WorldWideScience

Sample records for gravitational lens effect

  1. Gravitational lens effect and pregalactic halo objects

    International Nuclear Information System (INIS)

    Bontz, R.J.

    1979-01-01

    The changes in flux, position, and size of a distant extended (galaxy, etc.) source that result from the gravitational lens action of a massive opaque object are discussed. The flux increase is described by a single function of two parameters. One of these parameters characterizes the strength of the gravitational lens, the other describes the alignment of source and lens object. This function also describes the relative intensity of the images formed by lens. ( A similar formalism is discussed by Bourassa et al. for a point source). The formalism is applied to the problem of the galactic halo. It appears that a massive (10 1 2 M/sub sun/) spherical halo surrounding the visible part of the galaxy is consistent with the observable properties of extragalactic sources

  2. The gravitational lens effect and its optical equivalents

    International Nuclear Information System (INIS)

    Freitas, L.R. de.

    1987-01-01

    This work presents the evolution of the use of the so called gravitational lens effect from a simple observational teste of the General Relativity theory to an instrument to measure cosmological parameters. A detailed analysis of how a gravitational ''lens'' deflects light without forming images is shown for the case of the deflector with spherical symmetry. In addition, the exact optical equivalent of a cylindrical gravitational lens, which forms true images, is proposed. Finally the problem of the formation of multiple images and the related astronomical observations is discussed. (author) [pt

  3. Discovery of two new gravitation lens systems

    International Nuclear Information System (INIS)

    Guertler, J.

    1988-01-01

    The discovery of new quasar and radio galaxy double images produced by the gravitation lens effect is reported. The light deflecting galaxies acting as gravitational lenses could be made visible by means of image processing procedures

  4. Gravitational lens effect of wall-like objects and its cosmological implications

    International Nuclear Information System (INIS)

    Tomita, Kenji.

    1990-08-01

    First we derive the gravitational deflection angle of light rays passing through a disk consisting of pressureless matter, and show that it behaves like a convex lens. Next we derive the two-ray difference of deflection angles by help of the Raychaudhuri equation, in the cases when the wall-like objects are dust walls and domain-walls. Moreover we derive the two-ray difference of deflection angles in a low mass-density regions lying between wall-like objects. This region plays a role of a concave lens, but it is shown that its effect is minor, compared with the effect of wall-like objects. On the basis of these deflection angle differences, we consider the gravitational lens effect of uniform wall-like objects which may exist homogeneously on the cosmological scale, and show that, in the case when the wall-like objects appear at the epoch of z = 5, the measured angles of the cosmic background radiation may be increased about 3-2 times owing to the integrated convex lens effect and so its measured anisotropy may be smaller by a factor of about 10-6 than the intrinsic one. (author)

  5. Analytic models of plausible gravitational lens potentials

    International Nuclear Information System (INIS)

    Baltz, Edward A.; Marshall, Phil; Oguri, Masamune

    2009-01-01

    Gravitational lenses on galaxy scales are plausibly modelled as having ellipsoidal symmetry and a universal dark matter density profile, with a Sérsic profile to describe the distribution of baryonic matter. Predicting all lensing effects requires knowledge of the total lens potential: in this work we give analytic forms for that of the above hybrid model. Emphasising that complex lens potentials can be constructed from simpler components in linear combination, we provide a recipe for attaining elliptical symmetry in either projected mass or lens potential. We also provide analytic formulae for the lens potentials of Sérsic profiles for integer and half-integer index. We then present formulae describing the gravitational lensing effects due to smoothly-truncated universal density profiles in cold dark matter model. For our isolated haloes the density profile falls off as radius to the minus fifth or seventh power beyond the tidal radius, functional forms that allow all orders of lens potential derivatives to be calculated analytically, while ensuring a non-divergent total mass. We show how the observables predicted by this profile differ from that of the original infinite-mass NFW profile. Expressions for the gravitational flexion are highlighted. We show how decreasing the tidal radius allows stripped haloes to be modelled, providing a framework for a fuller investigation of dark matter substructure in galaxies and clusters. Finally we remark on the need for finite mass halo profiles when doing cosmological ray-tracing simulations, and the need for readily-calculable higher order derivatives of the lens potential when studying catastrophes in strong lenses

  6. The discovery of a gravitational lens

    International Nuclear Information System (INIS)

    Chaffee, F.H. Jr.

    1981-01-01

    A recently discovered pair of quasars turns out to be not a pair at all but two images of a single quasar formed by a gravitational lens: an elliptical galaxy halfway between the quasar and our own galaxy. (orig.) [de

  7. Astronomers Discover Six-Image Gravitational Lens

    Science.gov (United States)

    2001-08-01

    An international team of astronomers has used the National Science Foundation's Very Long Baseline Array (VLBA) radio telescope and NASA's Hubble Space Telescope (HST) to discover the first gravitational lens in which the single image of a very distant galaxy has been split into six different images. The unique configuration is produced by the gravitational effect of three galaxies along the line of sight between the more-distant galaxy and Earth. Optical and Radio Images of Gravitational Lens "This is the first gravitational lens with more than four images of the background object that is produced by a small group of galaxies rather than a large cluster of galaxies," said David Rusin, who just received his Ph.D. from the University of Pennsylvania. "Such systems are expected to be extremely rare, so this discovery is an important stepping stone. Because this is an intermediate case between gravitational lenses produced by single galaxies and lenses produced by large clusters of galaxies, it will give us insights we can't get from other types of lenses," Rusin added. The gravitational lens, called CLASS B1359+154, consists of a galaxy more than 11 billion light-years away in the constellation Bootes, with a trio of galaxies more than 7 billion light-years away along the same line of sight. The more-distant galaxy shows signs that it contains a massive black hole at its core and also has regions in which new stars are forming. The gravitational effect of the intervening galaxies has caused the light and radio waves from the single, more-distant galaxy to be "bent" to form six images as seen from Earth. Four of these images appear outside the triangle formed by the three intermediate galaxies and two appear inside that triangle. "This lens system is a very interesting case to study because it is more complicated than lenses produced by single galaxies, and yet simpler than lenses produced by clusters of numerous galaxies," said Chris Kochanek of the Harvard

  8. Gravitational-Like Lens Based on Graphene Ripple.

    Science.gov (United States)

    Liu, Daqing; Chen, Shuyue; Ma, Ning; Zhao, Xiang; Xu, Zhuo

    2015-10-01

    We conducted a semiclassical study on carrier movement in curved graphene. A previous attempt was made to show that curved graphene is a readily available and cheap laboratory material used to study general relativity effects, especially if the electron energies satisfy 4μeV ≪ |E| ≪ 3eV. Furthermore, a gravitational-like lens can be constructed based on a special graphene ripple; this lens has neither chromatic nor cometic aberration. One can design an ideal electron lens using a graphene ripple.

  9. Gravitational Lens Time Delays Using Polarization Monitoring

    Directory of Open Access Journals (Sweden)

    Andrew Biggs

    2017-11-01

    Full Text Available Gravitational lens time delays provide a means of measuring the expansion of the Universe at high redshift (and therefore in the ‘Hubble flow’ that is independent of local calibrations. It was hoped that many of the radio lenses found in the JVAS/CLASS survey would yield time delays as these were selected to have flat spectra and are dominated by multiple compact components. However, despite extensive monitoring with the Very Large Array (VLA, time delays have only been measured for three of these systems (out of 22. We have begun a programme to reanalyse the existing VLA monitoring data with the goal of producing light curves in polarized flux and polarization position angle, either to improve delay measurements or to find delays for new sources. Here, we present preliminary results on the lens system B1600+434 which demonstrate the presence of correlated and substantial polarization variability in each image.

  10. DISSECTING THE GRAVITATIONAL LENS B1608+656. I. LENS POTENTIAL RECONSTRUCTION

    NARCIS (Netherlands)

    Suyu, S. H.; Marshall, P. J.; Blandford, R. D.; Fassnacht, C. D.; Koopmans, L. V. E.; McKean, J. P.; Treu, T.

    2009-01-01

    Strong gravitational lensing is a powerful technique for probing galaxy mass distributions and for measuring cosmological parameters. Lens systems with extended source-intensity distributions are particularly useful for this purpose since they provide additional constraints on the lens potential (

  11. GRAVITATIONAL LENS MODELING WITH GENETIC ALGORITHMS AND PARTICLE SWARM OPTIMIZERS

    International Nuclear Information System (INIS)

    Rogers, Adam; Fiege, Jason D.

    2011-01-01

    Strong gravitational lensing of an extended object is described by a mapping from source to image coordinates that is nonlinear and cannot generally be inverted analytically. Determining the structure of the source intensity distribution also requires a description of the blurring effect due to a point-spread function. This initial study uses an iterative gravitational lens modeling scheme based on the semilinear method to determine the linear parameters (source intensity profile) of a strongly lensed system. Our 'matrix-free' approach avoids construction of the lens and blurring operators while retaining the least-squares formulation of the problem. The parameters of an analytical lens model are found through nonlinear optimization by an advanced genetic algorithm (GA) and particle swarm optimizer (PSO). These global optimization routines are designed to explore the parameter space thoroughly, mapping model degeneracies in detail. We develop a novel method that determines the L-curve for each solution automatically, which represents the trade-off between the image χ 2 and regularization effects, and allows an estimate of the optimally regularized solution for each lens parameter set. In the final step of the optimization procedure, the lens model with the lowest χ 2 is used while the global optimizer solves for the source intensity distribution directly. This allows us to accurately determine the number of degrees of freedom in the problem to facilitate comparison between lens models and enforce positivity on the source profile. In practice, we find that the GA conducts a more thorough search of the parameter space than the PSO.

  12. CTQ 327: A New Gravitational Lens

    Science.gov (United States)

    Morgan, N. D.; Gregg, M. D.; Wisotzki, L.; Becker, R.; Maza, J.; Schechter, P. L.; White, R. L.

    2003-08-01

    We present the second gravitationally lensed quasar discovered during the course of a Hubble Space Telescope Space Telescope Imaging Spectrograph snapshot survey for small-separation gravitational lenses. CTQ 327 is a double quasar with an image separation of 1.22" and a g-band flux ratio of roughly 5 to 1. Spectra reveal both components to be z=1.37 quasars, and the lensing galaxy is clearly visible after point-spread function subtraction of the two quasar components. The light profile of the lensing galaxy is well modeled by an r1/4 law, indicative of an early-type elliptical galaxy. An estimate of the lens galaxy redshift is z~0.4-0.6, based on the Faber-Jackson relationship and photometric considerations, although values outside this range are still consistent with the present data. Resolved spectra of the two quasars show similar, but not identical, continuum and emission-line features: component A exhibits weaker emission lines with respect to the continuum than does component B, and there is evidence of intrinsic differences in the emission-line profiles between the two components. Optical monitoring of the quasar pair also shows a change in the g-band flux ratio of 0.14 mag over a 3 month period. These spectral and photometric differences may be due to microlensing fluctuations from stars in the lensing galaxy, intrinsic quasar variability coupled with the system's differential time delay, or some combination of the two. The observed variability makes CTQ 327 an attractive target for future flux monitoring, aimed at time-delay or microlensing studies. Based on observations obtained with the NASA/ESA Hubble Space Telescope, the W. M. Keck Observatory, and the Magellan Consortium's Walter Baade Telescope. The Space Telescope Science Institute is operated by the Association of Universities for Research in Astronomy (AURA), Inc., under NASA contract NAS 5-26555. The W. M. Keck Observatory is operated as a scientific partnership among the California Institute of

  13. Gravitational lens produces an odd number of images

    International Nuclear Information System (INIS)

    McKenzie, R.H.

    1985-01-01

    Rigorous results are given to the effect that a transparent gravitational lens produces an odd number of images. Suppose that p is an event and T the history of a light source in a globally hyperbolic space-time (M,g). Uhlenbeck's Morse theory of null geodesics is used to show under quite general conditions that if there are at most a finite number n of future-directed null geodesics from T to p, then M is contractible to a point. Moreover, n is odd and 1/2 (n-1) of the images of the source seen by an observer at p have the opposite orientation to the source. An analogous result is noted for Riemannian manifolds with positive definite metric

  14. IMPROVED CONSTRAINTS ON THE GRAVITATIONAL LENS Q0957+561. I. WEAK LENSING

    International Nuclear Information System (INIS)

    Nakajima, R.; Bernstein, G. M.; Fadely, R.; Keeton, C. R.; Schrabback, T.

    2009-01-01

    Attempts to constrain the Hubble constant using the strong gravitational lens system Q0957+561 are limited by systematic uncertainties in the mass model, since the time delay is known very precisely. One important systematic effect is the mass-sheet degeneracy, which arises because strong lens modeling cannot constrain the presence or absence of a uniform mass sheet κ, which rescales H 0 by the factor (1 - κ). In this paper, we present new constraints on the mass sheet derived from a weak-lensing analysis of the Hubble Space Telescope imaging of a 6 arcmin square region surrounding the lensed quasar. The average mass sheet within a circular aperture (the strong lens model region) is constrained by integrating the tangential weak gravitational shear over the surrounding area. We find the average convergence within a 30'' radius around the lens galaxy to be κ(<30'') = 0.166 ± 0.056 (1σ confidence level), normalized to the quasar redshift. This includes contributions from both the lens galaxy and the surrounding cluster. We also constrain a few other low-order terms in the lens potential by applying a multipole aperture mass formalism to the gravitational shear in an annulus around the strong-lensing region. Implications for strong lens models and the Hubble constant are discussed in an accompanying paper.

  15. Chitah: Strong-gravitational-lens hunter in imaging surveys

    Energy Technology Data Exchange (ETDEWEB)

    Chan, James H. H.; Suyu, Sherry H.; Chiueh, Tzihong; More, Anupreeta; Marshall, Philip J.; Coupon, Jean; Oguri, Masamune; Price, Paul

    2015-07-07

    Strong gravitationally lensed quasars provide powerful means to study galaxy evolution and cosmology. Current and upcoming imaging surveys will contain thousands of new lensed quasars, augmenting the existing sample by at least two orders of magnitude. To find such lens systems, we built a robot, Chitah, that hunts for lensed quasars by modeling the configuration of the multiple quasar images. Specifically, given an image of an object that might be a lensed quasar, Chitah first disentangles the light from the supposed lens galaxy and the light from the multiple quasar images based on color information. A simple rule is designed to categorize the given object as a potential four-image (quad) or two-image (double) lensed quasar system. The configuration of the identified quasar images is subsequently modeled to classify whether the object is a lensed quasar system. We test the performance of Chitah using simulated lens systems based on the Canada–France–Hawaii Telescope Legacy Survey. For bright quads with large image separations (with Einstein radius ${r}_{\\mathrm{ein}}\\gt 1\\buildrel{\\prime\\prime}\\over{.} 1$) simulated using Gaussian point-spread functions, a high true-positive rate (TPR) of $\\sim 90\\%$ and a low false-positive rate of $\\sim 3\\%$ show that this is a promising approach to search for new lens systems. We obtain high TPR for lens systems with ${r}_{\\mathrm{ein}}\\gtrsim 0\\buildrel{\\prime\\prime}\\over{.} 5$, so the performance of Chitah is set by the seeing. We further feed a known gravitational lens system, COSMOS 5921+0638, to Chitah, and demonstrate that Chitah is able to classify this real gravitational lens system successfully. Our newly built Chitah is omnivorous and can hunt in any ground-based imaging surveys.

  16. COSMOLOGY FROM GRAVITATIONAL LENS TIME DELAYS AND PLANCK DATA

    International Nuclear Information System (INIS)

    Suyu, S. H.; Treu, T.; Sonnenfeld, A.; Hilbert, S.; Spiniello, C.; Auger, M. W.; Collett, T.; Blandford, R. D.; Marshall, P. J.; Courbin, F.; Meylan, G.; Tewes, M.; Fassnacht, C. D.; Koopmans, L. V. E.

    2014-01-01

    Under the assumption of a flat ΛCDM cosmology, recent data from the Planck satellite point toward a Hubble constant that is in tension with that measured by gravitational lens time delays and by the local distance ladder. Prosaically, this difference could arise from unknown systematic uncertainties in some of the measurements. More interestingly—if systematics were ruled out—resolving the tension would require a departure from the flat ΛCDM cosmology, introducing, for example, a modest amount of spatial curvature, or a non-trivial dark energy equation of state. To begin to address these issues, we present an analysis of the gravitational lens RXJ1131–1231 that is improved in one particular regard: we examine the issue of systematic error introduced by an assumed lens model density profile. We use more flexible gravitational lens models with baryonic and dark matter components, and find that the exquisite Hubble Space Telescope image with thousands of intensity pixels in the Einstein ring and the stellar velocity dispersion of the lens contain sufficient information to constrain these more flexible models. The total uncertainty on the time-delay distance is 6.6% for a single system. We proceed to combine our improved time-delay distance measurement with the WMAP9 and Planck posteriors. In an open ΛCDM model, the data for RXJ1131–1231 in combination with Planck favor a flat universe with Ω k =0.00 −0.02 +0.01 (68% credible interval (CI)). In a flat wCDM model, the combination of RXJ1131–1231 and Planck yields w=−1.52 −0.20 +0.19 (68% CI)

  17. Lenstronomy: Multi-purpose gravitational lens modeling software package

    Science.gov (United States)

    Birrer, Simon; Amara, Adam

    2018-04-01

    Lenstronomy is a multi-purpose open-source gravitational lens modeling python package. Lenstronomy reconstructs the lens mass and surface brightness distributions of strong lensing systems using forward modelling and supports a wide range of analytic lens and light models in arbitrary combination. The software is also able to reconstruct complex extended sources as well as point sources. Lenstronomy is flexible and numerically accurate, with a clear user interface that could be deployed across different platforms. Lenstronomy has been used to derive constraints on dark matter properties in strong lenses, measure the expansion history of the universe with time-delay cosmography, measure cosmic shear with Einstein rings, and decompose quasar and host galaxy light.

  18. H0LiCOW - III. Quantifying the effect of mass along the line of sight to the gravitational lens HE 0435-1223 through weighted galaxy counts★

    Science.gov (United States)

    Rusu, Cristian E.; Fassnacht, Christopher D.; Sluse, Dominique; Hilbert, Stefan; Wong, Kenneth C.; Huang, Kuang-Han; Suyu, Sherry H.; Collett, Thomas E.; Marshall, Philip J.; Treu, Tommaso; Koopmans, Leon V. E.

    2017-06-01

    Based on spectroscopy and multiband wide-field observations of the gravitationally lensed quasar HE 0435-1223, we determine the probability distribution function of the external convergence κext for this system. We measure the under/overdensity of the line of sight towards the lens system and compare it to the average line of sight throughout the Universe, determined by using the CFHTLenS (The Canada France Hawaii Lensing Survey) as a control field. Aiming to constrain κext as tightly as possible, we determine under/overdensities using various combinations of relevant informative weighting schemes for the galaxy counts, such as projected distance to the lens, redshift and stellar mass. We then convert the measured under/overdensities into a κext distribution, using ray-tracing through the Millennium Simulation. We explore several limiting magnitudes and apertures, and account for systematic and statistical uncertainties relevant to the quality of the observational data, which we further test through simulations. Our most robust estimate of κext has a median value κ^med_ext = 0.004 and a standard deviation σκ = 0.025. The measured σκ corresponds to 2.5 per cent relative uncertainty on the time delay distance, and hence the Hubble constant H0 inferred from this system. The median κ^med_ext value varies by ˜0.005 with the adopted aperture radius, limiting magnitude and weighting scheme, as long as the latter incorporates galaxy number counts, the projected distance to the main lens and a prior on the external shear obtained from mass modelling. This corresponds to just ˜0.5 per cent systematic impact on H0. The availability of a well-constrained κext makes HE 0435-1223 a valuable system for measuring cosmological parameters using strong gravitational lens time delays.

  19. Comparison of approximate gravitational lens equations and a proposal for an improved new one

    International Nuclear Information System (INIS)

    Bozza, V.

    2008-01-01

    Keeping the exact general relativistic treatment of light bending as a reference, we compare the accuracy of commonly used approximate lens equations. We conclude that the best approximate lens equation is the Ohanian lens equation, for which we present a new expression in terms of distances between observer, lens, and source planes. We also examine a realistic gravitational lensing case, showing that the precision of the Ohanian lens equation might be required for a reliable treatment of gravitational lensing and a correct extraction of the full information about gravitational physics.

  20. Candidate gravitational microlensing events for future direct lens imaging

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, C. B.; Gould, A.; Gaudi, B. S. [Department of Astronomy, The Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Park, H.; Han, C. [Department of Physics, Institute for Astrophysics, Chungbuk National University, Cheongju 371-763 (Korea, Republic of); Sumi, T.; Koshimoto, N. [Department of Earth and Space Science, Osaka University, Osaka 560-0043 (Japan); Udalski, A. [Warsaw University Observatory, Al. Ujazdowskie 4, 00-478 Warszawa (Poland); Tsapras, Y. [Las Cumbres Observatory Global Telescope Network, 6740 Cortona Drive, Suite 102, Goleta, CA 93117 (United States); Bozza, V. [Department of Physics, University of Salerno, I-84084 Fisciano (Italy); Abe, F.; Fukunaga, D.; Itow, Y.; Masuda, K. [Solar-Terrestrial Environment Laboratory, Nagoya University, Nagoya 464-8601 (Japan); Bennett, D. P. [Department of Physics, University of Notre Dame, 225 Nieuwland Science Hall, Notre Dame, IN 46556-5670 (United States); Bond, I. A.; Ling, C. H. [Institute of Information and Mathematical Sciences, Massey University, Private Bag 102-904, North Shore Mail Centre, Auckland 0745 (New Zealand); Botzler, C. S.; Freeman, M. [Department of Physics, University of Auckland, Private Bag 92-019, Auckland 1001 (New Zealand); Fukui, A. [School of Chemical and Physical Sciences, Victoria University, Wellington 6140 (New Zealand); Collaboration: MOA Collaboration; OGLE Collaboration; μFUN Collaboration; RoboNet Collaboration; and others

    2014-10-10

    The mass of the lenses giving rise to Galactic microlensing events can be constrained by measuring the relative lens-source proper motion and lens flux. The flux of the lens can be separated from that of the source, companions to the source, and unrelated nearby stars with high-resolution images taken when the lens and source are spatially resolved. For typical ground-based adaptive optics (AO) or space-based observations, this requires either inordinately long time baselines or high relative proper motions. We provide a list of microlensing events toward the Galactic bulge with high relative lens-source proper motion that are therefore good candidates for constraining the lens mass with future high-resolution imaging. We investigate all events from 2004 to 2013 that display detectable finite-source effects, a feature that allows us to measure the proper motion. In total, we present 20 events with μ ≳ 8 mas yr{sup –1}. Of these, 14 were culled from previous analyses while 6 are new, including OGLE-2004-BLG-368, MOA-2005-BLG-36, OGLE-2012-BLG-0211, OGLE-2012-BLG-0456, MOA-2012-BLG-532, and MOA-2013-BLG-029. In ≲12 yr from the time of each event the lens and source of each event will be sufficiently separated for ground-based telescopes with AO systems or space telescopes to resolve each component and further characterize the lens system. Furthermore, for the most recent events, comparison of the lens flux estimates from images taken immediately to those estimated from images taken when the lens and source are resolved can be used to empirically check the robustness of the single-epoch method currently being used to estimate lens masses for many events.

  1. Candidate gravitational microlensing events for future direct lens imaging

    International Nuclear Information System (INIS)

    Henderson, C. B.; Gould, A.; Gaudi, B. S.; Park, H.; Han, C.; Sumi, T.; Koshimoto, N.; Udalski, A.; Tsapras, Y.; Bozza, V.; Abe, F.; Fukunaga, D.; Itow, Y.; Masuda, K.; Bennett, D. P.; Bond, I. A.; Ling, C. H.; Botzler, C. S.; Freeman, M.; Fukui, A.

    2014-01-01

    The mass of the lenses giving rise to Galactic microlensing events can be constrained by measuring the relative lens-source proper motion and lens flux. The flux of the lens can be separated from that of the source, companions to the source, and unrelated nearby stars with high-resolution images taken when the lens and source are spatially resolved. For typical ground-based adaptive optics (AO) or space-based observations, this requires either inordinately long time baselines or high relative proper motions. We provide a list of microlensing events toward the Galactic bulge with high relative lens-source proper motion that are therefore good candidates for constraining the lens mass with future high-resolution imaging. We investigate all events from 2004 to 2013 that display detectable finite-source effects, a feature that allows us to measure the proper motion. In total, we present 20 events with μ ≳ 8 mas yr –1 . Of these, 14 were culled from previous analyses while 6 are new, including OGLE-2004-BLG-368, MOA-2005-BLG-36, OGLE-2012-BLG-0211, OGLE-2012-BLG-0456, MOA-2012-BLG-532, and MOA-2013-BLG-029. In ≲12 yr from the time of each event the lens and source of each event will be sufficiently separated for ground-based telescopes with AO systems or space telescopes to resolve each component and further characterize the lens system. Furthermore, for the most recent events, comparison of the lens flux estimates from images taken immediately to those estimated from images taken when the lens and source are resolved can be used to empirically check the robustness of the single-epoch method currently being used to estimate lens masses for many events.

  2. GLOBAL OPTIMIZATION METHODS FOR GRAVITATIONAL LENS SYSTEMS WITH REGULARIZED SOURCES

    International Nuclear Information System (INIS)

    Rogers, Adam; Fiege, Jason D.

    2012-01-01

    Several approaches exist to model gravitational lens systems. In this study, we apply global optimization methods to find the optimal set of lens parameters using a genetic algorithm. We treat the full optimization procedure as a two-step process: an analytical description of the source plane intensity distribution is used to find an initial approximation to the optimal lens parameters; the second stage of the optimization uses a pixelated source plane with the semilinear method to determine an optimal source. Regularization is handled by means of an iterative method and the generalized cross validation (GCV) and unbiased predictive risk estimator (UPRE) functions that are commonly used in standard image deconvolution problems. This approach simultaneously estimates the optimal regularization parameter and the number of degrees of freedom in the source. Using the GCV and UPRE functions, we are able to justify an estimation of the number of source degrees of freedom found in previous work. We test our approach by applying our code to a subset of the lens systems included in the SLACS survey.

  3. Deep convolutional neural networks as strong gravitational lens detectors

    Science.gov (United States)

    Schaefer, C.; Geiger, M.; Kuntzer, T.; Kneib, J.-P.

    2018-03-01

    Context. Future large-scale surveys with high-resolution imaging will provide us with approximately 105 new strong galaxy-scale lenses. These strong-lensing systems will be contained in large data amounts, however, which are beyond the capacity of human experts to visually classify in an unbiased way. Aim. We present a new strong gravitational lens finder based on convolutional neural networks (CNNs). The method was applied to the strong-lensing challenge organized by the Bologna Lens Factory. It achieved first and third place, respectively, on the space-based data set and the ground-based data set. The goal was to find a fully automated lens finder for ground-based and space-based surveys that minimizes human inspection. Methods: We compared the results of our CNN architecture and three new variations ("invariant" "views" and "residual") on the simulated data of the challenge. Each method was trained separately five times on 17 000 simulated images, cross-validated using 3000 images, and then applied to a test set with 100 000 images. We used two different metrics for evaluation, the area under the receiver operating characteristic curve (AUC) score, and the recall with no false positive (Recall0FP). Results: For ground-based data, our best method achieved an AUC score of 0.977 and a Recall0FP of 0.50. For space-based data, our best method achieved an AUC score of 0.940 and a Recall0FP of 0.32. Adding dihedral invariance to the CNN architecture diminished the overall score on space-based data, but achieved a higher no-contamination recall. We found that using committees of five CNNs produced the best recall at zero contamination and consistently scored better AUC than a single CNN. Conclusions: We found that for every variation of our CNN lensfinder, we achieved AUC scores close to 1 within 6%. A deeper network did not outperform simpler CNN models either. This indicates that more complex networks are not needed to model the simulated lenses. To verify this, more

  4. Gravitational effects in field gravitation theory

    International Nuclear Information System (INIS)

    Denisov, V.I.; Logunov, A.A.; Mestvirishvili, M.A.; Vlasov, A.A.

    1979-01-01

    The possibilities to describe various gravitation effects of field gravitation theory (FGT) are considered. Past-Newtonian approximation of the FGT has been constructed and on the basis of this approximation it has been shown that the field theory allows one to describe the whole set of experimental facts. The comparison of post-Newtonian parameters in FGT with those in the Einstein's theory makes it clear that these two; theories are undistinguishable from the viewpoint of any experiments, realized with post-Newtonian accuracy. Gravitational field of an island type source with spherically symmetrical distribution of matter and unstationary homogeneous model of Universe, which allows to describe the effect of cosmological red shift, are considered

  5. HST image of Gravitational Lens G2237 + 305 or 'Einstein Cross'

    Science.gov (United States)

    1990-01-01

    European Space Agency (ESA) Faint Object Camera (FOC) science image was taken from the Hubble Space Telescope (HST) of Gravitational Lens G2237 + 305 or 'Einstein Cross'. The gravitational lens G2237 + 305 or 'Einstein Cross' shows four images of a very distant quasar which has been multiple-imaged by a relatively nearby galaxy acting as a gravitational lens. The angular separation between the upper and lower images is 1.6 arc seconds. Photo was released from Goddard Space Flight Center (GSFC) 09-12-90.

  6. Method to measure a relative transverse velocity of a source-lens-observer system using gravitational lensing of gravitational waves

    International Nuclear Information System (INIS)

    Itoh, Yousuke; Futamase, Toshifumi; Hattori, Makoto

    2009-01-01

    Gravitational waves propagate along null geodesics like light rays in the geometrical optics approximation, and they may have a chance to suffer from gravitational lensing by intervening objects, as is the case for electromagnetic waves. Long wavelengths of gravitational waves and compactness of possible sources may enable us to extract information in the interference among the lensed images. We point out that the interference term contains information of relative transverse velocity of the source-lens-observer system, which may be obtained by possible future space-borne gravitational wave detectors such as BBO/DECIGO.

  7. Interstellar communication. II. Application to the solar gravitational lens

    Science.gov (United States)

    Hippke, Michael

    2018-01-01

    We have shown in paper I of this series [1] that interstellar communication to nearby (pc) stars is possible at data rates of bits per second per Watt between a 1 m sized probe and a large receiving telescope (E-ELT, 39 m), when optimizing all parameters such as frequency at 300-400 nm. We now apply our framework of interstellar extinction and quantum state calculations for photon encoding to the solar gravitational lens (SGL), which enlarges the aperture (and thus the photon flux) of the receiving telescope by a factor of >109 . For the first time, we show that the use of the SGL for communication purposes is possible. This was previously unclear because the Einstein ring is placed inside the solar coronal noise, and contributing factors are difficult to determine. We calculate point-spread functions, aperture sizes, heliocentric distance, and optimum communication frequency. The best wavelength for nearby (meter-sized telescopes, an improvement of 107 compared to using the same receiving telescope without the SGL. A 1 m telescope in the SGL can receive data at rates comparable to a km-class "normal" telescope.

  8. CLASS B2108+213 : a new wide-separation gravitational lens system

    NARCIS (Netherlands)

    McKean, JP; Browne, IWA; Jackson, NJ; Koopmans, LVE; Norbury, MA; Treu, T; York, TD; Biggs, AD; Blandford, RD; de Bruyn, AG; Fassnacht, CD; Mao, S; Myers, ST; Pearson, TJ; Phillips, PM; Readhead, ACS; Rusin, D; Wilkinson, PN

    2005-01-01

    We present observations of CLASS B2108 + 213, the widest separation gravitational lens system discovered by the Cosmic Lens All-Sky Survey. Radio imaging using the VLA at 8.46 GHz and MERLIN at 5 GHz shows two compact components separated by 4.56 arcsec with a faint third component in between which

  9. Class B0739+366 : A new two-image gravitational lens system

    NARCIS (Netherlands)

    Marlow, DR; Rusin, D; Norbury, M; Jackson, N; Browne, IWA; Wilkinson, PN; Fassnacht, CD; Myers, ST; Koopmans, LVE; Blandford, RD; Pearson, TJ; Readhead, ACS; de Bruyn, AG

    We present the discovery of CLASS B0739 + 366, a new gravitational lens system from the Cosmic Lens All-Sky Survey. Radio imaging of the source with the Very Large Array shows two compact components separated by with a flux density ratio of similar to6:1. High-resolution follow-up observations using

  10. The edge-on spiral gravitational lens B1600+434

    NARCIS (Netherlands)

    Koopmans, LVE; de Bruyn, AG; Jackson, N

    1998-01-01

    We present new observations of the gravitational lens (GL) system B1600 + 434, strongly suggesting that the lens is an edge-on spiral galaxy. These observations are used to constrain the mass model of the system? in particular the oblateness and velocity dispersion of the dark matter halo around the

  11. Gravitational lens recovery with GLASS: measuring the mass profile and shape of a lens

    Science.gov (United States)

    Coles, Jonathan P.; Read, Justin I.; Saha, Prasenjit

    2014-12-01

    We use a new non-parametric gravitational modelling tool - GLASS - to determine what quality of data (strong lensing, stellar kinematics, and/or stellar masses) are required to measure the circularly averaged mass profile of a lens and its shape. GLASS uses an underconstrained adaptive grid of mass pixels to model the lens, searching through thousands of models to marginalize over model uncertainties. Our key findings are as follows: (i) for pure lens data, multiple sources with wide redshift separation give the strongest constraints as this breaks the well-known mass-sheet or steepness degeneracy; (ii) a single quad with time delays also performs well, giving a good recovery of both the mass profile and its shape; (iii) stellar masses - for lenses where the stars dominate the central potential - can also break the steepness degeneracy, giving a recovery for doubles almost as good as having a quad with time-delay data, or multiple source redshifts; (iv) stellar kinematics provide a robust measure of the mass at the half-light radius of the stars r1/2 that can also break the steepness degeneracy if the Einstein radius rE ≠ r1/2; and (v) if rE ˜ r1/2, then stellar kinematic data can be used to probe the stellar velocity anisotropy β - an interesting quantity in its own right. Where information on the mass distribution from lensing and/or other probes becomes redundant, this opens up the possibility of using strong lensing to constrain cosmological models.

  12. Modern Gravitational Lens Cosmology for Introductory Physics and Astronomy Students

    Science.gov (United States)

    Huwe, Paul; Field, Scott

    2015-01-01

    Recent and exciting discoveries in astronomy and cosmology have inspired many high school students to learn about these fields. A particularly fascinating consequence of general relativity at the forefront of modern cosmology research is gravitational lensing, the bending of light rays that pass near massive objects. Gravitational lensing enables…

  13. A new quadruple gravitational lens system : CLASS B0128+437

    NARCIS (Netherlands)

    Phillips, PM; Norbury, MA; Koopmans, LVE; Browne, IWA; Jackson, NJ; Wilkinson, PN; Biggs, AD; Blandford, RD; de Bruyn, AG; Fassnacht, CD; Helbig, P; Mao, S; Marlow, DR; Myers, ST; Pearson, TJ; Readhead, ACS; Rusin, D; Xanthopoulos, E

    2000-01-01

    High-resolution MERLIN observations of a newly discovered four-image gravitational lens system, B0128+437, are presented. The system was found after a careful re-analysis of the entire CLASS data set. The MERLIN observations resolve four components in a characteristic quadruple-image configuration;

  14. The gravitational lens system B1030+074. Discovery and follow-up.

    NARCIS (Netherlands)

    Xanthopoulos, E; Browne, IWA; King, LJ; Jackson, NJ; Marlow, DR; Wilkinson, PN; Koopmans, LVE; Patnaik, AR; Porcas, RW; Terzian, Y; Weedman, D; Khachikian, E

    1999-01-01

    We report the discovery of a new double image gravitational lens system B1030+074 which was found during the Jodrell Bank - VLA Astrometric Survey (JVAS). We have collected extensive radio data on the system using the VLA, MERLIN, the EVN and the VLBA as well as HST WFPC2 and NICMOS observations.

  15. The edge-on spiral gravitational lens B1600+434

    NARCIS (Netherlands)

    Koopmans, LVE; de Bruyn, AG; Jackson, N; Muller,; Gottlober, S; Mucket, JP; Wambsganss, J

    1998-01-01

    New HST and NOT observations of the gravitational lens B1600+434(1) suggest that the lensing galaxy is an edge-on spiral galaxy.(3) We have used these observations to constrain the velocity dispersion (sigma(parallel to) > 150 km/s) and oblateness (q(halo) = (c/a)(rho) > 0.5) of dark matter halo

  16. The gravitational lens candidate HE 1104-1805 and the size of absorption systems

    NARCIS (Netherlands)

    Smette, A; Robertson, JG; Shaver, PA; Reimers, D; Wisotzki, L; Kohler, T; Kochanek, CS; Hewitt, JN

    1996-01-01

    We obtained 1.2 Angstrom resolution spectra over the range 3175 - 7575 Angstrom for the two components of the gravitational lens candidate HE 1104-1805 (z = 2.31, m(B) = 16.7 and 18.6, separation = 3.0 arcsec; cf. Wisotzki et al. 1993), with the aim of setting limits on the sizes of the clouds

  17. QUASAR PG1115+080 AND GRAVITATIONAL LENS

    Science.gov (United States)

    2002-01-01

    Left: The light from the single quasar PG 1115+080 is split and distorted in this infrared image. PG 1115+080 is at a distance of about 8 billion light years in the constellation Leo, and it is viewed through an elliptical galaxy lens at a distance of 3 billion light years. The NICMOS frame is taken at a wavelength of 1.6 microns and it shows the four images of the quasar (the two on the left are nearly merging) surrounding the galaxy that causes the light to be lensed. The quasar is a variable light source and the light in each image travels a different path to reach the Earth. The time delay of the variations allows the distance scale to be measured directly. The linear streaks on the image are diffraction artifacts in the NICMOS instrument (NASA/Space Telescope Science Institute). Right: In this NICMOS image, the four quasar images and the lens galaxy have been subtracted, revealing a nearly complete ring of infrared light. This ring is the stretched and amplified starlight of the galaxy that contains the quasar, some 8 billion light years away. (NASA/Space Telescope Science Institute). Credit: Christopher D. Impey (University of Arizona)

  18. Fermat's principle, caustics, and the classification of gravitational lens images

    International Nuclear Information System (INIS)

    Blandford, R.; Narayan, R.

    1986-01-01

    A scalar description of gravitational lensing based on Fermat's principle is described. The lensing mass is assumed to be confined to a single plane between the source and the observer, and a time delay is associated with each position in the sky of a potential image. The extrema of this time surface then give the true positions of the images. A topological classification of image configurations is presented, and the results are generalized to cases of three and five-image lensing geometries. A computer-graphical approach to the study of lensing by model galaxies and clusters is described, and the design of a simple optical apparatus which could be used for fast modelling of image geometries is outlined. The connection between the Fermat approach and the classical theory of caustics and the more recent general theory of catastrophies is developed. The extension of the results to multiple scattering is considered. 42 references

  19. The gravitational Schwinger effect and attenuation of gravitational waves

    Science.gov (United States)

    McDougall, Patrick Guarneri

    This paper will discuss the possible production of photons from gravitational waves. This process is shown to be possible by examining Feynman diagrams, the Schwinger Effect, and Hawking Radiation. The end goal of this project is to find the decay length of a gravitational wave and assert that this decay is due to photons being created at the expense of the gravitational wave. To do this, we first find the state function using the Klein Gordon equation, then find the current due to this state function. We then take the current to be directly proportional to the production rate per volume. This is then used to find the decay length that this kind of production would produce, gives a prediction of how this effect will change the distance an event creating a gravitational wave will be located, and shows that this effect is small but can be significant near the source of a gravitational wave.

  20. Dissecting the Gravitational lens B1608+656 : II. Precision Measurements of the Hubble Constant, Spatial Curvature, and the Dark Energy Equation of State

    NARCIS (Netherlands)

    Suyu, S. H.; Marshall, P. J.; Auger, M. W.; Hilbert, S.; Blandford, R. D.; Koopmans, L. V. E.; Fassnacht, C. D.; Treu, T.

    2010-01-01

    Strong gravitational lens systems with measured time delays between the multiple images provide a method for measuring the "time-delay distance" to the lens, and thus the Hubble constant. We present a Bayesian analysis of the strong gravitational lens system B1608+656, incorporating (1) new, deep

  1. THE EFFECT OF ENVIRONMENT ON SHEAR IN STRONG GRAVITATIONAL LENSES

    International Nuclear Information System (INIS)

    Wong, Kenneth C.; Zabludoff, Ann I.; Keeton, Charles R.; Williams, Kurtis A.; Momcheva, Ivelina G.

    2011-01-01

    Using new photometric and spectroscopic data in the fields of nine strong gravitational lenses that lie in galaxy groups, we analyze the effects of both the local group environment and line-of-sight (LOS) galaxies on the lens potential. We use Monte Carlo simulations to derive the shear directly from measurements of the complex lens environment, providing the first detailed independent check of the shear obtained from lens modeling. We account for possible tidal stripping of the group galaxies by varying the fraction of total mass apportioned between the group dark matter halo and individual group galaxies. The environment produces an average shear of γ = 0.08 (ranging from 0.02 to 0.17), significant enough to affect quantities derived from lens observables. However, the direction and magnitude of the shears do not match those obtained from lens modeling in three of the six four-image systems in our sample (B1422, RXJ1131, and WFI2033). The source of this disagreement is not clear, implying that the assumptions inherent in both the environment and lens model approaches must be reconsidered. If only the local group environment of the lens is included, the average shear is γ = 0.05 (ranging from 0.01 to 0.14), indicating that LOS contributions to the lens potential are not negligible. We isolate the effects of various theoretical and observational uncertainties on our results. Of those uncertainties, the scatter in the Faber-Jackson relation and error in the group centroid position dominate. Future surveys of lens environments should prioritize spectroscopic sampling of both the local lens environment and objects along the LOS, particularly those bright (I< 21.5) galaxies projected within 5' of the lens.

  2. THE BOSS EMISSION-LINE LENS SURVEY. II. INVESTIGATING MASS-DENSITY PROFILE EVOLUTION IN THE SLACS+BELLS STRONG GRAVITATIONAL LENS SAMPLE

    Energy Technology Data Exchange (ETDEWEB)

    Bolton, Adam S.; Brownstein, Joel R.; Shu Yiping; Arneson, Ryan A. [Department of Physics and Astronomy, University of Utah, 115 South 1400 East, Salt Lake City, UT 84112 (United States); Kochanek, Christopher S. [Department of Astronomy and Center for Cosmology and Astroparticle Physics, Ohio State University, Columbus, OH 43210 (United States); Schlegel, David J. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Eisenstein, Daniel J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS 20, Cambridge, MA 02138 (United States); Wake, David A. [Department of Astronomy, Yale University, New Haven, CT 06520 (United States); Connolly, Natalia [Department of Physics, Hamilton College, Clinton, NY 13323 (United States); Maraston, Claudia [Institute of Cosmology and Gravitation, University of Portsmouth, Portsmouth PO1 3FX (United Kingdom); Weaver, Benjamin A., E-mail: bolton@astro.utah.edu [Center for Cosmology and Particle Physics, New York University, New York, NY 10003 (United States)

    2012-09-20

    We present an analysis of the evolution of the central mass-density profile of massive elliptical galaxies from the SLACS and BELLS strong gravitational lens samples over the redshift interval z Almost-Equal-To 0.1-0.6, based on the combination of strong-lensing aperture mass and stellar velocity-dispersion constraints. We find a significant trend toward steeper mass profiles (parameterized by the power-law density model with {rho}{proportional_to}r {sup -{gamma}}) at later cosmic times, with magnitude d < {gamma} > /dz = -0.60 {+-} 0.15. We show that the combined lens-galaxy sample is consistent with a non-evolving distribution of stellar velocity dispersions. Considering possible additional dependence of <{gamma} > on lens-galaxy stellar mass, effective radius, and Sersic index, we find marginal evidence for shallower mass profiles at higher masses and larger sizes, but with a significance that is subdominant to the redshift dependence. Using the results of published Monte Carlo simulations of spectroscopic lens surveys, we verify that our mass-profile evolution result cannot be explained by lensing selection biases as a function of redshift. Interpreted as a true evolutionary signal, our result suggests that major dry mergers involving off-axis trajectories play a significant role in the evolution of the average mass-density structure of massive early-type galaxies over the past 6 Gyr. We also consider an alternative non-evolutionary hypothesis based on variations in the strong-lensing measurement aperture with redshift, which would imply the detection of an 'inflection zone' marking the transition between the baryon-dominated and dark-matter halo-dominated regions of the lens galaxies. Further observations of the combined SLACS+BELLS sample can constrain this picture more precisely, and enable a more detailed investigation of the multivariate dependences of galaxy mass structure across cosmic time.

  3. Gravitational waves and dragging effects

    Science.gov (United States)

    Bičák, Jiří; Katz, Joseph; Lynden-Bell, Donald

    2008-08-01

    Linear and rotational dragging effects of gravitational waves on local inertial frames are studied in purely vacuum spacetimes. First, the linear dragging caused by a simple cylindrical pulse is investigated. Surprisingly strong transverse effects of the pulse are exhibited. The angular momentum in cylindrically symmetric spacetimes is then defined and confronted with some results in the literature. In the main part, a general procedure is developed for studying weak gravitational waves with translational but not axial symmetry which can carry angular momentum. After a suitable averaging the rotation of local inertial frames due to such rotating waves can be calculated explicitly and illustrated graphically. This is done in detail in the accompanying paper. Finally, the rotational dragging is given for strong cylindrical waves interacting with a rotating cosmic string with a small angular momentum.

  4. The Extragalactic Lens VLBI Imaging Survey (ELVIS): Investigating galaxy cores and black holes with gravitational lens central images

    Science.gov (United States)

    Boyce, Edward R.

    This thesis describes the Extragalactic Lens VLBI Imaging Survey (ELVIS), a search for central images in gravitational lenses. We present the first four ELVIS targets, for which we have radio VLBI observations with resolutions of a few milli-arcseconds and sensitivities of 15 - 38mJy. For PMN J1838-3427, CLASS B0739+366 and CLASS B0445+123 we have not detected any central images, but have set stringent upper limits on their flux densities. For CLASS B2319+051 we have made a tentative detection of a third radio source, which may be either a central image or radio emission from the lens galaxy. Using the upper limits on the central image flux densities, we gain new information about the matter distributions in the lens galaxies of these systems. We fit a broken power law model for the matter profile, and constrain the allowed break radii and inner index of this model. To demagnify the central images to the observed level the matter profiles must be slightly shallower than or steeper than isothermal, which is consistent with previous studies of early type galaxy profiles. The presence of a super-massive black hole weakens the constraints somewhat, but the profiles are still close to isothermal. Relative to previous work, we reduce the maximum sizes of shallow cores by factors of 2 to 3, and raise the indices of r 0( r -g central cusps by g = 0.05 - 0.35. If we take the source in B2319+051 to be a central image, then we select a narrow band of allowed break radii and inner indices, finding that a constant density core has size 150--380 pc, and a pure power law has index g = 1.5 - 1.67. Our constraints still allow sufficiently shallow profiles that some super-massive black holes may form central image pairs rather than eliminating the central image, and these image pairs may be detected with future instruments. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.)

  5. A new VLA/e-MERLIN limit on central images in the gravitational lens system CLASS B1030+074

    NARCIS (Netherlands)

    Quinn, Jonathan; Jackson, Neal; Tagore, Amitpal; Biggs, Andrew; Birkinshaw, Mark; Chapman, Scott; De Zotti, Gianfranco; McKean, John; Pérez-Fournon, Ismael; Scott, Douglas; Serjeant, Stephen

    2016-01-01

    We present the new Very Large Array 22 GHz and extended Multi-Element Remote-Linked Interferometer Network 5 GHz observations of CLASS B1030+074, a two-image strong gravitational lens system whose background source is a compact flat-spectrum radio quasar. In such systems we expect a third image of

  6. SHARP - III. First use of adaptive-optics imaging to constrain cosmology with gravitational lens time delays

    NARCIS (Netherlands)

    Chen, Geoff C. -F; Suyu, Sherry H.; Wong, Kenneth C.; Fassnacht, Christopher D.; Chiueh, Tzihong; Halkola, Aleksi; Hu, I. Shing; Auger, Matthew W.; Koopmans, Léon V. E.; Lagattuta, David J.; McKean, John P.; Vegetti, Simona

    2016-01-01

    Accurate and precise measurements of the Hubble constant are critical for testing our current standard cosmological model and revealing possibly new physics. With Hubble Space Telescope (HST) imaging, each strong gravitational lens system with measured time delays can allow one to determine the

  7. RXJ 0921+4529: A BINARY QUASAR OR A GRAVITATIONAL LENS?

    International Nuclear Information System (INIS)

    Popovic, L. C.; Jovanovic, P.; Kovacevic, J.; Moiseev, A. V.; Mediavilla, E.; Ilic, D.; Munoz, J. A.

    2010-01-01

    We report the new spectroscopic observations of the gravitational lens RXJ 021+4529 with the multi-mode focal reducer SCORPIO of the SAO RAS 6 m telescope. The new spectral observations were compared with the previously observed spectra of components A and B of RXJ 0921+4529, i.e., the same components observed in different epochs. We found a significant difference in the spectrum between the components that cannot be explained with microlensing and/or spectral variation. We conclude that RXJ 0921+4529 is a binary quasar system, where redshifts of quasars A and B are 1.6535 ± 0.0005 and 1.6625 ± 0.0015, respectively.

  8. Detection of a compact radio source near the center of a gravitational lens: quasar image or galactic core

    International Nuclear Information System (INIS)

    Gorenstein, M.V.; Shapiro, I.I.; Cohen, N.L.

    1983-01-01

    By use of a new, very sensitive interferometric system, a faint, compact radio source has been detected near the center of the galaxy that acts as the main part of a gravitational lens. This lens forms two previously discovered images of the quasar Q0957 + 561, which lies in the direction of the constellation Ursa Major. The newly detected source has a core smaller than 0.002 arc second in diameter with a flux density of 0.6 +- 0.1 millijansky at the 13-centimeter wavelength of the radio observations. This source could be the predicted third image of the transparent gravitational lens, the central core of the galaxy, or some combination of the two. It is not yet possible to choose reliably between these alternatives

  9. Gravitational effects of global strings

    International Nuclear Information System (INIS)

    Aryal, M.; Everett, A.E.

    1986-01-01

    We have obtained the gravitational field, in the weak-field approximation, of cosmic strings formed in a phase transition in which a global symmetry is broken (global strings). The effect of this field on light rays passing a global string is found, and the resulting formation of double images and production of discontinuities in the microwave background temperature compared with the corresponding results for gauge strings. There are some differences in the case of global strings, reflecting the fact that the space surrounding such strings is not purely conical. However, the differences between gauge and global strings with masses suitable to explain galaxy formation are small, and the task of distinguishing them observationally appears difficult at best

  10. Gravitational Casimir–Polder effect

    Directory of Open Access Journals (Sweden)

    Jiawei Hu

    2017-04-01

    Full Text Available The interaction due to quantum gravitational vacuum fluctuations between a gravitationally polarizable object modelled as a two-level system and a gravitational boundary is investigated. This quantum gravitational interaction is found to be position-dependent, which induces a force in close analogy to the Casimir–Polder force in the electromagnetic case. For a Dirichlet boundary, the quantum gravitational potential for the polarizable object in its ground-state is shown to behave like z−5 in the near zone, and z−6 in the far zone, where z is the distance to the boundary. For a concrete example, where a Bose–Einstein condensate is taken as a gravitationally polarizable object, the relative correction to the radius of the BEC caused by fluctuating quantum gravitational waves in vacuum is found to be of order 10−21. Although the correction is far too small to observe in comparison with its electromagnetic counterpart, it is nevertheless of the order of the gravitational strain caused by a recently detected black hole merger on the arms of the LIGO.

  11. Critical Effects in Gravitational Collapse

    International Nuclear Information System (INIS)

    Chmaj, T.

    2000-01-01

    The models of gravitational collapse of a dynamical system are investigated by means of the Einstein equations. Different types conjunctions to gravitational field are analyzed and it is shown that in the case of week scalar field (low energy density) the system evaluated to flat space while in the case of strong field (high energy density) to black hole

  12. MULTIPOLE GRAVITATIONAL LENSING AND HIGH-ORDER PERTURBATIONS ON THE QUADRUPOLE LENS

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Z.; Lin, W. P. [Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan Road, Shanghai 200030 (China); Li, G. L. [Purple Mountain Observatory, 2 West Beijing Road, Nanjing 210008 (China); Kang, X., E-mail: chuzhe@shao.ac.cn, E-mail: linwp@shao.ac.cn [Partner Group of MPI for Astronomy, Purple Mountain Observatory, 2 West Beijing Road, Nanjing 210008 (China)

    2013-03-10

    An arbitrary surface mass density of the gravitational lens can be decomposed into multipole components. We simulate the ray tracing for the multipolar mass distribution of the generalized Singular Isothermal Sphere model based on deflection angles, which are analytically calculated. The magnification patterns in the source plane are then derived from an inverse shooting technique. As has been found, the caustics of odd mode lenses are composed of two overlapping layers for some lens models. When a point source traverses this kind of overlapping caustics, the image numbers change by {+-}4, rather than {+-}2. There are two kinds of caustic images. One is the critical curve and the other is the transition locus. It is found that the image number of the fold is exactly the average value of image numbers on two sides of the fold, while the image number of the cusp is equal to the smaller one. We also focus on the magnification patterns of the quadrupole (m = 2) lenses under the perturbations of m = 3, 4, and 5 mode components and found that one, two, and three butterfly or swallowtail singularities can be produced, respectively. With the increasing intensity of the high-order perturbations, the singularities grow up to bring sixfold image regions. If these perturbations are large enough to let two or three of the butterflies or swallowtails make contact, then eightfold or tenfold image regions can be produced as well. The possible astronomical applications are discussed.

  13. Gravitational effects of global textures

    International Nuclear Information System (INIS)

    Noetzold, D.

    1990-03-01

    A solution for the dynamics of global textures is obtained. Their gravitational field during the collapse and the subsequent evolution is found to be given solely by a space-time dependent ''deficit solid angle.'' The frequency shift of photons traversing this gravitational field is calculated. The space-time dependent texture metric locally contracts the volume of three-space and thereby induces overdensities in homogeneous matter distributions. There are no gravitational forces unless matter has a nonzero angular momentum with respect to the texture origin which would be the case for moving textures

  14. Effect of the Earth's gravitational field on the detection of gravitational waves

    International Nuclear Information System (INIS)

    Denisov, V.I.; Eliseev, V.A.

    1988-01-01

    We consider the laboratory detection of high-frequency gravitational waves in theories of gravitation based on a pseudo-Euclidean space-time. We analyze the effects due to the Earth's gravitational field on the propagation velocities of gravitational and electromagnetic waves in these theories. Experiments to test the predictions of this class of theories are discussed

  15. CHARACTERIZING LENSES AND LENSED STARS OF HIGH-MAGNIFICATION SINGLE-LENS GRAVITATIONAL MICROLENSING EVENTS WITH LENSES PASSING OVER SOURCE STARS

    International Nuclear Information System (INIS)

    Choi, J.-Y.; Shin, I.-G.; Park, S.-Y.; Han, C.; Gould, A.; Gaudi, B. S.; Henderson, C. B.; Sumi, T.; Udalski, A.; Beaulieu, J.-P.; Street, R.; Dominik, M.; Allen, W.; Almeida, L. A.; Bos, M.; Christie, G. W.; Depoy, D. L.; Dong, S.; Drummond, J.; Gal-Yam, A.

    2012-01-01

    We present the analysis of the light curves of nine high-magnification single-lens gravitational microlensing events with lenses passing over source stars, including OGLE-2004-BLG-254, MOA-2007-BLG-176, MOA-2007-BLG-233/OGLE-2007-BLG-302, MOA-2009-BLG-174, MOA-2010-BLG-436, MOA-2011-BLG-093, MOA-2011-BLG-274, OGLE-2011-BLG-0990/MOA-2011-BLG-300, and OGLE-2011-BLG-1101/MOA-2011-BLG-325. For all of the events, we measure the linear limb-darkening coefficients of the surface brightness profile of source stars by measuring the deviation of the light curves near the peak affected by the finite-source effect. For seven events, we measure the Einstein radii and the lens-source relative proper motions. Among them, five events are found to have Einstein radii of less than 0.2 mas, making the lenses very low mass star or brown dwarf candidates. For MOA-2011-BLG-274, especially, the small Einstein radius of θ E ∼ 0.08 mas combined with the short timescale of t E ∼ 2.7 days suggests the possibility that the lens is a free-floating planet. For MOA-2009-BLG-174, we measure the lens parallax and thus uniquely determine the physical parameters of the lens. We also find that the measured lens mass of ∼0.84 M ☉ is consistent with that of a star blended with the source, suggesting that the blend is likely to be the lens. Although we did not find planetary signals for any of the events, we provide exclusion diagrams showing the confidence levels excluding the existence of a planet as a function of the separation and mass ratio.

  16. CHARACTERIZING LENSES AND LENSED STARS OF HIGH-MAGNIFICATION SINGLE-LENS GRAVITATIONAL MICROLENSING EVENTS WITH LENSES PASSING OVER SOURCE STARS

    Energy Technology Data Exchange (ETDEWEB)

    Choi, J.-Y.; Shin, I.-G.; Park, S.-Y.; Han, C. [Department of Physics, Institute for Astrophysics, Chungbuk National University, Cheongju 371-763 (Korea, Republic of); Gould, A.; Gaudi, B. S.; Henderson, C. B. [Department of Astronomy, Ohio State University, 140 W. 18th Ave., Columbus, OH 43210 (United States); Sumi, T. [Department of Earth and Space Science, Osaka University, Osaka 560-0043 (Japan); Udalski, A. [Warsaw University Observatory, Al. Ujazdowskie 4, 00-478 Warszawa (Poland); Beaulieu, J.-P. [Institut d' Astrophysique de Paris, UMR7095 CNRS-Universite Pierre and Marie Curie, 98 bis boulevard Arago, 75014 Paris (France); Street, R. [Las Cumbres Observatory Global Telescope Network, 6740B Cortona Dr, Suite 102, Goleta, CA 93117 (United States); Dominik, M. [School of Physics and Astronomy, SUPA, University of St. Andrews, North Haugh, St. Andrews, KY16 9SS (United Kingdom); Allen, W. [Vintage Lane Observatory, Blenheim (New Zealand); Almeida, L. A. [Instituto Nacional de Pesquisas Espaciais/MCTI, Sao Jose dos Campos, Sao Paulo (Brazil); Bos, M. [Molehill Astronomical Observatory, North Shore (New Zealand); Christie, G. W. [Auckland Observatory, P.O. Box 24-180, Auckland (New Zealand); Depoy, D. L. [Department of Physics, Texas A and M University, College Station, TX (United States); Dong, S. [Institute for Advanced Study, Einstein Drive, Princeton, NJ 08540 (United States); Drummond, J. [Possum Observatory, Patutahi (New Zealand); Gal-Yam, A. [Benoziyo Center for Astrophysics, Weizmann Institute (Israel); Collaboration: muFUN Collaboration; MOA Collaboration; OGLE Collaboration; PLANET Collaboration; RoboNet Collaboration; MiNDSTEp Consortium; and others

    2012-05-20

    We present the analysis of the light curves of nine high-magnification single-lens gravitational microlensing events with lenses passing over source stars, including OGLE-2004-BLG-254, MOA-2007-BLG-176, MOA-2007-BLG-233/OGLE-2007-BLG-302, MOA-2009-BLG-174, MOA-2010-BLG-436, MOA-2011-BLG-093, MOA-2011-BLG-274, OGLE-2011-BLG-0990/MOA-2011-BLG-300, and OGLE-2011-BLG-1101/MOA-2011-BLG-325. For all of the events, we measure the linear limb-darkening coefficients of the surface brightness profile of source stars by measuring the deviation of the light curves near the peak affected by the finite-source effect. For seven events, we measure the Einstein radii and the lens-source relative proper motions. Among them, five events are found to have Einstein radii of less than 0.2 mas, making the lenses very low mass star or brown dwarf candidates. For MOA-2011-BLG-274, especially, the small Einstein radius of {theta}{sub E} {approx} 0.08 mas combined with the short timescale of t{sub E} {approx} 2.7 days suggests the possibility that the lens is a free-floating planet. For MOA-2009-BLG-174, we measure the lens parallax and thus uniquely determine the physical parameters of the lens. We also find that the measured lens mass of {approx}0.84 M{sub Sun} is consistent with that of a star blended with the source, suggesting that the blend is likely to be the lens. Although we did not find planetary signals for any of the events, we provide exclusion diagrams showing the confidence levels excluding the existence of a planet as a function of the separation and mass ratio.

  17. A determination of H-0 with the class gravitational lens B1608+656. II. Mass models and the Hubble constant from lensing

    NARCIS (Netherlands)

    Koopmans, LVE; Fassnacht, CD

    1999-01-01

    We present mass models of the four-image gravitational lens system B1608 + 656, based on information obtained through VLBA imaging, VLA monitoring, and Hubble Space Telescope (HST) WFPC2 and NICMOS imaging. We have determined a mass model for the lens galaxies that reproduces (1) all image positions

  18. Velocity Memory Effect for polarized gravitational waves

    Science.gov (United States)

    Zhang, P.-M.; Duval, C.; Gibbons, G. W.; Horvathy, P. A.

    2018-05-01

    Circularly polarized gravitational sandwich waves exhibit, as do their linearly polarized counterparts, the Velocity Memory Effect: freely falling test particles in the flat after-zone fly apart along straight lines with constant velocity. In the inside zone their trajectories combine oscillatory and rotational motions in a complicated way. For circularly polarized periodic gravitational waves some trajectories remain bounded, while others spiral outward. These waves admit an additional "screw" isometry beyond the usual five. The consequences of this extra symmetry are explored.

  19. The gravitational-wave memory effect

    International Nuclear Information System (INIS)

    Favata, Marc

    2010-01-01

    The nonlinear memory effect is a slowly growing, non-oscillatory contribution to the gravitational-wave amplitude. It originates from gravitational waves that are sourced by the previously emitted waves. In an ideal gravitational-wave interferometer a gravitational wave with memory causes a permanent displacement of the test masses that persists after the wave has passed. Surprisingly, the nonlinear memory affects the signal amplitude starting at leading (Newtonian-quadrupole) order. Despite this fact, the nonlinear memory is not easily extracted from current numerical relativity simulations. After reviewing the linear and nonlinear memory I summarize some recent work, including (1) computations of the memory contribution to the inspiral waveform amplitude (thus completing the waveform to third post-Newtonian order); (2) the first calculations of the nonlinear memory that include all phases of binary black hole coalescence (inspiral, merger, ringdown); and (3) realistic estimates of the detectability of the memory with LISA.

  20. Effect of Earth gravitational field on the detection of gravitational waves

    International Nuclear Information System (INIS)

    Denisov, V.I.; Eliseev, V.A.

    1987-01-01

    Results of laboratory detection of high-frequency gravitational waves from the view point of gravitation theories formulated on the basis of pseudoeuclidean space-time are calculated. Peculiarities due to different effects of the Earth gravitational field on the rates of gravitational and electromagnetic wave propagation in these theories are analysed. Experiments on check of predictions of the given class of theories are suggested

  1. The memory effect for plane gravitational waves

    Science.gov (United States)

    Zhang, P.-M.; Duval, C.; Gibbons, G. W.; Horvathy, P. A.

    2017-09-01

    We give an account of the gravitational memory effect in the presence of the exact plane wave solution of Einstein's vacuum equations. This allows an elementary but exact description of the soft gravitons and how their presence may be detected by observing the motion of freely falling particles. The theorem of Bondi and Pirani on caustics (for which we present a new proof) implies that the asymptotic relative velocity is constant but not zero, in contradiction with the permanent displacement claimed by Zel'dovich and Polnarev. A non-vanishing asymptotic relative velocity might be used to detect gravitational waves through the "velocity memory effect", considered by Braginsky, Thorne, Grishchuk, and Polnarev.

  2. The Effect of the Crystalline Lens on Central Vault After Implantable Collamer Lens Implantation.

    Science.gov (United States)

    Qi, Meng-Ying; Chen, Qian; Zeng, Qing-Yan

    2017-08-01

    To identify associations between crystalline lens-related factors and central vault after Implantable Collamer Lens (ICL) (Staar Surgical, Monrovia, CA) implantation. This retrospective clinical study included 320 eyes from 186 patients who underwent ICL implantation surgery. At 1 year after surgery, the central vault was measured using anterior segment optical coherence tomography. Preoperative anterior chamber depth, lens thickness, lens position (lens position = anterior chamber depth + 1/2 lens thickness), and vault were analyzed to investigate the effects of lens-related factors on postoperative vault. The mean vault was 513 ± 215 µm at 1 year after surgery. Vault was positively correlated with preoperative anterior chamber depth (r = 0.495, P lens position (r = 0.371, P lens thickness (r = -0.262, P lens position than eyes in the other two vault groups (which had vaults ≥ 250 µm) (P lens position less than 5.1 mm had greatly reduced vaults (P lens could have an important influence on postoperative vault. Eyes with a shallower anterior chamber and a forward lens position will have lower vaults. [J Refract Surg. 2017;33(8):519-523.]. Copyright 2017, SLACK Incorporated.

  3. The gravitational analogue of the Witten effect

    International Nuclear Information System (INIS)

    Foda, O.

    1984-06-01

    In the presence of massive fermions, and assuming a non-vanishing theta-parameter as the only source of CP-violation, the Witten effect [a shift in the electric charge of a magnetic monopole due to CP-non-conservation] is shown to follow from an anomalous chiral commutator. Next, given the gravitational contribution to the chiral anomaly, the corresponding anomalous commutator for Dirac fermion currents in a gravitational background is derived. From that, we infer the equivalence of a theta R-tilde R term in the Lagrangian to a shift in the mass parameter of the NUT metric, in proportion to theta. This is interpreted as the gravitational analogue of the Witten effect. Its relevance to certain Kaluza-Klein monopoles is briefly discussed. (author)

  4. Gravitational analogue of the Witten effect

    Energy Technology Data Exchange (ETDEWEB)

    Foda, O. (International Centre for Theoretical Physics, Trieste (Italy))

    1985-07-22

    In the presence of massive fermions, and assuming a non-vanishing theta-parameter as the only source of CP violation, the Witten effect (a shift in the electric charge of a magnetic monopole due to CP non-conservation) is shown to follow from an anomalous chiral commutator. Next, given the gravitational contribution to the chiral anomaly, the corresponding anomalous commutator for Dirac fermion currents in a gravitational background is derived. From that, we infer the equivalence of a thetaR tildeR term in the lagrangian to a shift in the mass parameter of the NUT metric, in proportion to theta. This is interpreted as the gravitational analogue of the Witten effect. Its relevance to certain Kaluza-Klein monopoles is briefly discussed.

  5. The gravitational analogue of the Witten effect

    International Nuclear Information System (INIS)

    Foda, O.

