International Nuclear Information System (INIS)
Bondi, H.
1979-01-01
In spite of the strength of gravitational focres between celestial bodies, gravitational capture is not a simple concept. The principles of conservation of linear momentum and of conservation of angular momentum, always impose severe constraints, while conservation of energy and the vital distinction between dissipative and non-dissipative systems allows one to rule out capture in a wide variety of cases. In complex systems especially those without dissipation, long dwell time is a more significant concept than permanent capture. (author)
Thermalization time scales for WIMP capture by the Sun in effective theories
Energy Technology Data Exchange (ETDEWEB)
Widmark, A., E-mail: axel.widmark@fysik.su.se [The Oskar Klein Centre for Cosmoparticle Physics, AlbaNova, SE-106 91 Stockholm (Sweden)
2017-05-01
I study the process of dark matter capture by the Sun, under the assumption of a Weakly Interacting Massive Particle (WIMP), in the framework of non-relativistic effective field theory. Hypothetically, WIMPs from the galactic halo can scatter against atomic nuclei in the solar interior, settle to thermal equilibrium with the solar core and annihilate to produce an observable flux of neutrinos. In particular, I examine the thermalization process using Monte-Carlo integration of WIMP trajectories. I consider WIMPs in a mass range of 10–1000 GeV and WIMP-nucleon interaction operators with different dependence on spin and transferred momentum. I find that the density profiles of captured WIMPs are in accordance with a thermal profile described by the Sun's gravitational potential and core temperature. Depending on the operator that governs the interaction, the majority of the thermalization time is spent in either the solar interior or exterior. If normalizing the WIMP-nuclei interaction strength to a specific capture rate, I find that the thermalization time differs at most by 3 orders of magnitude between operators. In most cases of interest, the thermalization time is many orders of magnitude shorter than the age of the solar system.
Gravitationally induced particle production and its impact on the WIMP abundance
Directory of Open Access Journals (Sweden)
I. Baranov
2015-12-01
Full Text Available A large set of independent astronomical observations have provided a strong evidence for nonbaryonic dark matter in the Universe. One of the most investigated candidates is an unknown long-lived Weakly Interacting Massive Particle (WIMP which was in thermal equilibrium with the primeval plasma. Here we investigate the WIMP abundance based on the relativistic kinetic treatment for gravitationally induced particle production recently proposed in the literature (Lima and Baranov, 2014 [16]. The new evolution equation is deduced and solved both numerically and through a semi-analytical approach. The predictions of the WIMP observables are discussed and compared with the ones obtained in the standard approach.
Binary star formation: gravitational fragmentation followed by capture
Turner, J. A.; Chapman, S. J.; Bhattal, A. S.; Disney, M. J.; Pongracic, H.; Whitworth, A. P.
1995-11-01
We describe in detail one of a sequence of numerical simulations which realize the mechanism of binary star formation proposed by Pringle. In these simulations, collisions between stable molecular cloud clumps produce dense shocked layers, which cool radiatively and fragment gravitationally. The resulting fragments then condense to form protostellar discs, which at the same time fall together and, as a result of tidal and viscous interactions, capture one another to form binary systems. We refer to this mechanism as shock-induced gravitational fragmentation followed by capture, or SGF+C. When the initial clumps are sufficiently massive and/or the Mach number of the collision is sufficiently high, a large number (>~10) of protostellar discs is produced; under these circumstances, the layer fragments first into filaments, and then into beads along the filaments. The marriage of two protostellar discs in this way is `arranged' in the sense that the protostellar discs involved do not form independently. First, they both condense out of the same layer, and probably also out of the same filament within this layer; this significantly increases the likelihood of them interacting dynamically. Secondly, there tends to be alignment between the orbital and spin angular momenta of the interacting protostellar discs, reflecting the fact that these angular momenta derive mainly from the systematic global angular momentum of the off-axis collision which produced the layer; this alignment of the various angular momenta pre-disposes the discs to very dissipative interactions, thereby increasing the probability of producing a strongly bound, long-lasting union. It is a marriage because the binary orbit stabilizes itself rather quickly. Any subsequent orbit evolution, as the protostellar discs `mop up' the surrounding residual gas and interact tidally, tends to harden the orbit. Therefore, as long as a third body does not intervene, the union is binding. Even if a third body does
International Nuclear Information System (INIS)
Bouquet, A.; Salati, P.
1988-01-01
We present the results of an analytic approximation to compute the effects of WIMPs on stellar structures in a self-consistent way. We examine in particular the case of the Sun and of horizontal branch stars
Planck-scale effects on WIMP dark matter
Directory of Open Access Journals (Sweden)
Sofiane M Boucenna
2014-01-01
Full Text Available There exists a widely known conjecture that gravitational effects violate global symmetries. We study the effect of global-symmetry violating higher-dimension operators induced by Planck-scale physics on the properties of WIMP dark matter. Using an effective description, we show that the lifetime of the WIMP dark matter candidate can satisfy cosmological bounds under reasonable assumptions regarding the strength of the dimension-five operators. On the other hand, the indirect WIMP dark matter detection signal is significantly enhanced due to new decay channels.
International Nuclear Information System (INIS)
Goldsmith, Donald.
1995-01-01
In the rush to account for the missing ''dark matter'' in the universe, many teams of cosmologists are setting up experiments to prove the existence of a hypothetical form of matter called weakly interacting massive particles, or WIMPS. The innovative research ideas developed by these teams are described and compared briefly. (UK)
The WIMP Paradigm: Current Status
International Nuclear Information System (INIS)
Feng, Jonathan
2011-01-01
The WIMP paradigm is the glue that joins together much of the high energy and cosmic frontiers. It postulates that most of the matter in the Universe is made of weakly-interacting massive particles, with implications for a broad range of experiments and observations. I will review the WIMP paradigm's underlying motivations, its current status in view of rapid experimental progress on several fronts, and recent theoretical variations on the WIMP paradigm theme.
Craig, Nathaniel
2015-01-01
We identify and analyze thermal dark matter candidates in the fraternal twin Higgs model and its generalizations. The relic abundance of fraternal twin dark matter is set by twin weak interactions, with a scale tightly tied to the weak scale of the Standard Model by naturalness considerations. As such, the dark matter candidates benefit from a "fraternal WIMP miracle," reproducing the observed dark matter abundance for dark matter masses between 50 and 150 GeV. However, the couplings dominantly responsible for dark matter annihilation do not lead to interactions with the visible sector. The direct detection rate is instead set via fermionic Higgs portal interactions, which are likewise constrained by naturalness considerations but parametrically weaker than those leading to dark matter annihilation. The predicted direct detection cross section is close to current LUX bounds and presents an opportunity for the next generation of direct detection experiments.
Misner, Charles W; Wheeler, John Archibald
2017-01-01
First published in 1973, Gravitation is a landmark graduate-level textbook that presents Einstein’s general theory of relativity and offers a rigorous, full-year course on the physics of gravitation. Upon publication, Science called it “a pedagogic masterpiece,” and it has since become a classic, considered essential reading for every serious student and researcher in the field of relativity. This authoritative text has shaped the research of generations of physicists and astronomers, and the book continues to influence the way experts think about the subject. With an emphasis on geometric interpretation, this masterful and comprehensive book introduces the theory of relativity; describes physical applications, from stars to black holes and gravitational waves; and portrays the field’s frontiers. The book also offers a unique, alternating, two-track pathway through the subject. Material focusing on basic physical ideas is designated as Track 1 and formulates an appropriate one-semester graduate-level...
International Nuclear Information System (INIS)
Fennelly, A.J.
1978-01-01
Investigations of several problems of gravitation are discussed. The question of the existence of black holes is considered. While black holes like those in Einstein's theory may not exist in other gravity theories, trapped surfaces implying such black holes certainly do. The theories include those of Brans-Dicke, Lightman-Lee, Rosen, and Yang. A similar two-tensor theory of Yilmaz is investigated and found inconsistent and nonviable. The Newman-Penrose formalism for Riemannian geometries is adapted to general gravity theories and used to implement a search for twisting solutions of the gravity theories for empty and nonempty spaces. The method can be used to find the gravitational fields for all viable gravity theories. The rotating solutions are of particular importance for strong field interpretation of the Stanford/Marshall gyroscope experiment. Inhomogeneous cosmologies are examined in Einstein's theory as generalizations of homogeneous ones by raising the dimension of the invariance groups by one more parameter. The nine Bianchi classifications are extended to Rosen's theory of gravity for homogeneous cosmological models
Accurate calculations of the WIMP halo around the Sun and prospects for its gamma-ray detection
International Nuclear Information System (INIS)
Sivertsson, Sofia; Edsjoe, Joakim
2010-01-01
Galactic weakly interacting massive particles (WIMPs) may scatter off solar nuclei to orbits gravitationally bound to the Sun. Once bound, the WIMPs continue to lose energy by repeated scatters in the Sun, eventually leading to complete entrapment in the solar interior. While the density of the bound population is highest at the center of the Sun, the only observable signature of WIMP annihilations inside the Sun is neutrinos. It has been previously suggested that although the density of WIMPs just outside the Sun is lower than deep inside, gamma rays from WIMP annihilation just outside the surface of the Sun, in the so-called WIMP halo around the Sun, may be more easily detected. We here revisit this problem using detailed Monte Carlo simulations and detailed composition and structure information about the Sun to estimate the size of the gamma-ray flux. Compared to earlier simpler estimates, we find that the gamma-ray flux from WIMP annihilations in the solar WIMP halo would be negligible; no current or planned detectors would be able to detect this flux.
Constraints on WIMP masses and interactions
International Nuclear Information System (INIS)
Enqvist, K.
1991-01-01
It is shown that cosmology, experiments and unitarity considerations limit the mass and coupling g' of a generic, heavy WIMP from the above as well as from the below. There are absolute lower limits of 4x10 -5 g and 6x10 -5 g for the couplings of Diracn and Majorana WIMPs, respectively. In U(1)' models cosmology implies an upper limit of about 1 TeV on the Z' and on the WIMP masses, but only in the absence of Z-Z' mixing. (orig.)
Formation of Tidal Captures and Gravitational Wave Inspirals in Binary-single Interactions
International Nuclear Information System (INIS)
Samsing, Johan; MacLeod, Morgan; Ramirez-Ruiz, Enrico
2017-01-01
We perform the first systematic study of how dynamical stellar tides and general relativistic (GR) effects affect the dynamics and outcomes of binary-single interactions. For this, we have constructed an N -body code that includes tides in the affine approximation, where stars are modeled as self-similar ellipsoidal polytropes, and GR corrections using the commonly used post-Newtonian formalism. Using this numerical formalism, we are able resolve the leading effect from tides and GR across several orders of magnitude in both stellar radius and initial target binary separation. We find that the main effect from tides is the formation of two-body tidal captures that form during the chaotic and resonant evolution of the triple system. The two stars undergoing the capture spiral in and merge. The inclusion of tides can thus lead to an increase in the stellar coalescence rate. We also develop an analytical framework for calculating the cross section of tidal inspirals between any pair of objects with similar mass. From our analytical and numerical estimates, we find that the rate of tidal inspirals relative to collisions increases as the initial semimajor axis of the target binary increases and the radius of the interacting tidal objects decreases. The largest effect is therefore found for triple systems hosting white dwarfs and neutron stars (NSs). In this case, we find the rate of highly eccentric white dwarf—NS mergers to likely be dominated by tidal inspirals. While tidal inspirals occur rarely, we note that they can give rise to a plethora of thermonuclear transients, such as Ca-rich transients.
Formation of Tidal Captures and Gravitational Wave Inspirals in Binary-single Interactions
Energy Technology Data Exchange (ETDEWEB)
Samsing, Johan [Department of Astrophysical Sciences, Princeton University, Peyton Hall, 4 Ivy Lane, Princeton, NJ 08544 (United States); MacLeod, Morgan [School of Natural Sciences, Institute for Advanced Study, 1 Einstein Drive, Princeton, NJ 08540 (United States); Ramirez-Ruiz, Enrico [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States)
2017-09-01
We perform the first systematic study of how dynamical stellar tides and general relativistic (GR) effects affect the dynamics and outcomes of binary-single interactions. For this, we have constructed an N -body code that includes tides in the affine approximation, where stars are modeled as self-similar ellipsoidal polytropes, and GR corrections using the commonly used post-Newtonian formalism. Using this numerical formalism, we are able resolve the leading effect from tides and GR across several orders of magnitude in both stellar radius and initial target binary separation. We find that the main effect from tides is the formation of two-body tidal captures that form during the chaotic and resonant evolution of the triple system. The two stars undergoing the capture spiral in and merge. The inclusion of tides can thus lead to an increase in the stellar coalescence rate. We also develop an analytical framework for calculating the cross section of tidal inspirals between any pair of objects with similar mass. From our analytical and numerical estimates, we find that the rate of tidal inspirals relative to collisions increases as the initial semimajor axis of the target binary increases and the radius of the interacting tidal objects decreases. The largest effect is therefore found for triple systems hosting white dwarfs and neutron stars (NSs). In this case, we find the rate of highly eccentric white dwarf—NS mergers to likely be dominated by tidal inspirals. While tidal inspirals occur rarely, we note that they can give rise to a plethora of thermonuclear transients, such as Ca-rich transients.
Boffins go underground searching for Wimps
2003-01-01
In a bid to identify the prime suspect for Dark Matter known as Weakly Interacting Massive Particles, or Wimps, British scientists have installed detectors 1100m down a salt mine at Boulby on the North Yorkshire moors (1/2 page).
Impacts of WIMP dark matter upon stellar evolution: main-sequence stars
Scott, Pat; Edsjo, Joakim
2008-01-01
The presence of large amounts of WIMP dark matter in stellar cores has been shown to have significant effects upon models of stellar evolution. We present a series of detailed grids of WIMP-influenced stellar models for main sequence stars, computed using the DarkStars code. We describe the changes in stellar structure and main sequence evolution which occur for masses ranging from 0.3 to 2.0 solar masses and metallicities from Z = 0.0003-0.02, as a function of the rate of energy injection by WIMPs. We then go on to show what rates of energy injection can be obtained using realistic orbital parameters for stars near supermassive black holes, including detailed considerations of dark matter halo velocity and density profiles. Capture and annihilation rates are strongly boosted when stars follow elliptical rather than circular orbits, causing WIMP annihilation to provide up to 100 times the energy of hydrogen fusion in stars at the Galactic centre.
Chaudhury, Soumini; Bhattacharjee, Pijushpani; Cowsik, Ramanath
2010-09-01
Direct detection of Weakly Interacting Massive Particle (WIMP) candidates of Dark Matter (DM) is studied within the context of a self-consistent truncated isothermal model of the finite-size dark halo of the Galaxy. The halo model, based on the ``King model'' of the phase space distribution function of collisionless DM particles, takes into account the modifications of the phase-space structure of the halo due to the gravitational influence of the observed visible matter in a self-consistent manner. The parameters of the halo model are determined by a fit to a recently determined circular rotation curve of the Galaxy that extends up to ~ 60 kpc. Unlike in the Standard Halo Model (SHM) customarily used in the analysis of the results of WIMP direct detection experiments, the velocity distribution of the WIMPs in our model is non-Maxwellian with a cut-off at a maximum velocity that is self-consistently determined by the model itself. For our halo model that provides the best fit to the rotation curve data, the 90% C.L. upper limit on the WIMP-nucleon spin-independent cross section from the recent results of the CDMS-II experiment, for example, is ~ 5.3 × 10-8 pb at a WIMP mass of ~ 71 GeV. We also find, using the original 2-bin annual modulation amplitude data on the nuclear recoil event rate seen in the DAMA experiment, that there exists a range of small WIMP masses, typically ~ 2-16 GeV, within which DAMA collaboration's claimed annual modulation signal purportedly due to WIMPs is compatible with the null results of other experiments. These results, based as they are on a self-consistent model of the dark matter halo of the Galaxy, strengthen the possibility of low-mass (lsim10 GeV) WIMPs as a candidate for dark matter as indicated by several earlier studies performed within the context of the SHM. A more rigorous analysis using DAMA bins over smaller intervals should be able to better constrain the ``DAMA regions'' in the WIMP parameter space within the context of
Neutrinos from WIMP annihilations obtained using a full three-flavor Monte Carlo approach
International Nuclear Information System (INIS)
Blennow, Mattias; Ohlsson, Tommy; Edsjö, Joakim
2008-01-01
Weakly interacting massive particles (WIMPs) are one of the main candidates for making up the dark matter in the Universe. If these particles make up the dark matter, then they can be captured by the Sun or the Earth, sink to the respective cores, annihilate, and produce neutrinos. Thus, these neutrinos can be a striking dark matter signature at neutrino telescopes looking towards the Sun and/or the Earth. Here, we improve previous analyses on computing the neutrino yields from WIMP annihilations in several respects. We include neutrino oscillations in a full three-flavor framework as well as all effects from neutrino interactions on the way through the Sun (absorption, energy loss, and regeneration from tau decays). In addition, we study the effects of non-zero values of the mixing angle θ 13 as well as the normal and inverted neutrino mass hierarchies. Our study is performed in an event-based setting which makes these results very useful both for theoretical analyses and for building a neutrino telescope Monte Carlo code. All our results for the neutrino yields, as well as our Monte Carlo code, are publicly available. We find that the yield of muon-type neutrinos from WIMP annihilations in the Sun is enhanced or suppressed, depending on the dominant WIMP annihilation channel. This effect is due to an effective flavor mixing caused by neutrino oscillations. For WIMP annihilations inside the Earth, the distance from source to detector is too small to allow for any significant amount of oscillations at the neutrino energies relevant for neutrino telescopes
Working Group Report: WIMP Dark Matter Direct Detection
International Nuclear Information System (INIS)
Cushman, P.; Galbiati, C.; McKinsey, D. N.; Robertson, H.; Tait, T. M.P.
2013-01-01
As part of the Snowmass process, the Cosmic Frontier WIMP Direct Detection subgroup (CF1) has drawn on input from the Cosmic Frontier and the broader Particle Physics community to produce this document. The charge to CF1 was (a) to summarize the current status and projected sensitivity of WIMP direct detection experiments worldwide, (b) motivate WIMP dark matter searches over a broad parameter space by examining a spectrum of WIMP models, (c) establish a community consensus on the type of experimental program required to explore that parameter space, and (d) identify the common infrastructure required to practically meet those goals.
Working Group Report: WIMP Dark Matter Direct Detection
Energy Technology Data Exchange (ETDEWEB)
Cushman, P.; Galbiati, C.; McKinsey, D. N.; Robertson, H.; Tait, T. M.P.
2013-10-30
As part of the Snowmass process, the Cosmic Frontier WIMP Direct Detection subgroup (CF1) has drawn on input from the Cosmic Frontier and the broader Particle Physics community to produce this document. The charge to CF1 was (a) to summarize the current status and projected sensitivity of WIMP direct detection experiments worldwide, (b) motivate WIMP dark matter searches over a broad parameter space by examining a spectrum of WIMP models, (c) establish a community consensus on the type of experimental program required to explore that parameter space, and (d) identify the common infrastructure required to practically meet those goals.
Looking for the WIMP next door
Evans, Jared A.; Gori, Stefania; Shelton, Jessie
2018-02-01
We comprehensively study experimental constraints and prospects for a class of minimal hidden sector dark matter (DM) models, highlighting how the cosmological history of these models informs the experimental signals. We study simple `secluded' models, where the DM freezes out into unstable dark mediator states, and consider the minimal cosmic history of this dark sector, where coupling of the dark mediator to the SM was sufficient to keep the two sectors in thermal equilibrium at early times. In the well-motivated case where the dark mediators couple to the Standard Model (SM) via renormalizable interactions, the requirement of thermal equilibrium provides a minimal, UV-insensitive, and predictive cosmology for hidden sector dark matter. We call DM that freezes out of a dark radiation bath in thermal equilibrium with the SM a WIMP next door, and demonstrate that the parameter space for such WIMPs next door is sharply defined, bounded, and in large part potentially accessible. This parameter space, and the corresponding signals, depend on the leading interaction between the SM and the dark mediator; we establish it for both Higgs and vector portal interactions. In particular, there is a cosmological lower bound on the portal coupling strength necessary to thermalize the two sectors in the early universe. We determine this thermalization floor as a function of equilibration temperature for the first time. We demonstrate that direct detection experiments are currently probing this cosmological lower bound in some regions of parameter space, while indirect detection signals and terrestrial searches for the mediator cut further into the viable parameter space. We present regions of interest for both direct detection and dark mediator searches, including motivated parameter space for the direct detection of sub-GeV DM.
Science plumbs new depths in hunt for Wimps
Benfield, C
2003-01-01
Lord Sainsbury has officially opened a laboratory in the salt mine at Boulby near Whitby. The lab is searching for WIMPs and was recently awarded 3.1 millions pounds by PPARC to upgrade the facility (1 page).
Understanding WIMP-baryon interactions with direct detection: a roadmap
International Nuclear Information System (INIS)
Gluscevic, Vera; Peter, Annika H.G.
2014-01-01
We study prospects of dark-matter direct-detection searches for probing non-relativistic effective theory for WIMP-baryon scattering. We simulate a large set of noisy recoil-energy spectra for different scattering scenarios (beyond the standard momentum-independent contact interaction), for Generation 2 and futuristic experiments. We analyze these simulations and quantify the probability of successfully identifying the operator governing the scattering, if a WIMP signal is observed. We find that the success rate depends on a combination of factors: the WIMP mass, the mediator mass, the type of interaction, and the experimental energy window. For example, for a 20 GeV WIMP, Generation 2 is only likely to identify the right operator if the interaction is Coulomb-like, and is unlikely to do so in any other case. For a WIMP with a mass of 200 GeV or higher, success is almost guaranteed. We also find that, regardless of the scattering model and the WIMP parameters, a single Generation 2 experiment is unlikely to successfully discern the momentum dependence of the underlying operator on its own, but prospects improve drastically when experiments with different target materials and energy windows are analyzed jointly. Furthermore, we examine the quality of parameter estimation and degeneracies in the multi-dimensional parameter space of the effective theory. We find in particular that the resulting WIMP mass estimates can be severely biased if data are analyzed assuming the standard (momentum-independent) operator while the actual operator has momentum-dependence. Finally, we evaluate the ultimate reach of direct detection, finding that the prospects for successful operator selection prior to reaching the irreducible backgrounds are excellent, if the signal is just below the current limits, but slim if Generation 2 does not report WIMP detection
WIMP-nucleus scattering in chiral effective theory
Cirigliano, Vincenzo; Graesser, Michael L.; Ovanesyan, Grigory
2012-10-01
We discuss long-distance QCD corrections to the WIMP-nucleon(s) interactions in the framework of chiral effective theory. For scalar-mediated WIMP-quark interactions, we calculate all the next-to-leading-order corrections to the WIMP-nucleus elastic cross-section, including two-nucleon amplitudes and recoil-energy dependent shifts to the single-nucleon scalar form factors. As a consequence, the scalar-mediated WIMP-nucleus cross-section cannot be parameterized in terms of just two quantities, namely the neutron and proton scalar form factors at zero momentum transfer, but additional parameters appear, depending on the short-distance WIMP-quark interaction. Moreover, multiplicative factorization of the cross-section into particle, nuclear and astro-particle parts is violated. In practice, while the new effects are of the natural size expected by chiral power counting, they become very important in those regions of parameter space where the leading order WIMP-nucleus amplitude is suppressed, including the so-called "isospin-violating dark matter" regime. In these regions of parameter space we find order-of-magnitude corrections to the total scattering rates and qualitative changes to the shape of recoil spectra.
Optimizing EDELWEISS detectors for low-mass WIMP searches
Arnaud, Q.; Armengaud, E.; Augier, C.; Benoît, A.; Bergé, L.; Billard, J.; Broniatowski, A.; Camus, P.; Cazes, A.; Chapellier, M.; Charlieux, F.; de Jésus, M.; Dumoulin, L.; Eitel, K.; Foerster, N.; Gascon, J.; Giuliani, A.; Gros, M.; Hehn, L.; Jin, Y.; Juillard, A.; Kleifges, M.; Kozlov, V.; Kraus, H.; Kudryavtsev, V. A.; Le-Sueur, H.; Maisonobe, R.; Marnieros, S.; Navick, X.-F.; Nones, C.; Olivieri, E.; Pari, P.; Paul, B.; Poda, D.; Queguiner, E.; Rozov, S.; Sanglard, V.; Scorza, S.; Siebenborn, B.; Vagneron, L.; Weber, M.; Yakushev, E.; EDELWEISS Collaboration
2018-01-01
The physics potential of EDELWEISS detectors for the search of low-mass weakly interacting massive particles (WIMPs) is studied. Using a data-driven background model, projected exclusion limits are computed using frequentist and multivariate analysis approaches, namely, profile likelihood and boosted decision tree. Both current and achievable experimental performances are considered. The optimal strategy for detector optimization depends critically on whether the emphasis is put on WIMP masses below or above ˜5 GeV /c2 . The projected sensitivity for the next phase of the EDELWEISS-III experiment at the Modane Underground Laboratory (LSM) for low-mass WIMP search is presented. By 2018 an upper limit on the spin-independent WIMP-nucleon cross section of σSI=7 ×10-42 cm2 is expected for a WIMP mass in the range 2 - 5 GeV /c2 . The requirements for a future hundred-kilogram-scale experiment designed to reach the bounds imposed by the coherent scattering of solar neutrinos are also described. By improving the ionization resolution down to 50 eVe e , we show that such an experiment installed in an even lower background environment (e.g., at SNOLAB) together with an exposure of 1 000 kg .yr , should allow us to observe about 80 B 8 neutrino events after discrimination.
Proceedings of the 4th Patras workshop on axions, WIMPs and WISPs
Energy Technology Data Exchange (ETDEWEB)
Lindner, Axel; Redondo, Javier; Ringwald, Andreas [eds.
2008-08-15
The following topics were dealt with: Physical foundations for WIMPs, axions, and WISPS, signals from astrophysical sources, direct searches for dark matter WIMPs, new theoretical developments, new experimental approaches. (HSI)
Proceedings of the 4th Patras workshop on axions, WIMPs and WISPs
International Nuclear Information System (INIS)
Lindner, Axel; Redondo, Javier; Ringwald, Andreas
2008-08-01
The following topics were dealt with: Physical foundations for WIMPs, axions, and WISPS, signals from astrophysical sources, direct searches for dark matter WIMPs, new theoretical developments, new experimental approaches. (HSI)
6th Patras workshop on axions, WIMPs and WISPs (PATRAS 2010). Proceedings
Energy Technology Data Exchange (ETDEWEB)
Baudis, Laura; Schumann, Marc (eds.)
2010-11-15
The following topics were dealt with: Axions, WIMPs, WISPs, and neutrinos in the universe, laboratory experimental searching for WISPs, astrophysical experimental searching for WISPs, direct and indirect detection of WIMPs, new ideas and developments, visions, large laboratories. (HSI)
6th Patras workshop on axions, WIMPs and WISPs (PATRAS 2010). Proceedings
International Nuclear Information System (INIS)
Baudis, Laura; Schumann, Marc
2010-11-01
The following topics were dealt with: Axions, WIMPs, WISPs, and neutrinos in the universe, laboratory experimental searching for WISPs, astrophysical experimental searching for WISPs, direct and indirect detection of WIMPs, new ideas and developments, visions, large laboratories. (HSI)
First low WIMP mass results in EDELWEISS III experiment
Energy Technology Data Exchange (ETDEWEB)
Scorza, Silvia [Karlsruher Institut fuer Technologie, Institut fuer Experimentelle Kernphysik, Postfach 3640, Karlsruhe (Germany); Collaboration: EDELWEISS-Collaboration
2016-07-01
The EDELWEISS-III collaboration is operating an experiment for the direct detection of Weakly Interacting Massive Particle (WIMPs) dark matter in the low radioactivity environment of the Modane Underground Laboratory. It consists of twenty-four advanced high purity germanium detectors operating at 18 mK in a dilution refrigerator in order to identify rare nuclear recoils induced by elastic scattering of WIMPs from our Galactic halo. The current EDELWEISS-III program, including improvements of the background, data-acquisition and the configuration is detailed. Sources of background along with the rejection techniques are discussed. Detector performances and a first low WIMP mass analysis of data acquired in a long-term campaign are presented as well.
The WIMP Forest: Indirect Detection of a Chiral Square
Energy Technology Data Exchange (ETDEWEB)
Bertone, Gianfranco; Jackson, C.B.; Shaughnessy, Gabe; Tait, Tim M.P.; Vallinotto, Alberto
2009-04-01
The spectrum of photons arising from WIMP annihilation carries a detailed imprint of the structure of the dark sector. In particular, loop-level annihilations into a photon and another boson can in principle lead to a series of lines (a WIMP forest) at energies up to the WIMP mass. A specific model which illustrates this feature nicely is a theory of two universal extra dimensions compactified on a chiral square. Aside from the continuum emission, which is a generic prediction of most dark matter candidates, we find a 'forest' of prominent annihilation lines that, after convolution with the angular resolution of current experiments, leads to a distinctive (2-bump plus continuum) spectrum, which may be visible in the near future with the Fermi Gamma-Ray Space Telescope (formerly known as GLAST).
No WIMP mini-spikes in dwarf spheroidal galaxies
Wanders, M.; Bertone, G.; Volonteri, M.; Weniger, C.
2015-01-01
The formation of black holes inevitably affects the distribution of dark and baryonic matter in their vicinity, leading to an enhancement of the dark matter density, called spike, and if dark matter is made of WIMPs, to a strong enhancement of the dark matter annihilation rate. Spikes at the center
WIMP detection and slow ion dynamics in carbon nanotube arrays
Cavoto, G.; Cocina, F.; Ferretti, J.; Polosa, A.D.
2016-06-24
Large arrays of aligned carbon nanotubes (CNTs), open at one end, could be used as target material for the directional detection of weakly interacting dark matter particles (WIMPs). As a result of a WIMP elastic scattering on a CNT, a carbon ion might be injected in the body of the array and propagate through multiple collisions within the lattice. The ion may eventually emerge from the surface with open end CNTs, provided that its longitudinal momentum is large enough to compensate energy losses and its transverse momentum approaches the channeling conditions in a single CNT. Therefore, the angle formed between the WIMP wind apparent orientation and the direction of parallel carbon nanotube axes must be properly chosen. We focus on very low ion recoil kinetic energies, related to low mass WIMPs (~ 10 GeV) where most of the existing experiments have low sensitivity. Relying on some exact results on two-dimensional lattices of circular obstacles, we study the low energy ion motion in the transverse plane with ...
WIMP detection and slow ion dynamics in carbon nanotube arrays
International Nuclear Information System (INIS)
Cavoto, G.; Cirillo, E.N.M.; Cocina, F.; Ferretti, J.; Polosa, A.D.
2016-01-01
Large arrays of aligned carbon nanotubes (CNTs), open at one end, could be used as target material for the directional detection of weakly interacting dark matter particles (WIMPs). As a result of a WIMP elastic scattering on a CNT, a carbon ion might be injected in the body of the array and propagate through multiple collisions within the lattice. The ion may eventually emerge from the surface with open end CNTs, provided that its longitudinal momentum is large enough to compensate energy losses and its transverse momentum approaches the channeling conditions in a single CNT. Therefore, the angle formed between the WIMP wind apparent orientation and the direction of parallel carbon nanotube axes must be properly chosen. We focus on very low ion recoil kinetic energies, related to low mass WIMPs (∼ 11 GeV) where most of the existing experiments have low sensitivity. Relying on some exact results on two-dimensional lattices of circular obstacles, we study the low energy ion motion in the transverse plane with respect to CNT directions. New constraints are obtained on how to devise the CNT arrays to maximize the target channeling efficiency. (orig.)
WIMP detection and slow ion dynamics in carbon nanotube arrays
Energy Technology Data Exchange (ETDEWEB)
Cavoto, G. [INFN Sezione di Roma, Rome (Italy); Cirillo, E.N.M. [Sapienza Universita di Roma, Dipartimento SBAI, Rome (Italy); Cocina, F. [Sapienza Universita di Roma, Dipartimento di Fisica, Rome (Italy); Ferretti, J. [Sapienza Universita di Roma, Dipartimento di Fisica (Italy); INFN Sezione di Roma, Rome (Italy); Polosa, A.D. [Sapienza Universita di Roma, Dipartimento di Fisica (Italy); CERN, Theory Division, Geneva (Switzerland); INFN Sezione di Roma, Rome (Italy)
2016-06-15
Large arrays of aligned carbon nanotubes (CNTs), open at one end, could be used as target material for the directional detection of weakly interacting dark matter particles (WIMPs). As a result of a WIMP elastic scattering on a CNT, a carbon ion might be injected in the body of the array and propagate through multiple collisions within the lattice. The ion may eventually emerge from the surface with open end CNTs, provided that its longitudinal momentum is large enough to compensate energy losses and its transverse momentum approaches the channeling conditions in a single CNT. Therefore, the angle formed between the WIMP wind apparent orientation and the direction of parallel carbon nanotube axes must be properly chosen. We focus on very low ion recoil kinetic energies, related to low mass WIMPs (∼ 11 GeV) where most of the existing experiments have low sensitivity. Relying on some exact results on two-dimensional lattices of circular obstacles, we study the low energy ion motion in the transverse plane with respect to CNT directions. New constraints are obtained on how to devise the CNT arrays to maximize the target channeling efficiency. (orig.)
WIMP detection and slow ion dynamics in carbon nanotube arrays.
Cavoto, G; Cirillo, E N M; Cocina, F; Ferretti, J; Polosa, A D
2016-01-01
Large arrays of aligned carbon nanotubes (CNTs), open at one end, could be used as target material for the directional detection of weakly interacting dark matter particles (WIMPs). As a result of a WIMP elastic scattering on a CNT, a carbon ion might be injected in the body of the array and propagate through multiple collisions within the lattice. The ion may eventually emerge from the surface with open end CNTs, provided that its longitudinal momentum is large enough to compensate energy losses and its transverse momentum approaches the channeling conditions in a single CNT. Therefore, the angle formed between the WIMP wind apparent orientation and the direction of parallel carbon nanotube axes must be properly chosen. We focus on very low ion recoil kinetic energies, related to low mass WIMPs ([Formula: see text] GeV) where most of the existing experiments have low sensitivity. Relying on some exact results on two-dimensional lattices of circular obstacles, we study the low energy ion motion in the transverse plane with respect to CNT directions. New constraints are obtained on how to devise the CNT arrays to maximize the target channeling efficiency.
ZEPLIN-II limits on WIMP-nucelon interactions
International Nuclear Information System (INIS)
Alner, G. J.; Bungau, C.; Camanzi, B.; Durkin, T.; Edwards, B.; Lewin, J. D.; Luescher, R.; Preece, R. M.; Smith, N. J. T.; Smith, P. F.; Sumner, T. J.; Thorne, C.; Araujo, H. M.; Bewick, A.; Davidge, D.; Dawson, J.; Howard, A. S.; Jones, W. G.; Joshi, M.; Lebedenko, V. N.
2009-01-01
ZEPLIN II is a two-phase xenon detector designed to detect dark matter in the form of Weakly Interacting Massive Particles (WIMPs). Following the first 31-day underground run in Boulby Mine, UK, the collaboration published dark matter limits in January 2007; the first such limits using two-phase xenon technology. We outline the key detector design, performance and results here.
Dark Matter: Looking for WIMPs in the Galactic Halo
International Nuclear Information System (INIS)
Akerib, Daniel S.
2006-01-01
Overwhelming observational evidence indicates that most of the matter in the Universe consists of non-baryonic dark matter. One possibility is that the dark matter is Weakly-Interacting Massive Particles (WIMPs) that were produced in the early Universe. These relics could comprise the Milky Way's dark halo and provide evidence for new particle physics, such as Supersymmetry. After reviewing some of the evidence for dark matter and the WIMP hypothesis, I will describe the strategy for searching for WIMPs, along with a survey of the current status and outlook. In particular, dark matter searches have begun to explore the region of parameter space where SUSY particles could provide dark matter candidates. I will also mention some of the recent theoretical work on dark matter candidates which is being done in anticipation of the turn-on of the LHC and as part of the active R and D on the ILC. Finally, a vigorous detector development program promises significant advances in WIMP sensitivity in the coming years
Gravitational wave from dark sector with dark pion
Energy Technology Data Exchange (ETDEWEB)
Tsumura, Koji [Department of Physics, Kyoto University, Kyoto 606-8502 (Japan); Yamada, Masatoshi [Institut für Theoretische Physik, Universität Heidelberg, Philosophenweg 16, 69120 Heidelberg (Germany); Yamaguchi, Yuya, E-mail: ko2@gauge.scphys.kyoto-u.ac.jp, E-mail: m.yamada@thphys.uni-heidelberg.de, E-mail: yy@particle.sci.hokudai.ac.jp [Department of Physics, Faculty of Science, Hokkaido University, Sapporo 060-0810 (Japan)
2017-07-01
In this work, we investigate the spectra of gravitational waves produced by chiral symmetry breaking in dark quantum chromodynamics (dQCD) sector. The dark pion (π) can be a dark matter candidate as weakly interacting massive particle (WIMP) or strongly interacting massive particle (SIMP). For a WIMP scenario, we introduce the dQCD sector coupled to the standard model (SM) sector with classical scale invariance and investigate the annihilation process of the dark pion via the 2π → 2 SM process. For a SIMP scenario, we investigate the 3π → 2π annihilation process of the dark pion as a SIMP using chiral perturbation theory. We find that in the WIMP scenario the gravitational wave background spectra can be observed by future space gravitational wave antennas. On the other hand, when the dark pion is the SIMP dark matter with the constraints for the chiral perturbative limit and pion-pion scattering cross section, the chiral phase transition becomes crossover and then the gravitational waves are not produced.
NEWSdm: Nuclear Emulsions for WIMP Search with directional measurement
Directory of Open Access Journals (Sweden)
Di Crescenzo A.
2017-01-01
Full Text Available Direct Dark Matter searches are nowadays one of the most exciting research topics. Several experimental efforts are concentrated on the development, construction, and operation of detectors looking for the scattering of target nuclei with Weakly Interactive Massive Particles (WIMPs. The measurement of the direction of WIMP-induced nuclear recoils is a challenging strategy to extend dark matter searches beyond the neutrino floor and provide an unambiguous signature of the detection of Galactic dark matter. Current directional experiments are based on the use of gas TPC whose sensitivity is strongly limited by the small achievable detector mass. We present an innovative directional experiment based on the use of a solid target made by newly developed nuclear emulsions and read-out systems reaching a position resolution of the order of 10 nm.
Neutrino astronomy and search for WIMPs with MACRO
Bernardini, P
2000-01-01
Upward-going muons, induced primarily by atmospheric neutrinos, are used to search for neutrinos of astrophysical origin. No evidence has been found looking at the event direction and flux limits are obtained on candidate sources. A space-time correlation between gamma ray bursts and upward-going muons has been also investigated. Furthermore the search for a neutrino signal from the Earth and the Sun induced by weakly interacting massive particles (WIMP) has been updated. The number of events from the Sun and from the Earth is compatible with the background from atmospheric neutrinos. Therefore flux limits for different search cones have been estimated. Here we concentrate on neutralinos as WIMP candidates and limits depending on the neutralino mass are given and compared with the prediction of supersymmetric models. (11 refs).
Cosmological radio emission induced by WIMP Dark Matter
International Nuclear Information System (INIS)
Fornengo, N.; Regis, M.; Lineros, R.; Taoso, M.
2012-01-01
We present a detailed analysis of the radio synchrotron emission induced by WIMP dark matter annihilations and decays in extragalactic halos. We compute intensity, angular correlation, and source counts and discuss the impact on the expected signals of dark matter clustering, as well as of other astrophysical uncertainties as magnetic fields and spatial diffusion. Bounds on dark matter microscopic properties are then derived, and, depending on the specific set of assumptions, they are competitive with constraints from other indirect dark matter searches. At GHz frequencies, dark matter sources can become a significant fraction of the total number of sources with brightness below the microJansky level. We show that, at this level of fluxes (which are within the reach of the next-generation radio surveys), properties of the faint edge of differential source counts, as well as angular correlation data, can become an important probe for WIMPs
Cosmological radio emission induced by WIMP Dark Matter
Energy Technology Data Exchange (ETDEWEB)
Fornengo, N.; Regis, M. [Dipartimento di Fisica Teorica, Università di Torino, via P. Giuria 1, I-10125 Torino (Italy); Lineros, R.; Taoso, M., E-mail: fornengo@to.infn.it, E-mail: rlineros@ific.uv.es, E-mail: regis@to.infn.it, E-mail: mtaoso@phas.ubc.ca [IFIC, CSIC-Universidad de Valencia, Ed. Institutos, Apdo. Correos 22085, E-46071 Valencia (Spain)
2012-03-01
We present a detailed analysis of the radio synchrotron emission induced by WIMP dark matter annihilations and decays in extragalactic halos. We compute intensity, angular correlation, and source counts and discuss the impact on the expected signals of dark matter clustering, as well as of other astrophysical uncertainties as magnetic fields and spatial diffusion. Bounds on dark matter microscopic properties are then derived, and, depending on the specific set of assumptions, they are competitive with constraints from other indirect dark matter searches. At GHz frequencies, dark matter sources can become a significant fraction of the total number of sources with brightness below the microJansky level. We show that, at this level of fluxes (which are within the reach of the next-generation radio surveys), properties of the faint edge of differential source counts, as well as angular correlation data, can become an important probe for WIMPs.
NEWSdm: Nuclear Emulsions for WIMP Search with directional measurement
Di Crescenzo, A.
2017-12-01
Direct Dark Matter searches are nowadays one of the most exciting research topics. Several experimental efforts are concentrated on the development, construction, and operation of detectors looking for the scattering of target nuclei with Weakly Interactive Massive Particles (WIMPs). The measurement of the direction of WIMP-induced nuclear recoils is a challenging strategy to extend dark matter searches beyond the neutrino floor and provide an unambiguous signature of the detection of Galactic dark matter. Current directional experiments are based on the use of gas TPC whose sensitivity is strongly limited by the small achievable detector mass. We present an innovative directional experiment based on the use of a solid target made by newly developed nuclear emulsions and read-out systems reaching a position resolution of the order of 10 nm.
5th Patras workshop on axions, WIMPs and WISPs (PATRAS 2009). Proceedings
Energy Technology Data Exchange (ETDEWEB)
Jaeckel, Joerg; Lindner, Axel; Redondo, Javier [eds.
2010-06-15
The following topics were dealt with: Direct searches for dark matter, indirect searches for WIMPS, photon generation and laser polarization experiments, direct axion signals, theoretic WISP developments. (HSI)
5th Patras workshop on axions, WIMPs and WISPs (PATRAS 2009). Proceedings
International Nuclear Information System (INIS)
Jaeckel, Joerg; Lindner, Axel; Redondo, Javier
2010-06-01
The following topics were dealt with: Direct searches for dark matter, indirect searches for WIMPS, photon generation and laser polarization experiments, direct axion signals, theoretic WISP developments. (HSI)
Energy Technology Data Exchange (ETDEWEB)
Miller, Jonah Maxwell [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2017-10-18
This report has slides on Gravitational Waves; Pound and Rebka: A Shocking Fact; Light is a Ruler; Gravity is the Curvature of Spacetime; Gravitational Waves Made Simple; How a Gravitational Wave Affects Stuff Here; LIGO; This Detection: Neutron Stars; What the Gravitational Wave Looks Like; The Sound of Merging Neutron Stars; Neutron Star Mergers: More than GWs; The Radioactive Cloud; The Kilonova; and finally Summary, Multimessenger Astronomy.
Readout technologies for directional WIMP Dark Matter detection
International Nuclear Information System (INIS)
Battat, J.B.R.; Irastorza, I.G.; Aleksandrov, A.; Asada, T.; Baracchini, E.; Billard, J.; Bosson, G.; Bourrion, O.; Bouvier, J.; Buonaura, A.; Burdge, K.; Cebrián, S.
2016-01-01
The measurement of the direction of WIMP-induced nuclear recoils is a compelling but technologically challenging strategy to provide an unambiguous signature of the detection of Galactic dark matter. Most directional detectors aim to reconstruct the dark-matter-induced nuclear recoil tracks, either in gas or solid targets. The main challenge with directional detection is the need for high spatial resolution over large volumes, which puts strong requirements on the readout technologies. In this paper we review the various detector readout technologies used by directional detectors. In particular, we summarize the challenges, advantages and drawbacks of each approach, and discuss future prospects for these technologies.
Supersymmetry with Radiatively-Driven Naturalness: Implications for WIMP and Axion Searches
Directory of Open Access Journals (Sweden)
Kyu Jung Bae
2015-05-01
Full Text Available By insisting on naturalness in both the electroweak and quantum chromodynamics (QCD sectors of the minimal supersymmetric standard model (MSSM, the portrait for dark matter production is seriously modified from the usual weakly interacting massive particle (WIMP miracle picture. In supersymmetry (SUSY models with radiatively-driven naturalness (radiative natural SUSY or radiative natural SUSY (RNS which include a Dine–Fischler–Srednicki–Zhitnitsky (DFSZ-like solution to the strong charge-conjugation-parity (CP and SUSY \\(\\mu\\ problems, dark matter is expected to be an admixture of both axions and higgsino-like WIMPs. The WIMP/axion abundance calculation requires simultaneous solution of a set of coupled Boltzmann equations which describe quasi-stable axinos and saxions. In most of parameter space, axions make up the dominant contribution of dark matter although regions of WIMP dominance also occur. We show the allowed range of Peccei-Quinn (PQ scale \\(f_a\\ and compare to the values expected to be probed by the axion dark matter search experiment (ADMX axion detector in the near future. We also show WIMP detection rates, which are suppressed from usual expectations, because now WIMPs comprise only a fraction of the total dark matter. Nonetheless, ton-scale noble liquid detectors should be able to probe the entirety of RNS parameter space. Indirect WIMP detection rates are less propitious since they are reduced by the square of the depleted WIMP abundance.
An intermediate framework between WIMP, FIMP, and EWIP dark matter
International Nuclear Information System (INIS)
Yaguna, Carlos E.
2012-01-01
WIMP (Weakly Interacting Massive Particle), FIMP (Feebly interacting Massive Particle) and EWIP (Extremely Weakly Interacting Particle) dark matter are different theoretical frameworks that have been postulated to explain the dark matter. In this paper we examine an intermediate scenario that combines features from these three frameworks. It consists of a weakly interacting particle — à la WIMP — that does not reach thermal equilibrium in the early Universe — à la FIMP — and whose relic density is determined by the reheating temperature of the Universe — à la EWIP. As an example, an explicit realization of this framework, based on the singlet scalar model of dark matter, is analyzed in detail. In particular, the relic density is studied as a function of the parameters of the model, and the new viable region within this intermediate scenario is determined. Finally, it is shown that this alternative framework of dark matter allows for arbitrarily heavy dark matter particles and that it suggests a connection between dark matter and inflation
A precision search for WIMPs with charged cosmic rays
Reinert, Annika; Winkler, Martin Wolfgang
2018-01-01
AMS-02 has reached the sensitivity to probe canonical thermal WIMPs by their annihilation into antiprotons. Due to the high precision of the data, uncertainties in the astrophysical background have become the most limiting factor for indirect dark matter detection. In this work we systematically quantify and—where possible—reduce uncertainties in the antiproton background. We constrain the propagation of charged cosmic rays through the combination of antiproton, B/C and positron data. Cross section uncertainties are determined from a wide collection of accelerator data and are—for the first time ever—fully taken into account. This allows us to robustly constrain even subdominant dark matter signals through their spectral properties. For a standard NFW dark matter profile we are able to exclude thermal WIMPs with masses up to 570 GeV which annihilate into bottom quarks. While we confirm a reported excess compatible with dark matter of mass around 80 GeV, its local (global) significance only reaches 2.2 σ (1.1 σ) in our analysis.
CERN. Geneva
2005-01-01
We will present a brief introduction to the physics of gravitational waves and their properties. We will review potential astrophysical sources of gravitational waves, and the physics and astrophysics that can be learned from their study. We will survey the techniques and technologies for detecting gravitational waves for the first time, including bar detectors and broadband interferometers, and give a brief status report on the international search effort, with special emphasis on the LIGO detectors and search results.
WIMP search and a Cherenkov detector prototype for ILC polarimetry
Energy Technology Data Exchange (ETDEWEB)
Bartels, Christoph
2011-10-15
The planned International Linear Collider (ILC) will be an essential experiment to precisely determine the properties and structure of physics at the TeV scale. An important feature of the ILC is the possibility to use polarized electrons and positrons. In part 1 of this thesis, a model independent search for Weakly Interacting Massive Particles (WIMPs) at ILC is presented. The signal channel under study is direct WIMP pair production with associated Initial State Radiation (ISR), e{sup +}e{sup -} {yields} {chi}{chi}{gamma}, where the WIMPs leave the detector without any further interaction, and only the emitted photon is detected. From the energy spectrum of the detected photons the coupling structure, cross sections, masses and the quantum number of the dominant partial wave in the production process can be inferred. The analysis includes the dominant SM, as well as machine-induced backgrounds, and is performed using a full simulation of the ILD detector concept. For an integrated luminosity of L=500 fb{sup -1}, the signal cross sections can be measured to a precision of 3%, dominated by systematic uncertainties on the polarization measurement of the initial electrons and positrons. Masses can be measured to a precision of up to 2% by a comparison of the data photon spectrum to parametrized template spectra. In part 2 of this thesis, a Cherenkov detector prototype for Compton polarimetry at ILC is presented. For the polarization measurement a systematic uncertainty of {delta} P/P = 0.25% or better is envisioned. To achieve this goal, the Cherenkov detector has to be precisely aligned with the fan of Compton scattered electrons and its signal response needs to be highly linear. For the detector prototype data driven alignment strategies have been developed by comparing data recorded at the Elsa accelerator in Bonn, Germany, with detailed Geant4 simulations. With the use of multi-anode photomultipliers, data driven alignment strategies promise to provide the
WIMP search and a Cherenkov detector prototype for ILC polarimetry
International Nuclear Information System (INIS)
Bartels, Christoph
2011-10-01
The planned International Linear Collider (ILC) will be an essential experiment to precisely determine the properties and structure of physics at the TeV scale. An important feature of the ILC is the possibility to use polarized electrons and positrons. In part 1 of this thesis, a model independent search for Weakly Interacting Massive Particles (WIMPs) at ILC is presented. The signal channel under study is direct WIMP pair production with associated Initial State Radiation (ISR), e + e - → χχγ, where the WIMPs leave the detector without any further interaction, and only the emitted photon is detected. From the energy spectrum of the detected photons the coupling structure, cross sections, masses and the quantum number of the dominant partial wave in the production process can be inferred. The analysis includes the dominant SM, as well as machine-induced backgrounds, and is performed using a full simulation of the ILD detector concept. For an integrated luminosity of L=500 fb -1 , the signal cross sections can be measured to a precision of 3%, dominated by systematic uncertainties on the polarization measurement of the initial electrons and positrons. Masses can be measured to a precision of up to 2% by a comparison of the data photon spectrum to parametrized template spectra. In part 2 of this thesis, a Cherenkov detector prototype for Compton polarimetry at ILC is presented. For the polarization measurement a systematic uncertainty of δ P/P = 0.25% or better is envisioned. To achieve this goal, the Cherenkov detector has to be precisely aligned with the fan of Compton scattered electrons and its signal response needs to be highly linear. For the detector prototype data driven alignment strategies have been developed by comparing data recorded at the Elsa accelerator in Bonn, Germany, with detailed Geant4 simulations. With the use of multi-anode photomultipliers, data driven alignment strategies promise to provide the required precision. At ILC, these
Constraints on low-mass WIMPs from the EDELWEISS-III dark matter search
Energy Technology Data Exchange (ETDEWEB)
Armengaud, E.; De Boissière, T. [CEA Saclay, DSM/IRFU, Gif-sur-Yvette Cedex, 91191 France (France); Arnaud, Q.; Augier, C.; Benoît, A.; Billard, J.; Cazes, A.; Charlieux, F. [Institut de Physique Nucléaire de Lyon-UCBL, IN2P3-CNRS, 4 rue Enrico Fermi, Villeurbanne Cedex, 69622 France (France); Benoît, A.; Bres, G.; Camus, P. [Institut Néel, CNRS/UJF, 25 rue des Martyrs, BP 166, Grenoble, 38042 France (France); Bergé, L.; Broniatowski, A.; Chapellier, M.; Dumoulin, L. [CSNSM, Université Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, Orsay, 91405 France (France); Bergmann, T. [Karlsruher Institut für Technologie, Institut für Prozessdatenverarbeitung und Elektronik, Postfach 3640, Karlsruhe, 76021 Germany (Germany); Blümer, J. [Karlsruher Institut für Technologie, Institut für Experimentelle Kernphysik, Gaedestr. 1, Karlsruhe, 76128 Germany (Germany); Brudanin, V.; Filosofov, D. [JINR, Laboratory of Nuclear Problems, Joliot-Curie 6, Dubna, Moscow Region, 141980 Russian Federation (Russian Federation); Eitel, K., E-mail: eric.armengaud@cea.fr [Karlsruher Institut für Technologie, Institut für Kernphysik, Postfach 3640, Karlsruhe, 76021 Germany (Germany); and others
2016-05-01
We present the results of a search for elastic scattering from galactic dark matter in the form of Weakly Interacting Massive Particles (WIMPs) in the 4–30 GeV/ c {sup 2} mass range. We make use of a 582 kg-day fiducial exposure from an array of 800 g Germanium bolometers equipped with a set of interleaved electrodes with full surface coverage. We searched specifically for ∼ 2.5–20 keV nuclear recoils inside the detector fiducial volume. As an illustration the number of observed events in the search for 5 (resp. 20) GeV/ c {sup 2} WIMPs are 9 (resp. 4), compared to an expected background of 6.1 (resp. 1.4). A 90% CL limit of 4.3 × 10{sup −40} cm{sup 2} (resp. 9.4 × 10{sup −44} cm{sup 2}) is set on the spin-independent WIMP-nucleon scattering cross-section for 5 (resp. 20) GeV/ c {sup 2} WIMPs. This result represents a 41-fold improvement with respect to the previous EDELWEISS-II low-mass WIMP search for 7 GeV/ c {sup 2} WIMPs. The derived constraint is in tension with hints of WIMP signals from some recent experiments, thus confirming results obtained with different detection techniques.
