Parametrized post-Newtonian approximation and Rastall's gravitational field equations
International Nuclear Information System (INIS)
Smalley, L.L.
1978-01-01
The parametrized post-Newtonian (PPN) approximation is generalized to accomodate Rastall's modification of Einstein's theory of gravity, which allows nonzero divergence of the energy-momentum tensor. Rastall's theory is then shown to have consistent field equations, gauge conditions, and the correct Newtonian limit of the equations of motion. The PPN parameters are obtained and shown to agree experimentally with those for the Einstein theory. In light of the nonzero divergence condition, integral conservation laws are investigated and shown to yield conserved energy-momentum and angular-momentum. We conclude that the above generalization of metric theories, within the PPN framework, is a natural extension of the concept of metric theories
Gravitational lensing beyond the weak-field approximation
Perlick, Volker
2014-01-01
Gravitational lensing is considered in the full spacetime formalism of general relativity, assuming that the light rays are lightlike geodesics in a Lorentzian manifold. The review consists of three parts. The first part is devoted to spherically symmetric and static spacetimes. In particular, an exact lens map for this situation is discussed. The second part is on axisymmetric and stationary spacetimes. It concentrates on the investigation of the photon region, i.e., the region filled by spherical lightlike geodesics, in the Kerr spacetime. The photon region is of crucial relevance for the formation of a shadow. Finally, the third part briefly addresses two topics that apply to spacetimes without symmetry, namely Fermat's principle and the exact lens map of Frittelli and Newman.
Gravitational lensing beyond the weak-field approximation
Energy Technology Data Exchange (ETDEWEB)
Perlick, Volker, E-mail: perlick@zarm.uni-bremen.de [ZARM, University of Bremen, 28359 Bremen (Germany)
2014-01-14
Gravitational lensing is considered in the full spacetime formalism of general relativity, assuming that the light rays are lightlike geodesics in a Lorentzian manifold. The review consists of three parts. The first part is devoted to spherically symmetric and static spacetimes. In particular, an exact lens map for this situation is discussed. The second part is on axisymmetric and stationary spacetimes. It concentrates on the investigation of the photon region, i.e., the region filled by spherical lightlike geodesics, in the Kerr spacetime. The photon region is of crucial relevance for the formation of a shadow. Finally, the third part briefly addresses two topics that apply to spacetimes without symmetry, namely Fermat’s principle and the exact lens map of Frittelli and Newman.
Energy Technology Data Exchange (ETDEWEB)
Rudolph, E [Max-Planck-Institut fuer Physik und Astrophysik, Muenchen (F.R. Germany)
1975-01-01
As a model for gravitational radiation damping of a planet the electromagnetic radiation damping of an extended charged body moving in an external gravitational field is calculated in harmonic coordinates using a weak field, slowing-motion approximation. Special attention is paid to the case where this gravitational field is a weak Schwarzschild field. Using Green's function methods for this purpose it is shown that in a slow-motion approximation there is a strange connection between the tail part and the sharp part: radiation reaction terms of the tail part can cancel corresponding terms of the sharp part. Due to this cancelling mechanism the lowest order electromagnetic radiation damping force in an external gravitational field in harmonic coordinates remains the flat space Abraham Lorentz force. It is demonstrated in this simplified model that a naive slow-motion approximation may easily lead to divergent higher order terms. It is shown that this difficulty does not arise up to the considered order.
Energy Technology Data Exchange (ETDEWEB)
Jankiewicz, Cz; Sikora, D [Wyzsza Szkola Pedagogiczna, Rzeszow (Poland)
1980-01-01
It is shwon that in the post-Newtonian approximation the gravitational momentum of a system of point particles is equal to the sum of field momentum and inertial momentum only in two classes of coordinate systems. This equality may be treated as a natural condition on a coordinate system in which the generally covariant Einstein equations are to be solved.
Gravitational effects in field gravitation theory
International Nuclear Information System (INIS)
Denisov, V.I.; Logunov, A.A.; Mestvirishvili, M.A.; Vlasov, A.A.
1979-01-01
The possibilities to describe various gravitation effects of field gravitation theory (FGT) are considered. Past-Newtonian approximation of the FGT has been constructed and on the basis of this approximation it has been shown that the field theory allows one to describe the whole set of experimental facts. The comparison of post-Newtonian parameters in FGT with those in the Einstein's theory makes it clear that these two; theories are undistinguishable from the viewpoint of any experiments, realized with post-Newtonian accuracy. Gravitational field of an island type source with spherically symmetrical distribution of matter and unstationary homogeneous model of Universe, which allows to describe the effect of cosmological red shift, are considered
International Nuclear Information System (INIS)
Tevikyan, R.V.
1986-01-01
This paper presents equations that describe particles with spins s = 0, 1/2, 1 completely and which also describe 2s + 2 limiting fields as E → ∞. It is shown that the ordinary Hilbert-Einstein action for the gravitation field must be augmented by the action for the Bose vacuum field. This means that one must introduce in the gravitational equations a cosmological term proportional to the square of the strength of the Bose vacuum field. It is shown that the theory of gravitation describes three realities: matter, field, and vacuum field. A new form of matter--the vacuum field--is introduced into field theory
Zschocke, Sven
2016-05-01
High-precision astrometry on sub-micro-arcsecond level in angular resolution requires accurate determination of the trajectory of a light-signal from the celestial light source through the gravitational field of the Solar System toward the observer. In this investigation the light trajectory in the gravitational field of N moving bodies is determined in the 1.5 post-Newtonian approximation. In the approach presented two specific issues of particular importance are accounted for: (1) According to the recommendations of International Astronomical Union, the metric of the Solar System is expressed in terms of intrinsic mass-multipoles and intrinsic spin-multipoles of the massive bodies, allowing for arbitrary shape, inner structure and rotational motion of the massive bodies of the Solar System. (2) The Solar System bodies move along arbitrary world lines which can later be specified by Solar System ephemeris. The presented analytical solution for light trajectory is a primary requirement for extremely high-precision astrometry on sub-micro-arcsecond level of accuracy and associated massive computations in astrometric data reduction. An estimation of the numerical magnitude for time delay and light deflection of the leading multipoles is given.
Gravitational field of relativistic gyratons
Energy Technology Data Exchange (ETDEWEB)
Frolov, Valeri P [Theoretical Physics Institute, Department of Physics, University of Alberta, Edmonton, AB, T6G 2J1 (Canada)
2007-05-15
A gyraton is an object moving with the speed of light and having finite energy and internal angular momentum (spin). First we derive the gravitational field of a gyraton in the linear approximation. After this we study solutions of the vacuum Einstein equations for gyratons. We demonstrate that these solutions in 4 and higher dimensions reduce to two linear problems in a Euclidean space. A similar reduction is also valid for gyraton solutions of the Einstein-Maxwell gravity and in supergravity. Namely, we demonstrate that in the both cases the solutions in 4 and higher dimensions reduce to linear problems in a Euclidean space.
Schubert, G.; Anderson, J. D.
2013-12-01
Titan's gravitational field is inferred from an analysis of archived radio Doppler data for six Cassini flybys. The analysis considers each flyby separately in contrast to the approach of lumping all the data together in a massive inversion. In this way it is possible to gain an improved understanding of the character of each flyby and its usefulness in constraining the gravitational coefficient C22 . Though our analysis is not yet complete and our final determination of C22 could differ from the result we report here by 1 or 2 sigma, we find a best-fit value of C22 equal to (13.21 × 0.17) × 10-6, significantly larger than the value of 10.0 × 10-6 obtained from an inversion of the lumped Cassini data. We also find no determination of the tidal Love number k2. The larger value of C22 implies a moment of inertia factor equal to 0.3819 × 0.0020 and a less differentiated Titan than is suggested by the smaller value. The larger value of C22 is consistent with an undifferentiated model of the satellite. While it is not possible to rule out either value of C22 , we prefer the larger value because its derivation results from a more hands on analysis of the data that extracts the weak hydrostatic signal while revealing the effects of gravity anomalies and unmodeled spacecraft accelerations on each of the six flybys.
Superconductor in a weak static gravitational field
Energy Technology Data Exchange (ETDEWEB)
Ummarino, Giovanni Alberto [Dipartimento DISAT, Politecnico di Torino, Turin (Italy); National Research Nuclear University MEPhI-Moscow Engineering Physics Institute, Moscow (Russian Federation); Gallerati, Antonio [Dipartimento DISAT, Politecnico di Torino, Turin (Italy)
2017-08-15
We provide the detailed calculation of a general form for Maxwell and London equations that takes into account gravitational corrections in linear approximation. We determine the possible alteration of a static gravitational field in a superconductor making use of the time-dependent Ginzburg-Landau equations, providing also an analytic solution in the weak field condition. Finally, we compare the behavior of a high-T{sub c} superconductor with a classical low-T{sub c} superconductor, analyzing the values of the parameters that can enhance the reduction of the gravitational field. (orig.)
Quantum phenomena in gravitational field
Bourdel, Th.; Doser, M.; Ernest, A. D.; Voronin, A. Yu.; Voronin, V. V.
2011-10-01
The subjects presented here are very different. Their common feature is that they all involve quantum phenomena in a gravitational field: gravitational quantum states of ultracold antihydrogen above a material surface and measuring a gravitational interaction of antihydrogen in AEGIS, a quantum trampoline for ultracold atoms, and a hypothesis on naturally occurring gravitational quantum states, an Eötvös-type experiment with cold neutrons and others. Considering them together, however, we could learn that they have many common points both in physics and in methodology.
Quantum phenomena in gravitational field
International Nuclear Information System (INIS)
Bourdel, Th.; Doser, M.; Ernest, A.D.; Voronin, A.Y.; Voronin, V.V.
2010-01-01
The subjects presented here are very different. Their common feature is that they all involve quantum phenomena in a gravitational field: gravitational quantum states of ultracold anti-hydrogen above a material surface and measuring a gravitational interaction of anti-hydrogen in AEGIS, a quantum trampoline for ultracold atoms, and a hypothesis on naturally occurring gravitational quantum states, an Eoetvoes-type experiment with cold neutrons and others. Considering them together, however, we could learn that they have many common points both in physics and in methodology. (authors)
Weak field approximation of new general relativity
International Nuclear Information System (INIS)
Fukui, Masayasu; Masukawa, Junnichi
1985-01-01
In the weak field approximation, gravitational field equations of new general relativity with arbitrary parameters are examined. Assuming a conservation law delta sup(μ)T sub(μν) = 0 of the energy-momentum tensor T sub(μν) for matter fields in addition to the usual one delta sup(ν)T sub(μν) = 0, we show that the linearized gravitational field equations are decomposed into equations for a Lorentz scalar field and symmetric and antisymmetric Lorentz tensor fields. (author)
An electric field in a gravitational field
International Nuclear Information System (INIS)
Harpaz, Amos
2005-01-01
The behaviour of an electric field in a gravitational field is analysed. It is found that due to the mass (energy) of the electric field, it is subjected to gravity and it falls in the gravitational field. This fall curves the electric field, a stress force (a reaction force) is created, and the interaction of this reaction force with the static charge gives rise to the creation of radiation
R. Vlokh; M. Kostyrko
2006-01-01
Nonlinear effect of the gravitation field of spherically symmetric mass on the gravitational coefficient G has been analysed. In frame of the approaches of parametric optics and gravitation nonlinearity we have shown that the gravitation field of spherically symmetric mass can lead to changes in the gravitational coefficient G.
International Nuclear Information System (INIS)
Penrose, R.
1986-01-01
The author's definition for the mass-momentum/angular momentum surrounded by a spacelike 2-surface with S/sup 2/ topology is presented. This definition is motivated by some ideas from twistor theory in relation to linearized gravitational theory. The status of this definition is examined in relation to many examples which have been worked out. The reason for introducing a slight modification of the original definition is also presented
The earth's gravitational field
Digital Repository Service at National Institute of Oceanography (India)
Ramprasad, T.
. But to say that gravity acts downwards is not correct. Gravity acts down, no matter where you stand on the Earth. It is better to say that on Earth gravity pulls objects towards the centre of the Earth. So no matter where you are on Earth all objects fall... pull than objects at the poles. In combination, the equatorial bulge and the effects of centrifugal force mean that sea-level gravitational acceleration increases from about 9.780 m/s² at the equator to about 9.832 m/s² at the poles, so an object...
