Network)

    International Nuclear Information System (INIS)

    Nelson, S.J.; Armstrong, J.W.

    1988-01-01

    The Deep Space Network Doppler spacecraft link is currently the only method available for broadband gravitational wave searches in the 0.01 to 0.001 Hz frequency range. The DSN's role in the worldwide search for gravitational waves is described by first summarizing from the literature current theoretical estimates of gravitational wave strengths and time scales from various astrophysical sources. Current and future detection schemes for ground based and space based detectors are then discussed. Past, present, and future planned or proposed gravitational wave experiments using DSN Doppler tracking are described. Lastly, some major technical challenges to improve gravitational wave sensitivities using the DSN are discussed

  16. Gravitational lensing in plasmic medium

    Energy Technology Data Exchange (ETDEWEB)

    Bisnovatyi-Kogan, G. S., E-mail: gkogan@iki.rssi.ru; Tsupko, O. Yu., E-mail: tsupko@iki.rssi.ru [Russian Academy of Sciences, Space Research Institute (Russian Federation)

    2015-07-15

    The influence of plasma on different effects of gravitational lensing is reviewed. Using the Hamiltonian approach for geometrical optics in a medium in the presence of gravity, an exact formula for the photon deflection angle by a black hole (or another body with a Schwarzschild metric) embedded in plasma with a spherically symmetric density distribution is derived. The deflection angle in this case is determined by the mutual combination of different factors: gravity, dispersion, and refraction. While the effects of deflection by the gravity in vacuum and the refractive deflection in a nonhomogeneous medium are well known, the new effect is that, in the case of a homogeneous plasma, in the absence of refractive deflection, the gravitational deflection differs from the vacuum deflection and depends on the photon frequency. In the presence of a plasma nonhomogeneity, the chromatic refractive deflection also occurs, so the presence of plasma always makes gravitational lensing chromatic. In particular, the presence of plasma leads to different angular positions of the same image if it is observed at different wavelengths. It is discussed in detail how to apply the presented formulas for the calculation of the deflection angle in different situations. Gravitational lensing in plasma beyond the weak deflection approximation is also considered.

  17. GLINT. Gravitational-wave laser INterferometry triangle

    Science.gov (United States)

    Aria, Shafa; Azevedo, Rui; Burow, Rick; Cahill, Fiachra; Ducheckova, Lada; Holroyd, Alexa; Huarcaya, Victor; Järvelä, Emilia; Koßagk, Martin; Moeckel, Chris; Rodriguez, Ana; Royer, Fabien; Sypniewski, Richard; Vittori, Edoardo; Yttergren, Madeleine

    2017-11-01

    When the universe was roughly one billion years old, supermassive black holes (103-106 solar masses) already existed. The occurrence of supermassive black holes on such short time scales are poorly understood in terms of their physical or evolutionary processes. Our current understanding is limited by the lack of observational data due the limits of electromagnetic radiation. Gravitational waves as predicted by the theory of general relativity have provided us with the means to probe deeper into the history of the universe. During the ESA Alpach Summer School of 2015, a group of science and engineering students devised GLINT (Gravitational-wave Laser INterferometry Triangle), a space mission concept capable of measuring gravitational waves emitted by black holes that have formed at the early periods after the big bang. Morespecifically at redshifts of 15 big bang) in the frequency range 0.01 - 1 Hz. GLINT design strain sensitivity of 5× 10^{-24} 1/√ { {Hz}} will theoretically allow the study of early black holes formations as well as merging events and collapses. The laser interferometry, the technology used for measuring gravitational waves, monitors the separation of test masses in free-fall, where a change of separation indicates the passage of a gravitational wave. The test masses will be shielded from disturbing forces in a constellation of three geocentric orbiting satellites.

  18. The 'gravitating' tensor in the dualistic theory

    International Nuclear Information System (INIS)

    Mahanta, M.N.

    1989-01-01

    The exact microscopic system of Einstein-type field equations of the dualistic gravitation theory is investigated as well as an analysis of the modified energy-momentum tensor or so called 'gravitating' tensor is presented

  19. Gravitational Waves from a Dark Phase Transition.

    Science.gov (United States)

    Schwaller, Pedro

    2015-10-30

    In this work, we show that a large class of models with a composite dark sector undergo a strong first order phase transition in the early Universe, which could lead to a detectable gravitational wave signal. We summarize the basic conditions for a strong first order phase transition for SU(N) dark sectors with n_{f} flavors, calculate the gravitational wave spectrum and show that, depending on the dark confinement scale, it can be detected at eLISA or in pulsar timing array experiments. The gravitational wave signal provides a unique test of the gravitational interactions of a dark sector, and we discuss the complementarity with conventional searches for new dark sectors. The discussion includes the twin Higgs and strongly interacting massive particle models as well as symmetric and asymmetric composite dark matter scenarios.

  20. Nitrogen transformations in stratified aquatic microbial ecosystems

    DEFF Research Database (Denmark)

    Revsbech, Niels Peter; Risgaard-Petersen, N.; Schramm, Andreas

    2006-01-01

    Abstract  New analytical methods such as advanced molecular techniques and microsensors have resulted in new insights about how nitrogen transformations in stratified microbial systems such as sediments and biofilms are regulated at a µm-mm scale. A large and ever-expanding knowledge base about n...... performing dissimilatory reduction of nitrate to ammonium have given new dimensions to the understanding of nitrogen cycling in nature, and the occurrence of these organisms and processes in stratified microbial communities will be described in detail.......Abstract  New analytical methods such as advanced molecular techniques and microsensors have resulted in new insights about how nitrogen transformations in stratified microbial systems such as sediments and biofilms are regulated at a µm-mm scale. A large and ever-expanding knowledge base about...... nitrogen fixation, nitrification, denitrification, and dissimilatory reduction of nitrate to ammonium, and about the microorganisms performing the processes, has been produced by use of these techniques. During the last decade the discovery of anammmox bacteria and migrating, nitrate accumulating bacteria...

  1. High-order boundary integral equation solution of high frequency wave scattering from obstacles in an unbounded linearly stratified medium

    Science.gov (United States)

    Barnett, Alex H.; Nelson, Bradley J.; Mahoney, J. Matthew

    2015-09-01

    We apply boundary integral equations for the first time to the two-dimensional scattering of time-harmonic waves from a smooth obstacle embedded in a continuously-graded unbounded medium. In the case we solve, the square of the wavenumber (refractive index) varies linearly in one coordinate, i.e. (Δ + E +x2) u (x1 ,x2) = 0 where E is a constant; this models quantum particles of fixed energy in a uniform gravitational field, and has broader applications to stratified media in acoustics, optics and seismology. We evaluate the fundamental solution efficiently with exponential accuracy via numerical saddle-point integration, using the truncated trapezoid rule with typically 102 nodes, with an effort that is independent of the frequency parameter E. By combining with a high-order Nyström quadrature, we are able to solve the scattering from obstacles 50 wavelengths across to 11 digits of accuracy in under a minute on a desktop or laptop.

  2. Light-Dependent Aerobic Methane Oxidation Reduces Methane Emissions from Seasonally Stratified Lakes

    Science.gov (United States)

    Oswald, Kirsten; Milucka, Jana; Brand, Andreas; Littmann, Sten; Wehrli, Bernhard; Kuypers, Marcel M. M.; Schubert, Carsten J.

    2015-01-01

    Lakes are a natural source of methane to the atmosphere and contribute significantly to total emissions compared to the oceans. Controls on methane emissions from lake surfaces, particularly biotic processes within anoxic hypolimnia, are only partially understood. Here we investigated biological methane oxidation in the water column of the seasonally stratified Lake Rotsee. A zone of methane oxidation extending from the oxic/anoxic interface into anoxic waters was identified by chemical profiling of oxygen, methane and δ13C of methane. Incubation experiments with 13C-methane yielded highest oxidation rates within the oxycline, and comparable rates were measured in anoxic waters. Despite predominantly anoxic conditions within the zone of methane oxidation, known groups of anaerobic methanotrophic archaea were conspicuously absent. Instead, aerobic gammaproteobacterial methanotrophs were identified as the active methane oxidizers. In addition, continuous oxidation and maximum rates always occurred under light conditions. These findings, along with the detection of chlorophyll a, suggest that aerobic methane oxidation is tightly coupled to light-dependent photosynthetic oxygen production both at the oxycline and in the anoxic bottom layer. It is likely that this interaction between oxygenic phototrophs and aerobic methanotrophs represents a widespread mechanism by which methane is oxidized in lake water, thus diminishing its release into the atmosphere. PMID:26193458

  3. Supersymmetry and gravitational duality

    International Nuclear Information System (INIS)

    Argurio, Riccardo; Dehouck, Francois; Houart, Laurent

    2009-01-01

    We study how the supersymmetry algebra copes with gravitational duality. As a playground, we consider a charged Taub-Newman-Unti-Tamburino(NUT) solution of D=4, N=2 supergravity. We find explicitly its Killing spinors, and the projection they obey provides evidence that the dual magnetic momenta necessarily have to appear in the supersymmetry algebra. The existence of such a modification is further supported using an approach based on the Nester form. In the process, we find new expressions for the dual magnetic momenta, including the NUT charge. The same expressions are then rederived using gravitational duality.

  4. Discovery of two new gravitation lens systems

    International Nuclear Information System (INIS)

    Guertler, J.

    1988-01-01

    The discovery of new quasar and radio galaxy double images produced by the gravitation lens effect is reported. The light deflecting galaxies acting as gravitational lenses could be made visible by means of image processing procedures

  5. Some aspects of gravitational waves in an isotropic background universe

    International Nuclear Information System (INIS)

    Pandey, S.N.

    1981-06-01

    Gravitational waves are an inescapable consequence of the relativistic theory of gravitation. They are meaningfully comparable with electromagnetic waves. However, they are not conformally invariant. So, to investigate this property for gravitational waves, modified field equations are obtained of which the underlying Lagrangian is based on gravitation only. It gives, if helicity is preserved, amplitude modification, and the wave is represented by Bessel function of zero order. Some aspects of this theory are discussed with reference to gravitational waves only. (author)

  6. Gravitational waves in hybrid quintessential inflationary models

    International Nuclear Information System (INIS)

    Sa, Paulo M; Henriques, Alfredo B

    2011-01-01

    The generation of primordial gravitational waves is investigated within the hybrid quintessential inflationary model. Using the method of continuous Bogoliubov coefficients, we calculate the full gravitational-wave energy spectrum. The post-inflationary kination period, characteristic of quintessential inflationary models, leaves a clear signature on the spectrum, namely, a sharp rise of the gravitational-wave spectral energy density Ω GW at high frequencies. For appropriate values of the parameters of the model, Ω GW can be as high as 10 -12 in the MHz-GHz range of frequencies.

  7. Analysis of the gravitational coupled collisionless Boltzmann-poisson equations and numerical simulations of the formation of self-gravitating systems

    International Nuclear Information System (INIS)

    Roy, Fabrice

    2004-01-01

    We study the formation of self-gravitating systems and their properties by means of N-body simulations of gravitational collapse. First, we summarize the major analytical results concerning the collisionless Boltzmann equation and the Poisson's equation which describe the dynamics of collisionless gravitational systems. We present a study of some analytical solutions of this coupled system of equations. We then present the software used to perform the simulations. Some of this has been parallelized and implemented with the aid of MPI. For this reason we give a brief overview of it. Finally, we present the results of the numerical simulations. Analysis of these results allows us to explain some features of self-gravitating systems and the initial conditions needed to trigger the Antonov instability and the radial orbit instability. (author) [fr

  8. Gravitational-wave research: Current status and future prospects

    International Nuclear Information System (INIS)

    Thorne, K.S.

    1980-01-01

    There is a reasonably good change that in the 1980s cosmic gravitational waves will be discovered and will become a powerful tool for astronomy. This prospect has stimulated a three-pronged research effort. First, relativity theorists are developing new mathematical tools for the analysis of gravitational radiation: including (i) methods of analyzing the generation of gravity waves by sources with strong self-gravity and large internal velocities (e.g., collisions of black holes), (ii) methods of computing radiation reaction in sources, and (iii) methods of analyzing how gravitational waves propagate through our lumpy curved-space Universe. Second, astrophysicists are attempting to identify the most promissing sources of gravitational waves, and are using the relativity theorists' mathematical tools to estimate the characteristics of the waves they emit. Third, with the estimated wave characteristics in mind, experimenters are designing and constructing a second generation of gravitational-wave detectors: detectors of three types: Doppler tracking of interplanetary spacecraft, Earth-based laser interferometers, and Earth-based Weber-type resonant bars. This article reviews, in brief, all three prongs of the research effort and gives references to more detailed articles about specialized aspects of gravitational-wave physics

  9. Inertial reference frames and gravitational forces

    International Nuclear Information System (INIS)

    Santavy, I.

    1981-01-01

    The connection between different definitions of inertial, i.e. fundamental, reference frames and the corresponding characterisation of gravitational fields by gravitational forces are considered from the point of view of their possible interpretation in university introductory courses. The introduction of a special class of reference frames, denoted 'mixed reference frames' is proposed and discussed. (author)

  10. Gravitational-wave detection using redshifted 21-cm observations

    International Nuclear Information System (INIS)

    Bharadwaj, Somnath; Guha Sarkar, Tapomoy

    2009-01-01

    A gravitational-wave traversing the line of sight to a distant source produces a frequency shift which contributes to redshift space distortion. As a consequence, gravitational waves are imprinted as density fluctuations in redshift space. The gravitational-wave contribution to the redshift space power spectrum has a different μ dependence as compared to the dominant contribution from peculiar velocities. This, in principle, allows the two signals to be separated. The prospect of a detection is most favorable at the highest observable redshift z. Observations of redshifted 21-cm radiation from neutral hydrogen hold the possibility of probing very high redshifts. We consider the possibility of detecting primordial gravitational waves using the redshift space neutral hydrogen power spectrum. However, we find that the gravitational-wave signal, though present, will not be detectable on superhorizon scales because of cosmic variance and on subhorizon scales where the signal is highly suppressed.

  11. Congratulations on the direct detection of gravitational waves

    CERN Multimedia

    2016-01-01

    This week saw the announcement of an extraordinary physics result: the first direct detection of gravitational waves by the LIGO Scientific Collaboration, which includes the GEO team, and the Virgo Collaboration, using the twin Laser Interferometer Gravitational-wave Observatory (LIGO) detectors located in Livingston, Louisiana, and Hanford, Washington, USA.   Albert Einstein predicted gravitational waves in a paper published 100 years ago in 1916. They are a natural consequence of the theory of general relativity, which describes the workings of gravity and was published a few months earlier. Until now, they have remained elusive. Gravitational waves are tiny ripples in space-time produced by violent gravitational phenomena. Because the fractional change in the space-time geometry can be at the level of 10-21 or smaller, extremely sophisticated, high-sensitivity instruments are needed to detect them. Recently, the Advanced LIGO detector increased its sensitivity by alm...

  12. Advanced instrumentation for Solar System gravitational physics

    Science.gov (United States)

    Peron, Roberto; Bellettini, G.; Berardi, S.; Boni, A.; Cantone, C.; Coradini, A.; Currie, D. G.; Dell'Agnello, S.; Delle Monache, G. O.; Fiorenza, E.; Garattini, M.; Iafolla, V.; Intaglietta, N.; Lefevre, C.; Lops, C.; March, R.; Martini, M.; Nozzoli, S.; Patrizi, G.; Porcelli, L.; Reale, A.; Santoli, F.; Tauraso, R.; Vittori, R.

    2010-05-01

    The Solar System is a complex laboratory for testing gravitational physics. Indeed, its scale and hierarchical structure make possible a wide range of tests for gravitational theories, studying the motion of both natural and artificial objects. The usual methodology makes use of tracking information related to the bodies, fitted by a suitable dynamical model. Different equations of motion are provided by different theories, which can be therefore tested and compared. Future exploration scenarios show the possibility of placing deep-space probes near the Sun or in outer Solar System, thereby extending the available experimental data sets. In particular, the Earth-Moon is the most accurately known gravitational three-body laboratory, which is undergoing a new, strong wave of research and exploration (both robotic and manned). In addition, the benefits of a synergetic study of planetary science and gravitational physics are of the greatest importance (as shown by the success of the Apollo program), especially in the Earth-Moon, Mars-Phobos, Jovian and Saturnian sub-suystems. This scenarios open critical issues regarding the quality of the available dynamical models, i.e. their capability of fitting data without an excessive number of empirical hypotheses. A typical case is represented by the non-gravitational phenomena, which in general are difficult to model. More generally, gravitation tests with Lunar Laser Ranging, inner or outer Solar System probes and the appearance of the so-called 'anomalies'(like the one indicated by the Pioneers), whatever their real origin (either instrumental effects or due to new physics), show the necessity of a coordinated improvement of tracking and modelization techniques. A common research path will be discussed, employing the development and use of advanced instrumentation to cope with current limitations of Solar System gravitational tests. In particular, the use of high-sensitivity accelerometers, combined with microwave and laser

  13. Detecting the Stochastic Gravitational-Wave Background

    Science.gov (United States)

    Colacino, Carlo Nicola

    2017-12-01

    The stochastic gravitational-wave background (SGWB) is by far the most difficult source of gravitational radiation detect. At the same time, it is the most interesting and intriguing one. This book describes the initial detection of the SGWB and describes the underlying mathematics behind one of the most amazing discoveries of the 21st century. On the experimental side it would mean that interferometric gravitational wave detectors work even better than expected. On the observational side, such a detection could give us information about the very early Universe, information that could not be obtained otherwise. Even negative results and improved upper bounds could put constraints on many cosmological and particle physics models.

  14. The present gravitational wave detection effort

    International Nuclear Information System (INIS)

    Riles, Keith

    2010-01-01

    Gravitational radiation offers a new non-electromagnetic window through which to observe the universe. The LIGO and Virgo Collaborations have completed a first joint data run with unprecedented sensitivities to gravitational waves. Results from searches in the data for a variety of astrophysical sources are presented. A second joint data run with improved detector sensitivities is underway, and soon major upgrades will be carried out to build Advanced LIGO and Advanced Virgo with expected improvements in event rates of more than 1000. In parallel there is a vigorous effort in the radio pulsar community to detect nHz gravitational waves via the timing residuals in an array of pulsars at different locations in the sky.

  15. Gravitational Field Shielding by Scalar Field and Type II Superconductors

    Directory of Open Access Journals (Sweden)

    Zhang B. J.

    2013-01-01

    Full Text Available The gravitational field shielding by scalar field and type II superconductors are theoret- ically investigated. In accord with the well-developed five-dimensional fully covariant Kaluza-Klein theory with a scalar field, which unifies the Einsteinian general relativity and Maxwellian electromagnetic theory, the scalar field cannot only polarize the space as shown previously, but also flatten the space as indicated recently. The polariza- tion of space decreases the electromagnetic field by increasing the equivalent vacuum permittivity constant, while the flattening of space decreases the gravitational field by decreasing the equivalent gravitational constant. In other words, the scalar field can be also employed to shield the gravitational field. A strong scalar field significantly shield the gravitational field by largely decreasing the equivalent gravitational constant. According to the theory of gravitational field shielding by scalar field, the weight loss experimentally detected for a sample near a rotating ceramic disk at very low tempera- ture can be explained as the shielding of the Earth gravitational field by the Ginzburg- Landau scalar field, which is produced by the type II superconductors. The significant shielding of gravitational field by scalar field produced by superconductors may lead to a new spaceflight technology in future.

  16. Self-consistent atmosphere modeling with cloud formation for low-mass stars and exoplanets

    Science.gov (United States)

    Juncher, Diana; Jørgensen, Uffe G.; Helling, Christiane

    2017-12-01

    Context. Low-mass stars and extrasolar planets have ultra-cool atmospheres where a rich chemistry occurs and clouds form. The increasing amount of spectroscopic observations for extrasolar planets requires self-consistent model atmosphere simulations to consistently include the formation processes that determine cloud formation and their feedback onto the atmosphere. Aims: Our aim is to complement the MARCS model atmosphere suit with simulations applicable to low-mass stars and exoplanets in preparation of E-ELT, JWST, PLATO and other upcoming facilities. Methods: The MARCS code calculates stellar atmosphere models, providing self-consistent solutions of the radiative transfer and the atmospheric structure and chemistry. We combine MARCS with a kinetic model that describes cloud formation in ultra-cool atmospheres (seed formation, growth/evaporation, gravitational settling, convective mixing, element depletion). Results: We present a small grid of self-consistently calculated atmosphere models for Teff = 2000-3000 K with solar initial abundances and log (g) = 4.5. Cloud formation in stellar and sub-stellar atmospheres appears for Teff day-night energy transport and no temperature inversion.

  17. Interaction of gravitational waves with magnetic and electric fields

    International Nuclear Information System (INIS)

    Barrabes, C.; Hogan, P. A.