Generalized spin-dependent WIMP-nucleus interactions and the DAMA modulation effect
Energy Technology Data Exchange (ETDEWEB)
Scopel, Stefano; Yoon, Kook-Hyun; Yoon, Jong-Hyun, E-mail: scopel@sogang.ac.kr, E-mail: koreasds@naver.com, E-mail: pledge200@gmail.com [Department of Physics, Sogang University, Seoul (Korea, Republic of)
2015-07-01
Guided by non-relativistic Effective Field Theory (EFT) we classify the most general spin-dependent interactions between a fermionic Weakly Interacting Massive Particle (WIMP) and nuclei, and within this class of models we discuss the viability of an interpretation of the DAMA modulation result in terms of a signal from WIMP elastic scatterings using a halo-independent approach. We find that, although several relativistic EFT's can lead to a spin-dependent cross section, in some cases with an explicit, non-negligible dependence on the WIMP incoming velocity, three main scenarios can be singled out in the non-relativistic limit which approximately encompass them all, and that only differ by their dependence on the transferred momentum. For two of them compatibility between DAMA and other constraints is possible for a WIMP mass below 30 GeV, but only for a WIMP velocity distribution in the halo of our Galaxy which departs from a Maxwellian. This is achieved by combining a suppression of the WIMP effective coupling to neutrons (to evade constraints from xenon and germanium detectors) to an explicit quadratic or quartic dependence of the cross section on the transferred momentum (that leads to a relative enhancement of the expected rate off sodium in DAMA compared to that off fluorine in droplet detectors and bubble chambers). For larger WIMP masses the same scenarios are excluded by scatterings off iodine in COUPP.
Simultaneous Generation of WIMP Miracle-like Densities of Baryons and Dark Matter
International Nuclear Information System (INIS)
McDonald, John
2012-01-01
The observed density of dark matter is of the magnitude expected for a thermal relic weakly-interacting massive particle (WIMP). In addition, the observed baryon density is within an order of magnitude of the dark matter density. This suggests that the baryon density is physically related to a typical thermal relic WIMP dark matter density. We present a model which simultaneously generates thermal relic WIMP-like densities for both baryons and dark matter by modifying a large initial baryon asymmetry. Production of unstable scalars carrying baryon number at the LHC would be a clear signature of the model.
Beyond WIMPs: the Quark (Anti Nugget Dark Matter
Directory of Open Access Journals (Sweden)
Zhitnitsky Ariel
2017-01-01
Full Text Available We review a testable dark matter (DM model outside of the standard WIMP paradigm. The model is unique in a sense that the observed ratio Ωdark ≃ Ωvisible for visible and dark matter densities finds its natural explanation as a result of their common QCD origin when both types of matter (DM and visible are formed during the QCD phase transition and both are proportional to single dimensional parameter of the system, Λqcd. We argue that the charge separation effect also inevitably occurs during the same QCD phase transition in the presence of the CP odd axion field a(x. It leads to preferential formation of one species of nuggets on the scales of the visible Universe where the axion field a(x is coherent. A natural outcome of this preferential evolution is that only one type of the visible baryons (not anti- baryons remain in the system after the nuggets complete their formation. Unlike conventional WIMP dark matter candidates, the nuggets and anti-nuggets are strongly interacting but macroscopically large objects. The rare events of annihilation of the anti-nuggets with visible matter lead to a number of observable effects. We argue that the relative intensities for a number of measured excesses of emission from the centre of galaxy (covering more than 11 orders of magnitude are determined by standard and well established physics. At the same time the absolute intensity of emission is determined by a single new fundamental parameter of the theory, the axion mass, 10−6eV ≲ ma ≲ 10−3eV. Finally, we comment on implications of these studies for the axion search experiments, including microwave cavity and the Orpheus experiments.
Limits on Spin-Dependent WIMP-Nucleon Cross Section Obtained from the Complete LUX Exposure
Akerib, D. S.; Alsum, S.; Araújo, H. M.; Bai, X.; Bailey, A. J.; Balajthy, J.; Beltrame, P.; Bernard, E. P.; Bernstein, A.; Biesiadzinski, T. P.; Boulton, E. M.; Brás, P.; Byram, D.; Cahn, S. B.; Carmona-Benitez, M. C.; Chan, C.; Chiller, A. A.; Chiller, C.; Currie, A.; Cutter, J. E.; Davison, T. J. R.; Dobi, A.; Dobson, J. E. Y.; Druszkiewicz, E.; Edwards, B. N.; Faham, C. H.; Fallon, S. R.; Fiorucci, S.; Gaitskell, R. J.; Gehman, V. M.; Ghag, C.; Gilchriese, M. G. D.; Hall, C. R.; Hanhardt, M.; Haselschwardt, S. J.; Hertel, S. A.; Hogan, D. P.; Horn, M.; Huang, D. Q.; Ignarra, C. M.; Jacobsen, R. G.; Ji, W.; Kamdin, K.; Kazkaz, K.; Khaitan, D.; Knoche, R.; Larsen, N. A.; Lee, C.; Lenardo, B. G.; Lesko, K. T.; Lindote, A.; Lopes, M. I.; Manalaysay, A.; Mannino, R. L.; Marzioni, M. F.; McKinsey, D. N.; Mei, D.-M.; Mock, J.; Moongweluwan, M.; Morad, J. A.; Murphy, A. St. J.; Nehrkorn, C.; Nelson, H. N.; Neves, F.; O'Sullivan, K.; Oliver-Mallory, K. C.; Palladino, K. J.; Pease, E. K.; Reichhart, L.; Rhyne, C.; Shaw, S.; Shutt, T. A.; Silva, C.; Solmaz, M.; Solovov, V. N.; Sorensen, P.; Stephenson, S.; Sumner, T. J.; Szydagis, M.; Taylor, D. J.; Taylor, W. C.; Tennyson, B. P.; Terman, P. A.; Tiedt, D. R.; To, W. H.; Tripathi, M.; Tvrznikova, L.; Uvarov, S.; Velan, V.; Verbus, J. R.; Webb, R. C.; White, J. T.; Whitis, T. J.; Witherell, M. S.; Wolfs, F. L. H.; Xu, J.; Yazdani, K.; Young, S. K.; Zhang, C.; LUX Collaboration
2017-06-01
We present experimental constraints on the spin-dependent WIMP-nucleon elastic cross sections from the total 129.5 kg yr exposure acquired by the Large Underground Xenon experiment (LUX), operating at the Sanford Underground Research Facility in Lead, South Dakota (USA). A profile likelihood ratio analysis allows 90% C.L. upper limits to be set on the WIMP-neutron (WIMP-proton) cross section of σn=1.6 ×10-41 cm2 (σp=5 ×10-40 cm2 ) at 35 GeV c-2 , almost a sixfold improvement over the previous LUX spin-dependent results. The spin-dependent WIMP-neutron limit is the most sensitive constraint to date.
Model-independent determination of the WIMP mass from direct dark matter detection data
International Nuclear Information System (INIS)
Drees, Manuel; Shan, Chung-Lin
2008-01-01
Weakly interacting massive particles (WIMPs) are one of the leading candidates for dark matter. We develop a model-independent method for determining the mass m χ of the WIMP by using data (i.e. measured recoil energies) of direct detection experiments. Our method is independent of the as yet unknown WIMP density near the Earth, of the form of the WIMP velocity distribution, as well as of the WIMP–nucleus cross section. However, it requires positive signals from at least two detectors with different target nuclei. In a background-free environment, m χ ∼50 GeV could in principle be determined with an error of ∼35% with only 2 × 50 events; in practice, upper and lower limits on the recoil energy of signal events, imposed to reduce backgrounds, can increase the error. The method also loses precision if m χ significantly exceeds the mass of the heaviest target nucleus used
Projected WIMP Sensitivity of the LUX-ZEPLIN (LZ) Dark Matter Experiment
Energy Technology Data Exchange (ETDEWEB)
Akerib, D.S.; et al.
2018-02-16
LUX-ZEPLIN (LZ) is a next generation dark matter direct detection experiment that will operate 4850 feet underground at the Sanford Underground Research Facility (SURF) in Lead, South Dakota, USA. Using a two-phase xenon detector with an active mass of 7 tonnes, LZ will search primarily for low-energy interactions with Weakly Interacting Massive Particles (WIMPs), which are hypothesized to make up the dark matter in our galactic halo. In this paper, the projected WIMP sensitivity of LZ is presented based on the latest background estimates and simulations of the detector. For a 1000 live day run using a 5.6 tonne fiducial mass, LZ is projected to exclude at 90% confidence level spin-independent WIMP-nucleon cross sections above $1.6 \\times 10^{-48}$ cm$^{2}$ for a 40 $\\mathrm{GeV}/c^{2}$ mass WIMP. Additionally, a $5\\sigma$ discovery potential is projected reaching cross sections below the existing and projected exclusion limits of similar experiments that are currently operating. For spin-dependent WIMP-neutron(-proton) scattering, a sensitivity of $2.7 \\times 10^{-43}$ cm$^{2}$ ($8.1 \\times 10^{-42}$ cm$^{2}$) for a 40 $\\mathrm{GeV}/c^{2}$ mass WIMP is expected. With construction well underway, LZ is on track for underground installation at SURF in 2019 and will start collecting data in 2020.
Gravitational waves from gravitational collapse
Energy Technology Data Exchange (ETDEWEB)
Fryer, Christopher L [Los Alamos National Laboratory; New, Kimberly C [Los Alamos National Laboratory
2008-01-01
Gravitational wave emission from stellar collapse has been studied for nearly four decades. Current state-of-the-art numerical investigations of collapse include those that use progenitors with more realistic angular momentum profiles, properly treat microphysics issues, account for general relativity, and examine non-axisymmetric effects in three dimensions. Such simulations predict that gravitational waves from various phenomena associated with gravitational collapse could be detectable with ground-based and space-based interferometric observatories. This review covers the entire range of stellar collapse sources of gravitational waves: from the accretion induced collapse of a white dwarf through the collapse down to neutron stars or black holes of massive stars to the collapse of supermassive stars.
Gravitational Waves from Gravitational Collapse
Directory of Open Access Journals (Sweden)
Chris L. Fryer
2011-01-01
Full Text Available Gravitational-wave emission from stellar collapse has been studied for nearly four decades. Current state-of-the-art numerical investigations of collapse include those that use progenitors with more realistic angular momentum profiles, properly treat microphysics issues, account for general relativity, and examine non-axisymmetric effects in three dimensions. Such simulations predict that gravitational waves from various phenomena associated with gravitational collapse could be detectable with ground-based and space-based interferometric observatories. This review covers the entire range of stellar collapse sources of gravitational waves: from the accretion-induced collapse of a white dwarf through the collapse down to neutron stars or black holes of massive stars to the collapse of supermassive stars.
Gravitational Waves from Gravitational Collapse.
Fryer, Chris L; New, Kimberly C B
2011-01-01
Gravitational-wave emission from stellar collapse has been studied for nearly four decades. Current state-of-the-art numerical investigations of collapse include those that use progenitors with more realistic angular momentum profiles, properly treat microphysics issues, account for general relativity, and examine non-axisymmetric effects in three dimensions. Such simulations predict that gravitational waves from various phenomena associated with gravitational collapse could be detectable with ground-based and space-based interferometric observatories. This review covers the entire range of stellar collapse sources of gravitational waves: from the accretion-induced collapse of a white dwarf through the collapse down to neutron stars or black holes of massive stars to the collapse of supermassive stars. Supplementary material is available for this article at 10.12942/lrr-2011-1.
Identifying WIMP dark matter from particle and astroparticle data
Bertone, Gianfranco; Bozorgnia, Nassim; Kim, Jong Soo; Liem, Sebastian; McCabe, Christopher; Otten, Sydney; Ruiz de Austri, Roberto
2018-03-01
One of the most promising strategies to identify the nature of dark matter consists in the search for new particles at accelerators and with so-called direct detection experiments. Working within the framework of simplified models, and making use of machine learning tools to speed up statistical inference, we address the question of what we can learn about dark matter from a detection at the LHC and a forthcoming direct detection experiment. We show that with a combination of accelerator and direct detection data, it is possible to identify newly discovered particles as dark matter, by reconstructing their relic density assuming they are weakly interacting massive particles (WIMPs) thermally produced in the early Universe, and demonstrating that it is consistent with the measured dark matter abundance. An inconsistency between these two quantities would instead point either towards additional physics in the dark sector, or towards a non-standard cosmology, with a thermal history substantially different from that of the standard cosmological model.
arXiv Uncertainties in WIMP Dark Matter Scattering Revisited
Ellis, John; Olive, Keith A.
We revisit the uncertainties in the calculation of spin-independent scattering matrix elements for the scattering of WIMP dark matter particles on nuclear matter. In addition to discussing the uncertainties due to limitations in our knowledge of the nucleonic matrix elements of the light quark scalar densities , we also discuss the importances of heavy quark scalar densities , and comment on uncertainties in quark mass ratios. We analyze estimates of the light-quark densities made over the past decade using lattice calculations and/or phenomenological inputs. We find an uncertainty in the combination that is larger than has been assumed in some phenomenological analyses, and a range of that is smaller but compatible with earlier estimates. We also analyze the importance of the {\\cal O}(\\alpha_s^3) calculations of the heavy-quark matrix elements that are now available, which provide an important refinement of the calculation of the spin-independent scattering cross section. We use for illustration a benchmar...
Results and status of the Edelweiss Wimp search experiment
International Nuclear Information System (INIS)
Benoit, A.; Berge, L.; Blumer, J.; Broniatowski, A.; Censier, B.; Chabert, L.; Chambon, B.; Chapellier, M.; Chardin, G.; Charvin, P.; Jesus, M. de; Drain, D.; Di Stefano, P.; Dumoulin, L.; Eitel, K.; Fesquet, M.; Firucci, S.; Gascon, J.; Gerbier, G.; Gerlic, E.; Goldbach, C.; Goyot, M.; Gros, M.; Habermahl, F.; Horn, M.; Hadjout, J.P.; Herve, S.; Juillard, A.; Kikuchi, C.; Lesquen, A. de; Luca, M.; Mallet, J.; Marnieros, S.; Martineau, O.; Mosca, L.; Navick, X.F.; Nollez, G.; Pari, P.; Riccio, C.; Sanglard, V.; Stern, M.; Vagneron, L.; Villard, V.
2005-01-01
In the Edelweiss experiment, nuclear recoils induced by elastic collisions with WIMPs (weakly interacting massive particle) from the galactic halo are identified in low-temperature Ge detectors where the ratio of the heat and ionization signals provide an event-by-event discrimination of nuclear recoils from the dominant background coming from γ-rays interactions. The Edelweiss experiment is located in the Modane underground facility in order to cut the muon flux drastically. We present here the results obtained during the first part of the experiment named Edelweiss-I that ended in the beginning of 2004. Since october 2002, 3 optimized 320 grams detectors have been simultaneously operated at a regulated temperature of 0.017 K and about 50 kg*day were added to the previous published data. These data are still under analysis but preliminary results concerning the upper limit at 90% CL (confidence level) confirm the limit already published in 2002. The first run of Edelweiss-II is due to begin during summer 2005, we are expecting to gain 2 orders of magnitude in terms of detector sensitivity and reach 0.002 events/day*kg. (A.C.)
Dodelson, Scott
2017-01-01
Gravitational lensing is a consequence of general relativity, where the gravitational force due to a massive object bends the paths of light originating from distant objects lying behind it. Using very little general relativity and no higher level mathematics, this text presents the basics of gravitational lensing, focusing on the equations needed to understand the phenomena. It then applies them to a diverse set of topics, including multiply imaged objects, time delays, extrasolar planets, microlensing, cluster masses, galaxy shape measurements, cosmic shear, and lensing of the cosmic microwave background. This approach allows undergraduate students and others to get quickly up to speed on the basics and the important issues. The text will be especially relevant as large surveys such as LSST and Euclid begin to dominate the astronomical landscape. Designed for a one semester course, it is accessible to anyone with two years of undergraduate physics background.
Energy Technology Data Exchange (ETDEWEB)
Benoit, A.; Berge, L.; Blumer, J.; Broniatowski, A.; Censier, B.; Chabert, L.; Chambon, B.; Chapellier, M.; Chardin, G.; Charvin, P.; Jesus, M. de; Drain, D.; Di Stefano, P.; Dumoulin, L.; Eitel, K.; Fesquet, M.; Firucci, S.; Gascon, J.; Gerbier, G.; Gerlic, E.; Goldbach, C.; Goyot, M.; Gros, M.; Habermahl, F.; Horn, M.; Hadjout, J.P.; Herve, S.; Juillard, A.; Kikuchi, C.; Lesquen, A. de; Luca, M.; Mallet, J.; Marnieros, S.; Martineau, O.; Mosca, L.; Navick, X.F.; Nollez, G.; Pari, P.; Riccio, C.; Sanglard, V.; Stern, M.; Vagneron, L.; Villard, V
2005-07-01
In the Edelweiss experiment, nuclear recoils induced by elastic collisions with WIMPs (weakly interacting massive particle) from the galactic halo are identified in low-temperature Ge detectors where the ratio of the heat and ionization signals provide an event-by-event discrimination of nuclear recoils from the dominant background coming from {gamma}-rays interactions. The Edelweiss experiment is located in the Modane underground facility in order to cut the muon flux drastically. We present here the results obtained during the first part of the experiment named Edelweiss-I that ended in the beginning of 2004. Since october 2002, 3 optimized 320 grams detectors have been simultaneously operated at a regulated temperature of 0.017 K and about 50 kg*day were added to the previous published data. These data are still under analysis but preliminary results concerning the upper limit at 90% CL (confidence level) confirm the limit already published in 2002. The first run of Edelweiss-II is due to begin during summer 2005, we are expecting to gain 2 orders of magnitude in terms of detector sensitivity and reach 0.002 events/day*kg. (A.C.)
Schäfer, G.; Schutz, B.
1996-01-01
Gravity is truly universal. It is the force that pulls us to the Earth, that keeps the planets and moons in their orbits, and that causes the tides on the Earth to ebb and flow. It even keeps the Sun shining. Yet on a laboratory scale gravity is extremely weak. The Coulomb force between two protons is 1039 times stronger than the gravitational force between them. Moreover, Newton's gravitational constant is the least accurately known of the fundamental constants: it has been measured to 1 par...
Joint Rome Workshop "Challenges in the Dark Sector: Alternatives to the WIMP paradigm”
2015-01-01
Identifying what Dark Matter (DM) is, as well as its nature and properties, remains a major challenge for both theoretical and experimental astroparticle physics communities. In the past decades, WIMP DM has been the most hunted candidate, with the result that nowadays WIMPS are cornered by large amounts of experimental data from Direct Detection, Indirect Detection, and Collider Experiments. If no WIMP signal is detected in the next few years, the possibility that this very appealing theoretical idea is not what Nature has chosen will become even more compelling and will boost theoretical studies and experimental searches for non-WIMP alternatives for DM. The aim of this 3-day meeting is to convene experts on alternatives to the WIMP paradigm to stimulate informal discussions on different possibilities (dark photons, axion-like particles, Majorons, self-interacting dark sectors, just to mention a few). We plan to have only three or four talks each day, and plenty of time to discuss implications of these DM s...
Halo-independent determination of the unmodulated WIMP signal in DAMA: the isotropic case
Energy Technology Data Exchange (ETDEWEB)
Gondolo, Paolo [Department of Physics, University of Utah, 115 South 1400 East #201, Salt Lake City, Utah 84112-0830 (United States); Scopel, Stefano, E-mail: paolo.gondolo@utah.edu, E-mail: scopel@sogang.ac.kr [Department of Physics, Sogang University, Seoul 121-742 (Korea, Republic of)
2017-09-01
We present a halo-independent determination of the unmodulated signal corresponding to the DAMA modulation if interpreted as due to dark matter weakly interacting massive particles (WIMPs). First we show how a modulated signal gives information on the WIMP velocity distribution function in the Galactic rest frame from which the unmodulated signal descends. Then we describe a mathematically-sound profile likelihood analysis in which the likelihood is profiled over a continuum of nuisance parameters (namely, the WIMP velocity distribution). As a first application of the method, which is very general and valid for any class of velocity distributions, we restrict the analysis to velocity distributions that are isotropic in the Galactic frame. In this way we obtain halo-independent maximum-likelihood estimates and confidence intervals for the DAMA unmodulated signal. We find that the estimated unmodulated signal is in line with expectations for a WIMP-induced modulation and is compatible with the DAMA background+signal rate. Specifically, for the isotropic case we find that the modulated amplitude ranges between a few percent and about 25% of the unmodulated amplitude, depending on the WIMP mass.
International Nuclear Information System (INIS)
Bassi, Angelo; Großardt, André; Ulbricht, Hendrik
2017-01-01
We discuss effects of loss of coherence in low energy quantum systems caused by or related to gravitation, referred to as gravitational decoherence. These effects, resulting from random metric fluctuations, for instance, promise to be accessible by relatively inexpensive table-top experiments, way before the scales where true quantum gravity effects become important. Therefore, they can provide a first experimental view on gravity in the quantum regime. We will survey models of decoherence induced both by classical and quantum gravitational fluctuations; it will be manifest that a clear understanding of gravitational decoherence is still lacking. Next we will review models where quantum theory is modified, under the assumption that gravity causes the collapse of the wave functions, when systems are large enough. These models challenge the quantum-gravity interplay, and can be tested experimentally. In the last part we have a look at the state of the art of experimental research. We will review efforts aiming at more and more accurate measurements of gravity ( G and g ) and ideas for measuring conventional and unconventional gravity effects on nonrelativistic quantum systems. (topical review)
Rahvar, Sohrab
2018-05-01
In this work, we study the interaction of the electromagnetic wave (EW) from a distant quasar with the gravitational wave (GW) sourced by the binary stars. While in the regime of geometric optics, the light bending due to this interaction is negligible, we show that the phase shifting on the wavefront of an EW can produce the diffraction pattern on the observer plane. The diffraction of the light (with the wavelength of λe) by the gravitational wave playing the role of gravitational grating (with the wavelength of λg) has the diffraction angle of Δβ ˜ λe/λg. The relative motion of the observer, the source of gravitational wave and the quasar results in a relative motion of the observer through the interference pattern on the observer plane. The consequence of this fringe crossing is the modulation in the light curve of a quasar with the period of few hours in the microwave wavelength. The optical depth for the observation of this phenomenon for a Quasar with the multiple images strongly lensed by a galaxy where the light trajectory of some of the images crosses the lensing galaxy is τ ≃ 0.2. By shifting the time-delay of the light curves of the multiple images in a strong lensed quasar and removing the intrinsic variations of a quasar, our desired signals, as a new method for detection of GWs can be detected.
Beyond WIMP: From Theory to Detection of Sub-GeV Dark Matter
CERN. Geneva
2014-01-01
The existence of dark matter has been well established with overwhelming evidence, but its particle identity is still unknown. For more than three decades, significant theoretical and experimental efforts have been directed towards the search for a Weakly Interacting Massive Particle (WIMP), often overlooking other possibilities. The lack of an unambiguous positive WIMP signal, at both indirect- and direct-detection experiments and at the LHC, stresses the need to expand dark matter research into additional theoretical scenarios and, more importantly, to develop new experimental capabilities that go beyond the limitations of WIMP detection. In this talk I will discuss new theoretical ideas and experimental avenues for searching for light, sub-GeV dark matter. Some emphasis will be given to direct detection experiments, where several new strategies to directly detect dark matter particles with MeV to GeV mass, far below standard direct detection capabilities, are developed.
Power corrections to the universal heavy WIMP-nucleon cross section
Energy Technology Data Exchange (ETDEWEB)
Chen, Chien-Yi; Hill, Richard J.; Solon, Mikhail P.; Wijangco, Alexander M.
2018-06-01
WIMP-nucleon scattering is analyzed at order $1/M$ in Heavy WIMP Effective Theory. The $1/M$ power corrections, where $M\\gg m_W$ is the WIMP mass, distinguish between different underlying UV models with the same universal limit and their impact on direct detection rates can be enhanced relative to naive expectations due to generic amplitude-level cancellations at leading order. The necessary one- and two-loop matching calculations onto the low-energy effective theory for WIMP interactions with Standard Model quarks and gluons are performed for the case of an electroweak SU(2) triplet WIMP, considering both the cases of elementary fermions and composite scalars. The low-velocity WIMP-nucleon scattering cross section is evaluated and compared with current experimental limits and projected future sensitivities. Our results provide the most robust prediction for electroweak triplet Majorana fermion dark matter direct detection rates; for this case, a cancellation between two sources of power corrections yields a small total $1/M$ correction, and a total cross section close to the universal limit for $M \\gtrsim {\\rm few} \\times 100\\,{\\rm GeV}$. For the SU(2) composite scalar, the $1/M$ corrections introduce dependence on underlying strong dynamics. Using a leading chiral logarithm evaluation, the total $1/M$ correction has a larger magnitude and uncertainty than in the fermionic case, with a sign that further suppresses the total cross section. These examples provide definite targets for future direct detection experiments and motivate large scale detectors capable of probing to the neutrino floor in the TeV mass regime.
Power corrections to the universal heavy WIMP-nucleon cross section
Chen, Chien-Yi; Hill, Richard J.; Solon, Mikhail P.; Wijangco, Alexander M.
2018-06-01
WIMP-nucleon scattering is analyzed at order 1 / M in Heavy WIMP Effective Theory. The 1 / M power corrections, where M ≫mW is the WIMP mass, distinguish between different underlying UV models with the same universal limit and their impact on direct detection rates can be enhanced relative to naive expectations due to generic amplitude-level cancellations at leading order. The necessary one- and two-loop matching calculations onto the low-energy effective theory for WIMP interactions with Standard Model quarks and gluons are performed for the case of an electroweak SU(2) triplet WIMP, considering both the cases of elementary fermions and composite scalars. The low-velocity WIMP-nucleon scattering cross section is evaluated and compared with current experimental limits and projected future sensitivities. Our results provide the most robust prediction for electroweak triplet Majorana fermion dark matter direct detection rates; for this case, a cancellation between two sources of power corrections yields a small total 1 / M correction, and a total cross section close to the universal limit for M ≳ few × 100GeV. For the SU(2) composite scalar, the 1 / M corrections introduce dependence on underlying strong dynamics. Using a leading chiral logarithm evaluation, the total 1 / M correction has a larger magnitude and uncertainty than in the fermionic case, with a sign that further suppresses the total cross section. These examples provide definite targets for future direct detection experiments and motivate large scale detectors capable of probing to the neutrino floor in the TeV mass regime.
Ciufolini, I; Moschella, U; Fre, P
2001-01-01
Gravitational waves (GWs) are a hot topic and promise to play a central role in astrophysics, cosmology, and theoretical physics. Technological developments have led us to the brink of their direct observation, which could become a reality in the coming years. The direct observation of GWs will open an entirely new field: GW astronomy. This is expected to bring a revolution in our knowledge of the universe by allowing the observation of previously unseen phenomena, such as the coalescence of compact objects (neutron stars and black holes), the fall of stars into supermassive black holes, stellar core collapses, big-bang relics, and the new and unexpected.With a wide range of contributions by leading scientists in the field, Gravitational Waves covers topics such as the basics of GWs, various advanced topics, GW detectors, astrophysics of GW sources, numerical applications, and several recent theoretical developments. The material is written at a level suitable for postgraduate students entering the field.
The waning of the WIMP? A review of models, searches, and constraints
Arcadi, Giorgio; Dutra, Maíra; Ghosh, Pradipta; Lindner, Manfred; Mambrini, Yann; Pierre, Mathias; Profumo, Stefano; Queiroz, Farinaldo S.
2018-03-01
Weakly Interacting Massive Particles (WIMPs) are among the best-motivated dark matter candidates. No conclusive signal, despite an extensive search program that combines, often in a complementary way, direct, indirect, and collider probes, has been detected so far. This situation might change in near future due to the advent of one/multi-TON Direct Detection experiments. We thus, find it timely to provide a review of the WIMP paradigm with focus on a few models which can be probed at best by these facilities. Collider and Indirect Detection, nevertheless, will not be neglected when they represent a complementary probe.
Hakim, Rémi
1994-01-01
Il existe à l'heure actuelle un certain nombre de théories relativistes de la gravitation compatibles avec l'expérience et l'observation. Toutefois, la relativité générale d'Einstein fut historiquement la première à fournir des résultats théoriques corrects en accord précis avec les faits.
Energy Technology Data Exchange (ETDEWEB)
Leutwyler, H; Mallik, S
1986-12-01
The effective action for fermions moving in external gravitational and gauge fields is analyzed in terms of the corresponding external field propagator. The central object in our approach is the covariant energy-momentum tensor which is extracted from the regular part of the propagator at short distances. It is shown that the Lorentz anomaly, the conformal anomaly and the gauge anomaly can be expressed in terms of the local polynomials which determine the singular part of the propagator. (There are no coordinate anomalies). Except for the conformal anomaly, for which we give explicit representations only in dless than or equal to4, we consider an arbitrary number of dimensions.
Directory of Open Access Journals (Sweden)
Metin SALTIK
1996-03-01
Full Text Available According to classical electromagnetic theory, an accelerated charge or system of charges radiates electromagnetic waves. In a radio transmitter antenna charges are accelerated along the antenna and release electromagnetic waves, which is radiated at the velocity of light in the surrounding medium. All of the radio transmitters work on this principle today. In this study an analogy is established between the principles by which accelerated charge systems markes radiation and the accelerated mass system, and the systems cousing gravitational radiation are investigated.
International Nuclear Information System (INIS)
Turner, E.L.
1989-01-01
The author discusses how gravitational lens studies is becoming a major focus of extragalactic astronomy and cosmology. This review is organized into five parts: an overview of the observational situation, a look at the state of theoretical work on lenses, a detailed look at three recently discovered types of lensing phenomena (luminous arcs, radio rings, quasar-galaxy associations), a review of progress on two old problems in lens studies (deriving unique lens mass distribution models, measurements of differential time delays), and an attempt to look into the future of lens studies
Detector Simulation and WIMP Search Analysis for the Cryogenic Dark Matter Search Experiment
Energy Technology Data Exchange (ETDEWEB)
McCarthy, Kevin [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
2013-06-01
Astrophysical and cosmological measurements on the scales of galaxies, galaxy clusters, and the universe indicate that 85% of the matter in the universe is composed of dark matter, made up of non-baryonic particles that interact with cross-sections on the weak scale or lower. Hypothetical Weakly Interacting Massive Particles, or WIMPs, represent a potential solution to the dark matter problem, and naturally arise in certain Standard Model extensions. The Cryogenic Dark Matter Search (CDMS) collaboration aims to detect the scattering of WIMP particles from nuclei in terrestrial detectors. Germanium and silicon particle detectors are deployed in the Soudan Underground Laboratory in Minnesota. These detectors are instrumented with phonon and ionization sensors, which allows for discrimination against electromagnetic backgrounds, which strike the detector at rates orders of magnitude higher than the expected WIMP signal. This dissertation presents the development of numerical models of the physics of the CDMS detectors, implemented in a computational package collectively known as the CDMS Detector Monte Carlo (DMC). After substantial validation of the models against data, the DMC is used to investigate potential backgrounds to the next iteration of the CDMS experiment, known as SuperCDMS. Finally, an investigation of using the DMC in a reverse Monte Carlo analysis of WIMP search data is presented.
Simultaneous generation of WIMP miracle-like densities of baryons and dark matter
International Nuclear Information System (INIS)
McDonald, John
2011-01-01
The observed density of dark matter is of the magnitude expected for a thermal relic weakly-interacting massive particle (WIMP). In addition, the observed baryon density is within an order of magnitude of the dark matter density. This suggests that the baryon density is physically related to a typical thermal relic WIMP dark matter density. We present a model which simultaneously generates thermal relic WIMP-like densities for both baryons and dark matter by modifying a large initial baryon asymmetry. Dark matter is due to O(100) GeV gauge singlet scalars produced in the annihilation of the O(TeV) colored scalars which are responsible for the final thermal WIMP-like baryon asymmetry. The requirement of no baryon washout implies that there are two gauge singlet scalars. The low-temperature transfer of the asymmetry to conventional baryons can be understood if the long-lived O(TeV) colored scalars have large hypercharge, |Y|>4/3. Production of such scalars at the LHC would be a clear signature of the model.
Ultra-cold WIMPs relics of non-standard pre-BBN cosmologies
Gelmini, Graciela B
2008-01-01
We point out that in scenarios in which the Universe evolves in a non-standard manner during and after the kinetic decoupling of weakly interacting massive particles (WIMPs), these relics can be much colder than in standard cosmological scenarios (i.e. can be ultra-cold), possibly leading to the formation of smaller first objects in hierarchical structure formation scenarios.
Civitarese, O.; Fushimi, K. J.; Mosquera, M. E.
2016-12-01
Weakly interacting massive particles (WIMPs) are possible components of the Universe’s dark matter (DM). The detection of WIMPs is signaled by the recoil of the atomic nuclei which form a detector. CoGeNT at the Soudan Underground Laboratory (SUL) and DAMA at the Laboratori Nazionali del Gran Sasso (LNGS) have reported data on annual modulation of signals attributed to WIMPs. Both experiments are located in laboratories in the Northern Hemisphere. DM detectors are planned to operate (or already operate) in laboratories in the Southern Hemisphere, including SABRE at Stawell Underground Physics Laboratory (SUPL) in Australia, and DM-ICE in Antarctica. In this work we have analyzed the dependence of diurnal and annual modulation of signals, pertaining to the detection of WIMP, on the coordinates of the laboratory, for experiments which may be performed in the planned new Agua Negra Deep Experimental Site (ANDES) underground facility, to be built in San Juan, Argentina. We made predictions for NaI and Ge-type detectors placed in ANDES, to compare with DAMA, CoGeNT, SABRE and DM-ICE arrays, and found that the diurnal modulation of the signals, at the ANDES site, is amplified at its maximum value, both for NaI (Ge)-type detectors, while the annual modulation remains unaffected by the change in coordinates from north to south.
International Nuclear Information System (INIS)
Civitarese, O; Mosquera, M E; Fushimi, K J
2016-01-01
Weakly interacting massive particles (WIMPs) are possible components of the Universe’s dark matter (DM). The detection of WIMPs is signaled by the recoil of the atomic nuclei which form a detector. CoGeNT at the Soudan Underground Laboratory (SUL) and DAMA at the Laboratori Nazionali del Gran Sasso (LNGS) have reported data on annual modulation of signals attributed to WIMPs. Both experiments are located in laboratories in the Northern Hemisphere. DM detectors are planned to operate (or already operate) in laboratories in the Southern Hemisphere, including SABRE at Stawell Underground Physics Laboratory (SUPL) in Australia, and DM-ICE in Antarctica. In this work we have analyzed the dependence of diurnal and annual modulation of signals, pertaining to the detection of WIMP, on the coordinates of the laboratory, for experiments which may be performed in the planned new Agua Negra Deep Experimental Site (ANDES) underground facility, to be built in San Juan, Argentina. We made predictions for NaI and Ge-type detectors placed in ANDES, to compare with DAMA, CoGeNT, SABRE and DM-ICE arrays, and found that the diurnal modulation of the signals, at the ANDES site, is amplified at its maximum value, both for NaI (Ge)-type detectors, while the annual modulation remains unaffected by the change in coordinates from north to south. (paper)
Improved EDELWEISS-III sensitivity for low-mass WIMPs using a profile likelihood approach
Energy Technology Data Exchange (ETDEWEB)
Hehn, L. [Karlsruher Institut fuer Technologie, Institut fuer Kernphysik, Karlsruhe (Germany); Armengaud, E.; Boissiere, T. de; Gros, M.; Navick, X.F.; Nones, C.; Paul, B. [CEA Saclay, DSM/IRFU, Gif-sur-Yvette Cedex (France); Arnaud, Q. [Univ Lyon, Universite Claude Bernard Lyon 1, CNRS/IN2P3, Institut de Physique Nucleaire de Lyon, Lyon (France); Queen' s University, Kingston (Canada); Augier, C.; Billard, J.; Cazes, A.; Charlieux, F.; Jesus, M. de; Gascon, J.; Juillard, A.; Queguiner, E.; Sanglard, V.; Vagneron, L. [Univ Lyon, Universite Claude Bernard Lyon 1, CNRS/IN2P3, Institut de Physique Nucleaire de Lyon, Lyon (France); Benoit, A.; Camus, P. [Institut Neel, CNRS/UJF, Grenoble (France); Berge, L.; Chapellier, M.; Dumoulin, L.; Giuliani, A.; Le-Sueur, H.; Marnieros, S.; Olivieri, E.; Poda, D. [CSNSM, Univ. Paris-Sud, CNRS/IN2P3, Universite Paris-Saclay, Orsay (France); Bluemer, J. [Karlsruher Institut fuer Technologie, Institut fuer Kernphysik, Karlsruhe (Germany); Karlsruher Institut fuer Technologie, Institut fuer Experimentelle Kernphysik, Karlsruhe (Germany); Broniatowski, A. [CSNSM, Univ. Paris-Sud, CNRS/IN2P3, Universite Paris-Saclay, Orsay (France); Karlsruher Institut fuer Technologie, Institut fuer Experimentelle Kernphysik, Karlsruhe (Germany); Eitel, K.; Kozlov, V.; Siebenborn, B. [Karlsruher Institut fuer Technologie, Institut fuer Kernphysik, Karlsruhe (Germany); Foerster, N.; Heuermann, G.; Scorza, S. [Karlsruher Institut fuer Technologie, Institut fuer Experimentelle Kernphysik, Karlsruhe (Germany); Jin, Y. [Laboratoire de Photonique et de Nanostructures, CNRS, Route de Nozay, Marcoussis (France); Kefelian, C. [Univ Lyon, Universite Claude Bernard Lyon 1, CNRS/IN2P3, Institut de Physique Nucleaire de Lyon, Lyon (France); Karlsruher Institut fuer Technologie, Institut fuer Experimentelle Kernphysik, Karlsruhe (Germany); Kleifges, M.; Tcherniakhovski, D.; Weber, M. [Karlsruher Institut fuer Technologie, Institut fuer Prozessdatenverarbeitung und Elektronik, Karlsruhe (Germany); Kraus, H. [University of Oxford, Department of Physics, Oxford (United Kingdom); Kudryavtsev, V.A. [University of Sheffield, Department of Physics and Astronomy, Sheffield (United Kingdom); Pari, P. [CEA Saclay, DSM/IRAMIS, Gif-sur-Yvette (France); Piro, M.C. [CSNSM, Univ. Paris-Sud, CNRS/IN2P3, Universite Paris-Saclay, Orsay (France); Rensselaer Polytechnic Institute, Troy, NY (United States); Rozov, S.; Yakushev, E. [JINR, Laboratory of Nuclear Problems, Dubna, Moscow Region (Russian Federation); Schmidt, B. [Karlsruher Institut fuer Technologie, Institut fuer Kernphysik, Karlsruhe (Germany); Lawrence Berkeley National Laboratory, Berkeley, CA (United States)
2016-10-15
We report on a dark matter search for a Weakly Interacting Massive Particle (WIMP) in the mass range m{sub χ} element of [4, 30] GeV/c{sup 2} with the EDELWEISS-III experiment. A 2D profile likelihood analysis is performed on data from eight selected detectors with the lowest energy thresholds leading to a combined fiducial exposure of 496 kg-days. External backgrounds from γ- and β-radiation, recoils from {sup 206}Pb and neutrons as well as detector intrinsic backgrounds were modelled from data outside the region of interest and constrained in the analysis. The basic data selection and most of the background models are the same as those used in a previously published analysis based on boosted decision trees (BDT) [1]. For the likelihood approach applied in the analysis presented here, a larger signal efficiency and a subtraction of the expected background lead to a higher sensitivity, especially for the lowest WIMP masses probed. No statistically significant signal was found and upper limits on the spin-independent WIMP-nucleon scattering cross section can be set with a hypothesis test based on the profile likelihood test statistics. The 90 % C.L. exclusion limit set for WIMPs with m{sub χ} = 4 GeV/c{sup 2} is 1.6 x 10{sup -39} cm{sup 2}, which is an improvement of a factor of seven with respect to the BDT-based analysis. For WIMP masses above 15 GeV/c{sup 2} the exclusion limits found with both analyses are in good agreement. (orig.)
Exclusion limits on the WIMP-nucleon cross section from the Cryogenic Dark Matter Search
International Nuclear Information System (INIS)
Abrams, D.; Baudis, L.; Brink, P.L.; Cabrera, B.; Castle, J.P.; Chang, C.L.; Clarke, R.M.; Saab, T.; Akerib, D.S.; Bolozdynya, A.; Driscoll, D.; Kamat, S.; Perera, T.A.; Schnee, R.W.; Wang, G.; Armel-Funkhouser, M.S.; Golwala, S.R.; Hellmig, J.; Mandic, V.; Meunier, P.
2002-01-01
The Cryogenic Dark Matter Search (CDMS) employs low-temperature Ge and Si detectors to search for weakly interacting massive particles (WIMPs) via their elastic-scattering interactions with nuclei while discriminating against interactions of background particles. For recoil energies above 10 keV, events due to background photons are rejected with >99.9% efficiency, and surface events are rejected with >95% efficiency. The estimate of the background due to neutrons is based primarily on the observation of multiple-scatter events that should all be neutrons. Data selection is determined primarily by examining calibration data and vetoed events. Resulting efficiencies should be accurate to ∼10%. Results of CDMS data from 1998 and 1999 with a relaxed fiducial-volume cut (resulting in 15.8 kg days exposure on Ge) are consistent with an earlier analysis with a more restrictive fiducial-volume cut. Twenty-three WIMP candidate events are observed, but these events are consistent with a background from neutrons in all ways tested. Resulting limits on the spin-independent WIMP-nucleon elastic-scattering cross section exclude unexplored parameter space for WIMPs with masses between 10-70 GeV/c 2 . These limits border, but do not exclude, parameter space allowed by supersymmetry models and accelerator constraints. Results are compatible with some regions reported as allowed at 3σ by the annual-modulation measurement of the DAMA Collaboration. However, under the assumptions of standard WIMP interactions and a standard halo, the results are incompatible with the DAMA most likely value at >99.9% confidence level (C.L.), and are incompatible with the model-independent annual-modulation signal of DAMA at 99.99% C.L. in the asymptotic limit
Energy Technology Data Exchange (ETDEWEB)
Zakharov, Aleksandr F [Russian Federation State Scientific Center ' A.I. Alikhanov Institute for Theoretical and Experimental Physics' , Moscow (Russian Federation); Sazhin, Mikhail V [P.K. Shternberg State Astronomical Institute at the M.V. Lomonosov Moscow State University, Moscow (Russian Federation)
1998-10-31
The foundations of standard microlensing theory are discussed as applied to stars in the Galactic bulge, Magellanic Clouds or other nearby galaxies and gravitational microlenses assumed to lie in-between these stars and the terrestrial observer. In contrast to the review article by Gurevich et al. [48], microlensing by compact objects is mainly considered. Criteria for the identification of microlensing events are discussed as also are microlensing events not satisfying these criteria, such as non-symmetrical light curves and chromatic and polarization effects. The Large Magellanic Cloud (LMC) and Galactic bulge microlensing data of the MACHO group are discussed in detail and also the LMC data of EROS and the Galactic bulge data of OGLE are presented. A detailed comparison of theoretical predictions and observations is given. (reviews of topical problems)
International Nuclear Information System (INIS)
Zakharov, Aleksandr F; Sazhin, Mikhail V
1998-01-01
The foundations of standard microlensing theory are discussed as applied to stars in the Galactic bulge, Magellanic Clouds or other nearby galaxies and gravitational microlenses assumed to lie in-between these stars and the terrestrial observer. In contrast to the review article by Gurevich et al. [48], microlensing by compact objects is mainly considered. Criteria for the identification of microlensing events are discussed as also are microlensing events not satisfying these criteria, such as non-symmetrical light curves and chromatic and polarization effects. The Large Magellanic Cloud (LMC) and Galactic bulge microlensing data of the MACHO group are discussed in detail and also the LMC data of EROS and the Galactic bulge data of OGLE are presented. A detailed comparison of theoretical predictions and observations is given. (reviews of topical problems)
GENIUS and the Genius TF: A New Observatory for WIMP Dark Matter and Neutrinoless Double Beta Decay
Klapdor-Kleingrothaus, H. V.; Majorovits, B.
2001-01-01
The GENIUS proposal is described and some of it's physics potential is outlined. Also in the light of the contradictive results from the DAMA and CDMS experiments the Genius TF, a new experimental setup is proposed. The Genius TF could probe the DAMA evidence region using the WIMP nucleus recoil signal and WIMP annual modulation signature simultaneously. Besides that it can prove the long term feasibility of the detector technique to be implemented into the GENIUS setup and will in this sense...
Energy Technology Data Exchange (ETDEWEB)
Cao, Huajie [Princeton Univ., NJ (United States)
2014-11-01
Robust results of WIMP direct detection experiments depend on rm understandings of nuclear recoils in the detector media. This thesis documents the most comprehensive study to date on nuclear recoils in liquid argon - a strong candidate for the next generation multi-ton scale WIMP detectors. This study investigates both the energy partition from nuclear recoil energy to secondary modes (scintillation and ionization) and the pulse shape characteristics of scintillation from nuclear recoils.
WIMP dark matter candidates and searches—current status and future prospects
Roszkowski, Leszek; Sessolo, Enrico Maria; Trojanowski, Sebastian
2018-06-01
We review several current aspects of dark matter theory and experiment. We overview the present experimental status, which includes current bounds and recent claims and hints of a possible signal in a wide range of experiments: direct detection in underground laboratories, gamma-ray, cosmic ray, x-ray, neutrino telescopes, and the LHC. We briefly review several possible particle candidates for a weakly interactive massive particle (WIMP) and dark matter that have recently been considered in the literature. We pay particular attention to the lightest neutralino of supersymmetry as it remains the best motivated candidate for dark matter and also shows excellent detection prospects. Finally we briefly review some alternative scenarios that can considerably alter properties and prospects for the detection of dark matter obtained within the standard thermal WIMP paradigm.
WIMP dark matter candidates and searches-current status and future prospects.
Roszkowski, Leszek; Sessolo, Enrico Maria; Trojanowski, Sebastian
2018-06-01
We review several current aspects of dark matter theory and experiment. We overview the present experimental status, which includes current bounds and recent claims and hints of a possible signal in a wide range of experiments: direct detection in underground laboratories, gamma-ray, cosmic ray, x-ray, neutrino telescopes, and the LHC. We briefly review several possible particle candidates for a weakly interactive massive particle (WIMP) and dark matter that have recently been considered in the literature. We pay particular attention to the lightest neutralino of supersymmetry as it remains the best motivated candidate for dark matter and also shows excellent detection prospects. Finally we briefly review some alternative scenarios that can considerably alter properties and prospects for the detection of dark matter obtained within the standard thermal WIMP paradigm.
The Diurnal Variation of the Wimp Detection Event Rates in Directional Experiments
Vergados, J D
2009-01-01
The recent WMAP data have confirmed that exotic dark matter together with the vacuum energy (cosmological constant) dominate in the flat Universe. Modern particle theories naturally provide viable cold dark matter candidates with masses in the GeV-TeV region. Supersymmetry provides the lightest supersymmetric particle (LSP), theories in extra dimensions supply the lightest Kaluza-Klein particle (LKP) etc. The nature of dark matter can only be unraveled only by its direct detection in the laboratory. All such candidates will be called WIMPs (Weakly Interacting Massive Particles). In any case the direct dark matter search, which amounts to detecting the recoiling nucleus, following its collision with WIMP, is central to particle physics and cosmology. In this work we briefly review the theoretical elements relevant to the direct dark matter detection experiments, paying particular attention to directional experiments. i.e experiments in which, not only the energy but the direction of the recoiling nucleus is ob...
Capturing Thoughts, Capturing Minds?
DEFF Research Database (Denmark)
Nielsen, Janni
2004-01-01
Think Aloud is cost effective, promises access to the user's mind and is the applied usability technique. But 'keep talking' is difficult, besides, the multimodal interface is visual not verbal. Eye-tracking seems to get around the verbalisation problem. It captures the visual focus of attention...