Gravitational waves from scalar field accretion
International Nuclear Information System (INIS)
Nunez, Dario; Degollado, Juan Carlos; Moreno, Claudia
2011-01-01
Our aim in this work is to outline some physical consequences of the interaction between black holes and scalar field halos in terms of gravitational waves. In doing so, the black hole is taken as a static and spherically symmetric gravitational source, i.e. the Schwarzschild black hole, and we work within the test field approximation, considering that the scalar field lives in the curved space-time outside the black hole. We focused on the emission of gravitational waves when the black hole is perturbed by the surrounding scalar field matter. The symmetries of the space-time and the simplicity of the matter source allow, by means of a spherical harmonic decomposition, to study the problem by means of a one-dimensional description. Some properties of such gravitational waves are discussed as a function of the parameters of the infalling scalar field, and allow us to make the conjecture that the gravitational waves carry information on the type of matter that generated them.
Field theory approach to gravitation
International Nuclear Information System (INIS)
Yilmaz, H.
1978-01-01
A number of authors considered the possibility of formulating a field-theory approach to gravitation with the claim that such an approach would uniquely lead to Einstein's theory of general relativity. In this article it is shown that the field theory approach is more generally applicable and uniqueness cannot be claimed. Theoretical and experimental reasons are given showing that the Einsteinian limit appears to be unviable
Gravitation and bilocal field theory
International Nuclear Information System (INIS)
Vollendorf, F.
1975-01-01
The starting point is the conjecture that a field theory of elementary particles can be constructed only in a bilocal version. Thus the 4-dimensional space time has to be replaced by the 8-dimensional manifold R 8 of all ordered pairs of space time events. With special reference to the Schwarzschild metric it is shown that the embedding of the time space into the manifold R 8 yields a description of the gravitational field. (orig.) [de
Topological quantization of gravitational fields
International Nuclear Information System (INIS)
Patino, Leonardo; Quevedo, Hernando
2005-01-01
We introduce the method of topological quantization for gravitational fields in a systematic manner. First we show that any vacuum solution of Einstein's equations can be represented in a principal fiber bundle with a connection that takes values in the Lie algebra of the Lorentz group. This result is generalized to include the case of gauge matter fields in multiple principal fiber bundles. We present several examples of gravitational configurations that include a gravitomagnetic monopole in linearized gravity, the C-energy of cylindrically symmetric fields, the Reissner-Nordstroem and the Kerr-Newman black holes. As a result of the application of the topological quantization procedure, in all the analyzed examples we obtain conditions implying that the parameters entering the metric in each case satisfy certain discretization relationships
The Theory of Vortical Gravitational Fields
Directory of Open Access Journals (Sweden)
Rabounski D.
2007-04-01
Full Text Available This paper treats of vortical gravitational fields, a tensor of which is the rotor of the general covariant gravitational inertial force. The field equations for a vortical gravitational field (the Lorentz condition, the Maxwell-like equations, and the continuity equation are deduced in an analogous fashion to electrodynamics. From the equations it is concluded that the main kind of vortical gravitational fields is “electric”, determined by the non-stationarity of the acting gravitational inertial force. Such a field is a medium for traveling waves of the force (they are different to the weak deformation waves of the space metric considered in the theory of gravitational waves. Standing waves of the gravitational inertial force and their medium, a vortical gravitational field of the “magnetic” kind, are exotic, since a non-stationary rotation of a space body (the source of such a field is a very rare phenomenon in the Universe.
Generalized equations of gravitational field
International Nuclear Information System (INIS)
Stanyukovich, K.P.; Borisova, L.B.
1985-01-01
Equations for gravitational fields are obtained on the basis of a generalized Lagrangian Z=f(R) (R is the scalar curvature). Such an approach permits to take into account the evolution of a gravitation ''constant''. An expression for the force Fsub(i) versus the field variability is obtained. Conservation laws are formulated differing from the standard ones by the fact that in the right part of new equations the value Fsub(i) is present that goes to zero at an ultimate passage to the standard Einstein theory. An equation of state is derived for cosmological metrics for a particular case, f=bRsup(1+α) (b=const, α=const)
Forces in electromagnetic field and gravitational field
Weng, Zihua
2008-01-01
The force can be defined from the linear momentum in the gravitational field and electromagnetic field. But this definition can not cover the gradient of energy. In the paper, the force will be defined from the energy and torque in a new way, which involves the gravitational force, electromagnetic force, inertial force, gradient of energy, and some other new force terms etc. One of these new force terms can be used to explain why the solar wind varies velocity along the magnetic force line in...
Generalized field theory of gravitation
International Nuclear Information System (INIS)
Yilmaz, H.
1976-01-01
It is shown that if, on empirical grounds, one rules out the existence of cosmic fields of Dicke-Brans (scalar) and Will Nordvedt (vector, tensor) type, then the most general experimentally viable and theoretically reasonable theory of gravitation seems to be a LAMBDA-dependent generalization of Einstein and Yilmez theories, which reduces to the former for LAMBDA=0 and to the latter for LAMBDA=1
Dyons in presence of gravitation and symmetrized field equations
International Nuclear Information System (INIS)
Rawat, A.S.; Negi, O.P.S.
1999-01-01
Combined theory of gravitation and electromagnetism associated with particles carrying electric and magnetic charges has been established from an invariant action principle. Corresponding field equations, equation of motion and Einstein Maxwell's equations are obtained in unique and consistent way. It is shown that weak field approximation of slowly moving particle in gravitational field leads the symmetry between electromagnetic and linear gravitational fields. Postulation of the existence of gravimagnetic monopole leads structural symmetry between generalized electromagnetic and gravielectromagnetic fields. Corresponding quantization conditions and angular momentum are also analysed. (author)
Relativity in Combinatorial Gravitational Fields
Directory of Open Access Journals (Sweden)
Mao Linfan
2010-04-01
Full Text Available A combinatorial spacetime $(mathscr{C}_G| uboverline{t}$ is a smoothly combinatorial manifold $mathscr{C}$ underlying a graph $G$ evolving on a time vector $overline{t}$. As we known, Einstein's general relativity is suitable for use only in one spacetime. What is its disguise in a combinatorial spacetime? Applying combinatorial Riemannian geometry enables us to present a combinatorial spacetime model for the Universe and suggest a generalized Einstein gravitational equation in such model. Forfinding its solutions, a generalized relativity principle, called projective principle is proposed, i.e., a physics law ina combinatorial spacetime is invariant under a projection on its a subspace and then a spherically symmetric multi-solutions ofgeneralized Einstein gravitational equations in vacuum or charged body are found. We also consider the geometrical structure in such solutions with physical formations, and conclude that an ultimate theory for the Universe maybe established if all such spacetimes in ${f R}^3$. Otherwise, our theory is only an approximate theory and endless forever.
Quantum field theory in gravitational background
International Nuclear Information System (INIS)
Narnhofer, H.
1986-01-01
The author suggests ignoring the influence of the quantum field on the gravitation as the first step to combine quantum field theory and gravitation theory, but to consider the gravitational field as fixed and thus study quantum field theory on a manifold. This subject evoked interest when thermal radiation of a black hole was predicted. The author concentrates on the free quantum field and can split the problem into two steps: the Weyl-algebra of the free field and the Wightman functional on the tangent space
Hydrodynamics, fields and constants in gravitational theory
International Nuclear Information System (INIS)
Stanyukovich, K.P.; Mel'nikov, V.N.
1983-01-01
Results of original inveatigations into problems of standard gravitation theory and its generalizations are presented. The main attention is paid to the application of methods of continuous media techniques in the gravitation theory; to the specification of the gravitation role in phenomena of macro- and microworld, accurate solutions in the case, when the medium is the matter, assigned by hydrodynamic energy-momentum tensor; and to accurate solutions for the case when the medium is the field. GRT generalizations are analyzed, such as the new cosmologic hypothesis which is based on the gravitation vacuum theory. Investigations are performed into the quantization of cosmological models, effects of spontaneous symmetry violation and particle production in cosmology. Graeity theory with fundamental Higgs field is suggested in the framework of which in the atomic unit number one can explain possible variations of the effective gravitational bonds, and in the gravitation bond, variations of masses of all particles
On the field theoretic description of gravitation
Nieuwenhuizen, T.M.; Kleinert, H.; Jantzen, R.T.; Ruffini, R.
2008-01-01
Maxwell started to describe gravitation as a field in Minkowski space. Such an approach brought Babak and Grishchuk in 1999 the gravitational energy-momentum tensor. Simple manipulations allow the Einstein equations to take the form Aµν = (8πG/c4)Θµν, where A is the acceleration tensor and Θ, the
Gravitational Field Shielding by Scalar Field and Type II Superconductors
Directory of Open Access Journals (Sweden)
Zhang B. J.
2013-01-01
Full Text Available The gravitational field shielding by scalar field and type II superconductors are theoret- ically investigated. In accord with the well-developed five-dimensional fully covariant Kaluza-Klein theory with a scalar field, which unifies the Einsteinian general relativity and Maxwellian electromagnetic theory, the scalar field cannot only polarize the space as shown previously, but also flatten the space as indicated recently. The polariza- tion of space decreases the electromagnetic field by increasing the equivalent vacuum permittivity constant, while the flattening of space decreases the gravitational field by decreasing the equivalent gravitational constant. In other words, the scalar field can be also employed to shield the gravitational field. A strong scalar field significantly shield the gravitational field by largely decreasing the equivalent gravitational constant. According to the theory of gravitational field shielding by scalar field, the weight loss experimentally detected for a sample near a rotating ceramic disk at very low tempera- ture can be explained as the shielding of the Earth gravitational field by the Ginzburg- Landau scalar field, which is produced by the type II superconductors. The significant shielding of gravitational field by scalar field produced by superconductors may lead to a new spaceflight technology in future.
New Metrics from a Fractional Gravitational Field
International Nuclear Information System (INIS)
El-Nabulsi, Rami Ahmad
2017-01-01
Agop et al. proved in Commun. Theor. Phys. (2008) that, a Reissner–Nordstrom type metric is obtained, if gauge gravitational field in a fractal spacetime is constructed by means of concepts of scale relativity. We prove in this short communication that similar result is obtained if gravity in D-spacetime dimensions is fractionalized by means of the Glaeske–Kilbas–Saigo fractional. Besides, non-singular gravitational fields are obtained without using extra-dimensions. We present few examples to show that these gravitational fields hold a number of motivating features in spacetime physics. (paper)
On energy-momentum tensors of gravitational field
International Nuclear Information System (INIS)
Nikishov, A.I.
2001-01-01
The phenomenological approach to gravitation is discussed in which the 3-graviton interaction is reduced to the interaction of each graviton with the energy-momentum tensor of two others. If this is so, (and in general relativity this is not so), then the problem of choosing the correct energy-momentum tensor comes to finding the right 3-graviton vertex. Several energy-momentum tensors od gravitational field are considered and compared in the lowest approximation. Each of them together with the energy-momentum tensor of point-like particles satisfies the conservation laws when equations of motion of particles are the same as in general relativity. It is shown that in Newtonian approximation the considered tensors differ one from other in the way their energy density is distributed between energy density of interaction (nonzero only at locations of particles) and energy density of gravitational field. Stating from Lorentz invariance, the Lagrangians for spin-2, mass-0 field are considered [ru
International Nuclear Information System (INIS)
Hussain, Ibrar; Qadir, Asghar; Mahomed, F. M.
2009-01-01
Since gravitational wave spacetimes are time-varying vacuum solutions of Einstein's field equations, there is no unambiguous means to define their energy content. However, Weber and Wheeler had demonstrated that they do impart energy to test particles. There have been various proposals to define the energy content, but they have not met with great success. Here we propose a definition using 'slightly broken' Noether symmetries. We check whether this definition is physically acceptable. The procedure adopted is to appeal to 'approximate symmetries' as defined in Lie analysis and use them in the limit of the exact symmetry holding. A problem is noted with the use of the proposal for plane-fronted gravitational waves. To attain a better understanding of the implications of this proposal we also use an artificially constructed time-varying nonvacuum metric and evaluate its Weyl and stress-energy tensors so as to obtain the gravitational and matter components separately and compare them with the energy content obtained by our proposal. The procedure is also used for cylindrical gravitational wave solutions. The usefulness of the definition is demonstrated by the fact that it leads to a result on whether gravitational waves suffer self-damping.