    1985-01-01

    In the presence of massive fermions, and assuming a non-vanishing theta-parameter as the only source of CP violation, the Witten effect (a shift in the electric charge of a magnetic monopole due to CP non-conservation) is shown to follow from an anomalous chiral commutator. Next, given the gravitational contribution to the chiral anomaly, the corresponding anomalous commutator for Dirac fermion currents in a gravitational background is derived. From that, we infer the equivalence of a thetaR tildeR term in the lagrangian to a shift in the mass parameter of the NUT metric, in proportion to theta. This is interpreted as the gravitational analogue of the Witten effect. Its relevance to certain Kaluza-Klein monopoles is briefly discussed. (orig.)

  6. Gravitational lens optical scalars in terms of energy-momentum distributions in the cosmological framework

    Science.gov (United States)

    Boero, Ezequiel F.; Moreschi, Osvaldo M.

    2018-04-01

    We present new results on gravitational lensing over cosmological Robertson-Walker backgrounds which extend and generalize previous works. Our expressions show the presence of new terms and factors which have been neglected in the literature on the subject. The new equations derived here for the optical scalars allow to deal with more general matter content including sources with non-Newtonian components of the energy-momentum tensor and arbitrary motion. Our treatment is within the framework of weak gravitational lenses in which first-order effects of the curvature are considered. We have been able to make all calculations without referring to the concept of deviation angle. This in turn, makes the presentation shorter but also allows for the consideration of global effects on the Robertson-Walker background that have been neglected in the literature. We also discuss two intensity magnifications that we define in this article; one coming from a natural geometrical construction in terms of the affine distance, that we here call \\tilde{μ }, and the other adapted to cosmological discussions in terms of the redshift, that we call μ΄. We show that the natural intensity magnification \\tilde{μ } coincides with the standard angular magnification (μ).

  7. Environmental Effects for Gravitational-wave Astrophysics

    International Nuclear Information System (INIS)

    Barausse, Enrico; Cardoso, Vitor; Pani, Paolo

    2015-01-01

    The upcoming detection of gravitational waves by terrestrial interferometers will usher in the era of gravitational-wave astronomy. This will be particularly true when space-based detectors will come of age and measure the mass and spin of massive black holes with exquisite precision and up to very high redshifts, thus allowing for better understanding of the symbiotic evolution of black holes with galaxies, and for high-precision tests of General Relativity in strong-field, highly dynamical regimes. Such ambitious goals require that astrophysical environmental pollution of gravitational-wave signals be constrained to negligible levels, so that neither detection nor estimation of the source parameters are significantly affected. Here, we consider the main sources for space-based detectors - the inspiral, merger and ringdown of massive black-hole binaries and extreme mass-ratio inspirals - and account for various effects on their gravitational waveforms, including electromagnetic fields, cosmological evolution, accretion disks, dark matter, “firewalls” and possible deviations from General Relativity. We discover that the black-hole quasinormal modes are sharply different in the presence of matter, but the ringdown signal observed by interferometers is typically unaffected. The effect of accretion disks and dark matter depends critically on their geometry and density profile, but is negligible for most sources, except for few special extreme mass-ratio inspirals. Electromagnetic fields and cosmological effects are always negligible. We finally explore the implications of our findings for proposed tests of General Relativity with gravitational waves, and conclude that environmental effects will not prevent the development of precision gravitational-wave astronomy. (paper)

  8. The double quasar 0957+561: examination of the gravitational lens hypothesis using the very large array.

    Science.gov (United States)

    Greenfield, P E; Roberts, D H; Burke, B F

    1980-05-02

    A full 12-hour synthesis at 6-centimeter wavelength with the Very Large Array confirms the major features previously reported for the double quasar 0957+561. In addition, the existence of radio jets apparently associated with both quasars is demonstrated. Gravitational lens models are now favored on the basis of recent optical observations, and the radio jets place severe constraints on such models. Further radio observations of the double quasar are needed to establish the expected relative time delay in variations between the images.

  9. Dissecting the Gravitational Lens B1608 656. II. Precision Measurements of the Hubble Constant, Spatial Curvature, and the Dark Energy Equation of State

    Energy Technology Data Exchange (ETDEWEB)

    Suyu, S.H.; /Argelander Inst. Astron.; Marshall, P.J.; /KIPAC, Menlo Park /UC, Santa Barbara; Auger, M.W.; /UC, Santa Barbara /UC, Davis; Hilbert, S.; /Argelander Inst. Astron. /Garching, Max Planck Inst.; Blandford, R.D.; /KIPAC, Menlo Park; Koopmans, L.V.E.; /Kapteyn Astron. Inst., Groningen; Fassnacht, C.D.; /UC, Davis; Treu, T.; /UC, Santa Barbara

    2009-12-11

    Strong gravitational lens systems with measured time delays between the multiple images provide a method for measuring the 'time-delay distance' to the lens, and thus the Hubble constant. We present a Bayesian analysis of the strong gravitational lens system B1608+656, incorporating (1) new, deep Hubble Space Telescope (HST) observations, (2) a new velocity dispersion measurement of 260 {+-} 15 km s{sup -1} for the primary lens galaxy, and (3) an updated study of the lens environment. Our analysis of the HST images takes into account the extended source surface brightness, and the dust extinction and optical emission by the interacting lens galaxies. When modeling the stellar dynamics of the primary lens galaxy, the lensing effect, and the environment of the lens, we explicitly include the total mass distribution profile logarithmic slope {gamma}{prime} and the external convergence {kappa}{sub ext}; we marginalize over these parameters, assigning well-motivated priors for them, and so turn the major systematic errors into statistical ones. The HST images provide one such prior, constraining the lens mass density profile logarithmic slope to be {gamma}{prime} = 2.08 {+-} 0.03; a combination of numerical simulations and photometric observations of the B1608+656 field provides an estimate of the prior for {kappa}{sub ext}: 0.10{sub -0.05}{sup +0.08}. This latter distribution dominates the final uncertainty on H{sub 0}. Fixing the cosmological parameters at {Omega}{sub m} = 0.3, {Omega}{sub {Lambda}} = 0.7, and w = -1 in order to compare with previous work on this system, we find H{sub 0} = 70.6{sub -3.1}{sup +3.1} km s{sup -1} Mpc{sup -1}. The new data provide an increase in precision of more than a factor of two, even including the marginalization over {kappa}{sub ext}. Relaxing the prior probability density function for the cosmological parameters to that derived from the WMAP 5-year data set, we find that the B1608+656 data set breaks the degeneracy

  10. Measuring gravitational effects on antimatter in space

    Directory of Open Access Journals (Sweden)

    Piacentino Giovanni Maria

    2017-01-01

    Full Text Available A direct measurement of the gravitational acceleration of antimatter has never been performed to date. Recently, such an experiment has been proposed, using antihydrogen with an atom interferometer and an antihydrogen confinament has been realized at CERN. In alternative we propose an experimental test of the gravitational interaction with antimatter by measuring the branching fraction of the CP violating decay of KL in space. In fact, even if the theoretical Standard Model explains the CPV with the presence of pure phase in the KMC Kobaiashi-Maskava-Cabibbo matrix, ample room is left for contributions by other interactions and forces to generate CPV in the mixing of the neutral K and B mesons. Gravitation is a good candidate and we show that at the altitude of the International Space Station, gravitational effects may change the level of CP violation such that a 5 sigma discrimination may be obtained by collecting the KL produced by the cosmic proton flux within a few years.

  11. Quantum Gravitational Effects on the Boundary

    Science.gov (United States)

    James, F.; Park, I. Y.

    2018-04-01

    Quantum gravitational effects might hold the key to some of the outstanding problems in theoretical physics. We analyze the perturbative quantum effects on the boundary of a gravitational system and the Dirichlet boundary condition imposed at the classical level. Our analysis reveals that for a black hole solution, there is a contradiction between the quantum effects and the Dirichlet boundary condition: the black hole solution of the one-particle-irreducible action no longer satisfies the Dirichlet boundary condition as would be expected without going into details. The analysis also suggests that the tension between the Dirichlet boundary condition and loop effects is connected with a certain mechanism of information storage on the boundary.

  12. Effect of infrared radiation on the lens

    Directory of Open Access Journals (Sweden)

    Aly Eman

    2011-01-01

    Full Text Available Background: Infrared (IR radiation is becoming more popular in industrial manufacturing processes and in many instruments used for diagnostic and therapeutic application to the human eye. Aim : The present study was designed to investigate the effect of IR radiation on rabbit′s crystalline lens and lens membrane. Materials and Methods: Fifteen New Zealand rabbits were used in the present work. The rabbits were classified into three groups; one of them served as control. The other two groups were exposed to IR radiation for 5 or 10 minutes. Animals from these two irradiated groups were subdivided into two subgroups; one of them was decapitated directly after IR exposure, while the other subgroup was decapitated 1 hour post exposure. IR was delivered from a General Electric Lamp model 250R 50/10, placed 20 cm from the rabbit and aimed at each eye. The activity of Na + -K + ATPase was measured in the lens membrane. Soluble lens proteins were extracted and the following measurements were carried out: estimation of total soluble protein, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE and Fourier transform infrared (FTIR spectroscopy. For comparison between multiple groups, analysis of variance was used with significance level set at P < 0.001. Results: The results indicated a change in the molecular weight of different lens crystalline accompanied with changes in protein backbone structure. These changes increased for the groups exposed to IR for 10 minutes. Moreover, the activity of Na + -K + ATPase significantly decreased for all groups. Conclusions: The protein of eye lens is very sensitive to IR radiation which is hazardous and may lead to cataract.

  13. Gravitation

    CERN Document Server

    Misner, Charles W; Wheeler, John Archibald

    2017-01-01

    First published in 1973, Gravitation is a landmark graduate-level textbook that presents Einstein’s general theory of relativity and offers a rigorous, full-year course on the physics of gravitation. Upon publication, Science called it “a pedagogic masterpiece,” and it has since become a classic, considered essential reading for every serious student and researcher in the field of relativity. This authoritative text has shaped the research of generations of physicists and astronomers, and the book continues to influence the way experts think about the subject. With an emphasis on geometric interpretation, this masterful and comprehensive book introduces the theory of relativity; describes physical applications, from stars to black holes and gravitational waves; and portrays the field’s frontiers. The book also offers a unique, alternating, two-track pathway through the subject. Material focusing on basic physical ideas is designated as Track 1 and formulates an appropriate one-semester graduate-level...

  14. Gravitational Effects on Brain and Behavior

    Science.gov (United States)

    Young, Laurence R.

    1991-01-01

    Visual, vestibular, tactile, proprioceptive, and perhaps auditory clues are combined with knowledge of commanded voluntary movement to produce a single, usually consistent, perception of spatial orientation. The recent Spacelab flights have provided especially valuable observations on the effects of weightlessness and space flight. The response of the otolith organs to weightlessness and readapting to Earth's gravitation is described. Reference frames for orientation are briefly discussed.

  15. Interaction of gravitational plane waves

    International Nuclear Information System (INIS)

    Ferrari, V.

    1988-01-01

    The mathematical theory of colliding, infinite-fronted, plane gravitational waves is presented. The process of focusing, the creation of singularities and horizons, due to the interaction, and the lens effect due to a beam-like gravitational wave are discussed

  16. A determination of H-0 with the class gravitational lens B1608+656. I. Time delay measurements with the VLA

    NARCIS (Netherlands)

    Fassnacht, CD; Pearson, TJ; Readhead, ACS; Browne, IWA; Koopmans, LVE; Myers, ST; Wilkinson, PN

    1999-01-01

    We present the results of a program to monitor the four-image gravitational lens B1608 + 656 with the VLA. The system was observed over a 7 month period from 1996 October to 1997 May. The 64 epochs of observation have an average spacing of 3.6 days. The light curves of the four images of the

  17. Gravitation

    International Nuclear Information System (INIS)

    Fennelly, A.J.

    1978-01-01

    Investigations of several problems of gravitation are discussed. The question of the existence of black holes is considered. While black holes like those in Einstein's theory may not exist in other gravity theories, trapped surfaces implying such black holes certainly do. The theories include those of Brans-Dicke, Lightman-Lee, Rosen, and Yang. A similar two-tensor theory of Yilmaz is investigated and found inconsistent and nonviable. The Newman-Penrose formalism for Riemannian geometries is adapted to general gravity theories and used to implement a search for twisting solutions of the gravity theories for empty and nonempty spaces. The method can be used to find the gravitational fields for all viable gravity theories. The rotating solutions are of particular importance for strong field interpretation of the Stanford/Marshall gyroscope experiment. Inhomogeneous cosmologies are examined in Einstein's theory as generalizations of homogeneous ones by raising the dimension of the invariance groups by one more parameter. The nine Bianchi classifications are extended to Rosen's theory of gravity for homogeneous cosmological models

  18. Effects of Coupling Lens on Optical Refrigeration of Semiconductors

    International Nuclear Information System (INIS)

    Kai, Ding; Yi-Ping, Zeng

    2008-01-01

    Optical refrigeration of semiconductors is encountering efficiency difficulties caused by nonradiative recombination and luminescence trapping. A commonly used approach for enhancing luminescence efficiency of a semiconductor device is coupling a lens with the device. We quantitatively study the effects of a coupling lens on optical refrigeration based on rate equations and photon recycling, and calculated cooling efficiencies of different coupling mechanisms and of different lens materials. A GaAs/GaInP heterostructure coupled with a homo-epitaxial GaInP hemispherical lens is recommended. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  19. Amplification caused by gravitational bending of light

    International Nuclear Information System (INIS)

    Schneider, P.

    1985-01-01

    Gravitational bending of light may not only lead to multiple imaging (gravitational lens effect), but also affects the apparent luminosity of a source. It is shown here that a mass distribution near the line-of-sight to any source always increases the observable flux relative to the case in which the deflector is absent

  20. Effective gravitational coupling in modified teleparallel theories

    Science.gov (United States)

    Abedi, Habib; Capozziello, Salvatore; D'Agostino, Rocco; Luongo, Orlando

    2018-04-01

    In the present study, we consider an extended form of teleparallel Lagrangian f (T ,ϕ ,X ) , as function of a scalar field ϕ , its kinetic term X and the torsion scalar T . We use linear perturbations to obtain the equation of matter density perturbations on sub-Hubble scales. The gravitational coupling is modified in scalar modes with respect to the one of general relativity, albeit vector modes decay and do not show any significant effects. We thus extend these results by involving multiple scalar field models. Further, we study conformal transformations in teleparallel gravity and we obtain the coupling as the scalar field is nonminimally coupled to both torsion and boundary terms. Finally, we propose the specific model f (T ,ϕ ,X )=T +∂μϕ ∂μϕ +ξ T ϕ2 . To check its goodness, we employ the observational Hubble data, constraining the coupling constant, ξ , through a Monte Carlo technique based on the Metropolis-Hastings algorithm. Hence, fixing ξ to its best-fit value got from our numerical analysis, we calculate the growth rate of matter perturbations and we compare our outcomes with the latest measurements and the predictions of the Λ CDM model.

  1. The effect of compliance on contact lens case contamination.

    Science.gov (United States)

    Tilia, Daniel; Lazon de la Jara, Percy; Zhu, Hua; Naduvilath, Thomas J; Holden, Brien A

    2014-03-01

    To determine the efficacy of written instructions on contact lens case hygiene and to quantify the effect of noncompliance on contact lens case contamination. Data were retrospectively analyzed from 16 prospective, 3-month daily-wear studies during which six commercially available silicone hydrogel contact lenses and seven lens care solutions (LCS) were tested following a similar protocol. Verbal instructions regarding case hygiene (rinse case with LCS, not tap water) were given in nine studies, while the same instructions were given verbally and in written format in seven studies. A survey on contact lens, LCS, and lens case hygiene was completed at 1- and 3-month visits and compliance with case hygiene instructions was determined. Regular contact lens cases were used for 1 month and collected for microbial analysis at the 1- and 3-month visits. The rate of case contamination and the types of microbes contaminating cases were evaluated. Participants given verbal and written instructions were more likely to be compliant with case hygiene instructions than those just given verbal instructions (odds ratio [OR]: 2.19, p hygiene can be improved by effective communication of instructions. Contact lens wearers should be actively discouraged from rinsing contact lens cases with tap water because of the increased risk of GNB contamination.

  2. The sky pattern of the linearized gravitational memory effect

    International Nuclear Information System (INIS)

    Mädler, Thomas; Winicour, Jeffrey

    2016-01-01

    The gravitational memory effect leads to a net displacement in the relative positions of test particles. This memory is related to the change in the strain of the gravitational radiation field between infinite past and infinite future retarded times. There are three known sources of the memory effect: (i) the loss of energy to future null infinity by massless fields or particles, (ii) the ejection of massive particles to infinity from a bound system and (iii) homogeneous, source-free gravitational waves. In the context of linearized theory, we show that asymptotic conditions controlling these known sources of the gravitational memory effect rule out any other possible sources with physically reasonable stress–energy tensors. Except for the source-free gravitational waves, the two other known sources produce gravitational memory with E -mode radiation strain, characterized by a certain curl-free sky pattern of their polarization. Thus our results show that the only known source of B -mode gravitational memory is of primordial origin, corresponding in the linearized theory to a homogeneous wave entering from past null infinity. (paper)

  3. Sources and astrophysical effects of gravitational waves

    International Nuclear Information System (INIS)

    Rees, M.J.

    1974-01-01

    The probable sources of short intense gravitational wave emissions are discussed and it is concluded, on the basis of current astrophysical ideas, that the number of events detected by an apparatus such as Weber's would not be more than one pulse par century. Some proposed explanations of a higher event rate are examined briefly but it is suggested that the sensitivity would probably have to be improved by a factor 10 8 if a few events per year due to extragalactic supernovae are to be detectable. The article concludes by mentioning several other kinds of gravitational waves of potential interest in astrophysics

  4. Gravitational lenses

    International Nuclear Information System (INIS)

    Turner, E.L.

    1989-01-01

    The author discusses how gravitational lens studies is becoming a major focus of extragalactic astronomy and cosmology. This review is organized into five parts: an overview of the observational situation, a look at the state of theoretical work on lenses, a detailed look at three recently discovered types of lensing phenomena (luminous arcs, radio rings, quasar-galaxy associations), a review of progress on two old problems in lens studies (deriving unique lens mass distribution models, measurements of differential time delays), and an attempt to look into the future of lens studies

  5. Effects of lens motion and uneven magnification on image spectra

    Science.gov (United States)

    Banik, Indranil; Zhao, Hongsheng

    2015-07-01

    Counter to intuition, the images of an extended galaxy lensed by a moving galaxy cluster should have slightly different spectra in any metric gravity theory. This is mainly for two reasons. One relies on the gravitational potential of a moving lens being time dependent (the moving cluster effect, MCE). The other is due to uneven magnification across the extended, rotating source (the differential magnification effect, DME). The time delay between the images can also cause their redshifts to differ because of cosmological expansion. This differential expansion effect is likely to be small. Using a simple model, we derive these effects from first principles. One application would be to the Bullet Cluster, whose large tangential velocity may be inconsistent with the Λ cold dark matter paradigm. This velocity can be estimated with complicated hydrodynamic models. Uncertainties with such models can be avoided using the MCE. We argue that the MCE should be observable with Atacama Large Millimetre Array. However, such measurements can be corrupted by the DME if typical spiral galaxies are used as sources. Fortunately, we find that if detailed spectral line profiles were available, then the DME and MCE could be distinguished. It might also be feasible to calculate how much the DME should affect the mean redshift of each image. Resolved observations of the source would be required to do this accurately. The DME is of order the source angular size divided by the Einstein radius times the redshift variation across the source. Thus, it mostly affects nearly edge-on spiral galaxies in certain orientations. This suggests that observers should reduce the DME by careful choice of target, a possibility we discuss in some detail.

  6. Effect of extra dimensions on gravitational waves from cosmic strings.

    Science.gov (United States)

    O'Callaghan, Eimear; Chadburn, Sarah; Geshnizjani, Ghazal; Gregory, Ruth; Zavala, Ivonne

    2010-08-20

    We show how the motion of cosmic superstrings in extra dimensions can modify the gravitational wave signal from cusps. Additional dimensions both round off cusps, as well as reducing the probability of their formation, and thus give a significant dimension dependent damping of the gravitational waves. We look at the implication of this effect for LIGO and LISA, as well as commenting on more general frequency bands.

  7. Soft Gravitons & the Memory Effect for Plane Gravitational Waves

    OpenAIRE

    Zhang, P. -M.; Duval, C.; Gibbons, G. W.; Horvathy, P. A.

    2017-01-01

    The "gravitational memory effect" due to an exact plane wave provides us with an elementary description of the diffeomorphisms associated with soft gravitons. It is explained how the presence of the latter may be detected by observing the motion of freely falling particles or other forms of gravitational wave detection. Numerical calculations confirm the relevance of the first, second and third time integrals of the Riemann tensor pointed out earlier. Solutions for various profiles are constr...

  8. A DETAILED GRAVITATIONAL LENS MODEL BASED ON SUBMILLIMETER ARRAY AND KECK ADAPTIVE OPTICS IMAGING OF A HERSCHEL-ATLAS SUBMILLIMETER GALAXY AT z = 4.243 {sup ,} {sup ,}

    Energy Technology Data Exchange (ETDEWEB)

    Bussmann, R. S.; Gurwell, M. A. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Fu Hai; Cooray, A. [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); Smith, D. J. B.; Bonfield, D.; Dunne, L. [Centre for Astrophysics, Science and Technology Research Institute, University of Hertfordshire, Hatfield, Herts AL10 9AB (United Kingdom); Dye, S.; Eales, S. [School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD (United Kingdom); Auld, R. [Cardiff University, School of Physics and Astronomy, Queens Buildings, The Parade, Cardiff CF24 3AA (United Kingdom); Baes, M.; Fritz, J. [Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281 S9, B-9000 Gent (Belgium); Baker, A. J. [Department of Physics and Astronomy, Rutgers, the State University of New Jersey, 136 Frelinghuysen Road, Piscataway, NJ 08854-8019 (United States); Cava, A. [Departamento de Astrofisica, Facultad de CC. Fisicas, Universidad Complutense de Madrid, E-28040 Madrid (Spain); Clements, D. L.; Dariush, A. [Imperial College London, Blackett Laboratory, Prince Consort Road, London SW7 2AZ (United Kingdom); Coppin, K. [Department of Physics, McGill University, Ernest Rutherford Building, 3600 Rue University, Montreal, Quebec, H3A 2T8 (Canada); Dannerbauer, H. [Universitaet Wien, Institut fuer Astronomie, Tuerkenschanzstrasse 17, 1180 Wien, Oesterreich (Austria); De Zotti, G. [Universita di Padova, Dipto di Astronomia, Vicolo dell' Osservatorio 2, IT 35122, Padova (Italy); Hopwood, R., E-mail: rbussmann@cfa.harvard.edu [Department of Physics and Astronomy, Open University, Walton Hall, Milton Keynes, MK7 6AA (United Kingdom); and others

    2012-09-10

    We present high-spatial resolution imaging obtained with the Submillimeter Array (SMA) at 880 {mu}m and the Keck adaptive optics (AO) system at the K{sub S}-band of a gravitationally lensed submillimeter galaxy (SMG) at z = 4.243 discovered in the Herschel Astrophysical Terahertz Large Area Survey. The SMA data (angular resolution Almost-Equal-To 0.''6) resolve the dust emission into multiple lensed images, while the Keck AO K{sub S}-band data (angular resolution Almost-Equal-To 0.''1) resolve the lens into a pair of galaxies separated by 0.''3. We present an optical spectrum of the foreground lens obtained with the Gemini-South telescope that provides a lens redshift of z{sub lens} = 0.595 {+-} 0.005. We develop and apply a new lens modeling technique in the visibility plane that shows that the SMG is magnified by a factor of {mu} = 4.1 {+-} 0.2 and has an intrinsic infrared (IR) luminosity of L{sub IR} = (2.1 {+-} 0.2) Multiplication-Sign 10{sup 13} L{sub Sun }. We measure a half-light radius of the background source of r{sub s} = 4.4 {+-} 0.5 kpc which implies an IR luminosity surface density of {Sigma}{sub IR} (3.4 {+-} 0.9) Multiplication-Sign 10{sup 11} L{sub Sun} kpc{sup -2}, a value that is typical of z > 2 SMGs but significantly lower than IR luminous galaxies at z {approx} 0. The two lens galaxies are compact (r{sub lens} Almost-Equal-To 0.9 kpc) early-types with Einstein radii of {theta}{sub E1} 0.57 {+-} 0.01 and {theta}{sub E2} = 0.40 {+-} 0.01 that imply masses of M{sub lens1} = (7.4 {+-} 0.5) Multiplication-Sign 10{sup 10} M{sub Sun} and M{sub lens2} = (3.7 {+-} 0.3) Multiplication-Sign 10{sup 10} M{sub Sun }. The two lensing galaxies are likely about to undergo a dissipationless merger, and the mass and size of the resultant system should be similar to other early-type galaxies at z {approx} 0.6. This work highlights the importance of high spatial resolution imaging in developing models of strongly lensed galaxies

  9. Surgical effect of traumatic lens dislocation with secondary glaucoma

    Directory of Open Access Journals (Sweden)

    Xiao-Dan Zhang

    2014-10-01

    Full Text Available AIM: To retrospectively evaluate the effect of lens extraction combined with vitrectomy to treat traumatic lens dislocation with secondary glaucoma.METHODS:Thirty-one eyes(31 casesof lens dislocation caused by blunt trauma with secondary glaucoma were treated respectively with cataract extraction combined with anterior vitrectomy, trabeculectomy and intraocular lens implantation. The visual acuity and pressure were observed 1wk, 1 and 3mo after operative. RESULTS:Thirty-one eyes were all complete the operation successfully, and 6 eyes were given combined trabeculectomy, 9 eyes were implanted anterior chamber intraocular lens implantation(IOLand 15 eyes were given posterior chamber suture fixation. Sixteen eyes were implanted in one-stage operation, while 8 eyes were implanted in two-stage operation. All intraocular pressure(IOPwere controlled to the normal level after operation and 23 eyes had visual acuity of more than 0.3.CONCLUSION:Lens extraction combined with vitrectomy is an effective method for treatment of lens dislocation with secondary glaucoma. In order to control the IOP and get well visual function, we should choose IOL implantation or trabeculectomy according to the patient's condition.

  10. Effects of x-irradiation on lens reducing systems

    International Nuclear Information System (INIS)

    Giblin, F.J.; Chakrapani, B.; Reddy, V.N.

    1978-01-01

    Studies have been made of the effects of x ray on various lens reducing systems including the levels of NADPH and glutathione (GSH), the activity of the hexose monophosphate shunt (HMS), and the activities of certain enzymes including glutathion reductase, glutathione peroxidase, and glucose-6-phosphate dehydrogenase (G-6-PD). It was found that during several weeks following x irradiation but prior to cataract formation there was very little change in the number of reduced -SH groups per unit weight of lens protein but that, with the appearance of cataract, there was a sudden loss of protein -SH groups. In contrast, the concentration of GSH in the x-rayed lens decreased throughout the experimental period. Similarly, the concentration of NADPH in the x-rayed lens was found to decrease significantly relative to controls one week prior to cataract formation and the ratio of NADPH to NADP + in the lens shifted at this time period from a value greater than 1.0 in the control lens to less than 1.0 in the x-rayed lens. A corresponding decrease occurred in the activity of the HMS in x-rayed lenses as measured by culture in the presence of 1- 14 C-labelled glucose. G-6-PD was partially inactivated in the x-rayed lens. Of the eight enzymes studied, G-6-PD appeared to be the most sensitive to x-irradiation. The data indicate that x-irradiation results in a steady decrease in the effectiveness of lens reducing systems and that, when these systems reach a critically low point, sudden oxidation of protein -SH groups and formation of high molecular weight protein aggregates may be initiated

  11. Effects of x-irradiation on lens reducing systems. [Rabbits

    Energy Technology Data Exchange (ETDEWEB)

    Giblin, F.J.; Chakrapani, B.; Reddy, V.N.

    1978-01-01

    Studies have been made of the effects of x ray on various lens reducing systems including the levels of NADPH and glutathione (GSH), the activity of the hexose monophosphate shunt (HMS), and the activities of certain enzymes including glutathion reductase, glutathione peroxidase, and glucose-6-phosphate dehydrogenase (G-6-PD). It was found that during several weeks following x irradiation but prior to cataract formation there was very little change in the number of reduced -SH groups per unit weight of lens protein but that, with the appearance of cataract, there was a sudden loss of protein -SH groups. In contrast, the concentration of GSH in the x-rayed lens decreased throughout the experimental period. Similarly, the concentration of NADPH in the x-rayed lens was found to decrease significantly relative to controls one week prior to cataract formation and the ratio of NADPH to NADP/sup +/ in the lens shifted at this time period from a value greater than 1.0 in the control lens to less than 1.0 in the x-rayed lens. A corresponding decrease occurred in the activity of the HMS in x-rayed lenses as measured by culture in the presence of 1-/sup 14/C-labelled glucose. G-6-PD was partially inactivated in the x-rayed lens. Of the eight enzymes studied, G-6-PD appeared to be the most sensitive to x-irradiation. The data indicate that x-irradiation results in a steady decrease in the effectiveness of lens reducing systems and that, when these systems reach a critically low point, sudden oxidation of protein -SH groups and formation of high molecular weight protein aggregates may be initiated.

  12. Effect of Excess Gravitational Force on Cultured Myotubes in Vitro

    Directory of Open Access Journals (Sweden)

    Shigehiro Hashimoto

    2013-06-01

    Full Text Available An effect of an excess gravitational force on cultured myoblasts has been studied in an experimental system with centrifugal force in vitro. Mouse myoblasts (C2C12 were seeded on a culture dish of 35 mm diameter, and cultured in the Dulbecco's Modified Eagle's Medium until the sub-confluent condition. To apply the excess gravitational force on the cultured cells, the dish was set in a conventional centrifugal machine. Constant gravitational force was applied to the cultured cells for three hours. Variations were made on the gravitational force (6 G, 10 G, 100 G, 500 G, and 800 G with control of the rotational speed of the rotator in the centrifugal machine. Morphology of the cells was observed with a phasecontrast microscope for eight days. The experimental results show that the myotube thickens day by day after the exposure to the excess gravitational force field. The results also show that the higher excess gravitational force thickens myotubes. The microscopic study shows that myotubes thicken with fusion each other.

  13. Thermal effects in gravitational Hartree systems

    Energy Technology Data Exchange (ETDEWEB)

    Aki, Gonca L. [Weierstrass-Institut fuer Angewandte Analysis und Stochastik (WIAS) im Forschungsverbund Berlin e.V. (Germany); Dolbeault, Jean [Paris-Dauphine Univ. (FR). Ceremade (UMR CNRS 7534); Sparber, Christof [Illinois Univ., Chicago, IL (United States). Dept. of Mathematics, Statistics, and Computer Science

    2010-07-01

    We consider the non-relativistic Hartree model in the gravitational case, i.e. with attractive Coulomb-Newton interaction. For a given mass M>0, we construct stationary states with non-zero temperature T by minimizing the corresponding free energy functional. It is proved that minimizers exist if and only if the temperature of the system is below a certain threshold T*>0 (possibly infinite), which itself depends on the specific choice of the entropy functional. We also investigate whether the corresponding minimizers are mixed or pure quantum states and characterize a critical temperature T{sub c} element of (0,T*) above which mixed states appear. (orig.)

  14. Thermal Effects in Gravitational Hartree Systems

    KAUST Repository

    Aki, Gonca L.

    2011-04-06

    We consider the non-relativistic Hartree model in the gravitational case, i. e. with attractive Coulomb-Newton interaction. For a given mass M > 0, we construct stationary states with non-zero temperature T by minimizing the corresponding free energy functional. It is proved that minimizers exist if and only if the temperature of the system is below a certain threshold T* > 0 (possibly infinite), which itself depends on the specific choice of the entropy functional. We also investigate whether the corresponding minimizers are mixed or pure quantum states and characterize a critical temperature Tc ∈ (0,T*) above which mixed states appear. © 2011 Springer Basel AG.

  15. Thermal Effects in Gravitational Hartree Systems

    KAUST Repository

    Aki, Gonca L.; Dolbeault, Jean; Sparber, Christof

    2011-01-01

    We consider the non-relativistic Hartree model in the gravitational case, i. e. with attractive Coulomb-Newton interaction. For a given mass M > 0, we construct stationary states with non-zero temperature T by minimizing the corresponding free energy functional. It is proved that minimizers exist if and only if the temperature of the system is below a certain threshold T* > 0 (possibly infinite), which itself depends on the specific choice of the entropy functional. We also investigate whether the corresponding minimizers are mixed or pure quantum states and characterize a critical temperature Tc ∈ (0,T*) above which mixed states appear. © 2011 Springer Basel AG.

  16. Probing the integrated Sachs-Wolfe effect using embedded lens models

    Science.gov (United States)

    Chen, B.; Kantowski, R.

    2015-04-01

    The photometry profile of the integrated Sachs-Wolfe (ISW) effect, recently obtained by the Planck consortium by stacking patches of cosmic microwave background (CMB) sky maps around a large number of cosmic voids, contains a cold ring at about half the void's effective radius surrounded by a hot ring near the void's boundary. The source of the temperature structure is assumed to be the ISW effect but the exact cause of the ringed structure is not currently well understood, particularly the outer hot ring. Numerical simulations have suggested that hot/cold ring structures can be produced by motions associated with nonlinear growths of cosmic structures whose gravitational potentials produce the ISW effect. We have recently developed the embedded lens theory and the Fermat potential formalism which can be used to model the ISW effect caused by intervening individual lens inhomogeneities evolving arbitrarily. This theory only requires knowledge of the void's projected mass profile as a function of the passing CMB photons' impact radius and the rate of change of that mass distribution at passage. We present two simple embedded void lens models with evolving mass densities and investigate the ISW effect caused by these lenses. Both models possess expanding mass shells which produce hot rings around central cold regions, consistent with the recent observations. By adding a small overdensity at the void's center we can produce the slight positive temperature excess hinted at in Planck's photometric results. We conclude that the embedded lens theory and the Fermat potential formalism is well suited for modeling the ISW effect.

  17. Experimental tests for some quantum effects in gravitation

    International Nuclear Information System (INIS)

    Hari Dass, N.D.

    1976-01-01

    The existing impressive tests for general relativity are shown not to yield very useful information on the possible quantum gravitational interactions. The possibility is raised here that intrinsic spins may behave differently from orbital angular momenta in external gravitational fields. The dominant spin interactions are most generally characterised by three parameters α 1 , α 2 , α 3 . All the metric theories of gravitation predict α 1 = α 2 = 0. Indirect limits posed on these parameters by existing data are not very meaningful (αsub(i) 10 ). Feasible experiments based on the neutron electric dipole moment measurement techniques are discussed and shown to offer the possibility of measuring αsub(i) approximately 1. Other possible experimental set ups are also briefly reviewed. The existence of these effects is shown to imply the breakdown of the equivalence principle. In particular αsub(i)not equal 0 α 2 not equal 0 also implies the breakdown of discrete symmetries in gravitation (C.P.T.). Theoretical frameworks that accomodate such effects are analysed. A reinterpretation of Einstein's generalised gravitational theory as well as a recent theoretical proposal of Hayashi are shown to be sufficiently general for this purpose. Other important implications of these quantum effects are discussed in detail. (Auth.)

  18. Bacterial transmission from lens storage cases to contact lenses - Effects of lens care solutions and silver impregnation of cases

    NARCIS (Netherlands)

    Vermeltfoort, Pit B. J.; Hooymans, Johanna M. M.; Busscher, Henk J.; van der Mei, Henny C.

    2008-01-01

    The killing efficacies of multipurpose lens care solutions on planktonic and biofilm bacteria grown in polypropylene contact lens storage cases with and without silver impregnation and effects on bacterial transmission from storage cases to silicone hydrogel contact lenses were investigated. For

  19. SPACE-BASED MICROLENS PARALLAX OBSERVATION AS A WAY TO RESOLVE THE SEVERE DEGENERACY BETWEEN MICROLENS-PARALLAX AND LENS-ORBITAL EFFECTS

    Energy Technology Data Exchange (ETDEWEB)

    Han, C. [Department of Physics, Chungbuk National University, Cheongju 361-763 (Korea, Republic of); Udalski, A.; Szymański, M. K.; Soszyński, I.; Skowron, J.; Mróz, P.; Poleski, R.; Pietrukowicz, P.; Kozłowski, S.; Ulaczyk, K.; Wyrzykowski, Ł.; Pawlak, M. [Warsaw University Observatory, Al. Ujazdowskie 4, 00-478 Warszawa (Poland); Lee, C.-U.; Gould, A.; Chung, S.-J.; Kim, S.-L.; Cha, S.-M. [Korea Astronomy and Space Science Institute, Daejeon 34055 (Korea, Republic of); Bozza, V. [Dipartimento di Fisica “E. R. Caianiello”, Uńiversitá di Salerno, Via Giovanni Paolo II, I-84084 Fisciano (Italy); Albrow, M. D. [University of Canterbury, Department of Physics and Astronomy, Private Bag 4800, Christchurch 8020 (New Zealand); Jung, Y. K. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA, 02138 (United States); Collaboration: OGLE Collaboration; KMTNet Collaboration; and others

    2016-08-10

    In this paper, we demonstrate the severity of the degeneracy between the microlens-parallax and lens-orbital effects by presenting the analysis of the gravitational binary-lens event OGLE-2015-BLG-0768. Despite the obvious deviation from the model based on the linear observer motion and the static binary, it is found that the residual can be almost equally well explained by either the parallactic motion of the Earth or the rotation of the binary-lens axis, resulting in the severe degeneracy between the two effects. We show that the degeneracy can be readily resolved with the additional data provided by space-based microlens parallax observations. By enabling us to distinguish between the two higher-order effects, space-based microlens parallax observations will not only make it possible to accurately determine the physical lens parameters but also to further constrain the orbital parameters of binary lenses.

  20. Bacterial transmission from lens storage cases to contact lenses-Effects of lens care solutions and silver impregnation of cases.

    Science.gov (United States)

    Vermeltfoort, Pit B J; Hooymans, Johanna M M; Busscher, Henk J; van der Mei, Henny C

    2008-10-01

    The killing efficacies of multipurpose lens care solutions on planktonic and biofilm bacteria grown in polypropylene contact lens storage cases with and without silver impregnation and effects on bacterial transmission from storage cases to silicone hydrogel contact lenses were investigated. For transmission studies, biofilms of Staphylococcus aureus 835 or Pseudomonas aeruginosa no. 3 were grown on lens storage cases and incubated with a contact lens in different multipurpose lens care solutions (Opti-Free(R)Express(R), ReNu(R) MultiPlus(R), and SoloCare Aquatrade mark) or 0.9% NaCl. In addition, planktonic bacteria were directly suspended in multipurpose solutions and their killing efficacies were determined. The numbers of transmitted live and dead bacteria on the lenses were measured using a combination of plate counting and fluorescence microscopy. The highest killing efficacies were shown by Opti-Free(R) Express(R) for planktonic as well as for biofilm bacteria. Silver impregnation of lens cases in combination with the prescribed solution increased the killing efficacy for P. aeruginosa in biofilms, whereas effects for S. aureus were minor. Lowest numbers of live and dead bacteria were transmitted to a lens in Opti-Free(R) Express(R) multipurpose solution, with no significant differences between lens types and no effects of silver impregnation. (c) 2008 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 2008. (c) 2008 Wiley Periodicals, Inc.

  1. Cosmological perturbation effects on gravitational-wave luminosity distance estimates

    Science.gov (United States)

    Bertacca, Daniele; Raccanelli, Alvise; Bartolo, Nicola; Matarrese, Sabino

    2018-06-01

    Waveforms of gravitational waves provide information about a variety of parameters for the binary system merging. However, standard calculations have been performed assuming a FLRW universe with no perturbations. In reality this assumption should be dropped: we show that the inclusion of cosmological perturbations translates into corrections to the estimate of astrophysical parameters derived for the merging binary systems. We compute corrections to the estimate of the luminosity distance due to velocity, volume, lensing and gravitational potential effects. Our results show that the amplitude of the corrections will be negligible for current instruments, mildly important for experiments like the planned DECIGO, and very important for future ones such as the Big Bang Observer.

  2. The effect of gravitational wave on electromagnetic field and the possibility about electromagnetic detection of gravitational wave

    International Nuclear Information System (INIS)

    Tao Fuzhen; He Zhiqiang

    1983-01-01

    If the effect of gravitational wave on electromagnetic fields is used, and the gravitational wave is detected through the changes in electromagnetic fields, one can expect that the difficulty about the weakness of the signal of mechanical receiver can be avoided. Because of the effect of gravitational wave, the electromagnetic field emits energy, therefore, the energy which is detected will be higher than that by the mechanical receiver. The authors consider the Maxwell equations on the curved spacetime. They give solutions when the detecting fields are a free electromagnetic wave, standing wave and a constant field. (Auth.)

  3. Nanoceria have no genotoxic effect on human lens epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Pierscionek, Barbara K; Yasseen, Akeel A [School of Biomedical Sciences, University of Ulster, Coleraine, BT52 1SA (United Kingdom); Li, Yuebin; Schachar, Ronald A; Chen, Wei [Department of Physics, University of Texas at Arlington, Arlington, TX 76019 (United States); Colhoun, Liza M, E-mail: b.pierscionek@ulster.ac.uk, E-mail: weichen@uta.edu [Centre for Vision and Vascular Sciences, School of Medicine, Dentistry and Biomedical Sciences, Queen' s University Belfast, Grosvenor Road, Belfast, BT12 6BA (United Kingdom)

    2010-01-22

    There are no treatments for reversing or halting cataract, a disease of the structural proteins in the eye lens, that has associations with other age-related degenerative conditions such as Alzheimer's disease. The incidence of cataract and associated conditions is increasing as the average age of the population rises. Protein folding diseases are difficult to assess in vivo as proteins and their age-related changes are assessed after extraction. Nanotechnology can be used to investigate protein changes in the intact lens as well as for a potential means of drug delivery. Nanoparticles, such as cerium oxide (CeO{sub 2}) which have antioxidant properties, may even be used as a means of treating cataract directly. Prior to use in treatments, nanoparticle genotoxicity must be tested to assess the extent of any DNA or chromosomal damage. Sister chromatid exchanges were measured and DNA damage investigated using the alkaline COMET assay on cultured human lens epithelial cells, exposed to 5 and 10 {mu}g ml{sup -1} of CeO{sub 2} nanoparticles (nanoceria). Nanoceria at these dosages did not cause any DNA damage or significant increases in the number of sister chromatid exchanges. The absence of genotoxic effects on lens cells suggests that nanoceria, in the doses and exposures tested in this study, are not deleterious to the eye lens and have the potential for use in studying structural alterations, in developing non-surgical cataract treatments and in investigating other protein folding diseases.

  4. Gravitational effective action at second order in curvature and gravitational waves

    Science.gov (United States)

    Calmet, Xavier; Capozziello, Salvatore; Pryer, Daniel

    2017-09-01

    We consider the full effective theory for quantum gravity at second order in curvature including non-local terms. We show that the theory contains two new degrees of freedom beyond the massless graviton: namely a massive spin-2 ghost and a massive scalar field. Furthermore, we show that it is impossible to fine-tune the parameters of the effective action to eliminate completely the classical spin-2 ghost because of the non-local terms in the effective action. Being a classical field, it is not clear anyway that this ghost is problematic. It simply implies a repulsive contribution to Newton's potential. We then consider how to extract the parameters of the effective action and show that it is possible to measure, at least in principle, the parameters of the local terms independently of each other using a combination of observations of gravitational waves and measurements performed by pendulum type experiments searching for deviations of Newton's potential.

  5. Gravitational effective action at second order in curvature and gravitational waves

    International Nuclear Information System (INIS)

    Calmet, Xavier; Pryer, Daniel; Capozziello, Salvatore

    2017-01-01

    We consider the full effective theory for quantum gravity at second order in curvature including non-local terms. We show that the theory contains two new degrees of freedom beyond the massless graviton: namely a massive spin-2 ghost and a massive scalar field. Furthermore, we show that it is impossible to fine-tune the parameters of the effective action to eliminate completely the classical spin-2 ghost because of the non-local terms in the effective action. Being a classical field, it is not clear anyway that this ghost is problematic. It simply implies a repulsive contribution to Newton's potential. We then consider how to extract the parameters of the effective action and show that it is possible to measure, at least in principle, the parameters of the local terms independently of each other using a combination of observations of gravitational waves and measurements performed by pendulum type experiments searching for deviations of Newton's potential. (orig.)

  6. Gravitational effective action at second order in curvature and gravitational waves.

    Science.gov (United States)

    Calmet, Xavier; Capozziello, Salvatore; Pryer, Daniel

    2017-01-01

    We consider the full effective theory for quantum gravity at second order in curvature including non-local terms. We show that the theory contains two new degrees of freedom beyond the massless graviton: namely a massive spin-2 ghost and a massive scalar field. Furthermore, we show that it is impossible to fine-tune the parameters of the effective action to eliminate completely the classical spin-2 ghost because of the non-local terms in the effective action. Being a classical field, it is not clear anyway that this ghost is problematic. It simply implies a repulsive contribution to Newton's potential. We then consider how to extract the parameters of the effective action and show that it is possible to measure, at least in principle, the parameters of the local terms independently of each other using a combination of observations of gravitational waves and measurements performed by pendulum type experiments searching for deviations of Newton's potential.

  7. Effective dose and dose to crystalline lens during angiographic procedures

    International Nuclear Information System (INIS)

    Pages, J.

    1998-01-01

    The highest radiation doses levels received by radiologists are observed during interventional procedures. Doses to forehead and neck received by a radiologist executing angiographic examinations at the department of radiology at the academic hospital (AZ-VUB) have been measured for a group of 34 examinations. The doses to crystalline lens and the effective doses for a period of one year have been estimated. For the crystalline lens the maximum dose approaches the ICRP limit, that indicates the necessity for the radiologist to use leaded glasses. (N.C.)

  8. Effects of gamma radiation on rabbit lens

    International Nuclear Information System (INIS)

    Ordahl, J.N.; Gorthy, W.C.

    1982-01-01

    Eyes of young New Zealand white rabbits were irradiated with 2000 rads of gamma radiation ( 60 Co) and the eyes removed at 2, 8, 16, and 30 days post-irradiation for electron microscopic analysis. Lenses were treated histochemically for acid phosphatase localization to examine the role of lysosomal enzymes in the early development of radiation cataracts. Intercellularly located acid phosphatase reaction product, noted in the epithelium and subjacent cortex, was more prevalent after irradiation, especially in central and transitional epithelial zones. In the central zone small vesicles typically were most numerous in areas of extensive intercellular reaction product. The occurrence of discrete packets of reaction product within the vesicles and the adjoining intercellular space, plus the resemblance of the peripheral vesicles to small Golgi vesicles also containing reaction product, suggested an exocytotic release of the enzyme. These appearances suggest that lysosomal hydrolases are released extracellularly by a secretory mechanism accelerated by radiation and that these hydrolases may play a role in both physiological and pathological functions of the lens. (author)

  9. Effects of gravitational lensing and companion motion on the binary pulsar timing

    International Nuclear Information System (INIS)

    Rafikov, Roman R.; Lai Dong

    2006-01-01

    The measurement of the Shapiro time delay in binary pulsar systems with highly-inclined orbit can be affected both by the motion of the pulsar's companion because of the finite time it takes a photon to cross the binary, and by the gravitational light bending if the orbit is sufficiently edge-on relative to the line of sight. Here we calculate the effect of retardation due to the companion's motion on various time delays in pulsar binaries, including the Shaipro delay, the geometric lensing delay, and the lens-induced delays associated with the pulsar rotation. Our results can be applied to systems so highly inclined that near conjunction gravitational lensing of the pulsar radiation by the companion becomes important (the recently discovered double pulsar system J0737-3039 may exemplify such a system). To the leading order, the effect of retardation is to shift all the delay curves backward in time around the orbit conjunction, without affecting the shape and amplitude of the curves. The time shift is of order the photon orbit crossing time, and ranges from a second to a few minutes for the observed binary pulsar systems. In the double pulsar system J0737-3039, the motion of the companion may also affect the interpretation of the recent correlated interstellar scintillation measurements. Finally, we show that lensing sets an upper limit on the magnitude of the frame-dragging time delay caused by the companion's spin, and makes this delay unobservable in stellar-mass binary pulsar systems

  10. Dark matter as a non-linear effect of gravitation

    International Nuclear Information System (INIS)

    Maia, M.D.; Capistrano, A.J.S.

    2006-01-01

    The rotation curves of stars in disk galaxies are calculated with the Newtonian law of motion applied to a scalar potential derived from the geodesic equation, only, under the slow motion condition, the so-called Nearly Newtonian Gravity (NNG). A nearly Newtonian gravitational potential, Φ NN = -1/2 c 2 (1+g 44 ), is obtained, characterized by an exact solution of Einsteins equations, with the non-linear effects present in the component g 44 . This gravitational field lies somewhere between General Relativity and Newtonian Gravity. Therefore, Einsteins equations and the equivalence principle are preserved, but the general covariance is broken. The resulting curves are remarkably close to the observed rotation curves in spiral galaxies, suggesting that a substantial component of dark matter may be explained by the non-linearity of Einsteins equations. (author)

  11. Gravitational Effects on Cellular Flame Structure

    Science.gov (United States)

    Dunsky, C. M.; Fernandez-Pello, A. C.

    1991-01-01

    An experimental investigation has been conducted of the effect of gravity on the structure of downwardly propagating, cellular premixed propane-oxygen-nitrogen flames anchored on a water-cooled porous-plug burner. The flame is subjected to microgravity conditions in the NASA Lewis 2.2-second drop tower, and flame characteristics are recorded on high-speed film. These are compared to flames at normal gravity conditions with the same equivalence ratio, dilution index, mixture flow rate, and ambient pressure. The results show that the cellular instability band, which is located in the rich mixture region, changes little under the absence of gravity. Lifted normal-gravity flames near the cellular/lifted limits, however, are observed to become cellular when gravity is reduced. Observations of a transient cell growth period following ignition point to heat loss as being an important mechanism in the overall flame stability, dominating the stabilizing effect of buoyancy for these downwardly-propagating burner-anchored flames. The pulsations that are observed in the plume and diffusion flame generated downstream of the premixed flame in the fuel rich cases disappear in microgravity, verifying that these fluctuations are gravity related.

  12. Gravitational effective action at second order in curvature and gravitational waves

    Energy Technology Data Exchange (ETDEWEB)

    Calmet, Xavier; Pryer, Daniel [University of Sussex, Department of Physics and Astronomy, Brighton (United Kingdom); Capozziello, Salvatore [Universita di Napoli ' ' Federico II' ' , Dipartimento di Fisica ' ' E. Pancini' ' , Naples (Italy); Istituto Nazionale di Fisica Nucleare (INFN), Naples (Italy); Gran Sasso Science Institute, L' Aquila (Italy)

    2017-09-15

    We consider the full effective theory for quantum gravity at second order in curvature including non-local terms. We show that the theory contains two new degrees of freedom beyond the massless graviton: namely a massive spin-2 ghost and a massive scalar field. Furthermore, we show that it is impossible to fine-tune the parameters of the effective action to eliminate completely the classical spin-2 ghost because of the non-local terms in the effective action. Being a classical field, it is not clear anyway that this ghost is problematic. It simply implies a repulsive contribution to Newton's potential. We then consider how to extract the parameters of the effective action and show that it is possible to measure, at least in principle, the parameters of the local terms independently of each other using a combination of observations of gravitational waves and measurements performed by pendulum type experiments searching for deviations of Newton's potential. (orig.)

  13. Effect of infusion bottle height on lens power after lens refilling with and without a plug

    NARCIS (Netherlands)

    Koopmans, SA; Terwee, T; Haitjema, HJ; Kooijman, AC; Barkhof, J

    2003-01-01

    Purpose: To evaluate the influence of intraoperative infusion bottle height on the power of refilled pig lenses. Setting: Research Laboratory, Pharmacia Intraocular Lens Manufacturing Plant, Groningen, The Netherlands. Methods: This study comprised 2 groups of pig eyes. In 1 group, the lens was

  14. Effect of undetected gravitational lenses on statistical measures of quasar evolution

    International Nuclear Information System (INIS)

    Turner, E.L.

    1980-01-01

    Brightness amplifications by undetected gravitational lenses could be responsible in part for the apparent evolution of quasars, particularly for those which appear to be of high luminosity. It is shown that values of Vover-bar/over-barVover-bar/sub M/> or =0.6 and number-magnitude slopes > or =0.9 need not necessarily imply source density evolution if lensing events are common. Quasar samples which are defined by flux limits and minimum luminosities will preferentially include gravitational lens systems. Even if lensing events are quite rare, a large fraction of the lensed quasars will appear more luminous than the most luminous unlensed quasar

  15. Direct probe of dark energy through gravitational lensing effect

    Energy Technology Data Exchange (ETDEWEB)

    He, Hong-Jian [T. D. Lee Institute, and School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Zhang, Zhen, E-mail: hjhe@tsinghua.edu.cn, E-mail: zh.zhang@pku.edu.cn [Center for High Energy Physics, Peking University, Beijing 100871 (China)

    2017-08-01

    We show that gravitational lensing can provide a direct method to probe the nature of dark energy at astrophysical scales. For lensing system as an isolated astrophysical object, we derive the dark energy contribution to gravitational potential as a repulsive power-law term, containing a generic equation of state parameter w . We find that it generates w -dependent and position-dependent modification to the conventional light orbital equation of w =−1. With post-Newtonian approximation, we compute its direct effect for an isolated lensing system at astrophysical scales and find that the dark energy force can deflect the path of incident light rays. We demonstrate that the dark-energy-induced deflection angle Δα{sub DE}∝ M {sup (1+1/3} {sup w} {sup )} (with 1+1/3 w > 0), which increases with the lensing mass M and consistently approaches zero in the limit M → 0. This effect is distinctive because dark energy tends to diffuse the rays and generates concave lensing effect . This is in contrast to the conventional convex lensing effect caused by both visible and dark matter. Measuring such concave lensing effect can directly probe the existence and nature of dark energy. We estimate this effect and show that the current gravitational lensing experiments are sensitive to the direct probe of dark energy at astrophysical scales. For the special case w =−1, our independent study favors the previous works that the cosmological constant can affect light bending, but our prediction qualitatively and quantitatively differ from the literature, including our consistent realization of Δα{sub DE} → 0 (under 0 M → ) at the leading order.

  16. Physical effects in gravitational field of black holes

    International Nuclear Information System (INIS)

    Frolov, V.P.

    1986-01-01

    A large number of problems related to peculiarities of physical processes in a strong gravitational field of black holes has been considered. Energy shift and the complete structure of physical fields for charged sources near a black hole have been investigated. Density matrix and generating functional for quantum effects in stationary black holes have been calculated. Contributions of massless and massive fields to vacuum polarization in black holes have been investigated and influence of quantum effects on the global structure of a black hole has been discussed

  17. Astrometric and Timing Effects of Gravitational Waves from Localized Sources

    OpenAIRE

    Kopeikin, Sergei M.; Schafer, Gerhard; Gwinn, Carl R.; Eubanks, T. Marshall

    1998-01-01

    A consistent approach for an exhaustive solution of the problem of propagation of light rays in the field of gravitational waves emitted by a localized source of gravitational radiation is developed in the first post-Minkowskian and quadrupole approximation of General Relativity. We demonstrate that the equations of light propagation in the retarded gravitational field of an arbitrary localized source emitting quadrupolar gravitational waves can be integrated exactly. The influence of the gra...

  18. A Model of the Effect of Lens Development on Refraction in Schoolchildren.

    Science.gov (United States)

    He, Ji C

    2017-12-01

    The study provides a new theory on the mechanism underlying myopia development, and it could be useful in clinical practice to control myopia development in schoolchildren. To model the effect of the crystalline lens on refractive development in schoolchildren. The Zemax 13 was used to calculate Zernike aberrations and refractions across 50° horizontal visual fields. Optical effects of the anterior chamber depth, lens thickness, and radii of curvature of the lens surfaces on refractions were modeled. Refractive changes induced by lens development in emmetropic and myopic eyes, based on a previous longitudinal study from literature, were calculated. A lens thickness reduction with an anterior chamber depth deepening caused a hyperopic shift over the visual fields and even more at the periphery. Opposite effects were found when the lens was thinned without any change of the anterior chamber depth. While a flattening of the anterior lens surface produced hyperopic refractions overall, a posterior lens flattening caused a myopic shift at the periphery, but a hyperopic shift of the central refraction. In the myopic eye, lens development induced refractive change toward more hyperopic over the visual fields and more at the periphery. Lens thinning and lens axial movement participate in peripheral refractive development in schoolchildren, and lens development with a deeper anterior chamber depth and a flatter lens surface in the myopic eye could generate extra hyperopia over visual fields. The myopic lens development could be due to a backward movement of the lens, driven by a backward growth of the ciliary process, which might be a causative factor of myopia development.

  19. Gravitational lensing as a mechanism for effective cloaking

    International Nuclear Information System (INIS)

    Tippett, Benjamin K.

    2011-01-01

    In light of the surge in popularity of electromagnetic cloaking devices, we consider whether it is possible to use general relativity to cloak a volume of spacetime through gravitational lensing. We explore the cloaking properties of a spacetime through a ray-tracing procedure, wherein we plot the spatial trajectories of a congruence of initially parallel null geodesics as they cross the geometry. In this context, a cloaking device would cause all of the null geodesics in an initially parallel congruence incident upon the cloaking geometry to circumnavigate an internal region, and as the geodesics emerge from the geometry, they regain their original configuration. Thus, if gravitational lensing were used as a mechanism for cloaking, the internal region would be causally isolated from the external spacetime. For this reason, we propose an effective cloaking geometry wherein (only) most of ingoing null geodesics will splay away from a central region, and then regain their initial configuration as they exit the geometry. Thus, a compact object sitting within the effective cloaking geometry will impede a smaller cross section of the null congruence, and therefore appear optically smaller from all sides. We build our effective cloaking geometry by connecting a Minkowski spacetime exterior to a spherically symmetric, curved spacetime along a timelike hypersurface of constant radius using the Israel junction conditions. The junction conditions require a shell of matter of infinitesimal width confined to the junction surface. The matter required to build such a spacetime must violate the null energy condition.

  20. The effect of pipecol angles for the magnetic electron lens on the aberration coefficients

    International Nuclear Information System (INIS)

    Al-Khshab, A. M.; Al-Khshab, A. H.

    1997-01-01

    The symmetric mag etic objective lens of great importance for the electronic microscopes intended for hi g resolution. Such lens is determined, not only by its geometries structure and shape parameters, but also by the influence of the variation of the pole piece angles. the results show that the Objective lens having the pole piece angle of 55 a has a considerable effect on the electron optical Properties. When this pole piece is appropriately and highly saturated, the lens possesses low spherical and chromatic aberration coefficients. This hind of pole piece lens leads to more favourable design than other lenses. (authors). 14 refs., 7 figs.1 table

  1. Fermat's least-time principle and the embedded transparent lens

    Science.gov (United States)

    Kantowski, R.; Chen, B.; Dai, X.

    2013-10-01

    We present a simplified version of the lowest-order embedded point mass gravitational lens theory and then make the extension of this theory to any embedded transparent lens. Embedding a lens effectively reduces the gravitational potential’s range, i.e., partially shields the lensing potential because the lens mass is made a contributor to the mean mass density of the Universe and not simply superimposed upon it. We give the time-delay function for the embedded point mass lens from which we can derive the simplified lens equation by applying Fermat’s least-time principle. Even though rigorous derivations are only made for the point mass in a flat background, the generalization of the lens equation to lowest order for any distributed lens in any homogeneous background is obvious. We find from this simplified theory that embedding can introduce corrections above the few percent level in weak lensing shears caused by large clusters but only at large impacts. The potential part of the time delay is also affected in strong lensing at the few percent level. Additionally we again confirm that the presence of a cosmological constant alters the gravitational deflection of passing photons.

  2. Gravitational wave echoes from macroscopic quantum gravity effects

    Energy Technology Data Exchange (ETDEWEB)

    Barceló, Carlos [Instituto de Astrofísica de Andalucía (IAA-CSIC),Glorieta de la Astronomía, 18008 Granada (Spain); Carballo-Rubio, Raúl [The Cosmology & Gravity Group and the Laboratory for Quantum Gravity & Strings,Department of Mathematics & Applied Mathematics, University of Cape Town,Private Bag, Rondebosch 7701 (South Africa); Garay, Luis J. [Departamento de Física Teórica II,Universidad Complutense de Madrid, 28040 Madrid (Spain); Instituto de Estructura de la Materia (IEM-CSIC),Serrano 121, 28006 Madrid (Spain)

    2017-05-10

    New theoretical approaches developed in the last years predict that macroscopic quantum gravity effects in black holes should lead to modifications of the gravitational wave signals expected in the framework of classical general relativity, with these modifications being characterized in certain scenarios by the existence of dampened repetitions of the primary signal. Here we use the fact that non-perturbative corrections to the near-horizon external geometry of black holes are necessary for these modifications to exist, in order to classify different proposals and paradigms with respect to this criterion and study in a neat and systematic way their phenomenology. Proposals that lead naturally to the existence of echoes in the late-time ringdown of gravitational wave signals from black hole mergers must share the replacement of black holes by horizonless configurations with a physical surface showing reflective properties in the relevant range of frequencies. On the other hand, proposals or paradigms that restrict quantum gravity effects on the external geometry to be perturbative, such as black hole complementarity or the closely related firewall proposal, do not display echoes. For the sake of completeness we exploit the interplay between the timescales associated with the formation of firewalls and the mechanism behind the existence of echoes in order to conclude that even unconventional distortions of the firewall concept (such as naked firewalls) do not lead to this phenomenon.

  3. Gravitational effects on measurements of the muon dipole moments

    Directory of Open Access Journals (Sweden)

    Andrew Kobach

    2016-10-01

    Full Text Available If the technology for muon storage rings one day permits sensitivity to precession at the order of 10−8 Hz, the local gravitational field of Earth can be a dominant contribution to the precession of the muon, which, if ignored, can fake the signal for a nonzero muon electric dipole moment (EDM. Specifically, the effects of Earth's gravity on the motion of a muon's spin is indistinguishable from it having a nonzero EDM of magnitude dμ∼10−29 ecm in a storage ring with vertical magnetic field of ∼1 T, which is significantly larger than the expected upper limit in the Standard Model, dμ≲10−36 ecm. As a corollary, measurements of Earth's local gravitational field using stored muons would be a unique test to distinguish classical gravity from general relativity with a bonafide quantum mechanical entity, i.e., an elementary particle's spin.

  4. Nonlinear effects in Pulsations of Compact Stars and Gravitational Waves

    International Nuclear Information System (INIS)

    Passamonti, A

    2007-01-01

    Nonlinear stellar oscillations can be studied by using a multiparameter perturbative approach, which is appropriate for investigating the low and mild nonlinear dynamical regimes. We present the main properties of our perturbative framework for describing, in the time domain, the nonlinear coupling between the radial and nonradial perturbations of spherically symmetric and perfect fluid compact stars. This particular coupling can be described by gauge invariant quantities that obeys a system of partial differential equations with source terms, which are made up of product of first order radial and nonradial perturbations. We report the results of numerical simulations for both the axial and polar coupling perturbations, that exhibit in the stellar dynamics and in the associated gravitational wave signal some interesting nonlinear effects, such as combination harmonics and resonances. In particular, we concentrate on the axial case, where the linear axial perturbations describe a harmonic component of a differentially rotating neutron star. The gravitational wave signal of this stellar configuration mirrors at second perturbative order the spectral features of the linear radial normal modes. In addition, a signal amplification appears when one of the radial frequencies is close to the axial w-mode frequencies of the star

  5. Effect of hemodialysis on intraocular lens power calculation.

    Science.gov (United States)

    Çalışkan, Sinan; Çelikay, Osman; Biçer, Tolga; Aylı, Mehmet Deniz; Gürdal, Canan

    2016-01-01

    To evaluate changes in ocular biometric parameters after hemodialysis (HD) in patients with end-stage renal disease (ESRD). Forty eyes of 40 patients undergoing HD were included in this cross-sectional study. Keratometry (K) readings, white-to-white (WTW) distance, central corneal thickness (CCT), anterior chamber depth (ACD), pupil diameter, lens thickness (LT), axial length (AL), and intraocular lens (IOL) power calculation were measured with Lenstar LS 900 (Haag Streit AG, Koeniz, Switzerland) before and after hemodialysis. Intraocular pressure (IOP) was measured with a non-contact tonometer (Tonopachy NT-530P, Nidek Co., LTD, Tokyo, Japan). Main outcomes were changes in biometric parameters after HD. Reliability of the measurements (intraclass correlation coefficients (ICCs)) and the effect size (Cohen's d) were also calculated. Mean difference in AL before and after HD was -0.041 ± 0.022 mm with ICCs > 0.90 (p  0.90 (p = 0.041 and Cohen's d = 0.20). Hemodialysis had no significant effect on K readings, WTW distance, CCT, ACD, LT, or IOP. Axial length and pupil diameter increase after HD with small effect size, while HD does not significantly affect IOL power calculations.

  6. Gravitational effects of condensate dark matter on compact stellar objects

    International Nuclear Information System (INIS)

    Li, X.Y.; Wang, F.Y.; Cheng, K.S.

    2012-01-01

    We study the gravitational effect of non-self-annihilating dark matter on compact stellar objects. The self-interaction of condensate dark matter can give high accretion rate of dark matter onto stars. Phase transition to condensation state takes place when the dark matter density exceeds the critical value. A compact degenerate dark matter core is developed and alter the structure and stability of the stellar objects. Condensate dark matter admixed neutron stars is studied through the two-fluid TOV equation. The existence of condensate dark matter deforms the mass-radius relation of neutron stars and lower their maximum baryonic masses and radii. The possible effects on the Gamma-ray Burst rate in high redshift are discussed

  7. Rat silicone hydrogel contact lens model: effects of high- versus low-Dk lens wear.

    Science.gov (United States)

    Zhang, Yunfan; Gabriel, Manal M; Mowrey-McKee, Mary F; Barrett, Ronald P; McClellan, Sharon; Hazlett, Linda D

    2008-11-01

    This study used a rat contact lens (CL) model to test if high- versus low-Dk lens wear caused changes in (1) conjunctival Langerhans cell (LC) number or location; (2) Bcl-2 expression; and (3) infection risk. Female, Lewis rats wore a high- or low-Dk CL continuously for 2 weeks. Afterward, corneas were harvested and processed for ADPase activity to identify LCs, for immunostaining and for real time-polymerase chain reaction. Contact lens-wearing rats also were challenged with Pseudomonas aeruginosa by placing a bacterial-soaked CL on the eye followed by topical delivery of bacteria. After 48 hrs, slit lamp examination and real time-polymerase chain reaction were used to evaluate the corneal response. Conjunctival LC were significantly increased after low- versus high-Dk CL wear (PDk lens wearing group. Bcl-2 mRNA levels were significantly decreased in low- versus high-Dk CL wearing rats, while Bax, FasL, caspase 3, and caspase 9 levels were unchanged. Immunostaining for Bcl-2 showed fewer positively stained epithelial cells in the low- versus high-Dk lens wearing group. After bacterial challenge, 30% of low- versus none of the high-Dk CL wearing corneas became infected and showed increased mRNA levels for several proinflammatory cytokines/chemokines, inducible nitric oxide synthase and matrix metalloproteinase-9. Low- versus high-Dk or non-CL wear led to an increased number of conjunctival LC, decreased Bcl-2 levels, and increased the risk of bacterial infection.