Halo-independent analysis of direct detection data for light WIMPs
International Nuclear Information System (INIS)
Nobile, Eugenio Del; Gelmini, Graciela B.; Huh, Ji-Haeng; Gondolo, Paolo
2013-01-01
We present a halo-independent analysis of direct detection data on ''light WIMPs'', i.e. weakly interacting massive particles with mass close to or below 10 GeV/c 2 . We include new results from silicon CDMS detectors (bounds and excess events), the latest CoGeNT acceptances, and recent measurements of low sodium quenching factors in NaI crystals. We focus on light WIMPs with spin-independent isospin-conserving and isospin-violating interactions with nucleons. For these dark matter candidates we find that a low quenching factor would make the DAMA modulation incompatible with a reasonable escape velocity for the dark matter halo, and that the tension among experimental data tightens in both the isospin-conserving and isospin-violating scenarios. We also find that a new although milder tension appears between the CoGeNT and DAMA annual modulations on one side and the silicon excess events on the other, in that it seems difficult to interpret them as the modulated and unmodulated aspects of the same WIMP dark matter signal
WIMP-nucleon cross-section results from the second science run of ZEPLIN-III
Energy Technology Data Exchange (ETDEWEB)
Akimov, D.Yu. [Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Araujo, H.M., E-mail: h.araujo@imperial.ac.uk [High Energy Physics Group, Blackett Laboratory, Imperial College London (United Kingdom); Barnes, E.J. [School of Physics and Astronomy, SUPA University of Edinburgh (United Kingdom); Belov, V.A. [Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Bewick, A. [High Energy Physics Group, Blackett Laboratory, Imperial College London (United Kingdom); Burenkov, A.A. [Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Chepel, V. [LIP-Coimbra and Department of Physics of the University of Coimbra (Portugal); Currie, A. [High Energy Physics Group, Blackett Laboratory, Imperial College London (United Kingdom); DeViveiros, L. [LIP-Coimbra and Department of Physics of the University of Coimbra (Portugal); Edwards, B. [Particle Physics Department, STFC Rutherford Appleton Laboratory, Chilton (United Kingdom); Ghag, C.; Hollingsworth, A. [School of Physics and Astronomy, SUPA University of Edinburgh (United Kingdom); Horn, M.; Jones, W.G. [High Energy Physics Group, Blackett Laboratory, Imperial College London (United Kingdom); Kalmus, G.E. [Particle Physics Department, STFC Rutherford Appleton Laboratory, Chilton (United Kingdom); Kobyakin, A.S.; Kovalenko, A.G. [Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Lebedenko, V.N. [High Energy Physics Group, Blackett Laboratory, Imperial College London (United Kingdom); Lindote, A. [LIP-Coimbra and Department of Physics of the University of Coimbra (Portugal); Particle Physics Department, STFC Rutherford Appleton Laboratory, Chilton (United Kingdom); Lopes, M.I. [LIP-Coimbra and Department of Physics of the University of Coimbra (Portugal); and others
2012-03-13
We report experimental upper limits on WIMP-nucleon elastic scattering cross sections from the second science run of ZEPLIN-III at the Boulby Underground Laboratory. A raw fiducial exposure of 1344 kg Dot-Operator days was accrued over 319 days of continuous operation between June 2010 and May 2011. A total of eight events was observed in the signal acceptance region in the nuclear recoil energy range 7-29 keV, which is compatible with background expectations. This allows the exclusion of the scalar cross-section above 4.8 Multiplication-Sign 10{sup -8} pb near 50 GeV/c{sup 2} WIMP mass with 90% confidence. Combined with data from the first run, this result improves to 3.9 Multiplication-Sign 10{sup -8} pb. The corresponding WIMP-neutron spin-dependent cross-section limit is 8.0 Multiplication-Sign 10{sup -3} pb. The ZEPLIN programme reaches thus its conclusion at Boulby, having deployed and exploited successfully three liquid xenon experiments of increasing reach.
WIMP-nucleon cross-section results from the second science run of ZEPLIN-III
International Nuclear Information System (INIS)
Akimov, D.Yu.; Araújo, H.M.; Barnes, E.J.; Belov, V.A.; Bewick, A.; Burenkov, A.A.; Chepel, V.; Currie, A.; DeViveiros, L.; Edwards, B.; Ghag, C.; Hollingsworth, A.; Horn, M.; Jones, W.G.; Kalmus, G.E.; Kobyakin, A.S.; Kovalenko, A.G.; Lebedenko, V.N.; Lindote, A.; Lopes, M.I.
2012-01-01
We report experimental upper limits on WIMP-nucleon elastic scattering cross sections from the second science run of ZEPLIN-III at the Boulby Underground Laboratory. A raw fiducial exposure of 1344 kg⋅days was accrued over 319 days of continuous operation between June 2010 and May 2011. A total of eight events was observed in the signal acceptance region in the nuclear recoil energy range 7-29 keV, which is compatible with background expectations. This allows the exclusion of the scalar cross-section above 4.8×10 -8 pb near 50 GeV/c 2 WIMP mass with 90% confidence. Combined with data from the first run, this result improves to 3.9×10 -8 pb. The corresponding WIMP-neutron spin-dependent cross-section limit is 8.0×10 -3 pb. The ZEPLIN programme reaches thus its conclusion at Boulby, having deployed and exploited successfully three liquid xenon experiments of increasing reach.
Energy Technology Data Exchange (ETDEWEB)
Golwala, Sunil Ramanlal [UC, Berkeley
2000-01-01
Extensive evidence indicates that a large fraction of the matter in the universe is nonluminous, nonbaryonic, and “cold” — nonrelativistic at the time matter began to dominate the energy density of the universe. Weakly Interacting Massive Particles (WIMPs) are an excellent candidate for nonbaryonic, cold dark matter. Minimal supersymmetry provides a natural WIMP candidate in the form of the lightest superpartner, with a typical mass Mδ ~ 100 GeV c-2 . WIMPs are expected to have collapsed into a roughly isothermal, spherical halo within which the visible portion of our galaxy resides. They would scatter off nuclei via the weak interaction, potentially allowingtheir direct detection. The Cryogenic Dark Matter Search (CDMS) employs Ge and Si detectors to search for WIMPs via their elastic-scatteringinteractions with nuclei while discriminatingagainst interactions of background particles. The former yield nuclear recoils while the latter produce electron recoils. The ionization yield (the ratio of ionization production to recoil energy in a semiconductor) of a particle interaction differs greatly for nuclear and electron recoils. CDMS detectors measure phonon and electron-hole-pair production to determine recoil energy and ionization yield for each event and thereby discriminate nuclear recoils from electron recoils. This dissertation reports new limits on the spin-independent WIMP-nucleon elastic-scattering cross section that exclude unexplored parameter space above 10 GeV c-2 WIMP mass and, at > 75% CL, the entire 3σ allowed region for the WIMP signal reported by the DAMA experiment. The experimental apparatus, detector performance, and data analysis are fully described.
A Search for WIMP Dark Matter Using the First Five-Tower Run of the Cryogenic Dark Matter Search
Energy Technology Data Exchange (ETDEWEB)
Filippini, Jeffrey Peter [UC, Berkeley
2008-01-01
In recent decades astronomers and physicists have accumulated a vast array of evidence that the bulk of the universe's matter is in some non-baryonic form that remains undetected by electromagnetic means. This \\dark matter" resides in diuse halos surrounding galaxies and other cosmic structures. Particle theorists have proposed a wide array of candidates for its nature. One particularly promising class of candidates are Weakly Interacting Massive Particles (WIMPs): quanta with masses of order 100 GeV/c2 and interactions characteristic of the weak nuclear force. The Cryogenic Dark Matter Search (CDMS) experiment seeks to directly detect the rare elastic interactions of galactic WIMPs with terrestrial nuclei. To this end, CDMS operates an array of crystalline Ge and Si particle detectors in Soudan Underground Laboratory in northern Minnesota. These crystals are operated at millikelvin temperatures and instrumented to measure the ionization and athermal phonons generated by each particle interaction. This combination provides a powerful two-fold discrimination against the interactions of particles generated by radioactive decay and cosmogenic showers. This dissertation describes the commissioning, analysis, and results of the rst WIMP-search data runs of the CDMS experiment with its full complement of 5 \\Towers" of detectors. These data represent a substantial increase in target mass and exposure over previous CDMS results. The results of this work place the most stringent limits yet set upon the WIMP-nucleon spin-independent cross section for WIMP masses above 44 GeV/c2 , as well as setting competitive limits on spin-dependent WIMP-nucleon interactions. This work also outlines the larger context of this and other probes of the WIMP theory of dark matter, as well as some current development eorts toward a larger cryogenic experiment.
Prevention of gravitational collapse
International Nuclear Information System (INIS)
Moffat, J.W.; Taylor, J.G.
1981-01-01
We apply a new theory of gravitation to the question of gravitational collapse to show that collapse is prevented in this theory under very reasonable conditions. This result also extends to prevent ultimate collapse of the Universe. (orig.)
Underdevelopment’s gravitation
Directory of Open Access Journals (Sweden)
Marin Dinu
2013-09-01
Full Text Available The energy necessary to escape the gravitational pull of underdevelopment and to enter an evolutional trajectory dependent on the gravitational pull of development is unintelligible in economic terms.
Ridgely, Charles T.
2011-01-01
When two gravitating bodies reside in a material medium, Newton's law of universal gravitation must be modified to account for the presence of the medium. A modified expression of Newton's law is known in the literature, but lacks a clear connection with existing gravitational theory. Newton's law in the presence of a homogeneous material medium…
Detection of gravitational radiation
Energy Technology Data Exchange (ETDEWEB)
Holten, J.W. van [ed.
1994-12-31
In this report the main contributions presented at the named symposium are collected. These concern astrophysical sources of gravitational radiation, ultracryogenic gravitational wave experiments, read out and data analysis of gravitational wave antennas, cryogenic aspects of large mass cooling to mK temperatures, and metallurgical and engineering aspects of large Cu structure manufacturing. (HSI).
Detection of gravitational radiation
International Nuclear Information System (INIS)
Holten, J.W. van
1994-01-01
In this report the main contributions presented at the named symposium are collected. These concern astrophysical sources of gravitational radiation, ultracryogenic gravitational wave experiments, read out and data analysis of gravitational wave antennas, cryogenic aspects of large mass cooling to mK temperatures, and metallurgical and engineering aspects of large Cu structure manufacturing. (HSI)
Relativity theory and gravitation
International Nuclear Information System (INIS)
Bondi, H.
1986-01-01
The paper on relativity theory and gravitation is presented as a preface to the first of the articles submitted to the Journal on general relativity. Newtonian gravitation and and observation, relativity, and the sources of the gravitational field, are all discussed. (UK)
Search for WIMP dark matter produced in association with a Z boson with the ATLAS detector
Basalaev, Artem; The ATLAS collaboration
2016-01-01
The search for weakly interacting dark matter particle (WIMP) candidates produced in association with a Z boson is presented. Events with large missing transverse momentum and consistent with the decay of a Z boson into oppositely charged electron or muon pairs were selected in analysis. Background estimates and corresponding systematic uncertainties are shown. The limits on the mass scale of the contact interaction as a function of the dark matter particle mass and the limits on the coupling and scalar particle mediator mass for 8 TeV proton-proton collisions data are presented. Prospects for analysis using 13 TeV proton-proton collisions data are discussed.
Further results on the WIMP annual modulation signature by DAMA/NaI
International Nuclear Information System (INIS)
Bernabei, R.; Belli, P.; Cappella, F.
2005-01-01
The ≅ 100 kg highly radiopure NaI(Tl) set-up of the DAMA project (DAMA/NaI) has investigated the model- independent WIMP annual modulation signature over seven annual cycles for a total exposure of 107731 kg x day, obtaining a model-independent evidence for the presence of a dark matter particle component in the galactic halo at 6.3 σ C.L.. Some of the many possible corollary model-dependent quests for the candidate particle have been investigated with the total exposure as well
CPN/Tools: A Post-WIMP Interface for Editing and Simulating Coloured Petri Nets
DEFF Research Database (Denmark)
Andersen, Peter; Beaudouin-Lafon, Michel; Mackay, Wendy E.
2001-01-01
traditional ideas about user interfaces, getting rid of pull-down menus, scrollbars, and even selection, while providing the same or greater functionality. It also uses the new and much faster CPN simulator and features incremental syntax checking of the nets. CPN/Tools requires an OpenGL graphics accelerator......CPN/Tools is a major redesign of the popular Design/CPN tool from the University of Aarhus CPN group. The new interface is based on advanced, post-WIMP interaction techniques, including bi-manual interaction, toolglasses and marking menus and a new metaphor for managing the workspace. It challenges...
The use of twin-screen-based WIMPS in spacecraft control
Klim, R. D.
1990-10-01
The ergonomic problems of designing a sophisticated Windows Icons Mouse Pop-up (WIMP) based twin screen workstation are outlined. These same problems will be encountered by future spacecraft controllers. The design of a modern, advanced workstation for use on a distributed multicontrol center in a multisatellite control system is outlined. The system uses access control mechanisms to ensure that only authorized personnel can undertake certain operations on the workstation. Rules governing the use of windowing features, screen attributes, icons, keyboard and mouse in spacecraft control are discussed.
Development of low-background CsI(Tl) crystals for WIMP search
International Nuclear Information System (INIS)
Lee, H.S.; Bhang, H.; Hahn, I.S.; Hwang, M.J.; Kim, H.J.; Kim, S.C.; Kim, S.K.; Kim, S.Y.; Kim, T.Y.; Kim, Y.D.; Kwak, J.W.; Kwon, Y.J.; Lee, J.; Lee, J.I.; Lee, M.J.; Li, J.; Myung, S.S.; Park, H.; Zhu, J.J.
2007-01-01
Search for weakly interacting massive particles (WIMPs) is being carried out at the underground laboratory, Yangyang, Korea. Characteristics and internal background of CsI(Tl) crystal have been investigated. In our extensive R and D, we reduced internal background in the CsI(Tl) crystal. With the latest, we have achieved 5.50+/-0.10cpd (counts/keV/kg/day) at 10-15keV low-energy region. Further reduction of internal background is foreseen with the CsI powder lately produced
Theory of gravitational interactions
Gasperini, Maurizio
2017-01-01
This is the second edition of a well-received book that is a modern, self-contained introduction to the theory of gravitational interactions. The new edition includes more details on gravitational waves of cosmological origin, the so-called brane world scenario, and gravitational time-delay effects. The first part of the book follows the traditional presentation of general relativity as a geometric theory of the macroscopic gravitational field, while the second, more advanced part discusses the deep analogies (and differences) between a geometric theory of gravity and the “gauge” theories of the other fundamental interactions. This fills a gap within the traditional approach to general relativity which usually leaves students puzzled about the role of gravity. The required notions of differential geometry are reduced to the minimum, allowing room for aspects of gravitational physics of current phenomenological and theoretical interest, such as the properties of gravitational waves, the gravitational inter...
Dark Kinetic Heating of Neutron Stars and an Infrared Window on WIMPs, SIMPs, and Pure Higgsinos.
Baryakhtar, Masha; Bramante, Joseph; Li, Shirley Weishi; Linden, Tim; Raj, Nirmal
2017-09-29
We identify a largely model-independent signature of dark matter (DM) interactions with nucleons and electrons. DM in the local galactic halo, gravitationally accelerated to over half the speed of light, scatters against and deposits kinetic energy into neutron stars, heating them to infrared blackbody temperatures. The resulting radiation could potentially be detected by the James Webb Space Telescope, the Thirty Meter Telescope, or the European Extremely Large Telescope. This mechanism also produces optical emission from neutron stars in the galactic bulge, and x-ray emission near the galactic center because dark matter is denser in these regions. For GeV-PeV mass dark matter, dark kinetic heating would initially unmask any spin-independent or spin-dependent dark matter-nucleon cross sections exceeding 2×10^{-45} cm^{2}, with improved sensitivity after more telescope exposure. For lighter-than-GeV dark matter, cross-section sensitivity scales inversely with dark matter mass because of Pauli blocking; for heavier-than-PeV dark matter, it scales linearly with mass as a result of needing multiple scatters for capture. Future observations of dark sector-warmed neutron stars could determine whether dark matter annihilates in or only kinetically heats neutron stars. Because inelastic interstate transitions of up to a few GeV would occur in relativistic scattering against nucleons, elusive inelastic dark matter like pure Higgsinos can also be discovered.
Klos, P.; Menéndez, J.; Gazit, D.; Schwenk, A.
2013-01-01
We perform state-of-the-art large-scale shell-model calculations of the structure factors for elastic spin-dependent WIMP scattering off 129,131Xe, 127I, 73Ge, 19F, 23Na, 27Al, and 29Si. This comprehensive survey covers the non-zero-spin nuclei relevant to direct dark matter detection. We include a pedagogical presentation of the formalism necessary to describe elastic and inelastic WIMP-nucleus scattering. The valence spaces and nuclear interactions employed have been previously used in nucl...
WIMP search in the mono-photon channel at the international linear collider
Energy Technology Data Exchange (ETDEWEB)
Habermehl, Moritz [Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg (Germany); Universitaet Hamburg, Institut fuer Experimentalphysik, Luruper Chaussee 149, 22761 Hamburg (Germany); List, Jenny [Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg (Germany)
2016-07-01
The International Linear Collider (ILC) is a planned electron-positron collider with √(s) tunable from 250 to 500 GeV, with a possible upgrade to 1 TeV. Besides precision measurements of the Higgs boson its physics goals comprise searches for physics beyond the Standard Model, e.g. searches for Dark Matter. This collider search assumes the production of WIMPs in pairs. They are not visible in the detector but the energy carried away can be observed via an additional (''tag'') particle. Photon emission from the initial state leads to the almost model independent signature: e{sup +}e{sup -} → χχγ. As this analysis tests couplings between WIMPs and leptons it is complementary to analogues searches at the LHC. A precise study is facilitated by the clean environment of lepton colliders with small systematics of electroweak backgrounds. While the conceptual feasibility and the sensitivity reach of the ILC have been shown in the past, this talk focusses on the consequences for the detector design. The requirements for the central detector as well as for the instrumentation of the forward region are discussed in the context of the ILD detector concept.
Constraints on light WIMP candidates from the isotropic diffuse gamma-ray emission
International Nuclear Information System (INIS)
Arina, Chiara; Tytgat, Michel H.G.
2011-01-01
Motivated by the measurements reported by direct detection experiments, most notably DAMA, CDMS-II, CoGeNT and Xenon10/100, we study further the constraints that might be set on some light dark matter candidates, M DM ∼ few GeV, using the Fermi-LAT data on the isotropic gamma-ray diffuse emission. In particular, we consider a Dirac fermion singlet interacting through a new Z' gauge boson, and a scalar singlet S interacting through the Higgs portal. Both candidates are WIMP (Weakly Interacting Massive Particles), i.e. they have an annihilation cross-section in the pbarn range. Also they may both have a spin-independent elastic cross section on nucleons in the range required by direct detection experiments. Although being generic WIMP candidates, because they have different interactions with Standard Model particles, their phenomenology regarding the isotropic diffuse gamma-ray emission is quite distinct. In the case of the scalar singlet, the one-to-one correspondence between its annihilation cross-section and its spin-independent elastic scattering cross-section permits to express the constraints from the Fermi-LAT data in the direct detection exclusion plot, σ n 0 −M DM . Depending on the astrophysics, we argue that it is possible to exclude the singlet scalar dark matter candidate at 95% confidence level. The constraints on the Dirac singlet interacting through a Z' are comparatively weaker
Asymmetric WIMP Dark Matter in the presence of DM/anti-DM oscillations
International Nuclear Information System (INIS)
Zaharijas, G.
2014-01-01
The general class of 'Asymmetric Dark Matter (DM)' scenarios assumes the existence of a primordial particle/anti-particle asymmetry in the dark matter sector related to the asymmetry in the baryonic one, as a way to achieve the observed similarity between the baryonic and dark matter energy densities today. Focusing on this framework we study the effect of oscillations between dark matter and its anti-particle on the re-equilibration of the initial asymmetry. We calculate the evolution of the dark matter relic abundance and show how oscillations re-open the parameter space of asymmetric dark matter models, in particular in the direction of allowing large (WIMP-scale) DM masses. We found in particular that a typical WIMP with a mass at the EW scale (about 1 TeV) having a primordial asymmetry of the same order as the baryon asymmetry, naturally gets the correct relic abundance if the δm mass term is in the ∼ meV range. This turns out to be a natural value for fermionic DM arising from the higher dimensional operator H 2 DM 2 /Λ where H is the Higgs field and Λ ∼ M Pl . Finally, we constrain the parameter space in this framework by applying up-to-date bounds from indirect detection signals on annihilating DM
Consequences of DM/antiDM Oscillations for Asymmetric WIMP Dark Matter
Cirelli, Marco; Servant, Geraldine; Zaharijas, Gabrijela
2012-01-01
Assuming the existence of a primordial asymmetry in the dark sector, a scenario usually dubbed Asymmetric Dark Matter (aDM), we study the effect of oscillations between dark matter and its antiparticle on the re-equilibration of the initial asymmetry before freeze-out, which enable efficient annihilations to recouple. We calculate the evolution of the DM relic abundance and show how oscillations re-open the parameter space of aDM models, in particular in the direction of allowing large (WIMP-scale) DM masses. A typical wimp with a mass at the EW scale (\\sim 100 GeV - 1 TeV) presenting a primordial asymmetry of the same order as the baryon asymmetry naturally gets the correct relic abundance if the DM-number-violating Delta(DM) = 2 mass term is in the \\sim meV range. The re-establishment of annihilations implies that constraints from the accumulation of aDM in astrophysical bodies are evaded. On the other hand, the ordinary bounds from BBN, CMB and indirect detection signals on annihilating DM have to be consi...
Gravitational waves from inflation
International Nuclear Information System (INIS)
Guzzetti, M.C.; Bartolo, N.; Liguori, M.; Matarrese, S.
2016-01-01
The production of a stochastic background of gravitational waves is a fundamental prediction of any cosmological inflationary model. The features of such a signal encode unique information about the physics of the Early Universe and beyond, thus representing an exciting, powerful window on the origin and evolution of the Universe. We review the main mechanisms of gravitational-wave production, ranging from quantum fluctuations of the gravitational field to other mechanisms that can take place during or after inflation. These include e.g. gravitational waves generated as a consequence of extra particle production during inflation, or during the (p)reheating phase. Gravitational waves produced in inflation scenarios based on modified gravity theories and second-order gravitational waves are also considered. For each analyzed case, the expected power spectrum is given. We discuss the discriminating power among different models, associated with the validity/violation of the standard consistency relation between tensor-to-scalar ratio r and tensor spectral index ηT. In light of the prospects for (directly/indirectly) detecting primordial gravitational waves, we give the expected present-day gravitational radiation spectral energy-density, highlighting the main characteristics imprinted by the cosmic thermal history, and we outline the signatures left by gravitational waves on the Cosmic Microwave Background and some imprints in the Large-Scale Structure of the Universe. Finally, current bounds and prospects of detection for inflationary gravitational waves are summarized.
Dark Matter searches using gravitational wave bar detectors: quark nuggets and newtorites
Bassan, M; D'Antonio, S.; Fafone, V.; Giordano, G.; Marini, A.; Minenkov, Y.; Modena, I.; Pallottino, G.V.; Pizzella, G.; Rocchi, A.; Ronga, F.; Visco, M.
2016-01-01
Many experiments have searched for supersymmetric WIMP dark matter, with null results. This may suggest to look for more exotic possibilities, for example compact ultra-dense quark nuggets, widely discussed in literature with several different names. Nuclearites are an example of candidate compact objects with atomic size cross section. After a short discussion on nuclearites, the result of a nuclearite search with the gravitational wave bar detectors Nautilus and Explorer is reported. The geometrical acceptance of the bar detectors is 19.5 $\\rm m^2$ sr, that is smaller than that of other detectors used for similar searches. However, the detection mechanism is completely different and is more straightforward than in other detectors. The experimental limits we obtain are of interest because, for nuclearites of mass less than $10^{-5}$ g, we find a flux smaller than that one predicted considering nuclearites as dark matter candidates. Particles with gravitational only interactions (newtorites) are another examp...
Gravitational Instabilities in Circumstellar Disks
Kratter, Kaitlin; Lodato, Giuseppe
2016-09-01
Star and planet formation are the complex outcomes of gravitational collapse and angular momentum transport mediated by protostellar and protoplanetary disks. In this review, we focus on the role of gravitational instability in this process. We begin with a brief overview of the observational evidence for massive disks that might be subject to gravitational instability and then highlight the diverse ways in which the instability manifests itself in protostellar and protoplanetary disks: the generation of spiral arms, small-scale turbulence-like density fluctuations, and fragmentation of the disk itself. We present the analytic theory that describes the linear growth phase of the instability supplemented with a survey of numerical simulations that aim to capture the nonlinear evolution. We emphasize the role of thermodynamics and large-scale infall in controlling the outcome of the instability. Despite apparent controversies in the literature, we show a remarkable level of agreement between analytic predictions and numerical results. In the next part of our review, we focus on the astrophysical consequences of the instability. We show that the disks most likely to be gravitationally unstable are young and relatively massive compared with their host star, Md/M*≥0.1. They will develop quasi-stable spiral arms that process infall from the background cloud. Although instability is less likely at later times, once infall becomes less important, the manifestations of the instability are more varied. In this regime, the disk thermodynamics, often regulated by stellar irradiation, dictates the development and evolution of the instability. In some cases the instability may lead to fragmentation into bound companions. These companions are more likely to be brown dwarfs or stars than planetary mass objects. Finally, we highlight open questions related to the development of a turbulent cascade in thin disks and the role of mode-mode coupling in setting the maximum angular
Anisotropic gravitational instability
International Nuclear Information System (INIS)
Polyachenko, V.L.; Fridman, A.M.
1988-01-01
Exact solutions of stability problems are obtained for two anisotropic gravitational systems of different geometries - a layer of finite thickness at rest and a rotating cylinder of finite radius. It is shown that the anisotropic gravitational instability which develops in both cases is of Jeans type. However, in contrast to the classical aperiodic Jeans instability, this instability is oscillatory. The physics of the anisotropic gravitational instability is investigated. It is shown that in a gravitating layer this instability is due, in particular, to excitation of previously unknown interchange-Jeans modes. In the cylinder, the oscillatory Jeans instability is associated with excitation of a rotational branch, this also being responsible for the beam gravitational instability. This is the reason why this instability and the anisotropic gravitational instability have so much in common
CERN. Geneva HR-RFA
2006-01-01
We will present a brief introduction to the physics of gravitational waves and their properties. We will review potential astrophysical sources of gravitational waves, and the physics and astrophysics that can be learned from their study. We will survey the techniques and technologies for detecting gravitational waves for the first time, including bar detectors and broadband interferometers, and give a brief status report on the international search effort.
CERN. Geneva
2006-01-01
Gravitational wave astronomy is expected to become an observational field within the next decade. First direct detection of gravitational waves is possible with existing terrestrial-based detectors, and highly probable with proposed upgrades. In this three-part lecture series, we give an overview of the field, including material on gravitional wave sources, detection methods, some details of interferometric detectors, data analysis methods, and current results from observational data-taking runs of the LIGO and GEO projects.
International Nuclear Information System (INIS)
Ridgely, Charles T
2011-01-01
When two gravitating bodies reside in a material medium, Newton's law of universal gravitation must be modified to account for the presence of the medium. A modified expression of Newton's law is known in the literature, but lacks a clear connection with existing gravitational theory. Newton's law in the presence of a homogeneous material medium is herein derived on the basis of classical, Newtonian gravitational theory and by a general relativistic use of Archimedes' principle. It is envisioned that the techniques presented herein will be most useful to graduate students and those undergraduate students having prior experience with vector analysis and potential theory.
Hoffmann, William F
1964-01-01
Remarks on the observational basis of general relativity ; Riemannian geometry ; gravitation as geometry ; gravitational waves ; Mach's principle and experiments on mass anisotropy ; the many faces of Mach ; the significance for the solar system of time-varying gravitation ; relativity principles and the role of coordinates in physics ; the superdense star and the critical nucleon number ; gravitation and light ; possible effects on the solar system of φ waves if they exist ; the Lyttleton-Bondi universe and charge equality ; quantization of general relativity ; Mach's principle as boundary condition for Einstein's equations.
A Bio-Inspired Model-Based Approach for Context-Aware Post-WIMP Tele-Rehabilitation
Directory of Open Access Journals (Sweden)
Víctor López-Jaquero
2016-10-01
Full Text Available Tele-rehabilitation is one of the main domains where Information and Communication Technologies (ICT have been proven useful to move healthcare from care centers to patients’ home. Moreover, patients, especially those carrying out a physical therapy, cannot use a traditional Window, Icon, Menu, Pointer (WIMP system, but they need to interact in a natural way, that is, there is a need to move from WIMP systems to Post-WIMP ones. Moreover, tele-rehabilitation systems should be developed following the context-aware approach, so that they are able to adapt to the patients’ context to provide them with usable and effective therapies. In this work a model-based approach is presented to assist stakeholders in the development of context-aware Post-WIMP tele-rehabilitation systems. It entails three different models: (i a task model for designing the rehabilitation tasks; (ii a context model to facilitate the adaptation of these tasks to the context; and (iii a bio-inspired presentation model to specify thoroughly how such tasks should be performed by the patients. Our proposal overcomes one of the limitations of the model-based approach for the development of context-aware systems supporting the specification of non-functional requirements. Finally, a case study is used to illustrate how this proposal can be put into practice to design a real world rehabilitation task.
TREX-DM: a low-background Micromegas-based TPC for low-mass WIMP detection
Energy Technology Data Exchange (ETDEWEB)
Iguaz, F.J.; Garza, J.G.; Castel, J.F.; Cebrian, S.; Dafni, T.; Garcia, J.A.; Irastorza, I.G.; Lagraba, A.; Luzon, G.; Peiro, A. [Universidad de Zaragoza, Grupo de Fisica Nuclear y Astroparticulas, Zaragoza (Spain); Aznar, F. [Universidad de Zaragoza, Grupo de Fisica Nuclear y Astroparticulas, Zaragoza (Spain); Universidad de Zaragoza, Centro Universitario de la Defensa, Zaragoza (Spain)
2016-10-15
If Dark Matter is made of Weakly Interacting Massive Particles (WIMPs) with masses below ∝20 GeV, the corresponding nuclear recoils in mainstream WIMP experiments are of energies too close, or below, the experimental threshold. Gas Time Projection Chambers (TPCs) can be operated with a variety of target elements, offer good tracking capabilities and, on account of the amplification in gas, very low thresholds are achievable. Recent advances in electronics and in novel radiopure TPC readouts, especially micro-mesh gas structure (Micromegas), are improving the scalability and low-background prospects of gaseous TPCs. Here we present TREX-DM, a prototype to test the concept of a Micromegas-based TPC to search for low-mass WIMPs. The detector is designed to host an active mass of ∝0.300 kg of Ar at 10 bar, or alternatively ∝0.160 kg of Ne at 10 bar, with an energy threshold below 0.4 keVee, and is fully built with radiopure materials. We will describe the detector in detail, the results from the commissioning phase on surface, as well as a preliminary background model. The anticipated sensitivity of this technique may go beyond current experimental limits for WIMPs of masses of 2-8 GeV. (orig.)
Gravitational effects in field gravitation theory
International Nuclear Information System (INIS)
Denisov, V.I.; Logunov, A.A.; Mestvirishvili, M.A.; Vlasov, A.A.
1979-01-01
The possibilities to describe various gravitation effects of field gravitation theory (FGT) are considered. Past-Newtonian approximation of the FGT has been constructed and on the basis of this approximation it has been shown that the field theory allows one to describe the whole set of experimental facts. The comparison of post-Newtonian parameters in FGT with those in the Einstein's theory makes it clear that these two; theories are undistinguishable from the viewpoint of any experiments, realized with post-Newtonian accuracy. Gravitational field of an island type source with spherically symmetrical distribution of matter and unstationary homogeneous model of Universe, which allows to describe the effect of cosmological red shift, are considered
R. Vlokh; M. Kostyrko
2006-01-01
Nonlinear effect of the gravitation field of spherically symmetric mass on the gravitational coefficient G has been analysed. In frame of the approaches of parametric optics and gravitation nonlinearity we have shown that the gravitation field of spherically symmetric mass can lead to changes in the gravitational coefficient G.
Relativistic gravitation theory
International Nuclear Information System (INIS)
Logunov, A.A.; Mestvirishvili, M.A.
1984-01-01
On the basis of the special relativity and geometrization principle a relativistic gravitation theory (RGT) is unambiguously constructed with the help of a notion of a gravitational field as a physical field in Faraday-Maxwell spirit, which posesses energy momentum and spins 2 and 0. The source of gravitation field is a total conserved energy-momentum tensor for matter and for gravitation field in Minkowski space. In the RGT conservation laws for the energy momentum and angular momentum of matter and gravitational field hold rigorously. The theory explains the whole set of gravitation experiments. Here, due to the geometrization principle the Riemannian space is of a field origin since this space arises effectively as a result of the gravitation field origin since this space arises effectively as a result of the gravitation field action on the matter. The RGT astonishing prediction is that the Universe is not closed but ''flat''. It means that in the Universe there should exist a ''missing'' mass in some form of matter
Those Elusive Gravitational Waves
MOSAIC, 1976
1976-01-01
The presence of gravitational waves was predicted by Einstein in his theory of General Relativity. Since then, scientists have been attempting to develop a detector sensitive enough to measure these cosmic signals. Once the presence of gravitational waves is confirmed, scientists can directly study star interiors, galaxy cores, or quasars. (MA)
Gravitationally coupled electroweak monopole
Energy Technology Data Exchange (ETDEWEB)
Cho, Y.M., E-mail: ymcho7@konkuk.ac.kr [Administration Building 310-4, Konkuk University, Seoul 143-701 (Korea, Republic of); School of Physics and Astronomy, Seoul National University, Seoul 151-742 (Korea, Republic of); Kimm, Kyoungtae [Faculty of Liberal Education, Seoul National University, Seoul 151-747 (Korea, Republic of); Yoon, J.H. [Department of Physics, College of Natural Sciences, Konkuk University, Seoul 143-701 (Korea, Republic of)
2016-10-10
We present a family of gravitationally coupled electroweak monopole solutions in Einstein–Weinberg–Salam theory. Our result confirms the existence of globally regular gravitating electroweak monopole which changes to the magnetically charged black hole as the Higgs vacuum value approaches to the Planck scale. Moreover, our solutions could provide a more accurate description of the monopole stars and magnetically charged black holes.
Search for WIMP dark matter produced in association with a Z boson with the ATLAS detector
AUTHOR|(INSPIRE)INSPIRE-00399337; The ATLAS collaboration
2016-01-01
The search for weakly interacting dark matter particle (WIMP) candidates produced in association with a Z boson with the ATLAS detector at the LHC is presented. Events with large missing transverse momentum and consistent with the decay of a Z boson into oppositely charged electron or muon pairs were selected in analysis. Background estimates and corresponding systematic uncertainties are shown. The limits on the mass scale of the contact interaction as a function of the dark matter particle mass and the limits on the coupling and scalar particle mediator mass for 8 TeV proton-proton collisions data are presented. Prospects for analysis using 13 TeV proton-proton collisions data are discussed.
Complementarity of WIMP Sensitivity with direct SUSY, Monojet and Dark Matter Searches in the MSSM
Arbey, Alexandre; Mahmoudi, Farvah
2014-01-01
This letter presents new results on the combined sensitivity of the LHC and underground dark matter search experiments to the lightest neutralino as WIMP candidate in the minimal Supersymmetric extension of the Standard Model. We show that monojet searches significantly extend the sensitivity to the neutralino mass in scenarios where scalar quarks are nearly degenerate in mass with it. The inclusion of the latest bound by the LUX experiment on the neutralino-nucleon spin-independent scattering cross section expands this sensitivity further, highlighting the remarkable complementarity of jets/$\\ell$s+MET and monojet at LHC and dark matter searches in probing models of new physics with a dark matter candidate. The qualitative results of our study remain valid after accounting for theoretical uncertainties.
A gravitational entropy proposal
International Nuclear Information System (INIS)
Clifton, Timothy; Tavakol, Reza; Ellis, George F R
2013-01-01
We propose a thermodynamically motivated measure of gravitational entropy based on the Bel–Robinson tensor, which has a natural interpretation as the effective super-energy–momentum tensor of free gravitational fields. The specific form of this measure differs depending on whether the gravitational field is Coulomb-like or wave-like, and reduces to the Bekenstein–Hawking value when integrated over the interior of a Schwarzschild black hole. For scalar perturbations of a Robertson–Walker geometry we find that the entropy goes like the Hubble weighted anisotropy of the gravitational field, and therefore increases as structure formation occurs. This is in keeping with our expectations for the behaviour of gravitational entropy in cosmology, and provides a thermodynamically motivated arrow of time for cosmological solutions of Einstein’s field equations. It is also in keeping with Penrose’s Weyl curvature hypothesis. (paper)
7th Patras workshop on axions, WIMPs and WISPs (PATRAS 2011). Proceedings
Energy Technology Data Exchange (ETDEWEB)
Zioutas, Konstantin; Schumann, Marc (eds.)
2011-12-15
The year 2011 was an exciting period to work on the ''dark side'' of the Universe. Several experimental claims of the direct detection of WIMP dark matter were challenged by the restrictive limits of several others. Dedicated experiments searching for axions, another well motivated dark matter candidate, and for axion-like particles continued to improve their limits and got an additional boost by puzzling astrophysical observations and new developments in theory. The LHC collected an unexpectedly large amount of data and started to produce results at an amazing speed. And finally, this year's Nobel price of physics was awarded to the observation of the accelerating expansion of the Universe, an effect which might be related to dark energy, whose nature remain among the biggest mysteries in physics. These exciting topics and many more important aspects of particle- and astroparticle physics were discussed between experimentalists and theorists at the 7th Patras Workshop on Axions, WIMPs, and WISPs. The workshop took place from June 27 - July 1, 2011, in the Royal Myconian and Myconian Imperial Resorts Hotels on the Greek island of Mykonos. As in the previous years, it was a very fruitful and lively meeting in an inspiring and open atmosphere, which allowed for many open and constructive discussions also on controversial topics. The scientific exchange, the beautiful scenery of the island, the venue itself, the food, an excursion to the ancient ruins of Delos, and finally an amazing conference dinner made this meeting really unique. The ''spirit'' of the workshop and its atmosphere cannot be brought to paper, but many of its scientific highlights are collected in these proceedings. We are looking forward to the 8th Patras Workshop, which will be held in Chicago (USA) July 18-22, 2012. It will be organized jointly by our US colleagues Andrei Afanasev (JLAB), Oliver Baker (Yale), and William Wester (FNAL).
7th Patras workshop on axions, WIMPs and WISPs (PATRAS 2011). Proceedings
International Nuclear Information System (INIS)
Zioutas, Konstantin; Schumann, Marc
2011-12-01
The year 2011 was an exciting period to work on the ''dark side'' of the Universe. Several experimental claims of the direct detection of WIMP dark matter were challenged by the restrictive limits of several others. Dedicated experiments searching for axions, another well motivated dark matter candidate, and for axion-like particles continued to improve their limits and got an additional boost by puzzling astrophysical observations and new developments in theory. The LHC collected an unexpectedly large amount of data and started to produce results at an amazing speed. And finally, this year's Nobel price of physics was awarded to the observation of the accelerating expansion of the Universe, an effect which might be related to dark energy, whose nature remain among the biggest mysteries in physics. These exciting topics and many more important aspects of particle- and astroparticle physics were discussed between experimentalists and theorists at the 7th Patras Workshop on Axions, WIMPs, and WISPs. The workshop took place from June 27 - July 1, 2011, in the Royal Myconian and Myconian Imperial Resorts Hotels on the Greek island of Mykonos. As in the previous years, it was a very fruitful and lively meeting in an inspiring and open atmosphere, which allowed for many open and constructive discussions also on controversial topics. The scientific exchange, the beautiful scenery of the island, the venue itself, the food, an excursion to the ancient ruins of Delos, and finally an amazing conference dinner made this meeting really unique. The ''spirit'' of the workshop and its atmosphere cannot be brought to paper, but many of its scientific highlights are collected in these proceedings. We are looking forward to the 8th Patras Workshop, which will be held in Chicago (USA) July 18-22, 2012. It will be organized jointly by our US colleagues Andrei Afanasev (JLAB), Oliver Baker (Yale), and William Wester (FNAL).
Relativistic theory of gravitation
International Nuclear Information System (INIS)
Logunov, A.A.; Mestvirishvilli, M.A.
1985-01-01
In the present paper a relativistic theory of gravitation (RTG) is constructed in a unique way on the basis of the special relativity and geometrization principle. In this, a gravitational field is treated as the Faraday-Maxwell spin-2 and spin-0 physical field possessing energy and momentum. The source of a gravitational field is the total conserved energy-momentum tensor of matter and of a gravitational field in Minkowski space. In the RTG, the conservation laws are strictly fulfilled for the energy-momentum and for the angular momentum of matter and a gravitational field. The theory explains the whole available set of experiments on gravitation. In virtue of the geometrization principle, the Riemannian space in our theory is of field origin, since it appears as an effective force space due to the action of a gravitational field on matter. The RTg leads to an exceptionally strong prediction: The Universe is not closed but just ''flat''. This suggests that in the Universe a ''hidden mass'' should exist in some form of matter
International Nuclear Information System (INIS)
Tevikyan, R.V.
1986-01-01
This paper presents equations that describe particles with spins s = 0, 1/2, 1 completely and which also describe 2s + 2 limiting fields as E → ∞. It is shown that the ordinary Hilbert-Einstein action for the gravitation field must be augmented by the action for the Bose vacuum field. This means that one must introduce in the gravitational equations a cosmological term proportional to the square of the strength of the Bose vacuum field. It is shown that the theory of gravitation describes three realities: matter, field, and vacuum field. A new form of matter--the vacuum field--is introduced into field theory
Gravitational radiation reaction
International Nuclear Information System (INIS)
Tanaka, Takahiro
2006-01-01
We give a short personally-biased review on the recent progress in our understanding of gravitational radiation reaction acting on a point particle orbiting a black hole. The main motivation of this study is to obtain sufficiently precise gravitational waveforms from inspiraling binary compact starts with a large mass ratio. For this purpose, various new concepts and techniques have been developed to compute the orbital evolution taking into account the gravitational self-force. Combining these ideas with a few supplementary new ideas, we try to outline a path to our goal here. (author)
Presenting Newtonian gravitation
International Nuclear Information System (INIS)
Counihan, Martin
2007-01-01
The basic principles of the Newtonian theory of gravitation are presented in a way which students may find more logically coherent, mathematically accessible and physically interesting than other approaches. After giving relatively simple derivations of the circular hodograph and the elliptical orbit from the inverse-square law, the concept of gravitational energy is developed from vector calculus. It is argued that the energy density of a gravitational field may reasonably be regarded as -g 2 /8πG, and that the inverse-square law may be replaced by a Schwarzschild-like force law without the need to invoke non-Euclidean geometry
International Nuclear Information System (INIS)
Yilmaz, H.
1975-01-01
Schwinger's source theory is applied to the problem of gravitation and its quantization. It is shown that within the framework of a flat-space the source theory implementation leads to a violation of probability. To avoid the difficulty one must introduce a curved space-time hence the source concept may be said to necessitate the transition to a curved-space theory of gravitation. It is further shown that the curved-space theory of gravitation implied by the source theory is not equivalent to the conventional Einstein theory. The source concept leads to a different theory where the gravitational field has a stress-energy tensor t/sup nu//sub mu/ which contributes to geometric curvatures
Gravitational lensing of quasars
Eigenbrod, Alexander
2013-01-01
The universe, in all its richness, diversity and complexity, is populated by a myriad of intriguing celestial objects. Among the most exotic of them are gravitationally lensed quasars. A quasar is an extremely bright nucleus of a galaxy, and when such an object is gravitationally lensed, multiple images of the quasar are produced – this phenomenon of cosmic mirage can provide invaluable insights on burning questions, such as the nature of dark matter and dark energy. After presenting the basics of modern cosmology, the book describes active galactic nuclei, the theory of gravitational lensing, and presents a particular numerical technique to improve the resolution of astronomical data. The book then enters the heart of the subject with the description of important applications of gravitational lensing of quasars, such as the measurement of the famous Hubble constant, the determination of the dark matter distribution in galaxies, and the observation of the mysterious inner parts of quasars with much higher r...
Gravitational Waves and Neutrinos
Sturani, Riccardo
2018-01-01
We give an overview about the recent detection of gravitational waves by the Advanced LIGO first and second observing runs and by Advanced Virgo, with emphasis on the prospects for multi-messenger astronomy involving neutrinos detections.
CERN. Geneva
2016-01-01
In the past year, the LIGO-Virgo Collaboration announced the first secure detection of gravitational waves. This discovery heralds the beginning of gravitational wave astronomy: the use of gravitational waves as a tool for studying the dense and dynamical universe. In this talk, I will describe the full spectrum of gravitational waves, from Hubble-scale modes, through waves with periods of years, hours and milliseconds. I will describe the different techniques one uses to measure the waves in these bands, current and planned facilities for implementing these techniques, and the broad range of sources which produce the radiation. I will discuss what we might expect to learn as more events and sources are measured, and as this field matures into a standard part of the astronomical milieu.
Listening music of gravitation
International Nuclear Information System (INIS)
Anon.
2001-01-01
Achievements of precision experiments in Japan (TAMA project) and USA (LIGO Laboratory) in the field of registration of gravitation waves using interferometric gravitational wave detectors are described. Works of the GEO groups in Hannover (Germany) and Vigro (Italy) are noted. Interferometer operation in synchronization during 160 hours demonstrating viability of the technique and its reliability is recorded. Advances in the field of the data analysis with the aim of recording of cosmic signal from noise of the interferometer are noted [ru
Romero, Gustavo E.
2017-01-01
I discuss the recent claims made by Mario Bunge on the philosophical implications of the discovery of gravitational waves. I think that Bunge is right when he points out that the detection implies the materiality of spacetime, but I reject his identification of spacetime with the gravitational field. I show that Bunge's analysis of the spacetime inside a hollow sphere is defective, but this in no way affects his main claim.
Directory of Open Access Journals (Sweden)
Stavroulakis N.
2008-04-01
Full Text Available The equations of gravitation together with the equations of electromagnetism in terms of the General Theory of Relativity allow to conceive an interdependence between the gravitational field and the electromagnetic field. However the technical difficulties of the relevant problems have precluded from expressing clearly this interdependence. Even the simple problem related to the field generated by a charged spherical mass is not correctly solved. In the present paper we reexamine from the outset this problem and propose a new solution.
Gravitationally confined relativistic neutrinos
Vayenas, C. G.; Fokas, A. S.; Grigoriou, D.
2017-09-01
Combining special relativity, the equivalence principle, and Newton’s universal gravitational law with gravitational rather than rest masses, one finds that gravitational interactions between relativistic neutrinos with kinetic energies above 50 MeV are very strong and can lead to the formation of gravitationally confined composite structures with the mass and other properties of hadrons. One may model such structures by considering three neutrinos moving symmetrically on a circular orbit under the influence of their gravitational attraction, and by assuming quantization of their angular momentum, as in the Bohr model of the H atom. The model contains no adjustable parameters and its solution, using a neutrino rest mass of 0.05 eV/c2, leads to composite state radii close to 1 fm and composite state masses close to 1 GeV/c2. Similar models of relativistic rotating electron - neutrino pairs give a mass of 81 GeV/c2, close to that of W bosons. This novel mechanism of generating mass suggests that the Higgs mass generation mechanism can be modeled as a latent gravitational field which gets activated by relativistic neutrinos.
Relativistic theory of gravitation
International Nuclear Information System (INIS)
Logunov, A.A.; Mestvirishvili, M.A.
1986-01-01
In the present paper a relativistic theory of gravitation (RTG) is unambiguously constructed on the basis of the special relativity and geometrization principle. In this a gravitational field is treated as the Faraday--Maxwell spin-2 and spin-0 physical field possessing energy and momentum. The source of a gravitational field is the total conserved energy-momentum tensor of matter and of a gravitational field in Minkowski space. In the RTG the conservation laws are strictly fulfilled for the energy-moment and for the angular momentum of matter and a gravitational field. The theory explains the whole available set of experiments on gravity. By virtue of the geometrization principle, the Riemannian space in our theory is of field origin, since it appears as an effective force space due to the action of a gravitational field on matter. The RTG leads to an exceptionally strong prediction: The universe is not closed but just ''flat.'' This suggests that in the universe a ''missing mass'' should exist in a form of matter
The phenomenology of superWIMP dark matter scenariow with long-lived sleptons
Energy Technology Data Exchange (ETDEWEB)
Heisig, Jan
2013-08-15
We study the phenomenology of a supersymmetric scenario where the next-to-lightest superparticle (NLSP) is the charged slepton and is long-lived due to a lightest superparticle (LSP) which is a super weakly interacting massive particle (superWIMP), like the gravitino. This has far-reaching consequences for the cosmological history of the universe on the one hand and for the signatures at colliders on the other hand. We do not assume any high-scale model for the mediation of SUSY breaking to the MSSM but work along the lines of simplified models and the phenomenological MSSM (pMSSM). In a first part, we investigate the LHC sensitivity and its dependence on the superparticle spectrum with an emphasis on strong production and decay. We formulate appropriate simplified models that allow to conservatively approximate the signal efficiencies of arbitrary spectra from a small number of decisive parameters. We found that the application of simplified models is especially suitable in the considered scenario. Devising cuts that yield a large detection efficiency in the whole parameter space, we determine the discovery and exclusion potential of the LHC. We found that the prominent signature of long-lived sleptons allows to extract more robust constraints on the parameter space than for the widely studied case of a neutralino LSP scenario. In addition, we study the implications of the recent LHC results on the cosmological validity of a superWIMP Dark Matter scenario with a long-lived stau NLSP. Therefore, we work in a pMSSM framework and perform a Monte Carlo scan over the pMSSM parameter space highlighting the implications of a Higgs around 125 GeV and the nullsearches for heavy stable charged particles at the 7 and 8TeV LHC. Further, we consider bounds from MSSM Higgs searches, from flavor and precision observables as well as from the theoretical requirement of vacuum stability. In particular we work out the impact on the allowed range for the stau yield after freeze
The phenomenology of superWIMP dark matter scenariow with long-lived sleptons
International Nuclear Information System (INIS)
Heisig, Jan
2013-08-01
We study the phenomenology of a supersymmetric scenario where the next-to-lightest superparticle (NLSP) is the charged slepton and is long-lived due to a lightest superparticle (LSP) which is a super weakly interacting massive particle (superWIMP), like the gravitino. This has far-reaching consequences for the cosmological history of the universe on the one hand and for the signatures at colliders on the other hand. We do not assume any high-scale model for the mediation of SUSY breaking to the MSSM but work along the lines of simplified models and the phenomenological MSSM (pMSSM). In a first part, we investigate the LHC sensitivity and its dependence on the superparticle spectrum with an emphasis on strong production and decay. We formulate appropriate simplified models that allow to conservatively approximate the signal efficiencies of arbitrary spectra from a small number of decisive parameters. We found that the application of simplified models is especially suitable in the considered scenario. Devising cuts that yield a large detection efficiency in the whole parameter space, we determine the discovery and exclusion potential of the LHC. We found that the prominent signature of long-lived sleptons allows to extract more robust constraints on the parameter space than for the widely studied case of a neutralino LSP scenario. In addition, we study the implications of the recent LHC results on the cosmological validity of a superWIMP Dark Matter scenario with a long-lived stau NLSP. Therefore, we work in a pMSSM framework and perform a Monte Carlo scan over the pMSSM parameter space highlighting the implications of a Higgs around 125 GeV and the nullsearches for heavy stable charged particles at the 7 and 8TeV LHC. Further, we consider bounds from MSSM Higgs searches, from flavor and precision observables as well as from the theoretical requirement of vacuum stability. In particular we work out the impact on the allowed range for the stau yield after freeze
Gravitational waves and antennas
CERN. Geneva
2003-01-01
Gravitational waves and their detection represent today a hot topic, which promises to play a central role in astrophysics, cosmology and theoretical physics. Technological developments have enabled the construction of such sensitive detectors that the detection of gravitational radiation and the start of a new astronomy could become a reality during the next few years. This is expected to bring a revolution in our knowledge of the universe by allowing the observation of hiterto unseen phenomena such as coalescence of compact objects (neutron stars and black holes) fall of stars into supermassive black holes, stellar core collapses, big bang relics and the new and unexpected. In these lectures I give a brief overview of this challenging field of modern physics. Topics : Basic properties of gravitational radiation. Astrophysical sources. Principle of operation of detectors. Interferometers (both ground based and space-based), bars and spheres. Present status of the experiments, their recent results and their f...
Ohanian, Hans C
2013-01-01
The third edition of this classic textbook is a quantitative introduction for advanced undergraduates and graduate students. It gently guides students from Newton's gravitational theory to special relativity, and then to the relativistic theory of gravitation. General relativity is approached from several perspectives: as a theory constructed by analogy with Maxwell's electrodynamics, as a relativistic generalization of Newton's theory, and as a theory of curved spacetime. The authors provide a concise overview of the important concepts and formulas, coupled with the experimental results underpinning the latest research in the field. Numerous exercises in Newtonian gravitational theory and Maxwell's equations help students master essential concepts for advanced work in general relativity, while detailed spacetime diagrams encourage them to think in terms of four-dimensional geometry. Featuring comprehensive reviews of recent experimental and observational data, the text concludes with chapters on cosmology an...