A test of the adhesion approximation for gravitational clustering
Melott, Adrian L.; Shandarin, Sergei; Weinberg, David H.
1993-01-01
We quantitatively compare a particle implementation of the adhesion approximation to fully non-linear, numerical 'N-body' simulations. Our primary tool, cross-correlation of N-body simulations with the adhesion approximation, indicates good agreement, better than that found by the same test performed with the Zel-dovich approximation (hereafter ZA). However, the cross-correlation is not as good as that of the truncated Zel-dovich approximation (TZA), obtained by applying the Zel'dovich approximation after smoothing the initial density field with a Gaussian filter. We confirm that the adhesion approximation produces an excessively filamentary distribution. Relative to the N-body results, we also find that: (a) the power spectrum obtained from the adhesion approximation is more accurate than that from ZA or TZA, (b) the error in the phase angle of Fourier components is worse than that from TZA, and (c) the mass distribution function is more accurate than that from ZA or TZA. It appears that adhesion performs well statistically, but that TZA is more accurate dynamically, in the sense of moving mass to the right place.
Physical optics in a uniform gravitational field
Hacyan, Shahen
2012-01-01
The motion of a (quasi-)plane wave in a uniform gravitational field is studied. It is shown that the energy of an elliptically polarized wave does not propagate along a geodesic, but in a direction that is rotated with respect to the gravitational force. The similarity with the walk-off effect in anisotropic crystals or the optical Magnus effect in inhomogeneous media is pointed out.
Neutron stars, magnetic fields, and gravitational waves
International Nuclear Information System (INIS)
Lamb, F.K.
2001-01-01
The r-modes of rapidly spinning young neutron stars have recently attracted attention as a promising source of detectable gravitational radiation. These neutron stars are expected to have magnetic fields ∼ 10 12 G. The r-mode velocity perturbation causes differential motion of the fluid in the star; this is a kinematic effect. In addition, the radiation-reaction associated with emission of gravitational radiation by r-waves drives additional differential fluid motions; this is a dynamic effect. These differential fluid motions distort the magnetic fields of neutron stars and may therefore play an important role in determining the structure of neutron star magnetic fields. If the stellar field is ∼ 10 16 (Ω/Ω B ) G or stronger, the usual r-modes are no longer normal modes of the star; here Ω and Ω B are the angular velocities of the star and at which mass shedding occurs. Much weaker magnetic fields can prevent gravitational radiation from amplifying the r-modes or damp existing r-mode oscillations on a relatively short timescale by extracting energy from the modes faster than gravitational wave emission can pump energy into them. The onset of proton superconductivity in the cores of newly formed magnetic neutron stars typically increases the effect on the r-modes of the magnetic field in the core by many orders of magnitude. Once the core has become superconducting, magnetic fields of the order of 10 12 G or greater are usually sufficient to damp r-modes that have been excited by emission of gravitational radiation and to suppress any further emission. A rapid drop in the strength of r-mode gravitational radiation from young neutron stars may therefore signal the onset of superconductivity in the core and provide a lower bound on the strength of the magnetic field there. Hence, measurements of r-mode gravitational waves from newly formed neutron stars may provide valuable diagnostic information about magnetic field strengths, cooling processes, and the
Gravitational peculiarities of a scalar field
International Nuclear Information System (INIS)
Kleber, A.; Fonseca Teixeira, A.F. da
1979-11-01
The zero-adjoint of a time-static Ricci-flat solution to Einstein's field equations is investigated. It represents a spacetime curved solely by a massless scalar field. The cylindrical symmetry is assumed to permit both planar and non-planar geodetic motions. Unusual, velocity-dependent gravitational features are encountered from these geodesics. (Author) [pt
Effect of the Earth's gravitational field on the detection of gravitational waves
International Nuclear Information System (INIS)
Denisov, V.I.; Eliseev, V.A.
1988-01-01
We consider the laboratory detection of high-frequency gravitational waves in theories of gravitation based on a pseudo-Euclidean space-time. We analyze the effects due to the Earth's gravitational field on the propagation velocities of gravitational and electromagnetic waves in these theories. Experiments to test the predictions of this class of theories are discussed
Generalization of Einstein's gravitational field equations
Moulin, Frédéric
2017-12-01
The Riemann tensor is the cornerstone of general relativity, but as is well known it does not appear explicitly in Einstein's equation of gravitation. This suggests that the latter may not be the most general equation. We propose here for the first time, following a rigorous mathematical treatment based on the variational principle, that there exists a generalized 4-index gravitational field equation containing the Riemann curvature tensor linearly, and thus the Weyl tensor as well. We show that this equation, written in n dimensions, contains the energy-momentum tensor for matter and that of the gravitational field itself. This new 4-index equation remains completely within the framework of general relativity and emerges as a natural generalization of the familiar 2-index Einstein equation. Due to the presence of the Weyl tensor, we show that this equation contains much more information, which fully justifies the use of a fourth-order theory.
Chameleon scalar fields in relativistic gravitational backgrounds
International Nuclear Information System (INIS)
Tsujikawa, Shinji; Tamaki, Takashi; Tavakol, Reza
2009-01-01
We study the field profile of a scalar field φ that couples to a matter fluid (dubbed a chameleon field) in the relativistic gravitational background of a spherically symmetric spacetime. Employing a linear expansion in terms of the gravitational potential Φ c at the surface of a compact object with a constant density, we derive the thin-shell field profile both inside and outside the object, as well as the resulting effective coupling with matter, analytically. We also carry out numerical simulations for the class of inverse power-law potentials V(φ) = M 4+n φ −n by employing the information provided by our analytical solutions to set the boundary conditions around the centre of the object and show that thin-shell solutions in fact exist if the gravitational potential Φ c is smaller than 0.3, which marginally covers the case of neutron stars. Thus the chameleon mechanism is present in the relativistic gravitational backgrounds, capable of reducing the effective coupling. Since thin-shell solutions are sensitive to the choice of boundary conditions, our analytic field profile is very helpful to provide appropriate boundary conditions for Φ c ∼< O(0.1)
Chameleon scalar fields in relativistic gravitational backgrounds
Energy Technology Data Exchange (ETDEWEB)
Tsujikawa, Shinji [Department of Physics, Faculty of Science, Tokyo University of Science, 1-3, Kagurazaka, Shinjuku-ku, Tokyo 162-8601 (Japan); Tamaki, Takashi [Department of Physics, Waseda University, Okubo 3-4-1, Tokyo 169-8555 (Japan); Tavakol, Reza, E-mail: shinji@rs.kagu.tus.ac.jp, E-mail: tamaki@gravity.phys.waseda.ac.jp, E-mail: r.tavakol@qmul.ac.uk [Astronomy Unit, School of Mathematical Sciences, Queen Mary University of London, London E1 4NS (United Kingdom)
2009-05-15
We study the field profile of a scalar field {phi} that couples to a matter fluid (dubbed a chameleon field) in the relativistic gravitational background of a spherically symmetric spacetime. Employing a linear expansion in terms of the gravitational potential {Phi}{sub c} at the surface of a compact object with a constant density, we derive the thin-shell field profile both inside and outside the object, as well as the resulting effective coupling with matter, analytically. We also carry out numerical simulations for the class of inverse power-law potentials V({phi}) = M{sup 4+n}{phi}{sup -n} by employing the information provided by our analytical solutions to set the boundary conditions around the centre of the object and show that thin-shell solutions in fact exist if the gravitational potential {Phi}{sub c} is smaller than 0.3, which marginally covers the case of neutron stars. Thus the chameleon mechanism is present in the relativistic gravitational backgrounds, capable of reducing the effective coupling. Since thin-shell solutions are sensitive to the choice of boundary conditions, our analytic field profile is very helpful to provide appropriate boundary conditions for {Phi}{sub c}{approx}
Microcanonical functional integral for the gravitational field
International Nuclear Information System (INIS)
Brown, J.D.; York, J.W. Jr.
1993-01-01
The gravitational field in a spatially finite region is described as a microcanonical system. The density of states ν is expressed formally as a functional integral over Lorentzian metrics and is a functional of the geometrical boundary data that are fixed in the corresponding action. These boundary data are the thermodynamical extensive variables, including the energy and angular momentum of the system. When the boundary data are chosen such that the system is described semiclassically by any real stationary axisymmetric black hole, then in this same approximation lnν is shown to equal 1/4 the area of the black-hole event horizon. The canonical and grand canonical partition functions are obtained by integral transforms of ν that lead to ''imaginary-time'' functional integrals. A general form of the first law of thermodynamics for stationary black holes is derived. For the simpler case of nonrelativistic mechanics, the density of states is expressed as a real-time functional integral and then used to deduce Feynman's imaginary-time functional integral for the canonical partition function
Gravitational closure of matter field equations
Düll, Maximilian; Schuller, Frederic P.; Stritzelberger, Nadine; Wolz, Florian
2018-04-01
The requirement that both the matter and the geometry of a spacetime canonically evolve together, starting and ending on shared Cauchy surfaces and independently of the intermediate foliation, leaves one with little choice for diffeomorphism-invariant gravitational dynamics that can equip the coefficients of a given system of matter field equations with causally compatible canonical dynamics. Concretely, we show how starting from any linear local matter field equations whose principal polynomial satisfies three physicality conditions, one may calculate coefficient functions which then enter an otherwise immutable set of countably many linear homogeneous partial differential equations. Any solution of these so-called gravitational closure equations then provides a Lagrangian density for any type of tensorial geometry that features ultralocally in the initially specified matter Lagrangian density. Thus the given system of matter field equations is indeed closed by the so obtained gravitational equations. In contrast to previous work, we build the theory on a suitable associated bundle encoding the canonical configuration degrees of freedom, which allows one to include necessary constraints on the geometry in practically tractable fashion. By virtue of the presented mechanism, one thus can practically calculate, rather than having to postulate, the gravitational theory that is required by specific matter field dynamics. For the special case of standard model matter one obtains general relativity.
Induced forces in the gravitational field
International Nuclear Information System (INIS)
Voracek, P.
1979-01-01
In this paper the expression for the magnitude of the so-called induced force, acting on a mass particle, is deduced. The origin of this force is causally connected to the increase of the rest mass of the particle in the gravitational field. (orig.)
Gravitational radiation from preheating with many fields
International Nuclear Information System (INIS)
Jr, John T. Giblin; Price, Larry R.; Siemens, Xavier
2010-01-01
Parametric resonances provide a mechanism by which particles can be created just after inflation. Thus far, attention has focused on a single or many inflaton fields coupled to a single scalar field. However, generically we expect the inflaton to couple to many other relativistic degrees of freedom present in the early universe. Using simulations in an expanding Friedmann-Lemaître-Robertson-Walker spacetime, in this paper we show how preheating is affected by the addition of multiple fields coupled to the inflaton. We focus our attention on gravitational wave production — an important potential observational signature of the preheating stage. We find that preheating and its gravitational wave signature is robust to the coupling of the inflaton to more matter fields
Gravitational radiation from preheating with many fields
Energy Technology Data Exchange (ETDEWEB)
Jr, John T. Giblin [Department of Physics, Kenyon College, 201 North College Road, Gambier, OH 43022 (United States); Price, Larry R.; Siemens, Xavier, E-mail: giblinj@kenyon.edu, E-mail: larry@gravity.phys.uwm.edu, E-mail: siemens@gravity.phys.uwm.edu [Center for Gravitation and Cosmology, Department of Physics, University of Wisconsin — Milwaukee, P.O. Box 413, Milwaukee, WI 53201 (United States)
2010-08-01
Parametric resonances provide a mechanism by which particles can be created just after inflation. Thus far, attention has focused on a single or many inflaton fields coupled to a single scalar field. However, generically we expect the inflaton to couple to many other relativistic degrees of freedom present in the early universe. Using simulations in an expanding Friedmann-Lemaître-Robertson-Walker spacetime, in this paper we show how preheating is affected by the addition of multiple fields coupled to the inflaton. We focus our attention on gravitational wave production — an important potential observational signature of the preheating stage. We find that preheating and its gravitational wave signature is robust to the coupling of the inflaton to more matter fields.