  8. The effective gravitational decoupling between dark matter and the CMB

    CERN Document Server

    Voruz, Luc; Tram, Thomas

    2014-01-01

    We present a detailed and self-contained analytical derivation of the evolution of sub-horizon cosmological perturbations before decoupling, based on previous work by S. Weinberg. These solutions are valid in the minimal LCDM scenario, to first order in perturbation theory, in the tight-coupling limit and neglecting neutrino shear stress. We compare them to exact numerical solutions computed by a Boltzmann code, and we find the two to be in very good agreement. The analytic solutions show explicitly that CDM and the baryon-photon fluid effectively behave as separate self-gravitating fluids until the epoch of baryon drag. This in turn leads to the surprising conclusion that the CMB is much less sensitive to the clustering properties of minimally coupled Dark Matter models than what would be naively expected.

  9. Lubricant effects on low Dk and silicone hydrogel lens comfort.

    Science.gov (United States)

    Ozkan, Jerome; Papas, Eric

    2008-08-01

    To investigate the influence of three lubricants of varying viscosity, on postinsertion and 6 h comfort with contact lens wear. Comfort and associated symptoms of dryness were assessed in 15 experienced contact lens wearers. Subjects wore a low Dk lens in one eye and a silicone hydrogel in the other and participated in four separate trials involving no lubricant (baseline), saline, and two commercially available lubricants of differing viscosity. The in-eye lubricants were used immediately following lens insertion and every 2 h postinsertion for a 6 h wear period. Postlens insertion comfort was significantly better for both lens types when lubricants or saline were used compared with no lubricant use. After 6 h lens wear, comfort was influenced by lens type and not by in-eye lubricant or saline use. Also after 6 h lens wear, less dryness sensation was reported for silicone hydrogel lenses when using lubricants but not saline. Although lubricant use does help reduce dryness symptoms with silicone hydrogel lens wear, there appears to be minimal longer-term benefit to comfort. Furthermore, increased lubricant viscosity did not lead to improved longer-term comfort.

  10. Axial gravitational waves in FLRW cosmology and memory effects

    Science.gov (United States)

    Kulczycki, Wojciech; Malec, Edward

    2017-09-01

    We show initial data for gravitational axial waves that are twice differentiable but that are not C2. They generate wave pulses that interact with matter in the radiation cosmological era. This forces the radiation matter to rotate. This rotation is permanent—it persists after the passage of the gravitational pulse. The observed inhomogeneities of the cosmic microwave background radiation put a bound onto discontinuities of superhorizon metric perturbations. We explicitly show that a class of smooth initial metrics that are at least C2 gives rise to gravitational wave pulses that do not interact with the background during the radiation epoch.

  11. Evidence for secondary gravitationally lensed images in radio quasistellar objects

    International Nuclear Information System (INIS)

    Rousey, C.E.

    1977-01-01

    Evidence is sought for the observability of the gravitational lens effect by studying the internal radio structures of quasistellar objects. Since the majority of the radio emitting quasars were observed to be multiply structured at radio wavelengths, and since the gravitational deflection of light is essentially frequency independent, these sources are very suitable objects for the investigation of gravitational imaging. From the theoretical framework of gravitational imaging, particularly in the treatment of the gravitational lenses as ''point-mass'' deflectors, several selection criteria were imposed on a sample of 208 radio emitting quasars in order to filter out only those sources which may be exhibiting radio imaging. The employment of further selection criteria, obtained from the consideration of the observed optical fields around the quasars, resulted in a small filtered sample of 10 quasars which are good candidates for exhibiting the gravitational lens effect. In particular, two quasars, 3C 268.4 and 3C 286, are observed to have good evidence for the presence of suitable gravitational lenses. Image models were computed for the image candidates which predict the masses and distances of the gravitational deflectors as well as estimations of the ''time delays'' of the images. It is also suggested that measurements of these image time delays may enable one to place stringent limits on the value of the Hubble constant

  12. Evidence of Non-local Chemical, Thermal and Gravitational Effects

    Directory of Open Access Journals (Sweden)

    Hu H.

    2007-04-01

    Full Text Available Quantum entanglement is ubiquitous in the microscopic world and manifests itself macroscopically under some circumstances. But common belief is that it alone cannot be used to transmit information nor could it be used to produce macroscopic non- local effects. Yet we have recently found evidence of non-local effects of chemical substances on the brain produced through it. While our reported results are under independent verifications by other groups, we report here our experimental findings of non-local chemical, thermal and gravitational effects in simple physical systems such as reservoirs of water quantum-entangled with water being manipulated in a remote reservoir. With the aids of high-precision instruments, we have found that the pH value, temperature and gravity of water in the detecting reservoirs can be non-locally affected through manipulating water in the remote reservoir. In particular, the pH value changes in the same direction as that being manipulated; the temperature can change against that of local environment; and the gravity apparently can also change against local gravity. These non-local effects are all reproducible and can be used for non-local signalling and many other purposes. We suggest that they are mediated by quantum entanglement between nuclear and/or electron spins in treated water and discuss the implications of these results.

  13. Effect of contact lens use on Computer Vision Syndrome.

    Science.gov (United States)

    Tauste, Ana; Ronda, Elena; Molina, María-José; Seguí, Mar

    2016-03-01

    To analyse the relationship between Computer Vision Syndrome (CVS) in computer workers and contact lens use, according to lens materials. Cross-sectional study. The study included 426 civil-service office workers, of whom 22% were contact lens wearers. Workers completed the Computer Vision Syndrome Questionnaire (CVS-Q) and provided information on their contact lenses and exposure to video display terminals (VDT) at work. CVS was defined as a CVS-Q score of 6 or more. The covariates were age and sex. Logistic regression was used to calculate the association (crude and adjusted for age and sex) between CVS and individual and work-related factors, and between CVS and contact lens type. Contact lens wearers are more likely to suffer CVS than non-lens wearers, with a prevalence of 65% vs 50%. Workers who wear contact lenses and are exposed to the computer for more than 6 h day(-1) are more likely to suffer CVS than non-lens wearers working at the computer for the same amount of time (aOR = 4.85; 95% CI, 1.25-18.80; p = 0.02). Regular contact lens use increases CVS after 6 h of computer work. © 2016 The Authors Ophthalmic & Physiological Optics © 2016 The College of Optometrists.

  14. Near UV radiation effect on the lens and retina

    International Nuclear Information System (INIS)

    Zigman, S.

    1987-01-01

    The discussion presented in this paper indicates that the retina of a diurnal animal with a natural UV-absorbing lens (ie: the gray squirrel) is susceptible to near-UV damage from environmental sources only after the lens has been removed. This suggests that it is very important to protect against near-UV exposure of human eyes after cataract surgery

  15. Effect of chronic smoking on lens nucleus as assessed by Pentacam HR lens densitometry in young adults.

    Science.gov (United States)

    Pekel, Gökhan; Cetin, Ebru Nevin; Acer, Semra; Yagci, Ramazan; Altintas, Seher; Ongun, Gülin Tugba

    2014-06-01

    To evaluate the effects of chronic tobacco smoking on lens nucleus by Pentacam HR lens densitometry (LD) in young adults. Prospective cross-sectional case series. Thirty subjects (23 M, 7 F) who were chronic cigarette smokers (≥10 cigarettes/day for at least 2 years) (group 1) and another 30 subjects (23 M, 7 F) who did not smoke (group 2), were included in this study. The patients were matched for age and sex between the groups. The exclusion criteria were any history of ocular surgery, any systemic disorders and any ocular diseases except for mild refractive disorders. Lens densitometry measurements were done with the Pentacam HR (Oculus, Wetzlar, Germany). The Schirmer test and pachymetry measurements were also performed. Mean age of the patients for both groups was 28.90 ± 8.20 years (range: 18-40 years). Mean lens densitometry (LD) measurements of Group 1 (chronic cigarette smoking group) were higher than those of Group 2 (control group) in all LD techniques; however only mean "peak" LD measurements showed a statistically significant difference between these two groups (Group 1: 8.67 ± 0.61, Group 2: 8.44 ± 0.70, p = 0.04). The mean Schirmer test value was 12.43 ± 5.60 mm in Group 1 and 13.00 ± 4.26 mm in Group 2 (p = 0.55). The mean central corneal thickness (CCT) value was 564.23 ± 34.61 µm in Group 1 and 550.47 ± 32.94 µm in Group 2 (p = 0.03). The Pentacam HR LD seems to be an important option for the evaluation of lens nucleus in young adults, because it gives objective and quantitative data. Although chronic smoking increases lens nucleus density in young adults, the effect is not statistically significant when compared with the control group.

  16. Finite mirror effects in advanced interferometric gravitational wave detectors

    International Nuclear Information System (INIS)

    Lundgren, Andrew P.; Bondarescu, Ruxandra; Tsang, David; Bondarescu, Mihai

    2008-01-01

    Thermal noise is expected to be the dominant source of noise in the most sensitive frequency band of second-generation, ground-based gravitational-wave detectors. Reshaping the beam to a flatter, wider profile which probes more of the mirror surface reduces this noise. The 'Mesa' beam shape has been proposed for this purpose and was subsequently generalized to a family of hyperboloidal beams with two parameters: twist angle α and beam width D. Varying α allows a continuous transition from the nearly flat (α=0) to the nearly concentric (α=π) Mesa beam configurations. We analytically prove that in the limit D→∞ hyperboloidal beams become Gaussians. The ideal beam choice for reducing thermal noise is the widest possible beam that satisfies the Advanced LIGO (Laser Interferometer Gravitational-wave Observatory) diffraction loss design constraint of 1 part per million (ppm) per bounce for a mirror radius of 17 cm. In the past the diffraction loss has often been calculated using the clipping approximation that, in general, underestimates the diffraction loss. We develop a code using pseudospectral methods to compute the diffraction loss directly from the propagator. We find that the diffraction loss is not a strictly monotonic function of beam width, but has local minima that occur due to finite mirror effects and leads to natural choices of D. For an α=π Mesa beam a local minimum occurs at D=10.67 cm and leads to a diffraction loss of 1.4 ppm. We then compute the thermal noise for the entire hyperboloidal family. We find that if one requires a diffraction loss of strictly 1 ppm, the α=0.91π hyperboloidal beam is optimal, leading to the coating thermal noise (the dominant source of noise for fused-silica mirrors) being lower by about 10% than for a Mesa beam while other types of thermal noise decrease as well. We then develop an iterative process that reconstructs the mirror to specifically account for finite mirror effects. This allows us to increase the D

  17. Photodamaging mechanism of the eye structure: UV effect on soluble proteins of the lens

    International Nuclear Information System (INIS)

    Korkhmazyan, M.M.; Fedorovich, I.B.; Ostrovskij, M.A.

    1983-01-01

    Damaging effect of UV-radiation on soluble proteins of bull lens has been studied. Irradiation results in lens proteins growing yellow, new absorption bands with the maxima 245 and 305 nm appear. It is shown that during photodamage oxidation of SH-groups takes place and protein aggregates are formed

  18. Escaping the crunch: Gravitational effects in classical transitions

    International Nuclear Information System (INIS)

    Johnson, Matthew C.; Yang, I-Sheng

    2010-01-01

    During eternal inflation, a landscape of vacua can be populated by the nucleation of bubbles. These bubbles inevitably collide, and collisions sometimes displace the field into a new minimum in a process known as a classical transition. In this paper, we examine some new features of classical transitions that arise when gravitational effects are included. Using the junction condition formalism, we study the conditions for energy conservation in detail, and solve explicitly for the types of allowed classical transition geometries. We show that the repulsive nature of domain walls, and the de Sitter expansion associated with a positive energy minimum, can allow for classical transitions to vacua of higher energy than that of the colliding bubbles. Transitions can be made out of negative or zero energy (terminal) vacua to a de Sitter phase, restarting eternal inflation, and populating new vacua. However, the classical transition cannot produce vacua with energy higher than the original parent vacuum, which agrees with previous results on the construction of pockets of false vacuum. We briefly comment on the possible implications of these results for various measure proposals in eternal inflation.

  19. Gravitational lensing by spinning and radially moving lenses

    International Nuclear Information System (INIS)

    Sereno, M.

    2002-01-01

    The effect of currents of mass on bending of light rays is considered in the weak field regime. Following Fermat's principle and the standard theory of gravitational lensing, we derive the gravito-magnetic correction to time delay function and deflection angle caused by a geometrically-thin lens. The cases of both rotating and shifting deflectors are discussed

  20. OBSERVATIONAL SELECTION EFFECTS WITH GROUND-BASED GRAVITATIONAL WAVE DETECTORS

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hsin-Yu; Holz, Daniel E. [University of Chicago, Chicago, Illinois 60637 (United States); Essick, Reed; Vitale, Salvatore; Katsavounidis, Erik [LIGO, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2017-01-20

    Ground-based interferometers are not perfect all-sky instruments, and it is important to account for their behavior when considering the distribution of detected events. In particular, the LIGO detectors are most sensitive to sources above North America and the Indian Ocean, and as the Earth rotates, the sensitive regions are swept across the sky. However, because the detectors do not acquire data uniformly over time, there is a net bias on detectable sources’ right ascensions. Both LIGO detectors preferentially collect data during their local night; it is more than twice as likely to be local midnight than noon when both detectors are operating. We discuss these selection effects and how they impact LIGO’s observations and electromagnetic (EM) follow-up. Beyond galactic foregrounds associated with seasonal variations, we find that equatorial observatories can access over 80% of the localization probability, while mid-latitudes will access closer to 70%. Facilities located near the two LIGO sites can observe sources closer to their zenith than their analogs in the south, but the average observation will still be no closer than 44° from zenith. We also find that observatories in Africa or the South Atlantic will wait systematically longer before they can begin observing compared to the rest of the world; though, there is a preference for longitudes near the LIGOs. These effects, along with knowledge of the LIGO antenna pattern, can inform EM follow-up activities and optimization, including the possibility of directing observations even before gravitational-wave events occur.

  1. OBSERVATIONAL SELECTION EFFECTS WITH GROUND-BASED GRAVITATIONAL WAVE DETECTORS

    International Nuclear Information System (INIS)

    Chen, Hsin-Yu; Holz, Daniel E.; Essick, Reed; Vitale, Salvatore; Katsavounidis, Erik

    2017-01-01

    Ground-based interferometers are not perfect all-sky instruments, and it is important to account for their behavior when considering the distribution of detected events. In particular, the LIGO detectors are most sensitive to sources above North America and the Indian Ocean, and as the Earth rotates, the sensitive regions are swept across the sky. However, because the detectors do not acquire data uniformly over time, there is a net bias on detectable sources’ right ascensions. Both LIGO detectors preferentially collect data during their local night; it is more than twice as likely to be local midnight than noon when both detectors are operating. We discuss these selection effects and how they impact LIGO’s observations and electromagnetic (EM) follow-up. Beyond galactic foregrounds associated with seasonal variations, we find that equatorial observatories can access over 80% of the localization probability, while mid-latitudes will access closer to 70%. Facilities located near the two LIGO sites can observe sources closer to their zenith than their analogs in the south, but the average observation will still be no closer than 44° from zenith. We also find that observatories in Africa or the South Atlantic will wait systematically longer before they can begin observing compared to the rest of the world; though, there is a preference for longitudes near the LIGOs. These effects, along with knowledge of the LIGO antenna pattern, can inform EM follow-up activities and optimization, including the possibility of directing observations even before gravitational-wave events occur.

  2. Effect of aspherical and yellow tinted intraocular lens on blue-on-yellow perimetry

    Directory of Open Access Journals (Sweden)

    Rodrigo França de Espíndola

    2012-10-01

    Full Text Available PURPOSE: To investigate the possible effect of aspherical or yellow tinted intraocular lens (IOL on contrast sensitivity and blue-on-yellow perimetry. METHODS: This prospective randomized bilateral double-masked clinical study included 52 patients with visually significant bilateral cataracts divided in two groups; 25 patients (50 eyes received aspherical intraocular lens in one eye and spherical intraocular lens in the fellow eye; and 27 patients (54 eyes received ultraviolet and blue light filter (yellow tinted IOL implantation in one eye and acrylic ultraviolet filter IOL in the fellow eye. The primary outcome measures were contrast sensitivity and blue-on-yellow perimetry values (mean deviation [MD] and pattern standard deviation [PSD] investigated two years after surgery. The results were compared intra-individually. RESULTS: There was a statistically significant between-group (aspherical and spherical intraocular lens difference in contrast sensitivity under photopic conditions at 12 cycles per degree and under mesopic conditions at all spatial frequencies. There were no between-group significant differences (yellow tinted and clear intraocular lens under photopic or mesopic conditions. There was no statistically significant difference between all intraocular lens in MD or PSD. CONCLUSION: Contrast sensitivity was better under mesopic conditions with aspherical intraocular lens. Blue-on-yellow perimetry did not appear to be affected by aspherical or yellow tinted intraocular lens. Further studies with a larger sample should be carried out to confirm or not that hypotheses.

  3. Why are predictions of general relativity theory for gravitational effects non-unique?

    International Nuclear Information System (INIS)

    Loskutov, Yu.M.

    1990-01-01

    Reasons of non-uniqueness of predictions of the general relativity theory (GRT) for gravitational effects are analyzed in detail. To authors' opinion, the absence of comparison mechanism of curved and plane metrics is the reason of non-uniqueness

  4. A critical period for gravitational effects on otolith formation

    Science.gov (United States)

    Wiederhold, M.; Harrison, J.

    Gravity and linear acceleration are sensed in fish by the saccule, utricle (as in mammals) and lagena, each with a solid otolith. Previous experiments in which eggs or larvae of a marine mollusk ( plysia) or fish larvae were raised on aA centrifuge, demonstrated that the size of the otolith or statoconia (in Aplysia) were reduced, in a graded manner, as the gfield was increased, suggesting that some- control mechanism was acting to normalize the weight of the mass. Pre-mated adult female swordtail fish (Xiphophorus helleri) were flown in the CEBAS aquarium system on space shuttle missions STS 89 and STS-90 (Neurolab). Developing- larvae were removed from the adult ovaries after shuttle landing. Otolith sizes were compared between ground- and flight -reared larvae of similar sizes. For later-stage swordtail larvae, with spine lengths from 3 to 6 mm from STS-90 (16 days), the growth of the otolith with increasing spine length was significantly greater in the flight - reared fish for all three otoliths, from the saccule (saggita), utricle (lapillus) and lagena (astericus). However, juvenile fish, 1 cm long at launch, showed no significant difference in otolith size between flight - and ground-reared animals. In very early stage larvae from STS-89 (9 days), with spine length of 1.5 to 3.5 mm, the utricular and saccular otoliths were actually larger in the ground-reared larvae. Thus, it appears that late-stage fish embryos reared in space do produce larger-than - normal otoliths, apparently in an attempt to c mpensate for the reduced weight ofo the test mass in space. However, the results from very early-stage larvae and juvenile fish suggest that there is a fairly short critical period during which altered gravity can affect the size of the test mass. Recent studies on the development of the inner ear of the zebrafish (Danio raria) may explain the critical period for gravitational effects on otolith growth. By 16 hours after zebrafish fertilization (at 28.5 o

  5. Effect of Inhomogeneity of the Universe on a Gravitationally Bound ...

    Indian Academy of Sciences (India)

    2012-04-16

    Apr 16, 2012 ... on a gravitationally bound local system such as the solar system. We con- ... method to describe the large-scale inhomogeneity of the Universe. ..... is regular at the origin r = 0 where the central body is located, and that the test.

  6. [Magnetic resonance imaging study of effects of accommodation on human lens morphological characters].

    Science.gov (United States)

    Zheng, Sui-lian; Zhang, Ai; Shi, Jian-jing; Zhou, Yun-xin

    2013-11-05

    To evaluate the effects of accommodation on lens morphological characters. From January 2011 to June 2011, magnetic resonance images of eyes were acquired from 30 subjects aged 20 to 24 years during accommodation and at rest. The optimal images were analyzed by Autocad 2010 to obtain the total lens cross-sectional area (CSA) and CSA of anterior and posterior portions of lens, anterior chamber depth, lens thickness, lens diameter, vitreous chamber depth and axial length during accommodation and at rest. Paired-t test was performed. The anterior curvature radius (mm), posterior curvature radius (mm), CSA of anterior portion (mm(2)), CSA of posterior portion (mm(2)), total lens CSA (mm(2)) was (8.7 ± 0.8), (6.2 ± 0.5), (7.5 ± 2.1), (12.0 ± 2.6), (20 ± 4) during relaxed accommodation; anterior curvature radius (mm), posterior curvature radius (mm), CSA of anterior portion (mm(2)), CSA of posterior portion (mm(2)), total lens CSA (mm(2)) was (7.1 ± 1.3), (5.6 ± 0.5), (14.7 ± 2.9), (12.2 ± 2.1) and (27 ± 4) during accommodation. The total lens CSA (t = -11.556, P 0.05) under a statistically independent accommodative state. There was significant difference in the anterior chamber depth (t = 4.366, P 0.05) and axial length (t = 0.418, P > 0.05) under accommodative states. During accommodation, the anterior chamber depth decreases, lens thickness increases and diameter of lens decreases while anterior portions and total lens CSA increase. There are insignificant changes in posterior portions of lens CSA, vitreous chamber depth and axial length. The accommodative changes in CSA indicate that the anterior portion of lens may be related with the properties of anterior capsule and lens material, the position of zonular attachments and the location of fetal nucleus. Helmholtz theory is supported.

  7. Gravitational waves from gravitational collapse

    Energy Technology Data Exchange (ETDEWEB)

    Fryer, Christopher L [Los Alamos National Laboratory; New, Kimberly C [Los Alamos National Laboratory

    2008-01-01

    Gravitational wave emission from stellar collapse has been studied for nearly four decades. Current state-of-the-art numerical investigations of collapse include those that use progenitors with more realistic angular momentum profiles, properly treat microphysics issues, account for general relativity, and examine non-axisymmetric effects in three dimensions. Such simulations predict that gravitational waves from various phenomena associated with gravitational collapse could be detectable with ground-based and space-based interferometric observatories. This review covers the entire range of stellar collapse sources of gravitational waves: from the accretion induced collapse of a white dwarf through the collapse down to neutron stars or black holes of massive stars to the collapse of supermassive stars.

  8. Gravitational Waves from Gravitational Collapse

    Directory of Open Access Journals (Sweden)

    Chris L. Fryer

    2011-01-01

    Full Text Available Gravitational-wave emission from stellar collapse has been studied for nearly four decades. Current state-of-the-art numerical investigations of collapse include those that use progenitors with more realistic angular momentum profiles, properly treat microphysics issues, account for general relativity, and examine non-axisymmetric effects in three dimensions. Such simulations predict that gravitational waves from various phenomena associated with gravitational collapse could be detectable with ground-based and space-based interferometric observatories. This review covers the entire range of stellar collapse sources of gravitational waves: from the accretion-induced collapse of a white dwarf through the collapse down to neutron stars or black holes of massive stars to the collapse of supermassive stars.

  9. Gravitational Waves from Gravitational Collapse.

    Science.gov (United States)

    Fryer, Chris L; New, Kimberly C B

    2011-01-01

    Gravitational-wave emission from stellar collapse has been studied for nearly four decades. Current state-of-the-art numerical investigations of collapse include those that use progenitors with more realistic angular momentum profiles, properly treat microphysics issues, account for general relativity, and examine non-axisymmetric effects in three dimensions. Such simulations predict that gravitational waves from various phenomena associated with gravitational collapse could be detectable with ground-based and space-based interferometric observatories. This review covers the entire range of stellar collapse sources of gravitational waves: from the accretion-induced collapse of a white dwarf through the collapse down to neutron stars or black holes of massive stars to the collapse of supermassive stars. Supplementary material is available for this article at 10.12942/lrr-2011-1.

  10. Gravitational Effects on Plasma Waves in Environment of Sun and Neutron Star

    International Nuclear Information System (INIS)

    Lu Quankang; Hsiao-Ling Zhou

    2014-01-01

    Local plasma phenomena in environment of Sun are observed closely by spacecrafts in recent years. We provide a new method to apply general relativity to astro-plasma physics in small local area. The relativistic dispersion relations of Langmuir, electromagnetic and cyclotron waves are obtained. The red shifts of Langmuir and cyclotron frequencies are given analytically. A new equilibrium velocity distribution of particles soaked in local gravitational field is suggested. The gravitational effect of a neutron star is also estimated

  11. Gravitational lensing of gravitational waves: a statistical perspective

    Science.gov (United States)

    Li, Shun-Sheng; Mao, Shude; Zhao, Yuetong; Lu, Youjun

    2018-05-01

    In this paper, we study the strong gravitational lensing of gravitational waves (GWs) from a statistical perspective, with particular focus on the high frequency GWs from stellar binary black hole coalescences. These are most promising targets for ground-based detectors such as Advanced Laser Interferometer Gravitational Wave Observatory (aLIGO) and the proposed Einstein Telescope (ET) and can be safely treated under the geometrical optics limit for GW propagation. We perform a thorough calculation of the lensing rate, by taking account of effects caused by the ellipticity of lensing galaxies, lens environments, and magnification bias. We find that in certain GW source rate scenarios, we should be able to observe strongly lensed GW events once per year (˜1 yr-1) in the aLIGO survey at its design sensitivity; for the proposed ET survey, the rate could be as high as ˜80 yr-1. These results depend on the estimate of GW source abundance, and hence can be correspondingly modified with an improvement in our understanding of the merger rate of stellar binary black holes. We also compute the fraction of four-image lens systems in each survey, predicting it to be ˜30 per cent for the aLIGO survey and ˜6 per cent for the ET survey. Finally, we evaluate the possibility of missing some images due to the finite survey duration, by presenting the probability distribution of lensing time delays. We predict that this selection bias will be insignificant in future GW surveys, as most of the lens systems ({˜ } 90{per cent}) will have time delays less than ˜1 month, which will be far shorter than survey durations.

  12. X-ray effects of lens DNA-implications of superoxide (O2.-)

    International Nuclear Information System (INIS)

    Srivastava, V.K.; Richards, R.D.; Varma, S.D.

    1983-01-01

    The photocemical generation of superoxide (O 2 .-) during in vitro exposure of bovine lenses induced damage in the structure of lens DNA as indicated by hyperchromicity and Tm measurements. The damage in lens DNA was significantly protected by the inclusion of superoxide dismutase (SOD), glutathione (GSH) and ascorbate in the incubation medium before X-ray exposure. The protection by SOD, GSH and ascorbate occurred due to their interaction with O 2 .- radicals. These results thus indicate the deleterious effect of O 2 .- in lens physiology and the protective role of such compounds against radiation damage. (author)

  13. Effects of photobleaching on selected advanced glycation end products in the human lens

    DEFF Research Database (Denmark)

    Holm, Thomas; Raghavan, Cibin T; Nahomi, Rooban

    2015-01-01

    at examining the optical and biochemical effects of the proposed treatment.MethodsHuman donor lenses were photobleaced using a 445 nm cw laser. Lens optical quality was assessed before and after photobleaching by light transmission and scattering. The concentration of the advanced glycation end products (AGEs...... of the photobleaching treatment on lens optical parameters but we could not associate the optical findings to a change in the concentration of the AGEs we measured. This finding suggests that other AGEs were responsible for the observed photobleaching of the human lens after laser treatment. The biochemical nature...

  14. The effect of near-UV light on Na-K-ATPase of the rat lens

    International Nuclear Information System (INIS)

    Torriglia, A.; Zigman, S.

    1988-01-01

    The influence of in vitro near-UV radiation exposure on the physical state of the rat lens and on its membrane-bound Na-K-ATPase activity was investigated. Lens swelling was correlated to the appearance of opacities and the inactivation of the enzyme. The results show a significant decrease in the Na-K-ATPase activity which may be an early change leading to osmotic type cataracts. The dose-effect curves obtained for cortical and epithelial enzymes were different. Since the data do not follow a mono-exponential function, the existence of two forms of Na-K-ATPase in the lens is discussed. (author)

  15. Effect of near-UV light on Na-K-ATPase of the rat lens

    Energy Technology Data Exchange (ETDEWEB)

    Torriglia, A.; Zigman, S.

    1988-06-01

    The influence of in vitro near-UV radiation exposure on the physical state of the rat lens and on its membrane-bound Na-K-ATPase activity was investigated. Lens swelling was correlated to the appearance of opacities and the inactivation of the enzyme. The results show a significant decrease in the Na-K-ATPase activity which may be an early change leading to osmotic type cataracts. The dose-effect curves obtained for cortical and epithelial enzymes were different. Since the data do not follow a mono-exponential function, the existence of two forms of Na-K-ATPase in the lens is discussed.

  16. Limiting the effects of earthquakes on gravitational-wave interferometers

    Science.gov (United States)

    Coughlin, Michael; Earle, Paul; Harms, Jan; Biscans, Sebastien; Buchanan, Christopher; Coughlin, Eric; Donovan, Fred; Fee, Jeremy; Gabbard, Hunter; Guy, Michelle; Mukund, Nikhil; Perry, Matthew

    2017-01-01

    Ground-based gravitational wave interferometers such as the Laser Interferometer Gravitational-wave Observatory (LIGO) are susceptible to ground shaking from high-magnitude teleseismic events, which can interrupt their operation in science mode and significantly reduce their duty cycle. It can take several hours for a detector to stabilize enough to return to its nominal state for scientific observations. The down time can be reduced if advance warning of impending shaking is received and the impact is suppressed in the isolation system with the goal of maintaining stable operation even at the expense of increased instrumental noise. Here, we describe an early warning system for modern gravitational-wave observatories. The system relies on near real-time earthquake alerts provided by the U.S. Geological Survey (USGS) and the National Oceanic and Atmospheric Administration (NOAA). Preliminary low latency hypocenter and magnitude information is generally available in 5 to 20 min of a significant earthquake depending on its magnitude and location. The alerts are used to estimate arrival times and ground velocities at the gravitational-wave detectors. In general, 90% of the predictions for ground-motion amplitude are within a factor of 5 of measured values. The error in both arrival time and ground-motion prediction introduced by using preliminary, rather than final, hypocenter and magnitude information is minimal. By using a machine learning algorithm, we develop a prediction model that calculates the probability that a given earthquake will prevent a detector from taking data. Our initial results indicate that by using detector control configuration changes, we could prevent interruption of operation from 40 to 100 earthquake events in a 6-month time-period.

  17. Limiting the effects of earthquakes on gravitational-wave interferometers

    International Nuclear Information System (INIS)

    Coughlin, Michael; Earle, Paul; Harms, Jan; Biscans, Sebastien; Donovan, Fred; Buchanan, Christopher; Coughlin, Eric; Fee, Jeremy; Guy, Michelle; Gabbard, Hunter; Mukund, Nikhil; Perry, Matthew

    2017-01-01

    Ground-based gravitational wave interferometers such as the Laser Interferometer Gravitational-wave Observatory (LIGO) are susceptible to ground shaking from high-magnitude teleseismic events, which can interrupt their operation in science mode and significantly reduce their duty cycle. It can take several hours for a detector to stabilize enough to return to its nominal state for scientific observations. The down time can be reduced if advance warning of impending shaking is received and the impact is suppressed in the isolation system with the goal of maintaining stable operation even at the expense of increased instrumental noise. Here, we describe an early warning system for modern gravitational-wave observatories. The system relies on near real-time earthquake alerts provided by the U.S. Geological Survey (USGS) and the National Oceanic and Atmospheric Administration (NOAA). Preliminary low latency hypocenter and magnitude information is generally available in 5 to 20 min of a significant earthquake depending on its magnitude and location. The alerts are used to estimate arrival times and ground velocities at the gravitational-wave detectors. In general, 90% of the predictions for ground-motion amplitude are within a factor of 5 of measured values. The error in both arrival time and ground-motion prediction introduced by using preliminary, rather than final, hypocenter and magnitude information is minimal. By using a machine learning algorithm, we develop a prediction model that calculates the probability that a given earthquake will prevent a detector from taking data. Our initial results indicate that by using detector control configuration changes, we could prevent interruption of operation from 40 to 100 earthquake events in a 6-month time-period. (paper)

  18. Protective Effects of Acetylation on the Pathological Reactions of the Lens Crystallins with Homocysteine Thiolactone.

    Directory of Open Access Journals (Sweden)

    Zeinab Moafian

    Full Text Available Various post-translational lens crystallins modifications result in structural and functional insults, contributing to the development of lens opacity and cataract disorders. Lens crystallins are potential targets of homocysteinylation, particularly under hyperhomocysteinemia which has been indicated in various eye diseases. Since both homocysteinylation and acetylation primarily occur on protein free amino groups, we applied different spectroscopic methods and gel mobility shift analysis to examine the possible preventive role of acetylation against homocysteinylation. Lens crystallins were extensively acetylated in the presence of acetic anhydride and then subjected to homocysteinylation in the presence of homocysteine thiolactone (HCTL. Extensive acetylation of the lens crystallins results in partial structural alteration and enhancement of their stability, as well as improvement of α-crystallin chaperone-like activity. In addition, acetylation partially prevents HCTL-induced structural alteration and aggregation of lens crystallins. Also, acetylation protects against HCTL-induced loss of α-crystallin chaperone activity. Additionally, subsequent acetylation and homocysteinylation cause significant proteolytic degradation of crystallins. Therefore, further experimentation is required in order to judge effectively the preventative role of acetylation on the structural and functional insults induced by homocysteinylation of lens crystallins.

  19. Effects of wearing a daily disposable lens on tear film: a randomised controlled trial.

    Science.gov (United States)

    Chong, Pamela Qin Yi; Yeo, Sharon; Too, Cheah Loon; Boo, Cynthia; Tong, Louis

    2016-05-01

    Contact lens-induced dry eye is commonly encountered, although its extent is not well documented with daily disposable lenses. A novel type of contact lens system incorporating moisturising agent (alginic acid) has been developed. The aim of this study was to evaluate the effect of wearing daily 2-hydroxyethyl methacrylate disposable contact lenses for seven days on tear stability, conjunctival and limbal redness and dry eye symptoms. Then, we aimed to determine whether lens solutions containing alginic acid had any influence on tear parameters. This was a seven-day parallel group double-masked clinical trial of previous contact lens wearers, where participants were randomly assigned to wearing SEED 1dayPure moisture contact lenses with (n = 15) or without alginic acid (n = 15). Tear lipid layer thickness (LLT), non-invasive tear break-up time (NIBUT), conjunctival redness, corneal fluorescein staining, tear break-up time and Schirmer I readings were measured. Symptom severity and frequency were evaluated and combined using a global score from visual analogue scales. The mean age and standard deviation of the participants was 25 ± 3.8 years. There were 24 females and six males. After reintroduction of contact lens wear for one week, there was significant improvement in the global symptom score; however, this may not be clinically significant. There were small and clinically insignificant changes in limbal and conjunctival hyperaemia but no significant changes in lipid layer thickness, Schirmer I and NIBUT in overall participants. The use of alginic acid in lens solutions did not affect these parameters compared to control lenses (p > 0.05). After seven days of wearing a modern daily disposable lens, there was no significant deterioration of tear function in a group of young contact lens wearers. In this short-term study, there was no evidence of significant benefit of lens solutions containing alginic acid used with HEMA lenses. © 2016 The Authors Clinical and

  20. Optical-Gravitation Nonlinearity: A Change of Gravitational Coefficient G induced by Gravitation Field

    OpenAIRE

    R. Vlokh; M. Kostyrko

    2006-01-01

    Nonlinear effect of the gravitation field of spherically symmetric mass on the gravitational coefficient G has been analysed. In frame of the approaches of parametric optics and gravitation nonlinearity we have shown that the gravitation field of spherically symmetric mass can lead to changes in the gravitational coefficient G.

  1. Gravitationally Induced Entanglement between Two Massive Particles is Sufficient Evidence of Quantum Effects in Gravity.

    Science.gov (United States)

    Marletto, C; Vedral, V

    2017-12-15

    All existing quantum-gravity proposals are extremely hard to test in practice. Quantum effects in the gravitational field are exceptionally small, unlike those in the electromagnetic field. The fundamental reason is that the gravitational coupling constant is about 43 orders of magnitude smaller than the fine structure constant, which governs light-matter interactions. For example, detecting gravitons-the hypothetical quanta of the gravitational field predicted by certain quantum-gravity proposals-is deemed to be practically impossible. Here we adopt a radically different, quantum-information-theoretic approach to testing quantum gravity. We propose witnessing quantumlike features in the gravitational field, by probing it with two masses each in a superposition of two locations. First, we prove that any system (e.g., a field) mediating entanglement between two quantum systems must be quantum. This argument is general and does not rely on any specific dynamics. Then, we propose an experiment to detect the entanglement generated between two masses via gravitational interaction. By our argument, the degree of entanglement between the masses is a witness of the field quantization. This experiment does not require any quantum control over gravity. It is also closer to realization than detecting gravitons or detecting quantum gravitational vacuum fluctuations.

  2. Effect of microwave treatment to acanthamoeba: a possibility of contact lens storage case sterilization?

    International Nuclear Information System (INIS)

    Hiti, K.; Faschinger, C.; Haller-Schober, E.M.; Walochnik, J.; Aspoeck, H.; Hiti, B.

    2003-01-01

    Microbially contaminated contact lens storage cases are considered to be a predisposing risk factor for Acanthamoeba keratitis. What kind of effect does microwave irradiation have on contact lens cases contaminated with Acanthamoeba cysts and trophozoites? Different types of contact lens cases were contaminated with trophozoites and cysts of three different Acanthamoeba species (A. hatchetti, A. castellanii, A. comandoni) and exposed to microwave irradiation for 3, 5 and 8 minutes respectively. One of the three test series was run with dehydrated cysts. After an irradiation period of 3 minutes under humid conditions cysts and trophozoites of all three strains were completely destroyed. Dehydrated cysts of A. hatchetti and A. castellanii were not killed by irradiation. There were no negative effects of irradiation on the contact lens cases themselves. Acanthamoeba cysts and trophozoites are effectively killed by microwave irradiation on condition that irradiation takes place in humid conditions. This can be easily achieved by filling the contact lens storage cases with tap water. We recommend microwave irradiation as a cheap and save method for the sterilization of contact lens cases in order to avoid a possible Acanthamoeba infection of the eye. (author)

  3. Gravitational effects of cosmic strings in Friedmann universes

    International Nuclear Information System (INIS)

    Veeraraghavan, S.

    1988-01-01

    Cosmic strings have been invoked recently as a possible source of the primordial density fluctuations in matter which gave rise to large-scale structure by the process of gravitational collapse. If cosmic strings did indeed seed structure formation then they would also leave an observable imprint upon the microwave and gravitational wave backgrounds, and upon structure on the very largest scales. In this work, the energy-momentum tensor appropriate to a cosmic string configuration in the flat Friedmann universe is first obtained and then used in the linearized Einstein equations to obtain the perturbations of the background space-time and the ambient matter. The calculation is full self-consistent to linear order because it takes into account compensation, or the response of the ambient matter density field to the presence of the string configuration, and is valid for an arbitrarily curved and moving configuration everywhere except very close to a string segment. The single constraint is that the dimensionless string tension Gμ/c 2 must be small compared to unity, but this condition is satisfied in any theory that leads to strings of cosmological relevance. The gravitational wave spectrum and the microwave background temperature fluctuations from a single infinite straight and static string are calculated. The statistically expected fluctuations from an ensemble of such strings with a mean density equal to that found in computer simulations of the evolution of string networks is also calculated. These fluctuations are compared with the observational data on the microwave background to constrain Gμ. Lastly, the role of infinite strings in the formation of the large-scale structure on scales of tens of Megaparsecs observed in deep redshift surveys is examined

  4. Profile of capillary bridges between two vertically stacked cylindrical fibers under gravitational effect

    Science.gov (United States)

    Sun, Xiaohang; Lee, Hoon Joo; Michielsen, Stephen; Wilusz, Eugene

    2018-05-01

    Although profiles of axisymmetric capillary bridges between two cylindrical fibers have been extensively studied, little research has been reported on capillary bridges under external forces such as the gravitational force. This is because external forces add significant complications to the Laplace-Young equation, making it difficult to predict drop profiles based on analytical approaches. In this paper, simulations of capillary bridges between two vertically stacked cylindrical fibers with gravitational effect taken into consideration are studied. The asymmetrical structure of capillary bridges that are hard to predict based on analytical approaches was studied via a numerical approach based on Surface Evolver (SE). The axial and the circumferential spreading of liquids on two identical fibers in the presence of gravitational effects are predicted to determine when the gravitational effects are significant or can be neglected. The effect of liquid volume, equilibrium contact angle, the distance between two fibers and fiber radii. The simulation results were verified by comparing them with experimental measurements. Based on SE simulations, curves representing the spreading of capillary bridges along the two cylindrical fibers were obtained. The gravitational effect was scaled based on the difference of the spreading on upper and lower fibers.

  5. Shielding effect of lead glasses on radiologists' eye lens exposure in interventional procedures

    International Nuclear Information System (INIS)

    Hu, Panpan; Kong, Yan; Chen, Bo; Liu, Qianqian; Zhuo, Weihai; Liu, Haikuan

    2017-01-01

    To study the shielding effect of radiologists' eye lens with lead glasses of different equivalent thicknesses and sizes in interventional radiology procedures. Using the human voxel phantom with a more accurate model of the eye and MCNPX software, eye lens doses of the radiologists who wearing different kinds of lead glasses were simulated, different beam projections were taken into consideration during the simulation. Measurements were also performed with the physical model to verify simulation results. Simulation results showed that the eye lens doses were reduced by a factor from 3 to 9 when wearing a 20 cm"2-sized lead glasses with the equivalent thickness ranging from 0.1 to 1.0 mm Pb. The increase of dose reduction factor (DRF) was not significant whenever increase the lead equivalent of glasses of which larger than 0.35 mm. Furthermore, the DRF was proportional to the size of glass lens from 6 to 30 cm"2 with the same lead equivalent. The simulation results were in well agreements with the measured ones. For more reasonable and effective protection of the eye lens of interventional radiologists, a pair of glasses with a lead equivalent of 0.5 mm Pb and large-sized (at least 27 cm"2 per glass) lens are recommended (authors)

  6. Shielding Effect of Lead Glasses on Radiologists' Eye Lens Exposure in Interventional Procedures.

    Science.gov (United States)

    Hu, Panpan; Kong, Yan; Chen, Bo; Liu, Qianqian; Zhuo, Weihai; Liu, Haikuan

    2017-04-20

    To study the shielding effect of radiologists' eye lens with lead glasses of different equivalent thicknesses and sizes in interventional radiology procedures. Using the human voxel phantom with a more accurate model of the eye and MCNPX software, eye lens doses of the radiologists who wearing different kinds of lead glasses were simulated, different beam projections were taken into consideration during the simulation. Measurements were also performed with the physical model to verify simulation results. Simulation results showed that the eye lens doses were reduced by a factor from 3 to 9 when wearing a 20 cm2-sized lead glasses with the equivalent thickness ranging from 0.1 to 1.0 mm Pb. The increase of dose reduction factor (DRF) was not significant whenever increase the lead equivalent of glasses of which larger than 0.35 mm. Furthermore, the DRF was proportional to the size of glass lens from 6 to 30 cm2 with the same lead equivalent. The simulation results were in well agreements with the measured ones. For more reasonable and effective protection of the eye lens of interventional radiologists, a pair of glasses with a lead equivalent of 0.5 mm Pb and large-sized (at least 27 cm2 per glass) lens are recommended. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Tests of the gravitational redshift effect in space-born and ground-based experiments

    Science.gov (United States)

    Vavilova, I. B.

    2018-02-01

    This paper provides a brief overview of experiments as concerns with the tests of the gravitational redshift (GRS) effect in ground-based and space-born experiments. In particular, we consider the GRS effects in the gravitational field of the Earth, the major planets of the Solar system, compact stars (white dwarfs and neutron stars) where this effect is confirmed with a higher accuracy. We discuss availabilities to confirm the GRS effect for galaxies and galaxy clusters in visible and X-ray ranges of the electromagnetic spectrum.

  8. Characterizing Lenses and Lensed Stars of High-magnification Single-lens Gravitational Microlensing Events with Lenses Passing over Source Stars

    DEFF Research Database (Denmark)

    Choi, J.-Y.; Shin, I.-G.; Park, S.-Y.

    2012-01-01

    ☉ is consistent with that of a star blended with the source, suggesting that the blend is likely to be the lens. Although we did not find planetary signals for any of the events, we provide exclusion diagrams showing the confidence levels excluding the existence of a planet as a function of the separation...

  9. Gravitational Field effects on the Decoherence Process and the Quantum Speed Limit.

    Science.gov (United States)

    Dehdashti, Sh; Avazzadeh, Z; Xu, Z; Shen, J Q; Mirza, B; Wang, H

    2017-11-08

    In this paper we use spinor transformations under local Lorentz transformations to investigate the curvature effect on the quantum-to-classical transition, described in terms of the decoherence process and of the quantum speed limit. We find that gravitational fields (introduced adopting the Schwarzschild and anti-de Sitter geometries) affect both the decoherence process and the quantum speed limit of a quantum particle with spin-1/2. In addition, as a tangible example, we study the effect of the Earth's gravitational field, characterized by the Rindler space-time, on the same particle. We find that the effect of the Earth's gravitational field on the decoherence process and quantum speed limit is very small, except when the mean speed of the quantum particle is comparable to the speed of light.

  10. Dynamical 3-Space: Gravitational Wave Detection and the Shnoll Effect

    Directory of Open Access Journals (Sweden)

    Rothall D. P.

    2013-10-01

    Full Text Available Shnoll has investigated the non-Poisson scatter of rate measurements in various phenomena such as biological and chemical reactions, radioactive decay, photodiode current leakage and germanium semiconductor noise, and attributed the scatter to cosmophysical factors. While Shnoll didn’t pinpoint the nature of the cosmophysical factors the Process Physics model of reality leads to a description of space, which is dynamic and fractal and exhibits reverberation eects, and which oers an explanation for the scattering anomaly. The work presented here shows a new way of generating the eects Shnoll discovered, through studying the phase dierence of RF EM waves travelling through a dual coaxial cable Gravitational Wave Detector experiment.

  11. Effect of gamma irradiation on in vitro bovine lens proteins

    International Nuclear Information System (INIS)

    Bernardes, D.M.L.; Mastro, N.L. del.

    1988-07-01

    The radiosensitivity of the ocular lens manifested by cataract formation has been of considerable interest in the study on the biological efects of radiations. Cataract can ben produced by different causes and also for the normal process of ageing. The aim of this work was to develop an in vitro system similar to in vivo cataract formation. It was used an aqueous solution of bovine lenses. The lenses after surgical removal mechanical and ultrasonic disrupted. The suspension was centrifuged and the supernatant was dialyzed and irradiated with different doses of 60 Co radiation. The opacification extent was measured in an spectrophotometer. (author) [pt

  12. On the effects of gravitational fields on the electrical properties of matter

    International Nuclear Information System (INIS)

    Opat, G.I.

    1993-01-01

    A discussion of the electrical state of a conducting solid in a static gravitational field is presented. The analysis of the stress-gravitational force balance inside the solid is complicated, however, outside the solid, in the evanescent electron field, the analysis of such a balance simplifies greatly. As a consequence of this external analysis, an expression for the electric field external to the body is presented which includes the direct effect of gravity on the electrons, as well as the indirect effect due to the stress induced by gravity acting on the bulk solid. Such fields are an important determinant of the gravitational motion of charged particles within metallic shields. 4 refs., 1 fig

  13. Gravitational decoherence

    International Nuclear Information System (INIS)

    Bassi, Angelo; Großardt, André; Ulbricht, Hendrik

    2017-01-01

    We discuss effects of loss of coherence in low energy quantum systems caused by or related to gravitation, referred to as gravitational decoherence. These effects, resulting from random metric fluctuations, for instance, promise to be accessible by relatively inexpensive table-top experiments, way before the scales where true quantum gravity effects become important. Therefore, they can provide a first experimental view on gravity in the quantum regime. We will survey models of decoherence induced both by classical and quantum gravitational fluctuations; it will be manifest that a clear understanding of gravitational decoherence is still lacking. Next we will review models where quantum theory is modified, under the assumption that gravity causes the collapse of the wave functions, when systems are large enough. These models challenge the quantum-gravity interplay, and can be tested experimentally. In the last part we have a look at the state of the art of experimental research. We will review efforts aiming at more and more accurate measurements of gravity ( G and g ) and ideas for measuring conventional and unconventional gravity effects on nonrelativistic quantum systems. (topical review)

  14. Effects of hyperbaric oxygen on crystalline lens and retina in nicotine-exposed rats.

    Science.gov (United States)

    Ari, Seyhmus; Nergiz, Yusuf; Cingü, Abdullah Kürşat; Atay, Ahmet Engin; Sahin, Alparslan; Cinar, Yasin; Caca, Ihsan

    2013-03-01

    To determine histopathological changes on crystalline lens and retina of rats after subcutaneous injection of nicotine and to examine the effects of hyperbaric oxygen (HBO) on these changes related to nicotine exposure. Twenty-eight female Sprague-Dawley rats were enrolled in the study and the rats were divided into four equal sized groups randomly (Group N: the rats exposed only to nicotine, group HB: the rats received only HBO, group N+HB: the rats that underwent to nicotine injection and subsequently received HBO, group C: the control group that neither exposed to nicotine nor received HBO). The rats were sacrificed by decapitation method and all were enucleated immediately after scarification. Tissue samples from crystalline lens, lens capsule, and the retina from the right eyes of the rats were examined by light microscopy. While the histological appearances of the retina and the lens was similar in group HB, group N+HB, and the control group; group N showed some pathological changes like decrement in the retinal ganglion cell density, atrophy of the retinal nerve fiber layer, congestion of the vessels in the optic nerve head, thinning of the internal plexiform layer, thinning of the lens capsule, and transformation of the anterior subcapsular epithelium into squamous epithelia. Subcutaneous injection of nicotine was found to be related with some pathological changes in the retina and lens of the Sprague-Dawley rats. However HBO caused no significant negative effect. Furthermore, the histopathological changes related to nicotine exposure in the lens and retina of the rats recovered by the application of HBO.

  15. On the Effect of the Cosmological Expansion on the Gravitational Lensing by a Point Mass

    Directory of Open Access Journals (Sweden)

    Oliver F. Piattella

    2016-10-01

    Full Text Available We analyse the effect of the cosmological expansion on the deflection of light caused by a point mass, adopting the McVittie metric as the geometrical description of a point-like lens embedded in an expanding universe. In the case of a generic, non-constant Hubble parameter, H, we derive and approximately solve the null geodesic equations, finding an expression for the bending angle δ, which we expand in powers of the mass-to-closest approach distance ratio and of the impact parameter-to-lens distance ratio. It turns out that the leading order of the aforementioned expansion is the same as the one calculated for the Schwarzschild metric and that cosmological corrections contribute to δ only at sub-dominant orders. We explicitly calculate these cosmological corrections for the case of the H constant and find that they provide a correction of order 10−11 on the lens mass estimate.

  16. The effect of the equatorially symmetric zonal winds of Saturn on its gravitational field

    Science.gov (United States)

    Kong, Dali; Zhang, Keke; Schubert, Gerald; Anderson, John D.

    2018-04-01

    The penetration depth of Saturn’s cloud-level winds into its interior is unknown. A possible way of estimating the depth is through measurement of the effect of the winds on the planet’s gravitational field. We use a self-consistent perturbation approach to study how the equatorially symmetric zonal winds of Saturn contribute to its gravitational field. An important advantage of this approach is that the variation of its gravitational field solely caused by the winds can be isolated and identified because the leading-order problem accounts exactly for rotational distortion, thereby determining the irregular shape and internal structure of the hydrostatic Saturn. We assume that (i) the zonal winds are maintained by thermal convection in the form of non-axisymmetric columnar rolls and (ii) the internal structure of the winds, because of the Taylor-Proundman theorem, can be uniquely determined by the observed cloud-level winds. We calculate both the variation ΔJn , n = 2, 4, 6 … of the axisymmetric gravitational coefficients Jn caused by the zonal winds and the non-axisymmetric gravitational coefficients ΔJnm produced by the columnar rolls, where m is the azimuthal wavenumber of the rolls. We consider three different cases characterized by the penetration depth 0.36, R S, 0.2, R S and 0.1, R S, where R S is the equatorial radius of Saturn at the 1-bar pressure level. We find that the high-degree gravitational coefficient (J 12 + ΔJ 12) is dominated, in all the three cases, by the effect of the zonal flow with |ΔJ 12/J 12| > 100% and that the size of the non-axisymmetric coefficients ΔJ mn directly reflects the depth and scale of the flow taking place in the Saturnian interior.

  17. The effect of melatonin on eye lens of rats exposed to ultraviolet radiation.

    Science.gov (United States)

    Anwar, M M; Moustafa, M A

    2001-05-01

    We investigated the influence of exogenously administered melatonin on adult rats eye lenses exposed to ultraviolet radiation (UV) A and B ranging from 356-254 nm irradiation at 8 microW/cm(2). Rats exposed to this range of UV for 15 min for one week showed a significant (PUV-radiation significantly (PUV irradiation, may be the main cause of lens opacification. Melatonin injection with radiation significantly reduced (Pradiation, SOD and GSH-Px enzyme activities increased significantly (PUV radiation was as effective as melatonin treatment concurrent with UV irradiation. We conclude that melatonin may protect the eye lens from the damaging effects of UV exposure, and its actions protect lens from oxidative stress, elevating Ca(2+) levels, which are considered as an important causes of cataractogenesis.

  18. Effect of the defect on the focusing in a two-dimensional photonic-crystal-based flat lens

    International Nuclear Information System (INIS)

    Feng Zhifang; Wang Xiuguo; Li Zhiyuan; Zhang Daozhong

    2008-01-01

    We have investigated in detail the influence of defect on the focusing of electromagnetic waves in a two-dimensional photonic-crystal flat lens by using the finite-difference time-domain method. The result shows that many focusings can be observed at the symmetrical positions when a defect is introduced into the lens. Furthermore, the wave-guides in the lens can confine the transmission wave effectively and improve the quality of the focusing

  19. The effects of actomyosin disruptors on the mechanical integrity of the avian crystalline lens.

    Science.gov (United States)

    Won, Gah-Jone; Fudge, Douglas S; Choh, Vivian

    2015-01-01

    Actin and myosin within the crystalline lens maintain the structural integrity of lens fiber cells and form a hexagonal lattice cradling the posterior surface of the lens. The actomyosin network was pharmacologically disrupted to examine the effects on lenticular biomechanics and optical quality. One lens of 7-day-old White Leghorn chickens was treated with 10 µM of a disruptor and the other with 0.01% dimethyl sulfoxide (vehicle). Actin, myosin, and myosin light chain kinase (MLCK) disruptors were used. The stiffness and the optical quality of the control and treated lenses were measured. Western blotting and confocal imaging were used to confirm that treatment led to a disruption of the actomyosin network. The times for the lenses to recover stiffness to match the control values were also measured. Disruptor-treated lenses were significantly less stiff than their controls (p≤0.0274 for all disruptors). The disruptors led to changes in the relative protein amounts as well as the distributions of proteins within the lattice. However, the disruptors did not affect the clarity of the lenses (p≥0.4696 for all disruptors), nor did they affect spherical aberration (p = 0.02245). The effects of all three disruptors were reversible, with lenses recovering from treatment with actin, myosin, and MLCK disruptors after 4 h, 1 h, and 8 min, respectively. Cytoskeletal protein disruptors led to a decreased stiffness of the lens, and the effects were reversible. Optical quality was mostly unaffected, but the long-term consequences remain unclear. Our results raise the possibility that the mechanical properties of the avian lens may be actively regulated in vivo via adjustments to the actomyosin lattice.

  20. Effect of polarization force on the Jeans instability of self-gravitating dusty plasma

    International Nuclear Information System (INIS)

    Prajapati, R.P.

    2011-01-01

    The effect of polarization force acting on massive charged dust grains is investigated analytically on the Jeans instability of self-gravitating dusty plasma. The gravitational force acting on the massive negatively charged interstellar dust grains are considered in presence of both electrical and polarization forces. The basic equations of the problem are formulated and a general dispersion relation is obtained using plane wave approximation in low frequency wave mode. The effect of polarization force in the dispersion relation of the problem, condition of the Jeans instability and expression of the critical Jeans wave number is examined. The unstable growing modes due to self-gravitational force are studied in the situation when polarization force on the dust grain exceeds over the electrical force in magnitude. It is observed that the polarization force increases the growth rate of the system. -- Highlights: → Jeans instability of gravitating dusty plasma with polarization force is investigated. → The fundamental Jeans instability criterion is modified due to polarization effect. → The critical Jeans length decreases due to increase in polarization force. → Polarization force destabilizes the unstable Jeans mode. → The collapsing of interstellar dusty cloud is discussed.

  1. Higher-order spin effects in the amplitude and phase of gravitational waveforms emitted by inspiraling compact binaries: Ready-to-use gravitational waveforms

    International Nuclear Information System (INIS)

    Arun, K. G.; Buonanno, Alessandra; Ochsner, Evan; Faye, Guillaume

    2009-01-01

    We provide ready-to-use time-domain gravitational waveforms for spinning compact binaries with precession effects through 1.5 post-Newtonian (PN) order in amplitude, and compute their mode decomposition using spin-weighted -2 spherical harmonics. In the presence of precession, the gravitational-wave modes (l,m) contain harmonics originating from combinations of the orbital frequency and precession frequencies. We find that the gravitational radiation from binary systems with large mass asymmetry and large inclination angle can be distributed among several modes. For example, during the last stages of inspiral, for some maximally spinning configurations, the amplitude of the (2, 0) and (2, 1) modes can be comparable to the amplitude of the (2, 2) mode. If the mass ratio is not too extreme, the l=3 and l=4 modes are generally 1 or 2 orders of magnitude smaller than the l=2 modes. Restricting ourselves to spinning, nonprecessing compact binaries, we apply the stationary-phase approximation and derive the frequency-domain gravitational waveforms including spin-orbit and spin(1)-spin(2) effects through 1.5PN and 2PN order, respectively, in amplitude, and 2.5PN order in phase. Since spin effects in the amplitude through 2PN order affect only the first and second harmonics of the orbital phase, they do not extend the mass reach of gravitational-wave detectors. However, they can interfere with other harmonics and lower or raise the signal-to-noise ratio depending on the spin orientation. These ready-to-use waveforms could be employed in the data analysis of the spinning, inspiraling binaries as well as in comparison studies at the interface between analytical and numerical relativity.

  2. Interaction of heavy ion beams with a hydrogen plasma: plasma lens effect and stopping power enhancement

    International Nuclear Information System (INIS)

    Gardes, D.; Bimbot, R.; Della-Negra, S.; Dumail, M.; Kubica, B.; Richard, A.; Rivet, M.F.; Servajean, A.; Deutsch, C.; Maynard, G.

    1988-01-01

    By coupling a hydrogen plasma to a Tandem accelerator, transmission and energy losses of 2 MeV/u carbon and sulfur beams passing through a plasma target have been investigated. Fluctuations in beam transmission have been observed and attributed to a plasma lens effect. Moreover, energy loss measurements indicate an enhanced stopping power of the plasma relative to its cold matter equivalent

  3. Impact of crystalline lens opacification on effective phacoemulsification time in femtosecond laser-assisted cataract surgery.

    Science.gov (United States)

    Mayer, Wolfgang J; Klaproth, Oliver K; Hengerer, Fritz H; Kohnen, Thomas

    2014-02-01

    To compare effective phacoemulsification time in cataract surgery performed by manual phacoemulsification vs femtosecond laser-assisted lens fragmentation. Retrospective, consecutive, nonrandomized, comparative case series. The setting was the Department of Ophthalmology, Goethe-University, Frankfurt, Germany. The study population included 150 eyes of 86 patients with senile cataract. In the intervention, 88 eyes (group 1) underwent femtosecond laser-assisted surgery (corneal incisions, capsulotomy, lens fragmentation) using the LenSx platform (Alcon) and residual lens work-up with pulsed ultrasound energy (Infiniti Vision System; Alcon). In 62 eyes (group 2), complete cataract removal was performed with phacoemulsification only, using pulsed ultrasound energy with the same device (Infiniti). Nucleus staging (Pentacam nucleus staging; PNS) was evaluated using Pentacam HR (Oculus); endothelial cell density was measured using specular microscopy (NonCon Robo). The main outcome measures were as follows. Mean preoperative PNS staging was assessed using an automatic ordinal scaling (PNS-O, grades 0-5) and a manually defined density grid derived from Scheimpflug imaging (PNS-P [%]). Effective phacoemulsification time and endothelial cell loss were evaluated in both groups. Preoperative PNS-O and PNS-P showed no significant difference between groups (P = 0.267). Overall mean effective phacoemulsification time was significantly lower in group 1 (1.58 ± 1.02 seconds) compared to 4.17 ± 2.06 seconds in group 2 (P = 0.001). Effective phacoemulsification time was significantly lower in group 1 for all PNS-O stages (P < 0.001). With increasing preoperative PNS-P, effective phacoemulsification time increased in both groups; however, this gain was noticeably, but not significantly, lower in group 2. Endothelial cell loss was significantly lower in group 1 (P = 0.02). Femtosecond laser-assisted cataract surgery allows a significant reduction in effective phacoemulsification time

  4. Effective gravitational wave stress-energy tensor in alternative theories of gravity

    International Nuclear Information System (INIS)

    Stein, Leo C.; Yunes, Nicolas

    2011-01-01

    The inspiral of binary systems in vacuum is controlled by the stress-energy of gravitational radiation and any other propagating degrees of freedom. For gravitational waves, the dominant contribution is characterized by an effective stress-energy tensor at future null infinity. We employ perturbation theory and the short-wavelength approximation to compute this stress-energy tensor in a wide class of alternative theories. We find that this tensor is generally a modification of that first computed by Isaacson, where the corrections can dominate over the general relativistic term. In a wide class of theories, however, these corrections identically vanish at asymptotically flat, future, null infinity, reducing the stress-energy tensor to Isaacson's. We exemplify this phenomenon by first considering dynamical Chern-Simons modified gravity, which corrects the action via a scalar field and the contraction of the Riemann tensor and its dual. We then consider a wide class of theories with dynamical scalar fields coupled to higher-order curvature invariants and show that the gravitational wave stress-energy tensor still reduces to Isaacson's. The calculations presented in this paper are crucial to perform systematic tests of such modified gravity theories through the orbital decay of binary pulsars or through gravitational wave observations.

  5. Gravitational lenses and cosmological evolution

    International Nuclear Information System (INIS)

    Peacock, J.A.

    1982-01-01

    The effect of gravitational lensing on the apparent cosmological evolution of extragalactic radio sources is investigated. Models for a lens population consisting of galaxies and clusters of galaxies are constructed and used to calculate the distribution of amplification factors caused by lensing. Although many objects at high redshifts are predicted to have flux densities altered by 10 to 20 per cent relative to a homogeneous universe, flux conservation implies that de-amplification is as common as amplification. The effects on cosmological evolution as inferred from source counts and redshift data are thus relatively small; the slope of the counts is not large enough for intrinsically rare lensing events of high amplitude to corrupt observed samples. Lensing effects may be of greater importance for optically selected quasars, where lenses of mass as low as approximately 10 -4 solar mass can cause large amplifications. (author)

  6. Theory of gravitational interactions

    CERN Document Server

    Gasperini, Maurizio

    2017-01-01

    This is the second edition of a well-received book that is a modern, self-contained introduction to the theory of gravitational interactions. The new edition includes more details on gravitational waves of cosmological origin, the so-called brane world scenario, and gravitational time-delay effects. The first part of the book follows the traditional presentation of general relativity as a geometric theory of the macroscopic gravitational field, while the second, more advanced part discusses the deep analogies (and differences) between a geometric theory of gravity and the “gauge” theories of the other fundamental interactions. This fills a gap within the traditional approach to general relativity which usually leaves students puzzled about the role of gravity. The required notions of differential geometry are reduced to the minimum, allowing room for aspects of gravitational physics of current phenomenological and theoretical interest, such as the properties of gravitational waves, the gravitational inter...

  7. The protective effect of resveratrol on human lens epithelial cells against ultraviolet-induced apoptosis

    Directory of Open Access Journals (Sweden)

    Xue - Fang Chen

    2013-06-01

    Full Text Available AIM: To investigate the protective effect of resveratrol on human lens epithelial cells against ultraviolet-induced apoptosis. METHODS:Subcultured human lens epithelial cell line, ultraviolet induced cell apoptosis, 20μmol/L resveratrol pretreated cell, the indicators change was observed: rate of apoptosis was detected by flow cytometry and apoptosis-related factors of caspses-3 and caspase-9 were detected by colorimetric detection, ultrastructure changes were observed under transmission electron microscope. RESULTS: Flow cytometry instrument testing found that resveratrol can suppress the apoptosis induced by ultraviolet irradiation, caspses-3 and caspase-9 content in positive control group were significantly higher than that of the negative control group at the same time period, the difference was statistically significant(P<0.05; caspses-3 and caspase-9 content in experimental group were lower than that in the positive control group at the same time, the difference was statistically significant(P<0.05. In addition, the damage of human lens epithelial cells was alleviated with the incubation time of resveratrol elongated. CONCLUSION:Resveratrol may inhibit ultraviolet-induced apoptosis of human lens epithelial cells, it has preventive function against radioactive cataract, and it can provide reliable evidence for pursuing effective medicine to prevent and treat cataract.

  8. Positional accommodative intraocular lens power error induced by the estimation of the corneal power and the effective lens position

    Directory of Open Access Journals (Sweden)

    David P Piñero

    2015-01-01

    Full Text Available Purpose: To evaluate the predictability of the refractive correction achieved with a positional accommodating intraocular lenses (IOL and to develop a potential optimization of it by minimizing the error associated with the keratometric estimation of the corneal power and by developing a predictive formula for the effective lens position (ELP. Materials and Methods: Clinical data from 25 eyes of 14 patients (age range, 52-77 years and undergoing cataract surgery with implantation of the accommodating IOL Crystalens HD (Bausch and Lomb were retrospectively reviewed. In all cases, the calculation of an adjusted IOL power (P IOLadj based on Gaussian optics considering the residual refractive error was done using a variable keratometric index value (n kadj for corneal power estimation with and without using an estimation algorithm for ELP obtained by multiple regression analysis (ELP adj . P IOLadj was compared to the real IOL power implanted (P IOLReal , calculated with the SRK-T formula and also to the values estimated by the Haigis, HofferQ, and Holladay I formulas. Results: No statistically significant differences were found between P IOLReal and P IOLadj when ELP adj was used (P = 0.10, with a range of agreement between calculations of 1.23 D. In contrast, P IOLReal was significantly higher when compared to P IOLadj without using ELP adj and also compared to the values estimated by the other formulas. Conclusions: Predictable refractive outcomes can be obtained with the accommodating IOL Crystalens HD using a variable keratometric index for corneal power estimation and by estimating ELP with an algorithm dependent on anatomical factors and age.