    2010-01-01

    The existence of large-scale magnetic fields in the universe has led to the observation that if gravitational waves propagating in a cosmological environment encounter even a small magnetic field then electromagnetic radiation is produced. To study this phenomenon in more detail we take it out of the cosmological context and at the same time simplify the gravitational radiation to impulsive waves. Specifically, to illustrate our findings, we describe the following three physical situations: (1) a cylindrical impulsive gravitational wave propagating into a universe with a magnetic field, (2) an axially symmetric impulsive gravitational wave propagating into a universe with an electric field and (3) a 'spherical' impulsive gravitational wave propagating into a universe with a small magnetic field. In cases (1) and (3) electromagnetic radiation is produced behind the gravitational wave. In case (2) no electromagnetic radiation appears after the wave unless a current is established behind the wave breaking the Maxwell vacuum. In all three cases the presence of the magnetic or electric fields results in a modification of the amplitude of the incoming gravitational wave which is explicitly calculated using the Einstein-Maxwell vacuum field equations.

  18. How Spherical Is a Cube (Gravitationally)?

    Science.gov (United States)

    Sanny, Jeff; Smith, David

    2015-01-01

    An important concept that is presented in the discussion of Newton's law of universal gravitation is that the gravitational effect external to a spherically symmetric mass distribution is the same as if all of the mass of the distribution were concentrated at the center. By integrating over ring elements of a spherical shell, we show that the…

  19. Gravitational-wave astronomy: delivering on the promises

    Science.gov (United States)

    Schutz, B. F.

    2018-05-01

    Now that LIGO and Virgo have begun to detect gravitational-wave events with regularity, the field of gravitational-wave astronomy is beginning to realize its promise. Binary black holes and, very recently, binary neutron stars have been observed, and we are already learning much from them. The future, with improved sensitivity, more detectors and detectors like LISA in different frequency bands, has even more promise to open a completely hidden side of the Universe to our exploration. This article is part of a discussion meeting issue `The promises of gravitational-wave astronomy'.

  20. Superconductor in a weak static gravitational field

    Energy Technology Data Exchange (ETDEWEB)

    Ummarino, Giovanni Alberto [Dipartimento DISAT, Politecnico di Torino, Turin (Italy); National Research Nuclear University MEPhI-Moscow Engineering Physics Institute, Moscow (Russian Federation); Gallerati, Antonio [Dipartimento DISAT, Politecnico di Torino, Turin (Italy)

    2017-08-15

    We provide the detailed calculation of a general form for Maxwell and London equations that takes into account gravitational corrections in linear approximation. We determine the possible alteration of a static gravitational field in a superconductor making use of the time-dependent Ginzburg-Landau equations, providing also an analytic solution in the weak field condition. Finally, we compare the behavior of a high-T{sub c} superconductor with a classical low-T{sub c} superconductor, analyzing the values of the parameters that can enhance the reduction of the gravitational field. (orig.)

  1. New Metrics from a Fractional Gravitational Field

    International Nuclear Information System (INIS)

    El-Nabulsi, Rami Ahmad

    2017-01-01

    Agop et al. proved in Commun. Theor. Phys. (2008) that, a Reissner–Nordstrom type metric is obtained, if gauge gravitational field in a fractal spacetime is constructed by means of concepts of scale relativity. We prove in this short communication that similar result is obtained if gravity in D-spacetime dimensions is fractionalized by means of the Glaeske–Kilbas–Saigo fractional. Besides, non-singular gravitational fields are obtained without using extra-dimensions. We present few examples to show that these gravitational fields hold a number of motivating features in spacetime physics. (paper)

  2. The theory of space, time and gravitation

    CERN Document Server

    Fock, V

    2015-01-01

    The Theory of Space, Time, and Gravitation, 2nd Revised Edition focuses on Relativity Theory and Einstein's Theory of Gravitation and correction of the misinterpretation of the Einsteinian Gravitation Theory. The book first offers information on the theory of relativity and the theory of relativity in tensor form. Discussions focus on comparison of distances and lengths in moving reference frames; comparison of time differences in moving reference frames; position of a body in space at a given instant in a fixed reference frame; and proof of the linearity of the transformation linking two iner

  3. Gravitational waves in hybrid quintessential inflationary models

    Energy Technology Data Exchange (ETDEWEB)

    Sa, Paulo M [Departamento de Fisica, Faculdade de Ciencias e Tecnologia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro (Portugal); Henriques, Alfredo B, E-mail: pmsa@ualg.pt, E-mail: alfredo.henriques@ist.utl.pt [Centro Multidisciplinar de Astrofisica - CENTRA and Departamento de Fisica, Instituto Superior Tecnico, UTL, Av. Rovisco Pais, 1049-001 Lisboa (Portugal)

    2011-09-22

    The generation of primordial gravitational waves is investigated within the hybrid quintessential inflationary model. Using the method of continuous Bogoliubov coefficients, we calculate the full gravitational-wave energy spectrum. The post-inflationary kination period, characteristic of quintessential inflationary models, leaves a clear signature on the spectrum, namely, a sharp rise of the gravitational-wave spectral energy density {Omega}{sub GW} at high frequencies. For appropriate values of the parameters of the model, {Omega}{sub GW} can be as high as 10{sup -12} in the MHz-GHz range of frequencies.

  4. National Coral Reef Monitoring Program: Benthic Cover Derived from Analysis of Benthic Images Collected during Stratified Random Surveys (StRS) across the Mariana Archipelago from 2014-03-25 to 2014-05-07 (NCEI Accession 0159148)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The data described here result from benthic photo-quadrat surveys conducted along transects at stratified random sites across the Mariana archipelago in 2014 as a...

  5. National Coral Reef Monitoring Program: benthic cover derived from analysis of benthic images collected during stratified random surveys (StRS) across the Hawaiian Archipelago from 2016-07-13 to 2016-09-27 (NCEI Accession 0164295)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The data described here result from benthic photo-quadrat surveys conducted along transects at stratified random sites across the Hawaiian archipelago in 2016 as a...

  6. Observing a Gravitational Wave Background With Lisa

    National Research Council Canada - National Science Library

    Tinto, M; Armstrong, J; Estabrook, F

    2000-01-01

    .... Comparison of the conventional Michelson interferometer observable with the fully-symmetric Sagnac data-type allows unambiguous discrimination between a gravitational wave background and instrumental noise. The method presented here can be used to detect a confusion-limited gravitational wave background.

  7. THE THIRD GRAVITATIONAL LENSING ACCURACY TESTING (GREAT3) CHALLENGE HANDBOOK

    International Nuclear Information System (INIS)

    Mandelbaum, Rachel; Kannawadi, Arun; Simet, Melanie; Rowe, Barnaby; Kacprzak, Tomasz; Bosch, James; Miyatake, Hironao; Chang, Chihway; Gill, Mandeep; Courbin, Frederic; Jarvis, Mike; Armstrong, Bob; Lackner, Claire; Leauthaud, Alexie; Nakajima, Reiko; Rhodes, Jason; Zuntz, Joe; Bridle, Sarah; Coupon, Jean; Dietrich, Jörg P.

    2014-01-01

    The GRavitational lEnsing Accuracy Testing 3 (GREAT3) challenge is the third in a series of image analysis challenges, with a goal of testing and facilitating the development of methods for analyzing astronomical images that will be used to measure weak gravitational lensing. This measurement requires extremely precise estimation of very small galaxy shape distortions, in the presence of far larger intrinsic galaxy shapes and distortions due to the blurring kernel caused by the atmosphere, telescope optics, and instrumental effects. The GREAT3 challenge is posed to the astronomy, machine learning, and statistics communities, and includes tests of three specific effects that are of immediate relevance to upcoming weak lensing surveys, two of which have never been tested in a community challenge before. These effects include many novel aspects including realistically complex galaxy models based on high-resolution imaging from space; a spatially varying, physically motivated blurring kernel; and a combination of multiple different exposures. To facilitate entry by people new to the field, and for use as a diagnostic tool, the simulation software for the challenge is publicly available, though the exact parameters used for the challenge are blinded. Sample scripts to analyze the challenge data using existing methods will also be provided. See http://great3challenge.info and http://great3.projects.phys.ucl.ac.uk/leaderboard/ for more information

  8. Problems of generation and reception of gravitational waves. [Review

    Energy Technology Data Exchange (ETDEWEB)

    Pisarev, A F [Joint Inst. for Nuclear Research, Dubna (USSR)

    1975-01-01

    The present day status of the problems of gravitation, wave radiation and reception is surveyed. The physical presentation and mathematical description of the processes of radiation, propagation and interaction of gravitation waves with matter and the electromagnetic field are given. The experiments on the search for gravitation waves of astophysical nature are analysed. The laboratory and cosmic sources of these waves and the methods of their reception are described. Special attention is drawn to the analysis of the proposals to perform a complete laboratory gravitation wave experiment.

  9. Atmosphere-Ionosphere Electrodynamic Coupling

    Science.gov (United States)

    Sorokin, V. M.; Chmyrev, V. M.

    Numerous phenomena that occur in the mesosphere, ionosphere, and the magnetosphere of the Earth are caused by the sources located in the lower atmosphere and on the ground. We describe the effects produced by lightning activity and by ground-based transmitters operated in high frequency (HF) and very low frequency (VLF) ranges. Among these phenomena are the ionosphere heating and the formation of plasma density inhomogeneities, the excitation of gamma ray bursts and atmospheric emissions in different spectral bands, the generation of ULF/ELF/VLF electromagnetic waves and plasma turbulence in the ionosphere, the stimulation of radiation belt electron precipitations and the acceleration of ions in the upper ionosphere. The most interesting results of experimental and theoretical studies of these phenomena are discussed below. The ionosphere is subject to the action of the conductive electric current flowing in the atmosphere-ionosphere circuit. We present a physical model of DC electric field and current formation in this circuit. The key element of this model is an external current, which is formed with the occurrence of convective upward transport of charged aerosols and their gravitational sedimentation in the atmosphere. An increase in the level of atmospheric radioactivity results in the appearance of additional ionization and change of electrical conductivity. Variation of conductivity and external current in the lower atmosphere leads to perturbation of the electric current flowing in the global atmosphere-ionosphere circuit and to the associated DC electric field perturbation both on the Earth's surface and in the ionosphere. Description of these processes and some results of the electric field and current calculations are presented below. The seismic-induced electric field perturbations produce noticeable effects in the ionosphere by generating the electromagnetic field and plasma disturbances. We describe the generation mechanisms of such experimentally

  10. The problem of infinite self-energy in electrodynamics and gravitation

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, K P; Sivaram, C [Indian Inst. of Science, Bangalore. Div. of Physics and Mathematical Sciences

    1975-02-01

    The appearance of infinities in the self-energies of point particles in both classical and quantum electrodynamics has been a persistent problem for the last several decades. This problem is discussed at length in relation to the Newtonian theory of gravitation and the modern (relativity) theory on gravitation. Gravitational contraction and the mass and radius of the electron are treated in detail. The spacetime properties around the Schwarzchild radius of the electron are modified to explain the divergences. The quantum gravitational mass and the quantum gravitational length are mentioned. It is pointed out that the out-off at the Schwarzchild radius applies not only to photon but also to the virtual quanta of all fields with which the particle interacts. Arguments are extended to explain the gravitational interactions of the proton. The interactions of the hadrons through f-gravity are explained. Recent work on renormalisibility (i.e. removal of divergences) of quantum gravitation are mentioned.

  11. Scalar-metric and scalar-metric-torsion gravitational theories

    International Nuclear Information System (INIS)

    Aldersley, S.J.

    1977-01-01

    The techniques of dimensional analysis and of the theory of tensorial concomitants are employed to study field equations in gravitational theories which incorporate scalar fields of the Brans-Dicke type. Within the context of scalar-metric gravitational theories, a uniqueness theorem for the geometric (or gravitational) part of the field equations is proven and a Lagrangian is determined which is uniquely specified by dimensional analysis. Within the context of scalar-metric-torsion gravitational theories a uniqueness theorem for field Lagrangians is presented and the corresponding Euler-Lagrange equations are given. Finally, an example of a scalar-metric-torsion theory is presented which is similar in many respects to the Brans-Dicke theory and the Einstein-Cartan theory

  12. Linear interaction of gravitational waves

    International Nuclear Information System (INIS)

    Ciubotariu, C.D.

    1992-01-01

    Starting with the linearized Einstein equations written in the same form as Maxwell equations, a damping term is found in the wave equation. The analogy with the propagation of the electromagnetic wave in ohmic media is obvious if we introduce an 'ohmic relation' for gravitational interaction. The possibility of the amplification of gravitational waves by a suitable choice of the velocity field of a dust ('dust with negative viscosity'), for example by the use of the free-electron laser principle, is indicated. (Author)

  13. Astrophysical sources of gravitational waves

    Energy Technology Data Exchange (ETDEWEB)

    Losurdo, G. E-mail: losurdo@galileo.pi.infn.it

    2000-05-01

    The interferometric detectors of gravitational waves (GW) (such as VIRGO and LIGO) will search for events in a frequency band within a few Hz and a few kHz, where several sources are expected to emit. In this talk we outline briefly the current theoretical knowledge on the emission of GW in events such as the coalescence of compact binaries, the gravitational collapse, the spinning of a neutron stars. Expected amplitudes are compared with the target sensitivity of the VIRGO/LIGO interferometric detectors.

  14. Introduction to the theory of gravitational radiation

    International Nuclear Information System (INIS)

    Damour, T.

    1987-01-01

    In these lectures our attention is restricted to the analytical investigations of the theory of gravitational radiation. There exist already several reviews concerning this topic and, in particular, a recent detailed review, by Thorne, where gravitational radiation theory is put in a form suitable for astrophysical studies. This is why the scope of these lectures is limited to supplement the existing reviews in two ways. First, both the basic concepts of gravitational radiation theory, and the precise conditions, as well as the limitations, of validity of some of the well-known results in this theory are presented. Indeed, as these results have been, or will be, applied in astrophysics, it is important to have clearly in mind both what they mean, and when they can be legitimately applied. Second, a progress report on some of the ongoing analytical research in gravitational radiation theory is presented. 144 references

  15. Gravitational analogue of the Witten effect

    Energy Technology Data Exchange (ETDEWEB)

    Foda, O. (International Centre for Theoretical Physics, Trieste (Italy))

    1985-07-22

    In the presence of massive fermions, and assuming a non-vanishing theta-parameter as the only source of CP violation, the Witten effect (a shift in the electric charge of a magnetic monopole due to CP non-conservation) is shown to follow from an anomalous chiral commutator. Next, given the gravitational contribution to the chiral anomaly, the corresponding anomalous commutator for Dirac fermion currents in a gravitational background is derived. From that, we infer the equivalence of a thetaR tildeR term in the lagrangian to a shift in the mass parameter of the NUT metric, in proportion to theta. This is interpreted as the gravitational analogue of the Witten effect. Its relevance to certain Kaluza-Klein monopoles is briefly discussed.

  16. The dawn of gravitational wave astronomy

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    On Sep 14 2015, gravitational waves were for the first time detected directly. This observation by the LIGO interferometric detectors marks the dawn of a new era in our observational study of the cosmos as a qualitatively new window to its exploration has been opened. This talk reviews some of the fundamental concepts of gravitational waves and the methodology employed for their observation. The first event, dubbed GW150914, and the properties of its source, as inferred from the observation, will be discussed. The talk concludes with a selected set of the most important topics where we expect gravitational-wave observations to deepen and either challenge or confirm our present understanding of the laws and the history of our universe.

  17. Gravitational Lensing from a Spacetime Perspective

    Directory of Open Access Journals (Sweden)

    Perlick Volker

    2004-09-01

    Full Text Available The theory of gravitational lensing is reviewed from a spacetime perspective, without quasi-Newtonian approximations. More precisely, the review covers all aspects of gravitational lensing where light propagation is described in terms of lightlike geodesics of a metric of Lorentzian signature. It includes the basic equations and the relevant techniques for calculating the position, the shape, and the brightness of images in an arbitrary general-relativistic spacetime. It also includes general theorems on the classification of caustics, on criteria for multiple imaging, and on the possible number of images. The general results are illustrated with examples of spacetimes where the lensing features can be explicitly calculated, including the Schwarzschild spacetime, the Kerr spacetime, the spacetime of a straight string, plane gravitational waves, and others.

  18. Electromagnetic waves in gravitational wave spacetimes

    International Nuclear Information System (INIS)

    Haney, M.; Bini, D.; Ortolan, A.; Fortini, P.

    2013-01-01

    We have considered the propagation of electromagnetic waves in a space-time representing an exact gravitational plane wave and calculated the induced changes on the four-potential field Aμ of a plane electromagnetic wave. By choosing a suitable photon round-trip in a Michelson interferometer, we have been able to identify the physical effects of the exact gravitational wave on the electromagnetic field, i.e. phase shift, change of the polarization vector, angular deflection and delay. These results have been exploited to study the response of an interferometric gravitational wave detector beyond the linear approximation of the general theory of relativity. A much more detailed examination of this problem can be found in our paper recently published in Classical and Quantum Gravity (28 (2011) 235007).

  19. Can the Sun shed light on neutrino gravitational interactions?

    International Nuclear Information System (INIS)

    Halprin, A.; Leung, C.N.

    1991-01-01

    We have examined the effects of a large gravitational field on the phenomenon of neutrino oscillations as contemplated in the Mikheyev-Smirnov-Wolfenstein mechanism. We find that the Sun's gravitational field would amplify any small breakdown in the universality of the gravitational coupling by many orders of magnitude. A breakdown of only 1 part in 10 14 would still make the gravitational effect comparable to the conventional weak interaction. The differing energy dependences of the two level-crossing mechanisms can therefore be used as a very sensitive tool to test the conventional universality hypothesis

  20. Gravitational radiation from electromagnetic systems

    International Nuclear Information System (INIS)

    Nikishov, A.I.; Ritus, V.I.

    1989-01-01

    It is shown that the spectrum of gravitational radiation of a charge e with mass m, undergoing finite motion in an electromagnetic field, smoothly varying in the neighborhood of the orbit over a region of the order of the radius of curvature, differs in the ultrarelativistic limit from the spectrum of the charge's electromagnetic radiation. The difference consists of the frequency-independent coefficient 4πGm 2 Λ 2 /e 2 , where Λ is of the order of the Lorentz factor of the charge and depends on the direction of the wave vector and on the behavior of the field in the above-indicated region. For a plane-wave external field the gravitational and electromagnetic spectra are strictly proportional to each other for arbitrary velocities of the charge. Localization of the external forces near the orbit violates this proportionality of the spectra and weakens the gravitational radiation by an amount of the order of the square of the Lorentz factor

  1. Exact gravitational quasinormal frequencies of topological black holes

    International Nuclear Information System (INIS)

    Birmingham, Danny; Mokhtari, Susan

    2006-01-01

    We compute the exact gravitational quasinormal frequencies for massless topological black holes in d-dimensional anti-de Sitter space. Using the gauge invariant formalism for gravitational perturbations derived by Kodama and Ishibashi, we show that in all cases the scalar, vector, and tensor modes can be reduced to a simple scalar field equation. This equation is exactly solvable in terms of hypergeometric functions, thus allowing an exact analytic determination of the gravitational quasinormal frequencies

  2. Electric Dipole Antenna: A Source of Gravitational Radiation

    Directory of Open Access Journals (Sweden)

    Chifu E. N.

    2013-07-01

    Full Text Available In this article, the gravitational scalar potential due to an oscillating electric dipole antenna placed in empty space is derived. The gravitational potential obtained propagates as a wave. The gravitational waves have phase velocity equal to the speed of light in vacuum (c at the equatorial plane of the electric dipole antenna, unlike electromagnetic waves from the dipole antenna that cancel out at the equatorial plane due to charge symmetry.

  3. ARRIVAL TIME DIFFERENCES BETWEEN GRAVITATIONAL WAVES AND ELECTROMAGNETIC SIGNALS DUE TO GRAVITATIONAL LENSING

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Ryuichi [Faculty of Science and Technology, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori 036-8561 (Japan)

    2017-01-20

    In this study we demonstrate that general relativity predicts arrival time differences between gravitational wave (GW) and electromagnetic (EM) signals caused by the wave effects in gravitational lensing. The GW signals can arrive earlier than the EM signals in some cases if the GW/EM signals have passed through a lens, even if both signals were emitted simultaneously by a source. GW wavelengths are much larger than EM wavelengths; therefore, the propagation of the GWs does not follow the laws of geometrical optics, including the Shapiro time delay, if the lens mass is less than approximately 10{sup 5} M {sub ⊙}( f /Hz){sup −1}, where f is the GW frequency. The arrival time difference can reach ∼0.1 s ( f /Hz){sup −1} if the signals have passed by a lens of mass ∼8000 M {sub ⊙}( f /Hz){sup −1} with the impact parameter smaller than the Einstein radius; therefore, it is more prominent for lower GW frequencies. For example, when a distant supermassive black hole binary (SMBHB) in a galactic center is lensed by an intervening galaxy, the time lag becomes of the order of 10 days. Future pulsar timing arrays including the Square Kilometre Array and X-ray detectors may detect several time lags by measuring the orbital phase differences between the GW/EM signals in the SMBHBs. Gravitational lensing imprints a characteristic modulation on a chirp waveform; therefore, we can deduce whether a measured arrival time lag arises from intrinsic source properties or gravitational lensing. Determination of arrival time differences would be extremely useful in multimessenger observations and tests of general relativity.