Kelly, Bernard J.
2010-01-01
Einstein's General Theory of Relativity is our best classical description of gravity, and informs modern astronomy and astrophysics at all scales: stellar, galactic, and cosmological. Among its surprising predictions is the existence of gravitational waves -- ripples in space-time that carry energy and momentum away from strongly interacting gravitating sources. In my talk, I will give an overview of the properties of this radiation, recent breakthroughs in computational physics allowing us to calculate the waveforms from galactic mergers, and the prospect of direct observation with interferometric detectors such as LIGO and LISA.
Supersymmetry and gravitational duality
International Nuclear Information System (INIS)
Argurio, Riccardo; Dehouck, Francois; Houart, Laurent
2009-01-01
We study how the supersymmetry algebra copes with gravitational duality. As a playground, we consider a charged Taub-Newman-Unti-Tamburino(NUT) solution of D=4, N=2 supergravity. We find explicitly its Killing spinors, and the projection they obey provides evidence that the dual magnetic momenta necessarily have to appear in the supersymmetry algebra. The existence of such a modification is further supported using an approach based on the Nester form. In the process, we find new expressions for the dual magnetic momenta, including the NUT charge. The same expressions are then rederived using gravitational duality.
Black Hole Kicks as New Gravitational Wave Observables.
Gerosa, Davide; Moore, Christopher J
2016-07-01
Generic black hole binaries radiate gravitational waves anisotropically, imparting a recoil, or kick, velocity to the merger remnant. If a component of the kick along the line of sight is present, gravitational waves emitted during the final orbits and merger will be gradually Doppler shifted as the kick builds up. We develop a simple prescription to capture this effect in existing waveform models, showing that future gravitational wave experiments will be able to perform direct measurements, not only of the black hole kick velocity, but also of its accumulation profile. In particular, the eLISA space mission will measure supermassive black hole kick velocities as low as ∼500 km s^{-1}, which are expected to be a common outcome of black hole binary coalescence following galaxy mergers. Black hole kicks thus constitute a promising new observable in the growing field of gravitational wave astronomy.
Einstein-Rosen gravitational waves
International Nuclear Information System (INIS)
Astefanoaei, Iordana; Maftei, Gh.
2001-01-01
In this paper we analyse the behaviour of the gravitational waves in the approximation of the far matter fields, considering the indirect interaction between the matter sources and the gravitational field, in a cosmological model based on the Einstein-Rosen solution, Because the properties of the gravitational waves obtained as the solutions of Einstein fields equations (the gravitational field equations) are most obvious in the weak gravitational fields we consider here, the gravitational field in the linear approximation. Using the Newman-Penrose formalism, we calculate in the null-tetradic base (e a ), the spin coefficients, the directional derivates and the tetradic components of Ricci and Weyl tensors. From the Einstein field equations we obtained the solution for b(z, t) what described the behaviour of gravitational wave in Einstein-Rosen Universe and in the particular case, when t → ∞, p(z, t) leads us to the primordial gravitational waves in the Einstein-Rosen Universe. (authors)
Gravitational Waves: The Evidence Mounts
Wick, Gerald L.
1970-01-01
Reviews the work of Weber and his colleagues in their attempts at detecting extraterrestial gravitational waves. Coincidence events recorded by special detectors provide the evidence for the existence of gravitational waves. Bibliography. (LC)
Gravitation radiation observations
Glass, E. N.
2017-01-01
The notion of gravitational radiation begins with electromagnetic radiation. In 1887 Heinrich Hertz, working in one room, generated and received electromagnetic radiation. Maxwell's equations describe the electromagnetic field. The quanta of electromagnetic radiation are spin 1 photons. They are fundamental to atomic physics and quantum electrodynamics.
Alternative equations of gravitation
International Nuclear Information System (INIS)
Pinto Neto, N.
1983-01-01
It is shown, trough a new formalism, that the quantum fluctuation effects of the gravitational field in Einstein's equations are analogs to the effects of a continuum medium in Maxwell's Electrodynamics. Following, a real example of the applications of these equations is studied. Qunatum fluctuations effects as perturbation sources in Minkowski and Friedmann Universes are examined. (L.C.) [pt
Glitches and gravitational waves
Indian Academy of Sciences (India)
A M Srivastava
2017-10-09
Oct 9, 2017 ... We also discuss gravitational wave production due to rapidly changing ... efficient source of energy loss during the cooling of the neutron star. ..... [3] U S Gupta, R K Mohapatra, A M Srivastava and V K. Tiwari, Phys. Rev. D 82 ...
Extragalactic Gravitational Collapse
Rees, Martin J.
After some introductory "numerology", routes towards black hole formation are briefly reviewed; some properties of black holes relevant to theories for active galactic nuclei are then described. Applications are considered to specific models for energy generation and the production of relativistic beams. The paper concludes with a discussion of extragalactic sources of gravitational waves.
Indian Academy of Sciences (India)
Keywords. General relativity; gravitational waves; astrophysics; interferometry. Author Affiliations. P Ajith1 K G Arun2. LIGO Laboratory and Theoretical Astrophysics California Institute of Technology MS 18-34, Pasadena CA 91125, USA. Chennai Mathematical Institute Plot H1, SIPCOT IT Park Siruseri, Padur Post Chennai ...
International Nuclear Information System (INIS)
Kikkawa, Keiji; Nakanishi, Noboru; Nariai, Hidekazu
1983-01-01
These proceedings contain the articles presented at the named symposium. They deal with geometrical aspects of gauge theory and gravitation, special problems in gauge theories, quantum field theory in curved space-time, quantum gravity, supersymmetry including supergravity, and grand unification. See hints under the relevant topics. (HSI)
International Nuclear Information System (INIS)
Lebedenko, V. N.; Bewick, A.; Currie, A.; Davidge, D.; Dawson, J.; Horn, M.; Howard, A. S.; Jones, W. G.; Joshi, M.; Liubarsky, I.; Lyons, K.; Quenby, J. J.; Sumner, T. J.; Thorne, C.; Walker, R. J.; Araujo, H. M.; Edwards, B.; Barnes, E. J.; Ghag, C.; Murphy, A. StJ.
2009-01-01
We present new experimental constraints on the WIMP-nucleon spin-dependent elastic cross sections using data from the first science run of ZEPLIN-III, a two-phase xenon experiment searching for galactic dark matter weakly interacting massive particles based at the Boulby mine. Analysis of ∼450 kg·days fiducial exposure allow us to place a 90%-confidence upper limit on the pure WIMP-neutron cross section of σ n =1.9x10 -2 pb at 55 GeV/c 2 WIMP mass. Recent calculations of the nuclear spin structure based on the Bonn charge-dependent nucleon-nucleon potential were used for the odd-neutron isotopes 129 Xe and 131 Xe. These indicate that the sensitivity of xenon targets to the spin-dependent WIMP-proton interaction could be much lower than implied by previous calculations, whereas the WIMP-neutron sensitivity is impaired only by a factor of ∼2.
From superWIMPs to decaying dark matter. Models, bounds and indirect searches
Energy Technology Data Exchange (ETDEWEB)
Weniger, Christoph
2010-06-15
Despite lots of observational and theoretical efforts, the particle nature of dark matter remains unknown. Beyond the paradigmatic WIMPs (Weakly Interacting Massive Particles), many theoretically well motivated models exist where dark matter interacts much more weakly than electroweak with Standard Model particles. In this case new phenomena occur, like the decay of dark matter or the interference with the standard cosmology of the early Universe. In this thesis we study some of these aspects of superweakly coupled dark matter in general, and in the special case of hidden U(1){sub X} gauginos that kinetically mix with hypercharge. There, we will assume that the gauge group remains unbroken, similar to the Standard Model U(1){sub em}. We study different kinds of cosmological bounds, including bounds from thermal overproduction, from primordial nucleosynthesis and from structure formation. Furthermore, we study the possible cosmic-ray signatures predicted by this scenario, with emphasis on the electron and positron channel in light of the recent observations by PAMELA and Fermi LAT. Moreover we study the cosmic-ray signatures of decaying dark matter independently of concrete particle-physics models. In particular we analyze in how far the rise in the positron fraction above 10 GeV, as observed by PAMELA, can be explained by dark matter decay. Lastly, we concentrate on related predictions for gamma-ray observations with the Fermi LAT, and propose to use the dipole-like anisotropy of the prompt gamma-ray dark matter signal to distinguish exotic dark matter contributions from the extragalactic gamma-ray background. (orig.)
From superWIMPs to decaying dark matter. Models, bounds and indirect searches
International Nuclear Information System (INIS)
Weniger, Christoph
2010-06-01
Despite lots of observational and theoretical efforts, the particle nature of dark matter remains unknown. Beyond the paradigmatic WIMPs (Weakly Interacting Massive Particles), many theoretically well motivated models exist where dark matter interacts much more weakly than electroweak with Standard Model particles. In this case new phenomena occur, like the decay of dark matter or the interference with the standard cosmology of the early Universe. In this thesis we study some of these aspects of superweakly coupled dark matter in general, and in the special case of hidden U(1) X gauginos that kinetically mix with hypercharge. There, we will assume that the gauge group remains unbroken, similar to the Standard Model U(1) em . We study different kinds of cosmological bounds, including bounds from thermal overproduction, from primordial nucleosynthesis and from structure formation. Furthermore, we study the possible cosmic-ray signatures predicted by this scenario, with emphasis on the electron and positron channel in light of the recent observations by PAMELA and Fermi LAT. Moreover we study the cosmic-ray signatures of decaying dark matter independently of concrete particle-physics models. In particular we analyze in how far the rise in the positron fraction above 10 GeV, as observed by PAMELA, can be explained by dark matter decay. Lastly, we concentrate on related predictions for gamma-ray observations with the Fermi LAT, and propose to use the dipole-like anisotropy of the prompt gamma-ray dark matter signal to distinguish exotic dark matter contributions from the extragalactic gamma-ray background. (orig.)
Projective relativity, cosmology and gravitation
International Nuclear Information System (INIS)
Arcidiacono, G.
1986-01-01
This book describes the latest applications of projective geometry to cosmology and gravitation. The contents of the book are; the Poincare group and Special Relativity, the thermodynamics and electromagnetism, general relativity, gravitation and cosmology, group theory and models of universe, the special projective relativity, the Fantappie group and Big-Bang cosmology, a new cosmological projective mechanics, the plasma physics and cosmology, the projective magnetohydrodynamics field, projective relativity and waves propagation, the generalizations of the gravitational field, the general projective relativity, the projective gravitational field, the De Sitter Universe and quantum physics, the conformal relativity and Newton gravitation
International Nuclear Information System (INIS)
Akerib, D.S.; Bailey, C.N.; Dragowsky, M.R.; Driscoll, D.D.; Hennings-Yeomans, R.; Kamat, S.; Perera, T.A.; Schnee, R.W.; Wang, G.; Armel-Funkhouser, M.S.; Daal, M.; Filippini, J.; Lu, A.; Mandic, V.; Meunier, P.; Mirabolfathi, N.; Issac, M.C. Perillo; Rau, W.; Seitz, D.N.; Serfass, B.
2005-01-01
The Cryogenic Dark Matter Search (CDMS-II) employs low-temperature Ge and Si detectors to seek weakly interacting massive particles (WIMPs) via their elastic-scattering interactions with nuclei. Simultaneous measurements of both ionization and phonon energy provide discrimination against interactions of background particles. For recoil energies above 10 keV, events due to background photons are rejected with >99.99% efficiency. Electromagnetic events very near the detector surface can mimic nuclear recoils because of reduced charge collection, but these surface events are rejected with >96% efficiency by using additional information from the phonon pulse shape. Efficient use of active and passive shielding, combined with the 2090 m.w.e. overburden at the experimental site in the Soudan mine, makes the background from neutrons negligible for this first exposure. All cuts are determined in a blind manner from in situ calibrations with external radioactive sources without any prior knowledge of the event distribution in the signal region. Resulting efficiencies are known to ∼10%. A single event with a recoil of 64 keV passes all of the cuts and is consistent with the expected misidentification rate of surface electron recoils. Under the assumptions for a standard dark matter halo, these data exclude previously unexplored parameter space for both spin-independent and spin-dependent WIMP-nucleon elastic scattering. The resulting limit on the spin-independent WIMP-nucleon elastic-scattering cross section has a minimum of 4x10 -43 cm 2 at a WIMP mass of 60 GeVc -2 . The minimum of the limit for the spin-dependent WIMP-neutron elastic-scattering cross section is 2x10 -37 cm 2 at a WIMP mass of 50 GeVc -2
Global gravitational anomalies
International Nuclear Information System (INIS)
Witten, E.
1985-01-01
A general formula for global gauge and gravitational anomalies is derived. It is used to show that the anomaly free supergravity and superstring theories in ten dimensions are all free of global anomalies that might have ruined their consistency. However, it is shown that global anomalies lead to some restrictions on allowed compactifications of these theories. For example, in the case of O(32) superstring theory, it is shown that a global anomaly related to π 7 (O(32)) leads to a Dirac-like quantization condition for the field strength of the antisymmetric tensor field. Related to global anomalies is the question of the number of fermion zero modes in an instanton field. It is argued that the relevant gravitational instantons are exotic spheres. It is shown that the number of fermion zero modes in an instanton field is always even in ten dimensional supergravity. (orig.)
Gravitational properties of antimatter
International Nuclear Information System (INIS)
Goldman, T.; Nieto, M.M.
1985-01-01
Quantum gravity is at the forefront of modern particle physics, yet there are no direct tests, for antimatter, of even the principle of equivalence. We note that modern descriptions of gravity, such as fibre bundles and higher dimensional spacetimes, allow violations of the commonly stated form of the principle of equivalence, and of CPT. We review both indirect arguments and experimental tests of the expected gravitational properties of CPT-conjugate states. We conclude that a direct experimental test of the gravitational properties of antimatter, at the 1% (or better) level, would be of great value. We identify some experimental reasons which make the antiproton a prime candidate for this test, and we strongly urge that such an experiment be done at LEAR. 21 references
Gravitation and electromagnetism
Apsel, D
1979-01-01
Through an examination of the Bohm-Aharonov experiment, a new theory of gravitation and electromagnetism is proposed. The fundamental assumption of the theory is that the motion of a particle in a combination of gravitational and electromagnetic fields is determined from a variational principle of the form delta integral /sub A//sup B /d tau =0. The form of the physical time is determined from an examination of the Maxwell-Einstein action function. The field and motion equations are formally identical to those of Maxwell-Einstein theory. The theory predicts that even in a field-free region of space, electromagnetic potentials can alter the phase of a wave function and the lifetime of a charged particle. The phase alteration has been observed in the Bohm-Aharonov experiment. There is an indication that the lifetime alteration has shown up in a recent CERN storage ring experiment. Experimental tests are proposed. (11 refs).
Kopczyński, W.; Trautman, A.
This book is a revised translation of the Polish original "Czasoprzestrzeń i grawitacja", Warszawa (Poland), Państwowe Wydawnictwo Naukowe, 1984. Ideas about space and time are at the root of one's understanding of nature, both at the intuitive level of everyday experience and in the framework of sophisticated physical theories. These ideas have led to the development of geometry and its applications to physics. The contemporary physical theory of space and time, including its extention to the phenomena of gravitation, is Einstein's theory of relativity. The book is a short introduction to this theory. A great deal of emphasis is given to the geometrical aspects of relativity theory and its comparison with the Newtonian view of the world. There are short chapters on the origins of Einstein's theory, gravitational waves, cosmology, spinors and the Einstein-Cartan theory.
Neutrinos from gravitational collapse
International Nuclear Information System (INIS)
Mayle, R.; Wilson, J.R.; Schramm, D.N.
1986-05-01
Detailed calculations are made of the neutrino spectra emitted during gravitational collapse events (Type II supernovae). Those aspects of the neutrino signal which are relatively independent of the collapse model and those aspects which are sensitive to model details are discussed. The easier-to-detect high energy tail of the emitted neutrinos has been calculated using the Boltzmann equation which is compared with the result of the traditional multi-group flux limited diffusion calculations. 8 figs., 28 refs
Energy Technology Data Exchange (ETDEWEB)
Goldoni, R
1980-11-22
A bimetric theory of gravitation within a Machian framework is developed on the basis of considerations which are completely divorced from Newton's theory. The theory is assumed to hold in any conceivable cosmos and possesses the Machian properties of being singular in the absence of matter and of explicitly incorporating the idea that properties of space-time are determined not only by local matter, but also by the average distribution of cosmological matter.
Gravitation, Symmetry and Undergraduates
Jorgensen, Jamie
2001-04-01
This talk will discuss "Project Petrov" Which is designed to investigate gravitational fields with symmetry. Project Petrov represents a collaboration involving physicists, mathematicians as well as graduate and undergraduate math and physics students. An overview of Project Petrov will be given, with an emphasis on students' contributions, including software to classify and generate Lie algebras, to classify isometry groups, and to compute the isometry group of a given metric.
International Nuclear Information System (INIS)
Penrose, R.
1986-01-01
The author's definition for the mass-momentum/angular momentum surrounded by a spacelike 2-surface with S/sup 2/ topology is presented. This definition is motivated by some ideas from twistor theory in relation to linearized gravitational theory. The status of this definition is examined in relation to many examples which have been worked out. The reason for introducing a slight modification of the original definition is also presented
General Relativity and Gravitation
Ehlers, J.; Murdin, P.
2000-11-01
The General Theory of Relativity (GR), created by Albert Einstein between 1907 and 1915, is a theory both of gravitation and of spacetime structure. It is based on the assumption that matter, via its energy-momentum, interacts with the metric of spacetime, which is considered (in contrast to Newtonian physics and SPECIAL RELATIVITY) as a dynamical field having degrees of freedom of its own (GRAVI...
Fivebrane gravitational anomalies
International Nuclear Information System (INIS)
Becker, Katrin; Becker, Melanie
2000-01-01
Freed, Harvey, Minasian and Moore (FHMM) have proposed a mechanism to cancel the gravitational anomaly of the M-theory fivebrane coming from diffeomorphisms acting on the normal bundle. This procedure is based on a modification of the conventional M-theory Chern-Simons term. We apply the FHMM mechanism in the ten-dimensional type IIA theory. We then analyze the relation to the anomaly cancellation mechanism for the type IIA fivebrane proposed by Witten
Nondissipative gravitational turbulence
International Nuclear Information System (INIS)
Gurevich, A.V.; Zybin, K.P.
1988-01-01
The nonlinear stage of development of the Jeans instability in a cold nondissipative gravitating gas is considered. It is shown that for a time exceeding the Jeans time a nondissipative gravitational singularity (NGS) is formed in the vicinity of a local density maximum. The NGS is a stationary dynamic structure, the basis of which is the singularity. The density of the gas at the center of the NGS (for r → 0) tends to infinity, and the field potential and the mean velocity of the trapped gas, possess a power singularity. The turbulent state arises as the result of development of the instability in the case of an irregular initial density distribution. It is an hierarchic structure consisting of nested moving NGS of various sizes, the NGS of smaller dimensions being trapped in the field of a NGS of larger dimensions. The scaling relations for each given NGS in this case hold for both the gas density and density of smaller size trapped NGS. A brief comparison with the observational data shows that the real hierarchic structure of the Universe ranging from scales pertaining to spherical stellar clusters up to those of rich galaxy clusters is apparently a developed gravitational turbulence
On gravitational wave energy in Einstein gravitational theory
International Nuclear Information System (INIS)
Folomeshkin, V.N.; Vlasov, A.A.
1978-01-01
By the example of precise wave solutions for the Einstein equations it is shown that a standard commonly adopted formulation of energy-momentum problem with pseudotensors provides us either with a zero or sign-variable values for the energy of gravitational waves. It is shown that if in the Einstein gravitational theory a strict transition to the limits of weak fields is realised then the theory gives us an unambiguous zero result for weak gravitational waves. The well-known non-zero result arises due to incorrect transition to weak field approximation in the Einstein gravitation theory
Quantum Emulation of Gravitational Waves.
Fernandez-Corbaton, Ivan; Cirio, Mauro; Büse, Alexander; Lamata, Lucas; Solano, Enrique; Molina-Terriza, Gabriel
2015-07-14
Gravitational waves, as predicted by Einstein's general relativity theory, appear as ripples in the fabric of spacetime traveling at the speed of light. We prove that the propagation of small amplitude gravitational waves in a curved spacetime is equivalent to the propagation of a subspace of electromagnetic states. We use this result to propose the use of entangled photons to emulate the evolution of gravitational waves in curved spacetimes by means of experimental electromagnetic setups featuring metamaterials.
Probing Positron Gravitation at HERA
International Nuclear Information System (INIS)
Gharibyan, Vahagn
2015-07-01
An equality of particle and antiparticle gravitational interactions holds in general relativity and is supported by indirect observations. Here I develop a method based on high energy Compton scattering to measure the gravitational interaction of accelerated charged particles. Within that formalism the Compton spectra measured at HERA rule out the positron's anti-gravity and hint for a positron's 1.3(0.2)% weaker coupling to the gravitational field relative to an electron.
Probing Positron Gravitation at HERA
Energy Technology Data Exchange (ETDEWEB)
Gharibyan, Vahagn
2015-07-15
An equality of particle and antiparticle gravitational interactions holds in general relativity and is supported by indirect observations. Here I develop a method based on high energy Compton scattering to measure the gravitational interaction of accelerated charged particles. Within that formalism the Compton spectra measured at HERA rule out the positron's anti-gravity and hint for a positron's 1.3(0.2)% weaker coupling to the gravitational field relative to an electron.
Quantum phenomena in gravitational field
Bourdel, Th.; Doser, M.; Ernest, A. D.; Voronin, A. Yu.; Voronin, V. V.
2011-10-01
The subjects presented here are very different. Their common feature is that they all involve quantum phenomena in a gravitational field: gravitational quantum states of ultracold antihydrogen above a material surface and measuring a gravitational interaction of antihydrogen in AEGIS, a quantum trampoline for ultracold atoms, and a hypothesis on naturally occurring gravitational quantum states, an Eötvös-type experiment with cold neutrons and others. Considering them together, however, we could learn that they have many common points both in physics and in methodology.
Quantum phenomena in gravitational field
International Nuclear Information System (INIS)
Bourdel, Th.; Doser, M.; Ernest, A.D.; Voronin, A.Y.; Voronin, V.V.
2010-01-01
The subjects presented here are very different. Their common feature is that they all involve quantum phenomena in a gravitational field: gravitational quantum states of ultracold anti-hydrogen above a material surface and measuring a gravitational interaction of anti-hydrogen in AEGIS, a quantum trampoline for ultracold atoms, and a hypothesis on naturally occurring gravitational quantum states, an Eoetvoes-type experiment with cold neutrons and others. Considering them together, however, we could learn that they have many common points both in physics and in methodology. (authors)
Gravitational Physics Research
Wu, S. T.
2000-01-01
Gravitational physics research at ISPAE is connected with NASA's Relativity Mission (Gravity Probe B (GP-B)) which will perform a test of Einstein's General Relativity Theory. GP-B will measure the geodetic and motional effect predicted by General Relativity Theory with extremely stable and sensitive gyroscopes in an earth orbiting satellite. Both effects cause a very small precession of the gyroscope spin axis. The goal of the GP-B experiment is the measurement of the gyroscope precession with very high precision. GP-B is being developed by a team at Stanford University and is scheduled for launch in the year 2001. The related UAH research is a collaboration with Stanford University and MSFC. This research is focussed primarily on the error analysis and data reduction methods of the experiment but includes other topics concerned with experiment systems and their performance affecting the science measurements. The hydrogen maser is the most accurate and stable clock available. It will be used in future gravitational physics missions to measure relativistic effects such as the second order Doppler effect. The HMC experiment, currently under development at the Smithsonian Astrophysical Observatory (SAO), will test the performance and capability of the hydrogen maser clock for gravitational physics measurements. UAH in collaboration with the SAO science team will study methods to evaluate the behavior and performance of the HMC. The GP-B data analysis developed by the Stanford group involves complicated mathematical operations. This situation led to the idea to investigate alternate and possibly simpler mathematical procedures to extract the GP-B measurements form the data stream. Comparison of different methods would increase the confidence in the selected scheme.
Gravitational radiation from dust
International Nuclear Information System (INIS)
Isaacson, R.A.; Welling, J.S.; Winicour, J.
1985-01-01
A dust cloud is examined within the framework of the general relativistic characteristic initial value problem. Unique gravitational initial data are obtained by requiring that the space-time be quasi-Newtonian. Explicit calculations of metric and matter fields are presented, which include all post-Newtonian corrections necessary to discuss the major physical properties of null infinity. These results establish a curved space version of the Einstein quadrupole formula, in the form ''news function equals third time derivative of transverse quadrupole moment,'' for this system. However, these results imply that some weakened notion of asymptotic flatness is necessary for the description of quasi-Newtonian systems
The earth's gravitational field
Digital Repository Service at National Institute of Oceanography (India)
Ramprasad, T.
. But to say that gravity acts downwards is not correct. Gravity acts down, no matter where you stand on the Earth. It is better to say that on Earth gravity pulls objects towards the centre of the Earth. So no matter where you are on Earth all objects fall... pull than objects at the poles. In combination, the equatorial bulge and the effects of centrifugal force mean that sea-level gravitational acceleration increases from about 9.780 m/s² at the equator to about 9.832 m/s² at the poles, so an object...
Superstatistics and Gravitation
Directory of Open Access Journals (Sweden)
Octavio Obregón
2010-09-01
Full Text Available We suggest to consider the spacetime as a non-equilibrium system with a long-term stationary state that possess as a spatio-temporally fluctuating quantity ß . These systems can be described by a superposition of several statistics, superstatistics. We propose a Gamma distribution for f(ß that depends on a parameter ρ1. By means of it the corresponding entropy is calculated, ρ1 is identified with the probability corresponding to this model. A generalized Newton’s law of gravitation is then obtained following the entropic force formulation. We discuss some of the difficulties to try to get an associated theory of gravity.
International Nuclear Information System (INIS)
Armengaud, E.; Augier, C.; Benoit, A.; Berge, L.; Bluemer, J.; Broniatowski, A.; Brudanin, V.; Censier, B.; Chardin, G.; Chapellier, M.; Charlieux, F.; Coulter, P.; Cox, G.A.; Defay, X.; De Jesus, M.; Dolgorouki, Y.; Domange, J.; Dumoulin, L.
2011-01-01
The EDELWEISS-II Collaboration has completed a direct search for WIMP dark matter with an array of ten 400-g cryogenic germanium detectors in operation at the Laboratoire Souterrain de Modane. The combined use of thermal phonon sensors and charge collection electrodes with an interleaved geometry enables the efficient rejection of γ-induced radioactivity as well as near-surface interactions. A total effective exposure of 384 kg d has been achieved, mostly coming from fourteen months of continuous operation. Five nuclear recoil candidates are observed above 20 keV, while the estimated background is 3.0 events. The result is interpreted in terms of limits on the cross-section of spin-independent interactions of WIMPs and nucleons. A cross-section of 4.4x10 -8 pb is excluded at 90%CL for a WIMP mass of 85 GeV. New constraints are also set on models where the WIMP-nucleon scattering is inelastic.
Energy Technology Data Exchange (ETDEWEB)
Manungu Kiveni, Joseph [Syracuse Univ., NY (United States)
2012-12-01
This dissertation describes the results of a WIMP search using CDMS II data sets accumulated at the Soudan Underground Laboratory in Minnesota. Results from the original analysis of these data were published in 2009; two events were observed in the signal region with an expected leakage of 0.9 events. Further investigation revealed an issue with the ionization-pulse reconstruction algorithm leading to a software upgrade and a subsequent reanalysis of the data. As part of the reanalysis, I performed an advanced discrimination technique to better distinguish (potential) signal events from backgrounds using a 5-dimensional chi-square method. This dataanalysis technique combines the event information recorded for each WIMP-search event to derive a backgrounddiscrimination parameter capable of reducing the expected background to less than one event, while maintaining high efficiency for signal events. Furthermore, optimizing the cut positions of this 5-dimensional chi-square parameter for the 14 viable germanium detectors yields an improved expected sensitivity to WIMP interactions relative to previous CDMS results. This dissertation describes my improved (and optimized) discrimination technique and the results obtained from a blind application to the reanalyzed CDMS II WIMP-search data.
Yang, Li-Tao; Li, Hau-Bin; Yue, Qian; Kang, Ke-Jun; Cheng, Jian-Ping; Li, Yuan-Jing; Tsz-King Wong, Henry; Aǧartioǧlu, M.; An, Hai-Peng; Chang, Jian-Ping; Chen, Jing-Han; Chen, Yun-Hua; Deng, Zhi; Du, Qiang; Gong, Hui; He, Li; Hu, Jin-Wei; Hu, Qing-Dong; Huang, Han-Xiong; Jia, Li-Ping; Jiang, Hao; Li, Hong; Li, Jian-Min; Li, Jin; Li, Xia; Li, Xue-Qian; Li, Yu-Lan; Lin, Fong-Kay; Lin, Shin-Ted; Liu, Shu-Kui; Liu, Zhong-Zhi; Ma, Hao; Ma, Jing-Lu; Pan, Hui; Ren, Jie; Ruan, Xi-Chao; Sevda, B.; Sharma, Vivek; Shen, Man-Bin; Singh, Lakhwinder; Singh, Manoj Kumar; Tang, Chang-Jian; Tang, Wei-You; Tian, Yang; Wang, Ji-Min; Wang, Li; Wang, Qing; Wang, Yi; Wu, Shi-Yong; Wu, Yu-Cheng; Xing, Hao-Yang; Xu, Yin; Xue, Tao; Yang, Song-Wei; Yi, Nan; Yu, Chun-Xu; Yu, Hai-Jun; Yue, Jian-Feng; Zeng, Xiong-Hui; Zeng, Ming; Zeng, Zhi; Zhang, Yun-Hua; Zhao, Ming-Gang; Zhao, Wei; Zhou, Ji-Fang; Zhou, Zu-Ying; Zhu, Jing-Jun; Zhu, Zhong-Hua; CDEX Collaboration
2018-01-01
We report results of a search for light weakly interacting massive particle (WIMP) dark matter from the CDEX-1 experiment at the China Jinping Underground Laboratory (CJPL). Constraints on WIMP-nucleon spin-independent (SI) and spin-dependent (SD) couplings are derived with a physics threshold of 160 eVee, from an exposure of 737.1 kg-days. The SI and SD limits extend the lower reach of light WIMPs to 2 GeV and improve over our earlier bounds at WIMP mass less than 6 GeV. Supported by the National Key Research and Development Program of China (2017YFA0402200, 2017YFA0402201), the National Natural Science Foundation of China (11175099, 11275107, 11475117, 11475099, 11475092, 11675088), the National Basic Research Program of China (973 Program) (2010CB833006). We thank the support of grants from the Tsinghua University Initiative Scientific Research Program (20121088494, 20151080354) and the Academia Sinica Investigator Award 2011-15, contracts 103-2112-M-001-024 and 104-2112-M-001-038-MY3 from the Ministry of Science and Technology of Taiwan.
The gravitational Schwinger effect and attenuation of gravitational waves
McDougall, Patrick Guarneri
This paper will discuss the possible production of photons from gravitational waves. This process is shown to be possible by examining Feynman diagrams, the Schwinger Effect, and Hawking Radiation. The end goal of this project is to find the decay length of a gravitational wave and assert that this decay is due to photons being created at the expense of the gravitational wave. To do this, we first find the state function using the Klein Gordon equation, then find the current due to this state function. We then take the current to be directly proportional to the production rate per volume. This is then used to find the decay length that this kind of production would produce, gives a prediction of how this effect will change the distance an event creating a gravitational wave will be located, and shows that this effect is small but can be significant near the source of a gravitational wave.
Schubert, G.; Anderson, J. D.
2013-12-01
Titan's gravitational field is inferred from an analysis of archived radio Doppler data for six Cassini flybys. The analysis considers each flyby separately in contrast to the approach of lumping all the data together in a massive inversion. In this way it is possible to gain an improved understanding of the character of each flyby and its usefulness in constraining the gravitational coefficient C22 . Though our analysis is not yet complete and our final determination of C22 could differ from the result we report here by 1 or 2 sigma, we find a best-fit value of C22 equal to (13.21 × 0.17) × 10-6, significantly larger than the value of 10.0 × 10-6 obtained from an inversion of the lumped Cassini data. We also find no determination of the tidal Love number k2. The larger value of C22 implies a moment of inertia factor equal to 0.3819 × 0.0020 and a less differentiated Titan than is suggested by the smaller value. The larger value of C22 is consistent with an undifferentiated model of the satellite. While it is not possible to rule out either value of C22 , we prefer the larger value because its derivation results from a more hands on analysis of the data that extracts the weak hydrostatic signal while revealing the effects of gravity anomalies and unmodeled spacecraft accelerations on each of the six flybys.
UCN gravitational spectrometer
International Nuclear Information System (INIS)
Kawabata, Yuji
1988-01-01
Concept design is carried out of two types of ultra cold neutron scallering equipment using the fall-focusing principle. One of the systems comprises a vertical gravitational spectrometer and the other includes a horizontal gravitation analyzer. A study is made of their performance and the following results are obtained. Fall-focusing type ultra cold neutron scattering equipment can achieve a high accuracy for measurement of energy and momentum. Compared with conventional neutron scattering systems, this type of equipment can use neutron very efficiently because scattered neutrons within a larger solid angle can be used. The maximum solid angle is nearly 4π and 2π for the vertical and horizontal type, respectively. Another feature is that the size of equipment can be reduced. In the present concept design, the equipment is spherical with a diameter of about 1 m, as compared with NESSIE which is 6.7 m in length and 4.85 m in height with about the same accuracy. Two horizontal analyzers and a vertical spectroscope are proposed. They are suitable for angle-dependent non-elastic scattering in the neutron velocity range of 6∼15 m/s, pure elastic scattering in the range of 4∼7 m/s, or angle-integration non-elastic scattering in the range of 4∼15 m/s. (N.K.)
General Relativity and Gravitation
Ashtekar, Abhay; Berger, Beverly; Isenberg, James; MacCallum, Malcolm
2015-07-01
Part I. Einstein's Triumph: 1. 100 years of general relativity George F. R. Ellis; 2. Was Einstein right? Clifford M. Will; 3. Cosmology David Wands, Misao Sasaki, Eiichiro Komatsu, Roy Maartens and Malcolm A. H. MacCallum; 4. Relativistic astrophysics Peter Schneider, Ramesh Narayan, Jeffrey E. McClintock, Peter Mészáros and Martin J. Rees; Part II. New Window on the Universe: 5. Receiving gravitational waves Beverly K. Berger, Karsten Danzmann, Gabriela Gonzalez, Andrea Lommen, Guido Mueller, Albrecht Rüdiger and William Joseph Weber; 6. Sources of gravitational waves. Theory and observations Alessandra Buonanno and B. S. Sathyaprakash; Part III. Gravity is Geometry, After All: 7. Probing strong field gravity through numerical simulations Frans Pretorius, Matthew W. Choptuik and Luis Lehner; 8. The initial value problem of general relativity and its implications Gregory J. Galloway, Pengzi Miao and Richard Schoen; 9. Global behavior of solutions to Einstein's equations Stefanos Aretakis, James Isenberg, Vincent Moncrief and Igor Rodnianski; Part IV. Beyond Einstein: 10. Quantum fields in curved space-times Stefan Hollands and Robert M. Wald; 11. From general relativity to quantum gravity Abhay Ashtekar, Martin Reuter and Carlo Rovelli; 12. Quantum gravity via unification Henriette Elvang and Gary T. Horowitz.
On geometrized gravitation theories
International Nuclear Information System (INIS)
Logunov, A.A.; Folomeshkin, V.N.
1977-01-01
General properties of the geometrized gravitation theories have been considered. Geometrization of the theory is realized only to the extent that by necessity follows from an experiment (geometrization of the density of the matter Lagrangian only). Aor a general case the gravitation field equations and the equations of motion for matter are formulated in the different Riemann spaces. A covariant formulation of the energy-momentum conservation laws is given in an arbitrary geometrized theory. The noncovariant notion of ''pseudotensor'' is not required in formulating the conservation laws. It is shown that in the general case (i.e., when there is an explicit dependence of the matter Lagrangian density on the covariant derivatives) a symmetric energy-momentum tensor of the matter is explicitly dependent on the curvature tensor. There are enlisted different geometrized theories that describe a known set of the experimental facts. The properties of one of the versions of the quasilinear geometrized theory that describes the experimental facts are considered. In such a theory the fundamental static spherically symmetrical solution has a singularity only in the coordinate origin. The theory permits to create a satisfactory model of the homogeneous nonstationary Universe
International Nuclear Information System (INIS)
Burinskii, A.
2015-01-01
The Kerr–Newman (KN) black hole (BH) solution exhibits the external gravitational and electromagnetic field corresponding to that of the Dirac electron. For the large spin/mass ratio, a ≫ m, the BH loses horizons and acquires a naked singular ring creating two-sheeted topology. This space is regularized by the Higgs mechanism of symmetry breaking, leading to an extended particle that has a regular spinning core compatible with the external KN solution. We show that this core has much in common with the known MIT and SLAC bag models, but has the important advantage of being in accordance with the external gravitational and electromagnetic fields of the KN solution. A peculiar two-sheeted structure of Kerr’s gravity provides a framework for the implementation of the Higgs mechanism of symmetry breaking in configuration space in accordance with the concept of the electroweak sector of the Standard Model. Similar to other bag models, the KN bag is flexible and pliant to deformations. For parameters of a spinning electron, the bag takes the shape of a thin rotating disk of the Compton radius, with a ring–string structure and a quark-like singular pole formed at the sharp edge of this disk, indicating that the considered lepton bag forms a single bag–string–quark system
Gravitational Waves - New Perspectives
International Nuclear Information System (INIS)
Biesiada, M.
1999-01-01
Laser interferometric experiments planned for 2002 will open up a new window onto the Universe. The first part of the paper gives a brief intuitive introduction to gravity waves, detection techniques and enumeration of main astrophysical sources and frequency bands to which they contribute. Then two more specific issues are discussed concerning cosmological perspectives of gravity waves detection. First one is the problem of gravitational lensing of the signal from inspiralling NS-NS binaries. The magnitude of the so called magnification bias is estimated and found non-negligible for some quite realistic lens models, but strongly model-dependent. The second problem is connected with estimates of galactic and extragalactic parts of the stochastic background. The main conclusion from these two examples is that in so far as the cosmological payoff of gravitational wave detection would be high, we should substantially deepen our understanding of basic astrophysical properties of galaxies and their clusters (in terms of mass distribution) in order to draw clear cosmological conclusions. (author)
Numerical investigations of gravitational collapse
Energy Technology Data Exchange (ETDEWEB)
Csizmadia, Peter; Racz, Istvan, E-mail: iracz@rmki.kfki.h [RMKI, Budapest, Konkoly Thege Miklos ut 29-33, H-1121 (Hungary)
2010-03-01
Some properties of a new framework for simulating generic 4-dimensional spherically symmetric gravitating systems are discussed. The framework can be used to investigate spacetimes that undergo complete gravitational collapse. The analytic setup is chosen to ensure that our numerical method is capable to follow the time evolution everywhere, including the black hole region.
On the gravitational radiation formula
International Nuclear Information System (INIS)
Schaefer, G.; Dehnen, H.
1980-01-01
For electromagnetically as well as gravitationally bound quantum mechanical many-body systems the coefficients of absorption and induced emission of gravitational radiation are calculated in the first-order approximation. The results are extended subsequently to systems with arbitrary non-Coulomb-like two-particle interaction potentials;it is shown explicitly that in all cases the perturbation of the binding potentials of the bound systems by the incident gravitational wave field itself must be taken into account. With the help of the thermodynamic equilibrium of gravitational radiation and quantised matter, the coefficients for spontaneous emission of gravitational radiation are derived and the gravitational radiation formula for emission of gravitational quadrupole radiation by bound quantum mechanical many-body systems is given. According to the correspondence principle the present result is completely identical with the well known classical radiation formula, by which recent criticism against this formula is refuted. Finally the quantum mechanical absorption cross section for gravitational quadrupole radiation is deduced and compared with the corresponding classical expressions. As a special example the vibrating two-mass quadrupole is treated explicitly. (author)
To theory of gravitational interaction
Minkevich, A. V.
2008-01-01
Some principal problems of general relativity theory and attempts of their solution are discussed. The Poincare gauge theory of gravity as natural generalization of Einsteinian gravitation theory is considered. The changes of gravitational interaction in the frame of this theory leading to the solution of principal problems of general relativity theory are analyzed.
Gravitational Casimir–Polder effect
Directory of Open Access Journals (Sweden)
Jiawei Hu
2017-04-01
Full Text Available The interaction due to quantum gravitational vacuum fluctuations between a gravitationally polarizable object modelled as a two-level system and a gravitational boundary is investigated. This quantum gravitational interaction is found to be position-dependent, which induces a force in close analogy to the Casimir–Polder force in the electromagnetic case. For a Dirichlet boundary, the quantum gravitational potential for the polarizable object in its ground-state is shown to behave like z−5 in the near zone, and z−6 in the far zone, where z is the distance to the boundary. For a concrete example, where a Bose–Einstein condensate is taken as a gravitationally polarizable object, the relative correction to the radius of the BEC caused by fluctuating quantum gravitational waves in vacuum is found to be of order 10−21. Although the correction is far too small to observe in comparison with its electromagnetic counterpart, it is nevertheless of the order of the gravitational strain caused by a recently detected black hole merger on the arms of the LIGO.
Exact piecewise flat gravitational waves
van de Meent, M.
2011-01-01
We generalize our previous linear result (van de Meent 2011 Class. Quantum Grav 28 075005) in obtaining gravitational waves from our piecewise flat model for gravity in 3+1 dimensions to exact piecewise flat configurations describing exact planar gravitational waves. We show explicitly how to
Laboratory generation of gravitational waves
International Nuclear Information System (INIS)
Pinto, I.M.; Rotoli, G.
1988-01-01
The authors have performed calculations on the basic type of gravitational wave electromagnetic laboratory generators. Their results show that laboratory generations of gravitational wave is at limit of state-of-the-art of present-day giant electromagnetic field generation
The gravitational properties of antimatter
International Nuclear Information System (INIS)
Goldman, T.; Hughes, R.J.; Nieto, M.M.
1986-09-01
It is argued that a determination of the gravitational acceleration of antimatter towards the earth is capable of imposing powerful constraints on modern quantum gravity theories. Theoretical reasons to expect non-Newtonian non-Einsteinian effects of gravitational strength and experimental suggestions of such effects are reviewed. 41 refs
Interaction of gravitational plane waves
International Nuclear Information System (INIS)
Ferrari, V.
1988-01-01
The mathematical theory of colliding, infinite-fronted, plane gravitational waves is presented. The process of focusing, the creation of singularities and horizons, due to the interaction, and the lens effect due to a beam-like gravitational wave are discussed
Critical Effects in Gravitational Collapse
International Nuclear Information System (INIS)
Chmaj, T.
2000-01-01
The models of gravitational collapse of a dynamical system are investigated by means of the Einstein equations. Different types conjunctions to gravitational field are analyzed and it is shown that in the case of week scalar field (low energy density) the system evaluated to flat space while in the case of strong field (high energy density) to black hole
Conservation laws and gravitational radiation
International Nuclear Information System (INIS)
Rastall, P.
1977-01-01
A total stress-momentum is defined for gravitational fields and their sources. The Lagrangian density is slightly different from that in the previous version of the theory, and the field equations are considerably simplified. The post-Newtonian approximation of the theory is unchanged. The existence and nature of weak gravitational waves are discussed. (author)
Vignettes in Gravitation and Cosmology
Sriramkumar, L
2012-01-01
This book comprises expository articles on different aspects of gravitation and cosmology that are aimed at graduate students. The topics discussed are of contemporary interest assuming only an elementary introduction to gravitation and cosmology. The presentations are to a certain extent pedagogical in nature, and the material developed is not usually found in sufficient detail in recent textbooks in these areas.
International Nuclear Information System (INIS)
Collar, J.I.; Girard, T.A.; Miley, H.S.; Waysand, G.
2000-01-01
The Superheated Instrument for Massive Particle searches (SIMPLE 2000) will consist of an array of 8-16 large active mass (approx. 15 g) superheated droplet detectors (SDDs) to be installed in the new underground laboratory of Rustrel-Pays d'Apt. Several factors make the use of SDDs an attractive approach for the detection of weakly interacting massive particles (WIMPs), namely their intrinsic insensitivity to minimally ionizing particles, high fluorine content, low cost and operation at near ambient pressure and temperature. We comment here on the fabrication, calibration and already-competitive first limits from prototype SDDs for SIMPLE, as well as on the expected immediate increase in sensitivity of the programme, which aims at an exposure of > 25 kg day during 2000. The ability of modest-mass fluorine-rich detectors to investigate regions of neutralino parameter space beyond the reach of the most ambitious cryogenic projects is pointed out. (author)
International Nuclear Information System (INIS)
Collar, J I; Puibasset, J; Girard, T A; Limagne, D; Miley, H S; Waysand, G
2000-01-01
The Superheated Instrument for Massive Particle searches (SIMPLE 2000) will consist of an array of 8-16 large active mass (≅15 g) superheated droplet detectors (SDDs) to be installed in the new underground laboratory of Rustrel-Pays d'Apt. Several factors make the use of SDDs an attractive approach for the detection of weakly interacting massive particles (WIMPs), namely their intrinsic insensitivity to minimally ionizing particles, high fluorine content, low cost and operation at near ambient pressure and temperature. We comment here on the fabrication, calibration and already-competitive first limits from prototype SDDs for SIMPLE, as well as on the expected immediate increase in sensitivity of the programme, which aims at an exposure of > 25 kg day during 2000. The ability of modest-mass fluorine-rich detectors to investigate regions of neutralino parameter space beyond the reach of the most ambitious cryogenic projects is pointed out
Are the gravitational waves quantised?
International Nuclear Information System (INIS)
Lovas, Istvan
1997-01-01
If the gravitational waves are classical objects then the value of their correlation function is 1. If they are quantised, then there exist two possibilities: the gravitational waves are either completely coherent, then their correlation function is again 1, or they are only partially coherent, then their correlation function is expected to deviate from 1. Unfortunately such a deviation is not a sufficient proof for the quantised character of the gravitational waves. If the gravitational waves are quantised and generated by the change of the background metrical then they can be in a squeezed state. In a squeezed state there is a chance for the correlation between the phase of the wave and the quantum fluctuations. The observation of such a correlation would be a genuine proof of the quantised character of the gravitational wave
International Nuclear Information System (INIS)
Le Guillou, L.
2003-09-01
The nature of dark matter is an open question. The search for gravitational microlensing effects is an interesting tool because this effect is strongly dependent on the mass of objects whether they are luminous or not, however this detection method is only sensitive to compact forms of dark matter (MACHOS - massive astronomical halo compact objects), and as a consequence no-baryonic matter like neutrinos or WIMPS (weakly interacting massive particles) can not be detected this way. In the first chapter the author reviews the plausible candidates to black matter. The use of the microlensing effect as a probe of the galactic halo is presented in the second chapter. The third chapter is dedicated to the series of experiments worldwide that focus on the detection of MACHOS. In the fourth chapter the author shows how the DIA (difference image analysis) method may be promising in the study of gravitational microlensing effects. The main part of this work has been the use of the DIA method to process five-year data set collected by the Eros experiment in the small Magellanic cloud (SMC). The data processing line and the results are presented in the fifth and sixth chapters. The results are consistent with previous results given by Eros and they confirm the disparity of the durations of micro-lenses detected in the large and small Magellanic clouds. (A.C.)
Gravitational wave experiments
Hamilton, W O
1993-01-01
There were three oral sessions and one poster session for Workshop C1 on Gravitational Wave Experiments. There was also an informal experimental roundtable held one after- noon. The ﬁrst two oral sessions were devoted mainly to progress reports from various interferometric and bar detector groups. A total of 15 papers were presented in these two sessions. The third session of Workshop C1 was devoted primarily to theoretical and experimental investigations associated with the proposed interferometric detectors. Ten papers were presented in this session. In addition, there were a total of 13 papers presented in the poster session. There was some overlap between the presentations in the third oral session and the posters since only two of the serious posters were devoted to technology not pertinent to interferometers. In general, the papers showed the increasing maturity of the experimental aspects of the ﬁeld since most presented the results of completed investigations rather than making promises of wonderf...
Relativistic gravitational instabilities
International Nuclear Information System (INIS)
Schutz, B.F.
1987-01-01
The purpose of these lectures is to review and explain what is known about the stability of relativistic stars and black holes, with particular emphases on two instabilities which are due entirely to relativistic effects. The first of these is the post-Newtonian pulsational instability discovered independently by Chandrasekhar (1964) and Fowler (1964). This effectively ruled out the then-popular supermassive star model for quasars, and it sets a limit to the central density of white dwarfs. The second instability was also discovered by Chandrasekhar (1970): the gravitational wave induced instability. This sets an upper bound on the rotation rate of neutron stars, which is near that of the millisecond pulsar PSR 1937+214, and which is beginning to constrain the equation of state of neutron matter. 111 references, 5 figures
Atomic and gravitational clocks
International Nuclear Information System (INIS)
Canuto, V.M.; City Coll., New York; Goldman, I.
1982-01-01
Atomic and gravitational clocks are governed by the laws of electrodynamics and gravity respectively. While the strong equivalence principle (SEP) assumes that the two clocks have been synchronous at all times, recent planetary data seem to suggest a possible violation of the SEP. Past analysis of the implications of an SEP violation on different physical phenomena revealed no disagreement. However, these studies assumed that the two different clocks can be consistently constructed within the framework. The concept of scale invariance, and the physical meaning of different systems of units, are now reviewed and the construction of two clocks that do not remain synchronous-whose rates are related by a non-constant function βsub(a)-is demonstrated. The cosmological character of βsub(a) is also discussed. (author)
International Nuclear Information System (INIS)
Lopresto, J.C.; Chapman, R.D.
1980-01-01
Wavelengths of solar spectrum lines should be shifted toward the red by the Sun's gravitational field as predicted by metric theories of gravity according to the principle of equivalence. Photographic wavelengths of 738 solar Fe 1 lines and their corresponding laboratory wavelengths have been studied. The measured solar wavelength minus the laboratory wavelength (Δlambdasub(observed)) averaged for the strong lines agrees well with the theoretically predicted shift (Δlambdasub(theoretical)). Studies show that the departures depend on line strength. No dependence of the departures on wavelength was found within the existing data. By studying strong lines over a wide spectral range, velocity shifts caused by the complex motions in the solar atmosphere seem to affect the results in a minimal fashion. (orig.)
Observations of gravitational lenses
International Nuclear Information System (INIS)
Fort, B.