  9. Lens effect of unipolar electrostatic steerers on low-energy ion beams and its effective reduction

    International Nuclear Information System (INIS)

    Asozu, Takuhiro; Matsuda, Makoto; Kutsukake, Kenichi

    2010-08-01

    The JAEA-Tokai tandem accelerator has two ion injectors, one is the negative ion injector placed on the ground and the other is the positive ion injector in the high voltage terminal. The electrostatic steerers in the high voltage terminal are used for ion beams from the both injectors. Because the beams from the negative ion injector gain high energy at the 20MV terminal, the electrodes of the electrostatic steerers are designed to be supplied several ten kV. The high voltages are supplied by two unipolar DC power supplies and they are controlled as the sum of the voltages keeps constant. The high electric potential between the electrodes affects the beam trajectory as an electrostatic lens. The potential must be too high for the low energy ion beams from the positive ion injector on the 100kV deck. We simulated the beam trajectory by calculation and evaluated the strength of the lens effects. The results showed that the focal distances were too short to control the beam form positive ion injector using optical devices in the downstream. If we reduce the voltages to one tenth in simulation, then the focusing effects were much less significant. We installed a multiplying factor circuit to make the voltages variable and much lower. The results of beam-handling tests using the circuit actually showed significant increase of the ion beam current. (author)

  10. Golden gravitational lensing systems from the Sloan Lens ACS Survey - II. SDSS J1430+4105: a precise inner total mass profile from lensing alone

    Science.gov (United States)

    Eichner, Thomas; Seitz, Stella; Bauer, Anne

    2012-12-01

    We study the Sloan Lens ACS (SLACS) survey strong-lensing system SDSS J1430+4105 at zl = 0.285. The lensed source (zs = 0.575) of this system has a complex morphology with several subcomponents. Its subcomponents span a radial range from 4 to 10 kpc in the plane of the lens. Therefore, we can constrain the slope of the total projected mass profile around the Einstein radius from lensing alone. We measure a density profile that is slightly but not significantly shallower than isothermal at the Einstein radius. We decompose the mass of the lensing galaxy into a de Vaucouleurs component to trace the stars and an additional dark component. The spread of multiple-image components over a large radial range also allows us to determine the amplitude of the de Vaucouleurs and dark matter components separately. We get a mass-to-light ratio of M de Vauc LB ≈ (5.5±1.5) M⊙L⊙,B and a dark matter fraction within the Einstein radius of ≈20 to 40 per cent. Modelling the star formation history assuming composite stellar populations at solar metallicity to the galaxy's photometry yields a mass-to-light ratio of M, salp LB ≈ 4.0-1.3+0.6 M⊙L⊙,B and M, chab LB ≈ 2.3-0.8+0.3 M⊙L⊙,B for Salpeter and Chabrier initial mass functions, respectively. Hence, the mass-to-light ratio derived from lensing is more Salpeter like, in agreement with results for massive Coma galaxies and other nearby massive early-type galaxies. We examine the consequences of the galaxy group in which the lensing galaxy is embedded, showing that it has little influence on the mass-to-light ratio obtained for the de Vaucouleurs component of the lensing galaxy. Finally, we decompose the projected, azimuthally averaged 2D density distribution of the de Vaucouleurs and dark matter components of the lensing signal into spherically averaged 3D density profiles. We can show that the 3D dark and luminous matter density within the Einstein radius (REin ≈ 0.6 Reff) of this SLACS galaxy is similar to the

  11. ARRIVAL TIME DIFFERENCES BETWEEN GRAVITATIONAL WAVES AND ELECTROMAGNETIC SIGNALS DUE TO GRAVITATIONAL LENSING

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Ryuichi [Faculty of Science and Technology, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori 036-8561 (Japan)

    2017-01-20

    In this study we demonstrate that general relativity predicts arrival time differences between gravitational wave (GW) and electromagnetic (EM) signals caused by the wave effects in gravitational lensing. The GW signals can arrive earlier than the EM signals in some cases if the GW/EM signals have passed through a lens, even if both signals were emitted simultaneously by a source. GW wavelengths are much larger than EM wavelengths; therefore, the propagation of the GWs does not follow the laws of geometrical optics, including the Shapiro time delay, if the lens mass is less than approximately 10{sup 5} M {sub ⊙}( f /Hz){sup −1}, where f is the GW frequency. The arrival time difference can reach ∼0.1 s ( f /Hz){sup −1} if the signals have passed by a lens of mass ∼8000 M {sub ⊙}( f /Hz){sup −1} with the impact parameter smaller than the Einstein radius; therefore, it is more prominent for lower GW frequencies. For example, when a distant supermassive black hole binary (SMBHB) in a galactic center is lensed by an intervening galaxy, the time lag becomes of the order of 10 days. Future pulsar timing arrays including the Square Kilometre Array and X-ray detectors may detect several time lags by measuring the orbital phase differences between the GW/EM signals in the SMBHBs. Gravitational lensing imprints a characteristic modulation on a chirp waveform; therefore, we can deduce whether a measured arrival time lag arises from intrinsic source properties or gravitational lensing. Determination of arrival time differences would be extremely useful in multimessenger observations and tests of general relativity.

  12. Gravitational-recoil effects on fermion propagation in space-time foam

    CERN Document Server

    Ellis, John R.; Nanopoulos, Dimitri V.; Volkov, G.

    2000-01-01

    Motivated by the possible experimental opportunities to test quantum gravity via its effects on high-energy neutrinos propagating through space-time foam, we discuss how to incorporate spin structures in our D-brane description of gravitational recoil effects in vacuo. We also point to an interesting analogous condensed-matter system. We use a suitable supersymmetrization of the Born-Infeld action for excited D-brane gravitational backgrounds to argue that energetic fermions may travel slower than the low-energy velocity of light: pulses of neutrinos at energies approaching 10^{19} eV: these would be observable only if M \\gsim 10^{27} GeV.

  13. Gravitational waves from remnant massive neutron stars of binary neutron star merger: Viscous hydrodynamics effects

    Science.gov (United States)

    Shibata, Masaru; Kiuchi, Kenta

    2017-06-01

    Employing a simplified version of the Israel-Stewart formalism of general-relativistic shear-viscous hydrodynamics, we explore the evolution of a remnant massive neutron star of binary neutron star merger and pay special attention to the resulting gravitational waveforms. We find that for the plausible values of the so-called viscous alpha parameter of the order 10-2 the degree of the differential rotation in the remnant massive neutron star is significantly reduced in the viscous time scale, ≲5 ms . Associated with this, the degree of nonaxisymmetric deformation is also reduced quickly, and as a consequence, the amplitude of quasiperiodic gravitational waves emitted also decays in the viscous time scale. Our results indicate that for modeling the evolution of the merger remnants of binary neutron stars we would have to take into account magnetohydrodynamics effects, which in nature could provide the viscous effects.

  14. Probing the dark side of the Universe with weak gravitational lensing effects

    International Nuclear Information System (INIS)

    Fu Li-Ping; Fan Zu-Hui

    2014-01-01

    Arising from gravitational deflections of light rays by large-scale structures in the Universe, weak-lensing effects have been recognized as one of the most important probes in cosmological studies. In this paper, we review the main progress in weak-lensing analyses, and discuss the challenges in future investigations aiming to understand the dark side of the Universe with unprecedented precisions. (invited reviews)

  15. Preliminary Results on the Gravitational Slingshot Effect and the Population of Hyperbolic Meteoroids at Earth

    Science.gov (United States)

    Wiegert, P. A.

    2011-01-01

    Interstellar meteoroids, solid particles arriving from outside our Solar System, are not easily distinguished from local meteoroids. A velocity above the escape velocity of the Sun is often used as an indicator of a possible interstellar origin. We demonstrate that the gravitational slingshot effect, resulting from the passage of local meteoroid near a planet, can produce hyperbolic meteoroids at the Earth s orbit with excess velocities comparable to those expected of interstellar meteoroids.

  16. Deflection of light and particles by moving gravitational lenses

    International Nuclear Information System (INIS)

    Wucknitz, Olaf; Sperhake, Ulrich

    2004-01-01

    Various authors have investigated the problem of light deflection by radially moving gravitational lenses, but the results presented so far do not appear to agree on the expected deflection angles. Some publications claim a scaling of deflection angles with 1-v to first order in the radial lens velocity v, while others obtained a scaling with 1-2v. In this paper we generalize the calculations for arbitrary lens velocities and show that the first result is the correct one. We discuss the seeming inconsistency of relativistic light deflection with the classical picture of moving test particles by generalizing the lens effect to test particles of arbitrary velocity, including light as a limiting case. We show that the effect of radial motion of the lens is very different for slowly moving test particles and light and that a critical test particle velocity exists for which the motion of the lens has no effect on the deflection angle to first order. An interesting and not immediately intuitive result is obtained in the limit of a highly relativistic motion of the lens towards the observer, where the deflection angle of light reduces to zero. This phenomenon is elucidated in terms of moving refractive media. Furthermore, we discuss the dragging of inertial frames in the field of a moving lens and the corresponding Lense-Thirring precession, in order to shed more light on the geometrical effects in the surroundings of a moving mass. In a second part we discuss the effect of transversal motion on the observed redshift of lensed sources. We demonstrate how a simple kinematic calculation explains the effects for arbitrary velocities of the lens and test particles. Additionally we include the transversal motion of the source and observer to show that all three velocities can be combined into an effective relative transversal velocity similar to the approach used in microlensing studies

  17. Effectiveness of Bismuth Shield to Reduce Eye Lens Radiation Dose Using the Photoluminescence Dosimetry in Computed Tomography

    International Nuclear Information System (INIS)

    Jung, Mi Young; Kweon, Dae Cheol; Kwon, Soo Il

    2009-01-01

    The purpose of our study was to determine the eye radiation dose when performing routine multi-detector computed tomography (MDCT). We also evaluated dose reduction and the effect on image quality of using a bismuth eye shield when performing head MDCT. Examinations were performed with a 64MDCT scanner. To compare the shielded/unshielded lens dose, the examination was performed with and without bismuth shielding in anthropomorphic phantom. To determine the average lens radiation dose, we imaged an anthropomorphic phantom into which calibrated photoluminescence glass dosimeter (PLD) were placed to measure the dose to lens. The phantom was imaged using the same protocol. Radiation doses to the lens with and without the lens shielding were measured and compared using the Student t test. In the qualitative evaluation of the MDCT scans, all were considered to be of diagnostic quality. We did not see any differences in quality between the shielded and unshielded brain. The mean radiation doses to the eye with the shield and to those without the shield were 21.54 versus 10.46 mGy, respectively. The lens shield enabled a 51.3% decrease in radiation dose to the lens. Bismuth in-plane shielding for routine eye and head MDCT decreased radiation dose to the lens without qualitative changes in image quality. The other radiosensitive superficial organs specifically must be protected with shielding.

  18. Gravitational interaction to one loop in effective quantum gravity

    International Nuclear Information System (INIS)

    Akhundov, A.

    1996-10-01

    The authors carry out the first step of a program conceived, in order to build a realistic model, having the particle spectrum of the standard model and renormalized masses, interaction terms and coupling, etc. which include the class of quantum gravity corrections, obtained by handling gravity as an effective theory. This provides an adequate picture at low energies, i.e. much less than the scale of strong gravity (the Planck mass). Hence the results are valid, irrespectively of any proposal for the full quantum gravity as a fundamental theory. The authors consider only non-analytic contributions to the one-loop scattering matrix elements, which provide the dominant quantum effect at long distance. These contributions are finite and independent from the finite value of the renormalization counter terms of the effective Lagrangian. The authors calculate the interaction of two heavy scalar particles, i.e. close to rest, due to the effective quantum gravity to the one loop order and compare with similar results in the literature

  19. Gravitational interaction to one loop in effective quantum gravity

    Energy Technology Data Exchange (ETDEWEB)

    Akhundov, A. [Universitaet-gesamthochschule Siegen (Germany)]|[Azerbaijan Academy of Sciences, Baku (Azerbaijan). Institute of Physics; Bellucci, S. [INFN, Laboratori Nazionali di Frascati, Rome (Italy); Shiekh, A. [International Centre for Theoretical Physics, Trieste (Italy)

    1996-10-01

    The authors carry out the first step of a program conceived, in order to build a realistic model, having the particle spectrum of the standard model and renormalized masses, interaction terms and coupling, etc. which include the class of quantum gravity corrections, obtained by handling gravity as an effective theory. This provides an adequate picture at low energies, i.e. much less than the scale of strong gravity (the Planck mass). Hence the results are valid, irrespectively of any proposal for the full quantum gravity as a fundamental theory. The authors consider only non-analytic contributions to the one-loop scattering matrix elements, which provide the dominant quantum effect at long distance. These contributions are finite and independent from the finite value of the renormalization counter terms of the effective Lagrangian. The authors calculate the interaction of two heavy scalar particles, i.e. close to rest, due to the effective quantum gravity to the one loop order and compare with similar results in the literature.

  20. The SWELLS survey - III. Disfavouring 'heavy' initial mass functions for spiral lens galaxies

    NARCIS (Netherlands)

    Brewer, Brendon J.; Dutton, Aaron A.; Treu, Tommaso; Auger, Matthew W.; Marshall, Philip J.; Barnabè, Matteo; Bolton, Adam S.; Koo, David C.; Koopmans, Léon V. E.

    We present gravitational lens models for 20 strong gravitational lens systems observed as part of the Sloan WFC Edge-on Late-type Lens Survey (SWELLS) project. 15 of the lenses are taken from Paper I, while five are newly discovered systems. The systems are galaxy-galaxy lenses where the foreground

  1. Gravitational waves, neutrino emissions and effects of hyperons in binary neutron star mergers

    International Nuclear Information System (INIS)

    Kiuchi, Kenta; Sekiguchi, Yuichiro; Kyutoku, Koutarou; Shibata, Masaru

    2012-01-01

    Numerical simulations for the merger of binary neutron stars are performed in full general relativity incorporating both nucleonic and hyperonic finite-temperature equations of state (EOS) and neutrino cooling. It is found that for the nucleonic and hyperonic EOS, a hyper-massive neutron star (HMNS) with a long lifetime (t life ≥ 10 ms) is the outcome for the total mass ≅2.7M sun . For the total mass ≅3 M sun , a long-lived (short-lived with t life ≅ 3 ms) HMNS is the outcome for the nucleonic (hyperonic) EOS. It is shown that the typical total neutrino luminosity of the HMNS is ∼3-6 x 10 53 erg s -1 and the effective amplitude of gravitational waves from the HMNS is 1-4 x 10 -22 at f ≅ 2-3.2 kHz for a source of distance of 100 Mpc. During the HMNS phase, characteristic frequencies of gravitational waves shift to a higher frequency for the hyperonic EOS in contrast to the nucleonic EOS in which they remain constant approximately. Our finding suggests that the effects of hyperons are well imprinted in gravitational waves and their detection will give us a potential opportunity to explore the composition of the neutron star matter. We present the neutrino luminosity curve when a black hole is formed as well. (paper)

  2. A Correlation of Thin Lens Approximation to Thick Lens Design by Using Coddington Factors in Lens Design and Manufacturing

    OpenAIRE

    FARSAKOĞLU, Ö. Faruk

    2014-01-01

    The effect of Coddington factors on aberration functions has been analysed using thin lens approximation. Minimizing spherical aberrations of singlet lenses using Coddington factors in lens design depending on lens manufacturing is discussed. Notation of lens test plate pairs used in lens manufacturing is also presented in terms of Coddington shape factors.

  3. Gravitational frequency shift effect in the solar system

    International Nuclear Information System (INIS)

    Sarmiento G, A.

    1983-01-01

    An extension of the Parameterized Post-Newtonian (PPN) formalism to third order in the expansion parameter m/r (where m = GM/c 2 denotes the mass of the source of the field and r the distance to its center) is used to derive analytical expressions accurate to the same order for the prediction of the experimental measurments of the frequency shift effect on electromagnetic signals travelling within the solar system. An experimental situation is considered for which it is seen that the consequences of including higher order terms are undetectable by present-day observations or experiments. Some deliberations on issues in the historic context in which the development of the relevant ideas took place is considered necessary to round this work out and is presented in an introductory section. (author)

  4. Gravitational Waves

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Jonah Maxwell [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-10-18

    This report has slides on Gravitational Waves; Pound and Rebka: A Shocking Fact; Light is a Ruler; Gravity is the Curvature of Spacetime; Gravitational Waves Made Simple; How a Gravitational Wave Affects Stuff Here; LIGO; This Detection: Neutron Stars; What the Gravitational Wave Looks Like; The Sound of Merging Neutron Stars; Neutron Star Mergers: More than GWs; The Radioactive Cloud; The Kilonova; and finally Summary, Multimessenger Astronomy.

  5. Gravitation and relativity

    CERN Document Server

    Hoffmann, William F

    1964-01-01

    Remarks on the observational basis of general relativity ; Riemannian geometry ; gravitation as geometry ; gravitational waves ; Mach's principle and experiments on mass anisotropy ; the many faces of Mach ; the significance for the solar system of time-varying gravitation ; relativity principles and the role of coordinates in physics ; the superdense star and the critical nucleon number ; gravitation and light ; possible effects on the solar system of φ waves if they exist ; the Lyttleton-Bondi universe and charge equality ; quantization of general relativity ; Mach's principle as boundary condition for Einstein's equations.

  6. Gravitational anomalies

    Energy Technology Data Exchange (ETDEWEB)

    Leutwyler, H; Mallik, S

    1986-12-01

    The effective action for fermions moving in external gravitational and gauge fields is analyzed in terms of the corresponding external field propagator. The central object in our approach is the covariant energy-momentum tensor which is extracted from the regular part of the propagator at short distances. It is shown that the Lorentz anomaly, the conformal anomaly and the gauge anomaly can be expressed in terms of the local polynomials which determine the singular part of the propagator. (There are no coordinate anomalies). Except for the conformal anomaly, for which we give explicit representations only in dless than or equal to4, we consider an arbitrary number of dimensions.

  7. Spontaneous Lorentz violation and the long-range gravitational preferred-frame effect

    International Nuclear Information System (INIS)

    Graesser, Michael L.; Jenkins, Alejandro; Wise, Mark B.

    2005-01-01

    Lorentz-violating operators involving Standard Model fields are tightly constrained by experimental data. However, bounds are more model-independent for Lorentz violation appearing in purely gravitational couplings. The spontaneous breaking of Lorentz invariance by the vacuum expectation value of a vector field selects a universal rest frame. This affects the propagation of the graviton, leading to a modification of Newton's law of gravity. We compute the size of the long-range preferred-frame effect in terms of the coefficients of the two-derivative operators in the low-energy effective theory that involves only the graviton and the Goldstone bosons

  8. Flow within an evaporating glycerol-water binary droplet: Segregation by gravitational effects

    Science.gov (United States)

    Li, Yaxing; Lv, Pengyu; Diddens, Christian; Wijshoff, Herman; Versluis, Michel; Lohse, Detlef

    2017-11-01

    The flow within an evaporating glycerol-water binary droplet with Bond number Bo PIV for both sessile and pendant droplets during evaporation process, which surprisingly show opposite radial flow directions - inward and outward, respectively. This observation clearly reveals that gravitational effects play a crucial role in controlling flow fields within the evaporating droplets. We theoretically analyse that this gravity-driven effect is caused by density gradients due to the local concentration difference of glycerol within the droplet triggered by different volatilities of the two components during evaporation. Finally, for confirmation, we numerically simulate the process, revealing a good agreement with experimental results.

  9. Effects of phacoemulsification combined with intraocular lens implantation on ocular surface

    Directory of Open Access Journals (Sweden)

    Ming Li

    2013-10-01

    Full Text Available AIM: To explore the changes of ocular surface after phacoemulsification combined with intraocular lens implantation. METHODS: Totally 78 cases of 78 eyes with age-related cataract were collected from August 2011 to October 2012, and they underwent corneal incision phacoemulsification combined with intraocular lens implantation. The score of dry eye symptoms; tear breakup time(BUT; Schirmer Ⅰ test(SⅠtand corneal fluorescein staining were observed and recorded in 3 days before, 1 day, 1 week, 1 month, 3 and 6 months after surgery respectively. The results were analyzed statistically. RESULTS: All the subjects complained of dry eye within 1 week after surgery. Compared with 3 days before the surgery, the corneal fluorescein staining increased and the amount of tear secretion reduced statistically significant in 1 day, 1 week and 1 month(PPP>0.05, and lasted to 3 months later. CONCLUSION: Phacoemulsification combined with intraocular lens implantation has obvious effect on the ocular surface to some extent. Preventions and treatment should be taken clinically.

  10. Effects of Hall current and electrical resistivity on the stability of gravitating anisotropic quantum plasma

    Science.gov (United States)

    Bhakta, S.; Prajapati, R. P.

    2018-02-01

    The effects of Hall current and finite electrical resistivity are studied on the stability of uniformly rotating and self-gravitating anisotropic quantum plasma. The generalized Ohm's law modified by Hall current and electrical resistivity is used along with the quantum magnetohydrodynamic fluid equations. The general dispersion relation is derived using normal mode analysis and discussed in the parallel and perpendicular propagations. In the parallel propagation, the Jeans instability criterion, expression of critical Jeans wavenumber, and Jeans length are found to be independent of non-ideal effects and uniform rotation but in perpendicular propagation only rotation affects the Jeans instability criterion. The unstable gravitating mode modified by Bohm potential and the stable Alfven mode modified by non-ideal effects are obtained separately. The criterion of firehose instability remains unaffected due to the presence of non-ideal effects. In the perpendicular propagation, finite electrical resistivity and quantum pressure anisotropy modify the dispersion relation, whereas no effect of Hall current was observed in the dispersion characteristics. The Hall current, finite electrical resistivity, rotation, and quantum corrections stabilize the growth rate. The stability of the dynamical system is analyzed using the Routh-Hurwitz criterion.

  11. A class I (Senofilcon A) soft contact lens prevents UVB-induced ocular effects, including cataract, in the rabbit in vivo.

    Science.gov (United States)

    Giblin, Frank J; Lin, Li-Ren; Leverenz, Victor R; Dang, Loan

    2011-06-01

    UVB radiation from sunlight is known to be a risk factor for human cataract. The purpose in this study was to investigate the ability of a class I UV-blocking soft contact lens to protect against UVB-induced effects on the ocular tissues of the rabbit in vivo. Eyes of rabbits were exposed to UVB light for 30 minutes (270-360 nm, peak at 310 nm, 1.7 mW/cm(2) on the cornea). Eyes were irradiated in the presence of either a UV-blocking senofilcon A contact lens, a minimally UV-blocking lotrafilcon A contact lens, or no contact lens at all. Effects on the cornea and lens were evaluated at various times after exposure. Eyes irradiated with no contact lens protection showed corneal epithelial cell loss plus lens epithelial cell swelling, vacuole formation, and DNA single-strand breaks, as well as lens anterior subcapsular opacification. The senofilcon A lens protected nearly completely against the UVB-induced effects, whereas the lotrafilcon A lens showed no protection. The results indicate that use of a senofilcon A contact lens is beneficial in protecting ocular tissues of the rabbit against the harmful effects of UVB light, including photokeratitis and cataract.

  12. The SWELLS survey - IV. Precision measurements of the stellar and dark matter distributions in a spiral lens galaxy

    NARCIS (Netherlands)

    Barnabè, Matteo; Dutton, Aaron A.; Marshall, Philip J.; Auger, Matthew W.; Brewer, Brendon J.; Treu, Tommaso; Bolton, Adam S.; Koo, David C.; Koopmans, Léon V. E.

    We construct a fully self-consistent mass model for the lens galaxy SDSS J2141 at redshift 0.14, and use it to improve on previous studies by modelling its gravitational lensing effect, gas rotation curve and stellar kinematics simultaneously. We adopt a very flexible axisymmetric mass model

  13. The Hubble constant estimation using 18 gravitational lensing time delays

    Science.gov (United States)

    Jaelani, Anton T.; Premadi, Premana W.

    2014-03-01

    Gravitational lens time delay method has been used to estimate the rate of cosmological expansion, called the Hubble constant, H0, independently of the standard candle method. This gravitational lensing method requires a good knowledge of the lens mass distribution, reconstructed using the lens image properties. The observed positions of the images, and the redshifts of the lens and the images serve as strong constraints to the lens equations, which are then solved as a set of simultaneous linear equations. Here we made use of a non-parametric technique to reconstruct the lens mass distribution, which is manifested in a linear equations solver named PixeLens. Input for the calculation is chosen based on prior known parameters obtained from analyzed result of the lens case observations, including time-delay, position angles of the images and the lens, and their redshifts. In this project, 18 fairly well studied lens cases are further grouped according to a number of common properties to examine how each property affects the character of the data, and therefore affects the calculation of H0. The considered lens case properties are lens morphology, number of image, completeness of time delays, and symmetry of lens mass distribution. Analysis of simulation shows that paucity of constraints on mass distribution of a lens yields wide range value of H0, which reflects the uniqueness of each lens system. Nonetheless, gravitational lens method still yields H0 within an acceptable range of value when compared to those determined by many other methods. Grouping the cases in the above manner allowed us to assess the robustness of PixeLens and thereby use it selectively. In addition, we use glafic, a parametric mass reconstruction solver, to refine the mass distribution of one lens case, as a comparison.

  14. Testing effective quantum gravity with gravitational waves from extreme mass ratio inspirals

    International Nuclear Information System (INIS)

    Yunes, N; Sopuerta, C F

    2010-01-01

    Testing deviation of GR is one of the main goals of the proposed Laser Interferometer Space Antenna. For the first time, we consistently compute the generation of gravitational waves from extreme-mass ratio inspirals (stellar compact objects into supermassive black holes) in a well-motivated alternative theory of gravity, that to date remains weakly constrained by double binary pulsar observations. The theory we concentrate on is Chern-Simons (CS) modified gravity, a 4-D, effective theory that is motivated both from string theory and loop-quantum gravity, and which enhances the Einstein-Hilbert action through the addition of a dynamical scalar field and the parity-violating Pontryagin density. We show that although point particles continue to follow geodesics in the modified theory, the background about which they inspiral is a modification to the Kerr metric, which imprints a CS correction on the gravitational waves emitted. CS modified gravitational waves are sufficiently different from the General Relativistic expectation that they lead to significant dephasing after 3 weeks of evolution, but such dephasing will probably not prevent detection of these signals, but instead lead to a systematic error in the determination of parameters. We end with a study of radiation-reaction in the modified theory and show that, to leading-order, energy-momentum emission is not CS modified, except possibly for the subdominant effect of scalar-field emission. The inclusion of radiation-reaction will allow for tests of CS modified gravity with space-borne detectors that might be two orders of magnitude larger than current binary pulsar bounds.

  15. Reducing aberration effect of Fourier transform lens by modifying Fourier spectrum of diffractive optical element in beam shaping optical system.

    Science.gov (United States)

    Zhang, Fang; Zhu, Jing; Song, Qiang; Yue, Weirui; Liu, Jingdan; Wang, Jian; Situ, Guohai; Huang, Huijie

    2015-10-20

    In general, Fourier transform lenses are considered as ideal in the design algorithms of diffractive optical elements (DOEs). However, the inherent aberrations of a real Fourier transform lens disturb the far field pattern. The difference between the generated pattern and the expected design will impact the system performance. Therefore, a method for modifying the Fourier spectrum of DOEs without introducing other optical elements to reduce the aberration effect of the Fourier transform lens is proposed. By applying this method, beam shaping performance is improved markedly for the optical system with a real Fourier transform lens. The experiments carried out with a commercial Fourier transform lens give evidence for this method. The method is capable of reducing the system complexity as well as improving its performance.

  16. Relativistic gravitation theory

    International Nuclear Information System (INIS)

    Logunov, A.A.; Mestvirishvili, M.A.

    1984-01-01

    On the basis of the special relativity and geometrization principle a relativistic gravitation theory (RGT) is unambiguously constructed with the help of a notion of a gravitational field as a physical field in Faraday-Maxwell spirit, which posesses energy momentum and spins 2 and 0. The source of gravitation field is a total conserved energy-momentum tensor for matter and for gravitation field in Minkowski space. In the RGT conservation laws for the energy momentum and angular momentum of matter and gravitational field hold rigorously. The theory explains the whole set of gravitation experiments. Here, due to the geometrization principle the Riemannian space is of a field origin since this space arises effectively as a result of the gravitation field origin since this space arises effectively as a result of the gravitation field action on the matter. The RGT astonishing prediction is that the Universe is not closed but ''flat''. It means that in the Universe there should exist a ''missing'' mass in some form of matter

  17. Effects of gravitational and optical stimulation on the perception of target elevation

    Science.gov (United States)

    Cohen, M. M.; Stoper, A. E.; Welch, R. B.; DeRoshia, C. W.

    2001-01-01

    To examine the combined effects of gravitational and optical stimulation on perceived target elevation, we independently altered gravitational-inertial force and both the orientation and the structure of a background visual array. While being exposed to 1.0, 1.5, or 2.0 Gz in the human centrifuge at NASA Ames Research Center, observers attempted to set a target to the apparent horizon. The target was viewed against the far wall of a box that was pitched at various angles. The box was brightly illuminated, had only its interior edges dimly illuminated, or was kept dark. Observers lowered their target settings as Gz was increased; this effect was weakened when the box was illuminated. Also, when the box was visible, settings were displaced in the same direction as that in which the box was pitched. We attribute our results to the combined influence of otolith-oculomotor mechanisms that underlie the elevator illusion and visual-oculomotor mechanisms (optostatic responses) that underlie the perceptual effects of viewing pitched visual arrays.

  18. Distinguishing f(R) theories from general relativity by gravitational lensing effect

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hongguang [Beijing Normal University, Department of Physics, Beijing (China); Aix Marseille Universite et Universite de Toulon, Centre de Physique Theorique (UMR 7332), Marseille (France); Wang, Xin; Li, Haida; Ma, Yongge [Beijing Normal University, Department of Physics, Beijing (China)

    2017-11-15

    The post-Newtonian formulation of a general class of f(R) theories is set up in a third-order approximation. It turns out that the information of a specific form of f(R) gravity is encoded in the Yukawa potential, which is contained in the perturbative expansion of the metric components. Although the Yukawa potential is canceled in the second-order expression of the effective refraction index of light, detailed analysis shows that the difference of the lensing effect between the f(R) gravity and general relativity does appear at the third order when √(f''(0)/f{sup '}(0)) is larger than the distance d{sub 0} to the gravitational source. However, the difference between these two kinds of theories will disappear in the axially symmetric spacetime region. Therefore only in very rare case the f(R) theories are distinguishable from general relativity by gravitational lensing effect in a third-order post-Newtonian approximation. (orig.)

  19. Original Article Effect of Soft Contact Lens Materials on Tear Film ...

    African Journals Online (AJOL)

    problems, results in intolerance of contact lens wear and damage (Foulks, ... reported that contact lens-related dry eye may be ... eliminating or modifying the refractive error ..... risk of eye infection, easier handling due to ... Adv Exp Med Biol.

  20. Effects of Neutron-Star Dynamic Tides on Gravitational Waveforms within the Effective-One-Body Approach.

    Science.gov (United States)

    Hinderer, Tanja; Taracchini, Andrea; Foucart, Francois; Buonanno, Alessandra; Steinhoff, Jan; Duez, Matthew; Kidder, Lawrence E; Pfeiffer, Harald P; Scheel, Mark A; Szilagyi, Bela; Hotokezaka, Kenta; Kyutoku, Koutarou; Shibata, Masaru; Carpenter, Cory W

    2016-05-06

    Extracting the unique information on ultradense nuclear matter from the gravitational waves emitted by merging neutron-star binaries requires robust theoretical models of the signal. We develop a novel effective-one-body waveform model that includes, for the first time, dynamic (instead of only adiabatic) tides of the neutron star as well as the merger signal for neutron-star-black-hole binaries. We demonstrate the importance of the dynamic tides by comparing our model against new numerical-relativity simulations of nonspinning neutron-star-black-hole binaries spanning more than 24 gravitational-wave cycles, and to other existing numerical simulations for double neutron-star systems. Furthermore, we derive an effective description that makes explicit the dependence of matter effects on two key parameters: tidal deformability and fundamental oscillation frequency.

  1. Effects of Neutron-Star Dynamic Tides on Gravitational Waveforms within the Effective-One-Body Approach

    Science.gov (United States)

    Hinderer, Tanja; Taracchini, Andrea; Foucart, Francois; Buonanno, Alessandra; Steinhoff, Jan; Duez, Matthew; Kidder, Lawrence E.; Pfeiffer, Harald P.; Scheel, Mark A.; Szilagyi, Bela; Hotokezaka, Kenta; Kyutoku, Koutarou; Shibata, Masaru; Carpenter, Cory W.

    2016-05-01

    Extracting the unique information on ultradense nuclear matter from the gravitational waves emitted by merging neutron-star binaries requires robust theoretical models of the signal. We develop a novel effective-one-body waveform model that includes, for the first time, dynamic (instead of only adiabatic) tides of the neutron star as well as the merger signal for neutron-star-black-hole binaries. We demonstrate the importance of the dynamic tides by comparing our model against new numerical-relativity simulations of nonspinning neutron-star-black-hole binaries spanning more than 24 gravitational-wave cycles, and to other existing numerical simulations for double neutron-star systems. Furthermore, we derive an effective description that makes explicit the dependence of matter effects on two key parameters: tidal deformability and fundamental oscillation frequency.

  2. Gravitation Waves

    CERN Multimedia

    CERN. Geneva

    2005-01-01

    We will present a brief introduction to the physics of gravitational waves and their properties. We will review potential astrophysical sources of gravitational waves, and the physics and astrophysics that can be learned from their study. We will survey the techniques and technologies for detecting gravitational waves for the first time, including bar detectors and broadband interferometers, and give a brief status report on the international search effort, with special emphasis on the LIGO detectors and search results.

  3. Characteristics of the thick, compound refractive lens

    International Nuclear Information System (INIS)

    Pantell, Richard H.; Feinstein, Joseph; Beguiristain, H. Raul; Piestrup, Melvin A.; Gary, Charles K.; Cremer, Jay T.

    2003-01-01

    A compound refractive lens (CRL), consisting of a series of N closely spaced lens elements each of which contributes a small fraction of the total focusing, can be used to focus x rays or neutrons. The thickness of a CRL can be comparable to its focal length, whereupon a thick-lens analysis must be performed. In contrast with the conventional optical lens, where the ray inside the lens follows a straight line, the ray inside the CRL is continually changing direction because of the multiple refracting surfaces. Thus the matrix representation for the thick CRL is quite different from that for the thick optical lens. Principal planes can be defined such that the thick-lens matrix can be converted to that of a thin lens. For a thick lens the focal length is greater than for a thin lens with the same lens curvature, but this lengthening effect is less for the CRL than for the conventional optical lens

  4. A gravitational entropy proposal

    International Nuclear Information System (INIS)

    Clifton, Timothy; Tavakol, Reza; Ellis, George F R

    2013-01-01

    We propose a thermodynamically motivated measure of gravitational entropy based on the Bel–Robinson tensor, which has a natural interpretation as the effective super-energy–momentum tensor of free gravitational fields. The specific form of this measure differs depending on whether the gravitational field is Coulomb-like or wave-like, and reduces to the Bekenstein–Hawking value when integrated over the interior of a Schwarzschild black hole. For scalar perturbations of a Robertson–Walker geometry we find that the entropy goes like the Hubble weighted anisotropy of the gravitational field, and therefore increases as structure formation occurs. This is in keeping with our expectations for the behaviour of gravitational entropy in cosmology, and provides a thermodynamically motivated arrow of time for cosmological solutions of Einstein’s field equations. It is also in keeping with Penrose’s Weyl curvature hypothesis. (paper)

  5. A computer software system for the generation of global ocean tides including self-gravitation and crustal loading effects

    Science.gov (United States)

    Estes, R. H.

    1977-01-01

    A computer software system is described which computes global numerical solutions of the integro-differential Laplace tidal equations, including dissipation terms and ocean loading and self-gravitation effects, for arbitrary diurnal and semidiurnal tidal constituents. The integration algorithm features a successive approximation scheme for the integro-differential system, with time stepping forward differences in the time variable and central differences in spatial variables. Solutions for M2, S2, N2, K2, K1, O1, P1 tidal constituents neglecting the effects of ocean loading and self-gravitation and a converged M2, solution including ocean loading and self-gravitation effects are presented in the form of cotidal and corange maps.

  6. Gravitational microlensing

    Energy Technology Data Exchange (ETDEWEB)

    Zakharov, Aleksandr F [Russian Federation State Scientific Center ' A.I. Alikhanov Institute for Theoretical and Experimental Physics' , Moscow (Russian Federation); Sazhin, Mikhail V [P.K. Shternberg State Astronomical Institute at the M.V. Lomonosov Moscow State University, Moscow (Russian Federation)

    1998-10-31

    The foundations of standard microlensing theory are discussed as applied to stars in the Galactic bulge, Magellanic Clouds or other nearby galaxies and gravitational microlenses assumed to lie in-between these stars and the terrestrial observer. In contrast to the review article by Gurevich et al. [48], microlensing by compact objects is mainly considered. Criteria for the identification of microlensing events are discussed as also are microlensing events not satisfying these criteria, such as non-symmetrical light curves and chromatic and polarization effects. The Large Magellanic Cloud (LMC) and Galactic bulge microlensing data of the MACHO group are discussed in detail and also the LMC data of EROS and the Galactic bulge data of OGLE are presented. A detailed comparison of theoretical predictions and observations is given. (reviews of topical problems)

  7. Gravitational microlensing

    International Nuclear Information System (INIS)

    Zakharov, Aleksandr F; Sazhin, Mikhail V

    1998-01-01

    The foundations of standard microlensing theory are discussed as applied to stars in the Galactic bulge, Magellanic Clouds or other nearby galaxies and gravitational microlenses assumed to lie in-between these stars and the terrestrial observer. In contrast to the review article by Gurevich et al. [48], microlensing by compact objects is mainly considered. Criteria for the identification of microlensing events are discussed as also are microlensing events not satisfying these criteria, such as non-symmetrical light curves and chromatic and polarization effects. The Large Magellanic Cloud (LMC) and Galactic bulge microlensing data of the MACHO group are discussed in detail and also the LMC data of EROS and the Galactic bulge data of OGLE are presented. A detailed comparison of theoretical predictions and observations is given. (reviews of topical problems)

  8. Ultrastructural effects of silicone oil on the clear crystalline lens of the human eye.

    Science.gov (United States)

    Soliman, Wael; Sharaf, Mohamed; Abdelazeem, Khaled; El-Gamal, Dalia; Nafady, Allam

    2018-03-01

    To evaluate light and electron microscopic changes of the anterior capsule and its epithelium after clear lens extraction of vitrectomized myopic eyes with silicone oil tamponade. This prospective, controlled, non-randomized, interventional study included 20 anterior lens capsular specimens that were excised during combined clear lens extraction and silicone oil removal from previously vitrectomized highly myopic patients with silicone oil tamponade for previous retinal detachment surgeries. The specimens were examined via light microscopy and electron microscopy and compared with 20 anterior capsule specimens removed during clear lens extraction of non-vitrectomized highly myopic eyes. Light microscopic examination of clear lens anterior capsule specimens of vitrectomized myopic eyes filled with silicone oil showed relatively more flat cells with irregular outline of lens' epithelial cells with wide intercellular spaces, deeply stained nuclei, and multiple intracytoplasmic vacuoles. Scanning electron microscopy revealed collagenous surfaces filled with multiple pits, depressions, and abnormal deposits. Transmission electron microscopy revealed lens epithelial cells with apoptotic changes, many cytoplasmic vacuoles, and filopodia-like protrusions between lens epithelial cells and the capsule. Epithelial proliferation and multilayering were also observed. silicone oil may play a role in the development of apoptotic and histopathological changes in clear lens epithelial cells. Clarity of the lens at the time of silicone oil removal does not indicate an absence of cataractous changes. We found justification of combined clear lens extraction and silicone oil removal or combined phacovitrectomy when silicone oil injection is planned, but further long-term studies with larger patient groups are required.

  9. Effect of driving voltage polarity on dynamic response characteristics of electrowetting liquid lens

    Science.gov (United States)

    Na, Xie; Ning, Zhang; Rong-Qing, Xu

    2018-05-01

    A test device is developed for studying the dynamic process of an electrowetting liquid lens. By analyzing the light signals through the liquid lens, the dynamical properties of the lens are investigated. In our experiment, three types of pulse, i.e., sine, bipolar pulse, and single pulse signals, are employed to drive the liquid lens, and the dynamic characteristics of the lens are subsequently analyzed. The results show that the positive and negative polarities of the driving voltage can cause a significant difference in the response of the liquid lens; meanwhile, the lens’s response to the negative polarity of the driving voltage is clearer. We use the theory of charge restraint to explain this phenomenon, and it is concluded that the negative ions are more easily restrained by a dielectric layer. This work gives direct guidance for practical applications based on an electrowetting liquid lens.

  10. Effects of pressure and electrical charge on macromolecular transport across bovine lens basement membrane.

    Science.gov (United States)

    Ferrell, Nicholas; Cameron, Kathleen O; Groszek, Joseph J; Hofmann, Christina L; Li, Lingyan; Smith, Ross A; Bian, Aihua; Shintani, Ayumi; Zydney, Andrew L; Fissell, William H

    2013-04-02

    Molecular transport through the basement membrane is important for a number of physiological functions, and dysregulation of basement membrane architecture can have serious pathological consequences. The structure-function relationships that govern molecular transport in basement membranes are not fully understood. The basement membrane from the lens capsule of the eye is a collagen IV-rich matrix that can easily be extracted and manipulated in vitro. As such, it provides a convenient model for studying the functional relationships that govern molecular transport in basement membranes. Here we investigate the effects of increased transmembrane pressure and solute electrical charge on the transport properties of the lens basement membrane (LBM) from the bovine eye. Pressure-permeability relationships in LBM transport were governed primarily by changes in diffusive and convective contributions to solute flux and not by pressure-dependent changes in intrinsic membrane properties. The solute electrical charge had a minimal but statistically significant effect on solute transport through the LBM that was opposite of the expected electrokinetic behavior. The observed transport characteristics of the LBM are discussed in the context of established membrane transport modeling and previous work on the effects of pressure and electrical charge in other basement membrane systems. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  11. Potential pre-cataractous markers induced by low-dose radiation effects in cultured human lens cells

    Science.gov (United States)

    Blakely, E.; McNamara, M.; Bjornstad, K.; Chang, P.

    The human lens is one of the most radiosensitive organs of the body. Cataract, the opacification of the lens, is a late-appearing response to radiation damage. Recent evidence indicates that exposure to relatively low doses of space radiation are associated with an increased incidence and early appearance of human cataracts (Cucinotta et al., Radiat. Res. 156:460-466, 2001). Basic research in this area is needed to integrate the early responses of various late-responding tissues into our understanding and estimation of radiation risk for space travel. In addition, these studies may contribute to the development of countermeasures for the early lenticular changes, in order to prevent the late sequelae. Radiation damage to the lens is not life threatening but, if severe, can affect vision unless surgically corrected with synthetic lens replacement. The lens, however, may be a sensitive detector of radiation effects for other cells of ectodermal origin in the body for which there are not currently clear endpoints of low-dose radiation effects. We have investigated the dose-dependent expression of several radiation-responsive endpoints using our in vitro model of differentiating human lens epithelial cells (Blakely et al., Investigative Ophthalmology &Visual Sciences, 41(12):3898-3907, 2000). We have investigated radiation effects on several gene families that include, or relate to, DNA damage, cytokines, cell-cycle regulators, cell adhesion molecules, cell cytoskeletal function and apoptotic cell death. In this paper we will summarize some of our dose-dependent data from several radiation types, and describe the model of molecular and cellular events that we believe may be associated with precataractous events in the human lens after radiation exposure. This work was supported by NASA Grant #T-965W.

  12. Effect of Daily Contact Lens Cleaning on Ocular Adverse Events during Extended Wear.

    Science.gov (United States)

    Ozkan, Jerome; Rathi, Varsha M; de la Jara, Percy Lazon; Naduvilath, Thomas; Holden, Brien A; Willcox, Mark D P

    2015-02-01

    The purpose of the study was to assess what effect daily cleaning of contact lenses with a multipurpose disinfection solution (MPDS), during 30 nights extended wear, would have on contact lens-related adverse events. This was a prospective, open-label, randomized, controlled, parallel-group, 3-month clinical study in which 193 participants were dispensed with lotrafilcon A silicone hydrogel lenses for a 30-day extended-wear schedule and with lenses replaced monthly. Participants were randomized to a control or test group. Test subjects were required to remove lenses daily after waking, clean them with the MPDS, and reinsert the lenses. Control subjects wore lenses without removal for 30 days extended wear. Handling-related lens contamination was assessed at the baseline visit. There was no significant difference between the test and control groups for the incidence of significant corneal infiltrative events (1.3 vs. 4.9%, p = 0.368), total corneal infiltrative events (2.6 vs. 4.9%, p = 0.682), or mechanical events (1.3 vs. 2.5%, p = 1.00). The test group had greater corneal staining (p lenses) resulted in isolation of Gram-positive bacteria from 92.5% of test lenses compared with 87.5% of control lenses (p = 0.712). Gram-negative bacteria were isolated from 5% of test subjects compared with 2.5% of control subjects (p = 1.00). Fungus was isolated from 2.5% of subjects in both the test and control groups (p = 1.00). The intervention of daily morning cleaning of the lens surface with an MPDS during extended wear did not significantly influence the incidence of adverse events.

  13. Phakic iris-fixated intraocular lens placement in the anterior chamber: effects on aqueous flow.

    Science.gov (United States)

    Repetto, Rodolfo; Pralits, Jan O; Siggers, Jennifer H; Soleri, Paolo

    2015-05-01

    Phakic intraocular lenses (pIOLs) are used for correcting vision; in this paper we investigate the fluid dynamical effects of an iris-fixated lens in the anterior chamber. In particular, we focus on changes in the wall shear stress (WSS) on the cornea and iris, which could be responsible for endothelial and pigment cell loss, respectively, and also on the possible increase of the intraocular pressure, which is known to correlate with the incidence of secondary glaucoma. We use a mathematical model to study fluid flow in the anterior chamber in the presence of a pIOL. The governing equations are solved numerically using the open source software OpenFOAM. We use an idealized standard geometry for the anterior chamber and a realistic geometric description of the pIOL. We consider separately the main mechanisms that produce fluid flow in the anterior chamber. The numerical simulations allow us to obtain a detailed description of the velocity and pressure distribution in the anterior chamber, and indicated that implantation of the pIOL significantly modifies the fluid dynamics in the anterior chamber. However, lens implantation has negligible influence on the intraocular pressure and does not produce a significant increase of the shear stress on the cornea, while the shear stress on the iris, although increased, is not enough to cause detachment of cells. We conclude that alterations in the fluid dynamics in the anterior chamber as a result of lens implantation are unlikely to be the cause of medical complications associated with its use.

  14. Gravitational Lens: Deep Space Probe Design

    Science.gov (United States)

    2012-03-01

    Following the calculation of the semi-major axis is the eccentricity e, which measures the eccentricity of the gravity assist orbit. e = 1 + rpv2... eccentricity and the semi-major axis. The parameter is a property of conic sections dictated by the expression p = a(1 − e2) [10] (3.24) After the parameter...term attitude actuation. They were chosen over the inclusion of CMGs and reaction wheels because while CMGs and reaction wheels would decrease the

  15. Effective Gravitational Theories in String Theory and the AdS/CFT Correspondence

    DEFF Research Database (Denmark)

    Pedersen, Andreas Vigand

    an effective theory for higher dimensional extended black holes in a uid/elastic perturbative derivative expansion. Moreover, we show that the approach is quite universal and can be extended to various supergravities. Finally, we consider a new generalization of the method, which allows us to treat (SUGRA...... as low/high spin. As a byproduct of our analysis, we find a new stationary dipole-charged black hole solution on the AdS S backgrounds of type IIB/M-theory. We finally consider, via a double scaling extremal limit, a novel null-wave zero-temperature giant graviton exhibiting a BPS spectrum. Finally......We consider various aspects of effective gravitational theories, including supergravity, within the framework of the blackfold approach. The thesis is naturally split into three parts. In the first part of the thesis, we explore the blackfold approach and explain how it is possible to write down...

  16. Gamma and x radiation and thermal neutrons effects in lens solutions and the relation with proteins concentration

    International Nuclear Information System (INIS)

    Ramirez A, M.; Alarcon C, A.

    1996-01-01

    Radiation effects have been studied irradiating porcine lens solutions with doses which range between 52 Gy to 1042 Gy in the case of x-rays (30 kVp), 631 Gy to 4001 Gy in the case of 60 Co gamma rays and 314 Gy to 7596 Gy for thermal neutrons. The optics density time variation of solutions was determined using a Spectronic-501 spectrophotometer, and with this data an equation which describes the behavior in the mentioned cases was found. A phenomenological model is postulated which connects the optical time variation density increment macroscopic effect with proteins concentration in the crystalline lens obtaining relative biological effectiveness using the supra-molecular aggregate formation due to the denaturalization and destruction of lens proteins by radiation criteria. (authors). 5 refs., 3 figs

  17. Spinning gravitating objects in the effective field theory in the post-Newtonian scheme

    Energy Technology Data Exchange (ETDEWEB)

    Levi, Michele [Université Pierre et Marie Curie-Paris VI, CNRS-UMR 7095,Institut d’Astrophysique de Paris, 98 bis Boulevard Arago, 75014 Paris (France); Sorbonne Universités, Institut Lagrange de Paris,98 bis Boulevard Arago, 75014 Paris (France); Steinhoff, Jan [Max-Planck-Institute for Gravitational Physics (Albert-Einstein-Institute),Am Mühlenberg 1, 14476 Potsdam-Golm (Germany); Centro Multidisciplinar de Astrofisica, Instituto Superior Tecnico, Universidade de Lisboa,Avenida Rovisco Pais 1, 1049-001 Lisboa (Portugal)

    2015-09-30

    We introduce a formulation for spinning gravitating objects in the effective field theory in the post-Newtonian scheme in the context of the binary inspiral problem. We aim at an effective action, where all field modes below the orbital scale are integrated out. We spell out the relevant degrees of freedom, in particular the rotational ones, and the associated symmetries. Building on these symmetries, we introduce the minimal coupling part of the point particle action in terms of gauge rotational variables, and construct the spin-induced nonminimal couplings, where we obtain the leading order couplings to all orders in spin. We specify the gauge for the rotational variables, where the unphysical degrees of freedom are eliminated already from the Feynman rules, and all the orbital field modes are integrated out. The equations of motion of the spin can be directly obtained via a proper variation of the action, and Hamiltonians may be straightforwardly derived. We implement this effective field theory for spin to derive all spin dependent potentials up to next-to-leading order to quadratic level in spin, namely up to the third post-Newtonian order for rapidly rotating compact objects. In particular, the proper next-to-leading order spin-squared potential and Hamiltonian for generic compact objects are also derived. For the implementations we use the nonrelativistic gravitational field decomposition, which is found here to eliminate higher-loop Feynman diagrams also in spin dependent sectors, and facilitates derivations. This formulation for spin is thus ideal for treatment of higher order spin dependent sectors.

  18. Effect of miR-138 on the antioxidant function of lens epithelial cells affected by age-related cataracts

    Directory of Open Access Journals (Sweden)

    Bo Lu

    2018-03-01

    Full Text Available AIM: To investigate the effects and mechanism of miR-138 in mediating the antioxidant function of lens epithelial cells affected by age-related cataracts. METHODS: Real-time quantitative PCR(RT-qPCRwas used to detect miR-138 expression in the anterior lens capsules of healthy people, the anterior lens capsules of patients with age-related cataracts, and human epithelial cell line(SRA01/04cells exposed to oxidative stress. A 2', 7'-dichloro-fluorescein diacetate(DCFH-DAprobe was used to measure the levels of endogenous reactive oxygen species(ROSin human lens epithelial cells(hLECsexposed to 400μmol/L H2O2 for 1h. SRA01/04 cells were transfected with either miR-138 mimics, mimic controls, miR-138 inhibitors or inhibitor controls. After 72h, these cells were exposed to 400μmol/L H2O2 for 1h, then p53 and Bax mRNA expression were measured using RT-qPCR. Expression of p53 and Bax protein were also measured by western blotting analysis. Finally, cell viability was assessed using an MTS assay. RESULTS: Compared to the control group, expression of miR-138 in the anterior lens capsules of age-related cataract patients and in SRA01/04 cells exposed to oxidative stress significantly increased(PPPPCONCLUSION: The expression of miR-138 is upregulated in the anterior lens capsules of age-related cataract patients. MiR-138 decreases the anti-oxidative stress capacity of lens epithelial cells by upregulating p53 and Bax, while inhibiting cell proliferation and repair. This finding suggests that miR-138 may play a key role in the development of age-related cataracts.

  19. Effect of interface reflection in pseudophakic eyes with an additional refractive intraocular lens.

    Science.gov (United States)

    Schrecker, Jens; Zoric, Katja; Meßner, Arthur; Eppig, Timo

    2012-09-01

    To compare the surface reflections in a pseudophakic model eye with and without a monofocal additional refractive intraocular lens (add-on IOL). Department of Ophthalmology, Rudolf-Virchow-Klinikum Glauchau, Glauchau, and Experimental Ophthalmology, Saarland University, Homburg, Germany. Experimental study. The Liou and Brennan model eye was used to determine the retinal surface reflections in a pseudophakic model eye with and without an add-on IOL. The crystalline lens of the model eye was replaced by (1) a standard posterior chamber IOL (PC IOL) with a refractive power of 22.0 diopters (D) and (2) a PC IOL and an add-on IOL with refractive powers of 19.0 D and 2.5 D, respectively. To theoretically estimate the impact of the reflected images to visual impression, the signal-to-noise ratio (SNR) was calculated under 2 conditions: without and with straylight and double reflection effects. Compared with the pseudophakic model eye without an add-on IOL, the pseudophakic model eye with an add-on IOL showed no relevant differences in the SNR under both conditions. Findings indicate that implantation of monofocal add-on IOLs will not induce relevant additional disturbing glare compared with conventional pseudophakia. Copyright © 2012 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  20. Effect of contact lens wear and a near task on tear film break-up.

    Science.gov (United States)

    Jansen, Meredith E; Begley, Carolyn G; Himebaugh, Nikole H; Port, Nicholas L

    2010-05-01

    To study the effect of extrinsic controls on blinking by examining blink parameters and tear stability among adapted soft contact lens (CL) wearers performing tasks that require varying amounts of visual concentration. The Demographic Questionnaire, Contact Lens Dry Eye Questionnaire, and Current Symptoms Questionnaire were completed by 15 adapted soft CL wearers (nine females). Three 55 s simultaneous measurements of tear film stability via retroillumination and blinking were obtained with a slit-lamp biomicroscope and 200 Hz video camera while subjects listened to music and played a video game with and without their habitual CLs. Interblink interval (IBI) and blink amplitude (BA) were calculated. The area of break-up (AB) was calculated for the retroillumination image before each blink. The Current Symptoms Questionnaire was completed four times throughout testing. With the game compared to music, IBI was significantly longer and BA significantly decreased without CLs (p or = 0.5579, p or = 0.6262, p or = 0.5064, p film instability increased. Blinking frequency also increased, but it remained high when subjects played the game, and symptoms of ocular irritation increased. This suggests that wearing soft CLs, even when fully adapted, provides enough extrinsic ocular surface stimulation to override internal controls and affect blink parameters.

  1. Relativistic theory of gravitation

    International Nuclear Information System (INIS)

    Logunov, A.A.; Mestvirishvilli, M.A.

    1985-01-01

    In the present paper a relativistic theory of gravitation (RTG) is constructed in a unique way on the basis of the special relativity and geometrization principle. In this, a gravitational field is treated as the Faraday-Maxwell spin-2 and spin-0 physical field possessing energy and momentum. The source of a gravitational field is the total conserved energy-momentum tensor of matter and of a gravitational field in Minkowski space. In the RTG, the conservation laws are strictly fulfilled for the energy-momentum and for the angular momentum of matter and a gravitational field. The theory explains the whole available set of experiments on gravitation. In virtue of the geometrization principle, the Riemannian space in our theory is of field origin, since it appears as an effective force space due to the action of a gravitational field on matter. The RTg leads to an exceptionally strong prediction: The Universe is not closed but just ''flat''. This suggests that in the Universe a ''hidden mass'' should exist in some form of matter

  2. Orbital effects of a monochromatic plane gravitational wave with ultra-low frequency incident on a gravitationally bound two-body system

    Directory of Open Access Journals (Sweden)

    Lorenzo Iorio

    2014-09-01

    Full Text Available We analytically compute the long-term orbital variations of a test particle orbiting a central body acted upon by an incident monochromatic plane gravitational wave. We assume that the characteristic size of the perturbed two-body system is much smaller than the wavelength of the wave. Moreover, we also suppose that the wave's frequency νg is much smaller than the particle's orbital one nb. We make neither a priori assumptions about the direction of the wavevector kˆ nor on the orbital configuration of the particle. While the semi-major axis a is left unaffected, the eccentricity e, the inclination I, the longitude of the ascending node Ω, the longitude of pericenter ϖ and the mean anomaly ℳ undergo non-vanishing long-term changes of the form dΨ/dt=F(Kij;e,I,Ω,ω,Ψ=e,I,Ω,ϖ,M, where Kij, i,j=1,2,3 are the coefficients of the tidal matrix K. Thus, in addition to the variations of its orientation in space, the shape of the orbit would be altered as well. Strictly speaking, such effects are not secular trends because of the slow modulation introduced by K and by the orbital elements themselves: they exhibit peculiar long-term temporal patterns which would be potentially of help for their detection in multidecadal analyses of extended data records of planetary observations of various kinds. In particular, they could be useful in performing independent tests of the inflation-driven ultra-low gravitational waves whose imprint may have been indirectly detected in the Cosmic Microwave Background by the Earth-based experiment BICEP2. Our calculation holds, in general, for any gravitationally bound two-body system whose orbital frequency nb is much larger than the frequency νg of the external wave, like, e.g., extrasolar planets and the stars orbiting the Galactic black hole. It is also valid for a generic perturbation of tidal type with constant coefficients over timescales of the order of the orbital period of the perturbed particle.

  3. Low-dose radiation effects on the evolution of chronic dystrophical processes in cornea and clouding of crystalline lens

    International Nuclear Information System (INIS)

    Gajdaj, Yu.V.; Gajdaj, V.M.

    1993-01-01

    Low-dose radiation effects on the course of chronic dystrophical processes in cornea and the dynamics of crystalline lens clouding of involution age genesis are investigated in the patients participated in Chernobyl accident response. Examples of the concrete pathological cases are considered. It was stated that the above dose effects led to exacerbation of the chronic slack dystrophical processes in cornea and intensification of the development of cornea primary dystrophy. In a number of cases the intensification of development of crystalline lens clouding takes place resulted in the cataract for 2-3 years

  4. Effect of a gravitational wave on electromagnetic radiation confined in a cavity

    International Nuclear Information System (INIS)

    Tourrenc, P.

    1978-01-01

    Gravitational radiation is considered within the first-order approximation. A pattern of an electromagnetic cavity is studied: Gravitational waves give rise to a deformation of the planes limiting the cavity. This deformation alters the electromagnetic radiation. Several cases are studied and orders of magnitude are put forward. (author)

  5. On quantum electrodynamics in an external gravitational field. Part 2. Discussion of the effects

    International Nuclear Information System (INIS)

    Lotze, K.H.

    1978-01-01

    The S matrix constructed in Part I of this work is evaluated for processes which it includes. Some of them are discussed in more detail: pair creation and scattering in an external gravitational field, pair creation by a photon and creation of an electron-positron pair and a photon in an external gravitational field. (author)

  6. Dynamics of Fermat potentials in nonperturbative gravitational lensing

    International Nuclear Information System (INIS)

    Frittelli, Simonetta; Newman, Ezra T.

    2002-01-01

    We present a framework, based on the null-surface formulation of general relativity, for discussing the dynamics of Fermat potentials for gravitational lensing in a generic situation without approximations of any kind. Additionally, we derive two lens equations: one for the case of thick compact lenses and the other one for lensing by gravitational waves. These equations in principle generalize the astrophysical scheme for lensing by removing the thin-lens approximation while retaining the weak fields

  7. Straylight Measurements in Contact Lens Wear

    NARCIS (Netherlands)

    van der Meulen, Ivanka J. E.; Engelbrecht, Leonore A.; van Vliet, Johannes M. J.; Lapid-Gortzak, Ruth; Nieuwendaal, Carla P.; Mourits, Maarten P.; Schlingemann, Reinier O.; van den Berg, Thomas J. T. P.

    2010-01-01

    Purpose: (1) To quantify the effect of contact lens wear on straylight in rigid and soft contact lens wearers and (2) to relate findings to morphological changes and subjective complaints. Methods: Straylight was measured using the Oculus C-Quant during contact lens wear and after contact lens

  8. Objective lens

    Science.gov (United States)

    Olczak, Eugene G. (Inventor)

    2011-01-01

    An objective lens and a method for using same. The objective lens has a first end, a second end, and a plurality of optical elements. The optical elements are positioned between the first end and the second end and are at least substantially symmetric about a plane centered between the first end and the second end.

  9. Gravitational capture

    International Nuclear Information System (INIS)

    Bondi, H.

    1979-01-01

    In spite of the strength of gravitational focres between celestial bodies, gravitational capture is not a simple concept. The principles of conservation of linear momentum and of conservation of angular momentum, always impose severe constraints, while conservation of energy and the vital distinction between dissipative and non-dissipative systems allows one to rule out capture in a wide variety of cases. In complex systems especially those without dissipation, long dwell time is a more significant concept than permanent capture. (author)

  10. Probing the gravitational Faraday rotation using quasar X-ray microlensing.

    Science.gov (United States)

    Chen, Bin

    2015-11-17

    The effect of gravitational Faraday rotation was predicted in the 1950s, but there is currently no practical method for measuring this effect. Measuring this effect is important because it will provide new evidence for correctness of general relativity, in particular, in the strong field limit. We predict that the observed degree and angle of the X-ray polarization of a cosmologically distant quasar microlensed by the random star field in a foreground galaxy or cluster lens vary rapidly and concurrently with flux during caustic-crossing events using the first simulation of quasar X-ray microlensing polarization light curves. Therefore, it is possible to detect gravitational Faraday rotation by monitoring the X-ray polarization of gravitationally microlensed quasars. Detecting this effect will also confirm the strong gravity nature of quasar X-ray emission.

  11. Photoaggregation of crystallins (main proteins of eye lens) under the effect of XeCl laser radiation

    Science.gov (United States)

    Soustov, Lev V.; Chelnokov, Evgeny V.; Bityurin, Nikita M.; Kiselev, A. L.; Nemov, V. V.; Sergeev, Yu. V.; Ostrovsky, Michail A.

    2004-07-01

    UV light is one of primary factors associated with cataract formation in the eye lens. α-, β-, γ-Crystallins maintain lens transparency, and damage to these proteins plays a major role in cataract formation. The effect of XeCl laser radiation (308 nm) on βL-crystallin solution is studied. The strong dependence of protein aggregation kinetics on both laser fluence (w) and repetition rate (F) is investigated. The kinetics features are similar to those of carbonic anhydrase photoaggregation studied previously.

  12. On- and off-eye spherical aberration of soft contact lenses and consequent changes of effective lens power.

    Science.gov (United States)

    Dietze, Holger H; Cox, Michael J

    2003-02-01

    Soft contact lenses produce a significant level of spherical aberration affecting their power on-eye. A simple model assuming that a thin soft contact lens aligns to the cornea predicts that these effects are similar on-eye and off-eye. The wavefront aberration for 17 eyes and 33 soft contact lenses on-eye was measured with a Shack-Hartmann wavefront sensor. The Zernike coefficients describing the on-eye spherical aberration of the soft contact lens were compared with off-eye ray-tracing results. Paraxial and effective lens power changes were determined. The model predicts the on-eye spherical aberration of soft contact lenses closely. The resulting power change for a +/- 7.00 D spherical soft contact lens is +/- 0.5 D for a 6-mm pupil diameter and +/- 0.1 D for a 3-mm pupil diameter. Power change is negligible for soft contact lenses corrected for off-eye spherical aberration. For thin soft contact lenses, the level of spherical aberration and the consequent power change is similar on-eye and off-eye. Soft contact lenses corrected for spherical aberration in air will be expected to be aberration-free on-eye and produce only negligibly small power changes. For soft contact lenses without aberration correction, for higher levels of ametropia and large pupils, the soft contact lens power should be determined with trial lenses with their power and p value similar to the prescribed lens. The benefit of soft contact lenses corrected for spherical aberration depends on the level of ocular spherical aberration.

  13. A Randomized Controlled Trial of Tong Len Meditation Practice in Cancer Patients: Evaluation of a Distant Psychological Healing Effect.

    Science.gov (United States)

    Pagliaro, Gioacchino; Pandolfi, Paolo; Collina, Natalina; Frezza, Giovanni; Brandes, Alba; Galli, Margherita; Avventuroso, Federica Marzocchi; De Lisio, Sara; Musti, Muriel Assunta; Franceschi, Enrico; Esposti, Roberta Degli; Lombardo, Laura; Cavallo, Giovanna; Di Battista, Monica; Rimondini, Simonetta; Poggi, Rosalba; Susini, Cinzia; Renzi, Rina; Marconi, Linda

    2016-01-01

    Tong Len meditation is an important therapeutic tool in the Tibetan medicine, and it can be used for self-healing and/or to heal others. Currently, in the West, there is no scientific study concerning the efficacy of a Tong Len distant healing effect on psychological disorders in cancer patients. To evaluate a distant healing effect of Tong Len meditation on stress, anxiety, depression, fatigue, and self-perceived quality of life in cancer patients. These psychological objectives were chosen as a consequence of the limited scientific literature of present day. We performed a double-blind randomized controlled trial on 103 cancer patients with tumors. Overall, 12 meditators used Tong Len in aid of 52 patients randomly selected as experimental group, while the remaining 51 patients constituted the control group. Patients and meditators did not know each other. All patients completed profile of mood states (POMS) and European Quality of Life-5 dimensions (EQ-5D) questionnaires before treatment (T0), after two (T1) and three months of treatment (T2), and one month after treatment cessation (T3). With regard to the parameters related to depression, a statistically significant improvement (P = .003) was observed in the treatment group compared to controls. On the other hand, the vigor/activity parameter saw significant improvements in the control group (P = .009). Both groups exhibited significant improvements in the other factors assessed in the POMS and EQ-5D questionnaires. This study did not provide sufficient evidence supporting an efficacy of Tong Len meditation in distant psychological healing as compared to a control condition. The research highlighted some psychological improvements through Tong Len distant meditation in a group of patients unknown to meditators. Therefore, the enhancement detected in most parameters in both treatment and control groups raises interest on in-depth analysis and evaluation of distant meditation on cancer patients to mitigate

  14. Primordial non-Gaussianity and power asymmetry with quantum gravitational effects in loop quantum cosmology

    Science.gov (United States)

    Zhu, Tao; Wang, Anzhong; Kirsten, Klaus; Cleaver, Gerald; Sheng, Qin

    2018-02-01

    Loop quantum cosmology provides a resolution of the classical big bang singularity in the deep Planck era. The evolution, prior to the usual slow-roll inflation, naturally generates excited states at the onset of the slow-roll inflation. It is expected that these quantum gravitational effects could leave its fingerprints on the primordial perturbation spectrum and non-Gaussianity, and lead to some observational evidences in the cosmic microwave background. While the impact of the quantum effects on the primordial perturbation spectrum has been already studied and constrained by current data, in this paper we continue to study such effects but now on the non-Gaussianity of the primordial curvature perturbations. We present detailed and analytical calculations of the non-Gaussianity and show explicitly that the corrections due to the quantum effects are at the same magnitude of the slow-roll parameters in the observable scales and thus are well within current observational constraints. Despite this, we show that the non-Gaussianity in the squeezed limit can be enhanced at superhorizon scales and it is these effects that can yield a large statistical anisotropy on the power spectrum through the Erickcek-Kamionkowski-Carroll mechanism.

