WorldWideScience

Sample records for gravitational lens systems

  1. Discovery of two new gravitation lens systems

    International Nuclear Information System (INIS)

    Guertler, J.

    1988-01-01

    The discovery of new quasar and radio galaxy double images produced by the gravitation lens effect is reported. The light deflecting galaxies acting as gravitational lenses could be made visible by means of image processing procedures

  2. GLOBAL OPTIMIZATION METHODS FOR GRAVITATIONAL LENS SYSTEMS WITH REGULARIZED SOURCES

    International Nuclear Information System (INIS)

    Rogers, Adam; Fiege, Jason D.

    2012-01-01

    Several approaches exist to model gravitational lens systems. In this study, we apply global optimization methods to find the optimal set of lens parameters using a genetic algorithm. We treat the full optimization procedure as a two-step process: an analytical description of the source plane intensity distribution is used to find an initial approximation to the optimal lens parameters; the second stage of the optimization uses a pixelated source plane with the semilinear method to determine an optimal source. Regularization is handled by means of an iterative method and the generalized cross validation (GCV) and unbiased predictive risk estimator (UPRE) functions that are commonly used in standard image deconvolution problems. This approach simultaneously estimates the optimal regularization parameter and the number of degrees of freedom in the source. Using the GCV and UPRE functions, we are able to justify an estimation of the number of source degrees of freedom found in previous work. We test our approach by applying our code to a subset of the lens systems included in the SLACS survey.

  3. Method to measure a relative transverse velocity of a source-lens-observer system using gravitational lensing of gravitational waves

    International Nuclear Information System (INIS)

    Itoh, Yousuke; Futamase, Toshifumi; Hattori, Makoto

    2009-01-01

    Gravitational waves propagate along null geodesics like light rays in the geometrical optics approximation, and they may have a chance to suffer from gravitational lensing by intervening objects, as is the case for electromagnetic waves. Long wavelengths of gravitational waves and compactness of possible sources may enable us to extract information in the interference among the lensed images. We point out that the interference term contains information of relative transverse velocity of the source-lens-observer system, which may be obtained by possible future space-borne gravitational wave detectors such as BBO/DECIGO.

  4. CLASS B2108+213 : a new wide-separation gravitational lens system

    NARCIS (Netherlands)

    McKean, JP; Browne, IWA; Jackson, NJ; Koopmans, LVE; Norbury, MA; Treu, T; York, TD; Biggs, AD; Blandford, RD; de Bruyn, AG; Fassnacht, CD; Mao, S; Myers, ST; Pearson, TJ; Phillips, PM; Readhead, ACS; Rusin, D; Wilkinson, PN

    2005-01-01

    We present observations of CLASS B2108 + 213, the widest separation gravitational lens system discovered by the Cosmic Lens All-Sky Survey. Radio imaging using the VLA at 8.46 GHz and MERLIN at 5 GHz shows two compact components separated by 4.56 arcsec with a faint third component in between which

  5. Class B0739+366 : A new two-image gravitational lens system

    NARCIS (Netherlands)

    Marlow, DR; Rusin, D; Norbury, M; Jackson, N; Browne, IWA; Wilkinson, PN; Fassnacht, CD; Myers, ST; Koopmans, LVE; Blandford, RD; Pearson, TJ; Readhead, ACS; de Bruyn, AG

    We present the discovery of CLASS B0739 + 366, a new gravitational lens system from the Cosmic Lens All-Sky Survey. Radio imaging of the source with the Very Large Array shows two compact components separated by with a flux density ratio of similar to6:1. High-resolution follow-up observations using

  6. A new quadruple gravitational lens system : CLASS B0128+437

    NARCIS (Netherlands)

    Phillips, PM; Norbury, MA; Koopmans, LVE; Browne, IWA; Jackson, NJ; Wilkinson, PN; Biggs, AD; Blandford, RD; de Bruyn, AG; Fassnacht, CD; Helbig, P; Mao, S; Marlow, DR; Myers, ST; Pearson, TJ; Readhead, ACS; Rusin, D; Xanthopoulos, E

    2000-01-01

    High-resolution MERLIN observations of a newly discovered four-image gravitational lens system, B0128+437, are presented. The system was found after a careful re-analysis of the entire CLASS data set. The MERLIN observations resolve four components in a characteristic quadruple-image configuration;

  7. The gravitational lens system B1030+074. Discovery and follow-up.

    NARCIS (Netherlands)

    Xanthopoulos, E; Browne, IWA; King, LJ; Jackson, NJ; Marlow, DR; Wilkinson, PN; Koopmans, LVE; Patnaik, AR; Porcas, RW; Terzian, Y; Weedman, D; Khachikian, E

    1999-01-01

    We report the discovery of a new double image gravitational lens system B1030+074 which was found during the Jodrell Bank - VLA Astrometric Survey (JVAS). We have collected extensive radio data on the system using the VLA, MERLIN, the EVN and the VLBA as well as HST WFPC2 and NICMOS observations.

  8. A new VLA/e-MERLIN limit on central images in the gravitational lens system CLASS B1030+074

    NARCIS (Netherlands)

    Quinn, Jonathan; Jackson, Neal; Tagore, Amitpal; Biggs, Andrew; Birkinshaw, Mark; Chapman, Scott; De Zotti, Gianfranco; McKean, John; Pérez-Fournon, Ismael; Scott, Douglas; Serjeant, Stephen

    2016-01-01

    We present the new Very Large Array 22 GHz and extended Multi-Element Remote-Linked Interferometer Network 5 GHz observations of CLASS B1030+074, a two-image strong gravitational lens system whose background source is a compact flat-spectrum radio quasar. In such systems we expect a third image of

  9. The gravitational lens candidate HE 1104-1805 and the size of absorption systems

    NARCIS (Netherlands)

    Smette, A; Robertson, JG; Shaver, PA; Reimers, D; Wisotzki, L; Kohler, T; Kochanek, CS; Hewitt, JN

    1996-01-01

    We obtained 1.2 Angstrom resolution spectra over the range 3175 - 7575 Angstrom for the two components of the gravitational lens candidate HE 1104-1805 (z = 2.31, m(B) = 16.7 and 18.6, separation = 3.0 arcsec; cf. Wisotzki et al. 1993), with the aim of setting limits on the sizes of the clouds

  10. DISSECTING THE GRAVITATIONAL LENS B1608+656. I. LENS POTENTIAL RECONSTRUCTION

    NARCIS (Netherlands)

    Suyu, S. H.; Marshall, P. J.; Blandford, R. D.; Fassnacht, C. D.; Koopmans, L. V. E.; McKean, J. P.; Treu, T.

    2009-01-01

    Strong gravitational lensing is a powerful technique for probing galaxy mass distributions and for measuring cosmological parameters. Lens systems with extended source-intensity distributions are particularly useful for this purpose since they provide additional constraints on the lens potential (

  11. The discovery of a gravitational lens

    International Nuclear Information System (INIS)

    Chaffee, F.H. Jr.

    1981-01-01

    A recently discovered pair of quasars turns out to be not a pair at all but two images of a single quasar formed by a gravitational lens: an elliptical galaxy halfway between the quasar and our own galaxy. (orig.) [de

  12. Gravitational Lens Time Delays Using Polarization Monitoring

    Directory of Open Access Journals (Sweden)

    Andrew Biggs

    2017-11-01

    Full Text Available Gravitational lens time delays provide a means of measuring the expansion of the Universe at high redshift (and therefore in the ‘Hubble flow’ that is independent of local calibrations. It was hoped that many of the radio lenses found in the JVAS/CLASS survey would yield time delays as these were selected to have flat spectra and are dominated by multiple compact components. However, despite extensive monitoring with the Very Large Array (VLA, time delays have only been measured for three of these systems (out of 22. We have begun a programme to reanalyse the existing VLA monitoring data with the goal of producing light curves in polarized flux and polarization position angle, either to improve delay measurements or to find delays for new sources. Here, we present preliminary results on the lens system B1600+434 which demonstrate the presence of correlated and substantial polarization variability in each image.

  13. Astronomers Discover Six-Image Gravitational Lens

    Science.gov (United States)

    2001-08-01

    An international team of astronomers has used the National Science Foundation's Very Long Baseline Array (VLBA) radio telescope and NASA's Hubble Space Telescope (HST) to discover the first gravitational lens in which the single image of a very distant galaxy has been split into six different images. The unique configuration is produced by the gravitational effect of three galaxies along the line of sight between the more-distant galaxy and Earth. Optical and Radio Images of Gravitational Lens "This is the first gravitational lens with more than four images of the background object that is produced by a small group of galaxies rather than a large cluster of galaxies," said David Rusin, who just received his Ph.D. from the University of Pennsylvania. "Such systems are expected to be extremely rare, so this discovery is an important stepping stone. Because this is an intermediate case between gravitational lenses produced by single galaxies and lenses produced by large clusters of galaxies, it will give us insights we can't get from other types of lenses," Rusin added. The gravitational lens, called CLASS B1359+154, consists of a galaxy more than 11 billion light-years away in the constellation Bootes, with a trio of galaxies more than 7 billion light-years away along the same line of sight. The more-distant galaxy shows signs that it contains a massive black hole at its core and also has regions in which new stars are forming. The gravitational effect of the intervening galaxies has caused the light and radio waves from the single, more-distant galaxy to be "bent" to form six images as seen from Earth. Four of these images appear outside the triangle formed by the three intermediate galaxies and two appear inside that triangle. "This lens system is a very interesting case to study because it is more complicated than lenses produced by single galaxies, and yet simpler than lenses produced by clusters of numerous galaxies," said Chris Kochanek of the Harvard

  14. Gravitational lens effect and pregalactic halo objects

    International Nuclear Information System (INIS)

    Bontz, R.J.

    1979-01-01

    The changes in flux, position, and size of a distant extended (galaxy, etc.) source that result from the gravitational lens action of a massive opaque object are discussed. The flux increase is described by a single function of two parameters. One of these parameters characterizes the strength of the gravitational lens, the other describes the alignment of source and lens object. This function also describes the relative intensity of the images formed by lens. ( A similar formalism is discussed by Bourassa et al. for a point source). The formalism is applied to the problem of the galactic halo. It appears that a massive (10 1 2 M/sub sun/) spherical halo surrounding the visible part of the galaxy is consistent with the observable properties of extragalactic sources

  15. Analytic models of plausible gravitational lens potentials

    International Nuclear Information System (INIS)

    Baltz, Edward A.; Marshall, Phil; Oguri, Masamune

    2009-01-01

    Gravitational lenses on galaxy scales are plausibly modelled as having ellipsoidal symmetry and a universal dark matter density profile, with a Sérsic profile to describe the distribution of baryonic matter. Predicting all lensing effects requires knowledge of the total lens potential: in this work we give analytic forms for that of the above hybrid model. Emphasising that complex lens potentials can be constructed from simpler components in linear combination, we provide a recipe for attaining elliptical symmetry in either projected mass or lens potential. We also provide analytic formulae for the lens potentials of Sérsic profiles for integer and half-integer index. We then present formulae describing the gravitational lensing effects due to smoothly-truncated universal density profiles in cold dark matter model. For our isolated haloes the density profile falls off as radius to the minus fifth or seventh power beyond the tidal radius, functional forms that allow all orders of lens potential derivatives to be calculated analytically, while ensuring a non-divergent total mass. We show how the observables predicted by this profile differ from that of the original infinite-mass NFW profile. Expressions for the gravitational flexion are highlighted. We show how decreasing the tidal radius allows stripped haloes to be modelled, providing a framework for a fuller investigation of dark matter substructure in galaxies and clusters. Finally we remark on the need for finite mass halo profiles when doing cosmological ray-tracing simulations, and the need for readily-calculable higher order derivatives of the lens potential when studying catastrophes in strong lenses

  16. Chitah: Strong-gravitational-lens hunter in imaging surveys

    Energy Technology Data Exchange (ETDEWEB)

    Chan, James H. H.; Suyu, Sherry H.; Chiueh, Tzihong; More, Anupreeta; Marshall, Philip J.; Coupon, Jean; Oguri, Masamune; Price, Paul

    2015-07-07

    Strong gravitationally lensed quasars provide powerful means to study galaxy evolution and cosmology. Current and upcoming imaging surveys will contain thousands of new lensed quasars, augmenting the existing sample by at least two orders of magnitude. To find such lens systems, we built a robot, Chitah, that hunts for lensed quasars by modeling the configuration of the multiple quasar images. Specifically, given an image of an object that might be a lensed quasar, Chitah first disentangles the light from the supposed lens galaxy and the light from the multiple quasar images based on color information. A simple rule is designed to categorize the given object as a potential four-image (quad) or two-image (double) lensed quasar system. The configuration of the identified quasar images is subsequently modeled to classify whether the object is a lensed quasar system. We test the performance of Chitah using simulated lens systems based on the Canada–France–Hawaii Telescope Legacy Survey. For bright quads with large image separations (with Einstein radius ${r}_{\\mathrm{ein}}\\gt 1\\buildrel{\\prime\\prime}\\over{.} 1$) simulated using Gaussian point-spread functions, a high true-positive rate (TPR) of $\\sim 90\\%$ and a low false-positive rate of $\\sim 3\\%$ show that this is a promising approach to search for new lens systems. We obtain high TPR for lens systems with ${r}_{\\mathrm{ein}}\\gtrsim 0\\buildrel{\\prime\\prime}\\over{.} 5$, so the performance of Chitah is set by the seeing. We further feed a known gravitational lens system, COSMOS 5921+0638, to Chitah, and demonstrate that Chitah is able to classify this real gravitational lens system successfully. Our newly built Chitah is omnivorous and can hunt in any ground-based imaging surveys.

  17. CTQ 327: A New Gravitational Lens

    Science.gov (United States)

    Morgan, N. D.; Gregg, M. D.; Wisotzki, L.; Becker, R.; Maza, J.; Schechter, P. L.; White, R. L.

    2003-08-01

    We present the second gravitationally lensed quasar discovered during the course of a Hubble Space Telescope Space Telescope Imaging Spectrograph snapshot survey for small-separation gravitational lenses. CTQ 327 is a double quasar with an image separation of 1.22" and a g-band flux ratio of roughly 5 to 1. Spectra reveal both components to be z=1.37 quasars, and the lensing galaxy is clearly visible after point-spread function subtraction of the two quasar components. The light profile of the lensing galaxy is well modeled by an r1/4 law, indicative of an early-type elliptical galaxy. An estimate of the lens galaxy redshift is z~0.4-0.6, based on the Faber-Jackson relationship and photometric considerations, although values outside this range are still consistent with the present data. Resolved spectra of the two quasars show similar, but not identical, continuum and emission-line features: component A exhibits weaker emission lines with respect to the continuum than does component B, and there is evidence of intrinsic differences in the emission-line profiles between the two components. Optical monitoring of the quasar pair also shows a change in the g-band flux ratio of 0.14 mag over a 3 month period. These spectral and photometric differences may be due to microlensing fluctuations from stars in the lensing galaxy, intrinsic quasar variability coupled with the system's differential time delay, or some combination of the two. The observed variability makes CTQ 327 an attractive target for future flux monitoring, aimed at time-delay or microlensing studies. Based on observations obtained with the NASA/ESA Hubble Space Telescope, the W. M. Keck Observatory, and the Magellan Consortium's Walter Baade Telescope. The Space Telescope Science Institute is operated by the Association of Universities for Research in Astronomy (AURA), Inc., under NASA contract NAS 5-26555. The W. M. Keck Observatory is operated as a scientific partnership among the California Institute of

  18. Lenstronomy: Multi-purpose gravitational lens modeling software package

    Science.gov (United States)

    Birrer, Simon; Amara, Adam

    2018-04-01

    Lenstronomy is a multi-purpose open-source gravitational lens modeling python package. Lenstronomy reconstructs the lens mass and surface brightness distributions of strong lensing systems using forward modelling and supports a wide range of analytic lens and light models in arbitrary combination. The software is also able to reconstruct complex extended sources as well as point sources. Lenstronomy is flexible and numerically accurate, with a clear user interface that could be deployed across different platforms. Lenstronomy has been used to derive constraints on dark matter properties in strong lenses, measure the expansion history of the universe with time-delay cosmography, measure cosmic shear with Einstein rings, and decompose quasar and host galaxy light.

  19. COSMOLOGY FROM GRAVITATIONAL LENS TIME DELAYS AND PLANCK DATA

    International Nuclear Information System (INIS)

    Suyu, S. H.; Treu, T.; Sonnenfeld, A.; Hilbert, S.; Spiniello, C.; Auger, M. W.; Collett, T.; Blandford, R. D.; Marshall, P. J.; Courbin, F.; Meylan, G.; Tewes, M.; Fassnacht, C. D.; Koopmans, L. V. E.

    2014-01-01

    Under the assumption of a flat ΛCDM cosmology, recent data from the Planck satellite point toward a Hubble constant that is in tension with that measured by gravitational lens time delays and by the local distance ladder. Prosaically, this difference could arise from unknown systematic uncertainties in some of the measurements. More interestingly—if systematics were ruled out—resolving the tension would require a departure from the flat ΛCDM cosmology, introducing, for example, a modest amount of spatial curvature, or a non-trivial dark energy equation of state. To begin to address these issues, we present an analysis of the gravitational lens RXJ1131–1231 that is improved in one particular regard: we examine the issue of systematic error introduced by an assumed lens model density profile. We use more flexible gravitational lens models with baryonic and dark matter components, and find that the exquisite Hubble Space Telescope image with thousands of intensity pixels in the Einstein ring and the stellar velocity dispersion of the lens contain sufficient information to constrain these more flexible models. The total uncertainty on the time-delay distance is 6.6% for a single system. We proceed to combine our improved time-delay distance measurement with the WMAP9 and Planck posteriors. In an open ΛCDM model, the data for RXJ1131–1231 in combination with Planck favor a flat universe with Ω k =0.00 −0.02 +0.01 (68% credible interval (CI)). In a flat wCDM model, the combination of RXJ1131–1231 and Planck yields w=−1.52 −0.20 +0.19 (68% CI)

  20. GRAVITATIONAL LENS MODELING WITH GENETIC ALGORITHMS AND PARTICLE SWARM OPTIMIZERS

    International Nuclear Information System (INIS)

    Rogers, Adam; Fiege, Jason D.

    2011-01-01

    Strong gravitational lensing of an extended object is described by a mapping from source to image coordinates that is nonlinear and cannot generally be inverted analytically. Determining the structure of the source intensity distribution also requires a description of the blurring effect due to a point-spread function. This initial study uses an iterative gravitational lens modeling scheme based on the semilinear method to determine the linear parameters (source intensity profile) of a strongly lensed system. Our 'matrix-free' approach avoids construction of the lens and blurring operators while retaining the least-squares formulation of the problem. The parameters of an analytical lens model are found through nonlinear optimization by an advanced genetic algorithm (GA) and particle swarm optimizer (PSO). These global optimization routines are designed to explore the parameter space thoroughly, mapping model degeneracies in detail. We develop a novel method that determines the L-curve for each solution automatically, which represents the trade-off between the image χ 2 and regularization effects, and allows an estimate of the optimally regularized solution for each lens parameter set. In the final step of the optimization procedure, the lens model with the lowest χ 2 is used while the global optimizer solves for the source intensity distribution directly. This allows us to accurately determine the number of degrees of freedom in the problem to facilitate comparison between lens models and enforce positivity on the source profile. In practice, we find that the GA conducts a more thorough search of the parameter space than the PSO.

  1. The gravitational lens effect and its optical equivalents

    International Nuclear Information System (INIS)

    Freitas, L.R. de.

    1987-01-01

    This work presents the evolution of the use of the so called gravitational lens effect from a simple observational teste of the General Relativity theory to an instrument to measure cosmological parameters. A detailed analysis of how a gravitational ''lens'' deflects light without forming images is shown for the case of the deflector with spherical symmetry. In addition, the exact optical equivalent of a cylindrical gravitational lens, which forms true images, is proposed. Finally the problem of the formation of multiple images and the related astronomical observations is discussed. (author) [pt

  2. The edge-on spiral gravitational lens B1600+434

    NARCIS (Netherlands)

    Koopmans, LVE; de Bruyn, AG; Jackson, N

    1998-01-01

    We present new observations of the gravitational lens (GL) system B1600 + 434, strongly suggesting that the lens is an edge-on spiral galaxy. These observations are used to constrain the mass model of the system? in particular the oblateness and velocity dispersion of the dark matter halo around the

  3. Dissecting the Gravitational lens B1608+656 : II. Precision Measurements of the Hubble Constant, Spatial Curvature, and the Dark Energy Equation of State

    NARCIS (Netherlands)

    Suyu, S. H.; Marshall, P. J.; Auger, M. W.; Hilbert, S.; Blandford, R. D.; Koopmans, L. V. E.; Fassnacht, C. D.; Treu, T.

    2010-01-01

    Strong gravitational lens systems with measured time delays between the multiple images provide a method for measuring the "time-delay distance" to the lens, and thus the Hubble constant. We present a Bayesian analysis of the strong gravitational lens system B1608+656, incorporating (1) new, deep

  4. Gravitational-Like Lens Based on Graphene Ripple.

    Science.gov (United States)

    Liu, Daqing; Chen, Shuyue; Ma, Ning; Zhao, Xiang; Xu, Zhuo

    2015-10-01

    We conducted a semiclassical study on carrier movement in curved graphene. A previous attempt was made to show that curved graphene is a readily available and cheap laboratory material used to study general relativity effects, especially if the electron energies satisfy 4μeV ≪ |E| ≪ 3eV. Furthermore, a gravitational-like lens can be constructed based on a special graphene ripple; this lens has neither chromatic nor cometic aberration. One can design an ideal electron lens using a graphene ripple.

  5. IMPROVED CONSTRAINTS ON THE GRAVITATIONAL LENS Q0957+561. I. WEAK LENSING

    International Nuclear Information System (INIS)

    Nakajima, R.; Bernstein, G. M.; Fadely, R.; Keeton, C. R.; Schrabback, T.

    2009-01-01

    Attempts to constrain the Hubble constant using the strong gravitational lens system Q0957+561 are limited by systematic uncertainties in the mass model, since the time delay is known very precisely. One important systematic effect is the mass-sheet degeneracy, which arises because strong lens modeling cannot constrain the presence or absence of a uniform mass sheet κ, which rescales H 0 by the factor (1 - κ). In this paper, we present new constraints on the mass sheet derived from a weak-lensing analysis of the Hubble Space Telescope imaging of a 6 arcmin square region surrounding the lensed quasar. The average mass sheet within a circular aperture (the strong lens model region) is constrained by integrating the tangential weak gravitational shear over the surrounding area. We find the average convergence within a 30'' radius around the lens galaxy to be κ(<30'') = 0.166 ± 0.056 (1σ confidence level), normalized to the quasar redshift. This includes contributions from both the lens galaxy and the surrounding cluster. We also constrain a few other low-order terms in the lens potential by applying a multipole aperture mass formalism to the gravitational shear in an annulus around the strong-lensing region. Implications for strong lens models and the Hubble constant are discussed in an accompanying paper.

  6. Deep convolutional neural networks as strong gravitational lens detectors

    Science.gov (United States)

    Schaefer, C.; Geiger, M.; Kuntzer, T.; Kneib, J.-P.

    2018-03-01

    Context. Future large-scale surveys with high-resolution imaging will provide us with approximately 105 new strong galaxy-scale lenses. These strong-lensing systems will be contained in large data amounts, however, which are beyond the capacity of human experts to visually classify in an unbiased way. Aim. We present a new strong gravitational lens finder based on convolutional neural networks (CNNs). The method was applied to the strong-lensing challenge organized by the Bologna Lens Factory. It achieved first and third place, respectively, on the space-based data set and the ground-based data set. The goal was to find a fully automated lens finder for ground-based and space-based surveys that minimizes human inspection. Methods: We compared the results of our CNN architecture and three new variations ("invariant" "views" and "residual") on the simulated data of the challenge. Each method was trained separately five times on 17 000 simulated images, cross-validated using 3000 images, and then applied to a test set with 100 000 images. We used two different metrics for evaluation, the area under the receiver operating characteristic curve (AUC) score, and the recall with no false positive (Recall0FP). Results: For ground-based data, our best method achieved an AUC score of 0.977 and a Recall0FP of 0.50. For space-based data, our best method achieved an AUC score of 0.940 and a Recall0FP of 0.32. Adding dihedral invariance to the CNN architecture diminished the overall score on space-based data, but achieved a higher no-contamination recall. We found that using committees of five CNNs produced the best recall at zero contamination and consistently scored better AUC than a single CNN. Conclusions: We found that for every variation of our CNN lensfinder, we achieved AUC scores close to 1 within 6%. A deeper network did not outperform simpler CNN models either. This indicates that more complex networks are not needed to model the simulated lenses. To verify this, more

  7. Candidate gravitational microlensing events for future direct lens imaging

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, C. B.; Gould, A.; Gaudi, B. S. [Department of Astronomy, The Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Park, H.; Han, C. [Department of Physics, Institute for Astrophysics, Chungbuk National University, Cheongju 371-763 (Korea, Republic of); Sumi, T.; Koshimoto, N. [Department of Earth and Space Science, Osaka University, Osaka 560-0043 (Japan); Udalski, A. [Warsaw University Observatory, Al. Ujazdowskie 4, 00-478 Warszawa (Poland); Tsapras, Y. [Las Cumbres Observatory Global Telescope Network, 6740 Cortona Drive, Suite 102, Goleta, CA 93117 (United States); Bozza, V. [Department of Physics, University of Salerno, I-84084 Fisciano (Italy); Abe, F.; Fukunaga, D.; Itow, Y.; Masuda, K. [Solar-Terrestrial Environment Laboratory, Nagoya University, Nagoya 464-8601 (Japan); Bennett, D. P. [Department of Physics, University of Notre Dame, 225 Nieuwland Science Hall, Notre Dame, IN 46556-5670 (United States); Bond, I. A.; Ling, C. H. [Institute of Information and Mathematical Sciences, Massey University, Private Bag 102-904, North Shore Mail Centre, Auckland 0745 (New Zealand); Botzler, C. S.; Freeman, M. [Department of Physics, University of Auckland, Private Bag 92-019, Auckland 1001 (New Zealand); Fukui, A. [School of Chemical and Physical Sciences, Victoria University, Wellington 6140 (New Zealand); Collaboration: MOA Collaboration; OGLE Collaboration; μFUN Collaboration; RoboNet Collaboration; and others

    2014-10-10

    The mass of the lenses giving rise to Galactic microlensing events can be constrained by measuring the relative lens-source proper motion and lens flux. The flux of the lens can be separated from that of the source, companions to the source, and unrelated nearby stars with high-resolution images taken when the lens and source are spatially resolved. For typical ground-based adaptive optics (AO) or space-based observations, this requires either inordinately long time baselines or high relative proper motions. We provide a list of microlensing events toward the Galactic bulge with high relative lens-source proper motion that are therefore good candidates for constraining the lens mass with future high-resolution imaging. We investigate all events from 2004 to 2013 that display detectable finite-source effects, a feature that allows us to measure the proper motion. In total, we present 20 events with μ ≳ 8 mas yr{sup –1}. Of these, 14 were culled from previous analyses while 6 are new, including OGLE-2004-BLG-368, MOA-2005-BLG-36, OGLE-2012-BLG-0211, OGLE-2012-BLG-0456, MOA-2012-BLG-532, and MOA-2013-BLG-029. In ≲12 yr from the time of each event the lens and source of each event will be sufficiently separated for ground-based telescopes with AO systems or space telescopes to resolve each component and further characterize the lens system. Furthermore, for the most recent events, comparison of the lens flux estimates from images taken immediately to those estimated from images taken when the lens and source are resolved can be used to empirically check the robustness of the single-epoch method currently being used to estimate lens masses for many events.

  8. Candidate gravitational microlensing events for future direct lens imaging

    International Nuclear Information System (INIS)

    Henderson, C. B.; Gould, A.; Gaudi, B. S.; Park, H.; Han, C.; Sumi, T.; Koshimoto, N.; Udalski, A.; Tsapras, Y.; Bozza, V.; Abe, F.; Fukunaga, D.; Itow, Y.; Masuda, K.; Bennett, D. P.; Bond, I. A.; Ling, C. H.; Botzler, C. S.; Freeman, M.; Fukui, A.

    2014-01-01

    The mass of the lenses giving rise to Galactic microlensing events can be constrained by measuring the relative lens-source proper motion and lens flux. The flux of the lens can be separated from that of the source, companions to the source, and unrelated nearby stars with high-resolution images taken when the lens and source are spatially resolved. For typical ground-based adaptive optics (AO) or space-based observations, this requires either inordinately long time baselines or high relative proper motions. We provide a list of microlensing events toward the Galactic bulge with high relative lens-source proper motion that are therefore good candidates for constraining the lens mass with future high-resolution imaging. We investigate all events from 2004 to 2013 that display detectable finite-source effects, a feature that allows us to measure the proper motion. In total, we present 20 events with μ ≳ 8 mas yr –1 . Of these, 14 were culled from previous analyses while 6 are new, including OGLE-2004-BLG-368, MOA-2005-BLG-36, OGLE-2012-BLG-0211, OGLE-2012-BLG-0456, MOA-2012-BLG-532, and MOA-2013-BLG-029. In ≲12 yr from the time of each event the lens and source of each event will be sufficiently separated for ground-based telescopes with AO systems or space telescopes to resolve each component and further characterize the lens system. Furthermore, for the most recent events, comparison of the lens flux estimates from images taken immediately to those estimated from images taken when the lens and source are resolved can be used to empirically check the robustness of the single-epoch method currently being used to estimate lens masses for many events.

  9. Comparison of approximate gravitational lens equations and a proposal for an improved new one

    International Nuclear Information System (INIS)

    Bozza, V.

    2008-01-01

    Keeping the exact general relativistic treatment of light bending as a reference, we compare the accuracy of commonly used approximate lens equations. We conclude that the best approximate lens equation is the Ohanian lens equation, for which we present a new expression in terms of distances between observer, lens, and source planes. We also examine a realistic gravitational lensing case, showing that the precision of the Ohanian lens equation might be required for a reliable treatment of gravitational lensing and a correct extraction of the full information about gravitational physics.

  10. Aberration design of zoom lens systems using thick lens modules.

    Science.gov (United States)

    Zhang, Jinkai; Chen, Xiaobo; Xi, Juntong; Wu, Zhuoqi

    2014-12-20

    A systematic approach for the aberration design of a zoom lens system using a thick lens module is presented. Each component is treated as a thick lens module at the beginning of the design. A thick lens module refers to a thick lens component with a real lens structure, like lens materials, lens curvatures, lens thicknesses, and lens interval distances. All nine third-order aberrations of a thick lens component are considered during the design. The relationship of component aberrations in different zoom positions can be approximated from the aberration shift. After minimizing the aberrations of the zoom lens system, the nine third-order aberrations of every lens component can be determined. Then the thick lens structure of every lens component can be determined after optimization according to their first-order properties and third-order aberration targets. After a third optimization for minimum practical third-order aberrations of a zoom lens system, the aberration design using the thick lens module is complete, which provides a practical zoom lens system with thick lens structures. A double-sided telecentric zoom lens system is designed using the thick lens module in this paper, which shows that this method is practical for zoom lens design.

  11. Gravitational lens produces an odd number of images

    International Nuclear Information System (INIS)

    McKenzie, R.H.

    1985-01-01

    Rigorous results are given to the effect that a transparent gravitational lens produces an odd number of images. Suppose that p is an event and T the history of a light source in a globally hyperbolic space-time (M,g). Uhlenbeck's Morse theory of null geodesics is used to show under quite general conditions that if there are at most a finite number n of future-directed null geodesics from T to p, then M is contractible to a point. Moreover, n is odd and 1/2 (n-1) of the images of the source seen by an observer at p have the opposite orientation to the source. An analogous result is noted for Riemannian manifolds with positive definite metric

  12. HST image of Gravitational Lens G2237 + 305 or 'Einstein Cross'

    Science.gov (United States)

    1990-01-01

    European Space Agency (ESA) Faint Object Camera (FOC) science image was taken from the Hubble Space Telescope (HST) of Gravitational Lens G2237 + 305 or 'Einstein Cross'. The gravitational lens G2237 + 305 or 'Einstein Cross' shows four images of a very distant quasar which has been multiple-imaged by a relatively nearby galaxy acting as a gravitational lens. The angular separation between the upper and lower images is 1.6 arc seconds. Photo was released from Goddard Space Flight Center (GSFC) 09-12-90.

  13. SHARP - III. First use of adaptive-optics imaging to constrain cosmology with gravitational lens time delays

    NARCIS (Netherlands)

    Chen, Geoff C. -F; Suyu, Sherry H.; Wong, Kenneth C.; Fassnacht, Christopher D.; Chiueh, Tzihong; Halkola, Aleksi; Hu, I. Shing; Auger, Matthew W.; Koopmans, Léon V. E.; Lagattuta, David J.; McKean, John P.; Vegetti, Simona

    2016-01-01

    Accurate and precise measurements of the Hubble constant are critical for testing our current standard cosmological model and revealing possibly new physics. With Hubble Space Telescope (HST) imaging, each strong gravitational lens system with measured time delays can allow one to determine the

  14. Interstellar communication. II. Application to the solar gravitational lens

    Science.gov (United States)

    Hippke, Michael

    2018-01-01

    We have shown in paper I of this series [1] that interstellar communication to nearby (pc) stars is possible at data rates of bits per second per Watt between a 1 m sized probe and a large receiving telescope (E-ELT, 39 m), when optimizing all parameters such as frequency at 300-400 nm. We now apply our framework of interstellar extinction and quantum state calculations for photon encoding to the solar gravitational lens (SGL), which enlarges the aperture (and thus the photon flux) of the receiving telescope by a factor of >109 . For the first time, we show that the use of the SGL for communication purposes is possible. This was previously unclear because the Einstein ring is placed inside the solar coronal noise, and contributing factors are difficult to determine. We calculate point-spread functions, aperture sizes, heliocentric distance, and optimum communication frequency. The best wavelength for nearby (meter-sized telescopes, an improvement of 107 compared to using the same receiving telescope without the SGL. A 1 m telescope in the SGL can receive data at rates comparable to a km-class "normal" telescope.

  15. A determination of H-0 with the class gravitational lens B1608+656. II. Mass models and the Hubble constant from lensing

    NARCIS (Netherlands)

    Koopmans, LVE; Fassnacht, CD

    1999-01-01

    We present mass models of the four-image gravitational lens system B1608 + 656, based on information obtained through VLBA imaging, VLA monitoring, and Hubble Space Telescope (HST) WFPC2 and NICMOS imaging. We have determined a mass model for the lens galaxies that reproduces (1) all image positions

  16. Gravitational lens recovery with GLASS: measuring the mass profile and shape of a lens

    Science.gov (United States)

    Coles, Jonathan P.; Read, Justin I.; Saha, Prasenjit

    2014-12-01

    We use a new non-parametric gravitational modelling tool - GLASS - to determine what quality of data (strong lensing, stellar kinematics, and/or stellar masses) are required to measure the circularly averaged mass profile of a lens and its shape. GLASS uses an underconstrained adaptive grid of mass pixels to model the lens, searching through thousands of models to marginalize over model uncertainties. Our key findings are as follows: (i) for pure lens data, multiple sources with wide redshift separation give the strongest constraints as this breaks the well-known mass-sheet or steepness degeneracy; (ii) a single quad with time delays also performs well, giving a good recovery of both the mass profile and its shape; (iii) stellar masses - for lenses where the stars dominate the central potential - can also break the steepness degeneracy, giving a recovery for doubles almost as good as having a quad with time-delay data, or multiple source redshifts; (iv) stellar kinematics provide a robust measure of the mass at the half-light radius of the stars r1/2 that can also break the steepness degeneracy if the Einstein radius rE ≠ r1/2; and (v) if rE ˜ r1/2, then stellar kinematic data can be used to probe the stellar velocity anisotropy β - an interesting quantity in its own right. Where information on the mass distribution from lensing and/or other probes becomes redundant, this opens up the possibility of using strong lensing to constrain cosmological models.

  17. Detection of a compact radio source near the center of a gravitational lens: quasar image or galactic core

    International Nuclear Information System (INIS)

    Gorenstein, M.V.; Shapiro, I.I.; Cohen, N.L.

    1983-01-01

    By use of a new, very sensitive interferometric system, a faint, compact radio source has been detected near the center of the galaxy that acts as the main part of a gravitational lens. This lens forms two previously discovered images of the quasar Q0957 + 561, which lies in the direction of the constellation Ursa Major. The newly detected source has a core smaller than 0.002 arc second in diameter with a flux density of 0.6 +- 0.1 millijansky at the 13-centimeter wavelength of the radio observations. This source could be the predicted third image of the transparent gravitational lens, the central core of the galaxy, or some combination of the two. It is not yet possible to choose reliably between these alternatives

  18. Golden gravitational lensing systems from the Sloan Lens ACS Survey - II. SDSS J1430+4105: a precise inner total mass profile from lensing alone

    Science.gov (United States)

    Eichner, Thomas; Seitz, Stella; Bauer, Anne

    2012-12-01

    We study the Sloan Lens ACS (SLACS) survey strong-lensing system SDSS J1430+4105 at zl = 0.285. The lensed source (zs = 0.575) of this system has a complex morphology with several subcomponents. Its subcomponents span a radial range from 4 to 10 kpc in the plane of the lens. Therefore, we can constrain the slope of the total projected mass profile around the Einstein radius from lensing alone. We measure a density profile that is slightly but not significantly shallower than isothermal at the Einstein radius. We decompose the mass of the lensing galaxy into a de Vaucouleurs component to trace the stars and an additional dark component. The spread of multiple-image components over a large radial range also allows us to determine the amplitude of the de Vaucouleurs and dark matter components separately. We get a mass-to-light ratio of M de Vauc LB ≈ (5.5±1.5) M⊙L⊙,B and a dark matter fraction within the Einstein radius of ≈20 to 40 per cent. Modelling the star formation history assuming composite stellar populations at solar metallicity to the galaxy's photometry yields a mass-to-light ratio of M, salp LB ≈ 4.0-1.3+0.6 M⊙L⊙,B and M, chab LB ≈ 2.3-0.8+0.3 M⊙L⊙,B for Salpeter and Chabrier initial mass functions, respectively. Hence, the mass-to-light ratio derived from lensing is more Salpeter like, in agreement with results for massive Coma galaxies and other nearby massive early-type galaxies. We examine the consequences of the galaxy group in which the lensing galaxy is embedded, showing that it has little influence on the mass-to-light ratio obtained for the de Vaucouleurs component of the lensing galaxy. Finally, we decompose the projected, azimuthally averaged 2D density distribution of the de Vaucouleurs and dark matter components of the lensing signal into spherically averaged 3D density profiles. We can show that the 3D dark and luminous matter density within the Einstein radius (REin ≈ 0.6 Reff) of this SLACS galaxy is similar to the

  19. Modern Gravitational Lens Cosmology for Introductory Physics and Astronomy Students

    Science.gov (United States)

    Huwe, Paul; Field, Scott

    2015-01-01

    Recent and exciting discoveries in astronomy and cosmology have inspired many high school students to learn about these fields. A particularly fascinating consequence of general relativity at the forefront of modern cosmology research is gravitational lensing, the bending of light rays that pass near massive objects. Gravitational lensing enables…

  20. RXJ 0921+4529: A BINARY QUASAR OR A GRAVITATIONAL LENS?

    International Nuclear Information System (INIS)

    Popovic, L. C.; Jovanovic, P.; Kovacevic, J.; Moiseev, A. V.; Mediavilla, E.; Ilic, D.; Munoz, J. A.

    2010-01-01

    We report the new spectroscopic observations of the gravitational lens RXJ 021+4529 with the multi-mode focal reducer SCORPIO of the SAO RAS 6 m telescope. The new spectral observations were compared with the previously observed spectra of components A and B of RXJ 0921+4529, i.e., the same components observed in different epochs. We found a significant difference in the spectrum between the components that cannot be explained with microlensing and/or spectral variation. We conclude that RXJ 0921+4529 is a binary quasar system, where redshifts of quasars A and B are 1.6535 ± 0.0005 and 1.6625 ± 0.0015, respectively.

  1. The edge-on spiral gravitational lens B1600+434

    NARCIS (Netherlands)

    Koopmans, LVE; de Bruyn, AG; Jackson, N; Muller,; Gottlober, S; Mucket, JP; Wambsganss, J

    1998-01-01

    New HST and NOT observations of the gravitational lens B1600+434(1) suggest that the lensing galaxy is an edge-on spiral galaxy.(3) We have used these observations to constrain the velocity dispersion (sigma(parallel to) > 150 km/s) and oblateness (q(halo) = (c/a)(rho) > 0.5) of dark matter halo

  2. The Extragalactic Lens VLBI Imaging Survey (ELVIS): Investigating galaxy cores and black holes with gravitational lens central images

    Science.gov (United States)

    Boyce, Edward R.

    This thesis describes the Extragalactic Lens VLBI Imaging Survey (ELVIS), a search for central images in gravitational lenses. We present the first four ELVIS targets, for which we have radio VLBI observations with resolutions of a few milli-arcseconds and sensitivities of 15 - 38mJy. For PMN J1838-3427, CLASS B0739+366 and CLASS B0445+123 we have not detected any central images, but have set stringent upper limits on their flux densities. For CLASS B2319+051 we have made a tentative detection of a third radio source, which may be either a central image or radio emission from the lens galaxy. Using the upper limits on the central image flux densities, we gain new information about the matter distributions in the lens galaxies of these systems. We fit a broken power law model for the matter profile, and constrain the allowed break radii and inner index of this model. To demagnify the central images to the observed level the matter profiles must be slightly shallower than or steeper than isothermal, which is consistent with previous studies of early type galaxy profiles. The presence of a super-massive black hole weakens the constraints somewhat, but the profiles are still close to isothermal. Relative to previous work, we reduce the maximum sizes of shallow cores by factors of 2 to 3, and raise the indices of r 0( r -g central cusps by g = 0.05 - 0.35. If we take the source in B2319+051 to be a central image, then we select a narrow band of allowed break radii and inner indices, finding that a constant density core has size 150--380 pc, and a pure power law has index g = 1.5 - 1.67. Our constraints still allow sufficiently shallow profiles that some super-massive black holes may form central image pairs rather than eliminating the central image, and these image pairs may be detected with future instruments. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.)

  3. Automated Fresnel lens tester system

    Energy Technology Data Exchange (ETDEWEB)

    Phipps, G.S.

    1981-07-01

    An automated data collection system controlled by a desktop computer has been developed for testing Fresnel concentrators (lenses) intended for solar energy applications. The system maps the two-dimensional irradiance pattern (image) formed in a plane parallel to the lens, whereas the lens and detector assembly track the sun. A point detector silicon diode (0.5-mm-dia active area) measures the irradiance at each point of an operator-defined rectilinear grid of data positions. Comparison with a second detector measuring solar insolation levels results in solar concentration ratios over the image plane. Summation of image plane energies allows calculation of lens efficiencies for various solar cell sizes. Various graphical plots of concentration ratio data help to visualize energy distribution patterns.

  4. QUASAR PG1115+080 AND GRAVITATIONAL LENS

    Science.gov (United States)

    2002-01-01

    Left: The light from the single quasar PG 1115+080 is split and distorted in this infrared image. PG 1115+080 is at a distance of about 8 billion light years in the constellation Leo, and it is viewed through an elliptical galaxy lens at a distance of 3 billion light years. The NICMOS frame is taken at a wavelength of 1.6 microns and it shows the four images of the quasar (the two on the left are nearly merging) surrounding the galaxy that causes the light to be lensed. The quasar is a variable light source and the light in each image travels a different path to reach the Earth. The time delay of the variations allows the distance scale to be measured directly. The linear streaks on the image are diffraction artifacts in the NICMOS instrument (NASA/Space Telescope Science Institute). Right: In this NICMOS image, the four quasar images and the lens galaxy have been subtracted, revealing a nearly complete ring of infrared light. This ring is the stretched and amplified starlight of the galaxy that contains the quasar, some 8 billion light years away. (NASA/Space Telescope Science Institute). Credit: Christopher D. Impey (University of Arizona)

  5. Gravitational radiation quadrupole formula is valid for gravitationally interacting systems

    International Nuclear Information System (INIS)

    Walker, M.; Will, C.M.

    1980-01-01

    An argument is presented for the validity of the quadrupole formula for gravitational radiation energy loss in the far field of nearly Newtonian (e.g., binary stellar) systems. This argument differs from earlier ones in that it determines beforehand the formal accuracy of approximation required to describe gravitationally self-interacting systems, uses the corresponding approximate equation of motion explicitly, and evaluate the appropriate asymptotic quantities by matching along the correct space-time light cones

  6. A determination of H-0 with the class gravitational lens B1608+656. I. Time delay measurements with the VLA

    NARCIS (Netherlands)

    Fassnacht, CD; Pearson, TJ; Readhead, ACS; Browne, IWA; Koopmans, LVE; Myers, ST; Wilkinson, PN

    1999-01-01

    We present the results of a program to monitor the four-image gravitational lens B1608 + 656 with the VLA. The system was observed over a 7 month period from 1996 October to 1997 May. The 64 epochs of observation have an average spacing of 3.6 days. The light curves of the four images of the

  7. Constraints on cosmological models from strong gravitational lensing systems

    International Nuclear Information System (INIS)

    Cao, Shuo; Pan, Yu; Zhu, Zong-Hong; Biesiada, Marek; Godlowski, Wlodzimierz

    2012-01-01

    Strong lensing has developed into an important astrophysical tool for probing both cosmology and galaxies (their structure, formation, and evolution). Using the gravitational lensing theory and cluster mass distribution model, we try to collect a relatively complete observational data concerning the Hubble constant independent ratio between two angular diameter distances D ds /D s from various large systematic gravitational lens surveys and lensing by galaxy clusters combined with X-ray observations, and check the possibility to use it in the future as complementary to other cosmological probes. On one hand, strongly gravitationally lensed quasar-galaxy systems create such a new opportunity by combining stellar kinematics (central velocity dispersion measurements) with lensing geometry (Einstein radius determination from position of images). We apply such a method to a combined gravitational lens data set including 70 data points from Sloan Lens ACS (SLACS) and Lens Structure and Dynamics survey (LSD). On the other hand, a new sample of 10 lensing galaxy clusters with redshifts ranging from 0.1 to 0.6 carefully selected from strong gravitational lensing systems with both X-ray satellite observations and optical giant luminous arcs, is also used to constrain three dark energy models (ΛCDM, constant w and CPL) under a flat universe assumption. For the full sample (n = 80) and the restricted sample (n = 46) including 36 two-image lenses and 10 strong lensing arcs, we obtain relatively good fitting values of basic cosmological parameters, which generally agree with the results already known in the literature. This results encourages further development of this method and its use on larger samples obtained in the future

  8. Constraints on cosmological models from strong gravitational lensing systems

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Shuo; Pan, Yu; Zhu, Zong-Hong [Department of Astronomy, Beijing Normal University, Beijing 100875 (China); Biesiada, Marek [Department of Astrophysics and Cosmology, Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice (Poland); Godlowski, Wlodzimierz, E-mail: baodingcaoshuo@163.com, E-mail: panyu@cqupt.edu.cn, E-mail: biesiada@us.edu.pl, E-mail: godlowski@uni.opole.pl, E-mail: zhuzh@bnu.edu.cn [Institute of Physics, Opole University, Oleska 48, 45-052 Opole (Poland)

    2012-03-01

    Strong lensing has developed into an important astrophysical tool for probing both cosmology and galaxies (their structure, formation, and evolution). Using the gravitational lensing theory and cluster mass distribution model, we try to collect a relatively complete observational data concerning the Hubble constant independent ratio between two angular diameter distances D{sub ds}/D{sub s} from various large systematic gravitational lens surveys and lensing by galaxy clusters combined with X-ray observations, and check the possibility to use it in the future as complementary to other cosmological probes. On one hand, strongly gravitationally lensed quasar-galaxy systems create such a new opportunity by combining stellar kinematics (central velocity dispersion measurements) with lensing geometry (Einstein radius determination from position of images). We apply such a method to a combined gravitational lens data set including 70 data points from Sloan Lens ACS (SLACS) and Lens Structure and Dynamics survey (LSD). On the other hand, a new sample of 10 lensing galaxy clusters with redshifts ranging from 0.1 to 0.6 carefully selected from strong gravitational lensing systems with both X-ray satellite observations and optical giant luminous arcs, is also used to constrain three dark energy models (ΛCDM, constant w and CPL) under a flat universe assumption. For the full sample (n = 80) and the restricted sample (n = 46) including 36 two-image lenses and 10 strong lensing arcs, we obtain relatively good fitting values of basic cosmological parameters, which generally agree with the results already known in the literature. This results encourages further development of this method and its use on larger samples obtained in the future.

  9. Fermat's principle, caustics, and the classification of gravitational lens images

    International Nuclear Information System (INIS)

    Blandford, R.; Narayan, R.

    1986-01-01

    A scalar description of gravitational lensing based on Fermat's principle is described. The lensing mass is assumed to be confined to a single plane between the source and the observer, and a time delay is associated with each position in the sky of a potential image. The extrema of this time surface then give the true positions of the images. A topological classification of image configurations is presented, and the results are generalized to cases of three and five-image lensing geometries. A computer-graphical approach to the study of lensing by model galaxies and clusters is described, and the design of a simple optical apparatus which could be used for fast modelling of image geometries is outlined. The connection between the Fermat approach and the classical theory of caustics and the more recent general theory of catastrophies is developed. The extension of the results to multiple scattering is considered. 42 references

  10. Gravitational lens effect of wall-like objects and its cosmological implications

    International Nuclear Information System (INIS)

    Tomita, Kenji.

    1990-08-01

    First we derive the gravitational deflection angle of light rays passing through a disk consisting of pressureless matter, and show that it behaves like a convex lens. Next we derive the two-ray difference of deflection angles by help of the Raychaudhuri equation, in the cases when the wall-like objects are dust walls and domain-walls. Moreover we derive the two-ray difference of deflection angles in a low mass-density regions lying between wall-like objects. This region plays a role of a concave lens, but it is shown that its effect is minor, compared with the effect of wall-like objects. On the basis of these deflection angle differences, we consider the gravitational lens effect of uniform wall-like objects which may exist homogeneously on the cosmological scale, and show that, in the case when the wall-like objects appear at the epoch of z = 5, the measured angles of the cosmic background radiation may be increased about 3-2 times owing to the integrated convex lens effect and so its measured anisotropy may be smaller by a factor of about 10-6 than the intrinsic one. (author)

  11. Algorithm design of liquid lens inspection system

    Science.gov (United States)

    Hsieh, Lu-Lin; Wang, Chun-Chieh

    2008-08-01

    In mobile lens domain, the glass lens is often to be applied in high-resolution requirement situation; but the glass zoom lens needs to be collocated with movable machinery and voice-coil motor, which usually arises some space limits in minimum design. In high level molding component technology development, the appearance of liquid lens has become the focus of mobile phone and digital camera companies. The liquid lens sets with solid optical lens and driving circuit has replaced the original components. As a result, the volume requirement is decreased to merely 50% of the original design. Besides, with the high focus adjusting speed, low energy requirement, high durability, and low-cost manufacturing process, the liquid lens shows advantages in the competitive market. In the past, authors only need to inspect the scrape defect made by external force for the glass lens. As to the liquid lens, authors need to inspect the state of four different structural layers due to the different design and structure. In this paper, authors apply machine vision and digital image processing technology to administer inspections in the particular layer according to the needs of users. According to our experiment results, the algorithm proposed can automatically delete non-focus background, extract the region of interest, find out and analyze the defects efficiently in the particular layer. In the future, authors will combine the algorithm of the system with automatic-focus technology to implement the inside inspection based on the product inspective demands.

  12. MULTIPOLE GRAVITATIONAL LENSING AND HIGH-ORDER PERTURBATIONS ON THE QUADRUPOLE LENS

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Z.; Lin, W. P. [Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan Road, Shanghai 200030 (China); Li, G. L. [Purple Mountain Observatory, 2 West Beijing Road, Nanjing 210008 (China); Kang, X., E-mail: chuzhe@shao.ac.cn, E-mail: linwp@shao.ac.cn [Partner Group of MPI for Astronomy, Purple Mountain Observatory, 2 West Beijing Road, Nanjing 210008 (China)

    2013-03-10

    An arbitrary surface mass density of the gravitational lens can be decomposed into multipole components. We simulate the ray tracing for the multipolar mass distribution of the generalized Singular Isothermal Sphere model based on deflection angles, which are analytically calculated. The magnification patterns in the source plane are then derived from an inverse shooting technique. As has been found, the caustics of odd mode lenses are composed of two overlapping layers for some lens models. When a point source traverses this kind of overlapping caustics, the image numbers change by {+-}4, rather than {+-}2. There are two kinds of caustic images. One is the critical curve and the other is the transition locus. It is found that the image number of the fold is exactly the average value of image numbers on two sides of the fold, while the image number of the cusp is equal to the smaller one. We also focus on the magnification patterns of the quadrupole (m = 2) lenses under the perturbations of m = 3, 4, and 5 mode components and found that one, two, and three butterfly or swallowtail singularities can be produced, respectively. With the increasing intensity of the high-order perturbations, the singularities grow up to bring sixfold image regions. If these perturbations are large enough to let two or three of the butterflies or swallowtails make contact, then eightfold or tenfold image regions can be produced as well. The possible astronomical applications are discussed.

  13. Precision lens assembly with alignment turning system

    Science.gov (United States)

    Ho, Cheng-Fang; Huang, Chien-Yao; Lin, Yi-Hao; Kuo, Hui-Jean; Kuo, Ching-Hsiang; Hsu, Wei-Yao; Chen, Fong-Zhi

    2017-10-01

    The poker chip assembly with high precision lens barrels is widely applied to ultra-high performance optical system. ITRC applies the poker chip assembly technology to the high numerical aperture objective lenses and lithography projection lenses because of its high efficiency assembly process. In order to achieve high precision lens cell for poker chip assembly, an alignment turning system (ATS) is developed. The ATS includes measurement, alignment and turning modules. The measurement module is equipped with a non-contact displacement sensor (NCDS) and an autocollimator (ACM). The NCDS and ACM are used to measure centration errors of the top and the bottom surface of a lens respectively; then the amount of adjustment of displacement and tilt with respect to the rotational axis of the turning machine for the alignment module can be determined. After measurement, alignment and turning processes on the ATS, the centration error of a lens cell with 200 mm in diameter can be controlled within 10 arcsec. Furthermore, a poker chip assembly lens cell with three sub-cells is demonstrated, each sub-cells are measured and accomplished with alignment and turning processes. The lens assembly test for five times by each three technicians; the average transmission centration error of assembly lens is 12.45 arcsec. The results show that ATS can achieve high assembly efficiency for precision optical systems.

  14. Gravitational radiation from electromagnetic systems

    International Nuclear Information System (INIS)

    Nikishov, A.I.; Ritus, V.I.

    1989-01-01

    It is shown that the spectrum of gravitational radiation of a charge e with mass m, undergoing finite motion in an electromagnetic field, smoothly varying in the neighborhood of the orbit over a region of the order of the radius of curvature, differs in the ultrarelativistic limit from the spectrum of the charge's electromagnetic radiation. The difference consists of the frequency-independent coefficient 4πGm 2 Λ 2 /e 2 , where Λ is of the order of the Lorentz factor of the charge and depends on the direction of the wave vector and on the behavior of the field in the above-indicated region. For a plane-wave external field the gravitational and electromagnetic spectra are strictly proportional to each other for arbitrary velocities of the charge. Localization of the external forces near the orbit violates this proportionality of the spectra and weakens the gravitational radiation by an amount of the order of the square of the Lorentz factor

  15. Lens system for SIMS analysis

    International Nuclear Information System (INIS)

    Martinez, G.; Sancho, M.; Garcia-Galan, J.C.

    1987-01-01

    A powerful version of the charge-density method is applied to the study of a combined objective and emission lens, suitable for highly localized analysis of a flat sample surface. This lens can extract secondary ions of equal or opposite polarity to that of the primary particles. A computer simulation of the ion trajectories for both modes is made. The behaviour for different values of the geometric parameters and polarizations is analyzed and useful data for design such as primary beam demagnification and secondary image position are given. (author) 4 refs

  16. Advanced instrumentation for Solar System gravitational physics

    Science.gov (United States)

    Peron, Roberto; Bellettini, G.; Berardi, S.; Boni, A.; Cantone, C.; Coradini, A.; Currie, D. G.; Dell'Agnello, S.; Delle Monache, G. O.; Fiorenza, E.; Garattini, M.; Iafolla, V.; Intaglietta, N.; Lefevre, C.; Lops, C.; March, R.; Martini, M.; Nozzoli, S.; Patrizi, G.; Porcelli, L.; Reale, A.; Santoli, F.; Tauraso, R.; Vittori, R.

    2010-05-01

    The Solar System is a complex laboratory for testing gravitational physics. Indeed, its scale and hierarchical structure make possible a wide range of tests for gravitational theories, studying the motion of both natural and artificial objects. The usual methodology makes use of tracking information related to the bodies, fitted by a suitable dynamical model. Different equations of motion are provided by different theories, which can be therefore tested and compared. Future exploration scenarios show the possibility of placing deep-space probes near the Sun or in outer Solar System, thereby extending the available experimental data sets. In particular, the Earth-Moon is the most accurately known gravitational three-body laboratory, which is undergoing a new, strong wave of research and exploration (both robotic and manned). In addition, the benefits of a synergetic study of planetary science and gravitational physics are of the greatest importance (as shown by the success of the Apollo program), especially in the Earth-Moon, Mars-Phobos, Jovian and Saturnian sub-suystems. This scenarios open critical issues regarding the quality of the available dynamical models, i.e. their capability of fitting data without an excessive number of empirical hypotheses. A typical case is represented by the non-gravitational phenomena, which in general are difficult to model. More generally, gravitation tests with Lunar Laser Ranging, inner or outer Solar System probes and the appearance of the so-called 'anomalies'(like the one indicated by the Pioneers), whatever their real origin (either instrumental effects or due to new physics), show the necessity of a coordinated improvement of tracking and modelization techniques. A common research path will be discussed, employing the development and use of advanced instrumentation to cope with current limitations of Solar System gravitational tests. In particular, the use of high-sensitivity accelerometers, combined with microwave and laser

  17. H0LiCOW - III. Quantifying the effect of mass along the line of sight to the gravitational lens HE 0435-1223 through weighted galaxy counts★

    Science.gov (United States)

    Rusu, Cristian E.; Fassnacht, Christopher D.; Sluse, Dominique; Hilbert, Stefan; Wong, Kenneth C.; Huang, Kuang-Han; Suyu, Sherry H.; Collett, Thomas E.; Marshall, Philip J.; Treu, Tommaso; Koopmans, Leon V. E.

    2017-06-01

    Based on spectroscopy and multiband wide-field observations of the gravitationally lensed quasar HE 0435-1223, we determine the probability distribution function of the external convergence κext for this system. We measure the under/overdensity of the line of sight towards the lens system and compare it to the average line of sight throughout the Universe, determined by using the CFHTLenS (The Canada France Hawaii Lensing Survey) as a control field. Aiming to constrain κext as tightly as possible, we determine under/overdensities using various combinations of relevant informative weighting schemes for the galaxy counts, such as projected distance to the lens, redshift and stellar mass. We then convert the measured under/overdensities into a κext distribution, using ray-tracing through the Millennium Simulation. We explore several limiting magnitudes and apertures, and account for systematic and statistical uncertainties relevant to the quality of the observational data, which we further test through simulations. Our most robust estimate of κext has a median value κ^med_ext = 0.004 and a standard deviation σκ = 0.025. The measured σκ corresponds to 2.5 per cent relative uncertainty on the time delay distance, and hence the Hubble constant H0 inferred from this system. The median κ^med_ext value varies by ˜0.005 with the adopted aperture radius, limiting magnitude and weighting scheme, as long as the latter incorporates galaxy number counts, the projected distance to the main lens and a prior on the external shear obtained from mass modelling. This corresponds to just ˜0.5 per cent systematic impact on H0. The availability of a well-constrained κext makes HE 0435-1223 a valuable system for measuring cosmological parameters using strong gravitational lens time delays.

  18. Characterization of lens based photoacoustic imaging system

    Directory of Open Access Journals (Sweden)

    Kalloor Joseph Francis

    2017-12-01

    Full Text Available Some of the challenges in translating photoacoustic (PA imaging to clinical applications includes limited view of the target tissue, low signal to noise ratio and the high cost of developing real-time systems. Acoustic lens based PA imaging systems, also known as PA cameras are a potential alternative to conventional imaging systems in these scenarios. The 3D focusing action of lens enables real-time C-scan imaging with a 2D transducer array. In this paper, we model the underlying physics in a PA camera in the mathematical framework of an imaging system and derive a closed form expression for the point spread function (PSF. Experimental verification follows including the details on how to design and fabricate the lens inexpensively. The system PSF is evaluated over a 3D volume that can be imaged by this PA camera. Its utility is demonstrated by imaging phantom and an ex vivo human prostate tissue sample.

  19. Characterization of lens based photoacoustic imaging system.

    Science.gov (United States)

    Francis, Kalloor Joseph; Chinni, Bhargava; Channappayya, Sumohana S; Pachamuthu, Rajalakshmi; Dogra, Vikram S; Rao, Navalgund

    2017-12-01

    Some of the challenges in translating photoacoustic (PA) imaging to clinical applications includes limited view of the target tissue, low signal to noise ratio and the high cost of developing real-time systems. Acoustic lens based PA imaging systems, also known as PA cameras are a potential alternative to conventional imaging systems in these scenarios. The 3D focusing action of lens enables real-time C-scan imaging with a 2D transducer array. In this paper, we model the underlying physics in a PA camera in the mathematical framework of an imaging system and derive a closed form expression for the point spread function (PSF). Experimental verification follows including the details on how to design and fabricate the lens inexpensively. The system PSF is evaluated over a 3D volume that can be imaged by this PA camera. Its utility is demonstrated by imaging phantom and an ex vivo human prostate tissue sample.