Numerical study of primordial magnetic field amplification by inflation-produced gravitational waves
International Nuclear Information System (INIS)
Kuroyanagi, Sachiko; Tashiro, Hiroyuki; Sugiyama, Naoshi
2010-01-01
We numerically study the interaction of inflation-produced magnetic fields with gravitational waves, both of which originate from quantum fluctuations during inflation. The resonance between the magnetic field perturbations and the gravitational waves has been suggested as a possible mechanism for magnetic field amplification. However, some analytical studies suggest that the effect of the inflationary gravitational waves is too small to provide significant amplification. Our numerical study shows more clearly how the interaction affects the magnetic fields and confirms the weakness of the influence of the gravitational waves. We present an investigation based on the magnetohydrodynamic approximation and take into account the differences of the Alfven speed.
Topics in gravitation and gauge fields
International Nuclear Information System (INIS)
Leen, T.K.
1982-01-01
The theoretical studies presented here address three distinct topics. The first deals with quantum-mechanical effects of classical gravitational radiation. Specifically, the use of the interstellar medium itself as a remote quantum-mechanical detector of gravitational waves is investigated. This study is motivated by the presumed existence of atomic hydrogen in the vicinity of astrophysical sources of gravitational radiation. Space-time curvature produces uniquely identifiable shifts in atomic hydrogen energy levels. The oscillating level shifts induced by a passing gravitational wave could conceivably be detected spectroscopically. Accordingly the level shifts for both low-lying and highly excited states of single electron atoms immersed in gravitational radiation have been studied. The second two topics deal with the theory of quantized fields on curved space-times. In the first of these studies, a naive model of cosmological baryon synthesis is examined. The model incorporates a hard CP violation as well as a baryon (and lepton) non-conserving interaction and is thus capable of generating an excess of matter over antimatter. The time dependent background geometry of the early universe drives the interaction producing net excess of baryon/lepton pairs. In the final topic, the question of renormalizability of non-Abelian gauge fields theories in a general curved space-time is addressed. All modern theories of elementary particle physics are gauge theories and one would like to know if their perturbative expansions continue to be well defined (i.e. renormalizable) on curved backgrounds. In general, one is interested in knowing if field theories renormalizable in Minkowski space remain so in a general curved space-time
GRAVITATIONAL FIELD SHIELDING AND SUPERNOVA EXPLOSIONS
International Nuclear Information System (INIS)
Zhang, T. X.
2010-01-01
A new mechanism for supernova explosions called gravitational field shielding is proposed, in accord with a five-dimensional fully covariant Kaluza-Klein theory with a scalar field that unifies the four-dimensional Einsteinian general relativity and Maxwellian electromagnetic theory. It is shown that a dense compact collapsing core of a star will suddenly turn off or completely shield its gravitational field when the core collapses to a critical density, which is inversely proportional to the square of mass of the core. As the core suddenly turns off its gravity, the extremely large pressure immediately stops the core collapse and pushes the mantle material of supernova moving outward. The work done by the pressure in the expansion can be the order of energy released in a supernova explosion. The gravity will resume and stop the core from a further expansion when the core density becomes less than the critical density. Therefore, the gravitational field shielding leads a supernova to impulsively explode and form a compact object such as a neutron star as a remnant. It works such that a compressed spring will shoot the oscillator out when the compressed force is suddenly removed.
Comparison of approximate gravitational lens equations and a proposal for an improved new one
International Nuclear Information System (INIS)
Bozza, V.
2008-01-01
Keeping the exact general relativistic treatment of light bending as a reference, we compare the accuracy of commonly used approximate lens equations. We conclude that the best approximate lens equation is the Ohanian lens equation, for which we present a new expression in terms of distances between observer, lens, and source planes. We also examine a realistic gravitational lensing case, showing that the precision of the Ohanian lens equation might be required for a reliable treatment of gravitational lensing and a correct extraction of the full information about gravitational physics.
Effect of Earth gravitational field on the detection of gravitational waves
International Nuclear Information System (INIS)
Denisov, V.I.; Eliseev, V.A.
1987-01-01
Results of laboratory detection of high-frequency gravitational waves from the view point of gravitation theories formulated on the basis of pseudoeuclidean space-time are calculated. Peculiarities due to different effects of the Earth gravitational field on the rates of gravitational and electromagnetic wave propagation in these theories are analysed. Experiments on check of predictions of the given class of theories are suggested
Optics of relativistic sources in a spherically symmetric gravitational field
International Nuclear Information System (INIS)
Campbell, G.A.
1975-01-01
The effects of spectral shifts and gravitational focussing on radiation from sources moving geodesically in the Schwarzschild gravitational field is analyzed using the general-relativistic equations for geodesic motion and for the propagation of radiation along null geodesics in the geometrical optics approximation. The exact solutions of the Schwarzschild geodesic equations are briefly discussed for the null and time-like cases, and the method of classifying the orbital types of motion based on the effective radial potential is presented. A method of finding the stability of these orbits using this technique is discussed. The geometrical optics approximation for the propagation of radiation is discussed, and the area-intensity law for the Schwarzschild field is derived. The particularly interesting region near R = 3m is investigated by means of expansions of the exact equations. Numerical techniques for calculating radiation patterns from the propagation equations are discussed, including techniques for obtaining the time variation along geodesics and differences in propagation time along different null geodesics. Finally, the implications of these calculations for the apparent contradiction in energy requirements set by Joseph Weber's observations of galactic gravitational radiation and by astronomical observation are discussed. (Diss. Abstr. Int., B)
Casimir apparatuses in a weak gravitational field
DEFF Research Database (Denmark)
Bimonte, Giuseppe; Calloni, Enrico; Esposito, Giampiero
2009-01-01
We review and assess a part of the recent work on Casimir apparatuses in the weak gravitational field of the Earth. For a free, real massless scalar field subject to Dirichlet or Neumann boundary conditions on the parallel plates, the resulting regularized and renormalized energy-momentum tensor...... is covariantly conserved, while the trace anomaly vanishes if the massless field is conformally coupled to gravity. Conformal coupling also ensures a finite Casimir energy and finite values of the pressure upon parallel plates. These results have been extended to an electromagnetic field subject to perfect...... conductor (hence idealized) boundary conditions on parallel plates, by various authors. The regularized and renormalized energy-momentum tensor has beene valuated up to second order in the gravity acceleration. In both the scalar and the electromagnetic case, studied to first order in the gravity...
Reconstructing the gravitational field of the local Universe
Desmond, Harry; Ferreira, Pedro G.; Lavaux, Guilhem; Jasche, Jens
2018-03-01
Tests of gravity at the galaxy scale are in their infancy. As a first step to systematically uncovering the gravitational significance of galaxies, we map three fundamental gravitational variables - the Newtonian potential, acceleration and curvature - over the galaxy environments of the local Universe to a distance of approximately 200 Mpc. Our method combines the contributions from galaxies in an all-sky redshift survey, haloes from an N-body simulation hosting low-luminosity objects, and linear and quasi-linear modes of the density field. We use the ranges of these variables to determine the extent to which galaxies expand the scope of generic tests of gravity and are capable of constraining specific classes of model for which they have special significance. Finally, we investigate the improvements afforded by upcoming galaxy surveys.
Stationary two-variable gravitational vortex fields
International Nuclear Information System (INIS)
Koppel, A.
1974-01-01
Some properties of stationary two-variable solutions of the Einstein equations were studied on the basis of rigorous analysis of the nonrelativistic limit of the relativistic gravitation theory. For this case a particular method was developed of determining so-called vortex gravitational fields described by vortex solutions, which in the nonrelativistic limit transform from → infinity to the nonnewtonian type solutions. The main formulae for such fields are derived and a scheme for their calculation is presented. It is shown that under certain conditions the exact stationary solutions of the Papapetrou type for vacuum relativistic equations are vortical. From this fact, first, the presence of particular exact vortical solutions for the Einstein equations is proved, and secondly, a new possibility of a physical interpretation is proposed for the Papapetrou solutions. It is also shown that the nonrelativistic limit of this class of solutions strongly depends on the structure of solution parameters (under certain conditions these solutions may also have the Newtonian limit). 'Multipole' and 'one-variable' partial solutions of the Papapetrou class solution are derived as particular examples of vortical solutions. It is shown that for a specific parameter structure the known NUT solution is also vortical, since it belongs to the Papapetrou class [ru
International Nuclear Information System (INIS)
Manoff, S.
1979-07-01
By utilization of the method of Lagrangians with covariant derivatives (MLCD) the different energy-momentum tensors (canonical, generalized canonical, symmetrical) and the relations between them are considered. On this basis, Einstein's theory of gravitation is studied as a field theory with a Lagrangian density of the type Lsub(g)=√-g.Lsub(g)(gsub(ij),Rsub(A)), (Rsub(A)=Rsub(ijkl)). It is shown that the energy-momentum tensors of the gravitational field can be defined for this theory. The symmetrical energy-momentum tensor of the gravitational field sub(gs)Tsub(k)sup(i), which in the general case is not a local conserved quantity (sub(gs)Tsub(k)sup(i)sub(;i) unequal 0) (in contrast to the material fields satisfying condition sub(Ms)Tsub(k)sup(i)sub(;i) = 0), is equal to zero for the gravitational field in vacuum (cosmological constant Λ = 0). Equations of the gravitational field of a new type are suggested, leading to equations of motion (sub(Ms)Tsub(k)sup(i) + sub(gs)Tsub(k)sup(i))sub(;i) = 0. The equations corresponding to the Lagrangian density Lsub(g)=(√-g/kappasub(o)) (R - lambda approximately), lambda approximately = const., are considered. The equations of Einstein Rsub(ij) = 0 are obtained in the case of gravitational field in vacuum. Some particular cases are examined as an illustration to material fields and the corresponding gravitational equations. (author)
Large Field Inflation and Gravitational Entropy
DEFF Research Database (Denmark)
Kaloper, Nemanja; Kleban, Matthew; Lawrence, Albion
2016-01-01
species will lead to a violation of the covariant entropy bound at large $N$. If so, requiring the validity of the covariant entropy bound could limit the number of light species and their couplings, which in turn could severely constrain axion-driven inflation. Here we show that there is no such problem...... entropy of de Sitter or near-de Sitter backgrounds at leading order. Working in detail with $N$ scalar fields in de Sitter space, renormalized to one loop order, we show that the gravitational entropy automatically obeys the covariant entropy bound. Furthermore, while the axion decay constant is a strong...... in this light, and show that they are perfectly consistent with the covariant entropy bound. Thus, while quantum gravity might yet spoil large field inflation, holographic considerations in the semiclassical theory do not obstruct it....
Gravitational Goldstone fields from affine gauge theory
Tresguerres, Romualdo; Mielke, Eckehard W.
2000-08-01
In order to facilitate the application of standard renormalization techniques, gravitation should be described, in the pure connection formalism, as a Yang-Mills theory of a certain spacetime group, say the Poincaré or the affine group. This embodies the translational as well as the linear connection. However, the coframe is not the standard Yang-Mills-type gauge field of the translations, since it lacks the inhomogeneous gradient term in the gauge transformations. By explicitly restoring this ``hidden'' piece within the framework of nonlinear realizations, the usual geometrical interpretation of the dynamical theory becomes possible, and in addition one can avoid the metric or coframe degeneracy which would otherwise interfere with the integrations within the path integral. We claim that nonlinear realizations provide the general mathematical scheme for the foundation of gauge theories of spacetime symmetries. When applied to construct the Yang-Mills theory of the affine group, tetrads become identified with nonlinear translational connections; the anholonomic metric no longer constitutes an independent gravitational potential, since its degrees of freedom reveal a correspondence to eliminateable Goldstone bosons. This may be an important advantage for quantization.
On the relativistic particle dynamics in external gravitational fields
International Nuclear Information System (INIS)
Kuz'menkov, L.S.; Naumov, N.D.
1977-01-01
On the base of the Riemann metrics of an event space, leading to the Newton mechanics at nonrelativistic velocities and not obligatory weak gravitational fields relativistic particle dynamics in external gravitation fields has been considered. Found are trajectories, motion laws and light ray equations for the homogeneous and Newton fields
Symmetries in tetrad theories. [of gravitational fields and general relativity
Chinea, F. J.