  15. Effectiveness of early lens extraction for the treatment of primary angle-closure glaucoma (EAGLE): a randomised controlled trial.

    Science.gov (United States)

    Azuara-Blanco, Augusto; Burr, Jennifer; Ramsay, Craig; Cooper, David; Foster, Paul J; Friedman, David S; Scotland, Graham; Javanbakht, Mehdi; Cochrane, Claire; Norrie, John

    2016-10-01

    Primary angle-closure glaucoma is a leading cause of irreversible blindness worldwide. In early-stage disease, intraocular pressure is raised without visual loss. Because the crystalline lens has a major mechanistic role, lens extraction might be a useful initial treatment. From Jan 8, 2009, to Dec 28, 2011, we enrolled patients from 30 hospital eye services in five countries. Randomisation was done by a web-based application. Patients were assigned to undergo clear-lens extraction or receive standard care with laser peripheral iridotomy and topical medical treatment. Eligible patients were aged 50 years or older, did not have cataracts, and had newly diagnosed primary angle closure with intraocular pressure 30 mm Hg or greater or primary angle-closure glaucoma. The co-primary endpoints were patient-reported health status, intraocular pressure, and incremental cost-effectiveness ratio per quality-adjusted life-year gained 36 months after treatment. Analysis was by intention to treat. This study is registered, number ISRCTN44464607. Of 419 participants enrolled, 155 had primary angle closure and 263 primary angle-closure glaucoma. 208 were assigned to clear-lens extraction and 211 to standard care, of whom 351 (84%) had complete data on health status and 366 (87%) on intraocular pressure. The mean health status score (0·87 [SD 0·12]), assessed with the European Quality of Life-5 Dimensions questionnaire, was 0·052 higher (95% CI 0·015-0·088, p=0·005) and mean intraocular pressure (16·6 [SD 3·5] mm Hg) 1·18 mm Hg lower (95% CI -1·99 to -0·38, p=0·004) after clear-lens extraction than after standard care. The incremental cost-effectiveness ratio was £14 284 for initial lens extraction versus standard care. Irreversible loss of vision occurred in one participant who underwent clear-lens extraction and three who received standard care. No patients had serious adverse events. Clear-lens extraction showed greater efficacy and was more cost-effective than

  16. The effectiveness of early lens extraction with intraocular lens implantation for the treatment of primary angle-closure glaucoma (EAGLE): study protocol for a randomized controlled trial.

    Science.gov (United States)

    Azuara-Blanco, Augusto; Burr, Jennifer M; Cochran, Claire; Ramsay, Craig; Vale, Luke; Foster, Paul; Friedman, David; Quayyum, Zahidul; Lai, Jimmy; Nolan, Winnie; Aung, Tin; Chew, Paul; McPherson, Gladys; McDonald, Alison; Norrie, John

    2011-05-23

    Glaucoma is the leading cause of irreversible blindness. Although primary open-angle glaucoma is more common, primary angle-closure glaucoma (PACG) is more likely to result in irreversible blindness. By 2020, 5·3 million people worldwide will be blind because of PACG. The current standard care for PACG is a stepped approach of a combination of laser iridotomy surgery (to open the drainage angle) and medical treatment (to reduce intraocular pressure). If these treatments fail, glaucoma surgery (eg, trabeculectomy) is indicated. It has been proposed that, because the lens of the eye plays a major role in the mechanisms leading to PACG, early clear lens extraction will improve glaucoma control by opening the drainage angle. This procedure might reduce the need for drugs and glaucoma surgery, maintain good visual acuity, and improve quality of life compared with standard care.EAGLE aims to evaluate whether early lens extraction improves patient-reported, clinical outcomes, and cost-effectiveness, compared with standard care. EAGLE is a multicentre pragmatic randomized trial. All people presenting to the recruitment centres in the UK and east Asia with newly diagnosed PACG and who are at least 50 years old are eligible.The primary outcomes are EQ-5D, intraocular pressure, and incremental cost per quality adjusted life year (QALY) gained. Other outcomes are: vision and glaucoma-specific patient-reported outcomes, visual acuity, visual field, angle closure, number of medications, additional surgery (e.g., trabeculectomy), costs to the health services and patients, and adverse events.A single main analysis will be done at the end of the trial, after three years of follow-up. The analysis will be based on all participants as randomized (intention to treat). 400 participants (200 in each group) will be recruited, to have 90% power at 5% significance level to detect a difference in EQ-5D score between the two groups of 0·05, and a mean difference in intraocular pressure of

  17. The effectiveness of early lens extraction with intraocular lens implantation for the treatment of primary angle-closure glaucoma (EAGLE: study protocol for a randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Chew Paul

    2011-05-01

    Full Text Available Abstract Background Glaucoma is the leading cause of irreversible blindness. Although primary open-angle glaucoma is more common, primary angle-closure glaucoma (PACG is more likely to result in irreversible blindness. By 2020, 5·3 million people worldwide will be blind because of PACG. The current standard care for PACG is a stepped approach of a combination of laser iridotomy surgery (to open the drainage angle and medical treatment (to reduce intraocular pressure. If these treatments fail, glaucoma surgery (eg, trabeculectomy is indicated. It has been proposed that, because the lens of the eye plays a major role in the mechanisms leading to PACG, early clear lens extraction will improve glaucoma control by opening the drainage angle. This procedure might reduce the need for drugs and glaucoma surgery, maintain good visual acuity, and improve quality of life compared with standard care. EAGLE aims to evaluate whether early lens extraction improves patient-reported, clinical outcomes, and cost-effectiveness, compared with standard care. Methods/Design EAGLE is a multicentre pragmatic randomized trial. All people presenting to the recruitment centres in the UK and east Asia with newly diagnosed PACG and who are at least 50 years old are eligible. The primary outcomes are EQ-5D, intraocular pressure, and incremental cost per quality adjusted life year (QALY gained. Other outcomes are: vision and glaucoma-specific patient-reported outcomes, visual acuity, visual field, angle closure, number of medications, additional surgery (e.g., trabeculectomy, costs to the health services and patients, and adverse events. A single main analysis will be done at the end of the trial, after three years of follow-up. The analysis will be based on all participants as randomized (intention to treat. 400 participants (200 in each group will be recruited, to have 90% power at 5% significance level to detect a difference in EQ-5D score between the two groups of 0·05

  18. Effects of resonator input power on Kerr lens mode-locked lasers

    Indian Academy of Sciences (India)

    lasers. S KAZEMPOUR, A KESHAVARZ∗ and G HONARASA. Department of Physics, Faculty of Sciences, Shiraz University of Technology, Shiraz, Iran ... Keywords. Femtosecond pulses; Kerr lens sensitivity; Kerr lens mode-locked laser. ... The optical lengths of Kerr medium with thickness d and refractive index n under.

  19. Effects of anti-vascular endothelial growth factor monoclonal antibody (bevacizumab on lens epithelial cells

    Directory of Open Access Journals (Sweden)

    Jun JH

    2016-06-01

    Full Text Available Jong Hwa Jun,1 Wern-Joo Sohn,2 Youngkyun Lee,2 Jae-Young Kim21Department of Ophthalmology, School of Medicine, Dongsan Medical Center, Keimyung University, 2Department of Oral Biochemistry, School of Dentistry, IHBR, Kyungpook National University, Daegu, South KoreaAbstract: The molecular and cellular effects of anti-vascular endothelial growth factor monoclonal antibody (bevacizumab on lens epithelial cells (LECs were examined using both an immortalized human lens epithelial cell line and a porcine capsular bag model. After treatment with various concentrations of bevacizumab, cell viability and proliferation patterns were evaluated using the water-soluble tetrazolium salt assay and 5-bromo-2'-deoxyuridine enzyme-linked immunosorbent assay, respectively. The scratch assay and Western blot analysis were employed to validate the cell migration pattern and altered expression levels of signaling molecules related to the epithelial–mesenchymal transition (EMT. Application of bevacizumab induced a range of altered cellular events in a concentration-dependent manner. A 0.1–2 mg/mL concentration demonstrated dose-dependent increase in proliferation and viability of LECs. However, 4 mg/mL decreased cell proliferation and viability. Cell migrations displayed dose-dependent retardation from 0.1 mg/mL bevacizumab treatment. Transforming growth factor-β2 expression was markedly increased in a dose-dependent manner, and α-smooth muscle actin, matrix metalloproteinase-9, and vimentin expression levels showed dose-dependent changes in a B3 cell line. Microscopic observation of porcine capsular bag revealed changes in cellular morphology and a decline in cell density compared to the control after 2 mg/mL treatment. The central aspect of posterior capsule showed delayed confluence, and the factors related to EMT revealed similar expression patterns to those identified in the cell line. Based on these results, bevacizumab modulates the proliferation

  20. Characterization of the Effects of Hyperbaric Oxygen on the Biochemical and Optical Properties of the Bovine Lens.

    Science.gov (United States)

    Lim, Julie C; Vaghefi, Ehsan; Li, Bo; Nye-Wood, Mitchell G; Donaldson, Paul J

    2016-04-01

    To assess the morphologic, biochemical, and optical properties of bovine lenses treated with hyperbaric oxygen. Lenses were exposed to hyperbaric nitrogen (HBN) or hyperbaric oxygen (HBO) for 5 or 15 hours, lens transparency was assessed using bright field microscopy and lens morphology was visualized using confocal microscopy. Lenses were dissected into the outer cortex, inner cortex, and core, and glutathione (GSH) and malondialdehyde (MDA) measured. Gel electrophoresis and Western blotting were used to detect high molecular weight aggregates (HMW) and glutathione mixed protein disulfides (PSSG). T2-weighted MRI was used to measure lens geometry and map the water/protein ratio to allow gradient refractive index (GRIN) profiles to be calculated. Optical modeling software calculated the change in lens optical power, and an anatomically correct model of the light pathway of the bovine eye was used to determine the effects of HBN and HBO on focal length and overall image quality. Lenses were transparent and lens morphology similar between HBN- and HBO-treated lenses. At 5- and 15-hour HBO exposure, GSH and GSSG were depleted and MDA increased in the core. Glutathione mixed protein disulfides were detected in the outer and inner cortex only with no appearance of HMW. Optical changes were detectable only with 15-hour HBO treatment with a decrease in the refractive index of the core, slightly reduced lens thickness, and an increase in optimal focal length, consistent with a hyperopic shift. This system may serve as a model to study changes that occur with advanced aging rather than nuclear cataract formation per se.

  1. SU-F-T-86: Electron Dosimetric Effects of Bolus and Lens Shielding in Treating Superficial Eye Lesions

    Energy Technology Data Exchange (ETDEWEB)

    Young, L [University of Washington Medical Center, Seattle, WA (United States); Wootton, L [University of Washington School of Medicine, Seattle, WA (United States); Gopan, O; Liao, J [University of Washington, Seattle, WA (United States)

    2016-06-15

    Purpose: Electron therapy for the treatment of ocular lymphomas requires the lens to be shielded to prevent secondary cataracts. This work evaluates the dosimetry under a suspended eyeshield with and without bolus for low energy electron fields. Methods: Film (GafChromic EBT3) dosimetry and relative output factors were measured for 6, 8, and 10 MeV electron energies. A customized 5 cm diameter circle electron orbital cutout was constructed for a 6×6 cm applicator with a lens shield, 1 cm diameter Cerrobend cylinder with 2.2 cm length, suspended from an XV film covering the open field. Relative output factors were measured using a Scanditronix electron diode in a solid water phantom. Depth dose profiles were collected for bolus thicknesses of 0, 3, and 5 mm in solid water at a source to surface distance (SSD) of 100 cm. These measurements were repeated in a Rando phantom. Results: At 5 mm, the approximate distance of the lens from the surface of the cornea, the estimated dose in solid water under the suspended lens shield was reduced to 16%, 14%, and 13% of the unblocked dose at the same depth, for electron energies of 6, 8, and 10 MeV, respectively. Applying bolus increased estimated doses under the block to 22% for 3-mm and 32% for 5-mm thicknesses for a 6 MeV incident electron beam. This effect is reduced for higher energies where the corresponding values were 15.5% and 18% for 3-mm and 5-mm for an 8 MeV electron beam. Conclusion: The application of bolus to treat superficial eye lesions of the conjunctiva increases lens dose at a depth of 5-mm under the shielding block with decreasing electron energy. Careful selection of electron energy is needed to account for electron scatter under the lens shield with the application of bolus in order to prevent cataracts.

  2. Error induced by the estimation of the corneal power and the effective lens position with a rotationally asymmetric refractive multifocal intraocular lens.

    Science.gov (United States)

    Piñero, David P; Camps, Vicente J; Ramón, María L; Mateo, Verónica; Pérez-Cambrodí, Rafael J

    2015-01-01

    To evaluate the prediction error in intraocular lens (IOL) power calculation for a rotationally asymmetric refractive multifocal IOL and the impact on this error of the optimization of the keratometric estimation of the corneal power and the prediction of the effective lens position (ELP). Retrospective study including a total of 25 eyes of 13 patients (age, 50 to 83y) with previous cataract surgery with implantation of the Lentis Mplus LS-312 IOL (Oculentis GmbH, Germany). In all cases, an adjusted IOL power (PIOLadj) was calculated based on Gaussian optics using a variable keratometric index value (nkadj) for the estimation of the corneal power (Pkadj) and on a new value for ELP (ELPadj) obtained by multiple regression analysis. This PIOLadj was compared with the IOL power implanted (PIOLReal) and the value proposed by three conventional formulas (Haigis, Hoffer Q and Holladay I). PIOLReal was not significantly different than PIOLadj and Holladay IOL power (P>0.05). In the Bland and Altman analysis, PIOLadj showed lower mean difference (-0.07 D) and limits of agreement (of 1.47 and -1.61 D) when compared to PIOLReal than the IOL power value obtained with the Holladay formula. Furthermore, ELPadj was significantly lower than ELP calculated with other conventional formulas (P<0.01) and was found to be dependent on axial length, anterior chamber depth and Pkadj. Refractive outcomes after cataract surgery with implantation of the multifocal IOL Lentis Mplus LS-312 can be optimized by minimizing the keratometric error and by estimating ELP using a mathematical expression dependent on anatomical factors.

  3. Error induced by the estimation of the corneal power and the effective lens position with a rotationally asymmetric refractive multifocal intraocular lens

    Directory of Open Access Journals (Sweden)

    David P. Piñero

    2015-06-01

    Full Text Available AIM:To evaluate the prediction error in intraocular lens (IOL power calculation for a rotationally asymmetric refractive multifocal IOL and the impact on this error of the optimization of the keratometric estimation of the corneal power and the prediction of the effective lens position (ELP.METHODS:Retrospective study including a total of 25 eyes of 13 patients (age, 50 to 83y with previous cataract surgery with implantation of the Lentis Mplus LS-312 IOL (Oculentis GmbH, Germany. In all cases, an adjusted IOL power (PIOLadj was calculated based on Gaussian optics using a variable keratometric index value (nkadj for the estimation of the corneal power (Pkadj and on a new value for ELP (ELPadj obtained by multiple regression analysis. This PIOLadj was compared with the IOL power implanted (PIOLReal and the value proposed by three conventional formulas (Haigis, Hoffer Q and Holladay Ⅰ.RESULTS:PIOLReal was not significantly different than PIOLadj and Holladay IOL power (P>0.05. In the Bland and Altman analysis, PIOLadj showed lower mean difference (-0.07 D and limits of agreement (of 1.47 and -1.61 D when compared to PIOLReal than the IOL power value obtained with the Holladay formula. Furthermore, ELPadj was significantly lower than ELP calculated with other conventional formulas (P<0.01 and was found to be dependent on axial length, anterior chamber depth and Pkadj.CONCLUSION:Refractive outcomes after cataract surgery with implantation of the multifocal IOL Lentis Mplus LS-312 can be optimized by minimizing the keratometric error and by estimating ELP using a mathematical expression dependent on anatomical factors.

  4. Analysis of Weyl-affine theories of gravity in terms of the gravitational frequency shift effect

    International Nuclear Information System (INIS)

    Coley, A.A.; Sarmiento, G.A.

    1986-01-01

    A subclass of nonmetric theories of gravity, called Weyl-affine theories of gravity (WATGs), is analyzed by calculating their predictions for the gravitational frequency shift undergone by a wave signal in a planned solar probe. The analysis is carried out using a formalism in a spherically symmetric and static gravitational field. One of the advantages of the formalism is that any possible ''nonmetricity'' is contained in an arbitrary function, λ, of the Newtonian gravitational potential, U. The numerical results are calculated for a situation modeling a future experiment in the solar system. In the calculations, the metric components and the function, λ, are expanded up to third order in U. Within the limits of the gravitational redshift experiments performed to date, it is found that WATGs must coincide with their metric counterparts (i.e., λ is unity). It is hoped that the planned solar probe will test the nature of the theories under investigation to a higher degree of accuracy

  5. Elastic stockings effect on leg volume variability in healthy workers under prolonged gravitational gradient exposure

    Directory of Open Access Journals (Sweden)

    Mirko Tessari

    2015-06-01

    Full Text Available The aim of this study was to determine the elastic stockings effect on healthy workers (HW who are exposed to a prolonged hydrostatic pressure overload for professional reasons. The cohort was composed by 20 HW who voluntarily underwent a water plethysmography test before and after eight hour of standing up in an operating room, wearing elastic stockings. After 8 h of gravity exposure, we demonstrated the absence of leg volume increase in case of elastic stockings use. In the morning measurement we found that the lower limb volume was 1967.5 mL±224, while in the evening it was 1962.5 mL±227 (P<0.0828. The decreased volume is significantly correlated with the time that was spent under gravity forces for working purpose wearing elastic stockings (R2=0.99, P<0.0001. Our experiment demonstrates that elastic stockings may effectively counteract the increased leg volume over time in workers who are exposed to prolonged gravitational gradient. Further longitudinal studies are needed to determine if the above effect could correct one of the major risk factors for the development of chronic venous insufficiency.

  6. Search for dark matter effects on gravitational signals from neutron star mergers

    Science.gov (United States)

    Ellis, John; Hektor, Andi; Hütsi, Gert; Kannike, Kristjan; Marzola, Luca; Raidal, Martti; Vaskonen, Ville

    2018-06-01

    Motivated by the recent detection of the gravitational wave signal emitted by a binary neutron star merger, we analyse the possible impact of dark matter on such signals. We show that dark matter cores in merging neutron stars may yield an observable supplementary peak in the gravitational wave power spectral density following the merger, which could be distinguished from the features produced by the neutron components.

  7. arXiv Search for Dark Matter Effects on Gravitational Signals from Neutron Star Mergers

    CERN Document Server

    Ellis, John; Hütsi, Gert; Kannike, Kristjan; Marzola, Luca; Raidal, Martti; Vaskonen, Ville

    2018-06-10

    Motivated by the recent detection of the gravitational wave signal emitted by a binary neutron star merger, we analyse the possible impact of dark matter on such signals. We show that dark matter cores in merging neutron stars may yield an observable supplementary peak in the gravitational wave power spectral density following the merger, which could be distinguished from the features produced by the neutron components.

  8. Search for dark matter effects on gravitational signals from neutron star mergers

    OpenAIRE

    Ellis, John; Hektor, Andi; Hütsi, Gert; Kannike, Kristjan; Marzola, Luca; Raidal, Martti; Vaskonen, Ville

    2018-01-01

    Motivated by the recent detection of the gravitational wave signal emitted by a binary neutron star merger, we analyse the possible impact of dark matter on such signals. We show that dark matter cores in merging neutron stars may yield an observable supplementary peak in the gravitational wave power spectral density following the merger, which could be distinguished from the features produced by the neutron components.

  9. Constraints on early-type galaxy structure from spectroscopically selected gravitational lenses

    Science.gov (United States)

    Bolton, Adam Stallard

    2005-11-01

    This thesis describes all aspects of a unique spectroscopic survey for strong galaxy-galaxy gravitational lenses: motivation, candidate selection, ground- based spectroscopic follow-up, Hubble Space Telescope imaging, data analysis, and results on the radial density profile of the lens galaxies. The lens candidates are selected from within the spectroscopic database of the Sloan Digital Sky Survey (SDSS) based on the appearance of two significantly different redshifts along the same line of sight, and lenses are confirmed within the candidate sample by follow-up imaging and spectroscopy. The sample of [approximate]20 early-type lenses presented in this thesis represents the largest single strong-lens galaxy sample discovered and published to date. These lenses probe the mass of the lens galaxies on scales roughly equal to one-half effective radius. We find a dynamical normalization between isothermal lens-model velocity dispersions and aperture-corrected SDSS stellar velocity dispersions of f = s lens /s stars = 0.95 +/- 0.03. By combining lens-model Einstein radii and de Vaucouleurs effective radii with stellar velocity dispersions through the Jeans equation, we find that the logarithmic slope [Special characters omitted.] of the density profile in our lens galaxies (r 0 ( [Special characters omitted.] ) is on average slightly steeper than isothermal ([Special characters omitted.] = 2) with a modest intrinsic scatter. Parameterizing the intrinsic distribution in [Special characters omitted.] as Gaussian, we find a maximum-likelihood mean of [Special characters omitted. ] and standard deviation of s[Special characters omitted.] = [Special characters omitted.] (68% confidence, for isotropic velocity-dispersion models). Our results rule out a single universal logarithmic density slope at >99.995% confidence. The success of this spectroscopic lens survey suggests that similar projects should be considered as an explicit science goal of future redshift surveys. (Copies

  10. Relativistic theory of gravitation

    International Nuclear Information System (INIS)

    Logunov, A.A.; Mestvirishvili, M.A.

    1986-01-01

    In the present paper a relativistic theory of gravitation (RTG) is unambiguously constructed on the basis of the special relativity and geometrization principle. In this a gravitational field is treated as the Faraday--Maxwell spin-2 and spin-0 physical field possessing energy and momentum. The source of a gravitational field is the total conserved energy-momentum tensor of matter and of a gravitational field in Minkowski space. In the RTG the conservation laws are strictly fulfilled for the energy-moment and for the angular momentum of matter and a gravitational field. The theory explains the whole available set of experiments on gravity. By virtue of the geometrization principle, the Riemannian space in our theory is of field origin, since it appears as an effective force space due to the action of a gravitational field on matter. The RTG leads to an exceptionally strong prediction: The universe is not closed but just ''flat.'' This suggests that in the universe a ''missing mass'' should exist in a form of matter

  11. Effect of eccentricity on searches for gravitational waves from coalescing compact binaries in ground-based detectors

    International Nuclear Information System (INIS)

    Brown, Duncan A.; Zimmerman, Peter J.

    2010-01-01

    Inspiralling compact binaries are expected to circularize before their gravitational-wave signals reach the sensitive frequency band of ground-based detectors. Current searches for gravitational waves from compact binaries using the LIGO and Virgo detectors therefore use circular templates to construct matched filters. Binary formation models have been proposed which suggest that some systems detectable by the LIGO-Virgo network may have non-negligible eccentricity. We investigate the ability of the restricted 3.5 post-Newtonian order TaylorF2 template bank, used by LIGO and Virgo to search for gravitational waves from compact binaries with masses M≤35M · , to detect binaries with nonzero eccentricity. We model the gravitational waves from eccentric binaries using the x-model post-Newtonian formalism proposed by Hinder et al.[I. Hinder, F. Hermann, P. Laguna, and D. Shoemaker, arXiv:0806.1037v1]. We find that small residual eccentricities (e 0 · · . For eccentricities e 0 > or approx. 0.1, the loss in matched filter signal-to-noise ratio due to eccentricity can be significant and so templates which include eccentric effects will be required to perform optimal searches for such systems.

  12. The effects of withdrawals and drought on groundwater availability in the Northern Guam Lens Aquifer, Guam

    Science.gov (United States)

    Gingerich, Stephen B.

    2013-01-01

    Owing to population growth, freshwater demand on Guam has increased in the past and will likely increase in the future. During the early 1970s to 2010, groundwater withdrawals from the limestone Northern Guam Lens Aquifer, the main source of freshwater on the island, tripled from about 15 to 45 million gallons per day. Because of proposed military relocation to Guam and expected population growth, freshwater demand on Guam is projected to increase further. The expected increased demand for groundwater has led to concern over the long-term sustainability of withdrawals from existing and proposed wells. A three-dimensional numerical groundwater flow and transport model was developed to simulate the effects of hypothetical withdrawal and recharge scenarios on water levels and on the transition zone between freshwater and saltwater. The model was constructed by using average recharge during 1961–2005 and withdrawals from 2010. Hydraulic properties used to construct the model were initially based on published estimates but ultimately were adjusted to obtain better agreement between simulated and measured water levels and salinity profiles in the modeled area. Two hypothetical groundwater withdrawal scenarios were simulated: no withdrawal to simulate predevelopment conditions and withdrawal at 2010 rates under a 5-year drought. Simulation results indicate that prior to pumping; the fresh-water lens was 10 to 50 feet thicker in the Yigo-Tumon basin and more than 50 feet thicker in the Hagåtña basin. Results also indicate that continuing the 2010 withdrawal distribution during a 5-year drought would result in decreased water levels, a thinner freshwater lens, and increased salinity of water pumped from wells. The available water with an acceptable salinity (chloride concentration less than 200 milligrams per liter) would decrease from about 34 million gallons per day to 11.5 million gallons per day after 5 years but recover to pre-drought levels 5 years after the

  13. Gravitational lensing

    CERN Document Server

    Dodelson, Scott

    2017-01-01

    Gravitational lensing is a consequence of general relativity, where the gravitational force due to a massive object bends the paths of light originating from distant objects lying behind it. Using very little general relativity and no higher level mathematics, this text presents the basics of gravitational lensing, focusing on the equations needed to understand the phenomena. It then applies them to a diverse set of topics, including multiply imaged objects, time delays, extrasolar planets, microlensing, cluster masses, galaxy shape measurements, cosmic shear, and lensing of the cosmic microwave background. This approach allows undergraduate students and others to get quickly up to speed on the basics and the important issues. The text will be especially relevant as large surveys such as LSST and Euclid begin to dominate the astronomical landscape. Designed for a one semester course, it is accessible to anyone with two years of undergraduate physics background.

  14. Gravitational amplitudes in black hole evaporation: the effect of non-commutative geometry

    International Nuclear Information System (INIS)

    Grezia, Elisabetta Di; Esposito, Giampiero; Miele, Gennaro

    2006-01-01

    Recent work in the literature has studied the quantum-mechanical decay of a Schwarzschild-like black hole, formed by gravitational collapse, into almost-flat spacetime and weak radiation at a very late time. The relevant quantum amplitudes have been evaluated for bosonic and fermionic fields, showing that no information is lost in collapse to a black hole. On the other hand, recent developments in non-commutative geometry have shown that, in general relativity, the effects of non-commutativity can be taken into account by keeping the standard form of the Einstein tensor on the left-hand side of the field equations and introducing a modified energy-momentum tensor as a source on the right-hand side. The present paper, relying on the recently obtained non-commutativity effect on a static, spherically symmetric metric, considers from a new perspective the quantum amplitudes in black hole evaporation. The general relativity analysis of spin-2 amplitudes is shown to be modified by a multiplicative factor F depending on a constant non-commutativity parameter and on the upper limit R of the radial coordinate. Limiting forms of F are derived which are compatible with the adiabatic approximation here exploited. Approximate formulae for the particle emission rate are also obtained within this framework

  15. Light and/or atomic beams to detect ultraweak gravitational effects

    Directory of Open Access Journals (Sweden)

    Tartaglia Angelo

    2014-06-01

    Full Text Available We shall review the opportunities lent by ring lasers and atomic beams interferometry in order to reveal gravitomagnetic effects on Earth. Both techniques are based on the asymmetric propagation of waves in the gravitational field of a rotating mass; actually the times of flight for co- or counter-rotating closed paths turn out to be different. After discussing properties and limitations of the two approaches we shall describe the proposed GINGER experiment which is being developed for the Gran Sasso National Laboratories in Italy. The experimental apparatus will consist of a three-dimensional array of square rings, 6m × 6m, that is planned to reach a sensitivity in the order of 1prad/√Hertz or better. This sensitivity would be one order of magnitude better than the best existing ring, which is the G-ring in Wettzell, Bavaria, and would allow for the terrestrial detection of the Lense-Thirring effect and possibly of deviations from General Relativity. The possibility of using either the ring laser approach or atomic interferometry in a space mission will also be considered. The technology problems are under experimental study using both the German G-ring and the smaller G-Pisa ring, located at the Gran Sasso.

  16. THE EFFECT OF GRAVITATION ON THE POLARIZATION STATE OF A LIGHT RAY

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Tanay; Sen, A. K. [Department of Physics Assam University, Silchar-788011, Assam (India)

    2016-12-10

    In the present work, detailed calculations have been carried out on the rotation of the polarization vector of an electromagnetic wave due to the presence of a gravitational field of a rotating body. This has been done using the general expression of Maxwell’s equation in curved spacetime. Considering the far-field approximation (i.e., the impact parameter is greater than the Schwarzschild radius and rotation parameter), the amount of rotation of the polarization vector as a function of impact parameter has been obtained for a rotating body (considering Kerr geometry). The present work shows that the rotation of the polarization vector cannot be observed in the case of Schwarzschild geometry. This work also calculates the rotational effect when considering prograde and retrograde orbits for the light ray. Although the present work demonstrates the effect of rotation of the polarization vector, it confirms that there would be no net polarization of an electromagnetic wave due to the curved spacetime geometry in a Kerr field.

  17. Quantum-Gravitational Effects on Primordial Power Spectra in Slow-Roll Inflationary Models

    Directory of Open Access Journals (Sweden)

    David Brizuela

    2018-01-01

    Full Text Available We review the computation of the power spectra of inflationary gauge-invariant perturbations in the context of canonical quantum gravity for generic slow-roll models. A semiclassical approximation, based on an expansion in inverse powers of the Planck mass, is applied to the complete Wheeler–DeWitt equation describing a perturbed inflationary universe. This expansion leads to a hierarchy of equations at consecutive orders of the approximation and allows us to write down a corrected Schrödinger equation that encodes information about quantum-gravitational effects. The analytical dependence of the correction to the power spectrum on the wavenumber is obtained. Nonetheless, some numerical work is needed in order to obtain its precise value. Finally, it is shown that the correction turns out to be positive, which leads to an enhancement of the power spectrum especially prominent for large scales. We will also discuss whether this correction leads to a measurable effect in the cosmic microwave background anisotropies.

  18. In Vitro Effect of Lysozyme on Albumin Deposition to Hydrogel Contact Lens Materials.

    Science.gov (United States)

    Babaei Omali, Negar; Subbaraman, Lakshman N; Heynen, Miriam; Fadli, Zohra; Coles-Brennan, Chantal; Jones, Lyndon W

    2017-11-01

    Albumin deposition on contact lenses could be detrimental to contact lens (CL) wear because this may increase the risk of bacterial binding and reduce comfort. Lysozyme deposition on selected lens materials would reduce albumin deposition on lenses. This study aims to determine if lysozyme deposition on CLs could act as a barrier against subsequent albumin adsorption, using an in vitro model. Six hydrogel CL materials (etafilcon A, polymacon, nelfilcon A, omafilcon A, ocufilcon B, and nesofilcon A) were evaluated. Four CLs of each type were soaked in lysozyme solution for 16 hours at 37°C. Lysozyme-coated lenses were then placed in vials with 1.5 mL of artificial tear solution containing I-labeled albumin for 16 hours at 37°C with shaking. Four uncoated lenses of each type were used as controls. Lenses soaked in radiolabeled albumin were rinsed in a phosphate-buffered saline solution, and radioactive counts were measured directly on lenses using a gamma counter. Albumin uptake on lenses was measured using a calibration curve by plotting radioactive counts versus protein concentration. Results are reported as mean ± SD. Lysozyme-coated etafilcon A lenses exhibited lower levels of deposited albumin than uncoated etafilcon A lenses (58 ± 12 vs. 84 ± 5 ng/lens; P albumin adsorption between control (uncoated) and lysozyme-coated polymacon (105 ± 10 vs. 110 ± 34 ng/lens), nelfilcon A (51 ± 7 vs. 42 ± 20 ng/lens), omafilcon A (90 ± 20 vs. 80 ± 38 ng/lens), ocufilcon B (87 ± 20 vs. 115 ± 50 ng/lens), and nesofilcon A (170 ± 29 vs. 161 ± 10 ng/lens) lens materials (P > .05). Uncoated nesofilcon A lenses deposited the highest amount of albumin when compared with other uncoated lenses (P albumin, which may potentially be beneficial to CL wearers.

  19. Parametric mechanisms for detecting gravitational waves

    International Nuclear Information System (INIS)

    Pustovoit, V.I.; Chernozatonskii, L.A.

    1981-01-01

    An intense electromagnetic wave and a gravitational wave can interact to effectively generate electromagnetic waves at sum and difference frequencies. The self-effect of a monochromatic electromagnetic wave through a gravitational field leads to third-harmonic generation

  20. Gravitational Physics

    OpenAIRE

    Schäfer, G.; Schutz, B.

    1996-01-01

    Gravity is truly universal. It is the force that pulls us to the Earth, that keeps the planets and moons in their orbits, and that causes the tides on the Earth to ebb and flow. It even keeps the Sun shining. Yet on a laboratory scale gravity is extremely weak. The Coulomb force between two protons is 1039 times stronger than the gravitational force between them. Moreover, Newton's gravitational constant is the least accurately known of the fundamental constants: it has been measured to 1 par...

  1. Astrometric Observation of MACHO Gravitational Microlensing

    Science.gov (United States)

    Boden, A. F.; Shao, M.; Van Buren, D.

    1997-01-01

    This paper discusses the prospects for astrometric observation of MACHO gravitational microlensing events. We derive the expected astrometric observables for a simple microlensing event assuming a dark MACHO, and demonstrate that accurate astrometry can determine the lens mass, distance, and proper motion in a very general fashion.

  2. Gravitational lensing by a regular black hole

    International Nuclear Information System (INIS)

    Eiroa, Ernesto F; Sendra, Carlos M

    2011-01-01

    In this paper, we study a regular Bardeen black hole as a gravitational lens. We find the strong deflection limit for the deflection angle, from which we obtain the positions and magnifications of the relativistic images. As an example, we apply the results to the particular case of the supermassive black hole at the center of our galaxy.

  3. Gravitational lensing by a regular black hole

    Energy Technology Data Exchange (ETDEWEB)

    Eiroa, Ernesto F; Sendra, Carlos M, E-mail: eiroa@iafe.uba.ar, E-mail: cmsendra@iafe.uba.ar [Instituto de Astronomia y Fisica del Espacio, CC 67, Suc. 28, 1428, Buenos Aires (Argentina)

    2011-04-21

    In this paper, we study a regular Bardeen black hole as a gravitational lens. We find the strong deflection limit for the deflection angle, from which we obtain the positions and magnifications of the relativistic images. As an example, we apply the results to the particular case of the supermassive black hole at the center of our galaxy.

  4. The Sloan Lens ACS Survey. I. A large spectroscopically selected sample of massive early-type lens galaxies

    NARCIS (Netherlands)

    Bolton, AS; Burles, S; Koopmans, LVE; Treu, T; Moustakas, LA

    2006-01-01

    The Sloan Lens ACS (SLACS) Survey is an efficient Hubble Space Telescope (HST) Snapshot imaging survey for new galaxy-scale strong gravitational lenses. The targeted lens candidates are selected spectroscopically from the Sloan Digital Sky Survey (SDSS) database of galaxy spectra for having multiple

  5. Snow load effect on earth's rotation and gravitational field, 1979-1985

    Science.gov (United States)

    Chao, B. Fong; O'Connor, William P.; Chang, Alfred T. C.; Hall, Dorothy K.; Foster, James L.

    1987-01-01

    A global, monthly snow depth data set has been generated from the Nimbus 7 satellite observations using passive microwave remote-sensing techniques. Seven years of data, 1979-1985, are analyzed to compute the snow load effects on the earth's rotation and low-degree zonal gravitational field. The resultant time series show dominant seasonal cycles. The annual peak-to-peak variation in J2 is found to be 2.3 x 10 to the -10th, that in J3 to be 1.1 x 10 to the -10th, and believed to decrease rapidly for higher degrees. The corresponding change in the length of day is 41 micro-s. The annual wobble excitation is (4.9 marc sec, -109 deg) for the prograde motion component and (4.8 marc sec, -28 deg) for the retrograde motion component. The excitation power of the Chandler wobble due to the snow load is estimated to be about 25 dB less than the power needed to maintain the observed Chandler wobble.

  6. MASS TRANSPORT AND TURBULENCE IN GRAVITATIONALLY UNSTABLE DISK GALAXIES. II. THE EFFECTS OF STAR FORMATION FEEDBACK

    Energy Technology Data Exchange (ETDEWEB)

    Goldbaum, Nathan J. [National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, 1205 W. Clark St., Urbana, IL 61801 (United States); Krumholz, Mark R. [Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2601 (Australia); Forbes, John C., E-mail: ngoldbau@illinois.edu [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States)

    2016-08-10

    Self-gravity and stellar feedback are capable of driving turbulence and transporting mass and angular momentum in disk galaxies, but the balance between them is not well understood. In the previous paper in this series, we showed that gravity alone can drive turbulence in galactic disks, regulate their Toomre Q parameters to ∼1, and transport mass inwards at a rate sufficient to fuel star formation in the centers of present-day galaxies. In this paper we extend our models to include the effects of star formation feedback. We show that feedback suppresses galaxies’ star formation rates by a factor of ∼5 and leads to the formation of a multi-phase atomic and molecular interstellar medium. Both the star formation rate and the phase balance produced in our simulations agree well with observations of nearby spirals. After our galaxies reach steady state, we find that the inclusion of feedback actually lowers the gas velocity dispersion slightly compared to the case of pure self-gravity, and also slightly reduces the rate of inward mass transport. Nevertheless, we find that, even with feedback included, our galactic disks self-regulate to Q ∼ 1, and transport mass inwards at a rate sufficient to supply a substantial fraction of the inner disk star formation. We argue that gravitational instability is therefore likely to be the dominant source of turbulence and transport in galactic disks, and that it is responsible for fueling star formation in the inner parts of galactic disks over cosmological times.

  7. Black holes and fundamental fields: Hair, kicks, and a gravitational Magnus effect

    Science.gov (United States)

    Okawa, Hirotada; Cardoso, Vitor

    2014-11-01

    Scalar fields pervade theoretical physics and are a fundamental ingredient to solve the dark matter problem, to realize the Peccei-Quinn mechanism in QCD or the string-axiverse scenario. They are also a useful proxy for more complex matter interactions, such as accretion disks or matter in extreme conditions. Here, we study the collision between scalar "clouds" and rotating black holes. For the first time we are able to compare analytic estimates and strong field, nonlinear numerical calculations for this problem. As the black hole pierces through the cloud it accretes according to the Bondi-Hoyle prediction, but is deflected through a purely kinematic gravitational "anti-Magnus" effect, which we predict to be present also during the interaction of black holes with accretion disks. After the interaction is over, we find large recoil velocities in the transverse direction. The end-state of the process belongs to the vacuum Kerr family if the scalar is massless, but can be a hairy black hole when the scalar is massive.

  8. Effects of near-UV radiation on the protein of the grey squirrel lens

    International Nuclear Information System (INIS)

    Zigman, S.; Paxhia, T.; Waldron, W.

    1988-01-01

    In vivo exposure of grey squirrels to 40W BLB illumination resulted in alterations in the state of the lens crystallins, mainly in the outer layer of the lens. HPLC revealed an increase of the void volume or crosslinked crystallins and an increase in peptides with molecular weights lower than 20,000 d. In vitro exposure of squirrel lens aqueous extracts to Woods lamp radiation (predominantly 365 nm) led to similar but more exaggerated changes as viewed by high performance liquid chromatography. When viewed by polyacrylamide gel electrophoresis (PAGE), soluble protein crosslinking was also observed. The near-UV absorbing chromophores of low molecular weight present in the lens served as photosensitizers that enhanced the protein changes. Sodium azide inhibited the changes, indicating a role for singlet oxygen in the crosslinking. (author)

  9. Effects of near-UV radiation on the protein of the grey squirrel lens.

    Science.gov (United States)

    Zigman, S; Paxhia, T; Waldron, W

    1988-06-01

    In vivo exposure of grey squirrels to 40W BLB illumination resulted in alterations in the state of the lens crystallins, mainly in the outer layer of the lens. HPLC revealed an increase of the void volume or crosslinked crystallins and an increase in peptides with molecular weights lower than 20,000 d. In vitro exposure of squirrel lens aqueous extracts to Woods lamp radiation (predominantly 365 nm) led to similar but more exaggerated changes as viewed by high performance liquid chromatography. When viewed by polyacrylamide gel electrophoresis (PAGE), soluble protein crosslinking was also observed. The near-UV absorbing chromophores of low molecular weight present in the lens served as photosensitizers that enhanced the protein changes. Sodium azide inhibited the changes, indicating a role for singlet oxygen in the crosslinking.

  10. Effects of near-UV radiation on the protein of the grey squirrel lens

    Energy Technology Data Exchange (ETDEWEB)

    Zigman, S; Paxhia, T; Waldron, W

    1988-06-01

    In vivo exposure of grey squirrels to 40W BLB illumination resulted in alterations in the state of the lens crystallins, mainly in the outer layer of the lens. HPLC revealed an increase of the void volume or crosslinked crystallins and an increase in peptides with molecular weights lower than 20,000 d. In vitro exposure of squirrel lens aqueous extracts to Woods lamp radiation (predominantly 365 nm) led to similar but more exaggerated changes as viewed by high performance liquid chromatography. When viewed by polyacrylamide gel electrophoresis (PAGE), soluble protein crosslinking was also observed. The near-UV absorbing chromophores of low molecular weight present in the lens served as photosensitizers that enhanced the protein changes. Sodium azide inhibited the changes, indicating a role for singlet oxygen in the crosslinking.

  11. Alternative equations of gravitation

    International Nuclear Information System (INIS)

    Pinto Neto, N.

    1983-01-01

    It is shown, trough a new formalism, that the quantum fluctuation effects of the gravitational field in Einstein's equations are analogs to the effects of a continuum medium in Maxwell's Electrodynamics. Following, a real example of the applications of these equations is studied. Qunatum fluctuations effects as perturbation sources in Minkowski and Friedmann Universes are examined. (L.C.) [pt

  12. Gravitational Grating

    Science.gov (United States)

    Rahvar, Sohrab

    2018-05-01

    In this work, we study the interaction of the electromagnetic wave (EW) from a distant quasar with the gravitational wave (GW) sourced by the binary stars. While in the regime of geometric optics, the light bending due to this interaction is negligible, we show that the phase shifting on the wavefront of an EW can produce the diffraction pattern on the observer plane. The diffraction of the light (with the wavelength of λe) by the gravitational wave playing the role of gravitational grating (with the wavelength of λg) has the diffraction angle of Δβ ˜ λe/λg. The relative motion of the observer, the source of gravitational wave and the quasar results in a relative motion of the observer through the interference pattern on the observer plane. The consequence of this fringe crossing is the modulation in the light curve of a quasar with the period of few hours in the microwave wavelength. The optical depth for the observation of this phenomenon for a Quasar with the multiple images strongly lensed by a galaxy where the light trajectory of some of the images crosses the lensing galaxy is τ ≃ 0.2. By shifting the time-delay of the light curves of the multiple images in a strong lensed quasar and removing the intrinsic variations of a quasar, our desired signals, as a new method for detection of GWs can be detected.

  13. The gravitational properties of antimatter

    International Nuclear Information System (INIS)

    Goldman, T.; Hughes, R.J.; Nieto, M.M.

    1986-09-01

    It is argued that a determination of the gravitational acceleration of antimatter towards the earth is capable of imposing powerful constraints on modern quantum gravity theories. Theoretical reasons to expect non-Newtonian non-Einsteinian effects of gravitational strength and experimental suggestions of such effects are reviewed. 41 refs

  14. Issues behind Radiation management of workers at Fukushima Nuclear Power Plant of Tokyo Electric Power Company. From the viewpoint of radiation exposure of the ocular lens and the biological effects to the lens

    International Nuclear Information System (INIS)

    Hayashida, Toshiyuki; Sasaki, Hiroshi; Hatsusaka, Natsuko; Hamada, Nobuyuki; Tatsuzaki, Hideo; Akahane, Keiichi; Yokoyama, Sumi

    2017-01-01

    In March 2011, the accident occurred at the Fukushima Daiichi Nuclear Power Plant of Tokyo Electric Power Company. During recovery from critical situations, the radiation dose for some emergency workers exceeded the effective dose limit recommended for an emergency situation. A month after the accident, the International Commission on Radiological Protection issued a statement on tissue reactions recommending significant reduction of the equivalent dose limit to the lens of the eye. Many radiation workers will need to be involved in treatment of water contaminated with radionuclides, fuel debris retrieval, and decommissioning of reactors for a long period of time. Thus, the optimized radiation control in the fields, exposure reduction, prevention of tissue reactions, and reduction of stochastic risks for workers becomes necessary. This paper discusses issues in relation to radiation protection of the ocular lens in such recovery workers, from the viewpoint of radiation exposure of workers, its management, manifestations and mechanisms of the lens effects. (author)

  15. Generalized Sagnac effect with the ring-laser and other optradiches in the PPN gravitational theory

    International Nuclear Information System (INIS)

    Campbell, S.O.

    1976-01-01

    The scope of study is: The object under study is an experiment to measure the ''dragging of inertial frames'' effect (a post-Newtonian gravitational effect) using two closed-loop optical beams traveling in opposite directions (such a device is denoted an ''optradich''; an example is the ringlaser). A theoretical viewpoint with simple formulas based on the Parametrized Post-Newtonian (PPN) formalism is developed from a study of the literature: the Sagnac effect is generalized to the Post-Newtonian level of approximation. Some differences with a few previous papers are noted and sometimes discussed. Then the formulas are applied to two simple cases. Numerical results are given for an optradich attached to earth, and for optradiches orbiting earth, jupiter, and the sun. The ringlaser, whose further development may make the experiment feasible, is discussed briefly: its basic principle, its potential sensitivity, and some practical considerations. Some aspects of the experiment are also discussed briefly: land optradiches versus orbiting optradiches, Schiff's gyroscope experiment versus the optradich experiment, the present outlook for optradich experiments, and possible scientific benefits of optradich and experiments. Findings and conclusions are the numerical results (see above) are so small that it appears quite doubtful that optradich experiments could verify them in the balance of this century. There seem to be a few interesting effects which Schiff's gyroscope at present cannot measure, but which an assumed ''super'' optradich can measure. Orbiting optradiches and land optradiches may be complementary, but further study is recommended. Despite the discouraging prospects for optradich experiments, efforts should be made to develop sufficiently sensitive optradiches because of the scientific benefits that could be had

  16. Effect of gravitational focusing on annual modulation in dark-matter direct-detection experiments.

    Science.gov (United States)

    Lee, Samuel K; Lisanti, Mariangela; Peter, Annika H G; Safdi, Benjamin R

    2014-01-10

    The scattering rate in dark-matter direct-detection experiments should modulate annually due to Earth's orbit around the Sun. The rate is typically thought to be extremized around June 1, when the relative velocity of Earth with respect to the dark-matter wind is maximal. We point out that gravitational focusing can alter this modulation phase. Unbound dark-matter particles are focused by the Sun's gravitational potential, affecting their phase-space density in the lab frame. Gravitational focusing can result in a significant overall shift in the annual-modulation phase, which is most relevant for dark matter with low scattering speeds. The induced phase shift for light O(10)  GeV dark matter may also be significant, depending on the threshold energy of the experiment.

  17. The effect of lens aging and cataract surgery on circadian rhythm.

    Science.gov (United States)

    Yan, Shen-Shen; Wang, Wei

    2016-01-01

    Many organisms have evolved an approximately 24-hour circadian rhythm that allows them to achieve internal physiological homeostasis with external environment. Suprachiasmatic nucleus (SCN) is the central pacemaker of circadian rhythm, and its activity is entrained to the external light-dark cycle. The SCN controls circadian rhythm through regulating the synthesis of melatonin by pineal gland via a multisynaptic pathway. Light, especially short-wavelength blue light, is the most potent environmental time cue in circadian photoentrainment. Recently, the discovery of a novel type of retinal photoreceptors, intrinsically photosensitive retinal ganglion cells, sheds light on the mechanism of circadian photoentrainment and raises concerns about the effect of ocular diseases on circadian system. With age, light transmittance is significantly decreased due to the aging of crystalline lens, thus possibly resulting in progressive loss of circadian photoreception. In the current review, we summarize the circadian physiology, highlight the important role of light in circadian rhythm regulation, discuss about the correlation between age-related cataract and sleep disorders, and compare the effect of blue light- filtering intraocular lenses (IOLs) and ultraviolet only filtering IOLs on circadian rhythm.

  18. Comparison of the effects of intraocular irrigating solutions on the corneal endothelium in intraocular lens implantation.

    Science.gov (United States)

    Matsuda, M; Kinoshita, S; Ohashi, Y; Shimomura, Y; Ohguro, N; Okamoto, H; Omoto, T; Hosotani, H; Yoshida, H

    1991-01-01

    We conducted a randomised prospective controlled study to determine the effects of a glucose glutathione bicarbonate solution (BSS Plus) and a citrate acetate bicarbonate solution (S-MA2) on the corneal endothelium in patients undergoing extracapsular cataract extraction with posterior chamber lens implantation. One eye of each patient was randomly assigned to receive BSS Plus, and the other eye to receive S-MA2. BSS Plus caused significantly less corneal swelling on the first postoperative day than did S-MA2. There was no difference between the two solutions in their effect on corneal thickness one week and one month postoperatively. Computer assisted morphometric analysis of wide-field specular microscopic photographs demonstrated minimal changes in endothelial morphological characteristics in the eyes irrigated with BSS Plus. By comparison S-MA2, caused a significant loss of endothelial cells and a marked reduction in the figure coefficient. These results indicated that BSS Plus has a clinical advantage over S-MA2 with respect to the corneal endothelium. PMID:1873266

  19. Gravitational Waves - New Perspectives

    International Nuclear Information System (INIS)

    Biesiada, M.

    1999-01-01

    Laser interferometric experiments planned for 2002 will open up a new window onto the Universe. The first part of the paper gives a brief intuitive introduction to gravity waves, detection techniques and enumeration of main astrophysical sources and frequency bands to which they contribute. Then two more specific issues are discussed concerning cosmological perspectives of gravity waves detection. First one is the problem of gravitational lensing of the signal from inspiralling NS-NS binaries. The magnitude of the so called magnification bias is estimated and found non-negligible for some quite realistic lens models, but strongly model-dependent. The second problem is connected with estimates of galactic and extragalactic parts of the stochastic background. The main conclusion from these two examples is that in so far as the cosmological payoff of gravitational wave detection would be high, we should substantially deepen our understanding of basic astrophysical properties of galaxies and their clusters (in terms of mass distribution) in order to draw clear cosmological conclusions. (author)

  20. Understanding possible electromagnetic counterparts to loud gravitational wave events: Binary black hole effects on electromagnetic fields

    International Nuclear Information System (INIS)

    Palenzuela, Carlos; Lehner, Luis; Yoshida, Shin

    2010-01-01

    In addition to producing loud gravitational waves, the dynamics of a binary black hole system could induce emission of electromagnetic radiation by affecting the behavior of plasmas and electromagnetic fields in their vicinity. We study how the electromagnetic fields are affected by a pair of orbiting black holes through the merger. In particular, we show how the binary's dynamics induce a variability in possible electromagnetically induced emissions as well as an enhancement of electromagnetic fields during the late-merge and merger epochs. These time dependent features will likely leave their imprint in processes generating detectable emissions and can be exploited in the detection of electromagnetic counterparts of gravitational waves.

  1. Assessing the Effectiveness of Gravitational Wave Outreach Video Games in High School Students

    Science.gov (United States)

    Wheeler, Jonathan

    Students and faculty at the Gravitational Wave Group in Birmingham, UK developed a remake of the classic 1972 game of Pong. Black Hole Pong was developed to be used in events such as science fairs as a way to engage children and pique interest in black holes. I present the results of a study which assesses the utility of Black Hole Pong and its successors in raising awareness of gravitational wave research, and in fostering conceptual understanding of astrophysics and gravity. Of particular interest in this study is potential use in high school science classrooms during astrophysics units.

  2. Protective effect of lycopene for oxidative damage in human lens epithelial cells induced by UV

    Directory of Open Access Journals (Sweden)

    Jing-Wen Sun

    2016-05-01

    Full Text Available AIM:To investigate the protective effect and possible mechanisms of lycopene for oxidative damage induced by ultraviolet in cultured human lens epithelial cells(HLEC. METHODS:HLEC was subcultured and divided into negative control group, oxidative injury group, lycopene low dose group and lycopene high dose group. Cell viability was assayed by MTT colorimetric. Cell morphological changes were detected by electron microscope. Reactive oxygen species(ROSlevels were detected with DCFH-DA fluorescent probe. Content of superoxide dismutase(SOD, glutathione peroxidase(GSHand malondialdehyde(MDAin supernatants were detected by spectrophotometer. RESULTS:Lycopene could obviously inhibited UV-induced decline in cell activity, reduce UV-induced ROS generation within HLEC, cause SOD, GSH-Px levels increased and MDA levels decreased.CONCLUSION:Lycopene plays its strong antioxidant role in increasing the intracellular SOD and GSH-Px content levels and decreasing MDA levels, which provide reliable experimental basis for prevent and treatment of cataracts.

  3. Pigment dispersion glaucoma induced by the chafing effect of intraocular lens haptics in Asian eyes.

    Science.gov (United States)

    Hong, Ying; Sun, Yan-Xiu; Qi, Hong; Zhou, Ji-Chao; Hao, Yan-Sheng

    2013-03-01

    To study the possible mechanism and treatment for pigment dispersion glaucoma (PDG) caused by single-piece acrylic (SPA) intraocular lens (IOL) ciliary sulcus fixation in Asian eyes. Patients referred for PDG caused by SPA IOL ciliary sulcus fixation to our hospital from April 2005 to June 2011 were included. The patients' general information, IOL type, interval between initial surgery and PDG occurrence, examination findings, antiglaucoma medicine regimen and surgical interventions were recorded. In total, six eyes from five Chinese patients were included in this study. The intraocular pressure (IOP) increased 19-30 days after cataract surgery and was not satisfactorily controlled with antiglaucoma medication. Dense pigmentation was deposited on the IOLs and on the anterior chamber angle. IOL haptic chafing was noted on the rear iris surface. IOL repositioning in the capsular bag was performed in three eyes and was combined with trabeculectomy in two eyes with progressive glaucoma. An IOL exchange with three-piece IOL ciliary sulcus fixation was performed in the other three eyes. Scanning electron microscopy of the explanted IOLs demonstrated a rough edge on the IOL haptics. SPA IOLs were not suitable for ciliary sulcus fixation. The chafing effect of the IOL haptics on the posterior iris pigment epithelium could induce PDG in Asian eyes. IOLs should be positioned in the capsular bag or a three-piece IOL should be used instead.

  4. Gravitational waves

    CERN Document Server

    Ciufolini, I; Moschella, U; Fre, P

    2001-01-01

    Gravitational waves (GWs) are a hot topic and promise to play a central role in astrophysics, cosmology, and theoretical physics. Technological developments have led us to the brink of their direct observation, which could become a reality in the coming years. The direct observation of GWs will open an entirely new field: GW astronomy. This is expected to bring a revolution in our knowledge of the universe by allowing the observation of previously unseen phenomena, such as the coalescence of compact objects (neutron stars and black holes), the fall of stars into supermassive black holes, stellar core collapses, big-bang relics, and the new and unexpected.With a wide range of contributions by leading scientists in the field, Gravitational Waves covers topics such as the basics of GWs, various advanced topics, GW detectors, astrophysics of GW sources, numerical applications, and several recent theoretical developments. The material is written at a level suitable for postgraduate students entering the field.

  5. The effect of hypergravity on the lens, cornea and tail regeneration in Urodela

    Science.gov (United States)

    Grigoryan, E. N.; Dvorochkin, N.; Poplinskaya, V. A.; Yousuf, R.; Radugina, E. A.; Almeida, E. A.

    2017-09-01

    In previous experiments onboard Russian Bion/Foton satellites it was found that exposure to microgravity causes changes in eye lens regeneration of Urodela. The changes included higher rate of regeneration, increased cell proliferation in lens anlage, and synchronization of lens restoration. Similar changes were observed regarding tail regeneration. Recently, investigations were performed to find out whether exposure to hypergravity could also alter lens, cornea and tail regeneration in the newt P. waltl. Nine days prior to exposure the left lens was surgically removed through corneal incision and distal 1/3 of the tail was amputated, thus initiating regeneration. The experimental animals were allowed to recover for 9 days at 1 g and then exposed to 2 g for 12 days in an 8 ft diameter centrifuge at NASA Ames Research Center. The experimental animals were divided into 1 g controls, 2 g centrifugation animals, basal controls, and aquarium controls. Lens and corneal regeneration appeared to be inhibited in 2 g group compared to 1 g animals. In all 1 g controls, lens regeneration reached stages VII-IX in a synchronous fashion and corneal regeneration was nearly complete. In the 2 g newts, neural retinal detachment from the pigmented epithelium was seen in most operated eyes. It was also observed in the non-operated (right) eyes of the animals exposed to 2 g. The level of retinal detachment varied and could have been caused by hypergravity-induced high intraocular pressure. Regeneration (when it could be assessed) proceeded asynchronously, reaching stages from II to IX. Corneal restoration was also noticeably delayed and corneal morphology changed. Cell proliferation was measured using BrdU; the results were not comparable to the 1 g data because of retinal detachment. Previous investigations demonstrated that lens regeneration was controlled by the neural retina; therefore, lower regeneration rate at 2 g was, at least in part, associated with retinal detachment. FGF2

  6. Gravitation relativiste

    CERN Document Server

    Hakim, Rémi

    1994-01-01

    Il existe à l'heure actuelle un certain nombre de théories relativistes de la gravitation compatibles avec l'expérience et l'observation. Toutefois, la relativité générale d'Einstein fut historiquement la première à fournir des résultats théoriques corrects en accord précis avec les faits.

  7. Effects of running with backpack loads during simulated gravitational transitions: Improvements in postural control

    Science.gov (United States)

    Brewer, Jeffrey David

    The National Aeronautics and Space Administration is planning for long-duration manned missions to the Moon and Mars. For feasible long-duration space travel, improvements in exercise countermeasures are necessary to maintain cardiovascular fitness, bone mass throughout the body and the ability to perform coordinated movements in a constant gravitational environment that is six orders of magnitude higher than the "near weightlessness" condition experienced during transit to and/or orbit of the Moon, Mars, and Earth. In such gravitational transitions feedback and feedforward postural control strategies must be recalibrated to ensure optimal locomotion performance. In order to investigate methods of improving postural control adaptation during these gravitational transitions, a treadmill based precision stepping task was developed to reveal changes in neuromuscular control of locomotion following both simulated partial gravity exposure and post-simulation exercise countermeasures designed to speed lower extremity impedance adjustment mechanisms. The exercise countermeasures included a short period of running with or without backpack loads immediately after partial gravity running. A novel suspension type partial gravity simulator incorporating spring balancers and a motor-driven treadmill was developed to facilitate body weight off loading and various gait patterns in both simulated partial and full gravitational environments. Studies have provided evidence that suggests: the environmental simulator constructed for this thesis effort does induce locomotor adaptations following partial gravity running; the precision stepping task may be a helpful test for illuminating these adaptations; and musculoskeletal loading in the form of running with or without backpack loads may improve the locomotor adaptation process.

  8. The effect of sources on horizons that may develop when plane gravitational waves collide

    International Nuclear Information System (INIS)

    Chandrasekhar, Subrahmanyan; Xanthopoulos, B.C.

    1987-01-01

    Colliding plane gravitational waves that lead to the development of a horizon and a subsequent time-like singularity are coupled with an electromagnetic field, a perfect fluid, and null dust (consisting of massless particles). The coupling of the gravitational waves with an electromagnetic field does not affect, in any essential way, the development of the horizon or the time-like singularity if the polarizations of the colliding gravitational waves are not parallel. If the polarizations are parallel, the space-like singularity which occurs in the vacuum is transformed into a horizon followed by a three-dimensional time-like singularity by the merest presence of the electromagnetic field. The coupling of the gravitational waves with a perfect fluid and null dust affect the development of horizons and singularities in radically different ways: the perfect fluid affects the development decisively in all cases but qualitatively in the same way, while null dust prevents the development of horizons and allows only the development of space-like singularities. The contrasting behaviours of a perfect fluid and of null dust in the framework of general relativity is compared with the behaviours one may expect, under similar circumstances, in the framework of special relativity. (author)

  9. Effects of anisotropy on gravitational infall in galaxy clusters using an exact general relativistic model

    Energy Technology Data Exchange (ETDEWEB)

    Troxel, M.A.; Peel, Austin; Ishak, Mustapha, E-mail: troxel@utdallas.edu, E-mail: austin.peel@utdallas.edu, E-mail: mishak@utdallas.edu [Department of Physics, The University of Texas at Dallas, Richardson, TX, 75083 (United States)

    2013-12-01

    We study the effects and implications of anisotropies at the scale of galaxy clusters by building an exact general relativistic model of a cluster using the inhomogeneous and anisotropic Szekeres metric. The model is built from a modified Navarro-Frenk-White (NFW) density profile. We compare this to a corresponding spherically symmetric structure in the Lemaȋtre-Tolman (LT) model and quantify the impact of introducing varying levels of anisotropy. We examine two physical measures of gravitational infall — the growth rate of density and the velocity of the source dust in the model. We introduce a generalization of the LT dust velocity profile for the Szekeres metric and demonstrate its consistency with the growth rate of density. We find that the growth rate of density in one substructure increases by 0.5%, 1.5%, and 3.75% for 5%, 10%, and 15% levels of introduced anisotropy, which is measured as the fractional displaced mass relative to the spherically symmetric case. The infall velocity of the dust is found to increase by 2.5, 10, and 20 km s{sup −1} (0.5%, 2%, and 4.5%), respectively, for the same three levels of anisotropy. This response to the anisotropy in a structure is found to be strongly nonlinear with respect to the strength of anisotropy. These relative velocities correspond to an equivalent increase in the total mass of the spherically symmetric structure of 1%, 3.8%, and 8.4%, indicating that not accounting for the presence of anisotropic mass distributions in cluster models can strongly bias the determination of physical properties like the total mass.

  10. Effects of transients in LIGO suspensions on searches for gravitational waves.

    Science.gov (United States)

    Walker, M; Abbott, T D; Aston, S M; González, G; Macleod, D M; McIver, J; Abbott, B P; Abbott, R; Adams, C; Adhikari, R X; Anderson, S B; Ananyeva, A; Appert, S; Arai, K; Ballmer, S W; Barker, D; Barr, B; Barsotti, L; Bartlett, J; Bartos, I; Batch, J C; Bell, A S; Betzwieser, J; Billingsley, G; Birch, J; Biscans, S; Biwer, C; Blair, C D; Bork, R; Brooks, A F; Ciani, G; Clara, F; Countryman, S T; Cowart, M J; Coyne, D C; Cumming, A; Cunningham, L; Danzmann, K; Da Silva Costa, C F; Daw, E J; DeBra, D; DeRosa, R T; DeSalvo, R; Dooley, K L; Doravari, S; Driggers, J C; Dwyer, S E; Effler, A; Etzel, T; Evans, M; Evans, T M; Factourovich, M; Fair, H; Fernández Galiana, A; Fisher, R P; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Giaime, J A; Giardina, K D; Goetz, E; Goetz, R; Gras, S; Gray, C; Grote, H; Gushwa, K E; Gustafson, E K; Gustafson, R; Hall, E D; Hammond, G; Hanks, J; Hanson, J; Hardwick, T; Harry, G M; Heintze, M C; Heptonstall, A W; Hough, J; Izumi, K; Jones, R; Kandhasamy, S; Karki, S; Kasprzack, M; Kaufer, S; Kawabe, K; Kijbunchoo, N; King, E J; King, P J; Kissel, J S; Korth, W Z; Kuehn, G; Landry, M; Lantz, B; Lockerbie, N A; Lormand, M; Lundgren, A P; MacInnis, M; Márka, S; Márka, Z; Markosyan, A S; Maros, E; Martin, I W; Martynov, D V; Mason, K; Massinger, T J; Matichard, F; Mavalvala, N; McCarthy, R; McClelland, D E; McCormick, S; McIntyre, G; Mendell, G; Merilh, E L; Meyers, P M; Miller, J; Mittleman, R; Moreno, G; Mueller, G; Mullavey, A; Munch, J; Nuttall, L K; Oberling, J; Oliver, M; Oppermann, P; Oram, Richard J; O'Reilly, B; Ottaway, D J; Overmier, H; Palamos, J R; Paris, H R; Parker, W; Pele, A; Penn, S; Phelps, M; Pierro, V; Pinto, I; Principe, M; Prokhorov, L G; Puncken, O; Quetschke, V; Quintero, E A; Raab, F J; Radkins, H; Raffai, P; Reid, S; Reitze, D H; Robertson, N A; Rollins, J G; Roma, V J; Romie, J H; Rowan, S; Ryan, K; Sadecki, T; Sanchez, E J; Sandberg, V; Savage, R L; Schofield, R M S; Sellers, D; Shaddock, D A; Shaffer, T J; Shapiro, B; Shawhan, P; Shoemaker, D H; Sigg, D; Slagmolen, B J J; Smith, B; Smith, J R; Sorazu, B; Staley, A; Strain, K A; Tanner, D B; Taylor, R; Thomas, M; Thomas, P; Thorne, K A; Thrane, E; Torrie, C I; Traylor, G; Tuyenbayev, D; Vajente, G; Valdes, G; van Veggel, A A; Vecchio, A; Veitch, P J; Venkateswara, K; Vo, T; Vorvick, C; Ward, R L; Warner, J; Weaver, B; Weiss, R; Weßels, P; Willke, B; Wipf, C C; Worden, J; Wu, G; Yamamoto, H; Yancey, C C; Yu, Hang; Yu, Haocun; Zhang, L; Zucker, M E; Zweizig, J

    2017-12-01

    This paper presents an analysis of the transient behavior of the Advanced LIGO (Laser Interferometer Gravitational-wave Observatory) suspensions used to seismically isolate the optics. We have characterized the transients in the longitudinal motion of the quadruple suspensions during Advanced LIGO's first observing run. Propagation of transients between stages is consistent with modeled transfer functions, such that transient motion originating at the top of the suspension chain is significantly reduced in amplitude at the test mass. We find that there are transients seen by the longitudinal motion monitors of quadruple suspensions, but they are not significantly correlated with transient motion above the noise floor in the gravitational wave strain data, and therefore do not present a dominant source of background noise in the searches for transient gravitational wave signals. Using the suspension transfer functions, we compared the transients in a week of gravitational wave strain data with transients from a quadruple suspension. Of the strain transients between 10 and 60 Hz, 84% are loud enough that they would have appeared above the sensor noise in the top stage quadruple suspension monitors if they had originated at that stage at the same frequencies. We find no significant temporal correlation with the suspension transients in that stage, so we can rule out suspension motion originating at the top stage as the cause of those transients. However, only 3.2% of the gravitational wave strain transients are loud enough that they would have been seen by the second stage suspension sensors, and none of them are above the sensor noise levels of the penultimate stage. Therefore, we cannot eliminate the possibility of transient noise in the detectors originating in the intermediate stages of the suspension below the sensing noise.