  20. A DETAILED GRAVITATIONAL LENS MODEL BASED ON SUBMILLIMETER ARRAY AND KECK ADAPTIVE OPTICS IMAGING OF A HERSCHEL-ATLAS SUBMILLIMETER GALAXY AT z = 4.243 {sup ,} {sup ,}

    Energy Technology Data Exchange (ETDEWEB)

    Bussmann, R. S.; Gurwell, M. A. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Fu Hai; Cooray, A. [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); Smith, D. J. B.; Bonfield, D.; Dunne, L. [Centre for Astrophysics, Science and Technology Research Institute, University of Hertfordshire, Hatfield, Herts AL10 9AB (United Kingdom); Dye, S.; Eales, S. [School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD (United Kingdom); Auld, R. [Cardiff University, School of Physics and Astronomy, Queens Buildings, The Parade, Cardiff CF24 3AA (United Kingdom); Baes, M.; Fritz, J. [Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281 S9, B-9000 Gent (Belgium); Baker, A. J. [Department of Physics and Astronomy, Rutgers, the State University of New Jersey, 136 Frelinghuysen Road, Piscataway, NJ 08854-8019 (United States); Cava, A. [Departamento de Astrofisica, Facultad de CC. Fisicas, Universidad Complutense de Madrid, E-28040 Madrid (Spain); Clements, D. L.; Dariush, A. [Imperial College London, Blackett Laboratory, Prince Consort Road, London SW7 2AZ (United Kingdom); Coppin, K. [Department of Physics, McGill University, Ernest Rutherford Building, 3600 Rue University, Montreal, Quebec, H3A 2T8 (Canada); Dannerbauer, H. [Universitaet Wien, Institut fuer Astronomie, Tuerkenschanzstrasse 17, 1180 Wien, Oesterreich (Austria); De Zotti, G. [Universita di Padova, Dipto di Astronomia, Vicolo dell' Osservatorio 2, IT 35122, Padova (Italy); Hopwood, R., E-mail: rbussmann@cfa.harvard.edu [Department of Physics and Astronomy, Open University, Walton Hall, Milton Keynes, MK7 6AA (United Kingdom); and others

    2012-09-10

    We present high-spatial resolution imaging obtained with the Submillimeter Array (SMA) at 880 {mu}m and the Keck adaptive optics (AO) system at the K{sub S}-band of a gravitationally lensed submillimeter galaxy (SMG) at z = 4.243 discovered in the Herschel Astrophysical Terahertz Large Area Survey. The SMA data (angular resolution Almost-Equal-To 0.''6) resolve the dust emission into multiple lensed images, while the Keck AO K{sub S}-band data (angular resolution Almost-Equal-To 0.''1) resolve the lens into a pair of galaxies separated by 0.''3. We present an optical spectrum of the foreground lens obtained with the Gemini-South telescope that provides a lens redshift of z{sub lens} = 0.595 {+-} 0.005. We develop and apply a new lens modeling technique in the visibility plane that shows that the SMG is magnified by a factor of {mu} = 4.1 {+-} 0.2 and has an intrinsic infrared (IR) luminosity of L{sub IR} = (2.1 {+-} 0.2) Multiplication-Sign 10{sup 13} L{sub Sun }. We measure a half-light radius of the background source of r{sub s} = 4.4 {+-} 0.5 kpc which implies an IR luminosity surface density of {Sigma}{sub IR} (3.4 {+-} 0.9) Multiplication-Sign 10{sup 11} L{sub Sun} kpc{sup -2}, a value that is typical of z > 2 SMGs but significantly lower than IR luminous galaxies at z {approx} 0. The two lens galaxies are compact (r{sub lens} Almost-Equal-To 0.9 kpc) early-types with Einstein radii of {theta}{sub E1} 0.57 {+-} 0.01 and {theta}{sub E2} = 0.40 {+-} 0.01 that imply masses of M{sub lens1} = (7.4 {+-} 0.5) Multiplication-Sign 10{sup 10} M{sub Sun} and M{sub lens2} = (3.7 {+-} 0.3) Multiplication-Sign 10{sup 10} M{sub Sun }. The two lensing galaxies are likely about to undergo a dissipationless merger, and the mass and size of the resultant system should be similar to other early-type galaxies at z {approx} 0.6. This work highlights the importance of high spatial resolution imaging in developing models of strongly lensed galaxies

  1. THE BOSS EMISSION-LINE LENS SURVEY. II. INVESTIGATING MASS-DENSITY PROFILE EVOLUTION IN THE SLACS+BELLS STRONG GRAVITATIONAL LENS SAMPLE

    Energy Technology Data Exchange (ETDEWEB)

    Bolton, Adam S.; Brownstein, Joel R.; Shu Yiping; Arneson, Ryan A. [Department of Physics and Astronomy, University of Utah, 115 South 1400 East, Salt Lake City, UT 84112 (United States); Kochanek, Christopher S. [Department of Astronomy and Center for Cosmology and Astroparticle Physics, Ohio State University, Columbus, OH 43210 (United States); Schlegel, David J. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Eisenstein, Daniel J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS 20, Cambridge, MA 02138 (United States); Wake, David A. [Department of Astronomy, Yale University, New Haven, CT 06520 (United States); Connolly, Natalia [Department of Physics, Hamilton College, Clinton, NY 13323 (United States); Maraston, Claudia [Institute of Cosmology and Gravitation, University of Portsmouth, Portsmouth PO1 3FX (United Kingdom); Weaver, Benjamin A., E-mail: bolton@astro.utah.edu [Center for Cosmology and Particle Physics, New York University, New York, NY 10003 (United States)

    2012-09-20

    We present an analysis of the evolution of the central mass-density profile of massive elliptical galaxies from the SLACS and BELLS strong gravitational lens samples over the redshift interval z Almost-Equal-To 0.1-0.6, based on the combination of strong-lensing aperture mass and stellar velocity-dispersion constraints. We find a significant trend toward steeper mass profiles (parameterized by the power-law density model with {rho}{proportional_to}r {sup -{gamma}}) at later cosmic times, with magnitude d < {gamma} > /dz = -0.60 {+-} 0.15. We show that the combined lens-galaxy sample is consistent with a non-evolving distribution of stellar velocity dispersions. Considering possible additional dependence of <{gamma} > on lens-galaxy stellar mass, effective radius, and Sersic index, we find marginal evidence for shallower mass profiles at higher masses and larger sizes, but with a significance that is subdominant to the redshift dependence. Using the results of published Monte Carlo simulations of spectroscopic lens surveys, we verify that our mass-profile evolution result cannot be explained by lensing selection biases as a function of redshift. Interpreted as a true evolutionary signal, our result suggests that major dry mergers involving off-axis trajectories play a significant role in the evolution of the average mass-density structure of massive early-type galaxies over the past 6 Gyr. We also consider an alternative non-evolutionary hypothesis based on variations in the strong-lensing measurement aperture with redshift, which would imply the detection of an 'inflection zone' marking the transition between the baryon-dominated and dark-matter halo-dominated regions of the lens galaxies. Further observations of the combined SLACS+BELLS sample can constrain this picture more precisely, and enable a more detailed investigation of the multivariate dependences of galaxy mass structure across cosmic time.

  2. Gravitational waves emitted by extrasolar planetary systems

    International Nuclear Information System (INIS)

    Berti, E.; Ferrari, V.

    2001-01-01

    The recently discovered Extrasolar Planetary Systems (EPS's) are potentially interesting sources of gravitational waves, since they are very close to Earth (at distances ∼ 10 pc), and their orbital features and positions in the sky are quite well known. As a first estimate, we compute the orbital emission of these systems using the quadrupole formula. Then we show that, in principle, the orbiting planet could resonantly excite the quasi-normal modes of the central star. We use the general-relativistic theory of stellar pulsations to estimate the effects of such a resonance on the gravitational-wave emission of the system. We also consider radiation-reaction effects on the orbital evolution, and give upper limits on the timescales required for a planet to get off-resonance. (author)

  3. Gravitational physics of stellar and galactic systems

    International Nuclear Information System (INIS)

    Saslaw, W.C.

    1985-01-01

    The book concerns the gravitational interactions and evolution of astronomical systems on all scales, and is aimed at the graduate student of physics and astronomy. The text is divided into four parts, and each describes areas of the subject in order of decreasing symmetry. The four parts include: idealized homogeneous systems-basic ideas and gentle relaxation; infinite inhomogeneous systems and galaxy clustering; finite spherical systems including clusters of galaxies; galactic nuclei and globular clusters; and finite flattened systems and galaxies. (U.K.)

  4. The double quasar 0957+561: examination of the gravitational lens hypothesis using the very large array.

    Science.gov (United States)

    Greenfield, P E; Roberts, D H; Burke, B F

    1980-05-02

    A full 12-hour synthesis at 6-centimeter wavelength with the Very Large Array confirms the major features previously reported for the double quasar 0957+561. In addition, the existence of radio jets apparently associated with both quasars is demonstrated. Gravitational lens models are now favored on the basis of recent optical observations, and the radio jets place severe constraints on such models. Further radio observations of the double quasar are needed to establish the expected relative time delay in variations between the images.

  5. The SWELLS survey - III. Disfavouring 'heavy' initial mass functions for spiral lens galaxies

    NARCIS (Netherlands)

    Brewer, Brendon J.; Dutton, Aaron A.; Treu, Tommaso; Auger, Matthew W.; Marshall, Philip J.; Barnabè, Matteo; Bolton, Adam S.; Koo, David C.; Koopmans, Léon V. E.

    We present gravitational lens models for 20 strong gravitational lens systems observed as part of the Sloan WFC Edge-on Late-type Lens Survey (SWELLS) project. 15 of the lenses are taken from Paper I, while five are newly discovered systems. The systems are galaxy-galaxy lenses where the foreground

  6. Dissecting the Gravitational Lens B1608 656. II. Precision Measurements of the Hubble Constant, Spatial Curvature, and the Dark Energy Equation of State

    Energy Technology Data Exchange (ETDEWEB)

    Suyu, S.H.; /Argelander Inst. Astron.; Marshall, P.J.; /KIPAC, Menlo Park /UC, Santa Barbara; Auger, M.W.; /UC, Santa Barbara /UC, Davis; Hilbert, S.; /Argelander Inst. Astron. /Garching, Max Planck Inst.; Blandford, R.D.; /KIPAC, Menlo Park; Koopmans, L.V.E.; /Kapteyn Astron. Inst., Groningen; Fassnacht, C.D.; /UC, Davis; Treu, T.; /UC, Santa Barbara

    2009-12-11

    Strong gravitational lens systems with measured time delays between the multiple images provide a method for measuring the 'time-delay distance' to the lens, and thus the Hubble constant. We present a Bayesian analysis of the strong gravitational lens system B1608+656, incorporating (1) new, deep Hubble Space Telescope (HST) observations, (2) a new velocity dispersion measurement of 260 {+-} 15 km s{sup -1} for the primary lens galaxy, and (3) an updated study of the lens environment. Our analysis of the HST images takes into account the extended source surface brightness, and the dust extinction and optical emission by the interacting lens galaxies. When modeling the stellar dynamics of the primary lens galaxy, the lensing effect, and the environment of the lens, we explicitly include the total mass distribution profile logarithmic slope {gamma}{prime} and the external convergence {kappa}{sub ext}; we marginalize over these parameters, assigning well-motivated priors for them, and so turn the major systematic errors into statistical ones. The HST images provide one such prior, constraining the lens mass density profile logarithmic slope to be {gamma}{prime} = 2.08 {+-} 0.03; a combination of numerical simulations and photometric observations of the B1608+656 field provides an estimate of the prior for {kappa}{sub ext}: 0.10{sub -0.05}{sup +0.08}. This latter distribution dominates the final uncertainty on H{sub 0}. Fixing the cosmological parameters at {Omega}{sub m} = 0.3, {Omega}{sub {Lambda}} = 0.7, and w = -1 in order to compare with previous work on this system, we find H{sub 0} = 70.6{sub -3.1}{sup +3.1} km s{sup -1} Mpc{sup -1}. The new data provide an increase in precision of more than a factor of two, even including the marginalization over {kappa}{sub ext}. Relaxing the prior probability density function for the cosmological parameters to that derived from the WMAP 5-year data set, we find that the B1608+656 data set breaks the degeneracy

  7. Gravitational redshift from a binary system

    Energy Technology Data Exchange (ETDEWEB)

    Steklain, Andre [Universidade Tecnologica Federal do Parana (UTFPR), PR (Brazil)

    2011-07-01

    Full text: In this work we study the gravitational redshift of a binary system in general relativity. We employ a mixed metric obtained from the matching of a 1PN metric with two perturbed Schwarzschild metrics, based on previous works [Alvi, Phys. Rev. D, 61, 124013 (2000)]. This metric is well known, and has been considered for several applications [Steklain et al, Phys. Lett. A, 373, 188, (2009)]. We consider a massless observer in a timelike geodesic of this metric measuring the redshift of the system. The observer concentrates the redshift measurements in one of the massive bodies and is influenced by the mass of the second body. We find that there is a substantial contribution of the second mass in some cases. We compare with experimental data obtained for real binary systems of white dwarfs [Vennes et al, Astroph. J., L37 (1991)]. We also discuss these results for more massive systems, and make some predictions for very massive systems, like black holes, although it extrapolates the limit of the 1PN approximation used. Is well known that the major contribution of the observed redshift is from the universe expansion, but these results indicate that the influence of the gravitational redshift may be underestimated at some systems. (author)

  8. Thermal effects in gravitational Hartree systems

    Energy Technology Data Exchange (ETDEWEB)

    Aki, Gonca L. [Weierstrass-Institut fuer Angewandte Analysis und Stochastik (WIAS) im Forschungsverbund Berlin e.V. (Germany); Dolbeault, Jean [Paris-Dauphine Univ. (FR). Ceremade (UMR CNRS 7534); Sparber, Christof [Illinois Univ., Chicago, IL (United States). Dept. of Mathematics, Statistics, and Computer Science

    2010-07-01

    We consider the non-relativistic Hartree model in the gravitational case, i.e. with attractive Coulomb-Newton interaction. For a given mass M>0, we construct stationary states with non-zero temperature T by minimizing the corresponding free energy functional. It is proved that minimizers exist if and only if the temperature of the system is below a certain threshold T*>0 (possibly infinite), which itself depends on the specific choice of the entropy functional. We also investigate whether the corresponding minimizers are mixed or pure quantum states and characterize a critical temperature T{sub c} element of (0,T*) above which mixed states appear. (orig.)

  9. Thermal Effects in Gravitational Hartree Systems

    KAUST Repository

    Aki, Gonca L.

    2011-04-06

    We consider the non-relativistic Hartree model in the gravitational case, i. e. with attractive Coulomb-Newton interaction. For a given mass M > 0, we construct stationary states with non-zero temperature T by minimizing the corresponding free energy functional. It is proved that minimizers exist if and only if the temperature of the system is below a certain threshold T* > 0 (possibly infinite), which itself depends on the specific choice of the entropy functional. We also investigate whether the corresponding minimizers are mixed or pure quantum states and characterize a critical temperature Tc ∈ (0,T*) above which mixed states appear. © 2011 Springer Basel AG.

  10. Thermal Effects in Gravitational Hartree Systems

    KAUST Repository

    Aki, Gonca L.; Dolbeault, Jean; Sparber, Christof

    2011-01-01

    We consider the non-relativistic Hartree model in the gravitational case, i. e. with attractive Coulomb-Newton interaction. For a given mass M > 0, we construct stationary states with non-zero temperature T by minimizing the corresponding free energy functional. It is proved that minimizers exist if and only if the temperature of the system is below a certain threshold T* > 0 (possibly infinite), which itself depends on the specific choice of the entropy functional. We also investigate whether the corresponding minimizers are mixed or pure quantum states and characterize a critical temperature Tc ∈ (0,T*) above which mixed states appear. © 2011 Springer Basel AG.

  11. Gravitational anomalies in the solar system?

    Science.gov (United States)

    Iorio, Lorenzo

    2015-02-01

    Mindful of the anomalous perihelion precession of Mercury discovered by Le Verrier in the second half of the nineteenth century and its successful explanation by Einstein with his General Theory of Relativity in the early years of the twentieth century, discrepancies among observed effects in our Solar system and their theoretical predictions on the basis of the currently accepted laws of gravitation applied to known matter-energy distributions have the potential of paving the way for remarkable advances in fundamental physics. This is particularly important now more than ever, given that most of the universe seems to be made of unknown substances dubbed Dark Matter and Dark Energy. Should this not be directly the case, Solar system's anomalies could anyhow lead to advancements in either cumulative science, as shown to us by the discovery of Neptune in the first half of the nineteenth century, and technology itself. Moreover, investigations in one of such directions can serendipitously enrich the other one as well. The current status of some alleged gravitational anomalies in the Solar system is critically reviewed. They are: (a) Possible anomalous advances of planetary perihelia. (b) Unexplained orbital residuals of a recently discovered moon of Uranus (Mab). (c) The lingering unexplained secular increase of the eccentricity of the orbit of the Moon. (d) The so-called Faint Young Sun Paradox. (e) The secular decrease of the mass parameter of the Sun. (f) The Flyby Anomaly. (g) The Pioneer Anomaly. (h) The anomalous secular increase of the astronomical unit.

  12. Gravitation

    CERN Document Server

    Misner, Charles W; Wheeler, John Archibald

    2017-01-01

    First published in 1973, Gravitation is a landmark graduate-level textbook that presents Einstein’s general theory of relativity and offers a rigorous, full-year course on the physics of gravitation. Upon publication, Science called it “a pedagogic masterpiece,” and it has since become a classic, considered essential reading for every serious student and researcher in the field of relativity. This authoritative text has shaped the research of generations of physicists and astronomers, and the book continues to influence the way experts think about the subject. With an emphasis on geometric interpretation, this masterful and comprehensive book introduces the theory of relativity; describes physical applications, from stars to black holes and gravitational waves; and portrays the field’s frontiers. The book also offers a unique, alternating, two-track pathway through the subject. Material focusing on basic physical ideas is designated as Track 1 and formulates an appropriate one-semester graduate-level...

  13. Solar-System Tests of Gravitational Theories

    Science.gov (United States)

    Shapiro, Irwin

    1997-01-01

    We are engaged in testing gravitational theory by means of observations of objects in the solar system. These tests include an examination of the Principle Of Equivalence (POE), the Shapiro delay, the advances of planetary perihelia, the possibility of a secular variation G in the "gravitational constant" G, and the rate of the de Sitter (geodetic) precession of the Earth-Moon system. These results are consistent with our preliminary results focusing on the contribution of Lunar Laser Ranging (LLR), which were presented at the seventh Marcel Grossmann meeting on general relativity. The largest improvement over previous results comes in the uncertainty for (eta): a factor of five better than our previous value. This improvement reflects the increasing strength of the LLR data. A similar analysis presented at the same meeting by a group at the Jet Propulsion Laboratory gave a similar result for (eta). Our value for (beta) represents our first such result determined simultaneously with the solar quadrupole moment from the dynamical data set. These results are being prepared for publication. We have shown how positions determined from different planetary ephemerides can be compared and how the combination of VLBI and pulse timing information can yield a direct tie between planetary and radio frames. We have continued to include new data in our analysis as they became available. Finally, we have made improvement in our analysis software (PEP) and ported it to a network of modern workstations from its former home on a "mainframe" computer.

  14. Entropy in Collisionless Self-gravitating Systems

    Science.gov (United States)

    Barnes, Eric; Williams, L.

    2010-01-01

    Collisionless systems, like simulated dark matter halos or gas-less elliptical galaxies, often times have properties suggesting that a common physical principle controls their evolution. For example, N-body simulations of dark matter halos present nearly scale-free density/velocity-cubed profiles. In an attempt to understand the origins of such relationships, we adopt a thermodynamics approach. While it is well-known that self-gravitating systems do not have physically realizable thermal equilibrium configurations, we are interested in the behavior of entropy as mechanical equilibrium is acheived. We will discuss entropy production in these systems from a kinetic theory point of view. This material is based upon work supported by the National Aeronautics and Space Administration under grant NNX07AG86G issued through the Science Mission Directorate.

  15. Macroscopic quantum systems and gravitational phenomena

    International Nuclear Information System (INIS)

    Pikovski, I.

    2014-01-01

    Low-energy quantum systems are studied theoretically in light of possible experiments to test the interplay between quantum theory and general relativity. The research focus in this thesis is on quantum systems which can be controlled with very high precision and which allow for tests of quantum theory at novel scales in terms of mass and size. The pulsed regime of opto-mechanics is explored and it is shown how short optical pulses can be used to prepare and characterize quantum states of a massive mechanical resonator, and how some phenomenological models of quantum gravity can be probed. In addition, quantum interferometry with photons and matter-waves in the presence of gravitational time dilation is considered. It is shown that time dilation causes entanglement between internal states and the center-of-mass position and that it leads to decoherence of all composite quantum systems. The results of the thesis show that the interplay between quantum theory and general relativity affects even low-energy quantum systems and that it offers novel phenomena which can be probed in experiments. (author) [de

  16. Gravitation

    International Nuclear Information System (INIS)

    Fennelly, A.J.

    1978-01-01

    Investigations of several problems of gravitation are discussed. The question of the existence of black holes is considered. While black holes like those in Einstein's theory may not exist in other gravity theories, trapped surfaces implying such black holes certainly do. The theories include those of Brans-Dicke, Lightman-Lee, Rosen, and Yang. A similar two-tensor theory of Yilmaz is investigated and found inconsistent and nonviable. The Newman-Penrose formalism for Riemannian geometries is adapted to general gravity theories and used to implement a search for twisting solutions of the gravity theories for empty and nonempty spaces. The method can be used to find the gravitational fields for all viable gravity theories. The rotating solutions are of particular importance for strong field interpretation of the Stanford/Marshall gyroscope experiment. Inhomogeneous cosmologies are examined in Einstein's theory as generalizations of homogeneous ones by raising the dimension of the invariance groups by one more parameter. The nine Bianchi classifications are extended to Rosen's theory of gravity for homogeneous cosmological models

  17. The dispersion relation of a gravitating spiral system

    International Nuclear Information System (INIS)

    Evangelidis, E.

    1977-01-01

    The dispersion relation has been found for a galaxy, without the assumption that the centrifugal force is balanced by the gravitational force. It has been shown that such a system (1) can be gravitationally unstable under appropriate conditions, and (2) that there is no resonance at ω=2Ω (Ω=angular velocity of the Galaxy). (Auth.)

  18. Computer optimization of retarding lens systems for ESCA spectrometers

    International Nuclear Information System (INIS)

    Wannberg, B.; Skoellermo, A.

    1977-01-01

    The performance of four-element electrostatic lenses as retarding systems between source and analyzer in ESCA spectrometers is calculated. The potential distribution in the lens is defined by an axial potential of the type phi(z)=V 0 +Σ(Vsub(i)-Vsub(i-1))/2 - tanh (ω/asub(i)(z-zsub(i))). For a given general shape of the lens and a given retardation ratio, the potentials of the two middle electrodes are fitted to give a paraxial image with a prescribed magnification at the exit slit of the lens system. The equipotential surfaces forming the electrodes are found by calculating the potential in an off-axis point, using the series expansion. All third-order geometrical and first-order chromatic aberrations of the lenses are calculated and used together with the second-order aberrations of the analyzer to calculate optimum dimensions of the lens elements and of the emittance-defining slits. A computer program, of which one part calculates the lens properties and one the properties of the entire system lens-analyzer, is described. Two lens systems are presented in some detail. The first one is intended for use with a hemispherical electrostatic analyzer. The angular acceptance is here defined by an aperture stop inside the lens. In this system, the image position and magnification can be kept constant for retardation ratios at least between 1:2 and 60:1, with moderate potentials on the middle electrodes. The second lens system is designed for a magnetic spectrometer of the π√2-type. Here, the central trajectory in the lens is slightly curved by the magnetic field, and the angular acceptance is defined by a baffle after the lens. This system is optimized for a constant retardation ratio of 5:1. (Auth.)

  19. Gravitational radiation from nearly Newtonian systems

    International Nuclear Information System (INIS)

    Kirk, E.M.

    1989-09-01

    A method of examining gravitational radiation from nearly Newtonian systems is presented. Using the Cartan formulation of Newtonian gravity, a one parameter family of space-times which have a strict Newtonian limit is constructed. An expression for the initial null data in terms of the Newtonian potential is obtained in the Newtonian limit. Using this, the problem is formulated as a series in the Newtonian parameter. The series expansions for the sources of the Bianchi identities are obtained to third order in both the vacuum and non-vacuum cases. A simple technique is presented for determining whether a particular source term gives rise to asymptotically flat null data. The far field quadrupole formula is derived in a leading approximation and a method for obtaining error bounds is discussed. Additionally, a method for solving Einstein's equations is shown. This involves expressing the Ricci identities as a matrix, Riccati equation and a system of linear matrix equations. A comparison of the formalisms of Bondi and Newman Penrose is presented and explicit correspondences between the supersurface constrain equations and the Ricci identities are shown. (author)

  20. Gravitational lens optical scalars in terms of energy-momentum distributions in the cosmological framework

    Science.gov (United States)

    Boero, Ezequiel F.; Moreschi, Osvaldo M.

    2018-04-01

    We present new results on gravitational lensing over cosmological Robertson-Walker backgrounds which extend and generalize previous works. Our expressions show the presence of new terms and factors which have been neglected in the literature on the subject. The new equations derived here for the optical scalars allow to deal with more general matter content including sources with non-Newtonian components of the energy-momentum tensor and arbitrary motion. Our treatment is within the framework of weak gravitational lenses in which first-order effects of the curvature are considered. We have been able to make all calculations without referring to the concept of deviation angle. This in turn, makes the presentation shorter but also allows for the consideration of global effects on the Robertson-Walker background that have been neglected in the literature. We also discuss two intensity magnifications that we define in this article; one coming from a natural geometrical construction in terms of the affine distance, that we here call \\tilde{μ }, and the other adapted to cosmological discussions in terms of the redshift, that we call μ΄. We show that the natural intensity magnification \\tilde{μ } coincides with the standard angular magnification (μ).

  1. Orbiting objective lens telescope system and method

    International Nuclear Information System (INIS)

    Crooks, J.W. Jr.

    1984-01-01

    A large objective lens is placed in a highly eccentric orbit about the earth. The orbit and orientation of the lens are carefully chosen so that it focuses light or other radiation from a preselected astronomical object into an image which slowly moves across the surface of the earth. A row of optical sensing units is located on the surface of the earth so that the image focused by the orbiting objective lens will travel substantially perpendicularly across the row during an observation. Output data generated from the sensing units may be multiplexed and fed to a real time processor which produces display signals. Each of the sensing units provides one scan line of the image being observed. The display signals are fed to a suitable display device which produces a picture of the preselected astronomical object. The objective lens may comprise a large flexible Fresnel zone plate or a flexible convex lens carried by a bicycle wheel-type supporting structure. The lens and supporting structure may be unfolded from compact cargo configurations and rotated after being placed into orbit

  2. Response of a Doppler canceling system to plane gravitational waves

    International Nuclear Information System (INIS)

    Caporali, A.

    1982-01-01

    This paper discusses the interaction of long periodic gravitational waves with a three-link microwave system known as the Doppler canceling system. This system, which was developed for gravitational red-shift experiment, uses one-way and two-way Doppler information to construct the beat signal of two reference oscillators moving with respect to each other. The geometric-optics approximation is used to derive the frequency shift produced on a light signal propagating in a gravitational-wave space-time. The signature left on the Doppler-canceled beat by bursts and continuous gravitational waves is analyzed. A comparison is made between the response to gravitational waves of the Doppler canceling system and that of a (NASA) Doppler tracking system which employs two-way, round-trip radio waves. A threefold repetition of the gravitational wave form is found to be a common feature of the response functions of both systems. These two functions otherwise exhibit interesting differences

  3. High Dk piggyback contact lens system for contact lens-intolerant keratoconus patients.

    Science.gov (United States)

    Sengor, Tomris; Kurna, Sevda Aydin; Aki, Suat; Ozkurt, Yelda

    2011-01-01

    The aim of the study was to examine the clinical success of high Dk (oxygen permeability) piggyback contact lens (PBCL) systems for the correction of contact lens intolerant keratoconus patients. Sixteen patients (29 eyes) who were not able to wear gas-permeable rigid lenses were included in this study. Hyper Dk silicone hydrogel (oxygen transmissibility or Dk/t = 150 units) and fluorosilicone methacrylate copolymer (Dk/t = 100 units) lenses were chosen as the PBCL systems. The clinical examinations included visual acuity and corneal observation by biomicroscopy, keratometer reading, and fluorescein staining before and after fitting the PBCL system. INDICATIONS FOR USING PBCL SYSTEM WERE: lens stabilization and comfort, improving comfort, and adding protection to the cone. Visual acuities increased significantly in all of the patients compared with spectacles (P = 0). Improvement in visual acuity compared with rigid lenses alone was recorded in 89.7% of eyes and no alteration of the visual acuity was observed in 10.3% of the eyes. Wearing time of PBCL systems for most of the patients was limited time (mean 6 months, range 3-12 months); thereafter they tolerated rigid lenses alone except for 2 patients. The PBCL system is a safe and effective method to provide centering and corneal protection against mechanical trauma by the rigid lenses for keratoconus patients and may increase contact lens tolerance.

  4. Effects of x-irradiation on lens reducing systems

    International Nuclear Information System (INIS)

    Giblin, F.J.; Chakrapani, B.; Reddy, V.N.

    1978-01-01

    Studies have been made of the effects of x ray on various lens reducing systems including the levels of NADPH and glutathione (GSH), the activity of the hexose monophosphate shunt (HMS), and the activities of certain enzymes including glutathion reductase, glutathione peroxidase, and glucose-6-phosphate dehydrogenase (G-6-PD). It was found that during several weeks following x irradiation but prior to cataract formation there was very little change in the number of reduced -SH groups per unit weight of lens protein but that, with the appearance of cataract, there was a sudden loss of protein -SH groups. In contrast, the concentration of GSH in the x-rayed lens decreased throughout the experimental period. Similarly, the concentration of NADPH in the x-rayed lens was found to decrease significantly relative to controls one week prior to cataract formation and the ratio of NADPH to NADP + in the lens shifted at this time period from a value greater than 1.0 in the control lens to less than 1.0 in the x-rayed lens. A corresponding decrease occurred in the activity of the HMS in x-rayed lenses as measured by culture in the presence of 1- 14 C-labelled glucose. G-6-PD was partially inactivated in the x-rayed lens. Of the eight enzymes studied, G-6-PD appeared to be the most sensitive to x-irradiation. The data indicate that x-irradiation results in a steady decrease in the effectiveness of lens reducing systems and that, when these systems reach a critically low point, sudden oxidation of protein -SH groups and formation of high molecular weight protein aggregates may be initiated

  5. Effects of x-irradiation on lens reducing systems. [Rabbits

    Energy Technology Data Exchange (ETDEWEB)

    Giblin, F.J.; Chakrapani, B.; Reddy, V.N.

    1978-01-01

    Studies have been made of the effects of x ray on various lens reducing systems including the levels of NADPH and glutathione (GSH), the activity of the hexose monophosphate shunt (HMS), and the activities of certain enzymes including glutathion reductase, glutathione peroxidase, and glucose-6-phosphate dehydrogenase (G-6-PD). It was found that during several weeks following x irradiation but prior to cataract formation there was very little change in the number of reduced -SH groups per unit weight of lens protein but that, with the appearance of cataract, there was a sudden loss of protein -SH groups. In contrast, the concentration of GSH in the x-rayed lens decreased throughout the experimental period. Similarly, the concentration of NADPH in the x-rayed lens was found to decrease significantly relative to controls one week prior to cataract formation and the ratio of NADPH to NADP/sup +/ in the lens shifted at this time period from a value greater than 1.0 in the control lens to less than 1.0 in the x-rayed lens. A corresponding decrease occurred in the activity of the HMS in x-rayed lenses as measured by culture in the presence of 1-/sup 14/C-labelled glucose. G-6-PD was partially inactivated in the x-rayed lens. Of the eight enzymes studied, G-6-PD appeared to be the most sensitive to x-irradiation. The data indicate that x-irradiation results in a steady decrease in the effectiveness of lens reducing systems and that, when these systems reach a critically low point, sudden oxidation of protein -SH groups and formation of high molecular weight protein aggregates may be initiated.

  6. A high excitation magnetic quadrupole lens quadruplet incorporating a single octupole lens for a low spherical aberration probe forming lens system

    Science.gov (United States)

    Dou, Yanxin; Jamieson, David N.; Liu, Jianli; Li, Liyi

    2018-03-01

    This paper describes the design of a new probe forming lens system consisting of a high excitation magnetic quadrupole lens quadruplet that incorporates a single magnetic octupole lens. This system achieves both a high demagnification and a low spherical aberration compared to conventional high excitation systems and is intended for deployment for the Harbin 300 MeV proton microprobe for applications in space science and ion beam therapy. This relative simplicity of the ion optical design to include a single octupole lens minimizes the risks associated with the constructional and operational precision usually needed for the probe forming lens system and this system could also be deployed in microprobe systems that operate with less magnetically rigid ions. The design of the new system is validated with reference to two independent ion optical computer codes.

  7. Daylighting System Based on Novel Design of Linear Fresnel lens

    Directory of Open Access Journals (Sweden)

    Thanh Tuan Pham

    2017-10-01

    Full Text Available In this paper, we present a design and optical simulation of a daylighting system using a novel design of linear Fresnel lens, which is constructed based on the conservation of optical path length and edge ray theorem. The linear Fresnel lens can achieve a high uniformity by using a new idea of design in which each groove of the lens distributes sunlight uniformly over the receiver so that the whole lens also uniformly distributes sunlight over the receiver. In this daylighting system, the novel design of linear Fresnel lens significantly improves the uniformity of collector and distributor. Therefore, it can help to improve the performance of the daylighting system. The structure of the linear Fresnel lenses is designed by using Matlab. Then, the structure of lenses is appreciated by ray tracing in LightToolsTM to find out the optimum lens shape. In addition, the simulation is performed by using LightToolsTM to estimate the efficiency of the daylighting system. The results show that the designed collector can achieve the efficiency of ~80% with the tolerance of ~0.60 and the concentration ratio of 340 times, while the designed distributor can reach a high uniformity of >90%.

  8. CHARACTERIZING LENSES AND LENSED STARS OF HIGH-MAGNIFICATION SINGLE-LENS GRAVITATIONAL MICROLENSING EVENTS WITH LENSES PASSING OVER SOURCE STARS

    International Nuclear Information System (INIS)

    Choi, J.-Y.; Shin, I.-G.; Park, S.-Y.; Han, C.; Gould, A.; Gaudi, B. S.; Henderson, C. B.; Sumi, T.; Udalski, A.; Beaulieu, J.-P.; Street, R.; Dominik, M.; Allen, W.; Almeida, L. A.; Bos, M.; Christie, G. W.; Depoy, D. L.; Dong, S.; Drummond, J.; Gal-Yam, A.

    2012-01-01

    We present the analysis of the light curves of nine high-magnification single-lens gravitational microlensing events with lenses passing over source stars, including OGLE-2004-BLG-254, MOA-2007-BLG-176, MOA-2007-BLG-233/OGLE-2007-BLG-302, MOA-2009-BLG-174, MOA-2010-BLG-436, MOA-2011-BLG-093, MOA-2011-BLG-274, OGLE-2011-BLG-0990/MOA-2011-BLG-300, and OGLE-2011-BLG-1101/MOA-2011-BLG-325. For all of the events, we measure the linear limb-darkening coefficients of the surface brightness profile of source stars by measuring the deviation of the light curves near the peak affected by the finite-source effect. For seven events, we measure the Einstein radii and the lens-source relative proper motions. Among them, five events are found to have Einstein radii of less than 0.2 mas, making the lenses very low mass star or brown dwarf candidates. For MOA-2011-BLG-274, especially, the small Einstein radius of θ E ∼ 0.08 mas combined with the short timescale of t E ∼ 2.7 days suggests the possibility that the lens is a free-floating planet. For MOA-2009-BLG-174, we measure the lens parallax and thus uniquely determine the physical parameters of the lens. We also find that the measured lens mass of ∼0.84 M ☉ is consistent with that of a star blended with the source, suggesting that the blend is likely to be the lens. Although we did not find planetary signals for any of the events, we provide exclusion diagrams showing the confidence levels excluding the existence of a planet as a function of the separation and mass ratio.

  9. CHARACTERIZING LENSES AND LENSED STARS OF HIGH-MAGNIFICATION SINGLE-LENS GRAVITATIONAL MICROLENSING EVENTS WITH LENSES PASSING OVER SOURCE STARS

    Energy Technology Data Exchange (ETDEWEB)

    Choi, J.-Y.; Shin, I.-G.; Park, S.-Y.; Han, C. [Department of Physics, Institute for Astrophysics, Chungbuk National University, Cheongju 371-763 (Korea, Republic of); Gould, A.; Gaudi, B. S.; Henderson, C. B. [Department of Astronomy, Ohio State University, 140 W. 18th Ave., Columbus, OH 43210 (United States); Sumi, T. [Department of Earth and Space Science, Osaka University, Osaka 560-0043 (Japan); Udalski, A. [Warsaw University Observatory, Al. Ujazdowskie 4, 00-478 Warszawa (Poland); Beaulieu, J.-P. [Institut d' Astrophysique de Paris, UMR7095 CNRS-Universite Pierre and Marie Curie, 98 bis boulevard Arago, 75014 Paris (France); Street, R. [Las Cumbres Observatory Global Telescope Network, 6740B Cortona Dr, Suite 102, Goleta, CA 93117 (United States); Dominik, M. [School of Physics and Astronomy, SUPA, University of St. Andrews, North Haugh, St. Andrews, KY16 9SS (United Kingdom); Allen, W. [Vintage Lane Observatory, Blenheim (New Zealand); Almeida, L. A. [Instituto Nacional de Pesquisas Espaciais/MCTI, Sao Jose dos Campos, Sao Paulo (Brazil); Bos, M. [Molehill Astronomical Observatory, North Shore (New Zealand); Christie, G. W. [Auckland Observatory, P.O. Box 24-180, Auckland (New Zealand); Depoy, D. L. [Department of Physics, Texas A and M University, College Station, TX (United States); Dong, S. [Institute for Advanced Study, Einstein Drive, Princeton, NJ 08540 (United States); Drummond, J. [Possum Observatory, Patutahi (New Zealand); Gal-Yam, A. [Benoziyo Center for Astrophysics, Weizmann Institute (Israel); Collaboration: muFUN Collaboration; MOA Collaboration; OGLE Collaboration; PLANET Collaboration; RoboNet Collaboration; MiNDSTEp Consortium; and others

    2012-05-20

    We present the analysis of the light curves of nine high-magnification single-lens gravitational microlensing events with lenses passing over source stars, including OGLE-2004-BLG-254, MOA-2007-BLG-176, MOA-2007-BLG-233/OGLE-2007-BLG-302, MOA-2009-BLG-174, MOA-2010-BLG-436, MOA-2011-BLG-093, MOA-2011-BLG-274, OGLE-2011-BLG-0990/MOA-2011-BLG-300, and OGLE-2011-BLG-1101/MOA-2011-BLG-325. For all of the events, we measure the linear limb-darkening coefficients of the surface brightness profile of source stars by measuring the deviation of the light curves near the peak affected by the finite-source effect. For seven events, we measure the Einstein radii and the lens-source relative proper motions. Among them, five events are found to have Einstein radii of less than 0.2 mas, making the lenses very low mass star or brown dwarf candidates. For MOA-2011-BLG-274, especially, the small Einstein radius of {theta}{sub E} {approx} 0.08 mas combined with the short timescale of t{sub E} {approx} 2.7 days suggests the possibility that the lens is a free-floating planet. For MOA-2009-BLG-174, we measure the lens parallax and thus uniquely determine the physical parameters of the lens. We also find that the measured lens mass of {approx}0.84 M{sub Sun} is consistent with that of a star blended with the source, suggesting that the blend is likely to be the lens. Although we did not find planetary signals for any of the events, we provide exclusion diagrams showing the confidence levels excluding the existence of a planet as a function of the separation and mass ratio.

  10. Gravitational lenses

    International Nuclear Information System (INIS)

    Turner, E.L.

    1989-01-01

    The author discusses how gravitational lens studies is becoming a major focus of extragalactic astronomy and cosmology. This review is organized into five parts: an overview of the observational situation, a look at the state of theoretical work on lenses, a detailed look at three recently discovered types of lensing phenomena (luminous arcs, radio rings, quasar-galaxy associations), a review of progress on two old problems in lens studies (deriving unique lens mass distribution models, measurements of differential time delays), and an attempt to look into the future of lens studies

  11. Relativistic gravitation from massless systems of scalar and vector fields

    International Nuclear Information System (INIS)

    Fonseca Teixeira, A.F. da.

    1979-01-01

    Under the laws of Einstein's gravitational theory, a massless system consisting of the diffuse sources of two fields is discussed. One fields is scalar, of long range, the other is a vector field of short range. A proportionality between the sources is assumed. Both fields are minimally coupled to gravitation, and contribute positive definitely to the time component of the energy momentum tensor. A class of static, spherically symmetric solutions of the equations is obtained, in the weak field limit. The solutions are regular everywhere, stable, and can represent large or small physical systems. The gravitational field presents a Schwarzschild-type asymptotic behavior. The dependence of the energy on the various parameters characterizing the system is discussed in some detail. (Author) [pt

  12. Improved illumination system of laparoscopes using an aspherical lens array.

    Science.gov (United States)

    Wu, Rengmao; Qin, Yi; Hua, Hong

    2016-06-01

    The current fiber-based illumination systems of laparoscopes are unable to uniformly illuminate a large enough area in abdomen due to the limited numerical aperture (NA) of the fiber bundle. Most energy is concentrated in a small region at the center of the illumination area. This limitation becomes problematic in laparoscopes which require capturing a wide field of view. In this paper, we propose an aspherical lens array which is used to direct the outgoing rays from the fiber bundle of laparoscope to produce a more uniformly illuminated, substantially larger field coverage than standalone fiber source. An intensity feedback method is developed to design the aspherical lens unit for extended non-Lambertian sources, which is the key to the design of this lens array. By this method, the lens unit is obtained after only one iteration, and the lens array is constructed by Boolean operation. Then, the ray-tracing technique is used to verify the design. Further, the lens array is fabricated and experimental tests are performed. The results clearly show that the well-illuminated area is increased to about 0.107m(2) from 0.02m(2) (about 5x larger than a standard fiber illumination source). More details of the internal organs can be clearly observed under this improved illumination condition, which also reflects the significant improvement in the optical performance of the laparoscope.

  13. The development of alignment turning system for precision len cells

    Science.gov (United States)

    Huang, Chien-Yao; Ho, Cheng-Fang; Wang, Jung-Hsing; Chung, Chien-Kai; Chen, Jun-Cheng; Chang, Keng-Shou; Kuo, Ching-Hsiang; Hsu, Wei-Yao; Chen, Fong-Zhi

    2017-08-01

    In general, the drop-in and cell-mounted assembly are used for standard and high performance optical system respectively. The optical performance is limited by the residual centration error and position accuracy of the conventional assembly. Recently, the poker chip assembly with high precision lens barrels that can overcome the limitation of conventional assembly is widely applied to ultra-high performance optical system. ITRC also develops the poker chip assembly solution for high numerical aperture objective lenses and lithography projection lenses. In order to achieve high precision lens cell for poker chip assembly, an alignment turning system (ATS) is developed. The ATS includes measurement, alignment and turning modules. The measurement module including a non-contact displacement sensor and an autocollimator can measure centration errors of the top and the bottom surface of a lens respectively. The alignment module comprising tilt and translation stages can align the optical axis of the lens to the rotating axis of the vertical lathe. The key specifications of the ATS are maximum lens diameter, 400mm, and radial and axial runout of the rotary table < 2 μm. The cutting performances of the ATS are surface roughness Ra < 1 μm, flatness < 2 μm, and parallelism < 5 μm. After measurement, alignment and turning processes on our ATS, the centration error of a lens cell with 200mm in diameter can be controlled in 10 arcsec. This paper also presents the thermal expansion of the hydrostatic rotating table. A poker chip assembly lens cell with three sub-cells is accomplished with average transmission centration error in 12.45 arcsec by fresh technicians. The results show that ATS can achieve high assembly efficiency for precision optical systems.

  14. The Hubble constant estimation using 18 gravitational lensing time delays

    Science.gov (United States)

    Jaelani, Anton T.; Premadi, Premana W.

    2014-03-01

    Gravitational lens time delay method has been used to estimate the rate of cosmological expansion, called the Hubble constant, H0, independently of the standard candle method. This gravitational lensing method requires a good knowledge of the lens mass distribution, reconstructed using the lens image properties. The observed positions of the images, and the redshifts of the lens and the images serve as strong constraints to the lens equations, which are then solved as a set of simultaneous linear equations. Here we made use of a non-parametric technique to reconstruct the lens mass distribution, which is manifested in a linear equations solver named PixeLens. Input for the calculation is chosen based on prior known parameters obtained from analyzed result of the lens case observations, including time-delay, position angles of the images and the lens, and their redshifts. In this project, 18 fairly well studied lens cases are further grouped according to a number of common properties to examine how each property affects the character of the data, and therefore affects the calculation of H0. The considered lens case properties are lens morphology, number of image, completeness of time delays, and symmetry of lens mass distribution. Analysis of simulation shows that paucity of constraints on mass distribution of a lens yields wide range value of H0, which reflects the uniqueness of each lens system. Nonetheless, gravitational lens method still yields H0 within an acceptable range of value when compared to those determined by many other methods. Grouping the cases in the above manner allowed us to assess the robustness of PixeLens and thereby use it selectively. In addition, we use glafic, a parametric mass reconstruction solver, to refine the mass distribution of one lens case, as a comparison.

  15. Ray tracing package through a lens system and a spectrometer

    International Nuclear Information System (INIS)

    Zurro, B.; King, P.W.; Lazarus, E.A.

    1980-03-01

    To study the light collection optics of the ISX-B two-dimensional (2-D) Thomson scattering system, we have implemented in the Oak Ridge National Laboratory (ORNL) Fusion Energy Division (FED) PDP-10 two computer programs, LENS and SPECT, that trace rays through a lens system and a spectrometer, respectively. The lens package follows the path of any kind of ray (meridional or skew) through a centered optical system formed by an arbitrary number of spherical surfaces. The spectrometer package performs geometrical ray tracing through a Czerney-Turner spectrometer and can be easily modified for studying any other configuration. Contained herein is a description of the procedures followed and a listing of the computer programs

  16. A topological lens for a measure-preserving system

    OpenAIRE

    Glasner, Eli; Lemanczyk, Mariusz; Weiss, Benjamin

    2009-01-01

    We introduce a functor which associates to every measure preserving system (X,B,\\mu,T) a topological system (C_2(\\mu),\\tilde{T}) defined on the space of 2-fold couplings of \\mu, called the topological lens of T. We show that often the topological lens "magnifies" the basic measure dynamical properties of T in terms of the corresponding topological properties of \\tilde{T}. Some of our main results are as follows: (i) T is weakly mixing iff \\tilde{T} is topologically transitive (iff it is topol...

  17. Intraocular camera for retinal prostheses: Refractive and diffractive lens systems

    Science.gov (United States)

    Hauer, Michelle Christine

    The focus of this thesis is on the design and analysis of refractive, diffractive, and hybrid refractive/diffractive lens systems for a miniaturized camera that can be surgically implanted in the crystalline lens sac and is designed to work in conjunction with current and future generation retinal prostheses. The development of such an intraocular camera (IOC) would eliminate the need for an external head-mounted or eyeglass-mounted camera. Placing the camera inside the eye would allow subjects to use their natural eye movements for foveation (attention) instead of more cumbersome head tracking, would notably aid in personal navigation and mobility, and would also be significantly more psychologically appealing from the standpoint of personal appearances. The capability for accommodation with no moving parts or feedback control is incorporated by employing camera designs that exhibit nearly infinite depth of field. Such an ultracompact optical imaging system requires a unique combination of refractive and diffractive optical elements and relaxed system constraints derived from human psychophysics. This configuration necessitates an extremely compact, short focal-length lens system with an f-number close to unity. Initially, these constraints appear highly aggressive from an optical design perspective. However, after careful analysis of the unique imaging requirements of a camera intended to work in conjunction with the relatively low pixellation levels of a retinal microstimulator array, it becomes clear that such a design is not only feasible, but could possibly be implemented with a single lens system.

  18. Mechanically assisted liquid lens zoom system for mobile phone cameras

    Science.gov (United States)

    Wippermann, F. C.; Schreiber, P.; Bräuer, A.; Berge, B.

    2006-08-01

    Camera systems with small form factor are an integral part of today's mobile phones which recently feature auto focus functionality. Ready to market solutions without moving parts have been developed by using the electrowetting technology. Besides virtually no deterioration, easy control electronics and simple and therefore cost-effective fabrication, this type of liquid lenses enables extremely fast settling times compared to mechanical approaches. As a next evolutionary step mobile phone cameras will be equipped with zoom functionality. We present first order considerations for the optical design of a miniaturized zoom system based on liquid-lenses and compare it to its mechanical counterpart. We propose a design of a zoom lens with a zoom factor of 2.5 considering state-of-the-art commercially available liquid lens products. The lens possesses auto focus capability and is based on liquid lenses and one additional mechanical actuator. The combination of liquid lenses and a single mechanical actuator enables extremely short settling times of about 20ms for the auto focus and a simplified mechanical system design leading to lower production cost and longer life time. The camera system has a mechanical outline of 24mm in length and 8mm in diameter. The lens with f/# 3.5 provides market relevant optical performance and is designed for an image circle of 6.25mm (1/2.8" format sensor).

  19. A modified Friedmann equation for a system with varying gravitational mass

    Science.gov (United States)

    Gorkavyi, Nick; Vasilkov, Alexander

    2018-05-01

    The Laser Interferometer Gravitational-Wave Observatory (LIGO) detection of gravitational waves that take away 5 per cent of the total mass of two merging black holes points out on the importance of considering varying gravitational mass of a system. Using an assumption that the energy-momentum pseudo-tensor of gravitational waves is not considered as a source of gravitational field, we analyse a perturbation of the Friedmann-Robertson-Walker metric caused by the varying gravitational mass of a system. This perturbation leads to a modified Friedmann equation that contains a term similar to the `cosmological constant'. Theoretical estimates of the effective cosmological constant quantitatively corresponds to observed cosmological acceleration.

  20. Nonequilibrum behaviour of finite gravitating systems

    International Nuclear Information System (INIS)

    Heggie, Douglas C

    2006-01-01

    The behaviour of N equal point masses with an inverse square law of attraction is one of the fundamental problems of statistical physics, because of its numerous applications in astrophysics, and its simplicity. But the simplicity is deceptive. From a theoretical point of view this problem is one of the hardest because it is scale-free, the interaction is long-range, and the interaction exhibits a short-range divergence. Therefore theoretical information is best developed for systems with artificial cutoffs at large and small distances. From the point of view of simulations, the problem is hard because the computational effort grows roughly as N 3 , and because of fundamental problems in simulating a chaotic system. This talk reviews the relationship between these two approaches, with particular emphasis on simulations of isolated systems (i.e. with no boundary). We emphasise the range of time scales on which different non-equilibrium phenomena operate, and focus on those which are driven by relaxation. We discuss the characteristics of core collapse and gravothermal oscillations, where both basic results of statistical mechanics and phenomenological toy models are particularly instructive. We also review the long-term fate of finite isolated systems

  1. Ultrathin Alvarez lens system actuated by artificial muscles.

    Science.gov (United States)

    Petsch, S; Grewe, A; Köbele, L; Sinzinger, S; Zappe, H

    2016-04-01

    A key feature of Alvarez lenses is that they may be tuned in focal length using lateral rather than axial translation, thus reducing the overall length of a focus-tunable optical system. Nevertheless the bulk of classical microsystems actuators limits further miniaturization. We present here a new, ultrathin focus-tunable Alvarez lens fabricated using molding techniques and actuated using liquid crystal elastomer (LCE) artificial muscle actuators. The large deformation generated by the LCE actuators permits the integration of the actuators in-plane with the mechanical and optical system and thus reduces the device thickness to only 1.6 mm. Movement of the Alvarez lens pair of 178 μm results in a focal length change of 3.3 mm, based on an initial focal length of 28.4 mm. This design is of considerable interest for realization of ultraflat focus-tunable and zoom systems.

  2. Lens subluxation grading system: predictive value for ectopia lentis surgical outcomes

    OpenAIRE

    Mauro Waiswol; Niro Kasahara

    2009-01-01

    Objective: To present a classification system to grade ectopia lentis and to assess its usefulness as a predictor for surgical outcomes. Methods: Fifty-one eyes of 28 patients with either simple (19 patients) or Marfan syndrome-associated ectopia lentis (nine patients) with variable degrees of subluxation were operated on. Lens subluxation intensity was graded according to the lens subluxation grading system (LSGS) from grade 1 (lens on the whole pupillary area) up to grade 4 (lens absent fro...

  3. Entropy of gravitating systems: scaling laws versus radial profiles

    International Nuclear Information System (INIS)

    Pesci, Alessandro

    2007-01-01

    Through the consideration of spherically symmetric gravitating systems consisting of perfect fluids with linear equation of state constrained to be in a finite volume, an account is given of the properties of entropy at conditions in which it is no longer an extensive quantity (it does not scale with the system's size). To accomplish this, the methods introduced by Oppenheim (2003 Phys. Rev.E 68 016108) to characterize non-extensivity are used, suitably generalized to the case of gravitating systems subject to an external pressure. In particular when, far from the system's Schwarzschild limit, both area scaling for conventional entropy and inverse radius law for the temperature set in (i.e. the same properties of the corresponding black hole thermodynamical quantities), the entropy profile is found to behave like 1/r, with r the area radius inside the system. In such circumstances entropy heavily resides in internal layers, in opposition to what happens when area scaling is gained while approaching the Schwarzschild mass, in which case conventional entropy lies at the surface of the system. The information content of these systems, even if it globally scales like the area, is then stored in the whole volume, instead of packed on the boundary

  4. Exactly integrable analogue of a one-dimensional gravitating system

    International Nuclear Information System (INIS)

    Miller, Bruce N.; Yawn, Kenneth R.; Maier, Bill

    2005-01-01

    Exchange symmetry in acceleration partitions the configuration space of an N particle one-dimensional gravitational system (OGS) into N! equivalent cells. We take advantage of the resulting small angular separation between the forces in neighboring cells to construct a related integrable version of the system that takes the form of a central force problem in N-1 dimensions. The properties of the latter, including the construction of trajectories and possible continuum limits, are developed. Dynamical simulation is employed to compare the two models. For some initial conditions, excellent agreement is observed

  5. Gravitational instantons as models for charged particle systems

    Science.gov (United States)

    Franchetti, Guido; Manton, Nicholas S.

    2013-03-01

    In this paper we propose ALF gravitational instantons of types A k and D k as models for charged particle systems. We calculate the charges of the two families. These are -( k + 1) for A k , which is proposed as a model for k + 1 electrons, and 2 - k for D k , which is proposed as a model for either a particle of charge +2 and k electrons or a proton and k - 1 electrons. Making use of preferred topological and metrical structures of the manifolds, namely metrically preferred representatives of middle dimension homology classes, we construct two different energy functionals which reproduce the Coulomb interaction energy for a system of charged particles.

  6. Creative optomechanical tolerancing in lens systems

    Science.gov (United States)

    Lee, Kim H.; Yoon, Youngshik; Maxwell, Jonathan

    1998-09-01

    The interface between optical design and fine-mechanical design is a creatively fertile stage in the design of an optical system. The optical designer learns `What the system is all about' and the fine-mechanical engineer is liberated creatively by finding out what the priorities are. On the other hand, optical tolerancing as a discipline, which is an attractive mix of optical physics at one end and hard-nosed mechanical pragmatism at the other, has a relatively fragmented literature. It is the purpose of this paper to (1) Point out some cultural contrasts between optical engineers, mechanical engineers and physicists in this context, (2) To present a new method of displaying the optical surface sensitivities so that one may identify datum surfaces in an intuitive way and (3) To summarize some useful formulae which provide a key to the mounting of optical components. Together these three aspects illustrate the scenery of this fertile terrain.

  7. Optimization of electrostatic lens systems for low-energy scanning microcolumn applications

    International Nuclear Information System (INIS)

    Oh, Tae-Sik; Kim, Dae-Wook; Ahn, Seungjoon; Kim, Young Chul; Kim, Ho-Seob; Ahn, Seong Joon

    2008-01-01

    The optimization of a low-energy scanning microcolumn is proposed by adopting a modified Einzel lens sandwiched between an aligner and a deflector. The modified Einzel lens is composed of four electrodes, and the two center electrodes are specially designed quadrupole lenses having keyhole type rather than circular apertures. The outer electrodes of the Einzel lens having circular apertures are grounded, and the quadrupole lens is operated by applying the quadrupole voltages. The effects of the separated deflector system and the static quadrupole lens were investigated by analyzing the scanning electron beam spot at the target, and the results show that the proposed system can improve the performance of the scanning microcolumn

  8. GRG computer algebra system in gravitation and general relativity theory

    International Nuclear Information System (INIS)

    Zhitnikov, V.V.; Obukhova, I.G.

    1985-01-01

    The main concepts and capabilities of the GRG specialized computer agebra system intended for performing calculations in the gravitation theory are described. The GRG system is written in the STANDARD LISP language. The program consists of two parts: the first one - for setting initial data, the second one - for specifying a consequence of calculations. The system can function in three formalisms: a coordinate, a tetradic with the Lorentz basis and a spinor ones. The major capabilities of the GRG system are the following: calculation of connectivity and curvature according to the specified metrics, tetrad and torsion; metric type determination according to Petrov; calculation of the Bianchi indentities; operation with an electromagnetic field; tetradic rotations; coordinate conversions

  9. Asymptotic matching of the solar-system gravitational yields

    International Nuclear Information System (INIS)

    Kopejkin, S.M.

    1989-01-01

    In the framework of the general relativity, the structure of the Solar-system gravitational fields is investigated and the relativistic formulae of transformation between nonrotating in the dynamical sense harmonic reference systems - barycentric, planetocentric and topocentric (satelite) ones - are derived by the method of the asymptotic mathing of components of the metric tensor. The derived formulae generalize the linear Poincare transformation in the case of curved space-time. With the help of the asymptotic matching formulae, the relationships between relativistic time scales inside the Solar system have been established, the equations of relativistic precession of the space axis of one reference system with respect to another one have been derived, the equations of translational motion of the center-of-mass of planets (the Sun) and their satellites have been obtained

  10. Gravitational collapse and topology change in spherically symmetric dynamical systems

    Energy Technology Data Exchange (ETDEWEB)

    Csizmadia, Peter; Racz, Istvan, E-mail: cspeter@rmki.kfki.h, E-mail: iracz@rmki.kfki.h [RMKI H-1121 Budapest, Konkoly Thege Miklos ut 29-33 (Hungary)

    2010-01-07

    A new numerical framework, based on the use of a simple first-order strongly hyperbolic evolution equations, is introduced and tested in the case of four-dimensional spherically symmetric gravitating systems. The analytic setup is chosen such that our numerical method is capable of following the time evolution even after the appearance of trapped surfaces, more importantly, until the true physical singularities are reached. Using this framework, the gravitational collapse of various gravity-matter systems is investigated, with particular attention to the evolution in trapped regions. It is verified that, in advance of the formation of these curvature singularities, trapped regions develop in all cases, thereby supporting the validity of the weak cosmic censor hypothesis of Penrose. Various upper bounds on the rate of blow-up of the Ricci and Kretschmann scalars and the Misner-Sharp mass are provided. In spite of the unboundedness of the Ricci scalar, the Einstein-Hilbert action was found to remain finite in all the investigated cases. In addition, important conceptual issues related to the phenomenon of topology changes are discussed.

  11. Reentering the Gravitational Fringe Field of the Solar System

    Science.gov (United States)

    Fisher, P. C.

    A 1998 proposal to the National Aeronautics and Space Administration (NASA) described how to update an earlier proposal outline for an experiment involving a manned spacecraft that traveled to just outside the gravitational field of the solar system. The recent proposal briefly describes how to initiate a 25-year program to launch a seven-year mission. Very little thought has been given to astronomical/astrophysical investigations that might be carried out over seven years, but one or more generations of NASA's Terrestrial Planet Finder program might be included. Only a little serious thought has been given to how to reenter the solar system's gravitational fringe field, but access to several procedures and three-fold redundancy seems desirable. Some details of the proposed paper study will be given. Non-responsibility statement, from source document of calendar 1973. This document was prepared while the author was on an unpaid leave of absence from The Lockheed Missiles and Space Company (LMSC) of Palo Alto, California. The comments made herein are partly the results of experiments carried out over a number of years. For a portion of this time, both NASA and LMSC financed the author's space astronomy investigations. It may be that either or both these institutions may possess some proprietary rights to portions of the ideas and information presented. This work was supported by Ruffner Associates, Inc.

  12. Highly sensitive straightness measurement system using a ball-lens

    International Nuclear Information System (INIS)

    Lee, Minho; Yang, Hyun-Ik; Cho, Nahm-Gyoo

    2016-01-01

    In this paper, a new and simple optical technique to accurately measure the straightness errors of a linear stage is proposed. To improve the performance, including the measurement sensitivity and resolution of the measurement system, and to simultaneously measure two-dimensional straightness errors (2D straightness errors), an optical system was designed using a laser, a retro-reflector, a ball-lens, and a two-dimensional position sensitive detector (2D PSD). The characteristics of the measurement system were analytically and experimentally investigated. A prototype measurement system was manufactured based on the investigated results, and the performances of this system have been tested. The measuring performance of the system was easily improved by about 12 times using the proposed technique and it can be further improved. It is shown that the proposed technique can easily and effectively improve the performance of a conventional straightness measurement system based on the geometric optical method using a PSD. (paper)

  13. The Shrinkage Model And Expert System Of Plastic Lens Formation

    Science.gov (United States)

    Chang, Rong-Seng

    1988-06-01

    Shrinkage causes both the appearance & dimension defects of the injected plastic lens. We have built up a model of state equations with the help of finite element analysis program to estimate the volume change (shrinkage and swelling) under the combinations of injection variables such as pressure and temperature etc., then the personal computer expert system has been build up to make that knowledge conveniently available to the user in the model design, process planning, process operation and some other work. The domain knowledge is represented by a R-graph (Relationship-graph) model which states the relationships of variables & equations. This model could be compare with other models in the expert system. If the user has better model to solve the shrinkage problem, the program will evaluate it automatically and a learning file will be trigger by the expert system to teach the user to update their knowledge base and modify the old model by this better model. The Rubin's model and Gilmore's model have been input to the expert system. The conflict has been solved both from the user and the deeper knowledge base. A cube prism and the convex lens examples have been shown in this paper. This program is written by MULISP language in IBM PC-AT. The natural language provides English Explaination of know why and know how and the automatic English translation for the equation rules and the production rules.

  14. Gravitational equilibrium of a multi-body fluid system

    International Nuclear Information System (INIS)

    Eriguchi, Yoshiharu; Hachisu, Izumi.

    1983-01-01

    We have computed gravitational equilibrium sequences for systems consisting of N incompressible fluid bodies (N = 3, 4, 5). The component fluids are assumed congruent. The system seems to become a lobe-like shape for N = 3 case and a ring-like shape for N>=4 cases according as the fluid bodies come nearer to each other. For every sequence there is a critical equilibrium whose dimensionless angular momentum has the minimum value of the sequence. As the final outcome is nearly in equilibrium in the computation of a collapsing gas cloud, we can apply the present results to the interpretation of these dynamical calculations. For instance, the gas cloud can never fissure into any N-body equilibrium when its dimensionless angular momentum is below the critical value of the N-body sequence. (author)

  15. H-function evolution of collisionless self-gravitating systems

    International Nuclear Information System (INIS)

    Soker, N.

    1990-01-01

    An expression is derived for the time derivative of a general H function in which the potential appears explicitly. As is well-known, starting at a specific time with a coarse-grained distribution function that is equal to the fine-grained distribution function, at short times later the H function is a nondecreasing function of time. In general, however, one cannot claim this for arbitrary time. The expression is applied to self-gravitating systems. The condition for having a nondecreasing H function for all coarse-grained distribution functions is that, on the average, the high-density regions contract and the low-density regions expand. An example of using the expression derived to calculate the derivative of the H function with respect to time is discussed. 9 refs

  16. Collective instabilities of self-gravitating systems, 2

    International Nuclear Information System (INIS)

    Nakamura, Takashi; Takahara, Fumio; Ikeuchi, Satoru

    1975-01-01

    The instability modes of rotating self-gravitating systems are investigated on the assumption of infinitely long cylinder. The systems under consideration are a collisionless stellar system with anisotropic velocity dispersion and a gaseous system with anisotropic pressure. In the collisionless stellar system, the Jeans instability mode and the Harris instability mode exist. The dispersion relation is solved numerically and the following results are obtained: the Harris instability occurs even in the region where Wu did not treat, and although its growth rate amounts to the order of angular velocity of the system for sufficient anisotropy, the Harris instability always accompanies the Jeans instability and the latter is always greater than the former in growth rate. In the gaseous system exist the Jeans instability mode and a certain overstable mode, which are different from the Harris instability mode. It is shown that the overstable mode occurs due to coupling of modes. In relation to these results, some problems in galactic structure are discussed. (auth.)

  17. The NSLS-II Multilayer Laue Lens Deposition System

    International Nuclear Information System (INIS)

    Conley, R.; Bouet, N.; Biancarosa, J.; Shen, Q.; Boas, L.; Feraca, J.; Rosenbaum, L.

    2009-01-01

    The NSLS-II(1) program has a requirement for an unprecedented level of x-ray nanofocusing and has selected the wedged multilayer Laue lens(2,3) (MLL) as the optic of choice to meet this goal. In order to fabricate the MLL a deposition system is required that is capable of depositing depth-graded and laterally-graded multilayers with precise thickness control over many thousands of layers, with total film growth in one run up to 100 m thick or greater. This machine design expounds on the positive features of a rotary deposition system(4) constructed previously for MLLs and will contain multiple stationary, horizontally-oriented magnetron sources where a transport will move a substrate back and forth in a linear fashion over shaped apertures at well-defined velocities to affect a multilayer coating.

  18. Fully automated laser ray tracing system to measure changes in the crystalline lens GRIN profile.

    Science.gov (United States)

    Qiu, Chen; Maceo Heilman, Bianca; Kaipio, Jari; Donaldson, Paul; Vaghefi, Ehsan

    2017-11-01

    Measuring the lens gradient refractive index (GRIN) accurately and reliably has proven an extremely challenging technical problem. A fully automated laser ray tracing (LRT) system was built to address this issue. The LRT system captures images of multiple laser projections before and after traversing through an ex vivo lens. These LRT images, combined with accurate measurements of the lens geometry, are used to calculate the lens GRIN profile. Mathematically, this is an ill-conditioned problem; hence, it is essential to apply biologically relevant constraints to produce a feasible solution. The lens GRIN measurements were compared with previously published data. Our GRIN retrieval algorithm produces fast and accurate measurements of the lens GRIN profile. Experiments to study the optics of physiologically perturbed lenses are the future direction of this research.

