Gravitational radiation reaction in the NUT-de Sitter spacetime
International Nuclear Information System (INIS)
Ahmed, M.
1988-07-01
The equations for gravitational perturbation in the NUT-de Sitter spacetime are obtained. Using these equations, some preliminary calculations have been made with a view to constructing the retarded Green functions. Then with the help of the retarded Green functions, the radiative Green functions have been constructed. With the aid of these radiative Green functions, the reaction force on a particle is computed and this reaction force is then shown to account correctly for the energy and the angular momentum carried away by gravitational radiation to infinity and to the horizon. (author). 9 refs
Radiation reaction force and unification of electromagnetic and gravitational fields
International Nuclear Information System (INIS)
Lo, C.Y.; Goldstein, G.R.; Napier, A.
1981-04-01
A unified theory of electromagnetic and gravitational fields should modify classical electrodynamics such that the radiation reaction force is accounted for. The analysis leads to a five-dimensional unified theory of five variables. The theory is supported by showing that, for the case of a charged particle moving in a constant magnetic field, the radiation reaction force is indeed included. Moreover, this example shows explicitly that physical changes are associated with the fifth variable. Thus, the notion of a physical five-dimensional space should be seriously taken into consideration
Secular instability of axisymmetric rotating stars to gravitational radiation reaction
International Nuclear Information System (INIS)
Managan, R.A.
1985-01-01
A generalization of the Eulerian variational principle derived by Ipser and Managan, for nonaxisymmetric neutral modes of axisymmetric fluid configurations, is developed. The principle provides a variational basis for calculating the frequencies of nonaxisymmetric normal modes proportional to e/sup i/(sigmat + mphi). A modified form of this principle, valid for sigma near 0, is also developed. The latter principle is used to locate the points where the frequency of a nonaxisymmetric normal mode of an axisymmetric rotating fluid configuration passes through zero. lt is at these points that the configuration becomes secularly unstable to gravitational radiation reaction (GRR). This is demonstrated directly by including the GRR potential and showing that the imaginary part of sigma passes through zero and becomes negative at these points. The imaginary part of the frequency is used to estimate the e-folding time of the mode. This variational principle is applied to sequences of rotating polytropes. The sequences are constructed using four rotation laws at each value of the polytropic index n = 0.5, 1.0, 1.5, 2.0, and 3.0. The values of (T/W)/sub m/, the ratio of the rotational kinetic energy to the magnitude of the gravitational potential energy at the onset of instability, and timescales for the modes with m = 2, 3, and 4 are estimated for each sequence. The value of (T/W) 2 is largely independent of the equation of state and rotation law. For m > 2, (T/W)/sub m/ decreases as the equation of state becomes softer, i.e., as the polytropic index n increases, and increases as the amount of differential rotation increases. The most striking result of this behavior occurs for uniform rotation
Directory of Open Access Journals (Sweden)
Metin SALTIK
1996-03-01
Full Text Available According to classical electromagnetic theory, an accelerated charge or system of charges radiates electromagnetic waves. In a radio transmitter antenna charges are accelerated along the antenna and release electromagnetic waves, which is radiated at the velocity of light in the surrounding medium. All of the radio transmitters work on this principle today. In this study an analogy is established between the principles by which accelerated charge systems markes radiation and the accelerated mass system, and the systems cousing gravitational radiation are investigated.
Detection of gravitational radiation
International Nuclear Information System (INIS)
Holten, J.W. van
1994-01-01
In this report the main contributions presented at the named symposium are collected. These concern astrophysical sources of gravitational radiation, ultracryogenic gravitational wave experiments, read out and data analysis of gravitational wave antennas, cryogenic aspects of large mass cooling to mK temperatures, and metallurgical and engineering aspects of large Cu structure manufacturing. (HSI)
Gravitation radiation observations
Glass, E. N.
2017-01-01
The notion of gravitational radiation begins with electromagnetic radiation. In 1887 Heinrich Hertz, working in one room, generated and received electromagnetic radiation. Maxwell's equations describe the electromagnetic field. The quanta of electromagnetic radiation are spin 1 photons. They are fundamental to atomic physics and quantum electrodynamics.
Gravitational radiation resistance, radiation damping and field fluctuations
International Nuclear Information System (INIS)
Schaefer, G.
1981-01-01
Application is made of two different generalised fluctuation-dissipation theorems and their derivations to the calculation of the gravitational quadrupole radiation resistance using the radiation-reaction force given by Misner, Thorne and Wheeler (Gravitation (San Francisco: Freeman) ch 36,37 (1973)) and the usual tidal force on one hand and the tidal force and the free gravitational radiation field on the other hand. The quantum-mechanical version (including thermal generalisations) of the well known classical quadrupole radiation damping formula is obtained as a function of the radiation resistance. (author)
On the gravitational radiation formula
International Nuclear Information System (INIS)
Schaefer, G.; Dehnen, H.
1980-01-01
For electromagnetically as well as gravitationally bound quantum mechanical many-body systems the coefficients of absorption and induced emission of gravitational radiation are calculated in the first-order approximation. The results are extended subsequently to systems with arbitrary non-Coulomb-like two-particle interaction potentials;it is shown explicitly that in all cases the perturbation of the binding potentials of the bound systems by the incident gravitational wave field itself must be taken into account. With the help of the thermodynamic equilibrium of gravitational radiation and quantised matter, the coefficients for spontaneous emission of gravitational radiation are derived and the gravitational radiation formula for emission of gravitational quadrupole radiation by bound quantum mechanical many-body systems is given. According to the correspondence principle the present result is completely identical with the well known classical radiation formula, by which recent criticism against this formula is refuted. Finally the quantum mechanical absorption cross section for gravitational quadrupole radiation is deduced and compared with the corresponding classical expressions. As a special example the vibrating two-mass quadrupole is treated explicitly. (author)
Gravitational scattering of electromagnetic radiation
Brooker, J. T.; Janis, A. I.
1980-01-01
The scattering of electromagnetic radiation by linearized gravitational fields is studied to second order in a perturbation expansion. The incoming electromagnetic radiation can be of arbitrary multipole structure, and the gravitational fields are also taken to be advanced fields of arbitrary multipole structure. All electromagnetic multipole radiation is found to be scattered by gravitational monopole and time-varying dipole fields. No case has been found, however, in which any electromagnetic multipole radiation is scattered by gravitational fields of quadrupole or higher-order multipole structure. This lack of scattering is established for infinite classes of special cases, and is conjectured to hold in general. The results of the scattering analysis are applied to the case of electromagnetic radiation scattered by a moving mass. It is shown how the mass and velocity may be determined by a knowledge of the incident and scattered radiation.
Gravitational radiation from dust
International Nuclear Information System (INIS)
Isaacson, R.A.; Welling, J.S.; Winicour, J.
1985-01-01
A dust cloud is examined within the framework of the general relativistic characteristic initial value problem. Unique gravitational initial data are obtained by requiring that the space-time be quasi-Newtonian. Explicit calculations of metric and matter fields are presented, which include all post-Newtonian corrections necessary to discuss the major physical properties of null infinity. These results establish a curved space version of the Einstein quadrupole formula, in the form ''news function equals third time derivative of transverse quadrupole moment,'' for this system. However, these results imply that some weakened notion of asymptotic flatness is necessary for the description of quasi-Newtonian systems
Resonant-bar gravitational radiation antennas
International Nuclear Information System (INIS)
Blair, D.G.
1987-01-01
This paper reviews the concept of gravitational radiation, and describes the worldwide research programme for the development of high-sensitivity resonant-bar antennas which are aimed at detecting gravitational radiation from astrophysical sources. (author)
Gravitational radiation from electromagnetic systems
International Nuclear Information System (INIS)
Nikishov, A.I.; Ritus, V.I.
1989-01-01
It is shown that the spectrum of gravitational radiation of a charge e with mass m, undergoing finite motion in an electromagnetic field, smoothly varying in the neighborhood of the orbit over a region of the order of the radius of curvature, differs in the ultrarelativistic limit from the spectrum of the charge's electromagnetic radiation. The difference consists of the frequency-independent coefficient 4πGm 2 Λ 2 /e 2 , where Λ is of the order of the Lorentz factor of the charge and depends on the direction of the wave vector and on the behavior of the field in the above-indicated region. For a plane-wave external field the gravitational and electromagnetic spectra are strictly proportional to each other for arbitrary velocities of the charge. Localization of the external forces near the orbit violates this proportionality of the spectra and weakens the gravitational radiation by an amount of the order of the square of the Lorentz factor
Conservation laws and gravitational radiation
International Nuclear Information System (INIS)
Rastall, P.
1977-01-01
A total stress-momentum is defined for gravitational fields and their sources. The Lagrangian density is slightly different from that in the previous version of the theory, and the field equations are considerably simplified. The post-Newtonian approximation of the theory is unchanged. The existence and nature of weak gravitational waves are discussed. (author)
Gravitational radiation and the validity of general relativity
International Nuclear Information System (INIS)
Will, C.M.
2001-01-01
The regular observation of gravitational radiation by a world-wide network of resonant and laser-interferometric detectors will usher in a new form of astronomy. At the same time, it will provide new and interesting tests of general relativity. We review the current empirical status of general relativity, and discuss three areas in which direct observation of gravitational radiation could test the theory further: polarization of the waves, speed of the waves, and back-reaction of the waves on the evolution of the source. (author)
Gravitational Radiation from Massless Particle Collisions
Gruzinov, Andrei
2016-05-17
We compute classical gravitational bremsstrahlung from the gravitational scattering of two massless particles at leading order in the (center of mass) deflection angle $\\theta\\sim 8 G E/b \\ll 1$. The calculation, although non-perturbative in the gravitational constant, is surprisingly simple and yields explicit formulae --in terms of multidimensional integrals-- for the frequency and angular distribution of the radiation. In the range $ b^{-1} (GE)^{-1}$ the radiation is confined to cones of angular size of order $\\theta (GE\\omega)^{-1/2}$ resulting in a scale-invariant ($d\\omega/\\omega$) spectrum. The total efficiency in GW production is dominated by this "high frequency" region and is formally logarithmically divergent in the UV. If the spectrum is cutoff at the limit of validity of our approximations ($ GE \\omega \\sim \\theta^{-2}$), the fraction of incoming energy radiated away turns out to be $\\frac{1}{\\pi} \\theta ^2 \\log \\theta^{-2}$ at leading logarithmic accuracy.
Radiatively-induced gravitational leptogenesis
Directory of Open Access Journals (Sweden)
J.I. McDonald
2015-12-01
Full Text Available We demonstrate how loop effects in gravitational backgrounds lead to a difference in the propagation of matter and antimatter, and show this is forbidden in flat space due to CPT and translation invariance. This mechanism, which is naturally present in beyond the standard model (BSM theories exhibiting C and CP violation, generates a curvature-dependent chemical potential for leptons in the low-energy effective Lagrangian, allowing a matter–antimatter asymmetry to be generated in thermodynamic equilibrium, below the BSM scale.
Entropy of self-gravitating radiation
International Nuclear Information System (INIS)
Sorkin, R.D.; Wald, R.M.; Jiu, Z.Z.
1981-01-01
The entropy of self-gravitating radiation confined to a spherical box of radius R is examined in the context of general relativity. It is expected that configurations (i.e., initial data) which extremize total entropy will be spherically symmetric, time symmetric distributions of radiation in local thermodynamic equilibrium. Assuming this is the case, it is proved that extrema of S coincide precisely with static equilibrium configurations of the radiation fluid. Furthermore, dynamically stable equilibrium configurations are shown to coincide with local maxima of S. The equilibrium configurations and their entropies are calculated and their properties are discussed. However, it is shown that entropies higher than these local extrema can be achieved and, indeed, arbitrarily high entropies can be attained by configurations inside of or outside but arbitrarily near their own Schwarzschild radius. However, consideration is limited to configurations which are outside their own Schwarzschild radius by at least one radiation wavelength, then the entropy is bounded and it is found Ssub(max) < is approximately equal to MR, where M is the total mass. This supports the validity for self-gravitating systems of the Bekenstein upper limit on the entropy to energy ratio of material bodies. (author)
Gravitational radiation from nearly Newtonian systems
International Nuclear Information System (INIS)
Kirk, E.M.
1989-09-01
A method of examining gravitational radiation from nearly Newtonian systems is presented. Using the Cartan formulation of Newtonian gravity, a one parameter family of space-times which have a strict Newtonian limit is constructed. An expression for the initial null data in terms of the Newtonian potential is obtained in the Newtonian limit. Using this, the problem is formulated as a series in the Newtonian parameter. The series expansions for the sources of the Bianchi identities are obtained to third order in both the vacuum and non-vacuum cases. A simple technique is presented for determining whether a particular source term gives rise to asymptotically flat null data. The far field quadrupole formula is derived in a leading approximation and a method for obtaining error bounds is discussed. Additionally, a method for solving Einstein's equations is shown. This involves expressing the Ricci identities as a matrix, Riccati equation and a system of linear matrix equations. A comparison of the formalisms of Bondi and Newman Penrose is presented and explicit correspondences between the supersurface constrain equations and the Ricci identities are shown. (author)
Electromagnetic radiation accompanying gravitational waves from black hole binaries
Energy Technology Data Exchange (ETDEWEB)
Dolgov, A. [Dept. of Physics, Novosibirsk State University, Pirogova 2, 630090 Novosibirsk (Russian Federation); Postnov, K., E-mail: dolgov@fe.infn.it, E-mail: kpostnov@gmail.com [Sternberg Astronomical Institute, Moscow M.V. Lomonosov State University, Universitetskij pr. 13, 119234 Moscow (Russian Federation)
2017-09-01
The transition of powerful gravitational waves, created by the coalescence of massive black hole binaries, into electromagnetic radiation in external magnetic fields is considered. In contrast to the previous calculations of the similar effect we study the realistic case of the gravitational radiation frequency below the plasma frequency of the surrounding medium. The gravitational waves propagating in the plasma constantly create electromagnetic radiation dragging it with them, despite the low frequency. The plasma heating by the unattenuated electromagnetic wave may be significant in hot rarefied plasma with strong magnetic field and can lead to a noticeable burst of electromagnetic radiation with higher frequency. The graviton-to-photon conversion effect in plasma is discussed in the context of possible electromagnetic counterparts of GW150914 and GW170104.
Detection of gravitational radiation by the Doppler tracking of spacecraft
International Nuclear Information System (INIS)
Mashhoon, B.
1979-01-01
It has been suggested that the residual Doppler shift in the precision electromagnetic tracking of spacecraft be used to search for gravitational radiation that may be incident on the Earth-spacecraft system. The influence of a gravitational wave on the Doppler shift is calculated, and it is found that the residual shift is dominated by two terms: one is due to the passage of electromagnetic waves through the gravitational radiation field, and the other depends on the change in the relative velocity of the Earth and the spacecraft caused by the external wave. A detailed analysis is given of the influence of gravitational radiation on a binary system with an orbital size small compared to the wavelength of the incident radiation. It is shown that, as a consequence of the interaction with the external wave, the system makes a transition from one Keplerian orbit into another which, in general, has a different energy and angular momentum. It is therefore proposed to search for such effects in the solar system. Observations of the orbit of an artificial Earth satellite, the lunar orbit, and especially the planetary orbits offer exciting possibilities for the detection of gravitational waves of various wavelengths. From the results of the lunar laser ranging experiment and the range measurement to Mars, certain interesting limits may be established on the frequency of incidence of gravitational waves of a given flux on the Earth-Moon and the Earth-Mars systems. This is followed by a brief and preliminary analysis of the possibility of detecting gravitational radiation by measuring a residual secular Doppler shift in the satellite-to-satellite Doppler tracking of two counterorbiting drag-free spacecraft around the Earth as in the Van Patten-Everitt experiment
Constraints on Lorentz violation from gravitational Čerenkov radiation
Directory of Open Access Journals (Sweden)
V. Alan Kostelecký
2015-10-01
Full Text Available Limits on gravitational Čerenkov radiation by cosmic rays are obtained and used to constrain coefficients for Lorentz violation in the gravity sector associated with operators of even mass dimensions, including orientation-dependent effects. We use existing data from cosmic-ray telescopes to obtain conservative two-sided constraints on 80 distinct Lorentz-violating operators of dimensions four, six, and eight, along with conservative one-sided constraints on three others. Existing limits on the nine minimal operators at dimension four are improved by factors of up to a billion, while 74 of our explicit limits represent stringent first constraints on nonminimal operators. Prospects are discussed for future analyses incorporating effects of Lorentz violation in the matter sector, the role of gravitational Čerenkov radiation by high-energy photons, data from gravitational-wave observatories, the tired-light effect, and electromagnetic Čerenkov radiation by gravitons.
Gravitational radiation from preheating with many fields
International Nuclear Information System (INIS)
Jr, John T. Giblin; Price, Larry R.; Siemens, Xavier
2010-01-01
Parametric resonances provide a mechanism by which particles can be created just after inflation. Thus far, attention has focused on a single or many inflaton fields coupled to a single scalar field. However, generically we expect the inflaton to couple to many other relativistic degrees of freedom present in the early universe. Using simulations in an expanding Friedmann-Lemaître-Robertson-Walker spacetime, in this paper we show how preheating is affected by the addition of multiple fields coupled to the inflaton. We focus our attention on gravitational wave production — an important potential observational signature of the preheating stage. We find that preheating and its gravitational wave signature is robust to the coupling of the inflaton to more matter fields
Gravitational radiation from preheating with many fields
Energy Technology Data Exchange (ETDEWEB)
Jr, John T. Giblin [Department of Physics, Kenyon College, 201 North College Road, Gambier, OH 43022 (United States); Price, Larry R.; Siemens, Xavier, E-mail: giblinj@kenyon.edu, E-mail: larry@gravity.phys.uwm.edu, E-mail: siemens@gravity.phys.uwm.edu [Center for Gravitation and Cosmology, Department of Physics, University of Wisconsin — Milwaukee, P.O. Box 413, Milwaukee, WI 53201 (United States)
2010-08-01
Parametric resonances provide a mechanism by which particles can be created just after inflation. Thus far, attention has focused on a single or many inflaton fields coupled to a single scalar field. However, generically we expect the inflaton to couple to many other relativistic degrees of freedom present in the early universe. Using simulations in an expanding Friedmann-Lemaître-Robertson-Walker spacetime, in this paper we show how preheating is affected by the addition of multiple fields coupled to the inflaton. We focus our attention on gravitational wave production — an important potential observational signature of the preheating stage. We find that preheating and its gravitational wave signature is robust to the coupling of the inflaton to more matter fields.
Gravitational radiation from first-order phase transitions
International Nuclear Information System (INIS)
Child, Hillary L.; Giblin, John T. Jr.
2012-01-01
It is believed that first-order phase transitions at or around the GUT scale will produce high-frequency gravitational radiation. This radiation is a consequence of the collisions and coalescence of multiple bubbles during the transition. We employ high-resolution lattice simulations to numerically evolve a system of bubbles using only scalar fields, track the anisotropic stress during the process and evolve the metric perturbations associated with gravitational radiation. Although the radiation produced during the bubble collisions has previously been estimated, we find that the coalescence phase enhances this radiation even in the absence of a coupled fluid or turbulence. We comment on how these simulations scale and propose that the same enhancement should be found at the Electroweak scale; this modification should make direct detection of a first-order electroweak phase transition easier
Gravitational radiation from first-order phase transitions
Energy Technology Data Exchange (ETDEWEB)
Child, Hillary L.; Giblin, John T. Jr., E-mail: childh@kenyon.edu, E-mail: giblinj@kenyon.edu [Department of Physics, Kenyon College, 201 North College Road, Gambier, OH 43022 (United States)
2012-10-01
It is believed that first-order phase transitions at or around the GUT scale will produce high-frequency gravitational radiation. This radiation is a consequence of the collisions and coalescence of multiple bubbles during the transition. We employ high-resolution lattice simulations to numerically evolve a system of bubbles using only scalar fields, track the anisotropic stress during the process and evolve the metric perturbations associated with gravitational radiation. Although the radiation produced during the bubble collisions has previously been estimated, we find that the coalescence phase enhances this radiation even in the absence of a coupled fluid or turbulence. We comment on how these simulations scale and propose that the same enhancement should be found at the Electroweak scale; this modification should make direct detection of a first-order electroweak phase transition easier.
Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact Binaries
Directory of Open Access Journals (Sweden)
Luc Blanchet
2014-02-01
Full Text Available To be observed and analyzed by the network of gravitational wave detectors on ground (LIGO, VIRGO, etc. and by the future detectors in space (eLISA, etc., inspiralling compact binaries -- binary star systems composed of neutron stars and/or black holes in their late stage of evolution -- require high-accuracy templates predicted by general relativity theory. The gravitational waves emitted by these very relativistic systems can be accurately modelled using a high-order post-Newtonian gravitational wave generation formalism. In this article, we present the current state of the art on post-Newtonian methods as applied to the dynamics and gravitational radiation of general matter sources (including the radiation reaction back onto the source and inspiralling compact binaries. We describe the post-Newtonian equations of motion of compact binaries and the associated Lagrangian and Hamiltonian formalisms, paying attention to the self-field regularizations at work in the calculations. Several notions of innermost circular orbits are discussed. We estimate the accuracy of the post-Newtonian approximation and make a comparison with numerical computations of the gravitational self-force for compact binaries in the small mass ratio limit. The gravitational waveform and energy flux are obtained to high post-Newtonian order and the binary's orbital phase evolution is deduced from an energy balance argument. Some landmark results are given in the case of eccentric compact binaries -- moving on quasi-elliptical orbits with non-negligible eccentricity. The spins of the two black holes play an important role in the definition of the gravitational wave templates. We investigate their imprint on the equations of motion and gravitational wave phasing up to high post-Newtonian order (restricting to spin-orbit effects which are linear in spins, and analyze the post-Newtonian spin precession equations as well as the induced precession of the orbital plane.
Piercing of domain walls: new mechanism of gravitational radiation
Gal'tsov, Dmitri; Melkumova, Elena; Spirin, Pavel
2018-01-01
Domain wall (DW) moving in media undergoes the friction force due to particle scattering. However certain particles are not scattered, but perforate the wall. As a result, the wall gets excited in the form of the branon wave, while the particle experiences an acceleration jump. This gives rise to generation of gravitational waves which we call "piercing gravitational radiation" (PGR). Though this effect is of higher order in the gravitational constant than the quadrupole radiation from the collapsing DWs, its amplitude is enhanced in the case of relativistic particles or photons because of absence of the velocity factor which is present in the quadrupole formula. We derive the spectral-angular distribution of PGR within the simplified model of the weakly gravitating particle-wall system in Minkowski space-time of arbitrary dimensions. Within this model the radiation amplitude is obtained analytically. The spectral-angular distribution of PGR in such an approach suffers from infrared and ultraviolet divergences as well as from collinear divergence in the case of a massless perforating particle. Different cut-off schemes appropriate in various dimensions are discussed. Our results are applicable both to cosmological DWs and to the braneworld models. PGR can be relevant in the infrared part of the spectrum of the relic gravitons where radiation from the collapsed DWs is damped.
Non-linear excitation of gravitational radiation antennae
International Nuclear Information System (INIS)
Blair, D.G.
1982-01-01
A mechanism of non-linear excitation is proposed to explain observed excess noise in gravitational radiation antennae, driven by low frequency vibration. The mechanism is analogous to the excitation of a violin string by low frequency bowing. Numerical estimates for Weber bars suspended by cables are in good agreement with observations. (Auth.)
Gravitational Radiation Damping and Evolution of the Orbit of ...
Indian Academy of Sciences (India)
Abstract. The influence of the gravitational radiation damping on the evolution of the orbital elements of compact binary stars is examined by using the method of perturbation. The perturbation equations with the true anomaly as an independent variable are given. This effect results in both the secular and periodic variation ...
Gravitational Radiation Damping and Evolution of the Orbit of ...
Indian Academy of Sciences (India)
2016-01-27
Jan 27, 2016 ... The influence of the gravitational radiation damping on the evolution of the orbital elements of compact binary stars is examined by using the method of perturbation. The perturbation equations with the true anomaly as an independent variable are given. This effect results in both the secular and periodic ...
Scattering of point particles by black holes: Gravitational radiation
Hopper, Seth; Cardoso, Vitor
2018-02-01
Gravitational waves can teach us not only about sources and the environment where they were generated, but also about the gravitational interaction itself. Here we study the features of gravitational radiation produced during the scattering of a pointlike mass by a black hole. Our results are exact (to numerical error) at any order in a velocity expansion, and are compared against various approximations. At large impact parameter and relatively small velocities our results agree to within percent level with various post-Newtonian and weak-field results. Further, we find good agreement with scaling predictions in the weak-field/high-energy regime. Lastly, we achieve striking agreement with zero-frequency estimates.
Radiation reaction in curved space-time:. local method
Gal'Tsov, Dmitri; Spirin, Pavel; Staub, Simona
Although consensus seems to exist about the validity of equations accounting for radiation reaction in curved space-time, their previous derivations were criticized recently as not fully satisfactory: some ambiguities were noticed in the procedure of integration of the field momentum over the tube surrounding the world-line. To avoid these problems we suggest a purely local derivation dealing with the field quantities defined only on the world-line. We consider point particle interacting with scalar, vector (electromagnetic) and linearized gravitational fields in the (generally non-vacuum) curved space-time. To properly renormalize the self-action in the gravitational case, we use a manifestly reparameterization-invariant formulation of the theory. Scalar and vector divergences are shown to cancel for a certain ratio of the corresponding charges. We also report on a modest progress in extending the results for the gravitational radiation reaction to the case of non-vacuum background.
Lunar surface gravimeter and the search for gravitational radiation
International Nuclear Information System (INIS)
Tobias, R.L.
1978-01-01
A search for gravitational radiation predicted by Einstein's general theory of relativity was made, using the Moon as an instrumented antenna. Data were analyzed from the Lunar Surface Gravimeter Experiment (LSG), part of the Apollo Lunar Surface Experiments Package (ALSEP) deployed on the moon. It was a component of the United States of America's Apollo 17 manned space flight mission in December, 1972. The LSG can observe accelerations of the lunar surface in the frequency range from approximately 0 to 16 hertz with a nominal sensitivity of approximately a few parts in 10 9 of lunar gravity. A secondary objective of the LSG was to measure the tidal effects on the moon and to serve as a one axis seismometer. A calculation of the sensitivity of gravitational radiation detectors enables computation of upper limits of the incident flux for the frequency regions searched. These included the millihertz region, where a search for excitation of the fundamental free modes of the moon established an upper limit of 1.4 x 10 13 ergs/(cm 2 -sec) for continuous gravitational radiation; and the 1 hertz region, where an exploration of higher order free mode excitations set a maximum flux of 5.7 x 10 12 ergs/(cm 2 -sec). Also described is an experiment to search for pulsed radiation with frequency components in the 1 hertz region. Seismic data from the LSG is converted into a form suitable for performing a coincidence analysis with two of the gravitational radiation detectors at Argonne National Laboratory near Chicago, and the University of Maryland in College Park, Maryland. Continuous lunar seismic data in the time period December 15-25, 1973 was converted into the format of the absolute value of the time derivative of the power
Thermal gravitational radiation of Fermi gases and Fermi liquids
International Nuclear Information System (INIS)
Schafer, G.; Dehnen, H.
1983-01-01
In view of neutron stars the gravitational radiation power of the thermal ''zero-sound'' phonons of a Fermi liquid and the gravitational bremsstrahlung of a degenerate Fermi gas is calculated on the basis of a hard-sphere Fermi particle model. We find for the gravitational radiation power per unit volume P/sub( s/)approx. =[(9π)/sup 1/3//5] x GQ n/sup 5/3/(kT) 4 h 2 c 5 and P/sub( g/)approx. =(4 5 /5 3 )(3/π)/sup 2/3/ G a 2 n/sup 5/3/(kT) 4 /h 2 c 5 for the cases of ''zero sound'' and bremsstrahlung, respectively. Here Q = 4πa 2 is the total cross section of the hard-sphere fermions, where a represents the radius of their hard-core potential. The application to very young neutron stars results in a total gravitational luminosity of about 10 31 erg/sec
Initial value gravitational quadrupole radiation theorem
International Nuclear Information System (INIS)
Winicour, J.
1987-01-01
A rigorous version of the quadrupole radiation formula is derived using the characteristic initial value formulation of a general relativistic fluid space-time. Starting from initial data for a Newtonian fluid, an algorithm is presented that determines characteristic initial data for a one-parameter family of general relativistic fluid space-times. At the initial time, a one-parameter family of space-times with this initial data osculates the evolution of the Newtonian fluid and has leading order news function equal to the third time derivative of the transverse Newtonian quadrupole moment
Low frequency electromagnetic radiation from gravitational waves generated by neutron stars
Jones, Preston; Gretarsson, Andri; Singleton, Douglas
2017-12-01
We investigate the possibility of observing very low frequency (VLF) electromagnetic radiation produced from the vacuum by gravitational waves. We review the calculations leading to the possibility of vacuum conversion of gravitational waves into electromagnetic waves and show how this process evades the well-known prohibition against particle production from gravitational waves. Using Newman-Penrose scalars, we estimate the luminosity of this proposed electromagnetic counterpart radiation coming from gravitational waves produced by neutron star oscillations. The detection of electromagnetic counterpart radiation would provide an indirect way of observing gravitational radiation with future spacecraft missions, especially lunar orbiting probes.
Influence of gravitation on the propagation of electromagnetic radiation
Mashhoon, B.
1975-01-01
The existence of a general helicity-rotation coupling is demonstrated for electromagnetic waves propagating in the field of a slowly rotating body and in the Goedel universe. This coupling leads to differential focusing of circularly polarized radiation by a gravitational field which is detectable for a rapidly rotating collapsed body. The electromagnetic perturbations and their frequency spectrum are given for the Goedel universe. The spectrum of frequencies is bounded from below by the characteristic rotation frequency of the Goedel universe. If the universe were rotating, the differential focusing effect would be extremely small due to the present upper limit on the anisotropy of the microwave background radiation.
Scattering of gravitational radiation - Second order moments of the wave amplitude
Macquart, JP
Gravitational radiation that propagates through an inhomogeneous mass distribution is subject to random gravitational tensing, or scattering, causing variations in the wave amplitude and temporal smearing of the signal. A statistical theory is constructed to treat these effects. The statistical
Hawking radiation of a vector field and gravitational anomalies
International Nuclear Information System (INIS)
Murata, Keiju; Miyamoto, Umpei
2007-01-01
Recently, the relation between Hawking radiation and gravitational anomalies has been used to estimate the flux of Hawking radiation for a large class of black objects. In this paper, we extend the formalism, originally proposed by Robinson and Wilczek, to the Hawking radiation of vector particles (photons). It is explicitly shown, with the Hamiltonian formalism, that the theory of an electromagnetic field on d-dimensional spherical black holes reduces to one of an infinite number of massive complex scalar fields on 2-dimensional spacetime, for which the usual anomaly-cancellation method is available. It is found that the total energy emitted from the horizon for the electromagnetic field is just (d-2) times that for a scalar field. The results support the picture that Hawking radiation can be regarded as an anomaly eliminator on horizons. Possible extensions and applications of the analysis are discussed
Analytic Black Hole Perturbation Approach to Gravitational Radiation.
Sasaki, Misao; Tagoshi, Hideyuki
2003-01-01
We review the analytic methods used to perform the post-Newtonian expansion of gravitational waves induced by a particle orbiting a massive, compact body, based on black hole perturbation theory. There exist two different methods of performing the post-Newtonian expansion. Both are based on the Teukolsky equation. In one method, the Teukolsky equation is transformed into a Regge-Wheeler type equation that reduces to the standard Klein Gordon equation in the flat-space limit, while in the other method (which was introduced by Mano, Suzuki, and Takasugi relatively recently, the Teukolsky equation is used directly in its original form. The former's advantage is that it is intuitively easy to understand how various curved space effects come into play. However, it becomes increasingly complicated when one goes to higher and higher post-Newtonian orders. In contrast, the latter's advantage is that a systematic calculation to higher post-Newtonian orders can be implemented relatively easily, but otherwise, it is so mathematical that it is hard to understand the interplay of higher order terms. In this paper, we review both methods so that their pros and cons may be seen clearly. We also review some results of calculations of gravitational radiation emitted by a particle orbiting a black hole.
Misner, Charles W; Wheeler, John Archibald
2017-01-01
First published in 1973, Gravitation is a landmark graduate-level textbook that presents Einstein’s general theory of relativity and offers a rigorous, full-year course on the physics of gravitation. Upon publication, Science called it “a pedagogic masterpiece,” and it has since become a classic, considered essential reading for every serious student and researcher in the field of relativity. This authoritative text has shaped the research of generations of physicists and astronomers, and the book continues to influence the way experts think about the subject. With an emphasis on geometric interpretation, this masterful and comprehensive book introduces the theory of relativity; describes physical applications, from stars to black holes and gravitational waves; and portrays the field’s frontiers. The book also offers a unique, alternating, two-track pathway through the subject. Material focusing on basic physical ideas is designated as Track 1 and formulates an appropriate one-semester graduate-level...
Direct observational upper limit to gravitational radiation from millisecond pulsar PSR 1937+214
International Nuclear Information System (INIS)
Hough, J.; Ward, H.; Munley, A.J.; Newton, G.P.; Meers, B.J.; Hoggan, S.; Kerr, G.A.
1983-01-01
The results are reported of a search for gravitational radiation from the newly discovered millisecond pulsar PSR 1937+214 with the high rotational rate of 642 Hz. An upper limit to the gravitational wave amplitude was found at twice the pulsar rotation frequency, the observed output from a gravitational wave detector corresponding at this frequency to an amplitude of (0.8sub(-0.8)sup(+1.5) x 10 - 20 ). (U.K.)
The quantum gravitational back-reaction on inflation
Energy Technology Data Exchange (ETDEWEB)
Tsamis, N.C. [Ecole Polytechnique, 91 - Palaiseau (France)]|[Theory Group, FORTH, Heraklion, Crete (Greece); Woodard, R.P. [Florida Univ., Gainesville, FL (United States). Dept. of Physics
1995-02-01
We describe our recent calculation of the dominant late time behavior of the expectation value of the metric at two loops in a locally de Sitter background on the manifold T{sup 3} {times} {Re}. If correct, our result proves that quantum gravitational effects slow the rate of inflation by an amount which becomes non-perturbatively large at late times. 11 refs., 9 figs., 11 tabs.
The space-time outside a source of gravitational radiation: the axially symmetric null fluid
Energy Technology Data Exchange (ETDEWEB)
Herrera, L. [Universidad Central de Venezuela, Escuela de Fisica, Facultad de Ciencias, Caracas (Venezuela, Bolivarian Republic of); Universidad de Salamanca, Instituto Universitario de Fisica Fundamental y Matematicas, Salamanca (Spain); Di Prisco, A. [Universidad Central de Venezuela, Escuela de Fisica, Facultad de Ciencias, Caracas (Venezuela, Bolivarian Republic of); Ospino, J. [Universidad de Salamanca, Departamento de Matematica Aplicada and Instituto Universitario de Fisica Fundamental y Matematicas, Salamanca (Spain)
2016-11-15
We carry out a study of the exterior of an axially and reflection symmetric source of gravitational radiation. The exterior of such a source is filled with a null fluid produced by the dissipative processes inherent to the emission of gravitational radiation, thereby representing a generalization of the Vaidya metric for axially and reflection symmetric space-times. The role of the vorticity, and its relationship with the presence of gravitational radiation is put in evidence. The spherically symmetric case (Vaidya) is, asymptotically, recovered within the context of the 1 + 3 formalism. (orig.)
Electric Dipole Antenna: A Source of Gravitational Radiation
Directory of Open Access Journals (Sweden)
Chifu E. N.
2013-07-01
Full Text Available In this article, the gravitational scalar potential due to an oscillating electric dipole antenna placed in empty space is derived. The gravitational potential obtained propagates as a wave. The gravitational waves have phase velocity equal to the speed of light in vacuum (c at the equatorial plane of the electric dipole antenna, unlike electromagnetic waves from the dipole antenna that cancel out at the equatorial plane due to charge symmetry.
Electromagnetic signatures of far-field gravitational radiation in the 1 + 3 approach
International Nuclear Information System (INIS)
Chua, Alvin J K; Cañizares, Priscilla; Gair, Jonathan R
2015-01-01
Gravitational waves (GWs) from astrophysical sources can interact with background electromagnetic fields, giving rise to distinctive and potentially detectable electromagnetic signatures. In this paper, we study such interactions for far-field gravitational radiation using the 1 + 3 approach to relativity. Linearized equations for the electromagnetic field on perturbed Minkowski space are derived and solved analytically. The inverse Gertsenshteĭn conversion of GWs in a static electromagnetic field is rederived, and the resultant electromagnetic radiation is shown to be significant for highly magnetized pulsars in compact binary systems. We also obtain a variety of nonlinear interference effects for interacting gravitational and electromagnetic waves, although wave–wave resonances previously described in the literature are absent when the electric–magnetic self-interaction is taken into account. The fluctuation and amplification of electromagnetic energy flux as the GW strength increases towards the gravitational–electromagnetic frequency ratio is a possible signature of gravitational radiation from extended astrophysical sources. (paper)
Precessing Black Hole Binaries and Their Gravitational Radiation
Directory of Open Access Journals (Sweden)
László Á. Gergely
2018-02-01
Full Text Available The first and second observational runs of Advanced Laser Interferometer Gravitational-wave Observatory (LIGO have marked the first direct detections of gravitational waves, either from black hole binaries or, in one case, from coalescing neutron stars. These observations opened up the era of gravitational wave astronomy, but also of gravitational wave cosmology, in the form of an independent derivation of the Hubble constant. They were equally important to prove false a plethora of modified gravity theories predicting gravitational wave propagation speed different from that of light. For a continued and improved testing of general relativity, the precise description of compact binary dynamics, not only in the final coalescence phase but also earlier, when precessional effects dominate, are required. We report on the derivation of the full secular dynamics for compact binaries, valid over the precessional time-scale, in the form of an autonomous closed system of differential equations for the set of spin angles and periastron. The system can be applied for mapping the parameter space for the occurrence of the spin flip-flop effect and for more accurately analyzing the spin-flip effect, which could explain the formation of X-shaped radio galaxies.
Final result of the Munich-Frascati gravitational radiation experiment
International Nuclear Information System (INIS)
Kafka, P.; Schnupp, L.
1977-02-01
Within 580 days of usable common observation time between July 1973 and February 1976, this Weber-type coincidence experiment had set the lowest upper limits to the rates of gravitational wave pulses. We report the total result up to the dismantling of the detectors. We also describe a reevaluation of our data using Weber's preferred algorithm for two months in 1974 during which Weber communicated to have found a particularly significant effect in his own experiment. Finally, we confront the negative results with the far aims of gravitational pulse astronomy. (orig.) [de
Final result of the Munich-Frascati gravitational radiation experiment
International Nuclear Information System (INIS)
Kafka, P.; Schnupp, L.
1978-01-01
Within 580 days of usable common observation time between July 1973 and February 1976, this Weber-type coincidence experiment had set the lowest upper limits to the rates of gravitational wave pulses. We report the total result up to the dismantling of the detectors. We also describe a re-evaluation of our data using Weber's preferred algorithm for two months in 1974 during which Weber communicated to have found a particularly significant effect in his own experiment. Finally, we confront the negative results with the far aims of gravitational pulse astronomy. (orig.) [de
Sources of gravitational radiation and prospects for their detection
Flanagan, Eanna E
1998-01-01
In the coming decade, the LIGO/VIRGO/GEO network of ground-based kilometer-scale laser interferometer gravitational wave detectors will open up a new astronomical window on the Universe: gravitational waves in the frequency band 10 to 10^4 Hz. In addition, if the proposed, 5 million kilometer long, space based interferometer LISA flies, another window will be opened in the frequency band 10^(-4) to 1 Hz. I review the various possible sources that might be detected in these frequency bands, an...
International Nuclear Information System (INIS)
Mashhoon, B.; Grishchuk, L.P.
1980-01-01
The possibility of detection of an isotropic background gravitational radiation of a stochastic nature by the method of Doppler tracking of spacecraft is considered. In the geometrical optics limit, the general formula for the frequency shift of an electromagnetic signal in the gravitational radiation field is discussed, and it is shown to be gauge (or rather Lie) independent. A detailed examination of the propagation of a free electromagnetic wave in a gravitational radiation field shows that no resonance phenomena can be expected. Thus, the results valid in the geometrical optics limit are also approximately valid for any gravitational radiation spectrum dominated by wavelengths large compared to that of the electromagnetic signal. The ''Doppler noise'' due to a stochastic background is evaluated, and it is shown to depend on the total energy density of the background and a parameter that is a characteristic of the aradiation spectrum and the detection system used. A background gravitational radiation with an energy density comparable to the electromagnetic (approx.3 K) background and a spectrum dominated by wavelengths > or approx. =1 AU may be detectable in the near future by the Doppler tracking of interplanetary spacecraft
International Nuclear Information System (INIS)
Cardoso, Vitor; Lemos, Jose P.S.
2003-01-01
In this paper, we consider the gravitational radiation generated by the collision of highly relativistic particles with rotating Kerr black holes. We use the Sasaki-Nakamura formalism to compute the waveform, energy spectra, and total energy radiated during this process. We show that the gravitational spectrum for high-energy collisions has definite characteristic universal features, which are independent of the spin of the colliding objects. We also discuss the possible connections between these results and black-hole-black-hole collisions at the speed of light. Our results show that during the high-speed collision of a nonrotating hole with a rotating one, at most 35% of the total energy can get converted into gravitational waves. This 35% efficiency occurs only in the most optimistic situation, that of a zero impact parameter collision, along the equatorial plane, with an almost extreme Kerr black hole. In the general situation, the total gravitational energy radiated is expected to be much less, especially if the impact parameter increases. Thus, if one is able to produce black holes at the CERN Large Hadron Collider, at most 35% of the partons' energy should be emitted during the so-called balding phase. This energy will be missing, since we do not have gravitational wave detectors able to measure such amplitudes. The collision at the speed of light between one rotating black hole and a nonrotating one or two rotating black holes turns out to be the most efficient gravitational wave generator in the Universe
Trapped surfaces due to concentration of gravitational radiation
International Nuclear Information System (INIS)
Beig, R.; O Murchadha, N.
1991-01-01
Sequences of global, asympotically flat solutions to the time-symmetric initial value constraints of general relativity in vacuo are constructed which develop outer trapped surfaces for large values of the argument. Thus all such configurations must gravitationally collapse. A new proof of the positivity of mass in the strong-field regime is also found. (Authors) 22 refs
A + B → C reaction fronts in Hele-Shaw cells under modulated gravitational acceleration.
Eckert, Kerstin; Rongy, Laurence; De Wit, Anne
2012-05-28
The dynamics of A + B → C reaction fronts is studied under modulated gravitational acceleration by means of a combination of parabolic flight experiments and numerical simulations. During modulated gravity the front position undergoes periodic modulation with an accelerated front propagation under hyper-gravity together with a slowing down under low gravity. The underlying reason for this is an amplification and a decay, respectively, of the buoyancy-driven double vortex associated with the front propagation under standard gravitational acceleration, as explained by reaction-diffusion-convection simulations of convection around an A + B → C front. Deeper insights into the correlation between grey-value changes in the experimental shadowgraph images and characteristic changes in the concentration profiles are obtained by a numerical simulation of the imaging process.
Radiative capture reactions via indirect methods
Mukhamedzhanov, A. M.; Rogachev, G. V.
2017-10-01
Many radiative capture reactions of astrophysical interest occur at such low energies that their direct measurement is hardly possible. Until now the only indirect method, which was used to determine the astrophysical factor of the astrophysical radiative capture process, was the Coulomb dissociation. In this paper we address another indirect method, which can provide information about resonant radiative capture reactions at astrophysically relevant energies. This method can be considered an extension of the Trojan horse method for resonant radiative capture reactions. The idea of the suggested indirect method is to use the indirect reaction A (a ,s γ )F to obtain information about the radiative capture reaction A (x ,γ )F , where a =(s x ) and F =(x A ) . The main advantage of using the indirect reactions is the absence of the penetrability factor in the channel x +A , which suppresses the low-energy cross sections of the A (x ,γ )F reactions and does not allow one to measure these reactions at astrophysical energies. A general formalism to treat indirect resonant radiative capture reactions is developed when only a few intermediate states contribute and a statistical approach cannot be applied. The indirect method requires coincidence measurements of the triple differential cross section, which is a function of the photon scattering angle, energy, and the scattering angle of the outgoing spectator particle s . Angular dependence of the triple differential cross section at fixed scattering angle of the spectator s is the angular γ -s correlation function. Using indirect resonant radiative capture reactions, one can obtain information about important astrophysical resonant radiative capture reactions such as (p ,γ ) , (α ,γ ) , and (n ,γ ) on stable and unstable isotopes. The indirect technique makes accessible low-lying resonances, which are close to the threshold, and even subthreshold bound states located at negative energies. In this paper, after
Andrzej Trautman, Ivor Robinson, and the foundations of gravitational radiation theory
Salisbury, Donald
It is especially pertinent following the momentous detection of gravitational waves by LIGO and the death of Ivor Robinson in 2016 that we investigate the central role played by the Polish physicist Andrzej Trautman and his dear collaborator Robinson in helping to establish the foundations of gravitational wave research. Trautman was a student of Leopold Infeld who had famously rejected the reality of gravitational waves. Yet Trautman's intuition, informed in part by his training as a radio engineer, led him to be the first to correctly pose asymptotic boundary conditions that described the mass loss of an isolated system through emitted gravitational radiation. His series of papers announcing these results were published in a then obscure Polish journal. Fortunately, though, Felix Pirani visited Warsaw in 1957 and he was so impressed with Trautman that he arranged for him to visit his group at King's College in London. Trautman's lectures in London won him wide admiration, and significantly affected the subsequent work on gravitational wave solutions of Einstein's equations in the group led by Hermann Bondi. This was also the occasion in which Trautman and Robinson discovered a deep and abiding mathematical affinity, resulting in the discovery of exact solutions of Einstein's equations that could be interpreted as representing gravitational radiation. This talk is based in part on an interview with Trautman conducted in Warsaw in June, 2016.
Fisenko, S. I.; Fisenko, I. S.
2010-01-01
In elaboration of the results presented earlier the red shift is also regarded in this investigation as a widening of electromagnetic radiation spectra, determined by the existence of gravitational radiation of a banded spectrum of the same level as electromagnetic.
Chicone, Carmen; Mashhoon, Bahram; Retzloff, David
1996-01-01
The method of averaging is used to investigate the phenomenon of capture into resonance for a model that describes a Keplerian binary system influenced by radiation damping and external normally incident periodic gravitational radiation. The dynamical evolution of the binary orbit while trapped in resonance is elucidated using the second order partially averaged system. This method provides a theoretical framework that can be used to explain the main evolutionary dynamics of a physical system...
On quadrupole and octupole gravitational radiation in the ANK formalism
Kozameh, Carlos N.; Ortega, R. G.; Rojas, T. A.
2017-04-01
Following the approach of Adamo-Newman-Kozameh (ANK) we derive the equations of motion for the center of mass and intrinsic angular moment for isolated sources of gravitational waves in axially symmetric spacetimes. The original ANK formulation is generalized so that the angular momentum coincides with the Komar integral for a rotational Killing symmetry. This is done using the Winicour-Tamburino Linkages which yields the mass dipole-angular momentum tensor for the isolated sources. The ANK formalism then provides a complex worldline in a fiducial flat space to define the notions of center of mass and spin. The equations of motion are derived and then used to analyse a very simple astrophysical process where only quadrupole and octupole contributions are included. The results are then compared with those coming from the post newtonian approximation.
Incidence and latency of radiation reactions
International Nuclear Information System (INIS)
Bentzen, S.M.; Thames, H.D.
1989-01-01
Like any other pathological condition, radiation reactions are characterized not only by their incidence (i.e. frequency) but also buy their latent period. The difference between latencies is the basis for the biologically and clinically important distinction between early and late radiation reactions. The authors conclude in this letter that a hazard-rate type of analysis does not allow separation of the effects of incidency and latency. The authors feel that a more adequate framework for analysis of latent-time distributions is provided bu the mixture model. Currenctly, the hydronephrosis data by Knowles and Trott are being reanalyzed using the model. (author). 8 refs.; 1 fig
Prompt dipole radiation in fusion reactions
International Nuclear Information System (INIS)
Martin, B.; Pierroutsakou, D.; Agodi, C.; Alba, R.; Baran, V.; Boiano, A.; Cardella, G.; Colonna, M.; Coniglione, R.; De Filippo, E.; Del Zoppo, A.; Di Toro, M.; Inglima, G.; Glodariu, T.; La Commara, M.; Maiolino, C.; Mazzocco, M.; Pagano, A.; Piattelli, P.; Pirrone, S.
2008-01-01
The prompt γ-ray emission is investigated in the 16A MeV energy region by means of the 36,40 Ar + 96,92 Zr fusion reactions leading to a compound nucleus in the vicinity of 132 Ce. The dynamical nature of this radiation is confirmed. We show that the prompt γ radiation has an angular distribution pattern consistent with a dipole oscillation along the symmetry axis of the dinuclear system. The data are compared with calculations based on a collective bremsstrahlung analysis of the reaction dynamics
Prompt dipole radiation in fusion reactions
Energy Technology Data Exchange (ETDEWEB)
Martin, B. [Dipt. di Scienze Fisiche, Universita di Napoli ' Federico II' , via Cintia, 80125 Napoli (Italy); INFN, Sezione di Napoli, via Cintia, 80125 Napoli (Italy); Pierroutsakou, D. [INFN, Sezione di Napoli, via Cintia, 80125 Napoli (Italy)], E-mail: pierroutsakou@na.infn.it; Agodi, C.; Alba, R. [INFN, Laboratori Nazionali del Sud, via S. Sofia, 95123 Catania (Italy); Baran, V. [INFN, Laboratori Nazionali del Sud, via S. Sofia, 95123 Catania (Italy); University of Bucharest (Romania); NIPNE-HH, 077125 Magurele (Romania); Boiano, A. [INFN, Sezione di Napoli, via Cintia, 80125 Napoli (Italy); Cardella, G. [INFN, Sezione di Catania, 95123 Catania (Italy); Colonna, M. [INFN, Laboratori Nazionali del Sud, via S. Sofia, 95123 Catania (Italy); Dipartimento di Fisica, Universita di Catania, 95123 Catania (Italy); Coniglione, R. [INFN, Laboratori Nazionali del Sud, via S. Sofia, 95123 Catania (Italy); De Filippo, E. [INFN, Sezione di Catania, 95123 Catania (Italy); Del Zoppo, A. [INFN, Laboratori Nazionali del Sud, via S. Sofia, 95123 Catania (Italy); Di Toro, M. [INFN, Laboratori Nazionali del Sud, via S. Sofia, 95123 Catania (Italy); Dipt. di Fisica, Universita di Catania, 95123 Catania (Italy); Inglima, G. [Dipt. di Scienze Fisiche, Universita di Napoli ' Federico II' , via Cintia, 80125 Napoli (Italy); INFN, Sezione di Napoli, via Cintia, 80125 Napoli (Italy); Glodariu, T. [NIPNE-HH, 077125 Magurele (Romania); La Commara, M. [Dipt. di Scienze Fisiche, Univ. di Napoli ' Federico II' , via Cintia, 80125 Napoli (Italy); INFN, Sezione di Napoli, via Cintia, 80125 Napoli (Italy); Maiolino, C. [INFN, Lab. Nazionali del Sud, via S. Sofia, 95123 Catania (Italy); Mazzocco, M. [Dipt. di Fisica and INFN, Sezione di Padova, 35131 Padova (Italy); Pagano, A. [INFN, Sezione di Catania, 95123 Catania (Italy); Piattelli, P. [INFN, Lab. Nazionali del Sud, via S. Sofia, 95123 Catania (Italy); Pirrone, S. [INFN, Sezione di Catania, 95123 Catania (Italy)] (and others)
2008-06-12
The prompt {gamma}-ray emission is investigated in the 16A MeV energy region by means of the {sup 36,40}Ar + {sup 96,92}Zr fusion reactions leading to a compound nucleus in the vicinity of {sup 132}Ce. The dynamical nature of this radiation is confirmed. We show that the prompt {gamma} radiation has an angular distribution pattern consistent with a dipole oscillation along the symmetry axis of the dinuclear system. The data are compared with calculations based on a collective bremsstrahlung analysis of the reaction dynamics.
Prompt dipole radiation in fusion reactions
Martin, B.; Pierroutsakou, D.; Agodi, C.; Alba, R.; Baran, V.; Boiano, A.; Cardella, G.; Colonna, M.; Coniglione, R.; De Filippo, E.; Del Zoppo, A.; Di Toro, M.; Inglima, G.; Glodariu, T.; La Commara, M.; Maiolino, C.; Mazzocco, M.; Pagano, A.; Piattelli, P.; Pirrone, S.; Rizzo, C.; Romoli, M.; Sandoli, M.; Santonocito, D.; Sapienza, P.; Signorini, C.
2008-06-01
The prompt γ-ray emission is investigated in the 16 A MeV energy region by means of the 36,40Ar + 96,92Zr fusion reactions leading to a compound nucleus in the vicinity of 132Ce. The dynamical nature of this radiation is confirmed. We show that the prompt γ radiation has an angular distribution pattern consistent with a dipole oscillation along the symmetry axis of the dinuclear system. The data are compared with calculations based on a collective bremsstrahlung analysis of the reaction dynamics.
Small-scale fluctuations in the microwave background radiation and multiple gravitational lensing
International Nuclear Information System (INIS)
Kashlinsky, A.
1988-01-01
It is shown that multiple gravitational lensing of the microwave background radiation (MBR) by static compact objects significantly attenuates small-scale fluctuations in the MBR. Gravitational lensing, by altering trajectories of MBR photons reaching an observer, leads to (phase) mixing of photons from regions with different initial fluctuations. As a result of this diffusion process the original fluctuations are damped on scales up to several arcmin. An equation that describes this process and its general solution are given. It is concluded that the present upper limits on the amplitude of the MBR fluctuations on small scales cannot constrain theories of galaxy formation. 25 references
Compact dark matter objects, asteroseismology, and gravitational waves radiated by sun
Energy Technology Data Exchange (ETDEWEB)
Pokrovsky, Yu. E., E-mail: Pokrovskiy-YE@nrcki.ru [National Research Center Kurchatov Institute (Russian Federation)
2015-12-15
The solar surface oscillations observed by Crimean Astrophysical Observatory and Solar Helioseismic Observatory are considered to be excited by a small fraction of Dark Matter in form of Compact Dark Matter Objects (CDMO) in the solar structure. Gravitational Waves (GW) radiated by these CDMO are predicted to be the strongest at the Earth and are easily detectable by European Laser Interferometer Space Antenna or by Gravitational-Wave Observatory “Dulkyn” which can solve two the most challenging tasks in the modern physics: direct detection of GW and DM.
Angular instability due to radiation pressure in the LIGO gravitational-wave detector.
Hirose, Eiichi; Kawabe, Keita; Sigg, Daniel; Adhikari, Rana; Saulson, Peter R
2010-06-20
We observed the effect of radiation pressure on the angular sensing and control system of the Laser Interferometer Gravitational-Wave Observatory (LIGO) interferometer's core optics at LIGO Hanford Observatory. This is the first measurement of this effect in a complete gravitational-wave interferometer. Only one of the two angular modes survives with feedback control, because the other mode is suppressed when the control gain is sufficiently large. We developed a mathematical model to understand the physics of the system. This model matches well with the dynamics that we observe.
Anti-damping effect of radiation reaction
International Nuclear Information System (INIS)
Wang, G; Yuan, X Z; Li, H; Shen, Y F; Zi, J
2010-01-01
The anti-damping effect of radiation reaction, which means the radiation reaction does non-negative work on a radiating charge, is investigated at length by using the Lorentz-Dirac equation (LDE) for the motion of a point charge respectively acted on by (a) a pure electric field, (b) a pure magnetic field and (c) the fields of an electromagnetic wave. We found that the curvature of the charge's trajectory plays an important role in the radiation reaction force, and the anti-damping effect cannot take place for the real macroscopic motions of a point charge. The condition for this anti-damping effect to take place is that the gradient of the external force field must exceed a certain value over the region of magnitude of the classical radius of massive charges (∼10 -15 m). Our results are potentially helpful to lessen the controversy on LDE and justify it as the correct classical equation describing the radiating charge's motion. If this anti-damping effect of LDE were a real existing physical process, it could serve as a mechanism within the context of classical electrodynamics for the stability of hydrogen atoms. Using the picture of an electron in quantum electrodynamics, namely the negative bare charge surrounded by the polarized positive charges of vacuum, we can obtain a reasonable explanation for the energy transferred to the electron during the occurrence of the anti-damping effect, on which the venerable work of Wheeler and Feynman has thrown some light.
SOGRO (Superconducting Omni-directional Gravitational Radiation Observatory
Directory of Open Access Journals (Sweden)
Paik Ho Jung
2018-01-01
Full Text Available Detection of gravitational waves (GWs from merging binary black holes (BHs by Advanced LIGO has ushered in the new era of GW astronomy. Many conceivable sources such as intermediate-mass BH binaries and white dwarf binaries, as well as stellar-mass BH inspirals, would emit GWs below 10 Hz. It is highly desirable to open a new window for GW astronomy in the infrasound frequency band. A low-frequency tensor detector could be constructed by combining six magnetically levitated superconducting test masses. Such a detector would be equally sensitive to GWs coming from anywhere in the sky, and would be capable of resolving the source direction and wave polarization. I will present the design concept of a new terrestrial GW detector, named SOGRO, which could reach a strain sensitivity of 10−19-10−21 Hz−1/2 at 0.1-10 Hz. Seismic and Newtonian gravity noises are serious obstacles in constructing terrestrial GW detectors at frequencies below 10 Hz. I will explain how these noises are rejected in SOGRO. I will also report the progress made in designing the platform and modelling its thermal noise.
SOGRO (Superconducting Omni-directional Gravitational Radiation Observatory)
Paik, Ho Jung
2018-01-01
Detection of gravitational waves (GWs) from merging binary black holes (BHs) by Advanced LIGO has ushered in the new era of GW astronomy. Many conceivable sources such as intermediate-mass BH binaries and white dwarf binaries, as well as stellar-mass BH inspirals, would emit GWs below 10 Hz. It is highly desirable to open a new window for GW astronomy in the infrasound frequency band. A low-frequency tensor detector could be constructed by combining six magnetically levitated superconducting test masses. Such a detector would be equally sensitive to GWs coming from anywhere in the sky, and would be capable of resolving the source direction and wave polarization. I will present the design concept of a new terrestrial GW detector, named SOGRO, which could reach a strain sensitivity of 10-19-10-21 Hz-1/2 at 0.1-10 Hz. Seismic and Newtonian gravity noises are serious obstacles in constructing terrestrial GW detectors at frequencies below 10 Hz. I will explain how these noises are rejected in SOGRO. I will also report the progress made in designing the platform and modelling its thermal noise.
Radiation treatment and radiation reactions in dermatology. 2. ed.
Energy Technology Data Exchange (ETDEWEB)
Panizzon, Renato G. [Univ. Hospital CHUV, Lausanne (Switzerland). Dept. of Dermatology; Seegenschmiedt, M. Heinrich (ed.) [Strahlenzentrum Hamburg (Germany)
2015-03-01
Explains the use of radiation treatment in the full range of skin cancers and precancerous lesions. Covers physical and radiobiological principles, dose definitions, radiation reactions, and risk assessments. Revised and updated edition that includes new chapters and numerous additional figures. In this book, leading experts in the dermatological and oncological field describe the use of radiation therapy for the treatment of the full range of dermatological malignancies - including basal cell carcinoma, squamous cell carcinoma, cutaneous lymphomas, Kaposi's sarcoma, melanoma, and Merkel cell tumor - as well as those precancerous lesions and non-malignant dermatological disorders which are amenable to radiation therapy. In each case the specific indications for the use of radiotherapy and its application are clearly explained with the aid of numerous high-quality illustrations. In addition, the book provides a concise introduction to physical and radiobiological principles, selection of radiation factors, dose definitions, radiation reactions, and risk assessments. The new edition has been thoroughly revised and updated to reflect advances in practical knowledge and clinical practice. It will be an invaluable source of information on the management of skin tumors and related non-malignant disorders for both dermatologists, oncologists and radiation oncologists.