1990-01-01
During the last tow years a burst of results has come from radio and optical surveys of ''galaxy lenses'' (where the main deflector is a galaxy). These are reviewed. On the other hand, in September 1985 we pointed out a very strange blue ring-like structure on a Charge-Coupled Device image of the cluster of galaxies Abell 370. This turned out to be Einstein arcs discovery. Following this discovery, new observational results have shown that many rich clusters of galaxies can produce numerous arclets: tangentially distorted images of an extremely faint galaxy population probably located at redshift larger than 1. This new class of gravitational lenses proves to be an important observational topic and this will be discussed in the second part of the paper. (author)
Feynman Lectures on Gravitation
International Nuclear Information System (INIS)
Borcherds, P
2003-01-01
In the early 1960s Feynman lectured to physics undergraduates and, with the assistance of his colleagues Leighton and Sands, produced the three-volume classic Feynman Lectures in Physics. These lectures were delivered in the mornings. In the afternoons Feynman was giving postgraduate lectures on gravitation. This book is based on notes compiled by two students on that course: Morinigo and Wagner. Their notes were checked and approved by Feynman and were available at Caltech. They have now been edited by Brian Hatfield and made more widely available. The book has a substantial preface by John Preskill and Kip Thorne, and an introduction entitled 'Quantum Gravity' by Brian Hatfield. You should read these before going on to the lectures themselves. Preskill and Thorne identify three categories of potential readers of this book. 1. Those with a postgraduate training in theoretical physics. 2. 'Readers with a solid undergraduate training in physics'. 3. 'Admirers of Feynman who do not have a strong physics background'. The title of the book is perhaps misleading: readers in category 2 who think that this book is an extension of the Feynman Lectures in Physics may be disappointed. It is not: it is a book aimed mainly at those in category 1. If you want to get to grips with gravitation (and general relativity) then you need to read an introductory text first e.g. General Relativity by I R Kenyon (Oxford: Oxford University Press) or A Unified Grand Tour of Theoretical Physics by Ian D Lawrie (Bristol: IoP). But there is no Royal Road. As pointed out in the preface and in the introduction, the book represents Feynman's thinking about gravitation some 40 years ago: the lecture course was part of his attempts to understand the subject himself, and for readers in all three categories it is this that makes the book one of interest: the opportunity to observe how a great physicist attempts to tackle some of the hardest challenges of physics. However, the book was written 40
Weight, gravitation, inertia, and tides
Pujol, Olivier; Lagoute, Christophe; Pérez, José-Philippe
2015-11-01
This paper deals with the factors that influence the weight of an object near the Earth's surface. They are: (1) the Earth's gravitational force, (2) the centrifugal force due to the Earth's diurnal rotation, and (3) tidal forces due to the gravitational field of the Moon and Sun, and other solar system bodies to a lesser extent. Each of these three contributions is discussed and expressions are derived. The relationship between weight and gravitation is thus established in a direct and pedagogical manner readily understandable by undergraduate students. The analysis applies to the Newtonian limit of gravitation. The derivation is based on an experimental (or operational) definition of weight, and it is shown that it coincides with the Earth’s gravitational force modified by diurnal rotation around a polar axis and non-uniformity of external gravitational bodies (tidal term). Two examples illustrate and quantify these modifications, respectively the Eötvös effect and the oceanic tides; tidal forces due to differential gravitation on a spacecraft and an asteroid are also proposed as examples. Considerations about inertia are also given and some comments are made about a widespread, yet confusing, explanation of tides based on a centrifugal force. Finally, the expression of the potential energy of the tide-generating force is established rigorously in the appendix.
Weight, gravitation, inertia, and tides
International Nuclear Information System (INIS)
Pujol, Olivier; Lagoute, Christophe; Pérez, José-Philippe
2015-01-01
This paper deals with the factors that influence the weight of an object near the Earth's surface. They are: (1) the Earth's gravitational force, (2) the centrifugal force due to the Earth's diurnal rotation, and (3) tidal forces due to the gravitational field of the Moon and Sun, and other solar system bodies to a lesser extent. Each of these three contributions is discussed and expressions are derived. The relationship between weight and gravitation is thus established in a direct and pedagogical manner readily understandable by undergraduate students. The analysis applies to the Newtonian limit of gravitation. The derivation is based on an experimental (or operational) definition of weight, and it is shown that it coincides with the Earth’s gravitational force modified by diurnal rotation around a polar axis and non-uniformity of external gravitational bodies (tidal term). Two examples illustrate and quantify these modifications, respectively the Eötvös effect and the oceanic tides; tidal forces due to differential gravitation on a spacecraft and an asteroid are also proposed as examples. Considerations about inertia are also given and some comments are made about a widespread, yet confusing, explanation of tides based on a centrifugal force. Finally, the expression of the potential energy of the tide-generating force is established rigorously in the appendix. (paper)
Gravitation. [Book on general relativity
Misner, C. W.; Thorne, K. S.; Wheeler, J. A.
1973-01-01
This textbook on gravitation physics (Einstein's general relativity or geometrodynamics) is designed for a rigorous full-year course at the graduate level. The material is presented in two parallel tracks in an attempt to divide key physical ideas from more complex enrichment material to be selected at the discretion of the reader or teacher. The full book is intended to provide competence relative to the laws of physics in flat space-time, Einstein's geometric framework for physics, applications with pulsars and neutron stars, cosmology, the Schwarzschild geometry and gravitational collapse, gravitational waves, experimental tests of Einstein's theory, and mathematical concepts of differential geometry.
Gravitational effects of global textures
International Nuclear Information System (INIS)
Noetzold, D.
1990-03-01
A solution for the dynamics of global textures is obtained. Their gravitational field during the collapse and the subsequent evolution is found to be given solely by a space-time dependent ''deficit solid angle.'' The frequency shift of photons traversing this gravitational field is calculated. The space-time dependent texture metric locally contracts the volume of three-space and thereby induces overdensities in homogeneous matter distributions. There are no gravitational forces unless matter has a nonzero angular momentum with respect to the texture origin which would be the case for moving textures
Anisotropic solutions by gravitational decoupling
Ovalle, J.; Casadio, R.; da Rocha, R.; Sotomayor, A.
2018-02-01
We investigate the extension of isotropic interior solutions for static self-gravitating systems to include the effects of anisotropic spherically symmetric gravitational sources by means of the gravitational decoupling realised via the minimal geometric deformation approach. In particular, the matching conditions at the surface of the star with the outer Schwarzschild space-time are studied in great detail, and we describe how to generate, from a single physically acceptable isotropic solution, new families of anisotropic solutions whose physical acceptability is also inherited from their isotropic parent.
Anisotropic solutions by gravitational decoupling
Energy Technology Data Exchange (ETDEWEB)
Ovalle, J. [Silesian University in Opava, Institute of Physics and Research Centre of Theoretical Physics and Astrophysics, Faculty of Philosophy and Science, Opava (Czech Republic); Universidad Simon Bolivar, Departamento de Fisica, Caracas (Venezuela, Bolivarian Republic of); Casadio, R. [Alma Mater Universita di Bologna, Dipartimento di Fisica e Astronomia, Bologna (Italy); Istituto Nazionale di Fisica Nucleare, Bologna (Italy); Rocha, R. da [Universidade Federal do ABC (UFABC), Centro de Matematica, Computacao e Cognicao, Santo Andre, SP (Brazil); Sotomayor, A. [Universidad de Antofagasta, Departamento de Matematicas, Antofagasta (Chile)
2018-02-15
We investigate the extension of isotropic interior solutions for static self-gravitating systems to include the effects of anisotropic spherically symmetric gravitational sources by means of the gravitational decoupling realised via the minimal geometric deformation approach. In particular, the matching conditions at the surface of the star with the outer Schwarzschild space-time are studied in great detail, and we describe how to generate, from a single physically acceptable isotropic solution, new families of anisotropic solutions whose physical acceptability is also inherited from their isotropic parent. (orig.)
Gravitational radiation quadrupole formula is valid for gravitationally interacting systems
International Nuclear Information System (INIS)
Walker, M.; Will, C.M.
1980-01-01
An argument is presented for the validity of the quadrupole formula for gravitational radiation energy loss in the far field of nearly Newtonian (e.g., binary stellar) systems. This argument differs from earlier ones in that it determines beforehand the formal accuracy of approximation required to describe gravitationally self-interacting systems, uses the corresponding approximate equation of motion explicitly, and evaluate the appropriate asymptotic quantities by matching along the correct space-time light cones
International Nuclear Information System (INIS)
Arnaud, Quentin
2015-01-01
The EDELWEISS-III experiment is dedicated to direct dark matter searches aiming at detecting WIMPS. These massive particles should account for more than 80% of the mass of the Universe and be detectable through their elastic scattering on nuclei constituting the absorber of a detector. As the expected WIMP event rate is extremely low ( 20 GeV). Finally, a study dedicated to the optimization of solid cryogenic detectors to low mass WIMP searches is presented. This study is performed on simulated data using a statistical test based on a profiled likelihood ratio that allows for statistical background subtraction and spectral shape discrimination. This study combined with results from Run308, has lead the EDELWEISS experiment to favor low mass WIMP searches ( [fr
Stochastic backgrounds of gravitational waves
International Nuclear Information System (INIS)
Maggiore, M.
2001-01-01
We review the motivations for the search for stochastic backgrounds of gravitational waves and we compare the experimental sensitivities that can be reached in the near future with the existing bounds and with the theoretical predictions. (author)
Gravitational scattering of electromagnetic radiation
Brooker, J. T.; Janis, A. I.
1980-01-01
The scattering of electromagnetic radiation by linearized gravitational fields is studied to second order in a perturbation expansion. The incoming electromagnetic radiation can be of arbitrary multipole structure, and the gravitational fields are also taken to be advanced fields of arbitrary multipole structure. All electromagnetic multipole radiation is found to be scattered by gravitational monopole and time-varying dipole fields. No case has been found, however, in which any electromagnetic multipole radiation is scattered by gravitational fields of quadrupole or higher-order multipole structure. This lack of scattering is established for infinite classes of special cases, and is conjectured to hold in general. The results of the scattering analysis are applied to the case of electromagnetic radiation scattered by a moving mass. It is shown how the mass and velocity may be determined by a knowledge of the incident and scattered radiation.
Highlights in gravitation and cosmology
International Nuclear Information System (INIS)
Iyer, B.R.; Kembhavi, Ajit; Narlikar, J.V.; Vishveshwara, C.V.
1988-01-01
This book assesses research into gravitation and cosmology by examining the subject from various viewpoints: the classical and quantum pictures, along with the cosmological and astrophysical applications. There are 35 articles by experts of international standing. Each defines the state of the art and contains a concise summary of our present knowledge of a facet of gravitational physics. These edited papers are based on those first given at an international conference held in Goa, India at the end of 1987. The following broad areas are covered: classical relativity, quantum gravity, cosmology, black holes, compact objects, gravitational radiation and gravity experiments. In this volume there are also summaries of discussions on the following special topics: exact solutions of cosmological equations, mathematical aspects of general relativity, the early universe, and quantum gravity. For research workers in cosmology and gravitation this reference book provides a broad view of present achievements and current problems. (author)
International Nuclear Information System (INIS)
Logunov, A.A.
1989-01-01
The author believes that the General Relativity Theory (GRT) suffers from a substantial deficiency since it ignors the fundamental laws of conservation of energy. Einstein neglected the classical concept of the field due to his belief in the truth of the principle of equivalence between forces of inertid gravitation. This equivalence leads, as the author says, to nonequivalence of these forces, making GRT logically contradictory from the physical point of view. The author considers GRT as a certain stage in the course of the study of space-time and gravitation, and suggests a new theory called the Relativistic Theory of Gravitation (RTG) which obeys the fundamental laws of conservation, and which is justified in some of its aspects by astronomical observations. RTG does not suffer from some deficiencies met in Einsteins theory. One is nonunique predictions of gravitation effects within the boundaries of the solar system. Also, RTG refuses some hypothesis as that of black holes. 7 refs
Are the gravitational waves quantised?
International Nuclear Information System (INIS)
Lovas, I.
1998-01-01
The question whether gravitational waves are quantised or not can be investigated by the help of correlation measurements. If the gravitational waves are classical objects then the value of their correlation function is 1. However, if they are quantised, then there exist two possibilities: the gravitational waves are either completely coherent, then the correlation function is again 1, or they are partially coherent, then the correlation function is expected to deviate from 1. If the gravitational waves are generated by the change of the background metrics then they can be in a squeezed state. In a squeezed state there is a chance for the correlation between the phase of the wave and the quantum fluctuations. (author)
Heuristic introduction to gravitational waves
International Nuclear Information System (INIS)
Sandberg, V.D.
1982-01-01
The purpose of this article is to provide a rough and somewhat heuristic theoretical background and introduction to gravitational radiation, its generation, and its detection based on Einstein's general theory of relativity
Academic Training: Gravitational Waves Astronomy
2006-01-01
2006-2007 ACADEMIC TRAINING PROGRAMME LECTURE SERIES 16, 17, 18 October from 11:00 to 12:00 - Main Auditorium, bldg. 500 Gravitational Waves Astronomy M. LANDRY, LIGO Hanford Observatory, Richland, USA Gravitational wave astronomy is expected to become an observational field within the next decade. First direct detection of gravitational waves is possible with existing terrestrial-based detectors, and highly probable with proposed upgrades. In this three-part lecture series, we give an overview of the field, including material on gravitional wave sources, detection methods, some details of interferometric detectors, data analysis methods, and current results from observational data-taking runs of the LIGO and GEO projects. ENSEIGNEMENT ACADEMIQUE ACADEMIC TRAINING Françoise Benz 73127 academic.training@cern.ch If you wish to participate in one of the following courses, please tell to your supervisor and apply electronically from the course description pages that can be found on the Web at: http://www...
Shearfree cylindrical gravitational collapse
International Nuclear Information System (INIS)
Di Prisco, A.; Herrera, L.; MacCallum, M. A. H.; Santos, N. O.
2009-01-01
We consider diagonal cylindrically symmetric metrics, with an interior representing a general nonrotating fluid with anisotropic pressures. An exterior vacuum Einstein-Rosen spacetime is matched to this using Darmois matching conditions. We show that the matching conditions can be explicitly solved for the boundary values of metric components and their derivatives, either for the interior or exterior. Specializing to shearfree interiors, a static exterior can only be matched to a static interior, and the evolution in the nonstatic case is found to be given in general by an elliptic function of time. For a collapsing shearfree isotropic fluid, only a Robertson-Walker dust interior is possible, and we show that all such cases were included in Cocke's discussion. For these metrics, Nolan and Nolan have shown that the matching breaks down before collapse is complete, and Tod and Mena have shown that the spacetime is not asymptotically flat in the sense of Berger, Chrusciel, and Moncrief. The issues about energy that then arise are revisited, and it is shown that the exterior is not in an intrinsic gravitational or superenergy radiative state at the boundary.
Quantum biological gravitational wave detectors
International Nuclear Information System (INIS)
Kopvillem, U.Kh.
1985-01-01
A possibility of producing biological detectors of gravitational waves is considered. High sensitivity of biological systems to outer effects can be ensured by existence of molecule subgroups in Dicke states. Existence of clusters in Dicke state-giant electric dipoles (GED) is supposed in the Froehlich theory. Comparison of biological and physical detectors shows that GED systems have unique properties for detection of gravitational waves if the reception range is narrow
General relativity and gravitation, 1989
International Nuclear Information System (INIS)
Ashby, N.; Bartlett, D.F.; Wyss, W.
1990-01-01
This volume records the lectures and symposia of the 12th International Conference on General Relativity and Gravitation. Plenary lecturers reviewed the major advances since the previous conference in 1986. The reviews cover classical and quantum theory of gravity, colliding gravitational waves, gravitational lensing, relativistic effects on pulsars, tests of the inverse square law, numerical relativity, cosmic microwave background radiation, experimental tests of gravity theory, gravitational wave detectors, and cosmology. The plenary lectures are complemented by summaries of symposia, provided by the chairmen. Almost 700 contributed papers were presented at these and they cover an even wider range of topics than the plenary talks. The book provides a comprehensive guide to research activity in both experimental and theoretical gravitation and its applications in astrophysics and cosmology. It will be essential reading for research workers in these fields, as well as theoretical and experimental physicists, astronomers, and mathematicians who wish to be acquainted with modern developments in gravitational theory and general relativity. All the papers and summaries of the workshop sessions are indexed separately. (16 united talks, 20 workshop sessions). (author)
Energy Technology Data Exchange (ETDEWEB)
Yvon, D
2000-06-01
The author reviews his contributions to the use of bolometers (cryogenic detectors) for the detection of wimps (weakly interactive massive particles). Wimps are detected through their elastic scattering on the nuclei of the detector, a heat signal, luminescence or ionization can be simultaneously detected (at least 2 signals are necessary to discard photon interactions). Bolometers operate at low temperatures (< 50 mK) so they allow very low detection threshold and resolution (< keV) with a full energy conversion for recoiling nuclei. In Saclay the technology of bolometers based on simultaneous detection of heat and ionisation has been developed and improvements have been studied (NbSi thin films bolometers). The first results obtained in the framework of the Edelweiss collaboration are presented. Other developments based on infra-red bolometry (Planck surveyor and Archeops projects) are briefly described. In an appendix the operating principle of a bolometer is presented. (A.C.)
Nuclear Quantum Gravitation - The Correct Theory
Kotas, Ronald
2016-03-01
Nuclear Quantum Gravitation provides a clear, definitive Scientific explanation of Gravity and Gravitation. It is harmonious with Newtonian and Quantum Mechanics, and with distinct Scientific Logic. Nuclear Quantum Gravitation has 10 certain, Scientific proofs and 21 more good indications. With this theory the Physical Forces are obviously Unified. See: OBSCURANTISM ON EINSTEIN GRAVITATION? http://www.santilli- Foundation.org/inconsistencies-gravitation.php and Einstein's Theory of Relativity versus Classical Mechanics http://www.newtonphysics.on.ca/einstein/
Confusion noise from LISA capture sources
International Nuclear Information System (INIS)
Barack, Leor; Cutler, Curt
2004-01-01
Captures of compact objects (COs) by massive black holes (MBHs) in galactic nuclei will be an important source for LISA, the proposed space-based gravitational wave (GW) detector. However, a large fraction of captures will not be individually resolvable - either because they are too distant, have unfavorable orientation, or have too many years to go before final plunge - and so will constitute a source of 'confusion noise', obscuring other types of sources. In this paper we estimate the shape and overall magnitude of the GW background energy spectrum generated by CO captures. This energy spectrum immediately translates to a spectral density S h capt (f) for the amplitude of capture-generated GWs registered by LISA. The overall magnitude of S h capt (f) is linear in the CO capture rates, which are rather uncertain; therefore we present results for a plausible range of rates. S h capt (f) includes the contributions from both resolvable and unresolvable captures, and thus represents an upper limit on the confusion noise level. We then estimate what fraction of S h capt (f) is due to unresolvable sources and hence constitutes confusion noise. We find that almost all of the contribution to S h capt (f) coming from white dwarf and neutron star captures, and at least ∼30% of the contribution from black hole captures, is from sources that cannot be individually resolved. Nevertheless, we show that the impact of capture confusion noise on the total LISA noise curve ranges from insignificant to modest, depending on the rates. Capture rates at the high end of estimated ranges would raise LISA's overall (effective) noise level [fS h eff (f)] 1/2 by at most a factor ∼2 in the frequency range 1-10 mHz, where LISA is most sensitive. While this slightly elevated noise level would somewhat decrease LISA's sensitivity to other classes of sources, we argue that, overall, this would be a pleasant problem for LISA to have: It would also imply that detection rates for CO captures
Collar, J I; Girard, T A; Limagne, D; Miley, H S; Waysand, G
2000-01-01
SIMPLE 2000 ({\\underline S}uperheated {\\underline I}nstrument for {\\underline M}assive {\\underline P}artic{\\underline {LE}} searches) will consist of an array of eight to sixteen large active mass ($\\sim15$ g) Superheated Droplet Detectors(SDDs) to be installed in the new underground laboratory of Rustrel-Pays d'Apt. Several factors make of SDDs an attractive approach for the detection of Weakly Interacting Massive Particles (WIMPs), namely their intrinsic insensitivity to minimum ionizing particles, high fluorine content, low cost and operation near ambient pressure and temperature. We comment here on the fabrication, calibration and already-competitive first limits from SIMPLE prototype SDDs, as well as on the expected immediate increase in sensitivity of the program, which aims at an exposure of $>$25 kg-day during the year 2000. The ability of modest-mass fluorine-rich detectors to explore regions of neutralino parameter space beyond the reach of the most ambitious cryogenic projects is pointed out.
A new geometrical gravitational theory
International Nuclear Information System (INIS)
Obata, T.; Chiba, J.; Oshima, H.
1981-01-01
A geometrical gravitational theory is developed. The field equations are uniquely determined apart from one unknown dimensionless parameter ω 2 . It is based on an extension of the Weyl geometry, and by the extension the gravitational coupling constant and the gravitational mass are made to be dynamical and geometrical. The fundamental geometrical objects in the theory are a metric gsub(μν) and two gauge scalars phi and psi. The theory satisfies the weak equivalence principle, but breaks the strong one generally. u(phi, psi) = phi is found out on the assumption that the strong one keeps holding good at least for bosons of low spins. Thus there is the simple correspondence between the geometrical objects and the gravitational objects. Since the theory satisfies the weak one, the inertial mass is also dynamical and geometrical in the same way as is the gravitational mass. Moreover, the cosmological term in the theory is a coscalar of power -4 algebraically made of psi and u(phi, psi), so it is dynamical, too. Finally spherically symmetric exact solutions are given. The permissible range of the unknown parameter ω 2 is experimentally determined by applying the solutions to the solar system. (author)
Modified entropic gravitation in superconductors
International Nuclear Information System (INIS)
Matos, Clovis Jacinto de
2012-01-01
Verlinde recently developed a theoretical account of gravitation in terms of an entropic force. The central element in Verlinde’s derivation is information and its relation with entropy through the holographic principle. The application of this approach to the case of superconductors requires to take into account that information associated with superconductor’s quantum vacuum energy is not stored on Planck size surface elements, but in four volume cells with Planck-Einstein size. This has profound consequences on the type of gravitational force generated by the quantum vacuum condensate in superconductors, which is closely related with the cosmological repulsive acceleration responsible for the accelerated expansion of the Universe. Remarkably this new gravitational type force depends on the level of breaking of the weak equivalence principle for cooper pairs in a given superconducting material, which was previously derived by the author starting from similar principles. It is also shown that this new gravitational force can be interpreted as a surface force. The experimental detection of this new repulsive gravitational-type force appears to be challenging.
Gravitational waves from supernova matter
International Nuclear Information System (INIS)
Scheidegger, S; Whitehouse, S C; Kaeppeli, R; Liebendoerfer, M
2010-01-01
We have performed a set of 11 three-dimensional magnetohydrodynamical (MHD) core-collapse supernova simulations in order to investigate the dependences of the gravitational wave signal on the progenitor's initial conditions. We study the effects of the initial central angular velocity and different variants of neutrino transport. Our models are started up from a 15M o-dot progenitor and incorporate an effective general relativistic gravitational potential and a finite temperature nuclear equation of state. Furthermore, the electron flavour neutrino transport is tracked by efficient algorithms for the radiative transfer of massless fermions. We find that non- and slowly rotating models show gravitational wave emission due to prompt- and lepton driven convection that reveals details about the hydrodynamical state of the fluid inside the protoneutron stars. Furthermore we show that protoneutron stars can become dynamically unstable to rotational instabilities at T/|W| values as low as ∼2% at core bounce. We point out that the inclusion of deleptonization during the postbounce phase is very important for the quantitative gravitational wave (GW) prediction, as it enhances the absolute values of the gravitational wave trains up to a factor of ten with respect to a lepton-conserving treatment.
Relic gravitational waves and cosmology
International Nuclear Information System (INIS)
Grishchuk, Leonid P
2005-01-01
The paper begins with a brief recollection of interactions of the author with Ya B Zeldovich in the context of the study of relic gravitational waves. The principles and early results on the quantum-mechanical generation of cosmological perturbations are then summarized. The expected amplitudes of relic gravitational waves differ in various frequency windows, and therefore the techniques and prospects of their detection are distinct. One section of the paper describes the present state of efforts in direct detection of relic gravitational waves. Another section is devoted to indirect detection via the anisotropy and polarization measurements of the cosmic microwave background (CMB) radiation. It is emphasized throughout the paper that the inference about the existence and expected amount of relic gravitational waves is based on a solid theoretical foundation and the best available cosmological observations. It is also explained in great detail what went wrong with the so-called 'inflationary gravitational waves', whose amount is predicted by inflationary theorists to be negligibly small, thus depriving them of any observational significance. (reviews of topical problems)
Energy Technology Data Exchange (ETDEWEB)
Hennings-Yeomans, Raul [Case Western Reserve Univ., Cleveland, OH (United States)
2009-02-01
Non-baryonic dark matter makes one quarter of the energy density of the Universe and is concentrated in the halos of galaxies, including the Milky Way. The Weakly Interacting Massive Particle (WIMP) is a dark matter candidate with a scattering cross section with an atomic nucleus of the order of the weak interaction and a mass comparable to that of an atomic nucleus. The Cryogenic Dark Matter Search (CDMS-II) experiment, using Ge and Si cryogenic particle detectors at the Soudan Underground Laboratory, aims to directly detect nuclear recoils from WIMP interactions. This thesis presents the first 5 tower WIMP-search results from CDMS-II, an estimate of the cosmogenic neutron backgrounds expected at the Soudan Underground Laboratory, and a proposal for a new measurement of high-energy neutrons underground to benchmark the Monte Carlo simulations. Based on the non-observation of WIMPs and using standard assumptions about the galactic halo [68], the 90% C.L. upper limit of the spin-independent WIMPnucleon cross section for the first 5 tower run is 6.6 × 10^{-44}cm^{2} for a 60 GeV/c^{2} WIMP mass. A combined limit using all the data taken at Soudan results in an upper limit of 4.6×10^{-44}cm^{2} at 90% C.L.for a 60 GeV/c2 WIMP mass. This new limit corresponds to a factor of ~3 improvement over any previous CDMS-II limit and a factor of ~2 above 60 GeV/c ^{2} better than any other WIMP search to date. This thesis presents an estimation, based on Monte Carlo simulations, of the nuclear recoils produced by cosmic-ray muons and their secondaries (at the Soudan site) for a 5 tower Ge and Si configuration as well as for a 7 supertower array. The results of the Monte Carlo are that CDMS-II should expect 0.06 ± 0.02+0.18 -0.02 /kgyear unvetoed single nuclear recoils in Ge for the 5 tower configuration, and 0.05 ± 0.01+0.15 -0.02 /kg-year for the 7 supertower configuration. The systematic error is based on the available
Chirality and gravitational parity violation.
Bargueño, Pedro
2015-06-01
In this review, parity-violating gravitational potentials are presented as possible sources of both true and false chirality. In particular, whereas phenomenological long-range spin-dependent gravitational potentials contain both truly and falsely chiral terms, it is shown that there are models that extend general relativity including also coupling of fermionic degrees of freedom to gravity in the presence of torsion, which give place to short-range truly chiral interactions similar to that usually considered in molecular physics. Physical mechanisms which give place to gravitational parity violation together with the expected size of the effects and their experimental constraints are discussed. Finally, the possible role of parity-violating gravity in the origin of homochirality and a road map for future research works in quantum chemistry is presented. © 2015 Wiley Periodicals, Inc.
Post-Newtonian gravitational bremsstrahlung
International Nuclear Information System (INIS)
Turner, M.; Will, C.M.
1978-01-01
We present formulae and numerical results for the gravitational radiation emitted during a low-deflection encounter between two massive bodies (''gravitational bremsstrahlung''). Our results are valid through post-Newtonian order within general relativity. We discuss in detail the gravitational waveform (transverse-traceless part of the metric perturbation tensor), the toal luminosity and total emitted energy, the angular distribution of emitted energy (antenna pattern), and the frequency spectrum. We also present a method of ''boosting'' the accuracy of these quantities to post-3/2-Newtonian order. A numerical comparison of our results with those of Peters and of Kovacs and Thorne shows that the post-Newtonian method is reliable to better than 0.1% at v=0.1c, to a few percent at v=0.35c, and to 10--20% at v=0.5c. We also compare our results with those of Smarr
Sparse representation of Gravitational Sound
Rebollo-Neira, Laura; Plastino, A.
2018-03-01
Gravitational Sound clips produced by the Laser Interferometer Gravitational-Wave Observatory (LIGO) and the Massachusetts Institute of Technology (MIT) are considered within the particular context of data reduction. We advance a procedure to this effect and show that these types of signals can be approximated with high quality using significantly fewer elementary components than those required within the standard orthogonal basis framework. Furthermore, a local measure sparsity is shown to render meaningful information about the variation of a signal along time, by generating a set of local sparsity values which is much smaller than the dimension of the signal. This point is further illustrated by recourse to a more complex signal, generated by Milde Science Communication to divulge Gravitational Sound in the form of a ring tone.
Gravitational Waves and Dark Energy
Directory of Open Access Journals (Sweden)
Peter L. Biermann
2014-12-01
Full Text Available The idea that dark energy is gravitational waves may explain its strength and its time-evolution. A possible concept is that dark energy is the ensemble of coherent bursts (solitons of gravitational waves originally produced when the first generation of super-massive black holes was formed. These solitons get their initial energy as well as keep up their energy density throughout the evolution of the universe by stimulating emission from a background, a process which we model by working out this energy transfer in a Boltzmann equation approach. New Planck data suggest that dark energy has increased in strength over cosmic time, supporting the concept here. The transit of these gravitational wave solitons may be detectable. Key tests include pulsar timing, clock jitter and the radio background.
Bead Capture on Magnetic Sensors in a Microfluidic System
DEFF Research Database (Denmark)
Østerberg, Frederik Westergaard; Dalslet, Bjarke Thomas; Damsgaard, Christian Danvad
2009-01-01
The accumulation of magnetic beads by gravitational sedimentation and magnetic capture on a planar Hall-effect sensor integrated in a microfluidic channel is studied systematically as a function of the bead concentration, the fluid flow rate, and the sensor bias current. It is demonstrated...... that the sedimentation flux is proportional to the bead concentration and has a power law relation to the fluid flow rate. The mechanisms for the bead accumulation are investigated and it is found that gravitational sedimentation dominates the bead accumulation, whereas the stability of the sedimented beads against...
Gravitational-wave mediated preheating
Energy Technology Data Exchange (ETDEWEB)
Alexander, Stephon [Center for Cosmic Origins and Department of Physics and Astronomy, Dartmouth College, Hanover, NH 03755 (United States); Cormack, Sam, E-mail: samuel.c.cormack.gr@dartmouth.edu [Center for Cosmic Origins and Department of Physics and Astronomy, Dartmouth College, Hanover, NH 03755 (United States); Marcianò, Antonino [Center for Field Theory and Particle Physics & Department of Physics, Fudan University, 200433 Shanghai (China); Yunes, Nicolás [Department of Physics, Montana State University, Bozeman, MT 59717 (United States); Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106 (United States)
2015-04-09
We propose a new preheating mechanism through the coupling of the gravitational field to both the inflaton and matter fields, without direct inflaton–matter couplings. The inflaton transfers power to the matter fields through interactions with gravitational waves, which are exponentially enhanced due to an inflation–graviton coupling. One such coupling is the product of the inflaton to the Pontryagin density, as in dynamical Chern–Simons gravity. The energy scales involved are constrained by requiring that preheating happens fast during matter domination.
Testing the gravitational instability hypothesis?
Babul, Arif; Weinberg, David H.; Dekel, Avishai; Ostriker, Jeremiah P.
1994-01-01
We challenge a widely accepted assumption of observational cosmology: that successful reconstruction of observed galaxy density fields from measured galaxy velocity fields (or vice versa), using the methods of gravitational instability theory, implies that the observed large-scale structures and large-scale flows were produced by the action of gravity. This assumption is false, in that there exist nongravitational theories that pass the reconstruction tests and gravitational theories with certain forms of biased galaxy formation that fail them. Gravitational instability theory predicts specific correlations between large-scale velocity and mass density fields, but the same correlations arise in any model where (a) structures in the galaxy distribution grow from homogeneous initial conditions in a way that satisfies the continuity equation, and (b) the present-day velocity field is irrotational and proportional to the time-averaged velocity field. We demonstrate these assertions using analytical arguments and N-body simulations. If large-scale structure is formed by gravitational instability, then the ratio of the galaxy density contrast to the divergence of the velocity field yields an estimate of the density parameter Omega (or, more generally, an estimate of beta identically equal to Omega(exp 0.6)/b, where b is an assumed constant of proportionality between galaxy and mass density fluctuations. In nongravitational scenarios, the values of Omega or beta estimated in this way may fail to represent the true cosmological values. However, even if nongravitational forces initiate and shape the growth of structure, gravitationally induced accelerations can dominate the velocity field at late times, long after the action of any nongravitational impulses. The estimated beta approaches the true value in such cases, and in our numerical simulations the estimated beta values are reasonably accurate for both gravitational and nongravitational models. Reconstruction tests
Linear interaction of gravitational waves
International Nuclear Information System (INIS)
Ciubotariu, C.D.
1992-01-01
Starting with the linearized Einstein equations written in the same form as Maxwell equations, a damping term is found in the wave equation. The analogy with the propagation of the electromagnetic wave in ohmic media is obvious if we introduce an 'ohmic relation' for gravitational interaction. The possibility of the amplification of gravitational waves by a suitable choice of the velocity field of a dust ('dust with negative viscosity'), for example by the use of the free-electron laser principle, is indicated. (Author)
Astrophysical sources of gravitational waves
Energy Technology Data Exchange (ETDEWEB)
Losurdo, G. E-mail: losurdo@galileo.pi.infn.it
2000-05-01
The interferometric detectors of gravitational waves (GW) (such as VIRGO and LIGO) will search for events in a frequency band within a few Hz and a few kHz, where several sources are expected to emit. In this talk we outline briefly the current theoretical knowledge on the emission of GW in events such as the coalescence of compact binaries, the gravitational collapse, the spinning of a neutron stars. Expected amplitudes are compared with the target sensitivity of the VIRGO/LIGO interferometric detectors.
Gravitational Anomaly and Transport Phenomena
International Nuclear Information System (INIS)
Landsteiner, Karl; Megias, Eugenio; Pena-Benitez, Francisco
2011-01-01
Quantum anomalies give rise to new transport phenomena. In particular, a magnetic field can induce an anomalous current via the chiral magnetic effect and a vortex in the relativistic fluid can also induce a current via the chiral vortical effect. The related transport coefficients can be calculated via Kubo formulas. We evaluate the Kubo formula for the anomalous vortical conductivity at weak coupling and show that it receives contributions proportional to the gravitational anomaly coefficient. The gravitational anomaly gives rise to an anomalous vortical effect even for an uncharged fluid.
General relativity and gravitational waves
Weber, Johanna
1961-01-01
An internationally famous physicist and electrical engineer, the author of this text was a pioneer in the investigation of gravitational waves. Joseph Weber's General Relativity and Gravitational Waves offers a classic treatment of the subject. Appropriate for upper-level undergraduates and graduate students, this text remains ever relevant. Brief but thorough in its introduction to the foundations of general relativity, it also examines the elements of Riemannian geometry and tensor calculus applicable to this field.Approximately a quarter of the contents explores theoretical and experimenta
The 'gravitating' tensor in the dualistic theory
International Nuclear Information System (INIS)
Mahanta, M.N.
1989-01-01
The exact microscopic system of Einstein-type field equations of the dualistic gravitation theory is investigated as well as an analysis of the modified energy-momentum tensor or so called 'gravitating' tensor is presented
The Theory of Vortical Gravitational Fields
Directory of Open Access Journals (Sweden)
Rabounski D.
2007-04-01
Full Text Available This paper treats of vortical gravitational fields, a tensor of which is the rotor of the general covariant gravitational inertial force. The field equations for a vortical gravitational field (the Lorentz condition, the Maxwell-like equations, and the continuity equation are deduced in an analogous fashion to electrodynamics. From the equations it is concluded that the main kind of vortical gravitational fields is “electric”, determined by the non-stationarity of the acting gravitational inertial force. Such a field is a medium for traveling waves of the force (they are different to the weak deformation waves of the space metric considered in the theory of gravitational waves. Standing waves of the gravitational inertial force and their medium, a vortical gravitational field of the “magnetic” kind, are exotic, since a non-stationary rotation of a space body (the source of such a field is a very rare phenomenon in the Universe.
Merging Black Holes and Gravitational Waves
Centrella, Joan
2009-01-01
This talk will focus on simulations of binary black hole mergers and the gravitational wave signals they produce. Applications to gravitational wave detection with LISA, and electronagnetic counterparts, will be highlighted.
Discovery of two new gravitation lens systems
International Nuclear Information System (INIS)
Guertler, J.
1988-01-01
The discovery of new quasar and radio galaxy double images produced by the gravitation lens effect is reported. The light deflecting galaxies acting as gravitational lenses could be made visible by means of image processing procedures
Parametric mechanisms for detecting gravitational waves
International Nuclear Information System (INIS)
Pustovoit, V.I.; Chernozatonskii, L.A.
1981-01-01
An intense electromagnetic wave and a gravitational wave can interact to effectively generate electromagnetic waves at sum and difference frequencies. The self-effect of a monochromatic electromagnetic wave through a gravitational field leads to third-harmonic generation
Resonant-bar gravitational radiation antennas
International Nuclear Information System (INIS)
Blair, D.G.
1987-01-01
This paper reviews the concept of gravitational radiation, and describes the worldwide research programme for the development of high-sensitivity resonant-bar antennas which are aimed at detecting gravitational radiation from astrophysical sources. (author)
International Nuclear Information System (INIS)
Biggerstaff, J.A.; Appleton, B.R.; Datz, S.; Moak, C.D.; Neelavathi, V.N.; Noggle, T.S.; Ritchie, R.H.; VerBeek, H.
1975-01-01
Some data are presented for radiative electron capture by fast moving ions. The radiative electron capture spectrum is shown for O 8+ in Ag, along with the energy dependence of the capture cross-section. A discrepancy between earlier data, theoretical prediction, and the present data is pointed out. (3 figs) (U.S.)
Gravitational states of antihydrogen near material surface
Energy Technology Data Exchange (ETDEWEB)
Voronin, Alexei Yu., E-mail: dr.a.voronin@gmail.com [P.N. Lebedev Physical Institute (Russian Federation); Froelich, Piotr [Uppsala University, Department of Quantum Chemistry (Sweden); Nesvizhevsky, Valery V. [Institut Laue-Langevin (ILL) (France)
2012-12-15
We present a theoretical study of the motion of antihydrogen atoms in the Earth's gravitational field near a material surface. We predict the existence of long-living quasistationary states of antihydrogen in a superposition of the gravitational and Casimir-van der Waals potentials of the surface. We suggest an interferometric method of measuring the energy difference between such gravitational states, hence the gravitational mass of antihydrogen.
Gravitational wave reception by a sphere
International Nuclear Information System (INIS)
Ashby, N.; Dreitlein, J.
1975-01-01
The reception of gravitational waves by an elastic self-gravitating spherical detector is studied in detail. The equations of motion of a detector driven by a gravitational wave are presented in the intuitively convenient coordinate system of Fermi. An exact analytic solution is given for the homogeneous isotropic sphere. Nonlinear effects of a massive self-gravitating system are computed for a body of mass equal to that of the earth, and are shown to be numerically important
Vector-tensor interaction of gravitation
Energy Technology Data Exchange (ETDEWEB)
Zhang Yuan-zhong; Guo han-ying
1982-11-01
In the paper, by using the equation of motion a particle, we show that the antigravity exist in the vector-tensor model of gravitation. Thus the motion of a particle deviates from the geodesic equation. In Newtonian approximation and weak gravitational field, acceleration of a particle in a spherically symmetric and astatic gravitation field is zero. The result is obviously not in agreement with gravitational phenomena.
The Japanese space gravitational wave antenna; DECIGO
Kawamura, Seiji; Ando, Masaki; Nakamura, Takashi; Tsubono, Kimio; Tanaka, Takahiro; Funaki, Ikkoh; Seto, Naoki; Numata, Kenji; Sato, Shuichi; Ioka, Kunihito; Kanda, Nobuyuki; Takashima, Takeshi; Agatsuma, Kazuhiro; Akutsu, Tomotada; Akutsu, Tomomi
2008-01-01
DECi-hertz Interferometer Gravitational wave Observatory (DECIGO) is the future Japanese space gravitational wave antenna. The goal of DECIGO is to detect gravitational waves from various kinds of sources mainly between 0.1 Hz and 10 Hz and thus to open a new window of observation for gravitational wave astronomy. DECIGO will consist of three drag-free spacecraft, 1000 km apart from each other, whose relative displacements are measured by a Fabry—Perot Michelson interferometer. We plan to lau...
The Japanese space gravitational wave antenna - DECIGO
Kawamura, Seiji; Ando, Masaki; Nakamura, Takashi; Tsubono, Kimio; Tanaka, Takahiro; Funaki, Iklkoh; Seto, Naoki; Numata, Kenji; Sato, Shuichi; Ioka, Kunihito; Kanda, Nobuyuki; Takashima, Takeshi; Agatsuma, Kazuhiro; Akutsu, Tomotada; Akutsu, Tomomi
2008-01-01
DECi-hertz Interferometer Gravitational wave Observatory (DECIGO) is the future Japanese space gravitational wave antenna. The goal of DECIGO is to detect gravitational waves from various kinds of sources mainly between 0.1 Hz and 10 Hz and thus to open a new window of observation for gravitational wave astronomy. DECIGO will consist of three drag-free spacecraft, 1000 km apart from each other, whose relative displacements are measured by a Fabry—Perot Michelson interferometer. We plan to lau...
Effect of the Earth's gravitational field on the detection of gravitational waves
International Nuclear Information System (INIS)
Denisov, V.I.; Eliseev, V.A.
1988-01-01
We consider the laboratory detection of high-frequency gravitational waves in theories of gravitation based on a pseudo-Euclidean space-time. We analyze the effects due to the Earth's gravitational field on the propagation velocities of gravitational and electromagnetic waves in these theories. Experiments to test the predictions of this class of theories are discussed
Plausibility Arguments and Universal Gravitation
Cunha, Ricardo F. F.; Tort, A. C.
2017-01-01
Newton's law of universal gravitation underpins our understanding of the dynamics of the Solar System and of a good portion of the observable universe. Generally, in the classroom or in textbooks, the law is presented initially in a qualitative way and at some point during the exposition its mathematical formulation is written on the blackboard…
Scientific visualization of gravitational lenses
International Nuclear Information System (INIS)
Magallon, M.
1999-01-01
Concepts related to gravitational lenses are discussed and applied to develop an interactive visualization tool that allow us to investigate them. Optimization strategies were performed to elaborate the tool. Some results obtained from the application of the tool are shown [es
Wilson loops in Kerr gravitation
International Nuclear Information System (INIS)
Bollini, C.G.; Giambiagi, J.J.; Tiomno, J.
1981-01-01
The ordered integrals for several paths in Kerr gravitation is computed in a compact form. When the path is closed its relation with the angular parallel displacement is discussed and the corresponding Wilson loop is calculated. The validity of Mandelstam relations for gauge fields is also explicitly verified. (Author) [pt
Gravitational lensing in plasmic medium
Energy Technology Data Exchange (ETDEWEB)
Bisnovatyi-Kogan, G. S., E-mail: gkogan@iki.rssi.ru; Tsupko, O. Yu., E-mail: tsupko@iki.rssi.ru [Russian Academy of Sciences, Space Research Institute (Russian Federation)
2015-07-15
The influence of plasma on different effects of gravitational lensing is reviewed. Using the Hamiltonian approach for geometrical optics in a medium in the presence of gravity, an exact formula for the photon deflection angle by a black hole (or another body with a Schwarzschild metric) embedded in plasma with a spherically symmetric density distribution is derived. The deflection angle in this case is determined by the mutual combination of different factors: gravity, dispersion, and refraction. While the effects of deflection by the gravity in vacuum and the refractive deflection in a nonhomogeneous medium are well known, the new effect is that, in the case of a homogeneous plasma, in the absence of refractive deflection, the gravitational deflection differs from the vacuum deflection and depends on the photon frequency. In the presence of a plasma nonhomogeneity, the chromatic refractive deflection also occurs, so the presence of plasma always makes gravitational lensing chromatic. In particular, the presence of plasma leads to different angular positions of the same image if it is observed at different wavelengths. It is discussed in detail how to apply the presented formulas for the calculation of the deflection angle in different situations. Gravitational lensing in plasma beyond the weak deflection approximation is also considered.
Academic Training: Gravitational Waves Astronomy
2006-01-01
2006-2007 ACADEMIC TRAINING PROGRAMME LECTURE SERIES 16, 17, 18 October from 11:00 to 12:00 - Main Auditorium, bldg. 500 Gravitational Waves Astronomy M. LANDRY, LIGO Hanford Observatory, Richland, USA Gravitational wave astronomy is expected to become an observational field within the next decade. First direct detection of gravitational waves is possible with existing terrestrial-based detectors, and highly probable with proposed upgrades. In this three-part lecture series, we give an overview of the field, including material on gravitional wave sources, detection methods, some details of interferometric detectors, data analysis methods, and current results from observational data-taking runs of the LIGO and GEO projects.ENSEIGNEMENT ACADEMIQUE ACADEMIC TRAINING Françoise Benz 73127 academic.training@cern.ch If you wish to participate in one of the following courses, please tell to your supervisor and apply electronically from the course description pages that can be found on the Web at: http://www.cern...
Normalization of Gravitational Acceleration Models
Eckman, Randy A.; Brown, Aaron J.; Adamo, Daniel R.
2011-01-01
Unlike the uniform density spherical shell approximations of Newton, the con- sequence of spaceflight in the real universe is that gravitational fields are sensitive to the nonsphericity of their generating central bodies. The gravitational potential of a nonspherical central body is typically resolved using spherical harmonic approximations. However, attempting to directly calculate the spherical harmonic approximations results in at least two singularities which must be removed in order to generalize the method and solve for any possible orbit, including polar orbits. Three unique algorithms have been developed to eliminate these singularities by Samuel Pines [1], Bill Lear [2], and Robert Gottlieb [3]. This paper documents the methodical normalization of two1 of the three known formulations for singularity-free gravitational acceleration (namely, the Lear [2] and Gottlieb [3] algorithms) and formulates a general method for defining normalization parameters used to generate normalized Legendre Polynomials and ALFs for any algorithm. A treatment of the conventional formulation of the gravitational potential and acceleration is also provided, in addition to a brief overview of the philosophical differences between the three known singularity-free algorithms.
Spinor approach to gravitational motion and precession
International Nuclear Information System (INIS)
Hestenes, D.
1986-01-01
The translational and rotational equations of motion for a small rigid body in a gravitational field are combined in a single spinor equation. Besides its computational advantages, this unifies the description of gravitational interaction in classical and quantum theory. Explicit expressions for gravitational precession rates are derived. (author)
On black holes and gravitational waves
Loinger, Angelo
2002-01-01
Black holes and gravitational waves are theoretical entities of today astrophysics. Various observed phenomena have been associated with the concept of black hole ; until now, nobody has detected gravitational waves. The essays contained in this book aim at showing that the concept of black holes arises from a misinterpretation of general relativity and that gravitational waves cannot exist.
Detecting gravitational waves from accreting neutron stars
Watts, A.L.; Krishnan, B.
2009-01-01
The gravitational waves emitted by neutron stars carry unique information about their structure and composition. Direct detection of these gravitational waves, however, is a formidable technical challenge. In a recent study we quantified the hurdles facing searches for gravitational waves from the
Gravitational wave signals and cosmological consequences of gravitational reheating
Artymowski, Michał; Czerwińska, Olga; Lalak, Zygmunt; Lewicki, Marek
2018-04-01
Reheating after inflation can proceed even if the inflaton couples to Standard Model (SM) particles only gravitationally. However, particle production during the transition between de-Sitter expansion and a decelerating Universe is rather inefficient and the necessity to recover the visible Universe leads to a non-standard cosmological evolution initially dominated by remnants of the inflaton field. We remain agnostic to the specific dynamics of the inflaton field and discuss a generic scenario in which its remnants behave as a perfect fluid with a general barotropic parameter w. Using CMB and BBN constraints we derive the allowed range of inflationary scales. We also show that this scenario results in a characteristic primordial Gravitational Wave (GW) spectrum which gives hope for observation in upcoming runs of LIGO as well as in other planned experiments.
Measurement of gravitational acceleration of antimatter
International Nuclear Information System (INIS)
Rouhani, S.
1989-12-01
The minute yet effective impact of gravitational potential in the central region of a long tube magnetic container of non-neutral plasmas can be utilized for the measurement of the gravitational acceleration of antimatter particles. The slight change in distribution of plasma particles along the gravitational field affects the internal electric field of the plasma, which in turn affects the frequency of the magnetron motion of its particles. Thus, a rather straightforward relation is established between the gravitational acceleration of the particles and their magnetron frequencies, which is measurable directly, determining the value of the gravitational acceleration. (author). 7 refs, 3 figs
The Japanese space gravitational wave antenna - DECIGO
International Nuclear Information System (INIS)
Kawamura, S; Seto, N; Sato, S; Arai, K; Ando, M; Tsubono, K; Agatsuma, K; Akutsu, T; Akutsu, T; Arase, Y; Nakamura, T; Tanaka, T; Funaki, I; Takashima, T; Numata, K; Ioka, K; Kanda, N; Aoyanagi, Koh-Suke; Araya, A; Asada, H
2008-01-01
DECi-hertz Interferometer Gravitational wave Observatory (DECIGO) is the future Japanese space gravitational wave antenna. The goal of DECIGO is to detect gravitational waves from various kinds of sources mainly between 0.1 Hz and 10 Hz and thus to open a new window of observation for gravitational wave astronomy. DECIGO will consist of three drag-free spacecraft, 1000 km apart from each other, whose relative displacements are measured by a Fabry-Perot Michelson interferometer. We plan to launch DECIGO pathfinder first to demonstrate the technologies required to realize DECIGO and, if possible, to detect gravitational waves from our galaxy or nearby galaxies
Energy Technology Data Exchange (ETDEWEB)
Miramonti, L. [CEA/Saclay, Dept. d' Astrophysique, de la Physique des Particules, de la Physique Nucleaire et de l' Instrumentation Associee (DAPNIA), 91 - Gif-sur-Yvette (France)]|[Paris-11 Univ., 91 - Orsay (France)
1999-11-01
This thesis is dedicated to the detection of black matter in the form of WIMPs (weakly interacting massive particle). The characteristics of the interaction of WIMPs with matter are recalled. The very low number of expected events (<1 event/day.Kg) implies a radioactive background noise as weak as possible, furthermore the exponential decrease of the interacting rate with increasing energy calls for detectors with very low thresholds. Bolometers present advantages in WIMPs detection: i) very good resolution and very low thresholds, ii) very broad range of materials that can be used as absorber, the only requirements are: a crystal structure, to be a diamagnetic isolator and to have a convenient Debye temperature, iii) the possibility of detecting ionizing or non-ionizing particles, iv) the possibility of identifying the incident particle by measuring both temperature and another parameter such as ionization or scintillation, and v) the possibility of localizing the interaction inside the absorber by detecting ballistic phonons. The problematic of radioactive background noise is presented and the answers to the different sources (cosmic radiation,natural and artificial radioactivity) generating the background noise are examined. The materials used in the building of the detector and cryostat must be carefully chosen, they should be as little radioactive as possible. The test benches used to select materials for the Edelweiss experiment are described. The first measurements concerning the detectors Ge-4 and Ge-7 are presented. (A.C.)
Stimulus-driven capture and contingent capture
Theeuwes, J.; Olivers, C.N.L.; Belopolsky, A.V.
2010-01-01
Whether or not certain physical events can capture attention has been one of the most debated issues in the study of attention. This discussion is concerned with how goal-directed and stimulus-driven processes interact in perception and cognition. On one extreme of the spectrum is the idea that
Generalized equations of gravitational field
International Nuclear Information System (INIS)
Stanyukovich, K.P.; Borisova, L.B.
1985-01-01
Equations for gravitational fields are obtained on the basis of a generalized Lagrangian Z=f(R) (R is the scalar curvature). Such an approach permits to take into account the evolution of a gravitation ''constant''. An expression for the force Fsub(i) versus the field variability is obtained. Conservation laws are formulated differing from the standard ones by the fact that in the right part of new equations the value Fsub(i) is present that goes to zero at an ultimate passage to the standard Einstein theory. An equation of state is derived for cosmological metrics for a particular case, f=bRsup(1+α) (b=const, α=const)
Gravitational lensing and extra dimensions
International Nuclear Information System (INIS)
He, X-G.; University of Melbourne, Parkville, VIC; Joshi, G.C.; McKellar, B.H.J.