  19. Manufacturing PDMS micro lens array using spin coating under a multiphase system

    International Nuclear Information System (INIS)

    Sun, Rongrong; Yang, Hanry; Rock, D Mitchell; Danaei, Roozbeh; Panat, Rahul; Kessler, Michael R; Li, Lei

    2017-01-01

    The development of micro lens arrays has garnered much interest due to increased demand of miniaturized systems. Traditional methods for manufacturing micro lens arrays have several shortcomings. For example, they require expensive facilities and long lead time, and traditional lens materials (i.e. glass) are typically heavy, costly and difficult to manufacture. In this paper, we explore a method for manufacturing a polydimethylsiloxane (PDMS) micro lens array using a simple spin coating technique. The micro lens array, formed under an interfacial tension dominated system, and the influence of material properties and process parameters on the fabricated lens shape are examined. The lenses fabricated using this method show comparable optical properties—including surface finish and image quality—with a reduced cost and manufacturing lead time. (paper)

  20. Isotropic–Nematic Phase Transitions in Gravitational Systems

    Energy Technology Data Exchange (ETDEWEB)

    Roupas, Zacharias; Kocsis, Bence [Institute of Physics, Eötvös University, Pázmány P. s. 1/A, Budapest, 1117 (Hungary); Tremaine, Scott [Institute for Advanced Study, Princeton, NJ 08540 (United States)

    2017-06-20

    We examine dense self-gravitating stellar systems dominated by a central potential, such as nuclear star clusters hosting a central supermassive black hole. Different dynamical properties of these systems evolve on vastly different timescales. In particular, the orbital-plane orientations are typically driven into internal thermodynamic equilibrium by vector resonant relaxation before the orbital eccentricities or semimajor axes relax. We show that the statistical mechanics of such systems exhibit a striking resemblance to liquid crystals, with analogous ordered-nematic and disordered-isotropic phases. The ordered phase consists of bodies orbiting in a disk in both directions, with the disk thickness depending on temperature, while the disordered phase corresponds to a nearly isotropic distribution of the orbit normals. We show that below a critical value of the total angular momentum, the system undergoes a first-order phase transition between the ordered and disordered phases. At a critical point, the phase transition becomes second order, while for higher angular momenta there is a smooth crossover. We also find metastable equilibria containing two identical disks with mutual inclinations between 90° and 180°.

  1. Evaluation of Geometrical Modulation Transfer Function in Optical Lens System

    Directory of Open Access Journals (Sweden)

    Cheng-Mu Tsai

    2015-01-01

    Full Text Available This paper presents ray tracing algorithms to evaluate the geometrical modulation transfer function (GMTF of optical lens system. There are two kinds of ray tracings methods that can be applied to help simulate the point spread function (PSF in the image plane, for example, paraxial optics and real ray tracings. The paraxial optics ray tracing is used to calculate the first-order properties such as the effective focal length (EFL and the entrance pupil position through less cost of computation. However, the PSF could have a large tolerance by only using paraxial optics ray tracing for simulation. Some formulas for real ray tracing are applied in the sagittal and tangential line spread function (LSF. The algorithms are developed to demonstrate the simulation of LSF. Finally, the GMTF is evaluated after the fast Fourier transform (FFT of the LSF.

  2. Design of an Acceleration / Deceleration Lens System for Ion Beam Focusing Emerging from Penning Ion Source

    International Nuclear Information System (INIS)

    El-Khabeary, H.

    2007-01-01

    In this study, design of the deceleration lens system has been done by using SIMION 3D version 7.0 computer program. A parallel beam of singly charged argon ions of diameter 2. mm with energy of 5 KeV emerging from Penning ion source was started at a distance of 140 mm before entering the Einzel lens system (three cylinder electrodes ). In order to design this deceleration lens system, two and three cylinder lenses with different parameters are studied. Ion beam emittance as a function of the gap width of the deceleration lens system has been studied for singly charged argon ion trajectories. Influence of the deceleration voltage applied on the deceleration electrode with different voltages of the four electrodes on the ion beam emittance has been investigated with gap widths of 3, 7, 9, 11 and 15 nun. The deceleration lens system was also used as an acceleration lens system by changing and optimising the voltage on each electrode of the deceleration lens system and of the intermediate electrode of the Einzel lens

  3. Adaptive Lens Inspired by Bio-Visual Systems

    National Research Council Canada - National Science Library

    Lo, Yu-Hwa

    2004-01-01

    ...: (a) We have identified and demonstrated the merits of PDMS elastomer for lens membranes. The PDMS-based fluidic lens process has been proven to be simple, controllable, and scalable to form lenses from 10 urn to several centimeters in diameter. (b...

  4. Engineering constraints and computer-aided optimization of electrostatic lens systems

    International Nuclear Information System (INIS)

    Steen, H.W.G. van der; Barth, J.E.; Adriaanse, J.P.

    1990-01-01

    An optimization tool for the design of electrostatic lens systems with axial symmetry is presented. This tool is based on the second-order electrode method combined with a multivariable numerical optimization procedure. The second-order electrode method makes a cubic spline approximation to the axial potential for a given electrode shape. With the help of this approximation, a numerical optimization can be done. To demonstrate this optimization tool, a lens system for Auger analyses is optimized. It is shown that variations in the practical constraints imposed on the design, like maximum electrode potential or maximum lens diameter, have strong effects on the obtainable lens quality. It is concluded that a numerical optimization does not take over the lens designer's job, but allows him to thoroughly examine the optical consequences of engineering choices by finding the optimum design for each set of constraints. (orig.)

  5. Lateral refraction and reflection of light polarized lenses principle. Coplanar lens systems

    International Nuclear Information System (INIS)

    Miranda, L.

    2012-01-01

    Studying the behavior of the linearly polarized light to impact a lens and in the lens itself, resulted in the discovery of a physical principle of optics, not mentioned or used so far. This phenomenon is very useful in practice. Perhaps the manifestation of the phenomenon occurs in the plane perpendicular to the road or optical axis, is due the reason that was not seen before, but it has always been there when polarized light passes through a lens. Known and mastered the principle has been manipulated for better research results, using for the first time a planar lens system, which according to the placement of the lens allows for accurate lags between the light beams ar the exits the system. (Author)

  6. Gravitational waves from periodic three-body systems.

    Science.gov (United States)

    Dmitrašinović, V; Suvakov, Milovan; Hudomal, Ana

    2014-09-05

    Three bodies moving in a periodic orbit under the influence of Newtonian gravity ought to emit gravitational waves. We have calculated the gravitational radiation quadrupolar waveforms and the corresponding luminosities for the 13+11 recently discovered three-body periodic orbits in Newtonian gravity. These waves clearly allow one to distinguish between their sources: all 13+11 orbits have different waveforms and their luminosities (evaluated at the same orbit energy and body mass) vary by up to 13 orders of magnitude in the mean, and up to 20 orders of magnitude for the peak values.

  7. Analysis of the gravitational coupled collisionless Boltzmann-poisson equations and numerical simulations of the formation of self-gravitating systems

    International Nuclear Information System (INIS)

    Roy, Fabrice

    2004-01-01

    We study the formation of self-gravitating systems and their properties by means of N-body simulations of gravitational collapse. First, we summarize the major analytical results concerning the collisionless Boltzmann equation and the Poisson's equation which describe the dynamics of collisionless gravitational systems. We present a study of some analytical solutions of this coupled system of equations. We then present the software used to perform the simulations. Some of this has been parallelized and implemented with the aid of MPI. For this reason we give a brief overview of it. Finally, we present the results of the numerical simulations. Analysis of these results allows us to explain some features of self-gravitating systems and the initial conditions needed to trigger the Antonov instability and the radial orbit instability. (author) [fr

  8. New lens system using toroidal magnetic field for intense ion beam

    International Nuclear Information System (INIS)

    Mohri, Akihiro; Ikuta, Kazunari; Fujita, Junji.

    1976-11-01

    The use of toroidal magnetic field as a lens system is proposed for producing intense ion beam. The characteristics of the lens system are obtained both analytically and numerically. Some examples of ray-trajectories are presented for different focal lengths. The system is applicable to neutral beam injection heating and micro-pellet implosion for nuclear fusion, and to the other fields such as ion beam X-ray lasers. (auth.)

  9. A PDMS-based cylindrical hybrid lens for enhanced fluorescence detection in microfluidic systems.

    Science.gov (United States)

    Lin, Bor-Shyh; Yang, Yu-Ching; Ho, Chong-Yi; Yang, Han-Yu; Wang, Hsiang-Yu

    2014-02-13

    Microfluidic systems based on fluorescence detection have been developed and applied for many biological and chemical applications. Because of the tiny amount of sample in the system; the induced fluorescence can be weak. Therefore, most microfluidic systems deploy multiple optical components or sophisticated equipment to enhance the efficiency of fluorescence detection. However, these strategies encounter common issues of complex manufacturing processes and high costs. In this study; a miniature, cylindrical and hybrid lens made of polydimethylsiloxane (PDMS) to improve the fluorescence detection in microfluidic systems is proposed. The hybrid lens integrates a laser focusing lens and a fluorescence collecting lens to achieve dual functions and simplify optical setup. Moreover, PDMS has advantages of low-cost and straightforward fabrication compared with conventional optical components. The performance of the proposed lens is first examined with two fluorescent dyes and the results show that the lens provides satisfactory enhancement for fluorescence detection of Rhodamine 6G and Nile Red. The overall increments in collected fluorescence signal and detection sensitivity are more than 220% of those without lens, and the detection limits of Rhodamine 6G and Nile red are lowered to 0.01 μg/mL and 0.05 μg/mL, respectively. The hybrid lens is further applied to the detection of Nile red-labeled Chlorella vulgaris cells and it increases both signal intensity and detection sensitivity by more than 520%. The proposed hybrid lens also dramatically reduces the variation in detected signal caused by the deviation in incident angle of excitation light.

  10. Can observations inside the Solar System reveal the gravitational properties of the quantum vacuum?

    CERN Document Server

    Hajdukovic, Dragan Slavkov

    2013-01-01

    The understanding of the gravitational properties of the quantum vacuum might be the next scientific revolution.It was recently proposed that the quantum vacuum contains the virtual gravitational dipoles; we argue that this hypothesis might be tested within the Solar System. The key point is that quantum vacuum ("enriched" with the gravitational dipoles) induces a retrograde precession of the perihelion. It is obvious that this phenomenon might eventually be revealed by more accurate studies of orbits of planets and orbits of the artificial Earth satellites. However, we suggest that potentialy the best "laboratory" for the study of the gravitational properties of the quantum vacuum is the Dwarf Planet Eris and its satellite Dysnomia; the distance of nearly 100AU makes it the unique system in which the precession of the perihelion of Dysnomia (around Eris) is strongly dominated by the quantum vacuum.

  11. Gravitational capture

    International Nuclear Information System (INIS)

    Bondi, H.

    1979-01-01

    In spite of the strength of gravitational focres between celestial bodies, gravitational capture is not a simple concept. The principles of conservation of linear momentum and of conservation of angular momentum, always impose severe constraints, while conservation of energy and the vital distinction between dissipative and non-dissipative systems allows one to rule out capture in a wide variety of cases. In complex systems especially those without dissipation, long dwell time is a more significant concept than permanent capture. (author)

  12. Red nuggets grow inside-out: evidence from gravitational lensing

    NARCIS (Netherlands)

    Oldham, Lindsay; Auger, Matthew W.; Fassnacht, Christopher D.; Treu, Tommaso; Brewer, Brendon J.; Koopmans, L. V. E.; Lagattuta, David; Marshall, Philip; McKean, John; Vegetti, Simona

    We present a new sample of strong gravitational lens systems where both the foreground lenses and background sources are early-type galaxies. Using imaging from Hubble Space Telescope (HST)/Advanced Camera for Studies (ACS) and Keck/NIRC2, we model the surface brightness distributions and show that

  13. A relativistic extended Fermi-Thomas-like equation for a self-gravitating system of fermions

    International Nuclear Information System (INIS)

    Merloni, A.; Ruffini, R.; Torroni, V.

    1998-01-01

    The authors extend previous results of a Fermi-Thomas model, describing self-gravitating fermions in their ground state, to a relativistic gravitational theory in Minkowski space. In such a theory the source term of the gravitational potential depends both on the pressure and the density of the fluid. It is shown that, in correspondence of this relativistic treatment, still a Fermi-Thomas-like equation can be derived for the self-gravitating system, though the non-linearities are much more complex. No Fermi-Thomas-like equation can be obtained in the General Relativistic treatment. The canonical results for neutron stars and white dwarfs are recovered and also some erroneous statements in the scientific literature are corrected

  14. New case of gravitational lensing

    Energy Technology Data Exchange (ETDEWEB)

    Surdej, J.; Swings, J.-P.; Magain, P.; Borgeest, U.; Kayser, R.; Refsdal, S.; Courvoisier, T.J.-L.; Kellermann, K.I.; Kuehr, H.

    1987-10-22

    The authors report a brief description of a gravitational lens system UM673 = Q0142 - 100 = PHL3703. It consists of two images, A and B, separated by 2.2 arc s at a redshift zsub(q) = 2.719. The lensing galaxy has also been found. It lies very near the line connecting the two QSO (quasi-stellar objects) images, approx. 0.8 arc s from the fainter one. Application of gravitational optometry to this system leads to a value Msub(o) or approx. = 2.4 x 10/sup 11/ M solar masses for the mass of the lensing galaxy and to ..delta..t approx. 7 weeks for the most likely travel-time difference between the two light paths to the QSO.

  15. Optimization of a multilayer Laue lens system for a hard x-ray nanoprobe

    International Nuclear Information System (INIS)

    Jiang, Hui; Wang, Hua; Mao, Chengwen; Li, Aiguo; He, Yan; Dong, Zhaohui; Zheng, Yi

    2014-01-01

    Detailed designs of a multilayer Laue lens system for a hard x-ray nanoprobe, including flat and wedged types, are presented, to realize nanoscale point focus and high diffraction efficiency simultaneously. The difficulty of movement and alignment for lens, aperture and sample are considered in the optimization process. Considering the practical requirements of future experiments, the features of the beamline and the structural imperfections, the working energy range, the beam vibration and structural errors are estimated and discussed. (paper)

  16. Computerized method and system for designing an aerodynamic focusing lens stack

    Science.gov (United States)

    Gard, Eric [San Francisco, CA; Riot, Vincent [Oakland, CA; Coffee, Keith [Diablo Grande, CA; Woods, Bruce [Livermore, CA; Tobias, Herbert [Kensington, CA; Birch, Jim [Albany, CA; Weisgraber, Todd [Brentwood, CA

    2011-11-22

    A computerized method and system for designing an aerodynamic focusing lens stack, using input from a designer related to, for example, particle size range to be considered, characteristics of the gas to be flowed through the system, the upstream temperature and pressure at the top of a first focusing lens, the flow rate through the aerodynamic focusing lens stack equivalent at atmosphere pressure; and a Stokes number range. Based on the design parameters, the method and system determines the total number of focusing lenses and their respective orifice diameters required to focus the particle size range to be considered, by first calculating for the orifice diameter of the first focusing lens in the Stokes formula, and then using that value to determine, in iterative fashion, intermediate flow values which are themselves used to determine the orifice diameters of each succeeding focusing lens in the stack design, with the results being output to a designer. In addition, the Reynolds numbers associated with each focusing lens as well as exit nozzle size may also be determined to enhance the stack design.

  17. Gravitation theory - Empirical status from solar system experiments.

    Science.gov (United States)

    Nordtvedt, K. L., Jr.

    1972-01-01

    Review of historical and recent experiments which speak in favor of a post-Newtonian relativistic gravitational theory. The topics include the foundational experiments, metric theories of gravity, experiments designed to differentiate among the metric theories, and tests of Machian concepts of gravity. It is shown that the metric field for any metric theory can be specified by a series of potential terms with several parameters. It is pointed out that empirical results available up to date yield values of the parameters which are consistent with the prediction of Einstein's general relativity.

  18. First order actions for gravitational systems, strings and membranes

    International Nuclear Information System (INIS)

    Lindstrom, U.

    1988-01-01

    The authors discuss first order actions in general and the construction of first order actions by eliminating Lagrange multipliers in particular. A number of first order actions for gravitational theories are presented. Part of the article reviews first order actions, some of them well-known and some lesser known. New examples of first order actions include Weyl-invariant actions for membranes, with and without rigidity terms, as well as for Abelian and non-Abelian Born-Infeld actions in two dimensions

  19. On quantum limits for an indication system of the gravitational wave detector

    International Nuclear Information System (INIS)

    Menskij, M.B.

    1985-01-01

    The method of integration by paths is applied for estimation of quantum restrictions on sensitivity of Weber type gravitational detector. Indication systems tracing oscillations of the Weber resonator are considered. Way of describing evolution of the quantum system under continuous measurement is shown and the requirement of unitarity is generalized for this case. Two regimes of continuous measurement of a harmonic oscillator (tracing the coordinate and spectral mesurements) are calculated and estimations for sensitivity of a gravitational antenna of Weber type are obtained. A system of bound oscillators, i.e. the case when the indication system includes the oscillating circuit, the quantum properties of which cannot be neglected, is considered

  20. Gravitational lensing of gravitational waves: a statistical perspective

    Science.gov (United States)

    Li, Shun-Sheng; Mao, Shude; Zhao, Yuetong; Lu, Youjun

    2018-05-01

    In this paper, we study the strong gravitational lensing of gravitational waves (GWs) from a statistical perspective, with particular focus on the high frequency GWs from stellar binary black hole coalescences. These are most promising targets for ground-based detectors such as Advanced Laser Interferometer Gravitational Wave Observatory (aLIGO) and the proposed Einstein Telescope (ET) and can be safely treated under the geometrical optics limit for GW propagation. We perform a thorough calculation of the lensing rate, by taking account of effects caused by the ellipticity of lensing galaxies, lens environments, and magnification bias. We find that in certain GW source rate scenarios, we should be able to observe strongly lensed GW events once per year (˜1 yr-1) in the aLIGO survey at its design sensitivity; for the proposed ET survey, the rate could be as high as ˜80 yr-1. These results depend on the estimate of GW source abundance, and hence can be correspondingly modified with an improvement in our understanding of the merger rate of stellar binary black holes. We also compute the fraction of four-image lens systems in each survey, predicting it to be ˜30 per cent for the aLIGO survey and ˜6 per cent for the ET survey. Finally, we evaluate the possibility of missing some images due to the finite survey duration, by presenting the probability distribution of lensing time delays. We predict that this selection bias will be insignificant in future GW surveys, as most of the lens systems ({˜ } 90{per cent}) will have time delays less than ˜1 month, which will be far shorter than survey durations.

  1. Photoflash unit having optical system including aspheric lens to enhance light output

    International Nuclear Information System (INIS)

    English, G.J.

    1984-01-01

    A photoflash unit employing an optical system or apparatus with improved center beam candle power seconds and zonal lumen seconds from the flash lamp therein, said unit also employing a minimized utilization ratio of lamp-to-package cross-sectional area. Each individual lamp capsule comprises a reflective element, a refractive element (lens), and at least one photoflash lamp (light source). The lens provides for lamp shred magnification so as to fill the cell (capsule) width to thus provide maximum transfer of light to the subject on axis. One embodiment has the light source fused (glued) to the reflector and lens while a second embodiment has an air interface between the source and the optical elements. In both embodiments, the lens is aspheric and substantially covers both the reflector and source

  2. Short-period AM CVn systems as optical, X-ray and gravitational-wave sources

    NARCIS (Netherlands)

    Nelemans, G.; Yungelson, L.; Portegies Zwart, S.F.

    2004-01-01

    We model the population of AM CVn systems in the Galaxy and discuss the detectability of these systems with optical, X-ray and gravitational-wave detectors. We concentrate on the short-period (P < 1500 s) systems, some of which are expected to be in a phase of direct-impact accretion. Using a

  3. Interaction of gravitational plane waves

    International Nuclear Information System (INIS)

    Ferrari, V.

    1988-01-01

    The mathematical theory of colliding, infinite-fronted, plane gravitational waves is presented. The process of focusing, the creation of singularities and horizons, due to the interaction, and the lens effect due to a beam-like gravitational wave are discussed

  4. Invited review: gravitational biology of the neuromotor systems: a perspective to the next era

    Science.gov (United States)

    Edgerton, V. R.; Roy, R. R.

    2000-01-01

    Earth's gravity has had a significant impact on the designs of the neuromotor systems that have evolved. Early indications are that gravity also plays a key role in the ontogenesis of some of these design features. The purpose of the present review is not to assess and interpret a body of knowledge in the usual sense of a review but to look ahead, given some of the general concepts that have evolved and observations made to date, which can guide our future approach to gravitational biology. We are now approaching an era in gravitational biology during which well-controlled experiments can be conducted for sustained periods in a microgravity environment. Thus it is now possible to study in greater detail the role of gravity in phylogenesis and ontogenesis. Experiments can range from those conducted on the simplest levels of organization of the components that comprise the neuromotor system to those conducted on the whole organism. Generally, the impact of Earth's gravitational environment on living systems becomes more complex as the level of integration of the biological phenomenon of interest increases. Studies of the effects of gravitational vectors on neuromotor systems have and should continue to provide unique insight into these mechanisms that control and maintain neural control systems designed to function in Earth's gravitational environment. A number of examples are given of how a gravitational biology perspective can lead to a clearer understanding of neuromotor disorders. Furthermore, the technologies developed for spaceflight studies have contributed and should continue to contribute to studies of motor dysfunctions, such as spinal cord injury and stroke. Disorders associated with energy support and delivery systems and how these functions are altered by sedentary life styles at 1 G and by space travel in a microgravity environment are also discussed.

  5. An integral-field spectroscopic strong lens survey

    International Nuclear Information System (INIS)

    Bolton, Adam S; Burles, Scott

    2007-01-01

    We present the observational results of a survey for strong gravitational lens systems consisting of extended emission-line galaxies lensed by intervening early-type galaxies, conducted using integral field units (IFUs) of the Magellan IMACS and Gemini GMOS-N spectrographs. These data are highly valuable for corroborating the lensing interpretation of Hubble Space Telescope imaging data. We show that in many cases, ground-based IFU spectroscopy is in fact competitive with space-based imaging for the measurement of the mass model parameters of the lensing galaxy. We demonstrate a novel technique of three-dimensional gravitational lens modeling for a single lens system with a resolved lensed rotation curve. We also describe the details of our custom IFU data analysis software, which performs optimal multi-fiber extraction, relative and absolute wavelength calibration to a few hundredths of a pixel RMS and nearly Poisson-limited sky subtraction

  6. Ion beam transport and focus for LMF using an achromatic solenoidal lens system

    International Nuclear Information System (INIS)

    Olson, C.L.

    1990-01-01

    The light ion LMF (Laboratory Microfusion Facility) requires an ion beam transport length for bunching and standoff to be about four meters from the diode to the target. The baseline LMF transport scheme uses an achromatic two lens system consisting of the diode (a self-field lens) and a solenoidal lens. Charge and current neutralization are provided by a background gas. A detailed analysis of this system is presented here. The effects of additional magnetic fields are examined, including those produced by non-zero net currents, applied B effects near the diode, and diamagnetic effects in the solenoidal lens. Instabilities are analyzed including the filamentation instability, the two-stream instability (beam ions, plasma electrons), the plasma two-stream instability (plasma electrons, plasma ions), and the ion acoustic instability. Scattering in the foil and gas are shown to be negligible. Gas breakdown processes are analyzed in detail, including ion impact ionization, electron avalanching, and ohmic heating. Special diode requirements are examined, including voltage accuracy, energy spread, and aiming tolerances. The neutral gas and gas pressure are chosen to satisfy several constraints, one being that the net current must be small, and another being that the filamentation instability should be avoided. With the present choice of 1 Torr He, it is concluded that the complete achromatic lens system appears to be viable, simple, and efficient transport and focusing system for LMF

  7. Gravitational Waveforms in the Early Inspiral of Binary Black Hole Systems

    Science.gov (United States)

    Barkett, Kevin; Kumar, Prayush; Bhagwat, Swetha; Brown, Duncan; Scheel, Mark; Szilagyi, Bela; Simulating eXtreme Spacetimes Collaboration

    2015-04-01

    The inspiral, merger and ringdown of compact object binaries are important targets for gravitational wave detection by aLIGO. Detection and parameter estimation will require long, accurate waveforms for comparison. There are a number of analytical models for generating gravitational waveforms for these systems, but the only way to ensure their consistency and correctness is by comparing with numerical relativity simulations that cover many inspiral orbits. We've simulated a number of binary black hole systems with mass ratio 7 and a moderate, aligned spin on the larger black hole. We have attached these numerical waveforms to analytical waveform models to generate long hybrid gravitational waveforms that span the entire aLIGO frequency band. We analyze the robustness of these hybrid waveforms and measure the faithfulness of different hybrids with each other to obtain an estimate on how long future numerical simulations need to be in order to ensure that waveforms are accurate enough for use by aLIGO.

  8. Millimeter Wave Imaging System Using Monopole Antenna with Cylindrical Reflector and Silicon Lens

    Science.gov (United States)

    Mizuno, Maya; Fukunaga, Kaori; Suzuki, Masaki; Saito, Shingo; Fujii, Katsumi; Hosako, Iwao; Yamanaka, Yukio

    2011-04-01

    We built a reflection imaging system that uses a monopole antenna with a cylindrical reflector and silicon semi-spherical lens for millimeter waves to identify detachments of alabaster from support material such as wood and stone, which can be subject to painting deterioration. Based on the electric field property near the monopole antenna in the system and the lens effect, the system was able to clearly image a test sample made of 2-mm width aluminium tape, which was placed within a range of approximately 10 mm from the lens. In practical imaging testing using a detachment model, which consists of alabaster and wood plating, the result also showed the possibility of observing slight detachment of the alabaster from the wood more easily than an imaging with large numerical aperture.

  9. Fabrication of MTF measurement system for a mobile phone lens using multi-square objects

    Science.gov (United States)

    Hong, Sung Mok; Jo, Jae Heung; Lee, Hoi Youn; Yang, Ho Soon; Lee, Yun Woo; Lee, In Won

    2007-12-01

    The mobile phone market grows rapidly and the performance estimation about camera module is required. Accordingly, we fabricate the MTF measurement system for a mobile phone lens having extremely small diameter and large f-number. The objective lens with the magnification of X20 for MTF measurement for high resolution lens and a detector of CCD that is pixel size of 7.4 um are adapted to the system. Also, the CCD is translated by using a linear motor to reduce measurement errors. The measurement lens is placed at the most suitable imaging point by a precise auto-focusing motor. The measuring equipment which we developed for off-axis MTF measurement of a mobile phone lens used the multi-square objects. The square objects of measuring equipment are arranged a unit in the on-axis and total 12 units (0.3 field: 4 units, 0.5 field: 4 units, 0.7 field: 4 units) in the off-axis. When the measurement is started, the linear motors of signal detection part are transferred from on-axis to off-axis. And a detected signals from the each square objects are used for MTF measurement. System driver and MTF measure are using application program that developed us. This software can be measure the on-axis and the off-axis sequentially. In addition to that it did optimization of motor transfer for measurement time shortening.

  10. Gravitational waves from the Papaloizou-Pringle instability in black-hole-torus systems.

    Science.gov (United States)

    Kiuchi, Kenta; Shibata, Masaru; Montero, Pedro J; Font, José A

    2011-06-24

    Black hole (BH)-torus systems are promising candidates for the central engine of γ-ray bursts (GRBs), and also possible outcomes of the collapse of supermassive stars to supermassive black holes (SMBHs). By three-dimensional general relativistic numerical simulations, we show that an m = 1 nonaxisymmetric instability grows for a wide range of self-gravitating tori orbiting BHs. The resulting nonaxisymmetric structure persists for a time scale much longer than the dynamical one, becoming a strong emitter of large amplitude, quasiperiodic gravitational waves. Our results indicate that both, the central engine of GRBs and newly formed SMBHs, can be strong gravitational wave sources observable by forthcoming ground-based and spacecraft detectors.

  11. Dynamics of one-dimensional self-gravitating systems using Hermite-Legendre polynomials

    Science.gov (United States)

    Barnes, Eric I.; Ragan, Robert J.

    2014-01-01

    The current paradigm for understanding galaxy formation in the Universe depends on the existence of self-gravitating collisionless dark matter. Modelling such dark matter systems has been a major focus of astrophysicists, with much of that effort directed at computational techniques. Not surprisingly, a comprehensive understanding of the evolution of these self-gravitating systems still eludes us, since it involves the collective non-linear dynamics of many particle systems interacting via long-range forces described by the Vlasov equation. As a step towards developing a clearer picture of collisionless self-gravitating relaxation, we analyse the linearized dynamics of isolated one-dimensional systems near thermal equilibrium by expanding their phase-space distribution functions f(x, v) in terms of Hermite functions in the velocity variable, and Legendre functions involving the position variable. This approach produces a picture of phase-space evolution in terms of expansion coefficients, rather than spatial and velocity variables. We obtain equations of motion for the expansion coefficients for both test-particle distributions and self-gravitating linear perturbations of thermal equilibrium. N-body simulations of perturbed equilibria are performed and found to be in excellent agreement with the expansion coefficient approach over a time duration that depends on the size of the expansion series used.

  12. Characterizing Lenses and Lensed Stars of High-magnification Single-lens Gravitational Microlensing Events with Lenses Passing over Source Stars

    DEFF Research Database (Denmark)

    Choi, J.-Y.; Shin, I.-G.; Park, S.-Y.

    2012-01-01

    ☉ is consistent with that of a star blended with the source, suggesting that the blend is likely to be the lens. Although we did not find planetary signals for any of the events, we provide exclusion diagrams showing the confidence levels excluding the existence of a planet as a function of the separation...

  13. Development of a lens-coupled CMOS detector for an X-ray inspection system

    International Nuclear Information System (INIS)

    Kim, Ho Kyung; Ahn, Jung Keun; Cho, Gyuseong

    2005-01-01

    A digital X-ray imaging detector based on a complementary metal-oxide-semiconductor (CMOS) image sensor has been developed for X-ray non-destructive inspection applications. This is a cost-effective solution because of the availability of cheap commercial standard CMOS image sensors. The detector configuration adopts an indirect X-ray detection method by using scintillation material and lens assembly. As a feasibility test of the developed lens-coupled CMOS detector as an X-ray inspection system, we have acquired X-ray projection images under a variety of imaging conditions. The results show that the projected image is reasonably acceptable in typical non-destructive testing (NDT). However, the developed detector may not be appropriate for laminography due to a low light-collection efficiency of lens assembly. In this paper, construction of the lens-coupled CMOS detector and its specifications are described, and the experimental results are presented. Using the analysis of quantum accounting diagram, inefficiency of the lens-coupling method is discussed

  14. Lens subluxation grading system: predictive value for ectopia lentis surgical outcomes

    Directory of Open Access Journals (Sweden)

    Mauro Waiswol

    2009-03-01

    Full Text Available Objective: To present a classification system to grade ectopia lentis and to assess its usefulness as a predictor for surgical outcomes. Methods: Fifty-one eyes of 28 patients with either simple (19 patients or Marfan syndrome-associated ectopia lentis (nine patients with variable degrees of subluxation were operated on. Lens subluxation intensity was graded according to the lens subluxation grading system (LSGS from grade 1 (lens on the whole pupillary area up to grade 4 (lens absent from the pupillary area. Thirty eyes underwent cataract extraction (“dry” aspiration with endocapsular ring and in-the-bag intraocular lens (IOL implantation. Twenty-one eyes underwent cataract extraction (“dry” aspiration with scleral fixation of the IOL. The predictive value of the LSGS was assessed by analyzing the post-operative outcomes, including visual acuity (VA, endothelial cell loss, and complications for each grade on the grading system. Rresults: Patients were classified into grade 1 (19.6%, grade 2 (51% and grade 3 (29.4%. Post-operative VA was lower for eyes with larger degrees of subluxation. The higher the subluxation grade, the higher the endothelial cell loss, as well as, the frequency of vitreous loss and surgical time. Higher subluxation grades prevented optimal surgical outcomes with endocapsular ring and in-the-bag IOL implantation. Cconclusions: The LSGS provides an estimate of the surgical success of ectopia lentis. Adequate standardization of lens subluxation is crucial for understanding studies dealing with the surgical correction of this disorder.

  15. Single-lens 3D digital image correlation system based on a bilateral telecentric lens and a bi-prism: validation and application.

    Science.gov (United States)

    Wu, Lifu; Zhu, Jianguo; Xie, Huimin

    2015-09-10

    By using the principle of stereovision, 3D digital image correlation (3D-DIC) can determine the 3D morphology and deformation of a target and has been widely used in experimental mechanics as a noncontact 3D measurement technique. To eliminate the limitations of the conventional 3D-DIC system, this study proposes a calibration-free single-lens 3D-DIC system based on a bilateral telecentric lens and a bi-prism. The performance of the proposed system is verified by tests of rigid-body translation along the out-of-plane direction. As a comparison, the same rigid-body translations are measured using a single-entocentric-lens 3D-DIC system. The results show that the measurement accuracy of the proposed system is higher than that of the entocentric-lens-based one. As an application, the proposed system is used to measure the thermal linear expansion of a ceramic plate at elevated temperatures. The reasonable measurement results verify its applicability in deformation measurements, even in high-temperature environments.

  16. The Multi-Element Electronstatic Lens Systems for Controlling and Focusing Charged Particle

    International Nuclear Information System (INIS)

    Sise, O.

    2004-01-01

    Particle optics are very close anolog of photon optics and most of the principles of an barged particle beam can be understood by thinking of the particles as rays of light. There are similar behaviours between particle and photon optics in controlling beams of light and charged particles, such as lenses and mirrors. Extensive information about the properties of charged particle optics, from which appropriate systems can be designed for any specific problem. In this way electrostatic lens systems are used to control beams of c/iarged particle with various energy and directions in several fields, for example electron microscopy, cathode ray tubes, ion accelerators and electron impact studies. In an electrostatic lens system quantative information is required over a wide energy range and a zoom-type of optics is needed. If the magnification is to remain constant over a wide range of energies, quite complicated electrostatic lens systems are required, .containing three, four, five, or even more lens elements. We firstly calculated the optical properties of three and four element cylinder electrostatic lenses with the help of the SIMION and LENSYS programs and developed the method for the calculation of the focal properties of five and more element lenses with afocal mode. In this method we used the combination of three and four element lenses to derive focal properties of multi-element lenses and presented this data over a wide range of energy

  17. Image-guided system versus manual marking for toric intraocular lens alignment in cataract surgery

    NARCIS (Netherlands)

    Webers, V.S.C.; Bauer, N.J.C.; Visser, N.; Berendschot, T.T.J.M.; van den Biggelaar, F.J.H.M.; Nuijts, R.M.M.A.

    2017-01-01

    Purpose To compare the accuracy of toric intraocular lens (IOL) alignment using the Verion Image-Guided System versus a conventional manual ink-marking procedure. Setting University Eye Clinic Maastricht, Maastricht, the Netherlands. Design Prospective randomized clinical trial. Methods Eyes with

  18. Student Satisfaction with Learning Management Systems: A Lens of Critical Success Factors

    Science.gov (United States)

    Naveh, Gali; Tubin, Dorit; Pliskin, Nava

    2012-01-01

    Institutions of higher education have invested heavily in learning management systems (LMS) for creating course websites. Yet, how to assess LMS effectiveness is not fully agreed upon. Based on institutional theory, this article considers student satisfaction as indicative of LMS success and proposes a lens of critical success factors (CSF) as a…

  19. Gravitational decoherence

    International Nuclear Information System (INIS)

    Bassi, Angelo; Großardt, André; Ulbricht, Hendrik

    2017-01-01

    We discuss effects of loss of coherence in low energy quantum systems caused by or related to gravitation, referred to as gravitational decoherence. These effects, resulting from random metric fluctuations, for instance, promise to be accessible by relatively inexpensive table-top experiments, way before the scales where true quantum gravity effects become important. Therefore, they can provide a first experimental view on gravity in the quantum regime. We will survey models of decoherence induced both by classical and quantum gravitational fluctuations; it will be manifest that a clear understanding of gravitational decoherence is still lacking. Next we will review models where quantum theory is modified, under the assumption that gravity causes the collapse of the wave functions, when systems are large enough. These models challenge the quantum-gravity interplay, and can be tested experimentally. In the last part we have a look at the state of the art of experimental research. We will review efforts aiming at more and more accurate measurements of gravity ( G and g ) and ideas for measuring conventional and unconventional gravity effects on nonrelativistic quantum systems. (topical review)

  20. The use of contact lens telescopic systems in low vision rehabilitation.

    Science.gov (United States)

    Vincent, Stephen J

    2017-06-01

    Refracting telescopes are afocal compound optical systems consisting of two lenses that produce an apparent magnification of the retinal image. They are routinely used in visual rehabilitation in the form of monocular or binocular hand held low vision aids, and head or spectacle-mounted devices to improve distance visual acuity, and with slight modifications, to enhance acuity for near and intermediate tasks. Since the advent of ground glass haptic lenses in the 1930's, contact lenses have been employed as a useful refracting element of telescopic systems; primarily as a mobile ocular lens (the eyepiece), that moves with the eye. Telescopes which incorporate a contact lens eyepiece significantly improve the weight, comesis, and field of view compared to traditional spectacle-mounted telescopes, in addition to potential related psycho-social benefits. This review summarises the underlying optics and use of contact lenses to provide telescopic magnification from the era of Descartes, to Dallos, and the present day. The limitations and clinical challenges associated with such devices are discussed, along with the potential future use of reflecting telescopes incorporated within scleral lenses and tactile contact lens systems in low vision rehabilitation. Copyright © 2017 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.

  1. Discovery of four gravitational lensing systems by clusters in the SDSS DR6

    International Nuclear Information System (INIS)

    Wen Zhonglue; Han Jinlin; Xu Xiangyang; Jiang Yunying; Guo Zhiqing; Wang Pengfei; Liu Fengshan

    2009-01-01

    We report the discovery of 4 strong gravitational lensing systems by visual inspections of the Sloan Digital Sky Survey images of galaxy clusters in Data Release 6 (SDSS DR6). Two of the four systems show Einstein rings while the others show tangential giant arcs. These arcs or rings have large angular separations (> 8) from the bright central galaxies and show bluer color compared with the red cluster galaxies. In addition, we found 5 probable and 4 possible lenses by galaxy clusters. (letters)

  2. THE EFFECT OF ENVIRONMENT ON SHEAR IN STRONG GRAVITATIONAL LENSES

    International Nuclear Information System (INIS)

    Wong, Kenneth C.; Zabludoff, Ann I.; Keeton, Charles R.; Williams, Kurtis A.; Momcheva, Ivelina G.

    2011-01-01

    Using new photometric and spectroscopic data in the fields of nine strong gravitational lenses that lie in galaxy groups, we analyze the effects of both the local group environment and line-of-sight (LOS) galaxies on the lens potential. We use Monte Carlo simulations to derive the shear directly from measurements of the complex lens environment, providing the first detailed independent check of the shear obtained from lens modeling. We account for possible tidal stripping of the group galaxies by varying the fraction of total mass apportioned between the group dark matter halo and individual group galaxies. The environment produces an average shear of γ = 0.08 (ranging from 0.02 to 0.17), significant enough to affect quantities derived from lens observables. However, the direction and magnitude of the shears do not match those obtained from lens modeling in three of the six four-image systems in our sample (B1422, RXJ1131, and WFI2033). The source of this disagreement is not clear, implying that the assumptions inherent in both the environment and lens model approaches must be reconsidered. If only the local group environment of the lens is included, the average shear is γ = 0.05 (ranging from 0.01 to 0.14), indicating that LOS contributions to the lens potential are not negligible. We isolate the effects of various theoretical and observational uncertainties on our results. Of those uncertainties, the scatter in the Faber-Jackson relation and error in the group centroid position dominate. Future surveys of lens environments should prioritize spectroscopic sampling of both the local lens environment and objects along the LOS, particularly those bright (I< 21.5) galaxies projected within 5' of the lens.

  3. Functional approach to the problem of self-gravitating systems: Conditions of integrability

    International Nuclear Information System (INIS)

    Filippi, Simonetta; Ruffini, Remo; Sepulveda, Alonso

    2002-01-01

    Using a functional method based on the introduction of a velocity potential to solve the Euler, continuity and Poisson equations, a new analytic study of the equilibrium of self-gravitating rotating systems with a polytropic equation of state has permitted the formulation of the conditions of integrability. For the polytropic index n=1 in the incompressible case (∇·v(vector sign)=0), we are able to find the conditions for solving the problem of the equilibrium of polytropic self-gravitating systems that rotate and have nonuniform vorticity. This work contains the conditions which give analytic and quasi-analytic solutions for the equilibrium of polytropic stars and galactic systems in Newtonian gravity. In special cases, explicit analytic solutions are presented

  4. Improved gravitational search algorithm for parameter identification of water turbine regulation system

    International Nuclear Information System (INIS)

    Chen, Zhihuan; Yuan, Xiaohui; Tian, Hao; Ji, Bin

    2014-01-01

    Highlights: • We propose an improved gravitational search algorithm (IGSA). • IGSA is applied to parameter identification of water turbine regulation system (WTRS). • WTRS is modeled by considering the impact of turbine speed on torque and water flow. • Weighted objective function strategy is applied to parameter identification of WTRS. - Abstract: Parameter identification of water turbine regulation system (WTRS) is crucial in precise modeling hydropower generating unit (HGU) and provides support for the adaptive control and stability analysis of power system. In this paper, an improved gravitational search algorithm (IGSA) is proposed and applied to solve the identification problem for WTRS system under load and no-load running conditions. This newly algorithm which is based on standard gravitational search algorithm (GSA) accelerates convergence speed with combination of the search strategy of particle swarm optimization and elastic-ball method. Chaotic mutation which is devised to stepping out the local optimal with a certain probability is also added into the algorithm to avoid premature. Furthermore, a new kind of model associated to the engineering practices is built and analyzed in the simulation tests. An illustrative example for parameter identification of WTRS is used to verify the feasibility and effectiveness of the proposed IGSA, as compared with standard GSA and particle swarm optimization in terms of parameter identification accuracy and convergence speed. The simulation results show that IGSA performs best for all identification indicators

  5. Adaptive fluid lens and sunlight redirection system : exploring a novel way of redirecting and altering sunlight in large span roofs

    NARCIS (Netherlands)

    Heinzelmann, F.; Bristogianni, T.; Teuffel, P.; Stouffs, R.; Sariyildiz, S.

    2013-01-01

    The paper describes a novel system to alter and redirect sunlight under large span roofs with the help of a fluid lens system. Focus lies on the computational design, testing, measurement and evaluation of the performance of a physical prototype.

  6. Parameters identification of hydraulic turbine governing system using improved gravitational search algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Chaoshun Li; Jianzhong Zhou [College of Hydroelectric Digitization Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2011-01-15

    Parameter identification of hydraulic turbine governing system (HTGS) is crucial in precise modeling of hydropower plant and provides support for the analysis of stability of power system. In this paper, a newly developed optimization algorithm, called gravitational search algorithm (GSA), is introduced and applied in parameter identification of HTGS, and the GSA is improved by combination of the search strategy of particle swarm optimization. Furthermore, a new weighted objective function is proposed in the identification frame. The improved gravitational search algorithm (IGSA), together with genetic algorithm, particle swarm optimization and GSA, is employed in parameter identification experiments and the procedure is validated by comparing experimental and simulated results. Consequently, IGSA is shown to locate more precise parameter values than the compared methods with higher efficiency. (author)

  7. Parameters identification of hydraulic turbine governing system using improved gravitational search algorithm

    International Nuclear Information System (INIS)

    Li Chaoshun; Zhou Jianzhong

    2011-01-01

    Parameter identification of hydraulic turbine governing system (HTGS) is crucial in precise modeling of hydropower plant and provides support for the analysis of stability of power system. In this paper, a newly developed optimization algorithm, called gravitational search algorithm (GSA), is introduced and applied in parameter identification of HTGS, and the GSA is improved by combination of the search strategy of particle swarm optimization. Furthermore, a new weighted objective function is proposed in the identification frame. The improved gravitational search algorithm (IGSA), together with genetic algorithm, particle swarm optimization and GSA, is employed in parameter identification experiments and the procedure is validated by comparing experimental and simulated results. Consequently, IGSA is shown to locate more precise parameter values than the compared methods with higher efficiency.

  8. AUTOMATED DETECTION OF GALAXY-SCALE GRAVITATIONAL LENSES IN HIGH-RESOLUTION IMAGING DATA

    International Nuclear Information System (INIS)

    Marshall, Philip J.; Bradac, Marusa; Hogg, David W.; Moustakas, Leonidas A.; Fassnacht, Christopher D.; Schrabback, Tim; Blandford, Roger D.

    2009-01-01

    We expect direct lens modeling to be the key to successful and meaningful automated strong galaxy-scale gravitational lens detection. We have implemented a lens-modeling 'robot' that treats every bright red galaxy (BRG) in a large imaging survey as a potential gravitational lens system. Having optimized a simple model for 'typical' galaxy-scale gravitational lenses, we generate four assessments of model quality that are then used in an automated classification. The robot infers from these four data the lens classification parameter H that a human would have assigned; the inference is performed using a probability distribution generated from a human-classified training set of candidates, including realistic simulated lenses and known false positives drawn from the Hubble Space Telescope (HST) Extended Groth Strip (EGS) survey. We compute the expected purity, completeness, and rejection rate, and find that these statistics can be optimized for a particular application by changing the prior probability distribution for H; this is equivalent to defining the robot's 'character'. Adopting a realistic prior based on expectations for the abundance of lenses, we find that a lens sample may be generated that is ∼100% pure, but only ∼20% complete. This shortfall is due primarily to the oversimplicity of the model of both the lens light and mass. With a more optimistic robot, ∼90% completeness can be achieved while rejecting ∼90% of the candidate objects. The remaining candidates must be classified by human inspectors. Displaying the images used and produced by the robot on a custom 'one-click' web interface, we are able to inspect and classify lens candidates at a rate of a few seconds per system, suggesting that a future 1000 deg. 2 imaging survey containing 10 7 BRGs, and some 10 4 lenses, could be successfully, and reproducibly, searched in a modest amount of time. We have verified our projected survey statistics, albeit at low significance, using the HST EGS data

  9. Non-Linear Beam Transport System for the LENS 7 MeV Proton Beam

    CERN Document Server

    Jones, William P; Derenchuk, Vladimir Peter; Rinckel, Thomas; Solberg, Keith

    2005-01-01

    A beam transport system has been designed to carry a high-intensity low-emittance proton beam from the exit of the RFQ-DTL acceleration system of the Indiana University Low Energy Neutron System (LENS)* to the neutron production target. The goal of the design was to provide a beam of uniform density over a 3cm by 3cm area at the target. Two octupole magnets** are employed in the beam line to provide the necessary beam phase space manipulations to achieve this goal. First order calculations were done using TRANSPORT and second order calculations have been performed using TURTLE. Second order simulations have been done using both a Gaussian beam distribution and a particle set generated by calculations of beam transport through the RFQ-DTL using PARMILA. Comparison of the design characteristics with initial measurements from the LENS commissioning process will be made.

  10. Topics in black-hole physics: geometric constraints on noncollapsing, gravitating systems, and tidal distortions of a Schwarzschild black hole

    International Nuclear Information System (INIS)

    Redmount, I.H.

    1984-01-01

    This dissertation consists of two studies on the general-relativistic theory of black holes. The first work concerns the fundamental issue of black-hole formation: in it geometric constraints are sought on gravitating matter systems, in the special case of axial symmetry, which determine whether or not those systems undergo gravitational collapse to form black holes. The second project deals with mechanical behavior of a black hole: specifically, the tidal deformation of a static black hole is studied by the gravitational fields of external bodies

  11. Visual gravitational motion and the vestibular system in humans

    Directory of Open Access Journals (Sweden)

    Francesco eLacquaniti

    2013-12-01

    Full Text Available The visual system is poorly sensitive to arbitrary accelerations, but accurately detects the effects of gravity on a target motion. Here we review behavioral and neuroimaging data about the neural mechanisms for dealing with object motion and egomotion under gravity. The results from several experiments show that the visual estimates of a target motion under gravity depend on the combination of a prior of gravity effects with on-line visual signals on target position and velocity. These estimates are affected by vestibular inputs, and are encoded in a visual-vestibular network whose core regions lie within or around the Sylvian fissure, and are represented by the posterior insula/retroinsula/temporo-parietal junction. This network responds both to target motions coherent with gravity and to vestibular caloric stimulation in human fMRI studies. Transient inactivation of the temporo-parietal junction selectively disrupts the interception of targets accelerated by gravity.

  12. Gravitational frequency shift effect in the solar system

    International Nuclear Information System (INIS)

    Sarmiento G, A.

    1983-01-01

    An extension of the Parameterized Post-Newtonian (PPN) formalism to third order in the expansion parameter m/r (where m = GM/c 2 denotes the mass of the source of the field and r the distance to its center) is used to derive analytical expressions accurate to the same order for the prediction of the experimental measurments of the frequency shift effect on electromagnetic signals travelling within the solar system. An experimental situation is considered for which it is seen that the consequences of including higher order terms are undetectable by present-day observations or experiments. Some deliberations on issues in the historic context in which the development of the relevant ideas took place is considered necessary to round this work out and is presented in an introductory section. (author)

  13. Visual gravitational motion and the vestibular system in humans.

    Science.gov (United States)

    Lacquaniti, Francesco; Bosco, Gianfranco; Indovina, Iole; La Scaleia, Barbara; Maffei, Vincenzo; Moscatelli, Alessandro; Zago, Myrka

    2013-12-26

    The visual system is poorly sensitive to arbitrary accelerations, but accurately detects the effects of gravity on a target motion. Here we review behavioral and neuroimaging data about the neural mechanisms for dealing with object motion and egomotion under gravity. The results from several experiments show that the visual estimates of a target motion under gravity depend on the combination of a prior of gravity effects with on-line visual signals on target position and velocity. These estimates are affected by vestibular inputs, and are encoded in a visual-vestibular network whose core regions lie within or around the Sylvian fissure, and are represented by the posterior insula/retroinsula/temporo-parietal junction. This network responds both to target motions coherent with gravity and to vestibular caloric stimulation in human fMRI studies. Transient inactivation of the temporo-parietal junction selectively disrupts the interception of targets accelerated by gravity.

  14. A mixed method Poisson solver for three-dimensional self-gravitating astrophysical fluid dynamical systems

    Science.gov (United States)

    Duncan, Comer; Jones, Jim

    1993-01-01

    A key ingredient in the simulation of self-gravitating astrophysical fluid dynamical systems is the gravitational potential and its gradient. This paper focuses on the development of a mixed method multigrid solver of the Poisson equation formulated so that both the potential and the Cartesian components of its gradient are self-consistently and accurately generated. The method achieves this goal by formulating the problem as a system of four equations for the gravitational potential and the three Cartesian components of the gradient and solves them using a distributed relaxation technique combined with conventional full multigrid V-cycles. The method is described, some tests are presented, and the accuracy of the method is assessed. We also describe how the method has been incorporated into our three-dimensional hydrodynamics code and give an example of an application to the collision of two stars. We end with some remarks about the future developments of the method and some of the applications in which it will be used in astrophysics.

  15. Newtonian self-gravitating system in a relativistic huge void universe model

    Energy Technology Data Exchange (ETDEWEB)

    Nishikawa, Ryusuke; Nakao, Ken-ichi [Department of Mathematics and Physics, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585 (Japan); Yoo, Chul-Moon, E-mail: ryusuke@sci.osaka-cu.ac.jp, E-mail: knakao@sci.osaka-cu.ac.jp, E-mail: yoo@gravity.phys.nagoya-u.ac.jp [Division of Particle and Astrophysical Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602 (Japan)

    2016-12-01

    We consider a test of the Copernican Principle through observations of the large-scale structures, and for this purpose we study the self-gravitating system in a relativistic huge void universe model which does not invoke the Copernican Principle. If we focus on the the weakly self-gravitating and slowly evolving system whose spatial extent is much smaller than the scale of the cosmological horizon in the homogeneous and isotropic background universe model, the cosmological Newtonian approximation is available. Also in the huge void universe model, the same kind of approximation as the cosmological Newtonian approximation is available for the analysis of the perturbations contained in a region whose spatial size is much smaller than the scale of the huge void: the effects of the huge void are taken into account in a perturbative manner by using the Fermi-normal coordinates. By using this approximation, we derive the equations of motion for the weakly self-gravitating perturbations whose elements have relative velocities much smaller than the speed of light, and show the derived equations can be significantly different from those in the homogeneous and isotropic universe model, due to the anisotropic volume expansion in the huge void. We linearize the derived equations of motion and solve them. The solutions show that the behaviors of linear density perturbations are very different from those in the homogeneous and isotropic universe model.

  16. Scaling laws for aberrations in magnetic quadrupole lens systems

    International Nuclear Information System (INIS)

    Moses, R.W.; Heighway, E.A.; Christian, R.S.; Dragt, A.J.

    1987-01-01

    A comparison has been made of the third-order (spherical) abberrations in magnetic quadrupole lenses for use in conventional charged particle beam transport systems. An analytical description of the abberrations is presented and this is compared with the results of high order numerical integration. The dependence of the aberration strength on the system geometry and f number is given and a comparison of doublet and triplet systems made. The reduction of the aberrations in both doublet and triplet systems using embedded magnetic octupole lenses is also discussed and analytical predictions are given

  17. Novel compact panomorph lens based vision system for monitoring around a vehicle

    Science.gov (United States)

    Thibault, Simon

    2008-04-01

    Automotive applications are one of the largest vision-sensor market segments and one of the fastest growing ones. The trend to use increasingly more sensors in cars is driven both by legislation and consumer demands for higher safety and better driving experiences. Awareness of what directly surrounds a vehicle affects safe driving and manoeuvring of a vehicle. Consequently, panoramic 360° Field of View imaging can contributes most to the perception of the world around the driver than any other sensors. However, to obtain a complete vision around the car, several sensor systems are necessary. To solve this issue, a customized imaging system based on a panomorph lens will provide the maximum information for the drivers with a reduced number of sensors. A panomorph lens is a hemispheric wide angle anamorphic lens with enhanced resolution in predefined zone of interest. Because panomorph lenses are optimized to a custom angle-to-pixel relationship, vision systems provide ideal image coverage that reduces and optimizes the processing. We present various scenarios which may benefit from the use of a custom panoramic sensor. We also discuss the technical requirements of such vision system. Finally we demonstrate how the panomorph based visual sensor is probably one of the most promising ways to fuse many sensors in one. For example, a single panoramic sensor on the front of a vehicle could provide all necessary information for assistance in crash avoidance, lane tracking, early warning, park aids, road sign detection, and various video monitoring views.

  18. Frequency Invariant Beam Steering for Short-Pulse Systems with a Rotman Lens

    Directory of Open Access Journals (Sweden)

    Andreas Lambrecht

    2010-01-01

    Full Text Available A promising approach for beam steering of high-voltage transient signals for HPEM-systems (High Power Electro Magnetic is presented. The inherent capability of the Rotman lens to provide true time delays is used to develop a prototype beam steering device for an antielectronics HPEM system in the frequency range from 350 MHz to 5 GHz. Results of analytical calculations, simulations, and measurements from a hardware prototype are presented. The detailed mechanical setup of the Rotman lens is presented. Additionally the output pulses are investigated when inputting a Gaussian-like transient signal. Then time domain measures of quality (full width at half maximum, ringing, delay spread, maximum of transfer function are investigated for these output transients, and the simulation and measurement results are compared. A concluding analysis of the realizable time domain array pattern shows the radiated pulse form.

  19. A new case of gravitational lensing

    International Nuclear Information System (INIS)

    Surdej, J.; Swings, J.-P.; Borgeest, U.; Kayser, R.; Refsdal, S.; Courvoisier, T.J.-L.; Kellermann, K.I.; Kuehr, H.

    1987-01-01

    The authors report a brief description of a gravitational lens system UM673 = Q0142 - 100 = PHL3703. It consists of two images, A and B, separated by 2.2 arc s at a redshift zsub(q) = 2.719. The lensing galaxy has also been found. It lies very near the line connecting the two QSO (quasi-stellar objects) images, approx. 0.8 arc s from the fainter one. Application of gravitational optometry to this system leads to a value Msub(o) or approx. = 2.4 x 10 11 M solar masses for the mass of the lensing galaxy and to Δt approx. 7 weeks for the most likely travel-time difference between the two light paths to the QSO. (author)

  20. Gravitational lensing by eigenvalue distributions of random matrix models

    Science.gov (United States)

    Martínez Alonso, Luis; Medina, Elena

    2018-05-01

    We propose to use eigenvalue densities of unitary random matrix ensembles as mass distributions in gravitational lensing. The corresponding lens equations reduce to algebraic equations in the complex plane which can be treated analytically. We prove that these models can be applied to describe lensing by systems of edge-on galaxies. We illustrate our analysis with the Gaussian and the quartic unitary matrix ensembles.

  1. The equity lens in the health care performance evaluation system.

    Science.gov (United States)

    Barsanti, Sara; Nuti, Sabina

    2014-01-01

    The main objective of this paper is to describe how indicators of the equity of access to health care according to socioeconomic conditions may be included in a performance evaluation system (PES) in the regional context level and in the planning and strategic control system of healthcare organisations. In particular, the paper investigates how the PES adopted, in the experience of the Tuscany region in Italy, indicators of vertical equity over time. Studies that testify inequality of access to health services often remain just a research output and are not used as targets and measurements in planning and control systems. After a brief introduction to the concept of horizontal and vertical equity in health care systems and equity measures in PES, the paper describes the 'equity process' by which selected health indicators declined by socioeconomic conditions were shared and used in the evaluation of health care institutions and in the CEOs' rewarding system, and subsequently analyses the initial results. Results on the maternal and child path and the chronicity care path not only show improvements in addressing health care inequalities, but also verify whether the health system responds appropriately to different population groups. Copyright © 2013 John Wiley & Sons, Ltd.

  2. Investigation of uniformity field generated from freeform lens with UV LED exposure system

    Science.gov (United States)

    Ciou, F. Y.; Chen, Y. C.; Pan, C. T.; Lin, P. H.; Lin, P. H.; Hsu, F. T.

    2015-03-01

    In the exposure process, the intensity and uniformity of light in the exposure area directly influenced the precision of products. UV-LED (Ultraviolet Light-Emitting Diode) exposure system was established to reduce the radiation leakage and increase the energy efficiency for energy saving. It is a trend that conventional mercury lamp could be replaced with UV-LED exposure system. This study was based on the law of conservation of energy and law of refraction of optical field distributing on the target plane. With these, a freeform lens with uniform light field of main exposure area could be designed. The light outside the exposure area could be concentrated into the area to improve the intensity of light. The refraction index and UV transmittance of Polydimethylsiloxane (PDMS) is 1.43 at 385 nm wavelength and 85-90%, respectively. The PDMS was used to fabricate the optics lens for UV-LEDs. The average illumination and the uniformity could be obtained by increasing the number of UV-LEDs and the spacing of different arrangement modes. After exposure process with PDMS lens, about 5% inaccuracy was obtained. Comparing to 10% inaccuracy of general exposure system, it shows that it is available to replace conventional exposure lamp with using UV-LEDs.

  3. GRAVITATIONAL RADIATION

    Directory of Open Access Journals (Sweden)

    Metin SALTIK

    1996-03-01

    Full Text Available According to classical electromagnetic theory, an accelerated charge or system of charges radiates electromagnetic waves. In a radio transmitter antenna charges are accelerated along the antenna and release electromagnetic waves, which is radiated at the velocity of light in the surrounding medium. All of the radio transmitters work on this principle today. In this study an analogy is established between the principles by which accelerated charge systems markes radiation and the accelerated mass system, and the systems cousing gravitational radiation are investigated.

  4. Systemic determinants of modern gravitational processes in the geo-economic space

    Directory of Open Access Journals (Sweden)

    Zoryana Lutsyshyn

    2015-12-01

    Full Text Available From the compositional point of view, research on this topic has revealed two main directions: (1 an analysis of global development asymmetry that has activated gravitational processes in geo-economic space; and (2 a direction that focuses on the profound study of the causes for heterogeneity in geo-economic space and divergence in global development under the influence of gravitational factors of nature on the endogenousexogenous axis. Systemic determinants of gravitational processes are revealed in geo- economic space and the asymmetry of global activate ravitional processes in geo-economic space are observed, and methodological interconnectedness coinfluence of two complementary determinants of global development – convergence and divergence and the contradiction between them are examined, which at the same time underlie the inevitable internal contradictions of the process, creating conditions for further configuration of the «new globalization community», which is built on the principles of nonlinear dynamics and logic gravitational processes in geo-economic space.Taking into account the relevant uncertainties, the attention is focused on the isolation of several myths around which the debate that has important methodological significance in the context of the current global inter-system transformations is held. Geostrategic matrix divergence of global development is produced,which is based on techniques which incorporated cluster analysisthat are built on linguistic variables and integrated analysis of the key trends of country and global development geostrategic position of Ukraine in geo-economic space in the projection on the issues of global inter-system transformations isoutlined .It is proved that the level of gravity load increases in the deepening of the global asymmetries , and that the current global transformation is not yet complete, and polycentric new architecture geospace is not formed. In the near future we should

  5. Reducing aberration effect of Fourier transform lens by modifying Fourier spectrum of diffractive optical element in beam shaping optical system.

    Science.gov (United States)

    Zhang, Fang; Zhu, Jing; Song, Qiang; Yue, Weirui; Liu, Jingdan; Wang, Jian; Situ, Guohai; Huang, Huijie

    2015-10-20

    In general, Fourier transform lenses are considered as ideal in the design algorithms of diffractive optical elements (DOEs). However, the inherent aberrations of a real Fourier transform lens disturb the far field pattern. The difference between the generated pattern and the expected design will impact the system performance. Therefore, a method for modifying the Fourier spectrum of DOEs without introducing other optical elements to reduce the aberration effect of the Fourier transform lens is proposed. By applying this method, beam shaping performance is improved markedly for the optical system with a real Fourier transform lens. The experiments carried out with a commercial Fourier transform lens give evidence for this method. The method is capable of reducing the system complexity as well as improving its performance.

  6. The Danish health system through an American lens.

    Science.gov (United States)

    Davis, Karen

    2002-02-01

    The organization and financing of the Danish health care system was evaluated within the framework of a SWOT analysis (analysis of strengths, weaknesses, opportunities and threats) by a panel of five members with a background in health economics. The evaluation was based on reading an extensive amount of selected documents and literature on the Danish health care system and a 1-week visit to health care authorities, providers and key persons. The present paper includes the main findings by one of the panel members. Primary care is much more accessible in Denmark than the USA. A mixed capitation-fee-for-service method of paying generalist physicians in Denmark ensures that everyone has a primary care physician and generalist physicians are responsive to providing services quickly, typically same-day appointments. An organized off-hours service ensures accessible care 24 h a day, 7 days a week. Denmark has the highest public satisfaction with health care, reflecting the value placed on accessibility of primary care. Inpatient hospital care consumes a disproportionate share of Danish health expenditures. Global hospital budgets provide little incentive for hospital or surgical productivity. Long waits for hospitalization, especially surgical procedures and cancellation of scheduled surgery, are a source of patient dissatisfaction. Women's health, patient health risk counseling and coordination of preventive and primary care are major weaknesses of the Danish health system. Patients have a choice of primary care physician within a given geographic area and may go to a hospital of their choice. However, patient surveys and feedback are underdeveloped and very little effort has been made to make services responsive to patients' preferences. While innovations in electronic prescribing are noteworthy, further development of health information technology is needed.

  7. Compact vibration isolation and suspension for Australian International Gravitational Observatory: local control system.