1988-01-01
The isometry conditions for gravitational fields are given directly at the tetrad level, rather than in terms of the metric. As an illustration, an analysis of the curvature collineations and Killing fields for a twisting type-N vacuum gravitational field is made.
Radiation tails of the scalar wave equation in a weak gravitational field
International Nuclear Information System (INIS)
Mankin, R.; Piir, I.
1974-01-01
A class of solutions of the linearized Einstein equations is found making use of the Newman-Penrose spin coefficient formalism. These solutions describe a weak retarded gravitational field with an arbitrary multipole structure. The study of the radial propagation of the scalar waves in this gravitational field shows that in the first approximation the tails of the scalar outgoing radiation appear either in the presence of a gravitational mass or in the case of a nonzero linear momentum of the gravitational source. The quadrupole moment and the higher multipole moments of the gravitational field as well as the constant dipole moment and the angular moment of the source do not contribute to the tail
Theory of gravitational-inertial field of universe. 1
International Nuclear Information System (INIS)
Davtyan, O.K.
1978-01-01
A generalization of the real world tensor by the introduction of a inertial field tensor is proposed. On the basis of variational equations a system of more general covariant equations of the gravitational-inertial field is obtained. In the Einstein approximation these equations reduce to the field equations of Einstein. The solution of fundamental problems in the general theory of relativity by means of the new equations gives the same results as the solution by means of Einstein's equations. However, application of these equations to the cosmologic problem gives a result different from that obtained by Friedmann's theory. In particular, the solution gives the Hubble law as the law of motion of a free body in the inertial field - in contrast to Galileo-Newton's law. (author)
The Rainich problem for coupled gravitational and scalar meson fields
International Nuclear Information System (INIS)
Hyde, J.M.
1975-01-01
The equations of the coupled gravitational and scalar meson fields in general relativity are considered. It is shown that the wave equation for the scalar meson field which is usually specified explicitly in addition to the Einstein field equations is implied by Einstein's equations. Using this result it is then shown how the scalar field may be eliminated explicitly from the field equations, thus solving the Rainich problem for the coupled gravitational and scalar meson fields. (author) [fr
To a physical interpretation of a weak gravitational field in GRT
International Nuclear Information System (INIS)
Pavlov, N.V.
1981-01-01
The problem of separation of Newton components of weak vacuum gravitational fields is discussed. Chronometric- invariant (CI) characteristics of space-time and the corresponding Newton values are compared in the fixed systems of reference. Attention is paid to the following facts. ''Weak'' sources of weak gravitational fields do not interact gravitationally. If the CI characteristics of vacuum space- time permit series expansion in 1/c powers then the coefficients at odd 1/c powers are connected with the presence of non-gravitational material fields inside the sources. Masses producing gravitational field may not be the sources of gravitational waves in the form of which this field manifests itself. Perspectives of detecting laboratory gravitational waves are discussed: the simplest metrics of plane wave is considered in the quasi-inertial reference system; the flowsheet of the generator of this wave is suggested; relativistic oscillation of a test massive particle is calculated in the postnewtonian approximation. The numerical evaluations show that attempts of mechanical detection of laboratory gravitational waves are hopeless [ru
A homogeneous static gravitational field and the principle of equivalence
International Nuclear Information System (INIS)
Chernikov, N.A.
2001-01-01
In this paper any gravitational field (both in the Einsteinian case and in the Newtonian case) is described by the connection, called gravitational. A homogeneous static gravitational field is considered in the four-dimensional area z>0 of a space-time with Cartesian coordinates x, y, z, and t. Such field can be created by masses, disposed outside the area z>0 with a density distribution independent of x, y, and t. Remarkably, in the four-dimensional area z>0, together with the primitive background connection, the primitive gravitational connection has been derived. In concordance with the Principle of Equivalence all components of such gravitational connection are equal to zero in the uniformly accelerated frame system, in which the gravitational force of attraction is balanced by the inertial force. However, all components of such background connection are equal to zero in the resting frame system, but not in the accelerated frame system
Quasiclassical approximation for ultralocal scalar fields
International Nuclear Information System (INIS)
Francisco, G.
1984-01-01
It is shown how to obtain the quasiclassical evolution of a class of field theories called ultralocal fields. Coherent states that follow the 'classical' orbit as defined by Klauder's weak corespondence principle and restricted action principle is explicitly shown to approximate the quantum evolutions as (h/2π) → o. (Author) [pt
Gravitational consequences of modern field theories
Horowitz, Gary T.
1989-01-01
Some gravitational consequences of certain extensions of Einstein's general theory of relativity are discussed. These theories are not alternative theories of gravity in the usual sense. It is assumed that general relativity is the appropriate description of all gravitational phenomena which were observed to date.
Stochastic quantization and mean field approximation
International Nuclear Information System (INIS)
Jengo, R.; Parga, N.
1983-09-01
In the context of the stochastic quantization we propose factorized approximate solutions for the Fokker-Planck equation for the XY and Zsub(N) spin systems in D dimensions. The resulting differential equation for a factor can be solved and it is found to give in the limit of t→infinity the mean field or, in the more general case, the Bethe-Peierls approximation. (author)
Misner, Charles W; Wheeler, John Archibald
2017-01-01
First published in 1973, Gravitation is a landmark graduate-level textbook that presents Einstein’s general theory of relativity and offers a rigorous, full-year course on the physics of gravitation. Upon publication, Science called it “a pedagogic masterpiece,” and it has since become a classic, considered essential reading for every serious student and researcher in the field of relativity. This authoritative text has shaped the research of generations of physicists and astronomers, and the book continues to influence the way experts think about the subject. With an emphasis on geometric interpretation, this masterful and comprehensive book introduces the theory of relativity; describes physical applications, from stars to black holes and gravitational waves; and portrays the field’s frontiers. The book also offers a unique, alternating, two-track pathway through the subject. Material focusing on basic physical ideas is designated as Track 1 and formulates an appropriate one-semester graduate-level...
Static equilibria of the interstellar gas in the presence of magnetic and gravitational fields
International Nuclear Information System (INIS)
Mouschovias, T.C.
1975-01-01
No exact self-consistent equilibrium calculations exist for (any model of) the system of the interstellar gas and the frozen-in magnetic field. On a large scale (approximately 1 kpc) this system is affected by the vertical galactic gravitational field, while on a small scale (approximately 1 pc) the self-gravitation of the gas comes into play and is responsible for the collapse of some clouds to form stars. Accessible equilibrium states are determined for the gas--field system on both of these scales. (U.S.)
Mean-field approximation minimizes relative entropy
International Nuclear Information System (INIS)
Bilbro, G.L.; Snyder, W.E.; Mann, R.C.
1991-01-01
The authors derive the mean-field approximation from the information-theoretic principle of minimum relative entropy instead of by minimizing Peierls's inequality for the Weiss free energy of statistical physics theory. They show that information theory leads to the statistical mechanics procedure. As an example, they consider a problem in binary image restoration. They find that mean-field annealing compares favorably with the stochastic approach
Interaction of gravitational waves with magnetic and electric fields
International Nuclear Information System (INIS)
Barrabes, C.; Hogan, P. A.
2010-01-01
The existence of large-scale magnetic fields in the universe has led to the observation that if gravitational waves propagating in a cosmological environment encounter even a small magnetic field then electromagnetic radiation is produced. To study this phenomenon in more detail we take it out of the cosmological context and at the same time simplify the gravitational radiation to impulsive waves. Specifically, to illustrate our findings, we describe the following three physical situations: (1) a cylindrical impulsive gravitational wave propagating into a universe with a magnetic field, (2) an axially symmetric impulsive gravitational wave propagating into a universe with an electric field and (3) a 'spherical' impulsive gravitational wave propagating into a universe with a small magnetic field. In cases (1) and (3) electromagnetic radiation is produced behind the gravitational wave. In case (2) no electromagnetic radiation appears after the wave unless a current is established behind the wave breaking the Maxwell vacuum. In all three cases the presence of the magnetic or electric fields results in a modification of the amplitude of the incoming gravitational wave which is explicitly calculated using the Einstein-Maxwell vacuum field equations.
Gravitational time dilation and length contraction in fields exterior to ...
African Journals Online (AJOL)
Here, we use our new metric tensor exterior to a massiv3e oblate spheroid to study the gravitational phenomena of time dilation and length contraction. It turns out most profoundly that, the above phenomena hold good in the gravitational field exterior to an oblate spheroid. We then use the oblate spheroidal Earth to ...
Influence of tides on the gravitational field of Jupiter
International Nuclear Information System (INIS)
Gavrilov, S.V.; Zharkov, V.N.; Leont'ev, V.V.
1975-01-01
The influence of tides on the gravitational field of giant planets is considered quantitatively. The ''gravitational noise'' due to tides can affect the determination of J 8 and J 10 for Jupiter. Tidal sounding of the giant planets is suggested. (author)
Theory of gravitational-inertial field of universe. 2
International Nuclear Information System (INIS)
Davtyan, O.K.
1978-01-01
Application of the equations of the gravitational-inertial field to the problem of free motion in the inertial field (to the cosmologic problem) leads to results according to which (1) all Galaxies in the Universe 'disperse' from each other according to Hubble's law, (2) the 'dispersion' of bodies represents a free motion in the inertial field and Hubble's law represents a law of motion of free body in the inertial field, (3) for arbitrary mean distribution densities of space masses different from zero the space is Lobachevskian. All critical systems (with Schwarzschild radius) are specific because they exist in maximal-inertial and gravitational potentials. The Universe represents a critical system, it exists under the Schwarzschild radius. In high-potential inertial and gravitational fields the material mass in a static state or in motion with deceleration is subject to an inertial and gravitational 'annihilation'. At the maximal value of inertial and gravitational potentials (= c 2 ) the material mass is being completely 'evaporated' transforming into radiation mass. The latter is being concentrated in the 'horizon' of the critical system. All critical systems-black holes-represent geon systems, i.e. local formations of gravitational-electromagnetic radiations, held together by their own gravitational and inertial fields. The Universe, being a critical system, is 'wrapped' in a geon crown. (author)
Photonic chiral current and its anomaly in a gravitational field
International Nuclear Information System (INIS)
Dolgov, A.D.; Khriplovich, I.B.; Vajnshtejn, A.I.; Zakharov, V.I.
1988-01-01
The notion of chirality for electromagnetic field which is conserved in interactions with gravitons is formulated. The correponding chiral current is the one-particle-state analogue of the Pauli-Lubansky vector. The anomaly of this current in an external gravitational field is found. The results obtained are used for the calculation of the electromagnetic radiative correction to the fermionic chiral anomaly in a gravitational field
Scalar field vacuum expectation value induced by gravitational wave background
Jones, Preston; McDougall, Patrick; Ragsdale, Michael; Singleton, Douglas
2018-06-01
We show that a massless scalar field in a gravitational wave background can develop a non-zero vacuum expectation value. We draw comparisons to the generation of a non-zero vacuum expectation value for a scalar field in the Higgs mechanism and with the dynamical Casimir vacuum. We propose that this vacuum expectation value, generated by a gravitational wave, can be connected with particle production from gravitational waves and may have consequences for the early Universe where scalar fields are thought to play an important role.
Gravitational waves from self-ordering scalar fields
International Nuclear Information System (INIS)
Fenu, Elisa; Durrer, Ruth; Figueroa, Daniel G.; García-Bellido, Juan
2009-01-01
Gravitational waves were copiously produced in the early Universe whenever the processes taking place were sufficiently violent. The spectra of several of these gravitational wave backgrounds on subhorizon scales have been extensively studied in the literature. In this paper we analyze the shape and amplitude of the gravitational wave spectrum on scales which are superhorizon at the time of production. Such gravitational waves are expected from the self ordering of randomly oriented scalar fields which can be present during a thermal phase transition or during preheating after hybrid inflation. We find that, if the gravitational wave source acts only during a small fraction of the Hubble time, the gravitational wave spectrum at frequencies lower than the expansion rate at the time of production behaves as Ω GW (f) ∝ f 3 with an amplitude much too small to be observable by gravitational wave observatories like LIGO, LISA or BBO. On the other hand, if the source is active for a much longer time, until a given mode which is initially superhorizon (kη * 1, we find that the gravitational wave energy density is frequency independent, i.e. scale invariant. Moreover, its amplitude for a GUT scale scenario turns out to be within the range and sensitivity of BBO and marginally detectable by LIGO and LISA. This new gravitational wave background can compete with the one generated during inflation, and distinguishing both may require extra information
High energy approximations in quantum field theory
International Nuclear Information System (INIS)
Orzalesi, C.A.