  11. Lens Model

    DEFF Research Database (Denmark)

    Nash, Ulrik William

    2014-01-01

    Firms consist of people who make decisions to achieve goals. How do these people develop the expectations which underpin the choices they make? The lens model provides one answer to this question. It was developed by cognitive psychologist Egon Brunswik (1952) to illustrate his theory of probabil...

  12. Effect of pulsed hollow electron-lens operation on the proton beam core in LHC

    Energy Technology Data Exchange (ETDEWEB)

    Fitterer, Miriam [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Stancari, Giulio [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Valishev, Alexander [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2016-11-08

    Collimation with hollow electron beams is currently one of the most promising concepts for active halo control in the HL-LHC. In order to further increase the diffusion rates for a fast halo removal as e.g. desired before the squeeze, the electron lens (e-lens) can be operated in pulsed mode. In case of profile imperfections in the electron beam the pulsing of the e-lens induces noise on the proton beam which can, depending on the frequency content and strength, lead to emittance growth. In order to study the sensitivity to the pulsing pattern and the amplitude, a beam study (machine development MD) at the LHC has been proposed for August 2016 and we present in this note the preparatory simulations and estimates.

  13. Gravitational Mass, Its Mechanics - What It Is; How It Operates

    OpenAIRE

    Ellman, Roger

    1999-01-01

    The earlier paper, Inertial Mass, Its Mechanics - What It Is; How It Operates, developed the mechanics of inertial mass. The present paper is for the purpose of equivalently developing gravitation. The behavior of gravitation is well known, as described by Newton's Law of Gravitation. But just what gravitational mass is, how gravitational behavior comes about, what in material reality produces the effects of gravitational mass, has been little understood. The only extant hypotheses involve th...

  14. Effects of lens distortion calibration patterns on the accuracy of monocular 3D measurements

    CSIR Research Space (South Africa)

    De Villiers, J

    2011-11-01

    Full Text Available choice (e.g. the open computer vision (OpenCV) library [4], Caltech Camera Calibration Toolbox [5]) as the intersections can be found extremely accurately by finding the saddle point of the intensity profile about the intersection as described... to capture and process data in order to calibrate it. A. Equipment specification A 1600-by-1200 Prosilica GE1660 Gigabit Ethernet ma- chine vision camera was mated with a Schneider Cinegon 4.8mm/f1.4 lens for use in this work. This lens has an 82...

  15. New case of gravitational lensing

    Energy Technology Data Exchange (ETDEWEB)

    Surdej, J.; Swings, J.-P.; Magain, P.; Borgeest, U.; Kayser, R.; Refsdal, S.; Courvoisier, T.J.-L.; Kellermann, K.I.; Kuehr, H.

    1987-10-22

    The authors report a brief description of a gravitational lens system UM673 = Q0142 - 100 = PHL3703. It consists of two images, A and B, separated by 2.2 arc s at a redshift zsub(q) = 2.719. The lensing galaxy has also been found. It lies very near the line connecting the two QSO (quasi-stellar objects) images, approx. 0.8 arc s from the fainter one. Application of gravitational optometry to this system leads to a value Msub(o) or approx. = 2.4 x 10/sup 11/ M solar masses for the mass of the lensing galaxy and to ..delta..t approx. 7 weeks for the most likely travel-time difference between the two light paths to the QSO.

  16. Effect of X-irradiation and vitamin C on DNA degradation and endogenous DNAase in embryonic chick lens cells

    International Nuclear Information System (INIS)

    Trevithick, J.R.; Chaudun, E.; Muel, A.S.; Courtois, Y.; Counis, M.F.

    1987-01-01

    The lens is an organ in which epithelial cells become elongated fibers. During this process, nuclei are transformed and the DNA is degraded. In previous studies, we described an autodigestion of the chromatin in isolated fiber nuclei but not in epithelial nuclei, but the level of DNAase activity was found to be identical in both epithelial and fiber nuclei of lenses at 11 days of development. In this study, we have investigated the possibility that x-irradiation might stimulate the nuclear endogenous activity responsible for chromatin breakdown or epithelial cells to a level comparable to that observed in fiber cells. We have observed that x-irradiation does not increase the nuclear epithelial DNAase activity. Conversely, vitamin C, suspected to prevent cataract formation by protecting DNA against free radical formation, has a damaging effect on the DNA of the lens of chick embryo in vitro. (author)

  17. CARBON-FIBRE-REINFORCED POLYMER PARTS EFFECT ON SPACECRAFT OPTOELECTRONIC MODULE LENS SCATTERING

    Directory of Open Access Journals (Sweden)

    S. S. Kolasha

    2016-01-01

    Full Text Available Spacecraft optoelectronic modules traditionally have aluminum alloy or titanium alloy casing which substantial weight increases fuel consumption required to put them into orbit and, consequently, total cost of the project. Carbon fiber reinforced polymer based composite constructive materials is an efficient solution that allows reducing weight and dimensions of large optoelectronic modules 1,5–3 times and the coefficient of linear thermal expansion 15–20 times if compared with metals. Optical characteristic is a crucial feature of carbon-fibre-reinforced polymer that determines composite material interaction with electromagnetic emission within the optical range. This work was intended to develop a method to evaluate Carbon fiber reinforced polymer optoelectronic modules casing effect on lens scattering by computer simulation with Zemax application software package. Degrees of scattered, reflected and absorbed radiant flux effect on imaging quality are described here. The work included experimental study in order to determine bidirectional reflectance distribution function by goniometric method for LUP-0.1 carbon fabric check test pieces of EDT-69U epoxy binder with EPOFLEX-0.4 glue layer and 5056-3.5-23-A aluminium honeycomb filler. The scattered emission was registered within a hemisphere above the check test piece surface. Optical detection direction was determined with zenith (0º < θ < 90º and azimuth (0º < φ < 180º angles with 10° increment. The check test piece surface was proved to scatter emission within a narrow angle range (approximately 20° with clear directivity. Carbon fiber reinforced polymers was found to feature integrated reflectance coefficient 3 to 4 times greater than special coatings do. 

  18. Computer vision syndrome in presbyopia and beginning presbyopia: effects of spectacle lens type.

    Science.gov (United States)

    Jaschinski, Wolfgang; König, Mirjam; Mekontso, Tiofil M; Ohlendorf, Arne; Welscher, Monique

    2015-05-01

    This office field study investigated the effects of different types of spectacle lenses habitually worn by computer users with presbyopia and in the beginning stages of presbyopia. Computer vision syndrome was assessed through reported complaints and ergonomic conditions. A questionnaire regarding the type of habitually worn near-vision lenses at the workplace, visual conditions and the levels of different types of complaints was administered to 175 participants aged 35 years and older (mean ± SD: 52.0 ± 6.7 years). Statistical factor analysis identified five specific aspects of the complaints. Workplace conditions were analysed based on photographs taken in typical working conditions. In the subgroup of 25 users between the ages of 36 and 57 years (mean 44 ± 5 years), who wore distance-vision lenses and performed more demanding occupational tasks, the reported extents of 'ocular strain', 'musculoskeletal strain' and 'headache' increased with the daily duration of computer work and explained up to 44 per cent of the variance (rs = 0.66). In the other subgroups, this effect was smaller, while in the complete sample (n = 175), this correlation was approximately rs = 0.2. The subgroup of 85 general-purpose progressive lens users (mean age 54 years) adopted head inclinations that were approximately seven degrees more elevated than those of the subgroups with single vision lenses. The present questionnaire was able to assess the complaints of computer users depending on the type of spectacle lenses worn. A missing near-vision addition among participants in the early stages of presbyopia was identified as a risk factor for complaints among those with longer daily durations of demanding computer work. © 2015 The Authors. Clinical and Experimental Optometry © 2015 Optometry Australia.

  19. Hydrostatic pressure and temperature effects on nonlinear optical rectification in a lens shape InAs/GaAs quantum dot

    International Nuclear Information System (INIS)

    Bouzaïene, L.; Ben Mahrsia, R.; Baira, M.; Sfaxi, L.; Maaref, H.

    2013-01-01

    We have performed theoretical calculation of the nonlinear optical rectification in a lens shape InAs/GaAs quantum dot (0D). The combined effects of hydrostatic pressure and temperature on the nonlinear optical rectification in lens-shaped InAs QDs are studied under the compact density matrix formalism and the effective mass approximation. From our calculation, it is found that the subband energies and optical rectification susceptibility are quite sensitive to the applied hydrostatic pressure and temperature. The results show that the resonant peak of the optical rectification can be red-shifted or blue-shifted and their intensity also varied by external probes such as hydrostatic pressure and temperature. In addition, the oscillator strength is strongly affected by these parameters. - Highlights: ► Theoretical calculation of the nonlinear optical rectification in a lens shape InAs/GaAs quantum dot was performed. ► Optical rectification susceptibility is quite sensitive to the applied hydrostatic pressure and temperature. ► The oscillator strength is strongly affected by the applied hydrostatic pressure and temperature.

  20. The foundations of space biology and medicine. Volume 2: Ecological and physiological bases of space biology and medicine. Part 3: Effect on the organism of dynamic flight factors. Chapter 1: Principles of gravitational biology

    Science.gov (United States)

    Smith, A. H.

    1972-01-01

    The physical principles of gravitation are discussed, such as gravitational and intertial forces, weight and mass, weightlessness, size and scale effects, scale limits of gravitational effects, and gravity as a biogenic factor. The behavior of the accelerative force gravitation, is described. This law proposes and quantifies the mutual gravitational attraction existing between all bodies of matter, the force being proportional to the product of masses, and inversely related to the square of the distance separating them. Gravity orientation, chronic acceleration, and hematology are examined. Systematic responses, such as circulation and renal functions, are also considered, along with animal response to a decreased acceleration field and physiology of hyper- and hypodynamic fields.

  1. Gravitational wave reception by a sphere

    International Nuclear Information System (INIS)

    Ashby, N.; Dreitlein, J.

    1975-01-01

    The reception of gravitational waves by an elastic self-gravitating spherical detector is studied in detail. The equations of motion of a detector driven by a gravitational wave are presented in the intuitively convenient coordinate system of Fermi. An exact analytic solution is given for the homogeneous isotropic sphere. Nonlinear effects of a massive self-gravitating system are computed for a body of mass equal to that of the earth, and are shown to be numerically important

  2. Casimir effect of two conducting parallel plates in a general weak gravitational field

    Energy Technology Data Exchange (ETDEWEB)

    Nazari, Borzoo [University of Tehran, Faculty of Engineering Science, College of Engineering, P.O. Box 11155-4563, Tehran (Iran, Islamic Republic of)

    2015-10-15

    We calculate the finite vacuum energy density of the scalar and electromagnetic fields inside a Casimir apparatus made up of two conducting parallel plates in a general weak gravitational field. The metric of the weak gravitational field has a small deviation from flat spacetime inside the apparatus, and we find it by expanding the metric in terms of small parameters of the weak background. We show that the metric found can be transformed via a gauge transformation to the Fermi metric. We solve the Klein-Gordon equation exactly and find mode frequencies in Fermi spacetime. Using the fact that the electromagnetic field can be represented by two scalar fields in the Fermi spacetime, we find general formulas for the energy density and mode frequencies of the electromagnetic field. Some well-known weak backgrounds are examined and consistency of the results with the literature is shown. (orig.)

  3. Effect of energy deposited by cosmic-ray particles on interferometric gravitational wave detectors

    International Nuclear Information System (INIS)

    Yamamoto, Kazuhiro; Hayakawa, Hideaki; Okada, Atsushi; Uchiyama, Takashi; Miyoki, Shinji; Ohashi, Masatake; Kuroda, Kazuaki; Kanda, Nobuyuki; Tatsumi, Daisuke; Tsunesada, Yoshiki

    2008-01-01

    We investigated the noise of interferometric gravitational wave detectors due to heat energy deposited by cosmic-ray particles. We derived a general formula that describes the response of a mirror against a cosmic-ray passage. We found that there are differences in the comic-ray responses (the dependence of temperature and cosmic-ray track position) in cases of interferometric and resonant gravitational wave detectors. The power spectral density of vibrations caused by low-energy secondary muons is 100 times smaller than the goal sensitivity of future second-generation interferometer projects, such as LCGT and Advanced LIGO. The arrival frequency of high-energy cosmic-ray muons that generate enough large showers inside mirrors of LCGT and Advanced LIGO is one per a millennium. We also discuss the probability of exotic-particle detection with interferometers.

  4. GRAVITATIONAL RADIATION

    Directory of Open Access Journals (Sweden)

    Metin SALTIK

    1996-03-01

    Full Text Available According to classical electromagnetic theory, an accelerated charge or system of charges radiates electromagnetic waves. In a radio transmitter antenna charges are accelerated along the antenna and release electromagnetic waves, which is radiated at the velocity of light in the surrounding medium. All of the radio transmitters work on this principle today. In this study an analogy is established between the principles by which accelerated charge systems markes radiation and the accelerated mass system, and the systems cousing gravitational radiation are investigated.

  5. THE MASS OF (4) VESTA DERIVED FROM ITS LARGEST GRAVITATIONAL EFFECTS

    International Nuclear Information System (INIS)

    Kuzmanoski, Mike; Novakovic, Bojan; Apostolovska, Gordana

    2010-01-01

    In this paper, we present a recalculated value of the mass of (4) Vesta, derived from its largest gravitational perturbations on selected asteroids during their mutual close encounters. This was done by using a new method for mass determination, which is based on the linking of pre-encounter observations to the orbit determined from post-encounter ones. The estimated weighted mean of the mass of (4) Vesta is (1.300 ± 0.001) x 10 -10 M sun .

  6. Estimation of effective lens position using a method independent of preoperative keratometry readings.

    LENUS (Irish Health Repository)

    Dooley, Ian

    2012-02-01

    PURPOSE: To evaluate the validity of a keratometry (K)-independent method of estimating effective lens position (ELP) before phacoemulsification cataract surgery. SETTING: Institute of Eye Surgery, Whitfield Clinic, Waterford, Ireland. DESIGN: Evaluation of diagnostic test or technology. METHODS: The anterior chamber diameter and corneal height in eyes scheduled for cataract surgery were measured with a rotating Scheimpflug camera. Corneal height and anterior chamber diameter were used to estimate the ELP in a K-independent method (using the SRK\\/T [ELP(rs)] and Holladay 1 [ELP(rh)] formulas). RESULTS: The mean ELP was calculated using the traditional (mean ELP(s) 5.59 mm +\\/- 0.52 mm [SD]; mean ELP(h) 5.63 +\\/- 0.42 mm) and K-independent (mean ELP(rs) 5.55 +\\/- 0.42 mm; mean ELP(rh) +\\/- SD 5.60 +\\/- 0.36 mm) methods. Agreement between ELP(s) and ELP(rs) and between ELP(h) and ELP(rh) were represented by Bland-Altman plots, with mean differences (+\\/- 1.96 SD) of 0.06 +\\/- 0.65 mm (range -0.59 to +0.71 mm; P=.08) in association with ELP(rs) and -0.04 +\\/- 0.39 mm (range -0.43 to +0.35 mm; P=.08) in association with ELP(rh). The mean absolute error for ELP(s) versus ELP(rs) estimation and for ELP(h) versus ELP(rh) estimation was 0.242 +\\/- 0.222 mm (range 0.001 to 1.272 mm) and 0.152 +\\/- 0.137 mm (range 0.001 to 0.814 mm), respectively. CONCLUSION: This study confirms that the K-independent ELP estimation method is comparable to traditional K-dependent methods and may be useful in post-refractive surgery patients.

  7. Comparative effects of three different poultry manures on lentil lens culinaris

    International Nuclear Information System (INIS)

    Din, Z.U.; Aftab, M.N.

    2017-01-01

    This study was conducted to evaluate the effects of three different poultry manures on lentil growth, yield and prevalence of pathogens in manure and soil. For this purpose, a lentil (Lens culinaris) trait Punjab Masoor-2009 was cultivated in four different plots in triplicates namely negative control (NC); Control (C), plots treated with manure of the birds that used feed with no supplements, antibiotic (A), plots treated with manure of the birds that used neomycin as feed supplements; probiotic (P), plots treated with manure of the birds fed with feed supplemented with probiotic Bacillus licheniformis (Accession No. KT443923). The studied parameters were plant height (cm), number of branches per plant, number of pods per plant, number of seeds per pod, 1000-seeds weight (g), crop yield (kg) and prevalence of pathogens (E. coli, Campylobacter and Salmonella spp) in soil and poultry litter. Maximum crop yield and growth were observed in the crop plots treated with manure obtained from probiotic supplemented birds. Maximum plant height (49.93±2.78 cm), number of branches per plant (16.68±1.85), number of pods per plant (61.46±2.73), number of seeds per pod (2.42±0.59), 1000-seed weight (19.45±0.83 g), crop yield (1243±8.91 kg) was observed in plants from (P) group. Prevalence of E. coli was observed in poultry litter obtained from all groups of birds. Similarly E. coli was observed in soil samples from all groups of plots. However, prevalence of Salmonella and Campylobacter was detected in all plots except (P) group.

  8. AutoLens: Automated Modeling of a Strong Lens's Light, Mass and Source

    Science.gov (United States)

    Nightingale, J. W.; Dye, S.; Massey, Richard J.

    2018-05-01

    This work presents AutoLens, the first entirely automated modeling suite for the analysis of galaxy-scale strong gravitational lenses. AutoLens simultaneously models the lens galaxy's light and mass whilst reconstructing the extended source galaxy on an adaptive pixel-grid. The method's approach to source-plane discretization is amorphous, adapting its clustering and regularization to the intrinsic properties of the lensed source. The lens's light is fitted using a superposition of Sersic functions, allowing AutoLens to cleanly deblend its light from the source. Single component mass models representing the lens's total mass density profile are demonstrated, which in conjunction with light modeling can detect central images using a centrally cored profile. Decomposed mass modeling is also shown, which can fully decouple a lens's light and dark matter and determine whether the two component are geometrically aligned. The complexity of the light and mass models are automatically chosen via Bayesian model comparison. These steps form AutoLens's automated analysis pipeline, such that all results in this work are generated without any user-intervention. This is rigorously tested on a large suite of simulated images, assessing its performance on a broad range of lens profiles, source morphologies and lensing geometries. The method's performance is excellent, with accurate light, mass and source profiles inferred for data sets representative of both existing Hubble imaging and future Euclid wide-field observations.

  9. How robust are the constraints on cosmology and galaxy evolution from the lens-redshift test?

    International Nuclear Information System (INIS)

    Capelo, Pedro R; Natarajan, Priyamvada

    2007-01-01

    The redshift distribution of galaxy lenses in known gravitational lens systems provides a powerful test that can potentially discriminate amongst cosmological models. However, applications of this elegant test have been curtailed by two factors: our ignorance of how galaxies evolve with redshift, and the absence of methods to deal with the effect of incomplete information in lensing systems. In this paper, we investigate both issues in detail. We explore how to extract the properties of evolving galaxies, assuming that the cosmology is well determined by other techniques. We propose a new nested Monte Carlo method to quantify the effects of incomplete data. We apply the lens-redshift test to an improved sample of seventy lens systems derived from recent observations, primarily from the SDSS, SLACS and the CLASS surveys. We find that the limiting factor in applying the lens-redshift test derives from poor statistics, including incomplete information samples and biased sampling. Many lenses that uniformly sample the underlying true image separation distribution will be needed to use this test as a complementary method to measure the value of the cosmological constant or the properties of evolving galaxies. Planned future surveys by missions like the SNAP satellite or LSST are likely to usher in a new era for strong lensing studies that utilize this test. With expected catalogues of thousands of new strong lenses, the lens-redshift test could offer a powerful tool to probe cosmology as well as galaxy evolution

  10. How robust are the constraints on cosmology and galaxy evolution from the lens-redshift test?

    Energy Technology Data Exchange (ETDEWEB)

    Capelo, Pedro R [Astronomy Department, Yale University, PO Box 208101, New Haven, CT 06520-8101 (United States); Natarajan, Priyamvada [Astronomy Department, Yale University, PO Box 208101, New Haven, CT 06520-8101 (United States)

    2007-12-15

    The redshift distribution of galaxy lenses in known gravitational lens systems provides a powerful test that can potentially discriminate amongst cosmological models. However, applications of this elegant test have been curtailed by two factors: our ignorance of how galaxies evolve with redshift, and the absence of methods to deal with the effect of incomplete information in lensing systems. In this paper, we investigate both issues in detail. We explore how to extract the properties of evolving galaxies, assuming that the cosmology is well determined by other techniques. We propose a new nested Monte Carlo method to quantify the effects of incomplete data. We apply the lens-redshift test to an improved sample of seventy lens systems derived from recent observations, primarily from the SDSS, SLACS and the CLASS surveys. We find that the limiting factor in applying the lens-redshift test derives from poor statistics, including incomplete information samples and biased sampling. Many lenses that uniformly sample the underlying true image separation distribution will be needed to use this test as a complementary method to measure the value of the cosmological constant or the properties of evolving galaxies. Planned future surveys by missions like the SNAP satellite or LSST are likely to usher in a new era for strong lensing studies that utilize this test. With expected catalogues of thousands of new strong lenses, the lens-redshift test could offer a powerful tool to probe cosmology as well as galaxy evolution.

  11. Acanthamoeba encystment: multifactorial effects of buffers, biocides, and demulcents present in contact lens care solutions

    Directory of Open Access Journals (Sweden)

    Kovacs CJ

    2015-10-01

    Full Text Available Christopher J Kovacs, Shawn C Lynch, Marjorie J Rah, Kimberly A Millard, Timothy W Morris Bausch & Lomb Incorporated, Rochester, NY, USA Purpose: To determine whether agents which are purportedly capable of inducing encystment of Acanthamoeba can recapitulate the signal when tested in differing formulations. Methods: In accordance with the International Standard ISO 19045, Acanthamoeba castellanii ATCC 50370 trophozoites were cultured in antibiotic-free axenic medium, treated with test solutions, and encystment rates plus viability were measured via bright field and fluorescent microscopy. Test solutions included phosphate-buffered saline (PBS, borate-buffered saline, biguanide- and hydrogen peroxide (H2O2-based biocides, propylene glycol (PG and povidone (POV ophthalmic demulcents, and one-step H2O2-based contact lens disinfection systems. Results: Only PBS solutions with 0.25 ppm polyaminopropyl biguanide (PAPB and increasing concentrations of PG and POV stimulated A. castellanii encystment in a dose-dependent manner, whereas PBS solutions containing 3% H2O2 and increasing concentrations of PG and POV did not stimulate encystment. Borate-buffered saline and PBS/citrate solutions containing PG also did not stimulate encystment. In addition, no encystment was observed after 24 hours, 7 days, or 14 days of exposures of trophozoites to one-step H2O2 contact lens disinfection products or related solutions. Conclusion: The lack of any encystment observed when trophozoites were treated with existing or new one-step H2O2 contact lens care products, as well as when trophozoites were exposed to various related test solutions, confirms that Acanthamoeba encystment is a complex process which depends upon simultaneous contributions of multiple factors including buffers, biocides, and demulcents. Keywords: propylene glycol, contact lens care system, hydrogen peroxide disinfecting solution

  12. Regulatory effect of Bcl-2 in ultraviolet radiation-induced apoptosis of the mouse crystalline lens.

    Science.gov (United States)

    Dong, Yuchen; Zheng, Yajuan; Xiao, Jun; Zhu, Chao; Zhao, Meisheng

    2016-03-01

    The aim of the present study was to analyze the role of Bcl-2 during the process of apoptosis in the mouse crystalline lens. In total, 12 normal mice served as the control group and 12 Bcl-2 knockout (K.O) mice served as the experimental group. The mouse crystalline lens was sampled for the detection of Bcl-2 and caspase-3 expression following exposure to ultraviolet (UV) radiation. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was used to determine Bcl-2 expression in the groups of normal mice receiving UV radiation or not receiving UV radiation. Samples of the murine crystalline lens were microscopically harvested and analyzed using western blotting. Apoptosis was detected using terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay. Furthermore, caspase 3 activity was examined using enzyme-linked immunosorbent assay kits, and RT-qPCR was used to analyze caspase-3 expression levels. The results of the present study demonstrated that there was no statistically significant difference in the level of Bcl-2 gene transcription between the two groups. In addition, UV radiation did not change the macrostructure of the crystalline lens in the group of normal mice or the group of Bcl-2 K.O mice. The results of the TUNEL assay indicated that the normal-UV group exhibited a more significant apoptosis level compared with the Bcl-2 K.O-UV group. Furthermore, the mRNA expression level of caspase-3 in the normal-UV group was significantly higher compared with the normal-nonUV group (Plens.

  13. Effect of corneal cross-linking on contact lens tolerance in keratoconus.

    Science.gov (United States)

    Ünlü, Metin; Yüksel, Erdem; Bilgihan, Kamil

    2017-07-01

    The aim was to investigate changes in corneal sensation and rigid gas-permeable (RGP) contact lens tolerance after corneal cross-linking (CXL) on patients with keratoconus. Thirty eyes of 30 patients, who were RGP lens intolerant, were treated with CXL. The main outcome measures were corneal sensation evaluation by Cochet-Bonnet esthesiometry, sub-basal nerve fibre assessment by corneal in vivo confocal microscopy and RGP contact lens tolerance evaluation with the Likert scale and wearing time. All eyes were evaluated preoperatively and post-operatively at one, three and six months after CXL procedure. The mean age was 25.3 ± 6.2 years. Preoperatively, the maximum keratometry (Kmax) in study eyes was 56.89 ± 4.60 D. Six months after CXL, it reduced to 56.03 ± 4.85 D (p = 0.01). Preoperative mean corneal sensation was 0.44 ± 0.05 g/mm 2 , (range: 0.40 to 0.55); it was significantly decreased at the first month and increased to preoperative values after six months. The sub-basal nerve plexus could not be visualised in 90 per cent of the patients by confocal microscopy at one month post-operatively. Gradual restoration of corneal innervation with almost similar preoperative levels at post-operative month six was noted. There were significant differences in Likert scores between preoperative and third and sixth months after CXL. Likert scale scores correlated significantly with corneal sensitivity. It can be concluded that increased RGP contact lens tolerance after CXL may be associated with the potential role of decreased corneal sensitivity and corneal flattening after CXL. © 2016 Optometry Australia.

  14. Comparative Study of Antibacterial and Antifungal Effects of Rigid Gas Permeable Contact Lens Disinfecting Solutions

    OpenAIRE

    Kuzman, Tomislav; Barišić Kutija, Marija; Kordić, Rajko; Popović Suić, Smiljka; Jandroković, Sonja; Škegro, Ivan; Pokupec, Rajko

    2013-01-01

    The aim of this study was to compare antimicrobial efficacy of rigid contact lens disinfecting solutions. We tested five commercially available solutions: Unique pH (Alcon Laboratories), Boston Advance (Polymer Technology Corp.), Nitilens Conditioner GP (Avizor), Total Care (AMO), Boston Simplus (Bausch&Lomb). Their efficacy to disinfect saline solution experimentally contaminated with American Type Culture Collection (ATCC): Staphylococcus aureus (ATCC 25923), Escherichia coli (ATCC 25922...

  15. Effects of lens extirpation with anterior vitrectomy on vitreous three-dimensional mesh structure

    Directory of Open Access Journals (Sweden)

    Yan Zhao

    2017-06-01

    Full Text Available AIM: To investigate the changes in vitreous gel structure after lens extirpation combined with anterior vitrectomy in rabbit eyes. METHODS: Twenty-eight chinchilla rabbits were divided into three groups. The control group (Group I included 16 eyes from eight rabbits who did not receive any treatment. Group II included 20 eyes from 10 rabbits that underwent lens aspiration only. Group III included 20 eyes from 10 rabbits that underwent lens aspiration combined with posterior capsulotomy and anterior vitrectomy. Eyes were harvested on the 30th and 60th day postoperatively, respectively. Changes in vitreous gel stretch length due to gravity and the rate of vitreous liquefaction were observed. The collagen content in the vitreous body was examined using the L-hydroxyproline test. Electronic microscopic images were obtained from each eyeball. RESULTS: On both the 30th and 60th day postoperatively, the vitreous gel length of group III was significantly shorter than group I and group II (P<0.05, while the rate of liquefaction of the vitreous body in group III was significantly higher than group I and group II (P<0.05. The collagen content in group III was also higher than that in group I and group II (P<0.05. CONCLUSION: Loss of vitreous gel mass is more likely to occur in the eyes of rabbits receiving anterior vitrectomy. Lensectomy combined with anterior vitrectomy may damage the stable three-dimensional mesh structure of collagen, which could aggravate vitreous gel liquefaction.

  16. Measurement of gravitational acceleration of antimatter

    International Nuclear Information System (INIS)

    Rouhani, S.

    1989-12-01

    The minute yet effective impact of gravitational potential in the central region of a long tube magnetic container of non-neutral plasmas can be utilized for the measurement of the gravitational acceleration of antimatter particles. The slight change in distribution of plasma particles along the gravitational field affects the internal electric field of the plasma, which in turn affects the frequency of the magnetron motion of its particles. Thus, a rather straightforward relation is established between the gravitational acceleration of the particles and their magnetron frequencies, which is measurable directly, determining the value of the gravitational acceleration. (author). 7 refs, 3 figs

  17. Anisotropic solutions by gravitational decoupling

    Science.gov (United States)

    Ovalle, J.; Casadio, R.; da Rocha, R.; Sotomayor, A.

    2018-02-01

    We investigate the extension of isotropic interior solutions for static self-gravitating systems to include the effects of anisotropic spherically symmetric gravitational sources by means of the gravitational decoupling realised via the minimal geometric deformation approach. In particular, the matching conditions at the surface of the star with the outer Schwarzschild space-time are studied in great detail, and we describe how to generate, from a single physically acceptable isotropic solution, new families of anisotropic solutions whose physical acceptability is also inherited from their isotropic parent.

  18. Anisotropic solutions by gravitational decoupling

    Energy Technology Data Exchange (ETDEWEB)

    Ovalle, J. [Silesian University in Opava, Institute of Physics and Research Centre of Theoretical Physics and Astrophysics, Faculty of Philosophy and Science, Opava (Czech Republic); Universidad Simon Bolivar, Departamento de Fisica, Caracas (Venezuela, Bolivarian Republic of); Casadio, R. [Alma Mater Universita di Bologna, Dipartimento di Fisica e Astronomia, Bologna (Italy); Istituto Nazionale di Fisica Nucleare, Bologna (Italy); Rocha, R. da [Universidade Federal do ABC (UFABC), Centro de Matematica, Computacao e Cognicao, Santo Andre, SP (Brazil); Sotomayor, A. [Universidad de Antofagasta, Departamento de Matematicas, Antofagasta (Chile)

    2018-02-15

    We investigate the extension of isotropic interior solutions for static self-gravitating systems to include the effects of anisotropic spherically symmetric gravitational sources by means of the gravitational decoupling realised via the minimal geometric deformation approach. In particular, the matching conditions at the surface of the star with the outer Schwarzschild space-time are studied in great detail, and we describe how to generate, from a single physically acceptable isotropic solution, new families of anisotropic solutions whose physical acceptability is also inherited from their isotropic parent. (orig.)

  19. Hangup effect in unequal mass binary black hole mergers and further studies of their gravitational radiation and remnant properties

    Science.gov (United States)

    Healy, James; Lousto, Carlos O.

    2018-04-01

    We present the results of 74 new simulations of nonprecessing spinning black hole binaries with mass ratios q =m1/m2 in the range 1 /7 ≤q ≤1 and individual spins covering the parameter space -0.95 ≤α1 ,2≤0.95 . We supplement those runs with 107 previous simulations to study the hangup effect in black hole mergers, i.e. the delay or prompt merger of spinning holes with respect to nonspinning binaries. We perform the numerical evolution for typically the last ten orbits before the merger and down to the formation of the final remnant black hole. This allows us to study the hangup effect for unequal mass binaries leading us to identify the spin variable that controls the number of orbits before merger as S→ hu.L ^ , where S→ hu=(1 +1/2 m/2 m1 )S→ 1+(1 +1/2 m/1 m2 )S→ 2 . We also combine the total results of those 181 simulations to obtain improved fitting formulas for the remnant final black hole mass, spin and recoil velocity as well as for the peak luminosity and peak frequency of the gravitational strain, and find new correlations among them. This accurate new set of simulations enhances the number of available numerical relativity waveforms available for parameter estimation of gravitational wave observations.

  20. The effects of high-Dk rigid contact lens center thickness, material permeability, and blinking on the oxygen uptake of the human cornea.

    Science.gov (United States)

    Gardner, Hope Patterson; Fink, Barbara A; Mitchell, Lynn G; Hill, Richard M

    2005-06-01

    The human corneal oxygen uptake responses associated with the static (nonblinking) and dynamic (blinking) wear of five rigid gas-permeable materials with high oxygen permeabilities were determined for three different center thicknesses and compared with the responses for the normal open eye and severe hypoxic stress (static wear of polymethylmethacrylate). Corneal oxygen uptake rates were measured with a Clark-type polarographic electrode during two sessions with each of 10 human subjects. Measurements were made on the right eye for the normal open eye (air) and after 5 minutes of static and dynamic wear of polymethylmethacrylate and five rigid gas-permeable contact lens materials: Fluoroperm 92 (paflufocon A, Dk = 92), Fluoroperm 151 (paflufocon D, Dk = 151), 1992 Menicon SF-P (melafocon A, Dk = 102), 1995 Menicon SF-P (melafocon A, Dk = 159), and Menicon Z (tisilfocon A, Dk = 163-250). Lenses were manufactured in three different center thicknesses (0.12, 0.16, and 0.20 mm), with all other parameters remaining constant. Repeated-measures analysis of variance was used and included lens material (five levels), blinking condition (two levels), and lens thickness (three levels) as within-subject effects. Significant differences were found in corneal oxygen responses to lens material (p Dk rigid lens materials studied here, moderate changes in lens thickness or material permeability may result in modest differences in corneal hypoxic relief, whereas blinking results in no significant improvement to corneal oxygenation.

  1. Weight, gravitation, inertia, and tides

    Science.gov (United States)

    Pujol, Olivier; Lagoute, Christophe; Pérez, José-Philippe

    2015-11-01

    This paper deals with the factors that influence the weight of an object near the Earth's surface. They are: (1) the Earth's gravitational force, (2) the centrifugal force due to the Earth's diurnal rotation, and (3) tidal forces due to the gravitational field of the Moon and Sun, and other solar system bodies to a lesser extent. Each of these three contributions is discussed and expressions are derived. The relationship between weight and gravitation is thus established in a direct and pedagogical manner readily understandable by undergraduate students. The analysis applies to the Newtonian limit of gravitation. The derivation is based on an experimental (or operational) definition of weight, and it is shown that it coincides with the Earth’s gravitational force modified by diurnal rotation around a polar axis and non-uniformity of external gravitational bodies (tidal term). Two examples illustrate and quantify these modifications, respectively the Eötvös effect and the oceanic tides; tidal forces due to differential gravitation on a spacecraft and an asteroid are also proposed as examples. Considerations about inertia are also given and some comments are made about a widespread, yet confusing, explanation of tides based on a centrifugal force. Finally, the expression of the potential energy of the tide-generating force is established rigorously in the appendix.

  2. Weight, gravitation, inertia, and tides

    International Nuclear Information System (INIS)

    Pujol, Olivier; Lagoute, Christophe; Pérez, José-Philippe

    2015-01-01

    This paper deals with the factors that influence the weight of an object near the Earth's surface. They are: (1) the Earth's gravitational force, (2) the centrifugal force due to the Earth's diurnal rotation, and (3) tidal forces due to the gravitational field of the Moon and Sun, and other solar system bodies to a lesser extent. Each of these three contributions is discussed and expressions are derived. The relationship between weight and gravitation is thus established in a direct and pedagogical manner readily understandable by undergraduate students. The analysis applies to the Newtonian limit of gravitation. The derivation is based on an experimental (or operational) definition of weight, and it is shown that it coincides with the Earth’s gravitational force modified by diurnal rotation around a polar axis and non-uniformity of external gravitational bodies (tidal term). Two examples illustrate and quantify these modifications, respectively the Eötvös effect and the oceanic tides; tidal forces due to differential gravitation on a spacecraft and an asteroid are also proposed as examples. Considerations about inertia are also given and some comments are made about a widespread, yet confusing, explanation of tides based on a centrifugal force. Finally, the expression of the potential energy of the tide-generating force is established rigorously in the appendix. (paper)

  3. The effects of the modulus of the lens material on intraocular pressure measurement through soft contact lenses.

    Science.gov (United States)

    Boyraz, S; Güngör, I

    2013-09-01

    To investigate the effects of the modulus of the lens material on the intraocular pressure measurement using the Tono-Pen XL applanation tonometer through soft contact lenses. Thirty eyes of 15 patients with myopia were evaluated. Intraocular pressure (IOP) measurements were performed using Tono-Pen XL directly over cornea, and subsequently through three soft contact lenses made up of different lens materials. All were -3.00 diopter soft contact lenses: lotrafilcon A with a low water content (24%) and high modulus (1.4 MPa) (CL-I), balafilcon A with a moderate water content (36%) and moderate modulus (1.1 MPa) (CL-II), and vifilcon A with a moderate water content (55%) and low modulus (0.79 MPa) (CL-III). IOP measurements through contact lenses were compared with each other, and with direct corneal measurements. The mean age of the patients (11 males and 4 females) was 26.86±5.62 years. All measurements obtained through CLs were significantly higher than the direct corneal measurements. The measurements through CLs differed by 4.61±0.54 mmHg (P=0,001), 2.9±0.46 mmHg (P=0.001), and 1.94±0.51 mmHg (P=0,003) for CL-I, CL-II and CL-III, respectively. In the paired comparisons of measurements through CLs, all comparisons were significant except the comparison of measurements through CL-II and CL-III (P=0.128). IOP measurements through silicone-hydrogel contact lenses with a high modulus and low water content were higher compared to the other contact lenses. While measuring IOP through CLs, the clinicians should consider the effect of the lens material and the features of the device used.

  4. Effects of a myosin light chain kinase inhibitor on the optics and accommodation of the avian crystalline lens.

    Science.gov (United States)

    Luck, Sara; Choh, Vivian

    2011-01-01

    While many studies investigate the cytoskeletal properties of the lens with respect to cataract development, examinations of how these molecular structures interact are few. Myosin light chain kinase (MLCK), actin, and myosin are present on the crystalline lenses of chickens. The purpose of this experiment was to determine whether contractile proteins found on the lens play a role in the optical functions of the lens at rest, and during accommodation. Eyes of 6-day old white Leghorn chicks (Gallus gallus domesticus) were enucleated, with the ciliary nerve intact. One eye was treated with the MLCK inhibitor 1-(5-iodonaphthalene-1-sulfonyl)-1H-hexahydro-1,4-diazepine hydrochloride (ML-7) and the other eye with vehicle only. Three concentrations of ML-7 were used: 1 µM, 10 µM, and 100 µM. The back vertex focal lengths (BVFLs) were measured before, during, and after accommodation using an optical laser scanning monitor (Scantox™). To further confirm ML-7 activity, western blotting was performed to detect whether MLCK was inhibited. Western blots confirmed that MLCK was inhibited at all three ML-7 concentrations. Ten µM ML-7 treatments led to longer BVFLs at rest (p=0.0338), while 100 µM treatments led to opposite changes, resulting in shorter BVFLs (p=0.0220). While 1 µM treatments did not lead to significant optical changes (p=0.4416), BVFLs were similar in pattern to those of the 10 µM group. ML-7 had no effects on accommodative amplitudes (p=0.7848). Inhibition of MLCK by ML-7 led to differential changes in BVFLs that presumably affected lenticular integrity. No apparent effect on accommodative amplitudes was observed.

  5. Accretion-induced spin-wandering effects on the neutron star in Scorpius X-1: Implications for continuous gravitational wave searches

    Science.gov (United States)

    Mukherjee, Arunava; Messenger, Chris; Riles, Keith

    2018-02-01

    The LIGO's discovery of binary black hole mergers has opened up a new era of transient gravitational wave astronomy. The potential detection of gravitational radiation from another class of astronomical objects, rapidly spinning nonaxisymmetric neutron stars, would constitute a new area of gravitational wave astronomy. Scorpius X-1 (Sco X-1) is one of the most promising sources of continuous gravitational radiation to be detected with present-generation ground-based gravitational wave detectors, such as Advanced LIGO and Advanced Virgo. As the sensitivity of these detectors improve in the coming years, so will power of the search algorithms being used to find gravitational wave signals. Those searches will still require integration over nearly year long observational spans to detect the incredibly weak signals from rotating neutron stars. For low mass X-ray binaries such as Sco X-1 this difficult task is compounded by neutron star "spin wandering" caused by stochastic accretion fluctuations. In this paper, we analyze X-ray data from the R X T E satellite to infer the fluctuating torque on the neutron star in Sco X-1. We then perform a large-scale simulation to quantify the statistical properties of spin-wandering effects on the gravitational wave signal frequency and phase evolution. We find that there are a broad range of expected maximum levels of frequency wandering corresponding to maximum drifts of between 0.3 - 50 μ Hz /sec over a year at 99% confidence. These results can be cast in terms of the maximum allowed length of a coherent signal model neglecting spin-wandering effects as ranging between 5-80 days. This study is designed to guide the development and evaluation of Sco X-1 search algorithms.

  6. A gravitationally lensed quasar discovered in OGLE

    Science.gov (United States)

    Kostrzewa-Rutkowska, Zuzanna; Kozłowski, Szymon; Lemon, Cameron; Anguita, T.; Greiner, J.; Auger, M. W.; Wyrzykowski, Ł.; Apostolovski, Y.; Bolmer, J.; Udalski, A.; Szymański, M. K.; Soszyński, I.; Poleski, R.; Pietrukowicz, P.; Skowron, J.; Mróz, P.; Ulaczyk, K.; Pawlak, M.

    2018-05-01

    We report the discovery of a new gravitationally lensed quasar (double) from the Optical Gravitational Lensing Experiment (OGLE) identified inside the ˜670deg2 area encompassing the Magellanic Clouds. The source was selected as one of ˜60 `red W1 - W2' mid-infrared objects from WISE and having a significant amount of variability in OGLE for both two (or more) nearby sources. This is the first detection of a gravitational lens, where the discovery is made `the other way around', meaning we first measured the time delay between the two lensed quasar images of -132 Technology Telescope spectra. The spectral energy distribution (SED) fitting with the fixed source redshift provided the estimate of the lensing galaxy redshift of z ≈ 0.9 ± 0.2 (90 per cent CL), while its type is more likely to be elliptical (the SED-inferred and lens-model stellar mass is more likely present in ellipticals) than spiral (preferred redshift by the lens model).

  7. Effects of QCD equation of state on the stochastic gravitational wave background

    Energy Technology Data Exchange (ETDEWEB)

    Anand, Sampurn; Mohanty, Subhendra [Physical Research Laboratory, Ahmedabad 380009 (India); Dey, Ujjal Kumar, E-mail: sampurn@prl.res.in, E-mail: ujjal@cts.iitkgp.ernet.in, E-mail: mohanty@prl.res.in [Centre for Theoretical Studies, Indian Institute of Technology, Kharagpur 721302 (India)

    2017-03-01

    Cosmological phase transitions can be a source of Stochastic Gravitational Wave (SGW) background. Apart from the dynamics of the phase transition, the characteristic frequency and the fractional energy density Ω{sub gw} of the SGW depends upon the temperature of the transition. In this article, we compute the SGW spectrum in the light of QCD equation of state provided by the lattice results. We find that the inclusion of trace anomaly from lattice QCD, enhances the SGW signal generated during QCD phase transition by ∼ 50% and the peak frequency of the QCD era SGW are shifted higher by ∼ 25% as compared to the earlier estimates without trace anomaly. This result is extremely significant for testing the phase transition dynamics near QCD epoch.

  8. Quantum biological gravitational wave detectors

    International Nuclear Information System (INIS)

    Kopvillem, U.Kh.

    1985-01-01

    A possibility of producing biological detectors of gravitational waves is considered. High sensitivity of biological systems to outer effects can be ensured by existence of molecule subgroups in Dicke states. Existence of clusters in Dicke state-giant electric dipoles (GED) is supposed in the Froehlich theory. Comparison of biological and physical detectors shows that GED systems have unique properties for detection of gravitational waves if the reception range is narrow

  9. Low-dose CT of the paranasal sinuses with eye lens protection: effect on image quality and radiation dose

    Energy Technology Data Exchange (ETDEWEB)

    Hein, Eike; Rogalla, Patrik; Klingebiel, Randolph; Hamm, Bernd [Department of Diagnostic and Interventional Radiology, Charite Hospital, Humboldt-Universitaet zu Berlin (Germany)

    2002-07-01

    The purpose of the study was to assess the effect of lens protection on image quality and radiation dose to the eye lenses in CT of the paranasal sinuses. In 127 patients referred to rule out sinusitis, an axial spiral CT with a lens protection placed on the patients eyes was obtained (1.5/2/1, 50 mAs, 120 kV). Coronal views were reconstructed at 5-mm interval. To quantify a subjective impression of image quality, three regions of interest within the eyeball were plotted along a line perpendicular to the protection at 2, 5, and 9 mm beneath skin level on the axial images. Additionally, dose reduction of a bismuth-containing latex shield was measured using a film-dosimetry technique. The average eyeball density was 17.97 HU (SD 3.7 HU). The relative increase in CT density was 180.6 (17.7), 103.3 (11.7), and 53.6 HU (9.2), respectively. There was no diagnostic information loss on axial and coronal views observed. Artifacts were practically invisible on images viewed in a bone window/level setting. The use of the shield reduced skin radiation from 7.5 to 4.5 mGy. The utilization of a radioprotection to the eye lenses in paranasal CT is a suitable and effective means of reducing skin radiation by 40%. (orig.)

  10. Low-dose CT of the paranasal sinuses with eye lens protection: effect on image quality and radiation dose

    International Nuclear Information System (INIS)

    Hein, Eike; Rogalla, Patrik; Klingebiel, Randolph; Hamm, Bernd

    2002-01-01

    The purpose of the study was to assess the effect of lens protection on image quality and radiation dose to the eye lenses in CT of the paranasal sinuses. In 127 patients referred to rule out sinusitis, an axial spiral CT with a lens protection placed on the patients eyes was obtained (1.5/2/1, 50 mAs, 120 kV). Coronal views were reconstructed at 5-mm interval. To quantify a subjective impression of image quality, three regions of interest within the eyeball were plotted along a line perpendicular to the protection at 2, 5, and 9 mm beneath skin level on the axial images. Additionally, dose reduction of a bismuth-containing latex shield was measured using a film-dosimetry technique. The average eyeball density was 17.97 HU (SD 3.7 HU). The relative increase in CT density was 180.6 (17.7), 103.3 (11.7), and 53.6 HU (9.2), respectively. There was no diagnostic information loss on axial and coronal views observed. Artifacts were practically invisible on images viewed in a bone window/level setting. The use of the shield reduced skin radiation from 7.5 to 4.5 mGy. The utilization of a radioprotection to the eye lenses in paranasal CT is a suitable and effective means of reducing skin radiation by 40%. (orig.)

  11. Effect of Zebularine loaded MePEG-PCL nanoparticles on viability, attachment of in vitro cultured lens epithelial cells

    Directory of Open Access Journals (Sweden)

    Si-Wei Liu

    2015-01-01

    Full Text Available AIM: To investigate the effect of zebularine(Zebloaded Poly(ethylene glycol-block-poly(ε-caprolactonemethyl ether(MePEG-PCLnanoparticles(NPson the viability, attachment, and apoptosis of in vitro cultured lens epithelial cells(LECs. METHODS: In vitro cultured infant human lens tissue HLE B-3 immortalized cells were distributed randomly divided into six groups. Each group was administered with free Zeb 50μmol/L(ZebF1 group, 100μmol/L(ZebF2 group, Zeb -loaded MePEG-PCL NPs 50μmol/L(ZebNP1 group, Zeb -loaded MePEG-PCL NPs 100μmol/L(ZebNP2 group, MePEG-PCL empty NPs(NPs groupor blank medium(group Crespectively. A tetrazolium dye assay(MTTtest and modified MTT test were performed to determine cell viability and cell attachment. DNA ladder was used to detect the cell apoptosis. RESULTS: Determined by MTT colorimetric method: Cell proliferation rate of LECs were suppressed by all Zeb administration groups in a concentration-time dependent manner(PPP ZebNP1>ZebF2(PCONCLUSION: Zeb loaded MePEG-PCL NPs had better effect on suppressing the viability and attachment of in vitro cultured LECs than the free Zeb groups, as well as enhancing the apoptosis.

  12. Effect of birefringence of lens material on polarization status and optical imaging characteristics

    Science.gov (United States)

    Kim, Wan-Chin; Park, No-Cheol

    2018-04-01

    In most cases of molding with glass or optical polymers, it is expected that there will be birefringence caused by the internal mechanical stresses remaining in the molding material. The distribution of the residual stress can be annealed by slow cooling, but this approach is disadvantageous with respect to the shape accuracy and manufacturing time. In this study, we propose an analytical model to calculate the diffracted field near the focal plane by considering two primary parameters, the orientation angle of the fast axis and the path difference. In order to verify the reliability of the analytical model, we compared the measured beam spot of the F-theta lens of the laser scanning unit (LSU) with the analytical result. In addition, we analyzed the calculated result from the perspective of the polarization status in the exit pupil. The proposed analysis method can be applied to enhance the image quality for cases in which birefringence occurs in a lens material by suitably modeling the amplitude and phase of the incident light flux.

  13. A new theory of gravitation

    International Nuclear Information System (INIS)

    Logunov, A.A.

    1989-01-01

    The author believes that the General Relativity Theory (GRT) suffers from a substantial deficiency since it ignors the fundamental laws of conservation of energy. Einstein neglected the classical concept of the field due to his belief in the truth of the principle of equivalence between forces of inertid gravitation. This equivalence leads, as the author says, to nonequivalence of these forces, making GRT logically contradictory from the physical point of view. The author considers GRT as a certain stage in the course of the study of space-time and gravitation, and suggests a new theory called the Relativistic Theory of Gravitation (RTG) which obeys the fundamental laws of conservation, and which is justified in some of its aspects by astronomical observations. RTG does not suffer from some deficiencies met in Einsteins theory. One is nonunique predictions of gravitation effects within the boundaries of the solar system. Also, RTG refuses some hypothesis as that of black holes. 7 refs

  14. EDITORIAL: Focus on Gravitational Lensing

    Science.gov (United States)

    Jain, Bhuvnesh

    2007-11-01

    Gravitational lensing emerged as an observational field following the 1979 discovery of a doubly imaged quasar lensed by a foreground galaxy. In the 1980s and '90s dozens of other multiply imaged systems were observed, as well as time delay measurements, weak and strong lensing by galaxies and galaxy clusters, and the discovery of microlensing in our galaxy. The rapid pace of advances has continued into the new century. Lensing is currently one of best techniques for finding and mapping dark matter over a wide range of scales, and also addresses broader cosmological questions such as understanding the nature of dark energy. This focus issue of New Journal of Physics presents a snapshot of current research in some of the exciting areas of lensing. It provides an occasion to look back at the advances of the last decade and ahead to the potential of the coming years. Just about a decade ago, microlensing was discovered through the magnification of stars in our galaxy by invisible objects with masses between that of Jupiter and a tenth the mass of the Sun. Thus a new component of the mass of our galaxy, dubbed MACHOs, was established (though a diffuse, cold dark matter-like component is still needed to make up most of the galaxy mass). More recently, microlensing led to another exciting discovery—of extra-solar planets with masses ranging from about five times that of Earth to that of Neptune. We can expect many more planets to be discovered through ongoing surveys. Microlensing is the best technique for finding Earth mass planets, though it is not as productive overall as other methods and does not allow for follow up observations. Beyond planet hunting, microlensing has enabled us to observe previously inaccessible systems, ranging from the surfaces of other stars to the accretion disks around the black holes powering distant quasars. Galaxies and galaxy clusters at cosmological distances can produce dramatic lensing effects: multiple images of background galaxies

  15. Two families of astrophysical diverging lens models

    Science.gov (United States)

    Er, Xinzhong; Rogers, Adam

    2018-03-01

    In the standard gravitational lensing scenario, rays from a background source are bent in the direction of a foreground lensing mass distribution. Diverging lens behaviour produces deflections in the opposite sense to gravitational lensing, and is also of astrophysical interest. In fact, diverging lensing due to compact distributions of plasma has been proposed as an explanation for the extreme scattering events that produce frequency-dependent dimming of extragalactic radio sources, and may also be related to the refractive radio wave phenomena observed to affect the flux density of pulsars. In this work we study the behaviour of two families of astrophysical diverging lenses in the geometric optics limit, the power law, and the exponential plasma lenses. Generally, the members of these model families show distinct behaviour in terms of image formation and magnification, however the inclusion of a finite core for certain power-law lenses can produce a caustic and critical curve morphology that is similar to the well-studied Gaussian plasma lens. Both model families can produce dual radial critical curves, a novel distinction from the tangential distortion usually produced by gravitational (converging) lenses. The deflection angle and magnification of a plasma lens vary with the observational frequency, producing wavelength-dependent magnifications that alter the amplitudes and the shape of the light curves. Thus, multiwavelength observations can be used to physically constrain the distribution of the electron density in such lenses.

  16. Effect of shroud material on the spherical aberration in electromagnetic focusing lens used in electron beam welding machines

    International Nuclear Information System (INIS)

    Saha, Srijit Kumar; Gupta, Sachin; Kandaswamy, E.

    2015-01-01

    Beam Power density on the target (typically 10"5 -10"6 W/cm"2 ) plays a major role in attaining good weld quality in electron beam welding. Spherical aberration in the electromagnetic focusing lenses places a limitation in attaining the required power density on the target. Conventionally, iron or low carbon steel core are being used as a shroud material in the electromagnetic lenses. The practical difficulty faced in the long term performance of these lenses has initiated a systematic study for various shroud materials and the effect on spherical aberration limited spot size. The particle trajectories were simulated with different magnetic materials, using commercial software. The spherical aberration was found to be the lowest in the air core lens. The possibility of using an aircore electromagnetic focusing lens in electron beam machines is discussed in this paper. The beam power density is limited by various factors such as spherical aberration, space charge aberrations, gun alignment and power source parameters. (author)

  17. Compensation for gravitational sag of bent mirror

    Energy Technology Data Exchange (ETDEWEB)

    Mao, Chengwen; Jiang, Hui; He, Yan; Liang, Dongxu; Lan, Xuying; Yan, Shuai [Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, CAS, Shanghai 201800 (China); Shu, De-ming [Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439 (United States); Li, Aiguo, E-mail: aiguo.li@sinap.ac.cn [Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, CAS, Shanghai 201800 (China)

    2017-05-01

    The gravitational sag of aspheric bent mirrors with face-up or face-down geometry produces a nonnegligible optical error. As an effective compensation, width optimization is used to match the combined effects of the gravitational and bending moments. This method is described by analytical expressions and two calculation algorithms. The results of theoretical simulations and finite element analysis have proved that this method can reduce the slope error resulting from gravitational sag to the level of nano radians.

  18. Compensation for gravitational sag of bent mirror

    International Nuclear Information System (INIS)

    Mao, Chengwen; Jiang, Hui; He, Yan; Liang, Dongxu; Lan, Xuying; Yan, Shuai; Shu, De-ming; Li, Aiguo

    2017-01-01

    The gravitational sag of aspheric bent mirrors with face-up or face-down geometry produces a nonnegligible optical error. As an effective compensation, width optimization is used to match the combined effects of the gravitational and bending moments. This method is described by analytical expressions and two calculation algorithms. The results of theoretical simulations and finite element analysis have proved that this method can reduce the slope error resulting from gravitational sag to the level of nano radians.

  19. Converging or Diverging Lens?

    Science.gov (United States)

    Branca, Mario

    2013-01-01

    Why does a lens magnify? Why does it shrink objects? Why does this happen? The activities that we propose here are useful in helping us to understand how lenses work, and they show that the same lens can have different magnification capabilities. A converging lens can also act as a diverging lens. (Contains 4 figures.)

  20. Gravitational lensing statistics with extragalactic surveys - II. Analysis of the Jodrell Bank-VLA Astrometric Survey

    NARCIS (Netherlands)

    Helbig, P; Marlow, D; Quast, R; Wilkinson, PN; Browne, IWA; Koopmans, LVE

    We present constraints on the cosmological constant lambda(0) from gravitational lensing statistics of the Jodrell Bank-VLA Astrometric Survey (JVAS). Although this is the largest gravitational lens survey which has been analysed, cosmological constraints are only comparable to those from optical

  1. Beyond the geodesic approximation: Conservative effects of the gravitational self-force in eccentric orbits around a Schwarzschild black hole

    International Nuclear Information System (INIS)

    Barack, Leor; Sago, Norichika

    2011-01-01

    We study conservative finite-mass corrections to the motion of a particle in a bound (eccentric) strong-field orbit around a Schwarzschild black hole. We assume the particle's mass μ is much smaller than the black hole mass M, and explore post-geodesic corrections of O(μ/M). Our analysis uses numerical data from a recently developed code that outputs the Lorenz-gauge gravitational self-force (GSF) acting on the particle along the eccentric geodesic. First, we calculate the O(μ/M) conservative correction to the periastron advance of the orbit, as a function of the (gauge-dependent) semilatus rectum and eccentricity. A gauge-invariant description of the GSF precession effect is made possible in the circular-orbit limit, where we express the correction to the periastron advance as a function of the invariant azimuthal frequency. We compare this relation with results from fully nonlinear numerical-relativistic simulations. In order to obtain a gauge-invariant measure of the GSF effect for fully eccentric orbits, we introduce a suitable generalization of Detweiler's circular-orbit ''redshift'' invariant. We compute the O(μ/M) conservative correction to this invariant, expressed as a function of the two invariant frequencies that parametrize the orbit. Our results are in good agreement with results from post-Newtonian calculations in the weak-field regime, as we shall report elsewhere. The results of our study can inform the development of analytical models for the dynamics of strongly gravitating binaries. They also provide an accurate benchmark for future numerical-relativistic simulations.

  2. [Effect of gravitation loading and retabolil on development of atrophy in muscles and bones of rats due to suspension].

    Science.gov (United States)

    KaplanskiI, A S; Il'ina-Kakueva, E I; Durnova, G N; Alekseev, E A; Loginov, V I

    1999-01-01

    In a 3-wk experiment with tail-suspended rats histological and histomorphometric methods were used to determine the effects of graded gravitational loading (GGL) and anabolic steroid retabolil (nortestosterone decanoate) on the course of atrophy in soleus m. (SM), gastrocnemius m. (GM), tibia and humerus, and functioning of somatotrophic hormones (STH) of the pituitary and thyrocytes of the thyroid. Suspension was found to produce atrophy in SM and, to a less degree, in GM, partial transformation of SM slow fibers into the fast ones, suppression of the tibial longitudinal growth, demineralization of the tibial and humeral spongious metaphyses; besides, functional activities of STH-cells and thyrocytes were inhibited. Graded gravitational loading of rats by intermittence of suspension for 2 hrs slowed down atrophy in both muscles and osteopenia in tibia, stimulated the synthetic and secretory functions of STH-cells without any marked effect on thyrocytes or humeral osteopenia. GGL failed to influence the slow-to-fast transformation of SM fibers. Two injections of retabolil at the total dose of 3 mg/kg of the body mass somewhat interfered with the SM atrophy and humoral osteopenia, and were favorable to the synthetic but not secretory activity of STH-cells. Neither SM and tibial atrophies nor thyroid activity of the gland were improved. The prophylactic action of GGL upon the SM and humeral atrophies was significantly higher when combined with retabolil, whereas GM and tibia were not noticeably cured by retabolil. Inhibition of the SM atrophy and humeral osteopenia in rats treated with GGL and retabolil concurred with elevated activities of STH-cells and thyrocytes indirectly suggesting their more intensive production of the growth hormone and thyroid hormones, respectively.

  3. The effect of a transient thermal lens on the Nd:YVO4 laser output

    International Nuclear Information System (INIS)

    Yi, Jonghoon; Lee, Kangin; Kim, Youngjung; Kwon, Jinhyuk

    2010-01-01

    A Nd:YVO 4 laser was pumped by using a diode laser, which has maximum cw pump power of 1 W. The driving current of the diode laser was modulated to have a square waveform. The Nd:YVO 4 laser output power increased linearly and then saturated when the quasi-cw diode laser pulse was focused on the crystal. When the same diode laser pulse was applied on the crystal, transient thermal lensing in the Nd:YVO 4 crystal was monitored by using a probe beam in a non-lasing condition. The TEM 00 mode diameter of the laser was calculated as a function of the focal length of the thermal lens. The results indicated that transient thermal lensing in the crystal was the main cause of the temporally varying output.

  4. Discrete focusing effect of positive ions by a plasma-sheath lens

    International Nuclear Information System (INIS)

    Stamate, E.; Sugai, H.

    2005-01-01

    We demonstrate that the sheath created adjacent to the surface of a negatively biased electrode that interfaces an insulator acts as a lens that focuses the positive ions to distinct regions on the surface. Thus, the positive ion flux is discrete, leading to the formation of a passive surface, of no ion impact, near the edge and an active surface at the center. Trajectories of positive ions within the sheath are obtained by solving in three dimensions the Poisson equation for electrodes of different geometry. Simulations are confirmed by developing the ion flux profile on the electrode surface as the sputtering pattern produced by ion impact. Measurements are performed in a dc plasma produced in Ar gas

  5. The effects of near-UV radiation on elasmobranch lens cytoskeletal actin.

    Science.gov (United States)

    Zigman, S; Rafferty, N S; Scholz, D L; Lowe, K

    1992-08-01

    The role of near-UV radiation as a cytoskeletal actin-damaging agent was investigated. Two procedures were used to analyse fresh smooth dogfish (Mustelus canis) eye lenses that were incubated for up to 22 hr in vitro, with elasmobranch Ringer's medium, and with or without exposure to a near-UV lamp (emission principally at 365 nm; irradiance of 2.5 mW cm-2). These were observed histologically using phalloidin-rhodamine specific staining and by transmission electron microscopy. In addition, solutions of purified polymerized rabbit muscle actin were exposed to the same UV conditions and depolymerization was assayed by ultracentrifugation and high-pressure liquid chromatography. While the two actins studied do differ very slightly in some amino acid sequences, they would react physically nearly identically. The results showed that dogfish lenses developed superficial opacities due to near-UV exposure. Whole mounts of lens epithelium exhibited breakdown of actin filaments in the basal region of the cells within 18 hr of UV exposure. TEM confirmed the breakdown of actin filaments due to UV exposure. SDS-PAGE and immunoblotting positively identified actin in these cells. Direct exposure of purified polymerized muscle actin in polymerizing buffer led to an increase in actin monomer of approximately 25% in the UV-exposed solutions within 3-18 hr, whether assayed by ultracentrifugation or HPLC. The above indicates that elasmobranch lens epithelial cells contain UV-labile actin filaments, and that near-UV radiation, as is present in the sunlit environment, can break down the actin structure in these cells. Furthermore, breakdown of purified polymerized muscle actin does occur due to near-UV light exposure.(ABSTRACT TRUNCATED AT 250 WORDS)

  6. The effect of contact lens usage on corneal biomechanical parameters in myopic patients.

    Science.gov (United States)

    Cankaya, Ali B; Beyazyildiz, Emrullah; Ileri, Dilek; Ozturk, Faruk

    2012-07-01

    To determine and compare the corneal biomechanical properties in myopic patients who use contact lenses and those who do not use contact lenses. The study consisted of 56 myopic patients who used contact lenses (study group) and 123 myopic patients who did not use contact lenses (control group). Intraocular pressure (IOP) was measured with an ocular response analyzer (ORA) and a Goldmann applanation tonometer. Central corneal thickness was measured with an ultrasonic pachymeter. Axial length and anterior chamber depth measurements were acquired with contact ultrasound A-scan biometry. The differences in ORA parameters between study and control group participants were analyzed. The mean corneal hysteresis in study and control groups was 10.1 ± 1.6 mm Hg (6.5-15.9 mm Hg) and 9.7 ± 1.5 mm Hg (6.3-14.2 mm Hg), respectively (P = 0.16). The mean corneal resistance factor was 10.4 ± 1.9 mm Hg (4.6-15.5 mm Hg) in the study group compared with 9.6 ± 1.9 mm Hg (5.1-15.0 mm Hg) in the control group. The difference for corneal resistance factor was statistically significant (P = 0.014). There was no significant difference in corneal-compensated IOP (P = 0.24). Mean Goldmann-correlated IOP was significantly higher in the study group than in control subjects (15.8 ± 3.2 vs. 14.7 ± 3.7 mm Hg) (P = 0.044). None of the corneal biomechanical parameters was significantly correlated to duration of contact lens usage in the study group. Our results suggest that ORA-generated parameters may be different in subjects with and without contact lens usage. Further longitudinal studies need to be performed to establish the relevance of our results.

  7. General relativity and gravitation, 1989

    International Nuclear Information System (INIS)

    Ashby, N.; Bartlett, D.F.; Wyss, W.