    Science.gov (United States)

    Dumas, Jean-Charles; Barriga, Pablo; Zhao, Chunnong; Ju, Li; Blair, David G

    2009-11-01

    High performance vibration isolators are required for ground based gravitational wave detectors. To attain very high performance at low frequencies we have developed multistage isolators for the proposed Australian International Gravitational Observatory detector in Australia. New concepts in vibration isolation including self-damping, Euler springs, LaCoste springs, Roberts linkages, and double preisolation require novel sensors and actuators. Double preisolation enables internal feedback to be used to suppress low frequency seismic noise. Multidegree of freedom control systems are required to attain high performance. Here we describe the control components and control systems used to control all degrees of freedom. Feedback forces are injected at the preisolation stages and at the penultimate suspension stage. There is no direct actuation on test masses. A digital local control system hosted on a digital signal processor maintains alignment and position, corrects drifts, and damps the low frequency linear and torsional modes without exciting the very high Q-factor test mass suspension. The control system maintains an optical cavity locked to a laser with a high duty cycle even in the absence of an autoalignment system. An accompanying paper presents the mechanics of the system, and the optical cavity used to determine isolation performance. A feedback method is presented, which is expected to improve the residual motion at 1 Hz by more than one order of magnitude.

  8. Compact vibration isolation and suspension for Australian International Gravitational Observatory: Local control system

    Science.gov (United States)

    Dumas, Jean-Charles; Barriga, Pablo; Zhao, Chunnong; Ju, Li; Blair, David G.

    2009-11-01

    High performance vibration isolators are required for ground based gravitational wave detectors. To attain very high performance at low frequencies we have developed multistage isolators for the proposed Australian International Gravitational Observatory detector in Australia. New concepts in vibration isolation including self-damping, Euler springs, LaCoste springs, Roberts linkages, and double preisolation require novel sensors and actuators. Double preisolation enables internal feedback to be used to suppress low frequency seismic noise. Multidegree of freedom control systems are required to attain high performance. Here we describe the control components and control systems used to control all degrees of freedom. Feedback forces are injected at the preisolation stages and at the penultimate suspension stage. There is no direct actuation on test masses. A digital local control system hosted on a digital signal processor maintains alignment and position, corrects drifts, and damps the low frequency linear and torsional modes without exciting the very high Q-factor test mass suspension. The control system maintains an optical cavity locked to a laser with a high duty cycle even in the absence of an autoalignment system. An accompanying paper presents the mechanics of the system, and the optical cavity used to determine isolation performance. A feedback method is presented, which is expected to improve the residual motion at 1 Hz by more than one order of magnitude.

  9. Poisson equation for weak gravitational lensing

    International Nuclear Information System (INIS)

    Kling, Thomas P.; Campbell, Bryan

    2008-01-01

    Using the Newman and Penrose [E. T. Newman and R. Penrose, J. Math. Phys. (N.Y.) 3, 566 (1962).] spin-coefficient formalism, we examine the full Bianchi identities of general relativity in the context of gravitational lensing, where the matter and space-time curvature are projected into a lens plane perpendicular to the line of sight. From one component of the Bianchi identity, we provide a rigorous, new derivation of a Poisson equation for the projected matter density where the source term involves second derivatives of the observed weak gravitational lensing shear. We also show that the other components of the Bianchi identity reveal no new results. Numerical integration of the Poisson equation in test cases shows an accurate mass map can be constructed from the combination of a ground-based, wide-field image and a Hubble Space Telescope image of the same system

  10. Amplification caused by gravitational bending of light

    International Nuclear Information System (INIS)

    Schneider, P.

    1985-01-01

    Gravitational bending of light may not only lead to multiple imaging (gravitational lens effect), but also affects the apparent luminosity of a source. It is shown here that a mass distribution near the line-of-sight to any source always increases the observable flux relative to the case in which the deflector is absent

  11. Polarization Monitoring of the Lens System JVAS B0218+357

    Directory of Open Access Journals (Sweden)

    Andrew Biggs

    2017-10-01

    Full Text Available Monitoring of the lens system JVAS B0218+357 with the Fermi Gamma-ray Space Telescope measured a different time delay to that derived from radio observations. We have re-analysed three months of archival Very Large Array data to produce variability curves with an average sampling of one epoch per day in total flux, polarized flux and polarization position angle (PPA at 15, 8.4 and 5 GHz. The variability is particularly strong in polarized flux. Dense sampling and improved subtraction of the Einstein ring has allowed us to produce superior variability curves and a preliminary analysis has resulted in a time delay (11.5 days which agrees well with the γ -ray value. Both images of 0218+357 are subject to strong Faraday rotation and depolarization as a result of the radio waves passing through the interstellar medium of the spiral lens galaxy. Our data reveal frequency-dependent variations in the PPA that are different in each image and which must therefore result from variable Faraday rotation in the lens galaxy on timescales of a few days. Our analysis has revealed systematic errors in the polarization position angle measurements that strongly correlate with hour angle. Although we have been able to correct for these, we caution that all VLA polarization observations are potentially affected.

  12. Gravitation and relativity

    CERN Document Server

    Hoffmann, William F

    1964-01-01

    Remarks on the observational basis of general relativity ; Riemannian geometry ; gravitation as geometry ; gravitational waves ; Mach's principle and experiments on mass anisotropy ; the many faces of Mach ; the significance for the solar system of time-varying gravitation ; relativity principles and the role of coordinates in physics ; the superdense star and the critical nucleon number ; gravitation and light ; possible effects on the solar system of φ waves if they exist ; the Lyttleton-Bondi universe and charge equality ; quantization of general relativity ; Mach's principle as boundary condition for Einstein's equations.

  13. Gravitational Waves from Isolated Systems: Surprising Consequences of a Positive Cosmological Constant.

    Science.gov (United States)

    Ashtekar, Abhay; Bonga, Béatrice; Kesavan, Aruna

    2016-02-05

    There is a deep tension between the well-developed theory of gravitational waves from isolated systems and the presence of a positive cosmological constant Λ, however tiny. In particular a generalization of Einstein's 1918 quadrupole formula that would allow a positive Λ is not yet available. We first explain the principal difficulties and then show that it is possible to overcome them in the weak field limit. These results also provide concrete hints for constructing the Λ>0 generalization of the Bondi-Sachs framework for full, nonlinear general relativity.

  14. First all-sky search for continuous gravitational waves from unknown sources in binary systems

    OpenAIRE

    Aasi, J.; Abbott, B.; Abbott, R.; Abbott, T.; Abernathy, M.; Accadia, T.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.; Affeldt, C.; Agathos, M.; Aggarwal, N.

    2014-01-01

    We present the first results of an all-sky search for continuous gravitational waves from unknown spinning neutron stars in binary systems using LIGO and Virgo data. Using a specially developed analysis program, the TwoSpect algorithm, the search was carried out on data from the sixth LIGO Science Run and the second and third Virgo Science Runs. The search covers a range of frequencies from 20 Hz to 520 Hz, a range of orbital periods from 2 to ~2,254 h and a frequency- and period-dependent ra...

  15. Space imaging measurement system based on fixed lens and moving detector

    Science.gov (United States)

    Akiyama, Akira; Doshida, Minoru; Mutoh, Eiichiro; Kumagai, Hideo; Yamada, Hirofumi; Ishii, Hiromitsu

    2006-08-01

    We have developed the Space Imaging Measurement System based on the fixed lens and fast moving detector to the control of the autonomous ground vehicle. The space measurement is the most important task in the development of the autonomous ground vehicle. In this study we move the detector back and forth along the optical axis at the fast rate to measure the three-dimensional image data. This system is just appropriate to the autonomous ground vehicle because this system does not send out any optical energy to measure the distance and keep the safety. And we use the digital camera of the visible ray range. Therefore it gives us the cost reduction of the three-dimensional image data acquisition with respect to the imaging laser system. We can combine many pieces of the narrow space imaging measurement data to construct the wide range three-dimensional data. This gives us the improvement of the image recognition with respect to the object space. To develop the fast movement of the detector, we build the counter mass balance in the mechanical crank system of the Space Imaging Measurement System. And then we set up the duct to prevent the optical noise due to the ray not coming through lens. The object distance is derived from the focus distance which related to the best focused image data. The best focused image data is selected from the image of the maximum standard deviation in the standard deviations of series images.

  16. [System design of open-path natural gas leakage detection based on Fresnel lens].

    Science.gov (United States)

    Xia, Hui; Liu, Wen-Qing; Zhang, Yu-Jun; Kan, Rui-Feng; Cui, Yi-Ben; Wang, Min; He, Ying; Cui, Xiao-Juan; Ruan, Jun; Geng, Hui

    2009-03-01

    Based on the technology of tunable diode laser absorption spectroscopy (TDLAS) in conjunction with second harmonic wave detection, a long open-path TDLAS system using a 1.65 microm InGaAsP distributed feedback laser was developed, which is used for detecting pipeline leakage. In this system, a high cost performance Fresnel lens is used as the receiving optical system, which receives the laser-beam reflected by a solid corner cube reflector, and focuses the receiving laser-beam to the InGaAs detector. At the same time, the influences of the concentration to the fluctuation of light intensity were taken into account in the process of measurement, and were eliminated by the method of normalized light intensity. As a result, the measurement error caused by the fluctuation of light intensity was made less than 1%. The experiment of natural gas leakage detection was simulated, and the detection sensitivity is 0.1 x 10(-6) (ratio by volume) with a total path of 320 m. According to the receiving light efficiency of the optical system and the detectable minimum light intensity of the detector, the detectable maximal optical path of the system was counted to be 2 000 m. The results of experiment show that it is a feasible design to use the Fresnel lens as the receiving optical system and can satisfy the demand of the leakage detection of natural gas.

  17. Anisotropic gravitational instability

    International Nuclear Information System (INIS)

    Polyachenko, V.L.; Fridman, A.M.

    1988-01-01

    Exact solutions of stability problems are obtained for two anisotropic gravitational systems of different geometries - a layer of finite thickness at rest and a rotating cylinder of finite radius. It is shown that the anisotropic gravitational instability which develops in both cases is of Jeans type. However, in contrast to the classical aperiodic Jeans instability, this instability is oscillatory. The physics of the anisotropic gravitational instability is investigated. It is shown that in a gravitating layer this instability is due, in particular, to excitation of previously unknown interchange-Jeans modes. In the cylinder, the oscillatory Jeans instability is associated with excitation of a rotational branch, this also being responsible for the beam gravitational instability. This is the reason why this instability and the anisotropic gravitational instability have so much in common

  18. Gravitational Waves

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Jonah Maxwell [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-10-18

    This report has slides on Gravitational Waves; Pound and Rebka: A Shocking Fact; Light is a Ruler; Gravity is the Curvature of Spacetime; Gravitational Waves Made Simple; How a Gravitational Wave Affects Stuff Here; LIGO; This Detection: Neutron Stars; What the Gravitational Wave Looks Like; The Sound of Merging Neutron Stars; Neutron Star Mergers: More than GWs; The Radioactive Cloud; The Kilonova; and finally Summary, Multimessenger Astronomy.

  19. Suspension-thermal noise in spring–antispring systems for future gravitational-wave detectors

    Science.gov (United States)

    Harms, Jan; Mow-Lowry, Conor M.

    2018-01-01

    Spring–antispring systems have been investigated in the context of low-frequency seismic isolation in high-precision optical experiments. These systems provide the possibility to tune the fundamental resonance frequency to, in principle, arbitrarily low values, and at the same time maintain a compact design. It was argued though that thermal noise in spring–antispring systems would not be as small as one may naively expect from lowering the fundamental resonance frequency. In this paper, we present calculations of suspension-thermal noise for spring–antispring systems potentially relevant in future gravitational-wave detectors, i.e. the beam-balance tiltmeter, and the Roberts linkage. We find a concise expression of the suspension-thermal noise spectrum, which assumes a form very similar to the well-known expression for a simple pendulum. For systems such as the Roberts linkage foreseen as passive seismic isolation, we find that while they can provide strong seismic isolation due to a very low fundamental resonance frequency, their thermal noise is determined by the dimension of the system and is insensitive to fine-tunings of the geometry that can strongly influence the resonance frequency. By analogy, i.e. formal similarity of the equations of motion, this is true for all horizontal mechanical isolation systems with spring–antispring dynamics. This imposes strict requirements on mechanical spring–antispring systems for seismic isolation in potential future low-frequency gravitational-wave detectors as we discuss for the four main concepts, atom-interferometric, superconducting, torsion-bars, and conventional laser interferometer, and generally suggests that thermal noise needs to be evaluated carefully for high-precision experiments implementing spring–antispring dynamics.

  20. Fokker-Planck-Rosenbluth-type equations for self-gravitating systems in the 1PN approximation

    International Nuclear Information System (INIS)

    Ramos-Caro, Javier; Gonzalez, Guillermo A

    2008-01-01

    We present two formulations of Fokker-Planck-Rosenbluth-type (FPR) equations for many-particle self-gravitating systems, with first-order relativistic corrections in the post-Newtonian approach (1PN). The first starts from a covariant Fokker-Planck equation for a simple gas, introduced recently by Chacon-Acosta and Kremer (2007 Phys. Rev. E 76 021201). The second derivation is based on the establishment of an 1PN-BBGKY hierarchy, developed systematically from the 1PN microscopic law of force and using the Klimontovich-Dupree (KD) method. We close the hierarchy by the introduction of a two-point correlation function that describes adequately the relaxation process. This picture reveals an aspect that is not considered in the first formulation: the contribution of ternary correlation patterns to the diffusion coefficients, as a consequence of the nature of 1PN interaction. Both formulations can be considered as a generalization of the equation derived by Rezania and Sobouti (2000 Astron. Astrophys. 354 1110), to stellar systems where the relativistic effects of gravitation play a significant role

  1. Quantum mechanical systems interacting with different polarizations of gravitational waves in noncommutative phase space

    Science.gov (United States)

    Saha, Anirban; Gangopadhyay, Sunandan; Saha, Swarup

    2018-02-01

    Owing to the extreme smallness of any noncommutative scale that may exist in nature, both in the spatial and momentum sector of the quantum phase space, a credible possibility of their detection lies in the gravitational wave (GW) detection scenario, where one effectively probes the relative length-scale variations ˜O [10-20-10-23] . With this motivation, we have theoretically constructed how a free particle and a harmonic oscillator will respond to linearly and circularly polarized gravitational waves if their quantum mechanical phase space has a noncommutative structure. We critically analyze the formal solutions which show resonance behavior in the responses of both free particle and HO systems to GW with both kind of polarizations. We discuss the possible implications of these solutions in detecting noncommutativity in a GW detection experiment. We use the currently available upper-bound estimates on various noncommutative parameters to anticipate the relative importance of various terms in the solutions. We also argue how the quantum harmonic oscillator system we considered here can be very relevant in the context of the resonant bar detectors of GW which are already operational.

  2. Linearized fermion-gravitation system in a (2+1)-dimensional space-time with Chern-Simons data

    International Nuclear Information System (INIS)

    Mello, E.R.B. de.

    1990-01-01

    The fermion-graviton system at linearized level in a (2+1)-dimensional space-time with the gravitational Chern-Simons term is studied. In this approximation it is shown that this system presents anomalous rotational properties and spin, in analogy with the gauge field-matter system. (A.C.A.S.) [pt

  3. Field momentum, inertial momentum and gravitational momentum of a system of bodies in the post-Newtonian approximation

    Energy Technology Data Exchange (ETDEWEB)

    Jankiewicz, Cz; Sikora, D [Wyzsza Szkola Pedagogiczna, Rzeszow (Poland)

    1980-01-01

    It is shwon that in the post-Newtonian approximation the gravitational momentum of a system of point particles is equal to the sum of field momentum and inertial momentum only in two classes of coordinate systems. This equality may be treated as a natural condition on a coordinate system in which the generally covariant Einstein equations are to be solved.

  4. Optimal gravitational search algorithm for automatic generation control of interconnected power systems

    Directory of Open Access Journals (Sweden)

    Rabindra Kumar Sahu

    2014-09-01

    Full Text Available An attempt is made for the effective application of Gravitational Search Algorithm (GSA to optimize PI/PIDF controller parameters in Automatic Generation Control (AGC of interconnected power systems. Initially, comparison of several conventional objective functions reveals that ITAE yields better system performance. Then, the parameters of GSA technique are properly tuned and the GSA control parameters are proposed. The superiority of the proposed approach is demonstrated by comparing the results of some recently published techniques such as Differential Evolution (DE, Bacteria Foraging Optimization Algorithm (BFOA and Genetic Algorithm (GA. Additionally, sensitivity analysis is carried out that demonstrates the robustness of the optimized controller parameters to wide variations in operating loading condition and time constants of speed governor, turbine, tie-line power. Finally, the proposed approach is extended to a more realistic power system model by considering the physical constraints such as reheat turbine, Generation Rate Constraint (GRC and Governor Dead Band nonlinearity.

  5. Navigation system for a mobile robot with a visual sensor using a fish-eye lens

    Science.gov (United States)

    Kurata, Junichi; Grattan, Kenneth T. V.; Uchiyama, Hironobu

    1998-02-01

    Various position sensing and navigation systems have been proposed for the autonomous control of mobile robots. Some of these systems have been installed with an omnidirectional visual sensor system that proved very useful in obtaining information on the environment around the mobile robot for position reckoning. In this article, this type of navigation system is discussed. The sensor is composed of one TV camera with a fish-eye lens, using a reference target on a ceiling and hybrid image processing circuits. The position of the robot, with respect to the floor, is calculated by integrating the information obtained from a visual sensor and a gyroscope mounted in the mobile robot, and the use of a simple algorithm based on PTP control for guidance is discussed. An experimental trial showed that the proposed system was both valid and useful for the navigation of an indoor vehicle.

  6. Equilibrium statistical mechanics for self-gravitating systems: local ergodicity and extended Boltzmann-Gibbs/White-Narayan statistics

    Science.gov (United States)

    He, Ping

    2012-01-01

    The long-standing puzzle surrounding the statistical mechanics of self-gravitating systems has not yet been solved successfully. We formulate a systematic theoretical framework of entropy-based statistical mechanics for spherically symmetric collisionless self-gravitating systems. We use an approach that is very different from that of the conventional statistical mechanics of short-range interaction systems. We demonstrate that the equilibrium states of self-gravitating systems consist of both mechanical and statistical equilibria, with the former characterized by a series of velocity-moment equations and the latter by statistical equilibrium equations, which should be derived from the entropy principle. The velocity-moment equations of all orders are derived from the steady-state collisionless Boltzmann equation. We point out that the ergodicity is invalid for the whole self-gravitating system, but it can be re-established locally. Based on the local ergodicity, using Fermi-Dirac-like statistics, with the non-degenerate condition and the spatial independence of the local microstates, we rederive the Boltzmann-Gibbs entropy. This is consistent with the validity of the collisionless Boltzmann equation, and should be the correct entropy form for collisionless self-gravitating systems. Apart from the usual constraints of mass and energy conservation, we demonstrate that the series of moment or virialization equations must be included as additional constraints on the entropy functional when performing the variational calculus; this is an extension to the original prescription by White & Narayan. Any possible velocity distribution can be produced by the statistical-mechanical approach that we have developed with the extended Boltzmann-Gibbs/White-Narayan statistics. Finally, we discuss the questions of negative specific heat and ensemble inequivalence for self-gravitating systems.

  7. Resolution limit of probe-forming systems with magnetic quadrupole lens triplets and quadruplets

    International Nuclear Information System (INIS)

    Ponomarev, A.G.; Melnik, K.I.; Miroshnichenko, V.I.; Storizhko, V.E.; Sulkio-Cleff, B.

    2003-01-01

    Over the past decade, in MeV ion beam microanalysis efforts to achieve a spatial resolution better than 0.1 μm with a beam current of ∼100 pA have been connected with microprobes of new generation where the probe is formed by means of separated magnetic quadrupole lens structures . However, as was pointed out in , no dramatic improvements in spatial resolution have been produced so far. For better understanding of the situation the authors carried out theoretical studies of multiparameter sets of probe-forming systems based on separated triplets and quadruplets of magnetic quadrupole lenses. Comparisons were made between the highest current values attained at different systems for a given beam spot size. The maximum parasitic sextupole and octupole field components were found whose contributions to spot broadening are tolerable. It is shown that the use of modern electrostatic accelerators and precision magnetic quadrupole lenses makes it possible to eliminate the effect of chromatic aberrations and second- and third-order parasitic aberrations resulting from distortions of the quadrupole lens symmetry. Therefore probe-forming systems with triplets and quadruplets of magnetic quadrupole lenses have a lower theoretical spatial resolution limit which is restricted mainly by intrinsic spherical third-order aberrations in state-of-the-art microprobes

  8. Extracting the orbital axis from gravitational waves of precessing binary systems

    Science.gov (United States)

    Kawaguchi, Kyohei; Kyutoku, Koutarou; Nakano, Hiroyuki; Shibata, Masaru

    2018-01-01

    We present a new method for extracting the instantaneous orbital axis only from gravitational wave strains of precessing binary systems observed from a particular observer direction. This method enables us to reconstruct the coprecessing frame waveforms only from observed strains for the ideal case with the high signal-to-noise ratio. Specifically, we do not presuppose any theoretical model of the precession dynamics and coprecessing waveforms in our method. We test and measure the accuracy of our method using the numerical relativity simulation data of precessing binary black holes taken from the SXS Catalog. We show that the direction of the orbital axis is extracted within ≈0.07 rad error from gravitational waves emitted during the inspiral phase. The coprecessing waveforms are also reconstructed with high accuracy; the mismatch (assuming white noise) between them and the original coprecessing waveforms is typically a few times 10-3 including the merger-ringdown phase, and can be improved by an order of magnitude focusing only on the inspiral waveform. In this method, the coprecessing frame waveforms are not only the purely technical tools for understanding the complex nature of precessing waveforms but also direct observables.

  9. Refractive neutron lens

    International Nuclear Information System (INIS)

    Petrov, P.V.; Kolchevsky, N.N.

    2013-01-01

    Model of the refractive neutron lens is proposed. System of N lenses acts as one thin lens with a complex refraction index n*. The maximum number N max of individual lenses for 'thick' neutron lens is calculated. Refractive neutron lens properties (resolution, focal depth) as function of resolution factor F 0 =ρbc/μ and depth of field factor dF 0 =λF 0 =λρbc/μ are calculated. It is shown that micro resolution of the refractive neutron optics is far from the wavelength in size and its open possibilities for progress in refractive neutron optics. (authors)

  10. Comparative analysis of the nuclear lens opalescence by the Lens Opacities Classification System III with nuclear density values provided by Oculus Pentacam: a cross-section study using Pentacam Nucleus Staging software.

    Science.gov (United States)

    Magalhães, Fernanda Pedreira; Costa, Elaine Fiod; Cariello, Angelino Júlio; Rodrigues, Eduardo Buchele; Hofling-Lima, Ana Luisa

    2011-01-01

    To compare the clinical classification of cataract using the Lens Opacities Classification System (LOCS) III with the mean values of lens density provided by the Pentacam Scheimpflug System in nuclear cataracts. One hundred and one eyes from 101 patients with age-related nuclear cataract were submitted to clinical examination for lens grading score using LOCS III. According to LOCS III, nuclear opalescence was divided in six groups. Patients were evaluated by the Pentacam Scheimpflug System for the mean lens density using the Pentacam lens densitometry program (PLDP), the Pentacam Nucleus Staging (PNS) mean value and the PNS cataract grading score. A positive correlation between the mean values of lens density and LOCS III classification, considering groups 1 to 5, could be noticed with PLDP and PNS mean value. The mean values between the groups were similar using the PLDP and the PNS mean value. However, when the PNS cataract grading score was evaluated, there was low correspondence with LOCS III classification. Pentacam Scheimpflug device offers an objective measure of the lens nuclear density on nuclear cataracts. PLDP and the PNS mean value were both useful to evaluate age-related nuclear cataract up to LOCS III group 5.

  11. Comparative analysis of the nuclear lens opalescence by the Lens Opacities Classification System III with nuclear density values provided by Oculus Pentacam: a cross-section study using Pentacam Nucleus Staging software

    Directory of Open Access Journals (Sweden)

    Fernanda Pedreira Magalhães

    2011-04-01

    Full Text Available PURPOSE: To compare the clinical classification of cataract using the Lens Opacities Classification System (LOCS III with the mean values of lens density provided by the Pentacam Scheimpflug System in nuclear cataracts. METHODS: One hundred and one eyes from 101 patients with age-related nuclear cataract were submitted to clinical examination for lens grading score using LOCS III. According to LOCS III, nuclear opalescence was divided in six groups. Patients were evaluated by the Pentacam Scheimpflug System for the mean lens density using the Pentacam lens densitometry program (PLDP, the Pentacam Nucleus Staging (PNS mean value and the PNS cataract grading score. RESULTS: A positive correlation between the mean values of lens density and LOCS III classification, considering groups 1 to 5, could be noticed with PLDP and PNS mean value. The mean values between the groups were similar using the PLDP and the PNS mean value. However, when the PNS cataract grading score was evaluated, there was low correspondence with LOCS III classification. CONCLUSION: Pentacam Scheimpflug device offers an objective measure of the lens nuclear density on nuclear cataracts. PLDP and the PNS mean value were both useful to evaluate age-related nuclear cataract up to LOCS III group 5.

  12. A POSSIBLE BINARY SYSTEM OF A STELLAR REMNANT IN THE HIGH-MAGNIFICATION GRAVITATIONAL MICROLENSING EVENT OGLE-2007-BLG-514

    International Nuclear Information System (INIS)

    Miyake, N.; Abe, F.; Furusawa, K.; Itow, Y.; Udalski, A.; Kubiak, M.; Szymański, M. K.; Pietrzyński, G.; Soszyński, I.; Ulaczyk, K.; Wyrzykowski, L.; Sumi, T.; Bennett, D. P.; Dong, S.; Gould, A.; Street, R. A.; Greenhill, J.; Bond, I. A.; Fukui, A.; Holderness, S.

    2012-01-01

    We report the extremely high-magnification (A > 1000) binary microlensing event OGLE-2007-BLG-514. We obtained good coverage around the double peak structure in the light curve via follow-up observations from different observatories. The binary lens model that includes the effects of parallax (known orbital motion of the Earth) and orbital motion of the lens yields a binary lens mass ratio of q = 0.321 ± 0.007 and a projected separation of s = 0.072 ± 0.001 in units of the Einstein radius. The parallax parameters allow us to determine the lens distance D L = 3.11 ± 0.39 kpc and total mass M L = 1.40 ± 0.18 M ☉ ; this leads to the primary and secondary components having masses of M 1 = 1.06 ± 0.13 M ☉ and M 2 = 0.34 ± 0.04 M ☉ , respectively. The parallax model indicates that the binary lens system is likely constructed by the main-sequence stars. On the other hand, we used a Bayesian analysis to estimate probability distributions by the model that includes the effects of xallarap (possible orbital motion of the source around a companion) and parallax (q = 0.270 ± 0.005, s = 0.083 ± 0.001). The primary component of the binary lens is relatively massive, with M 1 = 0.9 +4.6 –0.3 M ☉ and it is at a distance of D L = 2.6 +3.8 –0.9 kpc. Given the secure mass ratio measurement, the companion mass is therefore M 2 = 0.2 +1.2 –0.1 M ☉ . The xallarap model implies that the primary lens is likely a stellar remnant, such as a white dwarf, a neutron star, or a black hole.

  13. Local tests of gravitation with Gaia observations of Solar System Objects

    Science.gov (United States)

    Hees, Aurélien; Le Poncin-Lafitte, Christophe; Hestroffer, Daniel; David, Pedro

    2018-04-01

    In this proceeding, we show how observations of Solar System Objects with Gaia can be used to test General Relativity and to constrain modified gravitational theories. The high number of Solar System objects observed and the variety of their orbital parameters associated with the impressive astrometric accuracy will allow us to perform local tests of General Relativity. In this communication, we present a preliminary sensitivity study of the Gaia observations on dynamical parameters such as the Sun quadrupolar moment and on various extensions to general relativity such as the parametrized post-Newtonian parameters, the fifth force formalism and a violation of Lorentz symmetry parametrized by the Standard-Model extension framework. We take into account the time sequences and the geometry of the observations that are particular to Gaia for its nominal mission (5 years) and for an extended mission (10 years).

  14. Effect of hypokinesia and the combined action of gravitational load and hypokinesia on the structure of the hepatic portal system.

    Science.gov (United States)

    Drozdova, A V

    1975-10-01

    General hypokinesia during 1--6 weeks resulted in dilatation of the interlobular veins. sinusoids and central veins. The sequence of alterations corresponded to terms of hypokinesia. After exposure to "gravitation stress--hypokinesia for 1--6 weeks" stagnation in the portal system of the liver was less than after exposure to hypokinesia alone, but unevenness of lumens in the interlobular veins and sinusoids was more pronounced. The foci of the vessel spasm were determined. The signs of stagnation in the system of the portal vein and unevenness of the width of all the links of the portal bed were most pronounced after combination "hypokinesia for 1--6 weeks-- gravitation stress".

  15. A computer software system for the generation of global ocean tides including self-gravitation and crustal loading effects

    Science.gov (United States)

    Estes, R. H.

    1977-01-01

    A computer software system is described which computes global numerical solutions of the integro-differential Laplace tidal equations, including dissipation terms and ocean loading and self-gravitation effects, for arbitrary diurnal and semidiurnal tidal constituents. The integration algorithm features a successive approximation scheme for the integro-differential system, with time stepping forward differences in the time variable and central differences in spatial variables. Solutions for M2, S2, N2, K2, K1, O1, P1 tidal constituents neglecting the effects of ocean loading and self-gravitation and a converged M2, solution including ocean loading and self-gravitation effects are presented in the form of cotidal and corange maps.

  16. The Schroedinger-Newton equation as model of self-gravitating quantum systems

    International Nuclear Information System (INIS)

    Grossardt, Andre

    2013-01-01

    The Schroedinger-Newton equation (SN equation) describes a quantummechanical one-particle-system with gravitational self-interaction and might play a role answering the question if gravity must be quantised. As non-relativistic limit of semi-classical gravity, it provides testable predictions of the effects that classical gravity has on genuinely quantum mechanical systems in the mass regime between a few thousand proton masses and the Planck mass, which is experimentally unexplored. In this thesis I subsume the mathematical properties of the SN equation and justify it as a physical model. I will give a short outline of the controversial debate around semi-classical gravity as a fundamental theory, along with the idea of the SN equation as a model of quantum state reduction. Subsequently, I will respond to frequent objections against nonlinear Schrodinger equations. I will show how the SN equation can be obtained from Einstein's General Relativity coupled to either a KleinGordon or a Dirac equation, in the same sense as the linear Schroedinger equation can be derived in flat Minkowski space-time. The equation is, to this effect, a non-relativistic approximation of the semi-classical Einstein equations. Additionally, I will discuss, first by means of analytic estimations and later numerically, in which parameter range effects of gravitational selfinteraction - e.g. in molecular-interferometry experiments - should be expected. Besides the one-particle SN equation I will provide justification for a modified equation describing the centre-of-mass wave-function of a many-particle system. Furthermore, for this modified equation, I will examine, numerically, the consequences for experiments. Although one arrives at the conclusion that no effects of the SN equation can be expected for masses up to six or seven orders of magnitude above those considered in contemporary molecular interferometry experiments, tests of the equation, for example in satellite experiments, seem

  17. Orbital effects of a monochromatic plane gravitational wave with ultra-low frequency incident on a gravitationally bound two-body system

    Directory of Open Access Journals (Sweden)

    Lorenzo Iorio

    2014-09-01

    Full Text Available We analytically compute the long-term orbital variations of a test particle orbiting a central body acted upon by an incident monochromatic plane gravitational wave. We assume that the characteristic size of the perturbed two-body system is much smaller than the wavelength of the wave. Moreover, we also suppose that the wave's frequency νg is much smaller than the particle's orbital one nb. We make neither a priori assumptions about the direction of the wavevector kˆ nor on the orbital configuration of the particle. While the semi-major axis a is left unaffected, the eccentricity e, the inclination I, the longitude of the ascending node Ω, the longitude of pericenter ϖ and the mean anomaly ℳ undergo non-vanishing long-term changes of the form dΨ/dt=F(Kij;e,I,Ω,ω,Ψ=e,I,Ω,ϖ,M, where Kij, i,j=1,2,3 are the coefficients of the tidal matrix K. Thus, in addition to the variations of its orientation in space, the shape of the orbit would be altered as well. Strictly speaking, such effects are not secular trends because of the slow modulation introduced by K and by the orbital elements themselves: they exhibit peculiar long-term temporal patterns which would be potentially of help for their detection in multidecadal analyses of extended data records of planetary observations of various kinds. In particular, they could be useful in performing independent tests of the inflation-driven ultra-low gravitational waves whose imprint may have been indirectly detected in the Cosmic Microwave Background by the Earth-based experiment BICEP2. Our calculation holds, in general, for any gravitationally bound two-body system whose orbital frequency nb is much larger than the frequency νg of the external wave, like, e.g., extrasolar planets and the stars orbiting the Galactic black hole. It is also valid for a generic perturbation of tidal type with constant coefficients over timescales of the order of the orbital period of the perturbed particle.

  18. Research on the processing technology of medium-caliber aspheric lens in the optoelectronic integrated test system

    Science.gov (United States)

    Liu, Dan; Yu, Xin-ying; Wang, Wei

    2016-10-01

    In the optoelectronic integrated test system, surface profile and finish of the optical element are put forward higher request. Taking an aspherical quartz glass lens with a diameter of 200mm as example, taking Preston hypothesis as the theoretical basis, analyze the influence of surface quality of various process parameters, including the workpiece and the tool axis spindle speed, wheel type, concentration polishing, polishing mold species, dwell time, polishing pressure and other parameters. Using CNC method for the surface profile and surface quality of the lens were investigated. Taking profilometer measurement results as a guide, by testing and simulation analysis, process parameters were improved constantly in the process of manufacturing. Mid and high frequency error were trimmed and improved so that the surface form gradually converged to the required accuracy. The experimental results show that the final accuracy of the surface is less than 2µm and the surface finish is, which fulfils the accuracy requirement of aspherical focusing lens in optical system.

  19. The rectenna design on contact lens for wireless powering of the active intraocular pressure monitoring system.

    Science.gov (United States)

    Cheng, H W; Jeng, B M; Chen, C Y; Huang, H Y; Chiou, J C; Luo, C H

    2013-01-01

    This paper proposed a wireless power harvesting system with micro-electro-mechanical-systems (MEMS) fabrication for noninvasive intraocular pressure (IOP) measurement on soft contact lens substructure. The power harvesting IC consists of a loop antenna, an impedance matching network and a rectifier. The proposed IC has been designed and fabricated by CMOS 0.18 um process that operates at the ISM band of 5.8 GHz. The antenna and the power harvesting IC would be bonded together by using flip chip bonding technologies without extra wire interference. The circuit utilized an impedance transformation circuit to boost the input RF signal that improves the circuit performance. The proposed design achieves an RF-to-DC conversion efficiency of 35% at 5.8 GHz.

  20. Gravitation Waves

    CERN Multimedia

    CERN. Geneva

    2005-01-01

    We will present a brief introduction to the physics of gravitational waves and their properties. We will review potential astrophysical sources of gravitational waves, and the physics and astrophysics that can be learned from their study. We will survey the techniques and technologies for detecting gravitational waves for the first time, including bar detectors and broadband interferometers, and give a brief status report on the international search effort, with special emphasis on the LIGO detectors and search results.

  1. The impact of a preloaded intraocular lens delivery system on operating room efficiency in routine cataract surgery.

    Science.gov (United States)

    Jones, Jason J; Chu, Jeffrey; Graham, Jacob; Zaluski, Serge; Rocha, Guillermo

    2016-01-01

    The aim of this study was to evaluate the operational impact of using preloaded intraocular lens (IOL) delivery systems compared with manually loaded IOL delivery processes during routine cataract surgeries. Time and motion data, staff and surgery schedules, and cost accounting reports were collected across three sites located in the US, France, and Canada. Time and motion data were collected for manually loaded IOL processes and preloaded IOL delivery systems over four surgery days. Staff and surgery schedules and cost accounting reports were collected during the 2 months prior and after introduction of the preloaded IOL delivery system. The study included a total of 154 routine cataract surgeries across all three sites. Of these, 77 surgeries were performed using a preloaded IOL delivery system, and the remaining 77 surgeries were performed using a manual IOL delivery process. Across all three sites, use of the preloaded IOL delivery system significantly decreased mean total case time by 6.2%-12.0% (Psystem also decreased surgeon lens time, surgeon delays, and eliminated lens touches during IOL preparation. Compared to a manual IOL delivery process, use of a preloaded IOL delivery system for cataract surgery reduced total case time, total surgeon lens time, surgeon delays, and eliminated IOL touches. The time savings provided by the preloaded IOL delivery system provide an opportunity for sites to improve routine cataract surgery throughput without impacting surgeon or staff capacity.

  2. The Master Lens Database and The Orphan Lenses Project

    Science.gov (United States)

    Moustakas, Leonidas

    2012-10-01

    Strong gravitational lenses are uniquely suited for the study of dark matter structure and substructure within massive halos of many scales, act as gravitational telescopes for distant faint objects, and can give powerful and competitive cosmological constraints. While hundreds of strong lenses are known to date, spanning five orders of magnitude in mass scale, thousands will be identified this decade. To fully exploit the power of these objects presently, and in the near future, we are creating the Master Lens Database. This is a clearinghouse of all known strong lens systems, with a sophisticated and modern database of uniformly measured and derived observational and lens-model derived quantities, using archival Hubble data across several instruments. This Database enables new science that can be done with a comprehensive sample of strong lenses. The operational goal of this proposal is to develop the process and the code to semi-automatically stage Hubble data of each system, create appropriate masks of the lensing objects and lensing features, and derive gravitational lens models, to provide a uniform and fairly comprehensive information set that is ingested into the Database. The scientific goal for this team is to use the properties of the ensemble of lenses to make a new study of the internal structure of lensing galaxies, and to identify new objects that show evidence of strong substructure lensing, for follow-up study. All data, scripts, masks, model setup files, and derived parameters, will be public, and free. The Database will be accessible online and through a sophisticated smartphone application, which will also be free.

  3. Gravothermal catastrophe and negative specific heat of self-gravitating systems

    International Nuclear Information System (INIS)

    Hachisu, Izumi; Sugimoto, Daiichiro

    1978-01-01

    Thermodynamics of self-gravitating gas system, which is enclosed by an adiabatic spherical wall, is discussed. When the temperature distribution is isothermal, the system is in thermodynamic equilibrium in the sense that the first order variation of the total entropy of the system vanishes. However, the second order variation of the total entropy may be positive, when the effect of gravity exceeds a certain limit. Then, the system may evolve to make its entropy increase. This is the gravothermal catastrophe, which was pointed out first by Antonov in 1962, but for which some questions were raised concerning its reality. In the present paper, this catastrophe is analysed by extending functional space of variation to include non-isothermal perturbations. It results in two merits: It is most convenient to make a close relation with usual concepts in the thermodynamics of irreversible process, and the present formulation does not contain any singular quantities which brought a confusion in the interpretation of the real physical processes. (author)

  4. Gravothermal catastrophe and negative specific heat of self-gravitating systems

    Energy Technology Data Exchange (ETDEWEB)

    Hachisu, I; Sugimoto, D [Tokyo Univ. (Japan). Coll. of General Education

    1978-07-01

    Thermodynamics of self-gravitating gas system, which is enclosed by an adiabatic spherical wall, is discussed. When the temperature distribution is isothermal, the system is in thermodynamic equilibrium in the sense that the first order variation of the total entropy of the system vanishes. However, the second order variation of the total entropy may be positive, when the effect of gravity exceeds a certain limit. Then, the system may evolve to make its entropy increase. This is the gravothermal catastrophe, which was pointed out first by Antonov in 1962, but for which some questions were raised concerning its reality. In the present paper, this catastrophe is analysed by extending functional space of variation to include non-isothermal perturbations. It results in two merits: It is most convenient to make a close relation with usual concepts in the thermodynamics of irreversible process, and the present formulation does not contain any singular quantities which brought a confusion in the interpretation of the real physical processes.

  5. Decision Support System to Choose Digital Single Lens Camera with Simple Additive Weighting Method

    Directory of Open Access Journals (Sweden)

    Tri Pina Putri

    2016-11-01

    Full Text Available One of the technologies that evolve today is Digital Single Lens Reflex (DSLR camera. The number of products makes users have difficulties to choose the appropriate camera based on their criteria. Users may utilize several ways to help them choosing the intended camera such as using magazine, internet, and other media. This paper discusses about a web based decision support system to choose cameras by using SAW (Simple Additive Weighting method in order to make the decision process more effective and efficient. This system is expected to give recommendations about the camera which is appropriate with the user’s need and criteria based on the cost, the resolution, the feature, the ISO, and the censor. The system was implemented by using PHP and MySQL. Based on the result of questionnaire distributed to 20 respondents, 60% respondents agree that this decision support system can help users to choose the appropriate camera DSLR in accordance with the user’s need, 60% of respondents agree that this decision support system is more effective to choose DSLR camera and 75% of respondents agree that this system is more efficient. In addition, 60.55% of respondents agree that this system has met 5 Es Usability Framework.

  6. Simulation model of a new solar laser system of Fresnel lens according to real observed solar radiation data in

    Directory of Open Access Journals (Sweden)

    Yasser A. Abdel-Hadi

    2015-12-01

    Full Text Available A new simulation model of a new solar pumped laser system was tested to be run in Helwan in Egypt (latitude φ = 29°52′N, longitude λ = 31°21′E and elevation = 141 m as an example of an industrial polluted area. The system is based on concentrating the solar radiation using a Fresnel lens on a laser head fixed on a mount tracking the sun during the day and powered by a DC battery. Two cases of this model are tested; the first one is the model consisting of a Fresnel lens and a two-dimensional Compound Parabolic Concentrator (CPC, while the other is the model consisting of a Fresnel lens and a three-dimensional Compound Parabolic Concentrator (CPC. The model is fed by real actual solar radiation data taken in Helwan Solar Radiation Station at NRIAG in the various seasons in order to know the laser power got from such a system in those conditions. For the system of Fresnel lens and 2D-CPC, an average laser output power of 1.27 W in Winter, 2 W in Spring, 5 W in Summer and 4.68 W in Autumn respectively can be obtained. Accordingly, the annual average output power for this system is 3.24 W. For the system of Fresnel lens and 3D-CPC, an average laser output power of 3.28 W in Winter, 3.55 W in Spring, 7.56 W in Summer and 7.13 W in Autumn respectively can be obtained. Accordingly, the annual average output power for this system is 5.38 W.

  7. Effect of undetected gravitational lenses on statistical measures of quasar evolution

    International Nuclear Information System (INIS)

    Turner, E.L.

    1980-01-01

    Brightness amplifications by undetected gravitational lenses could be responsible in part for the apparent evolution of quasars, particularly for those which appear to be of high luminosity. It is shown that values of Vover-bar/over-barVover-bar/sub M/> or =0.6 and number-magnitude slopes > or =0.9 need not necessarily imply source density evolution if lensing events are common. Quasar samples which are defined by flux limits and minimum luminosities will preferentially include gravitational lens systems. Even if lensing events are quite rare, a large fraction of the lensed quasars will appear more luminous than the most luminous unlensed quasar

  8. Lidov–Kozai Cycles with Gravitational Radiation: Merging Black Holes in Isolated Triple Systems

    Energy Technology Data Exchange (ETDEWEB)

    Silsbee, Kedron [Department of Astrophysical Sciences, Princeton University, Ivy Lane, Princeton, NJ 08544 (United States); Tremaine, Scott, E-mail: ksilsbee@astro.princeton.edu, E-mail: tremaine@ias.edu [Institute for Advanced Study, 1 Einstein Drive Princeton, NJ 08540 (United States)

    2017-02-10

    We show that a black-hole binary with an external companion can undergo Lidov–Kozai cycles that cause a close pericenter passage, leading to a rapid merger due to gravitational-wave emission. This scenario occurs most often for systems in which the companion has a mass comparable to the reduced mass of the binary and the companion orbit has a semimajor axis within a factor of ∼10 of the binary semimajor axis. Using a simple population-synthesis model and three-body simulations, we estimate the rate of mergers in triple black-hole systems in the field to be about six per Gpc{sup 3} per year in the absence of natal kicks during black-hole formation. This value is within the low end of the 90% credible interval for the total black hole–black hole merger rate inferred from the current LIGO results. There are many uncertainties in these calculations, the largest of which is the unknown distribution of natal kicks. Even modest natal kicks of 40 km s{sup −1} will reduce the merger rate by a factor of 40. A few percent of these systems will have eccentricity greater than 0.999 when they first enter the frequency band detectable by aLIGO (above 10 Hz).

  9. Lidov–Kozai Cycles with Gravitational Radiation: Merging Black Holes in Isolated Triple Systems

    International Nuclear Information System (INIS)

    Silsbee, Kedron; Tremaine, Scott

    2017-01-01

    We show that a black-hole binary with an external companion can undergo Lidov–Kozai cycles that cause a close pericenter passage, leading to a rapid merger due to gravitational-wave emission. This scenario occurs most often for systems in which the companion has a mass comparable to the reduced mass of the binary and the companion orbit has a semimajor axis within a factor of ∼10 of the binary semimajor axis. Using a simple population-synthesis model and three-body simulations, we estimate the rate of mergers in triple black-hole systems in the field to be about six per Gpc 3 per year in the absence of natal kicks during black-hole formation. This value is within the low end of the 90% credible interval for the total black hole–black hole merger rate inferred from the current LIGO results. There are many uncertainties in these calculations, the largest of which is the unknown distribution of natal kicks. Even modest natal kicks of 40 km s −1 will reduce the merger rate by a factor of 40. A few percent of these systems will have eccentricity greater than 0.999 when they first enter the frequency band detectable by aLIGO (above 10 Hz).

  10. Gravitational Lens: Deep Space Probe Design

    Science.gov (United States)

    2012-03-01

    Following the calculation of the semi-major axis is the eccentricity e, which measures the eccentricity of the gravity assist orbit. e = 1 + rpv2... eccentricity and the semi-major axis. The parameter is a property of conic sections dictated by the expression p = a(1 − e2) [10] (3.24) After the parameter...term attitude actuation. They were chosen over the inclusion of CMGs and reaction wheels because while CMGs and reaction wheels would decrease the

  11. An all-silicone zoom lens in an optical imaging system

    International Nuclear Information System (INIS)

    Zhao Cun-Hua

    2013-01-01

    An all-silicone zoom lens is fabricated. A tunable metal ringer is fettered around the side edge of the lens. A nylon rope linking a motor is tied, encircling the notch in the metal ringer. While the motor is operating, the rope can shrink or release to change the focal length of the lens. A calculation method is developed to obtain the focal length and the zoom ratio. The testing is carried out in succession. The testing values are compared with the calculated ones, and they tally with each other well. Finally, the imaging performance of the all-silicone lens is demonstrated. The all-silicone lens has potential uses in cellphone cameras, notebook cameras, micro monitor lenses, etc. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  12. An all-silicone zoom lens in an optical imaging system

    Science.gov (United States)

    Zhao, Cun-Hua

    2013-09-01

    An all-silicone zoom lens is fabricated. A tunable metal ringer is fettered around the side edge of the lens. A nylon rope linking a motor is tied, encircling the notch in the metal ringer. While the motor is operating, the rope can shrink or release to change the focal length of the lens. A calculation method is developed to obtain the focal length and the zoom ratio. The testing is carried out in succession. The testing values are compared with the calculated ones, and they tally with each other well. Finally, the imaging performance of the all-silicone lens is demonstrated. The all-silicone lens has potential uses in cellphone cameras, notebook cameras, micro monitor lenses, etc.

  13. The DES Bright Arcs Survey: Hundreds of Candidate Strongly Lensed Galaxy Systems from the Dark Energy Survey Science Verification and Year 1 Observations

    Energy Technology Data Exchange (ETDEWEB)

    Diehl, H. T.; Buckley-Geer, E. J.; Lindgren, K. A.; Nord, B.; Gaitsch, H.; Gaitsch, S.; Lin, H.; Allam, S.; Collett, T. E.; Furlanetto, C.; Gill, M. S. S.; More, A.; Nightingale, J.; Odden, C.; Pellico, A.; Tucker, D. L.; Costa, L. N. da; Neto, A. Fausti; Kuropatkin, N.; Soares-Santos, M.; Welch, B.; Zhang, Y.; Frieman, J. A.; Abdalla, F. B.; Annis, J.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Burke, D. L.; Rosell, A. Carnero; Kind, M. Carrasco; Carretero, J.; Cunha, C. E.; D’Andrea, C. B.; Desai, S.; Dietrich, J. P.; Drlica-Wagner, A.; Evrard, A. E.; Finley, D. A.; Flaugher, B.; García-Bellido, J.; Gerdes, D. W.; Goldstein, D. A.; Gruen, D.; Gruendl, R. A.; Gschwend, J.; Gutierrez, G.; James, D. J.; Kuehn, K.; Kuhlmann, S.; Lahav, O.; Li, T. S.; Lima, M.; Maia, M. A. G.; Marshall, J. L.; Menanteau, F.; Miquel, R.; Nichol, R. C.; Nugent, P.; Ogando, R. L. C.; Plazas, A. A.; Reil, K.; Romer, A. K.; Sako, M.; Sanchez, E.; Santiago, B.; Scarpine, V.; Schindler, R.; Schubnell, M.; Sevilla-Noarbe, I.; Sheldon, E.; Smith, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thomas, D.; Walker, A. R.

    2017-09-01

    We report the results of our searches for strong gravitational lens systems in the Dark Energy Survey (DES) Science Verication and Year 1 observations. The Science Verication data spans approximately 250 sq. deg. with median i

  14. Off-axis holographic lens spectrum-splitting photovoltaic system for direct and diffuse solar energy conversion.

    Science.gov (United States)

    Vorndran, Shelby D; Chrysler, Benjamin; Wheelwright, Brian; Angel, Roger; Holman, Zachary; Kostuk, Raymond

    2016-09-20

    This paper describes a high-efficiency, spectrum-splitting photovoltaic module that uses an off-axis volume holographic lens to focus and disperse incident solar illumination to a rectangular shaped high-bandgap indium gallium phosphide cell surrounded by strips of silicon cells. The holographic lens design allows efficient collection of both direct and diffuse illumination to maximize energy yield. We modeled the volume diffraction characteristics using rigorous coupled-wave analysis, and simulated system performance using nonsequential ray tracing and PV cell data from the literature. Under AM 1.5 illumination conditions the simulated module obtained a 30.6% conversion efficiency. This efficiency is a 19.7% relative improvement compared to the more efficient cell in the system (silicon). The module was also simulated under a typical meteorological year of direct and diffuse irradiance in Tucson, Arizona, and Seattle, Washington. Compared to a flat panel silicon module, the holographic spectrum splitting module obtained a relative improvement in energy yield of 17.1% in Tucson and 14.0% in Seattle. An experimental proof-of-concept volume holographic lens was also fabricated in dichromated gelatin to verify the main characteristics of the system. The lens obtained an average first-order diffraction efficiency of 85.4% across the aperture at 532 nm.

  15. Near-field optical recording based on solid immersion lens system

    Science.gov (United States)

    Hong, Tao; Wang, Jia; Wu, Yan; Li, Dacheng

    2002-09-01

    Near-field optical recording based on solid immersion lens (SIL) system has attracted great attention in the field of high-density data storage in recent years. The diffraction limited spot size in optical recording and lithography can be decreased by utilizing the SIL. The SIL near-field optical storage has advantages of high density, mass storage capacity and compatibility with many technologies well developed. We have set up a SIL near-field static recording system. The recording medium is placed on a 3-D scanning stage with the scanning range of 70×70×70μm and positioning accuracy of sub-nanometer, which will ensure the rigorous separation control in SIL system and the precision motion of the recording medium. The SIL is mounted on an inverted microscope. The focusing between long working distance objective and SIL can be monitored and observed by the CCD camera and eyes. Readout signal can be collected by a detector. Some experiments have been performed based on the SIL near-field recording system. The attempt of the near-field recording on photochromic medium has been made and the resolution improvement of the SIL has been presented. The influence factors in SIL near-field recording system are also discussed in the paper.

  16. Parametric transformation of weak gravitational wave into electromagnetic one in a three-level system

    International Nuclear Information System (INIS)

    Tagirov, Eh.A.

    1985-01-01

    A model of resonance parametric transformation of a gravitational wave to electromagnetic one is considered. Two plane monochromatic waves: a strong electromagnetic and weak gravitational - interacting in a medium generate at difference and sum frequencies an electromagnetic wave in a direction determined with the condition of spatial wave synchronism. Rarefied cold gas or beam of elementary emitters (''molecules'') serve as a medium model. Coefficients of parametric transformation have been determined

  17. Hydrogeology in the area of a freshwater lens in the Floridan aquifer system, northeast Seminole County, Florida

    Science.gov (United States)

    Phelps, G.G.; Rohrer, K.P.

    1987-01-01

    Northeast Seminole County, Florida, contains an isolated recharge area of the Floridan aquifer system that forms a freshwater lens completely surrounded by saline water. The freshwater lens covers an area of about 22 sq mi surrounding the town of Geneva, and generally is enclosed by the 25 ft land surface altitude contour. Thickness of the lens is about 350 ft in the center of the recharge area. The geohydrologic units in descending order consist of the post-Miocene sand and shell of the surficial aquifer; Miocene clay, sand, clay, and shell that form a leaky confining bed; and permeable Eocene limestones of the Floridan aquifer system. The freshwater lens is the result of local rainfall flushing ancient seawater from the Floridan aquifer system. Sufficient quantities of water for domestic and small public supply systems are available from the Floridan aquifer system in the Geneva area. The limiting factor for water supply in the area is the chemical quality of the water. Chloride concentrations range from recharge area to about 5,100 mg/L near the St. Johns River southeast of Geneva. Constituents analyzed included sulfate (range 1 to 800 mg/L), hardness (range 89 to 2,076 mg/L), and iron (range 34 to 6,600 mg/L). Because the freshwater lens results entirely from local recharge, the long-term sustained freshwater yield of the aquifer in the Geneva area depends on the local recharge rate. In 1982, recharge was about 13 inches (13.8 million gal/day). Average recharge for 1941 through 1970 was estimated to be about 11 inches (11.3 million gal/day). Freshwater that recharges the aquifer in the Geneva area is either pumped out or flows north and northeast to discharge near or in the St. Johns River. Average annual outflow from the lens is about 10 in/yr. No measurable change in the size or location of the freshwater lens has occurred since studies in the early 1950's. (Lantz-PTT)

  18. Biaxial-Type Concentrated Solar Tracking System with a Fresnel Lens for Solar-Thermal Applications

    Directory of Open Access Journals (Sweden)

    Tsung Chieh Cheng

    2016-04-01

    Full Text Available In this paper, an electromechanical, biaxial-type concentrated solar tracking system was designed for solar-thermal applications. In our tracking system, the sunlight was concentrated by the microstructure of Fresnel lens to the heating head of the Stirling engine and two solar cells were installed to provide the power for tracking system operation. In order to obtain the maximum sun power, the tracking system traces the sun with the altitude-azimuth biaxial tracing method and accurately maintains the sun’s radiation perpendicular to the plane of the heating head. The results indicated that the position of heating head is an important factor for power collection. If the sunlight can be concentrated to completely cover the heating head with small heat loss, we can obtain the maximum temperature of the heating head of the Stirling engine. Therefore, the temperature of heating head can be higher than 1000 °C in our experiment on a sunny day. Moreover, the results also revealed that the temperature decrease of the heating head is less than the power decrease of solar irradiation because of the latent heat of copper and the small heat loss from the heating head.

  19. A POSSIBLE BINARY SYSTEM OF A STELLAR REMNANT IN THE HIGH-MAGNIFICATION GRAVITATIONAL MICROLENSING EVENT OGLE-2007-BLG-514

    Energy Technology Data Exchange (ETDEWEB)

    Miyake, N.; Abe, F.; Furusawa, K.; Itow, Y. [Solar-Terrestrial Environment Laboratory, Nagoya University, Nagoya 464-8601 (Japan); Udalski, A.; Kubiak, M.; Szymanski, M. K.; Pietrzynski, G.; Soszynski, I.; Ulaczyk, K.; Wyrzykowski, L. [Warsaw University Observatory, Al. Ujazdowskie 4, 00-478 Warszawa (Poland); Sumi, T. [Department of Earth and Space Science, Osaka University, Osaka 560-0043 (Japan); Bennett, D. P. [Department of Physics, University of Notre Dame, 225 Nieuwland Science Hall, Notre Dame, IN 46556 (United States); Dong, S.; Gould, A. [Department of Astronomy, Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Street, R. A. [Las Cumbres Observatory, 6740B Cortona Drive, Suite 102, Goleta, CA 93117 (United States); Greenhill, J. [School of Maths and Physics, University of Tasmania, Private bag 37, GPO Hobart, Tasmania 7001 (Australia); Bond, I. A. [Institute for Information and Mathematical Sciences, Massey University, Private Bag 102-904, Auckland 1330 (New Zealand); Fukui, A. [Okayama Astrophysical Observatory, National Astronomical Observatory of Japan, Okayama 719-0232 (Japan); Holderness, S., E-mail: nmiyake@stelab.nagoya-u.ac.jp [Computer Science Department, University of Auckland, Auckland (New Zealand); Collaboration: OGLE Collaboration; MOA Collaboration; muFUN Collaboration; RoboNet Collaboration; PLANET Collaboration; and others

    2012-06-20

    We report the extremely high-magnification (A > 1000) binary microlensing event OGLE-2007-BLG-514. We obtained good coverage around the double peak structure in the light curve via follow-up observations from different observatories. The binary lens model that includes the effects of parallax (known orbital motion of the Earth) and orbital motion of the lens yields a binary lens mass ratio of q = 0.321 {+-} 0.007 and a projected separation of s = 0.072 {+-} 0.001 in units of the Einstein radius. The parallax parameters allow us to determine the lens distance D{sub L} = 3.11 {+-} 0.39 kpc and total mass M{sub L} = 1.40 {+-} 0.18 M{sub Sun }; this leads to the primary and secondary components having masses of M{sub 1} = 1.06 {+-} 0.13 M{sub Sun} and M{sub 2} = 0.34 {+-} 0.04 M{sub Sun }, respectively. The parallax model indicates that the binary lens system is likely constructed by the main-sequence stars. On the other hand, we used a Bayesian analysis to estimate probability distributions by the model that includes the effects of xallarap (possible orbital motion of the source around a companion) and parallax (q = 0.270 {+-} 0.005, s = 0.083 {+-} 0.001). The primary component of the binary lens is relatively massive, with M{sub 1} = 0.9{sup +4.6}{sub -0.3} M{sub Sun} and it is at a distance of D{sub L} = 2.6{sup +3.8}{sub -0.9} kpc. Given the secure mass ratio measurement, the companion mass is therefore M{sub 2} = 0.2{sup +1.2}{sub -0.1} M{sub Sun }. The xallarap model implies that the primary lens is likely a stellar remnant, such as a white dwarf, a neutron star, or a black hole.

  20. Dynamics of Fermat potentials in nonperturbative gravitational lensing

    International Nuclear Information System (INIS)

    Frittelli, Simonetta; Newman, Ezra T.

    2002-01-01

    We present a framework, based on the null-surface formulation of general relativity, for discussing the dynamics of Fermat potentials for gravitational lensing in a generic situation without approximations of any kind. Additionally, we derive two lens equations: one for the case of thick compact lenses and the other one for lensing by gravitational waves. These equations in principle generalize the astrophysical scheme for lensing by removing the thin-lens approximation while retaining the weak fields

  1. Measuring the spin of black holes in binary systems using gravitational waves.

    Science.gov (United States)

    Vitale, Salvatore; Lynch, Ryan; Veitch, John; Raymond, Vivien; Sturani, Riccardo

    2014-06-27

    Compact binary coalescences are the most promising sources of gravitational waves (GWs) for ground-based detectors. Binary systems containing one or two spinning black holes are particularly interesting due to spin-orbit (and eventual spin-spin) interactions and the opportunity of measuring spins directly through GW observations. In this Letter, we analyze simulated signals emitted by spinning binaries with several values of masses, spins, orientations, and signal-to-noise ratios, as detected by an advanced LIGO-Virgo network. We find that for moderate or high signal-to-noise ratio the spin magnitudes can be estimated with errors of a few percent (5%-30%) for neutron star-black hole (black hole-black hole) systems. Spins' tilt angle can be estimated with errors of 0.04 rad in the best cases, but typical values will be above 0.1 rad. Errors will be larger for signals barely above the threshold for detection. The difference in the azimuth angles of the spins, which may be used to check if spins are locked into resonant configurations, cannot be constrained. We observe that the best performances are obtained when the line of sight is perpendicular to the system's total angular momentum and that a sudden change of behavior occurs when a system is observed from angles such that the plane of the orbit can be seen both from above and below during the time the signal is in band. This study suggests that direct measurement of black hole spin by means of GWs can be as precise as what can be obtained from x-ray binaries.

  2. Objective lens

    Science.gov (United States)

    Olczak, Eugene G. (Inventor)

    2011-01-01

    An objective lens and a method for using same. The objective lens has a first end, a second end, and a plurality of optical elements. The optical elements are positioned between the first end and the second end and are at least substantially symmetric about a plane centered between the first end and the second end.

  3. Compliance among soft contact lens wearers.

    Science.gov (United States)

    Kuzman, Tomislav; Kutija, Marija Barisić; Masnec, Sanja; Jandroković, Sonja; Mrazovac, Danijela; Jurisić, Darija; Skegro, Ivan; Kalauz, Miro; Kordić, Rajko

    2014-12-01

    Contact lens compliance is proven to be crucial for preventing lens wear-related complications because of the interdependence of the steps in lens care regime and their influence on lens system microbial contamination. Awareness of the patients' lens handling compliance as well as correct recognition of non-compliant behaviours is the basis for creating more targeted strategies for patient education. The aim of this study was to investigate compliance among soft contact lens (SCL) wearers in different aspects of lens care handling and wearing habits. In our research 50 asymptomatic lens wearers filled out a questionnaire containing demographic data, lens type, hygiene and wearing habits, lenses and lens care system replacement schedule and self-evaluation of contact lens handling hygiene. We established criteria of compliance according to available manufacturer's recommendations, prior literature and our clinical experience. Only 2 (4%) of patients were fully compliant SCL wearers. The most common non-compliant behaviours were insufficient lens solution soaking time (62%), followed by failure to daily exchange lens case solution and showering while wearing lenses. 44% of patients reported storing lenses in saline solution. Mean lens storage case replacement was 3.6 months, with up to 78% patients replacing lens case at least once in 3 months. Average grade in self evaluating level of compliance was very good (4 +/- 0.78) (from 1-poor level of hygiene to 5-great level of hygiene). Lens wearers who reported excessive daily lens wear and more than 10 years of lens wearing experience were also found to be less compliant with other lens system care procedures. (t = -2.99, df=47, p rate, self grading was relatively high. Therefore, these results indicate the need for patient education and encouragement of better lens wearing habits and all of the lens maintenance steps at each patient visit.

  4. Mechanical and electrical design of the Fermilab lithium lens and transformer system

    International Nuclear Information System (INIS)

    Dugan, G.; Hojvat, C.; Lennox, A.J.; Biallas, G.; Cilyo, F.; Leininger, M.; McCarthy, J.; Sax, W.; Snowdon, S.