Backreaction of Hawking radiation on a gravitationally collapsing star I: Black holes?
International Nuclear Information System (INIS)
Mersini-Houghton, Laura
2014-01-01
Particle creation leading to Hawking radiation is produced by the changing gravitational field of the collapsing star. The two main initial conditions in the far past placed on the quantum field from which particles arise, are the Hartle–Hawking vacuum and the Unruh vacuum. The former leads to a time-symmetric thermal bath of radiation, while the latter to a flux of radiation coming out of the collapsing star. The energy of Hawking radiation in the interior of the collapsing star is negative and equal in magnitude to its value at future infinity. This work investigates the backreaction of Hawking radiation on the interior of a gravitationally collapsing star, in a Hartle–Hawking initial vacuum. It shows that due to the negative energy Hawking radiation in the interior, the collapse of the star stops at a finite radius, before the singularity and the event horizon of a black hole have a chance to form. That is, the star bounces instead of collapsing to a black hole. A trapped surface near the last stage of the star's collapse to its minimum size may still exist temporarily. Its formation depends on the details of collapse. Results for the case of Hawking flux of radiation with the Unruh initial state, will be given in a companion paper II
Backreaction of Hawking radiation on a gravitationally collapsing star I: Black holes?
Directory of Open Access Journals (Sweden)
Laura Mersini-Houghton
2014-11-01
Full Text Available Particle creation leading to Hawking radiation is produced by the changing gravitational field of the collapsing star. The two main initial conditions in the far past placed on the quantum field from which particles arise, are the Hartle–Hawking vacuum and the Unruh vacuum. The former leads to a time-symmetric thermal bath of radiation, while the latter to a flux of radiation coming out of the collapsing star. The energy of Hawking radiation in the interior of the collapsing star is negative and equal in magnitude to its value at future infinity. This work investigates the backreaction of Hawking radiation on the interior of a gravitationally collapsing star, in a Hartle–Hawking initial vacuum. It shows that due to the negative energy Hawking radiation in the interior, the collapse of the star stops at a finite radius, before the singularity and the event horizon of a black hole have a chance to form. That is, the star bounces instead of collapsing to a black hole. A trapped surface near the last stage of the star's collapse to its minimum size may still exist temporarily. Its formation depends on the details of collapse. Results for the case of Hawking flux of radiation with the Unruh initial state, will be given in a companion paper II.
Radiation-induced linking reactions in polyethylene
International Nuclear Information System (INIS)
Zoepfl, F.J.
1983-01-01
Three types of measurements are reported relating to chemical reactions in polyethylene induced by ionizing radiation: 1) viscometric and low-angle laser light scattering measurements to determine the effect of a radical scavenger on the yield of links; 2) calorimetric measurements to determine the effect of radiation-induced linking on the melting behavior of polyethylene; and 3) high-resolution solution carbon 13 nuclear magnetic resonance (NMR) spectrometry measurements to determine the nature of the links and the method of their formation. The NMR results present the first direct detection of radiation-induced long-chain branching (Y links) in polyethylene, and place an apparent upper limit on the yield of H-shaped crosslinks that are formed when polyethylene is irradiated to low absorbed doses. The effect of radiation-induced linking on the melting behavior of polyethylene was examined using differential scanning calorimetry (DSC). It was found that radiation-induced links do not change the heat of fusion of polythylene crystals, but decrease the melt entropy and increase the fold surface free energy per unit area of the crystals. The carbon 13 NMR results demonstrate that long-chain branches (Y links) are formed much more frequently than H-shaped crosslinks at low absorbed doses. The Y links are produced by reactions of alkyl free radicals with terminal vinyl groups in polyethylene
A class of interiors for Vaidya's radiating metric: singularity-free gravitational collapse
International Nuclear Information System (INIS)
Fayos, F; Torres, R
2008-01-01
In order to study gravitational collapse we introduce a class of stellar models which neither stabilize nor bounce. In these models all the energy conditions are fulfilled, however the collapsing stars radiate away their matter avoiding the formation of singularities. We discuss the viability of such a collapse and its implications in the resolution of the singularity issue. We also examine the possibility of living in a singularity-free locally open or flat FLRW universe satisfying all the energy conditions
Dressed Charge of Electron by Radiation Reaction
SETO, Keita; Zhang, Sen; KOGA, James; Moritaka, Toseo; Homma, Kensuke; Nakamiya, Yoshihide; NAGATOMO, Hideo; MIMA, Kunioki
2016-03-01
With the progress of ultraintense short pulse laser technologies, the maximum intensity of the lasers has reached the order of 1022W/cm2. Now, several institutes are aiming at higher intensities of over 1024∼W/cm2. It is expected that these lasers can investigate the regime of the ultra-intense field effects like electron-positron pair creation and annihilation, these high-intense laser fields enters into the non-linear QED regime. However, when an electron interacts with lasers with intensities over 1022W/cm2, it has been predicted that the radiation reaction effect becomes significant. The strong radiation field can induce the fluctuation of QED vacuum (vacuum polarization or photon-photon scatterings). Though the propagator for fields is deformed by it, some kind of a polarized charge exists as the dress. In this paper, we will discuss about this dress of an electron generated by radiation in the description of classical physics. It leads to the avoidance of the mathematical difficulty of the radiation reaction problems.
Radiation enhancement and temperature in the collapse regime of gravitational scattering
Ciafaloni, Marcello; Colferai, Dimitri
2017-04-01
We generalize the semiclassical treatment of graviton radiation to gravitational scattering at very large energies √{s }≫mP and finite scattering angles Θs, so as to approach the collapse regime of impact parameters b ≃bc˜R ≡2 G √{s } . Our basic tool is the extension of the recently proposed, unified form of radiation to the Amati Ciafaloni Veneziano (ACV) reduced-action model and to its resummed-eikonal exchange. By superimposing that radiation all over eikonal scattering, we are able to derive the corresponding (unitary) coherent-state operator. The resulting graviton spectrum, tuned on the gravitational radius R , fully agrees with previous calculations for small angles Θs≪1 but, for sizeable angles Θs(b )≤Θc=O (1 ) , acquires an exponential cutoff of the large ω R region, due to energy conservation, so as to emit a finite fraction of the total energy. In the approach-to-collapse regime of b →bc+, we find a radiation enhancement due to large tidal forces, so that the whole energy is radiated off, with a large multiplicity ⟨N ⟩˜G s ≫1 and a well-defined frequency cutoff of order R-1. The latter corresponds to the Hawking temperature for a black hole of mass notably smaller than √{s }.
Unitarity restoring graviton radiation in the collapse regime of gravitational scattering
Ciafaloni, Marcello; Colferai, Dimitri
2017-12-01
We investigate graviton radiation in gravitational scattering at small impact parameters b b , so as to suggest a possible completion of the unitarity sum. In fact, such energy radiation at large distances turns out to compensate and to gradually reduce to nothing the amount of energy E' being trapped at small-b 's, by thus avoiding the quantum tunneling suppression of the elastic scattering and suggesting a unitary evolution. We finally look at the coherent radiation sample so obtained and we find that, by energy conservation, it develops an exponential frequency damping corresponding to a "quasitemperature" of order ℏ/R , which is naturally related to a Hawking radiation and is suggestive of a black-hole signal at quantum level.
Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact Binaries
Directory of Open Access Journals (Sweden)
Blanchet Luc
2006-06-01
Full Text Available The article reviews the current status of a theoretical approach to the problem of the emission of gravitational waves by isolated systems in the context of general relativity. Part A of the article deals with general post-Newtonian sources. The exterior field of the source is investigated by means of a combination of analytic post-Minkowskian and multipolar approximations. The physical observables in the far-zone of the source are described by a specific set of radiative multipole moments. By matching the exterior solution to the metric of the post-Newtonian source in the near-zone we obtain the explicit expressions of the source multipole moments. The relationships between the radiative and source moments involve many non-linear multipole interactions, among them those associated with the tails (and tails-of-tails of gravitational waves. Part B of the article is devoted to the application to compact binary systems. We present the equations of binary motion, and the associated Lagrangian and Hamiltonian, at the third post-Newtonian (3PN order beyond the Newtonian acceleration. The gravitational-wave energy flux, taking consistently into account the relativistic corrections in the binary moments as well as the various tail effects, is derived through 3.5PN order with respect to the quadrupole formalism. The binary's orbital phase, whose prior knowledge is crucial for searching and analyzing the signals from inspiralling compact binaries, is deduced from an energy balance argument.
Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact Binaries
Directory of Open Access Journals (Sweden)
Blanchet Luc
2002-01-01
Full Text Available The article reviews the current status of a theoretical approach to the problem of the emission of gravitational waves by isolated systems in the context of general relativity. Part aaa of the article deals with general post-Newtonian sources. The exterior field of the source is investigated by means of a combination of analytic post-Minkowskian and multipolar approximations. The physical observables in the far-zone of the source are described by a specific set of radiative multipole moments. By matching the exterior solution to the metric of the post-Newtonian source in the near-zone we obtain the explicit expressions of the source multipole moments. The relationships between the radiative and source moments involve many non-linear multipole interactions, among them those associated with the tails (and tails-of-tails of gravitational waves. Part bbb of the article is devoted to the application to compact binary systems. We present the equations of binary motion, and the associated Lagrangian and Hamiltonian, at the third post-Newtonian (3PN order beyond the Newtonian acceleration. The gravitational-wave energy flux, taking consistently into account the relativistic corrections in the binary moments as well as the various tail effects, is derived through 3.5PN order with respect to the quadrupole formalism. The binary's orbital phase, whose prior knowledge is crucial for searching and analyzing the signals from inspiralling compact binaries, is deduced from an energy balance argument.
Radiation-induced reactions in polymer films
Biscoglio, Michael Benedict
Since the 1950's, there has been a considerable interest in the effects of ionizing radiation on the physical properties of polymer systems. Radiation induced chemical changes that were found to be helpful in producing specialty polymers, but also potentially harmful by degrading the physical performance of the material. Therefore, solute molecules, which act as excited state quenchers, and free radical scavengers, have been incorporated into the polymers in order to regulate the crosslinking, scission and desaturation reactions. This work is focused on using spectroscopic techniques to characterize the physical properties of polymeric media and the reactions occurring within them following pulsed radiolysis. This is done primarily by using arene doped polymer films which have highly absorbing excited states and radical ions that are easily monitored by transient studies. The probes are used to characterize the polymeric microenvironment, to monitor reaction rates, and to interfere in the radical reactions. Photophysical and photochemical characterization of partially crystalline polyethylene complements data previously obtained by conventional physical techniques for polymer characterization. Probe molecules are excluded from crystalline zones and distributed in a networked structure of amorphous zones. Upon high energy radiolysis, it is found that polyolefin systems efficiently donate all radical ions and excited states to the solute molecules, even when the energy is absorbed within the polymer crystalline zones. Studies of the subsequent reactions of the solute excited states and radical ions reveal information about their long term effectiveness as protectants. It is found that highly excited states formed by the recombination of solute radical ions are energetic enough to cause dissociation of halo-arenes. Also, arenes are found to become attached to the polymer chain through a polymer-aryl radical intermediate. These intermediates have been isolated and
Note on self-gravitating radiation in AdS spacetime
International Nuclear Information System (INIS)
Li Zhonghua; Hu Bin; Cai Ronggen
2008-01-01
Recently Vaganov and Hammersley investigated independently the equilibrium self-gravitating radiation in higher (d≥4)-dimensional, spherically symmetric anti-de Sitter space. It was found that in 4≤d≤10, there exist locally stable radiation configurations all the way up to a maximum red-shifted temperature, above which there are no solutions; there is also a maximum mass and maximum entropy configuration occurring at a higher central density than the maximal temperature configuration. Beyond their peaks the temperature, mass, and entropy undergo an infinite series of damped oscillations, which indicates the configurations in this range are unstable. In d≥11, the temperature, mass, and entropy of the self-gravitating configuration are monotonic functions of the central energy density, asymptoting to their maxima as the central density goes to infinity. In this paper we investigate the equilibrium self-gravitating radiation in higher-dimensional, plane-symmetric anti-de Sitter space. We find that there exist essential differences from the spherically symmetric case: In each dimension (d≥4), there are maximal mass (density), maximal entropy (density), and maximal temperature configurations; they do not appear at the same central energy density; the oscillation behavior appearing in the spherically symmetric case does not happen in this case; and the mass (density), as a function of the central energy density, increases first and reaches its maximum at a certain central energy density and then decreases monotonically in 4≤d≤7, while in d≥8, besides the maximum, the mass (density) of the equilibrium configuration has a minimum: the mass (density) first increases and reaches its maximum, then decreases to its minimum, and then increases to its asymptotic value monotonically. The reason causing the difference is discussed
Barausse, Enrico; Yunes, Nicolás; Chamberlain, Katie
2016-06-17
The aLIGO detection of the black-hole binary GW150914 opens a new era for probing extreme gravity. Many gravity theories predict the emission of dipole gravitational radiation by binaries. This is excluded to high accuracy in binary pulsars, but entire classes of theories predict this effect predominantly (or only) in binaries involving black holes. Joint observations of GW150914-like systems by aLIGO and eLISA will improve bounds on dipole emission from black-hole binaries by 6 orders of magnitude relative to current constraints, provided that eLISA is not dramatically descoped.
Emerging Hawking-Like Radiation from Gravitational Bremsstrahlung Beyond the Planck Scale.
Ciafaloni, Marcello; Colferai, Dimitri; Veneziano, Gabriele
2015-10-23
We argue that, as a consequence of the graviton's spin-2, its bremsstrahlung in trans-Planckian-energy (E≫M(P)) gravitational scattering at small deflection angle can be nicely expressed in terms of helicity-transformation phases and their transfer within the scattering process. The resulting spectrum exhibits deeply sub-Planckian characteristic energies of order M(P)(2)/E≪M(P) (reminiscent of Hawking radiation), a suppressed fragmentation region, and a reduced rapidity plateau, in broad agreement with recent classical estimates.
Conservation laws and radiation in the scale covariant theory of gravitation
International Nuclear Information System (INIS)
Beesham, A.
1988-01-01
The conservation laws for mass, energy, and momentum are derived in the scale covariant theory of gravitation. The entropy problem which exists in the standard Friedmann-Lemaitre-Robertson-Walker models can be solved in the present context. Since the weak and strong energy conditions may be violated, a big bang singularity may be avoided, in contrast to general relativity. Since beta is shown to be constant during the radiation-dominated era, the difficulties in the theory associated with nucleosynthesis are avoided. 10 references
Detecting gravitational radiation from neutron stars using a six-parameter adaptive MCMC method
Umstätter, R; Dupuis, R J; Veitch, J; Woan, G; Christensen, N; Umst\\"atter, Richard; Meyer, Renate; Veitch, John; Woan, Graham; Christensen, Nelson
2004-01-01
We present a Markov chain Monte Carlo technique for detecting gravitational radiation from a neutron star in laser interferometer data. The algorithm can estimate up to six unknown parameters of the target, including the rotation frequency and frequency derivative, using reparametrization, delayed rejection and simulated annealing. We highlight how a simple extension of the method, distributed over multiple computer processors, will allow for a search over a narrow frequency band. The ultimate goal of this research is to search for sources at a known locations, but uncertain spin parameters, such as may be found in SN1987A.
An electric field in a gravitational field
International Nuclear Information System (INIS)
Harpaz, Amos
2005-01-01
The behaviour of an electric field in a gravitational field is analysed. It is found that due to the mass (energy) of the electric field, it is subjected to gravity and it falls in the gravitational field. This fall curves the electric field, a stress force (a reaction force) is created, and the interaction of this reaction force with the static charge gives rise to the creation of radiation
Gravitational collapse and Hawking-like radiation of a shell in AdS spacetime
Saini, Anshul; Stojkovic, Dejan
2018-01-01
In this paper, we study the collapse of a massive shell in 2 +1 and 3 +1 dimensional gravity with anti-de Sitter asymptotics. Using the Gauss-Codazzi method, we derive gravitational equations of motion of the shell. We then use the functional Schrödinger formalism to calculate the spectrum of particles produced during the collapse. At the late time, radiation agrees very well with the standard Hawking results. In 3 +1 dimensions, we reproduce the Hawking-Page transition. We then construct the density matrix of this collapsing system and analyze the information content in the emitted radiation. We find that the off-diagonal elements of the density matrix are very important in preserving the unitarity of the system.
Radiation reaction in nonrelativistic quantum theory
International Nuclear Information System (INIS)
Sharp, D.H.
1979-01-01
Some recent work is reviewed on the quantum theory of radiation reaction. The starting point is the Heisenberg operator equation of motion for a nonrelativistic point electron coupled to the quantized electromagnetic field. It is shown that this equation, in contrast to its classical counterpart, leads to a finite value for the electrostatic self-energy of a point electron and, for values of the fine structure constant α approximately less than 1, admits neither runaway behavior nor noncausal motion. Furthermore, the correspondence limit of the solution to the quantum mechanical equation of motion agrees with that of the Lorentz--Dirac theory in the classical regime, but without the imposition of additional conditions and with no possibility of observable noncausality. Thus, a consistent picture of a classical point electron emerges in the correspondence limit of the quantum mechanical theory. 17 references
On the quasihydrostatic flows of radiatively cooling self-gravitating gas clouds
International Nuclear Information System (INIS)
Meerson, B.; Megged, E.
1995-03-01
Two model problems are considered, illustrating the dynamics of quasihydrostatic flows of radiatively cooling, optically thin self-gravitating gas clouds. In the first problem, spherically symmetric flows in an unmagnetized plasma are considered. For a power-law dependence of the radiative loss function on the temperature, a one-parameter family of self-similar solutions is found. The authors concentrate on a constant-mass cloud, one of the cases, when the self-similarity indices are uniquely selected. In this case, the self-similar flow problem can be formally reduced to the classical Lane-Emden equation and therefore solved analytically. The cloud is shown to undergo radiative condensation, if the gas specific heat ratio γ > 4/3. The condensation proceeds either gradually, or in the form of (quasihydrostatic) collapse. For γ < 4/3, the cloud is shown to expand. The second problem addresses a magnetized plasma slab that undergoes quasihydrostatic radiative cooling and condensation. The problem is solved analytically, employing the Lagrangian mass coordinate
Radiation reaction in nonrelativistic quantum electrodynamics
International Nuclear Information System (INIS)
Moniz, E.J.; Sharp, D.H.
1977-01-01
We derive the Heisenberg operator equation of motion for a nonrelativistic point electron coupled to the quantized electromagnetic field, including radiation reaction. The derivation proceeds in close analogy with the classical theory of extended charges (with the Compton wavelength formally playing the role of a size parameter), and we give a systematic treatment of the classical problem, showing explicitly from the equation of motion that the classical theory shows no runaway solutions or preacceleration when the electron size exceeds the classical electron radius. In the quantum-mechanical case, we show that the electrostatic self-energy of a point electron is zero and that, for values of the fine-structure constant α approximately-less-than 1, the equation of motion admits neither runaway solutions nor noncausal motion. Furthermore, the correspondence limit of the solutions to the quantum-mechanical equation of motion agrees with that of the Lorentz-Dirac theory in the classical regime, but without the imposition of additional conditions and with no possibility of observable noncausality. Thus, a consistent picture of a classical point electron emerges in the correspondence limit of the quantum-mechanical theory
Spectral Cauchy characteristic extraction of strain, news and gravitational radiation flux
International Nuclear Information System (INIS)
Handmer, Casey J; Szilágyi, Béla; Winicour, Jeffrey
2016-01-01
We present a new approach for the Cauchy-characteristic extraction (CCE) of gravitational radiation strain, news function, and the flux of the energy–momentum, supermomentum and angular momentum associated with the Bondi–Metzner–Sachs asymptotic symmetries. In CCE, a characteristic evolution code takes numerical data on an inner worldtube supplied by a Cauchy evolution code, and propagates it outwards to obtain the space–time metric in a neighborhood of null infinity. The metric is first determined in a scrambled form in terms of coordinates determined by the Cauchy formalism. In prior treatments, the waveform is first extracted from this metric and then transformed into an asymptotic inertial coordinate system. This procedure provides the physically proper description of the waveform and the radiated energy but it does not generalize to determine the flux of angular momentum or supermomentum. Here we formulate and implement a new approach which transforms the full metric into an asymptotic inertial frame and provides a uniform treatment of all the radiation fluxes associated with the asymptotic symmetries. Computations are performed and calibrated using the spectral Einstein code. (paper)
International Nuclear Information System (INIS)
Braginsky, V.B.; Kardashev, N.S.; Polnarev, A.G.; Novikov, I.D.
1989-12-01
Propagation of an electromagnetic wave in the field of gravitational waves is considered. Attention is given to the principal difference between the electromagnetic wave propagation in the field of random gravitational waves and the electromagnetic wave propagation in a medium with a randomly-inhomogeneous refraction index. It is shown that in the case of the gravitation wave field the phase shift of an electromagnetic wave does not increase with distance. The capability of space radio interferometry to detect relic gravitational waves as well as gravitational wave bursts of non cosmological origin are analyzed. (author). 64 refs, 2 figs
Public reaction to radiation: fear, anxiety, or phobia?
International Nuclear Information System (INIS)
Drottz-Sjoeberg, B.-M.; Persson, L.
1993-01-01
Public fear reactions to ionizing radiation are discussed in a social psychological context. The common use of the terms fear, anxiety, panic, and phobia is related to their clinical meanings, and the authors stress the importance of caution when using certain psychiatric terms for interpreting public reactions to radiation. Differences related to existing knowledge and belief structures, trust, and preferences, create obstacles to effective communication; however, the study of such differences also offers explanations to different reactions and different viewpoints. More information and communication of radiation, clear behavioral guidelines in situations of increased radiation levels, and respect for citizens' concerns about radiation protection would counterbalance lay people's fears and feelings of vulnerability. Such measures may enhance familiarity with radiation, increase perceived personal control in anxiety-creating situations, and develop trust in authorities and their expertise. (author)
Ion-molecule reactions: their role in radiation chemistry
International Nuclear Information System (INIS)
Lias, S.G.; Ausloos, P.
1975-01-01
A comprehensive review of ion--molecule reactions is presented, including information from mass spectrometric, organic chemistry, and NMR studies, from theoretical calculations, and from gas and liquid phase radiation chemistry. Special emphasis is placed on interpreting the role of ion--molecule reactions in systems under high energy irradiation. The discussion is presented under the following chapter headings: ion--molecule reactions and their role in radiation chemistry; unimolecular processes: the nature and structure of ionic intermediates in radiolysis; ion lifetimes and the fate of unreactive ions; kinetics and mechanisms of ion--molecule reactions; proton transfer reactions; negative atom and two-atom transfer reactions; condensation reactions; and, association or clustering reactions
Cutaneous reaction to radiation and their treatment
International Nuclear Information System (INIS)
Okamoto, Shoji
1989-01-01
Acute radiation dermatitis were reported of iridium 172 under poor administration which radiated locally on the skin of hands and fingers of oil company workers. Atomic bomb over Hiroshima and Nagasaki killed many people by total body skin exposure. Many workers and firemen were radiated by beta and gamma rays in the Chernobyl' accident, where 19 of 28 death cases died by radiation burn. 8 patients with 60-100% burn area died in 15-24 days after the explosion. Of 12 patients with 30-60% burn area, 6 died by burn. 21 cases of 30% burn area did not die in spite of mild or severe bone marrow depression. In all these cases, areas of skin ulcers epithelized with dry and wet scales till 50-60 days after the explosion, except large area (20-25cm 2 ) transplanted. In this accident, severe radiation burn due to the beta ray irradiation occured with endogeneous intoxication, renal disturbance, blood biochemical changes and bleeding. Oral, pharyngeal and intestinal membrane were irradiated by beta ray and were ulcerated so they could hardly eat. The treatment of these cases with acute radiation dermatitis should be performed by the procedure of treatment of burn, locally and systematically. Local treatment should be performed by topical application of antibiotic ointment or adrenocortical steroid ointment with antibiotics. In severe burn, systemic treatment with plasma and other fluids for burn shock should be performed, corresponding to the area and depth of radiation burn. (A.Y.)
Neutron stars in compact binary systems: From the equation of state to gravitational radiation
Read, Jocelyn S.
Neutron stars are incredibly dense astrophysical objects that give a unique glimpse of physics at extreme scales. This thesis examines computational and mathematical methods of translating our theoretical understanding of neutron star physics, from the properties of matter to the relativistic behaviour of binary systems, into observable characteristics of astrophysical neutron stars. The properties of neutron star matter are encoded in the equation of state, which has substantial uncertainty. Many equations of state have been proposed based on different models of the underlying physics. These predict various quantities, such as the maximum stable mass, which allow them to be ruled out by astronomical measurements. This thesis presents a natural way to write a general equation of state that can approximate many different candidate equations of state with a few parameters. Astronomical observations are then used to systematically constrain parameter values, instead of ruling out models on a case-by-case basis. Orbiting pairs of neutron stars will release gravitational radiation and spiral in toward each other. The radiation may be observable with ground-based detectors. Until the stars get very close to each other the rate of inspiral is slow, and the orbits are approximately circular. One can numerically find spacetime solutions that satisfy the full set of Einstein equations by imposing an exact helical symmetry. However, we find that the helically-symmetric solution must be matched to a waveless boundary region to achieve convergence. Work with toy models suggests this lack of convergence is intractable, but the agreement of waveless and helical codes validates the use of either approximation to construct state-of-the-art initial data for fully dynamic binary neutron star simulations. The parameterized equation of state can be used with such numerical simulations to systematically explore how the emitted gravitational waves depend on the properties of neutron star
[Symptoms and treatment of radiation-induced reactions].
Brzozowska, Anna; Idziak, Magdalena; Burdan, Franciszek; Mazurkiewicz, Maria
2015-05-01
Radiotherapy is one of the main methods of cancer treatment alone or in combination with chemotherapy. It is applied in about 60% of oncological patients. However, in spite of its clinical usefulness, radiotherapy is associated with a high risk of radiation-induced side effects, including dermatitis, enteritis, cystitis, pericarditis, pneumonia or depression, sexual function disorders, cardiomiopathy, coronary heart disease, anomalies of heart valves and development of second malignant tumor. The early diagnosis and proper treatment of radiation-induced side effects have a major impact on patients` quality of life and future prognosis. Radiation reactions can be categorized as acute or late, occurring before and after six months after radiotherapy. Among the most common acute reactions there were observed: skin rash, mucositis, nausea, vomiting, fever and radiation pneumonitis. Within reference to the late complications, we distinguish for instance fibrosis of organs, a radiation necrosis of bone, ulcers, fistulas, sexual dysfunction and the development of second malignant carcinomas. © 2015 MEDPRESS.
Gravitational waves from freely precessing neutron stars
International Nuclear Information System (INIS)
Jones, D.I.
2001-01-01
The purpose of this study is to assess the likely detectability of gravitational waves from freely precessing neutron stars. We begin by presenting a neutron star model of sufficient complexity to take into account both the elasticity and fluidity of a realistic neutron star. We then examine the effect of internal dissipation (i.e. heat generation within the star) and gravitational radiation reaction on the wobble. This is followed by an examination of various astrophysical scenarios where some mechanism might pump the precessional motion. We estimate the gravitational wave amplitude in these situations. Finally, we conclude that gravitational radiation from freely precessing neutron stars is almost certainly limited to a level undetectable by a LIGO II detector by internal dissipation. (author)
Hawking radiation from acoustic black holes, short distance and back reaction effects
International Nuclear Information System (INIS)
Balbinot, R.; Fabbri, A.; Parentani, R.
2004-01-01
Using the action principle we first review how linear density perturbations (sound waves) in an Eulerian fluid obey a relativistic equation: the d'Alembert equation. This analogy between propagation of sound and that of a massless scalar field in a Lorentzian metric also applies to non-homogeneous flows. In these cases, sound waves effectively propagate in a curved four-dimensional acoustic metric whose properties are determined by the flow. Using this analogy, we consider regular flows which become supersonic, and show that the acoustic metric behaves like that of a black hole. The analogy is so good that, when considering quantum mechanics, acoustic black holes should produce a thermal flux of Hawking phonons. We then focus on two interesting questions related to Hawking radiation which are not fully understood in the context of gravitational black holes due to the lack of a theory of quantum gravity. The first concerns the calculation of the modifications of Hawking radiation which are induced by dispersive effects at short distances, approaching the atomic scale when considering sound. We generalize existing treatments and calculate the modifications caused by the propagation near the black-hole horizon. The second question concerns back reaction effects. We return to the Eulerian action, compute second-order effects, and show that the back reaction of sound waves on the fluid's flow can be expressed in terms of their stress-energy tensor. Using this result in the context of Hawking radiation, we compute the secular effect on the background flow
Gravitational radiation fields in teleparallel equivalent of general relativity and their energies
Gamal, G. L. Nashed
2010-11-01
We derive two new retarded solutions in the teleparallel theory equivalent to general relativity (TEGR). One of these solutions gives a divergent energy. Therefore, we use the regularized expression of the gravitational energy—momentum tensor, which is a coordinate dependent. A detailed analysis of the loss of the mass of Bondi space—time is carried out using the flux of the gravitational energy—momentum.
Zheng, Yahui; Hao, Binzheng; Wen, Yaxiang; Liu, Xiaojun
2018-01-01
The evolution of the Tsallis entropy in self-gravitating systems and plasmas is studied in this letter, which is determined by two factors. The first factor is the change of the microstate number of systems, whose spontaneous increase leads to the entropy's increase, consistent with the standard text book. The second is the evolution of the nonextensive parameter, whose evolution rate to time is opposite to the one of entropy. We find the correlation between heat radiation and time evolution of the nonextensive parameter in the self-gravitating systems and plasmas. In such systems, the emission of radiation heat leads to the increase of the parameter while the absorption of radiation heat results in the decrease of this parameter. This is consistent with the inference derived from the Clausius' definition of entropy. In order to evolve to the current state, the solar corona should absorb a large amount of radiation heat, which might be originated from the energy released by solar flare. The magnetic connection probably plays a role in the conversion of energy. A correct dynamics theory of magnetic connection should explain how the energy conversion is achieved.
The problem of radiation reaction in classical electrodynamics
International Nuclear Information System (INIS)
Sorg, M.
1976-01-01
A new covariant theory of the classical radiating electron is compared with other radiation reaction theories: On the one hand, the new theory can be deduced from Caldirola's finite-differences theory by suitable approximations; on the other hand, the Lorentz-Dirac theory and the theory of Mo and Papas are shown to be approximative forms of the new theory (orig./BJ) [de
Concrete alkali-silica reaction and nuclear radiation damage
International Nuclear Information System (INIS)
Ichikawa, Tsuneki
2008-01-01
The deterioration of concrete by alkali-silica reaction of aggregates (ASR) and the effect of nuclear radiations on the ASR have been reviewed based on our studies on the mechanism of ASR and the effect of nuclear radiations on the resistivity of minerals to alkaline solution. It has been found that the ASR is initiated by the attack of alkaline solution in concrete to silicious aggregates to convert them into hydrated alkali silicate. The consumption of alkali hydroxide by the aggregates induces the dissolution of Ca 2+ ions into the solution. The alkali silicate surrounding the aggregates then reacts with Ca 2+ ions to convert to insoluble tight and rigid reaction rims. The reaction rim allows the penetration of alkaline solution but prevents the leakage of viscous alkali silicate, so that alkali silicate generated afterward is accumulated in the aggregate to give an expansive pressure enough for cracking the aggregate and the surrounding concrete. The effect of nuclear radiation on the reactivity of quartz and plagioclase, a part of major minerals composing volcanic rocks as popular aggregates, to alkaline solution has been examined for clarifying whether nuclear radiations accelerates the ASR. It has been found that the irradiation of these minerals converts them into alkali-reactive amorphous ones. The radiation dose for plagioclase is as low as 10 8 Gy, which suggests that the ASR of concrete surrounding nuclear reactors is possible to be accelerated by nuclear radiation. (author)
Nath, G.; Vishwakarma, J. P.
2016-11-01
Similarity solutions are obtained for the flow behind a spherical shock wave in a non-ideal gas under gravitational field with conductive and radiative heat fluxes, in the presence of a spatially decreasing azimuthal magnetic field. The shock wave is driven by a piston moving with time according to power law. The radiation is considered to be of the diffusion type for an optically thick grey gas model and the heat conduction is expressed in terms of Fourier's law for heat conduction. Similarity solutions exist only when the surrounding medium is of constant density. The gas is assumed to have infinite electrical conductivity and to obey a simplified van der Waals equation of state. It is shown that an increase of the gravitational parameter or the Alfven-Mach number or the parameter of the non-idealness of the gas decreases the compressibility of the gas in the flow-field behind the shock, and hence there is a decrease in the shock strength. The pressure and density vanish at the inner surface (piston) and hence a vacuum is formed at the center of symmetry. The shock waves in conducting non-ideal gas under gravitational field with conductive and radiative heat fluxes can be important for description of shocks in supernova explosions, in the study of a flare produced shock in the solar wind, central part of star burst galaxies, nuclear explosion etc. The solutions obtained can be used to interpret measurements carried out by space craft in the solar wind and in neighborhood of the Earth's magnetosphere.
Combined effects of radiation and chemical reaction on MHD flow ...
African Journals Online (AJOL)
Influence of radiation and chemical reaction on MHD flow past a moving plate with Hall current is studied here. Earlier, we (2016) have studied unsteady MHD flow in porous media over exponentially accelerated plate with variable wall temperature and mass transfer along with Hall current. To study further, we are changing ...
Anderson, A. J.
It is proposed to study the feasibility of constructing a space multi-arm interferometer applicable for the detection of very low frequency gravitational waves using current elements of design. The elements are outlined with particular emphasis placed on the utilization of small inexpensive ion drive get away special modules currently under development.
On the Energy of Rotating Gravitational Waves
Mashhoon, Bahram; McClune, James C.; Chavez, Enrique; Quevedo, Hernando
1996-01-01
A class of solutions of the gravitational field equations describing vacuum spacetimes outside rotating cylindrical sources is presented. A subclass of these solutions corresponds to the exterior gravitational fields of rotating cylindrical systems that emit gravitational radiation. The properties of these rotating gravitational wave spacetimes are investigated. In particular, we discuss the energy density of these waves using the gravitational stress-energy tensor.
Neutron stars, magnetic fields, and gravitational waves
International Nuclear Information System (INIS)
Lamb, F.K.
2001-01-01
The r-modes of rapidly spinning young neutron stars have recently attracted attention as a promising source of detectable gravitational radiation. These neutron stars are expected to have magnetic fields ∼ 10 12 G. The r-mode velocity perturbation causes differential motion of the fluid in the star; this is a kinematic effect. In addition, the radiation-reaction associated with emission of gravitational radiation by r-waves drives additional differential fluid motions; this is a dynamic effect. These differential fluid motions distort the magnetic fields of neutron stars and may therefore play an important role in determining the structure of neutron star magnetic fields. If the stellar field is ∼ 10 16 (Ω/Ω B ) G or stronger, the usual r-modes are no longer normal modes of the star; here Ω and Ω B are the angular velocities of the star and at which mass shedding occurs. Much weaker magnetic fields can prevent gravitational radiation from amplifying the r-modes or damp existing r-mode oscillations on a relatively short timescale by extracting energy from the modes faster than gravitational wave emission can pump energy into them. The onset of proton superconductivity in the cores of newly formed magnetic neutron stars typically increases the effect on the r-modes of the magnetic field in the core by many orders of magnitude. Once the core has become superconducting, magnetic fields of the order of 10 12 G or greater are usually sufficient to damp r-modes that have been excited by emission of gravitational radiation and to suppress any further emission. A rapid drop in the strength of r-mode gravitational radiation from young neutron stars may therefore signal the onset of superconductivity in the core and provide a lower bound on the strength of the magnetic field there. Hence, measurements of r-mode gravitational waves from newly formed neutron stars may provide valuable diagnostic information about magnetic field strengths, cooling processes, and the
Metric elasticity in a collapsing star: Gravitational radiation coupled to torsional motion
International Nuclear Information System (INIS)
Gerlach, U.H.; Scott, J.F.
1986-01-01
Torsional oscillatory matter motion as well as differential rotation couple via the linearized Einstein field equations to the gravitational degrees of freedom. For an arbitrary spherically symmetric background, such as that of a wildly pulsating or a catastrophically collapsing star, we exhibit (a) the strain tensor and (b) the corresponding stress-energy tensor. It is found that in the star there are two elasticity tensors. One expresses the familiar elasticity of matter, the other expresses the elasticity of the geometry. This metric elasticity is responsible for coupling the gravitational and matter degrees of freedom. The two coupled scalar wave equations for these degrees of freedom are exhibited. Also exhibited are their characteristics as well as the junction conditions for their solutions across any spherical surface of discontinuity
Radiation-reaction effects in the quantum regime
International Nuclear Information System (INIS)
Neitz, Norman
2014-01-01
In this work the influence of radiation reaction on the interaction of an electron bunch with a strong laser field is studied including nonlinear and quantum effects. This venture is motivated by two technological developments: On the one hand, the tremendous increase in available laser intensities and, on the other hand, the significant advancements in electron acceleration technology. Considering a regime where radiation reaction effects are caused by the incoherent emission of several photons, a kinetic approach is developed to describe the dynamics of electrons and photons via distribution functions. Whereas classical electrodynamics, employing the Landau-Lifshitz equation, predicts a narrowing of the energy distribution of the electron beam, the analysis in this work reveals the opposite effect in case that quantum effects become significant. The spreading of the electrons' energy distribution is shown to be caused by the intrinsic stochastic nature of photon emission. In order to explain quantitatively the discrepancy between classical and quantum radiation reaction, the final electron distribution as computed in our quantum treatment is demonstrated to depend on the laser's envelope shape and its duration at a given total laser fluence. On the contrary, the classical analysis does not exhibit such a dependency. Finally, the kinetic approach is extended to allow for the inclusion of pair creation by photons emitted during the scattering. This facilitates a conclusive investigation of the nonlinear coupled dynamics of all particles involved in the interaction, i.e., electrons in the initial bunch, photons and electron-positron pairs produced during the scattering.
Hawking radiation for non-asymptotically flat dilatonic black holes using gravitational anomaly
Energy Technology Data Exchange (ETDEWEB)
Fabris, J.C. [Universidade Federal do Espirito Santo, Departamento de Fisica, Vitoria, Espirito Santo (Brazil); Marques, G.T. [Universidade Federal Rural da Amazonia-Brazil, ICIBE-LASIC, Belem, Para (Brazil)
2012-12-15
The d-dimensional scalar field action may be reduced, in the background geometry of a black hole, to a two-dimensional effective action. In the near-horizon region, it appears a gravitational anomaly: the energy-momentum tensor of the scalar field is not conserved anymore. This anomaly is removed by introducing a term related to the Hawking temperature of the black hole. Even if the temperature term introduced is not covariant, a gauge transformation may restore the covariance. We apply this method to compute the temperature of the dilatonic non-asymptotically flat black holes. We compare the results with those obtained through other methods. (orig.)
Ionizing radiation induced attachment reactions of nucleic acids and their components
International Nuclear Information System (INIS)
Myers, L.S. Jr.
1975-01-01
An extensive bibliographic review is given of experimental and theoretical data on radiation-induced attachment reactions of nucleic acids and their components. Mechanisms of these reactions are reviewed. The reactions with water, formate, and alcohols, with amines and other small molecules, and with radiation sensitizers and nucleic acid-nucleic acid reactions are discussed. Studies of the reaction mechanisms show that many of the reactions occur by radical-molecule reactions, but radical-radical reactions also occur. Radiation modifiers become attached to nucleic acids in vitro and in vivo and there are indications that attachment may be necessary for the action of some sensitizers. (U.S.)
A mathematical model for the chemical reactions induced by radiation
International Nuclear Information System (INIS)
Negron M, A.; Ramos B, S.; Frias, D.; Sanchez M, G.
2007-01-01
Full text: Ferrous sulfate salt in acid solutions is one of the systems most extensively studied and most widely used. This dosimeter has received considerable attention because of its high sensitivity to X-rays and gamma radiation. With care this dosimetry is capable of a 0.1% precision for Co gamma rays. It is an easily available commercial product and can easily be prepared. However, our experimental results have shown that kinetics of the reaction mechanism initiated by radiolysis is strongly affected by changes in the temperature of irradiation. To evaluate energy deposited by gamma radiation on samples irradiated below room temperature is a truly difficult task. In fact, irradiating iron salts with gamma rays at different decreasing temperatures keeping constant the rest of irradiation conditions, we have observed a diminution of the rate of conversions of Fe 2+ into Fe 3+ . Several factors can contribute in order that the same absorbed dose will produce different amount of production of Fe 3+ . In the present paper, we present some experimental results of the response of ferrous sulfate in frozen solutions as a function of the irradiation temperature. The considered values were from 77 K, 198 K, 273 K, and 300 K. However this aim of e article concerns with the implementation of a theoretical model framework. This is a computational numerical simulation of the kinetics of reaction induced by radiation via radiolysis and the comparison with our experimental results which allowed the study of the effect of low temperature in such contexts. We also describe the mathematical model for the reaction kinetics as well as haw is obtained the temperature dependent yield by radiolysis tem. On the other hand it is detailed the computational approach. Finally a comparison between both experimental and theoretical results was compared in order to verify the reproducibility of our results from our theoretical model. (Author)
Gravitational waves from inflation
International Nuclear Information System (INIS)
Guzzetti, M.C.; Bartolo, N.; Liguori, M.; Matarrese, S.
2016-01-01
The production of a stochastic background of gravitational waves is a fundamental prediction of any cosmological inflationary model. The features of such a signal encode unique information about the physics of the Early Universe and beyond, thus representing an exciting, powerful window on the origin and evolution of the Universe. We review the main mechanisms of gravitational-wave production, ranging from quantum fluctuations of the gravitational field to other mechanisms that can take place during or after inflation. These include e.g. gravitational waves generated as a consequence of extra particle production during inflation, or during the (p)reheating phase. Gravitational waves produced in inflation scenarios based on modified gravity theories and second-order gravitational waves are also considered. For each analyzed case, the expected power spectrum is given. We discuss the discriminating power among different models, associated with the validity/violation of the standard consistency relation between tensor-to-scalar ratio r and tensor spectral index ηT. In light of the prospects for (directly/indirectly) detecting primordial gravitational waves, we give the expected present-day gravitational radiation spectral energy-density, highlighting the main characteristics imprinted by the cosmic thermal history, and we outline the signatures left by gravitational waves on the Cosmic Microwave Background and some imprints in the Large-Scale Structure of the Universe. Finally, current bounds and prospects of detection for inflationary gravitational waves are summarized.
Nath, Gorakh
Self-similar solutions are obtained for one-dimensional unsteady adiabatic flow behind a spherical shock wave propagating in a dusty gas with conductive and radiative heat fluxes under a gravitational field. The shock is assumed to be driven out by a moving piston and the dusty gas to be a mixture of non-ideal (or perfect) gas and small solid particles, in which solid particles are continuously distributed. It is assumed that the equilibrium flow-conditions are maintained and variable energy input is continuously supplied by the piston. The heat conduction is express in terms of Fourier’s law and the radiation is considered to be of the diffusion type for an optically thick grey gas model. The thermal conductivity and the absorption coefficient are assumed to vary with temperature and density. The medium is assumed to be under a gravitational field due to heavy nucleus at the origin (Roche Model). The unsteady model of Roche consists of a dusty gas distributed with spherical symmetry around a nucleus having large mass It is assumed that the gravitational effect of the mixture itself can be neglected compared with the attraction of the heavy nucleus. The density of the ambient medium is taken to be constant. Our analysis reveals that after inclusion of gravitational field effect surprisingly the shock strength increases and remarkable difference can be found in the distribution of flow variables. The effects of the variation of the heat transfer parameters, the gravitational parameter and non-idealness of the gas in the mixture are investigated. Also, the effects of an increase in (i) the mass concentration of solid particles in the mixture and (ii) the ratio of the density of solid particles to the initial density of the gas on the flow variables are investigated. It is found that the shock strength is increased with an increase in the value of gravitational parameter. Further, it is investigated that the presence of gravitational field increases the
A wide-band laser interferometer for the detection of gravitational radiation
International Nuclear Information System (INIS)
Billing, H.; Maischberger, K.; Ruediger, A.; Schilling, R.; Schnupp, L.; Winkler, W.
1979-02-01
The aim of the current investigations of the model interferometer is to gather quantitative data on different noise effects (some of which were rather unexpected), and to develop methods to cope with them. This knowledge will be the basis for a better design of an interferometer of increased path length. The interferometer, in its present form, is not meant for detecting gravitational waves, and the sensitivity currently obtained does not reach that of resonant bars. If the 1-Watt shot-noise limit could be reached, with 300 reflections in the delay line, this model could, however, be an order of magnitude more sensitive than room-temperature resonant bars. (orig.) 891 WB/orig. 892 MAB
Mapping the gravitational wave background
Cornish, Neil J.
2001-01-01
The gravitational wave sky is expected to have isolated bright sources superimposed on a diffuse gravitational wave background. The background radiation has two components: a confusion limited background from unresolved astrophysical sources; and a cosmological component formed during the birth of the universe. A map of the gravitational wave background can be made by sweeping a gravitational wave detector across the sky. The detector output is a complicated convolution of the sky luminosity ...
Greig, Bradley; Komatsu, Eiichiro; Wyithe, J. Stuart B.
2013-05-01
Large surveys for Lyα emitting (LAE) galaxies have been proposed as a new method for measuring clustering of the galaxy population at high redshift with the goal of determining cosmological parameters. However, Lyα radiative transfer effects may modify the observed clustering of LAE galaxies in a way that mimics gravitational effects, potentially reducing the precision of cosmological constraints. We investigate the impact of Lyα radiative transfer effects on the observed clustering of LAE galaxies. In particular, we focus on the effects of the intergalactic medium velocity gradients, local density within the environment of an LAE galaxy and ionizing background fluctuations. For example, the effect of the linear redshift-space distortion on the power spectrum of LAE galaxies is potentially degenerate with Lyα radiative transfer effects owing to the dependence of observed flux on intergalactic medium velocity gradients. In this paper, we show that the three-point function (bispectrum) can distinguish between gravitational and non-gravitational effects, and thus breaks these degeneracies, making it possible to recover cosmological parameters from LAE galaxy surveys. Constraints on the angular diameter distance and Hubble expansion rate are independent of Lyα radiative transfer degeneracies; however, they incur slight reductions in their constraining power resulting from the overall reduction of the signal-to-noise due to the Lyα radiative transfer effects. Combining the power spectrum and bispectrum measurements provides improved constraints on the angular diameter distance and Hubble expansion rate.
Prod'homme, T.; Verhoeve, P.; Oosterbroek, T.; Boudin, N.; Short, A.; Kohley, R.
2014-07-01
Euclid is the ESA mission to map the geometry of the dark universe. It uses weak gravitational lensing, which requires the accurate measurement of galaxy shapes over a large area in the sky. Radiation damage in the 36 Charge-Coupled Devices (CCDs) composing the Euclid visible imager focal plane has already been identified as a major contributor to the weak-lensing error budget; radiation-induced charge transfer inefficiency (CTI) distorts the galaxy images and introduces a bias in the galaxy shape measurement. We designed a laboratory experiment to project Euclid-like sky images onto an irradiated Euclid CCD. In this way - and for the first time - we are able to directly assess the effect of CTI on the Euclid weak-lensing measurement free of modelling uncertainties. We present here the experiment concept, setup, and first results. The results of such an experiment provide test data critical to refine models, design and test the Euclid data processing CTI mitigation scheme, and further optimize the Euclid CCD operation.
Human reactions to electromagnetic radiation in millimeter range
Energy Technology Data Exchange (ETDEWEB)
Andreev, E.A.; Belyy, M.U.; Sit' ko, S.P.
1985-01-01
The article deals with a problem that is on the boundary of different disciplines. The authors discovered previously unknown effects of low-energy electromagnetic radiation on the human body. A total of 188 subjects, both healthy and sick in terms of medical diagnosis, were submitted to sensory tests. The vast majority of healthy subjects did not react to radiation in the range of 27-78 GHz and power density of up to 10 mW/cm/sup 2/. The same situation was also observed in many cases with patients. However, exposure of very specific parts of the body of sick subjects to electromagnetic waves at a fixed frequency in the range of 45-65 GHz elicited a sensory reaction in the region of the organ with a marked impairment, and this was an organ that was spatially remote from the irradiated region. It was established that the zones on the surface of the body that are the most sensitive to radiation coincide with acupuncture zones that are known in reflex acupuncture therapy. In addition to presentation of experimental results, the authors also propose a theoretical interpretation of the demonstrated effects.
Lidov–Kozai Cycles with Gravitational Radiation: Merging Black Holes in Isolated Triple Systems
Energy Technology Data Exchange (ETDEWEB)
Silsbee, Kedron [Department of Astrophysical Sciences, Princeton University, Ivy Lane, Princeton, NJ 08544 (United States); Tremaine, Scott, E-mail: ksilsbee@astro.princeton.edu, E-mail: tremaine@ias.edu [Institute for Advanced Study, 1 Einstein Drive Princeton, NJ 08540 (United States)
2017-02-10
We show that a black-hole binary with an external companion can undergo Lidov–Kozai cycles that cause a close pericenter passage, leading to a rapid merger due to gravitational-wave emission. This scenario occurs most often for systems in which the companion has a mass comparable to the reduced mass of the binary and the companion orbit has a semimajor axis within a factor of ∼10 of the binary semimajor axis. Using a simple population-synthesis model and three-body simulations, we estimate the rate of mergers in triple black-hole systems in the field to be about six per Gpc{sup 3} per year in the absence of natal kicks during black-hole formation. This value is within the low end of the 90% credible interval for the total black hole–black hole merger rate inferred from the current LIGO results. There are many uncertainties in these calculations, the largest of which is the unknown distribution of natal kicks. Even modest natal kicks of 40 km s{sup −1} will reduce the merger rate by a factor of 40. A few percent of these systems will have eccentricity greater than 0.999 when they first enter the frequency band detectable by aLIGO (above 10 Hz).
Lidov–Kozai Cycles with Gravitational Radiation: Merging Black Holes in Isolated Triple Systems
International Nuclear Information System (INIS)
Silsbee, Kedron; Tremaine, Scott
2017-01-01
We show that a black-hole binary with an external companion can undergo Lidov–Kozai cycles that cause a close pericenter passage, leading to a rapid merger due to gravitational-wave emission. This scenario occurs most often for systems in which the companion has a mass comparable to the reduced mass of the binary and the companion orbit has a semimajor axis within a factor of ∼10 of the binary semimajor axis. Using a simple population-synthesis model and three-body simulations, we estimate the rate of mergers in triple black-hole systems in the field to be about six per Gpc 3 per year in the absence of natal kicks during black-hole formation. This value is within the low end of the 90% credible interval for the total black hole–black hole merger rate inferred from the current LIGO results. There are many uncertainties in these calculations, the largest of which is the unknown distribution of natal kicks. Even modest natal kicks of 40 km s −1 will reduce the merger rate by a factor of 40. A few percent of these systems will have eccentricity greater than 0.999 when they first enter the frequency band detectable by aLIGO (above 10 Hz).
A Global Three-Dimensional Radiation Hydrodynamic Simulation of a Self-Gravitating Accretion Disk
Phillipson, Rebecca; Vogeley, Michael S.; McMillan, Stephen; Boyd, Patricia
2018-01-01
We present three-dimensional, radiation hydrodynamic simulations of initially thin accretion disks with self-gravity using the grid-based code PLUTO. We produce simulated light curves and spectral energy distributions and compare to observational data of X-ray binary (XRB) and active galactic nuclei (AGN) variability. These simulations are of interest for modeling the role of radiation in accretion physics across decades of mass and frequency. In particular, the characteristics of the time variability in various bandwidths can probe the timescales over which different physical processes dominate the accretion flow. For example, in the case of some XRBs, superorbital periods much longer than the companion orbital period have been observed. Smoothed particle hydrodynamics (SPH) calculations have shown that irradiation-driven warping could be the mechanism underlying these long periods. In the case of AGN, irradiation-driven warping is also predicted to occur in addition to strong outflows originating from thermal and radiation pressure driving forces, which are important processes in understanding feedback and star formation in active galaxies. We compare our simulations to various toy models via traditional time series analysis of our synthetic and observed light curves.
Impact of phonon coupling on the radiative nuclear reaction characteristics
Directory of Open Access Journals (Sweden)
Achakovskiy Oleg
2016-01-01
Full Text Available The pygmy dipole resonance and photon strength functions (PSF in stable and unstable Ni and Sn isotopes are calculated within the microscopic self-consistent version of the extended theory of finite Fermi systems in the quasiparticle time blocking approximation. The approach includes phonon coupling (PC effects in addition to the standard QRPA approach. The Skyrme force SLy4 is used. A pygmy dipole resonance in 72Ni is predicted at the mean energy of 12.4 MeV exhausting 25.7% of the total energy-weighted sum rule. With our microscopic E1 PSFs in the EMPIRE 3.1 code, the following radiative nuclear reaction characteristics have been calculated for several stable and unstable even-even Sn and Ni isotopes: 1 neutron capture cross sections, 2 corresponding neutron capture gamma-spectra, 3 average radiative widths of neutron resonances. Here, three variants of the microscopic nuclear level density models have been used and a comparison with the phenomenological generalized superfluid model has been performed. In all the considered properties, including the recent experimental data for PSF in Sn isotopes, the PC contributions turned out to be significant, as compared with the QRPA one, and necessary to explain the available experimental data.
Greig, Bradley; Komatsu, Eiichiro; Wyithe, J. Stuart B.
2012-01-01
Large surveys for Lyman-alpha emitting (LAE) galaxies have been proposed as a new method for measuring clustering of the galaxy population at high redshift with the goal of determining cosmological parameters. However, Lyman-alpha radiative transfer effects may modify the observed clustering of LAE galaxies in a way that mimics gravitational effects, potentially reducing the precision of cosmological constraints. For example, the effect of the linear redshift-space distortion on the power spe...
Energy Technology Data Exchange (ETDEWEB)
Miller, Jonah Maxwell [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2017-10-18
This report has slides on Gravitational Waves; Pound and Rebka: A Shocking Fact; Light is a Ruler; Gravity is the Curvature of Spacetime; Gravitational Waves Made Simple; How a Gravitational Wave Affects Stuff Here; LIGO; This Detection: Neutron Stars; What the Gravitational Wave Looks Like; The Sound of Merging Neutron Stars; Neutron Star Mergers: More than GWs; The Radioactive Cloud; The Kilonova; and finally Summary, Multimessenger Astronomy.
Delayed gamma radiation from lightning induced nuclear reactions
Greenfield, M. B.; Sakuma, K.; Ikeda, Y.; Kubo, K.
2004-03-01
An increase in atmospheric gamma radiation observed with NaI and Ge detectors positioned about 15 m above ground was observed following natural lightning near Tokyo, Japan [1]. Background subtracted gamma ray rates GRR following numerous lightning strokes observed since 2001 persisted for a few hours and subsequently decayed with a half-life of about 50 minutes. Using a 3x3 Ge detector, with 2 KeV resolution, positioned about 2 m from one of the NaI detectors increases in GRR were observed minutes after the onset of lightning with a delayed 50 min exponential decay. Although most of the increase in activity occured at less than a few 100 KeV, on July 11, 2003 a 1267 +/-2 KeV line was observed. Although the statistics of this event were poor, the appearance of this line with an exponential decay of 50 min half-life suggests the possibility that it may be due to 39Cl (1267 MeV; half-life = 55.5 min) via the 40Ar(gamma,p)39Cl, 40Ar(p,2p)39Cl and/or 40Ar(n,d)39Cl reactions. Observations of > 10 MeV gamma rays observed in NaI detectors within 10s of meters from and coincident with rocket-triggered lightning at the International Center for Lightning Research and Testing suggest that charged particles accelerated in intense electric fields associated with lightning give rise to photons with sufficient energy to initiate nuclear reactions [2]. Further work to explain the cause of this anomalous activity is underway using natural and triggered lightning. 1. M. B. Greenfield et al., Journal of Applied Physics 93 no. 3 (2003) pp 1839-184. 2. J. R. Dwyer et al., Science 299, (2003), pp 694-697 and recent communications
On microscopic theory of radiative nuclear reaction characteristics
Energy Technology Data Exchange (ETDEWEB)
Kamerdzhiev, S. P. [National Research Centre “Kurchatov Institute” (Russian Federation); Achakovskiy, O. I., E-mail: oachakovskiy@ippe.ru; Avdeenkov, A. V. [Institute for Physics and Power Engineering (Russian Federation); Goriely, S. [Institut d’Astronomie et d’Astrophysique (Belgium)
2016-07-15
A survey of some results in the modern microscopic theory of properties of nuclear reactions with gamma rays is given. First of all, we discuss the impact of Phonon Coupling (PC) on the Photon Strength Function (PSF) because it represents the most natural physical source of additional strength found for Sn isotopes in recent experiments that could not be explained within the standard HFB + QRPA approach. The self-consistent version of the Extended Theory of Finite Fermi Systems in the Quasiparticle Time Blocking Approximation is applied. It uses the HFB mean field and includes both the QRPA and PC effects on the basis of the SLy4 Skyrme force. With our microscopic E1 PSFs, the following properties have been calculated for many stable and unstable even–even semi-magic Sn and Ni isotopes as well as for double-magic {sup 132}Sn and {sup 208}Pb using the reaction codes EMPIRE and TALYS with several Nuclear Level Density (NLD) models: (1) the neutron capture cross sections; (2) the corresponding neutron capture gamma spectra; (3) the average radiative widths of neutron resonances. In all the properties considered, the PC contribution turned out to be significant, as compared with the standard QRPA one, and necessary to explain the available experimental data. The results with the phenomenological so-called generalized superfluid NLD model turned out to be worse, on the whole, than those obtained with the microscopic HFB + combinatorial NLD model. The very topical question about the M1 resonance contribution to PSFs is also discussed.Finally, we also discuss the modern microscopic NLD models based on the self-consistent HFB method and show their relevance to explain the experimental data as compared with the phenomenological models. The use of these self-consistent microscopic approaches is of particular relevance for nuclear astrophysics, but also for the study of double-magic nuclei.
Iwata, Natsumi; Nagatomo, Hideo; Fukuda, Yuji; Matsui, Ryutaro; Kishimoto, Yasuaki
2016-06-01
Interaction between media composed of clusters and high intensity lasers in the radiation dominant regime, i.e., intensity of 10 22 - 23 W / cm 2 , is studied based on the particle-in-cell simulation that includes the radiation reaction. By introducing target materials that have the same total mass but different internal structures, i.e., uniform plasma and cluster media with different cluster radii, we investigate the effect of the internal structure on the interaction dynamics, high energy radiation emission, and its reaction. Intense radiation emission is found in the cluster media where electrons exhibit non-ballistic motions suffering from strong accelerations by both the penetrated laser field and charge separation field of clusters. As a result, the clustered structure increases the energy conversion into high energy radiations significantly at the expense of the conversion into particles, while the total absorption rate into radiation and particles remains unchanged from the absorption rate into particles in the case without radiation reaction. The maximum ion energy achieved in the interaction with cluster media is found to be decreased through the radiation reaction to electrons into the same level with that achieved in the interaction with the uniform plasma. The clustered structure thus enhances high energy radiation emission rather than the ion acceleration in the considered intensity regime.
Experimental observation of strong radiation reaction in the field of an ultra-intense laser
Sarri, G.; Poder, K.; Tamburini, M.; di Piazza, A.; Keitel, C. H.; Zepf, M.