  4. Simulation model of stratified thermal energy storage tank using finite difference method

    Science.gov (United States)

    Waluyo, Joko

    2016-06-01

    Stratified TES tank is normally used in the cogeneration plant. The stratified TES tanks are simple, low cost, and equal or superior in thermal performance. The advantage of TES tank is that it enables shifting of energy usage from off-peak demand for on-peak demand requirement. To increase energy utilization in a stratified TES tank, it is required to build a simulation model which capable to simulate the charging phenomenon in the stratified TES tank precisely. This paper is aimed to develop a novel model in addressing the aforementioned problem. The model incorporated chiller into the charging of stratified TES tank system in a closed system. The model was developed in one-dimensional type involve with heat transfer aspect. The model covers the main factors affect to degradation of temperature distribution namely conduction through the tank wall, conduction between cool and warm water, mixing effect on the initial flow of the charging as well as heat loss to surrounding. The simulation model is developed based on finite difference method utilizing buffer concept theory and solved in explicit method. Validation of the simulation model is carried out using observed data obtained from operating stratified TES tank in cogeneration plant. The temperature distribution of the model capable of representing S-curve pattern as well as simulating decreased charging temperature after reaching full condition. The coefficient of determination values between the observed data and model obtained higher than 0.88. Meaning that the model has capability in simulating the charging phenomenon in the stratified TES tank. The model is not only capable of generating temperature distribution but also can be enhanced for representing transient condition during the charging of stratified TES tank. This successful model can be addressed for solving the limitation temperature occurs in charging of the stratified TES tank with the absorption chiller. Further, the stratified TES tank can be

  5. Gravitational-wave astronomy: delivering on the promises.

    Science.gov (United States)

    Schutz, B F

    2018-05-28

    Now that LIGO and Virgo have begun to detect gravitational-wave events with regularity, the field of gravitational-wave astronomy is beginning to realize its promise. Binary black holes and, very recently, binary neutron stars have been observed, and we are already learning much from them. The future, with improved sensitivity, more detectors and detectors like LISA in different frequency bands, has even more promise to open a completely hidden side of the Universe to our exploration.This article is part of a discussion meeting issue 'The promises of gravitational-wave astronomy'. © 2018 The Author(s).

  6. Neutron stars, magnetic fields, and gravitational waves

    International Nuclear Information System (INIS)

    Lamb, F.K.

    2001-01-01

    The r-modes of rapidly spinning young neutron stars have recently attracted attention as a promising source of detectable gravitational radiation. These neutron stars are expected to have magnetic fields ∼ 10 12 G. The r-mode velocity perturbation causes differential motion of the fluid in the star; this is a kinematic effect. In addition, the radiation-reaction associated with emission of gravitational radiation by r-waves drives additional differential fluid motions; this is a dynamic effect. These differential fluid motions distort the magnetic fields of neutron stars and may therefore play an important role in determining the structure of neutron star magnetic fields. If the stellar field is ∼ 10 16 (Ω/Ω B ) G or stronger, the usual r-modes are no longer normal modes of the star; here Ω and Ω B are the angular velocities of the star and at which mass shedding occurs. Much weaker magnetic fields can prevent gravitational radiation from amplifying the r-modes or damp existing r-mode oscillations on a relatively short timescale by extracting energy from the modes faster than gravitational wave emission can pump energy into them. The onset of proton superconductivity in the cores of newly formed magnetic neutron stars typically increases the effect on the r-modes of the magnetic field in the core by many orders of magnitude. Once the core has become superconducting, magnetic fields of the order of 10 12 G or greater are usually sufficient to damp r-modes that have been excited by emission of gravitational radiation and to suppress any further emission. A rapid drop in the strength of r-mode gravitational radiation from young neutron stars may therefore signal the onset of superconductivity in the core and provide a lower bound on the strength of the magnetic field there. Hence, measurements of r-mode gravitational waves from newly formed neutron stars may provide valuable diagnostic information about magnetic field strengths, cooling processes, and the

  7. On the structure of the upper atmosphere of Mars according to data from experiments on the Viking space vehicles

    Science.gov (United States)

    Izakov, M. N.

    1979-01-01

    Altitude profiles of the concentrations of the atmospheric components measured by the on board mass spectrometers during the descent of Viking lander are discussed by assuming that temperature has a smoother profile, and the eddy mixing coefficients are smaller at altitudes of 120 to 170 km than those formally determined. The influence of acoustic gravitational waves and errors in measurements and calculations are discussed in relation to the convolutions in the altitude profiles of the concentrations of the atmospheric components and the temperature of the atmosphere.

  8. Spacetime and gravitation.

    Science.gov (United States)

    Kopczyński, W.; Trautman, A.

    This book is a revised translation of the Polish original "Czasoprzestrzeń i grawitacja", Warszawa (Poland), Państwowe Wydawnictwo Naukowe, 1984. Ideas about space and time are at the root of one's understanding of nature, both at the intuitive level of everyday experience and in the framework of sophisticated physical theories. These ideas have led to the development of geometry and its applications to physics. The contemporary physical theory of space and time, including its extention to the phenomena of gravitation, is Einstein's theory of relativity. The book is a short introduction to this theory. A great deal of emphasis is given to the geometrical aspects of relativity theory and its comparison with the Newtonian view of the world. There are short chapters on the origins of Einstein's theory, gravitational waves, cosmology, spinors and the Einstein-Cartan theory.

  9. Source modelling at the dawn of gravitational-wave astronomy

    Science.gov (United States)

    Gerosa, Davide

    2016-09-01

    The age of gravitational-wave astronomy has begun. Gravitational waves are propagating spacetime perturbations ("ripples in the fabric of space-time") predicted by Einstein's theory of General Relativity. These signals propagate at the speed of light and are generated by powerful astrophysical events, such as the merger of two black holes and supernova explosions. The first detection of gravitational waves was performed in 2015 with the LIGO interferometers. This constitutes a tremendous breakthrough in fundamental physics and astronomy: it is not only the first direct detection of such elusive signals, but also the first irrefutable observation of a black-hole binary system. The future of gravitational-wave astronomy is bright and loud: the LIGO experiments will soon be joined by a network of ground-based interferometers; the space mission eLISA has now been fully approved by the European Space Agency with a proof-of-concept mission called LISA Pathfinder launched in 2015. Gravitational-wave observations will provide unprecedented tests of gravity as well as a qualitatively new window on the Universe. Careful theoretical modelling of the astrophysical sources of gravitational-waves is crucial to maximize the scientific outcome of the detectors. In this Thesis, we present several advances on gravitational-wave source modelling, studying in particular: (i) the precessional dynamics of spinning black-hole binaries; (ii) the astrophysical consequences of black-hole recoils; and (iii) the formation of compact objects in the framework of scalar-tensor theories of gravity. All these phenomena are deeply characterized by a continuous interplay between General Relativity and astrophysics: despite being a truly relativistic messenger, gravitational waves encode details of the astrophysical formation and evolution processes of their sources. We work out signatures and predictions to extract such information from current and future observations. At the dawn of a revolutionary

  10. Gravitational wave detector on the basis of light diffraction

    International Nuclear Information System (INIS)

    Segizboev, T.I.; Uzhinskij, V.V.

    1985-01-01

    A method for detection of gravitational waves by means of light diffraction at the first maximum on oscillations in optically transparent matter under effect of gravitational waves is considered. Intensity of light flux scattering on oscillations of elastic rod is calculated. A possibility of using the diffraction method for detection of gravitational waves is disclosed

  11. NONLINEAR GRAVITATIONAL-WAVE MEMORY FROM BINARY BLACK HOLE MERGERS

    International Nuclear Information System (INIS)

    Favata, Marc

    2009-01-01

    Some astrophysical sources of gravitational waves can produce a 'memory effect', which causes a permanent displacement of the test masses in a freely falling gravitational-wave detector. The Christodoulou memory is a particularly interesting nonlinear form of memory that arises from the gravitational-wave stress-energy tensor's contribution to the distant gravitational-wave field. This nonlinear memory contributes a nonoscillatory component to the gravitational-wave signal at leading (Newtonian-quadrupole) order in the waveform amplitude. Previous computations of the memory and its detectability considered only the inspiral phase of binary black hole coalescence. Using an 'effective-one-body' (EOB) approach calibrated to numerical relativity simulations, as well as a simple fully analytic model, the Christodoulou memory is computed for the inspiral, merger, and ringdown. The memory will be very difficult to detect with ground-based interferometers, but is likely to be observable in supermassive black hole mergers with LISA out to redshifts z ∼< 2. Detection of the nonlinear memory could serve as an experimental test of the ability of gravity to 'gravitate'.

  12. General relativity and gravitational waves

    CERN Document Server

    Weber, Johanna

    1961-01-01

    An internationally famous physicist and electrical engineer, the author of this text was a pioneer in the investigation of gravitational waves. Joseph Weber's General Relativity and Gravitational Waves offers a classic treatment of the subject. Appropriate for upper-level undergraduates and graduate students, this text remains ever relevant. Brief but thorough in its introduction to the foundations of general relativity, it also examines the elements of Riemannian geometry and tensor calculus applicable to this field.Approximately a quarter of the contents explores theoretical and experimenta

  13. Atmospheric processes over complex terrain

    Science.gov (United States)

    Banta, Robert M.; Berri, G.; Blumen, William; Carruthers, David J.; Dalu, G. A.; Durran, Dale R.; Egger, Joseph; Garratt, J. R.; Hanna, Steven R.; Hunt, J. C. R.

    1990-06-01

    A workshop on atmospheric processes over complex terrain, sponsored by the American Meteorological Society, was convened in Park City, Utah from 24 vto 28 October 1988. The overall objective of the workshop was one of interaction and synthesis--interaction among atmospheric scientists carrying out research on a variety of orographic flow problems, and a synthesis of their results and points of view into an assessment of the current status of topical research problems. The final day of the workshop was devoted to an open discussion on the research directions that could be anticipated in the next decade because of new and planned instrumentation and observational networks, the recent emphasis on development of mesoscale numerical models, and continual theoretical investigations of thermally forced flows, orographic waves, and stratified turbulence. This monograph represents an outgrowth of the Park City Workshop. The authors have contributed chapters based on their lecture material. Workshop discussions indicated interest in both the remote sensing and predictability of orographic flows. These chapters were solicited following the workshop in order to provide a more balanced view of current progress and future directions in research on atmospheric processes over complex terrain.

  14. Development of Mirror Coatings for Gravitational Wave Detectors

    Directory of Open Access Journals (Sweden)

    Stuart Reid

    2016-11-01

    Full Text Available The first detections of gravitational waves, GW150914 and GW151226, were associated with the coalescence of stellar mass black holes, heralding the opening of an entirely new way to observe the Universe. Many decades of development were invested to achieve the sensitivities required to observe gravitational waves, with peak strains associated with GW150914 at the level of 10−21. Gravitational wave detectors currently operate as modified Michelson interferometers, where thermal noise associated with the highly reflective mirror coatings sets a critical limit to the sensitivity of current and future instruments. This article presents an overview of the mirror coating development relevant to gravitational wave detection and the prospective for future developments in the field.

  15. Multiple Signal Classification for Gravitational Wave Burst Search

    Science.gov (United States)

    Cao, Junwei; He, Zhengqi

    2013-01-01

    This work is mainly focused on the application of the multiple signal classification (MUSIC) algorithm for gravitational wave burst search. This algorithm extracts important gravitational wave characteristics from signals coming from detectors with arbitrary position, orientation and noise covariance. In this paper, the MUSIC algorithm is described in detail along with the necessary adjustments required for gravitational wave burst search. The algorithm's performance is measured using simulated signals and noise. MUSIC is compared with the Q-transform for signal triggering and with Bayesian analysis for direction of arrival (DOA) estimation, using the Ω-pipeline. Experimental results show that MUSIC has a lower resolution but is faster. MUSIC is a promising tool for real-time gravitational wave search for multi-messenger astronomy.

  16. Topics in gravitation and gauge fields

    International Nuclear Information System (INIS)

    Leen, T.K.

    1982-01-01

    The theoretical studies presented here address three distinct topics. The first deals with quantum-mechanical effects of classical gravitational radiation. Specifically, the use of the interstellar medium itself as a remote quantum-mechanical detector of gravitational waves is investigated. This study is motivated by the presumed existence of atomic hydrogen in the vicinity of astrophysical sources of gravitational radiation. Space-time curvature produces uniquely identifiable shifts in atomic hydrogen energy levels. The oscillating level shifts induced by a passing gravitational wave could conceivably be detected spectroscopically. Accordingly the level shifts for both low-lying and highly excited states of single electron atoms immersed in gravitational radiation have been studied. The second two topics deal with the theory of quantized fields on curved space-times. In the first of these studies, a naive model of cosmological baryon synthesis is examined. The model incorporates a hard CP violation as well as a baryon (and lepton) non-conserving interaction and is thus capable of generating an excess of matter over antimatter. The time dependent background geometry of the early universe drives the interaction producing net excess of baryon/lepton pairs. In the final topic, the question of renormalizability of non-Abelian gauge fields theories in a general curved space-time is addressed. All modern theories of elementary particle physics are gauge theories and one would like to know if their perturbative expansions continue to be well defined (i.e. renormalizable) on curved backgrounds. In general, one is interested in knowing if field theories renormalizable in Minkowski space remain so in a general curved space-time

  17. National Coral Reef Monitoring Program: Benthic Cover Derived from Analysis of Benthic Images Collected during Stratified Random Surveys (StRS) across the Pacific Remote Island Areas from 2015-01-26 to 2015-04-28 (NCEI Accession 0159165)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The data described here result from benthic photo-quadrat surveys conducted along transects at stratified random sites across the Pacific Remote Island Areas since...

  18. Gravitational waves from neutron stars and asteroseismology

    Science.gov (United States)

    Ho, Wynn C. G.

    2018-05-01

    Neutron stars are born in the supernova explosion of massive stars. Neutron stars rotate as stably as atomic clocks and possess densities exceeding that of atomic nuclei and magnetic fields millions to billions of times stronger than those created in laboratories on the Earth. The physical properties of neutron stars are determined by many areas of fundamental physics, and detection of gravitational waves can provide invaluable insights into our understanding of these areas. Here, we describe some of the physics and astrophysics of neutron stars and how traditional electromagnetic wave observations provide clues to the sorts of gravitational waves we expect from these stars. We pay particular attention to neutron star fluid oscillations, examining their impact on electromagnetic and gravitational wave observations when these stars are in a wide binary or isolated system, then during binary inspiral right before merger, and finally at times soon after merger. This article is part of a discussion meeting issue `The promises of gravitational-wave astronomy'.

  19. Gravitational waves from neutron stars and asteroseismology.

    Science.gov (United States)

    Ho, Wynn C G

    2018-05-28

    Neutron stars are born in the supernova explosion of massive stars. Neutron stars rotate as stably as atomic clocks and possess densities exceeding that of atomic nuclei and magnetic fields millions to billions of times stronger than those created in laboratories on the Earth. The physical properties of neutron stars are determined by many areas of fundamental physics, and detection of gravitational waves can provide invaluable insights into our understanding of these areas. Here, we describe some of the physics and astrophysics of neutron stars and how traditional electromagnetic wave observations provide clues to the sorts of gravitational waves we expect from these stars. We pay particular attention to neutron star fluid oscillations, examining their impact on electromagnetic and gravitational wave observations when these stars are in a wide binary or isolated system, then during binary inspiral right before merger, and finally at times soon after merger.This article is part of a discussion meeting issue 'The promises of gravitational-wave astronomy'. © 2018 The Author(s).

  20. Gravitational waves from rotating strained neutron stars

    International Nuclear Information System (INIS)

    Jones, D I

    2002-01-01

    In this review we examine the dynamics and gravitational wave detectability of rotating strained neutron stars. The discussion is divided into two halves: triaxial stars and precessing stars. We summarize recent studies on how crustal strains and magnetic fields can sustain triaxiality, and suggest that Magnus forces connected with pinned superfluid vortices might contribute to deformation also. The conclusions that could be drawn following the successful gravitational wave detection of a triaxial star are discussed, and areas requiring further study identified. The latest ideas regarding free precession are then outlined, and the recent suggestion of Middleditch et al (Middleditch et al 2000 New Astronomy 5 243; 2000 Preprint astro-ph/0010044) that the remnant of SN1987A contains a freely precessing star, spinning down by gravitational wave energy loss, is examined critically. We describe what we would learn about neutron stars should the gravitational wave detectors prove this hypothesis to be correct

  1. Measuring gravitational effects on antimatter in space

    Directory of Open Access Journals (Sweden)

    Piacentino Giovanni Maria

    2017-01-01

    Full Text Available A direct measurement of the gravitational acceleration of antimatter has never been performed to date. Recently, such an experiment has been proposed, using antihydrogen with an atom interferometer and an antihydrogen confinament has been realized at CERN. In alternative we propose an experimental test of the gravitational interaction with antimatter by measuring the branching fraction of the CP violating decay of KL in space. In fact, even if the theoretical Standard Model explains the CPV with the presence of pure phase in the KMC Kobaiashi-Maskava-Cabibbo matrix, ample room is left for contributions by other interactions and forces to generate CPV in the mixing of the neutral K and B mesons. Gravitation is a good candidate and we show that at the altitude of the International Space Station, gravitational effects may change the level of CP violation such that a 5 sigma discrimination may be obtained by collecting the KL produced by the cosmic proton flux within a few years.

  2. Acceleration of low energy charged particles by gravitational waves

    Energy Technology Data Exchange (ETDEWEB)

    Voyatzis, G. [University of Thessaloniki, Department of Physics, 54124 Thessaloniki (Greece)]. E-mail: voyatzis@auth.gr; Vlahos, L. [University of Thessaloniki, Department of Physics, 54124 Thessaloniki (Greece); Ichtiaroglou, S. [University of Thessaloniki, Department of Physics, 54124 Thessaloniki (Greece); Papadopoulos, D. [University of Thessaloniki, Department of Physics, 54124 Thessaloniki (Greece)

    2006-04-03

    The acceleration of charged particles in the presence of a magnetic field and gravitational waves is under consideration. It is shown that the weak gravitational waves can cause the acceleration of low energy particles under appropriate conditions. Such conditions may be satisfied close to the source of the gravitational waves if the magnetized plasma is in a turbulent state.

  3. Acceleration of low energy charged particles by gravitational waves

    International Nuclear Information System (INIS)

    Voyatzis, G.; Vlahos, L.; Ichtiaroglou, S.; Papadopoulos, D.

    2006-01-01

    The acceleration of charged particles in the presence of a magnetic field and gravitational waves is under consideration. It is shown that the weak gravitational waves can cause the acceleration of low energy particles under appropriate conditions. Such conditions may be satisfied close to the source of the gravitational waves if the magnetized plasma is in a turbulent state

  4. Direct detection of the inflationary gravitational-wave background

    International Nuclear Information System (INIS)

    Smith, Tristan L.; Kamionkowski, Marc; Cooray, Asantha

    2006-01-01

    Inflation generically predicts a stochastic background of gravitational waves over a broad range of frequencies, from those accessible with cosmic microwave background (CMB) measurements, to those accessible directly with gravitational-wave detectors, like NASA's Big-Bang Observer (BBO) or Japan's Deci-Hertz Interferometer Gravitational-wave Observer (DECIGO), both currently under study. Here we investigate the detectability of the inflationary gravitational-wave background at BBO/DECIGO frequencies. To do so, we survey a range of slow-roll inflationary models consistent with constraints from the CMB and large-scale structure (LSS). We go beyond the usual assumption of power-law power spectra, which may break down given the 16 orders of magnitude in frequency between the CMB and direct detection, and solve instead the inflationary dynamics for four classes of inflaton potentials. Direct detection is possible in a variety of inflationary models, although probably not in any in which the gravitational-wave signal does not appear in the CMB polarization. However, direct detection by BBO/DECIGO can help discriminate between inflationary models that have the same slow-roll parameters at CMB/LSS scales

  5. A modified Friedmann equation for a system with varying gravitational mass

    Science.gov (United States)

    Gorkavyi, Nick; Vasilkov, Alexander

    2018-05-01

    The Laser Interferometer Gravitational-Wave Observatory (LIGO) detection of gravitational waves that take away 5 per cent of the total mass of two merging black holes points out on the importance of considering varying gravitational mass of a system. Using an assumption that the energy-momentum pseudo-tensor of gravitational waves is not considered as a source of gravitational field, we analyse a perturbation of the Friedmann-Robertson-Walker metric caused by the varying gravitational mass of a system. This perturbation leads to a modified Friedmann equation that contains a term similar to the `cosmological constant'. Theoretical estimates of the effective cosmological constant quantitatively corresponds to observed cosmological acceleration.