    1983-03-01

    A lithium-lens focusing device will be used for the collection of 8-GeV antiprotons in the Fermilab Tevatron I Project. The details of the mechanical and electrical design of the Fermilab lens and its associated toroidal transformer are discussed. The lens, with a radium of 1 cm and length 15 cm, is expected to achieve gradients of 1000 T/m for a focal distance of 0.225 m. The gradient requires a current on the order of 5 x 10 5 A, resulting in large electromagnetic and thermal stresses. The power-supply discharge current and the effect of the inductance of the power leads and connections are minimized by the use of a toroidal matching transformer surrounding the lens itself

  5. The impact of a preloaded intraocular lens delivery system on operating room efficiency in routine cataract surgery

    Directory of Open Access Journals (Sweden)

    Jones JJ

    2016-06-01

    Full Text Available Jason J Jones,1 Jeffrey Chu,2 Jacob Graham,2 Serge Zaluski,3 Guillermo Rocha4 1Jones Eye Clinic, Sioux City, IA, 2Quorum Consulting Inc., San Francisco, CA, USA; 3VISIS, Perpignan, France; 4Ocular Microsurgery & Laser Centre, Brandon, MB, Canada Purpose: The aim of this study was to evaluate the operational impact of using preloaded intraocular lens (IOL delivery systems compared with manually loaded IOL delivery processes during routine cataract surgeries. Methods: Time and motion data, staff and surgery schedules, and cost accounting reports were collected across three sites located in the US, France, and Canada. Time and motion data were collected for manually loaded IOL processes and preloaded IOL delivery systems over four surgery days. Staff and surgery schedules and cost accounting reports were collected during the 2 months prior and after introduction of the preloaded IOL delivery system. Results: The study included a total of 154 routine cataract surgeries across all three sites. Of these, 77 surgeries were performed using a preloaded IOL delivery system, and the remaining 77 surgeries were performed using a manual IOL delivery process. Across all three sites, use of the preloaded IOL delivery system significantly decreased mean total case time by 6.2%–12.0% (P<0.001 for data from Canada and the US and P<0.05 for data from France. Use of the preloaded delivery system also decreased surgeon lens time, surgeon delays, and eliminated lens touches during IOL preparation. Conclusion: Compared to a manual IOL delivery process, use of a preloaded IOL delivery system for cataract surgery reduced total case time, total surgeon lens time, surgeon delays, and eliminated IOL touches. The time savings provided by the preloaded IOL delivery system provide an opportunity for sites to improve routine cataract surgery throughput without impacting surgeon or staff capacity. Keywords: time and motion, provider impact, surgical throughput, IOL

  6. Single Lens Dual-Aperture 3D Imaging System: Color Modeling

    Science.gov (United States)

    Bae, Sam Y.; Korniski, Ronald; Ream, Allen; Fritz, Eric; Shearn, Michael

    2012-01-01

    In an effort to miniaturize a 3D imaging system, we created two viewpoints in a single objective lens camera. This was accomplished by placing a pair of Complementary Multi-band Bandpass Filters (CMBFs) in the aperture area. Two key characteristics about the CMBFs are that the passbands are staggered so only one viewpoint is opened at a time when a light band matched to that passband is illuminated, and the passbands are positioned throughout the visible spectrum, so each viewpoint can render color by taking RGB spectral images. Each viewpoint takes a different spectral image from the other viewpoint hence yielding a different color image relative to the other. This color mismatch in the two viewpoints could lead to color rivalry, where the human vision system fails to resolve two different colors. The difference will be closer if the number of passbands in a CMBF increases. (However, the number of passbands is constrained by cost and fabrication technique.) In this paper, simulation predicting the color mismatch is reported.

  7. Gravitational waves from gravitational collapse

    Energy Technology Data Exchange (ETDEWEB)

    Fryer, Christopher L [Los Alamos National Laboratory; New, Kimberly C [Los Alamos National Laboratory

    2008-01-01

    Gravitational wave emission from stellar collapse has been studied for nearly four decades. Current state-of-the-art numerical investigations of collapse include those that use progenitors with more realistic angular momentum profiles, properly treat microphysics issues, account for general relativity, and examine non-axisymmetric effects in three dimensions. Such simulations predict that gravitational waves from various phenomena associated with gravitational collapse could be detectable with ground-based and space-based interferometric observatories. This review covers the entire range of stellar collapse sources of gravitational waves: from the accretion induced collapse of a white dwarf through the collapse down to neutron stars or black holes of massive stars to the collapse of supermassive stars.

  8. Gravitational Waves from Gravitational Collapse

    Directory of Open Access Journals (Sweden)

    Chris L. Fryer

    2011-01-01

    Full Text Available Gravitational-wave emission from stellar collapse has been studied for nearly four decades. Current state-of-the-art numerical investigations of collapse include those that use progenitors with more realistic angular momentum profiles, properly treat microphysics issues, account for general relativity, and examine non-axisymmetric effects in three dimensions. Such simulations predict that gravitational waves from various phenomena associated with gravitational collapse could be detectable with ground-based and space-based interferometric observatories. This review covers the entire range of stellar collapse sources of gravitational waves: from the accretion-induced collapse of a white dwarf through the collapse down to neutron stars or black holes of massive stars to the collapse of supermassive stars.

  9. Gravitational Waves from Gravitational Collapse.

    Science.gov (United States)

    Fryer, Chris L; New, Kimberly C B

    2011-01-01

    Gravitational-wave emission from stellar collapse has been studied for nearly four decades. Current state-of-the-art numerical investigations of collapse include those that use progenitors with more realistic angular momentum profiles, properly treat microphysics issues, account for general relativity, and examine non-axisymmetric effects in three dimensions. Such simulations predict that gravitational waves from various phenomena associated with gravitational collapse could be detectable with ground-based and space-based interferometric observatories. This review covers the entire range of stellar collapse sources of gravitational waves: from the accretion-induced collapse of a white dwarf through the collapse down to neutron stars or black holes of massive stars to the collapse of supermassive stars. Supplementary material is available for this article at 10.12942/lrr-2011-1.

  10. Gravitational wave radiation from a double white dwarf system inside our galaxy: a potential method for seeking strange dwarfs

    Institute of Scientific and Technical Information of China (English)

    Zhan-Kui Lü; Shi-Wei Wu; Zhi-Cheng Zeng

    2009-01-01

    Like the investigation of double white dwarf (DWD) systems, strange dwarf (SD) - white dwarf (WD) system evolution in Laser Interferometer Space Antenna (LISA)'s absolute amplitude-frequency diagram is investigated. Since there is a strange quark core inside an SD, SDs' radii are significantly smaller than the value predicted by the standard WD model, which may strongly affect the gravitational wave (GW) signal in the mass-transferring phases of binary systems. We study how an SD-WD binary evolves across LISA's absolute amplitude-frequency diagram. In principle, we provide an executable way to detect SDs in the Galaxy's DWD systems by radically new windows offered by GW detectors.

  11. Testing general relativity using Bayesian model selection: Applications to observations of gravitational waves from compact binary systems

    International Nuclear Information System (INIS)

    Del Pozzo, Walter; Veitch, John; Vecchio, Alberto

    2011-01-01

    Second-generation interferometric gravitational-wave detectors, such as Advanced LIGO and Advanced Virgo, are expected to begin operation by 2015. Such instruments plan to reach sensitivities that will offer the unique possibility to test general relativity in the dynamical, strong-field regime and investigate departures from its predictions, in particular, using the signal from coalescing binary systems. We introduce a statistical framework based on Bayesian model selection in which the Bayes factor between two competing hypotheses measures which theory is favored by the data. Probability density functions of the model parameters are then used to quantify the inference on individual parameters. We also develop a method to combine the information coming from multiple independent observations of gravitational waves, and show how much stronger inference could be. As an introduction and illustration of this framework-and a practical numerical implementation through the Monte Carlo integration technique of nested sampling-we apply it to gravitational waves from the inspiral phase of coalescing binary systems as predicted by general relativity and a very simple alternative theory in which the graviton has a nonzero mass. This method can (and should) be extended to more realistic and physically motivated theories.

  12. Gravitational lensing

    CERN Document Server

    Dodelson, Scott

    2017-01-01

    Gravitational lensing is a consequence of general relativity, where the gravitational force due to a massive object bends the paths of light originating from distant objects lying behind it. Using very little general relativity and no higher level mathematics, this text presents the basics of gravitational lensing, focusing on the equations needed to understand the phenomena. It then applies them to a diverse set of topics, including multiply imaged objects, time delays, extrasolar planets, microlensing, cluster masses, galaxy shape measurements, cosmic shear, and lensing of the cosmic microwave background. This approach allows undergraduate students and others to get quickly up to speed on the basics and the important issues. The text will be especially relevant as large surveys such as LSST and Euclid begin to dominate the astronomical landscape. Designed for a one semester course, it is accessible to anyone with two years of undergraduate physics background.

  13. Critical Effects in Gravitational Collapse

    International Nuclear Information System (INIS)

    Chmaj, T.

    2000-01-01

    The models of gravitational collapse of a dynamical system are investigated by means of the Einstein equations. Different types conjunctions to gravitational field are analyzed and it is shown that in the case of week scalar field (low energy density) the system evaluated to flat space while in the case of strong field (high energy density) to black hole

  14. THE BOSS EMISSION-LINE LENS SURVEY (BELLS). I. A LARGE SPECTROSCOPICALLY SELECTED SAMPLE OF LENS GALAXIES AT REDSHIFT {approx}0.5

    Energy Technology Data Exchange (ETDEWEB)

    Brownstein, Joel R.; Bolton, Adam S.; Pandey, Parul [Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112 (United States); Schlegel, David J. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Eisenstein, Daniel J. [Harvard College Observatory, 60 Garden Street, MS 20, Cambridge, MA 02138 (United States); Kochanek, Christopher S. [Department of Astronomy and Center for Cosmology and Astroparticle Physics, Ohio State University, Columbus, OH 43210 (United States); Connolly, Natalia [Department of Physics, Hamilton College, Clinton, NY 13323 (United States); Maraston, Claudia [Institute of Cosmology and Gravitation, University of Portsmouth, Portsmouth PO1 3FX (United Kingdom); Seitz, Stella [University Observatory Munich, Scheinstrasse 1, 81679 Muenchen (Germany); Wake, David A. [Department of Astronomy, Yale University, New Haven, CT 06520 (United States); Wood-Vasey, W. Michael [Pittsburgh Center for Particle Physics, Astrophysics, and Cosmology (PITT-PACC), Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260 (United States); Brinkmann, Jon [Apache Point Observatory, P.O. Box 59, Sunspot, NM 88349 (United States); Schneider, Donald P. [Department of Astronomy and Astrophysics and Institute for Gravitation and the Cosmos, Pennsylvania State University, University Park, PA 16802 (United States); Weaver, Benjamin A. [Center for Cosmology and Particle Physics, New York University, New York, NY 10003 (United States)

    2012-01-01

    We present a catalog of 25 definite and 11 probable strong galaxy-galaxy gravitational lens systems with lens redshifts 0.4 {approx}< z {approx}< 0.7, discovered spectroscopically by the presence of higher-redshift emission lines within the Baryon Oscillation Spectroscopic Survey (BOSS) of luminous galaxies, and confirmed with high-resolution Hubble Space Telescope (HST) images of 44 candidates. Our survey extends the methodology of the Sloan Lens Advanced Camera for Surveys survey (SLACS) to higher redshift. We describe the details of the BOSS spectroscopic candidate detections, our HST ACS image processing and analysis methods, and our strong gravitational lens modeling procedure. We report BOSS spectroscopic parameters and ACS photometric parameters for all candidates, and mass-distribution parameters for the best-fit singular isothermal ellipsoid models of definite lenses. Our sample to date was selected using only the first six months of BOSS survey-quality spectroscopic data. The full five-year BOSS database should produce a sample of several hundred strong galaxy-galaxy lenses and in combination with SLACS lenses at lower redshift, strongly constrain the redshift evolution of the structure of elliptical, bulge-dominated galaxies as a function of luminosity, stellar mass, and rest-frame color, thereby providing a powerful test for competing theories of galaxy formation and evolution.

  15. Gravitational Physics

    OpenAIRE

    Schäfer, G.; Schutz, B.

    1996-01-01

    Gravity is truly universal. It is the force that pulls us to the Earth, that keeps the planets and moons in their orbits, and that causes the tides on the Earth to ebb and flow. It even keeps the Sun shining. Yet on a laboratory scale gravity is extremely weak. The Coulomb force between two protons is 1039 times stronger than the gravitational force between them. Moreover, Newton's gravitational constant is the least accurately known of the fundamental constants: it has been measured to 1 par...

  16. Astrometric Observation of MACHO Gravitational Microlensing

    Science.gov (United States)

    Boden, A. F.; Shao, M.; Van Buren, D.

    1997-01-01

    This paper discusses the prospects for astrometric observation of MACHO gravitational microlensing events. We derive the expected astrometric observables for a simple microlensing event assuming a dark MACHO, and demonstrate that accurate astrometry can determine the lens mass, distance, and proper motion in a very general fashion.

  17. Gravitational lensing by a regular black hole

    International Nuclear Information System (INIS)

    Eiroa, Ernesto F; Sendra, Carlos M

    2011-01-01

    In this paper, we study a regular Bardeen black hole as a gravitational lens. We find the strong deflection limit for the deflection angle, from which we obtain the positions and magnifications of the relativistic images. As an example, we apply the results to the particular case of the supermassive black hole at the center of our galaxy.

  18. Gravitational lensing by a regular black hole

    Energy Technology Data Exchange (ETDEWEB)

    Eiroa, Ernesto F; Sendra, Carlos M, E-mail: eiroa@iafe.uba.ar, E-mail: cmsendra@iafe.uba.ar [Instituto de Astronomia y Fisica del Espacio, CC 67, Suc. 28, 1428, Buenos Aires (Argentina)

    2011-04-21

    In this paper, we study a regular Bardeen black hole as a gravitational lens. We find the strong deflection limit for the deflection angle, from which we obtain the positions and magnifications of the relativistic images. As an example, we apply the results to the particular case of the supermassive black hole at the center of our galaxy.

  19. A new gravitational N-body simulation algorithm for investigation of Lagrangian turbulence in astrophysical and cosmological systems

    Energy Technology Data Exchange (ETDEWEB)

    Rosa, Reinaldo Roberto; Gomes, Vitor; Araujo, Amarisio [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil); Clua, Esteban [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil)

    2011-07-01

    Full text: Turbulent-like behaviour is an important and recent ingredient in the investigation of large-scale structure formation in the observable universe. Recently, an established statistical method was used to demonstrate the importance of considering chaotic advection (or Lagrange turbulence) in combination with gravitational instabilities in the {Lambda}-CDM simulations performed from the Virgo Consortium (VC). However, the Hubble volumes simulated from GADGET-VC algorithm have some limitations for direct Lagrangian data analysis due to the large amount of data and no real time computation for particle kinetic velocity along the dark matter structure evolution. Hence, the Lab for Computing and Applied Mathematics at INPE, Brazil, has been working for the past two years in computational environments to achieve the so-called COsmic LAgrangian TUrbulence Simulator (COLATUS) allowing N-body simulation from a Lagrangian perspective. The COLATUS prototype, as usual packages, computes gravitational forces with a hierarchical tree algorithm in combination with a local particle kinetic velocity vector in a particle-mesh scheme for long-range gravitational forces. In the present work we show preliminary simulations for 106 particles showing Lagrangian power spectra for individual particles converging to a stable power-law of S(v) {approx} v{sup 5}. The code may be run on an arbitrary number of processors, with a restriction to powers of two. COLATUS has a potential to evaluate complex kinematics of a single particle in a simulated N-body gravitational system. However, to introduce this method as a GNU software further improvements and investigations are necessary. Then, the mapping techniques for the N-body problem incorporating radiation pressure and fluid characteristics by means of smoothed particle hydrodynamics (SPH) are discussed. Finally, we focus on the all-pairs computational kernel and its future GPU implementation using the NVIDIA CUDA programming model

  20. A new gravitational N-body simulation algorithm for investigation of Lagrangian turbulence in astrophysical and cosmological systems

    International Nuclear Information System (INIS)

    Rosa, Reinaldo Roberto; Gomes, Vitor; Araujo, Amarisio; Clua, Esteban

    2011-01-01

    Full text: Turbulent-like behaviour is an important and recent ingredient in the investigation of large-scale structure formation in the observable universe. Recently, an established statistical method was used to demonstrate the importance of considering chaotic advection (or Lagrange turbulence) in combination with gravitational instabilities in the Λ-CDM simulations performed from the Virgo Consortium (VC). However, the Hubble volumes simulated from GADGET-VC algorithm have some limitations for direct Lagrangian data analysis due to the large amount of data and no real time computation for particle kinetic velocity along the dark matter structure evolution. Hence, the Lab for Computing and Applied Mathematics at INPE, Brazil, has been working for the past two years in computational environments to achieve the so-called COsmic LAgrangian TUrbulence Simulator (COLATUS) allowing N-body simulation from a Lagrangian perspective. The COLATUS prototype, as usual packages, computes gravitational forces with a hierarchical tree algorithm in combination with a local particle kinetic velocity vector in a particle-mesh scheme for long-range gravitational forces. In the present work we show preliminary simulations for 106 particles showing Lagrangian power spectra for individual particles converging to a stable power-law of S(v) ∼ v 5 . The code may be run on an arbitrary number of processors, with a restriction to powers of two. COLATUS has a potential to evaluate complex kinematics of a single particle in a simulated N-body gravitational system. However, to introduce this method as a GNU software further improvements and investigations are necessary. Then, the mapping techniques for the N-body problem incorporating radiation pressure and fluid characteristics by means of smoothed particle hydrodynamics (SPH) are discussed. Finally, we focus on the all-pairs computational kernel and its future GPU implementation using the NVIDIA CUDA programming model. (author)

  1. Comparing the Zeiss Callisto Eye and the Alcon Verion Image Guided System Toric Lens Alignment Technologies.

    Science.gov (United States)

    Hura, Arjan S; Osher, Robert H

    2017-07-01

    To compare the alignment meridian generated by the Zeiss Callisto Eye (Carl Zeiss AG, Dublin, CA) and the Alcon Verion Image Guided System (Alcon Laboratories, Inc., Fort Worth, TX). In this retrospective comparative evaluation of technology, intraoperative images were captured at different steps in the same surgery, allowing the comparison of the guidance lines generated by the Verion system to the parallel guidance lines generated by the Callisto Eye system. Measurements of each hemi-meridian were quantified using Adobe Photoshop 2015 CC software (Adobe Systems, San Jose, CA). The numbers of degrees separating these alignment meridians were calculated, entered into a database, and analyzed. The authors found that of 98 captured images of 16 eyes, the two technologies were identical in 0 eyes (θ 1 = θ 2 = 0), similar by 3° in 52 (53%) captured images (θ 1 ≠ θ 2 ≠ 0), and different by at least 3° in 46 (47%) captured images (θ 1 ≠ θ 2 ≠ 0). The target meridians were superimposed, the target lines were minimally separated, and the target lines were dissimilar. It was noted that some intraoperative variation occurred from measurement to measurement. Within the small group of 16 cases of routine toric lens implantation in this study, the absolute average number of degrees of misalignment between the Verion and Callisto Eye systems was 3.355 for θ 1 and 3.838 for θ 2 . On average, the intraoperative variation termed "drift" was noted to be 3.963° for θ 1 , and 4.557° for θ 2 . The authors found that small deviations were frequent when comparing two sophisticated technologies. Although deviations greater than 3° occurred in less than 47% of captured images from 16 eyes, smaller but significant variations of less than 3° occurred in 53% of captured images from 16 eyes. It was rare to identify a large deviation. However, the authors identified "drift" in the same eye when measurements were taken at different times. The results indicate that the two

  2. The Sloan Lens ACS Survey. I. A large spectroscopically selected sample of massive early-type lens galaxies

    NARCIS (Netherlands)

    Bolton, AS; Burles, S; Koopmans, LVE; Treu, T; Moustakas, LA

    2006-01-01

    The Sloan Lens ACS (SLACS) Survey is an efficient Hubble Space Telescope (HST) Snapshot imaging survey for new galaxy-scale strong gravitational lenses. The targeted lens candidates are selected spectroscopically from the Sloan Digital Sky Survey (SDSS) database of galaxy spectra for having multiple

  3. Design and Optimization of Fresnel Lens for High Concentration Photovoltaic System

    Directory of Open Access Journals (Sweden)

    Lei Jing

    2014-01-01

    Full Text Available A practical optimization design is proposed, in which the solar direct light spectrum and multijunction cell response range are taken into account in combination, particularly for the Fresnel concentrators with a high concentration and a small aspect ratio. In addition, the change of refractive index due to temperature variation in outdoor operation conditions is also considered in the design stage. The calculation results show that this novel Fresnel lens achieves an enhancement of energy efficiency of about 10% compared with conventional Fresnel lens for a given solar spectrum, solar cell response, and corrected sunshine hours of different ambient temperature intervals.

  4. Gravitational Grating

    Science.gov (United States)

    Rahvar, Sohrab

    2018-05-01

    In this work, we study the interaction of the electromagnetic wave (EW) from a distant quasar with the gravitational wave (GW) sourced by the binary stars. While in the regime of geometric optics, the light bending due to this interaction is negligible, we show that the phase shifting on the wavefront of an EW can produce the diffraction pattern on the observer plane. The diffraction of the light (with the wavelength of λe) by the gravitational wave playing the role of gravitational grating (with the wavelength of λg) has the diffraction angle of Δβ ˜ λe/λg. The relative motion of the observer, the source of gravitational wave and the quasar results in a relative motion of the observer through the interference pattern on the observer plane. The consequence of this fringe crossing is the modulation in the light curve of a quasar with the period of few hours in the microwave wavelength. The optical depth for the observation of this phenomenon for a Quasar with the multiple images strongly lensed by a galaxy where the light trajectory of some of the images crosses the lensing galaxy is τ ≃ 0.2. By shifting the time-delay of the light curves of the multiple images in a strong lensed quasar and removing the intrinsic variations of a quasar, our desired signals, as a new method for detection of GWs can be detected.

  5. Image-guided system versus manual marking for toric intraocular lens alignment in cataract surgery.

    Science.gov (United States)

    Webers, Valentijn S C; Bauer, Noel J C; Visser, Nienke; Berendschot, Tos T J M; van den Biggelaar, Frank J H M; Nuijts, Rudy M M A

    2017-06-01

    To compare the accuracy of toric intraocular lens (IOL) alignment using the Verion Image-Guided System versus a conventional manual ink-marking procedure. University Eye Clinic Maastricht, Maastricht, the Netherlands. Prospective randomized clinical trial. Eyes with regular corneal astigmatism of at least 1.25 diopters (D) that required cataract surgery and toric IOL implantation (Acrysof SN6AT3-T9) were randomly assigned to the image-guided group or the manual-marking group. The primary outcome was the alignment of the toric IOL based on preoperative images and images taken immediately after surgery. Secondary outcome measures were residual astigmatism, uncorrected distance visual acuity (UDVA), and complications. The study enrolled 36 eyes (24 patients). The mean toric IOL misalignment was significantly less in the image-guided group than in the manual group 1 hour (1.3 degrees ± 1.6 [SD] versus 2.8 ± 1.8 degrees; P = .02) and 3 months (1.7 ± 1.5 degrees versus 3.1 ± 2.1 degrees; P image-guided group and manual group, respectively (P > .05). The mean UDVA was 0.03 ± 0.10 logarithm of minimum angle of resolution (logMAR) and 0.04 ± 0.09 logMAR, respectively (both P > .05). No intraoperative complications occurred during any surgery. The IOL misalignment was significantly less with digital marking than with manual marking; this did not result in a better UDVA or lower residual refractive astigmatism. Copyright © 2017 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  6. Unique rod lens/video system designed to observe flow conditions in emergency core coolant loops of pressurized water reactors

    International Nuclear Information System (INIS)

    Carter, G.W.

    1979-01-01

    Techniques and equipment are described which are used for video recordings of the single- and two-phase fluid flow tests conducted with the PKL Spool Piece Measurement System designed by Lawrence Livermore Laboratory and EG and G Inc. The instrumented spool piece provides valuable information on what would happen in pressurized water reactor emergency coolant loops should an accident or rupture result in loss of fluid. The complete closed-circuit television video system, including rod lens, light supply, and associated spool mounting fixtures, is discussed in detail. Photographic examples of test flows taken during actual spool piece system operation are shown

  7. The 'gravitating' tensor in the dualistic theory

    International Nuclear Information System (INIS)

    Mahanta, M.N.

    1989-01-01

    The exact microscopic system of Einstein-type field equations of the dualistic gravitation theory is investigated as well as an analysis of the modified energy-momentum tensor or so called 'gravitating' tensor is presented

  8. CNN-coupled Humanoid Panoramic Annular Lens (PAL)-Optical System for Military Applications (Feasibility Study)

    National Research Council Canada - National Science Library

    Greguss, Pal

    2002-01-01

    ...) and the CNN chip for a few military applications. A polar beam splitter will be placed immediately after the relay lens to obtain two image planes, one will be used by the existing 64X64 CNN-UM focal plane array processor chip...

  9. Eye evolution: lens and cornea as an upgrade of animal visual system

    Czech Academy of Sciences Publication Activity Database

    Jonášová, Kristýna; Kozmik, Zbyněk

    2008-01-01

    Roč. 19, č. 2 (2008), s. 71-81 ISSN 1084-9521 R&D Projects: GA AV ČR IAA500520604; GA MŠk(CZ) 1M0520 Institutional research plan: CEZ:AV0Z50520514 Keywords : eye * lens * cornea Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.528, year: 2008

  10. QUANTIFYING THE BIASES OF SPECTROSCOPICALLY SELECTED GRAVITATIONAL LENSES

    International Nuclear Information System (INIS)

    Arneson, Ryan A.; Brownstein, Joel R.; Bolton, Adam S.

    2012-01-01

    Spectroscopic selection has been the most productive technique for the selection of galaxy-scale strong gravitational lens systems with known redshifts. Statistically significant samples of strong lenses provide a powerful method for measuring the mass-density parameters of the lensing population, but results can only be generalized to the parent population if the lensing selection biases are sufficiently understood. We perform controlled Monte Carlo simulations of spectroscopic lens surveys in order to quantify the bias of lenses relative to parent galaxies in velocity dispersion, mass axis ratio, and mass-density profile. For parameters typical of the SLACS and BELLS surveys, we find (1) no significant mass axis ratio detection bias of lenses relative to parent galaxies; (2) a very small detection bias toward shallow mass-density profiles, which is likely negligible compared to other sources of uncertainty in this parameter; (3) a detection bias toward smaller Einstein radius for systems drawn from parent populations with group- and cluster-scale lensing masses; and (4) a lens-modeling bias toward larger velocity dispersions for systems drawn from parent samples with sub-arcsecond mean Einstein radii. This last finding indicates that the incorporation of velocity-dispersion upper limits of non-lenses is an important ingredient for unbiased analyses of spectroscopically selected lens samples. In general, we find that the completeness of spectroscopic lens surveys in the plane of Einstein radius and mass-density profile power-law index is quite uniform, up to a sharp drop in the region of large Einstein radius and steep mass-density profile, and hence that such surveys are ideally suited to the study of massive field galaxies.

  11. Gravitational wave reception by a sphere

    International Nuclear Information System (INIS)

    Ashby, N.; Dreitlein, J.

    1975-01-01

    The reception of gravitational waves by an elastic self-gravitating spherical detector is studied in detail. The equations of motion of a detector driven by a gravitational wave are presented in the intuitively convenient coordinate system of Fermi. An exact analytic solution is given for the homogeneous isotropic sphere. Nonlinear effects of a massive self-gravitating system are computed for a body of mass equal to that of the earth, and are shown to be numerically important

  12. Congestion management of deregulated power systems by optimal setting of Interline Power Flow Controller using Gravitational Search algorithm

    Directory of Open Access Journals (Sweden)

    Akanksha Mishra

    2017-05-01

    Full Text Available In a deregulated electricity market it may at times become difficult to dispatch all the required power that is scheduled to flow due to congestion in transmission lines. An Interline Power Flow Controller (IPFC can be used to reduce the system loss and power flow in the heavily loaded line, improve stability and loadability of the system. This paper proposes a Disparity Line Utilization Factor for the optimal placement and Gravitational Search algorithm based optimal tuning of IPFC to control the congestion in transmission lines. DLUF ranks the transmission lines in terms of relative line congestion. The IPFC is accordingly placed in the most congested and the least congested line connected to the same bus. Optimal sizing of IPFC is carried using Gravitational Search algorithm. A multi-objective function has been chosen for tuning the parameters of the IPFC. The proposed method is implemented on an IEEE-30 bus test system. Graphical representations have been included in the paper showing reduction in LUF of the transmission lines after the placement of an IPFC. A reduction in active power and reactive power loss of the system by about 6% is observed after an optimally tuned IPFC has been included in the power system. The effectiveness of the proposed tuning method has also been shown in the paper through the reduction in the values of the objective functions.

  13. Gravitational Waves - New Perspectives

    International Nuclear Information System (INIS)

    Biesiada, M.

    1999-01-01

    Laser interferometric experiments planned for 2002 will open up a new window onto the Universe. The first part of the paper gives a brief intuitive introduction to gravity waves, detection techniques and enumeration of main astrophysical sources and frequency bands to which they contribute. Then two more specific issues are discussed concerning cosmological perspectives of gravity waves detection. First one is the problem of gravitational lensing of the signal from inspiralling NS-NS binaries. The magnitude of the so called magnification bias is estimated and found non-negligible for some quite realistic lens models, but strongly model-dependent. The second problem is connected with estimates of galactic and extragalactic parts of the stochastic background. The main conclusion from these two examples is that in so far as the cosmological payoff of gravitational wave detection would be high, we should substantially deepen our understanding of basic astrophysical properties of galaxies and their clusters (in terms of mass distribution) in order to draw clear cosmological conclusions. (author)

  14. Numerical investigations of gravitational collapse

    Energy Technology Data Exchange (ETDEWEB)

    Csizmadia, Peter; Racz, Istvan, E-mail: iracz@rmki.kfki.h [RMKI, Budapest, Konkoly Thege Miklos ut 29-33, H-1121 (Hungary)

    2010-03-01

    Some properties of a new framework for simulating generic 4-dimensional spherically symmetric gravitating systems are discussed. The framework can be used to investigate spacetimes that undergo complete gravitational collapse. The analytic setup is chosen to ensure that our numerical method is capable to follow the time evolution everywhere, including the black hole region.

  15. On the gravitational radiation formula

    International Nuclear Information System (INIS)

    Schaefer, G.; Dehnen, H.

    1980-01-01

    For electromagnetically as well as gravitationally bound quantum mechanical many-body systems the coefficients of absorption and induced emission of gravitational radiation are calculated in the first-order approximation. The results are extended subsequently to systems with arbitrary non-Coulomb-like two-particle interaction potentials;it is shown explicitly that in all cases the perturbation of the binding potentials of the bound systems by the incident gravitational wave field itself must be taken into account. With the help of the thermodynamic equilibrium of gravitational radiation and quantised matter, the coefficients for spontaneous emission of gravitational radiation are derived and the gravitational radiation formula for emission of gravitational quadrupole radiation by bound quantum mechanical many-body systems is given. According to the correspondence principle the present result is completely identical with the well known classical radiation formula, by which recent criticism against this formula is refuted. Finally the quantum mechanical absorption cross section for gravitational quadrupole radiation is deduced and compared with the corresponding classical expressions. As a special example the vibrating two-mass quadrupole is treated explicitly. (author)

  16. Gravitation Theory: Empirical Status from Solar System Experiments: All observations to date are consistent with Einstein's general relativity theory of gravity.

    Science.gov (United States)

    Nordtvedt, K L

    1972-12-15

    I have reviewed the historical and contemporary experiments that guide us in choosing a post-Newtonian, relativistic gravitational theory. The foundation experiments essentially constrain gravitation theory to be a metric theory in which matter couples solely to one gravitational field, the metric field, although other cosmological gravitational fields may exist. The metric field for any metric theory can be specified (for the solar system, for our present purposes) by a series of potential terms with several parameters. A variety of experiments specify (or put limits on) the numerical values of the seven parameters in the post-Newtonian metric field, and other such experiments have been planned. The empirical results, to date, yield values of the parameters that are consistent with the predictions of Einstein's general relativity.

  17. Angular momentum exchange by gravitational torques and infall in the circumbinary disk of the protostellar system L1551 NE

    Energy Technology Data Exchange (ETDEWEB)

    Takakuwa, Shigehisa; Ho, Paul T. P. [Academia Sinica Institute of Astronomy and Astrophysics, P.O. Box 23-141, Taipei 10617, Taiwan (China); Saito, Masao [Joint ALMA Observatory, Ave. Alonso de Cordova 3107, Vitacura, Santiago (Chile); Saigo, Kazuya [ALMA Project Office, National Astronomical Observatory of Japan, Osawa 2-21-1, Mitaka, Tokyo 181-8588 (Japan); Matsumoto, Tomoaki [Faculty of Humanity and Environment, Hosei University, Chiyoda-ku, Tokyo 102-8160 (Japan); Lim, Jeremy [Department of Physics, University of Hong Kong, Pokfulam Road (Hong Kong); Hanawa, Tomoyuki, E-mail: takakuwa@asiaa.sinica.edu.tw [Center for Frontier Science, Chiba University, Inage-ku, Chiba 263-8522 (Japan)

    2014-11-20

    We report an ALMA observation of the Class I binary protostellar system L1551 NE in the 0.9 mm continuum, C{sup 18}O (3-2), and {sup 13}CO (3-2) lines at a ∼1.6 times higher resolution and a ∼6 times higher sensitivity than those of our previous SubMillimeter Array (SMA) observations, which revealed a r ∼ 300 AU scale circumbinary disk in Keplerian rotation. The 0.9 mm continuum shows two opposing U-shaped brightenings in the circumbinary disk and exhibits a depression between the circumbinary disk and the circumstellar disk of the primary protostar. The molecular lines trace non-axisymmetric deviations from Keplerian rotation in the circumbinary disk at higher velocities relative to the systemic velocity, where our previous SMA observations could not detect the lines. In addition, we detect inward motion along the minor axis of the circumbinary disk. To explain the newly observed features, we performed a numerical simulation of gas orbits in a Roche potential tailored to the inferred properties of L1551 NE. The observed U-shaped dust features coincide with locations where gravitational torques from the central binary system are predicted to impart angular momentum to the circumbinary disk, producing shocks and hence density enhancements seen as a pair of spiral arms. The observed inward gas motion coincides with locations where angular momentum is predicted to be lowered by the gravitational torques. The good agreement between our observation and model indicates that gravitational torques from the binary stars constitute the primary driver for exchanging angular momentum so as to permit infall through the circumbinary disk of L1551 NE.

  18. REANALYSES OF ANOMALOUS GRAVITATIONAL MICROLENSING EVENTS IN THE OGLE-III EARLY WARNING SYSTEM DATABASE WITH COMBINED DATA

    International Nuclear Information System (INIS)

    Jeong, J.; Park, H.; Han, C.; Gould, A.; Poleski, R.; Udalski, A.; Szymański, M. K.; Pietrzyński, G.; Soszyński, I.; Ulaczyk, K.; Wyrzykowski, Ł.; Abe, F.; Fukunaga, D.; Itow, Y.; Bennett, D. P.; Bond, I. A.; Botzler, C. S.; Freeman, M.; Fukui, A.; Koshimoto, N.

    2015-01-01

    We reanalyze microlensing events in the published list of anomalous events that were observed from the Optical Gravitational Lensing Experiment (OGLE) lensing survey conducted during the 2004–2008 period. In order to check the existence of possible degenerate solutions and extract extra information, we conduct analyses based on combined data from other survey and follow-up observation and consider higher-order effects. Among the analyzed events, we present analyses of eight events for which either new solutions are identified or additional information is obtained. We find that the previous binary-source interpretations of five events are better interpreted by binary-lens models. These events include OGLE-2006-BLG-238, OGLE-2007-BLG-159, OGLE-2007-BLG-491, OGLE-2008-BLG-143, and OGLE-2008-BLG-210. With additional data covering caustic crossings, we detect finite-source effects for six events including OGLE-2006-BLG-215, OGLE-2006-BLG-238, OGLE-2006-BLG-450, OGLE-2008-BLG-143, OGLE-2008-BLG-210, and OGLE-2008-BLG-513. Among them, we are able to measure the Einstein radii of three events for which multi-band data are available. These events are OGLE-2006-BLG-238, OGLE-2008-BLG-210, and OGLE-2008-BLG-513. For OGLE-2008-BLG-143, we detect higher-order effects induced by the changes of the observer’s position caused by the orbital motion of the Earth around the Sun. In addition, we present degenerate solutions resulting from the known close/wide or ecliptic degeneracy. Finally, we note that the masses of the binary companions of the lenses of OGLE-2006-BLG-450 and OGLE-2008-BLG-210 are in the brown-dwarf regime

  19. REANALYSES OF ANOMALOUS GRAVITATIONAL MICROLENSING EVENTS IN THE OGLE-III EARLY WARNING SYSTEM DATABASE WITH COMBINED DATA

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, J.; Park, H.; Han, C. [Department of Physics, Institute for Astrophysics, Chungbuk National University, Cheongju 361-763 (Korea, Republic of); Gould, A.; Poleski, R. [Department of Astronomy, Ohio State University, 140 W. 18th Ave., Columbus, OH 43210 (United States); Udalski, A.; Szymański, M. K.; Pietrzyński, G.; Soszyński, I.; Ulaczyk, K.; Wyrzykowski, Ł. [Warsaw University Observatory, Al. Ujazdowskie 4, 00-478 Warszawa (Poland); Abe, F.; Fukunaga, D.; Itow, Y. [Solar-Terrestrial Environment Laboratory, Nagoya University, Nagoya, 464-8601 (Japan); Bennett, D. P. [Department of Physics, University of Notre Dame, 225 Nieuwland Science Hall, Notre Dame, IN 46556-5670 (United States); Bond, I. A. [Institute of Information and Mathematical Sciences, Massey University, Private Bag 102-904, North Shore Mail Centre, Auckland (New Zealand); Botzler, C. S.; Freeman, M. [Department of Physics, University of Auckland, Private Bag 92-019, Auckland 1001 (New Zealand); Fukui, A. [Okayama Astrophysical Observatory, National Astronomical Observatory of Japan, Asakuchi, Okayama 719-0232 (Japan); Koshimoto, N. [Department of Earth and Space Science, Osaka University, Osaka 560-0043 (Japan); Collaboration: (The OGLE Collaboration); (The MOA Collaboration); (The PLANET Collaboration); (The μFUN Collaboration); (The RoboNet Collaboration); and others

    2015-05-01

    We reanalyze microlensing events in the published list of anomalous events that were observed from the Optical Gravitational Lensing Experiment (OGLE) lensing survey conducted during the 2004–2008 period. In order to check the existence of possible degenerate solutions and extract extra information, we conduct analyses based on combined data from other survey and follow-up observation and consider higher-order effects. Among the analyzed events, we present analyses of eight events for which either new solutions are identified or additional information is obtained. We find that the previous binary-source interpretations of five events are better interpreted by binary-lens models. These events include OGLE-2006-BLG-238, OGLE-2007-BLG-159, OGLE-2007-BLG-491, OGLE-2008-BLG-143, and OGLE-2008-BLG-210. With additional data covering caustic crossings, we detect finite-source effects for six events including OGLE-2006-BLG-215, OGLE-2006-BLG-238, OGLE-2006-BLG-450, OGLE-2008-BLG-143, OGLE-2008-BLG-210, and OGLE-2008-BLG-513. Among them, we are able to measure the Einstein radii of three events for which multi-band data are available. These events are OGLE-2006-BLG-238, OGLE-2008-BLG-210, and OGLE-2008-BLG-513. For OGLE-2008-BLG-143, we detect higher-order effects induced by the changes of the observer’s position caused by the orbital motion of the Earth around the Sun. In addition, we present degenerate solutions resulting from the known close/wide or ecliptic degeneracy. Finally, we note that the masses of the binary companions of the lenses of OGLE-2006-BLG-450 and OGLE-2008-BLG-210 are in the brown-dwarf regime.

  20. The effect of heat radiation on the evolution of the Tsallis entropy in self-gravitating systems and plasmas

    Science.gov (United States)

    Zheng, Yahui; Hao, Binzheng; Wen, Yaxiang; Liu, Xiaojun

    2018-01-01

    The evolution of the Tsallis entropy in self-gravitating systems and plasmas is studied in this letter, which is determined by two factors. The first factor is the change of the microstate number of systems, whose spontaneous increase leads to the entropy's increase, consistent with the standard text book. The second is the evolution of the nonextensive parameter, whose evolution rate to time is opposite to the one of entropy. We find the correlation between heat radiation and time evolution of the nonextensive parameter in the self-gravitating systems and plasmas. In such systems, the emission of radiation heat leads to the increase of the parameter while the absorption of radiation heat results in the decrease of this parameter. This is consistent with the inference derived from the Clausius' definition of entropy. In order to evolve to the current state, the solar corona should absorb a large amount of radiation heat, which might be originated from the energy released by solar flare. The magnetic connection probably plays a role in the conversion of energy. A correct dynamics theory of magnetic connection should explain how the energy conversion is achieved.

  1. Self-gravito-acoustic shock structures in a self-gravitating, strongly coupled, multi-component, degenerate quantum plasma system

    Science.gov (United States)

    Mamun, A. A.

    2017-10-01

    The existence of self-gravito-acoustic (SGA) shock structures (SSs) associated with negative self-gravitational potential in a self-gravitating, strongly coupled, multi-component, degenerate quantum plasma (SGSCMCDQP) system is predicted for the first time. The modified Burgers (MB) equation, which is valid for both planar and non-planar (spherical) geometries, is derived analytically, and solved numerically. It is shown that the longitudinal viscous force acting on inertial plasma species of the plasma system is the source of dissipation and is responsible for the formation of these SGA SSs in the plasma system. The time evolution of these SGA SSs is also shown for different values (viz., 0.5, 1, and 2) of Γ, where Γ is the ratio of the nonlinear coefficient to the dissipative coefficient in the MB equation. The SGSCMCDQP model and the numerical analysis of the MB equation presented here are so general that they can be applied in any type of SGSCMCDQP systems like astrophysical compact objects having planar or non-planar (spherical) shape.

  2. Gravitational waves

    CERN Document Server

    Ciufolini, I; Moschella, U; Fre, P

    2001-01-01

    Gravitational waves (GWs) are a hot topic and promise to play a central role in astrophysics, cosmology, and theoretical physics. Technological developments have led us to the brink of their direct observation, which could become a reality in the coming years. The direct observation of GWs will open an entirely new field: GW astronomy. This is expected to bring a revolution in our knowledge of the universe by allowing the observation of previously unseen phenomena, such as the coalescence of compact objects (neutron stars and black holes), the fall of stars into supermassive black holes, stellar core collapses, big-bang relics, and the new and unexpected.With a wide range of contributions by leading scientists in the field, Gravitational Waves covers topics such as the basics of GWs, various advanced topics, GW detectors, astrophysics of GW sources, numerical applications, and several recent theoretical developments. The material is written at a level suitable for postgraduate students entering the field.

  3. Gravitation relativiste

    CERN Document Server

    Hakim, Rémi

    1994-01-01

    Il existe à l'heure actuelle un certain nombre de théories relativistes de la gravitation compatibles avec l'expérience et l'observation. Toutefois, la relativité générale d'Einstein fut historiquement la première à fournir des résultats théoriques corrects en accord précis avec les faits.

  4. Calibration for medium resolution off-axis electron holography using a flexible dual-lens imaging system in a JEOL ARM 200F microscope

    International Nuclear Information System (INIS)

    Cantu-Valle, Jesus; Ruiz-Zepeda, Francisco; Mendoza-Santoyo, Fernando; Jose-Yacaman, Miguel; Ponce, Arturo

    2014-01-01

    In this work the calibration of a medium resolution off-axis electron holography using a dual-lens imaging system in a JEOL ARM 200F is shown. The objective dual-lens configuration allows adjusting the field of view from 35 nm to 2.5 μm. Subsequently, the parameters used in phase shift reconstruction were calibrated considering biprism voltage versus fringe spacing (σ) and versus fringe width (W). The reliability of the transmission electron microscope performance using these parameters was achieved using gold nanoparticles of known size and adjusting the excitation voltage of the lenses. - Highlights: • We presented the off-axis electron holography calibration in dual-lens mode of a JEOL ARM 200F. • We provide optimal conditions for a wide field of views varying the objective lens excitation. • The calibration was made using Au-nanoparticles controlling fringe width, spacing and contrast. • Application of electron holography to nanoparticles is also shown

  5. Influence of the cosmological constant on gravitational lensing in small systems

    International Nuclear Information System (INIS)

    Sereno, Mauro

    2008-01-01

    The cosmological constant Λ affects gravitational lensing phenomena. The contribution of Λ to the observable angular positions of multiple images and to their amplification and time delay is here computed through a study of the weak deflection limit of the equations of motion in the Schwarzschild-de Sitter metric. Because of Λ the unresolved images are slightly demagnified, the radius of the Einstein ring decreases, and the time delay increases. The effect is however negligible for near lenses. In the case of a null cosmological constant, we provide some updated results on lensing by a Schwarzschild black hole

  6. Lens Model

    DEFF Research Database (Denmark)

    Nash, Ulrik William

    2014-01-01

    Firms consist of people who make decisions to achieve goals. How do these people develop the expectations which underpin the choices they make? The lens model provides one answer to this question. It was developed by cognitive psychologist Egon Brunswik (1952) to illustrate his theory of probabil...

  7. Light deflection, lensing, and time delays from gravitational potentials and Fermat's principle in the presence of a cosmological constant

    International Nuclear Information System (INIS)

    Ishak, Mustapha

    2008-01-01

    The contributions of the cosmological constant to the deflection angle and the time delays are derived from the integration of the gravitational potential as well as from Fermat's principle. The findings are in agreement with recent results using exact solutions to Einstein's equations and reproduce precisely the new Λ term in the bending angle and the lens equation. The consequences on time-delay expressions are explored. While it is known that Λ contributes to the gravitational time delay, it is shown here that a new Λ term appears in the geometrical time delay as well. Although these newly derived terms are perhaps small for current observations, they do not cancel out as previously claimed. Moreover, as shown before, at galaxy cluster scale, the Λ contribution can be larger than the second-order term in the Einstein deflection angle for several cluster lens systems.

  8. Reconstructing the Sky Location of Gravitational-Wave Detected Compact Binary Systems: Methodology for Testing and Comparison

    Science.gov (United States)

    Sidney, T.; Aylott, B.; Christensen, N.; Farr, B.; Farr, W.; Feroz, F.; Gair, J.; Grover, K.; Graff, P.; Hanna, C.; hide

    2014-01-01

    The problem of reconstructing the sky position of compact binary coalescences detected via gravitational waves is a central one for future observations with the ground-based network of gravitational-wave laser interferometers, such as Advanced LIGO and Advanced Virgo. Different techniques for sky localization have been independently developed. They can be divided in two broad categories: fully coherent Bayesian techniques, which are high latency and aimed at in-depth studies of all the parameters of a source, including sky position, and "triangulation-based" techniques, which exploit the data products from the search stage of the analysis to provide an almost real-time approximation of the posterior probability density function of the sky location of a detection candidate. These techniques have previously been applied to data collected during the last science runs of gravitational-wave detectors operating in the so-called initial configuration. Here, we develop and analyze methods for assessing the self consistency of parameter estimation methods and carrying out fair comparisons between different algorithms, addressing issues of efficiency and optimality. These methods are general, and can be applied to parameter estimation problems other than sky localization. We apply these methods to two existing sky localization techniques representing the two above-mentioned categories, using a set of simulated inspiralonly signals from compact binary systems with a total mass of equal to or less than 20M solar mass and nonspinning components. We compare the relative advantages and costs of the two techniques and show that sky location uncertainties are on average a factor approx. equals 20 smaller for fully coherent techniques than for the specific variant of the triangulation-based technique used during the last science runs, at the expense of a factor approx. equals 1000 longer processing time.

  9. Implications of Geometry and the Theorem of Gauss on Newtonian Gravitational Systems and a Caveat Regarding Poisson’s Equation

    Directory of Open Access Journals (Sweden)

    Anne M. Hofmeister

    2017-11-01

    Full Text Available Galactic mass consistent with luminous mass is obtained by fitting rotation curves (RC = tangential velocities vs. equatorial radius r using Newtonian force models, or can be unambiguously calculated from RC data using a model based on spin. In contrast, mass exceeding luminous mass is obtained from multi-parameter fits using potentials associated with test particles orbiting in a disk around a central mass. To understand this disparity, we explore the premises of these mainstream disk potential models utilizing the theorem of Gauss, thermodynamic concepts of Gibbs, the findings of Newton and Maclaurin, and well-established techniques and results from analytical mathematics. Mainstream models assume that galactic density in the axial (z and r directions varies independently: we show that this is untrue for self-gravitating objects. Mathematics and thermodynamic principles each show that modifying Poisson’s equation by summing densities is in error. Neither do mainstream models differentiate between interior and exterior potentials, which is required by potential theory and has been recognized in seminal astronomical literature. The theorem of Gauss shows that: (1 density in Poisson’s equation must be averaged over the interior volume; (2 logarithmic gravitational potentials implicitly assume that mass forms a long, line source along the z axis, unlike any astronomical object; and (3 gravitational stability for three-dimensional shapes is limited to oblate spheroids or extremely tall cylinders, whereas other shapes are prone to collapse. Our findings suggest a mechanism for the formation of the flattened Solar System and of spiral galaxies from gas clouds. The theorem of Gauss offers many advantages over Poisson’s equation in analyzing astronomical problems because mass, not density, is the key parameter.

  10. How robust are the constraints on cosmology and galaxy evolution from the lens-redshift test?

    International Nuclear Information System (INIS)

    Capelo, Pedro R; Natarajan, Priyamvada

    2007-01-01

    The redshift distribution of galaxy lenses in known gravitational lens systems provides a powerful test that can potentially discriminate amongst cosmological models. However, applications of this elegant test have been curtailed by two factors: our ignorance of how galaxies evolve with redshift, and the absence of methods to deal with the effect of incomplete information in lensing systems. In this paper, we investigate both issues in detail. We explore how to extract the properties of evolving galaxies, assuming that the cosmology is well determined by other techniques. We propose a new nested Monte Carlo method to quantify the effects of incomplete data. We apply the lens-redshift test to an improved sample of seventy lens systems derived from recent observations, primarily from the SDSS, SLACS and the CLASS surveys. We find that the limiting factor in applying the lens-redshift test derives from poor statistics, including incomplete information samples and biased sampling. Many lenses that uniformly sample the underlying true image separation distribution will be needed to use this test as a complementary method to measure the value of the cosmological constant or the properties of evolving galaxies. Planned future surveys by missions like the SNAP satellite or LSST are likely to usher in a new era for strong lensing studies that utilize this test. With expected catalogues of thousands of new strong lenses, the lens-redshift test could offer a powerful tool to probe cosmology as well as galaxy evolution

  11. How robust are the constraints on cosmology and galaxy evolution from the lens-redshift test?

    Energy Technology Data Exchange (ETDEWEB)

    Capelo, Pedro R [Astronomy Department, Yale University, PO Box 208101, New Haven, CT 06520-8101 (United States); Natarajan, Priyamvada [Astronomy Department, Yale University, PO Box 208101, New Haven, CT 06520-8101 (United States)

    2007-12-15

    The redshift distribution of galaxy lenses in known gravitational lens systems provides a powerful test that can potentially discriminate amongst cosmological models. However, applications of this elegant test have been curtailed by two factors: our ignorance of how galaxies evolve with redshift, and the absence of methods to deal with the effect of incomplete information in lensing systems. In this paper, we investigate both issues in detail. We explore how to extract the properties of evolving galaxies, assuming that the cosmology is well determined by other techniques. We propose a new nested Monte Carlo method to quantify the effects of incomplete data. We apply the lens-redshift test to an improved sample of seventy lens systems derived from recent observations, primarily from the SDSS, SLACS and the CLASS surveys. We find that the limiting factor in applying the lens-redshift test derives from poor statistics, including incomplete information samples and biased sampling. Many lenses that uniformly sample the underlying true image separation distribution will be needed to use this test as a complementary method to measure the value of the cosmological constant or the properties of evolving galaxies. Planned future surveys by missions like the SNAP satellite or LSST are likely to usher in a new era for strong lensing studies that utilize this test. With expected catalogues of thousands of new strong lenses, the lens-redshift test could offer a powerful tool to probe cosmology as well as galaxy evolution.

  12. The DES Bright Arcs Survey: Hundreds of Candidate Strongly Lensed Galaxy Systems from the Dark Energy Survey Science Verification and Year 1 Observations

    Energy Technology Data Exchange (ETDEWEB)

    Diehl, H. T.; Buckley-Geer, E. J.; Lindgren, K. A.; Nord, B.; Gaitsch, H.; Gaitsch, S.; Lin, H.; Allam, S.; Odden, C.; Pellico, A.; Tucker, D. L.; Kuropatkin, N.; Soares-Santos, M. [Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 (United States); Collett, T. E. [Institute of Cosmology and Gravitation, University of Portsmouth, Portsmouth, PO1 3FX (United Kingdom); Furlanetto, C.; Nightingale, J. [University of Nottingham, School of Physics and Astronomy, Nottingham NG7 2RD (United Kingdom); Gill, M. S. S. [SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States); More, A. [Kavli IPMU (WPI), UTIAS, The University of Tokyo, Kashiwa, Chiba 277-8583 (Japan); Costa, L. N. da; Neto, A. Fausti, E-mail: diehl@fnal.gov [Laboratório Interinstitucional de e-Astronomia—LIneA, Rua Gal. José Cristino 77, Rio de Janeiro, RJ—20921-400 (Brazil); Collaboration: DES Collaboration; and others

    2017-09-01

    We report the results of searches for strong gravitational lens systems in the Dark Energy Survey (DES) Science Verification and Year 1 observations. The Science Verification data span approximately 250 sq. deg. with a median i -band limiting magnitude for extended objects (10 σ ) of 23.0. The Year 1 data span approximately 2000 sq. deg. and have an i -band limiting magnitude for extended objects (10 σ ) of 22.9. As these data sets are both wide and deep, they are particularly useful for identifying strong gravitational lens candidates. Potential strong gravitational lens candidate systems were initially identified based on a color and magnitude selection in the DES object catalogs or because the system is at the location of a previously identified galaxy cluster. Cutout images of potential candidates were then visually scanned using an object viewer and numerically ranked according to whether or not we judged them to be likely strong gravitational lens systems. Having scanned nearly 400,000 cutouts, we present 374 candidate strong lens systems, of which 348 are identified for the first time. We provide the R.A. and decl., the magnitudes and photometric properties of the lens and source objects, and the distance (radius) of the source(s) from the lens center for each system.

  13. Wigner transformation in curved space-time and the curvature correction of the Vlasov equation for semiclassical gravitating systems

    International Nuclear Information System (INIS)

    Winter, J.

    1985-01-01

    A covariant generalization of the Wigner transformation of quantum equations is proposed for gravitating many-particle systems, which modifies the Einstein-Liouville equations for the coupled gravity-matter problem by inclusion of quantum effects of the matter moving in its self-consistent classical gravitational field, in order to extend their realm of validity to higher particle densities. The corrections of the Vlasov equation (Liouville equation in one-particle phase space) are exhibited as combined effects of quantum mechanics and the curvature of space-time arranged in a semiclassical expansion in powers of h 2 , the first-order term of which is explicitly calculated. It is linear in the Riemann tensor and in its gradient; the Riemann tensor occurs in a similar position as the tensor of the Yang-Mills field strength in a corresponding Vlasov equation for systems with local gauge invariance in the purely classical limit. The performance of the Wigner transformation is based on expressing the equation of motion for the two-point function of the Klein-Gordon field, in particular the Beltrami operator, in terms of a midpoint and a distance vector covariantly defined for the two points. This implies the calculation of deviations of the geodesic between these points, the standard concept of which has to be refined to include infinitesimal variations of the second order. A differential equation for the second-order deviation is established

  14. Fermat's least-time principle and the embedded transparent lens

    Science.gov (United States)

    Kantowski, R.; Chen, B.; Dai, X.

    2013-10-01

    We present a simplified version of the lowest-order embedded point mass gravitational lens theory and then make the extension of this theory to any embedded transparent lens. Embedding a lens effectively reduces the gravitational potential’s range, i.e., partially shields the lensing potential because the lens mass is made a contributor to the mean mass density of the Universe and not simply superimposed upon it. We give the time-delay function for the embedded point mass lens from which we can derive the simplified lens equation by applying Fermat’s least-time principle. Even though rigorous derivations are only made for the point mass in a flat background, the generalization of the lens equation to lowest order for any distributed lens in any homogeneous background is obvious. We find from this simplified theory that embedding can introduce corrections above the few percent level in weak lensing shears caused by large clusters but only at large impacts. The potential part of the time delay is also affected in strong lensing at the few percent level. Additionally we again confirm that the presence of a cosmological constant alters the gravitational deflection of passing photons.

  15. Lens stem cells may reside outside the lens capsule: an hypothesis

    Directory of Open Access Journals (Sweden)

    Meyer Rita A

    2007-06-01

    Full Text Available Abstract In this paper, we consider the ocular lens in the context of contemporary developments in biological ideas. We attempt to reconcile lens biology with stem cell concepts and a dearth of lens tumors. Historically, the lens has been viewed as a closed system, in which cells at the periphery of the lens epithelium differentiate into fiber cells. Theoretical considerations led us to question whether the intracapsular lens is indeed self-contained. Since stem cells generate tumors and the lens does not naturally develop tumors, we reasoned that lens stem cells may not be present within the capsule. We hypothesize that lens stem cells reside outside the lens capsule, in the nearby ciliary body. Our ideas challenge the existing lens biology paradigm. We begin our discussion with lens background information, in order to describe our lens stem cell hypothesis in the context of published data. Then we present the ciliary body as a possible source for lens stem cells, and conclude by comparing the ocular lens with the corneal epithelium.

  16. Gravitational Casimir–Polder effect

    Directory of Open Access Journals (Sweden)

    Jiawei Hu

    2017-04-01

    Full Text Available The interaction due to quantum gravitational vacuum fluctuations between a gravitationally polarizable object modelled as a two-level system and a gravitational boundary is investigated. This quantum gravitational interaction is found to be position-dependent, which induces a force in close analogy to the Casimir–Polder force in the electromagnetic case. For a Dirichlet boundary, the quantum gravitational potential for the polarizable object in its ground-state is shown to behave like z−5 in the near zone, and z−6 in the far zone, where z is the distance to the boundary. For a concrete example, where a Bose–Einstein condensate is taken as a gravitationally polarizable object, the relative correction to the radius of the BEC caused by fluctuating quantum gravitational waves in vacuum is found to be of order 10−21. Although the correction is far too small to observe in comparison with its electromagnetic counterpart, it is nevertheless of the order of the gravitational strain caused by a recently detected black hole merger on the arms of the LIGO.

  17. Tropomyosin 2 heterozygous knockout in mice using CRISPR-Cas9 system displays the inhibition of injury-induced epithelial-mesenchymal transition, and lens opacity

    Science.gov (United States)

    Shibata, Teppei; Shibata, Shinsuke; Ishigaki, Yasuhito; Kiyokawa, Etsuko; Ikawa, Masahito; Singh, Dhirendra P.; Sasaki, Hiroshi; Kubo, Eri

    2018-01-01

    The process of epithelial–mesenchymal transition (EMT) of lens epithelial cells (LECs) after cataract surgery contributes to tissue fibrosis, wound healing and lens regeneration via a mechanism not yet fully understood. Here, we show that tropomyosin 2 (Tpm2) plays a critical role in wound healing and lens aging. Posterior capsular opacification (PCO) after lens extraction surgery was accompanied by elevated expression of Tpm2. Tpm2 heterozygous knockout mice, generated via the clustered regularly interspaced short palindromic repeat/ Cas9 (CRISPR/Cas9) system showed promoted progression of cataract with age. Further, injury-induced EMT of the mouse lens epithelium, as evaluated histologically and by the expression patterns of Tpm1 and Tpm2, was attenuated in the absence of Tpm2. In conclusion, Tpm2 may be important in maintaining lens physiology and morphology. However, Tpm2 is involved in the progression of EMT during the wound healing process of mouse LECs, suggesting that inhibition of Tpm2 may suppress PCO. PMID:29510160

  18. Gravitational anomalies

    Energy Technology Data Exchange (ETDEWEB)

    Leutwyler, H; Mallik, S

    1986-12-01

    The effective action for fermions moving in external gravitational and gauge fields is analyzed in terms of the corresponding external field propagator. The central object in our approach is the covariant energy-momentum tensor which is extracted from the regular part of the propagator at short distances. It is shown that the Lorentz anomaly, the conformal anomaly and the gauge anomaly can be expressed in terms of the local polynomials which determine the singular part of the propagator. (There are no coordinate anomalies). Except for the conformal anomaly, for which we give explicit representations only in dless than or equal to4, we consider an arbitrary number of dimensions.

  19. Elementary process theory: a formal axiomatic system with a potential application as a foundational framework for physics supporting gravitational repulsion of matter and antimatter

    International Nuclear Information System (INIS)

    Cabbolet, M.J.T.F.

    2010-01-01

    Theories of modern physics predict that antimatter having rest mass will be attracted by the earth's gravitational field, but the actual coupling of antimatter with gravitation has not been established experimentally. The purpose of the present research was to identify laws of physics that would govern the universe if antimatter having rest mass would be repulsed by the earth's gravitational field. As a result, a formalized axiomatic system was developed together with interpretation rules for the terms of the language: the intention is that every theorem of the system yields a true statement about physical reality. Seven non-logical axioms of this axiomatic system form the elementary process theory (EPT): this is then a scheme of elementary principles describing the dynamics of individual processes taking place at supersmall scale. It is demonstrated how gravitational repulsion functions in the universe of the EPT, and some observed particles and processes have been formalized in the framework of the EPT. Incompatibility of quantum mechanics (QM) and General Relativity (GR) with the EPT is proven mathematically; to demonstrate applicability to real world problems to which neither QM nor GR applies, the EPT has been applied to a theory of the Planck era of the universe. The main conclusions are that a completely formalized framework for physics has been developed supporting the existence of gravitational repulsion and that the present results give rise to a potentially progressive research program. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  20. Two-dimensional simulation of the gravitational system dynamics and formation of the large-scale structure of the universe

    International Nuclear Information System (INIS)

    Doroshkevich, A.G.; Kotok, E.V.; Novikov, I.D.; Polyudov, A.N.; Shandarin, S.F.; Sigov, Y.S.

    1980-01-01

    The results of a numerical experiment are given that describe the non-linear stages of the development of perturbations in gravitating matter density in the expanding Universe. This process simulates the formation of the large-scale structure of the Universe from an initially almost homogeneous medium. In the one- and two-dimensional cases of this numerical experiment the evolution of the system from 4096 point masses that interact gravitationally only was studied with periodic boundary conditions (simulation of the infinite space). The initial conditions were chosen that resulted from the theory of the evolution of small perturbations in the expanding Universe. The results of numerical experiments are systematically compared with the approximate analytic theory. The results of the calculations show that in the case of collisionless particles, as well as in the gas-dynamic case, the cellular structure appeared at the non-linear stage in the case of the adiabatic perturbations. The greater part of the matter is in thin layers that separate vast regions of low density. In a Robertson-Walker universe the cellular structure exists for a finite time and then fragments into a few compact objects. In the open Universe the cellular structure also exists if the amplitude of initial perturbations is large enough. But the following disruption of the cellular structure is more difficult because of too rapid an expansion of the Universe. The large-scale structure is frozen. (author)

  1. Planar and non-planar nucleus-acoustic shock structures in self-gravitating degenerate quantum plasma systems

    Science.gov (United States)

    Zaman, D. M. S.; Amina, M.; Dip, P. R.; Mamun, A. A.

    2017-11-01

    The basic properties of planar and non-planar (spherical and cylindrical) nucleus-acoustic (NA) shock structures (SSs) in a strongly coupled self-gravitating degenerate quantum plasma system (containing strongly coupled non-relativistically degenerate heavy nuclear species, weakly coupled non-relativistically degenerate light nuclear species, and inertialess non-/ultra-relativistically degenerate electrons) have been investigated. The generalized quantum hydrodynamic model and the reductive perturbation method have been used to derive the modified Burgers equation. It is shown that the strong correlation among heavy nuclear species acts as the source of dissipation and is responsible for the formation of the NA SSs with positive (negative) electrostatic (self-gravitational) potential. It is also observed that the effects of non-/ultra-relativistically degenerate electron pressure, dynamics of non-relativistically degenerate light nuclear species, spherical geometry, etc., significantly modify the basic features of the NA SSs. The applications of our results in astrophysical compact objects like white dwarfs and neutron stars are briefly discussed.

  2. AutoLens: Automated Modeling of a Strong Lens's Light, Mass and Source

    Science.gov (United States)

    Nightingale, J. W.; Dye, S.; Massey, Richard J.

    2018-05-01

    This work presents AutoLens, the first entirely automated modeling suite for the analysis of galaxy-scale strong gravitational lenses. AutoLens simultaneously models the lens galaxy's light and mass whilst reconstructing the extended source galaxy on an adaptive pixel-grid. The method's approach to source-plane discretization is amorphous, adapting its clustering and regularization to the intrinsic properties of the lensed source. The lens's light is fitted using a superposition of Sersic functions, allowing AutoLens to cleanly deblend its light from the source. Single component mass models representing the lens's total mass density profile are demonstrated, which in conjunction with light modeling can detect central images using a centrally cored profile. Decomposed mass modeling is also shown, which can fully decouple a lens's light and dark matter and determine whether the two component are geometrically aligned. The complexity of the light and mass models are automatically chosen via Bayesian model comparison. These steps form AutoLens's automated analysis pipeline, such that all results in this work are generated without any user-intervention. This is rigorously tested on a large suite of simulated images, assessing its performance on a broad range of lens profiles, source morphologies and lensing geometries. The method's performance is excellent, with accurate light, mass and source profiles inferred for data sets representative of both existing Hubble imaging and future Euclid wide-field observations.