1999-08-01
We study gravitational tensing and the bending of light in low energy scale (M s ) gravity theories with extra space-time dimensions 'n'. We find that due to the presence of spin-2 Kaluza-Klein states from compactification, a correction to the deflection angle with a strong quadratic dependence on the photon energy is introduced. No deviation from the Einstein General Relativity prediction for the deflection angle for photons grazing the Sun in the visible band with 15% accuracy (90% c.l.) implies that the scale M s has to be larger than 1.4(2/(n-2)) 1/4 TeV and approximately 4 TeV for n=2. This lower bound is comparable with that from collider physics constraints. Gravitational tensing experiments with higher energy photons can provide stronger constraints. (authors)
New case of gravitational lensing
Energy Technology Data Exchange (ETDEWEB)
Surdej, J.; Swings, J.-P.; Magain, P.; Borgeest, U.; Kayser, R.; Refsdal, S.; Courvoisier, T.J.-L.; Kellermann, K.I.; Kuehr, H.
1987-10-22
The authors report a brief description of a gravitational lens system UM673 = Q0142 - 100 = PHL3703. It consists of two images, A and B, separated by 2.2 arc s at a redshift zsub(q) = 2.719. The lensing galaxy has also been found. It lies very near the line connecting the two QSO (quasi-stellar objects) images, approx. 0.8 arc s from the fainter one. Application of gravitational optometry to this system leads to a value Msub(o) or approx. = 2.4 x 10/sup 11/ M solar masses for the mass of the lensing galaxy and to ..delta..t approx. 7 weeks for the most likely travel-time difference between the two light paths to the QSO.
Gravitating multidefects from higher dimensions
Giovannini, Massimo
2007-01-01
Warped configurations admitting pairs of gravitating defects are analyzed. After devising a general method for the construction of multidefects, specific examples are presented in the case of higher-dimensional Einstein-Hilbert gravity. The obtained profiles describe diverse physical situations such as (topological) kink-antikink systems, pairs of non-topological solitons and bound configurations of a kink and of a non-topological soliton. In all the mentioned cases the geometry is always well behaved (all relevant curvature invariants are regular) and tends to five-dimensional anti-de Sitter space-time for large asymptotic values of the bulk coordinate. Particular classes of solutions can be generalized to the framework where the gravity part of the action includes, as a correction, the Euler-Gauss-Bonnet combination. After scrutinizing the structure of the zero modes, the obtained results are compared with conventional gravitating configurations containing a single topological defect.
Magnetic tension and gravitational collapse
International Nuclear Information System (INIS)
Tsagas, Christos G
2006-01-01
The gravitational collapse of a magnetized medium is investigated by studying qualitatively the convergence of a timelike family of non-geodesic worldlines in the presence of a magnetic field. Focusing on the field's tension, we illustrate how the winding of the magnetic forcelines due to the fluid's rotation assists the collapse, while shear-like distortions in the distribution of the field's gradients resist contraction. We also show that the relativistic coupling between magnetism and geometry, together with the tension properties of the field, lead to a magneto-curvature stress that opposes the collapse. This tension stress grows stronger with increasing curvature distortion, which means that it could potentially dominate over the gravitational pull of the matter. If this happens, a converging family of non-geodesic worldlines can be prevented from focusing without violating the standard energy conditions
Bayesian Inference on Gravitational Waves
Directory of Open Access Journals (Sweden)
Asad Ali
2015-12-01
Full Text Available The Bayesian approach is increasingly becoming popular among the astrophysics data analysis communities. However, the Pakistan statistics communities are unaware of this fertile interaction between the two disciplines. Bayesian methods have been in use to address astronomical problems since the very birth of the Bayes probability in eighteenth century. Today the Bayesian methods for the detection and parameter estimation of gravitational waves have solid theoretical grounds with a strong promise for the realistic applications. This article aims to introduce the Pakistan statistics communities to the applications of Bayesian Monte Carlo methods in the analysis of gravitational wave data with an overview of the Bayesian signal detection and estimation methods and demonstration by a couple of simplified examples.
Topological quantization of gravitational fields
International Nuclear Information System (INIS)
Patino, Leonardo; Quevedo, Hernando
2005-01-01
We introduce the method of topological quantization for gravitational fields in a systematic manner. First we show that any vacuum solution of Einstein's equations can be represented in a principal fiber bundle with a connection that takes values in the Lie algebra of the Lorentz group. This result is generalized to include the case of gauge matter fields in multiple principal fiber bundles. We present several examples of gravitational configurations that include a gravitomagnetic monopole in linearized gravity, the C-energy of cylindrically symmetric fields, the Reissner-Nordstroem and the Kerr-Newman black holes. As a result of the application of the topological quantization procedure, in all the analyzed examples we obtain conditions implying that the parameters entering the metric in each case satisfy certain discretization relationships
Post-Newtonian gravitational bremsstrahlung
International Nuclear Information System (INIS)
Turner, M.; Will, C.M.
1977-07-01
Formulae and numerical results are presented for the gravitational radiation emitted during a low-deflection encounter between two massive bodies. Results are valid through post-Newtonian order within general relativity. The gravitational waveform, the total luminosity and total emitted energy, the angular distribution of emitted energy, and the frequency spectrum are discussed in detail. A method boosting the accuracy of these quantities to post Newtonian order is also presented. A numerical comparison of results with those of Peters, and of Kovacs and Thorne shows that the post Newtonian method is reliable to better than 0.1 percent at v = 0.1 c, to a few percent at v = 0.35 c, and to 10 to 20 percent at v = 0.5 c
Gravitational waves and dragging effects
Bičák, Jiří; Katz, Joseph; Lynden-Bell, Donald
2008-08-01
Linear and rotational dragging effects of gravitational waves on local inertial frames are studied in purely vacuum spacetimes. First, the linear dragging caused by a simple cylindrical pulse is investigated. Surprisingly strong transverse effects of the pulse are exhibited. The angular momentum in cylindrically symmetric spacetimes is then defined and confronted with some results in the literature. In the main part, a general procedure is developed for studying weak gravitational waves with translational but not axial symmetry which can carry angular momentum. After a suitable averaging the rotation of local inertial frames due to such rotating waves can be calculated explicitly and illustrated graphically. This is done in detail in the accompanying paper. Finally, the rotational dragging is given for strong cylindrical waves interacting with a rotating cosmic string with a small angular momentum.
On the gravitational constant change
International Nuclear Information System (INIS)
Milyukov, V.K.
1986-01-01
The nowadays viewpoint on the problem of G gravitational constant invariability is presented in brief. The methods and results of checking of the G dependence on the nature of substance (checking of the equivalence principle), G dependepce on distance (checking of Newton gravity law) and time (cosmological experiments) are presented. It is pointed out that all performed experiments don't give any reasons to have doubts in G constancy in space and time and G independence on the nature of the substance
Galactic Structures from Gravitational Radii
Directory of Open Access Journals (Sweden)
Salvatore Capozziello
2018-02-01
Full Text Available We demonstrate that the existence of a Noether symmetry in f ( R theories of gravity gives rise to an additional gravitational radius, besides the standard Schwarzschild one, determining the dynamics at galactic scales. By this feature, it is possible to explain the baryonic Tully-Fisher relation and the rotation curve of gas-rich galaxies without the dark matter hypothesis. Furthermore, under the same standard, the Fundamental Plane of elliptical galaxies can be addressed.
On neutron stars and gravitation
International Nuclear Information System (INIS)
Castagnino, M.A.
1987-01-01
From the variational principle for the total internal energy of a neutron star and some restrictions of the form of the metric coefficients, equations of structure which are valid for every metric theory of gravitation have been found. Some simple solutions of the structure equations to find the maximum mass of a neutron star are also presented. Finally it is studied this problem using a post post-Newtonian parametrization
Cylindrical collapse and gravitational waves
Energy Technology Data Exchange (ETDEWEB)
Herrera, L [Escuela de FIsica, Faculdad de Ciencias, Universidad Central de Venezuela, Caracas, Venezuela (Venezuela); Santos, N O [Universite Pierre et Marie Curie, CNRS/FRE 2460 LERMA/ERGA, Tour 22-12, 4eme etage, BoIte 142, 4 place Jussieu, 75252 Paris Cedex 05 (France); Laboratorio Nacional de Computacao Cientifica, 25651-070 Petropolis RJ (Brazil); Centro Brasileiro de Pesquisas Fisicas, 22290-180 Rio de Janeiro RJ (Brazil)
2005-06-21
We study the matching conditions for a collapsing anisotropic cylindrical perfect fluid, and we show that its radial pressure is non-zero on the surface of the cylinder and proportional to the time-dependent part of the field produced by the collapsing fluid. This result resembles the one that arises for the radiation-though non-gravitational-in the spherically symmetric collapsing dissipative fluid, in the diffusion approximation.
Field theory approach to gravitation
International Nuclear Information System (INIS)
Yilmaz, H.
1978-01-01
A number of authors considered the possibility of formulating a field-theory approach to gravitation with the claim that such an approach would uniquely lead to Einstein's theory of general relativity. In this article it is shown that the field theory approach is more generally applicable and uniqueness cannot be claimed. Theoretical and experimental reasons are given showing that the Einsteinian limit appears to be unviable
Generalized field theory of gravitation
International Nuclear Information System (INIS)
Yilmaz, H.
1976-01-01
It is shown that if, on empirical grounds, one rules out the existence of cosmic fields of Dicke-Brans (scalar) and Will Nordvedt (vector, tensor) type, then the most general experimentally viable and theoretically reasonable theory of gravitation seems to be a LAMBDA-dependent generalization of Einstein and Yilmez theories, which reduces to the former for LAMBDA=0 and to the latter for LAMBDA=1
On the linear conformal gravitation
International Nuclear Information System (INIS)
Pal'chik, M.Ya.; Fradkin, E.S.
1984-01-01
Conformal gravitation is analyzed under the assumption that its solution possesses the property of conformal symmetry. This assumption has sense in the case of small distances and only for definite types of matter fields, namely: at special choice of matter fields and their interactions, providing a lack of conformal anomalies; or at definite magnitudes of binding constants, coinciding with the zeroes of the Gell-Mann-Low function. The field equations, of the group-theoretical natura are obtained
Gravitation and bilocal field theory
International Nuclear Information System (INIS)
Vollendorf, F.
1975-01-01
The starting point is the conjecture that a field theory of elementary particles can be constructed only in a bilocal version. Thus the 4-dimensional space time has to be replaced by the 8-dimensional manifold R 8 of all ordered pairs of space time events. With special reference to the Schwarzschild metric it is shown that the embedding of the time space into the manifold R 8 yields a description of the gravitational field. (orig.) [de
Gravitation, Thermodynamics, and Quantum Theory
Wald, Robert M.
1999-01-01
During the past 30 years, research in general relativity has brought to light strong hints of a very deep and fundamental relationship between gravitation, thermodynamics, and quantum theory. The most striking indication of such a relationship comes from black hole thermodynamics, where it appears that certain laws of black hole mechanics are, in fact, simply the ordinary laws of thermodynamics applied to a system containing a black hole. This article will review the present status of black h...
Accelerating Photons with Gravitational Radiation
Shore, Graham M
2001-01-01
The nature of superluminal photon propagation in the gravitational field describing radiation from a time-dependent, isolated source (the Bondi-Sachs metric) is considered in an effective theory which includes interactions which violate the strong equivalence principle. Such interactions are, for example, generated by vacuum polarisation in conventional QED in curved spacetime. The relation of the resulting light-cone modifications to the Peeling Theorem for the Bondi-Sachs spacetime is explained.
Radiatively-induced gravitational leptogenesis
Energy Technology Data Exchange (ETDEWEB)
McDonald, J.I., E-mail: pymcdonald@swansea.ac.uk; Shore, G.M., E-mail: g.m.shore@swansea.ac.uk
2015-12-17
We demonstrate how loop effects in gravitational backgrounds lead to a difference in the propagation of matter and antimatter, and show this is forbidden in flat space due to CPT and translation invariance. This mechanism, which is naturally present in beyond the standard model (BSM) theories exhibiting C and CP violation, generates a curvature-dependent chemical potential for leptons in the low-energy effective Lagrangian, allowing a matter–antimatter asymmetry to be generated in thermodynamic equilibrium, below the BSM scale.
Looking towards gravitational wave detection
Barsotti, Lisa
2009-05-01
It is an exciting time in gravitational wave research. The first generation ground detectors, which aim to detect gravitational waves in the audio-frequency region, have been successfully operated at their design sensitivity. One integrated year of coincident data from the three LIGO interferometers in United States has been collected between 2005 and 2007, in partial coincidence with the two European detectors, VIRGO and GEO. All the detectors are currently being upgraded, and they will come back on-line in the next few months with a factor 2 better sensitivity. A major upgrade of LIGO and VIRGO, scheduled to happen immediately after their upcoming science runs, will bring on-line second generation detectors 4 years from now. Their sensitivity is designed to be 10 times better than the first generation detectors, resulting in an expected event rate of at least a few per year. Looking farther into the future, space-based detectors such as LISA propose to cover a lower range of frequencies which are inaccessible on Earth, enhancing the opportunity of understanding our Universe trough gravitational waves.
Thermal duality and gravitational collapse
International Nuclear Information System (INIS)
Hewitt, Michael
2015-01-01
Thermal duality is a relationship between the behaviour of heterotic string models of the E(8)×E(8) or SO(32) types at inversely related temperatures, a variant of T duality in the Euclidean regime. This duality would have consequences for the nature of the Hagedorn transition in these string models. We propose that the vacuum admits a family of deformations in situations where there are closed surfaces of constant area but high radial acceleration (a string regularized version of a Penrose trapped surface), such as would be formed in situations of extreme gravitational collapse. This would allow a radical resolution of the firewall paradox by allowing quantum effects to significantly modify the spacetime geometry around a collapsed object. A string bremsstrahlung process would convert the kinetic energy of infalling matter in extreme gravitational collapse to form a region of the deformed vacuum, which would be equivalent to forming a high temperature string phase. A heuristic criterion for the conversion process is presented, relating Newtonian gravity to the string tension, suggesting an upper limit to the strength of the gravitational interaction. This conversion process might have observable consequences for charged particles falling into a rotating collapsed object by producing high energy particles via a variant of the Penrose process. (paper)
Probing a gravitational cat state
International Nuclear Information System (INIS)
Anastopoulos, C; Hu, B L
2015-01-01
We investigate the nature of a gravitational two-state system (G2S) in the simplest setup in Newtonian gravity. In a quantum description of matter a single motionless massive particle can in principle be in a superposition state of two spatially separated locations. This superposition state in gravity, or gravitational cat state, would lead to fluctuations in the Newtonian force exerted on a nearby test particle. The central quantity of importance for this inquiry is the energy density correlation. This corresponds to the noise kernel in stochastic gravity theory, evaluated in the weak field nonrelativistic limit. In this limit quantum fluctuations of the stress–energy tensor manifest as the fluctuations of the Newtonian force. We describe the properties of such a G2S system and present two ways of measuring the cat state for the Newtonian force, one by way of a classical probe, the other a quantum harmonic oscillator. Our findings include: (i) mass density fluctuations persist even in single particle systems, and they are of the same order of magnitude as the mean; (ii) a classical probe generically records a non-Markovian fluctuating force; (iii) a quantum probe interacting with the G2S system may undergo Rabi oscillations in a strong coupling regime. This simple prototypical gravitational quantum system could provide a robust testing ground to compare predictions from alternative quantum theories, since the results reported here are based on standard quantum mechanics and classical gravity. (paper)
Gravitational radiation from electromagnetic systems
International Nuclear Information System (INIS)
Nikishov, A.I.; Ritus, V.I.
1989-01-01
It is shown that the spectrum of gravitational radiation of a charge e with mass m, undergoing finite motion in an electromagnetic field, smoothly varying in the neighborhood of the orbit over a region of the order of the radius of curvature, differs in the ultrarelativistic limit from the spectrum of the charge's electromagnetic radiation. The difference consists of the frequency-independent coefficient 4πGm 2 Λ 2 /e 2 , where Λ is of the order of the Lorentz factor of the charge and depends on the direction of the wave vector and on the behavior of the field in the above-indicated region. For a plane-wave external field the gravitational and electromagnetic spectra are strictly proportional to each other for arbitrary velocities of the charge. Localization of the external forces near the orbit violates this proportionality of the spectra and weakens the gravitational radiation by an amount of the order of the square of the Lorentz factor
A measurement of the gravitational acceleration of the antiproton
International Nuclear Information System (INIS)
Holzscheiter, M.H.
1990-01-01
A fundamental experiment in gravity proposed by us, is the measurement of the gravitational force on antimatter. This measurement would constitute the first direct test of the Weak Equivalence Principle (WEP) for antimatter. The availability of low-energy antiprotons at CERN has made such an experiment feasible, and a proposal to carry out such a measurement has been accepted by the CERN Program Committee. We plan to use a time-of-flight technique similar to that pioneered by Fairbank and Witteborn in their measurement of the gravitational force on an electron. Very slow particles are launched into a vertical drift tube and the time-of-flight spectrum of these particles is recorded. This spectrum will exhibit a cut-off point directly related to the gravitational acceleration of the particles. Obtaining very slow antiprotons involves several stages of deceleration. Antiprotons from LEAR will be initially decelerated from 2 MeV to tens of kilovolts by passing them through a thin foil. After capture and cooling in a series of ion traps, the antiprotons will be in a thermal distribution with a temperature of a few degrees Kelvin. These ultra-cold antiprotons will then be released a few at a time into the drift tube. A detector will measure the arrival time of the particles at the exit of the drift tube. H - -ion, which have almost identical electromagnetic properties to the antiprotons, will be used for comparison and as a calibration standard. 7 refs., 1 fig
Energy Technology Data Exchange (ETDEWEB)
Minchener, A.
2007-07-15
There are a large number of ways in which the capture of carbon as carbon dioxide (CO{sub 2}) can be integrated into fossil fuel power stations, most being applicable for both gas and coal feedstocks. To add to the choice of technology is the question of whether an existing plant should be retrofitted for capture, or whether it is more attractive to build totally new. This miscellany of choices adds considerably to the commercial risk of investing in a large power station. An intermediate stage between the non-capture and full capture state would be advantageous in helping to determine the best way forward and hence reduce those risks. In recent years the term 'carbon capture ready' or 'capture ready' has been coined to describe such an intermediate stage plant and is now widely used. However a detailed and all-encompassing definition of this term has never been published. All fossil fuel consuming plant produce a carbon dioxide gas byproduct. There is a possibility of scrubbing it with an appropriate CO{sub 2} solvent. Hence it could be said that all fossil fuel plant is in a condition for removal of its CO{sub 2} effluent and therefore already in a 'capture ready' state. Evidently, the practical reality of solvent scrubbing could cost more than the rewards offered by such as the ETS (European Trading Scheme). In which case, it can be said that although the possibility exists of capturing CO{sub 2}, it is not a commercially viable option and therefore the plant could not be described as ready for CO{sub 2} capture. The boundary between a capture ready and a non-capture ready condition using this definition cannot be determined in an objective and therefore universally acceptable way and criteria must be found which are less onerous and less potentially contentious to assess. 16 refs., 2 annexes.
Benson, S.M.; Bennaceur, K.; Cook, P.; Davison, J.; Coninck, H. de; Farhat, K.; Ramirez, C.A.; Simbeck, D.; Surles, T.; Verma, P.; Wright, I.
2012-01-01
Emissions of carbon dioxide, the most important long-lived anthropogenic greenhouse gas, can be reduced by Carbon Capture and Storage (CCS). CCS involves the integration of four elements: CO 2 capture, compression of the CO2 from a gas to a liquid or a denser gas, transportation of pressurized CO 2
CAPTURED India Country Evaluation
O'Donoghue, R.; Brouwers, J.H.A.M.
2012-01-01
This report provides the findings of the India Country Evaluation and is produced as part of the overall CAPTURED End Evaluation. After five years of support by the CAPTURED project the End Evaluation has assessed that results are commendable. I-AIM was able to design an approach in which health
Interatomic Coulombic electron capture
International Nuclear Information System (INIS)
Gokhberg, K.; Cederbaum, L. S.
2010-01-01
In a previous publication [K. Gokhberg and L. S. Cederbaum, J. Phys. B 42, 231001 (2009)] we presented the interatomic Coulombic electron capture process--an efficient electron capture mechanism by atoms and ions in the presence of an environment. In the present work we derive and discuss the mechanism in detail. We demonstrate thereby that this mechanism belongs to a family of interatomic electron capture processes driven by electron correlation. In these processes the excess energy released in the capture event is transferred to the environment and used to ionize (or to excite) it. This family includes the processes where the capture is into the lowest or into an excited unoccupied orbital of an atom or ion and proceeds in step with the ionization (or excitation) of the environment, as well as the process where an intermediate autoionizing excited resonance state is formed in the capturing center which subsequently deexcites to a stable state transferring its excess energy to the environment. Detailed derivation of the asymptotic cross sections of these processes is presented. The derived expressions make clear that the environment assisted capture processes can be important for many systems. Illustrative examples are presented for a number of model systems for which the data needed to construct the various capture cross sections are available in the literature.
Gravitational lensing of gravitational waves: a statistical perspective
Li, Shun-Sheng; Mao, Shude; Zhao, Yuetong; Lu, Youjun
2018-05-01
In this paper, we study the strong gravitational lensing of gravitational waves (GWs) from a statistical perspective, with particular focus on the high frequency GWs from stellar binary black hole coalescences. These are most promising targets for ground-based detectors such as Advanced Laser Interferometer Gravitational Wave Observatory (aLIGO) and the proposed Einstein Telescope (ET) and can be safely treated under the geometrical optics limit for GW propagation. We perform a thorough calculation of the lensing rate, by taking account of effects caused by the ellipticity of lensing galaxies, lens environments, and magnification bias. We find that in certain GW source rate scenarios, we should be able to observe strongly lensed GW events once per year (˜1 yr-1) in the aLIGO survey at its design sensitivity; for the proposed ET survey, the rate could be as high as ˜80 yr-1. These results depend on the estimate of GW source abundance, and hence can be correspondingly modified with an improvement in our understanding of the merger rate of stellar binary black holes. We also compute the fraction of four-image lens systems in each survey, predicting it to be ˜30 per cent for the aLIGO survey and ˜6 per cent for the ET survey. Finally, we evaluate the possibility of missing some images due to the finite survey duration, by presenting the probability distribution of lensing time delays. We predict that this selection bias will be insignificant in future GW surveys, as most of the lens systems ({˜ } 90{per cent}) will have time delays less than ˜1 month, which will be far shorter than survey durations.
The gravitational-wave memory from eccentric binaries
International Nuclear Information System (INIS)
Favata, Marc
2011-01-01
The nonlinear gravitational-wave memory causes a time-varying but nonoscillatory correction to the gravitational-wave polarizations. It arises from gravitational-waves that are sourced by gravitational-waves. Previous considerations of the nonlinear memory effect have focused on quasicircular binaries. Here I consider the nonlinear memory from Newtonian orbits with arbitrary eccentricity. Expressions for the waveform polarizations and spin-weighted spherical-harmonic modes are derived for elliptic, hyperbolic, parabolic, and radial orbits. In the hyperbolic, parabolic, and radial cases the nonlinear memory provides a 2.5 post-Newtonian (PN) correction to the leading-order waveforms. This is in contrast to the elliptical and quasicircular cases, where the nonlinear memory corrects the waveform at leading (0PN) order. This difference in PN order arises from the fact that the memory builds up over a short ''scattering'' time scale in the hyperbolic case, as opposed to a much longer radiation-reaction time scale in the elliptical case. The nonlinear memory corrections presented here complete our knowledge of the leading-order (Peters-Mathews) waveforms for elliptical orbits. These calculations are also relevant for binaries with quasicircular orbits in the present epoch which had, in the past, large eccentricities. Because the nonlinear memory depends sensitively on the past evolution of a binary, I discuss the effect of this early-time eccentricity on the value of the late-time memory in nearly circularized binaries. I also discuss the observability of large ''memory jumps'' in a binary's past that could arise from its formation in a capture process. Lastly, I provide estimates of the signal-to-noise ratio of the linear and nonlinear memories from hyperbolic and parabolic binaries.
Hydrodynamics, fields and constants in gravitational theory
International Nuclear Information System (INIS)
Stanyukovich, K.P.; Mel'nikov, V.N.
1983-01-01
Results of original inveatigations into problems of standard gravitation theory and its generalizations are presented. The main attention is paid to the application of methods of continuous media techniques in the gravitation theory; to the specification of the gravitation role in phenomena of macro- and microworld, accurate solutions in the case, when the medium is the matter, assigned by hydrodynamic energy-momentum tensor; and to accurate solutions for the case when the medium is the field. GRT generalizations are analyzed, such as the new cosmologic hypothesis which is based on the gravitation vacuum theory. Investigations are performed into the quantization of cosmological models, effects of spontaneous symmetry violation and particle production in cosmology. Graeity theory with fundamental Higgs field is suggested in the framework of which in the atomic unit number one can explain possible variations of the effective gravitational bonds, and in the gravitation bond, variations of masses of all particles
Gravitational waves from instabilities in relativistic stars
International Nuclear Information System (INIS)
Andersson, Nils
2003-01-01
This paper provides an overview of stellar instabilities as sources of gravitational waves. The aim is to put recent work on secular and dynamical instabilities in compact stars in context, and to summarize the current thinking about the detectability of gravitational waves from various scenarios. As a new generation of kilometre length interferometric detectors is now coming online this is a highly topical theme. The review is motivated by two key questions for future gravitational-wave astronomy: are the gravitational waves from various instabilities detectable? If so, what can these gravitational-wave signals teach us about neutron star physics? Even though we may not have clear answers to these questions, recent studies of the dynamical bar-mode instability and the secular r-mode instability have provided new insights into many of the difficult issues involved in modelling unstable stars as gravitational-wave sources. (topical review)
Verifying black hole orbits with gravitational spectroscopy
International Nuclear Information System (INIS)
Drasco, Steve
2009-01-01
Gravitational waves from test masses bound to geodesic orbits of rotating black holes are simulated, using Teukolsky's black hole perturbation formalism, for about ten thousand generic orbital configurations. Each binary radiates power exclusively in modes with frequencies that are integer-linear combinations of the orbit's three fundamental frequencies. General spectral properties are found with a survey of orbits about a black hole taken to be rotating at 80% of the maximal spin. The orbital eccentricity is varied from 0.1 to 0.9. Inclination ranges from 20 deg. to 160 deg. and comes to within 20 deg. of polar. Semilatus rectum is varied from 1.2 to 3 times the value at the innermost stable circular orbits. The following general spectral properties are found: (i) 99% of the radiated power is typically carried by a few hundred modes, and at most by about a thousand modes, (ii) the dominant frequencies can be grouped into a small number of families defined by fixing two of the three integer frequency multipliers, and (iii) the specifics of these trends can be qualitatively inferred from the geometry of the orbit under consideration. Detections using triperiodic analytic templates modeled on these general properties would constitute a verification of radiation from an adiabatic sequence of black hole orbits and would recover the evolution of the fundamental orbital frequencies. In an analogy with ordinary spectroscopy, this would compare to observing the Bohr model's atomic hydrogen spectrum without being able to rule out alternative atomic theories or nuclei. The suitability of such a detection technique is demonstrated using snapshots computed at 12-hour intervals throughout the last three years before merger of a kludged inspiral. The system chosen is typical of those thought to occur in galactic nuclei and to be observable with space-based gravitational wave detectors like LISA. Because of circularization, the number of excited modes decreases as the binary
Energy Technology Data Exchange (ETDEWEB)
Alderson, T.; Scott, S.; Griffiths, J. [Jacobs Engineering, London (United Kingdom)
2007-07-01
In the case of IGCC power plants, carbon capture can be carried out before combustion. The carbon monoxide in the syngas is catalytically shifted to carbon dioxide and then captured in a standard gas absorption system. However, the insertion of a shift converter into an existing IGCC plant with no shift would mean a near total rebuild of the gasification waste heat recovery, gas treatment system and HRSG, with only the gasifier and gas turbine retaining most of their original features. To reduce the extent, cost and time taken for the revamping, the original plant could incorporate the shift, and the plant would then be operated without capture to advantage, and converted to capture mode of operation when commercially appropriate. This paper examines this concept of placing a shift converter into an IGCC plant before capture is required, and operating the same plant first without and then later with CO{sub 2} capture in a European context. The advantages and disadvantages of this 'capture ready' option are discussed. 6 refs., 2 figs., 4 tabs.
Production of Purely Gravitational Dark Matter
Ema, Yohei; Nakayama, Kazunori; Tang, Yong
2018-01-01
In the purely gravitational dark matter scenario, the dark matter particle does not have any interaction except for gravitational one. We study the gravitational particle production of dark matter particle in such a minimal setup and show that correct amount of dark matter can be produced depending on the inflation model and the dark matter mass. In particular, we carefully evaluate the particle production rate from the transition epoch to the inflaton oscillation epoch in a realistic inflati...
Compensation for gravitational sag of bent mirror
Energy Technology Data Exchange (ETDEWEB)
Mao, Chengwen; Jiang, Hui; He, Yan; Liang, Dongxu; Lan, Xuying; Yan, Shuai [Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, CAS, Shanghai 201800 (China); Shu, De-ming [Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439 (United States); Li, Aiguo, E-mail: aiguo.li@sinap.ac.cn [Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, CAS, Shanghai 201800 (China)
2017-05-01
The gravitational sag of aspheric bent mirrors with face-up or face-down geometry produces a nonnegligible optical error. As an effective compensation, width optimization is used to match the combined effects of the gravitational and bending moments. This method is described by analytical expressions and two calculation algorithms. The results of theoretical simulations and finite element analysis have proved that this method can reduce the slope error resulting from gravitational sag to the level of nano radians.
Compensation for gravitational sag of bent mirror
International Nuclear Information System (INIS)
Mao, Chengwen; Jiang, Hui; He, Yan; Liang, Dongxu; Lan, Xuying; Yan, Shuai; Shu, De-ming; Li, Aiguo
2017-01-01
The gravitational sag of aspheric bent mirrors with face-up or face-down geometry produces a nonnegligible optical error. As an effective compensation, width optimization is used to match the combined effects of the gravitational and bending moments. This method is described by analytical expressions and two calculation algorithms. The results of theoretical simulations and finite element analysis have proved that this method can reduce the slope error resulting from gravitational sag to the level of nano radians.
A radiometer for stochastic gravitational waves
International Nuclear Information System (INIS)
Ballmer, Stefan W
2006-01-01
The LIGO Scientific Collaboration recently reported a new upper limit on an isotropic stochastic background of gravitational waves obtained based on the data from the third LIGO science run (S3). Here I present a new method for obtaining directional upper limits on stochastic gravitational waves that essentially implements a gravitational wave radiometer. The LIGO Scientific Collaboration intends to use this method for future LIGO science runs
Progress in gravitational wave detection: Interferometers
International Nuclear Information System (INIS)
Kuroda, Kazuaki
2002-01-01
A gravitational wave (GW) is a physical entity of space-time derived from Einstein's theory of general relativity. Challenging projects to observe gravitational waves are being conducted throughout the world. A Japanese project involving a 300 m baseline laser interferometer, TAMA, achieved 1000 hr of continuous observation with the best sensitivity in the world during the summer of 2001. After achieving promising results, the realization of LCGT (Large-scale Cryogenic Gravitational wave Telescope) will become possible in the near future
Feasibility analysis of gravitational experiments in space
Everitt, C. W. F.
1977-01-01
Experiments on gravitation and general relativity suggested by different workers in the past ten or more years are reviewed, their feasibility examined, and the advantages of performing them in space were studied. The experiments include: (1) the gyro relativity experiment; (2) experiments to test the equivalence of gravitational and inertial mass; (3) an experiment to look for nongeodesic motion of spinning bodies in orbit around the earth; (4) experiments to look for changes of the gravitational constant G with time; (5) a variety of suggestions; laboratory tests of experimental gravity; and (6) gravitational wave experiments.
Possible role of torsion in gravitational theories
International Nuclear Information System (INIS)
Nieh, H.T.
1983-01-01
Torsion is of interest in an indirect way, in that it has the potential of being an important ingredient in a future successful quantum theory of gravitation. Einstein's theory of gravitation, despite its simplicity and elegance, and its successes in large-scale gravitational phenomena, can only be regarded as a macroscopic classical theory. It is a non-renormalizable quantum field theory, and, therefore, lacks the status of a good microscopic theory. It is the search for a successful quantum field theory of gravitation that poses as one of the great challenges to theoretical physics today. (Auth.)
Physics, Astrophysics and Cosmology with Gravitational Waves
Directory of Open Access Journals (Sweden)
Sathyaprakash B. S.
2009-03-01
Full Text Available Gravitational wave detectors are already operating at interesting sensitivity levels, and they have an upgrade path that should result in secure detections by 2014. We review the physics of gravitational waves, how they interact with detectors (bars and interferometers, and how these detectors operate. We study the most likely sources of gravitational waves and review the data analysis methods that are used to extract their signals from detector noise. Then we consider the consequences of gravitational wave detections and observations for physics, astrophysics, and cosmology.
Observing a Gravitational Wave Background With Lisa
National Research Council Canada - National Science Library
Tinto, M; Armstrong, J; Estabrook, F
2000-01-01
... formation of several observables. All are independent of lasers and frequency standard phase fluctuations, but have different couplings to gravitational waves and to the various LISA instrumental noises...
Physics, Astrophysics and Cosmology with Gravitational Waves.
Sathyaprakash, B S; Schutz, Bernard F
2009-01-01
Gravitational wave detectors are already operating at interesting sensitivity levels, and they have an upgrade path that should result in secure detections by 2014. We review the physics of gravitational waves, how they interact with detectors (bars and interferometers), and how these detectors operate. We study the most likely sources of gravitational waves and review the data analysis methods that are used to extract their signals from detector noise. Then we consider the consequences of gravitational wave detections and observations for physics, astrophysics, and cosmology.
Gravitational Wave Astrophysics: Opening the New Frontier
Centrella, Joan
2012-01-01
A new era in astronomy will begin when the gravitational wave window onto the universe opens in approx. 5 years, as ground-based detectors make the first detections in the high-frequency regime. Since the universe is nearly transparent to gravitational waves, these signals carry direct information about their sources - such as masses, spins, luminosity distances, and orbital parameters - through dense, obscured regions across cosmic time. This talk will explore gravitational waves as cosmic messengers, highlighting key sources and opportunities for multi-messenger astronomy across the gravitational wave spectrum.
Actuality of the Einstein theory of gravitation
International Nuclear Information System (INIS)
Ivanenko, D.D.
1982-01-01
Problems of actuality of the Einstein theory of gravitation are lightened. The great Einstein theory of gravitation is shown to remain a reliable base of understanding of modern physical world pattern and its inevitable further inexhaustible precising. The main GRT difficulties are enumirated: determination of reference systems, presence of singularities in the theory, absence of consistent determination of the gravity energy, impossibility of accounting the relations between atomic, gravitational and cosmological characteristics. The attention is paid to gauge, twistor problems and to unified interaction theory. The great contribution of the soviet science in the theory of gravitation is stressed
Astrophysical Gravitational Wave Sources Literature Catalog
National Aeronautics and Space Administration — Numerically-generated gravitational waveforms for circular inspiral into Kerr black holes. These waveforms were developed using Scott Hughes' black hole perturbation...
Effect of Earth gravitational field on the detection of gravitational waves
International Nuclear Information System (INIS)
Denisov, V.I.; Eliseev, V.A.
1987-01-01
Results of laboratory detection of high-frequency gravitational waves from the view point of gravitation theories formulated on the basis of pseudoeuclidean space-time are calculated. Peculiarities due to different effects of the Earth gravitational field on the rates of gravitational and electromagnetic wave propagation in these theories are analysed. Experiments on check of predictions of the given class of theories are suggested
The Scales of Gravitational Lensing
Directory of Open Access Journals (Sweden)
Francesco De Paolis
2016-03-01
Full Text Available After exactly a century since the formulation of the general theory of relativity, the phenomenon of gravitational lensing is still an extremely powerful method for investigating in astrophysics and cosmology. Indeed, it is adopted to study the distribution of the stellar component in the Milky Way, to study dark matter and dark energy on very large scales and even to discover exoplanets. Moreover, thanks to technological developments, it will allow the measure of the physical parameters (mass, angular momentum and electric charge of supermassive black holes in the center of ours and nearby galaxies.
Testing Fundamental Gravitation in Space
Energy Technology Data Exchange (ETDEWEB)
Turyshev, Slava G.
2013-10-15
General theory of relativity is a standard theory of gravitation; as such, it is used to describe gravity when the problems in astronomy, astrophysics, cosmology, and fundamental physics are concerned. The theory is also relied upon in many modern applications involving spacecraft navigation, geodesy, and time transfer. Here we review the foundations of general relativity and discuss its current empirical status. We describe both the theoretical motivation and the scientific progress that may result from the new generation of high-precision tests that are anticipated in the near future.
Moduli destabilization via gravitational collapse
Energy Technology Data Exchange (ETDEWEB)
Hwang, Dong-il [Sogang Univ., Seoul (Korea, Republic of). Center for Quantum Spacetime; Pedro, Francisco G. [Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany). Theory Group; Yeom, Dong-han [Sogang Univ., Seoul (Korea, Republic of). Center for Quantum Spacetime; Kyoto Univ. (Japan). Yukawa Inst. for Theoretical Physics
2013-06-15
We examine the interplay between gravitational collapse and moduli stability in the context of black hole formation. We perform numerical simulations of the collapse using the double null formalism and show that the very dense regions one expects to find in the process of black hole formation are able to destabilize the volume modulus. We establish that the effects of the destabilization will be visible to an observer at infinity, opening up a window to a region in spacetime where standard model's couplings and masses can differ significantly from their background values.
General definition of gravitational tension
International Nuclear Information System (INIS)
Harmark, T.; Obers, N.A.
2004-01-01
In this note we give a general definition of the gravitational tension in a given asymptotically translationally-invariant spatial direction of a space-time. The tension is defined via the extrinsic curvature in analogy with the Hawking-Horowitz definition of energy. We show the consistency with the ADM tension formulas for asymptotically-flat space-times, in particular for Kaluza-Klein black hole solutions. Moreover, we apply the general tension formula to near-extremal branes, constituting a check for non-asymptotically flat space-times. (author)
Primordial gravitational waves and cosmology.
Krauss, Lawrence M; Dodelson, Scott; Meyer, Stephan
2010-05-21
The observation of primordial gravitational waves could provide a new and unique window on the earliest moments in the history of the universe and on possible new physics at energies many orders of magnitude beyond those accessible at particle accelerators. Such waves might be detectable soon, in current or planned satellite experiments that will probe for characteristic imprints in the polarization of the cosmic microwave background, or later with direct space-based interferometers. A positive detection could provide definitive evidence for inflation in the early universe and would constrain new physics from the grand unification scale to the Planck scale.
Gravitational field of relativistic gyratons
Energy Technology Data Exchange (ETDEWEB)
Frolov, Valeri P [Theoretical Physics Institute, Department of Physics, University of Alberta, Edmonton, AB, T6G 2J1 (Canada)
2007-05-15
A gyraton is an object moving with the speed of light and having finite energy and internal angular momentum (spin). First we derive the gravitational field of a gyraton in the linear approximation. After this we study solutions of the vacuum Einstein equations for gyratons. We demonstrate that these solutions in 4 and higher dimensions reduce to two linear problems in a Euclidean space. A similar reduction is also valid for gyraton solutions of the Einstein-Maxwell gravity and in supergravity. Namely, we demonstrate that in the both cases the solutions in 4 and higher dimensions reduce to linear problems in a Euclidean space.
Gravitational polarizability of black holes
International Nuclear Information System (INIS)
Damour, Thibault; Lecian, Orchidea Maria
2009-01-01
The gravitational polarizability properties of black holes are compared and contrasted with their electromagnetic polarizability properties. The 'shape' or 'height' multipolar Love numbers h l of a black hole are defined and computed. They are then compared to their electromagnetic analogs h l EM . The Love numbers h l give the height of the lth multipolar 'tidal bulge' raised on the horizon of a black hole by faraway masses. We also discuss the shape of the tidal bulge raised by a test-mass m, in the limit where m gets very close to the horizon.
Radiatively-induced gravitational leptogenesis
Directory of Open Access Journals (Sweden)
J.I. McDonald
2015-12-01
Full Text Available We demonstrate how loop effects in gravitational backgrounds lead to a difference in the propagation of matter and antimatter, and show this is forbidden in flat space due to CPT and translation invariance. This mechanism, which is naturally present in beyond the standard model (BSM theories exhibiting C and CP violation, generates a curvature-dependent chemical potential for leptons in the low-energy effective Lagrangian, allowing a matter–antimatter asymmetry to be generated in thermodynamic equilibrium, below the BSM scale.
Review on possible gravitational anomalies
International Nuclear Information System (INIS)
Amador, Xavier E
2005-01-01
This is an updated introductory review of 2 possible gravitational anomalies that has attracted part of the Scientific community: the Allais effect that occur during solar eclipses, and the Pioneer 10 spacecraft anomaly, experimented also by Pioneer 11 and Ulysses spacecrafts. It seems that, to date, no satisfactory conventional explanation exist to these phenomena, and this suggests that possible new physics will be needed to account for them. The main purpose of this review is to announce 3 other new measurements that will be carried on during the 2005 solar eclipses in Panama and Colombia (Apr. 8) and in Portugal (Oct.15)
Prasanna, A R
2017-01-01
This book suitable for post graduates in Physics and Astrophysics aims at introducing the theory of general relativity as an important background for doing astrophysics. Starting from a detailed discussion of the various mathematical concepts for doing general relativity, the book introduces the geometric description of gravity. It gives a brief historical perspective to classical mechanics and electrodynamics making an attempt to establish the necessity of special relativity as propounded by Einstein extending to General Relativity. This book is a good starting point for post graduates wanting to pursue the modern topics of Cosmology, High energy astrophysics and related areas.
Interaction of gravitational waves with superconductors
Energy Technology Data Exchange (ETDEWEB)
Inan, N.A.; Thompson, J.J. [University of California, Schools of Natural Sciences, Merced, CA (United States); Chiao, R.Y. [University of California, Schools of Natural Sciences and Engineering, Merced, CA (United States)
2017-06-15
Applying the Helmholtz Decomposition theorem to linearized General Relativity leads to a gauge-invariant formulation where the transverse-traceless part of the metric perturbation describes gravitational waves in matter. Gravitational waves incident on a superconductor can be described by a linear London-like constituent equation characterized by a ''gravitational shear modulus'' and a corresponding plasma frequency and penetration depth. Electric-like and magnetic-like gravitational tensor fields are defined in terms of the strain field of a gravitational wave. It is shown that in the DC limit, the magnetic-like tensor field is expelled from the superconductor in a gravitational Meissner-like effect. The Cooper pair density is described by the Ginzburg-Landau theory embedded in curved space-time. The ionic lattice is modeled by quantum harmonic oscillators coupled to gravitational waves and characterized by quasi-energy eigenvalues for the phonon modes. The formulation predicts the possibility of a dynamical Casimir effect since the zero-point energy of the ionic lattice phonons is found to be modulated by the gravitational wave, in a quantum analog of a ''Weber-bar effect.'' Applying periodic thermodynamics and the Debye model in the low-temperature limit leads to a free energy density for the ionic lattice. Lastly, we relate the gravitational strain of space to the strain of matter to show that the response to a gravitational wave is far less for the Cooper pair density than for the ionic lattice. This predicts a charge separation effect in the superconductor as a result of the gravitational wave. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Gravitational waves from axion monodromy
Energy Technology Data Exchange (ETDEWEB)
Hebecker, Arthur; Jaeckel, Joerg; Rompineve, Fabrizio; Witkowski, Lukas T. [Institute for Theoretical Physics, University of Heidelberg,Philosophenweg 19, 69120 Heidelberg (Germany)
2016-11-02
Large field inflation is arguably the simplest and most natural variant of slow-roll inflation. Axion monodromy may be the most promising framework for realising this scenario. As one of its defining features, the long-range polynomial potential possesses short-range, instantonic modulations. These can give rise to a series of local minima in the post-inflationary region of the potential. We show that for certain parameter choices the inflaton populates more than one of these vacua inside a single Hubble patch. This corresponds to a dynamical phase decomposition, analogously to what happens in the course of thermal first-order phase transitions. In the subsequent process of bubble wall collisions, the lowest-lying axionic minimum eventually takes over all space. Our main result is that this violent process sources gravitational waves, very much like in the case of a first-order phase transition. We compute the energy density and peak frequency of the signal, which can lie anywhere in the mHz-GHz range, possibly within reach of next-generation interferometers. We also note that this “dynamical phase decomposition' phenomenon and its gravitational wave signal are more general and may apply to other inflationary or reheating scenarios with axions and modulated potentials.
On the Induced Gravitational Collapse
Directory of Open Access Journals (Sweden)
M. Becerra Laura
2018-01-01
Full Text Available The induced gravitational collapse (IGC paradigm has been applied to explain the long gamma ray burst (GRB associated with type Ic supernova, and recently the Xray flashes (XRFs. The progenitor is a binary systems of a carbon-oxygen core (CO and a neutron star (NS. The CO core collapses and undergoes a supernova explosion which triggers the hypercritical accretion onto the NS companion (up to 10-2 M⊙s-1. For the binary driven hypernova (BdHNe, the binary system is enough bound, the NS reach its critical mass, and collapse to a black hole (BH with a GRB emission characterized by an isotropic energy Eiso > 1052 erg. Otherwise, for binary systems with larger binary separations, the hypercritical accretion onto the NS is not sufficient to induced its gravitational collapse, a X-ray flash is produced with Eiso < 1052 erg. We’re going to focus in identify the binary parameters that limits the BdHNe systems with the XRFs systems.
Relativity in Combinatorial Gravitational Fields
Directory of Open Access Journals (Sweden)
Mao Linfan
2010-04-01
Full Text Available A combinatorial spacetime $(mathscr{C}_G| uboverline{t}$ is a smoothly combinatorial manifold $mathscr{C}$ underlying a graph $G$ evolving on a time vector $overline{t}$. As we known, Einstein's general relativity is suitable for use only in one spacetime. What is its disguise in a combinatorial spacetime? Applying combinatorial Riemannian geometry enables us to present a combinatorial spacetime model for the Universe and suggest a generalized Einstein gravitational equation in such model. Forfinding its solutions, a generalized relativity principle, called projective principle is proposed, i.e., a physics law ina combinatorial spacetime is invariant under a projection on its a subspace and then a spherically symmetric multi-solutions ofgeneralized Einstein gravitational equations in vacuum or charged body are found. We also consider the geometrical structure in such solutions with physical formations, and conclude that an ultimate theory for the Universe maybe established if all such spacetimes in ${f R}^3$. Otherwise, our theory is only an approximate theory and endless forever.
Tourrenc, Philippe
1992-01-01
La relativité générale a cessé d'être une pure théorie justifiée par les "trois tests classiques" disponibles il y a trente ans. Des pulsars, vrais laboratoires de gravitation relativiste, ont été découverts et étudiés. A l'automne 1991 les Etats-Unis ont pris la décision de construire deux détecteurs interférométriques d'ondes gravitationnelles. Au début de l'été 1992, le ministre français de la Recherche et de l'Espace a pris un engagement de même nature concernant le projet VIRGO, projet franco-italien de construction d'une antenne interférométrique. La gravitation relativiste est devenue un riche domaine d'observation et d'expérimentation. Cet ouvrage est un manuel de physique dont les intentions et le contenu se veulent adaptés au contexte scientifique actuel. Il doit beaucoup aux divers enseignements donnés par l'auteur, principalement l'enseignement de relativité générale en maîtrise de physique à l'université Pierre et Marie Curie (Paris VI). Dans la première partie, l...
Curvature bound from gravitational catalysis
Gies, Holger; Martini, Riccardo
2018-04-01
We determine bounds on the curvature of local patches of spacetime from the requirement of intact long-range chiral symmetry. The bounds arise from a scale-dependent analysis of gravitational catalysis and its influence on the effective potential for the chiral order parameter, as induced by fermionic fluctuations on a curved spacetime with local hyperbolic properties. The bound is expressed in terms of the local curvature scalar measured in units of a gauge-invariant coarse-graining scale. We argue that any effective field theory of quantum gravity obeying this curvature bound is safe from chiral symmetry breaking through gravitational catalysis and thus compatible with the simultaneous existence of chiral fermions in the low-energy spectrum. With increasing number of dimensions, the curvature bound in terms of the hyperbolic scale parameter becomes stronger. Applying the curvature bound to the asymptotic safety scenario for quantum gravity in four spacetime dimensions translates into bounds on the matter content of particle physics models.
A distinguishing gravitational property for gravitational equation in higher dimensions
International Nuclear Information System (INIS)
Dadhich, Naresh
2016-01-01
It is well known that Einstein gravity is kinematic (meaning that there is no non-trivial vacuum solution; i.e. the Riemann tensor vanishes whenever the Ricci tensor does so) in 3 dimension because the Riemann tensor is entirely given in terms of the Ricci tensor. Could this property be universalized for all odd dimensions in a generalized theory? The answer is yes, and this property uniquely singles out pure Lovelock (it has only one Nth order term in the action) gravity for which the Nth order Lovelock-Riemann tensor is indeed given in terms of the corresponding Ricci tensor for all odd, d = 2N + 1, dimensions. This feature of gravity is realized only in higher dimensions and it uniquely picks out pure Lovelock gravity from all other generalizations of Einstein gravity. It serves as a good distinguishing and guiding criterion for the gravitational equation in higher dimensions. (orig.)
A distinguishing gravitational property for gravitational equation in higher dimensions
Dadhich, Naresh
2016-03-01
It is well known that Einstein gravity is kinematic (meaning that there is no non-trivial vacuum solution; i.e. the Riemann tensor vanishes whenever the Ricci tensor does so) in 3 dimension because the Riemann tensor is entirely given in terms of the Ricci tensor. Could this property be universalized for all odd dimensions in a generalized theory? The answer is yes, and this property uniquely singles out pure Lovelock (it has only one Nth order term in the action) gravity for which the Nth order Lovelock-Riemann tensor is indeed given in terms of the corresponding Ricci tensor for all odd, d=2N+1, dimensions. This feature of gravity is realized only in higher dimensions and it uniquely picks out pure Lovelock gravity from all other generalizations of Einstein gravity. It serves as a good distinguishing and guiding criterion for the gravitational equation in higher dimensions.
Stability of merons in gravitational models
International Nuclear Information System (INIS)
Akdeniz, K.G.; Hacinliyan, A.; Kalayci, J.
1982-11-01
The stability properties of merons are investigated in gravitational models by taking the DeAFF model as a theoretical laboratory. We find that in gravitational models containing Yang-Mills fields merons are unstable. Stability might be possible in N=4 supergravity models with Asub(μ)=0. (author)
Gravitational Metric Tensor Exterior to Rotating Homogeneous ...
African Journals Online (AJOL)
The covariant and contravariant metric tensors exterior to a homogeneous spherical body rotating uniformly about a common φ axis with constant angular velocity ω is constructed. The constructed metric tensors in this gravitational field have seven non-zero distinct components.The Lagrangian for this gravitational field is ...
Inertial reference frames and gravitational forces
International Nuclear Information System (INIS)
Santavy, I.
1981-01-01
The connection between different definitions of inertial, i.e. fundamental, reference frames and the corresponding characterisation of gravitational fields by gravitational forces are considered from the point of view of their possible interpretation in university introductory courses. The introduction of a special class of reference frames, denoted 'mixed reference frames' is proposed and discussed. (author)
How Spherical Is a Cube (Gravitationally)?