  6. Gravitational Analysis of the In-Band Wormhole Phenomenon

    National Research Council Canada - National Science Library

    Gopaul, Richard; Kruus, Peter; Sterne, Dan; Rivera, Brian

    2006-01-01

    ...], for evaluating the effects of in-band wormhole attacks on OLSR routing. The gravitational analysis technique examines individual network topologies and results in the creation of a gravitational chart for each topology...

  7. Data quality studies of enhanced interferometric gravitational wave detectors

    International Nuclear Information System (INIS)

    McIver, Jessica

    2012-01-01

    Data quality assessment plays an essential role in the quest to detect gravitational wave signals in data from the LIGO and Virgo interferometric gravitational wave detectors. Interferometer data contain a high rate of noise transients from the environment, the detector hardware and the detector control systems. These transients severely limit the statistical significance of gravitational wave candidates of short duration and/or poorly modeled waveforms. This paper describes the data quality studies that have been performed in recent LIGO and Virgo observing runs to mitigate the impact of transient detector artifacts on the gravitational wave searches. (paper)

  8. Parametric resonance and cosmological gravitational waves

    International Nuclear Information System (INIS)

    Sa, Paulo M.; Henriques, Alfredo B.

    2008-01-01

    We investigate the production of gravitational waves due to quantum fluctuations of the vacuum during the transition from the inflationary to the radiation-dominated eras of the universe, assuming this transition to be dominated by the phenomenon of parametric resonance. The energy spectrum of the gravitational waves is calculated using the method of continuous Bogoliubov coefficients, which avoids the problem of overproduction of gravitons at large frequencies. We found, on the sole basis of the mechanism of quantum fluctuations, that the resonance field leaves no explicit and distinctive imprint on the gravitational-wave energy spectrum, apart from an overall upward or downward translation. Therefore, the main features in the spectrum are due to the inflaton field, which leaves a characteristic imprint at frequencies of the order of MHz/GHz.

  9. The inverse square law of gravitation

    International Nuclear Information System (INIS)

    Cook, A.H.

    1987-01-01

    The inverse square law of gravitation is very well established over the distances of celestial mechanics, while in electrostatics the law has been shown to be followed to very high precision. However, it is only within the last century that any laboratory experiments have been made to test the inverse square law for gravitation, and all but one has been carried out in the last ten years. At the same time, there has been considerable interest in the possibility of deviations from the inverse square law, either because of a possible bearing on unified theories of forces, including gravitation or, most recently, because of a possible additional fifth force of nature. In this article the various lines of evidence for the inverse square law are summarized, with emphasis upon the recent laboratory experiments. (author)

  10. Parametric resonance and cosmological gravitational waves

    Science.gov (United States)

    Sá, Paulo M.; Henriques, Alfredo B.

    2008-03-01

    We investigate the production of gravitational waves due to quantum fluctuations of the vacuum during the transition from the inflationary to the radiation-dominated eras of the universe, assuming this transition to be dominated by the phenomenon of parametric resonance. The energy spectrum of the gravitational waves is calculated using the method of continuous Bogoliubov coefficients, which avoids the problem of overproduction of gravitons at large frequencies. We found, on the sole basis of the mechanism of quantum fluctuations, that the resonance field leaves no explicit and distinctive imprint on the gravitational-wave energy spectrum, apart from an overall upward or downward translation. Therefore, the main features in the spectrum are due to the inflaton field, which leaves a characteristic imprint at frequencies of the order of MHz/GHz.

  11. Astrometric and Timing Effects of Gravitational Waves from Localized Sources

    OpenAIRE

    Kopeikin, Sergei M.; Schafer, Gerhard; Gwinn, Carl R.; Eubanks, T. Marshall

    1998-01-01

    A consistent approach for an exhaustive solution of the problem of propagation of light rays in the field of gravitational waves emitted by a localized source of gravitational radiation is developed in the first post-Minkowskian and quadrupole approximation of General Relativity. We demonstrate that the equations of light propagation in the retarded gravitational field of an arbitrary localized source emitting quadrupolar gravitational waves can be integrated exactly. The influence of the gra...

  12. Gravitational Metric Tensor Exterior to Rotating Homogeneous ...

    African Journals Online (AJOL)

    The covariant and contravariant metric tensors exterior to a homogeneous spherical body rotating uniformly about a common φ axis with constant angular velocity ω is constructed. The constructed metric tensors in this gravitational field have seven non-zero distinct components.The Lagrangian for this gravitational field is ...

  13. Workshop on gravitational waves and relativistic astrophysics

    Indian Academy of Sciences (India)

    Discussions related to gravitational wave experiments viz. LIGO and LISA as well as to observations of supermassive black holes dominated the workshop sessions on gravitational waves and relativistic astrophysics in the ICGC-2004. A summary of seven papers that were presented in these workshop sessions has been ...

  14. Gravitational radiation and 3D numerical relativity

    International Nuclear Information System (INIS)

    Nakamura, T.

    1986-01-01

    Study of Numerical Relativity in Kyoto is reviewed. Main topics discussed are 2D rotating collapse, phase cancellation effects and perturbation calculation of the gravitational radiation from a particle falling into a black hole. New numerical results on 3D time evolution of pure gravitational waves are also presented

  15. Massive scalar counterpart of gravitational waves in scalarized neutron star binaries

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jing [Sun Yat-sen University, School of Physics and Astronomy, Guangzhou (China)

    2017-09-15

    In analogy with spontaneous magnetization of ferromagnets below the Curie temperature, a neutron star (NS), with a compactness above a certain critical value, may undergo spontaneous scalarization and exhibit an interior nontrivial scalar configuration. Consequently, the exterior spacetime is changed, and an external scalar field appears, which subsequently triggers a scalarization of its companion. The dynamical interplay produces a gravitational scalar counterpart of tensor gravitational waves. In this paper, we resort to scalar-tensor theory and demonstrate that the gravitational scalar counterpart from a double neutron star (DNS) and a neutron star-white dwarf (NS-WD) system become massive. We report that (1) a gravitational scalar background field, arising from convergence of external scalar fields, plays the role of gravitational scalar counterpart in scalarized DNS binary, and the appearance of a mass-dimensional constant in a Higgs-like gravitational scalar potential is responsible for a massive gravitational scalar counterpart with a mass of the order of the Planck scale; (2) a dipolar gravitational scalar radiated field, resulting from differing binding energies of NS and WD, plays the role of a gravitational scalar counterpart in scalarized orbital shrinking NS-WDs, which oscillates around a local and scalar-energy-density-dependent minimum of the gravitational scalar potential and obtains a mass of the order of about 10{sup -21} eV/c{sup 2}. (orig.)

  16. LIGO GW150914 and GW151226 gravitational wave detection and generalized gravitation theory (MOG

    Directory of Open Access Journals (Sweden)

    J.W. Moffat

    2016-12-01

    Full Text Available The nature of gravitational waves in a generalized gravitation theory is investigated. The linearized field equations and the metric tensor quadrupole moment power and the decrease in radius of an inspiralling binary system of two compact objects are derived. The generalized Kerr metric describing a spinning black hole is determined by its mass M and the spin parameter a=cS/GM2. The LIGO-Virgo collaboration data is fitted with smaller binary black hole masses in agreement with the current electromagnetic, observed X-ray binary upper bound for a black hole mass, M≲10M⊙.

  17. On the cosmological gravitational waves and cosmological distances

    Science.gov (United States)

    Belinski, V. A.; Vereshchagin, G. V.

    2018-03-01

    We show that solitonic cosmological gravitational waves propagated through the Friedmann universe and generated by the inhomogeneities of the gravitational field near the Big Bang can be responsible for increase of cosmological distances.

  18. Testing General Relativity with Low-Frequency, Space-Based Gravitational-Wave Detectors.

    Science.gov (United States)

    Gair, Jonathan R; Vallisneri, Michele; Larson, Shane L; Baker, John G

    2013-01-01

    We review the tests of general relativity that will become possible with space-based gravitational-wave detectors operating in the ∼ 10 -5 - 1 Hz low-frequency band. The fundamental aspects of gravitation that can be tested include the presence of additional gravitational fields other than the metric; the number and tensorial nature of gravitational-wave polarization states; the velocity of propagation of gravitational waves; the binding energy and gravitational-wave radiation of binaries, and therefore the time evolution of binary inspirals; the strength and shape of the waves emitted from binary mergers and ringdowns; the true nature of astrophysical black holes; and much more. The strength of this science alone calls for the swift implementation of a space-based detector; the remarkable richness of astrophysics, astronomy, and cosmology in the low-frequency gravitational-wave band make the case even stronger.

  19. Gravitational Anomaly and Transport Phenomena

    International Nuclear Information System (INIS)

    Landsteiner, Karl; Megias, Eugenio; Pena-Benitez, Francisco

    2011-01-01

    Quantum anomalies give rise to new transport phenomena. In particular, a magnetic field can induce an anomalous current via the chiral magnetic effect and a vortex in the relativistic fluid can also induce a current via the chiral vortical effect. The related transport coefficients can be calculated via Kubo formulas. We evaluate the Kubo formula for the anomalous vortical conductivity at weak coupling and show that it receives contributions proportional to the gravitational anomaly coefficient. The gravitational anomaly gives rise to an anomalous vortical effect even for an uncharged fluid.

  20. Gravitation as Gauge theory of Poincare Group

    International Nuclear Information System (INIS)

    Stedile, E.

    1982-08-01

    The geometrical approach to gauge theories, based on fiber-bundles, is shown in detail. Several gauge formalisms for gravitation are examined. In particular, it is shown how to build gauge theories for non-semisimple groups. A gravitational theory for the Poincare group, with all the essential characteristics of a Yang-Mills theory is proposed. Inonu-Wigner contractions of gauge theories are introduced, which provide a Lagrangian formalism, equivalent to a Lagrangian de Sitter theory supplemented by weak constraints. Yang and Einstein theories for gravitation become particular cases of a Yang-Mills theory. The classical limit of the proposed formalism leads to the Poisson equation, for the static case. (Author) [pt

  1. Gravitational instability in isotropic MHD plasma waves

    Science.gov (United States)

    Cherkos, Alemayehu Mengesha

    2018-04-01

    The effect of compressive viscosity, thermal conductivity and radiative heat-loss functions on the gravitational instability of infinitely extended homogeneous MHD plasma has been investigated. By taking in account these parameters we developed the six-order dispersion relation for magnetohydrodynamic (MHD) waves propagating in a homogeneous and isotropic plasma. The general dispersion relation has been developed from set of linearized basic equations and solved analytically to analyse the conditions of instability and instability of self-gravitating plasma embedded in a constant magnetic field. Our result shows that the presence of viscosity and thermal conductivity in a strong magnetic field substantially modifies the fundamental Jeans criterion of gravitational instability.

  2. First detections of gravitational waves from binary black holes

    International Nuclear Information System (INIS)

    Bejger, Michał

    2017-01-01

    Recent direct detections of gravitational waves from coalescing binary black holes systems herald a new era in the observational astronomy, as well as in experimental verifications of the theories of gravity. I will present the principles of detection of gravitational waves, current state-of-art laser interferometric detectors (Advanced LIGO and Advanced Virgo), and the most promising astrophysical sources of gravitational waves. (paper)

  3. Vectorial-tensorial conservative theory of gravitation

    International Nuclear Information System (INIS)

    Mociutchi, C.; Ionescu-Pallas, N.

    1975-01-01

    Gravitation is considered as a mixing of interactions and a suggestion for a vectorial-tensorial theory with parametric coupling is given. The self consistent character of the theory leads to a system of equations for the proposed tensorial-vectorial theory of gravitation. If the weight of the vectorial component is low enough i.e. epsilon much smaller than 1, then this theory can correctly reproduce all the experimental verifications

  4. Dark Energy and Dark Matter Phenomena and the Universe with Variable Gravitational Mass

    Science.gov (United States)

    Gorkavyi, N.

    2005-12-01

    Generation of high-frequency gravitational waves near the singularity is a crucial factor for understanding the origin and dynamics of the Universe. Emission of gravitational waves increases with a decreasing radius of collapsed object much faster than a gravitational force itself. Gravitationally unstable matter of the Universe will be completely converted into gravitational radiation during the Big Crunch. According to Misner, Thorne & Wheeler (Gravitation, 1977, p.959) plane gravitational waves have not gravitational mass or spacetime is flat everywhere outside the pulse. We can propose that the gravitational mass of the Universe is vanished after converting matter into gravitational waves. This hypothesis in the framework of Einstein's theory of gravitation can solve the problem of singularity without contradiction with theorems by Penrose-Hawking; explain the acceleration of our Universe as the effect of a retarded gravitational potential (Gorkavyi, BAAS, 2003, 35, #3) and the low quadrupole in fluctuations in CMB as result of blue-shift effect in a gravitational field. Proposed solution of dark energy problem free from coincidence problems. The hypothesis keeps best parts of Big Bang theory and inflation model without any unknown physical fields or new dimensions. According to this hypothesis a relic sea of high-frequency gravitational radiation in our Universe can be very dense. Interaction of relic gravitational waves with gravitational fields of galaxies and stars can create an additional dynamical effects like pressure of relic radiation that proportional to gravitational potential GM/(Rc2). This effect can be responsible for dark matter phenomena in galaxies and the Pioneer acceleration in the solar system (Gorkavyi, BAAS, 2005, 37, #2).

  5. Gravitation relativiste

    CERN Document Server

    Hakim, Rémi

    1994-01-01

    Il existe à l'heure actuelle un certain nombre de théories relativistes de la gravitation compatibles avec l'expérience et l'observation. Toutefois, la relativité générale d'Einstein fut historiquement la première à fournir des résultats théoriques corrects en accord précis avec les faits.

  6. Gravitational Waves From a Dark (Twin) Phase Transition

    CERN Document Server

    Schwaller, Pedro

    2015-01-01

    In this work, we show that a large class of models with a composite dark sector undergo a strong first order phase transition in the early universe, which could lead to a detectable gravitational wave signal. We summarise the basic conditions for a strong first order phase transition for SU(N) dark sectors with n_f flavours, calculate the gravitational wave spectrum and show that, depending on the dark confinement scale, it can be detected at eLISA or in pulsar timing array experiments. The gravitational wave signal provides a unique test of the gravitational interactions of a dark sector, and we discuss the complementarity with conventional searches for new dark sectors. The discussion includes Twin Higgs and SIMP models as well as symmetric and asymmetric composite dark matter scenarios.

  7. To a physical interpretation of a weak gravitational field in GRT

    International Nuclear Information System (INIS)

    Pavlov, N.V.

    1981-01-01

    The problem of separation of Newton components of weak vacuum gravitational fields is discussed. Chronometric- invariant (CI) characteristics of space-time and the corresponding Newton values are compared in the fixed systems of reference. Attention is paid to the following facts. ''Weak'' sources of weak gravitational fields do not interact gravitationally. If the CI characteristics of vacuum space- time permit series expansion in 1/c powers then the coefficients at odd 1/c powers are connected with the presence of non-gravitational material fields inside the sources. Masses producing gravitational field may not be the sources of gravitational waves in the form of which this field manifests itself. Perspectives of detecting laboratory gravitational waves are discussed: the simplest metrics of plane wave is considered in the quasi-inertial reference system; the flowsheet of the generator of this wave is suggested; relativistic oscillation of a test massive particle is calculated in the postnewtonian approximation. The numerical evaluations show that attempts of mechanical detection of laboratory gravitational waves are hopeless [ru

  8. Gravitation and electromagnetism

    CERN Document Server

    Apsel, D

    1979-01-01

    Through an examination of the Bohm-Aharonov experiment, a new theory of gravitation and electromagnetism is proposed. The fundamental assumption of the theory is that the motion of a particle in a combination of gravitational and electromagnetic fields is determined from a variational principle of the form delta integral /sub A//sup B /d tau =0. The form of the physical time is determined from an examination of the Maxwell-Einstein action function. The field and motion equations are formally identical to those of Maxwell-Einstein theory. The theory predicts that even in a field-free region of space, electromagnetic potentials can alter the phase of a wave function and the lifetime of a charged particle. The phase alteration has been observed in the Bohm-Aharonov experiment. There is an indication that the lifetime alteration has shown up in a recent CERN storage ring experiment. Experimental tests are proposed. (11 refs).

  9. Global gravitational anomalies

    International Nuclear Information System (INIS)

    Witten, E.

    1985-01-01

    A general formula for global gauge and gravitational anomalies is derived. It is used to show that the anomaly free supergravity and superstring theories in ten dimensions are all free of global anomalies that might have ruined their consistency. However, it is shown that global anomalies lead to some restrictions on allowed compactifications of these theories. For example, in the case of O(32) superstring theory, it is shown that a global anomaly related to π 7 (O(32)) leads to a Dirac-like quantization condition for the field strength of the antisymmetric tensor field. Related to global anomalies is the question of the number of fermion zero modes in an instanton field. It is argued that the relevant gravitational instantons are exotic spheres. It is shown that the number of fermion zero modes in an instanton field is always even in ten dimensional supergravity. (orig.)

  10. Gravitational waves: an introduction and a progress report

    International Nuclear Information System (INIS)

    Hamilton, W.O.

    1983-01-01

    The author gives a description of the effect an experimentalist has to measure to detect gravitational waves. He goes on to describe the design of gravitational wave detectors and the sensitivity of the components. (Auth.)

  11. Thermal stratification built up in hot water tank with different inlet stratifiers

    DEFF Research Database (Denmark)

    Dragsted, Janne; Furbo, Simon; Dannemand, Mark

    2017-01-01

    Thermal stratification in a water storage tank can strongly increase the thermal performance of solar heating systems. Thermal stratification can be built up in a storage tank during charge, if the heated water enters through an inlet stratifier. Experiments with a test tank have been carried out...... in order to elucidate how well thermal stratification is established in the tank with differently designed inlet stratifiers under different controlled laboratory conditions. The investigated inlet stratifiers are from Solvis GmbH & Co KG and EyeCular Technologies ApS. The inlet stratifier from Solvis Gmb...... for Solvis GmbH & Co KG had a better performance at 4 l/min. In the intermediate charge test the stratifier from EyeCular Technologies ApS had a better performance in terms of maintaining the thermal stratification in the storage tank while charging with a relative low temperature. [All rights reserved...

  12. Evidence for secondary gravitationally lensed images in radio quasistellar objects

    International Nuclear Information System (INIS)

    Rousey, C.E.

    1977-01-01

    Evidence is sought for the observability of the gravitational lens effect by studying the internal radio structures of quasistellar objects. Since the majority of the radio emitting quasars were observed to be multiply structured at radio wavelengths, and since the gravitational deflection of light is essentially frequency independent, these sources are very suitable objects for the investigation of gravitational imaging. From the theoretical framework of gravitational imaging, particularly in the treatment of the gravitational lenses as ''point-mass'' deflectors, several selection criteria were imposed on a sample of 208 radio emitting quasars in order to filter out only those sources which may be exhibiting radio imaging. The employment of further selection criteria, obtained from the consideration of the observed optical fields around the quasars, resulted in a small filtered sample of 10 quasars which are good candidates for exhibiting the gravitational lens effect. In particular, two quasars, 3C 268.4 and 3C 286, are observed to have good evidence for the presence of suitable gravitational lenses. Image models were computed for the image candidates which predict the masses and distances of the gravitational deflectors as well as estimations of the ''time delays'' of the images. It is also suggested that measurements of these image time delays may enable one to place stringent limits on the value of the Hubble constant

  13. VIGOR: Virtual Interaction with Gravitational Waves to Observe Relativity

    Science.gov (United States)

    Kitagawa, Midori; Kesden, Michael; Tranm, Ngoc; Venlayudam, Thulasi Sivampillai; Urquhart, Mary; Malina, Roger

    2017-05-01

    In 2015, a century after Albert Einstein published his theory of general relativity, the Laser Interferometer Gravitational-wave Observatory (LIGO) detected gravitational waves from binary black holes fully consistent with this theory. Our goal for VIGOR (Virtual-reality Interaction with Gravitational waves to Observe Relativity) is to communicate this revolutionary discovery to the public by visualizing the gravitational waves emitted by binary black holes. VIGOR has been developed using the Unity game engine and VR headsets (Oculus Rift DK2 and Samsung Gear VR). Wearing a VR headset, VIGOR users control an avatar to "fly" around binary black holes, experiment on the black holes by manipulating their total mass, mass ratio, and orbital separation, and witness how gravitational waves emitted by the black holes stretch and squeeze the avatar. We evaluated our prototype of VIGOR with high school students in 2016 and are further improving VIGOR based on our findings.