  3. The small-animal radiation research platform (SARRP): dosimetry of a focused lens system

    Energy Technology Data Exchange (ETDEWEB)

    Deng Hua [Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins Medicine, Baltimore, MD (United States); Kennedy, Christopher W [Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins Medicine, Baltimore, MD (United States); Armour, Elwood [Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins Medicine, Baltimore, MD (United States); Tryggestad, Erik [Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins Medicine, Baltimore, MD (United States); Ford, Eric [Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins Medicine, Baltimore, MD (United States); McNutt, Todd [Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins Medicine, Baltimore, MD (United States); Jiang Licai [OSMIC Inc., 1900 Taylor Rd., Auburn Hills, MI (United States); Wong, John [Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins Medicine, Baltimore, MD (United States)

    2007-05-21

    A small animal radiation platform equipped with on-board cone-beam CT and conformal irradiation capabilities is being constructed for translational research. To achieve highly localized dose delivery, an x-ray lens is used to focus the broad beam from a 225 kVp x-ray tube down to a beam with a full width half maximum (FWHM) of approximately 1.5 mm in the energy range 40-80 keV. Here, we report on the dosimetric characteristics of the focused beam from the x-ray lens subsystem for high-resolution dose delivery. Using the metric of the average dose within a 1.5 mm diameter area, the dose rates at a source-to-surface distance (SSD) of 34 cm are 259 and 172 cGy min{sup -1} at 6 mm and 2 cm depths, respectively, with an estimated uncertainty of {+-}5%. The per cent depth dose is approximately 56% at 2 cm depth for a beam at 34 cm SSD.

  4. The small-animal radiation research platform (SARRP): dosimetry of a focused lens system.

    Science.gov (United States)

    Deng, Hua; Kennedy, Christopher W; Armour, Elwood; Tryggestad, Erik; Ford, Eric; McNutt, Todd; Jiang, Licai; Wong, John

    2007-05-21

    A small animal radiation platform equipped with on-board cone-beam CT and conformal irradiation capabilities is being constructed for translational research. To achieve highly localized dose delivery, an x-ray lens is used to focus the broad beam from a 225 kVp x-ray tube down to a beam with a full width half maximum (FWHM) of approximately 1.5 mm in the energy range 40-80 keV. Here, we report on the dosimetric characteristics of the focused beam from the x-ray lens subsystem for high-resolution dose delivery. Using the metric of the average dose within a 1.5 mm diameter area, the dose rates at a source-to-surface distance (SSD) of 34 cm are 259 and 172 cGy min(-1) at 6 mm and 2 cm depths, respectively, with an estimated uncertainty of +/-5%. The per cent depth dose is approximately 56% at 2 cm depth for a beam at 34 cm SSD.

  5. The small-animal radiation research platform (SARRP): dosimetry of a focused lens system

    International Nuclear Information System (INIS)

    Deng Hua; Kennedy, Christopher W; Armour, Elwood; Tryggestad, Erik; Ford, Eric; McNutt, Todd; Jiang Licai; Wong, John

    2007-01-01

    A small animal radiation platform equipped with on-board cone-beam CT and conformal irradiation capabilities is being constructed for translational research. To achieve highly localized dose delivery, an x-ray lens is used to focus the broad beam from a 225 kVp x-ray tube down to a beam with a full width half maximum (FWHM) of approximately 1.5 mm in the energy range 40-80 keV. Here, we report on the dosimetric characteristics of the focused beam from the x-ray lens subsystem for high-resolution dose delivery. Using the metric of the average dose within a 1.5 mm diameter area, the dose rates at a source-to-surface distance (SSD) of 34 cm are 259 and 172 cGy min -1 at 6 mm and 2 cm depths, respectively, with an estimated uncertainty of ±5%. The per cent depth dose is approximately 56% at 2 cm depth for a beam at 34 cm SSD

  6. Characterization of a fiber-taper charge-coupled device system for plastic scintillation dosimetry and comparison with the traditional lens system

    International Nuclear Information System (INIS)

    Gagnon, Louis-Philippe; Beddar, Sam; Beaulieu, Luc

    2015-01-01

    Purpose: To compare the signal-to-noise ratio (SNR), dose sensitivity and stability, and reproducibility of a lens-less charge-coupled device (CCD) photon-counting system with those of a traditional CCD + lens photon-counting system for plastic scintillation detectors (PSDs). Methods: The PSD used in this study was made from a 1-mm diameter, 2-mm long BCF60 scintillating fiber (emission peak at 530 nm) coupled to a 2.6-m Eska GH-4001 clear plastic fiber. This PSD was coupled to either a fiber-taper-based photon-counting system (FTS) or a lens-based photon-counting system (LS). In the FTS, the fiber-taper was attached to a 2048 × 2048 pixel, uncooled Alta 4020 polychromatic CCD camera. The LS consisted of a 1600 × 1200 pixel Alta 2020 polychromatic CCD camera (cooled to −18 °C) with a 50-mm lens with f/# = 1. Dose measurements were made under the same conditions for each system (isocentric setup; depth of 1.5 cm in solid water using a 10 × 10 cm 2 field size and 6-MV photon beam). The performance of each system was determined and compared, using the chromatic Čerenkov removal method to account for the stem effects produced in the clear plastic fiber. Results: The FTS increased the light collected by a factor of 4 compared with the LS, for the same dose measurements. This gain was possible because the FTS was not limited by the optical aberration that comes with a lens system. Despite a 45 °C operating temperature difference between the systems, the SNR was 1.8–1.9 times higher in the FTS than in the LS, for blue and green channels respectively. Low-dose measurements of 1.0 and 0.5 cGy were obtained with an accuracy of 3.4% and 5.6%, respectively, in the FTS, compared with 5.8% and 15.9% in the LS. The FTS provided excellent dose measurement stability as a function of integration time, with at most a 1% difference at 5 cGy. Under the same conditions, the LS system produced a measurement difference between 2 and 3%. Conclusion: Our results showed that

  7. Quantum biological gravitational wave detectors

    International Nuclear Information System (INIS)

    Kopvillem, U.Kh.

    1985-01-01

    A possibility of producing biological detectors of gravitational waves is considered. High sensitivity of biological systems to outer effects can be ensured by existence of molecule subgroups in Dicke states. Existence of clusters in Dicke state-giant electric dipoles (GED) is supposed in the Froehlich theory. Comparison of biological and physical detectors shows that GED systems have unique properties for detection of gravitational waves if the reception range is narrow

  8. Scalar field as an intrinsic time measure in coupled dynamical matter-geometry systems. II. Electrically charged gravitational collapse

    Science.gov (United States)

    Nakonieczna, Anna; Yeom, Dong-han

    2016-05-01

    Investigating the dynamics of gravitational systems, especially in the regime of quantum gravity, poses a problem of measuring time during the evolution. One of the approaches to this issue is using one of the internal degrees of freedom as a time variable. The objective of our research was to check whether a scalar field or any other dynamical quantity being a part of a coupled multi-component matter-geometry system can be treated as a `clock' during its evolution. We investigated a collapse of a self-gravitating electrically charged scalar field in the Einstein and Brans-Dicke theories using the 2+2 formalism. Our findings concentrated on the spacetime region of high curvature existing in the vicinity of the emerging singularity, which is essential for the quantum gravity applications. We investigated several values of the Brans-Dicke coupling constant and the coupling between the Brans-Dicke and the electrically charged scalar fields. It turned out that both evolving scalar fields and a function which measures the amount of electric charge within a sphere of a given radius can be used to quantify time nearby the singularity in the dynamical spacetime part, in which the apparent horizon surrounding the singularity is spacelike. Using them in this respect in the asymptotic spacetime region is possible only when both fields are present in the system and, moreover, they are coupled to each other. The only nonzero component of the Maxwell field four-potential cannot be used to quantify time during the considered process in the neighborhood of the whole central singularity. None of the investigated dynamical quantities is a good candidate for measuring time nearby the Cauchy horizon, which is also singular due to the mass inflation phenomenon.

  9. The role of type III secretion system and lens material on adhesion of Pseudomonas aeruginosa to contact lenses.

    Science.gov (United States)

    Shen, Elizabeth P; Tsay, Ruey-Yug; Chia, Jean-San; Wu, Semon; Lee, Jing-Wen; Hu, Fung-Rong

    2012-09-21

    To determine the distribution of invasive and cytotoxic genotypes among ocular isolates of P. aeruginosa and investigate the influence of the type III secretion system (T3SS) on adhesion to conventional, cosmetic, and silicone hydrogel contact lenses (CL). Clinical isolates from 2001 to 2010 were analyzed by multiplex PCR for exoS, exoU, and exoT genes. Bacterial adhesion to etafilcon, nelfilcon (gray colored), balafilcon, and galyfilcon CL with or without artificial tear fluid (ATF) incubation were compared. Surface characteristics were determined with scanning electron microscopy (SEM). Among 87 total isolates, 64 strains were from microbial keratitis cases. CL-related microbial keratitis (CLMK) isolates were mostly of the cytotoxic genotype (expressing exoU) (P = 0.002). No significant differences were found in bacterial adhesion to all types of CL between the genotypes under T3SS-inducing conditions. A trend for least bacterial adhesion of galyfilcon compared to the other CL was noted for both genotypes. Needle complex pscC mutants adhered less to all materials than the wild type (P bacteria adhering on CL surfaces. CLMK isolates were mostly of cytotoxic genotype. Different genotypes did not significantly differ in its adhesion to various CL. T3SS and other adhesins are involved in bacteria-contact lens adhesion through complex interactions. Contact lens materials may also play an important role in the adherence of both genotypes of P. aeruginosa.

  10. Anisotropic solutions by gravitational decoupling

    Science.gov (United States)

    Ovalle, J.; Casadio, R.; da Rocha, R.; Sotomayor, A.

    2018-02-01

    We investigate the extension of isotropic interior solutions for static self-gravitating systems to include the effects of anisotropic spherically symmetric gravitational sources by means of the gravitational decoupling realised via the minimal geometric deformation approach. In particular, the matching conditions at the surface of the star with the outer Schwarzschild space-time are studied in great detail, and we describe how to generate, from a single physically acceptable isotropic solution, new families of anisotropic solutions whose physical acceptability is also inherited from their isotropic parent.

  11. Anisotropic solutions by gravitational decoupling

    Energy Technology Data Exchange (ETDEWEB)

    Ovalle, J. [Silesian University in Opava, Institute of Physics and Research Centre of Theoretical Physics and Astrophysics, Faculty of Philosophy and Science, Opava (Czech Republic); Universidad Simon Bolivar, Departamento de Fisica, Caracas (Venezuela, Bolivarian Republic of); Casadio, R. [Alma Mater Universita di Bologna, Dipartimento di Fisica e Astronomia, Bologna (Italy); Istituto Nazionale di Fisica Nucleare, Bologna (Italy); Rocha, R. da [Universidade Federal do ABC (UFABC), Centro de Matematica, Computacao e Cognicao, Santo Andre, SP (Brazil); Sotomayor, A. [Universidad de Antofagasta, Departamento de Matematicas, Antofagasta (Chile)

    2018-02-15

    We investigate the extension of isotropic interior solutions for static self-gravitating systems to include the effects of anisotropic spherically symmetric gravitational sources by means of the gravitational decoupling realised via the minimal geometric deformation approach. In particular, the matching conditions at the surface of the star with the outer Schwarzschild space-time are studied in great detail, and we describe how to generate, from a single physically acceptable isotropic solution, new families of anisotropic solutions whose physical acceptability is also inherited from their isotropic parent. (orig.)

  12. Gravitational microlensing

    Energy Technology Data Exchange (ETDEWEB)

    Zakharov, Aleksandr F [Russian Federation State Scientific Center ' A.I. Alikhanov Institute for Theoretical and Experimental Physics' , Moscow (Russian Federation); Sazhin, Mikhail V [P.K. Shternberg State Astronomical Institute at the M.V. Lomonosov Moscow State University, Moscow (Russian Federation)

    1998-10-31

    The foundations of standard microlensing theory are discussed as applied to stars in the Galactic bulge, Magellanic Clouds or other nearby galaxies and gravitational microlenses assumed to lie in-between these stars and the terrestrial observer. In contrast to the review article by Gurevich et al. [48], microlensing by compact objects is mainly considered. Criteria for the identification of microlensing events are discussed as also are microlensing events not satisfying these criteria, such as non-symmetrical light curves and chromatic and polarization effects. The Large Magellanic Cloud (LMC) and Galactic bulge microlensing data of the MACHO group are discussed in detail and also the LMC data of EROS and the Galactic bulge data of OGLE are presented. A detailed comparison of theoretical predictions and observations is given. (reviews of topical problems)

  13. Gravitational microlensing

    International Nuclear Information System (INIS)

    Zakharov, Aleksandr F; Sazhin, Mikhail V

    1998-01-01

    The foundations of standard microlensing theory are discussed as applied to stars in the Galactic bulge, Magellanic Clouds or other nearby galaxies and gravitational microlenses assumed to lie in-between these stars and the terrestrial observer. In contrast to the review article by Gurevich et al. [48], microlensing by compact objects is mainly considered. Criteria for the identification of microlensing events are discussed as also are microlensing events not satisfying these criteria, such as non-symmetrical light curves and chromatic and polarization effects. The Large Magellanic Cloud (LMC) and Galactic bulge microlensing data of the MACHO group are discussed in detail and also the LMC data of EROS and the Galactic bulge data of OGLE are presented. A detailed comparison of theoretical predictions and observations is given. (reviews of topical problems)

  14. Objective-lens-free Fiber-based Position Detection with Nanometer Resolution in a Fiber Optical Trapping System.

    Science.gov (United States)

    Ti, Chaoyang; Ho-Thanh, Minh-Tri; Wen, Qi; Liu, Yuxiang

    2017-10-13

    Position detection with high accuracy is crucial for force calibration of optical trapping systems. Most existing position detection methods require high-numerical-aperture objective lenses, which are bulky, expensive, and difficult to miniaturize. Here, we report an affordable objective-lens-free, fiber-based position detection scheme with 2 nm spatial resolution and 150 MHz bandwidth. This fiber based detection mechanism enables simultaneous trapping and force measurements in a compact fiber optical tweezers system. In addition, we achieved more reliable signal acquisition with less distortion compared with objective based position detection methods, thanks to the light guiding in optical fibers and small distance between the fiber tips and trapped particle. As a demonstration of the fiber based detection, we used the fiber optical tweezers to apply a force on a cell membrane and simultaneously measure the cellular response.

  15. Printed freeform lens arrays on multi-core fibers for highly efficient coupling in astrophotonic systems.

    Science.gov (United States)

    Dietrich, Philipp-Immanuel; Harris, Robert J; Blaicher, Matthias; Corrigan, Mark K; Morris, Tim M; Freude, Wolfgang; Quirrenbach, Andreas; Koos, Christian

    2017-07-24

    Coupling of light into multi-core fibers (MCF) for spatially resolved spectroscopy is of great importance to astronomical instrumentation. To achieve high coupling efficiencies along with fill-fractions close to unity, micro-optical elements are required to concentrate the incoming light to the individual cores of the MCF. In this paper we demonstrate facet-attached lens arrays (LA) fabricated by two-photon polymerization. The LA provide close to 100% fill-fraction along with efficiencies of up to 73% (down to 1.4 dB loss) for coupling of light from free space into an MCF core. We show the viability of the concept for astrophotonic applications by integrating an MCF-LA assembly in an adaptive-optics test bed and by assessing its performance as a tip/tilt sensor.

  16. Weight, gravitation, inertia, and tides

    Science.gov (United States)

    Pujol, Olivier; Lagoute, Christophe; Pérez, José-Philippe

    2015-11-01

    This paper deals with the factors that influence the weight of an object near the Earth's surface. They are: (1) the Earth's gravitational force, (2) the centrifugal force due to the Earth's diurnal rotation, and (3) tidal forces due to the gravitational field of the Moon and Sun, and other solar system bodies to a lesser extent. Each of these three contributions is discussed and expressions are derived. The relationship between weight and gravitation is thus established in a direct and pedagogical manner readily understandable by undergraduate students. The analysis applies to the Newtonian limit of gravitation. The derivation is based on an experimental (or operational) definition of weight, and it is shown that it coincides with the Earth’s gravitational force modified by diurnal rotation around a polar axis and non-uniformity of external gravitational bodies (tidal term). Two examples illustrate and quantify these modifications, respectively the Eötvös effect and the oceanic tides; tidal forces due to differential gravitation on a spacecraft and an asteroid are also proposed as examples. Considerations about inertia are also given and some comments are made about a widespread, yet confusing, explanation of tides based on a centrifugal force. Finally, the expression of the potential energy of the tide-generating force is established rigorously in the appendix.

  17. Weight, gravitation, inertia, and tides

    International Nuclear Information System (INIS)

    Pujol, Olivier; Lagoute, Christophe; Pérez, José-Philippe

    2015-01-01

    This paper deals with the factors that influence the weight of an object near the Earth's surface. They are: (1) the Earth's gravitational force, (2) the centrifugal force due to the Earth's diurnal rotation, and (3) tidal forces due to the gravitational field of the Moon and Sun, and other solar system bodies to a lesser extent. Each of these three contributions is discussed and expressions are derived. The relationship between weight and gravitation is thus established in a direct and pedagogical manner readily understandable by undergraduate students. The analysis applies to the Newtonian limit of gravitation. The derivation is based on an experimental (or operational) definition of weight, and it is shown that it coincides with the Earth’s gravitational force modified by diurnal rotation around a polar axis and non-uniformity of external gravitational bodies (tidal term). Two examples illustrate and quantify these modifications, respectively the Eötvös effect and the oceanic tides; tidal forces due to differential gravitation on a spacecraft and an asteroid are also proposed as examples. Considerations about inertia are also given and some comments are made about a widespread, yet confusing, explanation of tides based on a centrifugal force. Finally, the expression of the potential energy of the tide-generating force is established rigorously in the appendix. (paper)

  18. Modern lens antennas for communications engineering

    CERN Document Server

    Thornton, John

    2012-01-01

    The aim of this book is to present the modern design principles and analysis of lens antennas. It gives graduates and RF/Microwave professionals the design insights in order to make full use of lens antennas.  Why do we want to write a book in lens antennas? Because this topic has not been thoroughly publicized, its importance is underestimated. As antennas play a key role in communication systems, recent development in wireless communications would indeed benefit from the characteristics of lens antennas: low profile, and low cost etc.  The major advantages of lens antennas are na

  19. Plasma Lens for Muon and Neutrino Beams

    Science.gov (United States)

    Kahn, Stephen; Korenev, Sergey; Bishai, Mary; Diwan, Milind; Gallardo, Juan; Hershcovitch, Ady; Johnson, Brant

    2008-04-01

    The plasma lens is examined as an alternate to focusing horns and solenoids for use in a neutrino or muon beam facility. The plasma lens concept is based on a combined high-current lens/target configuration. The current is fed at electrodes located upstream and downstream from the target where pion capturing is needed. The current flows primarily in the plasma, which has a lower resistivity than the target. A second plasma lens section, with an additional current feed, follows the target to provide shaping of the plasma stability. The geometry of the plasma is shaped to provide optimal pion capture. Simulations of this plasma lens system have shown a 25% higher neutrino production than the horn system. A plasma lens has additional advantage: larger axial current than horns, minimal neutrino contamination during antineutrino running, and negligible pion absorption or scattering. Results from particle simulations using a plasma lens will be presented.

  20. Evidence for secondary gravitationally lensed images in radio quasistellar objects

    International Nuclear Information System (INIS)

    Rousey, C.E.

    1977-01-01

    Evidence is sought for the observability of the gravitational lens effect by studying the internal radio structures of quasistellar objects. Since the majority of the radio emitting quasars were observed to be multiply structured at radio wavelengths, and since the gravitational deflection of light is essentially frequency independent, these sources are very suitable objects for the investigation of gravitational imaging. From the theoretical framework of gravitational imaging, particularly in the treatment of the gravitational lenses as ''point-mass'' deflectors, several selection criteria were imposed on a sample of 208 radio emitting quasars in order to filter out only those sources which may be exhibiting radio imaging. The employment of further selection criteria, obtained from the consideration of the observed optical fields around the quasars, resulted in a small filtered sample of 10 quasars which are good candidates for exhibiting the gravitational lens effect. In particular, two quasars, 3C 268.4 and 3C 286, are observed to have good evidence for the presence of suitable gravitational lenses. Image models were computed for the image candidates which predict the masses and distances of the gravitational deflectors as well as estimations of the ''time delays'' of the images. It is also suggested that measurements of these image time delays may enable one to place stringent limits on the value of the Hubble constant

  1. Quasi-static displacement calibration system for a "Violin-Mode" shadow-sensor intended for Gravitational Wave detector suspensions

    Science.gov (United States)

    Lockerbie, N. A.; Tokmakov, K. V.

    2014-10-01

    This paper describes the design of, and results from, a calibration system for optical linear displacement (shadow) sensors. The shadow sensors were designed to detect "Violin-Mode" (VM) resonances in the 0.4 mm diameter silica fibre suspensions of the test masses/mirrors of Advanced Laser Interferometer Gravitational Wave Observatory gravitational wave interferometers. Each sensor illuminated the fibre under test, so as to cast its narrow shadow onto a "synthesized split photodiode" detector, the shadow falling over adjacent edges of the paired photodiodes. The apparatus described here translated a vertically orientated silica test fibre horizontally through a collimated Near InfraRed illuminating beam, whilst simultaneously capturing the separate DC "shadow notch" outputs from each of the paired split photodiode detectors. As the ratio of AC to DC photocurrent sensitivities to displacement was known, a calibration of the DC response to quasi-static shadow displacement allowed the required AC sensitivity to vibrational displacement to be found. Special techniques are described for generating the required constant scan rate for the test fibre using a DC motor-driven stage, for removing "jitter" at such low translation rates from a linear magnetic encoder, and so for capturing the two shadow-notch signals at each micrometre of the test fibre's travel. Calibration, across the four detectors of this work, gave a vibrational responsivity in voltage terms of (9.45 ± 1.20) MV (rms)/m, yielding a VM displacement sensitivity of (69 ± 13) pm (rms)/√Hz, at 500 Hz, over the required measuring span of ±0.1 mm.

  2. Resampling to accelerate cross-correlation searches for continuous gravitational waves from binary systems

    Science.gov (United States)

    Meadors, Grant David; Krishnan, Badri; Papa, Maria Alessandra; Whelan, John T.; Zhang, Yuanhao

    2018-02-01

    Continuous-wave (CW) gravitational waves (GWs) call for computationally-intensive methods. Low signal-to-noise ratio signals need templated searches with long coherent integration times and thus fine parameter-space resolution. Longer integration increases sensitivity. Low-mass x-ray binaries (LMXBs) such as Scorpius X-1 (Sco X-1) may emit accretion-driven CWs at strains reachable by current ground-based observatories. Binary orbital parameters induce phase modulation. This paper describes how resampling corrects binary and detector motion, yielding source-frame time series used for cross-correlation. Compared to the previous, detector-frame, templated cross-correlation method, used for Sco X-1 on data from the first Advanced LIGO observing run (O1), resampling is about 20 × faster in the costliest, most-sensitive frequency bands. Speed-up factors depend on integration time and search setup. The speed could be reinvested into longer integration with a forecast sensitivity gain, 20 to 125 Hz median, of approximately 51%, or from 20 to 250 Hz, 11%, given the same per-band cost and setup. This paper's timing model enables future setup optimization. Resampling scales well with longer integration, and at 10 × unoptimized cost could reach respectively 2.83 × and 2.75 × median sensitivities, limited by spin-wandering. Then an O1 search could yield a marginalized-polarization upper limit reaching torque-balance at 100 Hz. Frequencies from 40 to 140 Hz might be probed in equal observing time with 2 × improved detectors.

  3. A Constructive Reframing of Student Roles and Systems Learning in Medical Education Using a Communities of Practice Lens.

    Science.gov (United States)

    Gonzalo, Jed D; Thompson, Britta M; Haidet, Paul; Mann, Karen; Wolpaw, Daniel R

    2017-12-01

    Health systems are in the midst of a transformation that is being driven by a variety of forces. This has important implications for medical educators because clinical practice environments play a key role in learning and professional development, and evolving health systems are beginning to demand that providers have "systems-ready" knowledge, attitudes, and skills. Such implications provide a clear mandate for medical schools to modify their goals and prepare physicians to practice flexibly within teams and effectively contribute to the improvement of health care delivery. In this context, the concepts of value-added medical education, authentic student roles, and health systems science are emerging as increasingly important. In this Article, the authors use a lens informed by communities of practice theory to explore these three concepts, examining the implications that the communities of practice theory has in the constructive reframing of educational practices-particularly common student roles and experiences-and charting future directions for medical education that better align with the needs of the health care system. The authors apply several key features of the communities of practice theory to current experiential roles for students, then propose a new approach to students' clinical experiences-value-added clinical systems learning roles-that provides students with opportunities to make meaningful contributions to patient care while learning health systems science at the patient and population level. Finally, the authors discuss implications for professional role formation and anticipated challenges to the design and implementation of value-added clinical systems learning roles.

  4. CMU DeepLens: deep learning for automatic image-based galaxy-galaxy strong lens finding

    Science.gov (United States)

    Lanusse, François; Ma, Quanbin; Li, Nan; Collett, Thomas E.; Li, Chun-Liang; Ravanbakhsh, Siamak; Mandelbaum, Rachel; Póczos, Barnabás

    2018-01-01

    Galaxy-scale strong gravitational lensing can not only provide a valuable probe of the dark matter distribution of massive galaxies, but also provide valuable cosmological constraints, either by studying the population of strong lenses or by measuring time delays in lensed quasars. Due to the rarity of galaxy-scale strongly lensed systems, fast and reliable automated lens finding methods will be essential in the era of large surveys such as Large Synoptic Survey Telescope, Euclid and Wide-Field Infrared Survey Telescope. To tackle this challenge, we introduce CMU DeepLens, a new fully automated galaxy-galaxy lens finding method based on deep learning. This supervised machine learning approach does not require any tuning after the training step which only requires realistic image simulations of strongly lensed systems. We train and validate our model on a set of 20 000 LSST-like mock observations including a range of lensed systems of various sizes and signal-to-noise ratios (S/N). We find on our simulated data set that for a rejection rate of non-lenses of 99 per cent, a completeness of 90 per cent can be achieved for lenses with Einstein radii larger than 1.4 arcsec and S/N larger than 20 on individual g-band LSST exposures. Finally, we emphasize the importance of realistically complex simulations for training such machine learning methods by demonstrating that the performance of models of significantly different complexities cannot be distinguished on simpler simulations. We make our code publicly available at https://github.com/McWilliamsCenter/CMUDeepLens.

  5. A gravitationally lensed quasar discovered in OGLE

    Science.gov (United States)

    Kostrzewa-Rutkowska, Zuzanna; Kozłowski, Szymon; Lemon, Cameron; Anguita, T.; Greiner, J.; Auger, M. W.; Wyrzykowski, Ł.; Apostolovski, Y.; Bolmer, J.; Udalski, A.; Szymański, M. K.; Soszyński, I.; Poleski, R.; Pietrukowicz, P.; Skowron, J.; Mróz, P.; Ulaczyk, K.; Pawlak, M.

    2018-05-01

    We report the discovery of a new gravitationally lensed quasar (double) from the Optical Gravitational Lensing Experiment (OGLE) identified inside the ˜670deg2 area encompassing the Magellanic Clouds. The source was selected as one of ˜60 `red W1 - W2' mid-infrared objects from WISE and having a significant amount of variability in OGLE for both two (or more) nearby sources. This is the first detection of a gravitational lens, where the discovery is made `the other way around', meaning we first measured the time delay between the two lensed quasar images of -132 Technology Telescope spectra. The spectral energy distribution (SED) fitting with the fixed source redshift provided the estimate of the lensing galaxy redshift of z ≈ 0.9 ± 0.2 (90 per cent CL), while its type is more likely to be elliptical (the SED-inferred and lens-model stellar mass is more likely present in ellipticals) than spiral (preferred redshift by the lens model).

  6. EDITORIAL: Focus on Gravitational Lensing

    Science.gov (United States)

    Jain, Bhuvnesh

    2007-11-01

    Gravitational lensing emerged as an observational field following the 1979 discovery of a doubly imaged quasar lensed by a foreground galaxy. In the 1980s and '90s dozens of other multiply imaged systems were observed, as well as time delay measurements, weak and strong lensing by galaxies and galaxy clusters, and the discovery of microlensing in our galaxy. The rapid pace of advances has continued into the new century. Lensing is currently one of best techniques for finding and mapping dark matter over a wide range of scales, and also addresses broader cosmological questions such as understanding the nature of dark energy. This focus issue of New Journal of Physics presents a snapshot of current research in some of the exciting areas of lensing. It provides an occasion to look back at the advances of the last decade and ahead to the potential of the coming years. Just about a decade ago, microlensing was discovered through the magnification of stars in our galaxy by invisible objects with masses between that of Jupiter and a tenth the mass of the Sun. Thus a new component of the mass of our galaxy, dubbed MACHOs, was established (though a diffuse, cold dark matter-like component is still needed to make up most of the galaxy mass). More recently, microlensing led to another exciting discovery—of extra-solar planets with masses ranging from about five times that of Earth to that of Neptune. We can expect many more planets to be discovered through ongoing surveys. Microlensing is the best technique for finding Earth mass planets, though it is not as productive overall as other methods and does not allow for follow up observations. Beyond planet hunting, microlensing has enabled us to observe previously inaccessible systems, ranging from the surfaces of other stars to the accretion disks around the black holes powering distant quasars. Galaxies and galaxy clusters at cosmological distances can produce dramatic lensing effects: multiple images of background galaxies

  7. Calibration for medium resolution off-axis electron holography using a flexible dual-lens imaging system in a JEOL ARM 200F microscope.

    Science.gov (United States)

    Cantu-Valle, Jesus; Ruiz-Zepeda, Francisco; Mendoza-Santoyo, Fernando; Jose-Yacaman, Miguel; Ponce, Arturo

    2014-12-01

    In this work the calibration of a medium resolution off-axis electron holography using a dual-lens imaging system in a JEOL ARM 200F is shown. The objective dual-lens configuration allows adjusting the field of view from 35nm to 2.5μm. Subsequently, the parameters used in phase shift reconstruction were calibrated considering biprism voltage versus fringe spacing (σ) and versus fringe width (W). The reliability of the transmission electron microscope performance using these parameters was achieved using gold nanoparticles of known size and adjusting the excitation voltage of the lenses. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Propagation of flat-topped multi-Gaussian beams through a double-lens system with apertures.

    Science.gov (United States)

    Gao, Yanqi; Zhu, Baoqiang; Liu, Daizhong; Lin, Zunqi

    2009-07-20

    A general model for different apertures and flat-topped laser beams based on the multi-Gaussian function is developed. The general analytical expression for the propagation of a flat-topped beam through a general double-lens system with apertures is derived using the above model. Then, the propagation characteristics of the flat-topped beam through a spatial filter are investigated by using a simplified analytical expression. Based on the Fluence beam contrast and the Fill factor, the influences of a pinhole size on the propagation of the flat-topped multi-Gaussian beam (FMGB) through the spatial filter are illustrated. An analytical expression for the propagation of the FMGB through the spatial filter with a misaligned pinhole is presented, and the influences of the pinhole offset are evaluated.

  9. A new theory of gravitation

    International Nuclear Information System (INIS)

    Logunov, A.A.

    1989-01-01

    The author believes that the General Relativity Theory (GRT) suffers from a substantial deficiency since it ignors the fundamental laws of conservation of energy. Einstein neglected the classical concept of the field due to his belief in the truth of the principle of equivalence between forces of inertid gravitation. This equivalence leads, as the author says, to nonequivalence of these forces, making GRT logically contradictory from the physical point of view. The author considers GRT as a certain stage in the course of the study of space-time and gravitation, and suggests a new theory called the Relativistic Theory of Gravitation (RTG) which obeys the fundamental laws of conservation, and which is justified in some of its aspects by astronomical observations. RTG does not suffer from some deficiencies met in Einsteins theory. One is nonunique predictions of gravitation effects within the boundaries of the solar system. Also, RTG refuses some hypothesis as that of black holes. 7 refs

  10. A New Lens for Supporting and Studying Science Teacher Reflections: Situating the Self in the [Activity] System

    Science.gov (United States)

    Criswell, Brett; Calandra, Brendan; Puvirajah, Anton; Brantley-Dias, Laurie

    2015-01-01

    This paper presents a new lens for analyzing written reflections on the teaching experiences of pre-service [science] teachers. The lens, which borrows heavily from Activity Theory, allows science education researchers and teacher educators to identify tensions, disturbances, conflicts, and contradictions within teachers' written reflections as a…

  11. The SADI Personal Health Lens: A Web Browser-Based System for Identifying Personally Relevant Drug Interactions.

    Science.gov (United States)

    Vandervalk, Ben; McCarthy, E Luke; Cruz-Toledo, José; Klein, Artjom; Baker, Christopher J O; Dumontier, Michel; Wilkinson, Mark D

    2013-04-05

    The Web provides widespread access to vast quantities of health-related information that can improve quality-of-life through better understanding of personal symptoms, medical conditions, and available treatments. Unfortunately, identifying a credible and personally relevant subset of information can be a time-consuming and challenging task for users without a medical background. The objective of the Personal Health Lens system is to aid users when reading health-related webpages by providing warnings about personally relevant drug interactions. More broadly, we wish to present a prototype for a novel, generalizable approach to facilitating interactions between a patient, their practitioner(s), and the Web. We utilized a distributed, Semantic Web-based architecture for recognizing personally dangerous drugs consisting of: (1) a private, local triple store of personal health information, (2) Semantic Web services, following the Semantic Automated Discovery and Integration (SADI) design pattern, for text mining and identifying substance interactions, (3) a bookmarklet to trigger analysis of a webpage and annotate it with personalized warnings, and (4) a semantic query that acts as an abstract template of the analytical workflow to be enacted by the system. A prototype implementation of the system is provided in the form of a Java standalone executable JAR file. The JAR file bundles all components of the system: the personal health database, locally-running versions of the SADI services, and a javascript bookmarklet that triggers analysis of a webpage. In addition, the demonstration includes a hypothetical personal health profile, allowing the system to be used immediately without configuration. Usage instructions are provided. The main strength of the Personal Health Lens system is its ability to organize medical information and to present it to the user in a personalized and contextually relevant manner. While this prototype was limited to a single knowledge domain

  12. The SADI Personal Health Lens: A Web Browser-Based System for Identifying Personally Relevant Drug Interactions

    Science.gov (United States)

    Vandervalk, Ben; McCarthy, E Luke; Cruz-Toledo, José; Klein, Artjom; Baker, Christopher J O; Dumontier, Michel

    2013-01-01

    Background The Web provides widespread access to vast quantities of health-related information that can improve quality-of-life through better understanding of personal symptoms, medical conditions, and available treatments. Unfortunately, identifying a credible and personally relevant subset of information can be a time-consuming and challenging task for users without a medical background. Objective The objective of the Personal Health Lens system is to aid users when reading health-related webpages by providing warnings about personally relevant drug interactions. More broadly, we wish to present a prototype for a novel, generalizable approach to facilitating interactions between a patient, their practitioner(s), and the Web. Methods We utilized a distributed, Semantic Web-based architecture for recognizing personally dangerous drugs consisting of: (1) a private, local triple store of personal health information, (2) Semantic Web services, following the Semantic Automated Discovery and Integration (SADI) design pattern, for text mining and identifying substance interactions, (3) a bookmarklet to trigger analysis of a webpage and annotate it with personalized warnings, and (4) a semantic query that acts as an abstract template of the analytical workflow to be enacted by the system. Results A prototype implementation of the system is provided in the form of a Java standalone executable JAR file. The JAR file bundles all components of the system: the personal health database, locally-running versions of the SADI services, and a javascript bookmarklet that triggers analysis of a webpage. In addition, the demonstration includes a hypothetical personal health profile, allowing the system to be used immediately without configuration. Usage instructions are provided. Conclusions The main strength of the Personal Health Lens system is its ability to organize medical information and to present it to the user in a personalized and contextually relevant manner. While this

  13. Two families of astrophysical diverging lens models

    Science.gov (United States)

    Er, Xinzhong; Rogers, Adam

    2018-03-01

    In the standard gravitational lensing scenario, rays from a background source are bent in the direction of a foreground lensing mass distribution. Diverging lens behaviour produces deflections in the opposite sense to gravitational lensing, and is also of astrophysical interest. In fact, diverging lensing due to compact distributions of plasma has been proposed as an explanation for the extreme scattering events that produce frequency-dependent dimming of extragalactic radio sources, and may also be related to the refractive radio wave phenomena observed to affect the flux density of pulsars. In this work we study the behaviour of two families of astrophysical diverging lenses in the geometric optics limit, the power law, and the exponential plasma lenses. Generally, the members of these model families show distinct behaviour in terms of image formation and magnification, however the inclusion of a finite core for certain power-law lenses can produce a caustic and critical curve morphology that is similar to the well-studied Gaussian plasma lens. Both model families can produce dual radial critical curves, a novel distinction from the tangential distortion usually produced by gravitational (converging) lenses. The deflection angle and magnification of a plasma lens vary with the observational frequency, producing wavelength-dependent magnifications that alter the amplitudes and the shape of the light curves. Thus, multiwavelength observations can be used to physically constrain the distribution of the electron density in such lenses.

  14. Constraining the neutrino emission of gravitationally lensed Flat-Spectrum Radio Quasars with ANTARES data

    Energy Technology Data Exchange (ETDEWEB)

    Adrián-Martínez, S.; Ardid, M.; Bou-Cabo, M. [Institut d' Investigació per a la Gestió Integrada de les Zones Costaneres (IGIC), Universitat Politècnica de València, C/ Paranimf 1, Gandia, 46730 Spain (Spain); Albert, A. [GRPHE - Institut universitaire de technologie de Colmar, 34 rue du Grillenbreit BP 50568, Colmar, 68008 France (France); André, M. [Technical University of Catalonia, Laboratory of Applied Bioacoustics, Rambla Exposició, Vilanova i la Geltrú, Barcelona, 08800 Spain (Spain); Anton, G. [Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen Centre for Astroparticle Physics, Erwin-Rommel-Str. 1, Erlangen, 91058 Germany (Germany); Aubert, J.-J.; Bertin, V.; Brunner, J.; Busto, J. [Aix Marseille Université, CNRS/IN2P3, CPPM UMR 7346, Marseille, 13288 France (France); Baret, B. [APC, AstroParticule et Cosmologie, Université Paris Diderot, CNRS/IN2P3, CEA/Irfu, Observatoire de Paris, Sorbonne Paris Cité, 10, rue Alice Domon et Léonie Duquet, Paris Cedex 13, F-75205 France (France); Barrios-Martí, J. [IFIC - Instituto de Física Corpuscular, Edificios Investigación de Paterna, CSIC - Universitat de València, Apdo de Correos 22085, Valencia, 46071 Spain (Spain); Basa, S. [LAM - Laboratoire d' Astrophysique de Marseille, Pôle de l' Étoile Site de Château-Gombert, rue Frédéric Joliot-Curie 38, Marseille Cedex 13, 13388 France (France); Biagi, S. [INFN - Sezione di Bologna, Viale Berti-Pichat 6/2, Bologna, 40127 Italy (Italy); Bogazzi, C.; Bormuth, R.; Bouwhuis, M.C.; Bruijn, R. [Nikhef, Science Park 105, Amsterdam, 1098XG The Netherlands (Netherlands); Capone, A. [INFN -Sezione di Roma, P.le Aldo Moro 2, Roma, 00185 Italy (Italy); Caramete, L., E-mail: antares.spokesperson@in2p3.fr [Institute for Space Sciences, Bucharest, Măgurele, R-77125 Romania (Romania); and others

    2014-11-01

    This paper proposes to exploit gravitational lensing effects to improve the sensitivity of neutrino telescopes to the intrinsic neutrino emission of distant blazar populations. This strategy is illustrated with a search for cosmic neutrinos in the direction of four distant and gravitationally lensed Flat-Spectrum Radio Quasars. The magnification factor is estimated for each system assuming a singular isothermal profile for the lens. Based on data collected from 2007 to 2012 by the ANTARES neutrino telescope, the strongest constraint is obtained from the lensed quasar B0218+357, providing a limit on the total neutrino luminosity of this source of 1.08× 10{sup 46} erg s{sup -1}. This limit is about one order of magnitude lower than those previously obtained in the ANTARES standard point source searches with non-lensed Flat-Spectrum Radio Quasars.

  15. Converging or Diverging Lens?

    Science.gov (United States)

    Branca, Mario

    2013-01-01

    Why does a lens magnify? Why does it shrink objects? Why does this happen? The activities that we propose here are useful in helping us to understand how lenses work, and they show that the same lens can have different magnification capabilities. A converging lens can also act as a diverging lens. (Contains 4 figures.)

  16. Gravitational lensing statistics with extragalactic surveys - II. Analysis of the Jodrell Bank-VLA Astrometric Survey

    NARCIS (Netherlands)

    Helbig, P; Marlow, D; Quast, R; Wilkinson, PN; Browne, IWA; Koopmans, LVE

    We present constraints on the cosmological constant lambda(0) from gravitational lensing statistics of the Jodrell Bank-VLA Astrometric Survey (JVAS). Although this is the largest gravitational lens survey which has been analysed, cosmological constraints are only comparable to those from optical

  17. Structural and functional responses of extremity veins to long-term gravitational loading or unloading—lessons from animal systems

    Science.gov (United States)

    Monos, Emil; Raffai, Gábor; Dörnyei, Gabriella; Nádasy, György L.; Fehér, Erzsébet

    2007-02-01

    Long, transparent tubular tilt-cages were developed to maintain experimental rats either in 45∘ head-up (orthostasis model), or in 45∘ head-down body position (antiorthostasis model) for several weeks. In order to study the functional and structural changes in extremity blood vessels, also novel pressure angiograph systems, as well as special quantitative electron microscopic methods were applied. It was found that several adaptive mechanisms are activated in the lower limb superficial veins and microvessels of muscles when an organism is exposed to long-term (1-2 weeks) orthostatic-type gravitational load including a reversible amplification of the pressure-dependent myogenic response, tuning of the myogenic tone by Ca++- and voltage-sensitive K+ channels in humans, augmentation of the intramural sympathetic innervation involving an increased nerve terminal density and synaptic vesicle count with functional remodeling, reorganization of vascular network properties (microvascular rarefaction in muscles, decreased branching angles in superficial veins), and responses of an endothelin and platelet-derived growth factor (PDGF) containing vesicle system in the endothelium. On the other hand, when applying long-term head-down tilting, the effects are dichotomous, e.g. it suppresses significantly the pressure-induced myogenic response, however does not diminish the adventitial sympathetic innervation density.

  18. Gravitational radiation from dust

    International Nuclear Information System (INIS)

    Isaacson, R.A.; Welling, J.S.; Winicour, J.

    1985-01-01

    A dust cloud is examined within the framework of the general relativistic characteristic initial value problem. Unique gravitational initial data are obtained by requiring that the space-time be quasi-Newtonian. Explicit calculations of metric and matter fields are presented, which include all post-Newtonian corrections necessary to discuss the major physical properties of null infinity. These results establish a curved space version of the Einstein quadrupole formula, in the form ''news function equals third time derivative of transverse quadrupole moment,'' for this system. However, these results imply that some weakened notion of asymptotic flatness is necessary for the description of quasi-Newtonian systems

  19. Superstatistics and Gravitation

    Directory of Open Access Journals (Sweden)

    Octavio Obregón

    2010-09-01

    Full Text Available We suggest to consider the spacetime as a non-equilibrium system with a long-term stationary state that possess as a spatio-temporally fluctuating quantity ß . These systems can be described by a superposition of several statistics, superstatistics. We propose a Gamma distribution for f(ß that depends on a parameter ρ1. By means of it the corresponding entropy is calculated, ρ1 is identified with the probability corresponding to this model. A generalized Newton’s law of gravitation is then obtained following the entropic force formulation. We discuss some of the difficulties to try to get an associated theory of gravity.

  20. Exploring the effects of task shifting for HIV through a systems thinking lens: the case of Burkina Faso.

    Science.gov (United States)

    Yaya Bocoum, Fadima; Kouanda, Seni; Kouyaté, Bocar; Hounton, Sennen; Adam, Taghreed

    2013-10-22

    While the impact of task shifting on quality of care and clinical outcomes has been demonstrated in several studies, evidence on its impact on the health system as a whole is limited. This study has two main objectives. The first is to conceptualize the wider range of effects of task shifting through a systems thinking lens. The second is to explore these effects using task shifting for HIV in Burkina Faso as a case study. We used a case study approach, using qualitative research methods. Data sources included document reviews, reviews of available data and records, as well as interviews with key informants and health workers. In addition to the traditional measures of impact of task shifting on health outcomes, our study identified 20 possible effects of the strategy on the system as a whole. Moreover, our analysis highlighted the importance of differentiating between two types of health systems effects. The first are effects inherent to the task shifting strategy itself, such as job satisfaction or better access to health services. The second are effects due to health system barriers, for example the unavailability of medicines and supplies, generating a series of effects on the various components of the health system, e.g., staff frustration.Among the health systems effects that we found are positive, mostly unintended, effects and synergies such as increased health workers' sense of responsibility and worthiness, increased satisfaction due to using the newly acquired skills in other non-HIV tasks, as well as improved patient-provider relationships. Among the negative unintended effects are staff frustration due to lack of medicines and supplies or lack of the necessary infrastructure to be able to perform the new tasks. Our analysis highlights the importance of adopting a systems thinking approach in designing, implementing and evaluating health policies to mitigate some of the design issues or system bottle-necks that may impede their successful implementation

  1. Infrared observations of the dark matter lens candidate Q2345+007

    Science.gov (United States)

    Mcleod, Brian; Rieke, Marcia; Weedman, Daniel

    1994-01-01

    Deep K-band observations are presented of the double image quasar Q2345+007. This has the largest separation (7.1 sec) of any quasar image pair considered as gravitationally lensed, so the required lens is massive (10(exp 13) solar masses). No lens has been detected in previous deep images at visible wavelengths, and we find no lens to limiting K magnitude 20.0 in the infrared image. This constrains any lens to being much less luminous than brightest cluster galaxies, while the lens must be much more massive than such galaxies to produce the observed separation. Because spectral data indicate exceptional intrinsic similarity in the quasar image components, this pair remains as the most intriguing example of an observed configuration requiring the presence of massive, concentrated dark matter acting as a gravitational lens.

  2. Discovery of two gravitationally lensed quasars with image separations of 3 arcseconds from the Sloan Digital Sky Survey

    Energy Technology Data Exchange (ETDEWEB)

    Oguri, Masamune; Inada, Naohisa; Hennawi, Joseph F.; Richards, Gordon T.; Johnston, David E.; Frieman, Joshua A.; Pindor, Bartosz; Strauss, Michael A.; Brunner, Robert; Becker, Robert H.; Castander, Francisco J.; Gregg, Michael D.; Hall, Patrick B.; Rix, Hans-Walter; Schneider, Donald P.; Bahcall, Neta A.; Brinkmann, Jonathan; York, Donald G.

    2004-11-01

    We report the discovery of two doubly-imaged quasars, SDSS J100128.61+502756.9 and SDSS J120629.65+433217.6, at redshifts of 1.838 and 1.789 and with image separations of 2.86'' and 2.90'', respectively. The objects were selected as lens candidates from the Sloan Digital Sky Survey (SDSS). Based on the identical nature of the spectra of the two quasars in each pair and the identification of the lens galaxies, we conclude that the objects are gravitational lenses. The lenses are complicated; in both systems there are several galaxies in the fields very close to the quasars, in addition to the lens galaxies themselves. The lens modeling implies that these nearby galaxies contribute significantly to the lens potentials. On larger scales, we have detected an enhancement in the galaxy density near SDSS J100128.61+502756.9. The number of lenses with image separation of {approx} 3'' in the SDSS already exceeds the prediction of simple theoretical models based on the standard Lambda-dominated cosmology and observed velocity function of galaxies.

  3. Constraint on Additional Planets in Planetary Systems Discovered Through the Channel of High-magnification Gravitational Microlensing Events

    Science.gov (United States)

    Shin, I.-G.; Han, C.; Choi, J.-Y.; Hwang, K.-H.; Jung, Y.-K.; Park, H.

    2015-04-01

    High-magnification gravitational microlensing events provide an important channel of detecting planetary systems with multiple giants located at their birth places. In order to investigate the potential existence of additional planets, we reanalyze the light curves of the eight high-magnification microlensing events, for each of which a single planet was previously detected. The analyzed events include OGLE-2005-BLG-071, OGLE-2005-BLG-169, MOA-2007-BLG-400, MOA-2008-BLG-310, MOA-2009-BLG-319, MOA-2009-BLG-387, MOA-2010-BLG-477, and MOA-2011-BLG-293. We find that including an additional planet improves fits with {Δ }{{χ }2}\\lt 80 for seven out of eight analyzed events. For MOA-2009-BLG-319, the improvement is relatively big with {Δ }{{χ }2}∼ 143. From inspection of the fits, we find that the improvement of the fits is attributed to systematics in data. Although no clear evidence of additional planets is found, it is still possible to constrain the existence of additional planets in the parameter space. For this purpose, we construct exclusion diagrams showing the confidence levels excluding the existence of an additional planet as a function of its separation and mass ratio. We also present the exclusion ranges of additional planets with 90% confidence level for Jupiter-, Saturn-, and Uranus-mass planets.

  4. Application of asymptotic expansions for maximum likelihood estimators' errors to gravitational waves from inspiraling binary systems: The network case

    International Nuclear Information System (INIS)

    Vitale, Salvatore; Zanolin, Michele

    2011-01-01

    This paper describes the most accurate analytical frequentist assessment to date of the uncertainties in the estimation of physical parameters from gravitational waves generated by nonspinning binary systems and Earth-based networks of laser interferometers. The paper quantifies how the accuracy in estimating the intrinsic parameters mostly depends on the network signal to noise ratio (SNR), but the resolution in the direction of arrival also strongly depends on the network geometry. We compare results for six different existing and possible global networks and two different choices of the parameter space. We show how the fraction of the sky where the one sigma angular resolution is below 2 square degrees increases about 3 times when transitioning from the Hanford (USA), Livingston (USA) and Cascina (Italy) network to a network made of five interferometers (while keeping the network SNR fixed). The technique adopted here is an asymptotic expansion of the uncertainties in inverse powers of the SNR where the first order is the inverse Fisher information matrix. We show that the commonly employed approach of using a simplified parameter spaces and only the Fisher information matrix can largely underestimate the uncertainties (the combined effect would lead to a factor 7 for the one sigma sky uncertainty in square degrees at a network SNR of 15).

  5. Gravitational lensing by spinning and radially moving lenses

    International Nuclear Information System (INIS)

    Sereno, M.

    2002-01-01

    The effect of currents of mass on bending of light rays is considered in the weak field regime. Following Fermat's principle and the standard theory of gravitational lensing, we derive the gravito-magnetic correction to time delay function and deflection angle caused by a geometrically-thin lens. The cases of both rotating and shifting deflectors are discussed

  6. The Impact of Lens Opacity on SD-OCT Retinal Nerve Fiber Layer and Bruch's Membrane Opening Measurements Using the Anatomical Positioning System (APS).

    Science.gov (United States)

    Mauschitz, Matthias M; Roth, Felix; Holz, Frank G; Breteler, Monique M B; Finger, Robert P

    2017-05-01

    To evaluate the impact of lens opacity on retinal nerve fiber layer thickness (RNFLT) and Bruch's membrane opening (BMO) measurements. Fifty-nine randomly selected patients without any other relevant ocular pathology undergoing elective routine cataract surgery in two specialized eye clinics were enrolled. RNFLT, BMO area, and BMO minimum rim width (BMO-MRW) were assessed with the Heidelberg Engineering Spectralis OCT using the anatomical positioning system (APS) prior to and 1 day after cataract surgery using a ring scan at different eccentricities of the disc (3.5, 4.1 and 4.7 mm). Lens opacity was quantified using densitometry based on Scheimpflug images (Oculus Pentacam AXL). RNFLT, BMO area, and BMO-MRW were virtually identical before and following removal of the cataractous lens. This held when assessed overall, within the six sectors for the 3.5-mm scan, or at any other eccentricity. Baseline RNFLT was not associated with lens opacity. Using the APS, RNFLT remained unchanged following cataract surgery, contrary to results reported by previous studies. Our results imply that the APS may have contributed to more precise spectral-domain optical coherence measurements, minimizing the influence of cataract on RNFLT and BMO assessments in our cohort.

  7. A course in lens design

    CERN Document Server

    Velzel, Chris

    2014-01-01

    A Course in Lens Design is an instruction in the design of image-forming optical systems. It teaches how a satisfactory design can be obtained in a straightforward way. Theory is limited to a minimum, and used to support the practical design work. The book introduces geometrical optics, optical instruments and aberrations. It gives a description of the process of lens design and of the strategies used in this process. Half of its content is devoted to the design of sixteen types of lenses, described in detail from beginning to end. This book is different from most other books on lens design because it stresses the importance of the initial phases of the design process: (paraxial) lay-out and (thin-lens) pre-design. The argument for this change of accent is that in these phases much information can be obtained about the properties of the lens to be designed. This information can be used in later phases of the design. This makes A Course in Lens Design a useful self-study book, and a suitable basis for an intro...

  8. Eye lens dose correlations with personal dose equivalent and patient exposure in paediatric interventional cardiology performed with a fluoroscopic biplane system.

    Science.gov (United States)

    Alejo, L; Koren, C; Corredoira, E; Sánchez, F; Bayón, J; Serrada, A; Guibelalde, E

    2017-04-01

    To analyse the correlations between the eye lens dose estimates performed with dosimeters placed next to the eyes of paediatric interventional cardiologists working with a biplane system, the personal dose equivalent measured on the thorax and the patient dose. The eye lens dose was estimated in terms of H p (0.07) on a monthly basis, placing optically stimulated luminescence dosimeters (OSLDs) on goggles. The H p (0.07) personal dose equivalent was measured over aprons with whole-body OSLDs. Data on patient dose as recorded by the kerma-area product (P KA ) were collected using an automatic dose management system. The 2 paediatric cardiologists working in the facility were involved in the study, and 222 interventions in a 1-year period were evaluated. The ceiling-suspended screen was often disregarded during interventions. The annual eye lens doses estimated on goggles were 4.13±0.93 and 4.98±1.28mSv. Over the aprons, the doses obtained were 10.83±0.99 and 11.97±1.44mSv. The correlation between the goggles and the apron dose was R 2 =0.89, with a ratio of 0.38. The correlation with the patient dose was R 2 =0.40, with a ratio of 1.79μSvGy -1 cm -2 . The dose per procedure obtained over the aprons was 102±16μSv, and on goggles 40±9μSv. The eye lens dose normalized to P KA was 2.21±0.58μSvGy -1 cm -2 . Measurements of personal dose equivalent over the paediatric cardiologist's apron are useful to estimate eye lens dose levels if no radiation protection devices are typically used. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  9. Fermat potentials for nonperturbative gravitational lensing

    International Nuclear Information System (INIS)

    Frittelli, Simonetta; Kling, Thomas P.; Newman, Ezra T.

    2002-01-01

    The images of many distant galaxies are displaced, distorted and often multiplied by the presence of foreground massive galaxies near the line of sight; the foreground galaxies act as gravitational lenses. Commonly, the lens equation, which relates the placement and distortion of the images to the real source position in the thin-lens scenario, is obtained by extremizing the time of arrival among all the null paths from the source to the observer (Fermat's principle). We show that the construction of envelopes of certain families of null surfaces constitutes an alternative variational principle or version of Fermat's principle that leads naturally to a lens equation in a generic spacetime with any given metric. We illustrate the construction by deriving the lens equation for static asymptotically flat thin lens spacetimes. As an application of the approach, we find the bending angle for moving thin lenses in terms of the bending angle for the same deflector at rest. Finally we apply this construction to cosmological spacetimes (FRW) by using the fact they are all conformally related to Minkowski space

  10. Gravitational lenses and cosmological evolution

    International Nuclear Information System (INIS)

    Peacock, J.A.

    1982-01-01

    The effect of gravitational lensing on the apparent cosmological evolution of extragalactic radio sources is investigated. Models for a lens population consisting of galaxies and clusters of galaxies are constructed and used to calculate the distribution of amplification factors caused by lensing. Although many objects at high redshifts are predicted to have flux densities altered by 10 to 20 per cent relative to a homogeneous universe, flux conservation implies that de-amplification is as common as amplification. The effects on cosmological evolution as inferred from source counts and redshift data are thus relatively small; the slope of the counts is not large enough for intrinsically rare lensing events of high amplitude to corrupt observed samples. Lensing effects may be of greater importance for optically selected quasars, where lenses of mass as low as approximately 10 -4 solar mass can cause large amplifications. (author)

  11. Illumination uniformity issue explored via two-stage solar concentrator system based on Fresnel lens and compound flat concentrator

    International Nuclear Information System (INIS)

    Yeh, Naichia

    2016-01-01

    This paper illustrates details about the solar radiation distribution on the target of a two-stage solar concentrator that combines the Fresnel lens (FL) and the compound flat concentrator (CFC). The paper starts with a review of some FL development milestones such as the two-stage systems and the comparisons of flat vs. curved lenses in addition to the most noteworthy FL-based solar energy application, concentration photovoltaic (CPV). Through the review of the FL based CPV and two-stage concentrators, this study leads to the development of an algorithm to explore the spectrum distribution insight on the receiver of a two-stage (FL plus CFC) solar concentration system. It established the potential for using a correctly positioned 2nd stage reflector of right dimension to selectively redirect the desired spectrum on the target area so as to enhance the concentration flux intensity and uniformity at the same time. The study also helped to chart out the approximate locations of certain spectrum segments on the FL's target area, which is useful for exploring the spectrum control mechanism via the Fresnel lenses. - Highlights: • Map out the approximate locations of spectrum segments on FL's focal area. • Use the 2nd stage reflector to selectively reflect the desired spectrum on target. • Explore the spectrum distribution insight on FL solar concentrators' target area.

  12. Actuality of the Einstein theory of gravitation

    International Nuclear Information System (INIS)

    Ivanenko, D.D.

    1982-01-01

    Problems of actuality of the Einstein theory of gravitation are lightened. The great Einstein theory of gravitation is shown to remain a reliable base of understanding of modern physical world pattern and its inevitable further inexhaustible precising. The main GRT difficulties are enumirated: determination of reference systems, presence of singularities in the theory, absence of consistent determination of the gravity energy, impossibility of accounting the relations between atomic, gravitational and cosmological characteristics. The attention is paid to gauge, twistor problems and to unified interaction theory. The great contribution of the soviet science in the theory of gravitation is stressed

  13. Prevention of gravitational collapse

    International Nuclear Information System (INIS)

    Moffat, J.W.; Taylor, J.G.

    1981-01-01

    We apply a new theory of gravitation to the question of gravitational collapse to show that collapse is prevented in this theory under very reasonable conditions. This result also extends to prevent ultimate collapse of the Universe. (orig.)

  14. Underdevelopment’s gravitation

    Directory of Open Access Journals (Sweden)

    Marin Dinu

    2013-09-01

    Full Text Available The energy necessary to escape the gravitational pull of underdevelopment and to enter an evolutional trajectory dependent on the gravitational pull of development is unintelligible in economic terms.

  15. The Continuum Limit of a Fermion System Involving Leptons and Quarks: Strong, Electroweak and Gravitational Interactions

    OpenAIRE

    Finster, Felix

    2014-01-01

    The causal action principle is analyzed for a system of relativistic fermions composed of massive Dirac particles and neutrinos. In the continuum limit, we obtain an effective interaction described by classical gravity as well as the strong and electroweak gauge fields of the standard model.

  16. Gravitation in Material Media

    Science.gov (United States)

    Ridgely, Charles T.

    2011-01-01

    When two gravitating bodies reside in a material medium, Newton's law of universal gravitation must be modified to account for the presence of the medium. A modified expression of Newton's law is known in the literature, but lacks a clear connection with existing gravitational theory. Newton's law in the presence of a homogeneous material medium…

  17. Detection of gravitational radiation

    Energy Technology Data Exchange (ETDEWEB)

    Holten, J.W. van [ed.

    1994-12-31

    In this report the main contributions presented at the named symposium are collected. These concern astrophysical sources of gravitational radiation, ultracryogenic gravitational wave experiments, read out and data analysis of gravitational wave antennas, cryogenic aspects of large mass cooling to mK temperatures, and metallurgical and engineering aspects of large Cu structure manufacturing. (HSI).

  18. Detection of gravitational radiation

    International Nuclear Information System (INIS)

    Holten, J.W. van

    1994-01-01

    In this report the main contributions presented at the named symposium are collected. These concern astrophysical sources of gravitational radiation, ultracryogenic gravitational wave experiments, read out and data analysis of gravitational wave antennas, cryogenic aspects of large mass cooling to mK temperatures, and metallurgical and engineering aspects of large Cu structure manufacturing. (HSI)

  19. Relativity theory and gravitation

    International Nuclear Information System (INIS)

    Bondi, H.

    1986-01-01

    The paper on relativity theory and gravitation is presented as a preface to the first of the articles submitted to the Journal on general relativity. Newtonian gravitation and and observation, relativity, and the sources of the gravitational field, are all discussed. (UK)

  20. On the Stability of Spherically Symmetric Self-Gravitating Classical and Quantum Systems

    DEFF Research Database (Denmark)

    Makedonski, Mathias

    on to the description of the corresponding systems in the setting of general relativity, it is shown, that the Tolman-Oppenheimer-Volko equation can be obtained from a suitable variation of the total energy. We prove a previously unnoticed energetic instability of the model. Staying in the general relativistic setting....... As for the perfect fluid, we prove energetic instability and conclude our investigations by constructing a naive quantum version of the free massive scalar eld, that also suers energetic instability. ´...

  1. Anisotropic generalization of well-known solutions describing relativistic self-gravitating fluid systems. An algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Thirukkanesh, S. [Eastern University, Department of Mathematics, Chenkalady (Sri Lanka); Ragel, F.C. [Eastern University, Department of Physics, Chenkalady (Sri Lanka); Sharma, Ranjan; Das, Shyam [P.D. Women' s College, Department of Physics, Jalpaiguri (India)

    2018-01-15

    We present an algorithm to generalize a plethora of well-known solutions to Einstein field equations describing spherically symmetric relativistic fluid spheres by relaxing the pressure isotropy condition on the system. By suitably fixing the model parameters in our formulation, we generate closed-form solutions which may be treated as an anisotropic generalization of a large class of solutions describing isotropic fluid spheres. From the resultant solutions, a particular solution is taken up to show its physical acceptability. Making use of the current estimate of mass and radius of a known pulsar, the effects of anisotropic stress on the gross physical behaviour of a relativistic compact star is also highlighted. (orig.)

  2. Single lens to lens duplication: The missing link

    OpenAIRE

    Bhatt, Rupal; Jethani, Jitendra; Saluja, Praveen; Bharti, Vinay

    2008-01-01

    Congenital anomalies of the lens include a wide range from lens coloboma to primary aphakia and doubling of lens. There have been few case reports of double lens; the etiology suggested is metaplastic changes in the surface ectoderm that leads to formation of two lens vesicles and hence resulting in double lens. We report a case with bilobed lens, which raises the possibility of explaining the etiology of double lens.

  3. Changes in gravitational force affect gene expression in developing organ systems at different developmental times

    Directory of Open Access Journals (Sweden)

    Moorman Stephen J

    2005-05-01

    Full Text Available Abstract Background Little is known about the affect of microgravity on gene expression, particularly in vivo during embryonic development. Using transgenic zebrafish that express the gfp gene under the influence of a β-actin promoter, we examined the affect of simulated-microgravity on GFP expression in the heart, notochord, eye, somites, and rohon beard neurons. We exposed transgenic zebrafish to simulated-microgravity for different durations at a variety of developmental times in an attempt to determine periods of susceptibility for the different developing organ systems. Results The developing heart had a period of maximum susceptibility between 32 and 56 hours after fertilization when there was an approximately 30% increase in gene expression. The notochord, eye, somites, and rohon beard neurons all showed periods of susceptibility occurring between 24 and 72 hours after fertilization. In addition, the notochord showed a second period of susceptibility between 8 and 32 hours after fertilization. Interestingly, all organs appeared to be recovering by 80 hours after fertilization despite continued exposure to simulated-microgravity. Conclusion These results support the idea that exposure to microgravity can cause changes in gene expression in a variety of developing organ systems in live embryos and that there are periods of maximum susceptibility to the effects.