2017-10-01
Describing radiation reaction in an electromagnetic field is one of the most fundamental outstanding problems in electrodynamics. It consists of determining the dynamics of a charged particle fully taking into account self-forces (loosely referred to as radiation reaction) resulting from the radiation fields generated by the particle whilst it is accelerated. Radiation reaction has only been invoked to explain the radiative properties of powerful astrophysical objects, such as pulsars and quasars. From a theoretical standpoint, this phenomenon is subject of fervent debate and this impasse is worsened by the lack of experimental data, due to extremely high fields required to trigger these effects. Here, we report on the first experimental evidence of strong radiation reaction during the interaction of an ultra-relativistic electron beam with an intense laser field, beyond a purely classical description.
CERN. Geneva
2016-01-01
In the past year, the LIGO-Virgo Collaboration announced the first secure detection of gravitational waves. This discovery heralds the beginning of gravitational wave astronomy: the use of gravitational waves as a tool for studying the dense and dynamical universe. In this talk, I will describe the full spectrum of gravitational waves, from Hubble-scale modes, through waves with periods of years, hours and milliseconds. I will describe the different techniques one uses to measure the waves in these bands, current and planned facilities for implementing these techniques, and the broad range of sources which produce the radiation. I will discuss what we might expect to learn as more events and sources are measured, and as this field matures into a standard part of the astronomical milieu.
International Nuclear Information System (INIS)
Li Baoan; Chen Liewen; Fattoyev, Farrukh J; Newton, William G; Xu Chang
2013-01-01
Significant progress has been made in recent years in constraining nuclear symmetry energy at and below the saturation density of nuclear matter using data from both terrestrial nuclear experiments and astrophysical observations. However, many interesting questions remain to be studied especially at supra-saturation densities. In this lecture note, after a brief summary of the currently available constraints on nuclear symmetry energy near the saturation density we first discuss the relationship between the symmetry energy and the isopin and momentum dependence of the single-nucleon potential in isospin-asymmetric nuclear medium. We then discuss several open issues regarding effects of the tensor force induced neutron-proton short-range correlation (SRC) on nuclear symmetry energy. Finally, as an example of the impacts of nuclear symmetry energy on properties of neutron stars and gravitational waves, we illustrate effects of the high-density symmetry energy on the tidal polarizability of neutron stars in coalescing binaries.
CERN. Geneva
2005-01-01
We will present a brief introduction to the physics of gravitational waves and their properties. We will review potential astrophysical sources of gravitational waves, and the physics and astrophysics that can be learned from their study. We will survey the techniques and technologies for detecting gravitational waves for the first time, including bar detectors and broadband interferometers, and give a brief status report on the international search effort, with special emphasis on the LIGO detectors and search results.
Gravitational waves and antennas
CERN. Geneva
2003-01-01
Gravitational waves and their detection represent today a hot topic, which promises to play a central role in astrophysics, cosmology and theoretical physics. Technological developments have enabled the construction of such sensitive detectors that the detection of gravitational radiation and the start of a new astronomy could become a reality during the next few years. This is expected to bring a revolution in our knowledge of the universe by allowing the observation of hiterto unseen phenomena such as coalescence of compact objects (neutron stars and black holes) fall of stars into supermassive black holes, stellar core collapses, big bang relics and the new and unexpected. In these lectures I give a brief overview of this challenging field of modern physics. Topics : Basic properties of gravitational radiation. Astrophysical sources. Principle of operation of detectors. Interferometers (both ground based and space-based), bars and spheres. Present status of the experiments, their recent results and their f...
Theoretical study of ultrarelativistic laser-electron interaction with radiation reaction
Directory of Open Access Journals (Sweden)
Seto K.
2013-11-01
Full Text Available When the laser intensity becomes higher than 1022 W/cm2, the motion of an electron becomes relativistic, and emits large amounts of radiation. This radiation energy loss transferred to the kinetic energy loss of the electron, is treated as an external force, the “radiation reaction force”. We show the new equation of motion including this radiation reaction and the simulation method, as well as results of single electron system or dual electrons system with Liénard-Wiechert field interaction.
Gravitational wave experiments in Russia
Rudenko, V. N.
2017-11-01
A brief summary is given of experimental research on the detection of extraterrestrial gravitational radiation performed in Russia since the late 1960s. Various aspects of this topic are reviewed, including experiments with resonant detectors, geophysical methods for detecting low-frequency gravitational waves, and high-frequency versions of the gravitational ‘Hertz experiment’. A description is given of the current situation concerning the unique optoacoustic gravitational detector OGRAN mounted in the underground laboratory of the Baksan neutrino observatory, Institute for Nuclear Research, Russian Academy of Sciences. Prospects are examined for building a long-base gravitational wave interferometer in Russia that would be integrated into a global network of gravitational antennas.
Gravitational Waves from Gravitational Collapse
Directory of Open Access Journals (Sweden)
New Kimberly C.B.
2003-01-01
Full Text Available Gravitational wave emission from the gravitational collapse of massive stars has been studied for more than three decades. Current state-of-the-art numerical investigations of collapse include those that use progenitors with more realistic angular momentum profiles, properly treat microphysics issues, account for general relativity, and examine non-axisymmetric effects in three dimensions. Such simulations predict that gravitational waves from various phenomena associated with gravitational collapse could be detectable with ground-based and space-based interferometric observatories.
Sensitivity curves for spaceborne gravitational wave interferometers
Larson, Shane L.; Hiscock, William A.; Hellings, Ronald W.
1999-01-01
To determine whether particular sources of gravitational radiation will be detectable by a specific gravitational wave detector, it is necessary to know the sensitivity limits of the instrument. These instrumental sensitivities are often depicted (after averaging over source position and polarization) by graphing the minimal values of the gravitational wave amplitude detectable by the instrument versus the frequency of the gravitational wave. This paper describes in detail how to compute such...
Sutherland, A E; Bennett, N C; Herst, P M
2017-11-01
Psychological stress exacerbates many pathological conditions including inflammatory skin conditions. The effect of psychological stress on acute radiation-induced skin reactions has not been documented before. Here, we aimed to explore if psychological stress could aggravate skin reaction severity in breast cancer patients. We conducted a secondary analysis of patient data obtained during a randomised, controlled clinical trial for acute radiation-induced skin reaction severity in 78 breast cancer patients. Patients were assessed three times a week during treatment. Skin reaction severity was measured using the modified Radiation-Induced Skin Reaction Assessment Scale (RISRAS) and Radiation Therapy Oncology Group grades. Stress levels were determined using a 5-point LIKERT scale to rate physical well-being, managing stress levels, house, family, work and other commitments. A total of 20 patients (26%) of the 78-patient cohort were considered stressed. Skin reaction severity in stressed patients was twice that of non-stressed patients (p stressed patients were five times more likely to develop moist desquamation. Our results show that psychological stress aggravates skin reaction severity during radiation therapy. This research needs to be validated in a more rigorous manner by incorporating a validated scale such as the Distress Thermometer and Impact Thermometer in future skin trials. © 2017 John Wiley & Sons Ltd.
DELAYED EFFECTS OF RADIATION ON THE HUMAN CENTRAL NERVOUS SYSTEM. EARLY AND LATE DELAYED REACTIONS,
Two cases of delayed effects of radiation on the central nervous system of man are reported. One demonstrates the rare early delayed reaction which...involvement. This patient is an extreme example of the well-documented late delayed effects of radiation and is presented for contrast with the patient in
Kelly, Bernard J.
2010-01-01
Einstein's General Theory of Relativity is our best classical description of gravity, and informs modern astronomy and astrophysics at all scales: stellar, galactic, and cosmological. Among its surprising predictions is the existence of gravitational waves -- ripples in space-time that carry energy and momentum away from strongly interacting gravitating sources. In my talk, I will give an overview of the properties of this radiation, recent breakthroughs in computational physics allowing us to calculate the waveforms from galactic mergers, and the prospect of direct observation with interferometric detectors such as LIGO and LISA.
Plante, Ianik; Cucinotta, Francis A.
2011-01-01
The irradiation of biological systems leads to the formation of radiolytic species such as H(raised dot), (raised dot)OH, H2, H2O2, e(sup -)(sub aq), etc.[1]. These species react with neighboring molecules, which result in damage in biological molecules such as DNA. Radiation chemistry is there for every important to understand the radiobiological consequences of radiation[2]. In this work, we discuss an approach based on the exact Green Functions for diffusion-influenced reactions which may be used to simulate radiation chemistry and eventually extended to study more complex systems, including DNA.
Novel aspects of radiation reaction in the classical and the quantum regime
International Nuclear Information System (INIS)
Neitz, Norman; Kumar, Naveen; Mackenroth, Felix; Hatsagortsyan, Karen Z; Keitel, Christoph H; Di Piazza, Antonino
2014-01-01
This work is dedicated to the study of radiation reaction signatures in the framework of classical and quantum electrodynamics. Since there has been no distinct experimental validation of radiation reaction and its underlying equations so far and its impact is expected to be substantial for the construction of new experimental devices, e.g., quantum x-free electron lasers, a profound understanding of radiation reaction effects is of special interest. Here, we describe how the inclusion of quantum radiation reaction effects changes the dynamics of ultra-relativistic electron beams colliding with intense laser pulses significantly. Thereafter, the angular distribution of emitted radiation is demonstrated to be strongly altered in the quantum framework, if in addition to single photon emission also higher order photon emissions are considered. Furthermore, stimulated Raman scattering of an ultra-intense laser pulse in plasmas is examined and forward Raman scattering is found to be significantly increased by the inclusion of radiation reaction effects in the classical regime. The numerical simulations in this work show the feasibility of an experimental verification of the predicted effects with presently available lasers and electron accelerators.
Energy Technology Data Exchange (ETDEWEB)
Imaizumi, Y. [Tohoku University, Sendai (Japan). Institute for Materials Research; Yoshigoe, A. [Toyohashi University of Technology, Aichi (Japan); Urisu, T. [Toyohashi University of Technology, Aichi (Japan). Institute for Molecular Science
1997-08-20
This paper introduces the surface photo reaction processes using synchrotron radiation, and its application. A synchrotron radiation process using soft X-rays contained in electron synchrotron radiated light as an excited light source has a possibility of high-resolution processing because of its short wave length. The radiated light can excite efficiently the electronic state of a substance, and can induce a variety of photochemical reactions. In addition, it can excite inner shell electrons efficiently. In the aspect of its application, it has been found that, if radiated light is irradiated on surfaces of solids under fluorine-based reaction gas or Cl2, the surfaces can be etched. This technology is utilized practically. With regard to radiated light excited CVD process, it may be said that anything that can be deposited by the ordinary plasma CVD process can be deposited. Its application to epitaxial crystal growth may be said a nano processing application in thickness direction, such as forming an ultra-lattice structure, the application being subjected to expectation. In micromachine fabricating technologies, a possibility is searched on application of a photo reaction process of the radiated light. 5 refs., 6 figs.
International Nuclear Information System (INIS)
Bondi, H.
1979-01-01
In spite of the strength of gravitational focres between celestial bodies, gravitational capture is not a simple concept. The principles of conservation of linear momentum and of conservation of angular momentum, always impose severe constraints, while conservation of energy and the vital distinction between dissipative and non-dissipative systems allows one to rule out capture in a wide variety of cases. In complex systems especially those without dissipation, long dwell time is a more significant concept than permanent capture. (author)
Berovic, Nikolas; Parker, David J; Smith, Michael D
2009-04-01
The bioluminescence produced by luciferase, a firefly enzyme, requires three substrates: luciferin, ATP and oxygen. We find that ionizing radiation, in the form of a proton beam from a cyclotron, will eliminate dissolved oxygen prior to any damage to other substrates or to the protein. The dose constant for removal of oxygen is 70 +/- 20 Gy, a much smaller dose than required to cause damage to protein. Removal of oxygen, which is initially in excess, leads to a sigmoidal response of bioluminescence to radiation dose, consistent with a Michaelis-Menten relationship to substrate concentration. When excess oxygen is exhausted, the response becomes exponential. Following the irradiation, bioluminescence recovers due to a slow leak of oxygen into the solution. This may also explain previous observations on the response of bioluminescent bacteria to radiation. We have studied the dependence of the reaction rate on enzyme and substrate concentration and propose a model for the reaction pathway consistent with this data. The light output from unirradiated samples decreases significantly with time due to product inhibition. We observe that this inhibition rate changes dramatically immediately after a sample is exposed to the beam. This sudden change of the inhibition rate is unexplained but shows that enzyme regulatory function responds to ionizing radiation at a dose level less than 0.6 Gy.
Gravitational waves from gravitational collapse
Energy Technology Data Exchange (ETDEWEB)
Fryer, Christopher L [Los Alamos National Laboratory; New, Kimberly C [Los Alamos National Laboratory
2008-01-01
Gravitational wave emission from stellar collapse has been studied for nearly four decades. Current state-of-the-art numerical investigations of collapse include those that use progenitors with more realistic angular momentum profiles, properly treat microphysics issues, account for general relativity, and examine non-axisymmetric effects in three dimensions. Such simulations predict that gravitational waves from various phenomena associated with gravitational collapse could be detectable with ground-based and space-based interferometric observatories. This review covers the entire range of stellar collapse sources of gravitational waves: from the accretion induced collapse of a white dwarf through the collapse down to neutron stars or black holes of massive stars to the collapse of supermassive stars.
Gravitational Waves from Gravitational Collapse
Directory of Open Access Journals (Sweden)
Chris L. Fryer
2011-01-01
Full Text Available Gravitational-wave emission from stellar collapse has been studied for nearly four decades. Current state-of-the-art numerical investigations of collapse include those that use progenitors with more realistic angular momentum profiles, properly treat microphysics issues, account for general relativity, and examine non-axisymmetric effects in three dimensions. Such simulations predict that gravitational waves from various phenomena associated with gravitational collapse could be detectable with ground-based and space-based interferometric observatories. This review covers the entire range of stellar collapse sources of gravitational waves: from the accretion-induced collapse of a white dwarf through the collapse down to neutron stars or black holes of massive stars to the collapse of supermassive stars.
Gravitational Waves from Gravitational Collapse.
Fryer, Chris L; New, Kimberly C B
2011-01-01
Gravitational-wave emission from stellar collapse has been studied for nearly four decades. Current state-of-the-art numerical investigations of collapse include those that use progenitors with more realistic angular momentum profiles, properly treat microphysics issues, account for general relativity, and examine non-axisymmetric effects in three dimensions. Such simulations predict that gravitational waves from various phenomena associated with gravitational collapse could be detectable with ground-based and space-based interferometric observatories. This review covers the entire range of stellar collapse sources of gravitational waves: from the accretion-induced collapse of a white dwarf through the collapse down to neutron stars or black holes of massive stars to the collapse of supermassive stars. Supplementary material is available for this article at 10.12942/lrr-2011-1.
International Nuclear Information System (INIS)
Lue Zhankui; Wu Shiwei; Zeng Zhicheng
2009-01-01
Like the investigation of double white dwarf (DWD) systems, strange dwarf (SD) - white dwarf (WD) system evolution in Laser Interferometer Space Antenna (LISA)'s absolute amplitude-frequency diagram is investigated. Since there is a strange quark core inside an SD, SDs' radii are significantly smaller than the value predicted by the standard WD model, which may strongly affect the gravitational wave (GW) signal in the mass-transferring phases of binary systems. We study how an SD-WD binary evolves across LISA's absolute amplitude-frequency diagram. In principle, we provide an executable way to detect SDs in the Galaxy's DWD systems by radically new windows offered by GW detectors.
Radiation effects on K+-activated metabolic reactions
International Nuclear Information System (INIS)
Rink, H.; Bergeder, H.D.
1976-01-01
A study has been made of the effects of a minor radiation-induced decrease in K + -content on a K + -dependent enzyme, the aldehyde dehydrogenase in yeast cells. Irradiated (200 rad X-rays) and unirradiated starved cell suspensions were incubated with acetaldehyde and varying K + concentrations, and the intracellular K + -content determined by flame photometry. Oxygen consumption (equivalent to the utilized amount of substrate) was measured under the same conditions of incubation, using the Warburg technique. The results demonstrated that irradiated and unirradiated cells behaved qualitatively in the same way, but there were essential quantitative differences. The highest intracellular K + content and highest O 2 -concentration were always reached at the same extracellular K + -concentration. These extracellular concentrations were always higher for irradiated samples, and the maximum values of K + -content and O 2 -consumption were always smaller in irradiated cells than in controls. A reduction in K + content as small as 15 μMol.g -1 was sufficient to affect the turnover rate, confirming that the K + -decrease accompanying irradiation can be sufficient to cause secondary disturbances in metabolism which will contribute to biological radiation effects. (U.K.)
Radiation reaction induced spiral attractors in ultra-intense colliding laser beams
Directory of Open Access Journals (Sweden)
Zheng Gong
2016-11-01
Full Text Available The radiation reaction effects on electron dynamics in counter-propagating circularly polarized laser beams are investigated through the linearization theorem and the results are in great agreement with numeric solutions. For the first time, the properties of fixed points in electron phase-space were analyzed with linear stability theory, showing that center nodes will become attractors if the classical radiation reaction is considered. Electron dynamics are significantly affected by the properties of the fixed points and the electron phase-space densities are found to be increasing exponentially near the attractors. The density growth rates are derived theoretically and further verified by particle-in-cell simulations, which can be detected in experiments to explore the effects of radiation reaction qualitatively. The attractor can also facilitate realizing a series of nanometer-scaled flying electron slices via adjusting the colliding laser frequencies.
Healy, James; Lousto, Carlos O.
2018-04-01
We present the results of 74 new simulations of nonprecessing spinning black hole binaries with mass ratios q =m1/m2 in the range 1 /7 ≤q ≤1 and individual spins covering the parameter space -0.95 ≤α1 ,2≤0.95 . We supplement those runs with 107 previous simulations to study the hangup effect in black hole mergers, i.e. the delay or prompt merger of spinning holes with respect to nonspinning binaries. We perform the numerical evolution for typically the last ten orbits before the merger and down to the formation of the final remnant black hole. This allows us to study the hangup effect for unequal mass binaries leading us to identify the spin variable that controls the number of orbits before merger as S→ hu.L ^ , where S→ hu=(1 +1/2 m/2 m1 )S→ 1+(1 +1/2 m/1 m2 )S→ 2 . We also combine the total results of those 181 simulations to obtain improved fitting formulas for the remnant final black hole mass, spin and recoil velocity as well as for the peak luminosity and peak frequency of the gravitational strain, and find new correlations among them. This accurate new set of simulations enhances the number of available numerical relativity waveforms available for parameter estimation of gravitational wave observations.
Dodelson, Scott
2017-01-01
Gravitational lensing is a consequence of general relativity, where the gravitational force due to a massive object bends the paths of light originating from distant objects lying behind it. Using very little general relativity and no higher level mathematics, this text presents the basics of gravitational lensing, focusing on the equations needed to understand the phenomena. It then applies them to a diverse set of topics, including multiply imaged objects, time delays, extrasolar planets, microlensing, cluster masses, galaxy shape measurements, cosmic shear, and lensing of the cosmic microwave background. This approach allows undergraduate students and others to get quickly up to speed on the basics and the important issues. The text will be especially relevant as large surveys such as LSST and Euclid begin to dominate the astronomical landscape. Designed for a one semester course, it is accessible to anyone with two years of undergraduate physics background.
Plante, Ianik; Cucinotta, Francis A.
2011-01-01
Radiolytic species are formed approximately 1 ps after the passage of ionizing radiation through matter. After their formation, they diffuse and chemically react with other radiolytic species and neighboring biological molecules, leading to various oxidative damage. Therefore, the simulation of radiation chemistry is of considerable importance to understand how radiolytic species damage biological molecules [1]. The step-by-step simulation of chemical reactions is difficult, because the radiolytic species are distributed non-homogeneously in the medium. Consequently, computational approaches based on Green functions for diffusion-influenced reactions should be used [2]. Recently, Green functions for more complex type of reactions have been published [3-4]. We have developed exact random variate generators of these Green functions [5], which will allow us to use them in radiation chemistry codes. Moreover, simulating chemistry using the Green functions is which is computationally very demanding, because the probabilities of reactions between each pair of particles should be evaluated at each timestep [2]. This kind of problem is well adapted for General Purpose Graphic Processing Units (GPGPU), which can handle a large number of similar calculations simultaneously. These new developments will allow us to include more complex reactions in chemistry codes, and to improve the calculation time. This code should be of importance to link radiation track structure simulations and DNA damage models.
Learning about Black-Hole Formation from Gravitational Waves
Kesden, Michael H.
2017-01-01
The first observing run of the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO) discovered gravitational waves from two binary black-hole mergers. Although astrophysical black holes are simple objects fully characterized by their masses and spins, key features of binary black-hole formation such as mass transfer, natal kicks, and common-envelope evolution can misalign black-hole spins with the orbital angular momentum of the binary. These misaligned spins will precess as gravitational-wave emission causes the black holes to inspiral to separations at which the waves are detectable by observatories like LIGO. Spin precession modulates the amplitude and frequency of the gravitational waves observed by LIGO, allowing it to not only test general relativity but also reveal the secrets of black-hole formation. This talk will briefly describe those elements of binary black-hole formation responsible for initial spin misalignments, how spin precession and radiation reaction in general relativity determine how spins evolve from formation until the black holes enter LIGO’s sensitivity band, and how spin-induced gravitational-wave modulation in band can be used as a diagnostic of black-hole formation.
The role of radiation reaction in Lienard-Wiechert description of FEL interaction
Energy Technology Data Exchange (ETDEWEB)
Kimel, I.; Elias, L.R. [Univ. of Central Florida, Orlando, FL (United States)
1995-12-31
The most common theoretical analysis of the FEL interaction is based on the set of equations consisting of Lorentz and wave equations. This approach explains most of FEL features and, in particular, works well to describe operation in the amplifier mode. In that approach however, there are some difficulties in describing operation in oscillator mode, as well as self amplified spontaneous emission. In particular, it is not possible to describe the start up stage since there is no wave to start with. It is clear that a different approach is required in such situations. That is why we have pursued the study of the FEL interaction in the framework of Lorentz plus Lienard-Wiechert equations. The Lienard-Wiechert Lorentz equation approach however, presents its own set of problems. Variation in energy of the electrons is given exclusively by the Lorentz equation. Thus, the energy lost due to the radiation process is not properly taken into account. This, of course, is a long standing problem in classical electrodynamics. In order to restore energy conservation radiation reaction has to be incorporated into the framework. The first question in that regard has to do with which form of the radiation reaction equations is the most convenient for computations in the FEL process. This has to do with the fact that historically, radiation reaction has been added in an ad hoc manner instead of being derived from the fundamental equations. Another problem discussed is how to take into account the radiation reaction in a collective manner in the interaction among electrons. Also discussed is the radiation reaction vis a vi the coherence properties of the FEL process.
Plante, Ianik; Devroye, Luc
2017-10-01
Ionizing radiation interacts with the water molecules of the tissues mostly by ionizations and excitations, which result in the formation of the radiation track structure and the creation of radiolytic species such as H.,.OH, H2, H2O2, and e-aq. After their creation, these species diffuse and may chemically react with the neighboring species and with the molecules of the medium. Therefore radiation chemistry is of great importance in radiation biology. As the chemical species are not distributed homogeneously, the use of conventional models of homogeneous reactions cannot completely describe the reaction kinetics of the particles. Actually, many simulations of radiation chemistry are done using the Independent Reaction Time (IRT) method, which is a very fast technique to calculate radiochemical yields but which do not calculate the positions of the radiolytic species as a function of time. Step-by-step (SBS) methods, which are able to provide such information, have been used only sparsely because these are time-consuming in terms of calculation. Recent improvements in computer performance now allow the regular use of the SBS method in radiation chemistry. The SBS and IRT methods are both based on the Green's functions of the diffusion equation (GFDE). In this paper, several sampling algorithms of the GFDE and for the IRT method are presented. We show that the IRT and SBS methods are exactly equivalent for 2-particles systems for diffusion and partially diffusion-controlled reactions between non-interacting particles. We also show that the results obtained with the SBS simulation method with periodic boundary conditions are in agreement with the predictions by classical reaction kinetics theory, which is an important step towards using this method for modelling of biochemical networks and metabolic pathways involved in oxidative stress. Finally, the first simulation results obtained with the code RITRACKS (Relativistic Ion Tracks) are presented.
Beaumel, D
2002-01-01
Thermonuclear reactions are a source of stellar energy and play a crucial role for the nucleosynthesis in astrophysical sites. Among these reactions, the radiative capture process defined as: x + A -> B + gamma is a key reaction involved in all the basic astrophysical processes over the nuclear chart. In the case of the capture of charged particles like (p,gamma) reactions, cross-sections are strongly weakened due to the low incident energies as compared to the Coulomb barrier. Their measurement in laboratories is even more complicate when the capturing nucleus is radioactive, difficult or even impossible to be used as a target. Such radioactive nuclei are involved essentially in 'explosive' environments where capture reactions are fast enough to compete with the beta-decay process. Even in non-explosive situations, unstable nuclei are sometimes important as we shall see for the hydrogen burning in the sun. To circumvent the difficulties of direct measurements with radioactive nuclei, indirect methods have be...
International Nuclear Information System (INIS)
Velde, J. van der.
1976-01-01
In the hydro carboxylation reaction, which first has been studied by Reppe, olefine and acetylene compounds are processed with carbon monoxide and water at high pressures and high temperatures in the presence of metal carbonyls. This reaction can be enhanced considerably by application of ionizing radiation. Lower pressures and in particular lower temperatures can be used if gamma irradiation is performed during carboxylation. For the experiments a mixture of buten-1 and buten-2 as well as pure buten-1 and pure buten-2 has been used to study the behaviour of these olefines with respect to the isomerization of the reaction products and to the olefines not transformed in the reaction process. Replacing water, methanol has been used as a reaction component, thus obtaining directly the respective carbonyl acid esters, which can be analysed quantitatively and qualitatively with respect to their isomeric composition by gaschromatography. (orig./HK) [de
International Nuclear Information System (INIS)
Ngoumou, Judith; Hubber, David; Dale, James E.; Burkert, Andreas
2015-01-01
Massive stars shape the surrounding interstellar matter (ISM) by emitting ionizing photons and ejecting material through stellar winds. To study the impact of the momentum from the wind of a massive star on the surrounding neutral or ionized material, we implemented a new HEALPix-based momentum-conserving wind scheme in the smoothed particle hydrodynamics (SPH) code SEREN. A qualitative study of the impact of the feedback from an O7.5-like star on a self-gravitating sphere shows that on its own, the transfer of momentum from a wind onto cold surrounding gas has both a compressing and dispersing effect. It mostly affects gas at low and intermediate densities. When combined with a stellar source's ionizing ultraviolet (UV) radiation, we find the momentum-driven wind to have little direct effect on the gas. We conclude that during a massive star's main sequence, the UV ionizing radiation is the main feedback mechanism shaping and compressing the cold gas. Overall, the wind's effects on the dense gas dynamics and on the triggering of star formation are very modest. The structures formed in the ionization-only simulation and in the combined feedback simulation are remarkably similar. However, in the combined feedback case, different SPH particles end up being compressed. This indicates that the microphysics of gas mixing differ between the two feedback simulations and that the winds can contribute to the localized redistribution and reshuffling of gas
International Nuclear Information System (INIS)
Kondoh, Hiroshi; Nakai, Ikuyo; Nagasaka, Masanari; Amemiya, Kenta; Ohta, Toshiaki
2009-01-01
A new version of synchrotron-radiation-based x-ray spectroscopy, wave-length-dispersive near-edge x-ray absorption fine structure (dispersive-NEXAFS), and fast x-ray photoelectron spectroscopy have been applied to mechanistic studies on several surface catalytic reactions on platinum-group-metal surfaces. In this review, our approach using above techniques to understand the reaction mechanism and actual application studies on three well-known catalytic surface reactions, CO oxidation on Pt(111) and Pd(111), NO reduction on Rh(111), and H 2 O formation on Pt(111), are introduced. Spectroscopic monitoring of the progress of the surface reactions enabled us to detect reaction intermediates and analyze the reaction kinetics quantitatively which provides information on reaction order, rate constant, pre-exponential factor, activation energy and etc. Such quantitative analyses combined with scanning tunneling microscopy and kinetic Monte Carlo simulations revealed significant contribution of the adsorbate configurations and their dynamic changes to the reaction mechanisms of the above fundamental catalytic surface reactions. (author)
Ciufolini, I; Moschella, U; Fre, P
2001-01-01
Gravitational waves (GWs) are a hot topic and promise to play a central role in astrophysics, cosmology, and theoretical physics. Technological developments have led us to the brink of their direct observation, which could become a reality in the coming years. The direct observation of GWs will open an entirely new field: GW astronomy. This is expected to bring a revolution in our knowledge of the universe by allowing the observation of previously unseen phenomena, such as the coalescence of compact objects (neutron stars and black holes), the fall of stars into supermassive black holes, stellar core collapses, big-bang relics, and the new and unexpected.With a wide range of contributions by leading scientists in the field, Gravitational Waves covers topics such as the basics of GWs, various advanced topics, GW detectors, astrophysics of GW sources, numerical applications, and several recent theoretical developments. The material is written at a level suitable for postgraduate students entering the field.
Hakim, Rémi
1994-01-01
Il existe à l'heure actuelle un certain nombre de théories relativistes de la gravitation compatibles avec l'expérience et l'observation. Toutefois, la relativité générale d'Einstein fut historiquement la première à fournir des résultats théoriques corrects en accord précis avec les faits.
Detection of microwave radiation of cytochrome CYP102 A1 solution during the enzyme reaction
Directory of Open Access Journals (Sweden)
Yu.D. Ivanov
2016-03-01
Full Text Available Microwave radiation at 3.4–4.2 GHz frequency of the cytochrome P450 CYP102 A1 (BM3 solution was registered during the lauric acid hydroxylation reaction. The microwave radiation generation was shown to occur following the addition of electron donor NADPH to a system containing an enzyme and a substrate. The radiation occurs for the enzyme solutions with enzyme concentrations of 10−8 and 10−9 М. The microwave radiation effect elicited by the aqueous enzyme solution was observed for the first time. The results obtained can be used to elaborate a new approach to enzyme systems research, including studying of the mechanism of interaction of a functioning enzyme system with microenvironment.
Lämmerzahl, Claus; di Virgilio, Angela
2016-06-01
100 years after the invention of General Relativity (GR) and 110 years after the development of Special Relativity (SR) we have to state that until now no single experiment or observation allows any doubt about the validity of these theories within the accuracy of the available data. Tests of GR can be divided into three categories: (i) test of the foundations of GR, (ii) tests of the consequences of GR, and (iii) test of the interplay between GR and quantum mechanics. In the first category, we have tests of the Einstein Equivalence Principle and the structure of the Newton axioms, in the second category we have effects like the gravitational redshift, light defection, gravitational time delay, the perihelion shift, the gravitomagnetic effects as the Lense-Thirring and Schiff effect, and gravitational waves. Tests of the effects of gravity on quantum systems are a first step towards experiments searching for a quantum gravity theory. In this paper, we also highlight practical applications in positioning, geodesy, and the International Atomic Time. After 100 years, GR can now definitely be regarded also as practical and applied science.
Hayat, Tasawar; Akram, Javaria; Alsaedi, Ahmed; Zahir, Hina
2018-03-01
Endoscopic and homogeneous-heterogeneous reactions in MHD peristalsis of Ree-Eyring fluid are addressed. Mathematical modeling and analysis have been performed by utilizing cylindrical coordinates. Nonlinear thermal radiation is present. Impact of slip boundary conditions on temperature and velocity on outer tube are taken into consideration. Lubrication approach is employed. The nonlinear system is executed numerically for solutions of velocity, temperature and concentration. Graphical results are obtained to predict physical interpretation of various embedded parameters. It is noted that homogeneous and heterogeneous reactions affect the concentration alternatively. Moreover Brinkman number rises the temperature and heat transfer coefficient whereas thermal slip drops temperature and heat transfer rate.
Radiation induced Maillard reactions (the kinetic of colour formation during heating)
International Nuclear Information System (INIS)
Tegota, A.; Bachman, S.
1998-01-01
The results are presented of the investigation of the effect of ionizing radiation from 60 Co on the acceleration of the Maillard reactions in a model system containing an aqueous solution of fructose (F) at 0.03 mol/dm 3 and alanine (Ala) at 0.01 mol/dm 3 . Solutions of F/Ala irradiated with 5 to 30 kGy at a dose rate 1.4 Gy/s were then heated for a few hours at different temperatures: 400, 600, 800, and 1000 deg C. The colour intensity of the solutions was measured via their absorbance at 450 nm. The reaction constant estimates increased with increasing radiation dose and temperature. The activation energy of colour development determined over the range of 600 deg C to 1000 deg C decreased with dose from 70.6 kJ/mol for 5 kGy to 60.7 kJ/mol for 30 kGy. The results confirmed the formation of carbonyl products from fructose radiolysis and their participation in the acceleration of the non-enzymatic browning reactions. The aldehyde products formed from the amino acids as a result of the Strecker degradation are responsible for the formation of odour typical of the Maillard reaction during heating. The changes in the F and Ala concentrations during irradiation of the solutions were proportional to the radiation dose. The radiation yield of fructose and alanine decomposition was G = 2.6 and 0.22, respectively. In the irradiated solutions of F/Ala, serine has been found, which has not been mentioned so far as a product of alanine radiolysis. The study demonstrates the influence of radiation and acceleration of the Maillard reaction during subsequent heating at 400 deg C up to 1000 deg C of systems containing reducing sugars and amino acids. It should be taken under consideration in the studies on introducing radiation technology of food products preservation connected with further thermal treatment
Continuous enzyme reactions with immobilized enzyme tubes prepared by radiation cast-polymerization
International Nuclear Information System (INIS)
Kumakura, Minoru; Kaetsu, Isao
1986-01-01
Immobilized glucose oxidase tubes were prepared by radiation cast-polymerization of 2-hydroxyethyl methacrylate and tetraethyleneglycol diacrylate monomer at low temperatures. The immobilized enzyme tubes which were spirally set in a water bath were used as reactor, in which the enzyme activity varied with tube size and flow rate of the substrate. The conversion yield of the substrate in continuous enzyme reaction was about 80%. (author)
Comparative study of PVP hydrogel obtained by reaction of fenton and gamma radiation
International Nuclear Information System (INIS)
Silva, Mariana L.; Rogero, Sizue O.; Lugao, Ademar B.
2009-01-01
Polyvinylpyrrolidone (PVP) is a polymeric matrix having the capacity to absorb great quantity of water without solving and, due to this property can be used as matrix to compose a pharmaceutical controlled liberation system. In these work, PVP hydrogels were prepared solving the polymer under different concentrations (8%, 10%, 15% and 20%) in phosphate tampon solutions, promoting the reticulation through two methods: by chemical reaction (Fenton reaction), and by ionizing radiation. The objective of this study was to compare the PVP hydrogels obtained by the two types of reation analysing the gel fraction and the tumescence of the obtained samples. With the hydrogel reticulations with Fenton reaction, all the hydrogels obtained in p H 2.5 present good properties, being that by ionizing radiation only the 15 and 20% of PVP in both p H. Therefore, the comparative study was performed with samples of 15 and 20% of PVP, under tampon phosphate of p H 2.5 by reticulated by gamma radiation, for that presented equivalent properties
Gravitational waves from binary black holes
Indian Academy of Sciences (India)
body problem in general relativity arising from computations ... Conservation of energy rules out monopole gravitational radiation. .... It is the only body of work not immortalized by a book unlike all his other research endeavours! 4. A century of ...
International Nuclear Information System (INIS)
Vohra, K.G.
1975-01-01
During the last few years a fascinating new area of research involving ionizing radiations and photochemistry in gas-to-particle conversion in the atmosphere has been developing at a rapid pace. Two problems of major interest and concern in which this is of paramount importance are: (1) radiation induced and photochemical aerosol formation in the stratosphere and, (2) role of radiations and photochemistry in smog formation. The peak in cosmic ray intensity and significant solar UV flux in the stratosphere lead to complex variety of reactions involving major and trace constituents in this region of the atmosphere, and some of these reactions are of vital importance in aerosol formation. The problem is of great current interest because the pollutant gases from industrial sources and future SST operations entering the stratosphere could increase the aerosol burden in the stratosphere and affect the solar energy input of the troposphere with consequent ecological and climatic changes. On the other hand, in the nuclear era, the atmospheric releases from reactors and processing plants could lead to changes in the cloud nucleation behaviour of the environment and possible increase in smog formation in the areas with significant levels of radiations and conventional pollutants. A review of the earlier work, current status of the problem, and conventional pollutants. A review of the earlier work, current status of the problem, and some recent results of the experiments conducted in the author's laboratory are presented. The possible mechanisms of gas-to-particle conversion in the atmosphere have been explained
Monte Carlo simulation of proton boron fusion reaction for radiation therapy
Energy Technology Data Exchange (ETDEWEB)
Kim, Sun Mi; Yoon, Do Kun; Suh, Tae Suk [Catholic University of Korea, Seoul (Korea, Republic of)
2016-05-15
The principle of the proton boron fusion therapy (PBFT) is based on this reaction as the radiation therapy technique. First, because three alpha particles can contribute to the death of the tumor cell by the use of one proton, high therapy efficiency can be achieved by using smaller flux than conventional proton therapy or the boron neutron capture therapy (BNCT), after the thermal neutron was captured by the labeled boron in the tumor region, an alpha particle is emitted from the capture reaction point. An alpha particle induces the death of the tumor cell by the one capture reaction. However, three alpha particles are emitted from the point of the proton boron fusion reaction. If this reaction is applied to the radiation therapy, the therapy results could be more effective in inducing the death of tumor cells using a smaller flux. In addition, the proton's energy loss during its propagation through matter is described by the Bragg-peak. After the boron-labeled compound is accumulated in the tumor region, if the portion of the proton's maximum dose (Bragg-peak) is included at the tumor region, which is the boron uptake region (BUR), a dramatic therapy effect with less damage to normal tissue can be expected. This study was performed to introduce a therapy method using the proton boron fusion reaction and verify the theoretical validity of PBFT using Monte Carlo simulations. In this study, there are two parts of the simulation to confirm the validity of PBFT. First, the variation of the Bragg-peak of the proton depending on the location of the BUR was examined. The other simulation was performed to confirm the existence of the prompt gamma ray peak of 719 keV from energy spectrum simulation. PBFT method is still at the conceptual stage, the verification of its effectiveness is required for the use of a physical approach.
Nath, G.
2016-01-01
Self-similar solutions are obtained for one-dimensional unsteady adiabatic flow behind a spherical shock wave propagating in a dusty gas with conductive and radiative heat fluxes under the influence of a gravitational field. The shock is assumed to be driven out by a moving piston and the dusty gas to be a mixture of non-ideal gas and small solid particles, in which solid particles are uniformly distributed. It is assumed that the equilibrium flow-conditions are maintained and variable energy input is continuously supplied by the piston. The heat conduction is expressed in terms of Fourier's law and the radiation is considered to be of the diffusion type for an optically thick grey gas model. The thermal conductivity K and the absorption coefficient αR are assumed to vary with temperature and density. The medium is assumed to be under the influence of a gravitational field due to central mass ( bar{m} ) at the origin (Roche Model). It is assumed that the gravitational effect of the mixture itself can be neglected compared with the attraction of the central mass. The initial density of the ambient medium is taken to be always constant. The effects of the variation of the gravitational parameter and nonidealness of the gas in the mixture are investigated. Also, the effects of an increase in (i) the mass concentration of solid particles in the mixture and (ii) the ratio of the density of solid particles to the initial density of the gas on the flow variables are investigated. It is shown that due to an increase in the gravitational parameter the compressibility of the medium at any point in the flow-field behind the shock decreases and all other flow variables and the shock strength are increased. Further, it is found that the presence of gravitational field increases the compressibility of the medium, due to which it is compressed and therefore the distance between the piston and the shock surface is reduced. The shock waves in dusty gas under the influence of a
Astrometric and Timing Effects of Gravitational Waves from Localized Sources
Kopeikin, Sergei M.; Schafer, Gerhard; Gwinn, Carl R.; Eubanks, T. Marshall
1998-01-01
A consistent approach for an exhaustive solution of the problem of propagation of light rays in the field of gravitational waves emitted by a localized source of gravitational radiation is developed in the first post-Minkowskian and quadrupole approximation of General Relativity. We demonstrate that the equations of light propagation in the retarded gravitational field of an arbitrary localized source emitting quadrupolar gravitational waves can be integrated exactly. The influence of the gra...
Chiral primordial gravitational waves from a Lifshitz point.
Takahashi, Tomohiro; Soda, Jiro
2009-06-12
We study primordial gravitational waves produced during inflation in quantum gravity at a Lifshitz point proposed by Horava. Assuming power-counting renormalizability, foliation-preserving diffeomorphism invariance, and the condition of detailed balance, we show that primordial gravitational waves are circularly polarized due to parity violation. The chirality of primordial gravitational waves is a quite robust prediction of quantum gravity at a Lifshitz point which can be tested through observations of cosmic microwave background radiation and stochastic gravitational waves.
Directory of Open Access Journals (Sweden)
P. Sambath
2018-03-01
Full Text Available The consequence of thermal radiation in laminar natural convective hydromagnetic flow of viscous incompressible fluid past a vertical cone with mass transfer under the influence of chemical reaction with heat source/sink is presented here. The surface of the cone is focused to a variable wall temperature (VWT and wall concentration (VWC. The fluid considered here is a gray absorbing and emitting, but non-scattering medium. The boundary layer dimensionless equations governing the flow are solved by an implicit finite-difference scheme of Crank–Nicolson which has speedy convergence and stable. This method converts the dimensionless equations into a system of tri-diagonal equations and which are then solved by using well known Thomas algorithm. Numerical solutions are obtained for momentum, temperature, concentration, local and average shear stress, heat and mass transfer rates for various values of parameters Pr, Sc, λ, Δ, Rd are established with graphical representations. We observed that the liquid velocity decreased for higher values of Prandtl and Schmidt numbers. The temperature is boost up for decreasing values of Schimdt and Prandtl numbers. The enhancement in radiative parameter gives more heat to liquid due to which temperature is enhanced significantly. Keywords: Chemical reaction, Heat generation/absorption, MHD, Radiation, Vertical cone
Gravitational waves and multimessenger astronomy
Directory of Open Access Journals (Sweden)
Ricci Fulvio
2016-01-01
Full Text Available It is widely expected that in the coming quinquennium the first gravitational wave signal will be directly detected. The ground-based advanced LIGO and Virgo detectors are being upgraded to a sensitivity level such that we expect to be measure a significant binary merger rate. Gravitational waves events are likely to be accompanied by electromagnetic counterparts and neutrino emission carrying complementary information to those associated to the gravitational signals. If it becomes possible to measure all these forms of radiation in concert, we will end up an impressive increase in the comprehension of the whole phenomenon. In the following we summarize the scientific outcome of the interferometric detectors in the past configuration. Then we focus on some of the potentialities of the advanced detectors once used in the new context of the multimessenger astronomy.
International Nuclear Information System (INIS)
Balakin, A.B.; Murzakhanov, Z.G.; Grunskaya, L.V.
1994-01-01
A proposal on the experimental detection of extremely low-frequency variations of the electromagnetic Earth field at the gravitational-wave frequency and method for correlation processing results of the experiments are described. 14 refs
International Nuclear Information System (INIS)
Griffin, P.J.; Sjöstrand, H.; Simakov, S.P.
2016-08-01
This Meeting was organized to implement the recommendation of the second Research Coordinated Meeting (RCM) of the International Atomic Energy Agency (IAEA) Coordinated Research Project (CRP) “Primary Radiation Damage Cross Sections” to analyse the accuracy and consistency of the radiation damage-relevant nuclear data in the major nuclear data evaluations with the eventual goal of identifying the most reliable data and providing quantitative uncertainty estimates. Participants have considered the status of the primary nuclear data, such as reaction recoils spectra in the latest releases of ENDF, JEFF, JENDL, FENDL, ROSFOND and TENDL nuclear data libraries, and the ways of deriving the damage quantities KERMA, NRT- or arc-dpa and gas production cross sections as well as the recipes for an assessment of their uncertainties. This report contains the contemporary view of the Meeting participants on these issues in the form of a consolidated set of statements, recommendations and individual summaries. (author)
Ksendzova, G. A.; Samovich, S. N.; Sorokin, V. L.; Shadyro, O. I.
2018-05-01
In the present paper, the effects of hydroxylated benzaldehyde derivatives and gossypol - the known natural occurring compound - on formation of decomposition products resulting from radiolysis of ethanol and hexane in deaerated and oxygenated solutions were studied. The obtained data enabled the authors to make conclusions about the effects produced by the structure of the compounds under study on their reactivity towards oxygen- and carbon-centered radicals. It has been found that 2,3-dihydroxybenzaldehyde, 4,6-di-tert-butyl-2,3-dihydroxybenzaldehyde and 4,6-di-tert-butyl-3-(1,3-dioxane-2-yl)-1,2-dihydroxybenzene are not inferior in efficiency to butylated hydroxytoluene - the industrial antioxidant - as regards suppression of the radiation-induced oxidation processes occurring in hexane. The derivatives of hydroxylated benzaldehydes were shown to have a significant influence on radiation-induced reactions involving α-hydroxyalkyl radicals.
International Nuclear Information System (INIS)
Coretchi, Liuba; Plavan, Irina; Bahnarel, Ion; Rosca, Andrei
2015-01-01
The paper presents the summary of the scientific results analysis of the published in the last 10 years studies of the influence of secondary metabolites essential oils and essential-oil plants extracts, on the resistance/sensitivity of the animal and human body to the action of ionizing radiation. An essential problem is the development of new nanotechnologies for mitigation the onset of side effects caused by the use of ionizing radiation therapy of patients with different types of cancer. Widespread application of phyto therapy empiric reveals the beneficial effect of essential oils and essential-oil plants extracts on the immune system. The considered substances have natural antioxidant properties and contribute to the elimination of free radicals which are formed in the body under the action of stress, including ionizing radiation. This reveals about their use in mitigation of ionizing radiation action effects, as a radio protector agent. Unlike other preparations, used to activate the immune system, essential oils at low concentrations show a long-lasting system immune stimulation action. More of that, during their administration the onset of adverse reactions have not been demonstrated. (authors)
International Nuclear Information System (INIS)
Gerasimov, G.Ya.; Makarov, V.N.
1997-01-01
Algorithm of selecting optimal mechanism of complex chemical reaction, enabling to reduce the number of its stages, is suggested. Main steps of constructing the kinetic model of the medium are considered, taking the radiation chemical purification (using fast electron radiation) of gases (N 2 , CO 2 , O 2 and others) from impurities as an example. 17 refs., 3 figs., 2 tabs
Chemical effects produced by the ionizing radiation in the mercury beating heart reaction
International Nuclear Information System (INIS)
Castillo-Rojas, S.; Burillo, G.; Gonzalez-Chavez, J.L.; Vicente, L.
2002-01-01
Complete text of publication follows. In a recent paper we have shown the existence of complex modes of oscillation in the study of the extinction dynamics of the mercury beating heart reaction. It was proposed that one of the species responsible for the oscillatory movements of this reaction is the mercury(I), in anyone in their forms, either free or molecular. the formation of Hg 2 2+ from γ irradiation of 60 Co to the system Hg 0 /H 2 SO 4 (6M) allowed to elucidate the probable mechanism of reaction. The objective of this work is to study how the ionizing radiation affects the dynamics of extinction of this reaction, which is related with the existence of certain chemical species. The study was carried out in 2 ways: a) Method I: H 2 SO 4 (6M) was first irradiated and to the irradiated solution the Hg 0 was added and b) Method II: the system Hg 0 /H 2 SO 4 (6M) was irradiated. The different irradiated systems were put into reaction with Fe 0 to investigate if there were differences between the two irradiated systems and how the complex modes of oscillation of the reaction were affected. The quantity of Hg 2 2+ produced by method I is bigger than in method II. This is explained because the majority species produced by radiolysis of H 2 SO 4 are sulfate radical and H 2 O 2 that act as oxidizer agents and their potential values allow to suppose that these substances react with Hg 0 to produce Hg 2 2+ . On the other hand, by method II mercury clusters (Hg 4 3+ ) are formed as was reported by Sukhov and Ershov in pulse radiolysis of aqueous Hg 2 2+ solutions. We assume that the formation of these mercury clusters has to be observed with the decrease of the Hg 2 2+ concentration when one makes the radiolysis by method II. In general, the preliminary studies allow establishing that the ionizing radiation does not affect the extinction dynamics but it increases the half-life of this reaction
Second-order equation of motion for electromagnetic radiation back-reaction
Matolcsi, T.; Fülöp, T.; Weiner, M.
2017-09-01
We take the viewpoint that the physically acceptable solutions of the Lorentz-Dirac equation for radiation back-reaction are actually determined by a second-order equation of motion, the self-force being given as a function of spacetime location and velocity. We propose three different methods to obtain this self-force function. For two example systems, we determine the second-order equation of motion exactly in the non-relativistic regime via each of these three methods, leading to the same result. We reveal that, for both systems considered, back-reaction induces a damping proportional to velocity and, in addition, it decreases the effect of the external force.
An NaI(Tl) spectrometer system for keV neutron radiative-capture reactions
International Nuclear Information System (INIS)
Ohsaki, T.; Nagai, Y.; Igashira, M.; Shima, T.; Suzuki, T.S.; Kikuchi, T.; Kobayashi, T.; Takaoka, T.; Kinoshita, M.; Nobuhara, Y.
1999-01-01
An NaI(Tl) spectrometer system has been installed to measure the cross section of a radiative neutron-capture reaction of a nucleus at an astrophysically relevant energy of between 10 and 500 keV. The system consists of two large anti-Compton NaI(Tl) spectrometers and a new data-taking system. The spectrometer can detect a discrete γ-ray emitted promptly from a neutron-capture state to its low-lying state, and the data-taking system can transfer events with much higher rates, about 30-times higher, compared to the existing system
Three dimensional radiative flow of magnetite-nanofluid with homogeneous-heterogeneous reactions
Hayat, Tasawar; Rashid, Madiha; Alsaedi, Ahmed
2018-03-01
Present communication deals with the effects of homogeneous-heterogeneous reactions in flow of nanofluid by non-linear stretching sheet. Water based nanofluid containing magnetite nanoparticles is considered. Non-linear radiation and non-uniform heat sink/source effects are examined. Non-linear differential systems are computed by Optimal homotopy analysis method (OHAM). Convergent solutions of nonlinear systems are established. The optimal data of auxiliary variables is obtained. Impact of several non-dimensional parameters for velocity components, temperature and concentration fields are examined. Graphs are plotted for analysis of surface drag force and heat transfer rate.
Deformation effects in 36Mg(n, γ)37Mg radiative capture reaction
International Nuclear Information System (INIS)
Shubhchintak; Chatterjee, R.; Shyam, R.
2016-01-01
Most of the formation of heavy elements in the universe is generally accepted to be via the r-process at high temperatures and neutron densities. Such conducive environments can be found in post collapse phase of a type-II or type-Ib supernova. However uncertainties remain in determining the actual path of the r-process, more so because it passes through the neutron rich region of the nuclear chart where a large proportion of the nuclei are unknown. Other known sources of uncertainty are the seed nuclei for the r-process and their abundances. That would critically depend on the path followed through lighter elements while creating these seed nuclei. In fact, the r-process path involving neutron-rich nuclei can, in principle, go upto the drip-line isotope once equilibrium between (n, γ) and (γ, n) nuclei is established. If, however, the (α, n) reaction becomes faster than the (n, γ) reaction on some 'pre-drip-line' neutron-rich isotope, then r-process flow of radiative neutron capture followed by the A(e - υ) reaction is broken and the reaction path will skip the isotope on the drip-line
International Nuclear Information System (INIS)
Gorelik, B.A.; Sokolova, L.A.; Grigor'ev, A.G.; Koshelev, S.D.
1991-01-01
A model of radiation oxidation of polymers (PP, LDPE) in the presence of stabilizers, permitting to determine the layer in the polymer, in which reactions with participation of peroxide radicals are developed, is presented. When material is irradiated with a powerful radiation dose, the introduction of a stabilizer results in the increse of the reaction penetration depth. For lower dose rates the depth of radiation oxidation penetration can be considerably higher in the material stabilized as compared with pure polymer. Experimental testing of the scheme suggested for PP stabilized by ionol was carried out
International Nuclear Information System (INIS)
Higuchi, Atsushi; Martin, Giles D. R.
2006-01-01
We extend our previous work [A. Higuchi and G. D. R. Martin, Found. Phys. 35, 1149 (2005)], which compared the predictions of quantum electrodynamics concerning radiation reaction with those of the Abraham-Lorentz-Dirac theory for a charged particle in linear motion. Specifically, we calculate the predictions for the change in position of a charged-scalar particle, moving in three-dimensional space, due to the effect of radiation reaction in the one-photon-emission process in quantum electrodynamics. The scalar particle is assumed to be accelerated for a finite period of time by a three-dimensional electromagnetic potential dependent only on one of the spacetime coordinates. We perform this calculation in the (ℎ/2π)→0 limit and show that the change in position agrees with that obtained in classical electrodynamics with the Lorentz-Dirac force treated as a perturbation. We also show for a time-dependent but space-independent electromagnetic potential that the forward-scattering amplitude at order e 2 does not contribute to the position change in the (ℎ/2π)→0 limit after the mass renormalization is taken into account
Hablani, Hari B.
1993-01-01
This paper has a two-fold objective: determination of yearly momentum accumulation due to solar radiation pressure, and optimum reaction wheel sizing. The first objective is confronted while determining propellant consumption by the attitude control system over a spacecraft's lifetime. This, however, cannot be obtained from the daily momentum accumulation and treating that constant throughout the year, because the orientation of the solar arrays relative to the spacecraft changes over a wide range in a year, particularly if the spacecraft has two arrays, one normal and the other off-normal to different extent at different times to the sun rays. The paper first develops commands for the arrays for tracking the sun, the arrays articulated to earth-pointing spacecraft with two rotational degrees of freedom, and spacecraft in an arbitrary circular orbit. After developing expressions for solar radiation torque due to one or both arrays, arranged symmetrically or asymmetrically relative to the spacecraft bus, momentum accumulation over an orbit and then over a year are determined. The remainder of the paper is concerned with designing reaction wheel configurations. Four-, six-, and three-wheel configurations are considered, and for given torque and momentum requirements, their cant angles with the roll/yaw plane are optimized for minimum power consumption. Finally, their momentum and torque capacities are determined for one-wheel failure scenario, and six configurations are compared and contrasted.
Functional properties of nisin–carbohydrate conjugates formed by radiation induced Maillard reaction
International Nuclear Information System (INIS)
Muppalla, Shobita R.; Sonavale, Rahul; Chawla, Surinder P.; Sharma, Arun
2012-01-01
Nisin–carbohydrate conjugates were prepared by irradiating nisin either with glucose or dextran. Increase in browning and formation of intermediate products was observed with a concomitant decrease in free amino and reducing sugar groups indicating occurrence of the Maillard reaction catalyzed by irradiation. Nisin–carbohydrate conjugates showed a broad spectrum antibacterial activity against Gram negative bacteria (Escherichia coli, Pseudomonas fluorescence) as well as Gram positive bacteria (Staphylococcus aureus, Bacillus cereus). Results of antioxidant assays, including that of DPPH radical-scavenging activity and reducing power, showed that the nisin–dextran conjugates possessed better antioxidant potential than nisin–glucose conjugate. These results suggested that it was possible to enhance the functional properties of nisin by preparing radiation induced conjugates suitable for application in food industry. - Highlights: ► Nisin–carbohydrate conjugates were prepared using radiation induced Maillard reaction. ► Conjugation of nisin with dextran/glucose resulted in improvement of antibacterial spectrum. ► Conjugates of nisin with dextran/glucose had significant radical scavenging activity.
Gravitational wave emission from oscillating millisecond pulsars
Alford, Mark G.; Schwenzer, Kai
2015-02-01
Neutron stars undergoing r-mode oscillation emit gravitational radiation that might be detected on the Earth. For known millisecond pulsars the observed spin-down rate imposes an upper limit on the possible gravitational wave signal of these sources. Taking into account the physics of r-mode evolution, we show that only sources spinning at frequencies above a few hundred Hertz can be unstable to r-modes, and we derive a more stringent universal r-mode spin-down limit on their gravitational wave signal. We find that this refined bound limits the gravitational wave strain from millisecond pulsars to values below the detection sensitivity of next generation detectors. Young sources are therefore a more promising option for the detection of gravitational waves emitted by r-modes and to probe the interior composition of compact stars in the near future.
Phase transitions and radiative proton-capture nuclear reactions in metallic hydrogen
International Nuclear Information System (INIS)
Setsuo, Ichimaru
2002-01-01
Protons being the lightest nuclei, metallic hydrogen exhibits the features of the quantum liquids most relevant to the enormously enhanced nuclear reactions; thermonuclear and pycno-nuclear rates and associated enhancement factors of radiative proton captures of high-Z nuclei as well as of deuterons are evaluated. Atomic states of high-Z impurities are determined in a way consistent with the equations of state and screening characteristics of the metallic hydrogen. Rates of pycno-nuclear p-d reactions are prodigiously high at densities ≥ 20 g/cm 3 , pressures ≥ 1 Gbar, and temperatures ≥ 950 K near the conditions of solidification. It is also predicted that proton captures of nuclei such as C, N, O, and F may take place at considerable rates owing to strong screening by K-shell electrons, if the densities ≥ 60-80 g/cm 3 , the pressures ≥ 7-12 Gbar, and the temperatures just above solidification. Phase diagrams of metallic hydrogen describing solidification thus count essentially in the pycno-nuclear processes. A novel scheme of pycno-nuclear fusion reactors that utilizes p-d reactions in metallic hydrogen is presented; it eliminates those ferocious problems inherent in the conventional thermonuclear-fusion reactors employing d-t reactions: The fusion yields of p-d reactions, i.e., stable 3 He and γ -rays (at 5.494 MeV), would not produce hazardous radioactive byproducts; absent likewise are the instabilities associated with confinement of the plasmas at ultrahigh temperatures. (author)
Effects of strong radiation reaction and quantum-electrodynamics on relativistic transparency
Zhang, Peng; Thomas, A. G. R.; Ridgers, C. P.
2013-10-01
Relativistic transparency is the process that optically switches the overdense plasma from opaque to transparent and enables light propagation through the otherwise opaque plasma, when light of sufficient intensity drives the electrons in the plasma to near light speeds. We study the relativistic transparency in radiation dominant and strong quantum electrodynamic (QED) regime, for the interaction of high-intensity laser pulses with a thin foil solid target. We analytically study the simplified motion of an electron in a circularly polarized plane wave to understand the physics of the transmissivity and absorption in the presence of classical and quantum-corrected, semiclassical radiation-reaction forces and the trapping of particles in nodes of laser standing wave through radiative cooling. These arguments are supported by both one dimensional and two dimensional particle-in-cell calculations including strong field QED effects. Measurement of the transmission of these pulses would be experimentally feasible and a robust test of the strong field QED particle-in-cell framework.
Rapid bioelectric reaction of elodea leaf cells to the UV radiation
International Nuclear Information System (INIS)
Aliev, D.A.; Mamedov, T.G.; Akhmedov, I.S.; Khalilov, R.I.
1984-01-01
It has been established that changes of membrane potential (MP) of elodea leaf cells in the UV radiation are manifested in a form of rapid response reaction, which is similar to an action potential. At present a lot of new data confirming the existence of electrogenic proton pump on plasmalemma plant cells is making their appearance. The plant cell membrane potential consists of two components: equilibrium( passive) potential and potential created by an electrogenic proton pump. A contribution of the second component to the elodea leaf cell MP is considerable and constitutes more than a half of the total MP. Constant values of membrane conductivity and intracell electric bonds in the process of depolarization development and after MP recovery testify to the fact, that UV radiation does not effect upon the MP passive component. High degree of depolarization and its strong dependence on medium pH and also the observed effect independence on potassium and sodium ions presence in the external medium testify to the fact that UV radiation ingenuously inactivates electrogenic proton pumps
Novel Profluorescent Nitroxides for Monitoring Alkyl Radical Reactions During Radiation Degradation
International Nuclear Information System (INIS)
George, G.