  14. Mass loss due to gravitational waves with Λ > 0

    Science.gov (United States)

    Saw, Vee-Liem

    2017-07-01

    The theoretical basis for the energy carried away by gravitational waves that an isolated gravitating system emits was first formulated by Hermann Bondi during the ’60s. Recent findings from the observation of distant supernovae revealed that the rate of expansion of our universe is accelerating, which may be well explained by sticking a positive cosmological constant into the Einstein field equations for general relativity. By solving the Newman-Penrose equations (which are equivalent to the Einstein field equations), we generalize this notion of Bondi mass-energy and thereby provide a firm theoretical description of how an isolated gravitating system loses energy as it radiates gravitational waves, in a universe that expands at an accelerated rate. This is in line with the observational front of LIGO’s first announcement in February 2016 that gravitational waves from the merger of a binary black hole system have been detected.

  15. Testing General Relativity with Low-Frequency, Space-Based Gravitational-Wave Detectors

    Directory of Open Access Journals (Sweden)

    John G. Baker

    2013-09-01

    Full Text Available We review the tests of general relativity that will become possible with space-based gravitational-wave detectors operating in the ∼ 10^{-5} – 1 Hz low-frequency band. The fundamental aspects of gravitation that can be tested include the presence of additional gravitational fields other than the metric; the number and tensorial nature of gravitational-wave polarization states; the velocity of propagation of gravitational waves; the binding energy and gravitational-wave radiation of binaries, and therefore the time evolution of binary inspirals; the strength and shape of the waves emitted from binary mergers and ringdowns; the true nature of astrophysical black holes; and much more. The strength of this science alone calls for the swift implementation of a space-based detector; the remarkable richness of astrophysics, astronomy, and cosmology in the low-frequency gravitational-wave band make the case even stronger.

  16. Detecting high-frequency gravitational waves with optically levitated sensors.

    Science.gov (United States)

    Arvanitaki, Asimina; Geraci, Andrew A

    2013-02-15

    We propose a tunable resonant sensor to detect gravitational waves in the frequency range of 50-300 kHz using optically trapped and cooled dielectric microspheres or microdisks. The technique we describe can exceed the sensitivity of laser-based gravitational wave observatories in this frequency range, using an instrument of only a few percent of their size. Such a device extends the search volume for gravitational wave sources above 100 kHz by 1 to 3 orders of magnitude, and could detect monochromatic gravitational radiation from the annihilation of QCD axions in the cloud they form around stellar mass black holes within our galaxy due to the superradiance effect.

  17. Pulsar timing arrays: the promise of gravitational wave detection.

    Science.gov (United States)

    Lommen, Andrea N

    2015-12-01

    We describe the history, methods, tools, and challenges of using pulsars to detect gravitational waves. Pulsars act as celestial clocks detecting gravitational perturbations in space-time at wavelengths of light-years. The field is poised to make its first detection of nanohertz gravitational waves in the next 10 years. Controversies remain over how far we can reduce the noise in the pulsars, how many pulsars should be in the array, what kind of source we will detect first, and how we can best accommodate our large bandwidth systems. We conclude by considering the important question of how to plan for a post-detection era, beyond the first detection of gravitational waves.

  18. Detection of gravitational waves from inflation

    International Nuclear Information System (INIS)

    Kamionkowski, M.; Jaffe, A.H.

    2001-01-01

    Recent measurements of temperature fluctuations in the cosmic microwave background (CMB) indicate that the Universe is flat and that large-scale structure grew via gravitational infall from primordial adiabatic perturbations. Both of these observations seem to indicate that we are on the right track with inflation. But what is the new physics responsible for inflation? This question can be answered with observations of the polarization of the CMB. Inflation predicts robustly the existence of a stochastic background of cosmological gravitational waves with an amplitude proportional to the square of the energy scale of inflation. This gravitational-wave background induces a unique signature in the polarization of the CMB. If inflation took place at an energy scale much smaller than that of grand unification, then the signal will be too small to be detectable. However, if inflation had something to do with grand unification or Planck-scale physics, then the signal is conceivably detectable in the optimistic case by the Planck satellite, or if not, then by a dedicated post-Planck CMB polarization experiment. Realistic developments in detector technology as well as a proper scan strategy could produce such a post-Planck experiment that would improve on Planck's sensitivity to the gravitational-wave background by several orders of magnitude in a decade timescale. (author)

  19. Large eddy simulation of turbulent and stably-stratified flows

    International Nuclear Information System (INIS)

    Fallon, Benoit

    1994-01-01

    The unsteady turbulent flow over a backward-facing step is studied by mean of Large Eddy Simulations with structure function sub grid model, both in isothermal and stably-stratified configurations. Without stratification, the flow develops highly-distorted Kelvin-Helmholtz billows, undergoing to helical pairing, with A-shaped vortices shed downstream. We show that forcing injected by recirculation fluctuations governs this oblique mode instabilities development. The statistical results show good agreements with the experimental measurements. For stably-stratified configurations, the flow remains more bi-dimensional. We show with increasing stratification, how the shear layer growth is frozen by inhibition of pairing process then of Kelvin-Helmholtz instabilities, and the development of gravity waves or stable density interfaces. Eddy structures of the flow present striking analogies with the stratified mixing layer. Additional computations show the development of secondary Kelvin-Helmholtz instabilities on the vorticity layers between two primary structures. This important mechanism based on baroclinic effects (horizontal density gradients) constitutes an additional part of the turbulent mixing process. Finally, the feasibility of Large Eddy Simulation is demonstrated for industrial flows, by studying a complex stratified cavity. Temperature fluctuations are compared to experimental measurements. We also develop three-dimensional un-stationary animations, in order to understand and visualize turbulent interactions. (author) [fr

  20. Looking towards gravitational wave detection

    Science.gov (United States)

    Barsotti, Lisa

    2009-05-01

    It is an exciting time in gravitational wave research. The first generation ground detectors, which aim to detect gravitational waves in the audio-frequency region, have been successfully operated at their design sensitivity. One integrated year of coincident data from the three LIGO interferometers in United States has been collected between 2005 and 2007, in partial coincidence with the two European detectors, VIRGO and GEO. All the detectors are currently being upgraded, and they will come back on-line in the next few months with a factor 2 better sensitivity. A major upgrade of LIGO and VIRGO, scheduled to happen immediately after their upcoming science runs, will bring on-line second generation detectors 4 years from now. Their sensitivity is designed to be 10 times better than the first generation detectors, resulting in an expected event rate of at least a few per year. Looking farther into the future, space-based detectors such as LISA propose to cover a lower range of frequencies which are inaccessible on Earth, enhancing the opportunity of understanding our Universe trough gravitational waves.

  1. Variational principle for a prototype Rastall theory of gravitation

    International Nuclear Information System (INIS)

    Smalley, L.L.

    1984-01-01

    A prototype of Rastall's theory of gravity, in which the divergence of the energy-momentum tensor is proportional to the gradient of the scalar curvature, is shown to be derivable from a variational principle. Both the proportionality factor and the unrenormalized gravitational constant are found to be covariantly constant, but not necessarily constant. The prototype theory is, therefore, a gravitational theory with variable gravitational constant

  2. A Paradox of Newtonian Gravitation and Laplace's Solution

    Indian Academy of Sciences (India)

    IAS Admin

    Newton's theory of gravitation solved many prob- lems of celestial ... Newtons law of universal gravitation was amazingly suc- cessful in solving ... Following the perfect cosmological principle the universe ... for different values of α. F1 = ∫ 1.

  3. A homogeneous static gravitational field and the principle of equivalence

    International Nuclear Information System (INIS)

    Chernikov, N.A.

    2001-01-01

    In this paper any gravitational field (both in the Einsteinian case and in the Newtonian case) is described by the connection, called gravitational. A homogeneous static gravitational field is considered in the four-dimensional area z>0 of a space-time with Cartesian coordinates x, y, z, and t. Such field can be created by masses, disposed outside the area z>0 with a density distribution independent of x, y, and t. Remarkably, in the four-dimensional area z>0, together with the primitive background connection, the primitive gravitational connection has been derived. In concordance with the Principle of Equivalence all components of such gravitational connection are equal to zero in the uniformly accelerated frame system, in which the gravitational force of attraction is balanced by the inertial force. However, all components of such background connection are equal to zero in the resting frame system, but not in the accelerated frame system

  4. Response of a Doppler canceling system to plane gravitational waves

    International Nuclear Information System (INIS)

    Caporali, A.

    1982-01-01

    This paper discusses the interaction of long periodic gravitational waves with a three-link microwave system known as the Doppler canceling system. This system, which was developed for gravitational red-shift experiment, uses one-way and two-way Doppler information to construct the beat signal of two reference oscillators moving with respect to each other. The geometric-optics approximation is used to derive the frequency shift produced on a light signal propagating in a gravitational-wave space-time. The signature left on the Doppler-canceled beat by bursts and continuous gravitational waves is analyzed. A comparison is made between the response to gravitational waves of the Doppler canceling system and that of a (NASA) Doppler tracking system which employs two-way, round-trip radio waves. A threefold repetition of the gravitational wave form is found to be a common feature of the response functions of both systems. These two functions otherwise exhibit interesting differences

  5. Gravitational wave background from reheating after hybrid inflation

    International Nuclear Information System (INIS)

    Garcia-Bellido, Juan; Figueroa, Daniel G.; Sastre, Alfonso

    2008-01-01

    The reheating of the Universe after hybrid inflation proceeds through the nucleation and subsequent collision of large concentrations of energy density in the form of bubblelike structures moving at relativistic speeds. This generates a significant fraction of energy in the form of a stochastic background of gravitational waves, whose time evolution is determined by the successive stages of reheating: First, tachyonic preheating makes the amplitude of gravity waves grow exponentially fast. Second, bubble collisions add a new burst of gravitational radiation. Third, turbulent motions finally sets the end of gravitational waves production. From then on, these waves propagate unimpeded to us. We find that the fraction of energy density today in these primordial gravitational waves could be significant for grand unified theory (GUT)-scale models of inflation, although well beyond the frequency range sensitivity of gravitational wave observatories like LIGO, LISA, or BBO. However, low-scale models could still produce a detectable signal at frequencies accessible to BBO or DECIGO. For comparison, we have also computed the analogous gravitational wave background from some chaotic inflation models and obtained results similar to those found by other groups. The discovery of such a background would open a new observational window into the very early universe, where the details of the process of reheating, i.e. the big bang, could be explored. Moreover, it could also serve in the future as a new experimental tool for testing the inflationary paradigm

  6. Light rays and the tidal gravitational pendulum

    Science.gov (United States)

    Farley, A. N. St J.

    2018-05-01

    Null geodesic deviation in classical general relativity is expressed in terms of a scalar function, defined as the invariant magnitude of the connecting vector between neighbouring light rays in a null geodesic congruence projected onto a two-dimensional screen space orthogonal to the rays, where λ is an affine parameter along the rays. We demonstrate that η satisfies a harmonic oscillator-like equation with a λ-dependent frequency, which comprises terms accounting for local matter affecting the congruence and tidal gravitational effects from distant matter or gravitational waves passing through the congruence, represented by the amplitude, of a complex Weyl driving term. Oscillating solutions for η imply the presence of conjugate or focal points along the rays. A polarisation angle, is introduced comprising the orientation of the connecting vector on the screen space and the phase, of the Weyl driving term. Interpreting β as the polarisation of a gravitational wave encountering the light rays, we consider linearly polarised waves in the first instance. A highly non-linear, second-order ordinary differential equation, (the tidal pendulum equation), is then derived, so-called due to its analogy with the equation describing a non-linear, variable-length pendulum oscillating under gravity. The variable pendulum length is represented by the connecting vector magnitude, whilst the acceleration due to gravity in the familiar pendulum formulation is effectively replaced by . A tidal torque interpretation is also developed, where the torque is expressed as a coupling between the moment of inertia of the pendulum and the tidal gravitational field. Precessional effects are briefly discussed. A solution to the tidal pendulum equation in terms of familiar gravitational lensing variables is presented. The potential emergence of chaos in general relativity is discussed in the context of circularly, elliptically or randomly polarised gravitational waves encountering the null

  7. Atmospheric boundary layers in storms: advanced theory and modelling applications

    Directory of Open Access Journals (Sweden)

    S. S. Zilitinkevich

    2005-01-01

    Full Text Available Turbulent planetary boundary layers (PBLs control the exchange processes between the atmosphere and the ocean/land. The key problems of PBL physics are to determine the PBL height, the momentum, energy and matter fluxes at the surface and the mean wind and scalar profiles throughout the layer in a range of regimes from stable and neutral to convective. Until present, the PBLs typical of stormy weather were always considered as neutrally stratified. Recent works have disclosed that such PBLs are in fact very strongly affected by the static stability of the free atmosphere and must be treated as factually stable (we call this type of the PBL "conventionally neutral" in contract to the "truly neutral" PBLs developed against the neutrally stratified free flow. It is common knowledge that basic features of PBLs exhibit a noticeable dependence on the free-flow static stability and baroclinicity. However, the concern of the traditional theory of neural and stable PBLs was almost without exception the barotropic nocturnal PBL, which develops at mid latitudes during a few hours in the night, on the background of a neutral or slightly stable residual layer. The latter separates this type of the PBL from the free atmosphere. It is not surprising that the nature of turbulence in such regimes is basically local and does not depend on the properties of the free atmosphere. Alternatively, long-lived neutral (in fact only conditionally neutral or stable PBLs, which have much more time to grow up, are placed immediately below the stably stratified free flow. Under these conditions, the turbulent transports of momentum and scalars even in the surface layer - far away from the PBL outer boundary - depend on the free-flow Brunt-Väisälä frequency, N. Furthermore, integral measures of the long-lived PBLs (their depths and the resistance law functions depend on N and also on the baroclinic shear, S. In the traditional PBL models both non-local parameters N and S

  8. On the field theoretic description of gravitation

    NARCIS (Netherlands)

    Nieuwenhuizen, T.M.; Kleinert, H.; Jantzen, R.T.; Ruffini, R.

    2008-01-01

    Maxwell started to describe gravitation as a field in Minkowski space. Such an approach brought Babak and Grishchuk in 1999 the gravitational energy-momentum tensor. Simple manipulations allow the Einstein equations to take the form Aµν = (8πG/c4)Θµν, where A is the acceleration tensor and Θ, the

  9. Amplification caused by gravitational bending of light

    International Nuclear Information System (INIS)

    Schneider, P.

    1985-01-01

    Gravitational bending of light may not only lead to multiple imaging (gravitational lens effect), but also affects the apparent luminosity of a source. It is shown here that a mass distribution near the line-of-sight to any source always increases the observable flux relative to the case in which the deflector is absent

  10. Precessing Black Hole Binaries and Their Gravitational Radiation

    Directory of Open Access Journals (Sweden)

    László Á. Gergely

    2018-02-01

    Full Text Available The first and second observational runs of Advanced Laser Interferometer Gravitational-wave Observatory (LIGO have marked the first direct detections of gravitational waves, either from black hole binaries or, in one case, from coalescing neutron stars. These observations opened up the era of gravitational wave astronomy, but also of gravitational wave cosmology, in the form of an independent derivation of the Hubble constant. They were equally important to prove false a plethora of modified gravity theories predicting gravitational wave propagation speed different from that of light. For a continued and improved testing of general relativity, the precise description of compact binary dynamics, not only in the final coalescence phase but also earlier, when precessional effects dominate, are required. We report on the derivation of the full secular dynamics for compact binaries, valid over the precessional time-scale, in the form of an autonomous closed system of differential equations for the set of spin angles and periastron. The system can be applied for mapping the parameter space for the occurrence of the spin flip-flop effect and for more accurately analyzing the spin-flip effect, which could explain the formation of X-shaped radio galaxies.

  11. On tidal phenomena in a strong gravitational field

    International Nuclear Information System (INIS)

    Mashoon, B.

    1975-01-01

    A simple framework based on the concept of quadrupole tidal potential is presented for the calculation of tidal deformation of an extended test body in a gravitational field. This method is used to study the behavior of an initially faraway nonrotating spherical body that moves close to a Schwarzschild or an extreme Kerr black hole. In general, an extended body moving in an external gravitational field emits gravitational radiation due to its center of mass motion, internal tidal deformation, and the coupling between the internal and center of mass motions. Estimates are given of the amount of tidal radiation emitted by the body in the gravitational fields considered. The results reported in this paper are expected to be of importance in the dynamical evolution of a dense stellar system with a massive black hole in its center

  12. Bayesian reconstruction of gravitational wave bursts using chirplets

    Science.gov (United States)

    Millhouse, Margaret; Cornish, Neil J.; Littenberg, Tyson

    2018-05-01

    The LIGO-Virgo Collaboration uses a variety of techniques to detect and characterize gravitational waves. One approach is to use templates—models for the signals derived from Einstein's equations. Another approach is to extract the signals directly from the coherent response of the detectors in the LIGO-Virgo network. Both approaches played an important role in the first gravitational wave detections. Here we extend the BayesWave analysis algorithm, which reconstructs gravitational wave signals using a collection of continuous wavelets, to use a generalized wavelet family, known as chirplets, that have time-evolving frequency content. Since generic gravitational wave signals have frequency content that evolves in time, a collection of chirplets provides a more compact representation of the signal, resulting in more accurate waveform reconstructions, especially for low signal-to-noise events, and events that occupy a large time-frequency volume.

  13. Motion of photons in a gravitational wave background

    Science.gov (United States)

    Chang, Zhe; Huang, Chao-Guang; Zhao, Zhi-Chao

    2017-09-01

    Photon motion in a Michelson interferometer is re-analyzed in terms of both geometrical optics and wave optics. The classical paths of the photons in the background of a gravitational wave are derived from the Fermat principle, which is the same as the null geodesics in general relativity. The deformed Maxwell equations and the wave equations of electric fields in the background of a gravitational wave are presented in a flat-space approximation. Both methods show that even the envelope of the response of an interferometer depends on the frequency of a gravitational wave, but it is almost independent of the frequency of the mirror’s vibrations. Supported by National Natural Science Foundation of China (11275207, 11375203, 11690022, 11675182) and Strategic Priority Research Program of the Chinese Academy of Sciences “Multi-waveband Gravitational Wave Universe” (XDB23040000)

  14. A new method for testing Newton's gravitational law

    International Nuclear Information System (INIS)

    Schurr, J.; Klein, N.; Meyer, H.; Piel, H.; Walesch, H.

    1991-01-01

    A new experimental method is reported for determining the gravitational force of a laboratory test mass on a Fabry-Perot microwave resonator. The resonator consists of two Fabry-Perot mirrors suspended as pendulums. Changes of 2·10 -11 m in the pendulum separation can be resolved as a shift of the resonance frequency of the resonator. This limit corresponds to an acceleration of 7·10 -11 m s -2 of one mirror with respect to the other. In a first experiment, the gravitational acceleration generated by a 125 kg test mass was measured as a function of distance in the range of 10 to 15 cm and tested Newton's gravitational law with an accuracy of 1%. No deviation is found. Furthermore, the gravitational constant G is determined with similar precision. (author) 5 refs., 2 figs

  15. Gravitational properties of antimatter

    International Nuclear Information System (INIS)

    Goldman, T.; Nieto, M.M.

    1985-01-01

    Quantum gravity is at the forefront of modern particle physics, yet there are no direct tests, for antimatter, of even the principle of equivalence. We note that modern descriptions of gravity, such as fibre bundles and higher dimensional spacetimes, allow violations of the commonly stated form of the principle of equivalence, and of CPT. We review both indirect arguments and experimental tests of the expected gravitational properties of CPT-conjugate states. We conclude that a direct experimental test of the gravitational properties of antimatter, at the 1% (or better) level, would be of great value. We identify some experimental reasons which make the antiproton a prime candidate for this test, and we strongly urge that such an experiment be done at LEAR. 21 references

  16. Post-Newtonian gravitational bremsstrahlung

    International Nuclear Information System (INIS)

    Turner, M.; Will, C.M.