  4. On the evolution of the density probability density function in strongly self-gravitating systems

    International Nuclear Information System (INIS)

    Girichidis, Philipp; Konstandin, Lukas; Klessen, Ralf S.; Whitworth, Anthony P.

    2014-01-01

    The time evolution of the probability density function (PDF) of the mass density is formulated and solved for systems in free-fall using a simple approximate function for the collapse of a sphere. We demonstrate that a pressure-free collapse results in a power-law tail on the high-density side of the PDF. The slope quickly asymptotes to the functional form P V (ρ)∝ρ –1.54 for the (volume-weighted) PDF and P M (ρ)∝ρ –0.54 for the corresponding mass-weighted distribution. From the simple approximation of the PDF we derive analytic descriptions for mass accretion, finding that dynamically quiet systems with narrow density PDFs lead to retarded star formation and low star formation rates (SFRs). Conversely, strong turbulent motions that broaden the PDF accelerate the collapse causing a bursting mode of star formation. Finally, we compare our theoretical work with observations. The measured SFRs are consistent with our model during the early phases of the collapse. Comparison of observed column density PDFs with those derived from our model suggests that observed star-forming cores are roughly in free-fall.

  5. Self-gravitation in Saturn's rings

    International Nuclear Information System (INIS)

    Salo, H.; Lukkari, J.

    1982-01-01

    In a ring-shaped collisional system self-gravitation reduces the equilibrium values of the geometric and optical thickness. In Saturn's rings both effects are appreciable. The previously found discrepancy between the calculated profile and the observed profile of the rings is chiefly caused by the omission of self-gravitation. (Auth.)

  6. The confrontation between gravitation theory and experiment

    International Nuclear Information System (INIS)

    Will, C.M.

    1979-01-01

    After an introductory section, an analysis is given of the foundations of gravitation theory - principles of equivalence, the fundamental criteria for the viability of a gravitational theory, and the experiments that support those criteria. One of the principal conclusions is that the correct, viable theory of gravity must in all probability be a 'metric' theory. Attention is focussed on solar-system tests, using a 'theory of theories' known as the parametrized post-Newtonian formalism that encompasses most metric theories of gravity and that is ideally suited to the solar-system arena. Gravitational radiation is discussed as a possible tool for testing gravitational theory. The binary pulsar, a new , 'stellar-system' testing ground is studied. Tests of gravitation theory in a cosmic arena are described. (U.K.)

  7. Modulation transfer function estimation of optical lens system by adaptive neuro-fuzzy methodology

    Science.gov (United States)

    Petković, Dalibor; Shamshirband, Shahaboddin; Pavlović, Nenad T.; Anuar, Nor Badrul; Kiah, Miss Laiha Mat

    2014-07-01

    The quantitative assessment of image quality is an important consideration in any type of imaging system. The modulation transfer function (MTF) is a graphical description of the sharpness and contrast of an imaging system or of its individual components. The MTF is also known and spatial frequency response. The MTF curve has different meanings according to the corresponding frequency. The MTF of an optical system specifies the contrast transmitted by the system as a function of image size, and is determined by the inherent optical properties of the system. In this study, the adaptive neuro-fuzzy (ANFIS) estimator is designed and adapted to estimate MTF value of the actual optical system. Neural network in ANFIS adjusts parameters of membership function in the fuzzy logic of the fuzzy inference system. The back propagation learning algorithm is used for training this network. This intelligent estimator is implemented using Matlab/Simulink and the performances are investigated. The simulation results presented in this paper show the effectiveness of the developed method.

  8. A new geometrical gravitational theory

    International Nuclear Information System (INIS)

    Obata, T.; Chiba, J.; Oshima, H.

    1981-01-01

    A geometrical gravitational theory is developed. The field equations are uniquely determined apart from one unknown dimensionless parameter ω 2 . It is based on an extension of the Weyl geometry, and by the extension the gravitational coupling constant and the gravitational mass are made to be dynamical and geometrical. The fundamental geometrical objects in the theory are a metric gsub(μν) and two gauge scalars phi and psi. The theory satisfies the weak equivalence principle, but breaks the strong one generally. u(phi, psi) = phi is found out on the assumption that the strong one keeps holding good at least for bosons of low spins. Thus there is the simple correspondence between the geometrical objects and the gravitational objects. Since the theory satisfies the weak one, the inertial mass is also dynamical and geometrical in the same way as is the gravitational mass. Moreover, the cosmological term in the theory is a coscalar of power -4 algebraically made of psi and u(phi, psi), so it is dynamical, too. Finally spherically symmetric exact solutions are given. The permissible range of the unknown parameter ω 2 is experimentally determined by applying the solutions to the solar system. (author)

  9. Optical tweezers and surface plasmon resonance combination system based on the high numerical aperture lens

    Science.gov (United States)

    Shan, Xuchen; Zhang, Bei; Lan, Guoqiang; Wang, Yiqiao; Liu, Shugang

    2015-11-01

    Biology and medicine sample measurement takes an important role in the microscopic optical technology. Optical tweezer has the advantage of accurate capture and non-pollution of the sample. The SPR(surface plasmon resonance) sensor has so many advantages include high sensitivity, fast measurement, less consumption of sample and label-free detection of biological sample that the SPR sensing technique has been used for surface topography, analysis of biochemical and immune, drug screening and environmental monitoring. If they combine, they will play an important role in the biological, chemical and other subjects. The system we propose use the multi-axis cage system, by using the methods of reflection and transmiss ion to improve the space utilization. The SPR system and optical tweezer were builtup and combined in one system. The cage of multi-axis system gives full play to its accuracy, simplicity and flexibility. The size of the system is 20 * 15 * 40 cm3 and thus the sample can be replaced to switch between the optical tweezers system and the SPR system in the small space. It means that we get the refractive index of the sample and control the particle in the same system. In order to control the revolving stage, get the picture and achieve the data stored automatically, we write a LabVIEW procedure. Then according to the data from the back focal plane calculate the refractive index of the sample. By changing the slide we can trap the particle as optical tweezer, which makes us measurement and trap the sample at the same time.

  10. Gravitational Physics Research

    Science.gov (United States)

    Wu, S. T.

    2000-01-01

    Gravitational physics research at ISPAE is connected with NASA's Relativity Mission (Gravity Probe B (GP-B)) which will perform a test of Einstein's General Relativity Theory. GP-B will measure the geodetic and motional effect predicted by General Relativity Theory with extremely stable and sensitive gyroscopes in an earth orbiting satellite. Both effects cause a very small precession of the gyroscope spin axis. The goal of the GP-B experiment is the measurement of the gyroscope precession with very high precision. GP-B is being developed by a team at Stanford University and is scheduled for launch in the year 2001. The related UAH research is a collaboration with Stanford University and MSFC. This research is focussed primarily on the error analysis and data reduction methods of the experiment but includes other topics concerned with experiment systems and their performance affecting the science measurements. The hydrogen maser is the most accurate and stable clock available. It will be used in future gravitational physics missions to measure relativistic effects such as the second order Doppler effect. The HMC experiment, currently under development at the Smithsonian Astrophysical Observatory (SAO), will test the performance and capability of the hydrogen maser clock for gravitational physics measurements. UAH in collaboration with the SAO science team will study methods to evaluate the behavior and performance of the HMC. The GP-B data analysis developed by the Stanford group involves complicated mathematical operations. This situation led to the idea to investigate alternate and possibly simpler mathematical procedures to extract the GP-B measurements form the data stream. Comparison of different methods would increase the confidence in the selected scheme.

  11. Gravitational Influences on Flame Propagation through Non-Uniform, Premixed Gas Systems

    Science.gov (United States)

    Miller, Fletcher J.; Easton, John; Ross, Howard D.; Marchese, Anthony; Perry, David; Kulis, Michael

    2001-01-01

    Flame propagation through non-uniformly premixed (or layered) gases has importance both in useful combustion systems and in unintentional fires. As summarized previously, non-uniform premixed gas combustion receives scant attention compared to the more usual limiting cases of diffusion or uniformly premixed flames, especially regarding the role gravity plays. This paper summarizes our progress on furthering the knowledge of layered combustion, in which a fuel concentration gradient exists normal to the direction of flame spread. We present experimental and numerical results for flame spread through propanol-air layers formed near the flash point temperature (25 C) or near the stoichiometric temperature (33 C). Both the model and experimental results show that the removal of gravity results in a faster spreading flame, by as much as 80% depending on conditions. This is exactly the opposite effect as that predicted by an earlier model reported. We also found that having a gallery lid results in faster flame spread, an effect more pronounced at normal gravity, demonstrating the importance of enclosure geometry. Also reported here is the beginning of our spectroscopic measurements of fuel vapor.

  12. Contact Lens Care

    Science.gov (United States)

    ... Consumers Consumer Information by Audience For Women Contact Lens Care Share Tweet Linkedin Pin it More sharing ... www.fda.gov/medwatch Learn More about Contact Lens Care Other Tips on Contact Lenses Decorative Contact ...

  13. Theory of gravitational interactions

    CERN Document Server

    Gasperini, Maurizio

    2017-01-01

    This is the second edition of a well-received book that is a modern, self-contained introduction to the theory of gravitational interactions. The new edition includes more details on gravitational waves of cosmological origin, the so-called brane world scenario, and gravitational time-delay effects. The first part of the book follows the traditional presentation of general relativity as a geometric theory of the macroscopic gravitational field, while the second, more advanced part discusses the deep analogies (and differences) between a geometric theory of gravity and the “gauge” theories of the other fundamental interactions. This fills a gap within the traditional approach to general relativity which usually leaves students puzzled about the role of gravity. The required notions of differential geometry are reduced to the minimum, allowing room for aspects of gravitational physics of current phenomenological and theoretical interest, such as the properties of gravitational waves, the gravitational inter...

  14. A reflective lens: applying critical systems thinking and visual methods to ecohealth research.

    Science.gov (United States)

    Cleland, Deborah; Wyborn, Carina

    2010-12-01

    Critical systems methodology has been advocated as an effective and ethical way to engage with the uncertainty and conflicting values common to ecohealth problems. We use two contrasting case studies, coral reef management in the Philippines and national park management in Australia, to illustrate the value of critical systems approaches in exploring how people respond to environmental threats to their physical and spiritual well-being. In both cases, we used visual methods--participatory modeling and rich picturing, respectively. The critical systems methodology, with its emphasis on reflection, guided an appraisal of the research process. A discussion of these two case studies suggests that visual methods can be usefully applied within a critical systems framework to offer new insights into ecohealth issues across a diverse range of socio-political contexts. With this article, we hope to open up a conversation with other practitioners to expand the use of visual methods in integrated research.

  15. UCN gravitational spectrometer

    International Nuclear Information System (INIS)

    Kawabata, Yuji

    1988-01-01

    Concept design is carried out of two types of ultra cold neutron scallering equipment using the fall-focusing principle. One of the systems comprises a vertical gravitational spectrometer and the other includes a horizontal gravitation analyzer. A study is made of their performance and the following results are obtained. Fall-focusing type ultra cold neutron scattering equipment can achieve a high accuracy for measurement of energy and momentum. Compared with conventional neutron scattering systems, this type of equipment can use neutron very efficiently because scattered neutrons within a larger solid angle can be used. The maximum solid angle is nearly 4π and 2π for the vertical and horizontal type, respectively. Another feature is that the size of equipment can be reduced. In the present concept design, the equipment is spherical with a diameter of about 1 m, as compared with NESSIE which is 6.7 m in length and 4.85 m in height with about the same accuracy. Two horizontal analyzers and a vertical spectroscope are proposed. They are suitable for angle-dependent non-elastic scattering in the neutron velocity range of 6∼15 m/s, pure elastic scattering in the range of 4∼7 m/s, or angle-integration non-elastic scattering in the range of 4∼15 m/s. (N.K.)

  16. Sharing of secondary electrons by in-lens and out-lens detector in low-voltage scanning electron microscope equipped with immersion lens.

    Science.gov (United States)

    Kumagai, Kazuhiro; Sekiguchi, Takashi

    2009-03-01

    To understand secondary electron (SE) image formation with in-lens and out-lens detector in low-voltage scanning electron microscopy (LV-SEM), we have evaluated SE signals of an in-lens and an out-lens detector in LV-SEM. From the energy distribution spectra of SEs with various boosting voltages of the immersion lens system, we revealed that the electrostatic field of the immersion lens mainly collects electrons with energy lower than 40eV, acting as a low-pass filter. This effect is also observed as a contrast change in LV-SEM images taken by in-lens and out-lens detectors.

  17. Disinfection capacity of PuriLens contact lens cleaning unit against Acanthamoeba.

    Science.gov (United States)

    Hwang, Thomas S; Hyon, Joon Young; Song, Jae Kyung; Reviglio, Victor E; Spahr, Harry T; O'Brien, Terrence P

    2004-01-01

    The PuriLens contact lens system is indicated for cleaning and disinfection of soft (hydrophilic) contact lenses by means of subsonic agitation to remove lens deposits and microorganisms, and ultraviolet irradiation of the storage solution for disinfection. The capacity of the PuriLens system to disinfect storage solutions contaminated with known concentrations of Staphylococcus aureus, Pseudomonas aeruginosa, and Acanthamoeba species was evaluated. An in vitro assessment of the antibacterial and antiparasitic efficacy of the PuriLens system was performed. Separated batches of the storage solution for the cleansing system were contaminated with stock strains of S. aureus and P. aeruginosa. A comparison of the microbiologic content was made between the solution before and after the cycle. The PuriLens system effectively eradicated S. aureus and P. aeruginosa organisms after a 15-minute cycle. However, viable cysts of acanthamoeba were recovered in the solution after the 15-minute cycle. The PuriLens system is highly efficient in protecting against contamination with common bacterial ocular pathogens. Acanthamoeba cysts, however, can survive in the solution or contact lens bath undergoing integrated subsonic debridement and indirect ultraviolet light disinfection. Use of chemical disinfecting solutions that contain agents such as chlorhexidine or other cationic antiseptics may be advisable in conjunction with use of the PuriLens device, especially in high-risk settings.

  18. A classification system of intraocular lens dislocation sites under operating microscopy, and the surgical techniques and outcomes of exchange surgery.

    Science.gov (United States)

    Hayashi, Ken; Ogawa, Soichiro; Manabe, Shin-Ichi; Hirata, Akira; Yoshimura, Koichi

    2016-03-01

    The aim of this study was to examine the recent status of intraocular lens (IOL) dislocation according to a classification system based on vertical dislocation position, as well as the surgical techniques and outcomes of IOL exchange surgery. The medical records of 230 eyes from 214 consecutive patients who experienced IOL dislocation and underwent exchange surgery between 2006 and 2014 were reviewed. Vertical dislocation sites observed preoperatively under operating microscopy were examined, along with the surgical techniques and outcomes of IOL exchange. Dislocation sites included (1) the anterior chamber (12.2 %), (2) pseudophakodonesis (19.1 %), (3) the anterior vitreous cavity (47.4 %), (4) trap door-like dislocation (dangling in the peripheral vitreous cavity; 16.1 %), and (5) the retinal surface (5.2 %). The IOL retained in the anterior segment was moved onto the iris by pulling it up through the limbal side ports with an anterior vitrectomy (67.8 %), or by pushing it up from the pars plana with an anterior vitrectomy (26.5 %), while the IOL dropped on the retina was lifting it up from the retina after pars plana vitrectomy (5.7 %). Mean uncorrected and distance-corrected visual acuity significantly improved postoperatively (p system, approximately 95 % of dislocated IOLs were retained in the anterior segment, and these IOLs were exchanged using an anterior approach through limbal incisions with an anterior vitrectomy. Visual acuity improved significantly, and serious complications were uncommon, probably because the IOL exchange techniques were standardized and simplified without pars plana vitrectomy.

  19. Rapid immuno-analytical system physically integrated with lens-free CMOS image sensor for food-borne pathogens.

    Science.gov (United States)

    Jeon, Jin-Woo; Kim, Jee-Hyun; Lee, Jong-Mook; Lee, Won-Ho; Lee, Do-Young; Paek, Se-Hwan

    2014-02-15

    To realize an inexpensive, pocket-sized immunosensor system, a rapid test devise based on cross-flow immuno-chromatography was physically combined with a lens-free CMOS image sensor (CIS), which was then applied to the detection of the food-borne pathogen, Salmonella typhimurium (S. typhimurium). Two CISs, each retaining 1.3 mega pixel array, were mounted on a printed circuit board to fabricate a disposable sensing module, being connectable with a signal detection system. For the bacterial analysis, a cellulose membrane-based immunosensing platform, ELISA-on-a-chip (EOC), was employed, being integrated with the CIS module, and the antigen-antibody reaction sites were aligned with the respective sensor. In such sensor construction, the chemiluminescent signals produced from the EOC are transferred directly into the sensors and are converted to electric signals on the detector. The EOC-CIS integrated sensor was capable of detecting a traceable amount of the bacterium (4.22 × 10(3)CFU/mL), nearly comparable to that adopting a sophisticated detector such as cooled-charge-coupled device, while having greatly reduced dimensions and cost. Upon coupling with immuno-magnetic separation, the sensor showed an additional 67-fold enhancement in the detection limit. Furthermore, a real sample test was carried out for fish muscles inoculated with a sample of 3.3CFU S. typhimurium per 10 g, which was able to be detected earlier than 6h after the onset of pre-enrichment by culture. © 2013 Elsevier B.V. All rights reserved.

  20. Exploring Teaching Programming Online through Web Conferencing System: The Lens of Activity Theory

    Science.gov (United States)

    Çakiroglu, Ünal; Kokoç, Mehmet; Kol, Elvan; Turan, Ebru

    2016-01-01

    The purpose of this qualitative study was to understand activities and behaviors of learners and instructor in an online programming course. Adobe Connect web conferencing system was used as a delivery platform. A total of fifty-six sophomore students attending a computer education and instructional technology program (online) participated in this…

  1. RETRACTED: Adaptive neuro-fuzzy prediction of modulation transfer function of optical lens system

    Science.gov (United States)

    Petković, Dalibor; Shamshirband, Shahaboddin; Anuar, Nor Badrul; Md Nasir, Mohd Hairul Nizam; Pavlović, Nenad T.; Akib, Shatirah

    2014-07-01

    This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the Editor. Sections ;1. Introduction; and ;2. Modulation transfer function;, as well as Figures 1-3, plagiarize the article published by N. Gül and M. Efe in Turk J Elec Eng & Comp Sci 18 (2010) 71 (http://journals.tubitak.gov.tr/elektrik/issues/elk-10-18-1/elk-18-1-6-0811-9.pdf). Sections ;4. Adaptive neuro-fuzzy inference system; and ;6. Conclusion; duplicate parts of the articles previously published by the corresponding author et al in ;Expert Systems with Applications; 39 (2012) 13295-13304, http://dx.doi.org/10.1016/j.eswa.2012.05.072 and ;Expert Systems with Applications; 40 (2013) 281-286, http://dx.doi.org/10.1016/j.eswa.2012.07.076. One of the conditions of submission of a paper for publication is that authors declare explicitly that the paper is not under consideration for publication elsewhere. Re-use of any data should be appropriately cited. As such this article represents an abuse of the scientific publishing system. The scientific community takes a very strong view on this matter and apologies are offered to readers of the journal that this was not detected during the submission process.

  2. Using the Lens of Social Capital to Understand Diversity in the Earth System Sciences Workforce

    Science.gov (United States)

    Callahan, Caitlin N.; Libarkin, Julie C.; McCallum, Carmen M.; Atchison, Christopher L.

    2015-01-01

    In this commentary, we argue that social capital theory, the idea that membership in a group creates opportunities to acquire valuable information and resources from other group members, is a useful framework in which to consider ways to increase diversity in the Earth System Sciences (ESS) and in the science, technology, engineering, and…

  3. Plausibility Arguments and Universal Gravitation

    Science.gov (United States)

    Cunha, Ricardo F. F.; Tort, A. C.

    2017-01-01

    Newton's law of universal gravitation underpins our understanding of the dynamics of the Solar System and of a good portion of the observable universe. Generally, in the classroom or in textbooks, the law is presented initially in a qualitative way and at some point during the exposition its mathematical formulation is written on the blackboard…

  4. Accurate geometrical optics model for single-lens stereovision system using a prism.

    Science.gov (United States)

    Cui, Xiaoyu; Lim, Kah Bin; Guo, Qiyong; Wang, DaoLei

    2012-09-01

    In this paper, we proposed a new method for analyzing the image formation of a prism. The prism was considered as a single optical system composed of some planes. By analyzing each plane individually and then combining them together, we derived a transformation matrix which can express the relationship between an object point and its image by the refraction of a prism. We also explained how to use this matrix for epipolar geometry and three-dimensional point reconstruction. Our method is based on optical geometry and could be used in a multiocular prism. Experimentation results are presented to prove the accuracy of our method is better than former researchers' and is comparable with that of the multicamera stereovision system.

  5. Microbiomes: unifying animal and plant systems through the lens of community ecology theory.

    Science.gov (United States)

    Christian, Natalie; Whitaker, Briana K; Clay, Keith

    2015-01-01

    The field of microbiome research is arguably one of the fastest growing in biology. Bacteria feature prominently in studies on animal health, but fungi appear to be the more prominent functional symbionts for plants. Despite the similarities in the ecological organization and evolutionary importance of animal-bacterial and plant-fungal microbiomes, there is a general failure across disciplines to integrate the advances made in each system. Researchers studying bacterial symbionts in animals benefit from greater access to efficient sequencing pipelines and taxonomic reference databases, perhaps due to high medical and veterinary interest. However, researchers studying plant-fungal symbionts benefit from the relative tractability of fungi under laboratory conditions and ease of cultivation. Thus each system has strengths to offer, but both suffer from the lack of a common conceptual framework. We argue that community ecology best illuminates complex species interactions across space and time. In this synthesis we compare and contrast the animal-bacterial and plant-fungal microbiomes using six core theories in community ecology (i.e., succession, community assembly, metacommunities, multi-trophic interactions, disturbance, restoration). The examples and questions raised are meant to spark discussion amongst biologists and lead to the integration of these two systems, as well as more informative, manipulatory experiments on microbiomes research.

  6. Microbiomes: unifying animal and plant systems through the lens of community ecology theory

    Directory of Open Access Journals (Sweden)

    Natalie eChristian

    2015-09-01

    Full Text Available The field of microbiome research is arguably one of the fastest growing in biology. Bacteria feature prominently in studies on animal health, but fungi appear to be the more prominent functional symbionts for plants. Despite the similarities in the ecological organization and evolutionary importance of animal-bacterial and plant-fungal microbiomes, there is a general failure across disciplines to integrate the advances made in each system. Researchers studying bacterial symbionts in animals benefit from greater access to efficient sequencing pipelines and taxonomic reference databases, perhaps due to high medical and veterinary interest. However, researchers studying plant-fungal symbionts benefit from the relative tractability of fungi under laboratory conditions and ease of cultivation. Thus each system has strengths to offer, but both suffer from the lack of a common conceptual framework. We argue that community ecology best illuminates complex species interactions across space and time. In this synthesis we compare and contrast the animal-bacterial and plant-fungal microbiomes using six core theories in community ecology (i.e., succession, community assembly, metacommunities, multi-trophic interactions, disturbance, restoration. The examples and questions raised are meant to spark discussion amongst biologists and lead to the integration of these two systems, as well as more informative, manipulatory experiments on microbiomes research.

  7. Microbiomes: unifying animal and plant systems through the lens of community ecology theory

    Science.gov (United States)

    Christian, Natalie; Whitaker, Briana K.; Clay, Keith

    2015-01-01

    The field of microbiome research is arguably one of the fastest growing in biology. Bacteria feature prominently in studies on animal health, but fungi appear to be the more prominent functional symbionts for plants. Despite the similarities in the ecological organization and evolutionary importance of animal-bacterial and plant–fungal microbiomes, there is a general failure across disciplines to integrate the advances made in each system. Researchers studying bacterial symbionts in animals benefit from greater access to efficient sequencing pipelines and taxonomic reference databases, perhaps due to high medical and veterinary interest. However, researchers studying plant–fungal symbionts benefit from the relative tractability of fungi under laboratory conditions and ease of cultivation. Thus each system has strengths to offer, but both suffer from the lack of a common conceptual framework. We argue that community ecology best illuminates complex species interactions across space and time. In this synthesis we compare and contrast the animal-bacterial and plant–fungal microbiomes using six core theories in community ecology (i.e., succession, community assembly, metacommunities, multi-trophic interactions, disturbance, restoration). The examples and questions raised are meant to spark discussion amongst biologists and lead to the integration of these two systems, as well as more informative, manipulatory experiments on microbiomes research. PMID:26441846

  8. Applying a global justice lens to health systems research ethics: an initial exploration.

    Science.gov (United States)

    Pratt, Bridget; Hyder, Adnan A

    2015-03-01

    Recent scholarship has considered what, if anything, rich people owe to poor people to achieve justice in global health and the implications of this for international research. Yet this work has primarily focused on international clinical research. Health systems research is increasingly being performed in low and middle income countries and is essential to reducing global health disparities. This paper provides an initial description of the ethical issues related to priority setting, capacity-building, and the provision of post-study benefits that arise during the conduct of such research. It presents a selection of issues discussed in the health systems research literature and argues that they constitute ethical concerns based on their being inconsistent with a particular theory of global justice (the health capability paradigm). Issues identified include the fact that priority setting for health systems research at the global level is often not driven by national priorities and that capacity-building efforts frequently utilize one-size-fits-all approaches.

  9. Gravitating lepton bag model

    International Nuclear Information System (INIS)

    Burinskii, A.

    2015-01-01

    The Kerr–Newman (KN) black hole (BH) solution exhibits the external gravitational and electromagnetic field corresponding to that of the Dirac electron. For the large spin/mass ratio, a ≫ m, the BH loses horizons and acquires a naked singular ring creating two-sheeted topology. This space is regularized by the Higgs mechanism of symmetry breaking, leading to an extended particle that has a regular spinning core compatible with the external KN solution. We show that this core has much in common with the known MIT and SLAC bag models, but has the important advantage of being in accordance with the external gravitational and electromagnetic fields of the KN solution. A peculiar two-sheeted structure of Kerr’s gravity provides a framework for the implementation of the Higgs mechanism of symmetry breaking in configuration space in accordance with the concept of the electroweak sector of the Standard Model. Similar to other bag models, the KN bag is flexible and pliant to deformations. For parameters of a spinning electron, the bag takes the shape of a thin rotating disk of the Compton radius, with a ring–string structure and a quark-like singular pole formed at the sharp edge of this disk, indicating that the considered lepton bag forms a single bag–string–quark system

  10. Gravitational waves from inflation

    International Nuclear Information System (INIS)

    Guzzetti, M.C.; Bartolo, N.; Liguori, M.; Matarrese, S.

    2016-01-01

    The production of a stochastic background of gravitational waves is a fundamental prediction of any cosmological inflationary model. The features of such a signal encode unique information about the physics of the Early Universe and beyond, thus representing an exciting, powerful window on the origin and evolution of the Universe. We review the main mechanisms of gravitational-wave production, ranging from quantum fluctuations of the gravitational field to other mechanisms that can take place during or after inflation. These include e.g. gravitational waves generated as a consequence of extra particle production during inflation, or during the (p)reheating phase. Gravitational waves produced in inflation scenarios based on modified gravity theories and second-order gravitational waves are also considered. For each analyzed case, the expected power spectrum is given. We discuss the discriminating power among different models, associated with the validity/violation of the standard consistency relation between tensor-to-scalar ratio r and tensor spectral index ηT. In light of the prospects for (directly/indirectly) detecting primordial gravitational waves, we give the expected present-day gravitational radiation spectral energy-density, highlighting the main characteristics imprinted by the cosmic thermal history, and we outline the signatures left by gravitational waves on the Cosmic Microwave Background and some imprints in the Large-Scale Structure of the Universe. Finally, current bounds and prospects of detection for inflationary gravitational waves are summarized.

  11. Role of Aquaporin 0 in lens biomechanics

    International Nuclear Information System (INIS)

    Sindhu Kumari, S.; Gupta, Neha; Shiels, Alan; FitzGerald, Paul G.; Menon, Anil G.; Mathias, Richard T.; Varadaraj, Kulandaiappan

    2015-01-01

    Maintenance of proper biomechanics of the eye lens is important for its structural integrity and for the process of accommodation to focus near and far objects. Several studies have shown that specialized cytoskeletal systems such as the beaded filament (BF) and spectrin-actin networks contribute to mammalian lens biomechanics; mutations or deletion in these proteins alters lens biomechanics. Aquaporin 0 (AQP0), which constitutes ∼45% of the total membrane proteins of lens fiber cells, has been shown to function as a water channel and a structural cell-to-cell adhesion (CTCA) protein. Our recent ex vivo study on AQP0 knockout (AQP0 KO) mouse lenses showed the CTCA function of AQP0 could be crucial for establishing the refractive index gradient. However, biomechanical studies on the role of AQP0 are lacking. The present investigation used wild type (WT), AQP5 KO (AQP5 −/− ), AQP0 KO (heterozygous KO: AQP0 +/− ; homozygous KO: AQP0 −/− ; all in C57BL/6J) and WT-FVB/N mouse lenses to learn more about the role of fiber cell AQPs in lens biomechanics. Electron microscopic images exhibited decreases in lens fiber cell compaction and increases in extracellular space due to deletion of even one allele of AQP0. Biomechanical assay revealed that loss of one or both alleles of AQP0 caused a significant reduction in the compressive load-bearing capacity of the lenses compared to WT lenses. Conversely, loss of AQP5 did not alter the lens load-bearing ability. Compressive load-bearing at the suture area of AQP0 +/− lenses showed easy separation while WT lens suture remained intact. These data from KO mouse lenses in conjunction with previous studies on lens-specific BF proteins (CP49 and filensin) suggest that AQP0 and BF proteins could act co-operatively in establishing normal lens biomechanics. We hypothesize that AQP0, with its prolific expression at the fiber cell membrane, could provide anchorage for cytoskeletal structures like BFs and together they help to

  12. First detections of gravitational waves from binary black holes

    International Nuclear Information System (INIS)

    Bejger, Michał

    2017-01-01

    Recent direct detections of gravitational waves from coalescing binary black holes systems herald a new era in the observational astronomy, as well as in experimental verifications of the theories of gravity. I will present the principles of detection of gravitational waves, current state-of-art laser interferometric detectors (Advanced LIGO and Advanced Virgo), and the most promising astrophysical sources of gravitational waves. (paper)

  13. Strong gravitational lensing in f (χ) = χ{sup 3/2} gravity

    Energy Technology Data Exchange (ETDEWEB)

    Campigotto, M.C.; Diaferio, A. [Dipartimento di Fisica, Università di Torino, Via P. Giuria 1, 10125, Torino (Italy); Hernandez, X. [Instituto de Astronomia, Universidad Nacional Autonoma de Mexico, Ciudad de Mexico 04510 (Mexico); Fatibene, L., E-mail: martacostanza.campigotto@to.infn.it, E-mail: antonaldo.diaferio@unito.it, E-mail: xavier@astro.unam.mx, E-mail: lorenzo.fatibene@unito.it [Dipartimento di Matematica, Università di Torino, Via C. Alberto 10, 10123, Torino (Italy)

    2017-06-01

    We discuss the phenomenology of gravitational lensing in the purely metric f (χ) gravity, an f ( R ) gravity where the action of the gravitational field depends on the source mass. We focus on the strong lensing regime in galaxy-galaxy lens systems and in clusters of galaxies. By adopting point-like lenses and using an approximate metric solution accurate to second order of the velocity field v / c , we show how, in the f (χ) = χ{sup 3/2} gravity, the same light deflection can be produced by lenses with masses smaller than in General Relativity (GR); this mass difference increases with increasing impact parameter and decreasing lens mass. However, for sufficiently massive point-like lenses and small impact parameters, f (χ) = χ{sup 3/2} and GR yield indistinguishable light deflection angles: this regime occurs both in observed galaxy-galaxy lens systems and in the central regions of galaxy clusters. In the former systems, the GR and f (χ) masses are compatible with the mass of standard stellar populations and little or no dark matter, whereas, on the scales of the core of galaxy clusters, the presence of substantial dark matter is required by our point-like lenses both in GR and in our approximate f (χ) = χ{sup 3/2} solution. We thus conclude that our approximate metric solution of f (χ) = χ{sup 3/2} is unable to describe the observed phenomenology of the strong lensing regime without the aid of dark matter.

  14. KNOWLEDGE CONVERSION PADA PROSES PERENCANAAN PROYEK DI PT. LEN RAILWAY SYSTEM UNTUK STANDARDISASI PROSES DENGAN METODE SECI

    Directory of Open Access Journals (Sweden)

    Atikah Sayyidatu Nisaa

    2013-04-01

    Full Text Available PT LEN Railway System bergerak pada pembangunan proyek pensinyalan kereta api, namun pada proses perencanaan proyek pada perusahaan tersebut masih berupa tacit knowledge (pengalaman pekerja yang akan hilang. Oleh karena itu, diperlukan adanya konversi knowledge pekerja yang masih berbentuk tacit knowledge menjadi knowledge yang terdokumentasikan ke dalam bentuk explicit knowledge. Penelitian ini menggunakan metode SECI (Socialization, Externalization, Combination, Internalization. Pada tahap socialization dilakukan eksplorasi data kepada pelaku proyek yang bersangkutan mengenai proses bisnis suatu aktivitas maupun tacit dan explicit knowledge dari masing-masing aktivitas. Pada tahap externalization dilakukan pendokumentasian dari hasil eksplorasi data. Pada tahap combination dilakukan pemilihan best practice dengan menggunakan beberapa tools yaitu: metode Delphi, metode AHP dan pemilihan best practice menggunakan metode factor rating. Best practice yang didapatkan akan dikombinasikan dengan proses aktivitas dari PMBOK. Pada tahap internalization dilakukan penginformasian kepada pekerja mengenai best practice yang telah didapatkan dari hasil penelitian. Best practice yang terpilih dari hasil perhitungan factor rating didapatkan sebagai berikut best practice pembuatan WBS adalah proses bisnis dari responden 2 dengan nilai sebesar 8,710, untuk penentuan jadwal proyek dari responden 2 dengan nilai sebesar 8,067, untuk penentuan biaya proyek dari responden 3 sebesar 9,554, untuk pemilihan supplier dari responden 1 sebesar 8,330, untuk pembuatan desain proyek dari responden 1 sebesar 8,368 dan untuk pengadaan barang dari responden 1 dengan nilai sebesar 8,195. Kata Kunci : knowledge conversion, knowledge management, metode SECI Abstract The economic foundation movement of industrial era into the knowledge era has involved the project PT LEN Railway System which operates in the construction of the railway signaling project. This research uses SECI

  15. Ontogeny and Evolution Through the Lens of the Developmental Systems Theory (DST

    Directory of Open Access Journals (Sweden)

    Vicente Dressino

    2017-09-01

    Full Text Available The Developmental Systems Theory (DST intends to make a conceptual summary that links ontogenic development to evolution. This theory’s background may be found in the works of Waddington and Bertalanffy, who provided the foundations for the canalization of development and the biological systems theory, respectively. The aim of this work is to make a preliminary conceptual analysis of DST as a theoretical framework for developmental biology in particular and for evolutionary biology in general. For that purpose, we will take into account some of the concepts and proposals that constitute this framework, and we will work with secondary data obtained from the bibliography. We conclude that: 1. DST is able to argue against the gene centrist vision about the explanations that try to justify biological and evolutionary development; 2. DST argues coherently in favor of the role of Epigenetics in ontogeny and evolution; 3. In connection to that, the role of natural selection is restricted to a secondary plane; 4. DST proposes that the nature/nurture dichotomy must be overcome; and 5. DST constitutes a possible methodological research program composed of a series of not necessarily related hypothesis, theories, and methods that may be confirmed in a relatively independent manner from the rest of the theoretical network.

  16. ARRIVAL TIME DIFFERENCES BETWEEN GRAVITATIONAL WAVES AND ELECTROMAGNETIC SIGNALS DUE TO GRAVITATIONAL LENSING

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Ryuichi [Faculty of Science and Technology, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori 036-8561 (Japan)

    2017-01-20

    In this study we demonstrate that general relativity predicts arrival time differences between gravitational wave (GW) and electromagnetic (EM) signals caused by the wave effects in gravitational lensing. The GW signals can arrive earlier than the EM signals in some cases if the GW/EM signals have passed through a lens, even if both signals were emitted simultaneously by a source. GW wavelengths are much larger than EM wavelengths; therefore, the propagation of the GWs does not follow the laws of geometrical optics, including the Shapiro time delay, if the lens mass is less than approximately 10{sup 5} M {sub ⊙}( f /Hz){sup −1}, where f is the GW frequency. The arrival time difference can reach ∼0.1 s ( f /Hz){sup −1} if the signals have passed by a lens of mass ∼8000 M {sub ⊙}( f /Hz){sup −1} with the impact parameter smaller than the Einstein radius; therefore, it is more prominent for lower GW frequencies. For example, when a distant supermassive black hole binary (SMBHB) in a galactic center is lensed by an intervening galaxy, the time lag becomes of the order of 10 days. Future pulsar timing arrays including the Square Kilometre Array and X-ray detectors may detect several time lags by measuring the orbital phase differences between the GW/EM signals in the SMBHBs. Gravitational lensing imprints a characteristic modulation on a chirp waveform; therefore, we can deduce whether a measured arrival time lag arises from intrinsic source properties or gravitational lensing. Determination of arrival time differences would be extremely useful in multimessenger observations and tests of general relativity.

  17. Activity systems modeling as a theoretical lens for social exchange studies

    Directory of Open Access Journals (Sweden)

    Ernest Jones

    2016-01-01

    Full Text Available The social exchange perspective seeks to acknowledge, understand and predict the dynamics of social interactions. Empirical research involving social exchange constructs have grown to be highly technical including confirmatory factor analysis to assess construct distinctiveness and structural equation modeling to assess construct causality. Each study seemingly strives to assess how underlying social exchange theoretic constructs interrelate. Yet despite this methodological depth and resultant explanatory and predictive power, a significant number of studies report findings that, once synthesized, suggest an underlying persistent threat of conceptual or construct validity brought about by a search for epistemological parsimony. Further, it is argued that a methodological approach that embraces inherent complexity such as activity systems modeling facilitates the search for simplified models while not ignoring contextual factors.

  18. High resolution iridocorneal angle imaging system by axicon lens assisted gonioscopy

    Science.gov (United States)

    Perinchery, Sandeep Menon; Shinde, Anant; Fu, Chan Yiu; Jeesmond Hong, Xun Jie; Baskaran, Mani; Aung, Tin; Murukeshan, Vadakke Matham

    2016-07-01

    Direct visualization and assessment of the iridocorneal angle (ICA) region with high resolution is important for the clinical evaluation of glaucoma. However, the current clinical imaging systems for ICA do not provide sufficient structural details due to their poor resolution. The key challenges in achieving high quality ICA imaging are its location in the anterior region of the eye and the occurrence of total internal reflection due to refractive index difference between cornea and air. Here, we report an indirect axicon assisted gonioscopy imaging probe with white light illumination. The illustrated results with this probe shows significantly improved visualization of structures in the ICA including TM region, compared to the current available tools. It could reveal critical details of ICA and expected to aid management by providing information that is complementary to angle photography and gonioscopy.

  19. Clustering Algorithms in Hybrid Recommender System on MovieLens Data

    Directory of Open Access Journals (Sweden)

    Kuzelewska Urszula

    2014-08-01

    Full Text Available Decisions are taken by humans very often during professional as well as leisure activities. It is particularly evident during surfing the Internet: selecting web sites to explore, choosing needed information in search engine results or deciding which product to buy in an on-line store. Recommender systems are electronic applications, the aim of which is to support humans in this decision making process. They are widely used in many applications: adaptive WWW servers, e-learning, music and video preferences, internet stores etc. In on-line solutions, such as e-shops or libraries, the aim of recommendations is to show customers the products which they are probably interested in. As input data the following are taken: shopping basket archives, ratings of the products or servers log files.

  20. Computer simulations for intense continuous beam transport in electrostatic lens systems

    International Nuclear Information System (INIS)

    Zhao Xiaosong; Lv Jianqin

    2008-01-01

    A code LEADS based on the Lie algebraic analysis for the continuous beam dynamics with space charge effect in beam transport has been developed. The program is used for the simulations of axial-symmetric and unsymmetrical intense continuous beam in the channels including drift spaces, electrostatic lenses and DC electrostatic accelerating tubes. In order to get the accuracy required, all elements are divided into many small segments, and the electric field in the segments is regarded as uniform field, and the dividing points are treated as thin lenses. Iteration procedures are adopted in the program to obtain self-consistent solutions. The code can be used in the designs of low energy beam transport systems, electrostatic accelerators and ion implantation machines. (authors)

  1. High-intensification regions of gravitational lenses

    International Nuclear Information System (INIS)

    Benson, J.R.; Cooke, J.H.

    1979-01-01

    We examine the intensification, I, near the singular points in the object plane of an extended spherical gravitational lens. Geometrical optics predicts an infinite I for a point object located on a singularity. The function I, however, turns out to be integrable over the object plane. We make a detailed physical optics calculation for I. No singularities appear, and there are some interesting, marginally detectable diffraction phenomena. The two types of bright regions, the ''halo'' and the ''spike,'' behave very differently. Simple order-of-magnitude expressions give estimates for the brightness and duration of a high-intensification event

  2. Gravitational waves — A review on the theoretical foundations of gravitational radiation

    Science.gov (United States)

    Dirkes, Alain

    2018-05-01

    In this paper, we review the theoretical foundations of gravitational waves in the framework of Albert Einstein’s theory of general relativity. Following Einstein’s early efforts, we first derive the linearized Einstein field equations and work out the corresponding gravitational wave equation. Moreover, we present the gravitational potentials in the far away wave zone field point approximation obtained from the relaxed Einstein field equations. We close this review by taking a closer look on the radiative losses of gravitating n-body systems and present some aspects of the current interferometric gravitational waves detectors. Each section has a separate appendix contribution where further computational details are displayed. To conclude, we summarize the main results and present a brief outlook in terms of current ongoing efforts to build a spaced-based gravitational wave observatory.

  3. EXTRACTION OF THE MEAN RADIAL MASS-DISTRIBUTION IN CLUSTERS OF GALAXIES BY OBSERVATIONS OF WEAK GRAVITATIONAL IMAGING

    NARCIS (Netherlands)

    BREIMER, TG

    The gravitational fields of clusters of galaxies cause systematic distortions of the images of background galaxies. Recently, the lens inversion problem, reconstruction of the mean surface density distribution in the lens from the pattern of systematic distortions, has been the object of several

  4. Networked Community Change: Understanding Community Systems Change through the Lens of Social Network Analysis.

    Science.gov (United States)

    Lawlor, Jennifer A; Neal, Zachary P

    2016-06-01

    Addressing complex problems in communities has become a key area of focus in recent years (Kania & Kramer, 2013, Stanford Social Innovation Review). Building on existing approaches to understanding and addressing problems, such as action research, several new approaches have emerged that shift the way communities solve problems (e.g., Burns, 2007, Systemic Action Research; Foth, 2006, Action Research, 4, 205; Kania & Kramer, 2011, Stanford Social Innovation Review, 1, 36). Seeking to bring clarity to the emerging literature on community change strategies, this article identifies the common features of the most widespread community change strategies and explores the conditions under which such strategies have the potential to be effective. We identify and describe five common features among the approaches to change. Then, using an agent-based model, we simulate network-building behavior among stakeholders participating in community change efforts using these approaches. We find that the emergent stakeholder networks are efficient when the processes are implemented under ideal conditions. © Society for Community Research and Action 2016.

  5. Accurate and cost-effective MTF measurement system for lens modules of digital cameras

    Science.gov (United States)

    Chang, Gao-Wei; Liao, Chia-Cheng; Yeh, Zong-Mu

    2007-01-01

    For many years, the widening use of digital imaging products, e.g., digital cameras, has given rise to much attention in the market of consumer electronics. However, it is important to measure and enhance the imaging performance of the digital ones, compared to that of conventional cameras (with photographic films). For example, the effect of diffraction arising from the miniaturization of the optical modules tends to decrease the image resolution. As a figure of merit, modulation transfer function (MTF) has been broadly employed to estimate the image quality. Therefore, the objective of this paper is to design and implement an accurate and cost-effective MTF measurement system for the digital camera. Once the MTF of the sensor array is provided, that of the optical module can be then obtained. In this approach, a spatial light modulator (SLM) is employed to modulate the spatial frequency of light emitted from the light-source. The modulated light going through the camera under test is consecutively detected by the sensors. The corresponding images formed from the camera are acquired by a computer and then, they are processed by an algorithm for computing the MTF. Finally, through the investigation on the measurement accuracy from various methods, such as from bar-target and spread-function methods, it appears that our approach gives quite satisfactory results.

  6. Experimental investigation of a multi-stage humidification-dehumidification desalination system heated directly by a cylindrical Fresnel lens solar concentrator

    International Nuclear Information System (INIS)

    Wu, Gang; Zheng, Hongfei; Ma, Xinglong; Kutlu, Cagri; Su, Yuehong

    2017-01-01

    Highlights: • A solar desalination system heated directly by curved Fresnel lens concentrator. • Desalination system is based on the humidification-dehumidification process. • Four-stage multi-effect desalination system is proposed. • Condensation latent heat and residual heat in the brine are recycled and reutilized. • The maximum yield and GOR of the unit can reach 3.4 kg/h and 2.1, respectively. - Abstract: This study demonstrates a multi-stage humidification-dehumidification (HDH) solar desalination system heated directly by a cylindrical Fresnel lens concentrator. In this novel system, the solar radiation is sent directly into desalination unit. That is to say, the solar receiver and the evaporator of the system are a whole in which the black fillers in seawater directly absorb the concentrated solar lights to heat the seawater film to produce the evaporation. The configuration and working processes of the proposed design are described in detail. In order to analyze its performance, a small solar desalination prototype unit incorporated with a cylindrical Fresnel lens concentrator was designed and built in our laboratory. Using three-stage isothermal tandem heating mode, the variation of the fresh water yield rate and the absorber temperature with time were measured experimentally and were compared with theoretical calculations. The experimental results show that the maximum yield of the unit is about 3.4 kg/h, the maximum gained output ratio (GOR) is about 2.1, when the average intensity of solar radiation is about 867 W/m"2. This study indicates that the proposed system has the characteristics of compact structure and GOR high. It still can be improved when the design and operation are optimized further.

  7. Plasma Lens for Muon and Neutrino Beams

    International Nuclear Information System (INIS)

    Kahn, S.A.; Korenev, S.; Bishai, M.; Diwan, M.; Gallardo, J.C.; Hershcovitch, A.; Johnson, B.M.

    2008-01-01

    The plasma lens is examined as an alternate to focusing horns and solenoids for use in a neutrino or muon beam facility. The plasma lens concept is based on a combined high-energy lens/target configuration. The current is fed at electrodes located upstream and downstream from the target where pion capturing is needed. The current flows primarily in the plasma, which has a lower resistivity than the target. A second plasma lens section, with an additional current feed, follows the target to provide shaping of the plasma for optimum focusing. The plasma lens is immersed in an additional solenoid magnetic field to facilitate the plasma stability. The geometry of the plasma is shaped to provide optimal pion capture. Simulations of this plasma lens system have shown a 25% higher neutrino production than the horn system. Plasma lenses have the additional advantage of negligible pion absorption and scattering by the lens material and reduced neutrino contamination during anti-neutrino running. Results of particle simulations using plasma lens will be presented

  8. Gravitation Waves seminar

    CERN Multimedia

    CERN. Geneva HR-RFA

    2006-01-01

    We will present a brief introduction to the physics of gravitational waves and their properties. We will review potential astrophysical sources of gravitational waves, and the physics and astrophysics that can be learned from their study. We will survey the techniques and technologies for detecting gravitational waves for the first time, including bar detectors and broadband interferometers, and give a brief status report on the international search effort.

  9. Gravitational Wave Astronomy

    CERN Multimedia

    CERN. Geneva

    2006-01-01

    Gravitational wave astronomy is expected to become an observational field within the next decade. First direct detection of gravitational waves is possible with existing terrestrial-based detectors, and highly probable with proposed upgrades. In this three-part lecture series, we give an overview of the field, including material on gravitional wave sources, detection methods, some details of interferometric detectors, data analysis methods, and current results from observational data-taking runs of the LIGO and GEO projects.

  10. Gravitation in material media

    International Nuclear Information System (INIS)

    Ridgely, Charles T

    2011-01-01

    When two gravitating bodies reside in a material medium, Newton's law of universal gravitation must be modified to account for the presence of the medium. A modified expression of Newton's law is known in the literature, but lacks a clear connection with existing gravitational theory. Newton's law in the presence of a homogeneous material medium is herein derived on the basis of classical, Newtonian gravitational theory and by a general relativistic use of Archimedes' principle. It is envisioned that the techniques presented herein will be most useful to graduate students and those undergraduate students having prior experience with vector analysis and potential theory.

  11. IMAGE-PLANE ANALYSIS OF n-POINT-MASS LENS CRITICAL CURVES AND CAUSTICS

    Energy Technology Data Exchange (ETDEWEB)

    Danek, Kamil; Heyrovský, David, E-mail: kamil.danek@utf.mff.cuni.cz, E-mail: heyrovsky@utf.mff.cuni.cz [Institute of Theoretical Physics, Faculty of Mathematics and Physics, Charles University in Prague (Czech Republic)

    2015-06-10

    The interpretation of gravitational microlensing events caused by planetary systems or multiple stars is based on the n-point-mass lens model. The first planets detected by microlensing were well described by the two-point-mass model of a star with one planet. By the end of 2014, four events involving three-point-mass lenses had been announced. Two of the lenses were stars with two planetary companions each; two were binary stars with a planet orbiting one component. While the two-point-mass model is well understood, the same cannot be said for lenses with three or more components. Even the range of possible critical-curve topologies and caustic geometries of the three-point-mass lens remains unknown. In this paper we provide new tools for mapping the critical-curve topology and caustic cusp number in the parameter space of n-point-mass lenses. We perform our analysis in the image plane of the lens. We show that all contours of the Jacobian are critical curves of re-scaled versions of the lens configuration. Utilizing this property further, we introduce the cusp curve to identify cusp-image positions on all contours simultaneously. In order to track cusp-number changes in caustic metamorphoses, we define the morph curve, which pinpoints the positions of metamorphosis-point images along the cusp curve. We demonstrate the usage of both curves on simple two- and three-point-mass lens examples. For the three simplest caustic metamorphoses we illustrate the local structure of the image and source planes.

  12. Astrophysics. Multiple images of a highly magnified supernova formed by an early-type cluster galaxy lens.

    Science.gov (United States)

    Kelly, Patrick L; Rodney, Steven A; Treu, Tommaso; Foley, Ryan J; Brammer, Gabriel; Schmidt, Kasper B; Zitrin, Adi; Sonnenfeld, Alessandro; Strolger, Louis-Gregory; Graur, Or; Filippenko, Alexei V; Jha, Saurabh W; Riess, Adam G; Bradac, Marusa; Weiner, Benjamin J; Scolnic, Daniel; Malkan, Matthew A; von der Linden, Anja; Trenti, Michele; Hjorth, Jens; Gavazzi, Raphael; Fontana, Adriano; Merten, Julian C; McCully, Curtis; Jones, Tucker; Postman, Marc; Dressler, Alan; Patel, Brandon; Cenko, S Bradley; Graham, Melissa L; Tucker, Bradley E

    2015-03-06

    In 1964, Refsdal hypothesized that a supernova whose light traversed multiple paths around a strong gravitational lens could be used to measure the rate of cosmic expansion. We report the discovery of such a system. In Hubble Space Telescope imaging, we have found four images of a single supernova forming an Einstein cross configuration around a redshift z = 0.54 elliptical galaxy in the MACS J1149.6+2223 cluster. The cluster's gravitational potential also creates multiple images of the z = 1.49 spiral supernova host galaxy, and a future appearance of the supernova elsewhere in the cluster field is expected. The magnifications and staggered arrivals of the supernova images probe the cosmic expansion rate, as well as the distribution of matter in the galaxy and cluster lenses. Copyright © 2015, American Association for the Advancement of Science.

  13. Atomic and gravitational clocks

    International Nuclear Information System (INIS)

    Canuto, V.M.; City Coll., New York; Goldman, I.

    1982-01-01

    Atomic and gravitational clocks are governed by the laws of electrodynamics and gravity respectively. While the strong equivalence principle (SEP) assumes that the two clocks have been synchronous at all times, recent planetary data seem to suggest a possible violation of the SEP. Past analysis of the implications of an SEP violation on different physical phenomena revealed no disagreement. However, these studies assumed that the two different clocks can be consistently constructed within the framework. The concept of scale invariance, and the physical meaning of different systems of units, are now reviewed and the construction of two clocks that do not remain synchronous-whose rates are related by a non-constant function βsub(a)-is demonstrated. The cosmological character of βsub(a) is also discussed. (author)

  14. Gravitational effects in field gravitation theory

    International Nuclear Information System (INIS)

    Denisov, V.I.; Logunov, A.A.; Mestvirishvili, M.A.; Vlasov, A.A.

    1979-01-01

    The possibilities to describe various gravitation effects of field gravitation theory (FGT) are considered. Past-Newtonian approximation of the FGT has been constructed and on the basis of this approximation it has been shown that the field theory allows one to describe the whole set of experimental facts. The comparison of post-Newtonian parameters in FGT with those in the Einstein's theory makes it clear that these two; theories are undistinguishable from the viewpoint of any experiments, realized with post-Newtonian accuracy. Gravitational field of an island type source with spherically symmetrical distribution of matter and unstationary homogeneous model of Universe, which allows to describe the effect of cosmological red shift, are considered

  15. Optical-Gravitation Nonlinearity: A Change of Gravitational Coefficient G induced by Gravitation Field

    OpenAIRE

    R. Vlokh; M. Kostyrko

    2006-01-01

    Nonlinear effect of the gravitation field of spherically symmetric mass on the gravitational coefficient G has been analysed. In frame of the approaches of parametric optics and gravitation nonlinearity we have shown that the gravitation field of spherically symmetric mass can lead to changes in the gravitational coefficient G.

  16. Physics of interferometric gravitational wave detectors

    Indian Academy of Sciences (India)

    The Caltech-MIT joint LIGO project is operating three long-baseline inter- ... gravitational waves for LIGO are: (i) binary coalescing neutron star systems, (ii) ..... The fundamental mode of this basis is a purely Gaussian function which means.

  17. Relativistic gravitation theory

    International Nuclear Information System (INIS)

    Logunov, A.A.; Mestvirishvili, M.A.

    1984-01-01

    On the basis of the special relativity and geometrization principle a relativistic gravitation theory (RGT) is unambiguously constructed with the help of a notion of a gravitational field as a physical field in Faraday-Maxwell spirit, which posesses energy momentum and spins 2 and 0. The source of gravitation field is a total conserved energy-momentum tensor for matter and for gravitation field in Minkowski space. In the RGT conservation laws for the energy momentum and angular momentum of matter and gravitational field hold rigorously. The theory explains the whole set of gravitation experiments. Here, due to the geometrization principle the Riemannian space is of a field origin since this space arises effectively as a result of the gravitation field origin since this space arises effectively as a result of the gravitation field action on the matter. The RGT astonishing prediction is that the Universe is not closed but ''flat''. It means that in the Universe there should exist a ''missing'' mass in some form of matter

  18. Those Elusive Gravitational Waves

    Science.gov (United States)

    MOSAIC, 1976

    1976-01-01

    The presence of gravitational waves was predicted by Einstein in his theory of General Relativity. Since then, scientists have been attempting to develop a detector sensitive enough to measure these cosmic signals. Once the presence of gravitational waves is confirmed, scientists can directly study star interiors, galaxy cores, or quasars. (MA)

  19. Gravitationally coupled electroweak monopole

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Y.M., E-mail: ymcho7@konkuk.ac.kr [Administration Building 310-4, Konkuk University, Seoul 143-701 (Korea, Republic of); School of Physics and Astronomy, Seoul National University, Seoul 151-742 (Korea, Republic of); Kimm, Kyoungtae [Faculty of Liberal Education, Seoul National University, Seoul 151-747 (Korea, Republic of); Yoon, J.H. [Department of Physics, College of Natural Sciences, Konkuk University, Seoul 143-701 (Korea, Republic of)

    2016-10-10

    We present a family of gravitationally coupled electroweak monopole solutions in Einstein–Weinberg–Salam theory. Our result confirms the existence of globally regular gravitating electroweak monopole which changes to the magnetically charged black hole as the Higgs vacuum value approaches to the Planck scale. Moreover, our solutions could provide a more accurate description of the monopole stars and magnetically charged black holes.

  20. Nonequilibrium process of self-gravitating N-body systems and quasi-equilibrium structure using normalized q-expectation values for Tsallis' generalized entropy

    International Nuclear Information System (INIS)

    Komatsu, Nobuyoshi; Kiwata, Takahiro; Kimura, Shigeo

    2010-01-01

    To clarify the nonequilibrium processes of self-gravitating systems, we examine a system enclosed in a spherical container with reflecting walls, by N-body simulations. To simulate nonequilibrium processes, we consider loss of energy through the reflecting wall, i.e., a particle reflected at a non-adiabatic wall is cooled to mimic energy loss. We also consider quasi-equilibrium structures of stellar polytropes to compare with the nonequilibrium process, where the quasi-equilibrium structure is obtained from an extremum-state of Tsallis' entropy. Consequently, we numerically show that, with increasing cooling rates, the dependence of the temperature on energy, i.e., the ε-T curve, varies from that of microcanonical ensembles (or isothermal spheres) to a common curve. The common curve appearing in the nonequilibrium process agrees well with an ε-T curve for a quasi-equilibrium structure of the stellar polytrope, especially for the polytrope index n ∼ 5. In fact, for n > 5, the stellar polytrope within an adiabatic wall exhibits gravothermal instability [Taruya, Sakagami, Physica A, 322 (2003) 285]. The present study indicates that the stellar polytrope with n ∼ 5 likely plays an important role in quasi-attractors of the nonequilibrium process in self-gravitating systems with non-adiabatic walls.

  1. Gravitational Wave Experiments - Proceedings of the First Edoardo Amaldi Conference

    Science.gov (United States)

    Coccia, E.; Pizzella, G.; Ronga, F.

    1995-07-01

    Production of Gravitational Radiation by Particle Accelerators and by High Power Lasers * NESTOR: An Underwater Cerenkov Detector for Neutrino Astronomy * A Cosmic-Ray Veto System for the Gravitational Wave Detector NAUTLUS * Interferometers * Development of a 20m Prototype Laser Interferometric Gravitational Wave Detector at NAO * Production of Higher-Order Light Modes by High Quality Optical Components * Vibration Isolation and Suspension Systems for Laser Interferometer Gravitational Wave Detectors * Quality Factors of Stainless Steel Pendulum Wires * Reduction of Suspension Thermal Noises in Laser Free Masses Gravitational Antenna by Correlation of the Output with Additional Optical Signal * Resonant Detectors * Regeneration Effects in a Resonant Gravitational Wave Detector * A Cryogenic Sapphire Transducer with Double Frequency Pumping for Resonant Mass GW Detectors * Effect of Parametric Instability of Gravitational Wave Antenna with Microwave Cavity Transducer * Resonators of Novel Geometry for Large Mass Resonant Transducers * Measurements on the Gravitational Wave Antenna ALTAIR Equipped with a BAE Transducer * The Rome BAE Transducer: Perspectives of its Application to Ultracryogenic Gravitational Wave Antennas * Behavior of a de SQUID Tightly Coupled to a High-Q Resonant Transducer * High Q-Factor LC Resonators for Optimal Coupling * Comparison Between Different Data Analysis Procedures for Gravitational Wave Pulse Detection * Supernova 1987A Rome Maryland Gravitational Radiation Antenna Observations * Analysis of the Data Recorded by the Maryland and Rome Gravitational-Wave Detectors and the Seismic Data from Moscow and Obninsk Station during SN1987A * Multitransducer Resonant Gravitational Antennas * Local Array of High Frequency Antennas * Interaction Cross-Sections for Spherical Resonant GW Antennae * Signal-To-Noise Analysis for a Spherical Gravitational Wave Antenna Instrumented with Multiple Transducers * On the Design of Ultralow Temperature Spherical

  2. A gravitationally lensed quasar with quadruple images separated by 14.62 arcseconds.

    Science.gov (United States)

    Inada, Naohisa; Oguri, Masamune; Pindor, Bartosz; Hennawi, Joseph F; Chiu, Kuenley; Zheng, Wei; Ichikawa, Shin-Ichi; Gregg, Michael D; Becker, Robert H; Suto, Yasushi; Strauss, Michael A; Turner, Edwin L; Keeton, Charles R; Annis, James; Castander, Francisco J; Eisenstein, Daniel J; Frieman, Joshua A; Fukugita, Masataka; Gunn, James E; Johnston, David E; Kent, Stephen M; Nichol, Robert C; Richards, Gordon T; Rix, Hans-Walter; Sheldon, Erin Scott; Bahcall, Neta A; Brinkmann, J; Ivezić, Zeljko; Lamb, Don Q; McKay, Timothy A; Schneider, Donald P; York, Donald G

    2003-12-18

    Gravitational lensing is a powerful tool for the study of the distribution of dark matter in the Universe. The cold-dark-matter model of the formation of large-scale structures (that is, clusters of galaxies and even larger assemblies) predicts the existence of quasars gravitationally lensed by concentrations of dark matter so massive that the quasar images would be split by over 7 arcsec. Numerous searches for large-separation lensed quasars have, however, been unsuccessful. All of the roughly 70 lensed quasars known, including the first lensed quasar discovered, have smaller separations that can be explained in terms of galaxy-scale concentrations of baryonic matter. Although gravitationally lensed galaxies with large separations are known, quasars are more useful cosmological probes because of the simplicity of the resulting lens systems. Here we report the discovery of a lensed quasar, SDSS J1004 + 4112, which has a maximum separation between the components of 14.62 arcsec. Such a large separation means that the lensing object must be dominated by dark matter. Our results are fully consistent with theoretical expectations based on the cold-dark-matter model.

  3. A gravitational entropy proposal

    International Nuclear Information System (INIS)

    Clifton, Timothy; Tavakol, Reza; Ellis, George F R

    2013-01-01

    We propose a thermodynamically motivated measure of gravitational entropy based on the Bel–Robinson tensor, which has a natural interpretation as the effective super-energy–momentum tensor of free gravitational fields. The specific form of this measure differs depending on whether the gravitational field is Coulomb-like or wave-like, and reduces to the Bekenstein–Hawking value when integrated over the interior of a Schwarzschild black hole. For scalar perturbations of a Robertson–Walker geometry we find that the entropy goes like the Hubble weighted anisotropy of the gravitational field, and therefore increases as structure formation occurs. This is in keeping with our expectations for the behaviour of gravitational entropy in cosmology, and provides a thermodynamically motivated arrow of time for cosmological solutions of Einstein’s field equations. It is also in keeping with Penrose’s Weyl curvature hypothesis. (paper)

  4. Structural Conditions for Collaboration and Learning in Innovation Networks: Using an Innovation System Performance Lens to Analyse Agricultural Knowledge Systems

    NARCIS (Netherlands)

    Hermans, F.; Klerkx, L.W.A.; Roep, D.