2006-01-01
Hindered amine stabilizers (HAS) are effective at retarding the photo-oxidative and high energy radiation degradation of PP and in certain circumstances, also thermo-oxidative degradation. The effectiveness of HAS as retarders of oxidation relies on the oxidation of the N-C bond by polymer hydroperoxide, ROOH, to form the nitroxyl group -NO which is the scavenger of polymer alkyl radicals, R. This reaction, which produces the alkoxy amine: -NO-R, must be competitive with the reaction of R with oxygen (which gives the chain-carrying peroxy radical, RO 2 ) if this stabilization mechanism is to be important in the inhibition of radiation-induced oxidative degradation of polyolefins by HAS. The rate of this reaction is high and in solution the rate coefficient is from 1 to 9x10 8 l mol - 1 s - 1. The efficient radical trapping by nitroxides has been widely employed in spin-trapping studies by electron spin resonance (esr) spectroscopy]. In addition to the hindered piperidine structure of commercial HAS, more rigid aromatic systems have been studied that are more stable to oxidative degradation and are more efficient at scavenging alkyl radicals. One such family is the iso-indoline nitroxide system, TMDBIO, shown below which, as it contains the phenanthrene fluorophore, is termed phenanthrene nitroxide. This nitroxide only becomes fluorescent when it reacts with alkyl radicals or is reduced and is termed profluorescent. TMDBIO has a vanishingly small fluorescence quantum yield (φ∼10 - 4) due to the enhanced intersystem crossing from the first excited singlet state to the ground state due to electron exchange interactions of the nitroxyl radical. When the nitroxide traps an alkyl radical, R, the resulting alkoxy amine is fluorescent (φ∼10 - 1) and the emission intensity is a measure of the number of reactions that have occurred. This property may be exploited by using quantitative fluorescence spectroscopy to follow the reaction of the nitroxide with alkyl radicals
Nur Wahida Khalili, Noran; Aziz Samson, Abdul; Aziz, Ahmad Sukri Abdul; Ali, Zaileha Md
2017-09-01
In this study, the problem of MHD boundary layer flow past an exponentially stretching sheet with chemical reaction and radiation effects with heat sink is studied. The governing system of PDEs is transformed into a system of ODEs. Then, the system is solved numerically by using Runge-Kutta-Fehlberg fourth fifth order (RKF45) method available in MAPLE 15 software. The numerical results obtained are presented graphically for the velocity, temperature and concentration. The effects of various parameters are studied and analyzed. The numerical values for local Nusselt number, skin friction coefficient and local Sherwood number are tabulated and discussed. The study shows that various parameters give significant effect on the profiles of the fluid flow. It is observed that the reaction rate parameter affected the concentration profiles significantly and the concentration thickness of boundary layer decreases when reaction rate parameter increases. The analysis found is validated by comparing with the results previous work done and it is found to be in good agreement.
Gravitational reheating in quintessential inflation
International Nuclear Information System (INIS)
Scopel, Stefano
2010-01-01
Quintessential inflation assumes a common origin for inflation and the dark energy of the Universe. In this scenario reheating can occur through gravitational particle production during the inflation-kination transition. We provide a detailed study of gravitational reheating in quintessential inflation and determine the temperature T * at which radiation starts dominating over kination, generalizing previous analyses only available for the standard case when inflation is followed by an era dominated by the energy density of radiation, The value of T * is controlled by the Hubble parameter H 0 during inflation and the transition time Δt, scaling as H 0 2 [ln(1/H 0 Δt)] 3/4 for H 0 Δt 0 2 (H 0 Δt) -c for H 0 t >> 1. The model-dependent parameter c is found to be around 0.5 in two different parametrizations for the transition between inflation and kination.
Quantum field theory in gravitational background
International Nuclear Information System (INIS)
Narnhofer, H.
1986-01-01
The author suggests ignoring the influence of the quantum field on the gravitation as the first step to combine quantum field theory and gravitation theory, but to consider the gravitational field as fixed and thus study quantum field theory on a manifold. This subject evoked interest when thermal radiation of a black hole was predicted. The author concentrates on the free quantum field and can split the problem into two steps: the Weyl-algebra of the free field and the Wightman functional on the tangent space
Connecting Compton and Gravitational Compton Scattering
Directory of Open Access Journals (Sweden)
Holstein Barry R.
2017-01-01
Full Text Available The study of Compton scattering—S + γ → S + γ—at MAMI and elsewhere has led to a relatively successful understanding of proton structure via its polarizabilities. The recent observation of gravitational radiation observed by LIGO has raised the need for a parallel understanding of gravitational Compton scattering—S + g → S + g—and we show here how it can be obtained from ordinary Compton scattering by use of the double copy theorem.
Gravitational waves from spinning eccentric binaries
Csizmadia, Péter; Debreczeni, Gergely; Rácz, István; Vasúth, Mátyás
2012-12-01
This paper is to introduce a new software called CBwaves which provides a fast and accurate computational tool to determine the gravitational waveforms yielded by generic spinning binaries of neutron stars and/or black holes on eccentric orbits. This is done within the post-Newtonian (PN) framework by integrating the equations of motion and the spin precession equations, while the radiation field is determined by a simultaneous evaluation of the analytic waveforms. In applying CBwaves various physically interesting scenarios have been investigated. In particular, we have studied the appropriateness of the adiabatic approximation, and justified that the energy balance relation is indeed insensitive to the specific form of the applied radiation reaction term. By studying eccentric binary systems, it is demonstrated that circular template banks are very ineffective in identifying binaries even if they possess tiny residual orbital eccentricity, thus confirming a similar result obtained by Brown and Zimmerman (2010 Phys. Rev. D 81 024007). In addition, by investigating the validity of the energy balance relation we show that, contrary to the general expectations, the PN approximation should not be applied once the PN parameter gets beyond the critical value ˜0.08 - 0.1. Finally, by studying the early phase of the gravitational waves emitted by strongly eccentric binary systems—which could be formed e.g. in various many-body interactions in the galactic halo—we have found that they possess very specific characteristics which may be used to identify these type of binary systems. This paper is dedicated to the memory of our colleague and friend Péter Csizmadia a young physicist, computer expert and one of the best Hungarian mountaineers who disappeared in China’s Sichuan near the Ren Zhong Feng peak of the Himalayas on 23 Oct. 2009. We started to develop CBwaves jointly with Péter a couple of months before he left for China.
Yamashita, Shinichi; Ma, Jun; Marignier, Jean-Louis; Hiroki, Akihiro; Taguchi, Mitsumasa; Mostafavi, Mehran; Katsumura, Yosuke
2016-12-01
We performed studies on pulse radiolysis of highly transparent and shape-stable hydrogels of hydroxypropyl cellulose (HPC) that were prepared using a radiation-crosslinking technique. Several fundamental aspects of radiation-induced chemical reactions in the hydrogels were investigated. With radiation doses less than 1 kGy, degradation of the HPC matrix was not observed. The rate constants of the HPC composing the matrix, with two water decomposition radicals [hydroxyl radical ( • OH) and hydrated electron ([Formula: see text])] in the gels, were determined to be 4.5 × 10 9 and 1.8 × 10 7 M -1 s -1 , respectively. Direct ionization of HPC in the matrix slightly increased the initial yield of [Formula: see text], but the additionally produced amount of [Formula: see text] disappeared immediately within 200 ps, indicating fast recombination of [Formula: see text] with hole radicals on HPC or on surrounding hydration water molecules. Reactions of [Formula: see text] with nitrous oxide (N 2 O) and nitromethane (CH 3 NO 2 ) were also examined. Decay of [Formula: see text] due to scavenging by N 2 O and CH 3 NO 2 were both slower in hydrogels than in aqueous solutions, showing slower diffusions of the reactants in the gel matrix. The degree of decrease in the decay rate was more effective for N 2 O than for CH 3 NO 2 , revealing lower solubility of N 2 O in gel than in water. It is known that in viscous solvents, such as ethylene glycol, CH 3 NO 2 exhibits a transient effect, which is a fast reaction over the contact distance of reactants and occurs without diffusions of reactants. However, such an effect was not observed in the hydrogel used in the current study. In addition, the initial yield of [Formula: see text], which is affected by the amount of the scavenged precursor of [Formula: see text], in hydrogel containing N 2 O was slightly higher than that in water containing N 2 O, and the same tendency was found for CH 3 NO 2 .
International Nuclear Information System (INIS)
Adam, D; Bednarz, B
2016-01-01
Purpose: The proton boron fusion reaction is a reaction that describes the creation of three alpha particles as the result of the interaction of a proton incident upon a 11B target. Theoretically, the proton boron fusion reaction is a desirable reaction for radiation therapy applications in that, with the appropriate boron delivery agent, it could potentially combine the localized dose delivery protons exhibit (Bragg peak) and the local deposition of high LET alpha particles in cancerous sites. Previous efforts have shown significant dose enhancement using the proton boron fusion reaction; the overarching purpose of this work is an attempt to validate previous Monte Carlo results of the proton boron fusion reaction. Methods: The proton boron fusion reaction, 11B(p, 3α), is investigated using MCNP6 to assess the viability for potential use in radiation therapy. Simple simulations of a proton pencil beam incident upon both a water phantom and a water phantom with an axial region containing 100ppm boron were modeled using MCNP6 in order to determine the extent of the impact boron had upon the calculated energy deposition. Results: The maximum dose increase calculated was 0.026% for the incident 250 MeV proton beam scenario. The MCNP simulations performed demonstrated that the proton boron fusion reaction rate at clinically relevant boron concentrations was too small in order to have any measurable impact on the absorbed dose. Conclusion: For all MCNP6 simulations conducted, the increase of absorbed dose of a simple water phantom due to the 11B(p, 3α) reaction was found to be inconsequential. In addition, it was determined that there are no good evaluations of the 11B(p, 3α) reaction for use in MCNPX/6 and further work should be conducted in cross section evaluations in order to definitively evaluate the feasibility of the proton boron fusion reaction for use in radiation therapy applications.
Axial gravitational waves in FLRW cosmology and memory effects
Kulczycki, Wojciech; Malec, Edward
2017-09-01
We show initial data for gravitational axial waves that are twice differentiable but that are not C2. They generate wave pulses that interact with matter in the radiation cosmological era. This forces the radiation matter to rotate. This rotation is permanent—it persists after the passage of the gravitational pulse. The observed inhomogeneities of the cosmic microwave background radiation put a bound onto discontinuities of superhorizon metric perturbations. We explicitly show that a class of smooth initial metrics that are at least C2 gives rise to gravitational wave pulses that do not interact with the background during the radiation epoch.
Press, W. H.; Thorne, K. S.
1972-01-01
The significance of experimental evidence for gravitational waves is considered for astronomy. Properties, generation, and astrophysical sources of the waves are discussed. Gravitational wave receivers and antennas are described. A review of the Weber experiment is presented.
Underdevelopment’s gravitation
Directory of Open Access Journals (Sweden)
Marin Dinu
2013-09-01
Full Text Available The energy necessary to escape the gravitational pull of underdevelopment and to enter an evolutional trajectory dependent on the gravitational pull of development is unintelligible in economic terms.
Prevention of gravitational collapse
International Nuclear Information System (INIS)
Moffat, J.W.; Taylor, J.G.
1981-01-01
We apply a new theory of gravitation to the question of gravitational collapse to show that collapse is prevented in this theory under very reasonable conditions. This result also extends to prevent ultimate collapse of the Universe. (orig.)
Melting Heat in Radiative Flow of Carbon Nanotubes with Homogeneous-Heterogeneous Reactions
Hayat, Tasawar; Muhammad, Khursheed; Muhammad, Taseer; Alsaedi, Ahmed
2018-04-01
The present article provides mathematical modeling for melting heat and thermal radiation in stagnation-point flow of carbon nanotubes towards a nonlinear stretchable surface of variable thickness. The process of homogeneous-heterogeneous reactions is considered. Diffusion coefficients are considered equal for both reactant and autocatalyst. Water and gasoline oil are taken as base fluids. The conversion of partial differential system to ordinary differential system is done by suitable transformations. Optimal homotopy technique is employed for the solutions development of velocity, temperature, concentration, skin friction and local Nusselt number. Graphical results for various values of pertinent parameters are displayed and discussed. Our results indicate that the skin friction coefficient and local Nusselt number are enhanced for larger values of nanoparticles volume fraction.
Functional properties of nisin-carbohydrate conjugates formed by radiation induced Maillard reaction
Muppalla, Shobita R.; Sonavale, Rahul; Chawla, Surinder P.; Sharma, Arun
2012-12-01
Nisin-carbohydrate conjugates were prepared by irradiating nisin either with glucose or dextran. Increase in browning and formation of intermediate products was observed with a concomitant decrease in free amino and reducing sugar groups indicating occurrence of the Maillard reaction catalyzed by irradiation. Nisin-carbohydrate conjugates showed a broad spectrum antibacterial activity against Gram negative bacteria (Escherichia coli, Pseudomonas fluorescence) as well as Gram positive bacteria (Staphylococcus aureus, Bacillus cereus). Results of antioxidant assays, including that of DPPH radical-scavenging activity and reducing power, showed that the nisin-dextran conjugates possessed better antioxidant potential than nisin-glucose conjugate. These results suggested that it was possible to enhance the functional properties of nisin by preparing radiation induced conjugates suitable for application in food industry.
Radiation induced chemical changes in foodstuffs model reaction systems and strawberries
International Nuclear Information System (INIS)
Breitfellner, F.
1999-10-01
In the first part of this work 4-hydroxybenzoic acid (4-HBA) and 4-hydroxybenzoic acid ethyl ester (4-HBAEE) were investigated in order to elucidate the reaction mechanisms leading to final products after reaction with OH-radicals (N 2 O-saturated and aerated aqueous solutions) at various pH. Irradiation of 5*10 -4 mol l -1 solutions of 4-HBA at pH 6.0 leads to formation of 3,4-dihydroxybenzoic acid and hydroquinone. In case of the ester neither hydroxylation nor decarboxylation products are observable. By means of pulse radiolysis it could be shown that water splitting from the ester OH-adducts is 17 times faster than from that of the acid. Therefore the main transients are phenoxyl radicals in case of the ester. At pH 10, where base catalyzed water elimination takes place, no hydroxylation products are observable either. In aerated solutions dihydroxy-compounds are formed with both substrates. In the case of 4-HBA 68 % of the OH-radicals result in 3,4-dihydroxyderivate, for 4-HBAEE these are only 25 %. Comparison of the initial degradation yields demonstrates 4-HBAEE to be 1.6-times more stable towards radiation. The second part of this work deals with radiation induced chemical changes in strawberries. Dose/concentration relationships could be obtained for 7 components, i.e. gallic acid, 4-hydroxybenzoic acid, cinnamic acid, 4-hydroxycinnamic acid, 3,4-dihydroxy-cinnamic acid, (-)-epicatechin and (+)-catechin. Linear dose relationships have been found for 4-HBA (formation) and (+)-catechin (degradation). In addition a specific radiolytically formed compound which can be used as marker for irradiation treatment of strawberries could be detected. There are strong indications that it is a radiolytic product of kaempferol, however, it could not yet be identified exactly. (author)
The Gravitational-Wave Physics
Cai, Rong-Gen; Cao, Zhoujian; Guo, Zong-Kuan; Wang, Shao-Jiang; Yang, Tao
2017-01-01
The direct detection of gravitational wave by Laser Interferometer Gravitational-Wave Observatory indicates the coming of the era of gravitational-wave astronomy and gravitational-wave cosmology. It is expected that more and more gravitational-wave events will be detected by currently existing and planned gravitational-wave detectors. The gravitational waves open a new window to explore the Universe and various mysteries will be disclosed through the gravitational-wave detection, combined wit...
Ridgely, Charles T.
2011-01-01
When two gravitating bodies reside in a material medium, Newton's law of universal gravitation must be modified to account for the presence of the medium. A modified expression of Newton's law is known in the literature, but lacks a clear connection with existing gravitational theory. Newton's law in the presence of a homogeneous material medium…
Sambath, P.; Pullepu, Bapuji; Hussain, T.; Ali Shehzad, Sabir
2018-03-01
The consequence of thermal radiation in laminar natural convective hydromagnetic flow of viscous incompressible fluid past a vertical cone with mass transfer under the influence of chemical reaction with heat source/sink is presented here. The surface of the cone is focused to a variable wall temperature (VWT) and wall concentration (VWC). The fluid considered here is a gray absorbing and emitting, but non-scattering medium. The boundary layer dimensionless equations governing the flow are solved by an implicit finite-difference scheme of Crank-Nicolson which has speedy convergence and stable. This method converts the dimensionless equations into a system of tri-diagonal equations and which are then solved by using well known Thomas algorithm. Numerical solutions are obtained for momentum, temperature, concentration, local and average shear stress, heat and mass transfer rates for various values of parameters Pr, Sc, λ, Δ, Rd are established with graphical representations. We observed that the liquid velocity decreased for higher values of Prandtl and Schmidt numbers. The temperature is boost up for decreasing values of Schimdt and Prandtl numbers. The enhancement in radiative parameter gives more heat to liquid due to which temperature is enhanced significantly.
B R Sharma*, Nabajyoti Dutta
2016-01-01
In the present study, the effects of chemical reaction and thermal radiation on unsteady MHD flow of a viscous, electrically conducting and incompressible fluid mixture past a moving vertical cylinder is studied. The fluid is a gray, absorbing-emitting but non scattering medium and the Rosseland approximation is used to describe the radiative heat flux in the energy equation. The governing dimensionless coupled non-linear partial differential equations are solved numerically using finite di...
Ramzan, M.; Bilal, M.; Kanwal, Shamsa; Chung, Jae Dong
2017-06-01
Present analysis discusses the boundary layer flow of Eyring Powell nanofluid past a constantly moving surface under the influence of nonlinear thermal radiation. Heat and mass transfer mechanisms are examined under the physically suitable convective boundary condition. Effects of variable thermal conductivity and chemical reaction are also considered. Series solutions of all involved distributions using Homotopy Analysis method (HAM) are obtained. Impacts of dominating embedded flow parameters are discussed through graphical illustrations. It is observed that thermal radiation parameter shows increasing tendency in relation to temperature profile. However, chemical reaction parameter exhibits decreasing behavior versus concentration distribution. Supported by the World Class 300 Project (No. S2367878) of the SMBA (Korea)
Studying mechanism of radical reactions: From radiation to nitroxides as research tools
Maimon, Eric; Samuni, Uri; Goldstein, Sara
2018-02-01
Radicals are part of the chemistry of life, and ionizing radiation chemistry serves as an indispensable research tool for elucidation of the mechanism(s) underlying their reactions. The ever-increasing understanding of their involvement in diverse physiological and pathological processes has expanded the search for compounds that can diminish radical-induced damage. This review surveys the areas of research focusing on radical reactions and particularly with stable cyclic nitroxide radicals, which demonstrate unique antioxidative activities. Unlike common antioxidants that are progressively depleted under oxidative stress and yield secondary radicals, nitroxides are efficient radical scavengers yielding in most cases their respective oxoammonium cations, which are readily reduced back in the tissue to the nitroxide thus continuously being recycled. Nitroxides, which not only protect enzymes, cells, and laboratory animals from diverse kinds of biological injury, but also modify the catalytic activity of heme enzymes, could be utilized in chemical and biological systems serving as a research tool for elucidating mechanisms underlying complex chemical and biochemical processes.
Investigation of CaO-CO₂ reaction kinetics by in-situ XRD using synchrotron radiation
Energy Technology Data Exchange (ETDEWEB)
Biasin, A.; Segre, C. U.; Salviulo, G.; Zorzi, F.; Strumendo, M. [Padova; (IIT)
2015-02-05
In this work, in-situ synchrotron radiation x-ray powder diffraction (SR-XRPD), performed at the Advanced Photon Source (APS) facilities of the Argonne National Laboratory, was applied to investigate the CaO–CO_{2} reaction. A set of CO_{2} absorption experiments were conducted in a high temperature reaction capillary with a controlled atmosphere (CO_{2} partial pressure of 1 bar), in the temperature range between 450 °C and 750 °C using CaO based sorbents obtained by calcination of commercial calcium carbonate. The evolution of the crystalline phases during CO_{2} uptake by the CaO solid sorbents was monitored for a carbonation time of 20 min as a function of the carbonation temperature and of the calcination conditions. The Rietveld refinement method was applied to estimate the calcium oxide conversion during the reaction progress and the average size of the initial (at the beginning of carbonation) calcium oxide crystallites. The measured average initial carbonation rate (in terms of conversion time derivative) of 0.280 s^{-1} (±13.2% standard deviation) is significantly higher than the values obtained by thermo-gravimetric analysis and reported thus far in the literature. Additionally, a dependence of the conversion versus time curves on the initial calcium oxide crystallite size was observed and a linear relationship between the initial CaO crystallite size and the calcium oxide final conversion was identified.
Theory of gravitational interactions
Gasperini, Maurizio
2017-01-01
This is the second edition of a well-received book that is a modern, self-contained introduction to the theory of gravitational interactions. The new edition includes more details on gravitational waves of cosmological origin, the so-called brane world scenario, and gravitational time-delay effects. The first part of the book follows the traditional presentation of general relativity as a geometric theory of the macroscopic gravitational field, while the second, more advanced part discusses the deep analogies (and differences) between a geometric theory of gravity and the “gauge” theories of the other fundamental interactions. This fills a gap within the traditional approach to general relativity which usually leaves students puzzled about the role of gravity. The required notions of differential geometry are reduced to the minimum, allowing room for aspects of gravitational physics of current phenomenological and theoretical interest, such as the properties of gravitational waves, the gravitational inter...
International Nuclear Information System (INIS)
Fowler, Jack F.; Harari, Paul M.; Leborgne, Felix; Leborgne, Jose H.
2003-01-01
Purpose:To investigate whether a predictive estimate can be obtained for a 'tolerance level' of acute oral and pharyngeal mucosal reactions in patients receiving head and neck radiotherapy, using an objective set of dose and time data. Materials and methods:Several dozen radiotherapy schedules for treating head and neck cancer have been reviewed, together with published estimates of whether they were tolerated or (in a number of schedules) not. Those closest to the borderline were given detailed analysis. Total doses and biologically effective doses (BED or ERD) were calculated for a range of starting times of cellular repopulation and rates of daily proliferation. Starting times of proliferation from 5 to 10 days and daily cellular doubling rates of 1-3 days were considered. The standard published form of BED with its linear overall time factor was used: BED=nd1+((d)/(α/β))-((Ln2T-T k )/(αT p )) (see text for parameters). Results: A clear progression from acceptable to intolerable mucosal reactions was found, which correlated with total biologically effective dose (BED in our published modeling), for all the head and neck cancer radiotherapy schedules available for study, when ranked into categories of 'intolerable' or 'tolerable'. A review of published mechanisms for mucosal reactions suggested that practical schedules used for treatment caused stimulated compensatory proliferation to start at about 7 days. The starting time of compensatory proliferation had little predictive value in our listing, so we chose the starting time of 7 days. Very short and very long daily doubling rates also had little reliability, so we suggest choosing a doubling time of 2.5 days as a datum. With these parameters a 'tolerance zone of uncertainty' could be identified which predicted acute-reaction acceptability or not of a schedule within a range of about 2-10 Gy in total BED. If concurrent chemoradiotherapy is used, our provisional suggestion is that this zone should be reduced
Orbital synchronization capture of two binaries emitting gravitational waves
Seto, Naoki
2018-03-01
We study the possibility of orbital synchronization capture for a hierarchical quadrupole stellar system composed by two binaries emitting gravitational waves. Based on a simple model including the mass transfer for white dwarf binaries, we find that the capture might be realized for inter-binary distances less than their gravitational wavelength. We also discuss related intriguing phenomena such as a parasitic relation between the coupled white dwarf binaries and significant reductions of gravitational and electromagnetic radiations.
Quantum metrology for gravitational wave astronomy.
Schnabel, Roman; Mavalvala, Nergis; McClelland, David E; Lam, Ping K
2010-11-16
Einstein's general theory of relativity predicts that accelerating mass distributions produce gravitational radiation, analogous to electromagnetic radiation from accelerating charges. These gravitational waves (GWs) have not been directly detected to date, but are expected to open a new window to the Universe once the detectors, kilometre-scale laser interferometers measuring the distance between quasi-free-falling mirrors, have achieved adequate sensitivity. Recent advances in quantum metrology may now contribute to provide the required sensitivity boost. The so-called squeezed light is able to quantum entangle the high-power laser fields in the interferometer arms, and could have a key role in the realization of GW astronomy.
Energy Technology Data Exchange (ETDEWEB)
Plante, Ianik, E-mail: ianik.plante-1@nasa.gov [Wyle Science, Technology & Engineering, 1290 Hercules, Houston, TX 77058 (United States); Devroye, Luc, E-mail: lucdevroye@gmail.com [School of Computer Science, McGill University, 3480 University Street, Montreal H3A 0E9 (Canada)
2015-09-15
Several computer codes simulating chemical reactions in particles systems are based on the Green's functions of the diffusion equation (GFDE). Indeed, many types of chemical systems have been simulated using the exact GFDE, which has also become the gold standard for validating other theoretical models. In this work, a simulation algorithm is presented to sample the interparticle distance for partially diffusion-controlled reversible ABCD reaction. This algorithm is considered exact for 2-particles systems, is faster than conventional look-up tables and uses only a few kilobytes of memory. The simulation results obtained with this method are compared with those obtained with the independent reaction times (IRT) method. This work is part of our effort in developing models to understand the role of chemical reactions in the radiation effects on cells and tissues and may eventually be included in event-based models of space radiation risks. However, as many reactions are of this type in biological systems, this algorithm might play a pivotal role in future simulation programs not only in radiation chemistry, but also in the simulation of biochemical networks in time and space as well.
International Nuclear Information System (INIS)
Plante, Ianik; Devroye, Luc
2015-01-01
Several computer codes simulating chemical reactions in particles systems are based on the Green's functions of the diffusion equation (GFDE). Indeed, many types of chemical systems have been simulated using the exact GFDE, which has also become the gold standard for validating other theoretical models. In this work, a simulation algorithm is presented to sample the interparticle distance for partially diffusion-controlled reversible ABCD reaction. This algorithm is considered exact for 2-particles systems, is faster than conventional look-up tables and uses only a few kilobytes of memory. The simulation results obtained with this method are compared with those obtained with the independent reaction times (IRT) method. This work is part of our effort in developing models to understand the role of chemical reactions in the radiation effects on cells and tissues and may eventually be included in event-based models of space radiation risks. However, as many reactions are of this type in biological systems, this algorithm might play a pivotal role in future simulation programs not only in radiation chemistry, but also in the simulation of biochemical networks in time and space as well
International Nuclear Information System (INIS)
Wells, Mary; Macmillan, Maureen; Raab, Gillian; MacBride, Sheila; Bell, Nancy; MacKinnon, Karen; MacDougall, Hugh; Samuel, Leslie; Munro, Alastair
2004-01-01
Background and purpose: Evidence on which to base decisions about the management of radiation skin reactions is lacking. The purpose of this study was to investigate whether sucralfate or aqueous cream reduced acute skin toxicity during radiotherapy to the head and neck, breast or anorectal area (phase A), and to evaluate the effect of hydrogels and dry dressings on moist desquamation (phase B). This paper presents the results of phase A. Patients and methods: Three hundred and fifty seven patients were randomised to apply aqueous cream, sucralfate cream or no cream to the irradiated area from day one of radical radiotherapy treatment. All patients were instructed to wash using unperfumed soap. Acute skin toxicity was measured using a modified radiation therapy oncology group (RTOG) score, reflectance spectrophotometry, patient diary card and dermatology life quality index (DLQI). A cost minimisation approach was used to compare the costs of each skin care approach. Results: No consistent differences were found in the severity of skin reactions or levels of discomfort suffered by patients in each of the randomised groups. Patients with a higher body mass index, who smoked, received concomitant chemotherapy, boost or bolus during treatment were more likely to develop skin reactions. Conclusions: There is no evidence to support the prophylactic application of either of the creams tested for the prevention of radiation skin reactions. Our results show that it is possible to predict which patients are at greatest risk of skin reactions. We suggest that known risk factors should be incorporated into future study protocols
Absence of ATM truncations in patients with severe acute radiation reactions
International Nuclear Information System (INIS)
Clarke, Raymond A.; Goozee, Gary R.; Birrell, Geoff; Zhi Ming Fang; Hasnain, Homa; Lavin, Martin; Kearsley, John H.
1998-01-01
Purpose: Severe acute toxicity limits the effective use of radiotherapy in patients who are radiosensitive, and it is not usually possible to identify these radiohypersensitive (R-H) individuals before treatment commences. Five such R-H patients were detected over a 3-year period. We undertook this study to determine whether the severe acute radiohypersensitivity of these five individuals showed any correlation with cellular and molecular parameters known to be abnormal in radiosensitivity-related syndromes such as ataxia-telangiectasia (A-T). Methods and Materials: Lymphoblastoid cells were isolated from fresh blood from the 5 R-H individuals who had previously demonstrated clinical R-H at least 9 months prior to sampling. Lymphoblastoid cell lines (LCLs) were established to determine the extent of postradiation chromosomal aberrations, cell cycle delay, cell proliferation, and tumor suppressor p53 protein stabilization. The polymerase chain reaction (PCR) and protein truncation (PTT) assays were used to test for the possibility of mutations in the gene mutated in A-T, termed ATM. Results: LCLs derived from R-H subjects retained a significantly higher degree of radiation-induced chromosomal aberrations when compared to normal control LCLs. p53 stabilization by ionizing radiation appeared normal in all but one R-H subject. There was no evidence of A-T gene truncation mutations in any of the R-H subjects tested. Conclusions: All R-H subjects in this study had their cellular radiosensitivity confirmed by the chromosomal aberration assay. Delayed p53 stabilization at 4 hours postirradiation in one R-H subject suggested that different etiologies may apply in the radiohypersensitivity investigated in this study
The gravitational-wave memory from eccentric binaries
International Nuclear Information System (INIS)
Favata, Marc
2011-01-01
The nonlinear gravitational-wave memory causes a time-varying but nonoscillatory correction to the gravitational-wave polarizations. It arises from gravitational-waves that are sourced by gravitational-waves. Previous considerations of the nonlinear memory effect have focused on quasicircular binaries. Here I consider the nonlinear memory from Newtonian orbits with arbitrary eccentricity. Expressions for the waveform polarizations and spin-weighted spherical-harmonic modes are derived for elliptic, hyperbolic, parabolic, and radial orbits. In the hyperbolic, parabolic, and radial cases the nonlinear memory provides a 2.5 post-Newtonian (PN) correction to the leading-order waveforms. This is in contrast to the elliptical and quasicircular cases, where the nonlinear memory corrects the waveform at leading (0PN) order. This difference in PN order arises from the fact that the memory builds up over a short ''scattering'' time scale in the hyperbolic case, as opposed to a much longer radiation-reaction time scale in the elliptical case. The nonlinear memory corrections presented here complete our knowledge of the leading-order (Peters-Mathews) waveforms for elliptical orbits. These calculations are also relevant for binaries with quasicircular orbits in the present epoch which had, in the past, large eccentricities. Because the nonlinear memory depends sensitively on the past evolution of a binary, I discuss the effect of this early-time eccentricity on the value of the late-time memory in nearly circularized binaries. I also discuss the observability of large ''memory jumps'' in a binary's past that could arise from its formation in a capture process. Lastly, I provide estimates of the signal-to-noise ratio of the linear and nonlinear memories from hyperbolic and parabolic binaries.
Hayat, T.; Shah, Faisal; Alsaedi, A.; Hussain, Zakir
The present analysis aims to report the consequences of nonlinear radiation, convective condition and heterogeneous-homogeneous reactions in Darcy-Forchheimer flow over a non-linear stretching sheet with variable thickness. Non-uniform magnetic field and nonuniform heat generation/absorption are accounted. The governing boundary layer partial differential equations are converted into a system of nonlinear ordinary differential equations. The computations are organized and the effects of physical variables such as thickness parameter, power index, Hartman number, inertia and porous parameters, radiation parameter, Biot number, Prandtl number, ratio parameter, heat generation parameter and homogeneous-heterogeneous reaction parameter are investigated. The variations of skin friction coefficient and Nusselt number for different interesting variables are plotted and discussed. It is noticed that Biot number and heat generation variable lead to enhance the temperature distribution. The solutal boundary layer thickness decreases for larger homogeneous variable while reverse trend is seen for heterogeneous reaction.
International Nuclear Information System (INIS)
Puchta, H.
1980-01-01
The present thesis deals with the spectroscopy of the gamma radiation from the reaction fragments after binary reactions in the systems 16 O + 27 Al, 48 Ti, and 58 Ni at incident energies from 90 to 100 MeV, i.e. far above the Coulomb threshold. ΔE-E telescopes, which were located at 35 0 to the beam direction, detected the projectile-like fragments and defined the reaction channel and the scattering plane. In coincidence to this the gamma quanta in a 120-cm 3 -Ge(Li)-diode and a 27 x 33-cm-NaI-spectrometer were observed. The gamma spectra are equal to those observed hitherto in fusion reactions except for the high energetic gamma lines from the ejectiles, which are raised from the gamma continuum of the heavy fragments. From the spectroscoped gamma radiation for the light as for the heavy fragments the excitation energy, the value of the fragment angular momentum, as well as the occupation of the magnetic sublevels could be determined. The hard projectile 16 O transfers the dissipated energy and the angular momentum transferred by the spin of the fragments nearly completely into the residue nucleus. The probability for the observation of a ground state transition in one of the heavy fragments extends to (0.85 +- 0.10) per carbon ejectile in the system 16 O + 48 Ti. The residue nucleus distribution corresponds to that expected by the statistical model from the decay of the compound-nucleus 52 Cr belonging to the ejectile 12 C, the excitation energy of which corresponds to the reaction Q-value. (orig./HSI) [de
Theory of gravitational interactions
Gasperini, Maurizio
2013-01-01
This reference textbook is an up-to-date and self-contained introduction to the theory of gravitational interactions. The first part of the book follows the traditional presentation of general relativity as a geometric theory of the macroscopic gravitational field. A second, advanced part then discusses the deep analogies (and differences) between a geometric theory of gravity and the gauge theories of the other fundamental interactions. This fills a gap which is present in the context of the traditional approach to general relativity, and which usually makes students puzzled about the role of gravity. The necessary notions of differential geometry are reduced to the minimum, leaving more room for those aspects of gravitational physics of current phenomenological and theoretical interest, such as the properties of gravitational waves, the gravitational interactions of spinors, and the supersymmetric and higher-dimensional generalization of the Einstein equations. Theory of Gravitational Interactions will be o...
Hawking radiation of a high-dimensional rotating black hole
Energy Technology Data Exchange (ETDEWEB)
Zhao, Ren; Zhang, Lichun; Li, Huaifan; Wu, Yueqin [Shanxi Datong University, Institute of Theoretical Physics, Department of Physics, Datong (China)
2010-01-15
We extend the classical Damour-Ruffini method and discuss Hawking radiation spectrum of high-dimensional rotating black hole using Tortoise coordinate transformation defined by taking the reaction of the radiation to the spacetime into consideration. Under the condition that the energy and angular momentum are conservative, taking self-gravitation action into account, we derive Hawking radiation spectrums which satisfy unitary principle in quantum mechanics. It is shown that the process that the black hole radiates particles with energy {omega} is a continuous tunneling process. We provide a theoretical basis for further studying the physical mechanism of black-hole radiation. (orig.)
CERN. Geneva
2006-01-01
Gravitational wave astronomy is expected to become an observational field within the next decade. First direct detection of gravitational waves is possible with existing terrestrial-based detectors, and highly probable with proposed upgrades. In this three-part lecture series, we give an overview of the field, including material on gravitional wave sources, detection methods, some details of interferometric detectors, data analysis methods, and current results from observational data-taking runs of the LIGO and GEO projects.
CERN. Geneva HR-RFA
2006-01-01
We will present a brief introduction to the physics of gravitational waves and their properties. We will review potential astrophysical sources of gravitational waves, and the physics and astrophysics that can be learned from their study. We will survey the techniques and technologies for detecting gravitational waves for the first time, including bar detectors and broadband interferometers, and give a brief status report on the international search effort.
Hoffmann, William F
1964-01-01
Remarks on the observational basis of general relativity ; Riemannian geometry ; gravitation as geometry ; gravitational waves ; Mach's principle and experiments on mass anisotropy ; the many faces of Mach ; the significance for the solar system of time-varying gravitation ; relativity principles and the role of coordinates in physics ; the superdense star and the critical nucleon number ; gravitation and light ; possible effects on the solar system of φ waves if they exist ; the Lyttleton-Bondi universe and charge equality ; quantization of general relativity ; Mach's principle as boundary condition for Einstein's equations.
International Nuclear Information System (INIS)
Ridgely, Charles T
2011-01-01
When two gravitating bodies reside in a material medium, Newton's law of universal gravitation must be modified to account for the presence of the medium. A modified expression of Newton's law is known in the literature, but lacks a clear connection with existing gravitational theory. Newton's law in the presence of a homogeneous material medium is herein derived on the basis of classical, Newtonian gravitational theory and by a general relativistic use of Archimedes' principle. It is envisioned that the techniques presented herein will be most useful to graduate students and those undergraduate students having prior experience with vector analysis and potential theory.
Directory of Open Access Journals (Sweden)
T. Hayat
Full Text Available The present analysis aims to report the consequences of nonlinear radiation, convective condition and heterogeneous-homogeneous reactions in Darcy-Forchheimer flow over a non-linear stretching sheet with variable thickness. Non-uniform magnetic field and nonuniform heat generation/absorption are accounted. The governing boundary layer partial differential equations are converted into a system of nonlinear ordinary differential equations. The computations are organized and the effects of physical variables such as thickness parameter, power index, Hartman number, inertia and porous parameters, radiation parameter, Biot number, Prandtl number, ratio parameter, heat generation parameter and homogeneous-heterogeneous reaction parameter are investigated. The variations of skin friction coefficient and Nusselt number for different interesting variables are plotted and discussed. It is noticed that Biot number and heat generation variable lead to enhance the temperature distribution. The solutal boundary layer thickness decreases for larger homogeneous variable while reverse trend is seen for heterogeneous reaction. Keywords: Variable sheet thickness, Darcy-Forchheimer flow, Homogeneous-heterogeneous reactions, Power-law surface velocity, Convective condition, Heat generation/absorption, Nonlinear radiation
Zalesskaya, G. A.; Ulashchik, V. S.; Mit'kovskaya, N. P.; Kuchinskii, A. V.; Laskina, O. V.
2008-05-01
We have used the absorption spectra of whole blood, erythrocytes, and plasma to study photochemical reactions initiated by exposure of blood in vivo to UV radiation (UV irradiation) in the UV-visible and IR regions of the spectrum. We have established that when blood is exposed to therapeutic doses of UV radiation (0.5 J/cm2), the absorption of blood proteins decreases as monitored using the UV absorption and luminescence bands of the proteins; photochemical reactions are initiated in the protein and heme components of the hemoglobin. For the studied doses, the reversible reaction of photodissociation of hemoglobin complexes with oxygen is one of the most likely primary reactions initiated by UV irradiation of blood. We conclude that changes in the position and relative intensities of the IR absorption bands of the peptide groups (stretching and bending vibrations of NH, CN, and CO bonds) may be due to conformational transitions in the blood protein macromolecules, induced with a change in the intermolecular hydrogen bonds on absorption of the UV radiation by the blood. The changes in the absorption spectra of blood initiated by UV irradiation are compared with the results of laboratory blood analyses.
Detecting high-frequency gravitational waves with optically levitated sensors.
Arvanitaki, Asimina; Geraci, Andrew A
2013-02-15
We propose a tunable resonant sensor to detect gravitational waves in the frequency range of 50-300 kHz using optically trapped and cooled dielectric microspheres or microdisks. The technique we describe can exceed the sensitivity of laser-based gravitational wave observatories in this frequency range, using an instrument of only a few percent of their size. Such a device extends the search volume for gravitational wave sources above 100 kHz by 1 to 3 orders of magnitude, and could detect monochromatic gravitational radiation from the annihilation of QCD axions in the cloud they form around stellar mass black holes within our galaxy due to the superradiance effect.
Ruan, Ping; Yong, Junguang; Shen, Hongtao; Zheng, Xianrong
2012-12-01
Multiple state-of-the-art techniques, such as multi-dimensional micro-imaging, fast multi-channel micro-spetrophotometry, and dynamic micro-imaging analysis, were used to dynamically investigate various effects of cell under the 900 MHz electromagnetic radiation. Cell changes in shape, size, and parameters of Hb absorption spectrum under different power density electromagnetic waves radiation were presented in this article. Experimental results indicated that the isolated human red blood cells (RBCs) do not have obviously real-time responses to the ultra-low density (15 μW/cm(2), 31 μW/cm(2)) electromagnetic wave radiation when the radiation time is not more than 30 min; however, the cells do have significant reactions in shape, size, and the like, to the electromagnetic waves radiation with power densities of 1 mW/cm(2) and 5 mW/cm(2). The data also reveal the possible influences and statistical relationships among living human cell functions, radiation amount, and exposure time with high-frequency electromagnetic waves. The results of this study may be significant on protection of human being and other living organisms against possible radiation affections of the high-frequency electromagnetic waves.
Gravitational reheating in quintessential inflation
International Nuclear Information System (INIS)
Chun, E.J.; Zaballa, I.; Scopel, S.
2009-01-01
We provide a detailed study of gravitational reheating in quintessential inflation generalizing previous analyses only available for the standard case when inflation is followed by an era dominated by the energy density of radiation. Quintessential inflation assumes a common origin for inflation and the dark energy of the Universe. In this scenario reheating can occur through gravitational particle production during the inflation-kination transition. We calculate numerically the amount of the radiation energy density, and determine the temperature T * at which radiation starts dominating over kination. The value of T * is controlled by the Hubble parameter H 0 during inflation and the transition time Δt, scaling as H 0 2 [ln(1/H 0 Δt)] 3/4 for H 0 Δt 0 2 (H 0 Δt) −c for H 0 Δt >> 1. The model-dependent parameter c is found to be around 0.5 in two different parameterizations for the transition between inflation and kination
International Nuclear Information System (INIS)
Shubin, V.M.; Litver, B.Ya.; Zykova, I.A.
1978-01-01
Some factors of nonspecific bodily protection (bactericidal capacity, complement, lysozyme, beta lysins of blood serum) are analyzed in gamma defectoscopists and in workers exposed to occupational factors of nonradiation nature. A number of alterations in immunity indices in persons exposed to combined radiation and nonradiation factors (stimulation of beta lysins, increased levels of antitissue antibodies, etc.) had has been revealed. These alterations appear to have resulted from the potentiation of the effects from ionizing radiation and nonradiation nature factors
Energy Technology Data Exchange (ETDEWEB)
Yuan, Yajie; Nalewajko, Krzysztof; Zrake, Jonathan; East, William E.; Blandford, Roger D. [Kavli Institute for Particle Astrophysics and Cosmology, SLAC National Accelerator Laboratory, Stanford University, 2575 Sand Hill Road M/S 29, Menlo Park, CA 94025 (United States)
2016-09-10
Many powerful and variable gamma-ray sources, including pulsar wind nebulae, active galactic nuclei and gamma-ray bursts, seem capable of accelerating particles to gamma-ray emitting energies efficiently over very short timescales. These are likely due to the rapid dissipation of electromagnetic energy in a highly magnetized, relativistic plasma. In order to understand the generic features of such processes, we have investigated simple models based on the relaxation of unstable force-free magnetostatic equilibria. In this work, we make the connection between the corresponding plasma dynamics and the expected radiation signal, using 2D particle-in-cell simulations that self-consistently include synchrotron radiation reactions. We focus on the lowest order unstable force-free equilibrium in a 2D periodic box. We find that rapid variability, with modest apparent radiation efficiency as perceived by a fixed observer, can be produced during the evolution of the instability. The “flares” are accompanied by an increased polarization degree in the high energy band, with rapid variation in the polarization angle. Furthermore, the separation between the acceleration sites and the synchrotron radiation sites for the highest energy particles facilitates acceleration beyond the synchrotron radiation reaction limit. We also discuss the dynamical consequences of the radiation reaction, and some astrophysical applications of this model. Our current simulations with numerically tractable parameters are not yet able to reproduce the most dramatic gamma-ray flares, e.g., from the Crab Nebula. Higher magnetization studies are promising and will be carried out in the future.
The gravitational wave symphony of the Universe
Indian Academy of Sciences (India)
predictions of general relativity that have so far eluded all efforts. We will begin by discussing the ... tially sensitive to the intensity of radiation and build up the signal-to-noise ratio (SNR) by incoherent superposition of ..... Future detectors may give us clues on the equation of state of dense nuclear matter of gravitationally ...
Gravitational instability in isotropic MHD plasma waves
Indian Academy of Sciences (India)
Alemayehu Mengesha Cherkos
2018-03-06
Mar 6, 2018 ... Abstract. The effect of compressive viscosity, thermal conductivity and radiative heat-loss functions on the gravitational instability of infinitely extended homogeneous MHD plasma has been investigated. By taking in account these parameters we developed the six-order dispersion relation for ...
Kinetics of the radiation-induced exchange reactions of H2, D2, and T2: a review
International Nuclear Information System (INIS)
Pyper, J.W.; Briggs, C.K.
1978-01-01
Mixtures of H 2 --T 2 or D 2 --T 2 will exchange to produce HT or DT due to catalysis by the tritium β particle. The kinetics of the reaction D 2 + T 2 = 2DT may play an important role in designing liquid or solid targets of D 2 --DT--T 2 for implosion fusion, and distillation schemes for tritium cleanup systems in fusion reactors. Accordingly, we have critically reviewed the literature for information on the kinetics and mechanism of radiation-induced self-exchange reactions among the hydrogens. We found data for the reaction H 2 + T 2 = 2HT in the gas phase and developed a scheme based on these data to predict the halftime to equilibrium for any gaseous H 2 + T 2 mixture at ambient temperature with an accuracy of +-10 percent. The overall order of the H 2 + T 2 = 2HT reaction is 1.6 based on an initial rate treatment of the data. The most probable mechanism for radiation-induced self-exchange reaction is an ion-molecule chain mechanism
Superluminal velocity of photons in a gravitational background
International Nuclear Information System (INIS)
Khriplovich, I.B.
1994-01-01
The influence of radiative corrections on the photon propagation in a gravitational background is investigated without the low-frequency assumption. The conclusion is made in this way that the velocity of light can exceed unity. 7 refs
Indian Academy of Sciences (India)
We present a broad overview of the emerging field of gravitational-wave astronomy. Although gravitational waves have not been directly de- tected yet, the worldwide scientific community is engaged in an exciting search for these elusive waves. Once detected, they will open up a new observational window to the Universe.
Electromagnetism and Gravitation
Dalton, Kenneth
1995-01-01
The classical concept of "mass density" is not fundamental to the quantum theory of matter. Therefore, mass density cannot be the source of gravitation. Here, we treat electromagnetic energy, momentum, and stress as its source. The resulting theory predicts that the gravitational potential near any charged elementary particle is many orders of magnitude greater than the Newtonian value.
Gravitationally coupled electroweak monopole
Energy Technology Data Exchange (ETDEWEB)
Cho, Y.M., E-mail: ymcho7@konkuk.ac.kr [Administration Building 310-4, Konkuk University, Seoul 143-701 (Korea, Republic of); School of Physics and Astronomy, Seoul National University, Seoul 151-742 (Korea, Republic of); Kimm, Kyoungtae [Faculty of Liberal Education, Seoul National University, Seoul 151-747 (Korea, Republic of); Yoon, J.H. [Department of Physics, College of Natural Sciences, Konkuk University, Seoul 143-701 (Korea, Republic of)
2016-10-10
We present a family of gravitationally coupled electroweak monopole solutions in Einstein–Weinberg–Salam theory. Our result confirms the existence of globally regular gravitating electroweak monopole which changes to the magnetically charged black hole as the Higgs vacuum value approaches to the Planck scale. Moreover, our solutions could provide a more accurate description of the monopole stars and magnetically charged black holes.
Those Elusive Gravitational Waves
MOSAIC, 1976
1976-01-01
The presence of gravitational waves was predicted by Einstein in his theory of General Relativity. Since then, scientists have been attempting to develop a detector sensitive enough to measure these cosmic signals. Once the presence of gravitational waves is confirmed, scientists can directly study star interiors, galaxy cores, or quasars. (MA)
Directory of Open Access Journals (Sweden)
P. Bala Anki Reddy
2016-06-01
Full Text Available This article investigates the theoretical study of the steady two-dimensional MHD convective boundary layer flow of a Casson fluid over an exponentially inclined permeable stretching surface in the presence of thermal radiation and chemical reaction. The stretching velocity, wall temperature and wall concentration are assumed to vary according to specific exponential form. Velocity slip, thermal slip, solutal slip, thermal radiation, chemical reaction and suction/blowing are taken into account. The proposed model considers both assisting and opposing buoyant flows. The non-linear partial differential equations of the governing flow are converted into a system of coupled non-linear ordinary differential equations by using the similarity transformations, which are then solved numerically by shooting method with fourth order Runge–Kutta scheme. The numerical solutions for pertinent parameters on the dimensionless velocity, temperature, concentration, skin friction coefficient, the heat transfer coefficient and the Sherwood number are illustrated in tabular form and are discussed graphically.
Directory of Open Access Journals (Sweden)
Usman Halima
2016-01-01
Full Text Available The aim of the present study is to investigate the effect of flow parameters on the free convection and mass transfer of an unsteady magnetohydrodynamic flow of an electrically conducting, viscous and incompressible fluid past an infinite vertical porous plate in the presence of variable suction. The thermal radiation and chemical reaction effects are assumed to exist within the channel. Non dimensional partial differential equations of governing equations of flow are solved numerically using Crank Nicolson finite difference method. The skin friction, heat and mass transfer rates as well as the effects of various parameters on velocity, temperature and concentration profiles are analyzed. The signifiant results from this study are that an increase in the values of radiation parameter and chemical reaction parameter causes a reduction in the velocity, temperature and concentration.
The effect of chain flexibility and chain mobility on radiation crosslinking reactions of polymers
International Nuclear Information System (INIS)
Sun Jiazhen
2003-01-01
Flexibility of polymer chains is an important factor to effects of radiation crosslinking of the polymer. Polymers with flexible chains are easier to be crosslinked, with lower dose of gelation, than polymers with more rigid chains. And it is known that most polymers with abnormal rigidity can be radiation-crosslinked only at high temperatures when the molecular chains get enough mobility. The flexibility of polymer chains also influences the relationship between degree of degradation and radiation dose. A chain flexibility factor β has been introduced to modify the Charlesby-Pinner equation of sol-fraction and radiation dose. The new relationship equation applies to a wider range of polymers in radiation crosslinking. Studies also show that for flexible polymers with lower T g and molecular internal rotating factor, mechanism of radiation crosslinking is mainly in H type, whereas for rigid polymers with higher T g and molecular internal rotating factor, mechanism of radiation crosslinking is mainly in T type
Weak radiative decay Λ→nγ and the radiative capture reaction K-p→Σ(1385)γ
International Nuclear Information System (INIS)
Larson, K.D.; Noble, A.J.; Bassalleck, B.; Burkhardt, H.; Fickinger, W.J.; Hall, J.R.; Hallin, A.L.; Hasinoff, M.D.; Horvath, D.; Jones, P.G.; Lowe, J.; McIntyre, E.K.; Measday, D.F.; Miller, J.P.; Roberts, B.L.; Robinson, D.K.; Sakitt, M.; Salomon, M.; Stanislaus, S.; Waltham, C.E.; Warner, T.M.; Whitehouse, D.A.; Wolfe, D.M.
1993-01-01
The branching ratio for the Λ weak radiative decay Λ→nγ has been measured. Three statistically independent results from the same experiment (Brookhaven E811) are reported here. They are combined with a previously published measurement, also from Brookhaven E811, to yield a result of (Λ→nγ)/(Λ→anything)=(1.75±0.15)x10 -3 , based on 1800 events after background subtraction. This represents a factor of 75 increase in statistics over the previous world total. A comparison with recent theoretical papers shows that no existing model provides a completely satisfactory description of all data on weak radiative decays. A search is also reported for the radiative capture process K - p→Σ(1385)γ at rest. No signal was observed and an upper limit on the branching ratio of [K - p→Σ(1385)γ]/[K - p→anything] -4 (90% C.L.) was determined
A gravitational entropy proposal
International Nuclear Information System (INIS)
Clifton, Timothy; Tavakol, Reza; Ellis, George F R
2013-01-01
We propose a thermodynamically motivated measure of gravitational entropy based on the Bel–Robinson tensor, which has a natural interpretation as the effective super-energy–momentum tensor of free gravitational fields. The specific form of this measure differs depending on whether the gravitational field is Coulomb-like or wave-like, and reduces to the Bekenstein–Hawking value when integrated over the interior of a Schwarzschild black hole. For scalar perturbations of a Robertson–Walker geometry we find that the entropy goes like the Hubble weighted anisotropy of the gravitational field, and therefore increases as structure formation occurs. This is in keeping with our expectations for the behaviour of gravitational entropy in cosmology, and provides a thermodynamically motivated arrow of time for cosmological solutions of Einstein’s field equations. It is also in keeping with Penrose’s Weyl curvature hypothesis. (paper)
Directory of Open Access Journals (Sweden)
Hamed Rezaeejam
2015-01-01
Full Text Available Understanding of cellular responses to ionizing radiation (IR is essential for the development of predictive markers useful for assessing human exposure. Biological markers of exposure to IR in human populations are of great interest for assessing normal tissue injury in radiation oncology and for biodosimetry in nuclear incidents and accidental radiation exposures. Traditional radiation exposure biomarkers based on cytogenetic assays (biodosimetry, are time-consuming and do not provide results fast enough and requires highly trained personnel for scoring. Hence, the development of rapid biodosimetry methods is one of the highest priorities. Exposure of cells to IR activates multiple signal transduction pathways, which result in complex alterations in gene-expression. Real-time quantitative reverse transcription-polymerase chain reaction (RT-qPCR has become the benchmark for the detection and quantification of RNA targets and is being utilized increasingly in monitoring the specific genes with more accurately and sensitively. This review evaluates the RT-qPCR as a biodosimetry method and we investigated the papers from 2000 up to now, which identified the genes-expression related the DNA repair, cell cycle checkpoint, and apoptosis induced by ionization radiation in peripheral blood and determined as biodosimeters. In conclusion, it could be say that RT-qPCR technique for determining the specific genes as biodosimeters could be a fully quantitative reliable and sensitive method. Furthermore, the results of the current review will help the researchers to recognize the most expressed genes induced by ionization radiation.
Directory of Open Access Journals (Sweden)
J. M. Cole
2018-02-01
Full Text Available The dynamics of energetic particles in strong electromagnetic fields can be heavily influenced by the energy loss arising from the emission of radiation during acceleration, known as radiation reaction. When interacting with a high-energy electron beam, today’s lasers are sufficiently intense to explore the transition between the classical and quantum radiation reaction regimes. We present evidence of radiation reaction in the collision of an ultrarelativistic electron beam generated by laser-wakefield acceleration (ϵ>500 MeV with an intense laser pulse (a_{0}>10. We measure an energy loss in the postcollision electron spectrum that is correlated with the detected signal of hard photons (γ rays, consistent with a quantum description of radiation reaction. The generated γ rays have the highest energies yet reported from an all-optical inverse Compton scattering scheme, with critical energy ϵ_{crit}>30 MeV.
Cole, J. M.; Behm, K. T.; Gerstmayr, E.; Blackburn, T. G.; Wood, J. C.; Baird, C. D.; Duff, M. J.; Harvey, C.; Ilderton, A.; Joglekar, A. S.; Krushelnick, K.; Kuschel, S.; Marklund, M.; McKenna, P.; Murphy, C. D.; Poder, K.; Ridgers, C. P.; Samarin, G. M.; Sarri, G.; Symes, D. R.; Thomas, A. G. R.; Warwick, J.; Zepf, M.; Najmudin, Z.; Mangles, S. P. D.
2018-02-01
The dynamics of energetic particles in strong electromagnetic fields can be heavily influenced by the energy loss arising from the emission of radiation during acceleration, known as radiation reaction. When interacting with a high-energy electron beam, today's lasers are sufficiently intense to explore the transition between the classical and quantum radiation reaction regimes. We present evidence of radiation reaction in the collision of an ultrarelativistic electron beam generated by laser-wakefield acceleration (ɛ >500 MeV ) with an intense laser pulse (a0>10 ). We measure an energy loss in the postcollision electron spectrum that is correlated with the detected signal of hard photons (γ rays), consistent with a quantum description of radiation reaction. The generated γ rays have the highest energies yet reported from an all-optical inverse Compton scattering scheme, with critical energy ɛcrit>30 MeV .
Directory of Open Access Journals (Sweden)
Yahaya Shagaiya Daniel
2017-07-01
Full Text Available The unsteady mixed convection flow of electrical conducting nanofluid and heat transfer due to a permeable linear stretching sheet with the combined effects of an electric field, magnetic field, thermal radiation, viscous dissipation, and chemical reaction have been investigated. A similarity transformation is used to transform the constitutive equations into a system of nonlinear ordinary differential equations. The resultant system of equations is then solved numerically using implicit finite difference method. The velocity, temperature, concentration, entropy generation, and Bejan number are obtained with the dependence of different emerging parameters examined. It is noticed that the velocity is more sensible with high values of electric field and diminished with a magnetic field. The radiative heat transfer and viscous dissipation enhance the heat conduction in the system. Moreover, the impact of mixed convection parameter and Buoyancy ratio parameter on Bejan number profile has reverse effects. A chemical reaction reduced the nanoparticle concentration for higher values. Keywords: Entropy generation, MHD nanofluid, Thermal radiation, Bejan number, Chemical reaction, Viscous dissipation
International Nuclear Information System (INIS)
Hu Yueran; Liu Yajie; Wu Chaoquan; Chen Chuping; Wang Yaobang; Li Xianming; Zhong Heli; Wu Dong
2005-01-01
Objective: To study the effect of traditional Chinese herbal medicine-Shenlingbaishusan in preventing and treating colon and rectum radiation reactions. Methods: Ninty-six patients with female pelvic tumor (cervical and endometrial cancer) were randomly divided into two groups: radiotherapy (RT) alone group (47 patients) and RT+ Shenlingbaishusan group(49 patients). RT in both groups, being similar, 1.8-2.0 Gy/per fraction, five fractions/per week, to a total dose of 48-50 Gy/5-6 weeks to the whole pelvis by external irradiation plus brachytherapy: to a total dose of 42-49 Gy/6-7 weeks for cervix carcinoma, and 10-15 Gy/1-2 weeks for endometrial cancer. Results: All patients have been were followed for more than one year after radiotherapy. The incidence of acute and late colon and rectum radiation reactions. was:15 patients in the RT + Shenlingbaishusan group: grade I10 patients, Grade II3 patients, grade III2 patients incontrast to the 47 patients in the RT group: grade I 24 patients, grade II 14 patients and grade III 9 patients (P<0.01). Conclusions: The traditional Chinese medicine-Shenlingbaishusan is effective in preventing and treating colon and rectum radiation reactions during pelvic tumor radiotherapy.(authors)
Upper limits on a stochastic background of gravitational waves.