    1977-07-01

    Formulae and numerical results are presented for the gravitational radiation emitted during a low-deflection encounter between two massive bodies. Results are valid through post-Newtonian order within general relativity. The gravitational waveform, the total luminosity and total emitted energy, the angular distribution of emitted energy, and the frequency spectrum are discussed in detail. A method boosting the accuracy of these quantities to post Newtonian order is also presented. A numerical comparison of results with those of Peters, and of Kovacs and Thorne shows that the post Newtonian method is reliable to better than 0.1 percent at v = 0.1 c, to a few percent at v = 0.35 c, and to 10 to 20 percent at v = 0.5 c

  17. The gravitational lens effect and its optical equivalents

    International Nuclear Information System (INIS)

    Freitas, L.R. de.

    1987-01-01

    This work presents the evolution of the use of the so called gravitational lens effect from a simple observational teste of the General Relativity theory to an instrument to measure cosmological parameters. A detailed analysis of how a gravitational ''lens'' deflects light without forming images is shown for the case of the deflector with spherical symmetry. In addition, the exact optical equivalent of a cylindrical gravitational lens, which forms true images, is proposed. Finally the problem of the formation of multiple images and the related astronomical observations is discussed. (author) [pt

  18. Gravitational radiation resistance, radiation damping and field fluctuations

    International Nuclear Information System (INIS)

    Schaefer, G.

    1981-01-01

    Application is made of two different generalised fluctuation-dissipation theorems and their derivations to the calculation of the gravitational quadrupole radiation resistance using the radiation-reaction force given by Misner, Thorne and Wheeler (Gravitation (San Francisco: Freeman) ch 36,37 (1973)) and the usual tidal force on one hand and the tidal force and the free gravitational radiation field on the other hand. The quantum-mechanical version (including thermal generalisations) of the well known classical quadrupole radiation damping formula is obtained as a function of the radiation resistance. (author)

  19. Stratified random sampling plans designed to assist in the determination of radon and radon daughter concentrations in underground uranium mine atmosphere

    International Nuclear Information System (INIS)

    Makepeace, C.E.

    1981-01-01

    Sampling strategies for the monitoring of deleterious agents present in uranium mine air in underground and surface mining areas are described. These methods are designed to prevent overexposure of the lining of the respiratory system of uranium miners to ionizing radiation from radon and radon daughters, and whole body overexposure to external gamma radiation. A detailed description is provided of stratified random sampling monitoring methodology for obtaining baseline data to be used as a reference for subsequent compliance assessment

  20. Gravitation radiation observations

    OpenAIRE

    Glass, E. N.

    2017-01-01

    The notion of gravitational radiation begins with electromagnetic radiation. In 1887 Heinrich Hertz, working in one room, generated and received electromagnetic radiation. Maxwell's equations describe the electromagnetic field. The quanta of electromagnetic radiation are spin 1 photons. They are fundamental to atomic physics and quantum electrodynamics.

  1. Gravitational-Wave Astronomy

    Indian Academy of Sciences (India)

    Keywords. General relativity; gravitational waves; astrophysics; interferometry. Author Affiliations. P Ajith1 K G Arun2. LIGO Laboratory and Theoretical Astrophysics California Institute of Technology MS 18-34, Pasadena CA 91125, USA. Chennai Mathematical Institute Plot H1, SIPCOT IT Park Siruseri, Padur Post Chennai ...

  2. Relativistic theory of gravitation and the graviton rest mass

    International Nuclear Information System (INIS)

    Logunsov, A.A.; Mestvirishvili, M.A.

    1986-01-01

    This paper examines a graviton rest mass (m) introduced in the framework of the relativistic theory of gravitation and obtains equations that describe a massive gravitational field. Under the assumption that the entire hidden mass of the matter in the Universe is due to the existence of a massive gravitational field, an upper bound on the rest mass is obtained: m ≤ 0.64 x 10 --65 g

  3. Stratified Medicine and Reimbursement Issues

    Directory of Open Access Journals (Sweden)

    Hans-Joerg eFugel

    2012-10-01

    Full Text Available Stratified Medicine (SM has the potential to target patient populations who will most benefit from a therapy while reducing unnecessary health interventions associated with side effects. The link between clinical biomarkers/diagnostics and therapies provides new opportunities for value creation to strengthen the value proposition to pricing and reimbursement (P&R authorities. However, the introduction of SM challenges current reimbursement schemes in many EU countries and the US as different P&R policies have been adopted for drugs and diagnostics. Also, there is a lack of a consistent process for value assessment of more complex diagnostics in these markets. New, innovative approaches and more flexible P&R systems are needed to reflect the added value of diagnostic tests and to stimulate investments in new technologies. Yet, the framework for access of diagnostic–based therapies still requires further development while setting the right incentives and appropriate align stakeholders interests when realizing long- term patient benefits. This article addresses the reimbursement challenges of SM approaches in several EU countries and the US outlining some options to overcome existing reimbursement barriers for stratified medicine.

  4. The potential for very high-frequency gravitational wave detection

    International Nuclear Information System (INIS)

    Cruise, A M

    2012-01-01

    The science case for observing gravitational waves at frequencies in the millihertz-kilohertz range using LIGO, VIRGO, GEO600 or LISA is very strong and the first results are expected at these frequencies. However, as gravitational wave astronomy progresses beyond the first detections, other frequency bands may be worth exploring. Early predictions of gravitational wave emission from discrete sources at very much higher frequencies (megahertz and above) have been published and more recent studies of cosmological signals from inflation, Kaluza-Klein modes from gravitational interactions in brane worlds and plasma instabilities surrounding violent astrophysical events, are all possible sources. This communication examines current observational possibilities and the detector technology required to make meaningful observations at these frequencies. (paper)

  5. The Schenberg gravitational wave detector: status report

    International Nuclear Information System (INIS)

    Aguiar, O.D.; Barroso, J.J; Bessada, D.F.A.; Carvalho, N.C; Castro, P.J.; Montana, C.E. Cedeno; Costa, C.F. da Silva; Araujo, J.C.N de; Evangelista, E.F.D.; Furtado, S.R; Miranda, O.D.; Moraes, P.H.R.S.; Pereira, Eduardo S.; Silveira, P.R.; Stellati, C.; Weber, J.

    2011-01-01

    Full text: The quest for gravitational wave detection has been one of the toughest technological challenges ever faced by experimental physicists and engineers. Despite all difficulties, after four decades of research, the community involved in this area is continuously growing. One of the main reasons for this is because the first gravitational wave detection and the regular observation of gravitational waves are among the most important scientific goals for the beginning of this millennium. They will test one of the foundations of physics, Einstein's theory of general relativity, and will open a new window for the observation of the universe, which certainly will cause a revolution in our knowledge of physics and astrophysics. In this talk we present the status report of the Brazilian Schenberg gravitational wave detector, which started commissioning runs in September 2006 under the full support of FAPESP. We have been upgrading the detector since 2008, installing a dilution refrigerator, a new complete set of transducers, and a new suspension and vibration isolation system for the cabling and microstrip antennas, in order to restart operation with a higher sensitivity. We also have been studying an innovative approach, which could transform Schenberg into a broadband gravitational wave detector by the use of an ultra-high sensitivity non-resonant nanogap transducer, constructed by the application of recent achievements of nanotechnology. A spherical antenna, such as Schenberg or Mini-Grail, could add to this quality the advantage of wave position and polarity determination. (author)

  6. Geometrical Aspects of non-gravitational interactions

    OpenAIRE

    Roldan, Omar; Barros Jr, C. C.

    2016-01-01

    In this work we look for a geometric description of non-gravitational forces. The basic ideas are proposed studying the interaction between a punctual particle and an electromagnetic external field. For this purpose, we introduce the concept of proper space-time, that allow us to describe this interaction in a way analogous to the one that the general relativity theory does for gravitation. The field equations that define this geometry are similar to the Einstein's equations, where in general...

  7. Gravitational waves from plunges into Gargantua

    Science.gov (United States)

    Compère, Geoffrey; Fransen, Kwinten; Hertog, Thomas; Long, Jiang

    2018-05-01

    We analytically compute time domain gravitational waveforms produced in the final stages of extreme mass ratio inspirals of non-spinning compact objects into supermassive nearly extremal Kerr black holes. Conformal symmetry relates all corotating equatorial orbits in the geodesic approximation to circular orbits through complex conformal transformations. We use this to obtain the time domain Teukolsky perturbations for generic equatorial corotating plunges in closed form. The resulting gravitational waveforms consist of an intermediate polynomial ringdown phase in which the decay rate depends on the impact parameters, followed by an exponential quasi-normal mode decay. The waveform amplitude exhibits critical behavior when the orbital angular momentum tends to a minimal value determined by the innermost stable circular orbit. We show that either near-critical or large angular momentum leads to a significant extension of the LISA observable volume of gravitational wave sources of this kind.

  8. Observation of Gravitational Waves from a Binary Black Hole Merger

    NARCIS (Netherlands)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Phythian-Adams, A.T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.T.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Arain, M.A.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, R.D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Barton, M. A.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Behnke, B.; Bejger, M.; Belczynski, C.; Bell, A. S.; Bell, C. J.; Berger, B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, M.J.; Birney, R.; Birnholtz, O.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, A.L.S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, J.G.; Bogan, C.; Bohe, A.; Bojtos, P.; Bond, T.C; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Brooks, A. F.; Brown, A.D.; Brown, D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Bustillo, J. Calderon; Callister, T. A.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Diaz, J. Casanueva; Casentini, C.; Caudill, S.; Cavaglia, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Baiardi, L. Cerboni; Cerretani, G.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chan, M.; Chao, D. S.; Charlton, P.; Chassande-Mottin, E.; Chen, H. Y.; Chen, Y; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Qian; Chua, S. E.; Chung, E.S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P. -F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M., Jr.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, A.C.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J. -P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cruise, A. M.; Cumming, A.; Cunningham, A.L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Daveloza, H. P.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; De, S.; Debra, D.; Debreczeni, G.; Degallaix, J.; De laurentis, M.; Deleglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.A.; DeRosa, R. T.; Rosa, R.; DeSalvo, R.; Dhurandhar, S.; Diaz, M. C.; Di Fiore, L.; Giovanni, M.G.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H. -B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, T. M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.M.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Feldbaum, D.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M; Fong, H.; Fournier, J. -D.; Franco, S; Frasca, S.; Frasconi, F.; Frede, M.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gatto, A.; Gaur, G.; Gehrels, N.; Gemme, G.; Gendre, B.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.P.; Glaefke, A.; Gleason, J. R.; Goetz, E.; Goetz, R.; Gondan, L.; Gonzalez, Idelmis G.; Castro, J. M. Gonzalez; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Lee-Gosselin, M.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.M.; Greco, G.; Green, A. C.; Greenhalgh, R. J. S.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Buffoni-Hall, R.; Hall, E. D.; Hammond, G.L.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, P.J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C. -J.; Haughian, K.; Healy, J.; Heefner, J.; Heidmann, A.; Heintze, M. C.; Heinzel, G.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hofman, D.; Hollitt, S. E.; Holt, K.; Holz, D. E.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J. -M.; Isi, M.; Islas, G.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacobson, M. B.; Jacqmin, T.; Jang, D.H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jimenez-Forteza, F.; Johnson, W.; Johnson-McDaniel, N. K.; Jones, I.D.; Jones, R.; Jonker, R. J. G.; Ju, L.; Haris, K.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.H.; Kanner, J. B.; Karki, S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Kefelian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.E.; Keppel, D. G.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.; Khan, I.; Khan., S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, C.; Kim, J.; Kim, K.; Kim, Nam-Gyu; Kim, Namjun; Kim, Y.M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Kokeyama, K.; Koley, S.; Kondrashov, V.; Kontos, A.; Koranda, S.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Krolak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia, A.; Kwee, P.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C.H.; Lee, K.H.; Lee, M.H.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B. M.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Logue, J.; Lombardi, A. L.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.; Lovelace, G.; Lueck, H.; Lundgren, A. P.; Luo, J.; Lynch, R.; Ma, Y.; MacDonald, T.T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magana-Sandoval, F.; Magee, R. M.; Mageswaran, M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Marka, S.; Marka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R.M.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B.C.; Moore, J.C.; Moraru, D.; Gutierrez Moreno, M.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, S.D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P.G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nedkova, K.; Nelemans, G.; Gutierrez-Neri, M.; Neunzert, A.; Newton-Howes, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J.; Oh, S. H.; Ohme, F.; Oliver, M. B.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ott, C. D.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pan, Y.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.S; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Pickenpack, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poeld, J. H.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S. S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Puerrer, M.; Qi, H.; Qin, J.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rakhmanov, M.; Ramet, C. R.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romanov, G.; Romie, J. H.; Rosinska, D.; Rowan, S.; Ruediger, A.; Ruggi, P.; Ryan, K.A.; Sachdev, P.S.; Sadecki, T.; Sadeghian, L.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, G. H.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J; Schmidt, P.; Schnabel, R.B.; Schofield, R. M. S.; Schoenbeck, A.; Schreiber, K.E.C.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, M.S.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Serna, G.; Setyawati, Y.; Sevigny, A.; Shaddock, D. A.; Shaffer, T. J.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shao, Z.M.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sigg, D.; Silva, António Dias da; Simakov, D.; Singer, A; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, R. J. E.; Smith, R.M.; Smith, N.D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stevenson-Moore, P.; Stone, J.R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S. E.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sutton, P. J.; Swinkels, B. L.; Szczepanczyk, M. J.; Tacca, M.D.; Talukder, D.; Tanner, D. B.; Tapai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, W.R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie, C. I.; Toeyrae, D.; Travasso, F.; Traylor, G.; Trifiro, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; Vallisneri, M.; van Bakel, N.; Van Beuzekom, Martin; van den Brand, J. F. J.; Van Den Broeck, C.F.F.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasuth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P.J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Vicere, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J. -Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, MT; Waldman, S. J.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, H.A.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L. -W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.M.; Wessels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D. J.; Whiting, B. F.; Wiesner, K.; Wilkinson, C.; Willems, P. A.; Williams, L.; Williams, D.R.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkelmann, L.; Winkler, W.; Wipf, C. C.; Wiseman, A. G.; Wittel, H.; Woan, G.; Worden, J.; Wright, J.L.; Wu, G.; Yablon, J.; Yakushin, I.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, H.; Yvert, M.; Zadrozny, A.; Zangrando, L.; Zanolin, M.; Zendri, J. -P.; Zevin, M.; Zhang, F.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.

    2016-01-01

    On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0×10−21. It matches

  9. Gravitational shock waves and extreme magnetomaterial shock waves

    International Nuclear Information System (INIS)

    Lichnerowicz, Andre.

    1975-01-01

    Within an astrophysical context corresponding to high densities, a self-gravitating model is studied, which is the set of an extreme material medium of infinite conductivity and of a magnetic field. Corresponding shock waves generate necessarily, in general, gravitational shock waves [fr

  10. Speed of Gravitational Waves from Strongly Lensed Gravitational Waves and Electromagnetic Signals.

    Science.gov (United States)

    Fan, Xi-Long; Liao, Kai; Biesiada, Marek; Piórkowska-Kurpas, Aleksandra; Zhu, Zong-Hong

    2017-03-03

    We propose a new model-independent measurement strategy for the propagation speed of gravitational waves (GWs) based on strongly lensed GWs and their electromagnetic (EM) counterparts. This can be done in two ways: by comparing arrival times of GWs and their EM counterparts and by comparing the time delays between images seen in GWs and their EM counterparts. The lensed GW-EM event is perhaps the best way to identify an EM counterpart. Conceptually, this method does not rely on any specific theory of massive gravitons or modified gravity. Its differential setting (i.e., measuring the difference between time delays in GW and EM domains) makes it robust against lens modeling details (photons and GWs travel in the same lensing potential) and against internal time delays between GW and EM emission acts. It requires, however, that the theory of gravity is metric and predicts gravitational lensing similar to general relativity. We expect that such a test will become possible in the era of third-generation gravitational-wave detectors, when about 10 lensed GW events would be observed each year. The power of this method is mainly limited by the timing accuracy of the EM counterpart, which for kilonovae is around 10^{4}  s. This uncertainty can be suppressed by a factor of ∼10^{10}, if strongly lensed transients of much shorter duration associated with the GW event can be identified. Candidates for such short transients include short γ-ray bursts and fast radio bursts.

  11. Redox Evolution via Gravitational Differentiation on Low-mass Planets: Implications for Abiotic Oxygen, Water Loss, and Habitability

    Science.gov (United States)

    Wordsworth, R. D.; Schaefer, L. K.; Fischer, R. A.

    2018-05-01

    The oxidation of rocky planet surfaces and atmospheres, which arises from the twin forces of stellar nucleosynthesis and gravitational differentiation, is a universal process of key importance to habitability and exoplanet biosignature detection. Here we take a generalized approach to this phenomenon. Using a single parameter to describe the redox state, we model the evolution of terrestrial planets around nearby M stars and the Sun. Our model includes atmospheric photochemistry, diffusion and escape, line-by-line climate calculations, and interior thermodynamics and chemistry. In most cases, we find abiotic atmospheric {{{O}}}2 buildup around M stars during the pre-main-sequence phase to be much less than calculated previously, because the planet’s magma ocean absorbs most oxygen liberated from {{{H}}}2{{O}} photolysis. However, loss of noncondensing atmospheric gases after the mantle solidifies remains a significant potential route to abiotic atmospheric {{{O}}}2 subsequently. In all cases, we predict that exoplanets that receive lower stellar fluxes, such as LHS1140b and TRAPPIST-1f and g, have the lowest probability of abiotic {{{O}}}2 buildup and hence may be the most interesting targets for future searches for biogenic {{{O}}}2. Key remaining uncertainties can be minimized in future by comparing our predictions for the atmospheres of hot, sterile exoplanets such as GJ1132b and TRAPPIST-1b and c with observations.

  12. Methylmercury speciation in the dissolved phase of a stratified lake using the diffusive gradient in thin film technique

    Energy Technology Data Exchange (ETDEWEB)

    Clarisse, Olivier [Trent University, Department of Chemistry, 1600 West Bank Drive, Peterborough, Ontario K9J 7B8 (Canada)], E-mail: olivier.clarisse@umoncton.ca; Foucher, Delphine; Hintelmann, Holger [Trent University, Department of Chemistry, 1600 West Bank Drive, Peterborough, Ontario K9J 7B8 (Canada)

    2009-03-15

    The diffusive gradient in thin film (DGT) technique was successfully used to monitor methylmercury (MeHg) speciation in the dissolved phase of a stratified boreal lake, Lake 658 of the Experimental Lakes Area (ELA) in Ontario, Canada. Water samples were conventionally analysed for MeHg, sulfides, and dissolved organic matter (DOM). MeHg accumulated by DGT devices was compared to MeHg concentration measured conventionally in water samples to establish MeHg speciation. In the epilimnion, MeHg was almost entirely bound to DOM. In the top of the hypolimnion an additional labile fraction was identified, and at the bottom of the lake a significant fraction of MeHg was potentially associated to colloidal material. As part of the METAALICUS project, isotope enriched inorganic mercury was applied to Lake 658 and its watershed for several years to establish the relationship between atmospheric Hg deposition and Hg in fish. Little or no difference in MeHg speciation in the dissolved phase was detected between ambient and spike MeHg. - Methylmercury speciation was determined in the dissolved phase of a stratified lake using the diffusive gradient in thin film technique.

  13. Methylmercury speciation in the dissolved phase of a stratified lake using the diffusive gradient in thin film technique

    International Nuclear Information System (INIS)

    Clarisse, Olivier; Foucher, Delphine; Hintelmann, Holger

    2009-01-01

    The diffusive gradient in thin film (DGT) technique was successfully used to monitor methylmercury (MeHg) speciation in the dissolved phase of a stratified boreal lake, Lake 658 of the Experimental Lakes Area (ELA) in Ontario, Canada. Water samples were conventionally analysed for MeHg, sulfides, and dissolved organic matter (DOM). MeHg accumulated by DGT devices was compared to MeHg concentration measured conventionally in water samples to establish MeHg speciation. In the epilimnion, MeHg was almost entirely bound to DOM. In the top of the hypolimnion an additional labile fraction was identified, and at the bottom of the lake a significant fraction of MeHg was potentially associated to colloidal material. As part of the METAALICUS project, isotope enriched inorganic mercury was applied to Lake 658 and its watershed for several years to establish the relationship between atmospheric Hg deposition and Hg in fish. Little or no difference in MeHg speciation in the dissolved phase was detected between ambient and spike MeHg. - Methylmercury speciation was determined in the dissolved phase of a stratified lake using the diffusive gradient in thin film technique

  14. Black Hole Kicks as New Gravitational Wave Observables.

    Science.gov (United States)

    Gerosa, Davide; Moore, Christopher J

    2016-07-01

    Generic black hole binaries radiate gravitational waves anisotropically, imparting a recoil, or kick, velocity to the merger remnant. If a component of the kick along the line of sight is present, gravitational waves emitted during the final orbits and merger will be gradually Doppler shifted as the kick builds up. We develop a simple prescription to capture this effect in existing waveform models, showing that future gravitational wave experiments will be able to perform direct measurements, not only of the black hole kick velocity, but also of its accumulation profile. In particular, the eLISA space mission will measure supermassive black hole kick velocities as low as ∼500  km s^{-1}, which are expected to be a common outcome of black hole binary coalescence following galaxy mergers. Black hole kicks thus constitute a promising new observable in the growing field of gravitational wave astronomy.