    1990-01-01

    This volume records the lectures and symposia of the 12th International Conference on General Relativity and Gravitation. Plenary lecturers reviewed the major advances since the previous conference in 1986. The reviews cover classical and quantum theory of gravity, colliding gravitational waves, gravitational lensing, relativistic effects on pulsars, tests of the inverse square law, numerical relativity, cosmic microwave background radiation, experimental tests of gravity theory, gravitational wave detectors, and cosmology. The plenary lectures are complemented by summaries of symposia, provided by the chairmen. Almost 700 contributed papers were presented at these and they cover an even wider range of topics than the plenary talks. The book provides a comprehensive guide to research activity in both experimental and theoretical gravitation and its applications in astrophysics and cosmology. It will be essential reading for research workers in these fields, as well as theoretical and experimental physicists, astronomers, and mathematicians who wish to be acquainted with modern developments in gravitational theory and general relativity. All the papers and summaries of the workshop sessions are indexed separately. (16 united talks, 20 workshop sessions). (author)

  8. Constraining the neutrino emission of gravitationally lensed Flat-Spectrum Radio Quasars with ANTARES data

    Energy Technology Data Exchange (ETDEWEB)

    Adrián-Martínez, S.; Ardid, M.; Bou-Cabo, M. [Institut d' Investigació per a la Gestió Integrada de les Zones Costaneres (IGIC), Universitat Politècnica de València, C/ Paranimf 1, Gandia, 46730 Spain (Spain); Albert, A. [GRPHE - Institut universitaire de technologie de Colmar, 34 rue du Grillenbreit BP 50568, Colmar, 68008 France (France); André, M. [Technical University of Catalonia, Laboratory of Applied Bioacoustics, Rambla Exposició, Vilanova i la Geltrú, Barcelona, 08800 Spain (Spain); Anton, G. [Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen Centre for Astroparticle Physics, Erwin-Rommel-Str. 1, Erlangen, 91058 Germany (Germany); Aubert, J.-J.; Bertin, V.; Brunner, J.; Busto, J. [Aix Marseille Université, CNRS/IN2P3, CPPM UMR 7346, Marseille, 13288 France (France); Baret, B. [APC, AstroParticule et Cosmologie, Université Paris Diderot, CNRS/IN2P3, CEA/Irfu, Observatoire de Paris, Sorbonne Paris Cité, 10, rue Alice Domon et Léonie Duquet, Paris Cedex 13, F-75205 France (France); Barrios-Martí, J. [IFIC - Instituto de Física Corpuscular, Edificios Investigación de Paterna, CSIC - Universitat de València, Apdo de Correos 22085, Valencia, 46071 Spain (Spain); Basa, S. [LAM - Laboratoire d' Astrophysique de Marseille, Pôle de l' Étoile Site de Château-Gombert, rue Frédéric Joliot-Curie 38, Marseille Cedex 13, 13388 France (France); Biagi, S. [INFN - Sezione di Bologna, Viale Berti-Pichat 6/2, Bologna, 40127 Italy (Italy); Bogazzi, C.; Bormuth, R.; Bouwhuis, M.C.; Bruijn, R. [Nikhef, Science Park 105, Amsterdam, 1098XG The Netherlands (Netherlands); Capone, A. [INFN -Sezione di Roma, P.le Aldo Moro 2, Roma, 00185 Italy (Italy); Caramete, L., E-mail: antares.spokesperson@in2p3.fr [Institute for Space Sciences, Bucharest, Măgurele, R-77125 Romania (Romania); and others

    2014-11-01

    This paper proposes to exploit gravitational lensing effects to improve the sensitivity of neutrino telescopes to the intrinsic neutrino emission of distant blazar populations. This strategy is illustrated with a search for cosmic neutrinos in the direction of four distant and gravitationally lensed Flat-Spectrum Radio Quasars. The magnification factor is estimated for each system assuming a singular isothermal profile for the lens. Based on data collected from 2007 to 2012 by the ANTARES neutrino telescope, the strongest constraint is obtained from the lensed quasar B0218+357, providing a limit on the total neutrino luminosity of this source of 1.08× 10{sup 46} erg s{sup -1}. This limit is about one order of magnitude lower than those previously obtained in the ANTARES standard point source searches with non-lensed Flat-Spectrum Radio Quasars.

  9. Infrared observations of the dark matter lens candidate Q2345+007

    Science.gov (United States)

    Mcleod, Brian; Rieke, Marcia; Weedman, Daniel

    1994-01-01

    Deep K-band observations are presented of the double image quasar Q2345+007. This has the largest separation (7.1 sec) of any quasar image pair considered as gravitationally lensed, so the required lens is massive (10(exp 13) solar masses). No lens has been detected in previous deep images at visible wavelengths, and we find no lens to limiting K magnitude 20.0 in the infrared image. This constrains any lens to being much less luminous than brightest cluster galaxies, while the lens must be much more massive than such galaxies to produce the observed separation. Because spectral data indicate exceptional intrinsic similarity in the quasar image components, this pair remains as the most intriguing example of an observed configuration requiring the presence of massive, concentrated dark matter acting as a gravitational lens.

  10. Hydrodynamics, fields and constants in gravitational theory

    International Nuclear Information System (INIS)

    Stanyukovich, K.P.; Mel'nikov, V.N.

    1983-01-01

    Results of original inveatigations into problems of standard gravitation theory and its generalizations are presented. The main attention is paid to the application of methods of continuous media techniques in the gravitation theory; to the specification of the gravitation role in phenomena of macro- and microworld, accurate solutions in the case, when the medium is the matter, assigned by hydrodynamic energy-momentum tensor; and to accurate solutions for the case when the medium is the field. GRT generalizations are analyzed, such as the new cosmologic hypothesis which is based on the gravitation vacuum theory. Investigations are performed into the quantization of cosmological models, effects of spontaneous symmetry violation and particle production in cosmology. Graeity theory with fundamental Higgs field is suggested in the framework of which in the atomic unit number one can explain possible variations of the effective gravitational bonds, and in the gravitation bond, variations of masses of all particles

  11. Safety and effectiveness of a glistening-free single-piece hydrophobic acrylic intraocular lens (enVista

    Directory of Open Access Journals (Sweden)

    Packer M

    2013-09-01

    Full Text Available Mark Packer,1 Luther Fry,2 Kevin T Lavery,3 Robert Lehmann,4 James McDonald,5 Louis Nichamin,6 Brian Bearie,7,† Jon Hayashida,8 Griffith E Altmann,8 Omid Khodai8 1Department of Ophthalmology, Oregon Health and Science University, Eugene, OR, USA; 2University of Kansas Medical Center, Kansas City, KS, USA; 3Wayne State University, Detroit, MI, USA; 4Baylor College of Medicine, Houston, TX, USA; 5University of Arkansas for Medical Sciences, Little Rock, AR, USA; 6Laurel Eye Clinic, Brookville, PA, USA; 7Grand Rapids Eye Institute, Grand Rapids, MI, USA; 8Bausch & Lomb, Aliso Viejo, CA, USA †Brian Bearie passed away on March 9, 2011 Purpose: To evaluate the safety and effectiveness of a single-piece hydrophobic acrylic intraocular lens (IOL; enVista model MX60; Bausch & Lomb, Rochester, NY, USA when used to correct aphakia following cataract extraction in adults. Methods: This was a prospective case series (NCT01230060 conducted in private practices in the US. Eligible subjects were adult patients with age-related cataract amenable to treatment with standard phacoemulsification/extracapsular cataract extraction. With follow-up of 6 months, primary safety and effectiveness end points included the rates of US Food and Drug Administration (FDA-defined cumulative and persistent adverse events and the percentage of subjects who achieved best-corrected visual acuity (BCVA of 20/40 or better at final visit. To evaluate rotational stability, subjects were randomized (1:1:1:1 to have the lens implanted in one of four axis positions in 45° increments. Results: A total of 122 subjects were enrolled. The rate of cumulative and persistent adverse events did not significantly exceed historical controls, as per FDA draft guidance. At the final postoperative visit, all subjects (100% achieved a BCVA of 20/40 compared with the FDA historical control of 96.7%. Rotation of the IOL between the two final follow-up visits was ≤5° for 100% of eyes, and refractive

  12. Early lens ablation causes dramatic long-term effects on the shape of bones in the craniofacial skeleton of Astyanax mexicanus.

    Directory of Open Access Journals (Sweden)

    Megan Dufton

    Full Text Available The Mexican tetra, Astyanax mexicanus, exists as two morphs of a single species, a sighted surface morph and a blind cavefish. In addition to eye regression, cavefish have an increased number of taste buds, maxillary teeth and have an altered craniofacial skeleton compared to the sighted morph. We investigated the effect the lens has on the development of the surrounding skeleton, by ablating the lens at different time points during ontogeny. This unique long-term study sheds light on how early embryonic manipulations on the eye can affect the shape of the adult skull more than a year later, and the developmental window during which time these effects occur. The effects of lens ablation were analyzed by whole-mount bone staining, immunohistochemisty and landmark based morphometric analyzes. Our results indicate that lens ablation has the greatest impact on the skeleton when it is ablated at one day post fertilisation (dpf compared to at four dpf. Morphometric analyzes indicate that there is a statistically significant difference in the shape of the supraorbital bone and suborbital bones four through six. These bones expand into the eye orbit exhibiting plasticity in their shape. Interestingly, the number of caudal teeth on the lower jaw is also affected by lens ablation. In contrast, the shape of the calvariae, the length of the mandible, and the number of mandibular taste buds are unaltered by lens removal. We demonstrate the plasticity of some craniofacial elements and the stability of others in the skull. Furthermore, this study highlights interactions present between sensory systems during early development and sheds light on the cavefish phenotype.

  13. Red nuggets grow inside-out: evidence from gravitational lensing

    NARCIS (Netherlands)

    Oldham, Lindsay; Auger, Matthew W.; Fassnacht, Christopher D.; Treu, Tommaso; Brewer, Brendon J.; Koopmans, L. V. E.; Lagattuta, David; Marshall, Philip; McKean, John; Vegetti, Simona

    We present a new sample of strong gravitational lens systems where both the foreground lenses and background sources are early-type galaxies. Using imaging from Hubble Space Telescope (HST)/Advanced Camera for Studies (ACS) and Keck/NIRC2, we model the surface brightness distributions and show that

  14. Effect of long-wave ultraviolet light on the lens. I. Model systems for detecting and measuring effect on the lens in vitro

    International Nuclear Information System (INIS)

    Kuck, J.F.R. Jr.

    1976-01-01

    Rat, mouse, and chick lenses incubated with 3-aminotriazole under long-wave ultraviolet (UV) show reduced accumulation and incorporation of leucine and a loss of glutathione. The effect on leucine incorporation is strikingly enhanced when capsule-epithelium pools are incubated. The procedure may identify photosensitizers or metabolic inhibitors which are cataractogenic when acting in conjunction with UV

  15. [Effect of UV-radiation on the level of ascorbic acid, SH-groups, and activity of glutathione reductase in the eye lens].

    Science.gov (United States)

    Byshneva, L N; Senchuk, V V

    2002-01-01

    The effect of UV radiation in vitro on the level of ascorbate, SH-groups and glutathione reductase activity in the soluble fraction of bovine eye lens was studied. UV-Irradiation increased NADPH-oxidoreductase activity, the level of ascorbate oxidation and decreased the content of SH-groups and activity of glutathione reductase. Significant activation of the NADPH-oxidoreductase activity in the presence of ascorbate and Cu2+ was observed after UV-irradiation. It is suggested that ascorbate may play an important role in the UV-induced lens pathology.

  16. Fermat potentials for nonperturbative gravitational lensing

    International Nuclear Information System (INIS)

    Frittelli, Simonetta; Kling, Thomas P.; Newman, Ezra T.

    2002-01-01

    The images of many distant galaxies are displaced, distorted and often multiplied by the presence of foreground massive galaxies near the line of sight; the foreground galaxies act as gravitational lenses. Commonly, the lens equation, which relates the placement and distortion of the images to the real source position in the thin-lens scenario, is obtained by extremizing the time of arrival among all the null paths from the source to the observer (Fermat's principle). We show that the construction of envelopes of certain families of null surfaces constitutes an alternative variational principle or version of Fermat's principle that leads naturally to a lens equation in a generic spacetime with any given metric. We illustrate the construction by deriving the lens equation for static asymptotically flat thin lens spacetimes. As an application of the approach, we find the bending angle for moving thin lenses in terms of the bending angle for the same deflector at rest. Finally we apply this construction to cosmological spacetimes (FRW) by using the fact they are all conformally related to Minkowski space

  17. Prevention of gravitational collapse

    International Nuclear Information System (INIS)

    Moffat, J.W.; Taylor, J.G.

    1981-01-01

    We apply a new theory of gravitation to the question of gravitational collapse to show that collapse is prevented in this theory under very reasonable conditions. This result also extends to prevent ultimate collapse of the Universe. (orig.)

  18. Underdevelopment’s gravitation

    Directory of Open Access Journals (Sweden)

    Marin Dinu

    2013-09-01

    Full Text Available The energy necessary to escape the gravitational pull of underdevelopment and to enter an evolutional trajectory dependent on the gravitational pull of development is unintelligible in economic terms.

  19. Cytogenetic effects of 48titanium (48ti) on meristematic cells of root tips of lens culinaris med

    International Nuclear Information System (INIS)

    Sepet, H.; Bozdag, B.

    2014-01-01

    Cytogenetic effects of 48Titanium (48Ti) on meristematic cells of root tips belonging to the plant (Lens culinaris Medik.) have been Investigated. Seeds of the plant, prepared were kept in 48Ti standart for different time period as control during 1/4, 1/2, 1, 2, 4, 8, 12, 16, 20, 24 hours. Seeds treated with 48Ti were made sprout and the root tips obtained were prepared for microscopic examination. At the end of the microscopic examinations, some abnormalities as chromosome breakings, chromosome dispersion, bridge chromosome, chromosome adherence, ring chromosome were observed. Abnormalities were seen at each treatment depended on the time periods. Variety and number of abnormality were usually seen to be increasing, depending on the increase of treatment time. The results obtained were evaluated statistically. (author)

  20. Next-to-next-to-leading order gravitational spin-orbit coupling via the effective field theory for spinning objects in the post-Newtonian scheme

    Energy Technology Data Exchange (ETDEWEB)

    Levi, Michele [Université Pierre et Marie Curie, CNRS-UMR 7095, Institut d' Astrophysique de Paris, 98 bis Boulevard Arago, 75014 Paris (France); Steinhoff, Jan, E-mail: michele.levi@upmc.fr, E-mail: jan.steinhoff@aei.mpg.de [Max-Planck-Institute for Gravitational Physics (Albert-Einstein-Institute), Am Mühlenberg 1, 14476 Potsdam-Golm (Germany)

    2016-01-01

    We implement the effective field theory for gravitating spinning objects in the post-Newtonian scheme at the next-to-next-to-leading order level to derive the gravitational spin-orbit interaction potential at the third and a half post-Newtonian order for rapidly rotating compact objects. From the next-to-next-to-leading order interaction potential, which we obtain here in a Lagrangian form for the first time, we derive straightforwardly the corresponding Hamiltonian. The spin-orbit sector constitutes the most elaborate spin dependent sector at each order, and accordingly we encounter a proliferation of the relevant Feynman diagrams, and a significant increase of the computational complexity. We present in detail the evaluation of the interaction potential, going over all contributing Feynman diagrams. The computation is carried out in terms of the ''nonrelativistic gravitational'' fields, which are advantageous also in spin dependent sectors, together with the various gauge choices included in the effective field theory for gravitating spinning objects, which also optimize the calculation. In addition, we automatize the effective field theory computations, and carry out the automated computations in parallel. Such automated effective field theory computations would be most useful to obtain higher order post-Newtonian corrections. We compare our Hamiltonian to the ADM Hamiltonian, and arrive at a complete agreement between the ADM and effective field theory results. Finally, we provide Hamiltonians in the center of mass frame, and complete gauge invariant relations among the binding energy, angular momentum, and orbital frequency of an inspiralling binary with generic compact spinning components to third and a half post-Newtonian order. The derivation presented here is essential to obtain further higher order post-Newtonian corrections, and to reach the accuracy level required for the successful detection of gravitational radiation.

  1. Gravitational Physics Research

    Science.gov (United States)

    Wu, S. T.

    2000-01-01

    Gravitational physics research at ISPAE is connected with NASA's Relativity Mission (Gravity Probe B (GP-B)) which will perform a test of Einstein's General Relativity Theory. GP-B will measure the geodetic and motional effect predicted by General Relativity Theory with extremely stable and sensitive gyroscopes in an earth orbiting satellite. Both effects cause a very small precession of the gyroscope spin axis. The goal of the GP-B experiment is the measurement of the gyroscope precession with very high precision. GP-B is being developed by a team at Stanford University and is scheduled for launch in the year 2001. The related UAH research is a collaboration with Stanford University and MSFC. This research is focussed primarily on the error analysis and data reduction methods of the experiment but includes other topics concerned with experiment systems and their performance affecting the science measurements. The hydrogen maser is the most accurate and stable clock available. It will be used in future gravitational physics missions to measure relativistic effects such as the second order Doppler effect. The HMC experiment, currently under development at the Smithsonian Astrophysical Observatory (SAO), will test the performance and capability of the hydrogen maser clock for gravitational physics measurements. UAH in collaboration with the SAO science team will study methods to evaluate the behavior and performance of the HMC. The GP-B data analysis developed by the Stanford group involves complicated mathematical operations. This situation led to the idea to investigate alternate and possibly simpler mathematical procedures to extract the GP-B measurements form the data stream. Comparison of different methods would increase the confidence in the selected scheme.

  2. Gravitational Anomaly and Transport Phenomena

    International Nuclear Information System (INIS)

    Landsteiner, Karl; Megias, Eugenio; Pena-Benitez, Francisco

    2011-01-01

    Quantum anomalies give rise to new transport phenomena. In particular, a magnetic field can induce an anomalous current via the chiral magnetic effect and a vortex in the relativistic fluid can also induce a current via the chiral vortical effect. The related transport coefficients can be calculated via Kubo formulas. We evaluate the Kubo formula for the anomalous vortical conductivity at weak coupling and show that it receives contributions proportional to the gravitational anomaly coefficient. The gravitational anomaly gives rise to an anomalous vortical effect even for an uncharged fluid.

  3. Gravitational bending of light rays in plasma

    International Nuclear Information System (INIS)

    Tsupko, O. Yu.; Bisnovatyi-Kogan, G. S.

    2010-01-01

    We investigate the gravitational lensing effect in presence of plasma. We observe that in a homogeneous plasma the gravitational deflection angle differs from that in vacuum, and it depends on the frequency of the photon. We discuss observational consequences of this dependence for the point-mass lensing and estimate possibility of the observation of this effect by the planned project Radioastron.

  4. Gravitation in Material Media

    Science.gov (United States)

    Ridgely, Charles T.

    2011-01-01

    When two gravitating bodies reside in a material medium, Newton's law of universal gravitation must be modified to account for the presence of the medium. A modified expression of Newton's law is known in the literature, but lacks a clear connection with existing gravitational theory. Newton's law in the presence of a homogeneous material medium…

  5. Detection of gravitational radiation

    Energy Technology Data Exchange (ETDEWEB)

    Holten, J.W. van [ed.

    1994-12-31

    In this report the main contributions presented at the named symposium are collected. These concern astrophysical sources of gravitational radiation, ultracryogenic gravitational wave experiments, read out and data analysis of gravitational wave antennas, cryogenic aspects of large mass cooling to mK temperatures, and metallurgical and engineering aspects of large Cu structure manufacturing. (HSI).

  6. Detection of gravitational radiation

    International Nuclear Information System (INIS)

    Holten, J.W. van

    1994-01-01

    In this report the main contributions presented at the named symposium are collected. These concern astrophysical sources of gravitational radiation, ultracryogenic gravitational wave experiments, read out and data analysis of gravitational wave antennas, cryogenic aspects of large mass cooling to mK temperatures, and metallurgical and engineering aspects of large Cu structure manufacturing. (HSI)

  7. Relativity theory and gravitation

    International Nuclear Information System (INIS)

    Bondi, H.

    1986-01-01

    The paper on relativity theory and gravitation is presented as a preface to the first of the articles submitted to the Journal on general relativity. Newtonian gravitation and and observation, relativity, and the sources of the gravitational field, are all discussed. (UK)

  8. The earth's gravitational field

    Digital Repository Service at National Institute of Oceanography (India)

    Ramprasad, T.

    . But to say that gravity acts downwards is not correct. Gravity acts down, no matter where you stand on the Earth. It is better to say that on Earth gravity pulls objects towards the centre of the Earth. So no matter where you are on Earth all objects fall... pull than objects at the poles. In combination, the equatorial bulge and the effects of centrifugal force mean that sea-level gravitational acceleration increases from about 9.780 m/s² at the equator to about 9.832 m/s² at the poles, so an object...

  9. Gravitational waves in cold dark matter

    Science.gov (United States)

    Flauger, Raphael; Weinberg, Steven

    2018-06-01

    We study the effects of cold dark matter on the propagation of gravitational waves of astrophysical and primordial origin. We show that the dominant effect of cold dark matter on gravitational waves from astrophysical sources is a small frequency dependent modification of the propagation speed of gravitational waves. However, the magnitude of the effect is too small to be detected in the near future. We furthermore show that the spectrum of primordial gravitational waves in principle contains detailed information about the properties of dark matter. However, depending on the wavelength, the effects are either suppressed because the dark matter is highly nonrelativistic or because it contributes a small fraction of the energy density of the universe. As a consequence, the effects of cold dark matter on primordial gravitational waves in practice also appear too small to be detectable.

  10. Single lens to lens duplication: The missing link

    OpenAIRE

    Bhatt, Rupal; Jethani, Jitendra; Saluja, Praveen; Bharti, Vinay

    2008-01-01

    Congenital anomalies of the lens include a wide range from lens coloboma to primary aphakia and doubling of lens. There have been few case reports of double lens; the etiology suggested is metaplastic changes in the surface ectoderm that leads to formation of two lens vesicles and hence resulting in double lens. We report a case with bilobed lens, which raises the possibility of explaining the etiology of double lens.

  11. Gravitational waves from supernova matter

    International Nuclear Information System (INIS)

    Scheidegger, S; Whitehouse, S C; Kaeppeli, R; Liebendoerfer, M

    2010-01-01

    We have performed a set of 11 three-dimensional magnetohydrodynamical (MHD) core-collapse supernova simulations in order to investigate the dependences of the gravitational wave signal on the progenitor's initial conditions. We study the effects of the initial central angular velocity and different variants of neutrino transport. Our models are started up from a 15M o-dot progenitor and incorporate an effective general relativistic gravitational potential and a finite temperature nuclear equation of state. Furthermore, the electron flavour neutrino transport is tracked by efficient algorithms for the radiative transfer of massless fermions. We find that non- and slowly rotating models show gravitational wave emission due to prompt- and lepton driven convection that reveals details about the hydrodynamical state of the fluid inside the protoneutron stars. Furthermore we show that protoneutron stars can become dynamically unstable to rotational instabilities at T/|W| values as low as ∼2% at core bounce. We point out that the inclusion of deleptonization during the postbounce phase is very important for the quantitative gravitational wave (GW) prediction, as it enhances the absolute values of the gravitational wave trains up to a factor of ten with respect to a lepton-conserving treatment.

  12. Semi-analytic calculation of the gravitational wave signal from the electroweak phase transition for general quartic scalar effective potentials

    International Nuclear Information System (INIS)

    Kehayias, John; Profumo, Stefano

    2010-01-01

    Upcoming gravitational wave (GW) detectors might detect a stochastic background of GWs potentially arising from many possible sources, including bubble collisions from a strongly first-order electroweak phase transition. We investigate whether it is possible to connect, via a semi-analytical approximation to the tunneling rate of scalar fields with quartic potentials, the GW signal through detonations with the parameters entering the potential that drives the electroweak phase transition. To this end, we consider a finite temperature effective potential similar in form to the Higgs potential in the Standard Model (SM). In the context of a semi-analytic approximation to the three dimensional Euclidean action, we derive a general approximate form for the tunneling temperature and the relevant GW parameters. We explore the GW signal across the parameter space describing the potential which drives the phase transition. We comment on the potential detectability of a GW signal with future experiments, and physical relevance of the associated potential parameters in the context of theories which have effective potentials similar in form to that of the SM. In particular we consider singlet, triplet, higher dimensional operators, and top-flavor extensions to the Higgs sector of the SM. We find that the addition of a temperature independent cubic term in the potential, arising from a gauge singlet for instance, can greatly enhance the GW power. The other parameters have milder, but potentially noticeable, effects

  13. The Effect of Size and Species on Lens Intracellular Hydrostatic Pressure

    Science.gov (United States)

    Gao, Junyuan; Sun, Xiurong; Moore, Leon C.; Brink, Peter R.; White, Thomas W.; Mathias, Richard T.

    2013-01-01

    Purpose. Previous experiments showed that mouse lenses have an intracellular hydrostatic pressure that varied from 335 mm Hg in central fibers to 0 mm Hg in surface cells. Model calculations predicted that in larger lenses, all else equal, pressure should increase as the lens radius squared. To test this prediction, lenses of different radii from different species were studied. Methods. All studies were done in intact lenses. Intracellular hydrostatic pressures were measured with a microelectrode-manometer–based system. Membrane conductances were measured by frequency domain impedance analysis. Intracellular Na+ concentrations were measured by injecting the Na+-sensitive dye sodium-binding benzofuran isophthalate. Results. Intracellular hydrostatic pressures were measured in lenses from mice, rats, rabbits, and dogs with radii (cm) 0.11, 0.22, 0.49, and 0.57, respectively. In each species, pressure varied from 335 ± 6 mm Hg in central fiber cells to 0 mm Hg in surface cells. Further characterization of transport in lenses from mice and rats showed that the density of fiber cell gap junction channels was approximately the same, intracellular Na+ concentrations varied from 17 mM in central fiber cells to 7 mM in surface cells, and intracellular voltages varied from −45 mV in central fiber cells to −60 mV in surface cells. Fiber cell membrane conductance was a factor of 2.7 times larger in mouse than in rat lenses. Conclusions. Intracellular hydrostatic pressure is an important physiological parameter that is regulated in lenses from these different species. The most likely mechanism of regulation is to reduce the density of open Na+-leak channels in fiber cells of larger lenses. PMID:23211824

  14. Interaction of gravitational waves with superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Inan, N.A.; Thompson, J.J. [University of California, Schools of Natural Sciences, Merced, CA (United States); Chiao, R.Y. [University of California, Schools of Natural Sciences and Engineering, Merced, CA (United States)

    2017-06-15

    Applying the Helmholtz Decomposition theorem to linearized General Relativity leads to a gauge-invariant formulation where the transverse-traceless part of the metric perturbation describes gravitational waves in matter. Gravitational waves incident on a superconductor can be described by a linear London-like constituent equation characterized by a ''gravitational shear modulus'' and a corresponding plasma frequency and penetration depth. Electric-like and magnetic-like gravitational tensor fields are defined in terms of the strain field of a gravitational wave. It is shown that in the DC limit, the magnetic-like tensor field is expelled from the superconductor in a gravitational Meissner-like effect. The Cooper pair density is described by the Ginzburg-Landau theory embedded in curved space-time. The ionic lattice is modeled by quantum harmonic oscillators coupled to gravitational waves and characterized by quasi-energy eigenvalues for the phonon modes. The formulation predicts the possibility of a dynamical Casimir effect since the zero-point energy of the ionic lattice phonons is found to be modulated by the gravitational wave, in a quantum analog of a ''Weber-bar effect.'' Applying periodic thermodynamics and the Debye model in the low-temperature limit leads to a free energy density for the ionic lattice. Lastly, we relate the gravitational strain of space to the strain of matter to show that the response to a gravitational wave is far less for the Cooper pair density than for the ionic lattice. This predicts a charge separation effect in the superconductor as a result of the gravitational wave. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Gravitational Analysis of the In-Band Wormhole Phenomenon

    National Research Council Canada - National Science Library

    Gopaul, Richard; Kruus, Peter; Sterne, Dan; Rivera, Brian

    2006-01-01

    ...], for evaluating the effects of in-band wormhole attacks on OLSR routing. The gravitational analysis technique examines individual network topologies and results in the creation of a gravitational chart for each topology...

  16. Gravitational waves: an introduction and a progress report

    International Nuclear Information System (INIS)

    Hamilton, W.O.

    1983-01-01

    The author gives a description of the effect an experimentalist has to measure to detect gravitational waves. He goes on to describe the design of gravitational wave detectors and the sensitivity of the components. (Auth.)

  17. Contact Lens Care

    Science.gov (United States)

    ... Consumers Consumer Information by Audience For Women Contact Lens Care Share Tweet Linkedin Pin it More sharing ... www.fda.gov/medwatch Learn More about Contact Lens Care Other Tips on Contact Lenses Decorative Contact ...

  18. An integral-field spectroscopic strong lens survey

    International Nuclear Information System (INIS)

    Bolton, Adam S; Burles, Scott

    2007-01-01

    We present the observational results of a survey for strong gravitational lens systems consisting of extended emission-line galaxies lensed by intervening early-type galaxies, conducted using integral field units (IFUs) of the Magellan IMACS and Gemini GMOS-N spectrographs. These data are highly valuable for corroborating the lensing interpretation of Hubble Space Telescope imaging data. We show that in many cases, ground-based IFU spectroscopy is in fact competitive with space-based imaging for the measurement of the mass model parameters of the lensing galaxy. We demonstrate a novel technique of three-dimensional gravitational lens modeling for a single lens system with a resolved lensed rotation curve. We also describe the details of our custom IFU data analysis software, which performs optimal multi-fiber extraction, relative and absolute wavelength calibration to a few hundredths of a pixel RMS and nearly Poisson-limited sky subtraction

  19. How Spherical Is a Cube (Gravitationally)?

    Science.gov (United States)

    Sanny, Jeff; Smith, David

    2015-01-01

    An important concept that is presented in the discussion of Newton's law of universal gravitation is that the gravitational effect external to a spherically symmetric mass distribution is the same as if all of the mass of the distribution were concentrated at the center. By integrating over ring elements of a spherical shell, we show that the…

  20. Neutrino bursts and gravitational waves experiments

    Energy Technology Data Exchange (ETDEWEB)

    Castagnoli, C; Galeotti, P; Saavedra, O [Consiglio Nazionale delle Ricerche, Turin (Italy). Lab. di Cosmo-Geofisica

    1978-05-01

    Several experiments have been performed in many countries to observe gravitational waves or neutrino bursts. Since their simultaneous emission may occur in stellar collapse, the authors evaluate the effect of neutrino bursts on gravitational wave antennas and suggest the usefulness of a time correlation among the different detectors.

  1. Self-gravitation in Saturn's rings

    International Nuclear Information System (INIS)

    Salo, H.; Lukkari, J.

    1982-01-01

    In a ring-shaped collisional system self-gravitation reduces the equilibrium values of the geometric and optical thickness. In Saturn's rings both effects are appreciable. The previously found discrepancy between the calculated profile and the observed profile of the rings is chiefly caused by the omission of self-gravitation. (Auth.)

  2. Gravitational radiation and 3D numerical relativity

    International Nuclear Information System (INIS)

    Nakamura, T.

    1986-01-01

    Study of Numerical Relativity in Kyoto is reviewed. Main topics discussed are 2D rotating collapse, phase cancellation effects and perturbation calculation of the gravitational radiation from a particle falling into a black hole. New numerical results on 3D time evolution of pure gravitational waves are also presented

  3. Preliminary evaluation of an algorithm to minimize the power error selection of an aspheric intraocular lens by optimizing the estimation of the corneal power and the effective lens position

    Directory of Open Access Journals (Sweden)

    David P. Piñero

    2016-06-01

    Full Text Available AIM: To evaluate the refractive predictability achieved with an aspheric intraocular lens(IOLand to develop a preliminary optimized algorithm for the calculation of its power(PIOL.METHODS: This study included 65 eyes implanted with the aspheric IOL LENTIS L-313(Oculentis GmbHthat were divided into 2 groups: 12 eyes(8 patientswith PIOL≥23.0 D(group A, and 53 eyes(35 patientswith PIOLIOLadjwas calculated considering a variable refractive index for corneal power estimation, the refractive outcome obtained, and an adjusted effective lens position(ELPadjaccording to age and anatomical factors. RESULTS: Postoperative spherical equivalent ranged from -0.75 to +0.75 D and from -1.38 to +0.75 D in groups A and B, respectively. No statistically significant differences were found in groups A(P=0.64and B(P=0.82between PIOLadj and the IOL power implanted(PIOLReal. The Bland and Altman analysis showed ranges of agreement between PIOLadj and PIOLReal of +1.11 to -0.96 D and +1.14 to -1.18 D in groups A and B, respectively. Clinically and statistically significant differences were found between PIOLadj and PIOL obtained with Hoffer Q and Holladay I formulas(PCONCLUSION: The refractive predictability of cataract surgery with implantation of an aspheric IOL can be optimized using paraxial optics combined with linear algorithms to minimize the error associated to the estimation of corneal power and ELP.

  4. Exploring the effects of task shifting for HIV through a systems thinking lens: the case of Burkina Faso.

    Science.gov (United States)

    Yaya Bocoum, Fadima; Kouanda, Seni; Kouyaté, Bocar; Hounton, Sennen; Adam, Taghreed

    2013-10-22

    While the impact of task shifting on quality of care and clinical outcomes has been demonstrated in several studies, evidence on its impact on the health system as a whole is limited. This study has two main objectives. The first is to conceptualize the wider range of effects of task shifting through a systems thinking lens. The second is to explore these effects using task shifting for HIV in Burkina Faso as a case study. We used a case study approach, using qualitative research methods. Data sources included document reviews, reviews of available data and records, as well as interviews with key informants and health workers. In addition to the traditional measures of impact of task shifting on health outcomes, our study identified 20 possible effects of the strategy on the system as a whole. Moreover, our analysis highlighted the importance of differentiating between two types of health systems effects. The first are effects inherent to the task shifting strategy itself, such as job satisfaction or better access to health services. The second are effects due to health system barriers, for example the unavailability of medicines and supplies, generating a series of effects on the various components of the health system, e.g., staff frustration.Among the health systems effects that we found are positive, mostly unintended, effects and synergies such as increased health workers' sense of responsibility and worthiness, increased satisfaction due to using the newly acquired skills in other non-HIV tasks, as well as improved patient-provider relationships. Among the negative unintended effects are staff frustration due to lack of medicines and supplies or lack of the necessary infrastructure to be able to perform the new tasks. Our analysis highlights the importance of adopting a systems thinking approach in designing, implementing and evaluating health policies to mitigate some of the design issues or system bottle-necks that may impede their successful implementation

  5. Chirality and gravitational parity violation.

    Science.gov (United States)

    Bargueño, Pedro

    2015-06-01

    In this review, parity-violating gravitational potentials are presented as possible sources of both true and false chirality. In particular, whereas phenomenological long-range spin-dependent gravitational potentials contain both truly and falsely chiral terms, it is shown that there are models that extend general relativity including also coupling of fermionic degrees of freedom to gravity in the presence of torsion, which give place to short-range truly chiral interactions similar to that usually considered in molecular physics. Physical mechanisms which give place to gravitational parity violation together with the expected size of the effects and their experimental constraints are discussed. Finally, the possible role of parity-violating gravity in the origin of homochirality and a road map for future research works in quantum chemistry is presented. © 2015 Wiley Periodicals, Inc.

  6. Sparse representation of Gravitational Sound

    Science.gov (United States)

    Rebollo-Neira, Laura; Plastino, A.

    2018-03-01

    Gravitational Sound clips produced by the Laser Interferometer Gravitational-Wave Observatory (LIGO) and the Massachusetts Institute of Technology (MIT) are considered within the particular context of data reduction. We advance a procedure to this effect and show that these types of signals can be approximated with high quality using significantly fewer elementary components than those required within the standard orthogonal basis framework. Furthermore, a local measure sparsity is shown to render meaningful information about the variation of a signal along time, by generating a set of local sparsity values which is much smaller than the dimension of the signal. This point is further illustrated by recourse to a more complex signal, generated by Milde Science Communication to divulge Gravitational Sound in the form of a ring tone.

  7. Sharing of secondary electrons by in-lens and out-lens detector in low-voltage scanning electron microscope equipped with immersion lens.

    Science.gov (United States)

    Kumagai, Kazuhiro; Sekiguchi, Takashi

    2009-03-01

    To understand secondary electron (SE) image formation with in-lens and out-lens detector in low-voltage scanning electron microscopy (LV-SEM), we have evaluated SE signals of an in-lens and an out-lens detector in LV-SEM. From the energy distribution spectra of SEs with various boosting voltages of the immersion lens system, we revealed that the electrostatic field of the immersion lens mainly collects electrons with energy lower than 40eV, acting as a low-pass filter. This effect is also observed as a contrast change in LV-SEM images taken by in-lens and out-lens detectors.

  8. Search for brown dwarfs by gravitational microlensing effect with the pixels method. Analysis of AGAPE and EROS collaborations data

    International Nuclear Information System (INIS)

    Melchior, Anne-Laure

    1995-01-01

    This work is involved in baryonic dark matter search in galactic halos. An important collect of observational data has been initiated to test the hypothesis that this dark mass is made of compact objects such as brown dwarfs or small mass stars. The gravitational microlensing effect allows to probe this distribution of this mass type along the line of sight of nearby galaxies such as the Large Magellanic Cloud. A new way to detect these microlensing events has been proposed by P. Baillon et al.: the pixel method. The aim is to detect the amplification of stars which are unresolved or too faint to be seen by classical analysis. First, we present this method and the simulations which allow to establish its feasibility. Then, we describe the pixel analysis of the 91-92 EROS data on the Large Magellanic Cloud. The selection of luminosity variations with a shape compatible with microlensing events allows us to study the sensitivity of this analysis. We see how these results allow us to validate the pixel method applied on a large volume of data. This also shows the possibility to find luminosity variations which escape classical analysis research. Strengthened by these results, we finally describe the analysis of the AGAPE 94 data on the Andromeda galaxy which uses the same pixel method. Being ten times farther away than the Large Magellanic Cloud, the Andromeda galaxy has very few resolved stars, making the pixel method the only way of looking for microlensing events. (author) [fr

  9. LoCuSS: A COMPARISON OF SUNYAEV-ZEL'DOVICH EFFECT AND GRAVITATIONAL-LENSING MEASUREMENTS OF GALAXY CLUSTERS

    International Nuclear Information System (INIS)

    Marrone, Daniel P.; Culverhouse, Thomas; Carlstrom, John E.; Greer, Christopher; Hennessy, Ryan; Leitch, Erik M.; Loh, Michael; Pryke, Clem; Smith, Graham P.; Hamilton-Morris, Victoria; Richard, Johan; Joy, Marshall; Bonamente, Massimiliano; Hasler, Nicole; Kneib, Jean-Paul; Hawkins, David; Lamb, James W.; Muchovej, Stephen; Miller, Amber; Mroczkowski, Tony

    2009-01-01

    We present the first measurement of the relationship between the Sunyaev-Zel'dovich effect (SZE) signal and the mass of galaxy clusters that uses gravitational lensing to measure cluster mass, based on 14 X-ray luminous clusters at z ≅ 0.2 from the Local Cluster Substructure Survey. We measure the integrated Compton y-parameter, Y, and total projected mass of the clusters (M GL ) within a projected clustercentric radius of 350 kpc, corresponding to mean overdensities of 4000-8000 relative to the critical density. We find self-similar scaling between M GL and Y, with a scatter in mass at fixed Y of 32%. This scatter exceeds that predicted from numerical cluster simulations, however, it is smaller than comparable measurements of the scatter in mass at fixed T X . We also find no evidence of segregation in Y between disturbed and undisturbed clusters, as had been seen with T X on the same physical scales. We compare our scaling relation to the Bonamente et al. relation based on mass measurements that assume hydrostatic equilibrium, finding no evidence for a hydrostatic mass bias in cluster cores (M GL = 0.98 ± 0.13 M HSE ), consistent with both predictions from numerical simulations and lensing/X-ray-based measurements of mass-observable scaling relations at larger radii. Overall our results suggest that the SZE may be less sensitive than X-ray observations to the details of cluster physics in cluster cores.

  10. Gravitational waves from inflation

    International Nuclear Information System (INIS)

    Guzzetti, M.C.; Bartolo, N.; Liguori, M.; Matarrese, S.

    2016-01-01

    The production of a stochastic background of gravitational waves is a fundamental prediction of any cosmological inflationary model. The features of such a signal encode unique information about the physics of the Early Universe and beyond, thus representing an exciting, powerful window on the origin and evolution of the Universe. We review the main mechanisms of gravitational-wave production, ranging from quantum fluctuations of the gravitational field to other mechanisms that can take place during or after inflation. These include e.g. gravitational waves generated as a consequence of extra particle production during inflation, or during the (p)reheating phase. Gravitational waves produced in inflation scenarios based on modified gravity theories and second-order gravitational waves are also considered. For each analyzed case, the expected power spectrum is given. We discuss the discriminating power among different models, associated with the validity/violation of the standard consistency relation between tensor-to-scalar ratio r and tensor spectral index ηT. In light of the prospects for (directly/indirectly) detecting primordial gravitational waves, we give the expected present-day gravitational radiation spectral energy-density, highlighting the main characteristics imprinted by the cosmic thermal history, and we outline the signatures left by gravitational waves on the Cosmic Microwave Background and some imprints in the Large-Scale Structure of the Universe. Finally, current bounds and prospects of detection for inflationary gravitational waves are summarized.

  11. Aberration design of zoom lens systems using thick lens modules.

    Science.gov (United States)

    Zhang, Jinkai; Chen, Xiaobo; Xi, Juntong; Wu, Zhuoqi

    2014-12-20

    A systematic approach for the aberration design of a zoom lens system using a thick lens module is presented. Each component is treated as a thick lens module at the beginning of the design. A thick lens module refers to a thick lens component with a real lens structure, like lens materials, lens curvatures, lens thicknesses, and lens interval distances. All nine third-order aberrations of a thick lens component are considered during the design. The relationship of component aberrations in different zoom positions can be approximated from the aberration shift. After minimizing the aberrations of the zoom lens system, the nine third-order aberrations of every lens component can be determined. Then the thick lens structure of every lens component can be determined after optimization according to their first-order properties and third-order aberration targets. After a third optimization for minimum practical third-order aberrations of a zoom lens system, the aberration design using the thick lens module is complete, which provides a practical zoom lens system with thick lens structures. A double-sided telecentric zoom lens system is designed using the thick lens module in this paper, which shows that this method is practical for zoom lens design.

  12. Effects of the interstellar medium on detection of low-frequency gravitational waves

    International Nuclear Information System (INIS)

    Stinebring, Dan

    2013-01-01

    Time variable delays due to radio wave propagation in the ionized interstellar medium are a substantial source of error in pulsar timing array efforts. We describe the physical origin of these effects, discussing dispersive and scattering effects separately. Where possible, we give estimates of the magnitude of timing errors produced by these effects and their scaling with radio frequency. Although there is general understanding of the interstellar medium propagation errors to be expected with pulsar timing array observations, detailed comparison between theory and practice is still in its infancy, particularly with regard to scattering effects. (paper)

  13. Titan's Gravitational Field

    Science.gov (United States)

    Schubert, G.; Anderson, J. D.

    2013-12-01

    Titan's gravitational field is inferred from an analysis of archived radio Doppler data for six Cassini flybys. The analysis considers each flyby separately in contrast to the approach of lumping all the data together in a massive inversion. In this way it is possible to gain an improved understanding of the character of each flyby and its usefulness in constraining the gravitational coefficient C22 . Though our analysis is not yet complete and our final determination of C22 could differ from the result we report here by 1 or 2 sigma, we find a best-fit value of C22 equal to (13.21 × 0.17) × 10-6, significantly larger than the value of 10.0 × 10-6 obtained from an inversion of the lumped Cassini data. We also find no determination of the tidal Love number k2. The larger value of C22 implies a moment of inertia factor equal to 0.3819 × 0.0020 and a less differentiated Titan than is suggested by the smaller value. The larger value of C22 is consistent with an undifferentiated model of the satellite. While it is not possible to rule out either value of C22 , we prefer the larger value because its derivation results from a more hands on analysis of the data that extracts the weak hydrostatic signal while revealing the effects of gravity anomalies and unmodeled spacecraft accelerations on each of the six flybys.

  14. A new case of gravitational lensing

    International Nuclear Information System (INIS)

    Surdej, J.; Swings, J.-P.; Borgeest, U.; Kayser, R.; Refsdal, S.; Courvoisier, T.J.-L.; Kellermann, K.I.; Kuehr, H.

    1987-01-01

    The authors report a brief description of a gravitational lens system UM673 = Q0142 - 100 = PHL3703. It consists of two images, A and B, separated by 2.2 arc s at a redshift zsub(q) = 2.719. The lensing galaxy has also been found. It lies very near the line connecting the two QSO (quasi-stellar objects) images, approx. 0.8 arc s from the fainter one. Application of gravitational optometry to this system leads to a value Msub(o) or approx. = 2.4 x 10 11 M solar masses for the mass of the lensing galaxy and to Δt approx. 7 weeks for the most likely travel-time difference between the two light paths to the QSO. (author)

  15. Poisson equation for weak gravitational lensing

    International Nuclear Information System (INIS)

    Kling, Thomas P.; Campbell, Bryan

    2008-01-01

    Using the Newman and Penrose [E. T. Newman and R. Penrose, J. Math. Phys. (N.Y.) 3, 566 (1962).] spin-coefficient formalism, we examine the full Bianchi identities of general relativity in the context of gravitational lensing, where the matter and space-time curvature are projected into a lens plane perpendicular to the line of sight. From one component of the Bianchi identity, we provide a rigorous, new derivation of a Poisson equation for the projected matter density where the source term involves second derivatives of the observed weak gravitational lensing shear. We also show that the other components of the Bianchi identity reveal no new results. Numerical integration of the Poisson equation in test cases shows an accurate mass map can be constructed from the combination of a ground-based, wide-field image and a Hubble Space Telescope image of the same system

  16. OGLE-2015-BLG-0479LA,B: BINARY GRAVITATIONAL MICROLENS CHARACTERIZED BY SIMULTANEOUS GROUND-BASED AND SPACE-BASED OBSERVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Han, C. [Department of Physics, Chungbuk National University, Cheongju 361-763 (Korea, Republic of); Udalski, A.; Szymański, M. K.; Soszyński, I.; Skowron, J.; Mróz, P.; Poleski, R. [Warsaw University Observatory, Al. Ujazdowskie 4, 00-478 Warszawa (Poland); Gould, A.; Zhu, Wei; Fausnaugh, M.; Gaudi, B. S.; Wibking, B. [Department of Astronomy, Ohio State University, 140 W. 18th Avenue, Columbus, OH 43210 (United States); Street, R. A. [School of Physics and Astronomy, Queen Mary University of London, Mile End Road, London E1 4NS (United Kingdom); Yee, J. C. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Beichman, C.; Novati, S. Calchi [NASA Exoplanet Science Institute, MS 100-22, California Institute of Technology, Pasadena, CA 91125 (United States); Bryden, C.; Henderson, Calen B.; Shvartzvald, Y. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Carey, S. [Spitzer Science Center, MS 220-6, California Institute of Technology, Pasadena, CA (United States); Collaboration: (The Spitzer Microlensing Team; (The OGLE Collaboration; (The RoboNet collaboration; (The MiNDSTEp Consortium; (The μ FUN Collaboration; and others

    2016-09-01

    We present a combined analysis of the observations of the gravitational microlensing event OGLE-2015-BLG-0479 taken both from the ground and by the Spitzer Space Telescope . The light curves seen from the ground and from space exhibit a time offset of ∼13 days between the caustic spikes, indicating that the relative lens-source positions seen from the two places are displaced by parallax effects. From modeling the light curves, we measure the space-based microlens parallax. Combined with the angular Einstein radius measured by analyzing the caustic crossings, we determine the mass and distance of the lens. We find that the lens is a binary composed of two G-type stars with masses of ∼1.0 M {sub ⊙} and ∼0.9 M {sub ⊙} located at a distance of ∼3 kpc. In addition, we are able to constrain the complete orbital parameters of the lens thanks to the precise measurement of the microlens parallax derived from the joint analysis. In contrast to the binary event OGLE-2014-BLG-1050, which was also observed by Spitzer, we find that the interpretation of OGLE-2015-BLG-0479 does not suffer from the degeneracy between (±, ±) and (±, ∓) solutions, confirming that the four-fold parallax degeneracy in single-lens events collapses into the two-fold degeneracy for the general case of binary-lens events. The location of the blend in the color–magnitude diagram is consistent with the lens properties, suggesting that the blend is the lens itself. The blend is bright enough for spectroscopy and thus this possibility can be checked from future follow-up observations.

  17. Reducing the radiation dose to the eye lens region during CT brain examination: the potential beneficial effect of the combined use of bolus and a bismuth shield

    International Nuclear Information System (INIS)

    Lai, C.W.K.; Chan, T.P.; Cheung, H.Y.; Wong, T.H.

    2015-01-01

    Objective: Computed Tomography (CT) is the leading contributor to medical exposure to ionizing radiation. Although the use of CT brain scans for patients with head injuries and convulsions has shown a tremendous growth, it has raised substantial concerns in the general public because of the risk of radiation-induced cataracts: the current available strategies to reduce the radiation dose to the eye lens region are limited. Therefore, the present research project was initiated with the aim of evaluating the potential benefit of the combined use of bolus and a bismuth shield on reducing the radiation dose to the eye lens region during CT brain examination. Materials and methods: We conducted a series of phantom studies to measure the entrance surface dose (ESD) that is delivered to the eye lens region during CT brain examination under the effect of different scanning and shielding setups. Results: Our results indicated, during CT brain examination: (1) a drastic reduction of 92.5% in the ESD to the eye lens region was found when the CT gantry was tilted from 0 deg. (overall ESD = 30.7 mGy) to 30 deg. cranially (overall ESD = 2.4 mGy), and (2) when the CT gantry was positioned at 0 deg. (the common practice in the clinical setting), the setups with the application of a) a bismuth shield, b) a bismuth shield with a face shield (air gap), c) a bismuth shield with bolus, and d) a bismuth shield with bolus and an air gap can result in an acceptable level of image quality with a smaller overall ESD delivered to the eye lens region (overall ESD = 23.2 mGy, 24 mGy, 21 mGy and 19.9 mGy, respectively) than the setup without the bismuth shield applied (overall ESD = 30.7 mGy). Conclusion: When the primary beam scanning through the eye lens region is unavoidable during CT brain examination, the combined use of a bismuth shield with bolus and a face shield is an easy-to-use and inexpensive shielding setup to reduce the radiation dose delivered to the eye lens region while

  18. Safety and effect of femtosecond laser-assisted cataract surgery combined with Cionni capsular tension ring implantation in the management of traumatic lens subluxation

    Directory of Open Access Journals (Sweden)

    Jia-Hui Chen

    2017-07-01

    Full Text Available AIM:To investigate the safety and effect of femtosecond laser-assisted cataract surgery with Cionni modified capsular tension ring(MCTRimplantation in the management of traumatic lens subluxation.METHODS: Totally 11 patients(11 eyeswith traumatic lens subluxation were divided into three groups according to the severity of lens dislocation, ranging from 90° to 120°(4 eyes, 120° to 180°(5 eyesand 180° to 270°(2 eyes. The contact LenSx femtosecond laser cataract surgery platform was applied to create the capsulotomy, prepare nuclear fragmentation and make corneal wound creation. Anterior vitrectomy was performed in some patients during the surgery. After capsular retractors insertion and phacoemulsification, the MCTR was inserted to the capsular bag and fixed to the sclera. Finally, the IOL was implanted into the capsular bag. Postoperative visual acuity, intra- and post-operative complications, anterior capsular opening, IOL and MCTR position and intraocular pressure(IOPwere assessed.RESULTS:The duration of follow-up was 2mo. All the operations were completed successfully. Five eyes underwent cataract surgery combined with anterior vitrectomy. Four eyes had been inserted with 2-eyelet MCTR and seven eyes with 1-eyelet MCTR. The best corrected visual acuity(BCVAafter operation was better than 0.5 in 4 eyes, between 0.3 and 0.5 in 3 eyes, between 0.1 and 0.3 in 3 eyes, and less than 0.1 in 1 eye. Compared with preoperative BCVA, the difference was statistically significant(PCONCLUSION:Femtosecond laser-assisted cataract surgery can improve the success rate of capsulorhexis, and reduce the difficulty of nuclear fragmentation. Femtosecond laser-assisted cataract surgery combined with MCTR implantation is an ideal surgical method for traumatic lens subluxation.

  19. High-intensification regions of gravitational lenses

    International Nuclear Information System (INIS)

    Benson, J.R.; Cooke, J.H.

    1979-01-01

    We examine the intensification, I, near the singular points in the object plane of an extended spherical gravitational lens. Geometrical optics predicts an infinite I for a point object located on a singularity. The function I, however, turns out to be integrable over the object plane. We make a detailed physical optics calculation for I. No singularities appear, and there are some interesting, marginally detectable diffraction phenomena. The two types of bright regions, the ''halo'' and the ''spike,'' behave very differently. Simple order-of-magnitude expressions give estimates for the brightness and duration of a high-intensification event

  20. Anisotropic gravitational instability

    International Nuclear Information System (INIS)

    Polyachenko, V.L.; Fridman, A.M.

    1988-01-01

    Exact solutions of stability problems are obtained for two anisotropic gravitational systems of different geometries - a layer of finite thickness at rest and a rotating cylinder of finite radius. It is shown that the anisotropic gravitational instability which develops in both cases is of Jeans type. However, in contrast to the classical aperiodic Jeans instability, this instability is oscillatory. The physics of the anisotropic gravitational instability is investigated. It is shown that in a gravitating layer this instability is due, in particular, to excitation of previously unknown interchange-Jeans modes. In the cylinder, the oscillatory Jeans instability is associated with excitation of a rotational branch, this also being responsible for the beam gravitational instability. This is the reason why this instability and the anisotropic gravitational instability have so much in common

  1. EXTRACTION OF THE MEAN RADIAL MASS-DISTRIBUTION IN CLUSTERS OF GALAXIES BY OBSERVATIONS OF WEAK GRAVITATIONAL IMAGING

    NARCIS (Netherlands)

    BREIMER, TG

    The gravitational fields of clusters of galaxies cause systematic distortions of the images of background galaxies. Recently, the lens inversion problem, reconstruction of the mean surface density distribution in the lens from the pattern of systematic distortions, has been the object of several

  2. High power single-frequency and frequency-doubled laser with active compensation for the thermal lens effect of terbium gallium garnet crystal.

    Science.gov (United States)

    Yin, Qiwei; Lu, Huadong; Su, Jing; Peng, Kunchi

    2016-05-01

    The thermal lens effect of terbium gallium garnet (TGG) crystal in a high power single-frequency laser severely limits the output power and the beam quality of the laser. By inserting a potassium dideuterium phosphate (DKDP) slice with negative thermo-optical coefficient into the laser resonator, the harmful influence of the thermal lens effect of the TGG crystal can be effectively mitigated. Using this method, the stable range of the laser is broadened, the bistability phenomenon of the laser during the process of changing the pump power is completely eliminated, the highest output power of an all-solid-state continuous-wave intracavity-frequency-doubling single-frequency laser at 532 nm is enhanced to 30.2 W, and the beam quality of the laser is significantly improved.

  3. Gravitational wave detector on the basis of light diffraction

    International Nuclear Information System (INIS)

    Segizboev, T.I.; Uzhinskij, V.V.

    1985-01-01

    A method for detection of gravitational waves by means of light diffraction at the first maximum on oscillations in optically transparent matter under effect of gravitational waves is considered. Intensity of light flux scattering on oscillations of elastic rod is calculated. A possibility of using the diffraction method for detection of gravitational waves is disclosed

  4. Gravitation Waves seminar

    CERN Multimedia

    CERN. Geneva HR-RFA

    2006-01-01

    We will present a brief introduction to the physics of gravitational waves and their properties. We will review potential astrophysical sources of gravitational waves, and the physics and astrophysics that can be learned from their study. We will survey the techniques and technologies for detecting gravitational waves for the first time, including bar detectors and broadband interferometers, and give a brief status report on the international search effort.

  5. Gravitational Wave Astronomy

    CERN Multimedia

    CERN. Geneva

    2006-01-01

    Gravitational wave astronomy is expected to become an observational field within the next decade. First direct detection of gravitational waves is possible with existing terrestrial-based detectors, and highly probable with proposed upgrades. In this three-part lecture series, we give an overview of the field, including material on gravitional wave sources, detection methods, some details of interferometric detectors, data analysis methods, and current results from observational data-taking runs of the LIGO and GEO projects.

  6. Effect of hypokinesia and the combined action of gravitational load and hypokinesia on the structure of the hepatic portal system.

    Science.gov (United States)

    Drozdova, A V

    1975-10-01

    General hypokinesia during 1--6 weeks resulted in dilatation of the interlobular veins. sinusoids and central veins. The sequence of alterations corresponded to terms of hypokinesia. After exposure to "gravitation stress--hypokinesia for 1--6 weeks" stagnation in the portal system of the liver was less than after exposure to hypokinesia alone, but unevenness of lumens in the interlobular veins and sinusoids was more pronounced. The foci of the vessel spasm were determined. The signs of stagnation in the system of the portal vein and unevenness of the width of all the links of the portal bed were most pronounced after combination "hypokinesia for 1--6 weeks-- gravitation stress".

  7. Effect of pupillary dilation on Haigis formula-calculated intraocular lens power measurement by using optical biometry

    Directory of Open Access Journals (Sweden)

    Khambhiphant B

    2016-07-01

    Full Text Available Bharkbhum Khambhiphant,1 Suganlaya Sasiwilasagorn,2 Nattida Chatbunchachai,3 Krit Pongpirul2,4 1Department of Ophthalmology, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, 2Department of Ophthalmology, Faculty of Medicine, Chulalongkorn University, Bangkok, 3Department of Ophthalmology, Samut Prakan Hospital, Samut Prakan, Thailand; 4Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA Purpose: The purpose of this study was to evaluate the effect of pupillary dilation on the Haigis formula-calculated intraocular lens (IOL power and ocular biometry measurements by using IOLMaster®. Methods: A prospective study was performed for biometry measurements of 373 eyes of 192 healthy subjects using the IOLMaster at the outpatient department of King Chulalongkorn Memorial Hospital from February 2013 to July 2013. The axial length (AL, anterior chamber depth (ACD, keratometry (K, and IOL power were measured before and after 1% tropicamide eye drop instillation. The Haigis formula was used in the IOL power calculation with the predicted target to emmetropia. Each parameter was compared by a paired t-test prior to and after pupillary dilation. Bland–Altman plots were also used to determine the agreement between each parameter. Results: The mean age of the subjects was 53.74±14.41 years (range 18–93 years. No differences in AL (P=0.03, steepest K (P=0.42, and flattest K (P=0.41 were obtained from the IOLMaster after pupillary dilation. However, ACD and IOL power were significantly different postdilation (P<0.01 and P<0.01, respectively. In ACD and IOL power measurements, the concordance rates were 93.03% and 97.05% within 95% limits of agreement (-0.48 to 0.26 mm and -1.09 to 0.88 D, respectively in the Bland–Altman plots. Conclusion: Biometry measurements in the cycloplegic stage should be considered in the IOL formulas that use parameters other than AL and K. Keywords: Haigis

  8. Effects of bendazac L-lysine salt on x-ray-induced cataract in the rabbit lens

    International Nuclear Information System (INIS)

    Pandolfo, L.; Livrea, M.A.; Bono, A.

    1986-01-01

    The effects of bendazac-L-lysine salt on some biochemical parameters (soluble and insoluble proteins, reduced glutathione, sulphydryl and disulphide groups, water content) in rabbit lens at different times after X-rays (2000 rads) were studied. In the mature cataract which developed 11-12 weeks after irradiation, the irradiated lenses not treated with bendazac-lysine (ILNTB) show a 32% increase in water content compared with controls; this increase is 12% in irradiated lens treated with bendazac-lysine (ILTB). Twelve weeks after irradiation the concentration of insoluble proteins in the controls, ILNTB and ILTB is 7.6%, 52.3% and 18.3% respectively. After 6, 8 and 12 weeks the concentration of reduced gluthathione in ILNTB decreases by 23%, 81% and 92% as compared with the controls. In the ILTB the decrease is present only 8 and 12 weeks after X-irradiation and is of 55% and 69% respectively. The sulphydryl-group content in the soluble proteins in ILNTB compared with the controls decreases by 26%, 38% and 47% after 6, 8 and 12 weeks, while in the ILTB a decrease is observed only after 8 and 12 weeks and is 6% and 12% respectively. The decrease of the sulphydryl groups parallels the increase of the disulphide groups. This increase is already significant (P < 0.01) after 6 weeks in the ILNTB, whereas it becomes significant in the ILTB only after 8 weeks. The chromatogram of the soluble proteins shows that the high-molecular-weight protein content (HMW) is 5.5% and 12.6% in the ILTB and 8.8% and 27.4% in the ILNTB after 8 and 12 weeks, respectively. In the control lenses the HMW was about 1.2%. The HMW content in the ILNTB after 6 weeks is higher as compared with controls and with the ILTB. A slight increase of the α-crystallin fraction and a decrease of β and γ-crystallin fractions are observed. (author)

  9. Constraints on cosmological models from strong gravitational lensing systems

    International Nuclear Information System (INIS)

    Cao, Shuo; Pan, Yu; Zhu, Zong-Hong; Biesiada, Marek; Godlowski, Wlodzimierz

    2012-01-01

    Strong lensing has developed into an important astrophysical tool for probing both cosmology and galaxies (their structure, formation, and evolution). Using the gravitational lensing theory and cluster mass distribution model, we try to collect a relatively complete observational data concerning the Hubble constant independent ratio between two angular diameter distances D ds /D s from various large systematic gravitational lens surveys and lensing by galaxy clusters combined with X-ray observations, and check the possibility to use it in the future as complementary to other cosmological probes. On one hand, strongly gravitationally lensed quasar-galaxy systems create such a new opportunity by combining stellar kinematics (central velocity dispersion measurements) with lensing geometry (Einstein radius determination from position of images). We apply such a method to a combined gravitational lens data set including 70 data points from Sloan Lens ACS (SLACS) and Lens Structure and Dynamics survey (LSD). On the other hand, a new sample of 10 lensing galaxy clusters with redshifts ranging from 0.1 to 0.6 carefully selected from strong gravitational lensing systems with both X-ray satellite observations and optical giant luminous arcs, is also used to constrain three dark energy models (ΛCDM, constant w and CPL) under a flat universe assumption. For the full sample (n = 80) and the restricted sample (n = 46) including 36 two-image lenses and 10 strong lensing arcs, we obtain relatively good fitting values of basic cosmological parameters, which generally agree with the results already known in the literature. This results encourages further development of this method and its use on larger samples obtained in the future

  10. Constraints on cosmological models from strong gravitational lensing systems

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Shuo; Pan, Yu; Zhu, Zong-Hong [Department of Astronomy, Beijing Normal University, Beijing 100875 (China); Biesiada, Marek [Department of Astrophysics and Cosmology, Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice (Poland); Godlowski, Wlodzimierz, E-mail: baodingcaoshuo@163.com, E-mail: panyu@cqupt.edu.cn, E-mail: biesiada@us.edu.pl, E-mail: godlowski@uni.opole.pl, E-mail: zhuzh@bnu.edu.cn [Institute of Physics, Opole University, Oleska 48, 45-052 Opole (Poland)

    2012-03-01

    Strong lensing has developed into an important astrophysical tool for probing both cosmology and galaxies (their structure, formation, and evolution). Using the gravitational lensing theory and cluster mass distribution model, we try to collect a relatively complete observational data concerning the Hubble constant independent ratio between two angular diameter distances D{sub ds}/D{sub s} from various large systematic gravitational lens surveys and lensing by galaxy clusters combined with X-ray observations, and check the possibility to use it in the future as complementary to other cosmological probes. On one hand, strongly gravitationally lensed quasar-galaxy systems create such a new opportunity by combining stellar kinematics (central velocity dispersion measurements) with lensing geometry (Einstein radius determination from position of images). We apply such a method to a combined gravitational lens data set including 70 data points from Sloan Lens ACS (SLACS) and Lens Structure and Dynamics survey (LSD). On the other hand, a new sample of 10 lensing galaxy clusters with redshifts ranging from 0.1 to 0.6 carefully selected from strong gravitational lensing systems with both X-ray satellite observations and optical giant luminous arcs, is also used to constrain three dark energy models (ΛCDM, constant w and CPL) under a flat universe assumption. For the full sample (n = 80) and the restricted sample (n = 46) including 36 two-image lenses and 10 strong lensing arcs, we obtain relatively good fitting values of basic cosmological parameters, which generally agree with the results already known in the literature. This results encourages further development of this method and its use on larger samples obtained in the future.

  11. Gravitational lensing in plasmic medium

    Energy Technology Data Exchange (ETDEWEB)

    Bisnovatyi-Kogan, G. S., E-mail: gkogan@iki.rssi.ru; Tsupko, O. Yu., E-mail: tsupko@iki.rssi.ru [Russian Academy of Sciences, Space Research Institute (Russian Federation)

    2015-07-15

    The influence of plasma on different effects of gravitational lensing is reviewed. Using the Hamiltonian approach for geometrical optics in a medium in the presence of gravity, an exact formula for the photon deflection angle by a black hole (or another body with a Schwarzschild metric) embedded in plasma with a spherically symmetric density distribution is derived. The deflection angle in this case is determined by the mutual combination of different factors: gravity, dispersion, and refraction. While the effects of deflection by the gravity in vacuum and the refractive deflection in a nonhomogeneous medium are well known, the new effect is that, in the case of a homogeneous plasma, in the absence of refractive deflection, the gravitational deflection differs from the vacuum deflection and depends on the photon frequency. In the presence of a plasma nonhomogeneity, the chromatic refractive deflection also occurs, so the presence of plasma always makes gravitational lensing chromatic. In particular, the presence of plasma leads to different angular positions of the same image if it is observed at different wavelengths. It is discussed in detail how to apply the presented formulas for the calculation of the deflection angle in different situations. Gravitational lensing in plasma beyond the weak deflection approximation is also considered.

  12. Gravitation in material media

    International Nuclear Information System (INIS)

    Ridgely, Charles T

    2011-01-01

    When two gravitating bodies reside in a material medium, Newton's law of universal gravitation must be modified to account for the presence of the medium. A modified expression of Newton's law is known in the literature, but lacks a clear connection with existing gravitational theory. Newton's law in the presence of a homogeneous material medium is herein derived on the basis of classical, Newtonian gravitational theory and by a general relativistic use of Archimedes' principle. It is envisioned that the techniques presented herein will be most useful to graduate students and those undergraduate students having prior experience with vector analysis and potential theory.

  13. Relativistic gravitational instabilities

    International Nuclear Information System (INIS)

    Schutz, B.F.

    1987-01-01

    The purpose of these lectures is to review and explain what is known about the stability of relativistic stars and black holes, with particular emphases on two instabilities which are due entirely to relativistic effects. The first of these is the post-Newtonian pulsational instability discovered independently by Chandrasekhar (1964) and Fowler (1964). This effectively ruled out the then-popular supermassive star model for quasars, and it sets a limit to the central density of white dwarfs. The second instability was also discovered by Chandrasekhar (1970): the gravitational wave induced instability. This sets an upper bound on the rotation rate of neutron stars, which is near that of the millisecond pulsar PSR 1937+214, and which is beginning to constrain the equation of state of neutron matter. 111 references, 5 figures

  14. Sensitivity of a combined gravitational antenna

    International Nuclear Information System (INIS)

    Kulagin, V.V.; Rudenko, V.N.