Abbott, B; Abbott, R; Adhikari, R; Agresti, J; Ajith, P; Allen, B; Allen, J; Amin, R; Anderson, S B; Anderson, W G; Araya, M; Armandula, H; Ashley, M; Aulbert, C; Babak, S; Balasubramanian, R; Ballmer, S; Barish, B C; Barker, C; Barker, D; Barton, M A; Bayer, K; Belczynski, K; Betzwieser, J; Bhawal, B; Bilenko, I A; Billingsley, G; Black, E; Blackburn, K; Blackburn, L; Bland, B; Bogue, L; Bork, R; Bose, S; Brady, P R; Braginsky, V B; Brau, J E; Brown, D A; Buonanno, A; Busby, D; Butler, W E; Cadonati, L; Cagnoli, G; Camp, J B; Cannizzo, J; Cannon, K; Cardenas, L; Carter, K; Casey, M M; Charlton, P; Chatterji, S; Chen, Y; Chin, D; Christensen, N; Cokelaer, T; Colacino, C N; Coldwell, R; Cook, D; Corbitt, T; Coyne, D; Creighton, J D E; Creighton, T D; Dalrymple, J; D'Ambrosio, E; Danzmann, K; Davies, G; DeBra, D; Dergachev, V; Desai, S; DeSalvo, R; Dhurandar, S; Díaz, M; Di Credico, A; Drever, R W P; Dupuis, R J; Ehrens, P; Etzel, T; Evans, M; Evans, T; Fairhurst, S; Finn, L S; Franzen, K Y; Frey, R E; Fritschel, P; Frolov, V V; Fyffe, M; Ganezer, K S; Garofoli, J; Gholami, I; Giaime, J A; Goda, K; Goggin, L; González, G; Gray, C; Gretarsson, A M; Grimmett, D; Grote, H; Grunewald, S; Guenther, M; Gustafson, R; Hamilton, W O; Hanna, C; Hanson, J; Hardham, C; Harry, G; Heefner, J; Heng, I S; Hewitson, M; Hindman, N; Hoang, P; Hough, J; Hua, W; Ito, M; Itoh, Y; Ivanov, A; Johnson, B; Johnson, W W; Jones, D I; Jones, G; Jones, L; Kalogera, V; Katsavounidis, E; Kawabe, K; Kawamura, S; Kells, W; Khan, A; Kim, C; King, P; Klimenko, S; Koranda, S; Kozak, D; Krishnan, B; Landry, M; Lantz, B; Lazzarini, A; Lei, M; Leonor, I; Libbrecht, K; Lindquist, P; Liu, S; Lormand, M; Lubinski, M; Lück, H; Luna, M; Machenschalk, B; MacInnis, M; Mageswaran, M; Mailand, K; Malec, M; Mandic, V; Marka, S; Maros, E; Mason, K; Matone, L; Mavalvala, N; McCarthy, R; McClelland, D E; McHugh, M; McNabb, J W C; Melissinos, A; Mendell, G; Mercer, R A; Meshkov, S; Messaritaki, E; Messenger, C; Mikhailov, E; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Miyakawa, O; Mohanty, S; Moreno, G; Mossavi, K; Mueller, G; Mukherjee, S; Myers, E; Myers, J; Nash, T; Nocera, F; Noel, J S; O'Reilly, B; O'Shaughnessy, R; Ottaway, D J; Overmier, H; Owen, B J; Pan, Y; Papa, M A; Parameshwaraiah, V; Parameswariah, C; Pedraza, M; Penn, S; Pitkin, M; Prix, R; Quetschke, V; Raab, F; Radkins, H; Rahkola, R; Rakhmanov, M; Rawlins, K; Ray-Majumder, S; Re, V; Regimbau, T; Reitze, D H; Riesen, R; Riles, K; Rivera, B; Robertson, D I; Robertson, N A; Robinson, C; Roddy, S; Rodriguez, A; Rollins, J; Romano, J D; Romie, J; Rowan, S; Rüdiger, A; Ruet, L; Russell, P; Ryan, K; Sandberg, V; Sanders, G H; Sannibale, V; Sarin, P; Sathyaprakash, B S; Saulson, P R; Savage, R; Sazonov, A; Schilling, R; Schofield, R; Schutz, B F; Schwinberg, P; Scott, S M; Seader, S E; Searle, A C; Sears, B; Sellers, D; Sengupta, A S; Shawhan, P; Shoemaker, D H; Sibley, A; Siemens, X; Sigg, D; Sintes, A M; Smith, J; Smith, M R; Spjeld, O; Strain, K A; Strom, D M; Stuver, A; Summerscales, T; Sung, M; Sutton, P J; Tanner, D B; Taylor, R; Thorne, K A; Thorne, K S; Tokmakov, K V; Torres, C; Torrie, C; Traylor, G; Tyler, W; Ugolini, D; Ungarelli, C; Vallisneri, M; van Putten, M; Vass, S; Vecchio, A; Veitch, J; Vorvick, C; Vyachanin, S P; Wallace, L; Ward, H; Ward, R; Watts, K; Webber, D; Weiland, U; Weinstein, A; Weiss, R; Wen, S; Wette, K; Whelan, J T; Whitcomb, S E; Whiting, B F; Wiley, S; Wilkinson, C; Willems, P A; Willke, B; Wilson, A; Winkler, W; Wise, S; Wiseman, A G; Woan, G; Woods, D; Wooley, R; Worden, J; Yakushin, I; Yamamoto, H; Yoshida, S; Zanolin, M; Zhang, L; Zotov, N; Zucker, M; Zweizig, J
2005-11-25
The Laser Interferometer Gravitational-Wave Observatory has performed a third science run with much improved sensitivities of all three interferometers. We present an analysis of approximately 200 hours of data acquired during this run, used to search for a stochastic background of gravitational radiation. We place upper bounds on the energy density stored as gravitational radiation for three different spectral power laws. For the flat spectrum, our limit of omega0 < 8.4 x 10(-4) in the 69-156 Hz band is approximately 10(5) times lower than the previous result in this frequency range.
From the self-force problem to the radiation reaction formula
International Nuclear Information System (INIS)
Mino, Yasushi
2005-01-01
We review recent theoretical progress in the so-called self-force problem of a general relativistic two-body system. Although a two-body system in Newtonian gravity is a very simple problem, some fundamental issues are involved in relativistic gravity. Besides, because of recent projects for gravitational wave detection, it has become possible to see those phenomena directly via gravitational waves, and the self-force problem becomes one of urgent and highly-motivated problems in general relativity. Roughly speaking, there are two approaches to investigate this problem; the so-called post-Newtonian approximation, and a black-hole perturbation. In this paper, we review theoretical progress in the self-force problem using a black-hole perturbation. Although the self-force problem seems to be just a problem to calculate a self-force, we discuss that the real problem is to define a gauge-invariant concept of a motion in a gauge-dependent metric perturbation
Directory of Open Access Journals (Sweden)
Magdalena Czerżyńska
2017-03-01
Full Text Available Due to painless nature and poorly specific symptoms, such as hoarseness or sore throat, head and neck cancers are usually diagnosed when the disease is locally advanced. A typical patient is older than 50 years. Low social awareness concerning the occurrence of these cancers and rare appointments with specialist physicians escalate the problem. As a result, patients usually seek medical advice when the disease is advanced and prognosis poor. The risk of these cancers increases by regular consumption of weak alcoholic beverages, cigarette smoking and infection with human papilloma virus. The head and neck location, which is a richly vascularised and innervated anatomic region, necessitates the application of highly specialised treatment, i.e. intensitymodulated radiation therapy. Radiation reactions can be divided into early (acute and late (chronic based on the time of occurrence. Early reactions include inflammation and fibrosis of the oral mucosa. Late reactions are more troublesome and persistent. They include: mandible necrosis or permanent impairment of salivary gland secretory function. The most common adverse effects of radiotherapy include mucositis. Patients irradiated for head and neck cancers usually suffer from persistent oral mucosa dryness that requires particular care and hygiene. Preventive measures in patients undergoing radiotherapy include: systematic plaque removal, using high-fluoride agents for oral hygiene, following a low-sugar diet and regular dental check-ups.
International Nuclear Information System (INIS)
Mashhoon, B.
1977-01-01
The general theory of tides is developed within the framework of Einstein's theory of gravitation. It is based on the concept of Fermi frame and the associated notion of tidal frame along an open curve in spacetime. Following the previous work of the author an approximate scheme for the evaluation of tidal gravitational radiation is presented which is valid for weak gravitational fields. The emission of gravitational radiation from a body in the field of a black hole is discussed, and for some cases of astrophysical interest estimates are given for the contributions of radiation due to center-of-mass motion, purely tidal deformation, and the interference between the center of mass and tidal motions
Inverting Gravitational Lenses
Newbury, P. R.; Spiteri, R. J.
2002-02-01
Gravitational lensing provides a powerful tool to study a number of fundamental questions in astrophysics. Fortuitously, one can begin to explore some non-trivial issues associated with this phenomenon without a lot of very sophisticated mathematics, making an elementary treatment of this topic tractable even to senior undergraduates. In this paper, we give a relatively self-contained outline of the basic concepts and mathematics behind gravitational lensing as a recent and exciting topic for courses in mathematical modeling or scientific computing. To this end, we have designed and made available some interactive software to aid in the simulation and inversion of gravitational lenses in a classroom setting.
International Nuclear Information System (INIS)
Tevikyan, R.V.
1986-01-01
This paper presents equations that describe particles with spins s = 0, 1/2, 1 completely and which also describe 2s + 2 limiting fields as E → ∞. It is shown that the ordinary Hilbert-Einstein action for the gravitation field must be augmented by the action for the Bose vacuum field. This means that one must introduce in the gravitational equations a cosmological term proportional to the square of the strength of the Bose vacuum field. It is shown that the theory of gravitation describes three realities: matter, field, and vacuum field. A new form of matter--the vacuum field--is introduced into field theory
Gravitational lensing and microlensing
Mollerach, Silvia
2002-01-01
This book provides a comprehensive and self-contained exposition of gravitational lensing phenomena. It presents the up-to-date status of gravitational lensing and microlensing, covering the cosmological applications of the observed lensing by galaxies, clusters and the large scale structures, as well as the microlensing searches in the Local Group and its applications to unveil the nature of the galactic dark matter, the search for planetary objects and the distribution of faint stars in our galaxy. Gravitational Lensing and Microlensing is pitched at the level of the graduate student interes
Extraction of gravitational waves in numerical relativity.
Bishop, Nigel T; Rezzolla, Luciano
2016-01-01
A numerical-relativity calculation yields in general a solution of the Einstein equations including also a radiative part, which is in practice computed in a region of finite extent. Since gravitational radiation is properly defined only at null infinity and in an appropriate coordinate system, the accurate estimation of the emitted gravitational waves represents an old and non-trivial problem in numerical relativity. A number of methods have been developed over the years to "extract" the radiative part of the solution from a numerical simulation and these include: quadrupole formulas, gauge-invariant metric perturbations, Weyl scalars, and characteristic extraction. We review and discuss each method, in terms of both its theoretical background as well as its implementation. Finally, we provide a brief comparison of the various methods in terms of their inherent advantages and disadvantages.
The present gravitational wave detection effort
International Nuclear Information System (INIS)
Riles, Keith
2010-01-01
Gravitational radiation offers a new non-electromagnetic window through which to observe the universe. The LIGO and Virgo Collaborations have completed a first joint data run with unprecedented sensitivities to gravitational waves. Results from searches in the data for a variety of astrophysical sources are presented. A second joint data run with improved detector sensitivities is underway, and soon major upgrades will be carried out to build Advanced LIGO and Advanced Virgo with expected improvements in event rates of more than 1000. In parallel there is a vigorous effort in the radio pulsar community to detect nHz gravitational waves via the timing residuals in an array of pulsars at different locations in the sky.
Gravitational waves from spinning compact binaries in hyperbolic orbits
De Vittori, Lorenzo; Gopakumar, Achamveedu; Gupta, Anuradha; Jetzer, Philippe
2014-12-01
Compact binaries in hyperbolic orbits are plausible gravitational-wave (GW) sources for the upcoming and planned GW observatories. We develop an efficient prescription to compute post-Newtonian (PN)-accurate ready-to-use GW polarization states for spinning compact binaries, influenced by the dominant-order spin-orbit interactions, in hyperbolic orbits. This is achieved by invoking the 1.5PN-accurate quasi-Keplerian parametrization for the radial sector of the orbital dynamics. We probe the influences of spins and the gravitational radiation reaction on h+ and h× during the hyperbolic passage. It turns out that both polarization states exhibit the memory effect for GWs from spinning compact binaries in hyperbolic orbits. In contrast, only the cross-polarization state exhibits the memory effect for GWs from nonspinning compact binaries. Additionally, we compute 1PN-accurate amplitude corrected GW polarization states for hyperbolic nonspinning compact binaries in a fully parametric manner and perform initial comparisons with the existing waveforms.
Energy Technology Data Exchange (ETDEWEB)
Gao, He; Cao, Zhoujian [Department of Astronomy, Beijing Normal University, Beijing 100875 (China); Zhang, Bing, E-mail: gaohe@bnu.edu.cn [Department of Physics and Astronomy, University of Nevada Las Vegas, NV 89154 (United States)
2017-08-01
Neutron stars may sustain a non-axisymmetric deformation due to magnetic distortion and are potential sources of continuous gravitational waves (GWs) for ground-based interferometric detectors. With decades of searches using available GW detectors, no evidence of a GW signal from any pulsar has been observed. Progressively stringent upper limits of ellipticity have been placed on Galactic pulsars. In this work, we use the ellipticity inferred from the putative millisecond magnetars in short gamma-ray bursts (SGRBs) to estimate their detectability by current and future GW detectors. For ∼1 ms magnetars inferred from the SGRB data, the detection horizon is ∼30 Mpc and ∼600 Mpc for the advanced LIGO (aLIGO) and Einstein Telescope (ET), respectively. Using the ellipticity of SGRB millisecond magnetars as calibration, we estimate the ellipticity and GW strain of Galactic pulsars and magnetars assuming that the ellipticity is magnetic-distortion-induced. We find that the results are consistent with the null detection results of Galactic pulsars and magnetars with the aLIGO O1. We further predict that the GW signals from these pulsars/magnetars may not be detectable by the currently designed aLIGO detector. The ET detector may be able to detect some relatively low-frequency signals (<50 Hz) from some of these pulsars. Limited by its design sensitivity, the eLISA detector seems to not be suitable for detecting the signals from Galactic pulsars and magnetars.
Computer simulation of radiation damage in NaCl using a kinetic rate reaction model
International Nuclear Information System (INIS)
Soppe, W.J.
1993-01-01
Sodium chloride and other alkali halides are known to be very susceptible to radiation damage in the halogen sublattice when exposed to ionizing radiation. The formation of radiation damage in NaCl has generated interest because of the relevance of this damage to the disposal of radioactive waste in rock salt formations. In order to estimate the long-term behaviour of a rock salt repository, an accurate theory describing the major processes of radiation damage in NaCl is required. The model presented in this paper is an extended version of the Jain-Lidiard model; its extensions comprise the effect of impurities and the colloid nucleation stage on the formation of radiation damage. The new model has been tested against various experimental data obtained from the literature and accounts for several well known aspects of radiation damage in alkali halides which were not covered by the original Jain-Lidiard model. The new model thus may be expected to provide more reliable predictions for the build-up of radiation damage in a rock salt nuclear waste repository. (Author)
Gravitational lensing of quasars
Eigenbrod, Alexander
2013-01-01
The universe, in all its richness, diversity and complexity, is populated by a myriad of intriguing celestial objects. Among the most exotic of them are gravitationally lensed quasars. A quasar is an extremely bright nucleus of a galaxy, and when such an object is gravitationally lensed, multiple images of the quasar are produced – this phenomenon of cosmic mirage can provide invaluable insights on burning questions, such as the nature of dark matter and dark energy. After presenting the basics of modern cosmology, the book describes active galactic nuclei, the theory of gravitational lensing, and presents a particular numerical technique to improve the resolution of astronomical data. The book then enters the heart of the subject with the description of important applications of gravitational lensing of quasars, such as the measurement of the famous Hubble constant, the determination of the dark matter distribution in galaxies, and the observation of the mysterious inner parts of quasars with much higher r...
Energy Technology Data Exchange (ETDEWEB)
Gudnason, Sven Bjarke [Institute of Modern Physics, Chinese Academy of Sciences,Lanzhou 730000 (China); Nitta, Muneto [Department of Physics, and Research and Education Center for Natural Sciences, Keio University,Hiyoshi 4-1-1, Yokohama, Kanagawa 223-8521 (Japan); Sawado, Nobuyuki [Department of Physics, Tokyo University of Science,Noda, Chiba 278-8510 (Japan)
2015-12-02
The BPS Skyrme model has many exact analytic solutions in flat space. We generalize the model to a curved space or spacetime and find that the solutions can only be BPS for a constant time-time component of the metric tensor. We find exact solutions on the curved spaces: a 3-sphere and a 3-hyperboloid; and we further find an analytic gravitating Skyrmion on the 3-sphere. For the case of a nontrivial time-time component of the metric, we suggest a potential for which we find analytic solutions on anti-de Sitter and de Sitter spacetimes in the limit of no gravitational backreaction. We take the gravitational coupling into account in numerical solutions and show that they are well approximated by the analytic solutions for weak gravitational coupling.
Gravitational waves: Stellar palaeontology
Mandel, Ilya; Farmer, Alison
2017-07-01
A third gravitational-wave signal has been detected with confidence, produced again by the merger of two black holes. The combined data from these detections help to reveal the histories of the stars that left these black holes behind.
Energy Technology Data Exchange (ETDEWEB)
Blank, David Andrew [Univ. of California, Berkeley, CA (United States)
1997-08-01
This dissertation describes the use of a new molecular beam apparatus designed to use tunable VUV synchrotron radiation for photoionization of the products from scattering experiments. The apparatus was built at the recently constructed Advanced Light Source at Lawrence Berkeley National Laboratory, a third generation 1-2 GeV synchrotron radiation source. The new apparatus is applied to investigations of the dynamics of unimolecular reactions, photodissociation experiments, and bimolecular reactions, crossed molecular beam experiments. The first chapter describes the new apparatus and the VUV radiation used for photoionization. This is followed by a number of examples of the many advantages provided by using VUV photoionization in comparison with the traditional technique of electron bombardment ionization. At the end of the chapter there is a discussion of the data analysis employed in these scattering experiments. The remaining four chapters are complete investigations of the dynamics of four chemical systems using the new apparatus and provide numerous additional examples of the advantages provided by VUV photoionizaiton of the products. Chapters 2-4 are photofragment translational spectroscopy studies of the photodissociation dynamics of dimethyl sulfoxide, acrylonitrile, and vinyl chloride following absorption at 193 mn. All of these systems have multiple dissociation channels and provide good examples of the ability of the new apparatus to unravel the complex UV photodissociation dynamics that can arise in small polyatomic molecules.
Stavroulakis N.
2008-01-01
The equations of gravitation together with the equations of electromagnetism in terms of the General Theory of Relativity allow to conceive an interdependence between the gravitational field and the electromagnetic field. However the technical difficulties of the relevant problems have precluded from expressing clearly this interdependence. Even the simple problem related to the field generated by a charged spherical mass is not correctly solved. In the p...
Directory of Open Access Journals (Sweden)
Stavroulakis N.
2008-04-01
Full Text Available The equations of gravitation together with the equations of electromagnetism in terms of the General Theory of Relativity allow to conceive an interdependence between the gravitational field and the electromagnetic field. However the technical difficulties of the relevant problems have precluded from expressing clearly this interdependence. Even the simple problem related to the field generated by a charged spherical mass is not correctly solved. In the present paper we reexamine from the outset this problem and propose a new solution.
Listening music of gravitation
International Nuclear Information System (INIS)
Anon.
2001-01-01
Achievements of precision experiments in Japan (TAMA project) and USA (LIGO Laboratory) in the field of registration of gravitation waves using interferometric gravitational wave detectors are described. Works of the GEO groups in Hannover (Germany) and Vigro (Italy) are noted. Interferometer operation in synchronization during 160 hours demonstrating viability of the technique and its reliability is recorded. Advances in the field of the data analysis with the aim of recording of cosmic signal from noise of the interferometer are noted [ru
Romero, Gustavo E.
2017-01-01
I discuss the recent claims made by Mario Bunge on the philosophical implications of the discovery of gravitational waves. I think that Bunge is right when he points out that the detection implies the materiality of spacetime, but I reject his identification of spacetime with the gravitational field. I show that Bunge's analysis of the spacetime inside a hollow sphere is defective, but this in no way affects his main claim.
The earth's gravitational field
Digital Repository Service at National Institute of Oceanography (India)
Ramprasad, T.
offset by this centrifugal force, reducing its weight. This effect is smallest at the poles, where the gravitational force and the centrifugal force are orthogonal, and largest at the equator. This effect on its own would result in a range of values... buoyancy force which reduces the apparent strength of gravity (as measured by an object's weight). The magnitude of the effect depends on air density (and hence air pressure). The gravitational effects of the Moon and the Sun (also the cause...
Post-Newtonian generation of gravitational waves in a theory of gravity with torsion
International Nuclear Information System (INIS)
Schwiezer, M.; Straumann, N.; Wipf, A.
1980-01-01
The post-Newtonian gravitational-radiation methods developed within general relativity by Epstein and Wagoner have been adapted to the gravitation theory with torsion, recently proposed by Hehl et al., and show that the two theories predict in this approximation the same gravitational radiation losses. Since they agree also on the first post-Newtonian level, they are at the present time-observationally-indistinguishable. (author)
GLINT. Gravitational-wave laser INterferometry triangle
Aria, Shafa; Azevedo, Rui; Burow, Rick; Cahill, Fiachra; Ducheckova, Lada; Holroyd, Alexa; Huarcaya, Victor; Järvelä, Emilia; Koßagk, Martin; Moeckel, Chris; Rodriguez, Ana; Royer, Fabien; Sypniewski, Richard; Vittori, Edoardo; Yttergren, Madeleine
2017-11-01
When the universe was roughly one billion years old, supermassive black holes (103-106 solar masses) already existed. The occurrence of supermassive black holes on such short time scales are poorly understood in terms of their physical or evolutionary processes. Our current understanding is limited by the lack of observational data due the limits of electromagnetic radiation. Gravitational waves as predicted by the theory of general relativity have provided us with the means to probe deeper into the history of the universe. During the ESA Alpach Summer School of 2015, a group of science and engineering students devised GLINT (Gravitational-wave Laser INterferometry Triangle), a space mission concept capable of measuring gravitational waves emitted by black holes that have formed at the early periods after the big bang. Morespecifically at redshifts of 15 big bang) in the frequency range 0.01 - 1 Hz. GLINT design strain sensitivity of 5× 10^{-24} 1/√ { {Hz}} will theoretically allow the study of early black holes formations as well as merging events and collapses. The laser interferometry, the technology used for measuring gravitational waves, monitors the separation of test masses in free-fall, where a change of separation indicates the passage of a gravitational wave. The test masses will be shielded from disturbing forces in a constellation of three geocentric orbiting satellites.
Gravitationally confined relativistic neutrinos
Vayenas, C. G.; Fokas, A. S.; Grigoriou, D.
2017-09-01
Combining special relativity, the equivalence principle, and Newton’s universal gravitational law with gravitational rather than rest masses, one finds that gravitational interactions between relativistic neutrinos with kinetic energies above 50 MeV are very strong and can lead to the formation of gravitationally confined composite structures with the mass and other properties of hadrons. One may model such structures by considering three neutrinos moving symmetrically on a circular orbit under the influence of their gravitational attraction, and by assuming quantization of their angular momentum, as in the Bohr model of the H atom. The model contains no adjustable parameters and its solution, using a neutrino rest mass of 0.05 eV/c2, leads to composite state radii close to 1 fm and composite state masses close to 1 GeV/c2. Similar models of relativistic rotating electron - neutrino pairs give a mass of 81 GeV/c2, close to that of W bosons. This novel mechanism of generating mass suggests that the Higgs mass generation mechanism can be modeled as a latent gravitational field which gets activated by relativistic neutrinos.
Corrosion by photochemical reaction due to synchrotron radiation in TRISTAN vacuum system
International Nuclear Information System (INIS)
Momose, Takashi; Ishimaru, Hajime
1989-01-01
In the electron-positron collision ring (TMR) in the National Laboratory for High Energy Physics, the operation at the beam energy of 30 GeV is carried out. The critical energy of synchrotron radiation corresponding to this energy is 243 keV which is the highest in the world. Consequently, the radiation damage of various substances due to this radiation has become the problem. From the viewpoint that the TMR is the vacuum system totally made of aluminum alloy for the first time in the world, the problem peculiar to aluminum alloy and the related problem of material damage and the countermeasures are discussed. Beam energy and attenuation length, the radiation dose in the TMR tunnel, the beam current-time product of TMR, the examples of radiation damage such as the atmosphere in TAR, the atmosphere in TMR, the aluminum bellows, aluminum chamber and lead radiation shield in TMR, the aluminum beam line in the atmosphere of TAR, the heat-insulating kapton film with vacuum deposited aluminum films, Teflon and polystyrene insulators, the stainless steel terminals and cables for position monitors, the O-rings for gate valves, polyvinyl chloride and so on are reported. (K.I.)
International Nuclear Information System (INIS)
2013-01-01
The chapter one presents the composition of matter and atomic theory; matter structure; transitions; origin of radiation; radioactivity; nuclear radiation; interactions in decay processes; radiation produced by the interaction of radiation with matter
Resistance of plants to gravitational force.
Soga, Kouichi
2013-09-01
Developing resistance to gravitational force is a critical response for terrestrial plants to survive under 1 × g conditions. We have termed this reaction "gravity resistance" and have analyzed its nature and mechanisms using hypergravity conditions produced by centrifugation and microgravity conditions in space. Our results indicate that plants develop a short and thick body and increase cell wall rigidity to resist gravitational force. The modification of body shape is brought about by the rapid reorientation of cortical microtubules that is caused by the action of microtubule-associated proteins in response to the magnitude of the gravitational force. The modification of cell wall rigidity is regulated by changes in cell wall metabolism that are caused by alterations in the levels of cell wall enzymes and in the pH of apoplastic fluid (cell wall fluid). Mechanoreceptors on the plasma membrane may be involved in the perception of the gravitational force. In this review, we discuss methods for altering gravitational conditions and describe the nature and mechanisms of gravity resistance in plants.
Kakouris, A.
The present PhD Thesis deals with the two-dimensional description of the plasma outflow from central astrophysical objects. The concept of stellar winds was originated by Eugene Parker 1958, and has become a very hot area of research the last decade. Mass outflow from all types of stars, as well as AGNs, quasars or planetary nebulae are observed in all astrophysical scales indicating at least two-dimensional (2-D) features (e.g. Hughes (editor), 1991, Beams and jets in astrophysics, Cambridge University Press). In a first stage, the flows are modeled empirically but their origin has to be in accordance with the fluid mechanics and the conservation laws. So, self-consistent 2-D models are needed (i.e. full solutions of the total set of equations which conserve mass, momentum and energy). The main mechanisms of ejecting plasma from an astrophysical object are the thermal (similar to solar wind), the radiative and the magnetic. Self consistent analytical 2-D steady hydrodynamic (HD) solutions for stellar winds have been presented by Tsinganos & Vlastou 1988, Tsinganos & Trussoni 1990, Tsinganos & Sauty 1992 and Lima & Priest 1993. Following their description we derive a new set of solutions in the present work. Our main assumptions are steady state (\\partial/\\partial t = 0), axisymmetry to the rotational axis (\\partial/\\partial \\phi = 0) and helicoidal geometry for the streamlines (meridional velocity {\\vec u}_{\\theta} = {\\vec 0} ). Besides, the fluid is assumed to be a nonmagnetized fully ionized hydrogen. The model could be named as non polytropic since we do not follow the polytropic assumption with a constant polytropic exponent but we evaluate the total external energy needed by the 1st law of Thermodynamics. Also, the solutions are \\theta-self similar since the dependence to the colatitude is given from the beginning. The generalized differential rotation of the fluid is taken into account considering a dependence of the rotational velocity of (V
Ulmer, Christopher J.; Motta, Arthur T.
2017-11-01
The development of TEM-visible damage in materials under irradiation at cryogenic temperatures cannot be explained using classical rate theory modeling with thermally activated reactions since at low temperatures thermal reaction rates are too low. Although point defect mobility approaches zero at low temperature, the thermal spikes induced by displacement cascades enable some atom mobility as it cools. In this work a model is developed to calculate "athermal" reaction rates from the atomic mobility within the irradiation-induced thermal spikes, including both displacement cascades and electronic stopping. The athermal reaction rates are added to a simple rate theory cluster dynamics model to allow for the simulation of microstructure evolution during irradiation at cryogenic temperatures. The rate theory model is applied to in-situ irradiation of ZrC and compares well at cryogenic temperatures. The results show that the addition of the thermal spike model makes it possible to rationalize microstructure evolution in the low temperature regime.
Gentili, Pier Luigi; Giubila, Maria Sole; Germani, Raimondo; Romani, Aldo; Nicoziani, Andrea; Spalletti, Anna; Heron, B Mark
2017-06-19
Neuromorphic engineering promises to have a revolutionary impact in our societies. A strategy to develop artificial neurons (ANs) is to use oscillatory and excitable chemical systems. Herein, we use UV and visible radiation as both excitatory and inhibitory signals for the communication among oscillatory reactions, such as the Belousov-Zhabotinsky and the chemiluminescent Orban transformations, and photo-excitable photochromic and fluorescent species. We present the experimental results and the simulations regarding pairs of ANs communicating by either one or two optical signals, and triads of ANs arranged in both feed-forward and recurrent networks. We find that the ANs, powered chemically and/or by the energy of electromagnetic radiation, can give rise to the emergent properties of in-phase, out-of-phase, anti-phase synchronizations and phase-locking, dynamically mimicking the communication among real neurons. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
International Nuclear Information System (INIS)
Kozomara-Maic, S.
1987-06-01
In spite of the rather broad title of this report, its major part is devoted to the corrosion problems at the RA reactor, i.e. causes and consequences of the reactor shutdown in 1979 and 1982. Some problems of reactor chemistry are pointed out because they are significant for future reactor operation. The final conclusion of this report is that corrosion processes in the primary coolant circuit of the nuclear reactor are specific and that radiation effects cannot be excluded when processes and reaction kinetics are investigated. Knowledge about the kinetics of all the chemical reactions occurring in the primary coolant loop are of crucial significance for safe and economical reactor operation [sr
Bogdanova, L N; Eijk, C W E
2002-01-01
A search for the muon catalyzed fusion (MCF) reaction d + d -> sup 4 He + gamma in the dd mu muonic molecule was performed using the experimental MCF installation TRITON and NaI(Tl) detectors for gamma quanta. The high-pressure target filled with deuterium was exposed to the negative muon beam of the JINR phasotron to detect gamma quanta with energy 23.8 MeV. The first experimental estimation for the yield of the radiative deuteron capture from the dd mu state J = 1 was obtained at the level eta subgamma <= 2 x 10 sup - sup 5 per one fusion
The electromagnetic interferent antennae for gravitational waves detection
International Nuclear Information System (INIS)
Kulak, A.
1984-01-01
An electromagnetic wave propagating in the toroidal waveguide is considered as an electromagnetic gravitational antenna. An interferometric method is applied to measure the disturbances of phase of the electromagnetic field caused by the incident gravitational wave. The calculations presented take into account the dispersive and dissipative phenomena occurring during the interaction between electromagnetic and gravitational fields. The active cross-section of the antenna interacting with coherent and pulsed gravitational radiation is estimated. Experimental possibilities presently available are discussed. Limiting fluxes in the astrophysical range of frequencies measured by the interferometric electromagnetic antenna are a factor of ten or so smaller than in the case of a classic mechanical antenna. Moreover the antenna could be used for carrying out a gravitational Hertz experiment. (author)
Directory of Open Access Journals (Sweden)
Jarideh S.
2015-05-01
Full Text Available Background: Airport workers are continuously exposed to different levels of radiofrequency microwave (RF/MW radiation emitted by radar equipments. Radars are extensively used in military and aviation industries. Over the past several years, our lab has focused on the health effects of exposure to different sources of electromagnetic fields such as cellular phones, mobile base stations, mobile phone jammers, laptop computers, radars, dentistry cavitrons and MRI. The main goal of this study was to investigate if occupational exposure of Shahid Dastghieb international airport workers to radiofrequency radiation affects their short term memory and reaction time. Methods: Thirty two airport workers involved in duties at control and approach tower (21 males and 11 females, with the age range of 27-67 years old (mean age of 37.38, participated voluntary in this study. On the other hand, 29 workers (13 males, and 16 females whose offices were in the city with no exposure history to radar systems were also participated in this study as the control group. The employees’ reaction time and short term memory were analyzed using a standard visual reaction time (VRT test software and the modified Wechsler memory scale test, respectively. Results: The mean± SD values for the reaction times of the airport employees (N=32 and the control group (N=29 were 0.45±0.12 sec and 0.46±0.17 sec, respectively. Moreover, in the four subset tests; i.e. paired words, forward digit span, backward digit span and word recognition, the following points were obtained for the airport employees and the control group, respectively: (i pair words test: 28.00±13.13 and 32.07±11.65, (ii forward digit span: 8.38±1.40 and 9.03±1.32, (iii backward digit span: 5.54±1.87 and 6.31±1.46, and (iv word recognition: 5.73±2.36 and 6.50±1.93. These differences were not statistically significant. Conclusion: The occupational exposure of the employees to the RF radiation in Shahid
Radiation-induced addition reaction of carbon tetrachloride onto 1,2-polybutadiene
Energy Technology Data Exchange (ETDEWEB)
Okamoto, H.; Adachi, S.; Iwai, T.
1979-05-01
The ..gamma..-ray-induced addition reaction of carbon tetrachloride onto syndiotactic 1,2-polybutadiene film and liquid 1,2-polybutadiene was carried out at room temperature. In the film gelation was pronounced and the rate of addition increased as the crystallinity of the polymer decreased. In the liquid gelation, which makes the polymer insoluble in carbon tetrachloride, did not take place, although a definite crosslinking reaction was noticed. In this case the appearance of the product charged from a viscous liquid to a white powder as the reaction proceeded. Its structure was compared with that of chlorinated 1,2-polybutadiene. The addition of carbon tetrachloride to the vinyl group in liquid 1,2-polybutadiene caused an anti-Markownikoff-type reaction and was accompanied by an unexpectedly large vinyl depletion in the polymer. The total decrease in the vinyl group was found to be much larger than that brought about by the addition of carbon tetrachloride. This discrepancy was attributed to a cyclization and crosslinking reaction ascribed to the vinyl group bound by the main chain. Cyclization and crosslinking were less noticeable in the chlorination than in the carbon tetrachloride. 9 figures, 2 tables.
Gravitational waves interferometer and the VIRGO project
Gaddi, A
2002-01-01
Radio, optical and X-rays telescopes are improving our knowledge of deep space. All these telescopes detect electromagnetic radiation at various frequencies. But a different kind of radiation is generated in the deeper space; it is the gravitational one. Gravitational waves change the space-time metric. As a consequence, GW telescopes should detect an extremely small strain (h < 10/sup -21/) of the geometry of a reference frame; if the frame has a reference dimension (L) of some kilometers, the deformation amplitude ( Delta L = h * L) is limited to 10/sup -16/ meters. Laser interferometers are the most suitable devices to make precise measurements of distances. Their resolution is limited by the laser wavelength ( lambda = 10/sup -6/ meters) and by the light wave-shift detection capability ( Delta Phi = 1 ppb). These theoretical limits are strongly degraded by different noise sources, which reduce the actual resolution by several orders of magnitude. Applied physicists and engineers are working together to...
On tidal phenomena in a strong gravitational field
International Nuclear Information System (INIS)
Mashoon, B.
1975-01-01
A simple framework based on the concept of quadrupole tidal potential is presented for the calculation of tidal deformation of an extended test body in a gravitational field. This method is used to study the behavior of an initially faraway nonrotating spherical body that moves close to a Schwarzschild or an extreme Kerr black hole. In general, an extended body moving in an external gravitational field emits gravitational radiation due to its center of mass motion, internal tidal deformation, and the coupling between the internal and center of mass motions. Estimates are given of the amount of tidal radiation emitted by the body in the gravitational fields considered. The results reported in this paper are expected to be of importance in the dynamical evolution of a dense stellar system with a massive black hole in its center
First VESF School on Advanced Detectors for Gravitational Waves
Advanced Interferometers and the Search for Gravitational Waves
2014-01-01
The search for gravitational radiation with optical interferometers is gaining momentum worldwide. Beside the VIRGO and GEO gravitational wave observatories in Europe and the two LIGOs in the United States, which have operated successfully during the past decade, further observatories are being completed (KAGRA in Japan) or planned (ILIGO in India). The sensitivity of the current observatories, although spectacular, has not allowed direct discovery of gravitational waves. The advanced detectors (Advanced LIGO and Advanced Virgo), at present in the development phase, will improve sensitivity by a factor of 10, probing the universe up to 200 Mpc for signal from inspiraling binary compact stars. This book covers all experimental aspects of the search for gravitational radiation with optical interferometers. Every facet of the technological development underlying the evolution of advanced interferometers is thoroughly described, from configuration to optics and coatings, and from thermal compensation to suspensio...
Nuclear limits on gravitational waves from elliptically deformed pulsars
International Nuclear Information System (INIS)
Krastev, Plamen G.; Li Baoan; Worley, Aaron
2008-01-01
Gravitational radiation is a fundamental prediction of General Relativity. Elliptically deformed pulsars are among the possible sources emitting gravitational waves (GWs) with a strain-amplitude dependent upon the star's quadrupole moment, rotational frequency, and distance from the detector. We show that the gravitational wave strain amplitude h 0 depends strongly on the equation of state of neutron-rich stellar matter. Applying an equation of state with symmetry energy constrained by recent nuclear laboratory data, we set an upper limit on the strain-amplitude of GWs produced by elliptically deformed pulsars. Depending on details of the EOS, for several millisecond pulsars at distances 0.18 kpc to 0.35 kpc from Earth, the maximalh 0 is found to be in the range of ∼[0.4-1.5]x10 -24 . This prediction serves as the first direct nuclear constraint on the gravitational radiation. Its implications are discussed
Gravitational-wave physics and astronomy an introduction to theory, experiment and data analysis
Creighton, Jolien D E
2011-01-01
This most up-to-date, one-stop reference combines coverage of both theory and observational techniques, with introductory sections to bring all readers up to the same level. Written by outstanding researchers directly involved with the scientific program of the Laser Interferometer Gravitational-Wave Observatory (LIGO), the book begins with a brief review of general relativity before going on to describe the physics of gravitational waves and the astrophysical sources of gravitational radiation. Further sections cover gravitational wave detectors, data analysis, and the outlook of gravitation
International Nuclear Information System (INIS)
Srinivasacharya, D.; Mendu, Upendar
2011-01-01
The steady laminar free convection heat and mass transfer boundary layer flow of a thermomicropolar fluid past a non-isothermal vertical flat plate in the presence of a homogeneous first order chemical reaction and a radiation with transverse magnetic field has been reported. It has been established that the flow problem has similarity solutions when the variation in temperature of the plate and variation in concentration of the fluid are linear functions of the distance from the leading edge measured along the plate. The nonlinear governing equations of the flow along with their appropriate boundary conditions are initially cast into dimensionless forms using similarity transformations which are used to reduce the governing partial differential equations into ordinary differential equations. The resulting system of equations thus formed is then solved numerically by using the Keller-box method. The non-dimensional Nusselt number, Sherwood number and the skin friction coefficient and wall couple stress at the plate are derived, and a parametric study of the governing parameters, namely the magnetic field strength parameter, radiation parameter, chemical reaction parameter, Sherwood number profiles against to the coupling number as well as the skin friction coefficient, wall couple stress coefficient is conducted. (author)
Theory of gravitational-inertial field of universe. 2
International Nuclear Information System (INIS)
Davtyan, O.K.
1978-01-01
Application of the equations of the gravitational-inertial field to the problem of free motion in the inertial field (to the cosmologic problem) leads to results according to which (1) all Galaxies in the Universe 'disperse' from each other according to Hubble's law, (2) the 'dispersion' of bodies represents a free motion in the inertial field and Hubble's law represents a law of motion of free body in the inertial field, (3) for arbitrary mean distribution densities of space masses different from zero the space is Lobachevskian. All critical systems (with Schwarzschild radius) are specific because they exist in maximal-inertial and gravitational potentials. The Universe represents a critical system, it exists under the Schwarzschild radius. In high-potential inertial and gravitational fields the material mass in a static state or in motion with deceleration is subject to an inertial and gravitational 'annihilation'. At the maximal value of inertial and gravitational potentials (= c 2 ) the material mass is being completely 'evaporated' transforming into radiation mass. The latter is being concentrated in the 'horizon' of the critical system. All critical systems-black holes-represent geon systems, i.e. local formations of gravitational-electromagnetic radiations, held together by their own gravitational and inertial fields. The Universe, being a critical system, is 'wrapped' in a geon crown. (author)
The sky pattern of the linearized gravitational memory effect
International Nuclear Information System (INIS)
Mädler, Thomas; Winicour, Jeffrey
2016-01-01
The gravitational memory effect leads to a net displacement in the relative positions of test particles. This memory is related to the change in the strain of the gravitational radiation field between infinite past and infinite future retarded times. There are three known sources of the memory effect: (i) the loss of energy to future null infinity by massless fields or particles, (ii) the ejection of massive particles to infinity from a bound system and (iii) homogeneous, source-free gravitational waves. In the context of linearized theory, we show that asymptotic conditions controlling these known sources of the gravitational memory effect rule out any other possible sources with physically reasonable stress–energy tensors. Except for the source-free gravitational waves, the two other known sources produce gravitational memory with E -mode radiation strain, characterized by a certain curl-free sky pattern of their polarization. Thus our results show that the only known source of B -mode gravitational memory is of primordial origin, corresponding in the linearized theory to a homogeneous wave entering from past null infinity. (paper)
Gravitational wave memory in ΛCDM cosmology
International Nuclear Information System (INIS)
Bieri, Lydia; Garfinkle, David; Yunes, Nicolás
2017-01-01
We examine gravitational wave memory in the case where sources and detector are in a ΛCDM cosmology. We consider the case where the Universe can be highly inhomogeneous, but gravitational radiation is treated in the short wavelength approximation. We find results very similar to those of gravitational wave memory in an asymptotically flat spacetime; however, the overall magnitude of the memory effect is enhanced by a redshift-dependent factor. In addition, we find the memory can be affected by lensing. (paper)
Gravitational Thermodynamics for Interstellar Gas and Weakly Degenerate Quantum Gas
Zhu, Ding Yu; Shen, Jian Qi
2016-03-01
The temperature distribution of an ideal gas in gravitational fields has been identified as a longstanding problem in thermodynamics and statistical physics. According to the principle of entropy increase (i.e., the principle of maximum entropy), we apply a variational principle to the thermodynamical entropy functional of an ideal gas and establish a relationship between temperature gradient and gravitational field strength. As an illustrative example, the temperature and density distributions of an ideal gas in two simple but typical gravitational fields (i.e., a uniform gravitational field and an inverse-square gravitational field) are considered on the basis of entropic and hydrostatic equilibrium conditions. The effect of temperature inhomogeneity in gravitational fields is also addressed for a weakly degenerate quantum gas (e.g., Fermi and Bose gas). The present gravitational thermodynamics of a gas would have potential applications in quantum fluids, e.g., Bose-Einstein condensates in Earth’s gravitational field and the temperature fluctuation spectrum in cosmic microwave background radiation.
Extended Theories of Gravitation
Directory of Open Access Journals (Sweden)
Fatibene Lorenzo
2013-09-01
Full Text Available Extended theories of gravitation are naturally singled out by an analysis inspired by the Ehelers-Pirani-Schild framework. In this framework the structure of spacetime is described by a Weyl geometry which is enforced by dynamics. Standard General Relativity is just one possible theory within the class of extended theories of gravitation. Also all Palatini f(R theories are shown to be extended theories of gravitation. This more general setting allows a more general interpretation scheme and more general possible couplings between gravity and matter. The definitions and constructions of extended theories will be reviewed. A general interpretation scheme will be considered for extended theories and some examples will be considered.
Ohanian, Hans C
2013-01-01
The third edition of this classic textbook is a quantitative introduction for advanced undergraduates and graduate students. It gently guides students from Newton's gravitational theory to special relativity, and then to the relativistic theory of gravitation. General relativity is approached from several perspectives: as a theory constructed by analogy with Maxwell's electrodynamics, as a relativistic generalization of Newton's theory, and as a theory of curved spacetime. The authors provide a concise overview of the important concepts and formulas, coupled with the experimental results underpinning the latest research in the field. Numerous exercises in Newtonian gravitational theory and Maxwell's equations help students master essential concepts for advanced work in general relativity, while detailed spacetime diagrams encourage them to think in terms of four-dimensional geometry. Featuring comprehensive reviews of recent experimental and observational data, the text concludes with chapters on cosmology an...
State-specific reactions and autoionization dynamics of Ar2+ produced by synchrotron radiation
Czech Academy of Sciences Publication Activity Database
Franceschi, P.; Thissen, R.; Dutuit, O.; Alcaraz, Ch.; Soldi-Lose, H.; Bassi, D.; Ascenzi, D.; Tosi, P.; Žabka, Ján; Herman, Zdeněk; Coreno, M.; De Simone, M.
2009-01-01
Roč. 280, 1-3 (2009), s. 119-127 ISSN 1387-3806 R&D Projects: GA AV ČR IAA400400702 Institutional research plan: CEZ:AV0Z40400503 Keywords : argon * dications * photoionization * ion molecule reaction Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.117, year: 2009
Cosmological viability of the bimetric theory of gravitation
International Nuclear Information System (INIS)
Krygier, B.; Krempec-Krygier, J.
1983-01-01
The approximate solutions of field equations for flat radiative cosmological models in the second version of bimetric gravitation theory are discussed. They indicate that these cosmological models are ever expanding. The apparent magnitude-redshift relations for flat dust cosmological models for different theories of gravitation are described and compared. One can reject Dirac's additive creation theory and the first version of Rosen's bimetric theory on the basis of this observational test. (author)
International Nuclear Information System (INIS)
Hoffman, M.Z.
1985-01-01
Excited-state inter- and intramolecular electron-transfer reactions lie at the heart of the most photochemical solar energy conversion schemes. The authors research, which has utilized the techniques of continuous and pulsed photolysis and radiolysis, has focused on three general aspects of these reactions involving transition metal coordination complexes and electron donor-acceptor complexes: i) the effect of solution medium on the properties and quenching of the excited states; ii) the control of the quantum yields of formation of redox products; iii) the mechanism by which reduced species interact with water to yield H 2 homogeneously and heterogeneously. EDTA is among the most popular sacrificial electron donors used in model systems. Its role is to scavenge the oxidized form of the photosensitizer in order to prevent its rapid reaction with the reduced form of the electron relay species that results from the electron-transfer quenching of the excited photosensitizer. In systems involving MV 2+ , the radicals resulting from the oxidation of EDTA can eventually lead to the generation of a second equivalent of MV + ; the reducing agent is believed to be a radical localized on the carbon atom alpha to the carboxylate group. The reaction of radiolytically-generated OH/H with EDTA produces this radical directly via H-abstraction or indirectly via deprotonation of the carbon atom adjacent to the nitrogen radical site in the oxidized amine moiety; it reduces MV 2+ with rate constants of 2.8 x 10 9 , 7.6 x 10 9 , and 8.5 x 10 6 M -1 s -1 at pH 12.5, 8.3, and 4.7, respectively. Degradative decarboxylation of EDTA-radicals and their back electron-transfer reactions are enhanced in acidic solution causing the yield of MV + to be severely diminished
International Nuclear Information System (INIS)
Lee, K.-Pill; Gopalan, A.I.
2009-01-01
Synthesis of nanomaterials have become the focus of intensive research due to their numerous applications in diverse fields such as electronics, optics, ceramics, metallurgy, pulp and paper, environmental, pharmaceutics, biotechnology and biomedical fields. Due to expanding demand for the nanomaterials with defined properties, extensive research activities have been focused on the synthesis and characterization of “functional nanomaterials”. Our research group launched into research activities on the preparation of varieties of functional materials using radiation as the source for inducing functionalities ino these new nanomaterials. Importantly, we kept final goals for specific applications. Thus, we have prepared few interesting functional nanomaterials such as metal nanoparticles decorated multi wall carbon nanotubes, pore filled functional electrospun nanofibers and nanocables based on conducting polymer and carbon nanotubes and demonstrated their applications toward electrocatalysts, polymer electrolyte in energy devices and biosensors. In the forthcoming sections, a brief outline on the use of radiation for the preparation of those functional nanomaterials are presented. (author)
Merano, Michele
2018-01-01
This paper derives the macroscopic electric and magnetic fields and the surface susceptibilities for a metasurface, starting from the microscopic scatterer distribution. It is assumed that these scatterers behave as electric and magnetic dipoles under the influence of the incident radiation. Interestingly not only the retarded electromagnetic fields from oscillating dipoles are relevant to pass from the microscopic to the macroscopic representation, but the advanced fields must be considered ...
International Nuclear Information System (INIS)
Stewart, F.A.; Akleyev, A.V.; Hauer-Jensen, M.; Hendry, J.H.; Kleiman, N.J.; MacVittie, T.J.; Aleman, B.M.; Edgar, A.B.; Mabuchi, K.; Muirhead, C.R.; Shore, R.E.; Wallace, W.H.
2012-01-01
This report provides a review of early and late effects of radiation in normal tissues and organs with respect to radiation protection. It was instigated following a recommendation in Publication 103 (ICRP, 2007), and it provides updated estimates of ‘practical’ threshold doses for tissue injury defined at the level of 1% incidence. Estimates are given for morbidity and mortality endpoints in all organ systems following acute, fractionated, or chronic exposure. The organ systems comprise the haematopoietic, immune, reproductive, circulatory, respiratory, musculoskeletal, endocrine, and nervous systems; the digestive and urinary tracts; the skin; and the eye. Particular attention is paid to circulatory disease and cataracts because of recent evidence of higher incidences of injury than expected after lower doses; hence, threshold doses appear to be lower than previously considered. This is largely because of the increasing incidences with increasing times after exposure. In the context of protection, it is the threshold doses for very long follow-up times that are the most relevant for workers and the public; for example, the atomic bomb survivors with 40–50 years of follow-up. Radiotherapy data generally apply for shorter follow-up times because of competing causes of death in cancer patients, and hence the risks of radiation-induced circulatory disease at those earlier times are lower. A variety of biological response modifiers have been used to help reduce late reactions in many tissues. These include antioxidants, radical scavengers, inhibitors of apoptosis, anti-inflammatory drugs, angiotensin-converting enzyme inhibitors, growth factors, and cytokines. In many cases, these give dose modification factors of 1.1–1.2, and in a few cases 1.5–2, indicating the potential for increasing threshold doses in known exposure cases. In contrast, there are agents that enhance radiation responses, notably other cytotoxic agents such as antimetabolites, alkylating
Gravitational Waves: The Evidence Mounts
Wick, Gerald L.
1970-01-01
Reviews the work of Weber and his colleagues in their attempts at detecting extraterrestial gravitational waves. Coincidence events recorded by special detectors provide the evidence for the existence of gravitational waves. Bibliography. (LC)
The reaction between carbon tetrachloride and hydrogen induced by gamma radiation
International Nuclear Information System (INIS)
Molinari, M.A.; Strehar, N.R.; Videla, G.J.
1975-11-01
The products observed are HCl (yield G = 27-250), CHCl 3 (G = 1,4-15), C 2 Cl 6 (G = 2,5-4) and C 2 HCl 5 , C 2 Cl 4 and CH 2 Cl 2 (in smaller ammounts). G values change with absorbed energy (total dose) (1-100 . 10 19 eV), dose rate (1,7 . 10 19 to 1,7 . 10 18 eV/g.h.) and proportion of reactants. A possible simplified mechanism is presented, as a chain reaction initiated by free radicals, which only explains cuantitatively some results at high doses. It is evident that the primary mechanisms include several types of cocurrent reactions. (author) [es
SU-D-304-07: Application of Proton Boron Fusion Reaction to Radiation Therapy
International Nuclear Information System (INIS)
Jung, J; Yoon, D; Shin, H; Kim, M; Suh, T
2015-01-01
Purpose: we present the introduction of a therapy method using the proton boron fusion reaction. The purpose of this study is to verify the theoretical validity of proton boron fusion therapy using Monte Carlo simulations. Methods: After boron is accumulated in the tumor region, the emitted from outside the body proton can react with the boron in the tumor region. An increase of the proton’s maximum dose level is caused by the boron and only the tumor cell is damaged more critically. In addition, a prompt gamma ray is emitted from the proton boron reaction point. Here we show that the effectiveness of the proton boron fusion therapy (PBFT) was verified using Monte Carlo simulations. Results: We found that a dramatic increase by more than half of the proton’s maximum dose level was induced by the boron in the tumor region. This increase occurred only when the proton’s maximum dose point was located within the boron uptake region (BUR). In addition, the 719 keV prompt gamma ray peak produced by the proton boron fusion reaction was positively detected. Conclusion: This therapy method features the advantages such as the application of Bragg-peak to the therapy, the accurate targeting of tumor, improved therapy effects, and the monitoring of the therapy region during treatment
Platonic gravitating skyrmions
International Nuclear Information System (INIS)
Ioannidou, Theodora; Kleihaus, Burkhard; Kunz, Jutta
2006-01-01
We construct globally regular gravitating skyrmions, which possess only discrete symmetries. In particular, we present tetrahedral and cubic skyrmions. The SU(2) Skyrme field is parametrized by an improved harmonic map ansatz. Consistency then requires also a restricted ansatz for the metric. The numerical solutions obtained within this approximation are compared to those obtained in dilaton gravity
Alternative equations of gravitation
International Nuclear Information System (INIS)
Pinto Neto, N.
1983-01-01
It is shown, trough a new formalism, that the quantum fluctuation effects of the gravitational field in Einstein's equations are analogs to the effects of a continuum medium in Maxwell's Electrodynamics. Following, a real example of the applications of these equations is studied. Qunatum fluctuations effects as perturbation sources in Minkowski and Friedmann Universes are examined. (L.C.) [pt
Glitches and gravitational waves
Indian Academy of Sciences (India)
A M Srivastava
2017-10-09
Oct 9, 2017 ... This is the distinctive prediction of our model. Vortex depinning model cannot lead to off- diagonal components of MI (all vortices point along the rotation axis). An important prediction of our model arises from not- ing that rapid changes in quadrupole moment Q will lead to gravitational waves. Small values ...
Testing effective quantum gravity with gravitational waves from extreme mass ratio inspirals
International Nuclear Information System (INIS)
Yunes, N; Sopuerta, C F
2010-01-01
Testing deviation of GR is one of the main goals of the proposed Laser Interferometer Space Antenna. For the first time, we consistently compute the generation of gravitational waves from extreme-mass ratio inspirals (stellar compact objects into supermassive black holes) in a well-motivated alternative theory of gravity, that to date remains weakly constrained by double binary pulsar observations. The theory we concentrate on is Chern-Simons (CS) modified gravity, a 4-D, effective theory that is motivated both from string theory and loop-quantum gravity, and which enhances the Einstein-Hilbert action through the addition of a dynamical scalar field and the parity-violating Pontryagin density. We show that although point particles continue to follow geodesics in the modified theory, the background about which they inspiral is a modification to the Kerr metric, which imprints a CS correction on the gravitational waves emitted. CS modified gravitational waves are sufficiently different from the General Relativistic expectation that they lead to significant dephasing after 3 weeks of evolution, but such dephasing will probably not prevent detection of these signals, but instead lead to a systematic error in the determination of parameters. We end with a study of radiation-reaction in the modified theory and show that, to leading-order, energy-momentum emission is not CS modified, except possibly for the subdominant effect of scalar-field emission. The inclusion of radiation-reaction will allow for tests of CS modified gravity with space-borne detectors that might be two orders of magnitude larger than current binary pulsar bounds.
Gravitational waves from primordial black hole mergers
Energy Technology Data Exchange (ETDEWEB)
Raidal, Martti; Vaskonen, Ville; Veermäe, Hardi, E-mail: martti.raidal@cern.ch, E-mail: ville.vaskonen@kbfi.ee, E-mail: hardi.veermae@cern.ch [NICPB, Rävala 10, 10143 Tallinn (Estonia)
2017-09-01
We study the production of primordial black hole (PBH) binaries and the resulting merger rate, accounting for an extended PBH mass function and the possibility of a clustered spatial distribution. Under the hypothesis that the gravitational wave events observed by LIGO were caused by PBH mergers, we show that it is possible to satisfy all present constraints on the PBH abundance, and find the viable parameter range for the lognormal PBH mass function. The non-observation of a gravitational wave background allows us to derive constraints on the fraction of dark matter in PBHs, which are stronger than any other current constraint in the PBH mass range 0.5−30 M {sub ⊙}. We show that the predicted gravitational wave background can be observed by the coming runs of LIGO, and its non-observation would indicate that the observed events are not of primordial origin. As the PBH mergers convert matter into radiation, they may have interesting cosmological implications, for example in the context of relieving the tension between high and low redshift measurements of the Hubble constant. However, we find that these effects are suppressed as, after recombination, no more that 1% of dark matter can be converted into gravitational waves.
On the reaction of thiols with primary radiation lesions in bacteriophage
International Nuclear Information System (INIS)
Korystov, Yu.N.; Veksler, A.M.; Ehjdus, L.Kh.
1982-01-01
In order to answer the question in which form, RSH of RS-, thiols react with the target responsible for reproductive cell death a study was made of the pH dependence (4.7-8.2) of the radioprotective effect of mercaptoethanol and cysteamine on the bacteriophage T 4 under the anoxic conditions. It was shown that the protective effect does not depend upon pH. Since the concentration of RSH, within the studied range of pH values, remains virtually invariable, and RS - concentration sharply changes, the obtained results indicate that the RSH is the form in which thiols react with primary radiation damages to the phage [ru
Ramzan, M.; Gul, Hina; Dong Chung, Jae
2017-11-01
A mathematical model is designed to deliberate the flow of an MHD Jeffery nanofluid past a vertically inclined stretched cylinder near a stagnation point. The flow analysis is performed in attendance of thermal radiation, mixed convection and chemical reaction. Influence of thermal and solutal stratification with slip boundary condition is also considered. Apposite transformations are engaged to convert the nonlinear partial differential equations to differential equations with high nonlinearity. Convergent series solutions of the problem are established via the renowned Homotopy Analysis Method (HAM). Graphical illustrations are plotted to depict the effects of prominent arising parameters against all involved distributions. Numerically erected tables of important physical parameters like Skin friction, Nusselt and Sherwood numbers are also give. Comparative studies (with a previously examined work) are also included to endorse our results. It is noticed that the thermal stratification parameter has diminishing effect on temperature distribution. Moreover, the velocity field is a snowballing and declining function of curvature and slip parameters respectively.
Ahmed, Rubel; Rana, B. M. Jewel; Ahmmed, S. F.
2017-06-01
The effects of magnetic, radiation and chemical reaction parameters on the unsteady heat and mass transfer boundary layer flow past an oscillating cylinder is considered. The dimensionless momentum, energy and concentration equations are solved numerically by using explicit finite difference method with the help of a computer programming language Compaq visual FORTRAN 6.6a. The obtained results of this study have been discussed for different values of well-known parameters with different time steps. The effect of these parameters on the velocity field, temperature field and concentration field, skin-friction, Nusselt number, streamlines and isotherms has been studied and results are presented by graphically represented by the tabular form quantitatively. The stability and convergence analysis of the solution parameters that have been used in the mathematical model have been tested.
Test of E1-radiative strength function and level density models by 155 Gd (n,2γ) 156 Gd reaction
International Nuclear Information System (INIS)
Voinov, A.V.