Sanny, Jeff; Smith, David
2015-01-01
An important concept that is presented in the discussion of Newton's law of universal gravitation is that the gravitational effect external to a spherically symmetric mass distribution is the same as if all of the mass of the distribution were concentrated at the center. By integrating over ring elements of a spherical shell, we show that the…
Neutrino bursts and gravitational waves experiments
Energy Technology Data Exchange (ETDEWEB)
Castagnoli, C; Galeotti, P; Saavedra, O [Consiglio Nazionale delle Ricerche, Turin (Italy). Lab. di Cosmo-Geofisica
1978-05-01
Several experiments have been performed in many countries to observe gravitational waves or neutrino bursts. Since their simultaneous emission may occur in stellar collapse, the authors evaluate the effect of neutrino bursts on gravitational wave antennas and suggest the usefulness of a time correlation among the different detectors.
Amplification caused by gravitational bending of light
International Nuclear Information System (INIS)
Schneider, P.
1985-01-01
Gravitational bending of light may not only lead to multiple imaging (gravitational lens effect), but also affects the apparent luminosity of a source. It is shown here that a mass distribution near the line-of-sight to any source always increases the observable flux relative to the case in which the deflector is absent
On the field theoretic description of gravitation
Nieuwenhuizen, T.M.; Kleinert, H.; Jantzen, R.T.; Ruffini, R.
2008-01-01
Maxwell started to describe gravitation as a field in Minkowski space. Such an approach brought Babak and Grishchuk in 1999 the gravitational energy-momentum tensor. Simple manipulations allow the Einstein equations to take the form Aµν = (8πG/c4)Θµν, where A is the acceleration tensor and Θ, the
Gravitational consequences of modern field theories
Horowitz, Gary T.
1989-01-01
Some gravitational consequences of certain extensions of Einstein's general theory of relativity are discussed. These theories are not alternative theories of gravity in the usual sense. It is assumed that general relativity is the appropriate description of all gravitational phenomena which were observed to date.
Self-gravitation in Saturn's rings
International Nuclear Information System (INIS)
Salo, H.; Lukkari, J.
1982-01-01
In a ring-shaped collisional system self-gravitation reduces the equilibrium values of the geometric and optical thickness. In Saturn's rings both effects are appreciable. The previously found discrepancy between the calculated profile and the observed profile of the rings is chiefly caused by the omission of self-gravitation. (Auth.)
Geodesics analysis of colliding gravitational shock waves
International Nuclear Information System (INIS)
Pozdeeva, E.
2011-01-01
Full text: (author)We consider collision of charged gravitational shock waves with infinite transverse extension (charged gravitational walls). We study the influence of the charges on the trapped surface formation in the charged walls collision. This consideration has applications in the in heavy ion collisions using a holographic approach in which the charge plays the role of the chemical potential
Gravitational Waves from Oscillons with Cuspy Potentials.
Liu, Jing; Guo, Zong-Kuan; Cai, Rong-Gen; Shiu, Gary
2018-01-19
We study the production of gravitational waves during oscillations of the inflaton around the minimum of a cuspy potential after inflation. We find that a cusp in the potential can trigger copious oscillon formation, which sources a characteristic energy spectrum of gravitational waves with double peaks. The discovery of such a double-peak spectrum could test the underlying inflationary physics.
Gravitational waves from binary black holes
Indian Academy of Sciences (India)
It is almost a century since Einstein predicted the existence of gravitational waves as one of the consequences of his general theory of relativity. A brief historical overview including Chandrasekhar's contribution to the subject is ﬁrst presented. The current status of the experimental search for gravitational waves and the ...
Physics of interferometric gravitational wave detectors
Indian Academy of Sciences (India)
The Caltech-MIT joint LIGO project is operating three long-baseline interferometers (one of 2 km and two of 4 km) in order to unambiguously measure the infinitesimal displacements of isolated test masses which convey the signature of gravitational waves from astrophysical sources. An interferometric gravitational wave ...
Workshop on gravitational waves and relativistic astrophysics
Indian Academy of Sciences (India)
Discussions related to gravitational wave experiments viz. LIGO and LISA as well as to observations of supermassive black holes dominated the workshop sessions on gravitational waves and relativistic astrophysics in the ICGC-2004. A summary of seven papers that were presented in these workshop sessions has been ...
Holographic entanglement entropy and gravitational anomalies
Castro, A.; Detournay, S.; Iqbal, N.; Perlmutter, E.
2014-01-01
We study entanglement entropy in two-dimensional conformal field theories with a gravitational anomaly. In theories with gravity duals, this anomaly is holographically represented by a gravitational Chern-Simons term in the bulk action. We show that the anomaly broadens the Ryu-Takayanagi minimal
Observing a Gravitational Wave Background With Lisa
National Research Council Canada - National Science Library
Tinto, M; Armstrong, J; Estabrook, F
2000-01-01
.... Comparison of the conventional Michelson interferometer observable with the fully-symmetric Sagnac data-type allows unambiguous discrimination between a gravitational wave background and instrumental noise. The method presented here can be used to detect a confusion-limited gravitational wave background.
A generalized variational principle of gravitation
International Nuclear Information System (INIS)
El-Tahir, A.
1987-09-01
Generalized fourth order differential equations of gravitation are derived. Though similar to those earlier obtained by Lanczos, the present derivation is based on more general assumptions. The geometry-gravity dualism is discussed and the nonlinearity of gravitation is shown to be constrained by the curvature of space. (author). 5 refs
Gravitational radiation and 3D numerical relativity
International Nuclear Information System (INIS)
Nakamura, T.
1986-01-01
Study of Numerical Relativity in Kyoto is reviewed. Main topics discussed are 2D rotating collapse, phase cancellation effects and perturbation calculation of the gravitational radiation from a particle falling into a black hole. New numerical results on 3D time evolution of pure gravitational waves are also presented
Gravitational bending of light rays in plasma
International Nuclear Information System (INIS)
Tsupko, O. Yu.; Bisnovatyi-Kogan, G. S.
2010-01-01
We investigate the gravitational lensing effect in presence of plasma. We observe that in a homogeneous plasma the gravitational deflection angle differs from that in vacuum, and it depends on the frequency of the photon. We discuss observational consequences of this dependence for the point-mass lensing and estimate possibility of the observation of this effect by the planned project Radioastron.
Gravitational Mass, Its Mechanics - What It Is; How It Operates
Ellman, Roger
1999-01-01
The earlier paper, Inertial Mass, Its Mechanics - What It Is; How It Operates, developed the mechanics of inertial mass. The present paper is for the purpose of equivalently developing gravitation. The behavior of gravitation is well known, as described by Newton's Law of Gravitation. But just what gravitational mass is, how gravitational behavior comes about, what in material reality produces the effects of gravitational mass, has been little understood. The only extant hypotheses involve th...
Gravitational wave emission from oscillating millisecond pulsars
Alford, Mark G.; Schwenzer, Kai
2015-02-01
Neutron stars undergoing r-mode oscillation emit gravitational radiation that might be detected on the Earth. For known millisecond pulsars the observed spin-down rate imposes an upper limit on the possible gravitational wave signal of these sources. Taking into account the physics of r-mode evolution, we show that only sources spinning at frequencies above a few hundred Hertz can be unstable to r-modes, and we derive a more stringent universal r-mode spin-down limit on their gravitational wave signal. We find that this refined bound limits the gravitational wave strain from millisecond pulsars to values below the detection sensitivity of next generation detectors. Young sources are therefore a more promising option for the detection of gravitational waves emitted by r-modes and to probe the interior composition of compact stars in the near future.
Sensitivity of a combined gravitational antenna
International Nuclear Information System (INIS)
Kulagin, V.V.; Rudenko, V.N.
1986-01-01
A modification of a combined optico-acoustic gravitational antenna: a long-base laser interferometer, where free masses are changed by Weber resonators, is suggested. The combined gravitational antenna can possess sensitivity h min ∼ 10 -18 without deep cooling of Weber resonators and h min ∼ 10 -19 at helium temperaure of the resonators. This antenna has the following new quantities: presence of three independent responses, that permits to a considerable extent to exclude non-gravitational effects; presence of responses of two separated Weber resonators, that permits to register the wave character of gravitational perturbation by measuring phase shift between relaxation ''tails''. It means that one may with certainty register the wave structure of gravitational radiation for perturbation of metrics h, exceeding the threshold sensitivity of the known detectors by an order
Gravity's kiss the detection of gravitational waves
Collins, Harry
2017-01-01
Scientists have been trying to confirm the existence of gravitational waves for fifty years. Then, in September 2015, came a "very interesting event" (as the cautious subject line in a physicist's email read) that proved to be the first detection of gravitational waves. In Gravity's Kiss, Harry Collins -- who has been watching the science of gravitational wave detection for forty-three of those fifty years and has written three previous books about it -- offers a final, fascinating account, written in real time, of the unfolding of one of the most remarkable scientific discoveries ever made. Predicted by Einstein in his theory of general relativity, gravitational waves carry energy from the collision or explosion of stars. Dying binary stars, for example, rotate faster and faster around each other until they merge, emitting a burst of gravitational waves. It is only with the development of extraordinarily sensitive, highly sophisticated detectors that physicists can now confirm Einstein's prediction. This is...
Theory and experiment in gravitational physics
Will, C. M.
New technological advances have made it feasible to conduct measurements with precision levels which are suitable for experimental tests of the theory of general relativity. This book has been designed to fill a new need for a complete treatment of techniques for analyzing gravitation theory and experience. The Einstein equivalence principle and the foundations of gravitation theory are considered, taking into account the Dicke framework, basic criteria for the viability of a gravitation theory, experimental tests of the Einstein equivalence principle, Schiff's conjecture, and a model theory devised by Lightman and Lee (1973). Gravitation as a geometric phenomenon is considered along with the parametrized post-Newtonian formalism, the classical tests, tests of the strong equivalence principle, gravitational radiation as a tool for testing relativistic gravity, the binary pulsar, and cosmological tests.
The confrontation between gravitation theory and experiment
International Nuclear Information System (INIS)
Will, C.M.
1979-01-01
After an introductory section, an analysis is given of the foundations of gravitation theory - principles of equivalence, the fundamental criteria for the viability of a gravitational theory, and the experiments that support those criteria. One of the principal conclusions is that the correct, viable theory of gravity must in all probability be a 'metric' theory. Attention is focussed on solar-system tests, using a 'theory of theories' known as the parametrized post-Newtonian formalism that encompasses most metric theories of gravity and that is ideally suited to the solar-system arena. Gravitational radiation is discussed as a possible tool for testing gravitational theory. The binary pulsar, a new , 'stellar-system' testing ground is studied. Tests of gravitation theory in a cosmic arena are described. (U.K.)
Gravitational waves in cold dark matter
Flauger, Raphael; Weinberg, Steven
2018-06-01
We study the effects of cold dark matter on the propagation of gravitational waves of astrophysical and primordial origin. We show that the dominant effect of cold dark matter on gravitational waves from astrophysical sources is a small frequency dependent modification of the propagation speed of gravitational waves. However, the magnitude of the effect is too small to be detected in the near future. We furthermore show that the spectrum of primordial gravitational waves in principle contains detailed information about the properties of dark matter. However, depending on the wavelength, the effects are either suppressed because the dark matter is highly nonrelativistic or because it contributes a small fraction of the energy density of the universe. As a consequence, the effects of cold dark matter on primordial gravitational waves in practice also appear too small to be detectable.
Fundamentals of interferometric gravitational wave detectors
Saulson, Peter R
2017-01-01
LIGO's recent discovery of gravitational waves was headline news around the world. Many people will want to understand more about what a gravitational wave is, how LIGO works, and how LIGO functions as a detector of gravitational waves.This book aims to communicate the basic logic of interferometric gravitational wave detectors to students who are new to the field. It assumes that the reader has a basic knowledge of physics, but no special familiarity with gravitational waves, with general relativity, or with the special techniques of experimental physics. All of the necessary ideas are developed in the book.The first edition was published in 1994. Since the book is aimed at explaining the physical ideas behind the design of LIGO, it stands the test of time. For the second edition, an Epilogue has been added; it brings the treatment of technical details up to date, and provides references that would allow a student to become proficient with today's designs.
Energy Technology Data Exchange (ETDEWEB)
Le Guillou, L
2003-09-01
The nature of dark matter is an open question. The search for gravitational microlensing effects is an interesting tool because this effect is strongly dependent on the mass of objects whether they are luminous or not, however this detection method is only sensitive to compact forms of dark matter (MACHOS - massive astronomical halo compact objects), and as a consequence no-baryonic matter like neutrinos or WIMPS (weakly interacting massive particles) can not be detected this way. In the first chapter the author reviews the plausible candidates to black matter. The use of the microlensing effect as a probe of the galactic halo is presented in the second chapter. The third chapter is dedicated to the series of experiments worldwide that focus on the detection of MACHOS. In the fourth chapter the author shows how the DIA (difference image analysis) method may be promising in the study of gravitational microlensing effects. The main part of this work has been the use of the DIA method to process five-year data set collected by the Eros experiment in the small Magellanic cloud (SMC). The data processing line and the results are presented in the fifth and sixth chapters. The results are consistent with previous results given by Eros and they confirm the disparity of the durations of micro-lenses detected in the large and small Magellanic clouds. (A.C.)
Gravitational lenses and cosmological evolution
International Nuclear Information System (INIS)
Peacock, J.A.
1982-01-01
The effect of gravitational lensing on the apparent cosmological evolution of extragalactic radio sources is investigated. Models for a lens population consisting of galaxies and clusters of galaxies are constructed and used to calculate the distribution of amplification factors caused by lensing. Although many objects at high redshifts are predicted to have flux densities altered by 10 to 20 per cent relative to a homogeneous universe, flux conservation implies that de-amplification is as common as amplification. The effects on cosmological evolution as inferred from source counts and redshift data are thus relatively small; the slope of the counts is not large enough for intrinsically rare lensing events of high amplitude to corrupt observed samples. Lensing effects may be of greater importance for optically selected quasars, where lenses of mass as low as approximately 10 -4 solar mass can cause large amplifications. (author)
Gravitational effects of global strings
International Nuclear Information System (INIS)
Aryal, M.; Everett, A.E.
1986-01-01
We have obtained the gravitational field, in the weak-field approximation, of cosmic strings formed in a phase transition in which a global symmetry is broken (global strings). The effect of this field on light rays passing a global string is found, and the resulting formation of double images and production of discontinuities in the microwave background temperature compared with the corresponding results for gauge strings. There are some differences in the case of global strings, reflecting the fact that the space surrounding such strings is not purely conical. However, the differences between gauge and global strings with masses suitable to explain galaxy formation are small, and the task of distinguishing them observationally appears difficult at best
An axisymmetric gravitational collapse code
Energy Technology Data Exchange (ETDEWEB)
Choptuik, Matthew W [CIAR Cosmology and Gravity Program, Department of Physics and Astronomy, University of British Columbia, Vancouver BC, V6T 1Z1 (Canada); Hirschmann, Eric W [Department of Physics and Astronomy, Brigham Young University, Provo, UT 84604 (United States); Liebling, Steven L [Southampton College, Long Island University, Southampton, NY 11968 (United States); Pretorius, Frans [Theoretical Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States)
2003-05-07
We present a new numerical code designed to solve the Einstein field equations for axisymmetric spacetimes. The long-term goal of this project is to construct a code that will be capable of studying many problems of interest in axisymmetry, including gravitational collapse, critical phenomena, investigations of cosmic censorship and head-on black-hole collisions. Our objective here is to detail the (2+1)+1 formalism we use to arrive at the corresponding system of equations and the numerical methods we use to solve them. We are able to obtain stable evolution, despite the singular nature of the coordinate system on the axis, by enforcing appropriate regularity conditions on all variables and by adding numerical dissipation to hyperbolic equations.
An axisymmetric gravitational collapse code
International Nuclear Information System (INIS)
Choptuik, Matthew W; Hirschmann, Eric W; Liebling, Steven L; Pretorius, Frans
2003-01-01
We present a new numerical code designed to solve the Einstein field equations for axisymmetric spacetimes. The long-term goal of this project is to construct a code that will be capable of studying many problems of interest in axisymmetry, including gravitational collapse, critical phenomena, investigations of cosmic censorship and head-on black-hole collisions. Our objective here is to detail the (2+1)+1 formalism we use to arrive at the corresponding system of equations and the numerical methods we use to solve them. We are able to obtain stable evolution, despite the singular nature of the coordinate system on the axis, by enforcing appropriate regularity conditions on all variables and by adding numerical dissipation to hyperbolic equations
Detections of the Gravitational Waves
Directory of Open Access Journals (Sweden)
José Maria Filardo Bassalo
2016-12-01
Full Text Available On February 11, 2016, during a conference held at the National Science Foundation (NSF, in Washington, D.C., the American physicist David Reitze, Executive Director of the Laser Interferometer Gravitacional-Wave Observatory (LIGO announced that it had been observed on September 14, 2015 Gravitational Waves (GW. This event was named GW150914. A second observation was also done by the LIGO on December 26, 2015 named GW151226. The signals of these two events are similar and are due to the coalescence of a binary black holes (BH. The GW sources are distant, respectively, of ~ 410 Mpc and ~ 440 Mpc from the Earth. To understand the significance of this extraordinary events we will make a historical summary of the GW and the BH.
US Spacesuit Knowledge Capture
Chullen, Cinda; Thomas, Ken; McMann, Joe; Dolan, Kristi; Bitterly, Rose; Lewis, Cathleen
2011-01-01
The ability to learn from both the mistakes and successes of the past is vital to assuring success in the future. Due to the close physical interaction between spacesuit systems and human beings as users, spacesuit technology and usage lends itself rather uniquely to the benefits realized from the skillful organization of historical information; its dissemination; the collection and identification of artifacts; and the education of those in the field. The National Aeronautics and Space Administration (NASA), other organizations and individuals have been performing United States (U.S.) Spacesuit Knowledge Capture since the beginning of space exploration. Avenues used to capture the knowledge have included publication of reports; conference presentations; specialized seminars; and classes usually given by veterans in the field. More recently the effort has been more concentrated and formalized whereby a new avenue of spacesuit knowledge capture has been added to the archives in which videotaping occurs engaging both current and retired specialists in the field presenting technical scope specifically for education and preservation of knowledge. With video archiving, all these avenues of learning can now be brought to life with the real experts presenting their wealth of knowledge on screen for future learners to enjoy. Scope and topics of U.S. spacesuit knowledge capture have included lessons learned in spacesuit technology, experience from the Gemini, Apollo, Skylab and Shuttle programs, hardware certification, design, development and other program components, spacesuit evolution and experience, failure analysis and resolution, and aspects of program management. Concurrently, U.S. spacesuit knowledge capture activities have progressed to a level where NASA, the National Air and Space Museum (NASM), Hamilton Sundstrand (HS) and the spacesuit community are now working together to provide a comprehensive closed-looped spacesuit knowledge capture system which includes
Adiabatic capture and debunching
International Nuclear Information System (INIS)
Ng, K.Y.
2012-01-01
In the study of beam preparation for the g-2 experiment, adiabatic debunching and adiabatic capture are revisited. The voltage programs for these adiabbatic processes are derived and their properties discussed. Comparison is made with some other form of adiabatic capture program. The muon g-2 experiment at Fermilab calls for intense proton bunches for the creation of muons. A booster batch of 84 bunches is injected into the Recycler Ring, where it is debunched and captured into 4 intense bunches with the 2.5-MHz rf. The experiment requires short bunches with total width less than 100 ns. The transport line from the Recycler to the muon-production target has a low momentum aperture of ∼ ±22 MeV. Thus each of the 4 intense proton bunches required to have an emittance less than ∼ 3.46 eVs. The incoming booster bunches have total emittance ∼ 8.4 eVs, or each one with an emittance ∼ 0.1 eVs. However, there is always emittance increase when the 84 booster bunches are debunched. There will be even larger emittance increase during adiabatic capture into the buckets of the 2.5-MHz rf. In addition, the incoming booster bunches may have emittances larger than 0.1 eVs. In this article, we will concentrate on the analysis of the adiabatic capture process with the intention of preserving the beam emittance as much as possible. At this moment, beam preparation experiment is being performed at the Main Injector. Since the Main Injector and the Recycler Ring have roughly the same lattice properties, we are referring to adiabatic capture in the Main Injector instead in our discussions.
Wood Karen; Cisneros Rosemary E.; Whatley Sarah
2017-01-01
The paper explores the activities conducted as part of WhoLoDancE: Whole Body Interaction Learning for Dance Education which is an EU-funded Horizon 2020 project. In particular, we discuss the motion capture sessions that took place at Motek, Amsterdam as well as the dancers’ experience of being captured and watching themselves or others as varying visual representations through the HoloLens. HoloLens is Microsoft’s first holographic computer that you wear as you would a pair of glasses. The ...
Mukhopadhyay, N C
1977-01-01
Our present knowledge of the nuclear muon capture reactions is surveyed. Starting from the formation of the muonic atom, various phenomena, having a bearing on the nuclear capture, are reviewed. The nuclear reactions are then studied from two angles-to learn about the basic muon+nucleon weak interaction process, and to obtain new insights on the nuclear dynamics. Future experimental prospects with the newer generation muon 'factories' are critically examined. Possible modification of the muon+nucleon weak interaction in complex nuclei remains the most important open problem in this field. (380 refs).
Proton capture resonance studies
Energy Technology Data Exchange (ETDEWEB)
Mitchell, G.E. [North Carolina State University, Raleigh, North Carolina (United States) 27695]|[Triangle Universities Nuclear Laboratory, Durham, North Carolina (United States) 27708; Bilpuch, E.G. [Duke University, Durham, North Carolina (United States) 27708]|[Triangle Universities Nuclear Laboratory, Durham, North Carolina (United States) 27708; Bybee, C.R. [North Carolina State University, Raleigh, North Carolina (United States) 27695]|[Triangle Universities Nuclear Laboratory, Durham, North Carolina (United States) 27708; Cox, J.M.; Fittje, L.M. [Tennessee Technological University, Cookeville, Tennessee (United States) 38505]|[Triangle Universities Nuclear Laboratory, Durham, North Carolina (United States) 27708; Labonte, M.A.; Moore, E.F.; Shriner, J.D. [North Carolina State University, Raleigh, North Carolina (United States) 27695]|[Triangle Universities Nuclear Laboratory, Durham, North Carolina (United States) 27708; Shriner, J.F. Jr. [Tennessee Technological University, Cookeville, Tennessee (United States) 38505]|[Triangle Universities Nuclear Laboratory, Durham, North Carolina (United States) 27708; Vavrina, G.A. [North Carolina State University, Raleigh, North Carolina (United States) 27695]|[Triangle Universities Nuclear Laboratory, Durham, North Carolina (United States) 27708; Wallace, P.M. [Duke University, Durham, North Carolina (United States) 27708]|[Triangle Universities Nuclear Laboratory, Durham, North Carolina (United States) 27708
1997-02-01
The fluctuation properties of quantum systems now are used as a signature of quantum chaos. The analyses require data of extremely high quality. The {sup 29}Si(p,{gamma}) reaction is being used to establish a complete level scheme of {sup 30}P to study chaos and isospin breaking in this nuclide. Determination of the angular momentum J, the parity {pi}, and the isospin T from resonance capture data is considered. Special emphasis is placed on the capture angular distributions and on a geometric description of these angular distributions. {copyright} {ital 1997 American Institute of Physics.}
Transient multimessenger astronomy with gravitational waves
International Nuclear Information System (INIS)
Marka, S
2011-01-01
Comprehensive multimessenger astronomy with gravitational waves is a pioneering field bringing us interesting results and presenting us with exciting challenges for the future. During the era of the operation of advanced interferometric gravitational wave detectors, we will have the opportunity to investigate sources of gravitational waves that are also expected to be observable through other messengers, such as gamma rays, x-rays, optical, radio, and/or neutrino emission. Multimessenger searches for gravitational waves with the LIGO-GEO600-Virgo interferometer network have already produced insights on cosmic events and it is expected that the simultaneous observation of electromagnetic or neutrino emission could be a crucial aspect for the first direct detection of gravitational waves in the future. Trigger time, direction and expected frequency range enhances our ability to search for gravitational wave signatures with amplitudes closer to the noise floor of the detector. Furthermore, multimessenger observations will enable the extraction of otherwise unaccessible scientific insight. We summarize the status of transient multimessenger detection efforts as well as mention some of the open questions that might be resolved by advanced or third generation gravitational wave detector networks.
Particle production in a gravitational wave background
Jones, Preston; McDougall, Patrick; Singleton, Douglas
2017-03-01
We study the possibility that massless particles, such as photons, are produced by a gravitational wave. That such a process should occur is implied by tree-level Feynman diagrams such as two gravitons turning into two photons, i.e., g +g →γ +γ . Here we calculate the rate at which a gravitational wave creates a massless scalar field. This is done by placing the scalar field in the background of a plane gravitational wave and calculating the 4-current of the scalar field. Even in the vacuum limit of the scalar field it has a nonzero vacuum expectation value (similar to what occurs in the Higgs mechanism) and a nonzero current. We associate this with the production of scalar field quanta by the gravitational field. This effect has potential consequences for the attenuation of gravitational waves since the massless field is being produced at the expense of the gravitational field. This is related to the time-dependent Schwinger effect, but with the electric field replaced by the gravitational wave background and the electron/positron field quanta replaced by massless scalar "photons." Since the produced scalar quanta are massless there is no exponential suppression, as occurs in the Schwinger effect due to the electron mass.
Czech Academy of Sciences Publication Activity Database
Ricci, P.; Truhlík, Emil; Mosconi, B.; Smejkal, J.
2010-01-01
Roč. 837, - (2010), s. 110-144 ISSN 0375-9474 Institutional research plan: CEZ:AV0Z10480505 Keywords : Negative muon capture * Deuteron * Potential models Subject RIV: BE - Theoretical Physics Impact factor: 1.986, year: 2010
2014-04-01
materials, the affinity ligand would need identification , as well as chemistries that graft the affinity ligand onto the surface of magnetic...ACTIVE CAPTURE MATRICES FOR THE DETECTION/ IDENTIFICATION OF PHARMACEUTICALS...6 As shown in Figure 2.3-1a, the spectra exhibit similar baselines and the spectral peaks lineup . Under these circumstances, the spectral
Capacitance for carbon capture
International Nuclear Information System (INIS)
Landskron, Kai
2018-01-01
Metal recycling: A sustainable, capacitance-assisted carbon capture and sequestration method (Supercapacitive Swing Adsorption) can turn scrap metal and CO 2 into metal carbonates at an attractive energy cost. (copyright 2018 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)
Capacitance for carbon capture
Energy Technology Data Exchange (ETDEWEB)
Landskron, Kai [Department of Chemistry, Lehigh University, Bethlehem, PA (United States)
2018-03-26
Metal recycling: A sustainable, capacitance-assisted carbon capture and sequestration method (Supercapacitive Swing Adsorption) can turn scrap metal and CO{sub 2} into metal carbonates at an attractive energy cost. (copyright 2018 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)
Embedded enzymes catalyse capture
Kentish, Sandra
2018-05-01
Membrane technologies for carbon capture can offer economic and environmental advantages over conventional amine-based absorption, but can suffer from limited gas flux and selectivity to CO2. Now, a membrane based on enzymes embedded in hydrophilic pores is shown to exhibit combined flux and selectivity that challenges the state of the art.
Langton, Stephen R. H.; Law, Anna S.; Burton, A. Mike; Schweinberger, Stefan R.
2008-01-01
We report three experiments that investigate whether faces are capable of capturing attention when in competition with other non-face objects. In Experiment 1a participants took longer to decide that an array of objects contained a butterfly target when a face appeared as one of the distracting items than when the face did not appear in the array.…
Superconductor in a weak static gravitational field
Energy Technology Data Exchange (ETDEWEB)
Ummarino, Giovanni Alberto [Dipartimento DISAT, Politecnico di Torino, Turin (Italy); National Research Nuclear University MEPhI-Moscow Engineering Physics Institute, Moscow (Russian Federation); Gallerati, Antonio [Dipartimento DISAT, Politecnico di Torino, Turin (Italy)
2017-08-15
We provide the detailed calculation of a general form for Maxwell and London equations that takes into account gravitational corrections in linear approximation. We determine the possible alteration of a static gravitational field in a superconductor making use of the time-dependent Ginzburg-Landau equations, providing also an analytic solution in the weak field condition. Finally, we compare the behavior of a high-T{sub c} superconductor with a classical low-T{sub c} superconductor, analyzing the values of the parameters that can enhance the reduction of the gravitational field. (orig.)
Structure of gauge and gravitational anomalies*
International Nuclear Information System (INIS)
Alvarez-Gaume, L.; Ginsparg, P.
1985-01-01
It is shown how the form of the gauge and gravitational anomalies in quantum field theories may be derived from classical index theorems. The gravitational anomaly in both Einstein and Lorentz form is considered and their equivalence is exhibited. The formalism of gauge and gravitational theories is reviewed using the language of differential geometry, and notions from the theory of characteristic classes necessary for understanding the classical index theorems are introduced. The treatment of known topological results includes a pedagogical derivation of the Wess-Zumino effective Lagrangian in abitrary even dimension. The relation between various forms of the anomaly present in the literature is also clarified
Gravitational waves in hybrid quintessential inflationary models
Energy Technology Data Exchange (ETDEWEB)
Sa, Paulo M [Departamento de Fisica, Faculdade de Ciencias e Tecnologia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro (Portugal); Henriques, Alfredo B, E-mail: pmsa@ualg.pt, E-mail: alfredo.henriques@ist.utl.pt [Centro Multidisciplinar de Astrofisica - CENTRA and Departamento de Fisica, Instituto Superior Tecnico, UTL, Av. Rovisco Pais, 1049-001 Lisboa (Portugal)
2011-09-22
The generation of primordial gravitational waves is investigated within the hybrid quintessential inflationary model. Using the method of continuous Bogoliubov coefficients, we calculate the full gravitational-wave energy spectrum. The post-inflationary kination period, characteristic of quintessential inflationary models, leaves a clear signature on the spectrum, namely, a sharp rise of the gravitational-wave spectral energy density {Omega}{sub GW} at high frequencies. For appropriate values of the parameters of the model, {Omega}{sub GW} can be as high as 10{sup -12} in the MHz-GHz range of frequencies.
Gravitational waves in hybrid quintessential inflationary models
International Nuclear Information System (INIS)
Sa, Paulo M; Henriques, Alfredo B
2011-01-01
The generation of primordial gravitational waves is investigated within the hybrid quintessential inflationary model. Using the method of continuous Bogoliubov coefficients, we calculate the full gravitational-wave energy spectrum. The post-inflationary kination period, characteristic of quintessential inflationary models, leaves a clear signature on the spectrum, namely, a sharp rise of the gravitational-wave spectral energy density Ω GW at high frequencies. For appropriate values of the parameters of the model, Ω GW can be as high as 10 -12 in the MHz-GHz range of frequencies.
The theory of space, time and gravitation
Fock, V
2015-01-01
The Theory of Space, Time, and Gravitation, 2nd Revised Edition focuses on Relativity Theory and Einstein's Theory of Gravitation and correction of the misinterpretation of the Einsteinian Gravitation Theory. The book first offers information on the theory of relativity and the theory of relativity in tensor form. Discussions focus on comparison of distances and lengths in moving reference frames; comparison of time differences in moving reference frames; position of a body in space at a given instant in a fixed reference frame; and proof of the linearity of the transformation linking two iner
New Metrics from a Fractional Gravitational Field
International Nuclear Information System (INIS)
El-Nabulsi, Rami Ahmad
2017-01-01
Agop et al. proved in Commun. Theor. Phys. (2008) that, a Reissner–Nordstrom type metric is obtained, if gauge gravitational field in a fractal spacetime is constructed by means of concepts of scale relativity. We prove in this short communication that similar result is obtained if gravity in D-spacetime dimensions is fractionalized by means of the Glaeske–Kilbas–Saigo fractional. Besides, non-singular gravitational fields are obtained without using extra-dimensions. We present few examples to show that these gravitational fields hold a number of motivating features in spacetime physics. (paper)
Detecting the Stochastic Gravitational-Wave Background
Colacino, Carlo Nicola
2017-12-01
The stochastic gravitational-wave background (SGWB) is by far the most difficult source of gravitational radiation detect. At the same time, it is the most interesting and intriguing one. This book describes the initial detection of the SGWB and describes the underlying mathematics behind one of the most amazing discoveries of the 21st century. On the experimental side it would mean that interferometric gravitational wave detectors work even better than expected. On the observational side, such a detection could give us information about the very early Universe, information that could not be obtained otherwise. Even negative results and improved upper bounds could put constraints on many cosmological and particle physics models.
Gravitational perturbations of the hydrogen atom
International Nuclear Information System (INIS)
Parker, L.
1983-01-01
The strength of a gravitational field is characterized by the Riemann curvature tensor. It is of interest to know how the curvature of space-time at the position of an atom affects its spectrum. The author gives a brief summary of work on the effects of curvature on the hydrogen atom. The results refer to an arbitrary metric and can be evaluated for particular space-times of interest. The possibility of using the effect of gravitational waves on the electromagnetic spectrum of hydrogen as a means of detecting gravitational waves is also investigated. (Auth.)
Gravitational instability in isotropic MHD plasma waves
Cherkos, Alemayehu Mengesha
2018-04-01
The effect of compressive viscosity, thermal conductivity and radiative heat-loss functions on the gravitational instability of infinitely extended homogeneous MHD plasma has been investigated. By taking in account these parameters we developed the six-order dispersion relation for magnetohydrodynamic (MHD) waves propagating in a homogeneous and isotropic plasma. The general dispersion relation has been developed from set of linearized basic equations and solved analytically to analyse the conditions of instability and instability of self-gravitating plasma embedded in a constant magnetic field. Our result shows that the presence of viscosity and thermal conductivity in a strong magnetic field substantially modifies the fundamental Jeans criterion of gravitational instability.
Quantum field theory in gravitational background
International Nuclear Information System (INIS)
Narnhofer, H.
1986-01-01
The author suggests ignoring the influence of the quantum field on the gravitation as the first step to combine quantum field theory and gravitation theory, but to consider the gravitational field as fixed and thus study quantum field theory on a manifold. This subject evoked interest when thermal radiation of a black hole was predicted. The author concentrates on the free quantum field and can split the problem into two steps: the Weyl-algebra of the free field and the Wightman functional on the tangent space
Non-Euclidean Geometry and Gravitation
Directory of Open Access Journals (Sweden)
Stavroulakis N.
2006-04-01
Full Text Available A great deal of misunderstandings and mathematical errors are involved in the currently accepted theory of the gravitational field generated by an isotropic spherical mass. The purpose of the present paper is to provide a short account of the rigorous mathematical theory and exhibit a new formulation of the problem. The solution of the corresponding equations of gravitation points out several new and unusual features of the stationary gravitational field which are related to the non-Euclidean structure of the space. Moreover it precludes the black hole from being a mathematical and physical notion.
Gravitational waves — A review on the theoretical foundations of gravitational radiation
Dirkes, Alain
2018-05-01
In this paper, we review the theoretical foundations of gravitational waves in the framework of Albert Einstein’s theory of general relativity. Following Einstein’s early efforts, we first derive the linearized Einstein field equations and work out the corresponding gravitational wave equation. Moreover, we present the gravitational potentials in the far away wave zone field point approximation obtained from the relaxed Einstein field equations. We close this review by taking a closer look on the radiative losses of gravitating n-body systems and present some aspects of the current interferometric gravitational waves detectors. Each section has a separate appendix contribution where further computational details are displayed. To conclude, we summarize the main results and present a brief outlook in terms of current ongoing efforts to build a spaced-based gravitational wave observatory.
Neutrino and Gravitational-Wave Signatures of Quark Stars
Chu, Ming-chung; Leung, Shing Chi; Lin, Lap Ming; Zha, Shuai
We study two types of supernovae — Type IA (SNIa) and Core-collapse supernovae (CCSNe), particularly how they may help to probe new physics. First, using a two-dimensional hydrodynamics code with a fifth-order shock capturing scheme, we simulate the explosions of dark matter admixed SNIa and find that the explosion energy and abundance of 56Ni produced are sensitive to the mass of admixed dark matter. A small admixture of dark matter may account for some sub-luminous SNIa observed. Second, by incorporating a hybrid equation of state (EOS) that includes a hadron-to-quark phase transition, we study possible formation of quark stars in CCSNe. We calculate the gravitational-wave and neutrino emissions from such a system, and we study the effects of the parameters in the EOS on such signals.
Topics in Gravitation and Cosmology
Bahrami Taghanaki, Sina
This thesis is focused on two topics in which relativistic gravitational fields play an important role, namely early Universe cosmology and black hole physics. The theory of cosmic inflation has emerged as the most successful theory of the very early Universe with concrete and verifiable predictions for the properties of anisotropies of the cosmic microwave background radiation and large scale structure. Coalescences of black hole binaries have recently been detected by the Laser Interferometer Gravitational Wave Observatory (LIGO), opening a new arena for observationally testing the dynamics of gravity. In part I of this thesis we explore some modifications to the standard theory of inflation. The main predictions of single field slow-roll inflation have been largely consistent with cosmological observations. However, there remain some aspects of the theory that are not presently well understood. Among these are the somewhat interrelated issues of the choice of initial state for perturbations and the potential imprints of pre-inflationary dynamics. It is well known that a key prediction of the standard theory of inflation, namely the Gaussianity of perturbations, is a consequence of choosing a natural vacuum initial state. In chapter 3, we study the generation and detectability of non-Gaussianities in inflationary scalar perturbations that originate from more general choices of initial state. After that, in chapter 4, we study a simple but predictive model of pre-inflationary dynamics in an attempt to test the robustness of inflationary predictions. We find that significant deviations from the standard predictions are unlikely to result from models in which the inflaton field decouples from the pre-inflationary degrees of freedom prior to freeze-out of the observable modes. In part II we turn to a study of an aspect of the thermodynamics of black holes, a subject which has led to important advances in our understanding of quantum gravity. For objects which
A background-dependent approach to the theory of gravitation
International Nuclear Information System (INIS)
Goldoni, R.
1976-01-01
Using the covariant formulation of Newton's gravitational equation as derived previously by the present author (Goldoni, Gen. Relativ. Gravitation; 7:731 (1976)) as a starting point, relativistic gravitational equations are found which are supposed to hold in any conceivable universe, describe a purely geometrical theory of gravitation and explicitly incorporate Mach's principle. (U.K.)
Physics of interferometric gravitational wave detectors
Indian Academy of Sciences (India)
The Caltech-MIT joint LIGO project is operating three long-baseline inter- ... gravitational waves for LIGO are: (i) binary coalescing neutron star systems, (ii) ..... The fundamental mode of this basis is a purely Gaussian function which means.
Gravitational waves from neutron stars and asteroseismology
Ho, Wynn C. G.
2018-05-01
Neutron stars are born in the supernova explosion of massive stars. Neutron stars rotate as stably as atomic clocks and possess densities exceeding that of atomic nuclei and magnetic fields millions to billions of times stronger than those created in laboratories on the Earth. The physical properties of neutron stars are determined by many areas of fundamental physics, and detection of gravitational waves can provide invaluable insights into our understanding of these areas. Here, we describe some of the physics and astrophysics of neutron stars and how traditional electromagnetic wave observations provide clues to the sorts of gravitational waves we expect from these stars. We pay particular attention to neutron star fluid oscillations, examining their impact on electromagnetic and gravitational wave observations when these stars are in a wide binary or isolated system, then during binary inspiral right before merger, and finally at times soon after merger. This article is part of a discussion meeting issue `The promises of gravitational-wave astronomy'.
Vacuum polarization and non-Newtonian gravitation
International Nuclear Information System (INIS)
Long, D.R.
1980-01-01
Gell-Mann and Low have emphasized that, as first pointed out by Uehling and Serber, vacuum polarization effects produce a logarithmic modification to the Coulomb potential at small distances. Here, it is pointed out that, if these same considerations are applied to gravitation, the logarithmic term will have a sign opposite to that in the Coulomb case and in agreement with recent laboratory results on the gravitational ''constant''. Of considerable importance is the fact that such vacuum polarization effects cannot be observed in null experiments to test the gravitational inverse square law because the polarizing field is absent. It is a striking circumstance that the coefficient of the logarithm in QED is nearly the same as that found in gravitational experiments. (author)
The gravitational-wave memory effect
International Nuclear Information System (INIS)
Favata, Marc
2010-01-01
The nonlinear memory effect is a slowly growing, non-oscillatory contribution to the gravitational-wave amplitude. It originates from gravitational waves that are sourced by the previously emitted waves. In an ideal gravitational-wave interferometer a gravitational wave with memory causes a permanent displacement of the test masses that persists after the wave has passed. Surprisingly, the nonlinear memory affects the signal amplitude starting at leading (Newtonian-quadrupole) order. Despite this fact, the nonlinear memory is not easily extracted from current numerical relativity simulations. After reviewing the linear and nonlinear memory I summarize some recent work, including (1) computations of the memory contribution to the inspiral waveform amplitude (thus completing the waveform to third post-Newtonian order); (2) the first calculations of the nonlinear memory that include all phases of binary black hole coalescence (inspiral, merger, ringdown); and (3) realistic estimates of the detectability of the memory with LISA.
Advanced interferometric gravitational-wave detectors
Saulson, Peter R
2019-01-01
Gravitational waves are one of the most exciting and promising emerging areas of physics and astrophysics today. The detection of gravitational waves will rank among the most significant physics discoveries of the 21st century.Advanced Interferometric Gravitational-Wave Detectors brings together many of the world's top experts to deliver an authoritative and in-depth treatment on current and future detectors. Volume I is devoted to the essentials of gravitational-wave detectors, presenting the physical principles behind large-scale precision interferometry, the physics of the underlying noise sources that limit interferometer sensitivity, and an explanation of the key enabling technologies that are used in the detectors. Volume II provides an in-depth look at the Advanced LIGO and Advanced Virgo interferometers that have just finished construction, as well as examining future interferometric detector concepts. This two-volume set will provide students and researchers the comprehensive background needed to und...
Gravitational instantons in H-spaces
International Nuclear Information System (INIS)
Hacyan, S.
1979-01-01
A spin coefficient method valid for spaces with positive definite metric is presented, together with a Petrov-Penrosetype classification. The theory of H-spaces is applied to self-dual gravitational instantons. (orig.)
Gravitational instability of thermally anisotropic plasma
International Nuclear Information System (INIS)
Singh, B.; Kalra, G.L.
1986-01-01
The equations of Chew, Goldberger, and Low (1956) modified to include the heat flux vector and self-gravitation are used to study the gravitational instability of unbounded plasma placed in a uniform static magnetic field. The linear stability analysis shows that some of the additional terms which arise as a result of higher moments are of the same order of magnitude as the terms in the original Chew, Goldberger, and Low theory. The influence of these terms on the gravitational instability has been specially examined. It is found that the gravitational instability sets in at a comparatively shorter wavelength and the growth rate is enhanced owing to the inclusion of these terms in the case where the propagation vector is along the magnetic field. The condition for instability is, however, unaltered when the direction of propagation is transverse to the direction of magnetic field. 19 references
Hunting for Dark Particles with Gravitational Waves
Giudice, Gian F.; Urbano, Alfredo
2016-01-01
The LIGO observation of gravitational waves from a binary black hole merger has begun a new era in fundamental physics. If new dark sector particles, be they bosons or fermions, can coalesce into exotic compact objects (ECOs) of astronomical size, then the first evidence for such objects, and their underlying microphysical description, may arise in gravitational wave observations. In this work we study how the macroscopic properties of ECOs are related to their microscopic properties, such as dark particle mass and couplings. We then demonstrate the smoking gun exotic signatures that would provide observational evidence for ECOs, and hence new particles, in terrestrial gravitational wave observatories. Finally, we discuss how gravitational waves can test a core concept in general relativity: Hawking's area theorem.
Hunting for Dark Particles with Gravitational Waves
Giudice, Gian F.
2017-12-01
The LIGO observation of gravitational waves from a binary black hole merger has begun a new era in fundamental physics. If new dark sector particles, be they bosons or fermions, can coalesce into exotic compact objects (ECOs) of astronomical size, then the first evidence for such objects, and their underlying microphysical description, may arise in gravitational wave observations. In this work we study how the macroscopic properties of ECOs are related to their microscopic properties, such as dark particle mass and couplings. We then demonstrate the smoking gun exotic signatures that would provide observational evidence for ECOs, and hence new particles, in terrestrial gravitational wave observatories. Finally, we discuss how gravitational waves can test a core concept in general relativity: Hawking's area theorem.
Gravitational Waves and Time Domain Astronomy
Centrella, Joan; Nissanke, Samaya; Williams, Roy
2012-01-01
The gravitational wave window onto the universe will open in roughly five years, when Advanced LIGO and Virgo achieve the first detections of high frequency gravitational waves, most likely coming from compact binary mergers. Electromagnetic follow-up of these triggers, using radio, optical, and high energy telescopes, promises exciting opportunities in multi-messenger time domain astronomy. In the decade, space-based observations of low frequency gravitational waves from massive black hole mergers, and their electromagnetic counterparts, will open up further vistas for discovery. This two-part workshop featured brief presentations and stimulating discussions on the challenges and opportunities presented by gravitational wave astronomy. Highlights from the workshop, with the emphasis on strategies for electromagnetic follow-up, are presented in this report.
Introduction to the theory of gravitational radiation
International Nuclear Information System (INIS)
Damour, T.
1987-01-01
In these lectures our attention is restricted to the analytical investigations of the theory of gravitational radiation. There exist already several reviews concerning this topic and, in particular, a recent detailed review, by Thorne, where gravitational radiation theory is put in a form suitable for astrophysical studies. This is why the scope of these lectures is limited to supplement the existing reviews in two ways. First, both the basic concepts of gravitational radiation theory, and the precise conditions, as well as the limitations, of validity of some of the well-known results in this theory are presented. Indeed, as these results have been, or will be, applied in astrophysics, it is important to have clearly in mind both what they mean, and when they can be legitimately applied. Second, a progress report on some of the ongoing analytical research in gravitational radiation theory is presented. 144 references
Hunting for dark particles with gravitational waves
Energy Technology Data Exchange (ETDEWEB)
Giudice, Gian F.; McCullough, Matthew; Urbano, Alfredo [CERN, Theoretical Physics Department,Geneva (Switzerland)
2016-10-03
The LIGO observation of gravitational waves from a binary black hole merger has begun a new era in fundamental physics. If new dark sector particles, be they bosons or fermions, can coalesce into exotic compact objects (ECOs) of astronomical size, then the first evidence for such objects, and their underlying microphysical description, may arise in gravitational wave observations. In this work we study how the macroscopic properties of ECOs are related to their microscopic properties, such as dark particle mass and couplings. We then demonstrate the smoking gun exotic signatures that would provide observational evidence for ECOs, and hence new particles, in terrestrial gravitational wave observatories. Finally, we discuss how gravitational waves can test a core concept in general relativity: Hawking’s area theorem.
Gravitationally self-induced phase transition
International Nuclear Information System (INIS)
Novello, M.; Duque, S.L.S.
1990-01-01
We propose a new mechanism by means of which a phase transition can be stimulated by self-gravitating matter. We suggest that this model could be used to explain the observed isotropy of the Universe. (orig.)
The discovery of a gravitational lens
International Nuclear Information System (INIS)
Chaffee, F.H. Jr.
1981-01-01
A recently discovered pair of quasars turns out to be not a pair at all but two images of a single quasar formed by a gravitational lens: an elliptical galaxy halfway between the quasar and our own galaxy. (orig.) [de
Primordial gravitational waves, BICEP2 and beyond
Indian Academy of Sciences (India)
2016-01-07
Jan 7, 2016 ... Observations of the imprints of primordial gravitational waves on the ... the cosmic microwave background can provide us with unambiguous clues to the ... by the stress–energy tensor) can be classified, for instance, based on ...
Nonlinear coupled Alfven and gravitational waves
International Nuclear Information System (INIS)
Kaellberg, Andreas; Brodin, Gert; Bradley, Michael
2004-01-01
In this paper we consider nonlinear interaction between gravitational and electromagnetic waves in a strongly magnetized plasma. More specifically, we investigate the propagation of gravitational waves with the direction of propagation perpendicular to a background magnetic field and the coupling to compressional Alfven waves. The gravitational waves are considered in the high-frequency limit and the plasma is modeled by a multifluid description. We make a self-consistent, weakly nonlinear analysis of the Einstein-Maxwell system and derive a wave equation for the coupled gravitational and electromagnetic wave modes. A WKB-approximation is then applied and as a result we obtain the nonlinear Schroedinger equation for the slowly varying wave amplitudes. The analysis is extended to 3D wave pulses, and we discuss the applications to radiation generated from pulsar binary mergers. It turns out that the electromagnetic radiation from a binary merger should experience a focusing effect, that in principle could be detected
Quantum fluctuations of some gravitational waves
Enginer, Y.; Hortacsu, M.; Kaya, R.; Ozdemir, N.; Ulker, K.; Yapiskan, B.
1998-01-01
We review our previous work on the the calculation of the stress-energy tensor for a scalar particle in the background metric of different types of spherical impulsive, spherical shock and plane impulsive gravitational waves.
Quantum Fluctuations for Gravitational Impulsive Waves
Enginer, Y.; Hortacsu, M.; Ozdemir, N.
1998-01-01
Quantum fluctuations for a massless scalar field in the background metric of spherical impulsive gravitational waves through Minkowski and de Sitter spaces are investigated. It is shown that there exist finite fluctuations for de Sitter space.
Gravitational Waves: A New Observational Window
Camp, Jordan B.
2010-01-01
The era of gravitational wave astronomy is rapidly approaching, with a likely start date around the middle of this decade ' Gravitational waves, emitted by accelerated motions of very massive objects, provide detailed information about strong-field gravity and its sources, including black holes and neutron stars, that electromagnetic probes cannot access. In this talk I will discuss the anticipated sources and the status of the extremely sensitive detectors (both ground and space based) that will make gravitational wave detections possible. As ground based detectors are now taking data, I will show some initial science results related to measured upper limits on gravitational wave signals. Finally Z will describe new directions including advanced detectors and joint efforts with other fields of astronomy.
Gravitational waves from freely precessing neutron stars
International Nuclear Information System (INIS)
Jones, D.I.
2001-01-01
The purpose of this study is to assess the likely detectability of gravitational waves from freely precessing neutron stars. We begin by presenting a neutron star model of sufficient complexity to take into account both the elasticity and fluidity of a realistic neutron star. We then examine the effect of internal dissipation (i.e. heat generation within the star) and gravitational radiation reaction on the wobble. This is followed by an examination of various astrophysical scenarios where some mechanism might pump the precessional motion. We estimate the gravitational wave amplitude in these situations. Finally, we conclude that gravitational radiation from freely precessing neutron stars is almost certainly limited to a level undetectable by a LIGO II detector by internal dissipation. (author)
Hunting for dark particles with gravitational waves
International Nuclear Information System (INIS)
Giudice, Gian F.; McCullough, Matthew; Urbano, Alfredo
2016-01-01
The LIGO observation of gravitational waves from a binary black hole merger has begun a new era in fundamental physics. If new dark sector particles, be they bosons or fermions, can coalesce into exotic compact objects (ECOs) of astronomical size, then the first evidence for such objects, and their underlying microphysical description, may arise in gravitational wave observations. In this work we study how the macroscopic properties of ECOs are related to their microscopic properties, such as dark particle mass and couplings. We then demonstrate the smoking gun exotic signatures that would provide observational evidence for ECOs, and hence new particles, in terrestrial gravitational wave observatories. Finally, we discuss how gravitational waves can test a core concept in general relativity: Hawking’s area theorem.
Gravitational Waves from Oscillons after Inflation.
Antusch, Stefan; Cefalà, Francesco; Orani, Stefano
2017-01-06
We investigate the production of gravitational waves during preheating after inflation in the common case of field potentials that are asymmetric around the minimum. In particular, we study the impact of oscillons, comparatively long lived and spatially localized regions where a scalar field (e.g., the inflaton) oscillates with large amplitude. Contrary to a previous study, which considered a symmetric potential, we find that oscillons in asymmetric potentials associated with a phase transition can generate a pronounced peak in the spectrum of gravitational waves that largely exceeds the linear preheating spectrum. We discuss the possible implications of this enhanced amplitude of gravitational waves. For instance, for low scale inflation models, the contribution from the oscillons can strongly enhance the observation prospects at current and future gravitational wave detectors.