    1986-01-01

    A modification of a combined optico-acoustic gravitational antenna: a long-base laser interferometer, where free masses are changed by Weber resonators, is suggested. The combined gravitational antenna can possess sensitivity h min ∼ 10 -18 without deep cooling of Weber resonators and h min ∼ 10 -19 at helium temperaure of the resonators. This antenna has the following new quantities: presence of three independent responses, that permits to a considerable extent to exclude non-gravitational effects; presence of responses of two separated Weber resonators, that permits to register the wave character of gravitational perturbation by measuring phase shift between relaxation ''tails''. It means that one may with certainty register the wave structure of gravitational radiation for perturbation of metrics h, exceeding the threshold sensitivity of the known detectors by an order

  15. Protective Effect of Tea Polyphenol Ophthalmic Gel on Lens Epithelial Cells in Rabbits with Silicone Oil Tamponade after Vitrectomy

    Directory of Open Access Journals (Sweden)

    Xianzhen Ma

    2014-01-01

    Full Text Available Purpose. The aim of this study was to investigate the effect of tea polyphenols (TP ophthalmic gel on lens epithelial cells (LECs in rabbits with silicone oil tamponade after vitrectomy. Methods. In this study, unilateral vitrectomy with silicone oil tamponade was performed using 2-month-old New Zealand white rabbits (n = 72; meanwhile, age-matched nonoperated rabbits (n = 18 were used as controls. The TP ophthalmic gel was administered topically in the surgical eyes till they were sacrificed. On days 45 and 90 after operation, the levels of reactive oxygen species (ROS, mitochondrial membrane potential (ΔΨm, and apoptosis of LECs were analyzed, respectively. Meanwhile, caspase-3 mRNA and protein levels were also determined. Results. The results indicate that the levels of ROS and apoptosis were elevated for LECs in rabbits after operation, whereas ΔΨm was decreased. Caspase-3 was apparently increased at both mRNA and protein levels. Treatment of TP ophthalmic gel could reduce the generation of ROS, maintain ΔΨm, inhibit the overexpression of caspase-3, and thus decrease the apoptosis of LECs of rabbits after operation. Conclusions. TP ophthalmic gel can efficiently inhibit caspase-3 overexpression, reduce the apoptosis of LECs, and prevent LECs from damage. Our result provides a new approach to prevent the development of complicated cataract after vitrectomy.

  16. Effects of seed size and aging on field performance of lentil (Lens culinaris Medik. under different irrigation treatments

    Directory of Open Access Journals (Sweden)

    Kazem GHASSEMI-GOLEZANI

    2015-12-01

    Full Text Available A sub-sample of lentil (Lens culinaris ‘Kimia’ seeds was kept as bulk (S1 and another sample was separated to large (S2 and small (S3 seeds. A sub-sample of each size was kept as control or high vigor seed lot (A1 and the two other sub-samples were artificially aged for 2 and 4 days (A2 and A3, respectively. Field performance of these seeds was evaluated during 2011 and 2012. Yield components and grain yield of lentil decreased with decreasing water availability. The highest yield components (except 1000 grain weight and grain yield per unit area were obtained by plants from large seeds. The superiority of plants from large seeds in grain yield was more evident under limited irrigations than under well watering. Seed aging resulted in poor stand establishment and consequently low grain yield per unit area. Plants from aged large seeds showed the lowest reduction in grain yield per unit area, compared with those from aged small and bulk seeds. It seems that cultivation of large seeds somehow can reduce the deleterious effects of drought stress and seed aging on grain yield per unit area of lentil.

  17. Gravitational effect of distant earth relief within the territory of former Czechoslovakia

    Czech Academy of Sciences Publication Activity Database

    Mikuška, J.; Pašteka, R.; Mrlina, Jan; Marušiak, J.

    2008-01-01

    Roč. 52, č. 3 (2008), s. 381-396 ISSN 0039-3169 R&D Projects: GA AV ČR IAA3012308 Grant - others:EC(XE) ENK6-CT2000-00056; APVV(SK) APVV-99-002905 Institutional research plan: CEZ:AV0Z30120515 Keywords : Bouguer gravity anomaly * distant topographic effect * distant bathymetric correction Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 0.770, year: 2008

  18. Effect of scalar field mass on gravitating charged scalar solitons and black holes in a cavity

    Energy Technology Data Exchange (ETDEWEB)

    Ponglertsakul, Supakchai, E-mail: supakchai.p@gmail.com; Winstanley, Elizabeth, E-mail: E.Winstanley@sheffield.ac.uk

    2017-01-10

    We study soliton and black hole solutions of Einstein charged scalar field theory in cavity. We examine the effect of introducing a scalar field mass on static, spherically symmetric solutions of the field equations. We focus particularly on the spaces of soliton and black hole solutions, as well as studying their stability under linear, spherically symmetric perturbations of the metric, electromagnetic field, and scalar field.

  19. Focus on classical and quantum analogues for gravitational phenomena and related effects

    International Nuclear Information System (INIS)

    Leonhardt, Ulf; Maia, Clovis; Schützhold, Ralf

    2012-01-01

    Hawking's prediction that black holes are not black but radiate has been one of the intellectually most influential results of theoretical physics, but Hawking's theory has not so far been testable. Recent developments in analogue models of gravity might change that. This focus issue assembles a series of papers that report on steps towards this goal and related physical effects in a variety of physical systems. (editorial)

  20. Effective radiation dose and eye lens dose in dental cone beam CT: effect of field of view and angle of rotation.

    Science.gov (United States)

    Pauwels, R; Zhang, G; Theodorakou, C; Walker, A; Bosmans, H; Jacobs, R; Bogaerts, R; Horner, K

    2014-10-01

    To quantify the effect of field of view (FOV) and angle of rotation on radiation dose in dental cone beam CT (CBCT) and to define a preliminary volume-dose model. Organ and effective doses were estimated using 148 thermoluminescent dosemeters placed in an anthropomorphic phantom. Dose measurements were undertaken on a 3D Accuitomo 170 dental CBCT unit (J. Morita, Kyoto, Japan) using six FOVs as well as full-rotation (360°) and half-rotation (180°) protocols. For the 360° rotation protocols, effective dose ranged between 54 µSv (4 × 4 cm, upper canine) and 303 µSv (17 × 12 cm, maxillofacial). An empirical relationship between FOV dimension and effective dose was derived. The use of a 180° rotation resulted in an average dose reduction of 45% compared with a 360° rotation. Eye lens doses ranged between 95 and 6861 µGy. Significant dose reduction can be achieved by reducing the FOV size, particularly the FOV height, of CBCT examinations to the actual region of interest. In some cases, a 180° rotation can be preferred, as it has the added value of reducing the scan time. Eye lens doses should be reduced by decreasing the height of the FOV rather than using inferior FOV positioning, as the latter would increase the effective dose considerably. The effect of the FOV and rotation angle on the effective dose in dental CBCT was quantified. The dominant effect of FOV height was demonstrated. A preliminary model has been proposed, which could be used to predict effective dose as a function of FOV size and position.

  1. Effective field theory of statistical anisotropies for primordial bispectrum and gravitational waves

    Energy Technology Data Exchange (ETDEWEB)

    Rostami, Tahereh; Karami, Asieh; Firouzjahi, Hassan, E-mail: t.rostami@ipm.ir, E-mail: karami@ipm.ir, E-mail: firouz@ipm.ir [School of Astronomy, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of)

    2017-06-01

    We present the effective field theory studies of primordial statistical anisotropies in models of anisotropic inflation. The general action in unitary gauge is presented to calculate the leading interactions between the gauge field fluctuations, the curvature perturbations and the tensor perturbations. The anisotropies in scalar power spectrum and bispectrum are calculated and the dependence of these anisotropies to EFT couplings are presented. In addition, we calculate the statistical anisotropy in tensor power spectrum and the scalar-tensor cross correlation. Our EFT approach incorporates anisotropies generated in models with non-trivial speed for the gauge field fluctuations and sound speed for scalar perturbations such as in DBI inflation.

  2. Constraints on Dark Energy Models from Galaxy Clusters and Gravitational Lensing Data

    Directory of Open Access Journals (Sweden)

    Alexander Bonilla

    2018-01-01

    Full Text Available The Sunyaev–Zel’dovich (SZ effect is a global distortion of the Cosmic Microwave Background (CMB spectrum as a result of its interaction with a hot electron plasma in the intracluster medium of large structures gravitationally viralized such as galaxy clusters (GC. Furthermore, this hot gas of electrons emits X-rays due to its fall in the gravitational potential well of the GC. The analysis of SZ and X-ray data provides a method for calculating distances to GC at high redshifts. On the other hand, many galaxies and GC produce a Strong Gravitational Lens (SGL effect, which has become a useful astrophysical tool for cosmology. We use these cosmological tests in addition to more traditional ones to constrain some alternative dark energy (DE models, including the study of the history of cosmological expansion through the cosmographic parameters. Using Akaike and Bayesian Information Criterion, we find that the w C D M and Λ C D M models are the most favoured by the observational data. In addition, we found at low redshift a peculiar behavior of slowdown of the universe, which occurs in dynamical DE models when we use data from GC.

  3. The NuSTAR spectrum of Mrk 335: extreme relativistic effects within two gravitational radii of the event horizon?

    DEFF Research Database (Denmark)

    Parker, M. L.; Wilkins, D. R.; Fabian, A. C.

    2014-01-01

    gravitational radii (R-G) of the event horizon. The reflection fraction decreases sharply with increasing flux, consistent with a point source moving up to above 10 R-G as the source brightens. We constrain the spin parameter to greater than 0.9 at the 3 sigma confidence level. By adding a spin-dependent upper...

  4. Charges in gravitational fields: From Fermi, via Hanni-Ruffini-Wheeler, to the 'electric Meissner effect'

    Science.gov (United States)

    Ruffini, R.

    2004-07-01

    Recent developments in obtaining a detailed model for gamma-ray bursts have shown the need for a deeper understanding of phenomena described by solutions of the Einstein-Maxwell equations, reviving interest in the behavior of charges close to a black hole. In particular a drastic difference has been found between the lines of force of a charged test particle in the fields of Schwarzschild and Reissner-Nordström black holes. This difference characterizes a general relativistic effect for the electric field of a charged test particle around a (charged) Reissner-Nordström black hole similar to the “Meissner effect” for a magnetic field around a superconductor. These new results are related to earlier work by Fermi and Hanni-Ruffini-Wheeler.

  5. The Nustar Spectrum of Mrk 335: Extreme Relativistic Effects Within Two Gravitational Radii of the Event Horizon?

    Science.gov (United States)

    Parker, M. L.; Wilkins, D. R.; Fabian, A. C.; Grupe, D.; Dauser, T.; Matt, G.; Harrison, F. A.; Brenneman, L.; Boggs, S. E.; Christensen, F. E.; hide

    2014-01-01

    We present 3-50 keV NuSTAR observations of the active galactic nuclei Mrk 335 in a very low flux state. The spectrum is dominated by very strong features at the energies of the iron line at 5-7 keV and Compton hump from 10-30 keV. The source is variable during the observation, with the variability concentrated at low energies, which suggesting either a relativistic reflection or a variable absorption scenario. In this work, we focus on the reflection interpretation, making use of new relativistic reflection models that self consistently calculate the reflection fraction, relativistic blurring and angle-dependent reflection spectrum for different coronal heights to model the spectra. We find that the spectra can be well fitted with relativistic reflection, and that the lowest flux state spectrum is described by reflection alone, suggesting the effects of extreme light-bending occurring within approx. 2 gravitational radii (RG) of the event horizon. The reflection fraction decreases sharply with increasing flux, consistent with a point source moving up to above 10 RG as the source brightens. We constrain the spin parameter to greater than 0.9 at the 3(sigma) confidence level. By adding a spin-dependent upper limit on the reflection fraction to our models, we demonstrate that this can be a powerful way of constraining the spin parameter, particularly in reflection dominated states. We also calculate a detailed emissivity profile for the iron line, and find that it closely matches theoretical predictions for a compact source within a few RG of the black hole.

  6. Estimation of pulmonary hypertension by perfusion lung scintigraphy: Gravitational effect of postural changes between the lateral decubitus positions

    International Nuclear Information System (INIS)

    Tanaka, Masao; Fujii, Tadashige; Hirayama, Jiro; Okubo, Shinichi; Sekiguchi, Morie

    1990-01-01

    To estimate pulmonary hypertension in patients with various heart diseases, we devised a new method using perfusion lung scintigraphy with 99m Tc-labelled macroaggregated albumin. In this method, changes in the distribution of pulmonary perfusion caused by gravitational effects, namely, changes in the total count ratios of the right lung against the left lung between right and left lateral decubitus positions (rt/lt), were assessed in 62 patients and in 10 normal subjects. The rt/lt ratios were calculated as indices of the above changes. They correlated significantly with mean pulmonary arterial pressure (mPAP) (γ=-0.62, P<0.001), pulmonary capillary wedge pressure (γ=-0.63, P<0.001) and pulmonary arteriolar resistance (γ=0.50, P<0.001) in all subjects. In 17 patients with valvular heart diseases, the ratio correlated significantly with mPAP (γ=-0.84, P<0.001). In 10 patients with various heart diseases, the U/S ratio, i.e. the index of changes in the count ratios of the upper field against the lower field for the right lung following postural change from the uprigth to the supine position, was also obtained as well as the rt/lt ratio. The latter evidenced a better correlation with mPAP (γ=-0.90, P<0.001) than the former (γ=-0.64, P<0.05). We conclude that this method is valuable as a noninvasive approach for the estimation of pulmonary hypertension. (orig.)

  7. Loss of parafollicular cells during gravitational changes (microgravity, hypergravity and the secret effect of pleiotrophin.

    Directory of Open Access Journals (Sweden)

    Elisabetta Albi

    Full Text Available It is generally known that bone loss is one of the most important complications for astronauts who are exposed to long-term microgravity in space. Changes in blood flow, systemic hormones, and locally produced factors were indicated as important elements contributing to the response of osteoblastic cells to loading, but research in this field still has many questions. Here, the possible biological involvement of thyroid C cells is being investigated. The paper is a comparison between a case of a wild type single mouse and a over-expressing pleiotrophin single mouse exposed to hypogravity conditions during the first animal experiment of long stay in International Space Station (91 days and three similar mice exposed to hypergravity (2Gs conditions. We provide evidence that both microgravity and hypergravity induce similar loss of C cells with reduction of calcitonin production. Pleiotrophin over-expression result in some protection against negative effects of gravity change. Potential implication of the gravity mechanic forces in the regulation of bone homeostasis via thyroid equilibrium is discussed.

  8. Those Elusive Gravitational Waves

    Science.gov (United States)

    MOSAIC, 1976

    1976-01-01

    The presence of gravitational waves was predicted by Einstein in his theory of General Relativity. Since then, scientists have been attempting to develop a detector sensitive enough to measure these cosmic signals. Once the presence of gravitational waves is confirmed, scientists can directly study star interiors, galaxy cores, or quasars. (MA)

  9. Gravitationally coupled electroweak monopole

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Y.M., E-mail: ymcho7@konkuk.ac.kr [Administration Building 310-4, Konkuk University, Seoul 143-701 (Korea, Republic of); School of Physics and Astronomy, Seoul National University, Seoul 151-742 (Korea, Republic of); Kimm, Kyoungtae [Faculty of Liberal Education, Seoul National University, Seoul 151-747 (Korea, Republic of); Yoon, J.H. [Department of Physics, College of Natural Sciences, Konkuk University, Seoul 143-701 (Korea, Republic of)

    2016-10-10

    We present a family of gravitationally coupled electroweak monopole solutions in Einstein–Weinberg–Salam theory. Our result confirms the existence of globally regular gravitating electroweak monopole which changes to the magnetically charged black hole as the Higgs vacuum value approaches to the Planck scale. Moreover, our solutions could provide a more accurate description of the monopole stars and magnetically charged black holes.

  10. Gravitational perturbations of the hydrogen atom

    International Nuclear Information System (INIS)

    Parker, L.

    1983-01-01

    The strength of a gravitational field is characterized by the Riemann curvature tensor. It is of interest to know how the curvature of space-time at the position of an atom affects its spectrum. The author gives a brief summary of work on the effects of curvature on the hydrogen atom. The results refer to an arbitrary metric and can be evaluated for particular space-times of interest. The possibility of using the effect of gravitational waves on the electromagnetic spectrum of hydrogen as a means of detecting gravitational waves is also investigated. (Auth.)

  11. Particle production in a gravitational wave background

    Science.gov (United States)

    Jones, Preston; McDougall, Patrick; Singleton, Douglas

    2017-03-01

    We study the possibility that massless particles, such as photons, are produced by a gravitational wave. That such a process should occur is implied by tree-level Feynman diagrams such as two gravitons turning into two photons, i.e., g +g →γ +γ . Here we calculate the rate at which a gravitational wave creates a massless scalar field. This is done by placing the scalar field in the background of a plane gravitational wave and calculating the 4-current of the scalar field. Even in the vacuum limit of the scalar field it has a nonzero vacuum expectation value (similar to what occurs in the Higgs mechanism) and a nonzero current. We associate this with the production of scalar field quanta by the gravitational field. This effect has potential consequences for the attenuation of gravitational waves since the massless field is being produced at the expense of the gravitational field. This is related to the time-dependent Schwinger effect, but with the electric field replaced by the gravitational wave background and the electron/positron field quanta replaced by massless scalar "photons." Since the produced scalar quanta are massless there is no exponential suppression, as occurs in the Schwinger effect due to the electron mass.

  12. Testing the generality of the zoom-lens model: Evidence for visual-pathway specific effects of attended-region size on perception.

    Science.gov (United States)

    Goodhew, Stephanie C; Lawrence, Rebecca K; Edwards, Mark

    2017-05-01

    There are volumes of information available to process in visual scenes. Visual spatial attention is a critically important selection mechanism that prevents these volumes from overwhelming our visual system's limited-capacity processing resources. We were interested in understanding the effect of the size of the attended area on visual perception. The prevailing model of attended-region size across cognition, perception, and neuroscience is the zoom-lens model. This model stipulates that the magnitude of perceptual processing enhancement is inversely related to the size of the attended region, such that a narrow attended-region facilitates greater perceptual enhancement than a wider region. Yet visual processing is subserved by two major visual pathways (magnocellular and parvocellular) that operate with a degree of independence in early visual processing and encode contrasting visual information. Historically, testing of the zoom-lens has used measures of spatial acuity ideally suited to parvocellular processing. This, therefore, raises questions about the generality of the zoom-lens model to different aspects of visual perception. We found that while a narrow attended-region facilitated spatial acuity and the perception of high spatial frequency targets, it had no impact on either temporal acuity or the perception of low spatial frequency targets. This pattern also held up when targets were not presented centrally. This supports the notion that visual attended-region size has dissociable effects on magnocellular versus parvocellular mediated visual processing.

  13. Refractive neutron lens

    International Nuclear Information System (INIS)

    Petrov, P.V.; Kolchevsky, N.N.

    2013-01-01

    Model of the refractive neutron lens is proposed. System of N lenses acts as one thin lens with a complex refraction index n*. The maximum number N max of individual lenses for 'thick' neutron lens is calculated. Refractive neutron lens properties (resolution, focal depth) as function of resolution factor F 0 =ρbc/μ and depth of field factor dF 0 =λF 0 =λρbc/μ are calculated. It is shown that micro resolution of the refractive neutron optics is far from the wavelength in size and its open possibilities for progress in refractive neutron optics. (authors)

  14. Gravitational Wave Experiments - Proceedings of the First Edoardo Amaldi Conference

    Science.gov (United States)

    Coccia, E.; Pizzella, G.; Ronga, F.

    1995-07-01

    Production of Gravitational Radiation by Particle Accelerators and by High Power Lasers * NESTOR: An Underwater Cerenkov Detector for Neutrino Astronomy * A Cosmic-Ray Veto System for the Gravitational Wave Detector NAUTLUS * Interferometers * Development of a 20m Prototype Laser Interferometric Gravitational Wave Detector at NAO * Production of Higher-Order Light Modes by High Quality Optical Components * Vibration Isolation and Suspension Systems for Laser Interferometer Gravitational Wave Detectors * Quality Factors of Stainless Steel Pendulum Wires * Reduction of Suspension Thermal Noises in Laser Free Masses Gravitational Antenna by Correlation of the Output with Additional Optical Signal * Resonant Detectors * Regeneration Effects in a Resonant Gravitational Wave Detector * A Cryogenic Sapphire Transducer with Double Frequency Pumping for Resonant Mass GW Detectors * Effect of Parametric Instability of Gravitational Wave Antenna with Microwave Cavity Transducer * Resonators of Novel Geometry for Large Mass Resonant Transducers * Measurements on the Gravitational Wave Antenna ALTAIR Equipped with a BAE Transducer * The Rome BAE Transducer: Perspectives of its Application to Ultracryogenic Gravitational Wave Antennas * Behavior of a de SQUID Tightly Coupled to a High-Q Resonant Transducer * High Q-Factor LC Resonators for Optimal Coupling * Comparison Between Different Data Analysis Procedures for Gravitational Wave Pulse Detection * Supernova 1987A Rome Maryland Gravitational Radiation Antenna Observations * Analysis of the Data Recorded by the Maryland and Rome Gravitational-Wave Detectors and the Seismic Data from Moscow and Obninsk Station during SN1987A * Multitransducer Resonant Gravitational Antennas * Local Array of High Frequency Antennas * Interaction Cross-Sections for Spherical Resonant GW Antennae * Signal-To-Noise Analysis for a Spherical Gravitational Wave Antenna Instrumented with Multiple Transducers * On the Design of Ultralow Temperature Spherical

  15. Reliability of power profiles measured on NIMO TR1504 (Lambda-X) and effects of lens decentration for single vision, bifocal and multifocal contact lenses.

    Science.gov (United States)

    Kim, Eon; Bakaraju, Ravi C; Ehrmann, Klaus

    2016-01-01

    To evaluate the repeatability of power profiles measured on NIMO TR1504 (Lambda-X, Belgium) and investigate the effects of lens decentration on the power profiles for single vision (SV), bifocal (BF) and multifocal (MF) contact lenses. Accuracy of the sphere power was evaluated using single vision BK-7 calibration glass lenses of six minus and six plus powers. Three SV and four BF/MF contact lenses - three lenses each, were measured five times to calculate the coefficients of repeatability (COR) of the instrument. The COR was computed for each chord position, lens design, prescription power and operator. One lens from each type was measured with a deliberate decentration up to ±0.5mm in 0.1mm steps. For all lenses, the COR varied across different regions of the half-chord position. In general, SV lenses showed lower COR compared to the BF/MF group lenses. There were no noticeable trends of COR between prescription powers for SV and BF/MF lenses. The shape of the power profiles was not affected when lenses were deliberately decentered for all SV and PureVision MF lenses. However, for Acuvue BF lenses, the peak to trough amplitude of the power profiles flattened up to 1.00D. The COR across the half-chord of the optic zone diameter was mostly within clinical relevance except for the central 0.5mm half-chord position. COR were dependent on the lens type, whereby BF/MF group produced higher COR than SV lenses. The effects of deliberate decentration on the shape of power profiles were pronounced for lenses where the profiles had sharp transitions of power. Copyright © 2015 Spanish General Council of Optometry. Published by Elsevier Espana. All rights reserved.

  16. Can strong gravitational lensing constrain dark energy?

    International Nuclear Information System (INIS)

    Lee, Seokcheon; Ng, K.-W.

    2007-01-01

    We discuss the ratio of the angular diameter distances from the source to the lens, D ds , and to the observer at present, D s , for various dark energy models. It is well known that the difference of D s s between the models is apparent and this quantity is used for the analysis of Type Ia supernovae. However we investigate the difference between the ratio of the angular diameter distances for a cosmological constant, (D ds /D s ) Λ , and that for other dark energy models, (D ds /D s ) other , in this paper. It has been known that there is lens model degeneracy in using strong gravitational lensing. Thus, we investigate the model independent observable quantity, Einstein radius (θ E ), which is proportional to both D ds /D s and velocity dispersion squared, σ v 2 . D ds /D s values depend on the parameters of each dark energy model individually. However, (D ds /D s ) Λ -(D ds /D s ) other for the various dark energy models, is well within the error of σ v for most of the parameter spaces of the dark energy models. Thus, a single strong gravitational lensing by use of the Einstein radius may not be a proper method to investigate the property of dark energy. However, better understanding to the mass profile of clusters in the future or other methods related to arc statistics rather than the distances may be used for constraints on dark energy

  17. Relationship between high-energy absorption cross section and strong gravitational lensing for black hole

    International Nuclear Information System (INIS)

    Wei Shaowen; Liu Yuxiao; Guo Heng

    2011-01-01

    In this paper, we obtain a relation between the high-energy absorption cross section and the strong gravitational lensing for a static and spherically symmetric black hole. It provides us a possible way to measure the high-energy absorption cross section for a black hole from strong gravitational lensing through astronomical observation. More importantly, it allows us to compute the total energy emission rate for high-energy particles emitted from the black hole acting as a gravitational lens. It could tell us the range of the frequency, among which the black hole emits the most of its energy and the gravitational waves are most likely to be observed. We also apply it to the Janis-Newman-Winicour solution. The results suggest that we can test the cosmic censorship hypothesis through the observation of gravitational lensing by the weakly naked singularities acting as gravitational lenses.

  18. Using Evaluation to Effect Social Change: Looking through a Community Psychology Lens

    Science.gov (United States)

    Cook, James R.

    2015-01-01

    Program evaluation is generally viewed as a set of mechanisms for collecting and using information to learn about projects, policies and programs, to understand their effects as well as the manner in which they are implemented. AEA has espoused principles for evaluation that place emphasis on competent, honest inquiry that respects the security,…

  19. Cost-effectiveness analysis of cataract surgery with intraocular lens implantation: extracapsular cataract extraction versus phacoemulsification

    Directory of Open Access Journals (Sweden)

    Mohd R.A. Manaf

    2007-03-01

    Full Text Available A randomized single blinded clinical trial to compare the cost-effectiveness of cataract surgery between extracapsular cataract extraction (ECCE and phacoemulsification (PEA was conducted at Hospital Universiti Kebangsaan Malaysia (HUKM from March 2000 until August 2001. The cost of a cataract surgery incurred by hospital, patients and households were calculated preoperatively, one week, two months (for both techniques and six months (for ECCE only. Effectiveness of cataract surgery was assessed using Visual Function 14 (VF-14, quality of life measurement specifically for vision. The cost analysis results from each 50 subjects of ECCE and PEA group showed that average cost for one ECCE after six months post-operation is USD 458 (± USD 72 and for PEA is USD 528 (± USD 125. VF-14 score showed a significant increased after a week, two months and six months post-operation compared to the score before operation for both techniques (p<0.001. However, there was no significant difference between them (p = 0.225. This study indicated that ECCE is more cost effective compared to PEA with cost per one unit increment of VF-14 score of USD 14 compared to USD 20 for PEA. (Med J Indones 2007; 16:25-31 Keywords: cataract, cost-effectiveness, extracapsular cataract extraction, phacoemulsification, visual function 14

  20. Radiatively-induced gravitational leptogenesis

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, J.I., E-mail: pymcdonald@swansea.ac.uk; Shore, G.M., E-mail: g.m.shore@swansea.ac.uk

    2015-12-17

    We demonstrate how loop effects in gravitational backgrounds lead to a difference in the propagation of matter and antimatter, and show this is forbidden in flat space due to CPT and translation invariance. This mechanism, which is naturally present in beyond the standard model (BSM) theories exhibiting C and CP violation, generates a curvature-dependent chemical potential for leptons in the low-energy effective Lagrangian, allowing a matter–antimatter asymmetry to be generated in thermodynamic equilibrium, below the BSM scale.

  1. Intraocular lens power calculation following LASIK: determination of the new effective index of refraction.

    Science.gov (United States)

    Jarade, Elias F; Abi Nader, Françoise C; Tabbara, Khalid F

    2006-01-01

    To determine the new corneal effective index of refraction (rN) following LASIK to be used for accurate keratometry reading (K-reading). A total of 332 eyes that underwent myopic LASIK were divided into two groups (group A [n = 137] and group B [n = 1951). In each group, patients were divided into four subgroups according to the amount of spherical equivalent refraction of myopic LASIK ablation (subgroup 1 [ -12.0 D]). In each subgroup of group A, K-reading was measured by the clinical history method and the new corneal effective index (rN) was determined using paraxial formula: (K-reading = (rN-1)/Ra), where Ra is the radius of curvature of the anterior corneal surface. In group B, the anterior radius of curvature of the cornea was determined by automated K-reading, and K-reading was measured in each subgroup using the new effective index in paraxial formula, clinical history method, and automated K-reading. In group A, the new effective index of refraction was 1.3355, 1.3286, 1.3237, and 1.3172 in the four subgroups, respectively. In group B, the mean K-reading measurements using rN in paraxial formula, clinical history method, and automated K-reading were: 40.33 +/- 1.68 D, 40.33 +/- 1.67 D, and 40.54 +/- 1.69 D, respectively, in subgroup 1; 37.96 +/- 1.26 D, 38.03 +/- 1.38 D, and 38.98 +/- 1.28 D, respectively, in subgroup 2; 35.77 +/- 1.75 D, 35.84 +/- 1.85 D, and 37.29 +/- 1.83 D, respectively, in subgroup 3; and 34.03 +/- 1.49 D, 34.15 +/- 1.84 D, and 36.21 +/- 1.59 D, respectively, in subgroup 4. In all subgroups of group B, the results of K-reading obtained using the new effective index of refraction were statistically similar to the results obtained by clinical history method (P > .05). Automated K-reading statistically overestimated the K-reading values in subgroups 2, 3, and 4 of group B (P < .001). The use of the new corneal effective index of refraction allows for an accurate derivation of K-reading from the anterior radius of curvature.

  2. Measurement of Crystalline Lens Volume During Accommodation in a Lens Stretcher.

    Science.gov (United States)

    Marussich, Lauren; Manns, Fabrice; Nankivil, Derek; Maceo Heilman, Bianca; Yao, Yue; Arrieta-Quintero, Esdras; Ho, Arthur; Augusteyn, Robert; Parel, Jean-Marie

    2015-07-01

    To determine if the lens volume changes during accommodation. The study used data acquired on 36 cynomolgus monkey lenses that were stretched in a stepwise fashion to simulate disaccommodation. At each step, stretching force and dioptric power were measured and a cross-sectional image of the lens was acquired using an optical coherence tomography system. Images were corrected for refractive distortions and lens volume was calculated assuming rotational symmetry. The average change in lens volume was calculated and the relation between volume change and power change, and between volume change and stretching force, were quantified. Linear regressions of volume-power and volume-force plots were calculated. The mean (± SD) volume in the unstretched (accommodated) state was 97 ± 8 mm3. On average, there was a small but statistically significant (P = 0.002) increase in measured lens volume with stretching. The mean change in lens volume was +0.8 ± 1.3 mm3. The mean volume-power and volume-load slopes were -0.018 ± 0.058 mm3/D and +0.16 ± 0.40 mm3/g. Lens volume remains effectively constant during accommodation, with changes that are less than 1% on average. This result supports a hypothesis that the change in lens shape with accommodation is accompanied by a redistribution of tissue within the capsular bag without significant compression of the lens contents or fluid exchange through the capsule.

  3. Disinfection capacity of PuriLens contact lens cleaning unit against Acanthamoeba.

    Science.gov (United States)

    Hwang, Thomas S; Hyon, Joon Young; Song, Jae Kyung; Reviglio, Victor E; Spahr, Harry T; O'Brien, Terrence P

    2004-01-01

    The PuriLens contact lens system is indicated for cleaning and disinfection of soft (hydrophilic) contact lenses by means of subsonic agitation to remove lens deposits and microorganisms, and ultraviolet irradiation of the storage solution for disinfection. The capacity of the PuriLens system to disinfect storage solutions contaminated with known concentrations of Staphylococcus aureus, Pseudomonas aeruginosa, and Acanthamoeba species was evaluated. An in vitro assessment of the antibacterial and antiparasitic efficacy of the PuriLens system was performed. Separated batches of the storage solution for the cleansing system were contaminated with stock strains of S. aureus and P. aeruginosa. A comparison of the microbiologic content was made between the solution before and after the cycle. The PuriLens system effectively eradicated S. aureus and P. aeruginosa organisms after a 15-minute cycle. However, viable cysts of acanthamoeba were recovered in the solution after the 15-minute cycle. The PuriLens system is highly efficient in protecting against contamination with common bacterial ocular pathogens. Acanthamoeba cysts, however, can survive in the solution or contact lens bath undergoing integrated subsonic debridement and indirect ultraviolet light disinfection. Use of chemical disinfecting solutions that contain agents such as chlorhexidine or other cationic antiseptics may be advisable in conjunction with use of the PuriLens device, especially in high-risk settings.

  4. Effect of Salinity and Seed Size on Lentil (Lens culinaris Medik Germination and Seedling Growth Properties

    Directory of Open Access Journals (Sweden)

    Y Alizadeh

    2012-02-01

    Full Text Available Both soil and water salinity is one of the main reasons in decreasing germination, seedling growth and establishment in many arid and semiarid parts of world especially in our country. For this reason in order to evaluate the effect of lentil seed size on germination and seedling growth properties that was under effect of salinity stress, a completely randomized design with factorial arrangement and 3 replications conducted using two lentils genotypes (Robatt and Gachsaran, two small and large seed sizes (34.8 and 59 mg in Robatt and 41.5 and 69 mg in Gachsaran per seed, respectively and five drought levels (0, 0.5, 0.8, 1.2 and 1.7 percent of NaCl in 2008s. Results showed that Robatt genotype had higher germination rate and salinity tolerance than Gachsaran. In addition seed size had significant different (P

  5. Perception through a Perspective-Taking Lens: Differential Effects on Judgment and Behavior

    OpenAIRE

    Ku , Gillian; Wang , Cynthia S.; Galinsky , Adam D.

    2010-01-01

    International audience; In contrast to the view that social perception has symmetric effects on judgments and behavior, the current research explored whether perspective-taking leads stereotypes to differentially affect judgments and behavior. Across three studies, perspective-takers consistently used stereotypes more in their own behavior while simultaneously using them less in their judgments of others. After writing about an African American, perspective-taking tendencies were positively c...

  6. Data mining for gravitationally lensed quasars

    Science.gov (United States)

    Agnello, Adriano; Kelly, Brandon C.; Treu, Tommaso; Marshall, Philip J.

    2015-04-01

    Gravitationally lensed quasars are brighter than their unlensed counterparts and produce images with distinctive morphological signatures. Past searches and target-selection algorithms, in particular the Sloan Quasar Lens Search (SQLS), have relied on basic morphological criteria, which were applied to samples of bright, spectroscopically confirmed quasars. The SQLS techniques are not sufficient for searching into new surveys (e.g. DES, PS1, LSST), because spectroscopic information is not readily available and the large data volume requires higher purity in target/candidate selection. We carry out a systematic exploration of machine-learning techniques and demonstrate that a two-step strategy can be highly effective. In the first step, we use catalogue-level information (griz+WISE magnitudes, second moments) to pre-select targets, using artificial neural networks. The accepted targets are then inspected with pixel-by-pixel pattern recognition algorithms (gradient-boosted trees), to form a final set of candidates. The results from this procedure can be used to further refine the simpler SQLS algorithms, with a twofold (or threefold) gain in purity and the same (or 80 per cent) completeness at target-selection stage, or a purity of 70 per cent and a completeness of 60 per cent after the candidate-selection step. Simpler photometric searches in griz+WISE based on colour cuts would provide samples with 7 per cent purity or less. Our technique is extremely fast, as a list of candidates can be obtained from a Stage III experiment (e.g. DES catalogue/data base) in a few CPU hours. The techniques are easily extendable to Stage IV experiments like LSST with the addition of time domain information.

  7. Physical optics in a uniform gravitational field

    Science.gov (United States)

    Hacyan, Shahen

    2012-01-01

    The motion of a (quasi-)plane wave in a uniform gravitational field is studied. It is shown that the energy of an elliptically polarized wave does not propagate along a geodesic, but in a direction that is rotated with respect to the gravitational force. The similarity with the walk-off effect in anisotropic crystals or the optical Magnus effect in inhomogeneous media is pointed out.

  8. Testing gravitational parity violation with coincident gravitational waves and short gamma-ray bursts

    International Nuclear Information System (INIS)

    Yunes, Nicolas; O'Shaughnessy, Richard; Owen, Benjamin J.; Alexander, Stephon

    2010-01-01

    Gravitational parity violation is a possibility motivated by particle physics, string theory, and loop quantum gravity. One effect of it is amplitude birefringence of gravitational waves, whereby left and right circularly polarized waves propagate at the same speed but with different amplitude evolution. Here we propose a test of this effect through coincident observations of gravitational waves and short gamma-ray bursts from binary mergers involving neutron stars. Such gravitational waves are highly left or right circularly polarized due to the geometry of the merger. Using localization information from the gamma-ray burst, ground-based gravitational wave detectors can measure the distance to the source with reasonable accuracy. An electromagnetic determination of the redshift from an afterglow or host galaxy yields an independent measure of this distance. Gravitational parity violation would manifest itself as a discrepancy between these two distance measurements. We exemplify such a test by considering one specific effective theory that leads to such gravitational parity violation, Chern-Simons gravity. We show that the advanced LIGO-Virgo network and all-sky gamma-ray telescopes can be sensitive to the propagating sector of Chern-Simons gravitational parity violation to a level roughly 2 orders of magnitude better than current stationary constraints from the LAGEOS satellites.

  9. Effects of coconut granular activated carbon pretreatment on membrane filtration in a gravitational driven process to improve drinking water quality.

    Science.gov (United States)

    da Silva, Flávia Vieira; Yamaguchi, Natália Ueda; Lovato, Gilselaine Afonso; da Silva, Fernando Alves; Reis, Miria Hespanhol Miranda; de Amorim, Maria Teresa Pessoa Sousa; Tavares, Célia Regina Granhen; Bergamasco, Rosângela

    2012-01-01

    This study evaluates the performance of a polymeric microfiltration membrane, as well as its combination with a coconut granular activated carbon (GAC) pretreatment, in a gravitational filtration module, to improve the quality of water destined to human consumption. The proposed membrane and adsorbent were thoroughly characterized using instrumental techniques, such as contact angle, Brunauer-Emmett-Teller) and Fourier transform infrared spectroscopy analyses. The applied processes (membrane and GAC + membrane) were evaluated regarding permeate flux, fouling percentage, pH and removal of Escherichia coli, colour, turbidity and free chlorine. The obtained results for filtrations with and without GAC pretreatment were similar in terms of water quality. GAC pretreatment ensured higher chlorine removals, as well as higher initial permeate fluxes. This system, applying GAC as a pretreatment and a gravitational driven membrane filtration, could be considered as an alternative point-of-use treatment for water destined for human consumption.

  10. Effect of magnetic quadrupole lens alignment on a nuclear microprobe resolution

    International Nuclear Information System (INIS)

    Kolinko, S.V.; Ponomarev, A.G.

    2016-01-01

    The paper reports the research trends in developing probe-forming systems with high demagnification and analysis factors that limit a nuclear microprobe resolution. Parasitic aberrations caused by tilts and offsets of magnetic quadrupoles are studied in terms of their effect on probe parameters on a target. The most common arrangements of probe-forming systems such as a triplet and “Russian quadruplet” with separated geometry are considered. The accuracy prerequisites for the positioning of the quadrupoles are defined, and practical guidelines for alignment of probe-forming systems with high demagnification factors are suggested.

  11. Structure of gauge and gravitational anomalies*

    International Nuclear Information System (INIS)

    Alvarez-Gaume, L.; Ginsparg, P.

    1985-01-01

    It is shown how the form of the gauge and gravitational anomalies in quantum field theories may be derived from classical index theorems. The gravitational anomaly in both Einstein and Lorentz form is considered and their equivalence is exhibited. The formalism of gauge and gravitational theories is reviewed using the language of differential geometry, and notions from the theory of characteristic classes necessary for understanding the classical index theorems are introduced. The treatment of known topological results includes a pedagogical derivation of the Wess-Zumino effective Lagrangian in abitrary even dimension. The relation between various forms of the anomaly present in the literature is also clarified

  12. Gravitational instability in isotropic MHD plasma waves

    Science.gov (United States)

    Cherkos, Alemayehu Mengesha

    2018-04-01

    The effect of compressive viscosity, thermal conductivity and radiative heat-loss functions on the gravitational instability of infinitely extended homogeneous MHD plasma has been investigated. By taking in account these parameters we developed the six-order dispersion relation for magnetohydrodynamic (MHD) waves propagating in a homogeneous and isotropic plasma. The general dispersion relation has been developed from set of linearized basic equations and solved analytically to analyse the conditions of instability and instability of self-gravitating plasma embedded in a constant magnetic field. Our result shows that the presence of viscosity and thermal conductivity in a strong magnetic field substantially modifies the fundamental Jeans criterion of gravitational instability.

  13. Accurate and cost-effective MTF measurement system for lens modules of digital cameras

    Science.gov (United States)

    Chang, Gao-Wei; Liao, Chia-Cheng; Yeh, Zong-Mu

    2007-01-01

    For many years, the widening use of digital imaging products, e.g., digital cameras, has given rise to much attention in the market of consumer electronics. However, it is important to measure and enhance the imaging performance of the digital ones, compared to that of conventional cameras (with photographic films). For example, the effect of diffraction arising from the miniaturization of the optical modules tends to decrease the image resolution. As a figure of merit, modulation transfer function (MTF) has been broadly employed to estimate the image quality. Therefore, the objective of this paper is to design and implement an accurate and cost-effective MTF measurement system for the digital camera. Once the MTF of the sensor array is provided, that of the optical module can be then obtained. In this approach, a spatial light modulator (SLM) is employed to modulate the spatial frequency of light emitted from the light-source. The modulated light going through the camera under test is consecutively detected by the sensors. The corresponding images formed from the camera are acquired by a computer and then, they are processed by an algorithm for computing the MTF. Finally, through the investigation on the measurement accuracy from various methods, such as from bar-target and spread-function methods, it appears that our approach gives quite satisfactory results.

  14. Globally coherent short duration magnetic field transients and their effect on ground based gravitational-wave detectors

    International Nuclear Information System (INIS)

    Kowalska-Leszczynska, Izabela; Bulik, Tomasz; Bizouard, Marie-Anne; Robinet, Florent; Christensen, Nelson; Rohde, Maximilian; Coughlin, Michael; Gołkowski, Mark; Kubisz, Jerzy; Kulak, Andrzej; Mlynarczyk, Janusz

    2017-01-01

    It has been recognized that the magnetic fields from the Schumann resonances could affect the search for a stochastic gravitational-wave background by LIGO and Virgo. Presented here are the observations of short duration magnetic field transients that are coincident in the magnetometers at the LIGO and Virgo sites. Data from low-noise magnetometers in Poland and Colorado, USA, are also used and show short duration magnetic transients of global extent. We measure at least 2.3 coincident (between Poland and Colorado) magnetic transient events per day where one of the pulses exceeds 200 pT. Given the recently measured values of the magnetic coupling to differential arm motion for Advanced LIGO, there would be a few events per day that would appear simultaneously at the gravitational-wave detector sites and could move the test masses of order 10 −18 m. We confirm that in the advanced detector era short duration transient gravitational-wave searches must account for correlated magnetic field noise in the global detector network. (paper)

  15. Crystalline lens radioprotectors

    International Nuclear Information System (INIS)

    Belkacemi, Y.; Pasquier, D.; Castelain, B.; Lartigau, E.; Warnet, J.M.

    2003-01-01

    During more than a half of century, numerous compounds have been tested in different models against radiation-induced cataract. In this report, we will review the radioprotectors that have been already tested for non-human crystalline lens protection. We will focus on the most important published studies in this topic and the mechanisms of cyto-protection reported in. vitro and in. vivo from animals. The most frequent mechanisms incriminated in the cyto-protective effect are: free radical scavenging, limitation of lipid peroxidation, modulation of cycle progression increase of intracellular reduced glutathione pool, reduction of DNA strand breaks and limitation of apoptotic cell death. Arnifostine (or Ethyol) and anethole dithiolethione (or Sulfarlem), already used clinically as chemo- and radio-protectants, could be further test?r for ocular radioprotection particularly for radiation-induced cataract. (author)

  16. Gravitation and vacuum field

    International Nuclear Information System (INIS)

    Tevikyan, R.V.

    1986-01-01

    This paper presents equations that describe particles with spins s = 0, 1/2, 1 completely and which also describe 2s + 2 limiting fields as E → ∞. It is shown that the ordinary Hilbert-Einstein action for the gravitation field must be augmented by the action for the Bose vacuum field. This means that one must introduce in the gravitational equations a cosmological term proportional to the square of the strength of the Bose vacuum field. It is shown that the theory of gravitation describes three realities: matter, field, and vacuum field. A new form of matter--the vacuum field--is introduced into field theory

  17. Gravitational radiation reaction

    International Nuclear Information System (INIS)

    Tanaka, Takahiro

    2006-01-01

    We give a short personally-biased review on the recent progress in our understanding of gravitational radiation reaction acting on a point particle orbiting a black hole. The main motivation of this study is to obtain sufficiently precise gravitational waveforms from inspiraling binary compact starts with a large mass ratio. For this purpose, various new concepts and techniques have been developed to compute the orbital evolution taking into account the gravitational self-force. Combining these ideas with a few supplementary new ideas, we try to outline a path to our goal here. (author)

  18. Presenting Newtonian gravitation

    International Nuclear Information System (INIS)

    Counihan, Martin

    2007-01-01

    The basic principles of the Newtonian theory of gravitation are presented in a way which students may find more logically coherent, mathematically accessible and physically interesting than other approaches. After giving relatively simple derivations of the circular hodograph and the elliptical orbit from the inverse-square law, the concept of gravitational energy is developed from vector calculus. It is argued that the energy density of a gravitational field may reasonably be regarded as -g 2 /8πG, and that the inverse-square law may be replaced by a Schwarzschild-like force law without the need to invoke non-Euclidean geometry

  19. Gravitational lensing by eigenvalue distributions of random matrix models

    Science.gov (United States)

    Martínez Alonso, Luis; Medina, Elena

    2018-05-01

    We propose to use eigenvalue densities of unitary random matrix ensembles as mass distributions in gravitational lensing. The corresponding lens equations reduce to algebraic equations in the complex plane which can be treated analytically. We prove that these models can be applied to describe lensing by systems of edge-on galaxies. We illustrate our analysis with the Gaussian and the quartic unitary matrix ensembles.

  20. Effect of an ultraviolet-filtering intraocular lens on cystoid macular edema

    Energy Technology Data Exchange (ETDEWEB)

    Kraff, M.C.; Sanders, D.R.; Jampol, L.M.; Lieberman, H.L.

    1985-03-01

    A prospective double-masked study of 301 patients was undertaken to compare the effect of ultraviolet (UV) filtering in implant intraocular lenses (IOL) on the angiographic incidence of cystoid macular edema (CME) in patients undergoing extracapsular cataract extraction. Patients were randomized to receive either a posterior chamber IOL that contained UV-absorbing chromophore or an identical IOL which did not contain such a chromophore. All patients were scheduled for fluorescein angiography between three and six months after surgery; 228 angiograms were obtained that were readable for the presence or absence of angiographic CME. The mean interval following surgery was 4.3 months. The incidence of CME was 18.8% (21 of 112) in patients who received lenses without UV-filtering chromophore and 9.5% (11 of 116) in patients who received IOLs that contained UV-filtering chromophore. These findings show that UV-filtering-IOLs resulted in a statistically significant decrease in the incidence of CME. The presence or absence of the UV-filtering chromophore did not, however, significantly affect visual acuity in the early postoperative period.

  1. Effect of seeding rate on lentil (lens culinaris medik) seed yield under rainfed conditions

    International Nuclear Information System (INIS)

    Saleem, A.; Zahid, M.A.; Javed, H.I.; Ansar, A.; Saleem, N.

    2012-01-01

    The objective of this study was to investigate the effect of various sowing rates on seed yield of lentil. Field experiments were conducted for three consecutive years (2001-02 to 2003-04) at the National Agricultural Research Centre (NARC), Islamabad, Pakistan during the lentil growing season. An improved medium-grain size (1000-grain weight. around 25 g) variety Masoor 93 (18-12 x ILLP 4400) was used in these experiments. Eleven seeding rates i.e., 14.0, 21.25, 28.50, 35.75, 43.0, 50.25, 57.50, 64.75, 72.0, 79.25 and 86.50 kgha were evaluated in the study. Results of the three-year study showed that grain yield kept on increasing up to a seed rate of 43 kgha and remained static thereafter with a non-significant difference for any further increase in seed sown. The existing seed rate of 20 kgha in lentil is seemingly not sufficient to obtain optimum yield. On average, about 2-2.5-fold increase in seed rate of lentil under rainfed conditions can be safely recommended. (author)

  2. Effect of molybdenum and potassium application on nodulation, growth and yield of lentil (lens culinaris medic)

    International Nuclear Information System (INIS)

    Omer, F.A.; Dilsouz, N.; Khalaf, A.S.

    2016-01-01

    Two experimental were accomplished at agriculture college farm (Duhok) and in pots during the winter growing season 2011-2012, to investigate the response of local lentil in terms of growth, yield and nodulation to different application methods and concentrations of molybdenum and potassium fertilizer. Both experiments were arranged in randomized complete block design (RCBD) with three replications and included three factors (Molybdenum application methods; soaking or spraying; Mo-concentration; 0,5, 10, and 15 ppm and potassium fertilizer rates; 0, and 160 kg. ha/sup -1/). The results for filed experiment indicated that most of the studied traits excluding plant height were not affected significantly by each of molybdenum application methods (Moa) or concentrations (Moc) and potassium fertilizer. Moa interaction with K was significant for number of pods (NPP), per plant and final seed yield per hectare (SYH). The final grain yield was positively correlated with each of number of pods per plant, number of seed per plant and weight of grians. Regarding pot experiment. the foliar spraying of Mo produced higher seed per plant (9.34). While seed soaking in Mo solution was superior in number of nodules per plant(179.4); 5 ppm of Mo was superior and recorded higher number of branches (2.665) as compared to control unit or other treatments followed by 15 ppm (2.552). The effect of K or its interactions with each of Moa and Moc was not significant on all studied traits in these experiments. While, the second order interaction of the three factors was significant for the number of pods number of seeds per plant, seed yield, and 1000 grain weight. The result of field experiment were not encouraged concerning the single application of molybdenum or potassium fertilizers on the performance of lentil crop; hence they are not recommended in similar environments. In pots, foliar application of Mo can increase the seed yield while seed soaking is recommended in unfertile soil due

  3. CAN THE MASSES OF ISOLATED PLANETARY-MASS GRAVITATIONAL LENSES BE MEASURED BY TERRESTRIAL PARALLAX?

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, M.; Botzler, C. S.; Bray, J. C.; Cherrie, J. M.; Rattenbury, N. J. [Department of Physics, University of Auckland, Private Bag 92019, Auckland 1142 (New Zealand); Philpott, L. C. [Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z4 (Canada); Abe, F.; Muraki, Y. [Solar-Terrestrial Environment Laboratory, Nagoya University, Nagoya 464-8601 (Japan); Albrow, M. D. [Department of Physics and Astronomy, University of Canterbury, P.O. Box 4800, Christchurch 8020 (New Zealand); Bennett, D. P. [Department of Physics, 225 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556 (United States); Bond, I. A. [Institute for Information and Mathematical Sciences, Massey University, Private Bag 102-904, Auckland 1330 (New Zealand); Christie, G. W.; Natusch, T. [Auckland Observatory, PO Box 180, Royal Oak, Auckland 1345 (New Zealand); Dionnet, Z. [Université d' Orsay, bat 470, F-91400 Orsay (France); Gould, A. [Department of Astronomy, Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Han, C. [Department of Physics, Chungbuk National University, 410 Seongbong-Rho, Hungduk-Gu, Chongju 371-763 (Korea, Republic of); Heyrovský, D. [Institute of Theoretical Physics, Charles University in Prague, Faculty of Mathematics and Physics, V Holesovickach 2, 18000 Prague (Czech Republic); McCormick, J. M. [Farm Cove Observatory, 2/24 Rapallo Place, Pakuranga, Auckland 2012 (New Zealand); Moorhouse, D. M. [Kumeu Observatory, Kumeu (New Zealand); Skowron, J., E-mail: mfre070@aucklanduni.ac.nz [Warsaw University Observatory, Al. Ujazdowskie 4, 00-478, Warszawa (Poland); and others

    2015-02-01

    Recently Sumi et al. reported evidence for a large population of planetary-mass objects (PMOs) that are either unbound or orbit host stars in orbits ≥10 AU. Their result was deduced from the statistical distribution of durations of gravitational microlensing events observed by the MOA collaboration during 2006 and 2007. Here we study the feasibility of measuring the mass of an individual PMO through microlensing by examining a particular event, MOA-2011-BLG-274. This event was unusual as the duration was short, the magnification high, the source-size effect large, and the angular Einstein radius small. Also, it was intensively monitored from widely separated locations under clear skies at low air masses. Choi et al. concluded that the lens of the event may have been a PMO but they did not attempt a measurement of its mass. We report here a re-analysis of the event using re-reduced data. We confirm the results of Choi et al. and attempt a measurement of the mass and distance of the lens using the terrestrial parallax effect. Evidence for terrestrial parallax is found at a 3σ level of confidence. The best fit to the data yields the mass and distance of the lens as 0.80 ± 0.30 M {sub J} and 0.80 ± 0.25 kpc respectively. We exclude a host star to the lens out to a separation ∼40 AU. Drawing on our analysis of MOA-2011-BLG-274 we propose observational strategies for future microlensing surveys to yield sharper results on PMOs including those down to super-Earth mass.

  4. Vacuum polarization and non-Newtonian gravitation

    International Nuclear Information System (INIS)

    Long, D.R.

    1980-01-01

    Gell-Mann and Low have emphasized that, as first pointed out by Uehling and Serber, vacuum polarization effects produce a logarithmic modification to the Coulomb potential at small distances. Here, it is pointed out that, if these same considerations are applied to gravitation, the logarithmic term will have a sign opposite to that in the Coulomb case and in agreement with recent laboratory results on the gravitational ''constant''. Of considerable importance is the fact that such vacuum polarization effects cannot be observed in null experiments to test the gravitational inverse square law because the polarizing field is absent. It is a striking circumstance that the coefficient of the logarithm in QED is nearly the same as that found in gravitational experiments. (author)

  5. Next-to-next-to-leading order gravitational spin-squared potential via the effective field theory for spinning objects in the post-Newtonian scheme

    Energy Technology Data Exchange (ETDEWEB)

    Levi, Michele [Université Pierre et Marie Curie, CNRS-UMR 7095, Institut d' Astrophysique de Paris, 98 bis Boulevard Arago, 75014 Paris (France); Steinhoff, Jan, E-mail: michele.levi@upmc.fr, E-mail: jan.steinhoff@aei.mpg.de [Max-Planck-Institute for Gravitational Physics (Albert-Einstein-Institute), Am Mühlenberg 1, 14476 Potsdam-Golm (Germany)

    2016-01-01

    The next-to-next-to-leading order spin-squared interaction potential for generic compact binaries is derived for the first time via the effective field theory for gravitating spinning objects in the post-Newtonian scheme. The spin-squared sector is an intricate one, as it requires the consideration of the point particle action beyond minimal coupling, and mainly involves the spin-squared worldline couplings, which are quite complex, compared to the worldline couplings from the minimal coupling part of the action. This sector also involves the linear in spin couplings, as we go up in the nonlinearity of the interaction, and in the loop order. Hence, there is an excessive increase in the number of Feynman diagrams, of which more are higher loop ones. We provide all the Feynman diagrams and their values. The beneficial ''nonrelativistic gravitational'' fields are employed in the computation. This spin-squared correction, which enters at the fourth post-Newtonian order for rapidly rotating compact objects, completes the conservative sector up to the fourth post-Newtonian accuracy. The robustness of the effective field theory for gravitating spinning objects is shown here once again, as demonstrated in a recent series of papers by the authors, which obtained all spin dependent sectors, required up to the fourth post-Newtonian accuracy. The effective field theory of spinning objects allows to directly obtain the equations of motion, and the Hamiltonians, and these will be derived for the potential obtained here in a forthcoming paper.

  6. Accelerating Photons with Gravitational Radiation

    CERN Document Server

    Shore, Graham M

    2001-01-01

    The nature of superluminal photon propagation in the gravitational field describing radiation from a time-dependent, isolated source (the Bondi-Sachs metric) is considered in an effective theory which includes interactions which violate the strong equivalence principle. Such interactions are, for example, generated by vacuum polarisation in conventional QED in curved spacetime. The relation of the resulting light-cone modifications to the Peeling Theorem for the Bondi-Sachs spacetime is explained.

  7. Gravitation and source theory

    International Nuclear Information System (INIS)

    Yilmaz, H.

    1975-01-01

    Schwinger's source theory is applied to the problem of gravitation and its quantization. It is shown that within the framework of a flat-space the source theory implementation leads to a violation of probability. To avoid the difficulty one must introduce a curved space-time hence the source concept may be said to necessitate the transition to a curved-space theory of gravitation. It is further shown that the curved-space theory of gravitation implied by the source theory is not equivalent to the conventional Einstein theory. The source concept leads to a different theory where the gravitational field has a stress-energy tensor t/sup nu//sub mu/ which contributes to geometric curvatures

  8. Gravitational lensing of quasars

    CERN Document Server

    Eigenbrod, Alexander

    2013-01-01

    The universe, in all its richness, diversity and complexity, is populated by a myriad of intriguing celestial objects. Among the most exotic of them are gravitationally lensed quasars. A quasar is an extremely bright nucleus of a galaxy, and when such an object is gravitationally lensed, multiple images of the quasar are produced – this phenomenon of cosmic mirage can provide invaluable insights on burning questions, such as the nature of dark matter and dark energy. After presenting the basics of modern cosmology, the book describes active galactic nuclei, the theory of gravitational lensing, and presents a particular numerical technique to improve the resolution of astronomical data. The book then enters the heart of the subject with the description of important applications of gravitational lensing of quasars, such as the measurement of the famous Hubble constant, the determination of the dark matter distribution in galaxies, and the observation of the mysterious inner parts of quasars with much higher r...

  9. Gravitational Waves and Neutrinos

    OpenAIRE

    Sturani, Riccardo

    2018-01-01

    We give an overview about the recent detection of gravitational waves by the Advanced LIGO first and second observing runs and by Advanced Virgo, with emphasis on the prospects for multi-messenger astronomy involving neutrinos detections.

  10. Gravitational wave astronomy

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    In the past year, the LIGO-Virgo Collaboration announced the first secure detection of gravitational waves. This discovery heralds the beginning of gravitational wave astronomy: the use of gravitational waves as a tool for studying the dense and dynamical universe. In this talk, I will describe the full spectrum of gravitational waves, from Hubble-scale modes, through waves with periods of years, hours and milliseconds. I will describe the different techniques one uses to measure the waves in these bands, current and planned facilities for implementing these techniques, and the broad range of sources which produce the radiation. I will discuss what we might expect to learn as more events and sources are measured, and as this field matures into a standard part of the astronomical milieu.

  11. Capsular 'pits' in the human lens.

    OpenAIRE

    Harris, M. L.; Brown, N. A.; Shun-Shin, G. A.; Smith, G. T.

    1992-01-01

    The lens capsule is an atypical basement membrane surrounding the lens epithelial cells and lens fibres which make up the remainder of the human lens. A seemingly unreported morphological change visible in the lens capsule with the biomicroscope is described.

  12. Photosensitized oxidation in the ocular lens: evidence for photosensitizers endogenous to the human lens

    International Nuclear Information System (INIS)

    Zigler, J.S. Jr.; Goosey, J.D.

    1981-01-01

    Numerous investigators have attempted to associate near UV light exposure with various changes which occur to lens crystallins during aging and cataractogenesis. Recently it was shown that in vitro singlet oxygen mediated oxidation of lens crystallins produces effects very similar to those documented for crystallins from old or cataractous lenses and it was suggested that near UV photodynamic effects may play a major role in vivo in aging in the human lens. It has now been shown that certain oxidation products of tryptophan which have been identified in human lens can act as near UV photosensitizers, producing singlet oxygen. The insoluble protein fraction from human cataracts was shown to have the capacity to act as a photosensitizer. An age-related increase in photosensitizing capacity was also demonstrated in the soluble crystallins from human lens. These findings are discussed with respect to development of pigmented nuclear cataracts. (author)

  13. Listening music of gravitation

    International Nuclear Information System (INIS)

    Anon.

    2001-01-01

    Achievements of precision experiments in Japan (TAMA project) and USA (LIGO Laboratory) in the field of registration of gravitation waves using interferometric gravitational wave detectors are described. Works of the GEO groups in Hannover (Germany) and Vigro (Italy) are noted. Interferometer operation in synchronization during 160 hours demonstrating viability of the technique and its reliability is recorded. Advances in the field of the data analysis with the aim of recording of cosmic signal from noise of the interferometer are noted [ru

  14. Bunge on gravitational waves

    OpenAIRE

    Romero, Gustavo E.

    2017-01-01

    I discuss the recent claims made by Mario Bunge on the philosophical implications of the discovery of gravitational waves. I think that Bunge is right when he points out that the detection implies the materiality of spacetime, but I reject his identification of spacetime with the gravitational field. I show that Bunge's analysis of the spacetime inside a hollow sphere is defective, but this in no way affects his main claim.

  15. Gravitation and Electricity

    Directory of Open Access Journals (Sweden)

    Stavroulakis N.

    2008-04-01

    Full Text Available The equations of gravitation together with the equations of electromagnetism in terms of the General Theory of Relativity allow to conceive an interdependence between the gravitational field and the electromagnetic field. However the technical difficulties of the relevant problems have precluded from expressing clearly this interdependence. Even the simple problem related to the field generated by a charged spherical mass is not correctly solved. In the present paper we reexamine from the outset this problem and propose a new solution.

  16. Looking for new gravitational forces with antiprotons

    International Nuclear Information System (INIS)

    Nieto, M.M.; Bonner, B.E.

    1987-01-01

    Quite general arguments based on the principle of equivalence and modern field theory show that it is possible for the gravitational acceleration of antimatter to be different than that for matter. Further, there is no experimental evidence to rule out the possibility. In fact, some evidence indicates there may be unexpected effects. Thus, the planned experiment to measure the gravitational acceleration of antiprotons is of fundamental importance. 20 refs., 3 figs

  17. Gravitationally confined relativistic neutrinos

    Science.gov (United States)

    Vayenas, C. G.; Fokas, A. S.; Grigoriou, D.

    2017-09-01

    Combining special relativity, the equivalence principle, and Newton’s universal gravitational law with gravitational rather than rest masses, one finds that gravitational interactions between relativistic neutrinos with kinetic energies above 50 MeV are very strong and can lead to the formation of gravitationally confined composite structures with the mass and other properties of hadrons. One may model such structures by considering three neutrinos moving symmetrically on a circular orbit under the influence of their gravitational attraction, and by assuming quantization of their angular momentum, as in the Bohr model of the H atom. The model contains no adjustable parameters and its solution, using a neutrino rest mass of 0.05 eV/c2, leads to composite state radii close to 1 fm and composite state masses close to 1 GeV/c2. Similar models of relativistic rotating electron - neutrino pairs give a mass of 81 GeV/c2, close to that of W bosons. This novel mechanism of generating mass suggests that the Higgs mass generation mechanism can be modeled as a latent gravitational field which gets activated by relativistic neutrinos.

  18. The sloan lens ACS survey. VI. Discovery and analysis of a double Einstein ring

    NARCIS (Netherlands)

    Gavazzi, Raphael; Treu, Tommaso; Koopmans, Leon V. E.; Bolton, Adam S.; Moustakas, Leonidas A.; Burles, Scott; Marshall, Philip J.

    2008-01-01

    We report the discovery of two concentric Einstein rings around the gravitational lens SDSS J0946+ 1006. The main lens is at redshift z(l) = 0.222, while the inner ring ( 1) is at redshift z(s1) 0.609 (R-Ein1 = 1.43 '' +/- 0.01 ''). The wider image separation ( R-Ein2 = 2.07 '' +/- 0.02 '') of the

  19. The effect of EGb 761 on retinal lipid peroxidation and glutathione peroxidase level in experimental lens induced uveitis.

    Science.gov (United States)

    Bilgihan, A; Aricioğlu, A; Bilgihan, K; Onol, M; Hasanreisoğlu, B; Türközkan, N

    1994-01-01

    An acute lens-induced necrotizing intraocular inflammation was produced in pigmented guinea pigs. Treatment of these animals by 100 mg/kg/day EGb 761 a free oxygen radical scavenger for 10 days, reduced retinal lipid peroxidation (p > 0.05) and increased the retinal glutathione peroxidase level (p > 0.05). Although not significantly, these findings suggest that EGb 761 could be combined with other antiinflammatory drugs and may be beneficial in the treatment of uveitis.

  20. AUTOMATED DETECTION OF GALAXY-SCALE GRAVITATIONAL LENSES IN HIGH-RESOLUTION IMAGING DATA

    International Nuclear Information System (INIS)

    Marshall, Philip J.; Bradac, Marusa; Hogg, David W.; Moustakas, Leonidas A.; Fassnacht, Christopher D.; Schrabback, Tim; Blandford, Roger D.

    2009-01-01

    We expect direct lens modeling to be the key to successful and meaningful automated strong galaxy-scale gravitational lens detection. We have implemented a lens-modeling 'robot' that treats every bright red galaxy (BRG) in a large imaging survey as a potential gravitational lens system. Having optimized a simple model for 'typical' galaxy-scale gravitational lenses, we generate four assessments of model quality that are then used in an automated classification. The robot infers from these four data the lens classification parameter H that a human would have assigned; the inference is performed using a probability distribution generated from a human-classified training set of candidates, including realistic simulated lenses and known false positives drawn from the Hubble Space Telescope (HST) Extended Groth Strip (EGS) survey. We compute the expected purity, completeness, and rejection rate, and find that these statistics can be optimized for a particular application by changing the prior probability distribution for H; this is equivalent to defining the robot's 'character'. Adopting a realistic prior based on expectations for the abundance of lenses, we find that a lens sample may be generated that is ∼100% pure, but only ∼20% complete. This shortfall is due primarily to the oversimplicity of the model of both the lens light and mass. With a more optimistic robot, ∼90% completeness can be achieved while rejecting ∼90% of the candidate objects. The remaining candidates must be classified by human inspectors. Displaying the images used and produced by the robot on a custom 'one-click' web interface, we are able to inspect and classify lens candidates at a rate of a few seconds per system, suggesting that a future 1000 deg. 2 imaging survey containing 10 7 BRGs, and some 10 4 lenses, could be successfully, and reproducibly, searched in a modest amount of time. We have verified our projected survey statistics, albeit at low significance, using the HST EGS data