1996-01-01
The information about the level density of 156 Gd nucleus and strength functions of γ transitions extracted from two γ-cascade spectra of the 155 Gd (n,2γ) 156 Gd reaction is analyzed. The method of statistical simulation of γ-cascade intensity is applied for calculation of the main parameters of experimental spectra. The method is used to extract the information on the E1-radiative strength function of γ transitions and level density in the 156 Gd nucleus. It is shown that at an excitation energy above 3 MeV the level density of 156 Gd nucleus must decrease in comparison with that calculated within the Fermi gas model. Its is concluded that possible explanation of the observed effect is connected with the influence of pairing correlations on the level density in nuclei
Testing General Relativity with Low-Frequency, Space-Based Gravitational-Wave Detectors
Directory of Open Access Journals (Sweden)
John G. Baker
2013-09-01
Full Text Available We review the tests of general relativity that will become possible with space-based gravitational-wave detectors operating in the ∼ 10^{-5} – 1 Hz low-frequency band. The fundamental aspects of gravitation that can be tested include the presence of additional gravitational fields other than the metric; the number and tensorial nature of gravitational-wave polarization states; the velocity of propagation of gravitational waves; the binding energy and gravitational-wave radiation of binaries, and therefore the time evolution of binary inspirals; the strength and shape of the waves emitted from binary mergers and ringdowns; the true nature of astrophysical black holes; and much more. The strength of this science alone calls for the swift implementation of a space-based detector; the remarkable richness of astrophysics, astronomy, and cosmology in the low-frequency gravitational-wave band make the case even stronger.
Testing General Relativity with Low-Frequency, Space-Based Gravitational-Wave Detectors.
Gair, Jonathan R; Vallisneri, Michele; Larson, Shane L; Baker, John G
2013-01-01
We review the tests of general relativity that will become possible with space-based gravitational-wave detectors operating in the ∼ 10 -5 - 1 Hz low-frequency band. The fundamental aspects of gravitation that can be tested include the presence of additional gravitational fields other than the metric; the number and tensorial nature of gravitational-wave polarization states; the velocity of propagation of gravitational waves; the binding energy and gravitational-wave radiation of binaries, and therefore the time evolution of binary inspirals; the strength and shape of the waves emitted from binary mergers and ringdowns; the true nature of astrophysical black holes; and much more. The strength of this science alone calls for the swift implementation of a space-based detector; the remarkable richness of astrophysics, astronomy, and cosmology in the low-frequency gravitational-wave band make the case even stronger.
International Nuclear Information System (INIS)
Sanchez-Mejorada, G.; Frias, D.; Negron-Mendoza, A.; Ramos-Bernal, S.
2008-01-01
The dependence of the response of chemical dosimeters as a function of the irradiation temperature is an important issue that has not yet been addressed within a mathematical modeling framework. The temperature dependence of the dose-response function has to be taken into account in practical applications, mainly in frozen food sterilization by radiation. Significant errors may occur if the dependence of the dosimeter response on the irradiation temperature is not taken into account properly. The experimental results obtained irradiating iron salt solutions at different temperatures below and above 0 deg. C show that the change in the valence of Fe 2+ as a function of dose are linear for both liquid and frozen solutions. This led us to conclude that the iron salt solution seems suitable for low-temperature applications having a linear dose-response up to 600 Gy, despite a progressive decrease of sensitivity as temperature decreases. A nonlinear differential model for the kinetics of reactions induced by radiation in iron salt solutions was established. In the model a temperature correction factor was included in order to take into account abrupt changes observed in the kinetics of the chemical process when the irradiated solution's allotropic phase changes from liquid to solid (ice). Fitting the kinetic model to the experimental results at different temperatures we found the temperature correction factors
International Nuclear Information System (INIS)
Haukkala, A.; Eraenen, L.
1994-10-01
The report consist of two parts: a review of studies on psychological consequences of nuclear and radiation accidents in population and an empirical study of peoples reactions to protection actions in an event of hypothetical accident. Review is based on research results from two nuclear reactor accidents (Three Mile Island 1979, Chernobyl 1986) and a radiation accident in Goiania, Brazil 1987. (53 refs, 2 figs.,7 tabs.)
Ramzan, M; Ullah, Naeem; Chung, Jae Dong; Lu, Dianchen; Farooq, Umer
2017-10-10
A mathematical model has been developed to examine the magneto hydrodynamic micropolar nanofluid flow with buoyancy effects. Flow analysis is carried out in the presence of nonlinear thermal radiation and dual stratification. The impact of binary chemical reaction with Arrhenius activation energy is also considered. Apposite transformations are engaged to transform nonlinear partial differential equations to differential equations with high nonlinearity. Resulting nonlinear system of differential equations is solved by differential solver method in Maple software which uses Runge-Kutta fourth and fifth order technique (RK45). To authenticate the obtained results, a comparison with the preceding article is also made. The evaluations are executed graphically for numerous prominent parameters versus velocity, micro rotation component, temperature, and concentration distributions. Tabulated numerical calculations of Nusselt and Sherwood numbers with respective well-argued discussions are also presented. Our findings illustrate that the angular velocity component declines for opposing buoyancy forces and enhances for aiding buoyancy forces by changing the micropolar parameter. It is also found that concentration profile increases for higher values of chemical reaction parameter, whereas it diminishes for growing values of solutal stratification parameter.
Gravitational waves from binary supermassive black holes missing in pulsar observations.
Shannon, R M; Ravi, V; Lentati, L T; Lasky, P D; Hobbs, G; Kerr, M; Manchester, R N; Coles, W A; Levin, Y; Bailes, M; Bhat, N D R; Burke-Spolaor, S; Dai, S; Keith, M J; Osłowski, S; Reardon, D J; van Straten, W; Toomey, L; Wang, J-B; Wen, L; Wyithe, J S B; Zhu, X-J
2015-09-25
Gravitational waves are expected to be radiated by supermassive black hole binaries formed during galaxy mergers. A stochastic superposition of gravitational waves from all such binary systems would modulate the arrival times of pulses from radio pulsars. Using observations of millisecond pulsars obtained with the Parkes radio telescope, we constrained the characteristic amplitude of this background, A(c,yr), to be gravitational waves. Copyright © 2015, American Association for the Advancement of Science.
Caldwell, Robert R
2011-12-28
The challenge to understand the physical origin of the cosmic acceleration is framed as a problem of gravitation. Specifically, does the relationship between stress-energy and space-time curvature differ on large scales from the predictions of general relativity. In this article, we describe efforts to model and test a generalized relationship between the matter and the metric using cosmological observations. Late-time tracers of large-scale structure, including the cosmic microwave background, weak gravitational lensing, and clustering are shown to provide good tests of the proposed solution. Current data are very close to proving a critical test, leaving only a small window in parameter space in the case that the generalized relationship is scale free above galactic scales.
Endocrine disorders as the following reactions and as the consequences by the low radiation doses
International Nuclear Information System (INIS)
Talalaeva, G.V.; Mylarshchikov, A.V.; Zajkova, I.O.; Antropova, T.B.
2004-01-01
The present study reports about endocrine disorders as the accelerators of the modified variability in the cohorts of the Urals inhabitants. The retrospective analysis of the endocrine and reproductive health by the emergency workers of Chernobyl accident, victims of the Eastern Urals Radiation Track (EURT) and their descendants in the first and second generation was implemented. The hormonal status of the 524 juveniles including 88 townspeople of Ekaterinburg as a control group and 436 grandchildren of the EURT-victims as a basic group was studied. The authors' data about static and dynamic characteristics of the ecological endocrine standards was described. The blood serum level of the thyroid, hypothalamic and hypo-physical-gonadal hormones as the static parameters was used. The chronology of the sexual and physical ripening as the dynamic parameters was observed. The endocrine disorders as a reason to changing the speed of the biological time during the hebetic period of the ontogenesis was noted. The peculiarities of the hebetic vector by the control group subjects with different degree of the hebetic ripening disturbances and the peculiarity of such vector by the EURT-victims descendants were singled out and classified. We hypothesize that the modified variability can be considered across the frame of the successive non-Markov process. In this case the parents' endocrine disorders we can marked as a previous history of this process and the descendants' reproductive dysfunctions as a consequences of own. (author)
Bischof, K; Hanelt, D; Wiencke, C
2000-09-01
Changes in physiological parameters related to photosynthesis were studied in five macroalgal species from Spitsbergen (Monostroma arcticum, Laminaria solidungula, Alaria esculenta, Palmaria palmata, Phycodrys rubens) during a 72-h exposure to UV radiation. Maximal quantum yield of photochemistry (Fv/Fm) and maximal electron transport rate (ETRmax) were measured with a pulse-amplitude-modulated fluorometer; the activity of the Calvin cycle enzymes ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) and glyceraldehyde-3-phosphate dehydrogenase (G3PDH) were estimated using a photometric test. Proteins of crude extracts were separated by SDS gel electrophoresis and changes in cellular concentrations of Rubisco were determined. Moreover, the concentration of chlorophyll a (Ch1 a), and protein content, were measured photometrically. In all species, Ch1 a content, maximal quantum yield as well as ETRmax decreased during the UV treatment. Changes in ETRmax were related to the changes in the overall activity of Rubisco. Analysis of SDS gels showed that in P. rubens, L. solidungula, M. arcticum and A. esculenta decreasing Rubisco activity partly resulted from a degradation of the enzyme. However, in A. esculenta, the formation of a high-molecular-weight polypeptide was observed. In all species, the activity of Rubisco was more strongly impaired than that of G3PDH. Exposure to UV resulted in loss of total protein only in the deepwater species L. solidungula and P. rubens. The different sensitivities to UV exposure of the species tested reflect their zonation pattern in the field.
Growth and radiation reaction of a spontaneous transplantable kidney carcinoma of the NMRI mouse
International Nuclear Information System (INIS)
Merinsky, G.
1984-01-01
Transplantability, growth parameters and radiation sensitivity were studied in situ on a spontaneous renal carcinoma of a NMRI mouse of the Neuherberg line. The tumour was histologically similar to the human hypernephroid adenocarcinoma. After irradiation with subcurative single doses, the growth graphs showed a moderate or delayed shrinkage tendency of the tumour, but a latency period which clearly increased with the dose up to progressive recidivational growth. The dose dependence of growth retardation derived from this fact resulted in a monophase dose-effect curve for anoxic irradiation conditions and in a steeper biphase curve for ambient conditions. A relatively small fraction of naturally hypoxic cells in the tumour may be assumed on the basis of the 'sharp-bend dose' (30 Gy) and the position of the two graphs relative to each other. An oxygen concentration factor of c. 1.7 was deduced from the comparison of iso-effective doses for the en-oxic initial part of the ambient graph. Following irradiation with curative single doses, the median curative doses (TCD50) were 65.6 Gy for anoxically irradiated tumours and 41.1 Gy for ambient tumours. Both healing graphs were essentially parallel to each other and relatively steep. The quantity of the hypoxic fraction could be assessed more acurately from the dose difference. Assuming Dsub(o) to be 3.9 Gy, a value of 1.8 x 10 -3 resulted which is fairly low compared with other animal tumours. (orig./MG) [de
Instability of gravitating sphalerons
International Nuclear Information System (INIS)
Boschung, P.; Brodbeck, O.; Moser, F.; Straumann, N.; Volkov, M.
1994-01-01
We prove the instability of the gravitating regular sphaleron solutions of the SU(2) Einstein-Yang-Mills-Higgs system with a Higgs doublet, by studying the frequency spectrum of a class of radial perturbations. With the help of a variational principle we show that there exist always unstable modes. Our method has the advantage that no detailed knowledge of the equilibrium solution is required. It does, however, not directly apply to black holes
Fivebrane gravitational anomalies
International Nuclear Information System (INIS)
Becker, Katrin; Becker, Melanie
2000-01-01
Freed, Harvey, Minasian and Moore (FHMM) have proposed a mechanism to cancel the gravitational anomaly of the M-theory fivebrane coming from diffeomorphisms acting on the normal bundle. This procedure is based on a modification of the conventional M-theory Chern-Simons term. We apply the FHMM mechanism in the ten-dimensional type IIA theory. We then analyze the relation to the anomaly cancellation mechanism for the type IIA fivebrane proposed by Witten
Probing gravitation with pulsars
Kramer, Michael
2013-03-01
Radio pulsars are fascinating and extremely useful objects. Despite our on-going difficulties in understanding the details of their emission physics, they can be used as precise cosmic clocks in a wide-range of experiments - in particular for probing gravitational physics. While the reader should consult the contributions to these proceedings to learn more about this exciting field of discovering, exploiting and understanding pulsars, we will concentrate here on on the usage of pulsars as gravity labs.
Black Hole Kicks as New Gravitational Wave Observables.
Gerosa, Davide; Moore, Christopher J
2016-07-01
Generic black hole binaries radiate gravitational waves anisotropically, imparting a recoil, or kick, velocity to the merger remnant. If a component of the kick along the line of sight is present, gravitational waves emitted during the final orbits and merger will be gradually Doppler shifted as the kick builds up. We develop a simple prescription to capture this effect in existing waveform models, showing that future gravitational wave experiments will be able to perform direct measurements, not only of the black hole kick velocity, but also of its accumulation profile. In particular, the eLISA space mission will measure supermassive black hole kick velocities as low as ∼500 km s^{-1}, which are expected to be a common outcome of black hole binary coalescence following galaxy mergers. Black hole kicks thus constitute a promising new observable in the growing field of gravitational wave astronomy.
Primordial black holes—perspectives in gravitational wave astronomy
Sasaki, Misao; Suyama, Teruaki; Tanaka, Takahiro; Yokoyama, Shuichiro
2018-03-01
This article reviews current understanding of primordial black holes (PBHs), with particular focus on those massive examples (≳ 1015~g ) which remain at the present epoch, not having evaporated through Hawking radiation. With the detection of gravitational waves by LIGO, we have gained a completely novel observational tool to search for PBHs, complementary to those using electromagnetic waves. Taking the perspective that gravitational-wave astronomy will make significant progress in the coming decades, the purpose of this article is to give a comprehensive review covering a wide range of topics on PBHs. After discussing PBH formation, as well as several inflation models leading to PBH production, we summarize various existing and future observational constraints. We then present topics on formation of PBH binaries, gravitational waves from PBH binaries, and various observational tests of PBHs using gravitational waves.
Heat and Gravitation: The Action Principle
Directory of Open Access Journals (Sweden)
Christian Frønsdal
2014-03-01
Full Text Available Some features of hydro- and thermo-dynamics, as applied to atmospheres and to stellar structures, are puzzling: (1 the suggestion, first made by Laplace, that our atmosphere has an adiabatic temperature distribution, is confirmed for the lower layers, but the explanation for this is very controversial; (2 the standard treatment of relativistic thermodynamics does not favor a systematic treatment of mixtures, such as the mixture of a perfect gas with radiation; (3 the concept of mass density in applications of general relativity to stellar structures is less than completely satisfactory; and (4 arguments in which a concept of energy and entropy play a role, in the context of hydro-thermodynamical systems and gravitation, are not always convincing. It is proposed that a formulation of thermodynamics as an action principle may be a suitable approach to adopt for a new investigation of these matters. This paper formulates the thermodynamics of ideal gases in a constant gravitational field in terms of the Gibbsean action principle. This approach, in the simplest cases, does not deviate from standard practice, but it lays the foundations for a more systematic approach to the various extensions, such as the incorporation of radiation, the consideration of mixtures and the integration with general relativity. We study the interaction between an ideal gas and the photon gas and the propagation of sound in a vertical, isothermal column. We determine the entropy that allows for the popular isothermal equilibrium and introduce the study of the associated adiabatic dynamics. This leads to the suggestion that the equilibrium of an ideal gas must be isentropic, in which case, the role of solar radiation would be merely to compensate for the loss of energy by radiation into the cosmos. An experiment with a centrifuge is proposed, to determine the influence of gravitation on the equilibrium distribution with a very high degree of precision.
Does exposure to UV radiation induce a shift to a Th-2-like immune reaction?
International Nuclear Information System (INIS)
Ullrich, S.E.
1996-01-01
In addition to being the primary cause of skin cancer, UV radiation is immune suppressive and there appears to be a link between the ability of UV to suppress the immune response and induce skin cancer. Cytokines made by UV-irradiated keratinocytes play an essential role in activating immune suppression. In particular, we have found that keratinocyte-derived interleukin (IL)-10 is responsible for the systemic impairment of antigen presenting cell function and the UV-induced suppression of delayed-type hypersenstivity (DTH). Antigen presentation by splenic adherent cells isolated from UV-irradiated mice to T helper-1 type T (Th1) cells is suppressed, whereas antigen presentation to T helper-2 type T (Th2) cells is enhanced. The enhanced antigen presentation to Th2 cells and the impaired presentation to Th1 cells can be reversed in vivo by injecting the UV-irradiated mice with monoclonal anti-IL-10 antibody. Furthermore, immune suppression can be transferred from UV-irradiated mice to normal recipients by adoptive transfer of T cells. Injecting the recipient mice with anti-IL-4 or anti-IL-10 prevents the transfer of immune suppression, suggesting the suppressor cells are Th2 cells. In addition, injecting UV-irradiated mice with IL-12, a cytokine that has been shown to be the primary inducer of Th1 cells, and one that prevents the differentiation of Th2 cells in vivo, reverses UV-induced immune suppression. These findings support the hypothesis that UV exposure activates IL-10 secretion, which depresses the function of Th1 cells, while enhancing the activity of Th2 cells. (Author)
Experimental study on bone tissue reaction around HA implants radiated after implantation
International Nuclear Information System (INIS)
Kudo, Masato; Matsui, Yoshiro; Tamura, Sayaka; Chen, Xuan; Uchida, Haruo; Mori, Kimie; Ohno, Kohsuke; Michi, Ken-ichi
1998-01-01
This study was conducted to investigate histologically and histomorphometrically the tissue reaction around hydroxylapatite (HA) implants that underwent irradiation in 3 different periods in the course of bone healing after implantation. The cylindrical high-density HA implants were implanted in 48 Japanese white rabbit mandibles. A single 15 Gy dose was applied to the mandible 5, 14, or 28 days after implantation. The rabbits were sacrificed 7, 14, 28, and 90 days after irradiation. Nonirradiated rabbits were used as controls. CMR, labeling with tetracycline and calcein, and non-decalcified specimens stained with toluidine blue were used for histological analyses and histomorphometric measurements. The results were as follows: In the rabbits irradiated 5 days after implantation, the HA-bone contact was observed later than that in the controls and the bone-implant contact surface ratio was lower than that in the controls at examination because necrosis of the newly-formed bone occurred just after irradiation. HA-bone contact of the rabbits irradiated 14 and 28 days after implantation was similar to that of the controls. And, bone remodeling was suppressed in rabbits of each group sacrificed at 90 days after irradiation. The results suggested that a short interval between implantation and irradiation causes direct contact between HA implant and bone and a long lapse of time before irradiation hardly affects the bone-implant contact, but delays bone remodeling. Therefore, it is necessary to prevent overloading the HA implants irradiated after implantation and pay utmost attention to conditions around the bone-implant contact. (author)
Experimental study on bone tissue reaction around HA implants radiated after implantation
Energy Technology Data Exchange (ETDEWEB)
Kudo, Masato; Matsui, Yoshiro; Tamura, Sayaka; Chen, Xuan; Uchida, Haruo; Mori, Kimie; Ohno, Kohsuke; Michi, Ken-ichi [Showa Univ., Tokyo (Japan). School of Dentistry
1998-07-01
This study was conducted to investigate histologically and histomorphometrically the tissue reaction around hydroxylapatite (HA) implants that underwent irradiation in 3 different periods in the course of bone healing after implantation. The cylindrical high-density HA implants were implanted in 48 Japanese white rabbit mandibles. A single 15 Gy dose was applied to the mandible 5, 14, or 28 days after implantation. The rabbits were sacrificed 7, 14, 28, and 90 days after irradiation. Nonirradiated rabbits were used as controls. CMR, labeling with tetracycline and calcein, and non-decalcified specimens stained with toluidine blue were used for histological analyses and histomorphometric measurements. The results were as follows: In the rabbits irradiated 5 days after implantation, the HA-bone contact was observed later than that in the controls and the bone-implant contact surface ratio was lower than that in the controls at examination because necrosis of the newly-formed bone occurred just after irradiation. HA-bone contact of the rabbits irradiated 14 and 28 days after implantation was similar to that of the controls. And, bone remodeling was suppressed in rabbits of each group sacrificed at 90 days after irradiation. The results suggested that a short interval between implantation and irradiation causes direct contact between HA implant and bone and a long lapse of time before irradiation hardly affects the bone-implant contact, but delays bone remodeling. Therefore, it is necessary to prevent overloading the HA implants irradiated after implantation and pay utmost attention to conditions around the bone-implant contact. (author)
Colloquium: Multimessenger astronomy with gravitational waves and high-energy neutrinos
Ando, S.; Baret, B.; Bartos, I.; Bouhou, B.; Chassande-Mottin, E.; Corsi, A.; Di Palma, I.; Dietz, A.; Donzaud, C.; Eichler, D.; Finley, C.; Guetta, D.; Halzen, F.; Jones, G.; Kandhasamy, S.; Kotake, K.; Kouchner, A.; Mandic, V.; Márka, S.; Márka, Z.; Moscoso, L.; Papa, M.A.; Piran, T.; Pradier, T.; Romero, G.E.; Sutton, P.; Thrane, E.; van Elewyck, V.; Waxman, E.
2013-01-01
Many of the astrophysical sources and violent phenomena observed in our Universe are potential emitters of gravitational waves and high-energy cosmic radiation, including photons, hadrons, and presumably also neutrinos. Both gravitational waves (GW) and high-energy neutrinos (HEN) are cosmic
Zhusupov, M A
2002-01-01
The reactions of radiation capture of alpha-particles by sup 7 Li nucleus which leads to excitation of the resonance levels of sup 1 sup 1 B nucleus were studied. The total cross sections of outlet high-energy gamma quanta were calculated. (author)
International Nuclear Information System (INIS)
Zhou Huaichun; Ai Yuhua
2006-01-01
Both light and heat are produced during a chemical reaction in a combustion process, but traditionally all the energy released is taken as to be transformed into the internal energy of the combustion medium. So the temperature of the medium increases, and then the thermal radiation emitted from it increases too. Chemiluminescence is generated during a chemical reaction and independent of the temperature, and has been used widely for combustion diagnostics. It was assumed in this paper that the total energy released in a combustion reaction is divided into two parts, one part is a self-absorbed heat, and the other is a directly emitted heat. The former is absorbed immediately by the products, becomes the internal energy and then increases the temperature of the products as treated in the traditional way. The latter is emitted directly as radiation into the combustion domain and should be included in the radiation transfer equation (RTE) as a part of radiation source. For a simple, 2-D, gray, emitting-absorbing, rectangular system, the numerical study showed that the temperatures in reaction zones depended on the fraction of the directly emitted energy, and the smaller the gas absorption coefficient was, the more strong the dependence appeared. Because the effect of the fraction of the directly emitted heat on the temperature distribution in the reacting zones for gas combustion is significant, it is required to conduct experimental measurements to determine the fraction of self-absorbed heat for different combustion processes
Quantum Emulation of Gravitational Waves.
Fernandez-Corbaton, Ivan; Cirio, Mauro; Büse, Alexander; Lamata, Lucas; Solano, Enrique; Molina-Terriza, Gabriel
2015-07-14
Gravitational waves, as predicted by Einstein's general relativity theory, appear as ripples in the fabric of spacetime traveling at the speed of light. We prove that the propagation of small amplitude gravitational waves in a curved spacetime is equivalent to the propagation of a subspace of electromagnetic states. We use this result to propose the use of entangled photons to emulate the evolution of gravitational waves in curved spacetimes by means of experimental electromagnetic setups featuring metamaterials.
Energy Technology Data Exchange (ETDEWEB)
Mumbrekar, Kamalesh Dattaram [Division of Radiobiology and Toxicology, School of Life Sciences, Manipal University, Manipal, Karnataka (India); Fernandes, Donald Jerard [Department of Radiotherapy and Oncology, Shirdi Sai Baba Cancer Hospital and Research Centre, Kasturba Hospital, Manipal, Karnataka (India); Goutham, Hassan Venkatesh [Division of Radiobiology and Toxicology, School of Life Sciences, Manipal University, Manipal, Karnataka (India); Sharan, Krishna [Department of Radiotherapy and Oncology, Shirdi Sai Baba Cancer Hospital and Research Centre, Kasturba Hospital, Manipal, Karnataka (India); Vadhiraja, Bejadi Manjunath [Manipal Hospital, Bangalore, Karnataka (India); Satyamoorthy, Kapaettu [Division of Biotechnology, School of Life Sciences, Manipal University, Manipal, Karnataka (India); Bola Sadashiva, Satish Rao, E-mail: satishraomlsc@gmail.com [Division of Radiobiology and Toxicology, School of Life Sciences, Manipal University, Manipal, Karnataka (India)
2014-03-01
Purpose: Curative radiation therapy (RT)-induced toxicity poses strong limitations for efficient RT and worsens the quality of life. The parameter that explains when and to what extent normal tissue toxicity in RT evolves would be of clinical relevance because of its predictive value and may provide an opportunity for personalized treatment approach. Methods and Materials: DNA double-strand breaks and repair were analyzed by microscopic γ-H2AX foci analysis in peripheral lymphocytes from 38 healthy donors and 80 breast cancer patients before RT, a 2 Gy challenge dose of x-ray exposed in vitro. Results: The actual damage (AD) at 0.25, 3, and 6 hours and percentage residual damage (PRD) at 3 and 6 hours were used as parameters to measure cellular radiosensitivity and correlated with RT-induced acute skin reactions in patients stratified as non-overresponders (NOR) (Radiation Therapy Oncology Group [RTOG] grade <2) and overresponders (OR) (RTOG grade ≥2). The results indicated that the basal and induced (at 0.25 and 3 hours) γ-H2AX foci numbers were nonsignificant (P>.05) between healthy control donors and the NOR and OR groups, whereas it was significant between ORs and healthy donors at 6 hours (P<.001). There was a significantly higher PRD in OR versus NOR (P<.05), OR versus healthy donors (P<.001) and NOR versus healthy donors (P<.01), supported further by the trend analysis (r=.2392; P=.0326 at 6 hours). Conclusions: Our findings strongly suggest that the measurement of PRD by performing γ-H2AX foci analysis has the potential to be developed into a clinically useful predictive assay.
Gravitational waves from orbiting binaries without general relativity
Hilborn, Robert C.
2018-03-01
Using analogies with electromagnetic radiation, we present a calculation of the properties of gravitational radiation emitted by orbiting binary objects. The calculation produces results that have the same dependence on the masses of the orbiting objects, the orbital frequency, and the mass separation as do the results from the linear version of general relativity (GR). However, the calculation yields polarization, angular distributions, and overall power results that differ from those of GR. Nevertheless, the calculation produces waveforms that are very similar to those observed by the Laser Interferometer Gravitational-Wave Observatory (LIGO-VIRGO) gravitational wave collaboration in 2015 up to the point at which the binary merger occurs. The details of the calculation should be understandable by upper-level physics students and physicists who are not experts in GR.
International Nuclear Information System (INIS)
Criquet, Justine; Leitner, Nathalie Karpel Vel
2015-01-01
The degradation of p-hydroxybenzoic acid (HBA) in aqueous solutions by ionizing radiation was studied. The phenolic pollutant was easily removed by the electron beam irradiation, as more than 80% of the initial 100 µM introduced was degraded for a dose of 600 Gy. It was shown that the addition of persulfate, producing the sulfate radical as additional reactive species, induced a change in the reaction pathway. LC–MS analyses were performed in order to identify the different by-products formed. In the absence of persulfate, the main by-product formed was 3,4-dihydroxybenzoic acid, while in presence of persulfate, 1,4-benzoquinone was detected and the hydroxylated by-products were not present. A reaction pathway of HBA degradation by hydroxyl and sulfate radicals was proposed from the identification of the chemical structure of the different by-products detected. The influences of pH and dissolved oxygen were also studied. A high decline of HBA degradation was observed at pH 11 compared to pH 4.5, this decrease was minimized in the presence of persulfate. The dissolved oxygen concentration was found to be a limiting parameter of HBA degradation, however an excess of dissolved oxygen in solution did not improve the degradation to a large extent. - Highlights: • p-Hydroxybenzoic acid (HBA) is easily removed by e-beam irradiation. • The sulfate radicals formed from persulfate induce loss of the benzoic acid skeleton. • The dissolved oxygen concentration is a limiting parameter of the HBA degradation. • The effect of pH is minimized in presence of persulfate
International Nuclear Information System (INIS)
Nakamura, Katsuichi; Tamura, Masao; Hasegawa, Susumu
1979-01-01
Some investigations of what kind of changes occured in the aqueous solutions of amino acids, using alpha -radiations and 7 Li recoil particles produced from 10 B(n, alpha) 7 Li reactions, were performed. Glycine and valine were affected by the radiations at both of -NH 2 group and -COOH group, indicating the G values as follows; G(-NH 2 ) was 20.8 for both of glycine and valine, G(-COOH) was 14.9 for glycine and 23.8 for valine. From irradiation of alanine ammonia and carbon dioxide were produced and, since Biuret test of irradiated samples had shown of positive reaction, production of peptide bond or amino were suggested. Reaction mechanism were estimated. (author)
Gravitational Physics Research
Wu, S. T.
2000-01-01
Gravitational physics research at ISPAE is connected with NASA's Relativity Mission (Gravity Probe B (GP-B)) which will perform a test of Einstein's General Relativity Theory. GP-B will measure the geodetic and motional effect predicted by General Relativity Theory with extremely stable and sensitive gyroscopes in an earth orbiting satellite. Both effects cause a very small precession of the gyroscope spin axis. The goal of the GP-B experiment is the measurement of the gyroscope precession with very high precision. GP-B is being developed by a team at Stanford University and is scheduled for launch in the year 2001. The related UAH research is a collaboration with Stanford University and MSFC. This research is focussed primarily on the error analysis and data reduction methods of the experiment but includes other topics concerned with experiment systems and their performance affecting the science measurements. The hydrogen maser is the most accurate and stable clock available. It will be used in future gravitational physics missions to measure relativistic effects such as the second order Doppler effect. The HMC experiment, currently under development at the Smithsonian Astrophysical Observatory (SAO), will test the performance and capability of the hydrogen maser clock for gravitational physics measurements. UAH in collaboration with the SAO science team will study methods to evaluate the behavior and performance of the HMC. The GP-B data analysis developed by the Stanford group involves complicated mathematical operations. This situation led to the idea to investigate alternate and possibly simpler mathematical procedures to extract the GP-B measurements form the data stream. Comparison of different methods would increase the confidence in the selected scheme.
Superstatistics and Gravitation
Directory of Open Access Journals (Sweden)
Octavio Obregón
2010-09-01
Full Text Available We suggest to consider the spacetime as a non-equilibrium system with a long-term stationary state that possess as a spatio-temporally fluctuating quantity ß . These systems can be described by a superposition of several statistics, superstatistics. We propose a Gamma distribution for f(ß that depends on a parameter ρ1. By means of it the corresponding entropy is calculated, ρ1 is identified with the probability corresponding to this model. A generalized Newton’s law of gravitation is then obtained following the entropic force formulation. We discuss some of the difficulties to try to get an associated theory of gravity.
Piecewise flat gravitational waves
Energy Technology Data Exchange (ETDEWEB)
Van de Meent, Maarten, E-mail: M.vandeMeent@uu.nl [Institute for Theoretical Physics and Spinoza Institute, Utrecht University, PO Box 80.195, 3508 TD Utrecht (Netherlands)
2011-04-07
We examine the continuum limit of the piecewise flat locally finite gravity model introduced by 't Hooft. In the linear weak field limit, we find the energy-momentum tensor and metric perturbation of an arbitrary configuration of defects. The energy-momentum turns out to be restricted to satisfy certain conditions. The metric perturbation is mostly fixed by the energy-momentum except for its lightlike modes which reproduce linear gravitational waves, despite no such waves being present at the microscopic level.
Gravitating discs around black holes
International Nuclear Information System (INIS)
Karas, V; Hure, J-M; Semerak, O
2004-01-01
Fluid discs and tori around black holes are discussed within different approaches and with the emphasis on the role of disc gravity. First reviewed are the prospects of investigating the gravitational field of a black hole-disc system using analytical solutions of stationary, axially symmetric Einstein equations. Then, more detailed considerations are focused to the middle and outer parts of extended disc-like configurations where relativistic effects are small and the Newtonian description is adequate. Within general relativity, only a static case has been analysed in detail. Results are often very inspiring. However, simplifying assumptions must be imposed: ad hoc profiles of the disc density are commonly assumed and the effects of frame-dragging are completely lacking. Astrophysical discs (e.g. accretion discs in active galactic nuclei) typically extend far beyond the relativistic domain and are fairly diluted. However, self-gravity is still essential for their structure and evolution, as well as for their radiation emission and the impact on the surrounding environment. For example, a nuclear star cluster in a galactic centre may bear various imprints of mutual star-disc interactions, which can be recognized in observational properties, such as the relation between the central mass and stellar velocity dispersion. (topical review)
Gravitational mass of relativistic matter and antimatter
Directory of Open Access Journals (Sweden)
Tigran Kalaydzhyan
2015-12-01
Full Text Available The universality of free fall, the weak equivalence principle (WEP, is a cornerstone of the general theory of relativity, the most precise theory of gravity confirmed in all experiments up to date. The WEP states the equivalence of the inertial, m, and gravitational, mg, masses and was tested in numerous occasions with normal matter at relatively low energies. However, there is no confirmation for the matter and antimatter at high energies. For the antimatter the situation is even less clear – current direct observations of trapped antihydrogen suggest the limits −65
Energy Technology Data Exchange (ETDEWEB)
Kim, Sunmi; Yoon, Do-Kun; Shin, Han-Back; Jung, Joo-Young; Kim, Moo-Sub; Kim, Kyeong-Hyeon; Jang, Hong-Seok; Suh, Tae Suk [the Catholic University of Korea, Seoul (Korea, Republic of)
2017-03-15
The purpose of this research is to demonstrate, based on a Monte Carlo simulation code, the procedure of radiation treatment planning for proton-boron fusion therapy (PBFT). A discrete proton beam (60 - 120 MeV) relevant to the Bragg peak was simulated using a Monte Carlo particle extended (MCNPX, Ver. 2.6.0, National Laboratory, Los Alamos NM, USA) simulation code. After computed tomography (CT) scanning of a virtual water phantom including air cavities, the acquired CT images were converted using the simulation source code. We set the boron uptake regions (BURs) in the simulated water phantom to achieve the proton-boron fusion reaction. Proton sources irradiated the BUR, in the phantom. The acquired dose maps were overlapped with the original CT image of the phantom to analyze the dose volume histogram (DVH). We successfully confirmed amplifications of the proton doses (average: 130%) at the target regions. From the DVH result for each simulation, we acquired a relatively accurate dose map for the treatment. A simulation was conducted to characterize the dose distribution and verify the feasibility of proton boron fusion therapy (PBFT). We observed a variation in proton range and developed a tumor targeting technique for treatment that was more accurate and powerful than both conventional proton therapy and boron-neutron capture therapy.
International Nuclear Information System (INIS)
Churchill, M.E.; Gemmell, M.A.; Woloschak, G.E.
1994-01-01
A polymerase chain reaction (PCR) technique has been developed to detect deletions in the mouse retinoblastoma gene using histological sections from radiation-induced and spontaneous tumors as the DNA source. Six mouse Rb gene exon fragments were amplified in a 40-cycle, 3-temperature PCR protocol. The absence of any of these fragments relative to control PCR products on a Southern blot indicated a deletion of that portion of the mouse Rb gene. Tumors chosen for analysis were lung adenocarcinomas that were judged to be the cause of death. Spontaneous tumors as well as those from irradiated mice (5.69 Gy 60 Co γ rays or 0.6 Gy JANUS neutrons, which have been found to have approximately equal radiobiological effectiveness) were analyzed for mouse Rb deletions. Tumors in 6 neutron-irradiated mice had no mouse Rb deletions. However, 1 of 6 tumors from γ-irradiated mice (17%) and 6 of 18 spontaneous tumors from unirradiated mice (33%) showed a deletion in one or both mouse Rb alleles. All deletions detected were in the 5' region of the mouse Rb gene. 36 refs., 2 figs., 2 tabs
Herrmann, Hans W; Mack, Joseph M; Young, Carlton S; Malone, Robert M; Stoeffl, Wolfgang; Horsfield, Colin J
2008-10-01
Bang time and reaction history measurements are fundamental components of diagnosing inertial confinement fusion (ICF) implosions and will be essential contributors to diagnosing attempts at ignition on the National Ignition Facility (NIF). Fusion gammas provide a direct measure of fusion interaction rate without being compromised by Doppler spreading. Gamma-based gas Cherenkov detectors that convert fusion gamma rays to optical Cherenkov photons for collection by fast recording systems have been developed and fielded at Omega. These systems have established their usefulness in illuminating ICF physics in several experimental campaigns. Bang time precision better than 25 ps has been demonstrated, well below the 50 ps accuracy requirement defined by the NIF system design requirements. A comprehensive, validated numerical study of candidate systems is providing essential information needed to make a down selection based on optimization of sensitivity, bandwidth, dynamic range, cost, and NIF logistics. This paper presents basic design considerations arising from the two-step conversion process from gamma rays to relativistic electrons to UV/visible Cherenkov radiation.
Kim, Sunmi; Yoon, Do-Kun; Shin, Han-Back; Jung, Joo-Young; Kim, Moo-Sub; Kim, Kyeong-Hyeon; Jang, Hong-Seok; Suh, Tae Suk
2017-03-01
The purpose of this research is to demonstrate, based on a Monte Carlo simulation code, the procedure of radiation treatment planning for proton-boron fusion therapy (PBFT). A discrete proton beam (60 - 120 MeV) relevant to the Bragg peak was simulated using a Monte Carlo n-particle extended (MCNPX, Ver. 2.6.0, National Laboratory, Los Alamos NM, USA) simulation code. After computed tomography (CT) scanning of a virtual water phantom including air cavities, the acquired CT images were converted using the simulation source code. We set the boron uptake regions (BURs) in the simulated water phantom to achieve the proton-boron fusion reaction. Proton sources irradiated the BUR, in the phantom. The acquired dose maps were overlapped with the original CT image of the phantom to analyze the dose volume histogram (DVH). We successfully confirmed amplifications of the proton doses (average: 130%) at the target regions. From the DVH result for each simulation, we acquired a relatively accurate dose map for the treatment. A simulation was conducted to characterize the dose distribution and verify the feasibility of proton-boron fusion therapy (PBFT). We observed a variation in proton range and developed a tumor-targeting technique for treatment that was more accurate and powerful than both conventional proton therapy and boron-neutron capture therapy.
Relic gravitational waves and extended inflation
International Nuclear Information System (INIS)
Turner, M.S.; Wilczek, F.
1990-01-01
In extended inflation, a new version of inflation where the transition from an inflationary to a radiation-dominated Universe is accomplished by bubble nucleation, bubble collisions supply a potent---and potentially detectable---source of gravitational waves. The energy density in relic gravitons from bubble collisions is expected to be about 10 -5 of closure density. Their characteristic wavelength depends upon the reheating temperature T RH: λ∼(10 4 cm)[(10 14 GeV)/T RH ]. If black holes are produced by bubble collisions, they will evaporate producing shorter-wavelength gravitons
On an illusion of superluminal velocities produced by gravitational lenses
International Nuclear Information System (INIS)
Ingel, L.Kh.
1981-01-01
It is noted that gravitational lenses, by focusing the radiation of an object, increase the angle which it subtends. This in turn produces the illusion of an increase in velocities at right angles to the line of sight. Preliminary estimates are made which indicate a rather high probability of strong distortion of the observed velocities
Squeezed states in the theory of primordial gravitational waves
Grishchuk, Leonid P.
1992-01-01
It is shown that squeezed states of primordial gravitational waves are inevitably produced in the course of cosmological evolution. The theory of squeezed gravitons is very similar to the theory of squeezed light. Squeezed parameters and statistical properties of the expected relic gravity-wave radiation are described.
General Relativity and Gravitation
Ashtekar, Abhay; Berger, Beverly; Isenberg, James; MacCallum, Malcolm
2015-07-01
Part I. Einstein's Triumph: 1. 100 years of general relativity George F. R. Ellis; 2. Was Einstein right? Clifford M. Will; 3. Cosmology David Wands, Misao Sasaki, Eiichiro Komatsu, Roy Maartens and Malcolm A. H. MacCallum; 4. Relativistic astrophysics Peter Schneider, Ramesh Narayan, Jeffrey E. McClintock, Peter Mészáros and Martin J. Rees; Part II. New Window on the Universe: 5. Receiving gravitational waves Beverly K. Berger, Karsten Danzmann, Gabriela Gonzalez, Andrea Lommen, Guido Mueller, Albrecht Rüdiger and William Joseph Weber; 6. Sources of gravitational waves. Theory and observations Alessandra Buonanno and B. S. Sathyaprakash; Part III. Gravity is Geometry, After All: 7. Probing strong field gravity through numerical simulations Frans Pretorius, Matthew W. Choptuik and Luis Lehner; 8. The initial value problem of general relativity and its implications Gregory J. Galloway, Pengzi Miao and Richard Schoen; 9. Global behavior of solutions to Einstein's equations Stefanos Aretakis, James Isenberg, Vincent Moncrief and Igor Rodnianski; Part IV. Beyond Einstein: 10. Quantum fields in curved space-times Stefan Hollands and Robert M. Wald; 11. From general relativity to quantum gravity Abhay Ashtekar, Martin Reuter and Carlo Rovelli; 12. Quantum gravity via unification Henriette Elvang and Gary T. Horowitz.
Schubert, G.; Anderson, J. D.
2013-12-01
Titan's gravitational field is inferred from an analysis of archived radio Doppler data for six Cassini flybys. The analysis considers each flyby separately in contrast to the approach of lumping all the data together in a massive inversion. In this way it is possible to gain an improved understanding of the character of each flyby and its usefulness in constraining the gravitational coefficient C22 . Though our analysis is not yet complete and our final determination of C22 could differ from the result we report here by 1 or 2 sigma, we find a best-fit value of C22 equal to (13.21 × 0.17) × 10-6, significantly larger than the value of 10.0 × 10-6 obtained from an inversion of the lumped Cassini data. We also find no determination of the tidal Love number k2. The larger value of C22 implies a moment of inertia factor equal to 0.3819 × 0.0020 and a less differentiated Titan than is suggested by the smaller value. The larger value of C22 is consistent with an undifferentiated model of the satellite. While it is not possible to rule out either value of C22 , we prefer the larger value because its derivation results from a more hands on analysis of the data that extracts the weak hydrostatic signal while revealing the effects of gravity anomalies and unmodeled spacecraft accelerations on each of the six flybys.
UCN gravitational spectrometer
International Nuclear Information System (INIS)
Kawabata, Yuji
1988-01-01
Concept design is carried out of two types of ultra cold neutron scallering equipment using the fall-focusing principle. One of the systems comprises a vertical gravitational spectrometer and the other includes a horizontal gravitation analyzer. A study is made of their performance and the following results are obtained. Fall-focusing type ultra cold neutron scattering equipment can achieve a high accuracy for measurement of energy and momentum. Compared with conventional neutron scattering systems, this type of equipment can use neutron very efficiently because scattered neutrons within a larger solid angle can be used. The maximum solid angle is nearly 4π and 2π for the vertical and horizontal type, respectively. Another feature is that the size of equipment can be reduced. In the present concept design, the equipment is spherical with a diameter of about 1 m, as compared with NESSIE which is 6.7 m in length and 4.85 m in height with about the same accuracy. Two horizontal analyzers and a vertical spectroscope are proposed. They are suitable for angle-dependent non-elastic scattering in the neutron velocity range of 6∼15 m/s, pure elastic scattering in the range of 4∼7 m/s, or angle-integration non-elastic scattering in the range of 4∼15 m/s. (N.K.)
International Nuclear Information System (INIS)
Burinskii, A.
2015-01-01
The Kerr–Newman (KN) black hole (BH) solution exhibits the external gravitational and electromagnetic field corresponding to that of the Dirac electron. For the large spin/mass ratio, a ≫ m, the BH loses horizons and acquires a naked singular ring creating two-sheeted topology. This space is regularized by the Higgs mechanism of symmetry breaking, leading to an extended particle that has a regular spinning core compatible with the external KN solution. We show that this core has much in common with the known MIT and SLAC bag models, but has the important advantage of being in accordance with the external gravitational and electromagnetic fields of the KN solution. A peculiar two-sheeted structure of Kerr’s gravity provides a framework for the implementation of the Higgs mechanism of symmetry breaking in configuration space in accordance with the concept of the electroweak sector of the Standard Model. Similar to other bag models, the KN bag is flexible and pliant to deformations. For parameters of a spinning electron, the bag takes the shape of a thin rotating disk of the Compton radius, with a ring–string structure and a quark-like singular pole formed at the sharp edge of this disk, indicating that the considered lepton bag forms a single bag–string–quark system
Stochastic background of gravitational waves generated by compact binary systems
Energy Technology Data Exchange (ETDEWEB)
Evangelista, Edgard F.D.; Araujo, Jose C.N. de, E-mail: jcarlos.dearaujo@inpe.br [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil). Div. de Astrofisica
2014-07-01
Binary systems are the most studied sources of gravitational waves. The mechanisms of emission and the behavior of the orbital parameters are well known and can be written in analytic form in several cases. Besides, the strongest indication of the existence of gravitational waves has arisen from the observation of binary systems. On the other hand, when the detection of gravitational radiation becomes a reality, one of the observed pattern of the signals will be probably of stochastic background nature, which are characterized by a superposition of signals emitted by many sources around the universe. Our aim here is to develop an alternative method of calculating such backgrounds emitted by cosmological compact binary systems during their periodic or quasiperiodic phases. We use an analogy with a problem of statistical mechanics in order to perform this sum as well as taking into account the temporal variation of the orbital parameters of the systems. Such a kind of background is of particular importance since it could well form an important foreground for the planned gravitational wave interferometers DECI-Hertz Interferometer Gravitational wave Observatory (DECIGO), Big Bang Observer (BBO), Laser Interferometer Space Antenna (LISA) or Evolved LISA (eLISA), Advanced Laser Interferometer Gravitational-Wave Observatory (ALIGO), and Einstein Telescope (ET). (author)
Blandford's argument: The strongest continuous gravitational wave signal
International Nuclear Information System (INIS)
Knispel, Benjamin; Allen, Bruce
2008-01-01
For a uniform population of neutron stars whose spin-down is dominated by the emission of gravitational radiation, an old argument of Blandford states that the expected gravitational-wave amplitude of the nearest source is independent of the deformation and rotation frequency of the objects. Recent work has improved and extended this argument to set upper limits on the expected amplitude from neutron stars that also emit electromagnetic radiation. We restate these arguments in a more general framework, and simulate the evolution of such a population of stars in the gravitational potential of our galaxy. The simulations allow us to test the assumptions of Blandford's argument on a realistic model of our galaxy. We show that the two key assumptions of the argument (two dimensionality of the spatial distribution and a steady-state frequency distribution) are in general not fulfilled. The effective scaling dimension D of the spatial distribution of neutron stars is significantly larger than two, and for frequencies detectable by terrestrial instruments the frequency distribution is not in a steady state unless the ellipticity is unrealistically large. Thus, in the cases of most interest, the maximum expected gravitational-wave amplitude does have a strong dependence on the deformation and rotation frequency of the population. The results strengthen the previous upper limits on the expected gravitational-wave amplitude from neutron stars by a factor of 6 for realistic values of ellipticity.
Massive scalar counterpart of gravitational waves in scalarized neutron star binaries
Energy Technology Data Exchange (ETDEWEB)
Wang, Jing [Sun Yat-sen University, School of Physics and Astronomy, Guangzhou (China)
2017-09-15
In analogy with spontaneous magnetization of ferromagnets below the Curie temperature, a neutron star (NS), with a compactness above a certain critical value, may undergo spontaneous scalarization and exhibit an interior nontrivial scalar configuration. Consequently, the exterior spacetime is changed, and an external scalar field appears, which subsequently triggers a scalarization of its companion. The dynamical interplay produces a gravitational scalar counterpart of tensor gravitational waves. In this paper, we resort to scalar-tensor theory and demonstrate that the gravitational scalar counterpart from a double neutron star (DNS) and a neutron star-white dwarf (NS-WD) system become massive. We report that (1) a gravitational scalar background field, arising from convergence of external scalar fields, plays the role of gravitational scalar counterpart in scalarized DNS binary, and the appearance of a mass-dimensional constant in a Higgs-like gravitational scalar potential is responsible for a massive gravitational scalar counterpart with a mass of the order of the Planck scale; (2) a dipolar gravitational scalar radiated field, resulting from differing binding energies of NS and WD, plays the role of a gravitational scalar counterpart in scalarized orbital shrinking NS-WDs, which oscillates around a local and scalar-energy-density-dependent minimum of the gravitational scalar potential and obtains a mass of the order of about 10{sup -21} eV/c{sup 2}. (orig.)
Gravitational Casimir–Polder effect
Directory of Open Access Journals (Sweden)
Jiawei Hu
2017-04-01
Full Text Available The interaction due to quantum gravitational vacuum fluctuations between a gravitationally polarizable object modelled as a two-level system and a gravitational boundary is investigated. This quantum gravitational interaction is found to be position-dependent, which induces a force in close analogy to the Casimir–Polder force in the electromagnetic case. For a Dirichlet boundary, the quantum gravitational potential for the polarizable object in its ground-state is shown to behave like z−5 in the near zone, and z−6 in the far zone, where z is the distance to the boundary. For a concrete example, where a Bose–Einstein condensate is taken as a gravitationally polarizable object, the relative correction to the radius of the BEC caused by fluctuating quantum gravitational waves in vacuum is found to be of order 10−21. Although the correction is far too small to observe in comparison with its electromagnetic counterpart, it is nevertheless of the order of the gravitational strain caused by a recently detected black hole merger on the arms of the LIGO.
Gravitational field of Schwarzschild soliton
Directory of Open Access Journals (Sweden)
Musavvir Ali
2015-01-01
Full Text Available The aim of this paper is to study the gravitational field of Schwarzschild soliton. Use of characteristic of λ-tensor is given to determine the kinds of gravitational fields. Through the cases of two and three dimension for Schwarzschild soliton, the Gaussian curvature is expressed in terms of eigen values of the characteristic equation.
Laboratory generation of gravitational waves
International Nuclear Information System (INIS)
Pinto, I.M.; Rotoli, G.
1988-01-01
The authors have performed calculations on the basic type of gravitational wave electromagnetic laboratory generators. Their results show that laboratory generations of gravitational wave is at limit of state-of-the-art of present-day giant electromagnetic field generation
Gravitational collapse and naked singularities
Indian Academy of Sciences (India)
Abstract. Gravitational collapse is one of the most striking phenomena in gravitational physics. The cosmic censorship conjecture has provided strong motivation for research in this field. In the absence of a general proof for censorship, many examples have been proposed, in which naked singularity is the outcome of ...
Gravitational Casimir-Polder effect
Hu, Jiawei; Yu, Hongwei
2017-04-01
The interaction due to quantum gravitational vacuum fluctuations between a gravitationally polarizable object modelled as a two-level system and a gravitational boundary is investigated. This quantum gravitational interaction is found to be position-dependent, which induces a force in close analogy to the Casimir-Polder force in the electromagnetic case. For a Dirichlet boundary, the quantum gravitational potential for the polarizable object in its ground-state is shown to behave like z-5 in the near zone, and z-6 in the far zone, where z is the distance to the boundary. For a concrete example, where a Bose-Einstein condensate is taken as a gravitationally polarizable object, the relative correction to the radius of the BEC caused by fluctuating quantum gravitational waves in vacuum is found to be of order 10-21. Although the correction is far too small to observe in comparison with its electromagnetic counterpart, it is nevertheless of the order of the gravitational strain caused by a recently detected black hole merger on the arms of the LIGO.
Critical Effects in Gravitational Collapse
International Nuclear Information System (INIS)
Chmaj, T.
2000-01-01
The models of gravitational collapse of a dynamical system are investigated by means of the Einstein equations. Different types conjunctions to gravitational field are analyzed and it is shown that in the case of week scalar field (low energy density) the system evaluated to flat space while in the case of strong field (high energy density) to black hole
Exact piecewise flat gravitational waves
van de Meent, M.
2011-01-01
We generalize our previous linear result (van de Meent 2011 Class. Quantum Grav 28 075005) in obtaining gravitational waves from our piecewise flat model for gravity in 3+1 dimensions to exact piecewise flat configurations describing exact planar gravitational waves. We show explicitly how to
Interferometric Gravitational Wave Detectors: Challenges
Indian Academy of Sciences (India)
2015-09-14
Sep 14, 2015 ... Interferometric Gravitational Wave Detectors: Challenges. The IndiGO Consortium & The LIGO Scientific ... of spinning objects (Gravity Probe-B). 6) Black holes. 7) Gravitational Waves .... Scheme of the advanced Interferometric GW detector. 300 times. 300 times. 40 times. Adding up all innovations, we ...
Vignettes in Gravitation and Cosmology
Sriramkumar, L
2012-01-01
This book comprises expository articles on different aspects of gravitation and cosmology that are aimed at graduate students. The topics discussed are of contemporary interest assuming only an elementary introduction to gravitation and cosmology. The presentations are to a certain extent pedagogical in nature, and the material developed is not usually found in sufficient detail in recent textbooks in these areas.
Arcs from gravitational lensing
Grossman, Scott A.; Narayan, Ramesh
1988-01-01
The proposal made by Paczynski (1987) that the arcs of blue light found recently in two cluster cores are gravitationally lensed elongated images of background galaxies is investigated. It is shown that lenses that are circularly symmetric in projection produce pairs of arcs, in conflict with the observations. However, more realistic asymmetric lenses produce single arcs, which can become as elongated as the observed ones whenever the background galaxy is located on or close to a cusp caustic. Detailed computer simulations of lensing by clusters using a reasonable model of the mass distribution are presented. Elongated and curved lensed images longer than 10 arcsec occur in 12 percent of the simulated clusters. It is concluded that the lensing hypothesis must be taken seriously.
Gravitational wave experiments
Hamilton, W O
1993-01-01
There were three oral sessions and one poster session for Workshop C1 on Gravitational Wave Experiments. There was also an informal experimental roundtable held one after- noon. The ﬁrst two oral sessions were devoted mainly to progress reports from various interferometric and bar detector groups. A total of 15 papers were presented in these two sessions. The third session of Workshop C1 was devoted primarily to theoretical and experimental investigations associated with the proposed interferometric detectors. Ten papers were presented in this session. In addition, there were a total of 13 papers presented in the poster session. There was some overlap between the presentations in the third oral session and the posters since only two of the serious posters were devoted to technology not pertinent to interferometers. In general, the papers showed the increasing maturity of the experimental aspects of the ﬁeld since most presented the results of completed investigations rather than making promises of wonderf...
Feynman Lectures on Gravitation
International Nuclear Information System (INIS)
Borcherds, P
2003-01-01
In the early 1960s Feynman lectured to physics undergraduates and, with the assistance of his colleagues Leighton and Sands, produced the three-volume classic Feynman Lectures in Physics. These lectures were delivered in the mornings. In the afternoons Feynman was giving postgraduate lectures on gravitation. This book is based on notes compiled by two students on that course: Morinigo and Wagner. Their notes were checked and approved by Feynman and were available at Caltech. They have now been edited by Brian Hatfield and made more widely available. The book has a substantial preface by John Preskill and Kip Thorne, and an introduction entitled 'Quantum Gravity' by Brian Hatfield. You should read these before going on to the lectures themselves. Preskill and Thorne identify three categories of potential readers of this book. 1. Those with a postgraduate training in theoretical physics. 2. 'Readers with a solid undergraduate training in physics'. 3. 'Admirers of Feynman who do not have a strong physics background'. The title of the book is perhaps misleading: readers in category 2 who think that this book is an extension of the Feynman Lectures in Physics may be disappointed. It is not: it is a book aimed mainly at those in category 1. If you want to get to grips with gravitation (and general relativity) then you need to read an introductory text first e.g. General Relativity by I R Kenyon (Oxford: Oxford University Press) or A Unified Grand Tour of Theoretical Physics by Ian D Lawrie (Bristol: IoP). But there is no Royal Road. As pointed out in the preface and in the introduction, the book represents Feynman's thinking about gravitation some 40 years ago: the lecture course was part of his attempts to understand the subject himself, and for readers in all three categories it is this that makes the book one of interest: the opportunity to observe how a great physicist attempts to tackle some of the hardest challenges of physics. However, the book was written 40
International Nuclear Information System (INIS)
Davidson, J.H.
1986-01-01
The basic facts about radiation are explained, along with some simple and natural ways of combating its ill-effects, based on ancient healing wisdom as well as the latest biochemical and technological research. Details are also given of the diet that saved thousands of lives in Nagasaki after the Atomic bomb attack. Special comment is made on the use of radiation for food processing. (U.K.)
International Nuclear Information System (INIS)
Gakh, G.I.
1976-01-01
The effect of a heavy lepton in an intermediate state on the differential and total cross sections of the e + e - → γγ reaction has been investigated in order to obtain information on heavy lepton radiative decay L → eγ. On the basis of experimental data on the reaction the limitations on the constant lambda of the decay L → eγ are obtained as functions of the heavy lepton mass. It turns out that the upper limit for lambda rapidly increases with the heavy lepton mass and at m > 1 GeV lambda 2 > 0.1
Earth Gravitational Model 2020
Barnes, Daniel; Holmes, Simon; Factor, John; Ingalls, Sarah; Presicci, Manny; Beale, James
2017-04-01
The National Geospatial-Intelligence Agency [NGA], in conjunction with its U.S. and international partners, has begun preliminary work on its next Earth Gravitational Model, to replace EGM2008. The new 'Earth Gravitational Model 2020' [EGM2020] has an expected public release date of 2020, and will likely retain the same harmonic basis and resolution as EGM2008. As such, EGM2020 will be essentially an ellipsoidal harmonic model up to degree (n) and order (m) 2159, but will be released as a spherical harmonic model to degree 2190 and order 2159. EGM2020 will benefit from new data sources and procedures. Updated satellite gravity information from the GOCE and GRACE mission, will better support the lower harmonics, globally. Multiple new acquisitions (terrestrial, airborne and ship borne) of gravimetric data over specific geographical areas, will provide improved global coverage and resolution over the land, as well as for coastal and some ocean areas. Ongoing accumulation of satellite altimetry data as well as improvements in the treatment of this data, will better define the marine gravity field, most notably in polar and near-coastal regions. NGA and partners are evaluating different approaches for optimally combining the new GOCE/GRACE satellite gravity models with the terrestrial data. These include the latest methods employing a full covariance adjustment. NGA is also working to assess systematically the quality of its entire gravimetry database, towards correcting biases and other egregious errors where possible, and generating improved error models that will inform the final combination with the latest satellite gravity models. Outdated data gridding procedures have been replaced with improved approaches. For EGM2020, NGA intends to extract maximum value from the proprietary data that overlaps geographically with unrestricted data, whilst also making sure to respect and honor its proprietary agreements with its data-sharing partners. Approved for Public Release
The gravitational waveforms of white dwarf collisions in globular clusters
International Nuclear Information System (INIS)
Loren-Aguilar, P; Garcia-Berro, E; Lobo, J A; Isern, J
2009-01-01
In the dense central regions of globular clusters close encounters of two white dwarfs are relatively frequent. The estimated frequency is one or more strong encounters per star in the lifetime of the cluster. Such encounters should be then potential sources of gravitational wave radiation. Thus, it is foreseeable that these collisions could be either individually detected by LISA or they could contribute significantly to the background noise of the detector. We compute the pattern of gravitational wave emission from these encounters for a sufficiently broad range of system parameters, namely the masses, the relative velocities and the distances of the two white dwarfs involved in the encounter.