1975-01-01
New theoretical methods in hadron physics based on a high-energy perturbation theory are discussed. The approximated solutions to quantum field theory obtained by this method appear to be sufficiently simple and rich in structure to encourage hadron dynamics studies. Operator eikonal form for field - theoretic Green's functions is derived and discussion is held on how the eikonal perturbation theory is to be renormalized. This method is extended to massive quantum electrodynamics of scalar charged bosons. Possible developments and applications of this theory are given [pt
Space-time algebra for the generalization of gravitational field ...
Indian Academy of Sciences (India)
the analogy in formulation between massive gravitational theory and electromagnetism has ... as the dual mass, gravitomagnetic charge (monopole) or magnetic mass [7]. ... cation in the definitions of the GEM fields in the following manner:.
Backwards time travel induced by combined magnetic and gravitational fields
International Nuclear Information System (INIS)
Novello, M.; Svaiter, N.F.; Guimaraes, M.E.X.
1990-01-01
We analyse the behaviour of an elementary microscopic particle submitted to combined Magnetic and Gravitational Fields on Goedel's Universe. The exam is made in a local Gaussian system of coordinates. (author)
Hamiltonian structure of gravitational field theory
International Nuclear Information System (INIS)
Rayski, J.
1992-01-01
Hamiltonian generalizations of Einstein's theory of gravitation introducing a laminar structure of spacetime are discussed. The concepts of general relativity and of quasi-inertial coordinate systems are extended beyond their traditional scope. Not only the metric, but also the coordinate system, if quantized, undergoes quantum fluctuations
Chiral symmetry breaking in d=3 NJL model in external gravitational and magnetic fields
Gitman, D. M.; Odintsov, S. D.; Shil'nov, Yu. I.
1996-01-01
The phase structure of $d=3$ Nambu-Jona-Lasinio model in curved spacetime with magnetic field is investigated in the leading order of the $1/N$-expansion and in linear curvature approximation (an external magnetic field is treated exactly). The possibility of the chiral symmetry breaking under the combined action of the external gravitational and magnetic fields is shown explicitly. At some circumstances the chiral symmetry may be restored due to the compensation of the magnetic field by the ...
On tidal phenomena in a strong gravitational field
International Nuclear Information System (INIS)
Mashoon, B.
1975-01-01
A simple framework based on the concept of quadrupole tidal potential is presented for the calculation of tidal deformation of an extended test body in a gravitational field. This method is used to study the behavior of an initially faraway nonrotating spherical body that moves close to a Schwarzschild or an extreme Kerr black hole. In general, an extended body moving in an external gravitational field emits gravitational radiation due to its center of mass motion, internal tidal deformation, and the coupling between the internal and center of mass motions. Estimates are given of the amount of tidal radiation emitted by the body in the gravitational fields considered. The results reported in this paper are expected to be of importance in the dynamical evolution of a dense stellar system with a massive black hole in its center
Christodoulou's nonlinear gravitational-wave memory: Evaluation in the quadrupole approximation
International Nuclear Information System (INIS)
Wiseman, A.G.; Will, C.M.
1991-01-01
Christodoulou has found a new nonlinear contribution to the net change in the wave form caused by the passage of a burst of gravity waves (''memory of the burst''). We argue that this effect is nothing but the gravitational wave form generated by the stress energy in the burst itself. We derive an explicit formula for this effect in terms of a retarded-time integral of products of time derivatives of wave-zone gravitational wave forms. The resulting effect corresponds in size to a correction 2.5 post-Newtonian orders [O((Gm/rc 2 ) 5/2 ) =(O(v/c) 5 )] beyond the quadrupole approximation, and is therefore negligible for all but the most relativistic of systems. For gravitational bremsstrahlung from two stars moving at 300 km s -1 , the effect is much less than 10 -10 of the usual linear quadrupole wave form, while for a system of coalescing binary compact objects we estimate that the effect is of order 10 -1 for two neutron stars
Tolman temperature gradients in a gravitational field
Santiago, Jessica; Visser, Matt
2018-01-01
Tolman's relation for the temperature gradient in an equilibrium self-gravitating general relativistic fluid is broadly accepted within the general relativity community. However, the concept of temperature gradients in thermal equilibrium continues to cause confusion in other branches of physics, since it contradicts naive versions of the laws of classical thermodynamics. In this paper we discuss the crucial role of the universality of free fall, and how thermodynamics emphasises the great di...
Excitations of the gravitational field-I
International Nuclear Information System (INIS)
Novello, M.
1978-01-01
The geometry of spacetime is treated as a stochastic variable. Fluctuations induce a deviation from Einstein's system of equations for the average geometry. A model is presented to deal with the fluctuations by expanding the perturbations on a series in the average geometry. As a consequence, some qualitatively new features appear. The influences on galaxy formation and on the propagation of gravitational waves are analyzed [pt
Relativistic gravitation from massless systems of scalar and vector fields
International Nuclear Information System (INIS)
Fonseca Teixeira, A.F. da.
1979-01-01
Under the laws of Einstein's gravitational theory, a massless system consisting of the diffuse sources of two fields is discussed. One fields is scalar, of long range, the other is a vector field of short range. A proportionality between the sources is assumed. Both fields are minimally coupled to gravitation, and contribute positive definitely to the time component of the energy momentum tensor. A class of static, spherically symmetric solutions of the equations is obtained, in the weak field limit. The solutions are regular everywhere, stable, and can represent large or small physical systems. The gravitational field presents a Schwarzschild-type asymptotic behavior. The dependence of the energy on the various parameters characterizing the system is discussed in some detail. (Author) [pt
Gravitational radiation resistance, radiation damping and field fluctuations
International Nuclear Information System (INIS)
Schaefer, G.
1981-01-01
Application is made of two different generalised fluctuation-dissipation theorems and their derivations to the calculation of the gravitational quadrupole radiation resistance using the radiation-reaction force given by Misner, Thorne and Wheeler (Gravitation (San Francisco: Freeman) ch 36,37 (1973)) and the usual tidal force on one hand and the tidal force and the free gravitational radiation field on the other hand. The quantum-mechanical version (including thermal generalisations) of the well known classical quadrupole radiation damping formula is obtained as a function of the radiation resistance. (author)
Computational resources to filter gravitational wave data with P-approximant templates
International Nuclear Information System (INIS)
Porter, Edward K
2002-01-01
The prior knowledge of the gravitational waveform from compact binary systems makes matched filtering an attractive detection strategy. This detection method involves the filtering of the detector output with a set of theoretical waveforms or templates. One of the most important factors in this strategy is knowing how many templates are needed in order to reduce the loss of possible signals. In this study, we calculate the number of templates and computational power needed for a one-step search for gravitational waves from inspiralling binary systems. We build on previous works by first expanding the post-Newtonian waveforms to 2.5-PN order and second, for the first time, calculating the number of templates needed when using P-approximant waveforms. The analysis is carried out for the four main first-generation interferometers, LIGO, GEO600, VIRGO and TAMA. As well as template number, we also calculate the computational cost of generating banks of templates for filtering GW data. We carry out the calculations for two initial conditions. In the first case we assume a minimum individual mass of 1 M o-dot and in the second, we assume a minimum individual mass of 5 M o-dot . We find that, in general, we need more P-approximant templates to carry out a search than if we use standard PN templates. This increase varies according to the order of PN-approximation, but can be as high as a factor of 3 and is explained by the smaller span of the P-approximant templates as we go to higher masses. The promising outcome is that for 2-PN templates, the increase is small and is outweighed by the known robustness of the 2-PN P-approximant templates
Magnetic Field in the Gravitationally Stratified Coronal Loops B. N. ...
Indian Academy of Sciences (India)
field for the longest (L = 406 Mm) coronal loops. The magnetic fields Bstr and Babs also increase with the number density, if the loop length does not vary much. The increment in the magnetic field due to gravitational stratification is small at the lower number densities, however, it is large at the higher number densities.
Quantum gravitational optics in the field of a gravitomagnetic monopole
Energy Technology Data Exchange (ETDEWEB)
Ahmadi, N [Department of Physics, North Karegar Avenue, University of Tehran, P O Box 14395-547, Tehran (Iran, Islamic Republic of); Khoeini-Moghaddam, S [Department of Physics, Sharif University of Technology, P O Box 19365-9161, Tehran (Iran, Islamic Republic of); Nouri-Zonoz, M [Department of Physics, North Karegar Avenue, University of Tehran, P O Box 14395-547, Tehran (Iran, Islamic Republic of)
2007-05-15
Vacuum polarization in QED in a background gravitational field induces interactions which effectively modify the classical picture of light rays as the null geodesies of spacetime. After a short introduction on the main aspects of the quantum gravitational optics, as a nontrivial example, we study this effect in the background of NUT space characterizing the spacetime of a spherical mass endowed with a gravitomagnetic monopole charge, the so called NUT factor.
Gravitational interaction of massless higher-spin fields
Energy Technology Data Exchange (ETDEWEB)
Fradkin, E S; Vasiliev, M A
1987-04-30
We show that, despite a widespread belief, the gravitational interaction of massless higher-spin fields (s>2) does exist at least in the first nontrivial order. The principal novel feature of the gravitational higher-spin interaction is its non-analyticity in the cosmological constant. Our construction is based on an infinite-dimensional higher-spin superalgebra proposed previously that leads to an infinite system of all spins s>1.
Gravitational waves from self-ordering scalar fields
Fenu, Elisa; Durrer, Ruth; Garcia-Bellido, Juan
2009-01-01
Gravitational waves were copiously produced in the early Universe whenever the processes taking place were sufficiently violent. The spectra of several of these gravitational wave backgrounds on subhorizon scales have been extensively studied in the literature. In this paper we analyze the shape and amplitude of the gravitational wave spectrum on scales which are superhorizon at the time of production. Such gravitational waves are expected from the self ordering of randomly oriented scalar fields which can be present during a thermal phase transition or during preheating after hybrid inflation. We find that, if the gravitational wave source acts only during a small fraction of the Hubble time, the gravitational wave spectrum at frequencies lower than the expansion rate at the time of production behaves as $\\Omega_{\\rm GW}(f) \\propto f^3$ with an amplitude much too small to be observable by gravitational wave observatories like LIGO, LISA or BBO. On the other hand, if the source is active for a much longer tim...
Conformal coupling of gravitational wave field to curvature
International Nuclear Information System (INIS)
Grishchuk, L.P.; Yudin, V.
1980-01-01
Conformal properties of the equations for weak gravitational waves in a curved space--time are investigated. The basic equations are derived in the linear approximation from Einstein's equations. They represent, in fact, the equations for the second-rank tensor field h/sub alphabeta/, restricted by the auxiliary conditions h/sub α//sup β//sub ;/α =0, hequivalentγ/sub alphabeta/h/sup alphabeta/=0, and embedded into the background space--time with the metric tensor γ/sub alphabeta/. It is shown that the equations for h/sub alphabeta/ are not conformally invariant under the transformations gamma-circumflex/sub alphabeta/ =e/sup 2sigma/γ/sub alphabeta/ and h/sub alphabeta/ =e/sup sigma/h/sub alphabeta/, except for those metric rescalings which transform the Ricci scalar R of the original background space--time into e/sup -2sigma/R, where R is the Ricci scalar of the conformally related background space--time. The general form of the equations for h/sub alphabeta/ which are conformally invariant have been deduced. It is shown that these equations cannot be derived in the linear approximation from any tensor equations which generalize the Einstein equations
Gravitational Collapse of Massless Fields in an Expanding Universe
Directory of Open Access Journals (Sweden)
Yoo Chul-Moon
2018-01-01
Full Text Available Gravitational collapse of a massless scalar field with the periodic boundary condition in a cubic box is reported. This system can be regarded as a lattice universe model. The initial data is constructed for a Gaussian like profile of the scalar field taking the integrability condition associated with the periodic boundary condition into account. For a large initial amplitude, a black hole is formed after a certain period of time. While the scalar field spreads out in the whole region for a small initial amplitude. The difference of the late time expansion law of the lattice universe depending on the final fate of the gravitational collapse is discussed.