  15. Dark matter structures and emission of very long gravitational waves

    International Nuclear Information System (INIS)

    Bisnovatyi-Kogan, G.S.

    2005-01-01

    Formation of large structure in the Universe as a result of gravitational instability in cold dark matter is investigated in a simple analytical model. Collapse of the rotating spheroid is approximated by a system of ordinary differential equations describing its dynamics. The gravitational potential is approximated by the one of the uniform Maclaurin spheroid. Development of gravitational instability and collapse in the dark matter medium do not lead to any shock formation or radiation, but is characterized by non-collisional relaxation, which is accompanied by the mass and angular momentum losses. Phenomenological account of these processes is done in this model. Formation of the equilibrium configuration dynamics of collapse is investigated. A very long gravitational wave emission during the collapse is estimated, and their possible connection with the observed gravitational lenses is discussed

  16. Numerical simulation of stratified flows with different k-ε turbulence models

    International Nuclear Information System (INIS)

    Dagestad, S.

    1991-01-01

    The thesis comprises the numerical simulation of stratified flows with different k-ε models. When using the k-ε model, two equations are solved to describe the turbulence. The k-equation represents the turbulent kinetic energy of the turbulence and the ε-equation is the turbulent dissipation. Different k-ε models predict stratified flows differently. The standard k-ε model leads to higher turbulent mixing than the low-Reynolds model does. For lower Froude numbers, F 0 , this effect becomes enhanced. Buoyancy extension of the k-ε model also leads to less vertical mixing in cases with strong stratification. When the stratification increases, buoyancy-extension becomes larger influence. The turbulent Prandtl number effects have large impact on the transport of heat and the development of the flow. Two different formulae which express the turbulent Prandtl effects have been tested. For unstably stratified flows, the rapid mixing and three-dimensionality of the flow can in fact be computed using a k-ε model when buoyancy-extended is employed. The turbulent heat transfer and thus turbulent production in unstable stratified flows depends strongly upon the turbulent Prandtl number effect. The main conclusions are: Stable stratified flows should be computed with a buoyancy-extended low-Reynolds k-ε model; Unstable stratified flows should be computed with a buoyancy-extended standard k-ε model; The turbulent Prandtl number effects should be included in the computations; Buoyancy-extension has lead to more correct description of the physics for all of the investigated flows. 78 refs., 128 figs., 17 tabs

  17. Gravitational Physics Research

    Science.gov (United States)

    Wu, S. T.

    2000-01-01

    Gravitational physics research at ISPAE is connected with NASA's Relativity Mission (Gravity Probe B (GP-B)) which will perform a test of Einstein's General Relativity Theory. GP-B will measure the geodetic and motional effect predicted by General Relativity Theory with extremely stable and sensitive gyroscopes in an earth orbiting satellite. Both effects cause a very small precession of the gyroscope spin axis. The goal of the GP-B experiment is the measurement of the gyroscope precession with very high precision. GP-B is being developed by a team at Stanford University and is scheduled for launch in the year 2001. The related UAH research is a collaboration with Stanford University and MSFC. This research is focussed primarily on the error analysis and data reduction methods of the experiment but includes other topics concerned with experiment systems and their performance affecting the science measurements. The hydrogen maser is the most accurate and stable clock available. It will be used in future gravitational physics missions to measure relativistic effects such as the second order Doppler effect. The HMC experiment, currently under development at the Smithsonian Astrophysical Observatory (SAO), will test the performance and capability of the hydrogen maser clock for gravitational physics measurements. UAH in collaboration with the SAO science team will study methods to evaluate the behavior and performance of the HMC. The GP-B data analysis developed by the Stanford group involves complicated mathematical operations. This situation led to the idea to investigate alternate and possibly simpler mathematical procedures to extract the GP-B measurements form the data stream. Comparison of different methods would increase the confidence in the selected scheme.

  18. Scale-covariant theory of gravitation and astrophysical applications

    International Nuclear Information System (INIS)

    Canuto, V.; Adams, P.J.; Hsieh, S.; Tsiang, E.

    1977-01-01

    By associating the mathematical operation of scale transformation with the physics of using different dynamical systems to measure space-time distances, we formulate a scale-covariant theory of gravitation. Corresponding to each dynamical system of units is a gauge condition which determines the otherwise arbitrary gauge function. For gravitational units, the gauge condition is chosen so that the standard Einstein equations are recovered. Assuming the atomic units, derivable from atomic dynamics, to be distinct from the gravitational units, a different gauge condition must be imposed. It is suggested that Dirac's large-number hypothesis be used for the determination of this condition so that gravitational phenomena can be described in atomic units. The result allows a natural interpretation of the possible variation of the gravitational constant without compromising the validity of general relativity. A geometrical interpretation of the scale-covariant theory is possible if the covariant tensors in Riemannian space are replaced by cocovariant cotensors in an integrable Weyl space. A scale-invariant action principle is constructed from the metrical potentials of the integrable Weyl space. Application of the dynamical equations in atomic units to cosmology yields a family of homogeneous solutions characterized by R approx. t for large cosmological times. Equations of motion in atomic units are solved for spherically symmetric gravitational fields. Expressions for perihelion shift and light deflection are derived. They do not differ from the predictions of general relativity except for secular variations, having the age of the universe as a time scale. Similar variations of periods and radii for planetary orbits are also derived

  19. Covariant Theory of Gravitation in the Spacetime with Finsler Structure

    OpenAIRE

    Huang, Xin-Bing

    2007-01-01

    The theory of gravitation in the spacetime with Finsler structure is constructed. It is shown that the theory keeps general covariance. Such theory reduces to Einstein's general relativity when the Finsler structure is Riemannian. Therefore, this covariant theory of gravitation is an elegant realization of Einstein's thoughts on gravitation in the spacetime with Finsler structure.

  20. Gravitational closure of matter field equations

    Science.gov (United States)

    Düll, Maximilian; Schuller, Frederic P.; Stritzelberger, Nadine; Wolz, Florian

    2018-04-01

    The requirement that both the matter and the geometry of a spacetime canonically evolve together, starting and ending on shared Cauchy surfaces and independently of the intermediate foliation, leaves one with little choice for diffeomorphism-invariant gravitational dynamics that can equip the coefficients of a given system of matter field equations with causally compatible canonical dynamics. Concretely, we show how starting from any linear local matter field equations whose principal polynomial satisfies three physicality conditions, one may calculate coefficient functions which then enter an otherwise immutable set of countably many linear homogeneous partial differential equations. Any solution of these so-called gravitational closure equations then provides a Lagrangian density for any type of tensorial geometry that features ultralocally in the initially specified matter Lagrangian density. Thus the given system of matter field equations is indeed closed by the so obtained gravitational equations. In contrast to previous work, we build the theory on a suitable associated bundle encoding the canonical configuration degrees of freedom, which allows one to include necessary constraints on the geometry in practically tractable fashion. By virtue of the presented mechanism, one thus can practically calculate, rather than having to postulate, the gravitational theory that is required by specific matter field dynamics. For the special case of standard model matter one obtains general relativity.

  1. Effect of Excess Gravitational Force on Cultured Myotubes in Vitro

    Directory of Open Access Journals (Sweden)

    Shigehiro Hashimoto

    2013-06-01

    Full Text Available An effect of an excess gravitational force on cultured myoblasts has been studied in an experimental system with centrifugal force in vitro. Mouse myoblasts (C2C12 were seeded on a culture dish of 35 mm diameter, and cultured in the Dulbecco's Modified Eagle's Medium until the sub-confluent condition. To apply the excess gravitational force on the cultured cells, the dish was set in a conventional centrifugal machine. Constant gravitational force was applied to the cultured cells for three hours. Variations were made on the gravitational force (6 G, 10 G, 100 G, 500 G, and 800 G with control of the rotational speed of the rotator in the centrifugal machine. Morphology of the cells was observed with a phasecontrast microscope for eight days. The experimental results show that the myotube thickens day by day after the exposure to the excess gravitational force field. The results also show that the higher excess gravitational force thickens myotubes. The microscopic study shows that myotubes thicken with fusion each other.

  2. Gravitational Waves from Oscillons with Cuspy Potentials.

    Science.gov (United States)

    Liu, Jing; Guo, Zong-Kuan; Cai, Rong-Gen; Shiu, Gary

    2018-01-19

    We study the production of gravitational waves during oscillations of the inflaton around the minimum of a cuspy potential after inflation. We find that a cusp in the potential can trigger copious oscillon formation, which sources a characteristic energy spectrum of gravitational waves with double peaks. The discovery of such a double-peak spectrum could test the underlying inflationary physics.

  3. Geodesics analysis of colliding gravitational shock waves

    International Nuclear Information System (INIS)

    Pozdeeva, E.

    2011-01-01

    Full text: (author)We consider collision of charged gravitational shock waves with infinite transverse extension (charged gravitational walls). We study the influence of the charges on the trapped surface formation in the charged walls collision. This consideration has applications in the in heavy ion collisions using a holographic approach in which the charge plays the role of the chemical potential

  4. Gravitational bending of light rays in plasma

    International Nuclear Information System (INIS)

    Tsupko, O. Yu.; Bisnovatyi-Kogan, G. S.

    2010-01-01

    We investigate the gravitational lensing effect in presence of plasma. We observe that in a homogeneous plasma the gravitational deflection angle differs from that in vacuum, and it depends on the frequency of the photon. We discuss observational consequences of this dependence for the point-mass lensing and estimate possibility of the observation of this effect by the planned project Radioastron.

  5. Physics through the 1990s: Gravitation, cosmology, and cosmic-ray physics

    International Nuclear Information System (INIS)

    1986-01-01

    This report reviews and highlights three areas of astrophysics; gravitation; cosmology; and cosmic-ray physics. Topics such as: gravitational collapse and black holes, gravitational waves, general relativity, nucleosynthesis, and the standard model are among the many topics highlighted

  6. The gravitational analogue of the Witten effect

    International Nuclear Information System (INIS)

    Foda, O.

    1985-01-01

    In the presence of massive fermions, and assuming a non-vanishing theta-parameter as the only source of CP violation, the Witten effect (a shift in the electric charge of a magnetic monopole due to CP non-conservation) is shown to follow from an anomalous chiral commutator. Next, given the gravitational contribution to the chiral anomaly, the corresponding anomalous commutator for Dirac fermion currents in a gravitational background is derived. From that, we infer the equivalence of a thetaR tildeR term in the lagrangian to a shift in the mass parameter of the NUT metric, in proportion to theta. This is interpreted as the gravitational analogue of the Witten effect. Its relevance to certain Kaluza-Klein monopoles is briefly discussed. (orig.)

  7. Stabilized lasers for advanced gravitational wave detectors

    International Nuclear Information System (INIS)

    Willke, B; Danzmann, K; Kwee, P; Seifert, F; Frede, M; Kracht, D; Puncken, O; Schulz, B; Veltkamp, C; Wagner, S; Wessels, P; Winkelmann, L; King, P; Savage, R L Jr

    2008-01-01

    Second generation gravitational wave detectors require high power lasers with more than 100 W of output power and with very low temporal and spatial fluctuations. To achieve the demanding stability levels required, low noise techniques and adequate control actuators have to be part of the high power laser design. In addition feedback control and passive noise filtering is used to reduce the fluctuations in the so-called prestabilized laser system (PSL). In this paper, we discuss the design of a 200 W PSL which is under development for the Advanced LIGO gravitational wave detector and will present the first results. The PSL noise requirements for advanced gravitational wave detectors will be discussed in general and the stabilization scheme proposed for the Advanced LIGO PSL will be described

  8. Symmetries and gravitational Chern–Simons Lagrangian terms

    International Nuclear Information System (INIS)

    Bonora, L.; Cvitan, M.; Dominis Prester, P.; Pallua, S.; Smolić, I.

    2013-01-01

    We consider some general consequences of adding pure gravitational Chern–Simons term to manifestly diff-covariant theories of gravity, focusing essentially on spacetimes with D>3. Extending the result of a previous paper we enlarge the class of metrics for which the inclusion of a gravitational Chern–Simons term in the action does not affect solutions and corresponding physical quantities. In the case in which such solutions describe black holes (of general horizon topology) we show that the black hole entropy is also unchanged. We arrive at these conclusions by proving three general theorems and studying their consequences. One of the theorems states that the contribution of the gravitational Chern–Simons to the black hole entropy is invariant under local rescaling of the metric

  9. The gravitational analogue of the Witten effect

    International Nuclear Information System (INIS)

    Foda, O.

    1984-06-01

    In the presence of massive fermions, and assuming a non-vanishing theta-parameter as the only source of CP-violation, the Witten effect [a shift in the electric charge of a magnetic monopole due to CP-non-conservation] is shown to follow from an anomalous chiral commutator. Next, given the gravitational contribution to the chiral anomaly, the corresponding anomalous commutator for Dirac fermion currents in a gravitational background is derived. From that, we infer the equivalence of a theta R-tilde R term in the Lagrangian to a shift in the mass parameter of the NUT metric, in proportion to theta. This is interpreted as the gravitational analogue of the Witten effect. Its relevance to certain Kaluza-Klein monopoles is briefly discussed. (author)

  10. Gravitational waves from phase transition in split NMSSM

    Science.gov (United States)

    Demidov, S. V.; Gorbunov, D. S.; Kirpichnikov, D. V.

    2018-04-01

    We discuss gravitational wave signal from the strongly first order electroweak phase transition in the split NMSSM. We find that for sets of parameters predicting successful electroweak baryogenesis the gravitational wave signal can be within the reach of future experiments LISA, BBO and Ultimate DECIGO.

  11. Swift pointing and gravitational-wave bursts from gamma-ray burst events

    International Nuclear Information System (INIS)

    Sutton, Patrick J; Finn, Lee Samuel; Krishnan, Badri

    2003-01-01

    The currently accepted model for gamma-ray burst phenomena involves the violent formation of a rapidly rotating solar-mass black hole. Gravitational waves should be associated with the black-hole formation, and their detection would permit this model to be tested. Even upper limits on the gravitational-wave strength associated with gamma-ray bursts could constrain the gamma-ray burst model. This requires joint observations of gamma-ray burst events with gravitational and gamma-ray detectors. Here we examine how the quality of an upper limit on the gravitational-wave strength associated with gamma-ray bursts depends on the relative orientation of the gamma-ray-burst and gravitational-wave detectors, and apply our results to the particular case of the Swift Burst-Alert Telescope (BAT) and the LIGO gravitational-wave detectors. A result of this investigation is a science-based 'figure of merit' that can be used, together with other mission constraints, to optimize the pointing of the Swift telescope for the detection of gravitational waves associated with gamma-ray bursts

  12. Chiral gravitational waves and baryon superfluid dark matter

    Science.gov (United States)

    Alexander, Stephon; McDonough, Evan; Spergel, David N.

    2018-05-01

    We develop a unified model of darkgenesis and baryogenesis involving strongly interacting dark quarks, utilizing the gravitational anomaly of chiral gauge theories. In these models, both the visible and dark baryon asymmetries are generated by the gravitational anomaly induced by the presence of chiral primordial gravitational waves. We provide a concrete model of an SU(2) gauge theory with two massless quarks. In this model, the dark quarks condense and form a dark baryon charge superfluid (DBS), in which the Higgs-mode acts as cold dark matter. We elucidate the essential features of this dark matter scenario and discuss its phenomenological prospects.

  13. On propagation of electromagnetic and gravitational waves in the expanding Universe

    International Nuclear Information System (INIS)

    Gladyshev, V O

    2016-01-01

    The purpose of this study was to obtain an equation for the propagation time of electromagnetic and gravitational waves in the expanding Universe. The velocity of electromagnetic waves propagation depends on the velocity of the interstellar medium in the observer's frame of reference. Gravitational radiation interacts weakly with the substance, so electromagnetic and gravitational waves propagate from a remote astrophysical object to the terrestrial observer at different time. Gravitational waves registration enables the inverse problem solution - by the difference in arrival time of electromagnetic and gravitational-wave signal, we can determine the characteristics of the emitting area of the astrophysical object. (paper)

  14. Experimental tests for some quantum effects in gravitation

    International Nuclear Information System (INIS)

    Hari Dass, N.D.

    1976-01-01

    The existing impressive tests for general relativity are shown not to yield very useful information on the possible quantum gravitational interactions. The possibility is raised here that intrinsic spins may behave differently from orbital angular momenta in external gravitational fields. The dominant spin interactions are most generally characterised by three parameters α 1 , α 2 , α 3 . All the metric theories of gravitation predict α 1 = α 2 = 0. Indirect limits posed on these parameters by existing data are not very meaningful (αsub(i) 10 ). Feasible experiments based on the neutron electric dipole moment measurement techniques are discussed and shown to offer the possibility of measuring αsub(i) approximately 1. Other possible experimental set ups are also briefly reviewed. The existence of these effects is shown to imply the breakdown of the equivalence principle. In particular αsub(i)not equal 0 α 2 not equal 0 also implies the breakdown of discrete symmetries in gravitation (C.P.T.). Theoretical frameworks that accomodate such effects are analysed. A reinterpretation of Einstein's generalised gravitational theory as well as a recent theoretical proposal of Hayashi are shown to be sufficiently general for this purpose. Other important implications of these quantum effects are discussed in detail. (Auth.)

  15. MC3D modelling of stratified explosion

    International Nuclear Information System (INIS)

    Picchi, S.; Berthoud, G.

    1999-01-01

    It is known that a steam explosion can occur in a stratified geometry and that the observed yields are lower than in the case of explosion in a premixture configuration. However, very few models are available to quantify the amount of melt which can be involved and the pressure peak that can be developed. In the stratified application of the MC3D code, mixing and fragmentation of the melt are explained by the growth of Kelvin Helmholtz instabilities due to the shear flow of the two phase coolant above the melt. Such a model is then used to recalculate the Frost-Ciccarelli tin-water experiment. Pressure peak, speed of propagation, bubble shape and erosion height are well reproduced as well as the influence of the inertial constraint (height of the water pool). (author)

  16. MC3D modelling of stratified explosion

    Energy Technology Data Exchange (ETDEWEB)

    Picchi, S.; Berthoud, G. [DTP/SMTH/LM2, CEA, 38 - Grenoble (France)

    1999-07-01

    It is known that a steam explosion can occur in a stratified geometry and that the observed yields are lower than in the case of explosion in a premixture configuration. However, very few models are available to quantify the amount of melt which can be involved and the pressure peak that can be developed. In the stratified application of the MC3D code, mixing and fragmentation of the melt are explained by the growth of Kelvin Helmholtz instabilities due to the shear flow of the two phase coolant above the melt. Such a model is then used to recalculate the Frost-Ciccarelli tin-water experiment. Pressure peak, speed of propagation, bubble shape and erosion height are well reproduced as well as the influence of the inertial constraint (height of the water pool). (author)

  17. Time-dependent simulations of disk-embedded planetary atmospheres

    Science.gov (United States)

    Stökl, A.; Dorfi, E. A.

    2014-03-01

    At the early stages of evolution of planetary systems, young Earth-like planets still embedded in the protoplanetary disk accumulate disk gas gravitationally into planetary atmospheres. The established way to study such atmospheres are hydrostatic models, even though in many cases the assumption of stationarity is unlikely to be fulfilled. Furthermore, such models rely on the specification of a planetary luminosity, attributed to a continuous, highly uncertain accretion of planetesimals onto the surface of the solid core. We present for the first time time-dependent, dynamic simulations of the accretion of nebula gas into an atmosphere around a proto-planet and the evolution of such embedded atmospheres while integrating the thermal energy budget of the solid core. The spherical symmetric models computed with the TAPIR-Code (short for The adaptive, implicit RHD-Code) range from the surface of the rocky core up to the Hill radius where the surrounding protoplanetary disk provides the boundary conditions. The TAPIR-Code includes the hydrodynamics equations, gray radiative transport and convective energy transport. The results indicate that diskembedded planetary atmospheres evolve along comparatively simple outlines and in particular settle, dependent on the mass of the solid core, at characteristic surface temperatures and planetary luminosities, quite independent on numerical parameters and initial conditions. For sufficiently massive cores, this evolution ultimately also leads to runaway accretion and the formation of a gas planet.