The impact of particle production on gravitational baryogenesis
Energy Technology Data Exchange (ETDEWEB)
Lima, J.A.S., E-mail: jas.lima@iag.usp.br [Departamento de Astronomia, Universidade de São Paulo, Rua do Matão 1226, 05508-900, São Paulo (Brazil); Singleton, D., E-mail: dougs@csufresno.edu [Department of Physics, California State University Fresno, Fresno, CA 93740-8031 (United States); ICTP South American Institute for Fundamental Research, UNESP – Univ. Estadual Paulista, Rua Dr. Bento T. Ferraz 271, 01140-070, São Paulo, SP (Brazil); Institute of Experimental and Theoretical Physics Al-Farabi KazNU, Almaty, 050040 (Kazakhstan)
2016-11-10
Baryogenesis driven by curvature effects is investigated by taking into account gravitationally induced particle production in the very early Universe. In our scenario, the baryon asymmetry is generated dynamically during an inflationary epoch powered by ultra-relativistic particles. The adiabatic particle production rate provides both the needed negative pressure to accelerate the radiation dominated Universe and a non-zero chemical potential which distinguishes baryons and anti-baryons thereby producing a baryon asymmetry in agreement with the observed value. Reciprocally, the present day asymmetry may be used to determine the inflationary scale at early times. Successful gravitational baryogenesis is dynamically generated for many different choices of the relevant model parameters.
Gravitational waves from periodic three-body systems.
Dmitrašinović, V; Suvakov, Milovan; Hudomal, Ana
2014-09-05
Three bodies moving in a periodic orbit under the influence of Newtonian gravity ought to emit gravitational waves. We have calculated the gravitational radiation quadrupolar waveforms and the corresponding luminosities for the 13+11 recently discovered three-body periodic orbits in Newtonian gravity. These waves clearly allow one to distinguish between their sources: all 13+11 orbits have different waveforms and their luminosities (evaluated at the same orbit energy and body mass) vary by up to 13 orders of magnitude in the mean, and up to 20 orders of magnitude for the peak values.
Directory of Open Access Journals (Sweden)
D. Srinivasacharya
2016-01-01
Full Text Available Mixed convection heat and mass transfer along a vertical plate embedded in a power-law fluid saturated Darcy porous medium with chemical reaction and radiation effects is studied. The governing partial differential equations are transformed into ordinary differential equations using similarity transformations and then solved numerically using shooting method. A parametric study of the physical parameters involved in the problem is conducted and a representative set of numerical results is illustrated graphically.
Czech Academy of Sciences Publication Activity Database
Mukhamedzhanov, A. M.; Azhari, A.; Burjan, Václav; Gagliardi, C. A.; Kroha, Václav; Sattarov, A.; Tang, X.; Trache, L.; Tribble, R. E.
2003-01-01
Roč. 725, č. 22 (2003), s. 279-294 ISSN 0375-9474 R&D Projects: GA ČR GA202/01/0709; GA MŠk ME 385 Institutional research plan: CEZ:AV0Z1048901 Keywords : radiative capture reaction * asymptotic normalization coefficient Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.761, year: 2003
Gravitational lensing of gravitational waves from merging neutron star binaries
Energy Technology Data Exchange (ETDEWEB)
Wang, Yun; Stebbins, Albert; Turner, Edwin L.
1996-05-01
We discuss the gravitational lensing of gravitational waves from merging neutron star binaries, in the context of advanced LIGO type gravitational wave detectors. We consider properties of the expected observational data with cut on the signal-to-noise ratio \\rho, i.e., \\rho>\\rho_0. An advanced LIGO should see unlensed inspiral events with a redshift distribution with cut-off at a redshift z_{\\rm max} < 1 for h \\leq 0.8. Any inspiral events detected at z>z_{\\rm max} should be lensed. We compute the expected total number of events which are present due to gravitational lensing and their redshift distribution for an advanced LIGO in a flat Universe. If the matter fraction in compact lenses is close to 10\\%, an advanced LIGO should see a few strongly lensed events per year with \\rho >5.
Gravitational Field of Spherical Branes
Gogberashvili, Merab
The warped solution of Einstein's equations corresponding to the spherical brane in five-dimensional AdS is considered. This metric represents interiors of black holes on both sides of the brane and can provide gravitational trapping of physical fields on the shell. It is found that the analytic form of the coordinate transformations from the Schwarzschild to co-moving frame that exists only in five dimensions. It is shown that in the static coordinates active gravitational mass of the spherical brane, in agreement with Tolman's formula, is negative, i.e. such objects are gravitationally repulsive.
Gravitation. [Book on general relativity
Misner, C. W.; Thorne, K. S.; Wheeler, J. A.
1973-01-01
This textbook on gravitation physics (Einstein's general relativity or geometrodynamics) is designed for a rigorous full-year course at the graduate level. The material is presented in two parallel tracks in an attempt to divide key physical ideas from more complex enrichment material to be selected at the discretion of the reader or teacher. The full book is intended to provide competence relative to the laws of physics in flat space-time, Einstein's geometric framework for physics, applications with pulsars and neutron stars, cosmology, the Schwarzschild geometry and gravitational collapse, gravitational waves, experimental tests of Einstein's theory, and mathematical concepts of differential geometry.
An overview of gravitational physiology
Miquel, Jaime; Souza, Kenneth A.
1991-01-01
The focus of this review is on the response of humans and animals to the effects of the near weightless condition occurring aboard orbiting spacecraft. Gravity is an omnipresent force that has been a constant part of our lives and of the evolution of all living species. Emphasis is placed on the general mechanisms of adaptation to altered gravitational fields and vectors, i.e., both hypo- and hypergravity. A broad literature review of gravitational biology was conducted and the general state of our knowledge in this area is discussed. The review is specifically targeted at newcomers to the exciting and relatively new area of space and gravitational biology.
Energy Technology Data Exchange (ETDEWEB)
Ali, M., E-mail: ali.mehidi93@gmail.com [Department of Mathematics, Bangladesh University of Engineering and Technology, Dhaka-1000 (Bangladesh); Department of Mathematics, Chittagong University of Engineering and Technology, Chittagong-4349 (Bangladesh); Alim, M. A., E-mail: maalim@math.buet.ac.bd; Nasrin, R., E-mail: rehena@math.buet.ac.bd [Department of Mathematics, Bangladesh University of Engineering and Technology, Dhaka-1000 (Bangladesh); Alam, M. S., E-mail: shahalammaths@gmail.com [Department of Mathematics, Chittagong University of Engineering and Technology, Chittagong-4349 (Bangladesh)
2016-07-12
An analysis is performed to study the free convection heat and mass transfer flow of an electrically conducting incompressible viscous fluid about a semi-infinite inclined porous plate under the action of radiation, chemical reaction in presence of magnetic field with variable viscosity. The dimensionless governing equations are steady, two-dimensional coupled and non-linear ordinary differential equation. Nachtsgeim-Swigert shooting iteration technique along with Runge-Kutta integration scheme is used to solve the non-dimensional governing equations. The effects of magnetic parameter, viscosity parameter and chemical reaction parameter on velocity, temperature and concentration profiles are discussed numerically and shown graphically. Therefore, the results of velocity profile decreases for increasing values of magnetic parameter and viscosity parameter but there is no effect for reaction parameter. The temperature profile decreases in presence of magnetic parameter, viscosity parameter and Prandtl number but increases for radiation parameter. Also, concentration profile decreases for the increasing values of magnetic parameter, viscosity parameter and reaction parameter. All numerical calculations are done with respect to salt water and fixed angle of inclination of the plate.
Academic Training: Gravitational Waves Astronomy
2006-01-01
2006-2007 ACADEMIC TRAINING PROGRAMME LECTURE SERIES 16, 17, 18 October from 11:00 to 12:00 - Main Auditorium, bldg. 500 Gravitational Waves Astronomy M. LANDRY, LIGO Hanford Observatory, Richland, USA Gravitational wave astronomy is expected to become an observational field within the next decade. First direct detection of gravitational waves is possible with existing terrestrial-based detectors, and highly probable with proposed upgrades. In this three-part lecture series, we give an overview of the field, including material on gravitional wave sources, detection methods, some details of interferometric detectors, data analysis methods, and current results from observational data-taking runs of the LIGO and GEO projects. ENSEIGNEMENT ACADEMIQUE ACADEMIC TRAINING Françoise Benz 73127 academic.training@cern.ch If you wish to participate in one of the following courses, please tell to your supervisor and apply electronically from the course description pages that can be found on the Web at: http://www...
A kilonova as the electromagnetic counterpart to a gravitational-wave source.
Smartt, S J; Chen, T-W; Jerkstrand, A; Coughlin, M; Kankare, E; Sim, S A; Fraser, M; Inserra, C; Maguire, K; Chambers, K C; Huber, M E; Krühler, T; Leloudas, G; Magee, M; Shingles, L J; Smith, K W; Young, D R; Tonry, J; Kotak, R; Gal-Yam, A; Lyman, J D; Homan, D S; Agliozzo, C; Anderson, J P; Angus, C R; Ashall, C; Barbarino, C; Bauer, F E; Berton, M; Botticella, M T; Bulla, M; Bulger, J; Cannizzaro, G; Cano, Z; Cartier, R; Cikota, A; Clark, P; De Cia, A; Della Valle, M; Denneau, L; Dennefeld, M; Dessart, L; Dimitriadis, G; Elias-Rosa, N; Firth, R E; Flewelling, H; Flörs, A; Franckowiak, A; Frohmaier, C; Galbany, L; González-Gaitán, S; Greiner, J; Gromadzki, M; Guelbenzu, A Nicuesa; Gutiérrez, C P; Hamanowicz, A; Hanlon, L; Harmanen, J; Heintz, K E; Heinze, A; Hernandez, M-S; Hodgkin, S T; Hook, I M; Izzo, L; James, P A; Jonker, P G; Kerzendorf, W E; Klose, S; Kostrzewa-Rutkowska, Z; Kowalski, M; Kromer, M; Kuncarayakti, H; Lawrence, A; Lowe, T B; Magnier, E A; Manulis, I; Martin-Carrillo, A; Mattila, S; McBrien, O; Müller, A; Nordin, J; O'Neill, D; Onori, F; Palmerio, J T; Pastorello, A; Patat, F; Pignata, G; Podsiadlowski, Ph; Pumo, M L; Prentice, S J; Rau, A; Razza, A; Rest, A; Reynolds, T; Roy, R; Ruiter, A J; Rybicki, K A; Salmon, L; Schady, P; Schultz, A S B; Schweyer, T; Seitenzahl, I R; Smith, M; Sollerman, J; Stalder, B; Stubbs, C W; Sullivan, M; Szegedi, H; Taddia, F; Taubenberger, S; Terreran, G; van Soelen, B; Vos, J; Wainscoat, R J; Walton, N A; Waters, C; Weiland, H; Willman, M; Wiseman, P; Wright, D E; Wyrzykowski, Ł; Yaron, O
2017-11-02
Gravitational waves were discovered with the detection of binary black-hole mergers and they should also be detectable from lower-mass neutron-star mergers. These are predicted to eject material rich in heavy radioactive isotopes that can power an electromagnetic signal. This signal is luminous at optical and infrared wavelengths and is called a kilonova. The gravitational-wave source GW170817 arose from a binary neutron-star merger in the nearby Universe with a relatively well confined sky position and distance estimate. Here we report observations and physical modelling of a rapidly fading electromagnetic transient in the galaxy NGC 4993, which is spatially coincident with GW170817 and with a weak, short γ-ray burst. The transient has physical parameters that broadly match the theoretical predictions of blue kilonovae from neutron-star mergers. The emitted electromagnetic radiation can be explained with an ejected mass of 0.04 ± 0.01 solar masses, with an opacity of less than 0.5 square centimetres per gram, at a velocity of 0.2 ± 0.1 times light speed. The power source is constrained to have a power-law slope of -1.2 ± 0.3, consistent with radioactive powering from r-process nuclides. (The r-process is a series of neutron capture reactions that synthesise many of the elements heavier than iron.) We identify line features in the spectra that are consistent with light r-process elements (atomic masses of 90-140). As it fades, the transient rapidly becomes red, and a higher-opacity, lanthanide-rich ejecta component may contribute to the emission. This indicates that neutron-star mergers produce gravitational waves and radioactively powered kilonovae, and are a nucleosynthetic source of the r-process elements.
A kilonova as the electromagnetic counterpart to a gravitational-wave source
Smartt, S. J.; Chen, T.-W.; Jerkstrand, A.; Coughlin, M.; Kankare, E.; Sim, S. A.; Fraser, M.; Inserra, C.; Maguire, K.; Chambers, K. C.; Huber, M. E.; Krühler, T.; Leloudas, G.; Magee, M.; Shingles, L. J.; Smith, K. W.; Young, D. R.; Tonry, J.; Kotak, R.; Gal-Yam, A.; Lyman, J. D.; Homan, D. S.; Agliozzo, C.; Anderson, J. P.; Angus, C. R.; Ashall, C.; Barbarino, C.; Bauer, F. E.; Berton, M.; Botticella, M. T.; Bulla, M.; Bulger, J.; Cannizzaro, G.; Cano, Z.; Cartier, R.; Cikota, A.; Clark, P.; De Cia, A.; Della Valle, M.; Denneau, L.; Dennefeld, M.; Dessart, L.; Dimitriadis, G.; Elias-Rosa, N.; Firth, R. E.; Flewelling, H.; Flörs, A.; Franckowiak, A.; Frohmaier, C.; Galbany, L.; González-Gaitán, S.; Greiner, J.; Gromadzki, M.; Guelbenzu, A. Nicuesa; Gutiérrez, C. P.; Hamanowicz, A.; Hanlon, L.; Harmanen, J.; Heintz, K. E.; Heinze, A.; Hernandez, M.-S.; Hodgkin, S. T.; Hook, I. M.; Izzo, L.; James, P. A.; Jonker, P. G.; Kerzendorf, W. E.; Klose, S.; Kostrzewa-Rutkowska, Z.; Kowalski, M.; Kromer, M.; Kuncarayakti, H.; Lawrence, A.; Lowe, T. B.; Magnier, E. A.; Manulis, I.; Martin-Carrillo, A.; Mattila, S.; McBrien, O.; Müller, A.; Nordin, J.; O'Neill, D.; Onori, F.; Palmerio, J. T.; Pastorello, A.; Patat, F.; Pignata, G.; Podsiadlowski, Ph.; Pumo, M. L.; Prentice, S. J.; Rau, A.; Razza, A.; Rest, A.; Reynolds, T.; Roy, R.; Ruiter, A. J.; Rybicki, K. A.; Salmon, L.; Schady, P.; Schultz, A. S. B.; Schweyer, T.; Seitenzahl, I. R.; Smith, M.; Sollerman, J.; Stalder, B.; Stubbs, C. W.; Sullivan, M.; Szegedi, H.; Taddia, F.; Taubenberger, S.; Terreran, G.; van Soelen, B.; Vos, J.; Wainscoat, R. J.; Walton, N. A.; Waters, C.; Weiland, H.; Willman, M.; Wiseman, P.; Wright, D. E.; Wyrzykowski, Ł.; Yaron, O.
2017-11-01
Gravitational waves were discovered with the detection of binary black-hole mergers and they should also be detectable from lower-mass neutron-star mergers. These are predicted to eject material rich in heavy radioactive isotopes that can power an electromagnetic signal. This signal is luminous at optical and infrared wavelengths and is called a kilonova. The gravitational-wave source GW170817 arose from a binary neutron-star merger in the nearby Universe with a relatively well confined sky position and distance estimate. Here we report observations and physical modelling of a rapidly fading electromagnetic transient in the galaxy NGC 4993, which is spatially coincident with GW170817 and with a weak, short γ-ray burst. The transient has physical parameters that broadly match the theoretical predictions of blue kilonovae from neutron-star mergers. The emitted electromagnetic radiation can be explained with an ejected mass of 0.04 ± 0.01 solar masses, with an opacity of less than 0.5 square centimetres per gram, at a velocity of 0.2 ± 0.1 times light speed. The power source is constrained to have a power-law slope of -1.2 ± 0.3, consistent with radioactive powering from r-process nuclides. (The r-process is a series of neutron capture reactions that synthesise many of the elements heavier than iron.) We identify line features in the spectra that are consistent with light r-process elements (atomic masses of 90-140). As it fades, the transient rapidly becomes red, and a higher-opacity, lanthanide-rich ejecta component may contribute to the emission. This indicates that neutron-star mergers produce gravitational waves and radioactively powered kilonovae, and are a nucleosynthetic source of the r-process elements.
Observation of Gravitational Waves from a Binary Black Hole Merger
Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Camp, Jordan B.;
2016-01-01
On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0 x 10(exp -21). It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ring down of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203 000 years, equivalent to a significance greater than 5.1 Sigma. The source lies at a luminosity distance of 410(+160/-180) Mpc corresponding to a redshift z = 0.09(+0.03/-0.04). In the source frame, the initial black hole masses are 36(+5/-4) Mass compared to the sun, and 29(+4/-4) Mass compared to the sun, and the final black hole mass is 62(+4/-4) Mass compared to the sun, with 3.0(+0.5/-0.5)sq c radiated in gravitational waves. All uncertainties define 90% credible intervals. These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct detection of gravitational waves and the first observation of a binary black hole merger.
Lunar LIGO: A new concept in gravitational wave astronomy
Lafave, Norman; Wilson, Thomas L.
1993-01-01
For three decades, physicists have been in search of an elusive phenomenon predicted by Einstein's general theory of relativity; gravitational radiation. These weak vibrations of spacetime have, thus far, eluded conclusive Earth-based detection due in part to insufficient detector sensitivity and noise isolation. The detection of gravitational waves is crucial for two reasons. It would provide further evidence for the validity of Einstein's theory of relativity, the presently accepted theory of gravitation. Furthermore, the ability to identify the location of a source of a detected gravitational wave event would yield a radical new type of astronomy based on non-electromagnetic emissions. We continue our study of a lunar-based system which can provide an important complement to Earth-based analysis because it is completely independent of the geophysical sources of noise on Earth, while providing an Earth-Moon baseline for pin-pointing burst sources in the Universe. We also propose for the first time that a simplified version of the LIGO beam detector optical system, which we will call LLIGO (Lunar LIGO), could be emplaced on the Moon as part of NASA's robotic lander program now under study (Artemis). The Earth-based investigation has two major programs underway. Both involve large interferometer-type gravitational wave antennas.
Observation of Gravitational Waves from a Binary Black Hole Merger.
Abbott, B P; Abbott, R; Abbott, T D; Abernathy, M R; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Adya, V B; Affeldt, C; Agathos, M; Agatsuma, K; Aggarwal, N; Aguiar, O D; Aiello, L; Ain, A; Ajith, P; Allen, B; Allocca, A; Altin, P A; Anderson, S B; Anderson, W G; Arai, K; Arain, M A; Araya, M C; Arceneaux, C C; Areeda, J S; Arnaud, N; Arun, K G; Ascenzi, S; Ashton, G; Ast, M; Aston, S M; Astone, P; Aufmuth, P; Aulbert, C; Babak, S; Bacon, P; Bader, M K M; Baker, P T; Baldaccini, F; Ballardin, G; Ballmer, S W; Barayoga, J C; Barclay, S E; Barish, B C; Barker, D; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barta, D; Bartlett, J; Barton, M A; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Baune, C; Bavigadda, V; Bazzan, M; Behnke, B; Bejger, M; Belczynski, C; Bell, A S; Bell, C J; Berger, B K; Bergman, J; Bergmann, G; Berry, C P L; Bersanetti, D; Bertolini, A; Betzwieser, J; Bhagwat, S; Bhandare, R; Bilenko, I A; Billingsley, G; Birch, J; Birney, R; Birnholtz, O; Biscans, S; Bisht, A; Bitossi, M; Biwer, C; Bizouard, M A; Blackburn, J K; Blair, C D; Blair, D G; Blair, R M; Bloemen, S; Bock, O; Bodiya, T P; Boer, M; Bogaert, G; Bogan, C; Bohe, A; Bojtos, P; Bond, C; Bondu, F; Bonnand, R; Boom, B A; Bork, R; Boschi, V; Bose, S; Bouffanais, Y; Bozzi, A; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brau, J E; Briant, T; Brillet, A; Brinkmann, M; Brisson, V; Brockill, P; Brooks, A F; Brown, D A; Brown, D D; Brown, N M; Buchanan, C C; Buikema, A; Bulik, T; Bulten, H J; Buonanno, A; Buskulic, D; Buy, C; Byer, R L; Cabero, M; Cadonati, L; Cagnoli, G; Cahillane, C; Calderón Bustillo, J; Callister, T; Calloni, E; Camp, J B; Cannon, K C; Cao, J; Capano, C D; Capocasa, E; Carbognani, F; Caride, S; Casanueva Diaz, J; Casentini, C; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C B; Cerboni Baiardi, L; Cerretani, G; Cesarini, E; Chakraborty, R; Chalermsongsak, T; Chamberlin, S J; Chan, M; Chao, S; Charlton, P; Chassande-Mottin, E; Chen, H Y; Chen, Y; Cheng, C; Chincarini, A; Chiummo, A; Cho, H S; Cho, M; Chow, J H; Christensen, N; Chu, Q; Chua, S; Chung, S; Ciani, G; Clara, F; Clark, J A; Cleva, F; Coccia, E; Cohadon, P-F; Colla, A; Collette, C G; Cominsky, L; Constancio, M; Conte, A; Conti, L; Cook, D; Corbitt, T R; Cornish, N; Corsi, A; Cortese, S; Costa, C A; Coughlin, M W; Coughlin, S B; Coulon, J-P; Countryman, S T; Couvares, P; Cowan, E E; Coward, D M; Cowart, M J; Coyne, D C; Coyne, R; Craig, K; Creighton, J D E; Creighton, T D; Cripe, J; Crowder, S G; Cruise, A M; Cumming, A; Cunningham, L; Cuoco, E; Dal Canton, T; Danilishin, S L; D'Antonio, S; Danzmann, K; Darman, N S; Da Silva Costa, C F; Dattilo, V; Dave, I; Daveloza, H P; Davier, M; Davies, G S; Daw, E J; Day, R; De, S; DeBra, D; Debreczeni, G; Degallaix, J; De Laurentis, M; Deléglise, S; Del Pozzo, W; Denker, T; Dent, T; Dereli, H; Dergachev, V; DeRosa, R T; De Rosa, R; DeSalvo, R; Dhurandhar, S; Díaz, M C; Di Fiore, L; Di Giovanni, M; Di Lieto, A; Di Pace, S; Di Palma, I; Di Virgilio, A; Dojcinoski, G; Dolique, V; Donovan, F; Dooley, K L; Doravari, S; Douglas, R; Downes, T P; Drago, M; Drever, R W P; Driggers, J C; Du, Z; Ducrot, M; Dwyer, S E; Edo, T B; Edwards, M C; Effler, A; Eggenstein, H-B; Ehrens, P; Eichholz, J; Eikenberry, S S; Engels, W; Essick, R C; Etzel, T; Evans, M; Evans, T M; Everett, R; Factourovich, M; Fafone, V; Fair, H; Fairhurst, S; Fan, X; Fang, Q; Farinon, S; Farr, B; Farr, W M; Favata, M; Fays, M; Fehrmann, H; Fejer, M M; Feldbaum, D; Ferrante, I; Ferreira, E C; Ferrini, F; Fidecaro, F; Finn, L S; Fiori, I; Fiorucci, D; Fisher, R P; Flaminio, R; Fletcher, M; Fong, H; Fournier, J-D; Franco, S; Frasca, S; Frasconi, F; Frede, M; Frei, Z; Freise, A; Frey, R; Frey, V; Fricke, T T; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gabbard, H A G; Gair, J R; Gammaitoni, L; Gaonkar, S G; Garufi, F; Gatto, A; Gaur, G; Gehrels, N; Gemme, G; Gendre, B; Genin, E; Gennai, A; George, J; Gergely, L; Germain, V; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gill, K; Glaefke, A; Gleason, J R; Goetz, E; Goetz, R; Gondan, L; González, G; Gonzalez Castro, J M; Gopakumar, A; Gordon, N A; Gorodetsky, M L; Gossan, S E; Gosselin, M; Gouaty, R; Graef, C; Graff, P B; Granata, M; Grant, A; Gras, S; Gray, C; Greco, G; Green, A C; Greenhalgh, R J S; Groot, P; Grote, H; Grunewald, S; Guidi, G M; Guo, X; Gupta, A; Gupta, M K; Gushwa, K E; Gustafson, E K; Gustafson, R; Hacker, J J; Hall, B R; Hall, E D; Hammond, G; Haney, M; Hanke, M M; Hanks, J; Hanna, C; Hannam, M D; Hanson, J; Hardwick, T; Harms, J; Harry, G M; Harry, I W; Hart, M J; Hartman, M T; Haster, C-J; Haughian, K; Healy, J; Heefner, J; Heidmann, A; Heintze, M C; Heinzel, G; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Hennig, J; Heptonstall, A W; Heurs, M; Hild, S; Hoak, D; Hodge, K A; Hofman, D; Hollitt, S E; Holt, K; Holz, D E; Hopkins, P; Hosken, D J; Hough, J; Houston, E A; Howell, E J; Hu, Y M; Huang, S; Huerta, E A; Huet, D; Hughey, B; Husa, S; Huttner, S H; Huynh-Dinh, T; Idrisy, A; Indik, N; Ingram, D R; Inta, R; Isa, H N; Isac, J-M; Isi, M; Islas, G; Isogai, T; Iyer, B R; Izumi, K; Jacobson, M B; Jacqmin, T; Jang, H; Jani, K; Jaranowski, P; Jawahar, S; Jiménez-Forteza, F; Johnson, W W; Johnson-McDaniel, N K; Jones, D I; Jones, R; Jonker, R J G; Ju, L; Haris, K; Kalaghatgi, C V; Kalogera, V; Kandhasamy, S; Kang, G; Kanner, J B; Karki, S; Kasprzack, M; Katsavounidis, E; Katzman, W; Kaufer, S; Kaur, T; Kawabe, K; Kawazoe, F; Kéfélian, F; Kehl, M S; Keitel, D; Kelley, D B; Kells, W; Kennedy, R; Keppel, D G; Key, J S; Khalaidovski, A; Khalili, F Y; Khan, I; Khan, S; Khan, Z; Khazanov, E A; Kijbunchoo, N; Kim, C; Kim, J; Kim, K; Kim, Nam-Gyu; Kim, Namjun; Kim, Y-M; King, E J; King, P J; Kinzel, D L; Kissel, J S; Kleybolte, L; Klimenko, S; Koehlenbeck, S M; Kokeyama, K; Koley, S; Kondrashov, V; Kontos, A; Koranda, S; Korobko, M; Korth, W Z; Kowalska, I; Kozak, D B; Kringel, V; Krishnan, B; Królak, A; Krueger, C; Kuehn, G; Kumar, P; Kumar, R; Kuo, L; Kutynia, A; Kwee, P; Lackey, B D; Landry, M; Lange, J; Lantz, B; Lasky, P D; Lazzarini, A; Lazzaro, C; Leaci, P; Leavey, S; Lebigot, E O; Lee, C H; Lee, H K; Lee, H M; Lee, K; Lenon, A; Leonardi, M; Leong, J R; Leroy, N; Letendre, N; Levin, Y; Levine, B M; Li, T G F; Libson, A; Littenberg, T B; Lockerbie, N A; Logue, J; Lombardi, A L; London, L T; Lord, J E; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J D; Lousto, C O; Lovelace, G; Lück, H; Lundgren, A P; Luo, J; Lynch, R; Ma, Y; MacDonald, T; Machenschalk, B; MacInnis, M; Macleod, D M; Magaña-Sandoval, F; Magee, R M; Mageswaran, M; Majorana, E; Maksimovic, I; Malvezzi, V; Man, N; Mandel, I; Mandic, V; Mangano, V; Mansell, G L; Manske, M; Mantovani, M; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Markosyan, A S; Maros, E; Martelli, F; Martellini, L; Martin, I W; Martin, R M; Martynov, D V; Marx, J N; Mason, K; Masserot, A; Massinger, T J; Masso-Reid, M; Matichard, F; Matone, L; Mavalvala, N; Mazumder, N; Mazzolo, G; McCarthy, R; McClelland, D E; McCormick, S; McGuire, S C; McIntyre, G; McIver, J; McManus, D J; McWilliams, S T; Meacher, D; Meadors, G D; Meidam, J; Melatos, A; Mendell, G; Mendoza-Gandara, D; Mercer, R A; Merilh, E; Merzougui, M; Meshkov, S; Messenger, C; Messick, C; Meyers, P M; Mezzani, F; Miao, H; Michel, C; Middleton, H; Mikhailov, E E; Milano, L; Miller, J; Millhouse, M; Minenkov, Y; Ming, J; Mirshekari, S; Mishra, C; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moggi, A; Mohan, M; Mohapatra, S R P; Montani, M; Moore, B C; Moore, C J; Moraru, D; Moreno, G; Morriss, S R; Mossavi, K; Mours, B; Mow-Lowry, C M; Mueller, C L; Mueller, G; Muir, A W; Mukherjee, Arunava; Mukherjee, D; Mukherjee, S; Mukund, N; Mullavey, A; Munch, J; Murphy, D J; Murray, P G; Mytidis, A; Nardecchia, I; Naticchioni, L; Nayak, R K; Necula, V; Nedkova, K; Nelemans, G; Neri, M; Neunzert, A; Newton, G; Nguyen, T T; Nielsen, A B; Nissanke, S; Nitz, A; Nocera, F; Nolting, D; Normandin, M E N; Nuttall, L K; Oberling, J; Ochsner, E; O'Dell, J; Oelker, E; Ogin, G H; Oh, J J; Oh, S H; Ohme, F; Oliver, M; Oppermann, P; Oram, Richard J; O'Reilly, B; O'Shaughnessy, R; Ott, C D; Ottaway, D J; Ottens, R S; Overmier, H; Owen, B J; Pai, A; Pai, S A; Palamos, J R; Palashov, O; Palomba, C; Pal-Singh, A; Pan, H; Pan, Y; Pankow, C; Pannarale, F; Pant, B C; Paoletti, F; Paoli, A; Papa, M A; Paris, H R; Parker, W; Pascucci, D; Pasqualetti, A; Passaquieti, R; Passuello, D; Patricelli, B; Patrick, Z; Pearlstone, B L; Pedraza, M; Pedurand, R; Pekowsky, L; Pele, A; Penn, S; Perreca, A; Pfeiffer, H P; Phelps, M; Piccinni, O; Pichot, M; Pickenpack, M; Piergiovanni, F; Pierro, V; Pillant, G; Pinard, L; Pinto, I M; Pitkin, M; Poeld, J H; Poggiani, R; Popolizio, P; Post, A; Powell, J; Prasad, J; Predoi, V; Premachandra, S S; Prestegard, T; Price, L R; Prijatelj, M; Principe, M; Privitera, S; Prix, R; Prodi, G A; Prokhorov, L; Puncken, O; Punturo, M; Puppo, P; Pürrer, M; Qi, H; Qin, J; Quetschke, V; Quintero, E A; Quitzow-James, R; Raab, F J; Rabeling, D S; Radkins, H; Raffai, P; Raja, S; Rakhmanov, M; Ramet, C R; Rapagnani, P; Raymond, V; Razzano, M; Re, V; Read, J; Reed, C M; Regimbau, T; Rei, L; Reid, S; Reitze, D H; Rew, H; Reyes, S D; Ricci, F; Riles, K; Robertson, N A; Robie, R; Robinet, F; Rocchi, A; Rolland, L; Rollins, J G; Roma, V J; Romano, J D; Romano, R; Romanov, G; Romie, J H; Rosińska, D; Rowan, S; Rüdiger, A; Ruggi, P; Ryan, K; Sachdev, S; Sadecki, T; Sadeghian, L; Salconi, L; Saleem, M; Salemi, F; Samajdar, A; Sammut, L; Sampson, L M; Sanchez, E J; Sandberg, V; Sandeen, B; Sanders, G H; Sanders, J R; Sassolas, B; Sathyaprakash, B S; Saulson, P R; Sauter, O; Savage, R L; Sawadsky, A; Schale, P; Schilling, R; Schmidt, J; Schmidt, P; Schnabel, R; Schofield, R M S; Schönbeck, A; Schreiber, E; Schuette, D; Schutz, B F; Scott, J; Scott, S M; Sellers, D; Sengupta, A S; Sentenac, D; Sequino, V; Sergeev, A; Serna, G; Setyawati, Y; Sevigny, A; Shaddock, D A; Shaffer, T; Shah, S; Shahriar, M S; Shaltev, M; Shao, Z; Shapiro, B; Shawhan, P; Sheperd, A; Shoemaker, D H; Shoemaker, D M; Siellez, K; Siemens, X; Sigg, D; Silva, A D; Simakov, D; Singer, A; Singer, L P; Singh, A; Singh, R; Singhal, A; Sintes, A M; Slagmolen, B J J; Smith, J R; Smith, M R; Smith, N D; Smith, R J E; Son, E J; Sorazu, B; Sorrentino, F; Souradeep, T; Srivastava, A K; Staley, A; Steinke, M; Steinlechner, J; Steinlechner, S; Steinmeyer, D; Stephens, B C; Stevenson, S P; Stone, R; Strain, K A; Straniero, N; Stratta, G; Strauss, N A; Strigin, S; Sturani, R; Stuver, A L; Summerscales, T Z; Sun, L; Sutton, P J; Swinkels, B L; Szczepańczyk, M J; Tacca, M; Talukder, D; Tanner, D B; Tápai, M; Tarabrin, S P; Taracchini, A; Taylor, R; Theeg, T; Thirugnanasambandam, M P; Thomas, E G; Thomas, M; Thomas, P; Thorne, K A; Thorne, K S; Thrane, E; Tiwari, S; Tiwari, V; Tokmakov, K V; Tomlinson, C; Tonelli, M; Torres, C V; Torrie, C I; Töyrä, D; Travasso, F; Traylor, G; Trifirò, D; Tringali, M C; Trozzo, L; Tse, M; Turconi, M; Tuyenbayev, D; Ugolini, D; Unnikrishnan, C S; Urban, A L; Usman, S A; Vahlbruch, H; Vajente, G; Valdes, G; Vallisneri, M; van Bakel, N; van Beuzekom, M; van den Brand, J F J; Van Den Broeck, C; Vander-Hyde, D C; van der Schaaf, L; van Heijningen, J V; van Veggel, A A; Vardaro, M; Vass, S; Vasúth, M; Vaulin, R; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Verkindt, D; Vetrano, F; Viceré, A; Vinciguerra, S; Vine, D J; Vinet, J-Y; Vitale, S; Vo, T; Vocca, H; Vorvick, C; Voss, D; Vousden, W D; Vyatchanin, S P; Wade, A R; Wade, L E; Wade, M; Waldman, S J; Walker, M; Wallace, L; Walsh, S; Wang, G; Wang, H; Wang, M; Wang, X; Wang, Y; Ward, H; Ward, R L; Warner, J; Was, M; Weaver, B; Wei, L-W; Weinert, M; Weinstein, A J; Weiss, R; Welborn, T; Wen, L; Weßels, P; Westphal, T; Wette, K; Whelan, J T; Whitcomb, S E; White, D J; Whiting, B F; Wiesner, K; Wilkinson, C; Willems, P A; Williams, L; Williams, R D; Williamson, A R; Willis, J L; Willke, B; Wimmer, M H; Winkelmann, L; Winkler, W; Wipf, C C; Wiseman, A G; Wittel, H; Woan, G; Worden, J; Wright, J L; Wu, G; Yablon, J; Yakushin, I; Yam, W; Yamamoto, H; Yancey, C C; Yap, M J; Yu, H; Yvert, M; Zadrożny, A; Zangrando, L; Zanolin, M; Zendri, J-P; Zevin, M; Zhang, F; Zhang, L; Zhang, M; Zhang, Y; Zhao, C; Zhou, M; Zhou, Z; Zhu, X J; Zucker, M E; Zuraw, S E; Zweizig, J
2016-02-12
On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0×10(-21). It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ. The source lies at a luminosity distance of 410(-180)(+160) Mpc corresponding to a redshift z=0.09(-0.04)(+0.03). In the source frame, the initial black hole masses are 36(-4)(+5)M⊙ and 29(-4)(+4)M⊙, and the final black hole mass is 62(-4)(+4)M⊙, with 3.0(-0.5)(+0.5)M⊙c(2) radiated in gravitational waves. All uncertainties define 90% credible intervals. These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct detection of gravitational waves and the first observation of a binary black hole merger.
Gravitational-Wave Luminosity of Binary Neutron Stars Mergers.
Zappa, Francesco; Bernuzzi, Sebastiano; Radice, David; Perego, Albino; Dietrich, Tim
2018-03-16
We study the gravitational-wave peak luminosity and radiated energy of quasicircular neutron star mergers using a large sample of numerical relativity simulations with different binary parameters and input physics. The peak luminosity for all the binaries can be described in terms of the mass ratio and of the leading-order post-Newtonian tidal parameter solely. The mergers resulting in a prompt collapse to black hole have the largest peak luminosities. However, the largest amount of energy per unit mass is radiated by mergers that produce a hypermassive neutron star or a massive neutron star remnant. We quantify the gravitational-wave luminosity of binary neutron star merger events, and set upper limits on the radiated energy and the remnant angular momentum from these events. We find that there is an empirical universal relation connecting the total gravitational radiation and the angular momentum of the remnant. Our results constrain the final spin of the remnant black hole and also indicate that stable neutron star remnant forms with super-Keplerian angular momentum.
Gravitational-Wave Luminosity of Binary Neutron Stars Mergers
Zappa, Francesco; Bernuzzi, Sebastiano; Radice, David; Perego, Albino; Dietrich, Tim
2018-03-01
We study the gravitational-wave peak luminosity and radiated energy of quasicircular neutron star mergers using a large sample of numerical relativity simulations with different binary parameters and input physics. The peak luminosity for all the binaries can be described in terms of the mass ratio and of the leading-order post-Newtonian tidal parameter solely. The mergers resulting in a prompt collapse to black hole have the largest peak luminosities. However, the largest amount of energy per unit mass is radiated by mergers that produce a hypermassive neutron star or a massive neutron star remnant. We quantify the gravitational-wave luminosity of binary neutron star merger events, and set upper limits on the radiated energy and the remnant angular momentum from these events. We find that there is an empirical universal relation connecting the total gravitational radiation and the angular momentum of the remnant. Our results constrain the final spin of the remnant black hole and also indicate that stable neutron star remnant forms with super-Keplerian angular momentum.
Major Gravitational Phenomena Explained by the Micro-Quanta Paradigm
Directory of Open Access Journals (Sweden)
Michelini M.
2010-01-01
Full Text Available Some major problems of physics, which remained unsolved within classical and rel- ativistic gravitation theories, are explained adopting the quantum gravity interaction descending from the micro-quanta paradigm. The energy source of the gravitational power P g r , which heats and contracts the Bok’s gas globules harbouring the future stars, is identified and defined as well as the gravitational power generated on the solid / fluid planets. Calculations are carried out to make the comparison between P g r predicted for the solar giant planets and the measured infrared radiation power P int coming from the interior. The case of planets with solid crust (Earth, etc. requires a particular attention due to the threat to stability produced by the thermal dilatation. An analysis is done of the Earth’s planetary equilibrium which may be attained eliminating the temperature rise through the migration of hot internal magma across the crust fractured by earth- quakes. The temperatures observed up to 420,000 years ago in Antartica through Vostok and Epica ice cores suggest the possibility that the Earth gravitational power P g r may be radiated in space through these temperature cycles (Glacial Eras. In this general frame the Earth’s high seismicity and the dynamics of Plate tectonics may find their origin.
Major Gravitational Phenomena Explained by the Micro-Quanta Paradigm
Directory of Open Access Journals (Sweden)
Michelini M.
2010-01-01
Full Text Available Some major problems of physics, which remained unsolved within classical and relativistic gravitation theories, are explained adopting the quantum gravity interaction descending from the micro-quanta paradigm. The energy source of the gravitational power $P_{gr}$, which heats and contracts the Bok's gas globules harbouring the future stars, is identified and defined as well as the gravitational power generated on the solid/fluid planets. Calculations are carried out to make the comparison between $P_{gr}$ predicted for the solar giant planets and the measured infrared radiation power $P_{int}$ coming from the interior. The case of planets with solid crust (Earth, etc. requires a particular attention due to the threat to stability produced by the thermal dilatation. An analysis is done of the Earth's planetary equilibrium which may be attained eliminating the temperature rise through the migration of hot internal magma across the crust fractured by earthquakes. The temperatures observed up to 420,000 years ago in Antartica through Vostok and Epica ice cores suggest the possibility that the Earth gravitational power $P_{gr}$ may be radiated in space through these temperature cycles (Glacial Eras. In this general frame the Earth's high seismicity and the dynamics of Plate tectonics may find their origin.
A study of the neutrino-gravitation interaction
International Nuclear Information System (INIS)
Soares, I.D.
1976-01-01
A study of the neutrino-gravitation interaction is made in the framework of Einstein-Dirac coupled equations. Two classes of solutions are obtained, corresponding to two specific physical situations. One cosmological model with expansion is obtained, having neutrinos as the only curvature source; their properties and the parameters which can to characterize the solution as a cosmological model are studied. The second class of solutions corresponds to a naive complete model of a spherically symmetric star emitting neutrinos: the inner region is suposed to be built up of a spherically symmetric distribution of a perfect fluid, bounded in space and which emitts neutrinos; the star matter is considered transparent for neutrinos; the outer region contains only neutrinos and gravitational field. The problem of neutrino compatibility with spherically symmetric gravitational fields is examined. The local conservation laws and the function conditions of the inner and outer solutions in the fluid surface are studied and permit to characterize two kinds of solutions. In one case, the solution describes the neutrino emission phase, with consequent configuration contraction, immediately before the fluid to be completely contained in the interior of the schwarzchild radius, when the neutrino emission and the star contraction stop. The other possibility can correspond to a quasi-stationary configuration, with neutrino emission, where the relativistic equation of radiative equilibrium permits to define the equivalent of 'Radiation pressure' for neutrinos, which acts in the same sense of the gravitational pressure. (L.C.) [pt
A system consisting of a photochemical reaction was used to evaluate the kinetic parameters, such as reaction order and rate constant for the elemental mercury uptake by TiO2 in the presence of uv irradiation. TiO2 particles generated by an aerosol route were used in a fixed bed...
Multibaseline gravitational wave radiometry
International Nuclear Information System (INIS)
Talukder, Dipongkar; Bose, Sukanta; Mitra, Sanjit
2011-01-01
We present a statistic for the detection of stochastic gravitational wave backgrounds (SGWBs) using radiometry with a network of multiple baselines. We also quantitatively compare the sensitivities of existing baselines and their network to SGWBs. We assess how the measurement accuracy of signal parameters, e.g., the sky position of a localized source, can improve when using a network of baselines, as compared to any of the single participating baselines. The search statistic itself is derived from the likelihood ratio of the cross correlation of the data across all possible baselines in a detector network and is optimal in Gaussian noise. Specifically, it is the likelihood ratio maximized over the strength of the SGWB and is called the maximized-likelihood ratio (MLR). One of the main advantages of using the MLR over past search strategies for inferring the presence or absence of a signal is that the former does not require the deconvolution of the cross correlation statistic. Therefore, it does not suffer from errors inherent to the deconvolution procedure and is especially useful for detecting weak sources. In the limit of a single baseline, it reduces to the detection statistic studied by Ballmer [Classical Quantum Gravity 23, S179 (2006).] and Mitra et al.[Phys. Rev. D 77, 042002 (2008).]. Unlike past studies, here the MLR statistic enables us to compare quantitatively the performances of a variety of baselines searching for a SGWB signal in (simulated) data. Although we use simulated noise and SGWB signals for making these comparisons, our method can be straightforwardly applied on real data.
Does the Equivalence between Gravitational Mass and Energy Survive for a Quantum Body?
Directory of Open Access Journals (Sweden)
Lebed A. G.
2012-10-01
Full Text Available We consider the simplest quantum composite body, a hydrogen atom, in the presence of a weak external gravitational field. We show that passive gravitational mass operator of the atom in the post-Newtonian approximation of general relativity does not commute with its energy operator, taken in the absence of the field. Nevertheless, the equivalence between the expectations values of passive gravitational mass and energy is shown to survive at a macroscopic level for stationary quantum states. Breakdown of the equiva- lence between passive gravitational mass and energy at a microscopic level for station- ary quantum states can be experimentally detected by studying unusual electromagnetic radiation, emitted by the atoms, supported and moved in the Earth gravitational field with constant velocity, using spacecraft or satellite.
International Nuclear Information System (INIS)
Syimonova, L.Yi.; Gertman, V.Z.; Byilogurova, L.V.; Kulyinyich, G.V.; Lavrik, V.P.
2012-01-01
The authors report preliminary findings of the investigation of the effect of combination photon-magnetic therapy with successive application of red and blue light to the skin of breast cancer patients during the course of post-operative radiation therapy. It was established that photonmagnetic therapy positively influenced the state of the skin in the irradiated areas. Addition of the magnetic factor significantly improved the efficacy of phototherapy. The patients receiving photon-magnetic therapy finished the course of radiation therapy with almost unchanged skin.
International Nuclear Information System (INIS)
Wondergem, J.; Haveman, J.; Schueren, E. van der
1982-01-01
The influence of anaesthesia and misonidazole on the 'acute' (average of the scores between day 10 and 30) and 'late' (average of the scores between day 100 and 120) skin reaction of the feet of mice was investigated under two different conditions. Firstly, the legs were kept untaped in the radiation field; secondly, the legs were fixed with surgical tape on the backscatter block. Irradiation was carried out by X-radiation at a dose of 35 Gy. Results showed that stress in unanaesthetized animals has a large influence on the radiation response of mouse skin. Adequate treatment conditions, tranquillizers or anaesthesia can compensate for this factor. Taping of the animals' legs, resulting in clamping, interferes with the assessment of these modalities. No influence of misonidazole on the skin reaction could be demonstrated in conditions where no artificial hypoxia was induced. The importance of taking experimental conditions into account is pointed out for the correct assessment of the effect of radiosensitizers and possibly other anticancer drugs. (U.K.)
GRAVITATIONAL MEMORY IN BINARY BLACK HOLE MERGERS
International Nuclear Information System (INIS)
Pollney, Denis; Reisswig, Christian
2011-01-01
In addition to the dominant oscillatory gravitational wave signals produced during binary inspirals, a non-oscillatory component arises from the nonlinear 'memory' effect, sourced by the emitted gravitational radiation. The memory grows significantly during the late-inspiral and merger, modifying the signal by an almost step-function profile, and making it difficult to model by approximate methods. We use numerical evolutions of binary black holes (BHs) to evaluate the nonlinear memory during late-inspiral, merger, and ringdown. We identify two main components of the signal: the monotonically growing portion corresponding to the memory, and an oscillatory part which sets in roughly at the time of merger and is due to the BH ringdown. Counterintuitively, the ringdown is most prominent for models with the lowest total spin. Thus, the case of maximally spinning BHs anti-aligned to the orbital angular momentum exhibits the highest signal-to-noise ratio (S/N) for interferometric detectors. The largest memory offset, however, occurs for highly spinning BHs, with an estimated value of h tot 20 ≅ 0.24 in the maximally spinning case. These results are central to determining the detectability of nonlinear memory through pulsar timing array measurements.
Quantum gravitation. The Feynman path integral approach
International Nuclear Information System (INIS)
Hamber, Herbert W.
2009-01-01
The book covers the theory of Quantum Gravitation from the point of view of Feynman path integrals. These provide a manifestly covariant approach in which fundamental quantum aspects of the theory such as radiative corrections and the renormalization group can be systematically and consistently addressed. The path integral method is suitable for both perturbative as well as non-perturbative studies, and is known to already provide a framework of choice for the theoretical investigation of non-abelian gauge theories, the basis for three of the four known fundamental forces in nature. The book thus provides a coherent outline of the present status of the theory gravity based on Feynman's formulation, with an emphasis on quantitative results. Topics are organized in such a way that the correspondence to similar methods and results in modern gauge theories becomes apparent. Covariant perturbation theory are developed using the full machinery of Feynman rules, gauge fixing, background methods and ghosts. The renormalization group for gravity and the existence of non-trivial ultraviolet fixed points are investigated, stressing a close correspondence with well understood statistical field theory models. Later the lattice formulation of gravity is presented as an essential tool towards an understanding of key features of the non-perturbative vacuum. The book ends with a discussion of contemporary issues in quantum cosmology such as scale dependent gravitational constants and quantum effects in the early universe. (orig.)
Shear-free gravitational waves in an anisotropic universe
International Nuclear Information System (INIS)
Hogan, P.A.; O'Shea, E.M.
2002-01-01
We study gravitational waves propagating through an anisotropic Bianchi type I dust-filled universe (containing the Einstein-de Sitter universe as a special case). The waves are modeled as small perturbations of this background cosmological model and we choose a family of null hypersurfaces in this space-time to act as the histories of the wave fronts of the radiation. We find that the perturbations we generate can describe pure gravitational radiation if and only if the null hypersurfaces are shear-free. We calculate the gauge-invariant small perturbations explicitly in this case. How these differ from the corresponding perturbations when the background space-time is isotropic is clearly exhibited
International Nuclear Information System (INIS)
Gaffet, E.; Charlot, F.; Klein, D.; Bernard, F.; Niepce, J.C.
1998-01-01
The mechanical activation self propagating high temperature synthesis (M.A.S.H.S.) processing is a new way to produce nanocrystalline iron aluminide intermetallic compounds. This process is maily the combination of two steps; in the one hand, a mechanical activation where the Fe - Al powder mixture was milled during a short time at given energy and frequency of shocks and in the other hand, a self propagating high temperature synthesis (S.H.S.) reaction, for which the exothermicity of the Fe + Al reaction is used. This fast propagated MASHS reaction has been in-situ investigated using the time resolved X-ray diffraction (TRXRD) using a X-ray synchrotron beam and an infrared thermography camera, allowing the coupling of the materials structure and the temperature field. The effects of the initial mean compositions, of the milling conditions as well as of the compaction parameters on the MASHS reaction are reported. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Okamoto, H.; Adachi, S.; Kakada, K.; Iwai, T.
1979-05-01
Effects of irradiation conditions were investgated in the ..gamma..-ray-induced addition reaction of carbon tetrachloride onto liquid 1,2-polybutadiene. The rate of addition reaction was proportional to the dose rate, and its apparent activation energy was 1.4 kcal/mole in the range of ca. 20 to 80/sup 0/C; the G values for the addition of carbon tetrachloride and vinyl consumption were high. The addition reactions of methyl isobutylate, isopropyl amine, and bromotrichloromethane to liquid 1,2-polybutadiene by ..gamma.. rays were studied to compare with carbon tetrachloride. Methyl isobutylate and isopropyl amine were added much more slowly. On the other hand, in bromotrichloromethane the rate of addition reacion was much faster but cyclization was less pronounced than in carbon tetrachloride. On the basis of these results a mechanism of a radical chain reaction which includes the addition of carbon tetrachloride, cyclization, and crosslinking, is proposed. 8 figures.
A Self-similar Flow Behind a Shock Wave in a Gravitating or Non ...
Indian Academy of Sciences (India)
The propagation of a spherical shock wave in an ideal gas with heat conduction and radiation heat-flux, and with or without self-gravitational effects, is investigated. The initial density of the gas is assumed to obey a power law. The heat conduction is expressed in terms of Fourier's law and the radiation is considered to be of ...
Does the Equivalence between Gravitational Mass and Energy Survive for a Composite Quantum Body?
Directory of Open Access Journals (Sweden)
A. G. Lebed
2014-01-01
Full Text Available We define passive and active gravitational mass operators of the simplest composite quantum body—a hydrogen atom. Although they do not commute with its energy operator, the equivalence between the expectation values of passive and active gravitational masses and energy is shown to survive for stationary quantum states. In our calculations of passive gravitational mass operator, we take into account not only kinetic and Coulomb potential energies but also the so-called relativistic corrections to electron motion in a hydrogen atom. Inequivalence between passive and active gravitational masses and energy at a macroscopic level is demonstrated to reveal itself as time-dependent oscillations of the expectation values of the gravitational masses for superpositions of stationary quantum states. Breakdown of the equivalence between passive gravitational mass and energy at a microscopic level reveals itself as unusual electromagnetic radiation, emitted by macroscopic ensemble of hydrogen atoms, moved by small spacecraft with constant velocity in the Earth’s gravitational field. We suggest the corresponding experiment on the Earth’s orbit to detect this radiation, which would be the first direct experiment where quantum effects in general relativity are observed.
Gravitational waves and electrodynamics: new perspectives
Energy Technology Data Exchange (ETDEWEB)
Cabral, Francisco; Lobo, Francisco S.N. [Faculdade de Ciencias da Universidade de Lisboa, Instituto de Astrofisica e Ciencias do Espaco, Lisbon (Portugal)
2017-04-15
Given the recent direct measurement of gravitational waves (GWs) by the LIGO-VIRGO collaboration, the coupling between electromagnetic fields and gravity have a special relevance since it opens new perspectives for future GW detectors and also potentially provides information on the physics of highly energetic GW sources. We explore such couplings using the field equations of electrodynamics on (pseudo) Riemann manifolds and apply it to the background of a GW, seen as a linear perturbation of Minkowski geometry. Electric and magnetic oscillations are induced that propagate as electromagnetic waves and contain information as regards the GW which generates them. The most relevant results are the presence of longitudinal modes and dynamical polarization patterns of electromagnetic radiation induced by GWs. These effects might be amplified using appropriate resonators, effectively improving the signal to noise ratio around a specific frequency. We also briefly address the generation of charge density fluctuations induced by GWs and the implications for astrophysics. (orig.)
Gravitational wave propagation in isotropic cosmologies
International Nuclear Information System (INIS)
Hogan, P.A.; O'Shea, E.M.
2002-01-01
We study the propagation of gravitational waves carrying arbitrary information through isotropic cosmologies. The waves are modeled as small perturbations of the background Robertson-Walker geometry. The perfect fluid matter distribution of the isotropic background is, in general, modified by small anisotropic stresses. For pure gravity waves, in which the perturbed Weyl tensor is radiative (i.e. type N in the Petrov classification), we construct explicit examples for which the presence of the anisotropic stress is shown to be essential and the histories of the wave fronts in the background Robertson-Walker geometry are shear-free null hypersurfaces. The examples derived in this case are analogous to the Bateman waves of electromagnetic theory
Quantum gravitation the Feynman path integral approach
Hamber, Herbert W
2009-01-01
The book covers the theory of Quantum Gravitation from the point of view of Feynman path integrals. These provide a manifestly covariant approach in which fundamental quantum aspects of the theory such as radiative corrections and the renormalization group can be systematically and consistently addressed. The path integral method is suitable for both perturbative as well as non-perturbative studies, and is known to already provide a framework of choice for the theoretical investigation of non-abelian gauge theories, the basis for three of the four known fundamental forces in nature. The book thus provides a coherent outline of the present status of the theory gravity based on Feynman’s formulation, with an emphasis on quantitative results. Topics are organized in such a way that the correspondence to similar methods and results in modern gauge theories becomes apparent. Covariant perturbation theory are developed using the full machinery of Feynman rules, gauge fixing, background methods and ghosts. The ren...
Relic gravitational waves and extended inflation
International Nuclear Information System (INIS)
Turner, M.S.; Wilczek, F.
1990-08-01
In extended inflation, a new version of inflation where the transition from the false-vacuum phase to a radiation-dominated Universe is accomplished by bubble nucleation and percolation, bubble collisions supply a potent-and potentially detectable-source of gravitational waves. The present energy density in relic gravity waves from bubble collisions is expected to be about 10(exp -5) of closure density-many orders of magnitude greater than that of the gravity waves produced by quantum fluctuations. Their characteristic wavelength depends upon the reheating temperature T(sub RH): lambda is approximately 10(exp 4) cm (10(exp 14) GeV/T(sub RH)). If large numbers of black holes are produced, a not implausible outcome, they will evaporate producing comparable amounts of shorter wavelength waves, lambda is approximately 10(exp -6) cm (T(sub RH)/10(exp 14) GeV)
Gravitational waves and electrodynamics: new perspectives.
Cabral, Francisco; Lobo, Francisco S N
2017-01-01
Given the recent direct measurement of gravitational waves (GWs) by the LIGO-VIRGO collaboration, the coupling between electromagnetic fields and gravity have a special relevance since it opens new perspectives for future GW detectors and also potentially provides information on the physics of highly energetic GW sources. We explore such couplings using the field equations of electrodynamics on (pseudo) Riemann manifolds and apply it to the background of a GW, seen as a linear perturbation of Minkowski geometry. Electric and magnetic oscillations are induced that propagate as electromagnetic waves and contain information as regards the GW which generates them. The most relevant results are the presence of longitudinal modes and dynamical polarization patterns of electromagnetic radiation induced by GWs. These effects might be amplified using appropriate resonators, effectively improving the signal to noise ratio around a specific frequency. We also briefly address the generation of charge density fluctuations induced by GWs and the implications for astrophysics.
Ramzan, Muhammad; Bilal, Muhammad; Chung, Jae Dong
2017-01-01
This exploration addresses MHD stagnation point Powell Eyring nanofluid flow with double stratification. The effects of thermal radiation and chemical reaction are added in temperature and nanoparticle concentration fields respectively. Furthermore, appropriate transformations are betrothed to obtain nonlinear differential equations from the system of partial differential equations and an analytical solution of system of coupled differential equations is obtained by means of the renowned Homotopy Analysis method. Through graphical illustrations, momentum, energy and concentration distributions are conversed for different prominent parameters. Comparison in limiting case is also part of present study to validate the obtained results. It is witnessed that nanoparticle concentration is diminishing function of chemical reaction parameter. Moreover, mounting values of thermal and solutal stratification lowers the temperature and concentration fields respectively.
Directory of Open Access Journals (Sweden)
Muhammad Ramzan
Full Text Available This exploration addresses MHD stagnation point Powell Eyring nanofluid flow with double stratification. The effects of thermal radiation and chemical reaction are added in temperature and nanoparticle concentration fields respectively. Furthermore, appropriate transformations are betrothed to obtain nonlinear differential equations from the system of partial differential equations and an analytical solution of system of coupled differential equations is obtained by means of the renowned Homotopy Analysis method. Through graphical illustrations, momentum, energy and concentration distributions are conversed for different prominent parameters. Comparison in limiting case is also part of present study to validate the obtained results. It is witnessed that nanoparticle concentration is diminishing function of chemical reaction parameter. Moreover, mounting values of thermal and solutal stratification lowers the temperature and concentration fields respectively.
Gravitational Wave Detection with Single-Laser Atom Interferometers
Yu, Nan; Tinto, Massimo
2011-01-01
A new design for a broadband detector of gravitational radiation relies on two atom interferometers separated by a distance L. In this scheme, only one arm and one laser are used for operating the two atom interferometers. The innovation here involves the fact that the atoms in the atom interferometers are not only considered as perfect test masses, but also as highly stable clocks. Atomic coherence is intrinsically stable, and can be many orders of magnitude more stable than a laser.
Modeling Gravitational Wave Sources For Pulsar Timing Arrays
Simon, Joseph
2018-01-01
Pulsar Timing Arrays (PTAs) are galactic-scale low-frequency (nHz - μHz) gravitational wave (GW) observatories, which aim to directly detect GWs from binary supermassive black holes (SMBHs) (≥ 107 M⊙). Binary SMBHs are predicted products of galaxy mergers, and are a crucial step in galaxy formation theories. Understanding the link between binary SMBHs and the gravitational radiation detected by PTAs is crucial to the community's capability of making meaningful scientific statements using PTA observations. Recent PTA upper limits on the gravitational radiation in the nanohertz frequency band are impacting our understanding of the binary SMBH population. But as upper limits grow more constraining, what can be implied about galaxy evolution? In this talk, I will provide insights into this question with investigations into which astrophysical parameters have the largest impact on GW predictions, direct translations between PTA limits and measured values for the parameters of galaxy evolution, and explorations into how the use of different galaxy evolution parameters effects the characterization of the GW signal.The inspiral of binary SMBHs creates extended interaction between the black holes and their host galaxy, and there is the potential for many electromagnetic tracers to accompany the binary's evolution. This talk will also highlight work incorporating models of electromagnetic radiation from binary SMBHs to investigate the potential for jointly detecting a binary's electromagnetic and gravitational radiation. The detection of a single `multi-messenger' source would provide a unique window into a pivotal stage of galaxy evolution, and would revolutionize the understanding of late-stage galaxy evolution.