International Nuclear Information System (INIS)
Fennelly, A.J.
1978-01-01
Investigations of several problems of gravitation are discussed. The question of the existence of black holes is considered. While black holes like those in Einstein's theory may not exist in other gravity theories, trapped surfaces implying such black holes certainly do. The theories include those of Brans-Dicke, Lightman-Lee, Rosen, and Yang. A similar two-tensor theory of Yilmaz is investigated and found inconsistent and nonviable. The Newman-Penrose formalism for Riemannian geometries is adapted to general gravity theories and used to implement a search for twisting solutions of the gravity theories for empty and nonempty spaces. The method can be used to find the gravitational fields for all viable gravity theories. The rotating solutions are of particular importance for strong field interpretation of the Stanford/Marshall gyroscope experiment. Inhomogeneous cosmologies are examined in Einstein's theory as generalizations of homogeneous ones by raising the dimension of the invariance groups by one more parameter. The nine Bianchi classifications are extended to Rosen's theory of gravity for homogeneous cosmological models
Dynamical Mean Field Approximation Applied to Quantum Field Theory
Akerlund, Oscar; Georges, Antoine; Werner, Philipp
2013-12-04
We apply the Dynamical Mean Field (DMFT) approximation to the real, scalar phi^4 quantum field theory. By comparing to lattice Monte Carlo calculations, perturbation theory and standard mean field theory, we test the quality of the approximation in two, three, four and five dimensions. The quantities considered in these tests are the critical coupling for the transition to the ordered phase and the associated critical exponents nu and beta. We also map out the phase diagram in four dimensions. In two and three dimensions, DMFT incorrectly predicts a first order phase transition for all bare quartic couplings, which is problematic, because the second order nature of the phase transition of lattice phi^4-theory is crucial for taking the continuum limit. Nevertheless, by extrapolating the behaviour away from the phase transition, one can obtain critical couplings and critical exponents. They differ from those of mean field theory and are much closer to the correct values. In four dimensions the transition is sec...
The intergalactic Newtonian gravitational field and the shell theorem
Directory of Open Access Journals (Sweden)
Zaninetti L.
2012-01-01
Full Text Available The release of the 2MASS Redshift Survey (2MRS with its 44599 galaxies allows the deduction of their masses in nearly complete sample. A cubic box with side of 37 Mpc containing 2429 galaxies is extracted and the Newtonian gravitational field is evaluated both at the center of the box as well as in 101 x 101 x 101 grid points of the box. The obtained results are then discussed in the light of the shell theorem which states that inside of a sphere the gravitational field is zero.
Generalization of Einstein's gravitational field equations
International Nuclear Information System (INIS)
Moulin, Frederic
2017-01-01
The Riemann tensor is the cornerstone of general relativity, but as is well known it does not appear explicitly in Einstein's equation of gravitation. This suggests that the latter may not be the most general equation. We propose here for the first time, following a rigorous mathematical treatment based on the variational principle, that there exists a generalized 4-index gravitational field equation containing the Riemann curvature tensor linearly, and thus the Weyl tensor as well. We show that this equation, written in n dimensions, contains the energy-momentum tensor for matter and that of the gravitational field itself. This new 4-index equation remains completely within the framework of general relativity and emerges as a natural generalization of the familiar 2-index Einstein equation. Due to the presence of the Weyl tensor, we show that this equation contains much more information, which fully justifies the use of a fourth-order theory. (orig.)
Generalization of Einstein's gravitational field equations
Energy Technology Data Exchange (ETDEWEB)
Moulin, Frederic [Ecole Normale Superieure Paris-Saclay, Departement de Physique, Cachan (France)
2017-12-15
The Riemann tensor is the cornerstone of general relativity, but as is well known it does not appear explicitly in Einstein's equation of gravitation. This suggests that the latter may not be the most general equation. We propose here for the first time, following a rigorous mathematical treatment based on the variational principle, that there exists a generalized 4-index gravitational field equation containing the Riemann curvature tensor linearly, and thus the Weyl tensor as well. We show that this equation, written in n dimensions, contains the energy-momentum tensor for matter and that of the gravitational field itself. This new 4-index equation remains completely within the framework of general relativity and emerges as a natural generalization of the familiar 2-index Einstein equation. Due to the presence of the Weyl tensor, we show that this equation contains much more information, which fully justifies the use of a fourth-order theory. (orig.)
Hyperunified field theory and gravitational gauge-geometry duality
International Nuclear Information System (INIS)
Wu, Yue-Liang
2018-01-01
A hyperunified field theory is built in detail based on the postulates of gauge invariance and coordinate independence along with the conformal scaling symmetry. All elementary particles are merged into a single hyper-spinor field and all basic forces are unified into a fundamental interaction governed by the hyper-spin gauge symmetry SP(1, D h - 1). The dimension D h of hyper-spacetime is conjectured to have a physical origin in correlation with the hyper-spin charge of elementary particles. The hyper-gravifield fiber bundle structure of biframe hyper-spacetime appears naturally with the globally flat Minkowski hyper-spacetime as a base spacetime and the locally flat hyper-gravifield spacetime as a fiber that is viewed as a dynamically emerged hyper-spacetime characterized by a non-commutative geometry. The gravitational origin of gauge symmetry is revealed with the hyper-gravifield that plays an essential role as a Goldstone-like field. The gauge-gravity and gravity-geometry correspondences bring about the gravitational gauge-geometry duality. The basic properties of hyperunified field theory and the issue on the fundamental scale are analyzed within the framework of quantum field theory, which allows us to describe the laws of nature in deriving the gauge gravitational equation with the conserved current and the geometric gravitational equations of Einstein-like type and beyond. (orig.)
Hyperunified field theory and gravitational gauge-geometry duality
Energy Technology Data Exchange (ETDEWEB)
Wu, Yue-Liang [International Centre for Theoretical Physics Asia-Pacific (ICTP-AP), Beijing (China); Chinese Academy of Sciences, Institute of Theoretical Physics, Beijing (China); University of Chinese Academy of Sciences (UCAS), Beijing (China)
2018-01-15
A hyperunified field theory is built in detail based on the postulates of gauge invariance and coordinate independence along with the conformal scaling symmetry. All elementary particles are merged into a single hyper-spinor field and all basic forces are unified into a fundamental interaction governed by the hyper-spin gauge symmetry SP(1, D{sub h} - 1). The dimension D{sub h} of hyper-spacetime is conjectured to have a physical origin in correlation with the hyper-spin charge of elementary particles. The hyper-gravifield fiber bundle structure of biframe hyper-spacetime appears naturally with the globally flat Minkowski hyper-spacetime as a base spacetime and the locally flat hyper-gravifield spacetime as a fiber that is viewed as a dynamically emerged hyper-spacetime characterized by a non-commutative geometry. The gravitational origin of gauge symmetry is revealed with the hyper-gravifield that plays an essential role as a Goldstone-like field. The gauge-gravity and gravity-geometry correspondences bring about the gravitational gauge-geometry duality. The basic properties of hyperunified field theory and the issue on the fundamental scale are analyzed within the framework of quantum field theory, which allows us to describe the laws of nature in deriving the gauge gravitational equation with the conserved current and the geometric gravitational equations of Einstein-like type and beyond. (orig.)
Hyperunified field theory and gravitational gauge-geometry duality
Wu, Yue-Liang
2018-01-01
A hyperunified field theory is built in detail based on the postulates of gauge invariance and coordinate independence along with the conformal scaling symmetry. All elementary particles are merged into a single hyper-spinor field and all basic forces are unified into a fundamental interaction governed by the hyper-spin gauge symmetry SP(1, D_h-1). The dimension D_h of hyper-spacetime is conjectured to have a physical origin in correlation with the hyper-spin charge of elementary particles. The hyper-gravifield fiber bundle structure of biframe hyper-spacetime appears naturally with the globally flat Minkowski hyper-spacetime as a base spacetime and the locally flat hyper-gravifield spacetime as a fiber that is viewed as a dynamically emerged hyper-spacetime characterized by a non-commutative geometry. The gravitational origin of gauge symmetry is revealed with the hyper-gravifield that plays an essential role as a Goldstone-like field. The gauge-gravity and gravity-geometry correspondences bring about the gravitational gauge-geometry duality. The basic properties of hyperunified field theory and the issue on the fundamental scale are analyzed within the framework of quantum field theory, which allows us to describe the laws of nature in deriving the gauge gravitational equation with the conserved current and the geometric gravitational equations of Einstein-like type and beyond.
Scalar, electromagnetic, and gravitational fields interaction: Particlelike solutions
International Nuclear Information System (INIS)
Bronnikov, K.A.; Melnikov, V.N.; Shikin, G.N.; Staniukovich, K.P.
1979-01-01
Particlelike static spherically symmetric solutions to massless scalar and electromagnetic field equations combined with gravitational field equations are considered. Two criteria for particlelike solutions are formulated: the strong one (solutions are required to be singularity free) and the weak one (singularities are admitted but the total energy and material field energy should be finite). Exact solutions for the following physical systems are considered with their own gravitational field: (i) linear scalar (minimally coupled or conformal) plus electromagnetic field; (ii) the same fields with a bare mass source in the form of charged incoherent matter distributions; (iii) nonlinear electromagnetic field with an abritrary dependence on the invariant F/sub alphabeta/F/sup alphabeta/; and (iv) directly interacting scalar and electromagnetic fields. Case (i) solutions are not particlelike (except those with horizons, in which static regions formally satisfy the weak criterion). For systems (ii), examples of nonsingular models are constructed, in particular, a model for a particle--antiparticle pair of a Wheeler-handle type, without scalar field and explict electric charges. Besides, a number of limitations upon nonsingular model parameters is indicated. Systems (iii) are proved to violate the strong criterion for any type of nonlinearity but can satisfy the weak criterion (e.g., the Born--Infeld nonlinearity). For systems (iv) some particlelike solutions by the weak criterion are constructed and a regularizing role of gravitation is demonstrated. Finally, an example of a field system satisfying the strong criterion is given
Gravitational Field of Ultrarelativistic Objects with Angular Momentum
International Nuclear Information System (INIS)
Fursaev, Dmitri V
2006-01-01
A brief review of recently found gyraton metrics which describe the gravitational field of objects having an angular momentum and moving with the velocity of light is given. The gyraton metrics belong to a class of exact plane wave solutions of four and higher dimensional Einstein equations in vacuum or in the presence of a negative cosmological constant
Quantum States of Neutron in Earth's Gravitational Field
Indian Academy of Sciences (India)
Keywords. Neutron; gravitational field; Bohr-Sommerfeld-Wilson quantization; projectile motion; elastic collision; Olympiad. Author Affiliations. Vijay A Singh1 Praveen Pathak1 K Krishna Chaitanya2. Homi Bhabha Centre For Science Education (TIFR), V N Purav Marg, Mankhurd Mumbai 400088, India. Physics Department ...
Gravitational field of spherical domain wall in higher dimension
Indian Academy of Sciences (India)
and examine whether bound orbits are possible or not. This study will be of relevance to the structure formation because it gives some idea about the behaviour of the particles. (created at the early universe) in the gravitational field of the domain walls. Our paper is organized as follows: The basic equations are constructed ...
Gravitational Field of Ultrarelativistic Objects with Angular Momentum
Energy Technology Data Exchange (ETDEWEB)
Fursaev, Dmitri V [Dubna International University and Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, 141 980, Dubna, Moscow Region (Russian Federation)
2006-03-01
A brief review of recently found gyraton metrics which describe the gravitational field of objects having an angular momentum and moving with the velocity of light is given. The gyraton metrics belong to a class of exact plane wave solutions of four and higher dimensional Einstein equations in vacuum or in the presence of a negative cosmological constant.
Relativistic motion of spinning particles in a gravitational field
International Nuclear Information System (INIS)
Chicone, C.; Mashhoon, B.; Punsly, B.