  18. The effect of existing turbulence on stratified shear instability

    Science.gov (United States)

    Kaminski, Alexis; Smyth, William

    2017-11-01

    Ocean turbulence is an essential process governing, for example, heat uptake by the ocean. In the stably-stratified ocean interior, this turbulence occurs in discrete events driven by vertical variations of the horizontal velocity. Typically, these events have been modelled by assuming an initially laminar stratified shear flow which develops wavelike instabilities, becomes fully turbulent, and then relaminarizes into a stable state. However, in the real ocean there is always some level of turbulence left over from previous events, and it is not yet understood how this turbulence impacts the evolution of future mixing events. Here, we perform a series of direct numerical simulations of turbulent events developing in stratified shear flows that are already at least weakly turbulent. We do so by varying the amplitude of the initial perturbations, and examine the subsequent development of the instability and the impact on the resulting turbulent fluxes. This work is supported by NSF Grant OCE1537173.

  19. Stratified source-sampling techniques for Monte Carlo eigenvalue analysis

    International Nuclear Information System (INIS)

    Mohamed, A.

    1998-01-01

    In 1995, at a conference on criticality safety, a special session was devoted to the Monte Carlo ''Eigenvalue of the World'' problem. Argonne presented a paper, at that session, in which the anomalies originally observed in that problem were reproduced in a much simplified model-problem configuration, and removed by a version of stratified source-sampling. In this paper, stratified source-sampling techniques are generalized and applied to three different Eigenvalue of the World configurations which take into account real-world statistical noise sources not included in the model problem, but which differ in the amount of neutronic coupling among the constituents of each configuration. It is concluded that, in Monte Carlo eigenvalue analysis of loosely-coupled arrays, the use of stratified source-sampling reduces the probability of encountering an anomalous result over that if conventional source-sampling methods are used. However, this gain in reliability is substantially less than that observed in the model-problem results

  20. Long gravitational waves in a closed universe

    International Nuclear Information System (INIS)

    Grishchuk, L.P.; Doroshkevich, A.G.; Yudin, V.M.

    The important part played by long gravitational waves in the evolution of a homogeneous closed universe (model of type IX in Biancki's classification) is discussed. It is shown that the metric of this model can be represented in the form of a sum of a background metric, describing nonstationary space of constant positive curvature, and a group of terms that may be interpreted as a set of gravitational waves of maximal length compatible with closure of the space. This subdivision of the metric is exact and does not presuppose necessary smallness of the wave corrections. For this reason the behavior of the wave terms can be traced at all stages of their evolution--both in the epoch when the contribution of the ''energy density'' and ''pressure'' of the gravitational waves to the dynamics of the background universe is negligibly small and in the epoch when this contribution is dominant. It was demonstrated, in particular, that in the limiting case of complete absence of ordinary matter the scale factor of the background metric, because of the negativity of gravitational ''pressure,''can pass during the evolution of the universe through a state of stable regular minimum

  1. Chameleon scalar fields in relativistic gravitational backgrounds

    Energy Technology Data Exchange (ETDEWEB)

    Tsujikawa, Shinji [Department of Physics, Faculty of Science, Tokyo University of Science, 1-3, Kagurazaka, Shinjuku-ku, Tokyo 162-8601 (Japan); Tamaki, Takashi [Department of Physics, Waseda University, Okubo 3-4-1, Tokyo 169-8555 (Japan); Tavakol, Reza, E-mail: shinji@rs.kagu.tus.ac.jp, E-mail: tamaki@gravity.phys.waseda.ac.jp, E-mail: r.tavakol@qmul.ac.uk [Astronomy Unit, School of Mathematical Sciences, Queen Mary University of London, London E1 4NS (United Kingdom)

    2009-05-15

    We study the field profile of a scalar field {phi} that couples to a matter fluid (dubbed a chameleon field) in the relativistic gravitational background of a spherically symmetric spacetime. Employing a linear expansion in terms of the gravitational potential {Phi}{sub c} at the surface of a compact object with a constant density, we derive the thin-shell field profile both inside and outside the object, as well as the resulting effective coupling with matter, analytically. We also carry out numerical simulations for the class of inverse power-law potentials V({phi}) = M{sup 4+n}{phi}{sup -n} by employing the information provided by our analytical solutions to set the boundary conditions around the centre of the object and show that thin-shell solutions in fact exist if the gravitational potential {Phi}{sub c} is smaller than 0.3, which marginally covers the case of neutron stars. Thus the chameleon mechanism is present in the relativistic gravitational backgrounds, capable of reducing the effective coupling. Since thin-shell solutions are sensitive to the choice of boundary conditions, our analytic field profile is very helpful to provide appropriate boundary conditions for {Phi}{sub c}{approx}

  2. Chameleon scalar fields in relativistic gravitational backgrounds

    International Nuclear Information System (INIS)

    Tsujikawa, Shinji; Tamaki, Takashi; Tavakol, Reza

    2009-01-01

    We study the field profile of a scalar field φ that couples to a matter fluid (dubbed a chameleon field) in the relativistic gravitational background of a spherically symmetric spacetime. Employing a linear expansion in terms of the gravitational potential Φ c at the surface of a compact object with a constant density, we derive the thin-shell field profile both inside and outside the object, as well as the resulting effective coupling with matter, analytically. We also carry out numerical simulations for the class of inverse power-law potentials V(φ) = M 4+n φ −n by employing the information provided by our analytical solutions to set the boundary conditions around the centre of the object and show that thin-shell solutions in fact exist if the gravitational potential Φ c is smaller than 0.3, which marginally covers the case of neutron stars. Thus the chameleon mechanism is present in the relativistic gravitational backgrounds, capable of reducing the effective coupling. Since thin-shell solutions are sensitive to the choice of boundary conditions, our analytic field profile is very helpful to provide appropriate boundary conditions for Φ c ∼< O(0.1)

  3. Quantum Measurement Theory in Gravitational-Wave Detectors

    Directory of Open Access Journals (Sweden)

    Stefan L. Danilishin

    2012-04-01

    Full Text Available The fast progress in improving the sensitivity of the gravitational-wave detectors, we all have witnessed in the recent years, has propelled the scientific community to the point at which quantum behavior of such immense measurement devices as kilometer-long interferometers starts to matter. The time when their sensitivity will be mainly limited by the quantum noise of light is around the corner, and finding ways to reduce it will become a necessity. Therefore, the primary goal we pursued in this review was to familiarize a broad spectrum of readers with the theory of quantum measurements in the very form it finds application in the area of gravitational-wave detection. We focus on how quantum noise arises in gravitational-wave interferometers and what limitations it imposes on the achievable sensitivity. We start from the very basic concepts and gradually advance to the general linear quantum measurement theory and its application to the calculation of quantum noise in the contemporary and planned interferometric detectors of gravitational radiation of the first and second generation. Special attention is paid to the concept of the Standard Quantum Limit and the methods of its surmounting.

  4. Quantum Measurement Theory in Gravitational-Wave Detectors.

    Science.gov (United States)

    Danilishin, Stefan L; Khalili, Farid Ya

    2012-01-01

    The fast progress in improving the sensitivity of the gravitational-wave detectors, we all have witnessed in the recent years, has propelled the scientific community to the point at which quantum behavior of such immense measurement devices as kilometer-long interferometers starts to matter. The time when their sensitivity will be mainly limited by the quantum noise of light is around the corner, and finding ways to reduce it will become a necessity. Therefore, the primary goal we pursued in this review was to familiarize a broad spectrum of readers with the theory of quantum measurements in the very form it finds application in the area of gravitational-wave detection. We focus on how quantum noise arises in gravitational-wave interferometers and what limitations it imposes on the achievable sensitivity. We start from the very basic concepts and gradually advance to the general linear quantum measurement theory and its application to the calculation of quantum noise in the contemporary and planned interferometric detectors of gravitational radiation of the first and second generation. Special attention is paid to the concept of the Standard Quantum Limit and the methods of its surmounting.

  5. Space gravitational wave detector DECIGO/pre-DECIGO

    Science.gov (United States)

    Musha, Mitsuru

    2017-09-01

    The gravitational wave (GW) is ripples in gravitational fields caused by the motion of mass such as inspiral and merger of blackhole binaries or explosion of super novae, which was predicted by A.Einstein in his general theory of relativity. In Japan, besides the ground-base GW detector, KAGRA, the space gravitational wave detector, DECIGO, is also promoted for detecting GW at lower frequency range. DECIGO (DECi-heltz Gravitational-wave Observatory) consists of 3 satellites, forming a 1000-km triangle-shaped Fabry-Perot laser interferometer whose designed strain sensitivity is ?l/l planned a milestone mission for DECIGO named Pre-DECIGO, which has almost the same configuration as DECIGO with shorter arm length of 100 km. Pre-DECIGO is aimed for detecting GW from merger of blackhole binaries with less sensitivity as DECIGO, and also for feasibility test of key technologies for realizing DECIGO. Pre-DECIGO is now under designing and developing for launching in late 2020s, with the financial support of JAXA and JSPS. In our presentation, we will review DECIGO project, and show the design and current status of Pre-DECIGO.

  6. An experimental investigation of stratified two-phase pipe flow at small inclinations

    Energy Technology Data Exchange (ETDEWEB)

    Espedal, Mikal

    1998-12-31

    The prediction of stratified flow is important for several industrial applications. Stratified flow experiments were carefully performed in order to investigate the performance of a typical model which uses wall friction factors based on single phase pipe flow as described above. The test facility has a 18.5 m long and 60 mm i.d. (L/D=300) acrylic test section which can be inclined between -10 {sup o} and +10 {sup o}. The liquid holdup was measured by using fast closing valves and the pressure gradients by using three differential pressure transducers. Interfacial waves were measured by thin wire conductance probes mounted in a plane perpendicular to the main flow. The experiments were performed using water and air at atmospheric pressure. The selected test section inclinations were between -3 {sup o} and +0.5 {sup o} to the horizontal plane. A large number of experiments were performed for different combinations of air and water flow rates and the rates were limited to avoid slug flow and stratified flow with liquid droplets. The pressure gradient and the liquid holdup were measured. In addition the wave probes were used to find the wave heights and the wave power spectra. The results show that the predicted pressure gradient using the standard models is approximately 30% lower than the measured value when large amplitude waves are present. When the flow is driven by the interfacial force the test section inclination has minor influence on the deviation between predicted and measured pressure gradients. Similar trends are apparent in data from the literature, although they seem to have gone unnoticed. For several data sets large spread in the predictions are observed when the model described above was used. Gas wall shear stress experiments indicate that the main cause of the deviation between measured and predicted pressure gradient and holdup resides in the modelling of the liquid wall friction term. Measurements of the liquid wall shear stress distribution

  7. Generalization of Einstein's gravitational field equations

    Science.gov (United States)

    Moulin, Frédéric

    2017-12-01

    The Riemann tensor is the cornerstone of general relativity, but as is well known it does not appear explicitly in Einstein's equation of gravitation. This suggests that the latter may not be the most general equation. We propose here for the first time, following a rigorous mathematical treatment based on the variational principle, that there exists a generalized 4-index gravitational field equation containing the Riemann curvature tensor linearly, and thus the Weyl tensor as well. We show that this equation, written in n dimensions, contains the energy-momentum tensor for matter and that of the gravitational field itself. This new 4-index equation remains completely within the framework of general relativity and emerges as a natural generalization of the familiar 2-index Einstein equation. Due to the presence of the Weyl tensor, we show that this equation contains much more information, which fully justifies the use of a fourth-order theory.

  8. Gravitational production of superheavy dark matter

    International Nuclear Information System (INIS)

    Chung, Daniel J. H.; Crotty, Patrick; Kolb, Edward W.; Riotto, Antonio

    2001-01-01

    The dark matter in the universe can be in the form of a superheavy matter species (wimpzilla). Several mechanisms have been proposed for the production of wimpzilla particles during or immediately following the inflationary epoch. Perhaps the most attractive mechanism is through gravitational particle production, where particles are produced simply as a result of the expansion of the universe. In this paper we present a detailed numerical calculation of wimpzilla gravitational production in hybrid-inflation models and natural-inflation models. Generalizing these findings, we also explore the dependence of the gravitational production mechanism on various models of inflation. We show that superheavy dark matter production seems to be robust, with Omega X h 2 ∼(M X /10 11 GeV) 2 (T RH /10 9 GeV), so long as M X I , where M X is the wimpzilla mass, T RH is the reheat temperature, and H I is the expansion rate of the universe during inflation

  9. Generalized equations of gravitational field

    International Nuclear Information System (INIS)

    Stanyukovich, K.P.; Borisova, L.B.

    1985-01-01

    Equations for gravitational fields are obtained on the basis of a generalized Lagrangian Z=f(R) (R is the scalar curvature). Such an approach permits to take into account the evolution of a gravitation ''constant''. An expression for the force Fsub(i) versus the field variability is obtained. Conservation laws are formulated differing from the standard ones by the fact that in the right part of new equations the value Fsub(i) is present that goes to zero at an ultimate passage to the standard Einstein theory. An equation of state is derived for cosmological metrics for a particular case, f=bRsup(1+α) (b=const, α=const)

  10. The Gravitational Field in the Relativistic Uniform Model within the Framework of the Covariant Theory of Gravitation

    OpenAIRE

    Fedosin, Sergey G.

    2018-01-01

    For the relativistic uniform system with an invariant mass density the exact expressions are determined for the potentials and strengths of the gravitational field, the energy of particles and fields. It is shown that, as in the classical case for bodies with a constant mass density, in the system with a zero vector potential of the gravitational field, the energy of the particles, associated with the scalar field potential, is twice as large in the absolute value as the energy defined by the...

  11. Gravitational Waves and Neutrinos

    OpenAIRE

    Sturani, Riccardo

    2018-01-01

    We give an overview about the recent detection of gravitational waves by the Advanced LIGO first and second observing runs and by Advanced Virgo, with emphasis on the prospects for multi-messenger astronomy involving neutrinos detections.

  12. General relativity: An introduction to the theory of the gravitational field

    International Nuclear Information System (INIS)

    Stephani, H.

    1985-01-01

    The entire treatment presented here is framed by questions which led to and now lead out of the general theory of relativity: can an absolute acceleration be defined meaningfully? Do gravitational effects propagate with infinite velocity as Newton required? Can the general theory correctly reflect the dynamics of the whole universe while consistently describing stellar evolution? Can a theory which presupposes measurement of properties of space through the interaction of matter be made compatible with a theory in which dimensions of the objects measured are so small that location loses meaning? The book gives the mathematics necessary to understand the theory and begins in Riemannian geometry. Contents, abridged: Foundations of Riemannian geometry. Foundations of Einstein's theory of gravitation. Linearised theory of gravitation, far fields and gravitational waves. Invariant characterisation of exact solutions. Gravitational collapse and black holes. Cosmology. Non-Einsteinian theories of gravitation. Index

  13. Physical optics in a uniform gravitational field

    Science.gov (United States)

    Hacyan, Shahen

    2012-01-01

    The motion of a (quasi-)plane wave in a uniform gravitational field is studied. It is shown that the energy of an elliptically polarized wave does not propagate along a geodesic, but in a direction that is rotated with respect to the gravitational force. The similarity with the walk-off effect in anisotropic crystals or the optical Magnus effect in inhomogeneous media is pointed out.

  14. Visualization of mole fraction distribution of slow jet forming stably stratified field

    International Nuclear Information System (INIS)

    Fumizawa, Motoo; Hishida, Makoto

    1990-01-01

    An experimental study has been performed to investigate the behavior of flow and mass transfer in gaseous slow jet in which buoyancy force opposed the flow forming stably stratified field. The study has been performed to understand the basic features of air ingress phenomena at pipe rupture accident of the high temperature gas-cooled reactor. A displacement fringe technique was adopted in Mach-Zehnder interferometer to visualize the mole fraction distribution. As the result, the followings were obtained: (1) The stably stratified fields were formed in the vicinity of the outlet of the slow jet. The penetration distance of the stably stratified fields increased with Froude number. (2) Mass fraction distributions in the stably stratified fields were well correlated with the present model using the ramp mole velocity profile. (author)

  15. Stochastic Background of Relic Scalar Gravitational Waves tuned by Extended Gravity

    International Nuclear Information System (INIS)

    De Laurentis, Mariafelicia; Capozziello, Salvatore

    2009-01-01

    A stochastic background of relic gravitational waves is achieved by the so called adiabatically-amplified zero-point fluctuations process derived from early inflation. It provides a distinctive spectrum of relic gravitational waves. In the framework of scalar-tensor gravity, we discuss the scalar modes of gravitational waves and the primordial production of this scalar component which is generated beside tensorial one. Then analyze seven different viable f(R)-gravities towards the Solar System tests and stochastic gravitational waves background. It is demonstrated that seven viable f(R)-gravities under consideration not only satisfy the local tests, but additionally, pass the above PPN-and stochastic gravitational waves bounds for large classes of parameters.

  16. Simulation of steam explosion in stratified melt-coolant configuration

    International Nuclear Information System (INIS)

    Leskovar, Matjaž; Centrih, Vasilij; Uršič, Mitja

    2016-01-01

    Highlights: • Strong steam explosions may develop spontaneously in stratified configurations. • Considerable melt-coolant premixed layer formed in subcooled water with hot melts. • Analysis with MC3D code provided insight into stratified steam explosion phenomenon. • Up to 25% of poured melt was mixed with water and available for steam explosion. • Better instrumented experiments needed to determine dominant mixing process. - Abstract: A steam explosion is an energetic fuel coolant interaction process, which may occur during a severe reactor accident when the molten core comes into contact with the coolant water. In nuclear reactor safety analyses steam explosions are primarily considered in melt jet-coolant pool configurations where sufficiently deep coolant pool conditions provide complete jet breakup and efficient premixture formation. Stratified melt-coolant configurations, i.e. a molten melt layer below a coolant layer, were up to now believed as being unable to generate strong explosive interactions. Based on the hypothesis that there are no interfacial instabilities in a stratified configuration it was assumed that the amount of melt in the premixture is insufficient to produce strong explosions. However, the recently performed experiments in the PULiMS and SES (KTH, Sweden) facilities with oxidic corium simulants revealed that strong steam explosions may develop spontaneously also in stratified melt-coolant configurations, where with high temperature melts and subcooled water conditions a considerable melt-coolant premixed layer is formed. In the article, the performed study of steam explosions in a stratified melt-coolant configuration in PULiMS like conditions is presented. The goal of this analytical work is to supplement the experimental activities within the PULiMS research program by addressing the key questions, especially regarding the explosivity of the formed premixed layer and the mechanisms responsible for the melt-water mixing. To

  17. A constraint on the distance dependence of the gravitational constant

    International Nuclear Information System (INIS)

    Hut, P.

    1981-01-01

    Extended supergravity theories predict the existence of vector and scalar bosons, besides the gravitation, which in the static limit couple to the mass. An example is the gravitation, leading to antigravity. If these bosons have a small mass (approx. -4 eV), an observable Yukawa term would be present in the gravitational potential in the newtonian limit. This can be parametrized by a distance dependent effective gravitational constant G(γ). Defining G 0 = G (10 cm) and Gsub(e) = G (10 3 km), the comparison between theory and observations of the white dwarf Sirius B results in Gsub(c)/G 0 = 0.98 +- 0.08. (orig.)

  18. Gravitational Waves from Known Pulsars: Results from the Initial Detector Era

    NARCIS (Netherlands)

    Aasi, J.; et al., [Unknown; Hessels, J.W.T.

    2014-01-01

    We present the results of searches for gravitational waves from a large selection of pulsars using data from the most recent science runs (S6, VSR2 and VSR4) of the initial generation of interferometric gravitational wave detectors LIGO (Laser Interferometric Gravitational-wave Observatory) and

  19. Extragalactic Gravitational Collapse

    Science.gov (United States)

    Rees, Martin J.

    After some introductory "numerology", routes towards black hole formation are briefly reviewed; some properties of black holes relevant to theories for active galactic nuclei are then described. Applications are considered to specific models for energy generation and the production of relativistic beams. The paper concludes with a discussion of extragalactic sources of gravitational waves.

  20. Astronomy and astrophysics with gravitational waves in the advanced detector era

    International Nuclear Information System (INIS)

    Weinstein, Alan J

    2012-01-01

    With the advanced gravitational wave detectors coming on line in the next 5 years, we expect to make the first detections of gravitational waves from astrophysical sources, and study the properties of the waves themselves as tests of general relativity. In addition, these gravitational waves will be powerful tools for the study of their astrophysical sources and source populations. They carry information that is quite complementary to what can be learned from electromagnetic or neutrino observations, probing the central gravitational engines that power the electromagnetic emissions at the outer layers of the source. Preparations are being made to enable near-simultaneous observations of both gravitational wave and electromagnetic observations of transient sources, using low-latency search pipelines and rapid sky localization. We will review the many opportunities for multi-messenger astronomy and astrophysics with gravitational waves enabled by the advanced detectors, and the preparations that are being made to quickly and fully exploit them. (paper)