INTEGRAL results on the electromagnetic counterparts of gravitational waves
DEFF Research Database (Denmark)
Mereghetti, S.; Savchenko, V.; Ferrigno, C.
2018-01-01
Thanks to its high orbit and a set of complementary detectors providing continuous coverage of the whole sky, the INTEGRAL satellite has unique capabilities for the identification and study of the electromagnetic radiation associated to gravitational waves signals and, more generally, for multi......-messenger astrophysics. Here we briefly review the results obtained during the first two observing runs of the advanced LIGO/Virgo interferometers....
International Nuclear Information System (INIS)
Mena, Filipe C; Tod, Paul
2007-01-01
We give a prescription for constructing a Lanczos potential for a cosmological model which is a purely gravitational perturbation of a Friedman-Lemaitre-Robertson-Walker spacetime. For the radiation equation of state, we find the Lanczos potential explicitly via Fourier transforms. As an application, we follow up a suggestion of Penrose (1979 Singularities and time-asymmetry General Relativity: An Einstein Centenary Survey ed S W Hawking and W Israel (Cambridge: Cambridge University Press)) and propose a definition of gravitational entropy for these cosmologies. With this definition, the gravitational entropy initially is finite if and only if the initial Weyl tensor is finite
Sparse representation of Gravitational Sound
Rebollo-Neira, Laura; Plastino, A.
2018-03-01
Gravitational Sound clips produced by the Laser Interferometer Gravitational-Wave Observatory (LIGO) and the Massachusetts Institute of Technology (MIT) are considered within the particular context of data reduction. We advance a procedure to this effect and show that these types of signals can be approximated with high quality using significantly fewer elementary components than those required within the standard orthogonal basis framework. Furthermore, a local measure sparsity is shown to render meaningful information about the variation of a signal along time, by generating a set of local sparsity values which is much smaller than the dimension of the signal. This point is further illustrated by recourse to a more complex signal, generated by Milde Science Communication to divulge Gravitational Sound in the form of a ring tone.
Observable tensor-to-scalar ratio and secondary gravitational wave background
Chatterjee, Arindam; Mazumdar, Anupam
2018-03-01
In this paper we will highlight how a simple vacuum energy dominated inflection-point inflation can match the current data from cosmic microwave background radiation, and predict large primordial tensor to scalar ratio, r ˜O (10-3-10-2), with observable second order gravitational wave background, which can be potentially detectable from future experiments, such as DECi-hertz Interferometer Gravitational wave Observatory (DECIGO), Laser Interferometer Space Antenna (eLISA), cosmic explorer (CE), and big bang observatory (BBO).
Observable tensor-to-scalar ratio and secondary gravitational wave background
Chatterjee, Arindam; Mazumdar, Anupam
2017-01-01
In this paper we will highlight how a simple vacuum energy dominated inflection-point inflation can match the current data from cosmic microwave background radiation, and predict large primordial tensor to scalar ratio, $r \\sim \\mathcal{O}(10^{-3}-10^{-2})$, with observable second order gravitational wave background, which can be potentially detectable from future experiments, such as DECi-hertz Interferometer Gravitational wave Observatory (DECIGO), Laser Interferometer Space Antenna (eLISA)...
Accurate measurement of the time delay in the response of the LIGO gravitational wave detectors
Aso, Yoichi; Goetz, Evan; Kalmus, Peter; Matone, Luca; Márka, Szabolcs; Myers, Joshua; O’Reilly, Brian; Savage, Rick; Schwinberg, Paul; Siemens, Xavier; Sigg, Daniel; Smith, Nicolas
2009-01-01
We present a method to precisely calibrate the time delay in a long baseline gravitational-wave interferometer. An accurate time stamp is crucial for data analysis of gravitational wave detectors, especially when performing coincidence and correlation analyses between multiple detectors. Our method uses an intensity-modulated radiation pressure force to actuate on the mirrors. The time delay is measured by comparing the phase of the signal at the actuation point with the phase of the recorded...
Poincare gauge theory of gravitation and the binary pulsar 1913+16
International Nuclear Information System (INIS)
Schweizer, M.; Straumann, N.
1979-01-01
The post-Newtonian approximations of a Poincare gauge theory of gravitation, proposed by Hehl et al. (1978), are shown to agree with Einstein's theory to fourth order. In addition, Einstein's quadrupole formula for the gravitational radiation holds in a naive linearized approximation. Hence, the theory is not only in agreement with the solar system tests, but is also consistent with observations of the binary pulsar 1913+16. (Auth.)
Directory of Open Access Journals (Sweden)
I.L. Animasaun
2016-06-01
Full Text Available This article presents the effects of nonlinear thermal radiation and induced magnetic field on viscoelastic fluid flow toward a stagnation point. It is assumed that there exists a kind of chemical reaction between chemical species A and B. The diffusion coefficients of the two chemical species in the viscoelastic fluid flow are unequal. Since chemical species B is a catalyst at the horizontal surface, hence homogeneous and heterogeneous schemes are of the isothermal cubic autocatalytic reaction and first order reaction respectively. The transformed governing equations are solved numerically using Runge–Kutta integration scheme along with Newton’s method. Good agreement is obtained between present and published numerical results for a limiting case. The influence of some pertinent parameters on skin friction coefficient, local heat transfer rate, together with velocity, induced magnetic field, temperature, and concentration profiles is illustrated graphically and discussed. Based on all of these assumptions, results indicate that the effects of induced magnetic and viscoelastic parameters on velocity, transverse velocity and velocity of induced magnetic field are almost the same but opposite in nature. The strength of heterogeneous reaction parameter is very helpful to reduce the concentration of bulk fluid and increase the concentration of catalyst at the surface.
Gravitational-wave mediated preheating
Directory of Open Access Journals (Sweden)
Stephon Alexander
2015-04-01
Full Text Available We propose a new preheating mechanism through the coupling of the gravitational field to both the inflaton and matter fields, without direct inflaton–matter couplings. The inflaton transfers power to the matter fields through interactions with gravitational waves, which are exponentially enhanced due to an inflation–graviton coupling. One such coupling is the product of the inflaton to the Pontryagin density, as in dynamical Chern–Simons gravity. The energy scales involved are constrained by requiring that preheating happens fast during matter domination.
General relativity and gravitational waves
Weber, Johanna
1961-01-01
An internationally famous physicist and electrical engineer, the author of this text was a pioneer in the investigation of gravitational waves. Joseph Weber's General Relativity and Gravitational Waves offers a classic treatment of the subject. Appropriate for upper-level undergraduates and graduate students, this text remains ever relevant. Brief but thorough in its introduction to the foundations of general relativity, it also examines the elements of Riemannian geometry and tensor calculus applicable to this field.Approximately a quarter of the contents explores theoretical and experimenta
Gravitational lensing by exotic objects
Asada, Hideki
2017-11-01
This paper reviews a phenomenological approach to the gravitational lensing by exotic objects such as the Ellis wormhole lens, where the exotic lens objects may follow a non-standard form of the equation of state or may obey a modified gravity theory. A gravitational lens model is proposed in the inverse powers of the distance, such that the Schwarzschild lens and exotic lenses can be described in a unified manner as a one parameter family. As observational implications, the magnification, shear, photo-centroid motion and time delay in this lens model are discussed.
Astrophysical sources of gravitational waves
Energy Technology Data Exchange (ETDEWEB)
Losurdo, G. E-mail: losurdo@galileo.pi.infn.it
2000-05-01
The interferometric detectors of gravitational waves (GW) (such as VIRGO and LIGO) will search for events in a frequency band within a few Hz and a few kHz, where several sources are expected to emit. In this talk we outline briefly the current theoretical knowledge on the emission of GW in events such as the coalescence of compact binaries, the gravitational collapse, the spinning of a neutron stars. Expected amplitudes are compared with the target sensitivity of the VIRGO/LIGO interferometric detectors.
Gravitational anomaly and transport phenomena.
Landsteiner, Karl; Megías, Eugenio; Pena-Benitez, Francisco
2011-07-08
Quantum anomalies give rise to new transport phenomena. In particular, a magnetic field can induce an anomalous current via the chiral magnetic effect and a vortex in the relativistic fluid can also induce a current via the chiral vortical effect. The related transport coefficients can be calculated via Kubo formulas. We evaluate the Kubo formula for the anomalous vortical conductivity at weak coupling and show that it receives contributions proportional to the gravitational anomaly coefficient. The gravitational anomaly gives rise to an anomalous vortical effect even for an uncharged fluid.
Directory of Open Access Journals (Sweden)
Giuseppina Rea
2011-01-01
Full Text Available Evolutionary mechanisms adopted by the photosynthetic apparatus to modifications in the Earth's atmosphere on a geological time-scale remain a focus of intense research. The photosynthetic machinery has had to cope with continuously changing environmental conditions and particularly with the complex ionizing radiation emitted by solar flares. The photosynthetic D1 protein, being the site of electron tunneling-mediated charge separation and solar energy transduction, is a hot spot for the generation of radiation-induced radical injuries. We explored the possibility to produce D1 variants tolerant to ionizing radiation in Chlamydomonas reinhardtii and clarified the effect of radiation-induced oxidative damage on the photosynthetic proteins evolution. In vitro directed evolution strategies targeted at the D1 protein were adopted to create libraries of chlamydomonas random mutants, subsequently selected by exposures to radical-generating proton or neutron sources. The common trend observed in the D1 aminoacidic substitutions was the replacement of less polar by more polar amino acids. The applied selection pressure forced replacement of residues more sensitive to oxidative damage with less sensitive ones, suggesting that ionizing radiation may have been one of the driving forces in the evolution of the eukaryotic photosynthetic apparatus. A set of the identified aminoacidic substitutions, close to the secondary plastoquinone binding niche and oxygen evolving complex, were introduced by site-directed mutagenesis in un-transformed strains, and their sensitivity to free radicals attack analyzed. Mutants displayed reduced electron transport efficiency in physiological conditions, and increased photosynthetic performance stability and oxygen evolution capacity in stressful high-light conditions. Finally, comparative in silico analyses of D1 aminoacidic sequences of organisms differently located in the evolution chain, revealed a higher ratio of residues
Spinning Black Hole Pairs: Dynamics and Gravitational Waves
Grossman, Rebecca
Black hole binaries will be an important source of gravitational radiation for both ground-based and future space-based gravitational wave detectors. The study of such systems will offer a unique opportunity to test the dynamical predictions of general relativity when gravity is very strong. To date, most investigations of black hole binary dynamics have focused attention on restricted scenarios in which the black holes do not spin (and thus are confined to move in a plane) and/or in which they stay on quasi-circular orbits. However, spinning black hole pairs in eccentric orbits are now understood to be astrophysically equally important. These spinning binaries exhibit a range of complicated dynamical behaviors, even in the absence of radiation reaction. Their conservative dynamics is complicated by extreme perihelion precession compounded by spin-induced precession. Although the motion seems to defy simple decoding, we are able to quantitatively define and describe the fully three-dimensional motion of arbitrary mass-ratio binaries with at least one black hole spinning and expose an underlying simplicity. To do so, we untangle the dynamics by constructing an instantaneous orbital plane and showing that the motion captured in that plane obeys elegant topological rules. In this thesis, we apply the above prescription to two formal systems used to model black hole binaries. The first is defined by the conservative 3PN Hamiltonian plus spin-orbit coupling and is particularly suitable to comparable-mass binaries. The second is defined by geodesics of the Kerr metric and is used exclusively for extreme mass-ratio binaries. In both systems, we define a complete taxonomy for fully three-dimensional orbits. More than just a naming system, the taxonomy provides unambiguous and quantitative descriptions of the orbits, including a determination of the zoom-whirliness of any given orbit. Through a correspondence with the rational numbers, we are able to show that all of the
BOOK REVIEW Analysis of Gravitational-Wave Data Analysis of Gravitational-Wave Data
Fairhurst, Stephen
2010-12-01
The field of gravitational-wave data analysis has expanded greatly over the past decade and significant developments have been made in methods of analyzing the data taken by resonant bar and interferometric detectors, as well as analysis of mock LISA data. This book introduces much of the required theoretical background in gravitational physics, statistics and time series analysis before moving on to a discussion of gravitational-wave data analysis techniques themselves. The book opens with an overview of the theory of gravitational radiation, providing a comprehensive discussion of various introductory topics: linearized gravity, transverse traceless gauge, the effects of gravitational waves (via geodesic deviation), energy and momentum carried by the waves, and generation of gravitational waves. The second chapter provides an introduction to the various sources of gravitational waves, followed by more detailed expositions on some of the primary sources. For example, the description of compact binary coalescence is thorough and includes a brief exposition of the post-Newtonian formalism and the effective one body method. There also follows extended derivations of gravitational waves from distorted neutron stars, supernovae and a stochastic background. Chapter three provides an introduction to the statistical theory of signal detection, including a discussion of parameter estimation via the Fisher matrix formalism. This is presented from a very mathematical, postulate based, standpoint and I expect that even established gravitational-wave data analysts will find the derivations here more formal than they are used to. The discussion of likelihood ratio tests and the importance of prior probabilities are presented particularly clearly. The fourth chapter covers time series analysis, with power spectrum estimation, extraction of periodic signals and goodness of fit tests. Chapter five switches topics and gives the details of the response of gravitational
The 'gravitating' tensor in the dualistic theory
International Nuclear Information System (INIS)
Mahanta, M.N.
1989-01-01
The exact microscopic system of Einstein-type field equations of the dualistic gravitation theory is investigated as well as an analysis of the modified energy-momentum tensor or so called 'gravitating' tensor is presented
Merging Black Holes and Gravitational Waves
Centrella, Joan
2009-01-01
This talk will focus on simulations of binary black hole mergers and the gravitational wave signals they produce. Applications to gravitational wave detection with LISA, and electronagnetic counterparts, will be highlighted.
Second-order gravitational self-force
International Nuclear Information System (INIS)
Rosenthal, Eran
2006-01-01
We derive an expression for the second-order gravitational self-force that acts on a self-gravitating compact object moving in a curved background spacetime. First we develop a new method of derivation and apply it to the derivation of the first-order gravitational self-force. Here we find that our result conforms with the previously derived expression. Next we generalize our method and derive a new expression for the second-order gravitational self-force. This study also has a practical motivation: The data analysis for the planned gravitational wave detector LISA requires construction of waveform templates for the expected gravitational waves. Calculation of the two leading orders of the gravitational self-force will enable one to construct highly accurate waveform templates, which are needed for the data analysis of gravitational waves that are emitted from extreme mass-ratio binaries
New aspects in interaction of gravitational waves
International Nuclear Information System (INIS)
Ciobanu, Brandusa
2004-01-01
The results obtained from the previous works indicate a new way to study the interaction of the gravitational waves. In the present paper we will consider the following approaches: - the Maxwell type equations for gravitational field shall be considered as describing a gravitational wave in a linear approximation; - the Maxwell type equations for gravitational field shall be written again in the associated metric system of plane monochromatic gravitational wave. Then, the new equations will describe the interaction of two gravitational waves; - the wave equations in the associated metric shall be obtained for the gravito-electric field and gravito-magnetic field. As a conclusion we can note the following: - the vacuum, as viewed by the considered metric system, behaves like a dielectric anisotropic 'medium' in the presence of the mass associated to the gravitational wave. It is possible to define the gravitational permittivity and the gravitational permeability for the dielectric anisotropic medium; -the anisotropy of the gravitational field as reflected in the expression of metric system induced an anisotropy of the vacuum; - it is satisfied the property of Dicke, according to which, the gravitational permittivity tensor is equal to the gravitational permeability tensor. Also, in the present paper it was shown that in the weak field approximation, the gravitational equations of Maxwell type in space-time with gravitational wave reduce to the equations by gravitational permittivity and permeability help. In the same approximation it was obtained the wave equation for the gravito-electric field in the presence of the metric system. Analysing this equation, it results that it does not describe a free gravitational wave. In such a context, the first term corresponds to an interaction between the gravitational displacement current induced by the gravitational wave and the 'medium' by the metric system. The second term indicates an interaction between the 'gravitational
Energy Technology Data Exchange (ETDEWEB)
Jensen, J.; Norby, J.G.
1988-12-05
Frozen samples of membrane-bound pig kidney Na,K-ATPase were subjected to target size analysis by radiation inactivation with 10-MeV electrons at -15 degrees C. The various properties investigated decreased monoexponentially with radiation dose, and the decay constants, gamma, were independent of the presence of other proteins and of sucrose concentrations above 0.25 M. The temperature factor was the same as described by others. Irradiation of four proteins of known molecular mass, m, showed that gamma for protein integrity was proportional to m with a proportionality factor about 20% higher than that conventionally used. By this standard curve, glucose-6-phosphate dehydrogenase activity used as internal standard gave a radiation inactivation size of 110 +/- 5 kDa, very close to m = 104-108 kDa for the dimer, as expected. For Na+/K+-transporting ATPase the following target sizes and radiation inactivation size values were very close to m = 112 kDa for the alpha-peptide: peptide integrity of alpha, 115 kDa; unmodified binding sites for ATP and vanadate, 108 kDa; K+-activated p-nitrophenylphosphatase activity, 106 kDa. There was thus no sign of dimerization of the alpha-peptide or involvement of the beta-peptide. In contrast, optimal Na+/K+-transporting ATPase activity had a radiation inactivation size = 189 +/- 7 kDa, and total nucleotide binding capacity corresponded to 72 +/- 3 kDa. These latter results will be extended and discussed in a forthcoming paper.
International Nuclear Information System (INIS)
Jensen, J.; Norby, J.G.
1988-01-01
Frozen samples of membrane-bound pig kidney Na,K-ATPase were subjected to target size analysis by radiation inactivation with 10-MeV electrons at -15 degrees C. The various properties investigated decreased monoexponentially with radiation dose, and the decay constants, gamma, were independent of the presence of other proteins and of sucrose concentrations above 0.25 M. The temperature factor was the same as described by others. Irradiation of four proteins of known molecular mass, m, showed that gamma for protein integrity was proportional to m with a proportionality factor about 20% higher than that conventionally used. By this standard curve, glucose-6-phosphate dehydrogenase activity used as internal standard gave a radiation inactivation size of 110 +/- 5 kDa, very close to m = 104-108 kDa for the dimer, as expected. For Na+/K+-transporting ATPase the following target sizes and radiation inactivation size values were very close to m = 112 kDa for the alpha-peptide: peptide integrity of alpha, 115 kDa; unmodified binding sites for ATP and vanadate, 108 kDa; K+-activated p-nitrophenylphosphatase activity, 106 kDa. There was thus no sign of dimerization of the alpha-peptide or involvement of the beta-peptide. In contrast, optimal Na+/K+-transporting ATPase activity had a radiation inactivation size = 189 +/- 7 kDa, and total nucleotide binding capacity corresponded to 72 +/- 3 kDa. These latter results will be extended and discussed in a forthcoming paper
de Matos, C. J.; Tajmar, M.
2001-01-01
The gravitational Poynting vector provides a mechanism for the transfer of gravitational energy to a system of falling objects. In the following we will show that the gravitational poynting vector together with the gravitational Larmor theorem also provides a mechanism to explain how massive bodies acquire rotational kinetic energy when external mechanical forces are applied on them.
Effect of the Earth's gravitational field on the detection of gravitational waves
International Nuclear Information System (INIS)
Denisov, V.I.; Eliseev, V.A.
1988-01-01
We consider the laboratory detection of high-frequency gravitational waves in theories of gravitation based on a pseudo-Euclidean space-time. We analyze the effects due to the Earth's gravitational field on the propagation velocities of gravitational and electromagnetic waves in these theories. Experiments to test the predictions of this class of theories are discussed
Interaction of plane gravitational and electromagnetic waves in an external gravitational field
International Nuclear Information System (INIS)
Denisov, V.I.; Eliseev, V.A.
1987-01-01
Interaction of gravitational and electromagnetic waves in an external gravitational field for two classes of metric gravitation theories is considered. As a result conditions for resonance interaction are determined, and possibility of continuous amplification of plane electromagnetic wave with plane gravitational wave is shown
Directory of Open Access Journals (Sweden)
Seong-Ho Choi
2011-02-01
Full Text Available An Acaligense sp.-immobilized biosensor was fabricated based on QD-MWNT composites as an electron transfer mediator and a microbe immobilization support by a one-step radiation reaction and used for sensing phenolic compounds in commercial red wines. First, a quantum dot-modified multi-wall carbon nanotube (QD-MWNT composite was prepared in the presence of MWNT by a one-step radiation reaction in an aqueous solution at room temperature. The successful preparation of the QD-MWNT composite was confirmed by XPS, TEM, and elemental analysis. Second, the microbial biosensor was fabricated by immobilization of Acaligense sp. on the surface of the composite thin film of a glassy carbon (GC electrode, which was prepared by a hand casting method with a mixture of the previously obtained composite and Nafion solution. The sensing ranges of the microbial biosensor based on CdS-MWNT and Cu2S-MWNT supports were 0.5–5.0 mM and 0.7–10 mM for phenol in a phosphate buffer solution, respectively. Total concentration of phenolic compounds contained in commercial red wines was also determined using the prepared microbial immobilized biosensor.
The Optical Gravitational Lensing Experiment
Udalski, A.; Szymanski, M.; Kaluzny, J.; Kubiak, M.; Mateo, Mario
1992-01-01
The technical features are described of the Optical Gravitational Lensing Experiment, which aims to detect a statistically significant number of microlensing events toward the Galactic bulge. Clusters of galaxies observed during the 1992 season are listed and discussed and the reduction methods are described. Future plans are addressed.
Normalization of Gravitational Acceleration Models
Eckman, Randy A.; Brown, Aaron J.; Adamo, Daniel R.
2011-01-01
Unlike the uniform density spherical shell approximations of Newton, the con- sequence of spaceflight in the real universe is that gravitational fields are sensitive to the nonsphericity of their generating central bodies. The gravitational potential of a nonspherical central body is typically resolved using spherical harmonic approximations. However, attempting to directly calculate the spherical harmonic approximations results in at least two singularities which must be removed in order to generalize the method and solve for any possible orbit, including polar orbits. Three unique algorithms have been developed to eliminate these singularities by Samuel Pines [1], Bill Lear [2], and Robert Gottlieb [3]. This paper documents the methodical normalization of two1 of the three known formulations for singularity-free gravitational acceleration (namely, the Lear [2] and Gottlieb [3] algorithms) and formulates a general method for defining normalization parameters used to generate normalized Legendre Polynomials and ALFs for any algorithm. A treatment of the conventional formulation of the gravitational potential and acceleration is also provided, in addition to a brief overview of the philosophical differences between the three known singularity-free algorithms.
Academic Training: Gravitational Waves Astronomy
2006-01-01
2006-2007 ACADEMIC TRAINING PROGRAMME LECTURE SERIES 16, 17, 18 October from 11:00 to 12:00 - Main Auditorium, bldg. 500 Gravitational Waves Astronomy M. LANDRY, LIGO Hanford Observatory, Richland, USA Gravitational wave astronomy is expected to become an observational field within the next decade. First direct detection of gravitational waves is possible with existing terrestrial-based detectors, and highly probable with proposed upgrades. In this three-part lecture series, we give an overview of the field, including material on gravitional wave sources, detection methods, some details of interferometric detectors, data analysis methods, and current results from observational data-taking runs of the LIGO and GEO projects.ENSEIGNEMENT ACADEMIQUE ACADEMIC TRAINING Françoise Benz 73127 academic.training@cern.ch If you wish to participate in one of the following courses, please tell to your supervisor and apply electronically from the course description pages that can be found on the Web at: http://www.cern...
Scientific visualization of gravitational lenses
International Nuclear Information System (INIS)
Magallon, M.
1999-01-01
Concepts related to gravitational lenses are discussed and applied to develop an interactive visualization tool that allow us to investigate them. Optimization strategies were performed to elaborate the tool. Some results obtained from the application of the tool are shown [es
Gravitational collapse and naked singularities
Indian Academy of Sciences (India)
We propose the concept of 'effective naked singularities', which will be quite helpful ... If a pressure gradient force is not sufficiently strong, a body can continue collapsing due to its self-gravity. This phenomenon is called gravitational collapse. .... approaches a self-similar solution, which is called a critical solution, and then it.
Plausibility Arguments and Universal Gravitation
Cunha, Ricardo F. F.; Tort, A. C.
2017-01-01
Newton's law of universal gravitation underpins our understanding of the dynamics of the Solar System and of a good portion of the observable universe. Generally, in the classroom or in textbooks, the law is presented initially in a qualitative way and at some point during the exposition its mathematical formulation is written on the blackboard…
On black holes and gravitational waves
Loinger, Angelo
2002-01-01
Black holes and gravitational waves are theoretical entities of today astrophysics. Various observed phenomena have been associated with the concept of black hole ; until now, nobody has detected gravitational waves. The essays contained in this book aim at showing that the concept of black holes arises from a misinterpretation of general relativity and that gravitational waves cannot exist.
Detecting gravitational waves from accreting neutron stars
Watts, A.L.; Krishnan, B.
2009-01-01
The gravitational waves emitted by neutron stars carry unique information about their structure and composition. Direct detection of these gravitational waves, however, is a formidable technical challenge. In a recent study we quantified the hurdles facing searches for gravitational waves from the
Physics of interferometric gravitational wave detectors
Indian Academy of Sciences (India)
mal displacements of isolated test masses which convey the signature of gravitational waves from astrophysical sources. ... Keywords. Interferometer; gravitational wave; Laser Interferometer Gravitational-wave. Observatory. ..... ments on LIGO or its advanced design-variants or on some subsystems of it. The. E2E package ...
Radiative capture reaction {sup 7}Be(p,{gamma}){sup 8}B in the continuum shell model
Energy Technology Data Exchange (ETDEWEB)
Bennaceur, K.; Ploszajczak, M. [Grand Accelerateur National d`Ions Lourds (GANIL), Caen (France); Nowacki, F. [Grand Accelerateur National d`Ions Lourds (GANIL), Caen (France)]|[Lab. de Physique Theorique Strasbourg, Strasbourg (France); Okolowicz, J. [Grand Accelerateur National d`Ions Lourds (GANIL), Caen (France)]|[Inst. of Nuclear Physics, Krakow (Poland)
1998-06-01
We present here the first application of realistic shell model (SM) including coupling between many-particle (quasi-)bound states and the continuum of one-particle scattering states to the calculation of the total capture cross section and the astrophysical factor in the reaction {sup 7}Be(p,{gamma}){sup 8}B. (orig.)
Radiation-chemical reaction of 2,3,5-triphenyl-tetrazolium chloride in liquid and solid state
DEFF Research Database (Denmark)
Kovacs, A.; Wojnarovits, L.; McLaughlin, W.L.
1996-01-01
. This reaction is accompanied by combination to the diformazan dimer, absorbing over the spectral range 500-550 nm. A polyvinyl-alcohol-based TTC film was produced and tested for dosimetry purposes: it gave a measurable response in the 1-100 kGy dose range by evaluating the 50 mu m thick TTC films...
International Nuclear Information System (INIS)
Mumbrekar, Kamalesh Dattaram; Bola Sadashiva, Satish Rao; Kabekkodu, Shama Prasada; Fernandes, Donald Jerard; Vadhiraja, Bejadi Manjunath; Suga, Tomo; Shoji, Yoshimi; Nakayama, Fumiaki; Imai, Takashi; Satyamoorthy, Kapaettu
2017-01-01
Purpose: Heterogeneity in radiation therapy (RT)-induced normal tissue toxicity is observed in 10% of cancer patients, limiting the therapeutic outcomes. In addition to treatment-related factors, normal tissue adverse reactions also manifest from genetic alterations in distinct pathways majorly involving DNA damage–repair genes, inflammatory cytokine genes, cell cycle regulation, and antioxidant response. Therefore, the common sequence variants in these radioresponsive genes might modify the severity of normal tissue toxicity, and the identification of the same could have clinical relevance as a predictive biomarker. Methods and Materials: The present study was conducted in a cohort of patients with breast cancer to evaluate the possible associations between genetic variants in radioresponsive genes described previously and the risk of developing RT-induced acute skin adverse reactions. We tested 22 genetic variants reported in 18 genes (ie, NFE2L2, OGG1, NEIL3, RAD17, PTTG1, REV3L, ALAD, CD44, RAD9A, TGFβR3, MAD2L2, MAP3K7, MAT1A, RPS6KB2, ZNF830, SH3GL1, BAX, and XRCC1) using TaqMan assay-based real-time polymerase chain reaction. At the end of RT, the severity of skin damage was scored, and the subjects were dichotomized as nonoverresponders (Radiation Therapy Oncology Group grade <2) and overresponders (Radiation Therapy Oncology Group grade ≥2) for analysis. Results: Of the 22 single nucleotide polymorphisms studied, the rs8193 polymorphism lying in the micro-RNA binding site of 3′-UTR of CD44 was significantly (P=.0270) associated with RT-induced adverse skin reactions. Generalized multifactor dimensionality reduction analysis showed significant (P=.0107) gene–gene interactions between MAT1A and CD44. Furthermore, an increase in the total number of risk alleles was associated with increasing occurrence of overresponses (P=.0302). Conclusions: The genetic polymorphisms in radioresponsive genes act as genetic modifiers of acute normal tissue toxicity
Gravitational Quasinormal Modes of Regular Phantom Black Hole
Directory of Open Access Journals (Sweden)
Jin Li
2017-01-01
Full Text Available We investigate the gravitational quasinormal modes (QNMs for a type of regular black hole (BH known as phantom BH, which is a static self-gravitating solution of a minimally coupled phantom scalar field with a potential. The studies are carried out for three different spacetimes: asymptotically flat, de Sitter (dS, and anti-de Sitter (AdS. In order to consider the standard odd parity and even parity of gravitational perturbations, the corresponding master equations are derived. The QNMs are discussed by evaluating the temporal evolution of the perturbation field which, in turn, provides direct information on the stability of BH spacetime. It is found that in asymptotically flat, dS, and AdS spacetimes the gravitational perturbations have similar characteristics for both odd and even parities. The decay rate of perturbation is strongly dependent on the scale parameter b, which measures the coupling strength between phantom scalar field and the gravity. Furthermore, through the analysis of Hawking radiation, it is shown that the thermodynamics of such regular phantom BH is also influenced by b. The obtained results might shed some light on the quantum interpretation of QNM perturbation.
Turbulence of Weak Gravitational Waves in the Early Universe.
Galtier, Sébastien; Nazarenko, Sergey V
2017-12-01
We study the statistical properties of an ensemble of weak gravitational waves interacting nonlinearly in a flat space-time. We show that the resonant three-wave interactions are absent and develop a theory for four-wave interactions in the reduced case of a 2.5+1 diagonal metric tensor. In this limit, where only plus-polarized gravitational waves are present, we derive the interaction Hamiltonian and consider the asymptotic regime of weak gravitational wave turbulence. Both direct and inverse cascades are found for the energy and the wave action, respectively, and the corresponding wave spectra are derived. The inverse cascade is characterized by a finite-time propagation of the metric excitations-a process similar to an explosive nonequilibrium Bose-Einstein condensation, which provides an efficient mechanism to ironing out small-scale inhomogeneities. The direct cascade leads to an accumulation of the radiation energy in the system. These processes might be important for understanding the early Universe where a background of weak nonlinear gravitational waves is expected.
Quantum Measurement Theory in Gravitational-Wave Detectors
Directory of Open Access Journals (Sweden)
Stefan L. Danilishin
2012-04-01
Full Text Available The fast progress in improving the sensitivity of the gravitational-wave detectors, we all have witnessed in the recent years, has propelled the scientific community to the point at which quantum behavior of such immense measurement devices as kilometer-long interferometers starts to matter. The time when their sensitivity will be mainly limited by the quantum noise of light is around the corner, and finding ways to reduce it will become a necessity. Therefore, the primary goal we pursued in this review was to familiarize a broad spectrum of readers with the theory of quantum measurements in the very form it finds application in the area of gravitational-wave detection. We focus on how quantum noise arises in gravitational-wave interferometers and what limitations it imposes on the achievable sensitivity. We start from the very basic concepts and gradually advance to the general linear quantum measurement theory and its application to the calculation of quantum noise in the contemporary and planned interferometric detectors of gravitational radiation of the first and second generation. Special attention is paid to the concept of the Standard Quantum Limit and the methods of its surmounting.
The gravitational wave spectrum from cosmological B-L breaking
Energy Technology Data Exchange (ETDEWEB)
Buchmueller, W.; Domcke, V.; Kamada, K. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Schmitz, K. [Tokyo Univ., Kashiwa (Japan). Kavli IPMU (WPI)
2013-05-15
Cosmological B-L breaking is a natural and testable mechanism to generate the initial conditions of the hot early universe. If B-L is broken at the grand unification scale, the false vacuum phase drives hybrid inflation, ending in tachyonic preheating. The decays of heavy B-L Higgs bosons and heavy neutrinos generate entropy, baryon asymmetry and dark matter and also control the reheating temperature. The different phases in the transition from inflation to the radiation dominated phase produce a characteristic spectrum of gravitational waves. We calculate the complete gravitational wave spectrum due to inflation, preheating and cosmic strings, which turns out to have several features. The production of gravitational waves from cosmic strings has large uncertainties, with lower and upper bounds provided by Abelian Higgs strings and Nambu-Goto strings, implying {Omega}{sub GW}h{sup 2}{proportional_to}10{sup -13}-10{sup -8}, much larger than the spectral amplitude predicted by inflation. Forthcoming gravitational wave detectors such as eLISA, advanced LIGO and BBO/DECIGO will reach the sensitivity needed to test the predictions from cosmological B-L breaking.
Turbulence of Weak Gravitational Waves in the Early Universe
Galtier, Sébastien; Nazarenko, Sergey V.
2017-12-01
We study the statistical properties of an ensemble of weak gravitational waves interacting nonlinearly in a flat space-time. We show that the resonant three-wave interactions are absent and develop a theory for four-wave interactions in the reduced case of a 2.5 +1 diagonal metric tensor. In this limit, where only plus-polarized gravitational waves are present, we derive the interaction Hamiltonian and consider the asymptotic regime of weak gravitational wave turbulence. Both direct and inverse cascades are found for the energy and the wave action, respectively, and the corresponding wave spectra are derived. The inverse cascade is characterized by a finite-time propagation of the metric excitations—a process similar to an explosive nonequilibrium Bose-Einstein condensation, which provides an efficient mechanism to ironing out small-scale inhomogeneities. The direct cascade leads to an accumulation of the radiation energy in the system. These processes might be important for understanding the early Universe where a background of weak nonlinear gravitational waves is expected.
Energy Technology Data Exchange (ETDEWEB)
Nasef, Mohamed Mahmoud, E-mail: mahmoudeithar@fkkksa.utm.my [Institute of Hydrogen Economy, International Campus, Universiti Teknologi Malaysia, 54100 Kuala Lumpur (Malaysia); Aly, Amgad Ahmed; Saidi, Hamdani; Ahmad, Arshad [Institute of Hydrogen Economy, International Campus, Universiti Teknologi Malaysia, 54100 Kuala Lumpur (Malaysia)
2011-11-15
Radiation induced grafting of 1-vinylimidazole (1-VIm) onto poly(ethylene-co-tetraflouroethene) (ETFE) was investigated. The grafting parameters such as absorbed dose, monomer concentration, grafting time and temperature were optimized using response surface method (RSM). The Box-Behnken module available in the design expert software was used to investigate the effect of reaction conditions (independent parameters) varied in four levels on the degree of grafting (G%) (response parameter). The model yielded a polynomial equation that relates the linear, quadratic and interaction effects of the independent parameters to the response parameter. The analysis of variance (ANOVA) was used to evaluate the results of the model and detect the significant values for the independent parameters. The optimum parameters to achieve a maximum G% were found to be monomer concentration of 55 vol%, absorbed dose of 100 kGy, time in the range of 14-20 h and a temperature of 61 {sup o}C. Fourier transform infrared (FTIR), thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) were used to investigate the properties of the obtained films and provide evidence for grafting. - Highlights: > A precursor for phosphoric acid membrane for a high temperature PEM fuel cell was prepared. > The grafting parameters for radiation induced grafting of 1-VIm onto ETFE film were optimized. > Surface response method was used to predict the degree of grafting. > The predicted value agreed well with the experimental data as indicated by a 3% deviation. > The number of the experiments and cost of radiation induced grafting were reduced.
International Nuclear Information System (INIS)
Gaisberger, B.
2001-05-01
In the first part of this work the radiation induced chemical changes of methoxylated and hydroxylated benzoic acids and cinnamic acids were investigated. Methoxylated compounds were also used as model components for acid derivatives with no free-OH groups. The latter are essentials parts of vegetable foodstuff. A comparison of the radiolytic behaviour of single substituted methoxy- and hydroxybenzoic acids was given at first, data of literature was included. The priority of the investigation was the hydroxylation process induced by OH-radicals. The OH-adduct distribution is generally the same for the hydroxy- as well as for the methoxybenzoic acid isomers. This could be proved by oxidation of these OH-adducts with K 3 Fe(CN) 6 . In the presence of air 68-77 % of the hydroxybenzoic acids are converted into hydroxylation products, whereas with the methoxylated acids this reaction leads only to about 10%. An explanation gives the different decay pathways of the intermediate peroxylradical. The multiple methoxy- and hydroxybenzoic acids show three different reaction possibilities: hydroxylation, replacement of -OCH 3 by -OH and -in case of the cinnamic acids-oxidative decomposition of the rest of the propenic acid under formation of the corresponding benzaldehydes. All these reactions can be expected when irradiating foodstuff, containing these acid compounds. The characteristic formation of these components and their linear dose/concentration relationship make these substrates very promising for the use as markers for irradiation treatment of foodstuff. The second part of this work deals with the gamma-radiation induced chemical changes in mushrooms. The irradiated and non-irradiated samples were freeze-dried and purified from matrix components chromatographically on polyamid columns. In case of the phenolic compounds for 4-hydroxybenzoic acid and three unknown components linear dose/concentration relationships could be obtained. Two of these unknown compounds seem
International Nuclear Information System (INIS)
Ullrich, S.E.
1995-01-01
The immune suppression generated by UV exposure is a major risk factor for skin cancer patients. This finding has fuelled efforts to understand the mechanisms involved in the immune suppression induced by exposure to UV radiation. This article reviews the recent findings on the role of epidermal cytokines in the generation of an immune response and their role in the induction of immune suppression induced by UV exposure. (UK)
arXiv Gravitational Wave Signatures of Highly Compact Boson Star Binaries
Palenzuela, Carlos; Bezares, Miguel; Cardoso, Vitor; Lehner, Luis; Liebling, Steven
2017-11-30
Solitonic boson stars are stable objects made of a complex scalar field with a compactness that can reach values comparable to that of neutron stars. A recent study of the collision of identical boson stars produced only nonrotating boson stars or black holes, suggesting that rotating boson stars may not form from binary mergers. Here we extend this study to include an analysis of the gravitational waves radiated during the coalescence of such a binary, which is crucial to distinguish these events from other binaries with LIGO and Virgo observations. Our studies reveal that the remnant’s gravitational wave signature is mainly governed by its fundamental frequency as it settles down to a nonrotating boson star, emitting significant gravitational radiation during this post-merger state. We calculate how the waveforms and their post-merger frequencies depend on the compactness of the initial boson stars and estimate analytically the amount of energy radiated after the merger.
International Nuclear Information System (INIS)
Garrison, W.M.
1988-02-01
The OH-induced deamination and dephosphorylation of simple peptides and phosphate esters in oxygenated solutions involve the fomation and subsequent degradation of the perodyl radicals RCONHC(/dot O/)R 2 and /bigcirc P/ OC(/dot O/ 2 )R 2 respectively. Reaction analogues in the degradation of peroxyl and alkoxyl radicals in these two systems are evaluated with reference to the OH-induced main-chain cleavage of protein and DNA. 25 refs
Gravitational wave signals and cosmological consequences of gravitational reheating
Artymowski, Michał; Czerwińska, Olga; Lalak, Zygmunt; Lewicki, Marek
2018-04-01
Reheating after inflation can proceed even if the inflaton couples to Standard Model (SM) particles only gravitationally. However, particle production during the transition between de-Sitter expansion and a decelerating Universe is rather inefficient and the necessity to recover the visible Universe leads to a non-standard cosmological evolution initially dominated by remnants of the inflaton field. We remain agnostic to the specific dynamics of the inflaton field and discuss a generic scenario in which its remnants behave as a perfect fluid with a general barotropic parameter w. Using CMB and BBN constraints we derive the allowed range of inflationary scales. We also show that this scenario results in a characteristic primordial Gravitational Wave (GW) spectrum which gives hope for observation in upcoming runs of LIGO as well as in other planned experiments.
Energy Technology Data Exchange (ETDEWEB)
Goutham, Hassan Venkatesh; Mumbrekar, Kamalesh Dattaram [Division of Radiobiology and Toxicology, Manipal Life Sciences Centre, Manipal University, Manipal, Karnataka (India); Vadhiraja, Bejadi Manjunath [Manipal Hospital, Bangalore, Karnataka (India); Fernandes, Donald Jerard; Sharan, Krishna [Department of Radiotherapy and Oncology, Shiridi Sai Baba Cancer Hospital and Research Centre, Kasturba Hospital, Manipal, Karnataka (India); Kanive Parashiva, Guruprasad; Kapaettu, Satyamoorthy [Division of Biotechnology, Manipal Life Sciences Centre, Manipal University, Manipal, Karnataka (India); Bola Sadashiva, Satish Rao, E-mail: satishraomlsc@gmail.com [Division of Radiobiology and Toxicology, Manipal Life Sciences Centre, Manipal University, Manipal, Karnataka (India)
2012-12-01
Purpose: Interindividual variability in normal tissue toxicity during radiation therapy is a limiting factor for successful treatment. Predicting the risk of developing acute reactions before initiation of radiation therapy may have the benefit of opting for altered radiation therapy regimens to achieve minimal adverse effects with improved tumor cure. Methods and Materials: DNA double-strand break (DSB) induction and its repair kinetics in lymphocytes of head-and-neck cancer patients undergoing chemoradiation therapy was analyzed by counting {gamma}-H2AX foci, neutral comet assay, and a modified version of neutral filter elution assay. Acute normal tissue reactions were assessed by Radiation Therapy Oncology Group criteria. Results: The correlation between residual DSBs and the severity of acute reactions demonstrated that residual {gamma}-H2AX foci in head-and-neck cancer patients increased with the severity of oral mucositis and skin reaction. Conclusions: Our results suggest that {gamma}-H2AX analysis may have predictive implications for identifying the overreactors to mucositis and skin reactions among head-and-neck cancer patients prior to initiation of radiation therapy.
Gravitational wave radiometry: Mapping a stochastic gravitational wave background
International Nuclear Information System (INIS)
Mitra, Sanjit; Dhurandhar, Sanjeev; Souradeep, Tarun; Lazzarini, Albert; Mandic, Vuk; Ballmer, Stefan; Bose, Sukanta
2008-01-01
The problem of the detection and mapping of a stochastic gravitational wave background (SGWB), either cosmological or astrophysical, bears a strong semblance to the analysis of the cosmic microwave background (CMB) anisotropy and polarization, which too is a stochastic field, statistically described in terms of its correlation properties. An astrophysical gravitational wave background (AGWB) will likely arise from an incoherent superposition of unmodelled and/or unresolved sources and cosmological gravitational wave backgrounds (CGWB) are also predicted in certain scenarios. The basic statistic we use is the cross correlation between the data from a pair of detectors. In order to ''point'' the pair of detectors at different locations one must suitably delay the signal by the amount it takes for the gravitational waves (GW) to travel to both detectors corresponding to a source direction. Then the raw (observed) sky map of the SGWB is the signal convolved with a beam response function that varies with location in the sky. We first present a thorough analytic understanding of the structure of the beam response function using an analytic approach employing the stationary phase approximation. The true sky map is obtained by numerically deconvolving the beam function in the integral (convolution) equation. We adopt the maximum likelihood framework to estimate the true sky map using the conjugate gradient method that has been successfully used in the broadly similar, well-studied CMB map-making problem. We numerically implement and demonstrate the method on signal generated by simulated (unpolarized) SGWB for the GW radiometer consisting of the LIGO pair of detectors at Hanford and Livingston. We include 'realistic' additive Gaussian noise in each data stream based on the LIGO-I noise power spectral density. The extension of the method to multiple baselines and polarized GWB is outlined. In the near future the network of GW detectors, including the Advanced LIGO and Virgo
Modeling Gravitational-Wave Sources for Pulsar Timing Arrays
Simon, Joseph J.
The recent direct detections of gravitational waves (GWs) from merging black holes by the Laser Interferometer Gravitational-wave Observatory (LIGO) marks the beginning of the era of GW astronomy and promises to transform fundamental physics. In the coming years, there is hope for detections across the mass scale of binary black holes. Pulsar Timing Arrays (PTAs) are galactic-scale low-frequency (nHz - muHz) GW observatories, which aim to directly detect GWs from binary supermassive black holes (SMBHs) (≥ 107M solar masses). The frequency and black hole mass range that PTAs are sensitive to is orders of magnitude different from those LIGO is observing, making PTAs a comparable observatory on the GW spectrum. Understanding the link between binary SMBHs and the gravitational radiation detected by PTAs is crucial to the community's capability of making meaningful scientific statements using PTA observations. This dissertation discusses the creation of a state-of-the-art observational-based simulation framework built to provide critical answers to many open questions surrounding the link between PTA data and binary SMBHs. Binary SMBHs are predicted products of galaxy mergers, and are a crucial step in galaxy formation theories. Recent PTA upper limits on the gravitational radiation in the nanohertz frequency band are impacting our understanding of the binary SMBH population. But as upper limits grow more constraining, what can be implied about galaxy evolution? In this dissertation, I will provide insights into this question by investigating which astrophysical parameters have the largest impact on GW predictions, developing direct translations between PTA limits and measured values for the parameters of galaxy evolution, and exploring how the use of different galaxy evolution parameters effects the characterization of the GW signal. During the extended interaction between SMBHs and their host galaxy throughout inspiral, there is the potential for many
International Nuclear Information System (INIS)
Wang Lili; Zhou Juying; Yu Zhiying; Qin Songbing; Xu Xiaoting; Li Li; Tu Yu
2007-01-01
Objective: To explore the protection of magnesium sulfate (MgSO 4 ) on radiation-induced acute brain injuries. Methods: 60 maturity Sprague-Dawley (SD) rats were randomly divided into 3 groups: blank control group, experimental control group and experimental-therapeutic group. The whole brain of SD rats of experimental control group and experimental-therapeutic group was irradiated to a dose of 20 Gy using 6 MeV electron. MgSO 4 was injected intraperitoneally into the rats of experimental-therapeutic group before and after irradiation for five times. At different time points ranging from the 1 d, 7 d, 14 d, 30 d after irradiation, the brain tissue were taken. The xanthine oxidase and colorimetric examination were used to measure the superoxide dismutase (SOD) and malonyldialdehyde (MDA) respectively in the rat brain respectively. Results: Compared with blank control group, the SOD in brain of experimental control group decreased significantly (P 4 used in early stage can inhibit the lipid peroxidation after radiation-induced acute brain injuries and alleviate the damage induced by free radicals to brain tissue. (authors)
Gravitational-Wave Cosmology across 29 Decades in Frequency
Directory of Open Access Journals (Sweden)
Paul D. Lasky
2016-03-01
Full Text Available Quantum fluctuations of the gravitational field in the early Universe, amplified by inflation, produce a primordial gravitational-wave background across a broad frequency band. We derive constraints on the spectrum of this gravitational radiation, and hence on theories of the early Universe, by combining experiments that cover 29 orders of magnitude in frequency. These include Planck observations of cosmic microwave background temperature and polarization power spectra and lensing, together with baryon acoustic oscillations and big bang nucleosynthesis measurements, as well as new pulsar timing array and ground-based interferometer limits. While individual experiments constrain the gravitational-wave energy density in specific frequency bands, the combination of experiments allows us to constrain cosmological parameters, including the inflationary spectral index n_{t} and the tensor-to-scalar ratio r. Results from individual experiments include the most stringent nanohertz limit of the primordial background to date from the Parkes Pulsar Timing Array, Ω_{GW}(f<2.3×10^{-10}. Observations of the cosmic microwave background alone limit the gravitational-wave spectral index at 95% confidence to n_{t}≲5 for a tensor-to-scalar ratio of r=0.11. However, the combination of all the above experiments limits n_{t}<0.36. Future Advanced LIGO observations are expected to further constrain n_{t}<0.34 by 2020. When cosmic microwave background experiments detect a nonzero r, our results will imply even more stringent constraints on n_{t} and, hence, theories of the early Universe.
International Nuclear Information System (INIS)
Williams, T.F.
1977-01-01
Progress is reported on ESR studies of fluorocarbon radicals and intermediate radicals. A detailed study was made of the dimethyl, diethyl, and di-n-propyl carbonates. Studies were continued on hydrogen-atom abstraction reactions at low temperatures with view to evaluating the contribution from quantum-mechanical tunneling. Detection of the transient dimer radical anion of acetonitrile in the upper crystalline phase at -50 0 C is reported. Abstracts of current reports are included on electron attachment to fluorocarbons hydrogen atom abstraction by methyl radicals. EPR spectra of the tetrafluoroethylene radical anion, and addition of tetrafluoroethylene to the tetrafluoroethylene radical anion
The mechanism of the dehydration reaction of solid HIO 4. 2H 2O and the role of radiation
International Nuclear Information System (INIS)
Takriti, S.
1998-01-01
A thermal and kinetic study of dehydration reaction of periodic acid dehydrate has been carried out with isothermal and physical measurements. Isothermal dehydration curves have been studied in the temperature ranges between 333 0 K respectively. Both dehydration processes involve the loss two molecules of water in the studied temperature ranges. Thermodynamic and kinetic parameters have been calculated using different physical models proposed. The data analysis illustrated that activation energy is about 1 eV for the first step and 1.2 eV for second
Bayesian Inference on Gravitational Waves
Directory of Open Access Journals (Sweden)
Asad Ali
2015-12-01
Full Text Available The Bayesian approach is increasingly becoming popular among the astrophysics data analysis communities. However, the Pakistan statistics communities are unaware of this fertile interaction between the two disciplines. Bayesian methods have been in use to address astronomical problems since the very birth of the Bayes probability in eighteenth century. Today the Bayesian methods for the detection and parameter estimation of gravitational waves have solid theoretical grounds with a strong promise for the realistic applications. This article aims to introduce the Pakistan statistics communities to the applications of Bayesian Monte Carlo methods in the analysis of gravitational wave data with an overview of the Bayesian signal detection and estimation methods and demonstration by a couple of simplified examples.
A Classical Model of Gravitation
Directory of Open Access Journals (Sweden)
Wagener P.
2008-07-01
Full Text Available A classical model of gravitation is proposed with time as an independent coordinate. The dynamics of the model is determined by a proposed Lagrangian. Applying the canonical equations of motion to its associated Hamiltonian gives conservation equa- tions of energy, total angular momentum and the z component of the angular momen- tum. These lead to a Keplerian orbit in three dimensions, which gives the observed values of perihelion precession and bending of light by a massive object. An expression for gravitational redshift is derived by accepting the local validity of special relativity at all points in space. Exact expressions for the GEM relations, as well as their associated Lorentz-type force, are derived. An expression for Mach’s Principle is also derived.
Quasar evolution and gravitational collapse
International Nuclear Information System (INIS)
Cavaliere, A.; Giallongo, E.; Vagnetti, F.; Messina, A.
1983-01-01
The paper presents three convergent results concerning the sources in theactive nuclei of quasars and radio galaxies that derive their power fromconversion of gravitational energy. We first derive, for several leading modelsbased on liberation of gravitational energy from mass in a compact supply, thelaws governing the secular change L of the primary power driving the individual sources, and identify their common and key property: L increases, and eventually decreases, linearly or faster with the power itself, so that the associated time scales t/sub s/ = L/Vertical BarLVertical Bar obey dt/sub s/, (L)/dL 0) and of the luminosity (L 0) and a dimming (L<0) phase, corresponding to three such models. Sub-Eddington accretion onto a massive black hole from a star cluster that self-destroys by collisions is close to reproduce the general course of the empirical models for the optical QSO population
Gravitating multidefects from higher dimensions
Giovannini, Massimo
2007-01-01
Warped configurations admitting pairs of gravitating defects are analyzed. After devising a general method for the construction of multidefects, specific examples are presented in the case of higher-dimensional Einstein-Hilbert gravity. The obtained profiles describe diverse physical situations such as (topological) kink-antikink systems, pairs of non-topological solitons and bound configurations of a kink and of a non-topological soliton. In all the mentioned cases the geometry is always well behaved (all relevant curvature invariants are regular) and tends to five-dimensional anti-de Sitter space-time for large asymptotic values of the bulk coordinate. Particular classes of solutions can be generalized to the framework where the gravity part of the action includes, as a correction, the Euler-Gauss-Bonnet combination. After scrutinizing the structure of the zero modes, the obtained results are compared with conventional gravitating configurations containing a single topological defect.
Galactic Structures from Gravitational Radii
Directory of Open Access Journals (Sweden)
Salvatore Capozziello
2018-02-01
Full Text Available We demonstrate that the existence of a Noether symmetry in f ( R theories of gravity gives rise to an additional gravitational radius, besides the standard Schwarzschild one, determining the dynamics at galactic scales. By this feature, it is possible to explain the baryonic Tully-Fisher relation and the rotation curve of gas-rich galaxies without the dark matter hypothesis. Furthermore, under the same standard, the Fundamental Plane of elliptical galaxies can be addressed.
Gravitational waves: Einstein latest victory
International Nuclear Information System (INIS)
Sabadell, M. A.
2016-01-01
The world of theoretical physics is once again celebrating success: the LIGO observatory in the United States has confirmed the direct detection of general relativity: gravitational waves. The almost imperceptible distortions of space-time had been generated by the fusion of black holes of 30 times the mass of the Sun located at a distance of some 1,300 million light years from us. (Author)
The gravitational dynamics of galaxies
Indian Academy of Sciences (India)
mass with radius in the galaxy from this curve – v2 c (r)/r = GM(r)/r2. Here M(r) refers to the mass within a sphere of radius r – using this for the inward gravitational force at r is strictly valid only if the density distribution is spherically symmetric, but the error for a non-spherical distribution is not large. The difference between a ...
Field theory approach to gravitation
International Nuclear Information System (INIS)
Yilmaz, H.
1978-01-01
A number of authors considered the possibility of formulating a field-theory approach to gravitation with the claim that such an approach would uniquely lead to Einstein's theory of general relativity. In this article it is shown that the field theory approach is more generally applicable and uniqueness cannot be claimed. Theoretical and experimental reasons are given showing that the Einsteinian limit appears to be unviable
Gravitational anomaly and transport phenomena
Landsteiner, Karl
2011-01-01
Quantum anomalies give rise to new transport phenomena. In particular, a magnetic field can induce an anomalous current via the chiral magnetic effect and a vortex in the relativistic fluid can also induce a current via the chiral vortical effect. The related transport coefficients can be calculated via Kubo formulas. We evaluate the Kubo formula for the anomalous vortical conductivity at weak coupling and show that it receives contributions proportional to the gravitational anomaly coefficie...
Gravitation and bilocal field theory
International Nuclear Information System (INIS)
Vollendorf, F.
1975-01-01
The starting point is the conjecture that a field theory of elementary particles can be constructed only in a bilocal version. Thus the 4-dimensional space time has to be replaced by the 8-dimensional manifold R 8 of all ordered pairs of space time events. With special reference to the Schwarzschild metric it is shown that the embedding of the time space into the manifold R 8 yields a description of the gravitational field. (orig.) [de
Equivalence principle and gravitational redshift.
Hohensee, Michael A; Chu, Steven; Peters, Achim; Müller, Holger
2011-04-15
We investigate leading order deviations from general relativity that violate the Einstein equivalence principle in the gravitational standard model extension. We show that redshift experiments based on matter waves and clock comparisons are equivalent to one another. Consideration of torsion balance tests, along with matter-wave, microwave, optical, and Mössbauer clock tests, yields comprehensive limits on spin-independent Einstein equivalence principle-violating standard model extension terms at the 10(-6) level.
The wheel of retail gravitation?
S Brown
1992-01-01
Reilly's Law of Retail Gravitation ranks among the classics of marketing geography. In this paper an examination of the evolution of Reilly's law is made, the contemporaneous wheel of retailing theory being used as an organisational framework. In line with the wheel, the gravity model commenced as a simple conceptualisation of consumer spatial behaviour, became increasingly sophisticated through time, and thereby created conditions conducive to the reemergence of the basic interaction model. ...
G3-homogeneous gravitational instantons
Energy Technology Data Exchange (ETDEWEB)
Bourliot, F; Petropoulos, P M [Centre de Physique Theorique, CNRS-UMR 7644, Ecole Polytechnique, 91128 Palaiseau Cedex (France); Estes, J [Laboratoire de Physique Theorique, CNRS-UMR 8549, Ecole Normale Superieure, 24 rue Lhomond, F-75231 Paris cedex 05 (France); Spindel, Ph, E-mail: bourliot@cpht.polytechnique.f, E-mail: estes@cpht.polytechnique.f, E-mail: marios@cpht.polytechnique.f, E-mail: philippe.spindel@umons.ac.b [Service de Mecanique et Gravitation, Universite de Mons, 20 Place du Parc, 7000 Mons, Belgique (Belgium)
2010-05-21
We provide an exhaustive classification of self-dual four-dimensional gravitational instantons foliated with three-dimensional homogeneous spaces, i.e. homogeneous self-dual metrics on four-dimensional Euclidean spaces admitting a Bianchi simply transitive isometry group. The classification pattern is based on the algebra homomorphisms relating the Bianchi group and the duality group SO(3). New and general solutions are found for Bianchi III.
G3-homogeneous gravitational instantons
Bourliot, F; Petropoulos, P M; Spindel, Ph
2009-01-01
We provide an exhaustive classification of self-dual four-dimensional gravitational instantons foliated with three-dimensional homogeneous spaces, i.e. homogeneous self-dual metrics on four-dimensional Euclidean spaces admitting a Bianchi simply transitive isometry group. The classification pattern is based on the algebra homomorphisms relating the Bianchi group and the duality group SO(3). New and general solutions are found for Bianchi III.
Generalized field theory of gravitation
International Nuclear Information System (INIS)
Yilmaz, H.
1976-01-01
It is shown that if, on empirical grounds, one rules out the existence of cosmic fields of Dicke-Brans (scalar) and Will Nordvedt (vector, tensor) type, then the most general experimentally viable and theoretically reasonable theory of gravitation seems to be a LAMBDA-dependent generalization of Einstein and Yilmez theories, which reduces to the former for LAMBDA=0 and to the latter for LAMBDA=1
Lensing of 21-cm fluctuations by primordial gravitational waves.
Book, Laura; Kamionkowski, Marc; Schmidt, Fabian
2012-05-25
Weak-gravitational-lensing distortions to the intensity pattern of 21-cm radiation from the dark ages can be decomposed geometrically into curl and curl-free components. Lensing by primordial gravitational waves induces a curl component, while the contribution from lensing by density fluctuations is strongly suppressed. Angular fluctuations in the 21-cm background extend to very small angular scales, and measurements at different frequencies probe different shells in redshift space. There is thus a huge trove of information with which to reconstruct the curl component of the lensing field, allowing tensor-to-scalar ratios conceivably as small as r~10(-9)-far smaller than those currently accessible-to be probed.