Experimental signatures of gravitational wave bursters
International Nuclear Information System (INIS)
Dubath, Florian; Foffa, Stefano; Gasparini, Maria Alice; Maggiore, Michele; Sturani, Riccardo
2005-01-01
Gravitational wave bursters are sources which emit repeatedly bursts of gravitational waves, and have been recently suggested as potentially interesting candidates for gravitational wave (GW) detectors. Mechanisms that could give rise to a GW burster can be found for instance in highly magnetized neutron stars (the 'magnetars' which explain the phenomenon of soft gamma repeaters), in accreting neutron stars and in hybrid stars with a quark core. We point out that these sources have very distinctive experimental signatures. In particular, as already observed in the γ-ray bursts from soft gamma repeaters, the energy spectrum of the events is a power-law, dN∼E -γ dE with γ≅1.6, and they have a distribution of waiting times (the times between one outburst and the next) significantly different from the distribution of uncorrelated events. We discuss possible detection strategies that could be used to search for these events in existing gravitational wave detectors
Gravitational waves from rotating strained neutron stars
International Nuclear Information System (INIS)
Jones, D I
2002-01-01
In this review we examine the dynamics and gravitational wave detectability of rotating strained neutron stars. The discussion is divided into two halves: triaxial stars and precessing stars. We summarize recent studies on how crustal strains and magnetic fields can sustain triaxiality, and suggest that Magnus forces connected with pinned superfluid vortices might contribute to deformation also. The conclusions that could be drawn following the successful gravitational wave detection of a triaxial star are discussed, and areas requiring further study identified. The latest ideas regarding free precession are then outlined, and the recent suggestion of Middleditch et al (Middleditch et al 2000 New Astronomy 5 243; 2000 Preprint astro-ph/0010044) that the remnant of SN1987A contains a freely precessing star, spinning down by gravitational wave energy loss, is examined critically. We describe what we would learn about neutron stars should the gravitational wave detectors prove this hypothesis to be correct
Gravitational Waves from a Dark Phase Transition.
Schwaller, Pedro
2015-10-30
In this work, we show that a large class of models with a composite dark sector undergo a strong first order phase transition in the early Universe, which could lead to a detectable gravitational wave signal. We summarize the basic conditions for a strong first order phase transition for SU(N) dark sectors with n_{f} flavors, calculate the gravitational wave spectrum and show that, depending on the dark confinement scale, it can be detected at eLISA or in pulsar timing array experiments. The gravitational wave signal provides a unique test of the gravitational interactions of a dark sector, and we discuss the complementarity with conventional searches for new dark sectors. The discussion includes the twin Higgs and strongly interacting massive particle models as well as symmetric and asymmetric composite dark matter scenarios.
Experimental hint for gravitational CP violation
Energy Technology Data Exchange (ETDEWEB)
Gharibyan, Vahagn [Deutsches Elektronen-Synchrotron, Hamburg (Germany). MDI Group
2016-01-15
An equality of particle and antiparticle gravitational interactions holds in general relativity and is supported by indirect observations. Gravity dependence on rotation or spin direction is experimentally constrained only at low energies. Here a method based on high energy Compton scattering is developed to measure the gravitational interaction of accelerated charged particles. Within that formalism the Compton spectra measured at HERA rule out the positron's anti-gravity and hint for a gravitational CP violation around 13 GeV energies, at a maximal level of 1.3±0.2% for the charge and 0.68±0.09% for the space parity. A stronger gravitational coupling to left helicity electrons relative to right helicity positrons is detected.
Gravitational perturbation theory and synchrotron radiation
Energy Technology Data Exchange (ETDEWEB)
Breuer, R A [Max-Planck-Institut fuer Physik und Astrophysik, Muenchen (F.R. Germany). Inst. fuer Astrophysik
1975-01-01
This article presents methods and results for a gravitational perturbation theory which treats massless fields as linearized perturbations of an arbitrary gravitational vacuum background spacetime. The formalism is outlined for perturbations of type (22) spacetimes. As an application, high-frequency radiation emitted by particles moving approximately on relativistic circular geodesic orbits is computed. More precisely, the test particle assumption is made; throughout it is therefore assumed that the reaction of the radiation on the particle motion is negligible. In particular, these orbits are studied in the gravitational field of a spherically symmetric (Schwarzschild-) black hole as well as of a rotating (Kerr-) black hole. In this model, the outgoing radiation is highly focussed and of much higher fequency than the orbital frequency, i.e. one is dealing with 'gravitational synchrotron radiation'.
Theorem on axially symmetric gravitational vacuum configurations
Energy Technology Data Exchange (ETDEWEB)
Papadopoulos, A; Le Denmat, G [Paris-6 Univ., 75 (France). Inst. Henri Poincare
1977-01-24
A theorem is proved which asserts the non-existence of axially symmetric gravitational vacuum configurations with non-stationary rotation only. The eventual consequences in black-hole physics are suggested.
Experimental hint for gravitational CP violation
International Nuclear Information System (INIS)
Gharibyan, Vahagn
2016-01-01
An equality of particle and antiparticle gravitational interactions holds in general relativity and is supported by indirect observations. Gravity dependence on rotation or spin direction is experimentally constrained only at low energies. Here a method based on high energy Compton scattering is developed to measure the gravitational interaction of accelerated charged particles. Within that formalism the Compton spectra measured at HERA rule out the positron's anti-gravity and hint for a gravitational CP violation around 13 GeV energies, at a maximal level of 1.3±0.2% for the charge and 0.68±0.09% for the space parity. A stronger gravitational coupling to left helicity electrons relative to right helicity positrons is detected.
Thermal gravitational waves in accelerating universe
Directory of Open Access Journals (Sweden)
B Ghayour
2013-10-01
Full Text Available Gravitational waves are considered in thermal vacuum state. The amplitude and spectral energy density of gravitational waves are found enhanced in thermal vacuum state compared to its zero temperature counterpart. Therefore, the allowed amount of enhancement depends on the upper bound of WMAP-5 and WMAP-7 for the amplitude and spectral energy density of gravitational waves. The enhancement of amplitude and spectral energy density of the waves in thermal vacuum state is consistent with current accelerating phase of the universe. The enhancement feature of amplitude and spectral energy density of the waves is independent of the expansion model of the universe and hence the thermal effect accounts for it. Therefore, existence of thermal gravitational waves is not ruled out
Gravitational Instability of Cylindrical Viscoelastic Medium ...
Indian Academy of Sciences (India)
similar to that of viscoelastic fluid where both properties work together. They also ... cylindrical gravitational waves provides a strong motivation in this regard. .... which represents the solenoidal character of the magnetic field and the total stress.
Gadolinium neutron capture therapy
International Nuclear Information System (INIS)
Akine, Yasuyuki; Tokita, Nobuhiko; Tokuuye, Koichi; Satoh, Michinao; Churei, Hisahiko
1993-01-01
Gadolinium neutron capture therapy makes use of photons and electrons produced by nuclear reactions between gadolinium and lower-energy neutrons which occur within the tumor. The results of our studies have shown that its radiation effect is mostly of low LET and that the electrons are the significant component in the over-all dose. The dose from gadolinium neutron capture reactions does not seem to increase in proportion to the gadolinium concentration, and the Gd-157 concentration of about 100 μg/ml appears most optimal for therapy. Close contact between gadolinium and the cell is not necessarily required for cell inactivation, however, the effect of electrons released from intracellular gadolinium may be significant. Experimental studies on tumor-bearing mice and rabbits have shown that this is a very promising modality though further improvements in gadolinium delivery to tumors are needed. (author)
Global gravitational anomalies and transport
Energy Technology Data Exchange (ETDEWEB)
Chowdhury, Subham Dutta; David, Justin R. [Centre for High Energy Physics, Indian Institute of Science,C. V. Raman Avenue, Bangalore 560012 (India)
2016-12-21
We investigate the constraints imposed by global gravitational anomalies on parity odd induced transport coefficients in even dimensions for theories with chiral fermions, gravitinos and self dual tensors. The η-invariant for the large diffeomorphism corresponding to the T transformation on a torus constraints the coefficients in the thermal effective action up to mod 2. We show that the result obtained for the parity odd transport for gravitinos using global anomaly matching is consistent with the direct perturbative calculation. In d=6 we see that the second Pontryagin class in the anomaly polynomial does not contribute to the η-invariant which provides a topological explanation of this observation in the ‘replacement rule’. We then perform a direct perturbative calculation for the contribution of the self dual tensor in d=6 to the parity odd transport coefficient using the Feynman rules proposed by Gaumé and Witten. The result for the transport coefficient agrees with that obtained using matching of global anomalies.
Gravitating discs around black holes
International Nuclear Information System (INIS)
Karas, V; Hure, J-M; Semerak, O
2004-01-01
Fluid discs and tori around black holes are discussed within different approaches and with the emphasis on the role of disc gravity. First reviewed are the prospects of investigating the gravitational field of a black hole-disc system using analytical solutions of stationary, axially symmetric Einstein equations. Then, more detailed considerations are focused to the middle and outer parts of extended disc-like configurations where relativistic effects are small and the Newtonian description is adequate. Within general relativity, only a static case has been analysed in detail. Results are often very inspiring. However, simplifying assumptions must be imposed: ad hoc profiles of the disc density are commonly assumed and the effects of frame-dragging are completely lacking. Astrophysical discs (e.g. accretion discs in active galactic nuclei) typically extend far beyond the relativistic domain and are fairly diluted. However, self-gravity is still essential for their structure and evolution, as well as for their radiation emission and the impact on the surrounding environment. For example, a nuclear star cluster in a galactic centre may bear various imprints of mutual star-disc interactions, which can be recognized in observational properties, such as the relation between the central mass and stellar velocity dispersion. (topical review)
Rotation in a gravitational billiard
Peraza-Mues, G. G.; Carvente, Osvaldo; Moukarzel, Cristian F.
Gravitational billiards composed of a viscoelastic frictional disk bouncing on a vibrating wedge have been studied previously, but only from the point of view of their translational behavior. In this work, the average rotational velocity of the disk is studied under various circumstances. First, an experimental realization is briefly presented, which shows sustained rotation when the wedge is tilted. Next, this phenomenon is scrutinized in close detail using a precise numerical implementation of frictional forces. We show that the bouncing disk acquires a spontaneous rotational velocity whenever the wedge angle is not bisected by the direction of gravity. Our molecular dynamics (MD) results are well reproduced by event-driven (ED) simulations. When the wedge aperture angle θW>π/2, the average tangential velocity Rω¯ of the disk scales with the typical wedge vibration velocity vb, and is in general a nonmonotonic function of the overall tilt angle θT of the wedge. The present work focuses on wedges with θW=2π/3, which are relevant for the problem of spontaneous rotation in vibrated disk packings. This study makes part of the PhD Thesis of G. G. Peraza-Mues.
The Gravitational Wave Detector EXPLORER
2002-01-01
%RE5 EXPLORER is a cryogenic resonant-mass gravitational wave (GW) detector. It is in operation at CERN since 1984 and it has been the first cryogenic GW antenna to perform continuous observations (since 1990).\\\\ \\\\EXPLORER is actually part of the international network of resonant-mass detectors which includes ALLEGRO at the Louisiana State University, AURIGA at the INFN Legnaro Laboratories, NAUTILUS at the INFN Frascati Laboratories and NIOBE at the University of Western Australia. The EXPLORER sensitivity, at present of the same order of the other antennas, is 10$^{-20}$ Hz$^{-1/2}$ over a bandwidth of 20 Hz and 6 10$^{-22}$ Hz$^{-1/2}$ with a bandwidth of about 0.5 Hz, corresponding to a sensitivity to short GW bursts of \\textit{h} = 6 10$^{-19}$.\\\\ \\\\This sensitivity should allow the detection of the burst sources in our Galaxy and in the Local Group. No evidence of GW signals has been reported up to now.\\\\ \\\\The principle of operation is based on the assumption that any vibrational mode of a resonant bo...
Self-similar gravitational clustering
International Nuclear Information System (INIS)
Efstathiou, G.; Fall, S.M.; Hogan, C.
1979-01-01
The evolution of gravitational clustering is considered and several new scaling relations are derived for the multiplicity function. These include generalizations of the Press-Schechter theory to different densities and cosmological parameters. The theory is then tested against multiplicity function and correlation function estimates for a series of 1000-body experiments. The results are consistent with the theory and show some dependence on initial conditions and cosmological density parameter. The statistical significance of the results, however, is fairly low because of several small number effects in the experiments. There is no evidence for a non-linear bootstrap effect or a dependence of the multiplicity function on the internal dynamics of condensed groups. Empirical estimates of the multiplicity function by Gott and Turner have a feature near the characteristic luminosity predicted by the theory. The scaling relations allow the inference from estimates of the galaxy luminosity function that galaxies must have suffered considerable dissipation if they originally formed from a self-similar hierarchy. A method is also developed for relating the multiplicity function to similar measures of clustering, such as those of Bhavsar, for the distribution of galaxies on the sky. These are shown to depend on the luminosity function in a complicated way. (author)
Gravitational plasmas and galactic dynamics
International Nuclear Information System (INIS)
Bertin, G.
1999-01-01
The discovery of dark halos, spectroscopic evidence that elliptical galaxies are dominated by collisionless dynamics and the opening of new observational windows (especially in the near-infrared) able to provide direct information on the underlying mass distribution in spiral galaxies, have significantly changed our perception of the internal structure of galaxies. The modelling tools and the theories developed to explain many interesting observations (from the study of global spiral and bar modes of galaxy disks to the construction of self-consistent anisotropic collisionless models to explain the universality of the luminosity profile of elliptical galaxies) present many analogies with parallel work in the physics of electromagnetic plasmas. Beyond specific mechanisms, the main source of similarities between the two fields is probably to be found in the common semi-empirical approach, where the major struggle is to set up the most appropriate equations to describe inherently complex systems, governed by collective behaviour in the presence of long-range forces. At the frontier of current research in extragalactic astrophysics, the Hubble space telescope and new large telescopes from the ground are giving us a view of the early dynamical stages of galaxies and on the small scale for relatively nearby galaxies, unprecedented accurate data on their structure and kinematics. After focusing on some recent results relative to the collective dynamics of stellar systems, we will identify a few basic questions that remain unresolved, where the study of galaxies as gravitational plasmas may help significantly towards further progress. (author)
Detection of gravitational waves with resonant antennas
International Nuclear Information System (INIS)
Ronga, Francesco
2006-01-01
The status of the 4 operating cylindrical gravitational waves resonant antenna detectors is summarized. A short review is given of the experimental results and of the next generation projects. Resonant detectors are now sensitive to the strongest potential sources of gravitational waves in our galaxy and in the local group. Recently interferometric detectors have achieved very good perfomances, but resonant detectors are still competitive particularly for what concern the very good live-time
Production of gravitation waves by electromagnetic radiation
International Nuclear Information System (INIS)
Buchner, K.; Rosca, R.
1980-01-01
An exact solution of Einstein's equations is presented that corresponds to an axisymmetric bundle of electromagnetic waves with finite cross section. Outside this bundle, there is gravitational radiation parallel to the electromagnetic radiation. If no static electromagnetic fields are present, the frequency of the gravitational waves is twice the frequency of the electromagnetic waves. Einstein's energy complex vanishes identically. The covariant energy complex, however, yields also a radial momentum. (author)
Looking for new gravitational forces with antiprotons
International Nuclear Information System (INIS)
Nieto, M.M.; Bonner, B.E.
1987-01-01
Quite general arguments based on the principle of equivalence and modern field theory show that it is possible for the gravitational acceleration of antimatter to be different than that for matter. Further, there is no experimental evidence to rule out the possibility. In fact, some evidence indicates there may be unexpected effects. Thus, the planned experiment to measure the gravitational acceleration of antiprotons is of fundamental importance. 20 refs., 3 figs
Geometrical Aspects of non-gravitational interactions
Roldan, Omar; Barros Jr, C. C.
2016-01-01
In this work we look for a geometric description of non-gravitational forces. The basic ideas are proposed studying the interaction between a punctual particle and an electromagnetic external field. For this purpose, we introduce the concept of proper space-time, that allow us to describe this interaction in a way analogous to the one that the general relativity theory does for gravitation. The field equations that define this geometry are similar to the Einstein's equations, where in general...
Vectorial-tensorial conservative theory of gravitation
International Nuclear Information System (INIS)
Mociutchi, C.; Ionescu-Pallas, N.
1975-01-01
Gravitation is considered as a mixing of interactions and a suggestion for a vectorial-tensorial theory with parametric coupling is given. The self consistent character of the theory leads to a system of equations for the proposed tensorial-vectorial theory of gravitation. If the weight of the vectorial component is low enough i.e. epsilon much smaller than 1, then this theory can correctly reproduce all the experimental verifications
A Practical Theorem on Gravitational Wave Backgrounds
Phinney, E. S.
2001-01-01
There is an extremely simple relationship between the spectrum of the gravitational wave background produced by a cosmological distribution of discrete gravitational wave sources, the total time-integrated energy spectrum of an individual source, and the present-day comoving number density of remnants. Stated in this way, the background is entirely independent of the cosmology, and only weakly dependent on the evolutionary history of the sources. This relationship allows one easily to compute...
Physical optics in a uniform gravitational field
Hacyan, Shahen
2012-01-01
The motion of a (quasi-)plane wave in a uniform gravitational field is studied. It is shown that the energy of an elliptically polarized wave does not propagate along a geodesic, but in a direction that is rotated with respect to the gravitational force. The similarity with the walk-off effect in anisotropic crystals or the optical Magnus effect in inhomogeneous media is pointed out.
An electric field in a gravitational field
International Nuclear Information System (INIS)
Harpaz, Amos
2005-01-01
The behaviour of an electric field in a gravitational field is analysed. It is found that due to the mass (energy) of the electric field, it is subjected to gravity and it falls in the gravitational field. This fall curves the electric field, a stress force (a reaction force) is created, and the interaction of this reaction force with the static charge gives rise to the creation of radiation
Resonant interaction of photons with gravitational waves
International Nuclear Information System (INIS)
Mendonca, J.T.; Drury, L. O'C.
2002-01-01
The interaction of photons with a low-amplitude gravitational wave propagating in a flat space-time is studied by using an exact model of photon dynamics. The existence of nearly resonant interactions between the photons and the gravitational waves, which can take place over large distances, can lead to a strong photon acceleration. Such a resonant mechanism can eventually be useful to build consistent new models of gamma-ray emitters
Velocity Memory Effect for polarized gravitational waves
Zhang, P.-M.; Duval, C.; Gibbons, G. W.; Horvathy, P. A.
2018-05-01
Circularly polarized gravitational sandwich waves exhibit, as do their linearly polarized counterparts, the Velocity Memory Effect: freely falling test particles in the flat after-zone fly apart along straight lines with constant velocity. In the inside zone their trajectories combine oscillatory and rotational motions in a complicated way. For circularly polarized periodic gravitational waves some trajectories remain bounded, while others spiral outward. These waves admit an additional "screw" isometry beyond the usual five. The consequences of this extra symmetry are explored.
Maximum Redshift of Gravitational Wave Merger Events
Koushiappas, Savvas M.; Loeb, Abraham
2017-12-01
Future generations of gravitational wave detectors will have the sensitivity to detect gravitational wave events at redshifts far beyond any detectable electromagnetic sources. We show that if the observed event rate is greater than one event per year at redshifts z ≥40 , then the probability distribution of primordial density fluctuations must be significantly non-Gaussian or the events originate from primordial black holes. The nature of the excess events can be determined from the redshift distribution of the merger rate.
Fundamentals of the relativistic theory of gravitation
International Nuclear Information System (INIS)
Logunov, A.A.; Mestvirishvili, M.A.
1986-01-01
An extended exposition of the relativistic theory of gravitation (RTG) proposed by Logunov, Vlasov, and Mestvirishvili is presented. The RTG was constructed uniquely on the basis of the relativity principle and the geometrization principle by regarding the gravitational field as a physical field in the spirit of Faraday and Maxwell possessing energy, momentum, and spins 2 and 0. In the theory, conservation laws for the energy, momentum, and angular momentum for the matter and gravitational field taken together are strictly satisfied. The theory explains all the existing gravitational experiments. When the evolution of the universe is analyzed, the theory leads to the conclusion that the universe is infinite and flat, and it is predicted to contain a large amount of hidden mass. This missing mass exceeds by almost 40 times the amount of matter currently observed in the universe. The RTG predicts that gravitational collapse, which for a comoving observer occurs after a finite proper time, does not lead to infinite compression of matter but is halted at a certain finite density of the collapsing body. Therefore, according to the RTG there cannot be any objects in nature in which the gravitational contraction of matter to infinite density occurs, i.e., there are no black holes
Gravitational Wave Speed: Undefined. Experiments Proposed
Directory of Open Access Journals (Sweden)
Daniel Russell
2018-04-01
Full Text Available Since changes in all 4 dimensions of spacetime are components of displacement for gravitational waves, a theoretical result is presented that their speed is undefined, and that the Theory of Relativity is not reliable to predict their speed. Astrophysical experiments are proposed with objectives to directly measure gravitational wave speed, and to verify these theoretical results. From the circumference of two merging black hole's final orbit, it is proposed to make an estimate of a total duration of the last ten orbits, before gravitational collapse, for comparison with durations of reported gravitational wave signals. It is proposed to open a new field of engineering of spacetime wave modulation with an objective of faster and better data transmission and communication through the Earth, the Sun, and deep space. If experiments verify that gravitational waves have infinite speed, it is concluded that a catastrophic gravitational collapse, such as a merger of quasars, today, would re-define the geometry and curvature of spacetime on Earth, instantly, without optical observations of this merger visible, until billions of years in the future.
Some aspects of gravitational waves in an isotropic background universe
International Nuclear Information System (INIS)
Pandey, S.N.
1981-06-01
Gravitational waves are an inescapable consequence of the relativistic theory of gravitation. They are meaningfully comparable with electromagnetic waves. However, they are not conformally invariant. So, to investigate this property for gravitational waves, modified field equations are obtained of which the underlying Lagrangian is based on gravitation only. It gives, if helicity is preserved, amplitude modification, and the wave is represented by Bessel function of zero order. Some aspects of this theory are discussed with reference to gravitational waves only. (author)
Mental imagery of gravitational motion.
Gravano, Silvio; Zago, Myrka; Lacquaniti, Francesco
2017-10-01
There is considerable evidence that gravitational acceleration is taken into account in the interaction with falling targets through an internal model of Earth gravity. Here we asked whether this internal model is accessed also when target motion is imagined rather than real. In the main experiments, naïve participants grasped an imaginary ball, threw it against the ceiling, and caught it on rebound. In different blocks of trials, they had to imagine that the ball moved under terrestrial gravity (1g condition) or under microgravity (0g) as during a space flight. We measured the speed and timing of the throwing and catching actions, and plotted ball flight duration versus throwing speed. Best-fitting duration-speed curves estimate the laws of ball motion implicit in the participant's performance. Surprisingly, we found duration-speed curves compatible with 0g for both the imaginary 0g condition and the imaginary 1g condition, despite the familiarity with Earth gravity effects and the added realism of performing the throwing and catching actions. In a control experiment, naïve participants were asked to throw the imaginary ball vertically upwards at different heights, without hitting the ceiling, and to catch it on its way down. All participants overestimated ball flight durations relative to the durations predicted by the effects of Earth gravity. Overall, the results indicate that mental imagery of motion does not have access to the internal model of Earth gravity, but resorts to a simulation of visual motion. Because visual processing of accelerating/decelerating motion is poor, visual imagery of motion at constant speed or slowly varying speed appears to be the preferred mode to perform the tasks. Copyright © 2017 Elsevier Ltd. All rights reserved.
EDITORIAL: Focus on Gravitational Lensing
Jain, Bhuvnesh
2007-11-01
Gravitational lensing emerged as an observational field following the 1979 discovery of a doubly imaged quasar lensed by a foreground galaxy. In the 1980s and '90s dozens of other multiply imaged systems were observed, as well as time delay measurements, weak and strong lensing by galaxies and galaxy clusters, and the discovery of microlensing in our galaxy. The rapid pace of advances has continued into the new century. Lensing is currently one of best techniques for finding and mapping dark matter over a wide range of scales, and also addresses broader cosmological questions such as understanding the nature of dark energy. This focus issue of New Journal of Physics presents a snapshot of current research in some of the exciting areas of lensing. It provides an occasion to look back at the advances of the last decade and ahead to the potential of the coming years. Just about a decade ago, microlensing was discovered through the magnification of stars in our galaxy by invisible objects with masses between that of Jupiter and a tenth the mass of the Sun. Thus a new component of the mass of our galaxy, dubbed MACHOs, was established (though a diffuse, cold dark matter-like component is still needed to make up most of the galaxy mass). More recently, microlensing led to another exciting discovery—of extra-solar planets with masses ranging from about five times that of Earth to that of Neptune. We can expect many more planets to be discovered through ongoing surveys. Microlensing is the best technique for finding Earth mass planets, though it is not as productive overall as other methods and does not allow for follow up observations. Beyond planet hunting, microlensing has enabled us to observe previously inaccessible systems, ranging from the surfaces of other stars to the accretion disks around the black holes powering distant quasars. Galaxies and galaxy clusters at cosmological distances can produce dramatic lensing effects: multiple images of background galaxies
International Nuclear Information System (INIS)
Yunes, Nicolas; O'Shaughnessy, Richard; Owen, Benjamin J.; Alexander, Stephon
2010-01-01
Gravitational parity violation is a possibility motivated by particle physics, string theory, and loop quantum gravity. One effect of it is amplitude birefringence of gravitational waves, whereby left and right circularly polarized waves propagate at the same speed but with different amplitude evolution. Here we propose a test of this effect through coincident observations of gravitational waves and short gamma-ray bursts from binary mergers involving neutron stars. Such gravitational waves are highly left or right circularly polarized due to the geometry of the merger. Using localization information from the gamma-ray burst, ground-based gravitational wave detectors can measure the distance to the source with reasonable accuracy. An electromagnetic determination of the redshift from an afterglow or host galaxy yields an independent measure of this distance. Gravitational parity violation would manifest itself as a discrepancy between these two distance measurements. We exemplify such a test by considering one specific effective theory that leads to such gravitational parity violation, Chern-Simons gravity. We show that the advanced LIGO-Virgo network and all-sky gamma-ray telescopes can be sensitive to the propagating sector of Chern-Simons gravitational parity violation to a level roughly 2 orders of magnitude better than current stationary constraints from the LAGEOS satellites.
Advanced instrumentation for Solar System gravitational physics
Peron, Roberto; Bellettini, G.; Berardi, S.; Boni, A.; Cantone, C.; Coradini, A.; Currie, D. G.; Dell'Agnello, S.; Delle Monache, G. O.; Fiorenza, E.; Garattini, M.; Iafolla, V.; Intaglietta, N.; Lefevre, C.; Lops, C.; March, R.; Martini, M.; Nozzoli, S.; Patrizi, G.; Porcelli, L.; Reale, A.; Santoli, F.; Tauraso, R.; Vittori, R.
2010-05-01
The Solar System is a complex laboratory for testing gravitational physics. Indeed, its scale and hierarchical structure make possible a wide range of tests for gravitational theories, studying the motion of both natural and artificial objects. The usual methodology makes use of tracking information related to the bodies, fitted by a suitable dynamical model. Different equations of motion are provided by different theories, which can be therefore tested and compared. Future exploration scenarios show the possibility of placing deep-space probes near the Sun or in outer Solar System, thereby extending the available experimental data sets. In particular, the Earth-Moon is the most accurately known gravitational three-body laboratory, which is undergoing a new, strong wave of research and exploration (both robotic and manned). In addition, the benefits of a synergetic study of planetary science and gravitational physics are of the greatest importance (as shown by the success of the Apollo program), especially in the Earth-Moon, Mars-Phobos, Jovian and Saturnian sub-suystems. This scenarios open critical issues regarding the quality of the available dynamical models, i.e. their capability of fitting data without an excessive number of empirical hypotheses. A typical case is represented by the non-gravitational phenomena, which in general are difficult to model. More generally, gravitation tests with Lunar Laser Ranging, inner or outer Solar System probes and the appearance of the so-called 'anomalies'(like the one indicated by the Pioneers), whatever their real origin (either instrumental effects or due to new physics), show the necessity of a coordinated improvement of tracking and modelization techniques. A common research path will be discussed, employing the development and use of advanced instrumentation to cope with current limitations of Solar System gravitational tests. In particular, the use of high-sensitivity accelerometers, combined with microwave and laser
Dark Energy and Inflation from Gravitational Waves
Directory of Open Access Journals (Sweden)
Leonid Marochnik
2017-10-01
Full Text Available In this seven-part paper, we show that gravitational waves (classical and quantum produce the accelerated de Sitter expansion at the start and at the end of the cosmological evolution of the Universe. In these periods, the Universe contains no matter fields but contains classical and quantum metric fluctuations, i.e., it is filled with classical and quantum gravitational waves. In such evolution of the Universe, dominated by gravitational waves, the de Sitter state is the exact solution to the self-consistent equations for classical and quantum gravitational waves and background geometry for the empty space-time with FLRW metric. In both classical and quantum cases, this solution is of the instanton origin since it is obtained in the Euclidean space of imaginary time with the subsequent analytic continuation to real time. The cosmological acceleration from gravitational waves provides a transparent physical explanation to the coincidence, threshold and “old cosmological constant” paradoxes of dark energy avoiding recourse to the anthropic principle. The cosmological acceleration from virtual gravitons at the start of the Universe evolution produces inflation, which is consistent with the observational data on CMB anisotropy. Section 1 is devoted to cosmological acceleration from classical gravitational waves. Section 2 is devoted to the theory of virtual gravitons in the Universe. Section 3 is devoted to cosmological acceleration from virtual gravitons. Section 4 discusses the consistency of the theory with observational data on dark energy and inflation. The discussion of mechanism of acceleration and cosmological scenario are contained in Sections 5 and 6. Appendix contains the theory of stochastic nonlinear gravitational waves of arbitrary wavelength and amplitude in an isotropic Universe.
Directory of Open Access Journals (Sweden)
Wood Karen
2017-12-01
Full Text Available The paper explores the activities conducted as part of WhoLoDancE: Whole Body Interaction Learning for Dance Education which is an EU-funded Horizon 2020 project. In particular, we discuss the motion capture sessions that took place at Motek, Amsterdam as well as the dancers’ experience of being captured and watching themselves or others as varying visual representations through the HoloLens. HoloLens is Microsoft’s first holographic computer that you wear as you would a pair of glasses. The study embraced four dance genres: Ballet, Contemporary, Flamenco and Greek Folk dance. We are specifically interested in the kinesthetic and emotional engagement with the moving body and what new corporeal awareness may be experienced. Positioning the moving, dancing body as fundamental to technological advancements, we discuss the importance of considering the dancer’s experience in the real and virtual space. Some of the artists involved in the project have offered their experiences, which are included, and they form the basis of the discussion. In addition, we discuss the affect of immersive environments, how these environments expand reality and what effect (emotionally and otherwise that has on the body. The research reveals insights into relationships between emotion, movement and technology and what new sensorial knowledge this evokes for the dancer.
Synovectomy by Neutron capture
International Nuclear Information System (INIS)
Vega C, H.R.; Torres M, C.
1998-01-01
The Synovectomy by Neutron capture has as purpose the treatment of the rheumatoid arthritis, illness which at present does not have a definitive curing. This therapy requires a neutron source for irradiating the articulation affected. The energy spectra and the intensity of these neutrons are fundamental since these neutrons induce nuclear reactions of capture with Boron-10 inside the articulation and the freely energy of these reactions is transferred at the productive tissue of synovial liquid, annihilating it. In this work it is presented the neutron spectra results obtained with moderator packings of spherical geometry which contains in its center a Pu 239 Be source. The calculations were realized through Monte Carlo method. The moderators assayed were light water, heavy water base and the both combination of them. The spectra obtained, the average energy, the neutron total number by neutron emitted by source, the thermal neutron percentage and the dose equivalent allow us to suggest that the moderator packing more adequate is what has a light water thickness 0.5 cm (radius 2 cm) and 24.5 cm heavy water (radius 26.5 cm). (Author)
Neutron stars, magnetic fields, and gravitational waves
International Nuclear Information System (INIS)
Lamb, F.K.
2001-01-01
The r-modes of rapidly spinning young neutron stars have recently attracted attention as a promising source of detectable gravitational radiation. These neutron stars are expected to have magnetic fields ∼ 10 12 G. The r-mode velocity perturbation causes differential motion of the fluid in the star; this is a kinematic effect. In addition, the radiation-reaction associated with emission of gravitational radiation by r-waves drives additional differential fluid motions; this is a dynamic effect. These differential fluid motions distort the magnetic fields of neutron stars and may therefore play an important role in determining the structure of neutron star magnetic fields. If the stellar field is ∼ 10 16 (Ω/Ω B ) G or stronger, the usual r-modes are no longer normal modes of the star; here Ω and Ω B are the angular velocities of the star and at which mass shedding occurs. Much weaker magnetic fields can prevent gravitational radiation from amplifying the r-modes or damp existing r-mode oscillations on a relatively short timescale by extracting energy from the modes faster than gravitational wave emission can pump energy into them. The onset of proton superconductivity in the cores of newly formed magnetic neutron stars typically increases the effect on the r-modes of the magnetic field in the core by many orders of magnitude. Once the core has become superconducting, magnetic fields of the order of 10 12 G or greater are usually sufficient to damp r-modes that have been excited by emission of gravitational radiation and to suppress any further emission. A rapid drop in the strength of r-mode gravitational radiation from young neutron stars may therefore signal the onset of superconductivity in the core and provide a lower bound on the strength of the magnetic field there. Hence, measurements of r-mode gravitational waves from newly formed neutron stars may provide valuable diagnostic information about magnetic field strengths, cooling processes, and the
Gravitational waves from cosmic bubble collisions
International Nuclear Information System (INIS)
Kim, Dong-Hoon; Lee, Bum-Hoon; Lee, Wonwoo; Yang, Jongmann; Yeom, Dong-han
2015-01-01
Cosmic bubbles are nucleated through the quantum tunneling process. After nucleation they would expand and undergo collisions with each other. In this paper, we focus in particular on collisions of two equal-sized bubbles and compute gravitational waves emitted from the collisions. First, we study the mechanism of the collisions by means of a real scalar field and its quartic potential. Then, using this model, we compute gravitational waves from the collisions in a straightforward manner. In the quadrupole approximation, time-domain gravitational waveforms are directly obtained by integrating the energy-momentum tensors over the volume of the wave sources, where the energy-momentum tensors are expressed in terms of the scalar field, the local geometry and the potential. We present gravitational waveforms emitted during (i) the initial-to-intermediate stage of strong collisions and (ii) the final stage of weak collisions: the former is obtained numerically, in full General Relativity and the latter analytically, in the flat spacetime approximation. We gain qualitative insights into the time-domain gravitational waveforms from bubble collisions: during (i), the waveforms show the non-linearity of the collisions, characterized by a modulating frequency and cusp-like bumps, whereas during (ii), the waveforms exhibit the linearity of the collisions, featured by smooth monochromatic oscillations. (orig.)
Gravitational waves from scalar field accretion
International Nuclear Information System (INIS)
Nunez, Dario; Degollado, Juan Carlos; Moreno, Claudia
2011-01-01
Our aim in this work is to outline some physical consequences of the interaction between black holes and scalar field halos in terms of gravitational waves. In doing so, the black hole is taken as a static and spherically symmetric gravitational source, i.e. the Schwarzschild black hole, and we work within the test field approximation, considering that the scalar field lives in the curved space-time outside the black hole. We focused on the emission of gravitational waves when the black hole is perturbed by the surrounding scalar field matter. The symmetries of the space-time and the simplicity of the matter source allow, by means of a spherical harmonic decomposition, to study the problem by means of a one-dimensional description. Some properties of such gravitational waves are discussed as a function of the parameters of the infalling scalar field, and allow us to make the conjecture that the gravitational waves carry information on the type of matter that generated them.
Spherically symmetric radiation in gravitational collapse
International Nuclear Information System (INIS)
Bridy, D.J.
1983-01-01
This paper investigates a previously neglected mode by which a star may lose energy in the late stages of gravitational collapse to the black hole state. A model consisting of a Schwarzschild exterior matched to a Friedman interior of collapsing pressureless dust is studied. The matter of the collapsing star is taken as the source of a massive vector boson field and a detailed boundary value problem is carried out. Vector mesons are strongly coupled to all nucleons and will be radiated by ordinary matter during the collapse. The time dependent coupling between interior and exterior modes matched across the moving boundary of the collapsing star and the presence of the gravitational fields and their gradients in the field equations may give rise to a parametric amplification mechanism and permit the gravitational field to pump energy into the boson field, greatly enhancing the amount of boson radiation. The significance of a radiative mechanism driven by collapse is that it can react back upon the collapsing source and deprive it of some of the very mass that drives the collapse via its self gravitation. If the mass loss is great enough, this may provide a mechanism to slow or even halt gravitational collapse in some cases
Possibility of Landau damping of gravitational waves
International Nuclear Information System (INIS)
Gayer, S.; Kennel, C.F.
1979-01-01
There is considerable uncertainty in the literature concerning whether or not transverse traceless gravitational waves can Landau damp. Physically, the issue is whether particles of nonzero mass can comove with surfaces of constant wave phase, and therefore, loosely, whether gravitational waves can have phase speeds less than that of light. We approach the question of Landau damping in various ways. We consider first the propagation of small-amplitude gravitational waves in an ideal fluid-filled Robertson-Walker universe of zero spatial curvature. We argue that the principle of equivalence requires those modes to be lightlike. We show that a freely moving particle interacting only with the collective fields cannot comove with such waves if it has nonzero mass. The equation for gravitational waves in collisionless kinetic gases differs from that for fluid media only by terms so small that deviations from lightlike propagation are unmeasurable. Thus, we conclude that Landau damping of small-amplitude, transverse traceless gravitational waves is not possible
The Schenberg gravitational wave detector: status report
International Nuclear Information System (INIS)
Aguiar, O.D.; Barroso, J.J; Bessada, D.F.A.; Carvalho, N.C; Castro, P.J.; Montana, C.E. Cedeno; Costa, C.F. da Silva; Araujo, J.C.N de; Evangelista, E.F.D.; Furtado, S.R; Miranda, O.D.; Moraes, P.H.R.S.; Pereira, Eduardo S.; Silveira, P.R.; Stellati, C.; Weber, J.
2011-01-01
Full text: The quest for gravitational wave detection has been one of the toughest technological challenges ever faced by experimental physicists and engineers. Despite all difficulties, after four decades of research, the community involved in this area is continuously growing. One of the main reasons for this is because the first gravitational wave detection and the regular observation of gravitational waves are among the most important scientific goals for the beginning of this millennium. They will test one of the foundations of physics, Einstein's theory of general relativity, and will open a new window for the observation of the universe, which certainly will cause a revolution in our knowledge of physics and astrophysics. In this talk we present the status report of the Brazilian Schenberg gravitational wave detector, which started commissioning runs in September 2006 under the full support of FAPESP. We have been upgrading the detector since 2008, installing a dilution refrigerator, a new complete set of transducers, and a new suspension and vibration isolation system for the cabling and microstrip antennas, in order to restart operation with a higher sensitivity. We also have been studying an innovative approach, which could transform Schenberg into a broadband gravitational wave detector by the use of an ultra-high sensitivity non-resonant nanogap transducer, constructed by the application of recent achievements of nanotechnology. A spherical antenna, such as Schenberg or Mini-Grail, could add to this quality the advantage of wave position and polarity determination. (author)
GLINT. Gravitational-wave laser INterferometry triangle
Aria, Shafa; Azevedo, Rui; Burow, Rick; Cahill, Fiachra; Ducheckova, Lada; Holroyd, Alexa; Huarcaya, Victor; Järvelä, Emilia; Koßagk, Martin; Moeckel, Chris; Rodriguez, Ana; Royer, Fabien; Sypniewski, Richard; Vittori, Edoardo; Yttergren, Madeleine
2017-11-01
When the universe was roughly one billion years old, supermassive black holes (103-106 solar masses) already existed. The occurrence of supermassive black holes on such short time scales are poorly understood in terms of their physical or evolutionary processes. Our current understanding is limited by the lack of observational data due the limits of electromagnetic radiation. Gravitational waves as predicted by the theory of general relativity have provided us with the means to probe deeper into the history of the universe. During the ESA Alpach Summer School of 2015, a group of science and engineering students devised GLINT (Gravitational-wave Laser INterferometry Triangle), a space mission concept capable of measuring gravitational waves emitted by black holes that have formed at the early periods after the big bang. Morespecifically at redshifts of 15 big bang) in the frequency range 0.01 - 1 Hz. GLINT design strain sensitivity of 5× 10^{-24} 1/√ { {Hz}} will theoretically allow the study of early black holes formations as well as merging events and collapses. The laser interferometry, the technology used for measuring gravitational waves, monitors the separation of test masses in free-fall, where a change of separation indicates the passage of a gravitational wave. The test masses will be shielded from disturbing forces in a constellation of three geocentric orbiting satellites.
Robust automated knowledge capture.
Energy Technology Data Exchange (ETDEWEB)
Stevens-Adams, Susan Marie; Abbott, Robert G.; Forsythe, James Chris; Trumbo, Michael Christopher Stefan; Haass, Michael Joseph; Hendrickson, Stacey M. Langfitt
2011-10-01
This report summarizes research conducted through the Sandia National Laboratories Robust Automated Knowledge Capture Laboratory Directed Research and Development project. The objective of this project was to advance scientific understanding of the influence of individual cognitive attributes on decision making. The project has developed a quantitative model known as RumRunner that has proven effective in predicting the propensity of an individual to shift strategies on the basis of task and experience related parameters. Three separate studies are described which have validated the basic RumRunner model. This work provides a basis for better understanding human decision making in high consequent national security applications, and in particular, the individual characteristics that underlie adaptive thinking.
Payne, Lloyd R.; Cole, David L.
2010-03-30
A fragment capture device for use in explosive containment. The device comprises an assembly of at least two rows of bars positioned to eliminate line-of-sight trajectories between the generation point of fragments and a surrounding containment vessel or asset. The device comprises an array of at least two rows of bars, wherein each row is staggered with respect to the adjacent row, and wherein a lateral dimension of each bar and a relative position of each bar in combination provides blockage of a straight-line passage of a solid fragment through the adjacent rows of bars, wherein a generation point of the solid fragment is located within a cavity at least partially enclosed by the array of bars.
Capturing the Daylight Dividend
Energy Technology Data Exchange (ETDEWEB)
Peter Boyce; Claudia Hunter; Owen Howlett
2006-04-30
Capturing the Daylight Dividend conducted activities to build market demand for daylight as a means of improving indoor environmental quality, overcoming technological barriers to effective daylighting, and informing and assisting state and regional market transformation and resource acquisition program implementation efforts. The program clarified the benefits of daylight by examining whole building systems energy interactions between windows, lighting, heating, and air conditioning in daylit buildings, and daylighting's effect on the human circadian system and productivity. The project undertook work to advance photosensors, dimming systems, and ballasts, and provided technical training in specifying and operating daylighting controls in buildings. Future daylighting work is recommended in metric development, technology development, testing, training, education, and outreach.
The dawn of gravitational wave astronomy
CERN. Geneva
2016-01-01
On Sep 14 2015, gravitational waves were for the first time detected directly. This observation by the LIGO interferometric detectors marks the dawn of a new era in our observational study of the cosmos as a qualitatively new window to its exploration has been opened. This talk reviews some of the fundamental concepts of gravitational waves and the methodology employed for their observation. The first event, dubbed GW150914, and the properties of its source, as inferred from the observation, will be discussed. The talk concludes with a selected set of the most important topics where we expect gravitational-wave observations to deepen and either challenge or confirm our present understanding of the laws and the history of our universe.
Parametric resonance and cosmological gravitational waves
International Nuclear Information System (INIS)
Sa, Paulo M.; Henriques, Alfredo B.
2008-01-01
We investigate the production of gravitational waves due to quantum fluctuations of the vacuum during the transition from the inflationary to the radiation-dominated eras of the universe, assuming this transition to be dominated by the phenomenon of parametric resonance. The energy spectrum of the gravitational waves is calculated using the method of continuous Bogoliubov coefficients, which avoids the problem of overproduction of gravitons at large frequencies. We found, on the sole basis of the mechanism of quantum fluctuations, that the resonance field leaves no explicit and distinctive imprint on the gravitational-wave energy spectrum, apart from an overall upward or downward translation. Therefore, the main features in the spectrum are due to the inflaton field, which leaves a characteristic imprint at frequencies of the order of MHz/GHz.
The gravitational analogue of the Witten effect
International Nuclear Information System (INIS)
Foda, O.
1984-06-01
In the presence of massive fermions, and assuming a non-vanishing theta-parameter as the only source of CP-violation, the Witten effect [a shift in the electric charge of a magnetic monopole due to CP-non-conservation] is shown to follow from an anomalous chiral commutator. Next, given the gravitational contribution to the chiral anomaly, the corresponding anomalous commutator for Dirac fermion currents in a gravitational background is derived. From that, we infer the equivalence of a theta R-tilde R term in the Lagrangian to a shift in the mass parameter of the NUT metric, in proportion to theta. This is interpreted as the gravitational analogue of the Witten effect. Its relevance to certain Kaluza-Klein monopoles is briefly discussed. (author)
Gravitational analogue of the Witten effect
Energy Technology Data Exchange (ETDEWEB)
Foda, O. (International Centre for Theoretical Physics, Trieste (Italy))
1985-07-22
In the presence of massive fermions, and assuming a non-vanishing theta-parameter as the only source of CP violation, the Witten effect (a shift in the electric charge of a magnetic monopole due to CP non-conservation) is shown to follow from an anomalous chiral commutator. Next, given the gravitational contribution to the chiral anomaly, the corresponding anomalous commutator for Dirac fermion currents in a gravitational background is derived. From that, we infer the equivalence of a thetaR tildeR term in the lagrangian to a shift in the mass parameter of the NUT metric, in proportion to theta. This is interpreted as the gravitational analogue of the Witten effect. Its relevance to certain Kaluza-Klein monopoles is briefly discussed.
The gravitational analogue of the Witten effect
International Nuclear Information System (INIS)
Foda, O.
1985-01-01
In the presence of massive fermions, and assuming a non-vanishing theta-parameter as the only source of CP violation, the Witten effect (a shift in the electric charge of a magnetic monopole due to CP non-conservation) is shown to follow from an anomalous chiral commutator. Next, given the gravitational contribution to the chiral anomaly, the corresponding anomalous commutator for Dirac fermion currents in a gravitational background is derived. From that, we infer the equivalence of a thetaR tildeR term in the lagrangian to a shift in the mass parameter of the NUT metric, in proportion to theta. This is interpreted as the gravitational analogue of the Witten effect. Its relevance to certain Kaluza-Klein monopoles is briefly discussed. (orig.)
Gravitation in the 'quasi-classical' theory
International Nuclear Information System (INIS)
Wignall, J.W.G.; Zangari, M.
1990-01-01
The 'quasi-classical' picture of particles as extendend periodic disturbances in a classical nonlinear field, previously shown to imply all the equations of Maxwell electrodynamics with very little formal input, is here applied to the other known long-range force, gravitation. It is shown that the picture's absolute interpretation of inertial mass and four-potential as measures of the local spacing between equal-phase hypersurfaces, together with the empirically established proportionality of gravitational 'charge' to inertial mass, leads naturally to the gravitational red-shift formula, and it thus provides a physical basis for the spacetime curvature that is the central idea of Einstein's general theory of relativity. 16 refs., 1 fig
General relativity and gravitation a centennial perspective
Berger, Beverly K; Isenberg, James; MacCallum, Malcolm
2015-01-01
Explore spectacular advances in cosmology, relativistic astrophysics, gravitational wave science, mathematics, computational science, and the interface of gravitation and quantum physics with this unique celebration of the centennial of Einstein's discovery of general relativity. Twelve comprehensive and in-depth reviews, written by a team of world-leading international experts, together present an up-to-date overview of key topics at the frontiers of these areas, with particular emphasis on the significant developments of the last three decades. Interconnections with other fields of research are also highlighted, making this an invaluable resource for both new and experienced researchers. Commissioned by the International Society on General Relativity and Gravitation, and including accessible introductions to cutting-edge topics, ample references to original research papers, and informative colour figures, this is a definitive reference for researchers and graduate students in cosmology, relativity, and grav...
Electromagnetic waves in gravitational wave spacetimes
International Nuclear Information System (INIS)
Haney, M.; Bini, D.; Ortolan, A.; Fortini, P.
2013-01-01
We have considered the propagation of electromagnetic waves in a space-time representing an exact gravitational plane wave and calculated the induced changes on the four-potential field Aμ of a plane electromagnetic wave. By choosing a suitable photon round-trip in a Michelson interferometer, we have been able to identify the physical effects of the exact gravitational wave on the electromagnetic field, i.e. phase shift, change of the polarization vector, angular deflection and delay. These results have been exploited to study the response of an interferometric gravitational wave detector beyond the linear approximation of the general theory of relativity. A much more detailed examination of this problem can be found in our paper recently published in Classical and Quantum Gravity (28 (2011) 235007).
Stabilized lasers for advanced gravitational wave detectors
International Nuclear Information System (INIS)
Willke, B; Danzmann, K; Kwee, P; Seifert, F; Frede, M; Kracht, D; Puncken, O; Schulz, B; Veltkamp, C; Wagner, S; Wessels, P; Winkelmann, L; King, P; Savage, R L Jr
2008-01-01
Second generation gravitational wave detectors require high power lasers with more than 100 W of output power and with very low temporal and spatial fluctuations. To achieve the demanding stability levels required, low noise techniques and adequate control actuators have to be part of the high power laser design. In addition feedback control and passive noise filtering is used to reduce the fluctuations in the so-called prestabilized laser system (PSL). In this paper, we discuss the design of a 200 W PSL which is under development for the Advanced LIGO gravitational wave detector and will present the first results. The PSL noise requirements for advanced gravitational wave detectors will be discussed in general and the stabilization scheme proposed for the Advanced LIGO PSL will be described
Gravitation as Gauge theory of Poincare Group
International Nuclear Information System (INIS)
Stedile, E.
1982-08-01
The geometrical approach to gauge theories, based on fiber-bundles, is shown in detail. Several gauge formalisms for gravitation are examined. In particular, it is shown how to build gauge theories for non-semisimple groups. A gravitational theory for the Poincare group, with all the essential characteristics of a Yang-Mills theory is proposed. Inonu-Wigner contractions of gauge theories are introduced, which provide a Lagrangian formalism, equivalent to a Lagrangian de Sitter theory supplemented by weak constraints. Yang and Einstein theories for gravitation become particular cases of a Yang-Mills theory. The classical limit of the proposed formalism leads to the Poisson equation, for the static case. (Author) [pt
Gravitational waves from plunges into Gargantua
Compère, Geoffrey; Fransen, Kwinten; Hertog, Thomas; Long, Jiang
2018-05-01
We analytically compute time domain gravitational waveforms produced in the final stages of extreme mass ratio inspirals of non-spinning compact objects into supermassive nearly extremal Kerr black holes. Conformal symmetry relates all corotating equatorial orbits in the geodesic approximation to circular orbits through complex conformal transformations. We use this to obtain the time domain Teukolsky perturbations for generic equatorial corotating plunges in closed form. The resulting gravitational waveforms consist of an intermediate polynomial ringdown phase in which the decay rate depends on the impact parameters, followed by an exponential quasi-normal mode decay. The waveform amplitude exhibits critical behavior when the orbital angular momentum tends to a minimal value determined by the innermost stable circular orbit. We show that either near-critical or large angular momentum leads to a significant extension of the LISA observable volume of gravitational wave sources of this kind.