    2015-01-01

    Purpose: We investigate how the structural conditions of eight different European agricultural innovation systems can facilitate or hinder collaboration and social learning in multidisciplinary innovation networks. Methodology: We have adapted the Innovation System Failure Matrix to investigate the

  5. Measurement of Crystalline Lens Volume During Accommodation in a Lens Stretcher.

    Science.gov (United States)

    Marussich, Lauren; Manns, Fabrice; Nankivil, Derek; Maceo Heilman, Bianca; Yao, Yue; Arrieta-Quintero, Esdras; Ho, Arthur; Augusteyn, Robert; Parel, Jean-Marie

    2015-07-01

    To determine if the lens volume changes during accommodation. The study used data acquired on 36 cynomolgus monkey lenses that were stretched in a stepwise fashion to simulate disaccommodation. At each step, stretching force and dioptric power were measured and a cross-sectional image of the lens was acquired using an optical coherence tomography system. Images were corrected for refractive distortions and lens volume was calculated assuming rotational symmetry. The average change in lens volume was calculated and the relation between volume change and power change, and between volume change and stretching force, were quantified. Linear regressions of volume-power and volume-force plots were calculated. The mean (± SD) volume in the unstretched (accommodated) state was 97 ± 8 mm3. On average, there was a small but statistically significant (P = 0.002) increase in measured lens volume with stretching. The mean change in lens volume was +0.8 ± 1.3 mm3. The mean volume-power and volume-load slopes were -0.018 ± 0.058 mm3/D and +0.16 ± 0.40 mm3/g. Lens volume remains effectively constant during accommodation, with changes that are less than 1% on average. This result supports a hypothesis that the change in lens shape with accommodation is accompanied by a redistribution of tissue within the capsular bag without significant compression of the lens contents or fluid exchange through the capsule.

  6. Probing a gravitational cat state

    International Nuclear Information System (INIS)

    Anastopoulos, C; Hu, B L

    2015-01-01

    We investigate the nature of a gravitational two-state system (G2S) in the simplest setup in Newtonian gravity. In a quantum description of matter a single motionless massive particle can in principle be in a superposition state of two spatially separated locations. This superposition state in gravity, or gravitational cat state, would lead to fluctuations in the Newtonian force exerted on a nearby test particle. The central quantity of importance for this inquiry is the energy density correlation. This corresponds to the noise kernel in stochastic gravity theory, evaluated in the weak field nonrelativistic limit. In this limit quantum fluctuations of the stress–energy tensor manifest as the fluctuations of the Newtonian force. We describe the properties of such a G2S system and present two ways of measuring the cat state for the Newtonian force, one by way of a classical probe, the other a quantum harmonic oscillator. Our findings include: (i) mass density fluctuations persist even in single particle systems, and they are of the same order of magnitude as the mean; (ii) a classical probe generically records a non-Markovian fluctuating force; (iii) a quantum probe interacting with the G2S system may undergo Rabi oscillations in a strong coupling regime. This simple prototypical gravitational quantum system could provide a robust testing ground to compare predictions from alternative quantum theories, since the results reported here are based on standard quantum mechanics and classical gravity. (paper)

  7. Can strong gravitational lensing constrain dark energy?

    International Nuclear Information System (INIS)

    Lee, Seokcheon; Ng, K.-W.

    2007-01-01

    We discuss the ratio of the angular diameter distances from the source to the lens, D ds , and to the observer at present, D s , for various dark energy models. It is well known that the difference of D s s between the models is apparent and this quantity is used for the analysis of Type Ia supernovae. However we investigate the difference between the ratio of the angular diameter distances for a cosmological constant, (D ds /D s ) Λ , and that for other dark energy models, (D ds /D s ) other , in this paper. It has been known that there is lens model degeneracy in using strong gravitational lensing. Thus, we investigate the model independent observable quantity, Einstein radius (θ E ), which is proportional to both D ds /D s and velocity dispersion squared, σ v 2 . D ds /D s values depend on the parameters of each dark energy model individually. However, (D ds /D s ) Λ -(D ds /D s ) other for the various dark energy models, is well within the error of σ v for most of the parameter spaces of the dark energy models. Thus, a single strong gravitational lensing by use of the Einstein radius may not be a proper method to investigate the property of dark energy. However, better understanding to the mass profile of clusters in the future or other methods related to arc statistics rather than the distances may be used for constraints on dark energy

  8. Relationship between high-energy absorption cross section and strong gravitational lensing for black hole

    International Nuclear Information System (INIS)

    Wei Shaowen; Liu Yuxiao; Guo Heng

    2011-01-01

    In this paper, we obtain a relation between the high-energy absorption cross section and the strong gravitational lensing for a static and spherically symmetric black hole. It provides us a possible way to measure the high-energy absorption cross section for a black hole from strong gravitational lensing through astronomical observation. More importantly, it allows us to compute the total energy emission rate for high-energy particles emitted from the black hole acting as a gravitational lens. It could tell us the range of the frequency, among which the black hole emits the most of its energy and the gravitational waves are most likely to be observed. We also apply it to the Janis-Newman-Winicour solution. The results suggest that we can test the cosmic censorship hypothesis through the observation of gravitational lensing by the weakly naked singularities acting as gravitational lenses.

  9. Effects of gravitational lensing and companion motion on the binary pulsar timing

    International Nuclear Information System (INIS)

    Rafikov, Roman R.; Lai Dong

    2006-01-01

    The measurement of the Shapiro time delay in binary pulsar systems with highly-inclined orbit can be affected both by the motion of the pulsar's companion because of the finite time it takes a photon to cross the binary, and by the gravitational light bending if the orbit is sufficiently edge-on relative to the line of sight. Here we calculate the effect of retardation due to the companion's motion on various time delays in pulsar binaries, including the Shaipro delay, the geometric lensing delay, and the lens-induced delays associated with the pulsar rotation. Our results can be applied to systems so highly inclined that near conjunction gravitational lensing of the pulsar radiation by the companion becomes important (the recently discovered double pulsar system J0737-3039 may exemplify such a system). To the leading order, the effect of retardation is to shift all the delay curves backward in time around the orbit conjunction, without affecting the shape and amplitude of the curves. The time shift is of order the photon orbit crossing time, and ranges from a second to a few minutes for the observed binary pulsar systems. In the double pulsar system J0737-3039, the motion of the companion may also affect the interpretation of the recent correlated interstellar scintillation measurements. Finally, we show that lensing sets an upper limit on the magnitude of the frame-dragging time delay caused by the companion's spin, and makes this delay unobservable in stellar-mass binary pulsar systems

  10. Lens Design Using Group Indices of Refraction

    Science.gov (United States)

    Vaughan, A. H.

    1995-01-01

    An approach to lens design is described in which the ratio of the group velocity to the speed of light (the group index) in glass is used, in conjunction with the more familiar phase index of refraction, to control certain chromatic properties of a system of thin lenses in contact. The first-order design of thin-lens systems is illustrated by examples incorporating the methods described.

  11. ECTOPIC LENS EXTRACTION IN CHILDREN

    Directory of Open Access Journals (Sweden)

    Vladimir Pfeifer

    2002-12-01

    Full Text Available Background. Ectopia lentis continues to be a therapeutic challenge for ophthalmologists. It can occur as an isolated condition, after ocular trauma, in association with other ocular disorders, as part of a systemic mesodermal disease or a complication of general metabolic disorders. Minimal subluxation of the lens may cause no visual symptoms, but in more advanced cases serious optical disturbances arise. The most important is amblyopia. Surgical treatment options include iris manipulation, lens discission, aspiration, intracapsular or extracapsular extraction, and pars plana lensectomy. The choice of surgical technique remains controversial, in part because of the historically poor visual results and high rate of perioperative complications, including vitreous loss and retinal detachment.Methods. We describe a surgical technique based on the use of the Cionni endocapsular tension ring, dry irrigation aspiration of lens material, centration of the capsular bag and foldable intraocular lens implantation into the bag. With mentioned surgical technique 8 patients were operated; 4 boys and 4 girls, together 11 eyes.Results. The final BCVA after follow up period improved in 9 eyes and it remained the same as before operation in one eye. Statistical comparison of preoperative and postoperative visual acuities showed significant improvement. On the other hand there was no correlation between preoperative and postoperative visual acuity.Conclusions. This surgical procedure is an alternative approach in solving this challenging cases of ectopia lentis with good postoperative visual rehabilitation.

  12. Relativistic theory of gravitation

    International Nuclear Information System (INIS)

    Logunov, A.A.; Mestvirishvilli, M.A.

    1985-01-01

    In the present paper a relativistic theory of gravitation (RTG) is constructed in a unique way on the basis of the special relativity and geometrization principle. In this, a gravitational field is treated as the Faraday-Maxwell spin-2 and spin-0 physical field possessing energy and momentum. The source of a gravitational field is the total conserved energy-momentum tensor of matter and of a gravitational field in Minkowski space. In the RTG, the conservation laws are strictly fulfilled for the energy-momentum and for the angular momentum of matter and a gravitational field. The theory explains the whole available set of experiments on gravitation. In virtue of the geometrization principle, the Riemannian space in our theory is of field origin, since it appears as an effective force space due to the action of a gravitational field on matter. The RTg leads to an exceptionally strong prediction: The Universe is not closed but just ''flat''. This suggests that in the Universe a ''hidden mass'' should exist in some form of matter

  13. Experimental Investigation on the Feasibility of Using a Fresnel Lens as a Solar-Energy Collection System for Enhancing On-Orbit Power Generation Performance

    Directory of Open Access Journals (Sweden)

    Tae-Yong Park

    2017-01-01

    Full Text Available Cube satellites have a limitation for generating power because of their cubic structure and extremely small size. In addition, the incidence angle between the sun and the solar panels continuously varies owing to the revolution and rotation of the satellite according to the attitude control strategy. This angle is an important parameter for determining the power generation performance of the cube satellite. In this study, we performed an experimental feasibility study that uses a Fresnel lens as a solar-energy collection system for cube satellite applications, so that the power generation efficiency can be enhanced under the worst incidence angle condition between the sun and solar panels by concentrating and redirecting solar energy onto the solar panels with a commercial Fresnel lens. To verify the effectiveness of the proposed system, we conducted a power-measurement test using a solar simulator and Fresnel lenses at various angles to the light source. In addition, we predicted the on-orbit power-generation enhancement achieved by employing the solar-energy collection system with various attitude control strategies.

  14. Gravitation, Thermodynamics, and Quantum Theory

    OpenAIRE

    Wald, Robert M.

    1999-01-01

    During the past 30 years, research in general relativity has brought to light strong hints of a very deep and fundamental relationship between gravitation, thermodynamics, and quantum theory. The most striking indication of such a relationship comes from black hole thermodynamics, where it appears that certain laws of black hole mechanics are, in fact, simply the ordinary laws of thermodynamics applied to a system containing a black hole. This article will review the present status of black h...

  15. Gravitation and vacuum field

    International Nuclear Information System (INIS)

    Tevikyan, R.V.

    1986-01-01

    This paper presents equations that describe particles with spins s = 0, 1/2, 1 completely and which also describe 2s + 2 limiting fields as E → ∞. It is shown that the ordinary Hilbert-Einstein action for the gravitation field must be augmented by the action for the Bose vacuum field. This means that one must introduce in the gravitational equations a cosmological term proportional to the square of the strength of the Bose vacuum field. It is shown that the theory of gravitation describes three realities: matter, field, and vacuum field. A new form of matter--the vacuum field--is introduced into field theory

  16. Gravitational radiation reaction

    International Nuclear Information System (INIS)

    Tanaka, Takahiro

    2006-01-01

    We give a short personally-biased review on the recent progress in our understanding of gravitational radiation reaction acting on a point particle orbiting a black hole. The main motivation of this study is to obtain sufficiently precise gravitational waveforms from inspiraling binary compact starts with a large mass ratio. For this purpose, various new concepts and techniques have been developed to compute the orbital evolution taking into account the gravitational self-force. Combining these ideas with a few supplementary new ideas, we try to outline a path to our goal here. (author)

  17. Presenting Newtonian gravitation

    International Nuclear Information System (INIS)

    Counihan, Martin

    2007-01-01

    The basic principles of the Newtonian theory of gravitation are presented in a way which students may find more logically coherent, mathematically accessible and physically interesting than other approaches. After giving relatively simple derivations of the circular hodograph and the elliptical orbit from the inverse-square law, the concept of gravitational energy is developed from vector calculus. It is argued that the energy density of a gravitational field may reasonably be regarded as -g 2 /8πG, and that the inverse-square law may be replaced by a Schwarzschild-like force law without the need to invoke non-Euclidean geometry

  18. Optical integration of Pancharatnam-Berry phase lens and dynamical phase lens

    International Nuclear Information System (INIS)

    Ke, Yougang; Liu, Yachao; Zhou, Junxiao; Liu, Yuanyuan; Luo, Hailu; Wen, Shuangchun

    2016-01-01

    In the optical system, most elements such as lens, prism, and optical fiber are made of silica glass. Therefore, integrating Pancharatnam-Berry phase elements into silica glass has potential applications in the optical system. In this paper, we take a lens, for example, which integrates a Pancharatnam-Berry phase lens into a conventional plano-convex lens. The spin states and positions of focal points can be modulated by controlling the polarization states of the incident beam. The proposed lens has a high transmission efficiency, and thereby acts as a simple and powerful tool to manipulate spin photons. Furthermore, the method can be conveniently extended to the optical fiber and laser cavity, and may provide a route to the design of the spin-photonic devices.

  19. Understanding aneuploidy in cancer through the lens of system inheritance, fuzzy inheritance and emergence of new genome systems.

    Science.gov (United States)

    Ye, Christine J; Regan, Sarah; Liu, Guo; Alemara, Sarah; Heng, Henry H

    2018-01-01

    In the past 15 years, impressive progress has been made to understand the molecular mechanism behind aneuploidy, largely due to the effort of using various -omics approaches to study model systems (e.g. yeast and mouse models) and patient samples, as well as the new realization that chromosome alteration-mediated genome instability plays the key role in cancer. As the molecular characterization of the causes and effects of aneuploidy progresses, the search for the general mechanism of how aneuploidy contributes to cancer becomes increasingly challenging: since aneuploidy can be linked to diverse molecular pathways (in regards to both cause and effect), the chances of it being cancerous is highly context-dependent, making it more difficult to study than individual molecular mechanisms. When so many genomic and environmental factors can be linked to aneuploidy, and most of them not commonly shared among patients, the practical value of characterizing additional genetic/epigenetic factors contributing to aneuploidy decreases. Based on the fact that cancer typically represents a complex adaptive system, where there is no linear relationship between lower-level agents (such as each individual gene mutation) and emergent properties (such as cancer phenotypes), we call for a new strategy based on the evolutionary mechanism of aneuploidy in cancer, rather than continuous analysis of various individual molecular mechanisms. To illustrate our viewpoint, we have briefly reviewed both the progress and challenges in this field, suggesting the incorporation of an evolutionary-based mechanism to unify diverse molecular mechanisms. To further clarify this rationale, we will discuss some key concepts of the genome theory of cancer evolution, including system inheritance, fuzzy inheritance, and cancer as a newly emergent cellular system. Illustrating how aneuploidy impacts system inheritance, fuzzy inheritance and the emergence of new systems is of great importance. Such synthesis

  20. Vectorial-tensorial conservative theory of gravitation

    International Nuclear Information System (INIS)

    Mociutchi, C.; Ionescu-Pallas, N.

    1975-01-01

    Gravitation is considered as a mixing of interactions and a suggestion for a vectorial-tensorial theory with parametric coupling is given. The self consistent character of the theory leads to a system of equations for the proposed tensorial-vectorial theory of gravitation. If the weight of the vectorial component is low enough i.e. epsilon much smaller than 1, then this theory can correctly reproduce all the experimental verifications

  1. Numerical studies of triplet and Russian quadruplet quadrupole lens systems with the given spot size on the target, for use in a microprobe

    Energy Technology Data Exchange (ETDEWEB)

    Brazhnik, V A; Lebed, S A; Ponomarev, A G; Storizhko, V E [Ukrainian Academy of Sciences, Sumy (Ukraine). Applied Physics Institute; Dymnikov, A D [University of St Petersburg, Stary (Russian Federation). Institute of Computational Mathematics and Control Processes; Jamieson, D N; Legge, S A [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1994-12-31

    In a nuclear microprobe the focusing system is an essential component which determines the beam spot size, i.e. the microprobe resolution. A small beam cross section at the target is the most important of the many conflicting requirements imposed on the beam The second most important factor is the current of the beam which at the given brightness is proportional to the phase volume (or emittance) of the beam. Existing microprobes frequently use a triplet or a Russian quadruplet as the focusing systems. This paper describes the numerical studies of some optimal quadrupole lens systems consisting of three or four lenses suitable for use in a nuclear microprobe taking into account geometrical aberrations of third order. The maximum emittance of changed particle beams for these systems has been found. It is shown how the maximum emittance depends on the spot size. 2 refs., 2 figs.

  2. Numerical studies of triplet and Russian quadruplet quadrupole lens systems with the given spot size on the target, for use in a microprobe

    Energy Technology Data Exchange (ETDEWEB)

    Brazhnik, V.A.; Lebed, S.A.; Ponomarev, A.G.; Storizhko, V.E. [Ukrainian Academy of Sciences, Sumy (Ukraine). Applied Physics Institute; Dymnikov, A.D. [University of St Petersburg, Stary (Russian Federation). Institute of Computational Mathematics and Control Processes; Jamieson, D.N.; Legge, S.A. [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1993-12-31

    In a nuclear microprobe the focusing system is an essential component which determines the beam spot size, i.e. the microprobe resolution. A small beam cross section at the target is the most important of the many conflicting requirements imposed on the beam The second most important factor is the current of the beam which at the given brightness is proportional to the phase volume (or emittance) of the beam. Existing microprobes frequently use a triplet or a Russian quadruplet as the focusing systems. This paper describes the numerical studies of some optimal quadrupole lens systems consisting of three or four lenses suitable for use in a nuclear microprobe taking into account geometrical aberrations of third order. The maximum emittance of changed particle beams for these systems has been found. It is shown how the maximum emittance depends on the spot size. 2 refs., 2 figs.

  3. Numerical studies of triplet and Russian quadruplet quadrupole lens systems with the given spot size on the target, for use in a microprobe

    International Nuclear Information System (INIS)

    Brazhnik, V.A.; Lebed, S.A.; Ponomarev, A.G.; Storizhko, V.E.; Dymnikov, A.D.; Jamieson, D.N.; Legge, S.A.

    1993-01-01

    In a nuclear microprobe the focusing system is an essential component which determines the beam spot size, i.e. the microprobe resolution. A small beam cross section at the target is the most important of the many conflicting requirements imposed on the beam The second most important factor is the current of the beam which at the given brightness is proportional to the phase volume (or emittance) of the beam. Existing microprobes frequently use a triplet or a Russian quadruplet as the focusing systems. This paper describes the numerical studies of some optimal quadrupole lens systems consisting of three or four lenses suitable for use in a nuclear microprobe taking into account geometrical aberrations of third order. The maximum emittance of changed particle beams for these systems has been found. It is shown how the maximum emittance depends on the spot size. 2 refs., 2 figs

  4. N-body simulation for self-gravitating collisional systems with a new SIMD instruction set extension to the x86 architecture, Advanced Vector eXtensions

    Science.gov (United States)

    Tanikawa, Ataru; Yoshikawa, Kohji; Okamoto, Takashi; Nitadori, Keigo

    2012-02-01

    We present a high-performance N-body code for self-gravitating collisional systems accelerated with the aid of a new SIMD instruction set extension of the x86 architecture: Advanced Vector eXtensions (AVX), an enhanced version of the Streaming SIMD Extensions (SSE). With one processor core of Intel Core i7-2600 processor (8 MB cache and 3.40 GHz) based on Sandy Bridge micro-architecture, we implemented a fourth-order Hermite scheme with individual timestep scheme ( Makino and Aarseth, 1992), and achieved the performance of ˜20 giga floating point number operations per second (GFLOPS) for double-precision accuracy, which is two times and five times higher than that of the previously developed code implemented with the SSE instructions ( Nitadori et al., 2006b), and that of a code implemented without any explicit use of SIMD instructions with the same processor core, respectively. We have parallelized the code by using so-called NINJA scheme ( Nitadori et al., 2006a), and achieved ˜90 GFLOPS for a system containing more than N = 8192 particles with 8 MPI processes on four cores. We expect to achieve about 10 tera FLOPS (TFLOPS) for a self-gravitating collisional system with N ˜ 10 5 on massively parallel systems with at most 800 cores with Sandy Bridge micro-architecture. This performance will be comparable to that of Graphic Processing Unit (GPU) cluster systems, such as the one with about 200 Tesla C1070 GPUs ( Spurzem et al., 2010). This paper offers an alternative to collisional N-body simulations with GRAPEs and GPUs.

  5. Peripheral Defocus of the Monkey Crystalline Lens With Accommodation in a Lens Stretcher

    Science.gov (United States)

    Maceo Heilman, Bianca; Manns, Fabrice; Ruggeri, Marco; Ho, Arthur; Gonzalez, Alex; Rowaan, Cor; Bernal, Andres; Arrieta, Esdras; Parel, Jean-Marie

    2018-01-01

    Purpose To characterize the peripheral defocus of the monkey crystalline lens and its changes with accommodation. Methods Experiments were performed on 15 lenses from 11 cynomolgus monkey eyes (age: 3.8–12.4 years, postmortem time: 33.5 ± 15.3 hours). The tissue was mounted in a motorized lens stretcher to allow for measurements of the lens in the accommodated (unstretched) and unaccommodated (stretched) states. A custom-built combined laser ray tracing and optical coherence tomography system was used to measure the paraxial on-axis and off-axis lens power for delivery angles ranging from −20° to +20° (in air). For each delivery angle, peripheral defocus was quantified as the difference between paraxial off-axis and on-axis power. The peripheral defocus of the lens was compared in the unstretched and stretched states. Results On average, the paraxial on-axis lens power was 52.0 ± 3.4 D in the unstretched state and 32.5 ± 5.1 D in the stretched state. In both states, the lens power increased with increasing delivery angle. From 0° to +20°, the relative peripheral lens power increased by 10.7 ± 1.4 D in the unstretched state and 7.5 ± 1.6 D in the stretched state. The change in field curvature with accommodation was statistically significant (P lens has greater curvature or relative peripheral power. Conclusions The cynomolgus monkey lens has significant accommodation-dependent curvature of field, which suggests that the lens asserts a significant contribution to the peripheral optical performance of the eye that also varies with the state of accommodation.

  6. Gravitation and source theory

    International Nuclear Information System (INIS)

    Yilmaz, H.

    1975-01-01

    Schwinger's source theory is applied to the problem of gravitation and its quantization. It is shown that within the framework of a flat-space the source theory implementation leads to a violation of probability. To avoid the difficulty one must introduce a curved space-time hence the source concept may be said to necessitate the transition to a curved-space theory of gravitation. It is further shown that the curved-space theory of gravitation implied by the source theory is not equivalent to the conventional Einstein theory. The source concept leads to a different theory where the gravitational field has a stress-energy tensor t/sup nu//sub mu/ which contributes to geometric curvatures

  7. Gravitational lensing of quasars

    CERN Document Server

    Eigenbrod, Alexander

    2013-01-01

    The universe, in all its richness, diversity and complexity, is populated by a myriad of intriguing celestial objects. Among the most exotic of them are gravitationally lensed quasars. A quasar is an extremely bright nucleus of a galaxy, and when such an object is gravitationally lensed, multiple images of the quasar are produced – this phenomenon of cosmic mirage can provide invaluable insights on burning questions, such as the nature of dark matter and dark energy. After presenting the basics of modern cosmology, the book describes active galactic nuclei, the theory of gravitational lensing, and presents a particular numerical technique to improve the resolution of astronomical data. The book then enters the heart of the subject with the description of important applications of gravitational lensing of quasars, such as the measurement of the famous Hubble constant, the determination of the dark matter distribution in galaxies, and the observation of the mysterious inner parts of quasars with much higher r...

  8. Gravitational Waves and Neutrinos

    OpenAIRE

    Sturani, Riccardo

    2018-01-01

    We give an overview about the recent detection of gravitational waves by the Advanced LIGO first and second observing runs and by Advanced Virgo, with emphasis on the prospects for multi-messenger astronomy involving neutrinos detections.

  9. Gravitational wave astronomy

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    In the past year, the LIGO-Virgo Collaboration announced the first secure detection of gravitational waves. This discovery heralds the beginning of gravitational wave astronomy: the use of gravitational waves as a tool for studying the dense and dynamical universe. In this talk, I will describe the full spectrum of gravitational waves, from Hubble-scale modes, through waves with periods of years, hours and milliseconds. I will describe the different techniques one uses to measure the waves in these bands, current and planned facilities for implementing these techniques, and the broad range of sources which produce the radiation. I will discuss what we might expect to learn as more events and sources are measured, and as this field matures into a standard part of the astronomical milieu.

  10. Recent progress on the R and D program of the seismic attenuation system (SAS) proposed for the advanced gravitational wave detector, LIGO II

    International Nuclear Information System (INIS)

    Bertolini, A.; Cella, G.; Chenyang, W.; Salvo, R. de; Kovalik, J.; Marka, S.; Sannibale, V.; Takamori, A.; Tariq, H.; Viboud, N.

    2001-01-01

    High-performance Seismic Isolation Systems in gravitational wave interferometers are needed not only to increase the sensitivity of the detectors but also to guarantee long periods of stable operation. SAS is essentially a system which produces the required in-band seismic isolation by use of passive mechanical filters and actively reduces the out of band seismic noise using inertial damping. The passive isolation is achieved for all the 6 degrees of freedom, with an Inverted Pendulum and a chain of single wire pendula whose masses are the Geometrical Anti-Spring Filters (GASF). The active control is applied to reduce mainly the noise below 4 Hz and to damp the resonances of the chain acting from the inverted pendulum table. Here we present a brief overview of SAS and recent results achieved from the full scale SAS prototype

  11. Capsular 'pits' in the human lens.

    OpenAIRE

    Harris, M. L.; Brown, N. A.; Shun-Shin, G. A.; Smith, G. T.

    1992-01-01

    The lens capsule is an atypical basement membrane surrounding the lens epithelial cells and lens fibres which make up the remainder of the human lens. A seemingly unreported morphological change visible in the lens capsule with the biomicroscope is described.

  12. Listening music of gravitation

    International Nuclear Information System (INIS)

    Anon.

    2001-01-01

    Achievements of precision experiments in Japan (TAMA project) and USA (LIGO Laboratory) in the field of registration of gravitation waves using interferometric gravitational wave detectors are described. Works of the GEO groups in Hannover (Germany) and Vigro (Italy) are noted. Interferometer operation in synchronization during 160 hours demonstrating viability of the technique and its reliability is recorded. Advances in the field of the data analysis with the aim of recording of cosmic signal from noise of the interferometer are noted [ru

  13. Bunge on gravitational waves

    OpenAIRE

    Romero, Gustavo E.

    2017-01-01

    I discuss the recent claims made by Mario Bunge on the philosophical implications of the discovery of gravitational waves. I think that Bunge is right when he points out that the detection implies the materiality of spacetime, but I reject his identification of spacetime with the gravitational field. I show that Bunge's analysis of the spacetime inside a hollow sphere is defective, but this in no way affects his main claim.

  14. Gravitation and Electricity

    Directory of Open Access Journals (Sweden)

    Stavroulakis N.

    2008-04-01

    Full Text Available The equations of gravitation together with the equations of electromagnetism in terms of the General Theory of Relativity allow to conceive an interdependence between the gravitational field and the electromagnetic field. However the technical difficulties of the relevant problems have precluded from expressing clearly this interdependence. Even the simple problem related to the field generated by a charged spherical mass is not correctly solved. In the present paper we reexamine from the outset this problem and propose a new solution.

  15. Gravitating multidefects from higher dimensions

    CERN Document Server

    Giovannini, Massimo

    2007-01-01

    Warped configurations admitting pairs of gravitating defects are analyzed. After devising a general method for the construction of multidefects, specific examples are presented in the case of higher-dimensional Einstein-Hilbert gravity. The obtained profiles describe diverse physical situations such as (topological) kink-antikink systems, pairs of non-topological solitons and bound configurations of a kink and of a non-topological soliton. In all the mentioned cases the geometry is always well behaved (all relevant curvature invariants are regular) and tends to five-dimensional anti-de Sitter space-time for large asymptotic values of the bulk coordinate. Particular classes of solutions can be generalized to the framework where the gravity part of the action includes, as a correction, the Euler-Gauss-Bonnet combination. After scrutinizing the structure of the zero modes, the obtained results are compared with conventional gravitating configurations containing a single topological defect.

  16. Gravitational waves from neutron stars and asteroseismology

    Science.gov (United States)

    Ho, Wynn C. G.

    2018-05-01

    Neutron stars are born in the supernova explosion of massive stars. Neutron stars rotate as stably as atomic clocks and possess densities exceeding that of atomic nuclei and magnetic fields millions to billions of times stronger than those created in laboratories on the Earth. The physical properties of neutron stars are determined by many areas of fundamental physics, and detection of gravitational waves can provide invaluable insights into our understanding of these areas. Here, we describe some of the physics and astrophysics of neutron stars and how traditional electromagnetic wave observations provide clues to the sorts of gravitational waves we expect from these stars. We pay particular attention to neutron star fluid oscillations, examining their impact on electromagnetic and gravitational wave observations when these stars are in a wide binary or isolated system, then during binary inspiral right before merger, and finally at times soon after merger. This article is part of a discussion meeting issue `The promises of gravitational-wave astronomy'.

  17. Nonlinear coupled Alfven and gravitational waves

    International Nuclear Information System (INIS)

    Kaellberg, Andreas; Brodin, Gert; Bradley, Michael

    2004-01-01

    In this paper we consider nonlinear interaction between gravitational and electromagnetic waves in a strongly magnetized plasma. More specifically, we investigate the propagation of gravitational waves with the direction of propagation perpendicular to a background magnetic field and the coupling to compressional Alfven waves. The gravitational waves are considered in the high-frequency limit and the plasma is modeled by a multifluid description. We make a self-consistent, weakly nonlinear analysis of the Einstein-Maxwell system and derive a wave equation for the coupled gravitational and electromagnetic wave modes. A WKB-approximation is then applied and as a result we obtain the nonlinear Schroedinger equation for the slowly varying wave amplitudes. The analysis is extended to 3D wave pulses, and we discuss the applications to radiation generated from pulsar binary mergers. It turns out that the electromagnetic radiation from a binary merger should experience a focusing effect, that in principle could be detected

  18. Gravitationally confined relativistic neutrinos

    Science.gov (United States)

    Vayenas, C. G.; Fokas, A. S.; Grigoriou, D.

    2017-09-01

    Combining special relativity, the equivalence principle, and Newton’s universal gravitational law with gravitational rather than rest masses, one finds that gravitational interactions between relativistic neutrinos with kinetic energies above 50 MeV are very strong and can lead to the formation of gravitationally confined composite structures with the mass and other properties of hadrons. One may model such structures by considering three neutrinos moving symmetrically on a circular orbit under the influence of their gravitational attraction, and by assuming quantization of their angular momentum, as in the Bohr model of the H atom. The model contains no adjustable parameters and its solution, using a neutrino rest mass of 0.05 eV/c2, leads to composite state radii close to 1 fm and composite state masses close to 1 GeV/c2. Similar models of relativistic rotating electron - neutrino pairs give a mass of 81 GeV/c2, close to that of W bosons. This novel mechanism of generating mass suggests that the Higgs mass generation mechanism can be modeled as a latent gravitational field which gets activated by relativistic neutrinos.

  19. Relativistic theory of gravitation

    International Nuclear Information System (INIS)

    Logunov, A.A.; Mestvirishvili, M.A.

    1986-01-01

    In the present paper a relativistic theory of gravitation (RTG) is unambiguously constructed on the basis of the special relativity and geometrization principle. In this a gravitational field is treated as the Faraday--Maxwell spin-2 and spin-0 physical field possessing energy and momentum. The source of a gravitational field is the total conserved energy-momentum tensor of matter and of a gravitational field in Minkowski space. In the RTG the conservation laws are strictly fulfilled for the energy-moment and for the angular momentum of matter and a gravitational field. The theory explains the whole available set of experiments on gravity. By virtue of the geometrization principle, the Riemannian space in our theory is of field origin, since it appears as an effective force space due to the action of a gravitational field on matter. The RTG leads to an exceptionally strong prediction: The universe is not closed but just ''flat.'' This suggests that in the universe a ''missing mass'' should exist in a form of matter

  20. The sloan lens ACS survey. VI. Discovery and analysis of a double Einstein ring

    NARCIS (Netherlands)

    Gavazzi, Raphael; Treu, Tommaso; Koopmans, Leon V. E.; Bolton, Adam S.; Moustakas, Leonidas A.; Burles, Scott; Marshall, Philip J.

    2008-01-01

    We report the discovery of two concentric Einstein rings around the gravitational lens SDSS J0946+ 1006. The main lens is at redshift z(l) = 0.222, while the inner ring ( 1) is at redshift z(s1) 0.609 (R-Ein1 = 1.43 '' +/- 0.01 ''). The wider image separation ( R-Ein2 = 2.07 '' +/- 0.02 '') of the

  1. The partial coherence modulation transfer function in testing lithography lens

    Science.gov (United States)

    Huang, Jiun-Woei

    2018-03-01

    Due to the lithography demanding high performance in projection of semiconductor mask to wafer, the lens has to be almost free in spherical and coma aberration, thus, in situ optical testing for diagnosis of lens performance has to be established to verify the performance and to provide the suggesting for further improvement of the lens, before the lens has been build and integrated with light source. The measurement of modulation transfer function of critical dimension (CD) is main performance parameter to evaluate the line width of semiconductor platform fabricating ability for the smallest line width of producing tiny integrated circuits. Although the modulation transfer function (MTF) has been popularly used to evaluation the optical system, but in lithography, the contrast of each line-pair is in one dimension or two dimensions, analytically, while the lens stand along in the test bench integrated with the light source coherent or near coherent for the small dimension near the optical diffraction limit, the MTF is not only contributed by the lens, also by illumination of platform. In the study, the partial coherence modulation transfer function (PCMTF) for testing a lithography lens is suggested by measuring MTF in the high spatial frequency of in situ lithography lens, blended with the illumination of partial and in coherent light source. PCMTF can be one of measurement to evaluate the imperfect lens of lithography lens for further improvement in lens performance.

  2. A homogeneous static gravitational field and the principle of equivalence

    International Nuclear Information System (INIS)

    Chernikov, N.A.

    2001-01-01

    In this paper any gravitational field (both in the Einsteinian case and in the Newtonian case) is described by the connection, called gravitational. A homogeneous static gravitational field is considered in the four-dimensional area z>0 of a space-time with Cartesian coordinates x, y, z, and t. Such field can be created by masses, disposed outside the area z>0 with a density distribution independent of x, y, and t. Remarkably, in the four-dimensional area z>0, together with the primitive background connection, the primitive gravitational connection has been derived. In concordance with the Principle of Equivalence all components of such gravitational connection are equal to zero in the uniformly accelerated frame system, in which the gravitational force of attraction is balanced by the inertial force. However, all components of such background connection are equal to zero in the resting frame system, but not in the accelerated frame system

  3. The Arrow of Time in the Collapse of Collisionless Self-gravitating Systems: Non-validity of the Vlasov-Poisson Equation during Violent Relaxation

    Science.gov (United States)

    Beraldo e Silva, Leandro; de Siqueira Pedra, Walter; Sodré, Laerte; Perico, Eder L. D.; Lima, Marcos

    2017-09-01

    The collapse of a collisionless self-gravitating system, with the fast achievement of a quasi-stationary state, is driven by violent relaxation, with a typical particle interacting with the time-changing collective potential. It is traditionally assumed that this evolution is governed by the Vlasov-Poisson equation, in which case entropy must be conserved. We run N-body simulations of isolated self-gravitating systems, using three simulation codes, NBODY-6 (direct summation without softening), NBODY-2 (direct summation with softening), and GADGET-2 (tree code with softening), for different numbers of particles and initial conditions. At each snapshot, we estimate the Shannon entropy of the distribution function with three different techniques: Kernel, Nearest Neighbor, and EnBiD. For all simulation codes and estimators, the entropy evolution converges to the same limit as N increases. During violent relaxation, the entropy has a fast increase followed by damping oscillations, indicating that violent relaxation must be described by a kinetic equation other than the Vlasov-Poisson equation, even for N as large as that of astronomical structures. This indicates that violent relaxation cannot be described by a time-reversible equation, shedding some light on the so-called “fundamental paradox of stellar dynamics.” The long-term evolution is well-described by the orbit-averaged Fokker-Planck model, with Coulomb logarithm values in the expected range 10{--}12. By means of NBODY-2, we also study the dependence of the two-body relaxation timescale on the softening length. The approach presented in the current work can potentially provide a general method for testing any kinetic equation intended to describe the macroscopic evolution of N-body systems.

  4. Intraocular lens fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Salazar, Mike A. (Albuquerque, NM); Foreman, Larry R. (Los Alamos, NM)

    1997-01-01

    This invention describes a method for fabricating an intraocular lens made rom clear Teflon.TM., Mylar.TM., or other thermoplastic material having a thickness of about 0.025 millimeters. These plastic materials are thermoformable and biocompatable with the human eye. The two shaped lenses are bonded together with a variety of procedures which may include thermosetting and solvent based adhesives, laser and impulse welding, and ultrasonic bonding. The fill tube, which is used to inject a refractive filling material is formed with the lens so as not to damage the lens shape. A hypodermic tube may be included inside the fill tube.

  5. Intraocular lens fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Salazar, M.A.; Foreman, L.R.

    1997-07-08

    This invention describes a method for fabricating an intraocular lens made from clear Teflon{trademark}, Mylar{trademark}, or other thermoplastic material having a thickness of about 0.025 millimeters. These plastic materials are thermoformable and biocompatable with the human eye. The two shaped lenses are bonded together with a variety of procedures which may include thermosetting and solvent based adhesives, laser and impulse welding, and ultrasonic bonding. The fill tube, which is used to inject a refractive filling material is formed with the lens so as not to damage the lens shape. A hypodermic tube may be included inside the fill tube. 13 figs.

  6. Particle swarm optimization applied to automatic lens design

    Science.gov (United States)

    Qin, Hua

    2011-06-01

    This paper describes a novel application of Particle Swarm Optimization (PSO) technique to lens design. A mathematical model is constructed, and merit functions in an optical system are employed as fitness functions, which combined radiuses of curvature, thicknesses among lens surfaces and refractive indices regarding an optical system. By using this function, the aberration correction is carried out. A design example using PSO is given. Results show that PSO as optical design tools is practical and powerful, and this method is no longer dependent on the lens initial structure and can arbitrarily create search ranges of structural parameters of a lens system, which is an important step towards automatic design with artificial intelligence.

  7. Lens Systems Incorporating A Zero Power Corrector Principle Of The Design And Its Application In Large Aperture, Moderate Field Of View Optical Systems

    Science.gov (United States)

    Klee, H. W.; McDowell, M. W.

    1986-02-01

    A new lens design concept, based on the use of a zero (or near zero) power corrector, will be described. The logical development of the design, based on the work of Schmidt', Houghton' and others will be discussed and examples will be given of moderate field of view lenses with apertures ranging from f/0.35 to f/2. It will also be shown that the lens configuration is relatively insensitive to the aperture stop location and that for less demanding applications only very basic optical glass types need be used.

  8. Deflection of light and particles by moving gravitational lenses

    International Nuclear Information System (INIS)

    Wucknitz, Olaf; Sperhake, Ulrich

    2004-01-01

    Various authors have investigated the problem of light deflection by radially moving gravitational lenses, but the results presented so far do not appear to agree on the expected deflection angles. Some publications claim a scaling of deflection angles with 1-v to first order in the radial lens velocity v, while others obtained a scaling with 1-2v. In this paper we generalize the calculations for arbitrary lens velocities and show that the first result is the correct one. We discuss the seeming inconsistency of relativistic light deflection with the classical picture of moving test particles by generalizing the lens effect to test particles of arbitrary velocity, including light as a limiting case. We show that the effect of radial motion of the lens is very different for slowly moving test particles and light and that a critical test particle velocity exists for which the motion of the lens has no effect on the deflection angle to first order. An interesting and not immediately intuitive result is obtained in the limit of a highly relativistic motion of the lens towards the observer, where the deflection angle of light reduces to zero. This phenomenon is elucidated in terms of moving refractive media. Furthermore, we discuss the dragging of inertial frames in the field of a moving lens and the corresponding Lense-Thirring precession, in order to shed more light on the geometrical effects in the surroundings of a moving mass. In a second part we discuss the effect of transversal motion on the observed redshift of lensed sources. We demonstrate how a simple kinematic calculation explains the effects for arbitrary velocities of the lens and test particles. Additionally we include the transversal motion of the source and observer to show that all three velocities can be combined into an effective relative transversal velocity similar to the approach used in microlensing studies

  9. Searching for gravitational waves from the inspiral of precessing binary systems: New hierarchical scheme using 'spiky' templates

    International Nuclear Information System (INIS)

    Grandclement, Philippe; Kalogera, Vassiliki

    2003-01-01

    In a recent investigation of the effects of precession on the anticipated detection of gravitational-wave inspiral signals from compact object binaries with moderate total masses · , we found that (i) if precession is ignored, the inspiral detection rate can decrease by almost a factor of 10, and (ii) previously proposed 'mimic' templates cannot improve the detection rate significantly (by more than a factor of 2). In this paper we propose a new family of templates that can improve the detection rate by a factor of 5 or 6 in cases where precession is most important. Our proposed method for these new 'mimic' templates involves a hierarchical scheme of efficient, two-parameter template searches that can account for a sequence of spikes that appear in the residual inspiral phase, after one corrects for any oscillatory modification in the phase. We present our results for two cases of compact object masses (10 and 1.4 M · and 7 and 3 M · ) as a function of spin properties. Although further work is needed to fully assess the computational efficiency of this newly proposed template family, we conclude that these 'spiky templates' are good candidates for a family of precession templates used in realistic searches that can improve detection rates of inspiral events

  10. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... One Use Facts About Colored Contacts and Halloween Safety Colored Contact Lens Facts Over-the-Counter Costume ... Costume Contact Lenses Can Ruin Vision Eye Makeup Safety In fact, it is illegal to sell colored ...

  11. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... One Use Facts About Colored Contacts and Halloween Safety Colored Contact Lens Facts Over-the-Counter Costume ... new application of artificial intelligence shows whether a patient’s eyes point to high blood pressure or risk ...

  12. The lens and cataracts.

    Science.gov (United States)

    Matthews, Andrew G

    2004-08-01

    It is conservatively estimated that some form of lens opacity is present in 5% to 7% of horses with otherwise clinically normal eyes.These opacities can range from small epicapsular remnants of the fetal vasculature to dense and extensive cataract. A cataract is defined technically as any opacity or alteration in the optical homogeneity of the lens involving one or more of the following: anterior epithelium, capsule, cortex, or nucleus. In the horse, cataracts rarely involve the entire lens structure (ie, complete cataracts) and are more usually localized to one anatomic landmark or sector of the lens. Complete cataracts are invariably associated with overt and significant visual disability. Focal or incomplete cataracts alone seldom cause any apparent visual dysfunction in affected horses,however.

  13. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... One Use Facts About Colored Contacts and Halloween Safety Colored Contact Lens Facts Over-the-Counter Costume ... use of colored contact lenses , from the U.S. Food and Drug Administration (FDA). Are the colored lenses ...

  14. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... sell contacts without a prescription are breaking the law, and may be fined $11,000 per violation. " ... wear any kind of contact lens. In Butler's case, the lenses caused an infection and left her ...

  15. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... contacto de color Sep. 26, 2013 It started as an impulsive buy from a souvenir shop, but ... require the same level of care or consideration as a standard contact lens because they can be ...

  16. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... With Proper Contact Lens Care Apr 23, 2018 Solar Eclipse Inflicts Damage in the Shape of the ... edging closer, thanks to a wave of new technologies aiming to fix failing eye parts with human- ...

  17. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... glow-in-the-dark lizard lenses, costume contacts can certainly add a spooky, eye-popping touch. But ... consideration as a standard contact lens because they can be purchased over-the-counter or on the ...

  18. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... valid prescription that includes the brand name, lens measurements, and expiration date. Purchase the colored contact lenses ... with human-made versions. U.S. News Highlights the Value of Ophthalmologists APR 20, 2018 By Dan T. ...

  19. Vortex gas lens

    Science.gov (United States)

    Bogdanoff, David W.; Berschauer, Andrew; Parker, Timothy W.; Vickers, Jesse E.

    1989-01-01

    A vortex gas lens concept is presented. Such a lens has a potential power density capability of 10 to the 9th - 10 to the 10th w/sq cm. An experimental prototype was constructed, and the divergence half angle of the exiting beam was measured as a function of the lens operating parameters. Reasonably good agreement is found between the experimental results and theoretical calculations. The expanded beam was observed to be steady, and no strong, potentially beam-degrading jets were found to issue from the ends of the lens. Estimates of random beam deflection angles to be expected due to boundary layer noise are presented; these angles are very small.

  20. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... had not been properly fitted by an eye care professional, the lenses stuck to my eye like ... lenses do not require the same level of care or consideration as a standard contact lens because ...

  1. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... not require the same level of care or consideration as a standard contact lens because they can ... sell contacts without a prescription are breaking the law, and may be fined $11,000 per violation. " ...

  2. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... not require the same level of care or consideration as a standard contact lens because they can ... Us About the Academy Jobs at the Academy Financial Relationships with Industry Medical Disclaimer Privacy Policy Terms ...

  3. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... be purchased over-the-counter or on the Internet," says Thomas Steinemann, MD, professor of ophthalmology at ... ask for a prescription. There is no such thing as a "one size fits all" contact lens. ...

  4. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... prescription. Follow the contact lens care directions for cleaning, disinfecting, and wearing the lenses. Never share contact ... with Industry Medical Disclaimer Privacy Policy Terms of Service For Advertisers For Media Ophthalmology Job Center © American ...

  5. Double lens collimator solar feedback sensor and master slave configuration: Development of compact and low cost two axis solar tracking system for CPV applications

    KAUST Repository

    Burhan, Muhammad

    2016-08-31

    The conventional CPV systems, as big unit design, are only suitable to be installed in the open regions, like desert areas. This gigantic system design restricts their use on the rooftop of commercial and residential buildings, unlike the conventional PV systems. This paper proposes a compact but highly accurate and cheap two axis solar tracking system, designed for CPV system field operation. The proposed system is designed and verified for tracking accuracy requirement of 0.3 degrees, and has maximum capability of as high as 0.1 degrees tracking accuracy. High tracking accuracy is ensured using in-house built double lens collimator solar feedback sensor, within a fraction of the cost of commercial solar tracking sensors. A hybrid tracking algorithm is developed in C-programming using astronomical and optical solar tracking methods. As compact CPV system design demands larger number of tracking units, for same power capacity of system. Therefore, a master slave control configuration is also proposed for the CPV field operation. Only master tracker will be equipped with the expensive tracking devices, while the required tracking information will be sent to all of the slave trackers using wireless communication through ZigBee devices. With detailed optical design, simulation and control strategy, a prototype of the proposed CPV tracking system is developed, experimentally investigated and verified for tracking accuracy for outdoor operation at the rooftop. (C) 2016 Elsevier Ltd. All rights reserved.

  6. Problem of energy-momentum and theory of gravitation

    International Nuclear Information System (INIS)

    Logunov, A.A.; Folomeshkin, V.N.

    1977-01-01

    General properties of geometrised theories of gravitation are considered. Covariant formulation of conservation laws in arbitrary riemannian space-time is given. In the Einstein theory the symmetric as well as canonical energy-momentum tensor of the system ''matter plus gravitational field'' and in particular, the energy-momentum of free gravitational waves, turns out to be equal to zero. To understand the origin of the problems and difficulties concerning the energy-momentum in the Einstein theory, the gravitational filed is considered in the usual framework of the Lorentz invariant field theory, just like any other physical field. Combination of the approach proposed with the Einstein's idea of geometrization makes it possible to formulate the geometrised gravitation theory, in which there are no inner contradictions, the energy-momentum of gravitational field is defined precisely and all the known experimental facts are described successfully. For strong gravitational fields the predictions of the quasilinear geometrised theory under consideration are different from those of the gravitational theory in the Einstein formulation. Black holes are absent in the theory. Evaluation of the energy-flux of gravitational waves leads to unambiguous results and shows that the gravitational waves transfer the positive-definite energy

  7. On the fundamental principles of the relativistic theory of gravitation

    International Nuclear Information System (INIS)

    Logunov, A.A.; Mestvirishvili, M.A.

    1990-01-01

    This paper expounds consistently within the frames of the Special Relativity Theory the fundamental postulates of the Relativistic Theory of Gravitation (RTG) which make it possible to obtain the unique complete system of the equations for gravitational field. Major attention has been paid to the analysis of the gauge group and of the causality principle. Some results related to the evolution of the Friedmann Universe, to gravitational collapse, etc. being the consequences of the RTG equations are also presented. 7 refs

  8. Quasi-static displacement calibration system for a “Violin-Mode” shadow-sensor intended for Gravitational Wave detector suspensions

    International Nuclear Information System (INIS)

    Lockerbie, N. A.; Tokmakov, K. V.

    2014-01-01

    This paper describes the design of, and results from, a calibration system for optical linear displacement (shadow) sensors. The shadow sensors were designed to detect “Violin-Mode” (VM) resonances in the 0.4 mm diameter silica fibre suspensions of the test masses/mirrors of Advanced Laser Interferometer Gravitational Wave Observatory gravitational wave interferometers. Each sensor illuminated the fibre under test, so as to cast its narrow shadow onto a “synthesized split photodiode” detector, the shadow falling over adjacent edges of the paired photodiodes. The apparatus described here translated a vertically orientated silica test fibre horizontally through a collimated Near InfraRed illuminating beam, whilst simultaneously capturing the separate DC “shadow notch” outputs from each of the paired split photodiode detectors. As the ratio of AC to DC photocurrent sensitivities to displacement was known, a calibration of the DC response to quasi-static shadow displacement allowed the required AC sensitivity to vibrational displacement to be found. Special techniques are described for generating the required constant scan rate for the test fibre using a DC motor-driven stage, for removing “jitter” at such low translation rates from a linear magnetic encoder, and so for capturing the two shadow-notch signals at each micrometre of the test fibre's travel. Calibration, across the four detectors of this work, gave a vibrational responsivity in voltage terms of (9.45 ± 1.20) MV (rms)/m, yielding a VM displacement sensitivity of (69 ± 13) pm (rms)/√Hz, at 500 Hz, over the required measuring span of ±0.1 mm

  9. Quasi-static displacement calibration system for a “Violin-Mode” shadow-sensor intended for Gravitational Wave detector suspensions

    Energy Technology Data Exchange (ETDEWEB)

    Lockerbie, N. A.; Tokmakov, K. V. [SUPA (Scottish Universities Physics Alliance), Department of Physics, University of Strathclyde, 107 Rottenrow, Glasgow G4 0NG (United Kingdom)

    2014-10-15

    This paper describes the design of, and results from, a calibration system for optical linear displacement (shadow) sensors. The shadow sensors were designed to detect “Violin-Mode” (VM) resonances in the 0.4 mm diameter silica fibre suspensions of the test masses/mirrors of Advanced Laser Interferometer Gravitational Wave Observatory gravitational wave interferometers. Each sensor illuminated the fibre under test, so as to cast its narrow shadow onto a “synthesized split photodiode” detector, the shadow falling over adjacent edges of the paired photodiodes. The apparatus described here translated a vertically orientated silica test fibre horizontally through a collimated Near InfraRed illuminating beam, whilst simultaneously capturing the separate DC “shadow notch” outputs from each of the paired split photodiode detectors. As the ratio of AC to DC photocurrent sensitivities to displacement was known, a calibration of the DC response to quasi-static shadow displacement allowed the required AC sensitivity to vibrational displacement to be found. Special techniques are described for generating the required constant scan rate for the test fibre using a DC motor-driven stage, for removing “jitter” at such low translation rates from a linear magnetic encoder, and so for capturing the two shadow-notch signals at each micrometre of the test fibre's travel. Calibration, across the four detectors of this work, gave a vibrational responsivity in voltage terms of (9.45 ± 1.20) MV (rms)/m, yielding a VM displacement sensitivity of (69 ± 13) pm (rms)/√Hz, at 500 Hz, over the required measuring span of ±0.1 mm.

  10. Gravitational waves and antennas

    CERN Multimedia

    CERN. Geneva

    2003-01-01

    Gravitational waves and their detection represent today a hot topic, which promises to play a central role in astrophysics, cosmology and theoretical physics. Technological developments have enabled the construction of such sensitive detectors that the detection of gravitational radiation and the start of a new astronomy could become a reality during the next few years. This is expected to bring a revolution in our knowledge of the universe by allowing the observation of hiterto unseen phenomena such as coalescence of compact objects (neutron stars and black holes) fall of stars into supermassive black holes, stellar core collapses, big bang relics and the new and unexpected. In these lectures I give a brief overview of this challenging field of modern physics. Topics : Basic properties of gravitational radiation. Astrophysical sources. Principle of operation of detectors. Interferometers (both ground based and space-based), bars and spheres. Present status of the experiments, their recent results and their f...

  11. Gravitation and spacetime

    CERN Document Server

    Ohanian, Hans C

    2013-01-01

    The third edition of this classic textbook is a quantitative introduction for advanced undergraduates and graduate students. It gently guides students from Newton's gravitational theory to special relativity, and then to the relativistic theory of gravitation. General relativity is approached from several perspectives: as a theory constructed by analogy with Maxwell's electrodynamics, as a relativistic generalization of Newton's theory, and as a theory of curved spacetime. The authors provide a concise overview of the important concepts and formulas, coupled with the experimental results underpinning the latest research in the field. Numerous exercises in Newtonian gravitational theory and Maxwell's equations help students master essential concepts for advanced work in general relativity, while detailed spacetime diagrams encourage them to think in terms of four-dimensional geometry. Featuring comprehensive reviews of recent experimental and observational data, the text concludes with chapters on cosmology an...

  12. Gravitational mass and Newton's universal gravitational law under relativistic conditions

    International Nuclear Information System (INIS)

    Vayenas, Constantinos G; Grigoriou, Dimitrios; Fokas, Athanasios

    2015-01-01

    We discuss the predictions of Newton's universal gravitational law when using the gravitational, m g , rather than the rest masses, m o , of the attracting particles. According to the equivalence principle, the gravitational mass equals the inertial mass, m i , and the latter which can be directly computed from special relativity, is an increasing function of the Lorentz factor, γ, and thus of the particle velocity. We consider gravitationally bound rotating composite states, and we show that the ratio of the gravitational force for gravitationally bound rotational states to the force corresponding to low (γ ≈ 1) particle velocities is of the order of (m Pl /m o ) 2 where mpi is the Planck mass (ħc/G) 1/2 . We also obtain a similar result, within a factor of two, by employing the derivative of the effective potential of the Schwarzschild geodesics of GR. Finally, we show that for certain macroscopic systems, such as the perihelion precession of planets, the predictions of this relativistic Newtonian gravitational law differ again by only a factor of two from the predictions of GR. (paper)

  13. Gravitational-Wave Astronomy

    Science.gov (United States)

    Kelly, Bernard J.

    2010-01-01

    Einstein's General Theory of Relativity is our best classical description of gravity, and informs modern astronomy and astrophysics at all scales: stellar, galactic, and cosmological. Among its surprising predictions is the existence of gravitational waves -- ripples in space-time that carry energy and momentum away from strongly interacting gravitating sources. In my talk, I will give an overview of the properties of this radiation, recent breakthroughs in computational physics allowing us to calculate the waveforms from galactic mergers, and the prospect of direct observation with interferometric detectors such as LIGO and LISA.

  14. Supersymmetry and gravitational duality

    International Nuclear Information System (INIS)

    Argurio, Riccardo; Dehouck, Francois; Houart, Laurent

    2009-01-01

    We study how the supersymmetry algebra copes with gravitational duality. As a playground, we consider a charged Taub-Newman-Unti-Tamburino(NUT) solution of D=4, N=2 supergravity. We find explicitly its Killing spinors, and the projection they obey provides evidence that the dual magnetic momenta necessarily have to appear in the supersymmetry algebra. The existence of such a modification is further supported using an approach based on the Nester form. In the process, we find new expressions for the dual magnetic momenta, including the NUT charge. The same expressions are then rederived using gravitational duality.

  15. Role of Aquaporin 0 in lens biomechanics.

    Science.gov (United States)

    Sindhu Kumari, S; Gupta, Neha; Shiels, Alan; FitzGerald, Paul G; Menon, Anil G; Mathias, Richard T; Varadaraj, Kulandaiappan

    2015-07-10

    Maintenance of proper biomechanics of the eye lens is important for its structural integrity and for the process of accommodation to focus near and far objects. Several studies have shown that specialized cytoskeletal systems such as the beaded filament (BF) and spectrin-actin networks contribute to mammalian lens biomechanics; mutations or deletion in these proteins alters lens biomechanics. Aquaporin 0 (AQP0), which constitutes ∼45% of the total membrane proteins of lens fiber cells, has been shown to function as a water channel and a structural cell-to-cell adhesion (CTCA) protein. Our recent ex vivo study on AQP0 knockout (AQP0 KO) mouse lenses showed the CTCA function of AQP0 could be crucial for establishing the refractive index gradient. However, biomechanical studies on the role of AQP0 are lacking. The present investigation used wild type (WT), AQP5 KO (AQP5(-/-)), AQP0 KO (heterozygous KO: AQP0(+/-); homozygous KO: AQP0(-/-); all in C57BL/6J) and WT-FVB/N mouse lenses to learn more about the role of fiber cell AQPs in lens biomechanics. Electron microscopic images exhibited decreases in lens fiber cell compaction and increases in extracellular space due to deletion of even one allele of AQP0. Biomechanical assay revealed that loss of one or both alleles of AQP0 caused a significant reduction in the compressive load-bearing capacity of the lenses compared to WT lenses. Conversely, loss of AQP5 did not alter the lens load-bearing ability. Compressive load-bearing at the suture area of AQP0(+/-) lenses showed easy separation while WT lens suture remained intact. These data from KO mouse lenses in conjunction with previous studies on lens-specific BF proteins (CP49 and filensin) suggest that AQP0 and BF proteins could act co-operatively in establishing normal lens biomechanics. We hypothesize that AQP0, with its prolific expression at the fiber cell membrane, could provide anchorage for cytoskeletal structures like BFs and together they help to confer

  16. Role of Aquaporin 0 in lens biomechanics

    Energy Technology Data Exchange (ETDEWEB)

    Sindhu Kumari, S.; Gupta, Neha [Physiology and Biophysics, Stony Brook University, Stony Brook, NY (United States); Shiels, Alan [Washington University School of Medicine, St. Louis, MO (United States); FitzGerald, Paul G. [Cell Biology and Human Anatomy, School of Medicine, University of California, Davis, CA (United States); Menon, Anil G. [University of Cincinnati College of Medicine, Cincinnati, OH (United States); Mathias, Richard T. [Physiology and Biophysics, Stony Brook University, Stony Brook, NY (United States); SUNY Eye Institute, NY (United States); Varadaraj, Kulandaiappan, E-mail: kulandaiappan.varadaraj@stonybrook.edu [Physiology and Biophysics, Stony Brook University, Stony Brook, NY (United States); SUNY Eye Institute, NY (United States)

    2015-07-10

    Maintenance of proper biomechanics of the eye lens is important for its structural integrity and for the process of accommodation to focus near and far objects. Several studies have shown that specialized cytoskeletal systems such as the beaded filament (BF) and spectrin-actin networks contribute to mammalian lens biomechanics; mutations or deletion in these proteins alters lens biomechanics. Aquaporin 0 (AQP0), which constitutes ∼45% of the total membrane proteins of lens fiber cells, has been shown to function as a water channel and a structural cell-to-cell adhesion (CTCA) protein. Our recent ex vivo study on AQP0 knockout (AQP0 KO) mouse lenses showed the CTCA function of AQP0 could be crucial for establishing the refractive index gradient. However, biomechanical studies on the role of AQP0 are lacking. The present investigation used wild type (WT), AQP5 KO (AQP5{sup −/−}), AQP0 KO (heterozygous KO: AQP0{sup +/−}; homozygous KO: AQP0{sup −/−}; all in C57BL/6J) and WT-FVB/N mouse lenses to learn more about the role of fiber cell AQPs in lens biomechanics. Electron microscopic images exhibited decreases in lens fiber cell compaction and increases in extracellular space due to deletion of even one allele of AQP0. Biomechanical assay revealed that loss of one or both alleles of AQP0 caused a significant reduction in the compressive load-bearing capacity of the lenses compared to WT lenses. Conversely, loss of AQP5 did not alter the lens load-bearing ability. Compressive load-bearing at the suture area of AQP0{sup +/−} lenses showed easy separation while WT lens suture remained intact. These data from KO mouse lenses in conjunction with previous studies on lens-specific BF proteins (CP49 and filensin) suggest that AQP0 and BF proteins could act co-operatively in establishing normal lens biomechanics. We hypothesize that AQP0, with its prolific expression at the fiber cell membrane, could provide anchorage for cytoskeletal structures like BFs and

  17. The ring cycle: an iterative lens reconstruction technique applied to MG1131 + 0456

    International Nuclear Information System (INIS)

    Kochanek, C.S.; Blandford, R.D.; Lawrence, C.R.; Narayan, R.

    1989-01-01

    A new technique is described for the analysis of well-resolved gravitational lens images. This method allows us to solve for the brightness distribution of the unlensed source as well as a parametrized model of the lens. Our algorithm computes a figure of merit for a lens model based on the scatter in the surface brightnesses of image elements that, according to the model, come from the same source element. Minimization of the figure of merit leads to an optimum solution for the source and the lens. We present a successful application of the method to VLA maps of the 'Einstein ring' radio source MG1131 + 0456 observed by previous authors. The inversion gives a normal galaxy-like elliptical potential for the lens and an ordinary double-lobed structure for the background radio source. (author)

  18. On the Induced Gravitational Collapse

    Directory of Open Access Journals (Sweden)

    M. Becerra Laura

    2018-01-01

    Full Text Available The induced gravitational collapse (IGC paradigm has been applied to explain the long gamma ray burst (GRB associated with type Ic supernova, and recently the Xray flashes (XRFs. The progenitor is a binary systems of a carbon-oxygen core (CO and a neutron star (NS. The CO core collapses and undergoes a supernova explosion which triggers the hypercritical accretion onto the NS companion (up to 10-2 M⊙s-1. For the binary driven hypernova (BdHNe, the binary system is enough bound, the NS reach its critical mass, and collapse to a black hole (BH with a GRB emission characterized by an isotropic energy Eiso > 1052 erg. Otherwise, for binary systems with larger binary separations, the hypercritical accretion onto the NS is not sufficient to induced its gravitational collapse, a X-ray flash is produced with Eiso < 1052 erg. We’re going to focus in identify the binary parameters that limits the BdHNe systems with the XRFs systems.

  19. Discovery of the First Quadruple Gravitationally Lensed Quasar Candidate with Pan-STARRS

    Energy Technology Data Exchange (ETDEWEB)

    Berghea, C. T.; Nelson, George J.; Dudik, R. P. [U.S. Naval Observatory (USNO), 3450 Massachusetts Avenue NW, Washington, DC 20392 (United States); Rusu, C. E. [Department of Physics, University of California, Davis, 1 Shields Avenue, CA 95616 (United States); Keeton, C. R., E-mail: ciprian.t.berghea@navy.mil [Department of Physics and Astronomy, Rutgers, the State University of New Jersey, 136 Frelinghuysen Road, Piscataway, NJ 08854 (United States)

    2017-08-01

    We report the serendipitous discovery of the first gravitationally lensed quasar candidate from Pan-STARRS. The grizy images reveal four point-like images with magnitudes between 14.9 and 18.1 mag. The colors of the point sources are similar, and they are more consistent with quasars than with stars or galaxies. The lensing galaxy is detected in the izy bands, with an inferred photometric redshift of ∼0.6, lower than that of the point sources. We successfully model the system with a singular isothermal ellipsoid with shear, using the relative positions of the five objects as constraints. While the brightness ranking of the point sources is consistent with that of the model, we find discrepancies between the model-predicted and observed fluxes, likely due to microlensing by stars and millilensing due to the dark matter substructure. In order to fully confirm the gravitational lens nature of this system and add it to the small but growing number of the powerful probes of cosmology and astrophysics represented by quadruply lensed quasars, we require further spectroscopy and high-resolution imaging.

  20. Data quality studies of enhanced interferometric gravitational wave detectors

    International Nuclear Information System (INIS)

    McIver, Jessica

    2012-01-01

    Data quality assessment plays an essential role in the quest to detect gravitational wave signals in data from the LIGO and Virgo interferometric gravitational wave detectors. Interferometer data contain a high rate of noise transients from the environment, the detector hardware and the detector control systems. These transients severely limit the statistical significance of gravitational wave candidates of short duration and/or poorly modeled waveforms. This paper describes the data quality studies that have been performed in recent LIGO and Virgo observing runs to mitigate the impact of transient detector artifacts on the gravitational wave searches. (paper)