2005-01-01
The relative motion of a classical relativistic spinning test particle is studied with respect to a nearby free test particle in the gravitational field of a rotating source. The effects of the spin-curvature coupling force are elucidated and the implications of the results for the motion of rotating plasma clumps in astrophysical jets are discussed
Space-time algebra for the generalization of gravitational field
Indian Academy of Sciences (India)
The Maxwell–Proca-like field equations of gravitolectromagnetism are formulated using space-time algebra (STA). The gravitational wave equation with massive gravitons and gravitomagnetic monopoles has been derived in terms of this algebra. Using space-time algebra, the most generalized form of ...
Gravitating SO (3,1) gauge field
International Nuclear Information System (INIS)
Aragone, C.; Restuccia, A.
1978-01-01
In this article, we postulate SO (3,1) as a local symmetry of any relativistic theory. This is equivalent to assuming the existence of a gauge field associated with this noncompact group. This SO (3,1) gauge field is the spinorial affinity which usually appears when we deal with weighting spinors, which, as is well known, cannot be coupled to the metric tensor field. Furthermore, according to the integral approach to gauge fields proposed by Yang, it is also recognized that in order to obtain models of gravity we have to introduce ordinary affinities as the gauge field associated with GL (4) (the local symmetry determined by the parallel transport). Thus if we assume both GL (4) and SO (3,1) as local independent symmetries we are led to analyze the dynamical gauge system constituted by the Einstein field interacting with the SO (3,1) Weyl--Yang gauge field. We think this system is a possible model of strong gravity. Once we give the first-order action for this Einstein--Weyl--Yang system we study whether the SO (3,1) gauge field could have a tetrad associated with it. It is also shown that both fields propagate along a unique characteristic cone. Algebraic and differential constraints are solved when the system evolves along a null coordinate. The unconstrained expression for the action of the system is found working in the Bondi gauge. That allows us to exhibit an explicit expression of the dynamical generator of the system. Its signature turns out to be nondefinite, due to the nondefinite contribution of the Weyl--Yang field, which has the typical spinorial behavior. A conjecture is made that such an unpleasant feature could be overcome in the quantized version of this model
Quantum field theory in a gravitational shock wave background
International Nuclear Information System (INIS)
Klimcik, C.
1988-01-01
A scalar massless non-interacting quantum field theory on an arbitrary gravitational shock wave background is exactly solved. S-matrix and expectation values of the energy-momentum tensor are computed for an arbitrarily polarized sourceless gravitational shock wave and for a homogeneous infinite planar shell shock wave, all performed in any number of space-time dimensions. Expectation values of the energy density in scattering states exhibit a singularity which lies exactly at the location of the curvature singularity found in the infinite shell collision. (orig.)
On quantum field theory in gravitational background
International Nuclear Information System (INIS)
Haag, R.; Narnhofer, H.; Stein, U.
1984-02-01
We discuss Quantum Fields on Riemannian space-time. A principle of local definitness is introduced which is needed beyond equations of motion and commutation relations to fix the theory uniquely. It also allows to formulate local stability. In application to a region with a time-like Killing vector field and horizons it yields the value of the Hawking temperature. The concept of vacuum and particles in a non stationary metric is treated in the example of the Robertson-Walker metric and some remarks on detectors in non inertial motion are added. (orig.)
Static axially symmetric gravitational fields with shell sources
International Nuclear Information System (INIS)
McCrea, J.D.
1976-01-01
Israel's (Israel, W., 1966, Nuovo Cim., vol.44, 1-14) method for treating surface layers in general relativity is applied to construct shell sources for exterior static axially symmetric gravitational fields. Consideration is restricted to cases in which the 3-cylinder representing the history of the shell is an equipotential surface of the exterior field and consequently the space-time inside this 3-cylinder is flat. (author)
International Nuclear Information System (INIS)
Tao Fuzhen; He Zhiqiang
1983-01-01
If the effect of gravitational wave on electromagnetic fields is used, and the gravitational wave is detected through the changes in electromagnetic fields, one can expect that the difficulty about the weakness of the signal of mechanical receiver can be avoided. Because of the effect of gravitational wave, the electromagnetic field emits energy, therefore, the energy which is detected will be higher than that by the mechanical receiver. The authors consider the Maxwell equations on the curved spacetime. They give solutions when the detecting fields are a free electromagnetic wave, standing wave and a constant field. (Auth.)
Neutrino's helicity in a gravitational field
International Nuclear Information System (INIS)
Pansart, J.P.
1996-01-01
By using approximated solutions of Dirac's equation, we show that there is no helicity reversal for light neutrinos in the Schwarzschild metric nor in an expanding universe. The actual coupling between a particle spin and the angular momentum of a heavy rotating body induces a possible helicity reversal but with an unobservable probability proportional to m 2 p / E 2 , where m p is the particle mass and E its energy. In these calculations, the helicity is defined through the spin orientation with respect to the current and not with respect to the linear momentum. This definition gives simple expressions and is equal to the usual definition in the case of a flat space. (N.T.)
The motion of a Dirac wave packet in a gravitational field
International Nuclear Information System (INIS)
Pietropaolo, F.; Toller, M.
1983-01-01
It is studied the motion of a test particle provided with spin in a gravitational field with a nonvanishing torsion with the aim of clarifying the relationship between the approach based on the balance equations for energy, momentum and angular momentum and the approach based directly on a semiclassical approximation of the Dirac equation. The balance equations in the pole-dipole approximation are applied to a Dirac wave packet minimally coupled to the gravitational field and it is shown that, in this particular case, it is possible to compute the dipole moments of energy current, which are essential for a correct calculation of the motion of the centre of the particle and of the precession of its spin
Newtonian and non-newtonian limits of gravitational fields
International Nuclear Information System (INIS)
Koppel', A.A.
1975-01-01
The nonrelativistic limit of the exact stationary axially-symmetric vacuum solution to Einstein equations, which is called the unified (generalized) Kerr-NUT solution, is investigated. Potentials for nonrelativistic gravitational fields, corresponding to this solution, have been calculated. The character of the c→infinity limit (c is the velocity of light) has been shown to depend on the structure of parameters of the Kerr-NUT solution. An example is given that shows the possibility of the existence of a nonrelativistic limit having an absolutely new, non-Newton (vortex) character. From the mathematically proved possibility of the existence of nonrelativistic vortex fields there follow also some implications of a more fundamental character. The Newton limit is commonly supposed to be the only nonrelativistic limit in the Einstein theory. Now there arises a dilemma: either gravitational fields having a non-Newton limit exist in nature and thus the Newton theory does not embrace all gravitational phenomena of nonrelativistic character or in the Newton solutions to the nonrelativistic gravitational equations a certain element of the Einstein theory is revealed that is alien to the true nonrelativistic theory of gravitation. In the former case, one cannot exclude the possibility that owing to a comprehensive analysis of properties, possible sources, etc. the vortex soltions to Einstein equations may prove important in cosmological and astrophysical applications of the general relativity theory. In the latter case, a detailed analysis of the non-Newton-limit solutions will at least enable one to gain a deeper insight into the structure of Einstein equations and their solutions
Newtonian and non-newtonian limits of gravitational fields
Energy Technology Data Exchange (ETDEWEB)
Koppel, A A [Tartuskij Gosudarstvennyj Univ., (USSR)
1975-09-01
The nonrelativistic limit of the exact stationary axially-symmetric vacuum solution to Einstein equations, which is called the unified (generalized) Kerr-NUT solution, is investigated. Potentials for nonrelativistic gravitational fields, corresponding to this solution, have been calculated. The character of the c..-->..infinity limit (c is the velocity of light) has been shown to depend on the structure of parameters of the Kerr-NUT solution. An example is given that shows the possibility of the existence of a nonrelativistic limit having an absolutely new, non-Newton (vortex) character. From the mathematically proved possibility of the existence of nonrelativistic vortex fields there follow also some implications of a more fundamental character. The Newton limit is commonly supposed to be the only nonrelativistic limit in the Einstein theory. Now there arises a dilemma: either gravitational fields having a non-Newton limit exist in nature and thus the Newton theory does not embrace all gravitational phenomena of nonrelativistic character or in the Newton solutions to the nonrelativistic gravitational equations a certain element of the Einstein theory is revealed that is alien to the true nonrelativistic theory of gravitation. In the former case, one cannot exclude the possibility that owing to a comprehensive analysis of properties, possible sources, etc. the vortex soltions to Einstein equations may prove important in cosmological and astrophysical applications of the general relativity theory. In the latter case, a detailed analysis of the non-Newton-limit solutions will at least enable one to gain a deeper insight into the structure of Einstein equations and their solutions.
Fedosin, Sergey G.
2018-01-01
For the relativistic uniform system with an invariant mass density the exact expressions are determined for the potentials and strengths of the gravitational field, the energy of particles and fields. It is shown that, as in the classical case for bodies with a constant mass density, in the system with a zero vector potential of the gravitational field, the energy of the particles, associated with the scalar field potential, is twice as large in the absolute value as the energy defined by the...
Aspects of three field approximations: Darwin, frozen, EMPULSE
International Nuclear Information System (INIS)
Boyd, J.K.; Lee, E.P.; Yu, S.S.
1985-01-01
The traditional approach used to study high energy beam propagation relies on the frozen field approximation. A minor modification of the frozen field approximation yields the set of equations applied to the analysis of the hose instability. These models are constrasted with the Darwin field approximation. A statement is made of the Darwin model equations relevant to the analysis of the hose instability
Gravitational recoil from binary black hole mergers: The close-limit approximation
International Nuclear Information System (INIS)
Sopuerta, Carlos F.; Yunes, Nicolas; Laguna, Pablo
2006-01-01
The coalescence of a binary black hole system is one of the main sources of gravitational waves that present and future detectors will study. Apart from the energy and angular momentum that these waves carry, for unequal-mass binaries there is also a net flux of linear momentum that implies a recoil velocity of the resulting final black hole in the opposite direction. Due to the relevance of this phenomenon in astrophysics, in particular, for galaxy merger scenarios, there have been several attempts to estimate the magnitude of this velocity. Since the main contribution to the recoil comes from the last orbit and plunge, an approximation valid at the last stage of coalescence is well motivated for this type of calculation. In this paper, we present a computation of the recoil velocity based on the close-limit approximation scheme, which gives excellent results for head-on and grazing collisions of black holes when compared to full numerical relativistic calculations. We obtain a maximum recoil velocity of ∼57 km/s for a symmetric mass ratio η=M 1 M 2 /(M 1 +M 2 ) 2 ∼0.19 and an initial proper separation of 4M, where M is the total Arnowitt-Deser-Misner (ADM) mass of the system. This separation is the maximum at which the close-limit approximation is expected to provide accurate results. Therefore, it cannot account for the contributions due to inspiral and initial merger. If we supplement this estimate with post-Newtonian (PN) calculations up to the innermost stable circular orbit, we obtain a lower bound for the recoil velocity, with a maximum around 80 km/s. This is a lower bound because it neglects the initial merger phase. We can however obtain a rough estimate by using PN methods or the close-limit approximation. Since both methods are known to overestimate the amount of radiation, we obtain in this way an upper bound for the recoil with maxima in the range of 214-240 km/s. We also provide nonlinear fits to these estimated upper and lower bounds. These
Two-time physics with gravitational and gauge field backgrounds
International Nuclear Information System (INIS)
Bars, Itzhak
2000-01-01
It is shown that all possible gravitational, gauge and other interactions experienced by particles in ordinary d dimensions (one time) can be described in the language of two-time physics in a spacetime with d+2 dimensions. This is obtained by generalizing the world line formulation of two-time physics by including background fields. A given two-time model, with a fixed set of background fields, can be gauged fixed from d+2 dimensions to (d-1)+1 dimensions to produce diverse one-time dynamical models, all of which are dually related to each other under the underlying gauge symmetry of the unified two-time theory. To satisfy the gauge symmetry of the two-time theory the background fields must obey certain coupled differential equations that are generally covariant and gauge invariant in the target (d+2)-dimensional spacetime. The gravitational background obeys a closed homothety condition while the gauge field obeys a differential equation that generalizes a similar equation derived by Dirac in 1936. Explicit solutions to these coupled equations show that the usual gravitational, gauge, and other interactions in d dimensions may be viewed as embedded in the higher (d+2)-dimensional space, thus displaying higher spacetime symmetries that otherwise remain hidden
On possible conceptual difficulties of quantum field theories involving gravitation
International Nuclear Information System (INIS)
Markov, M.A.
1975-01-01
The paper outlines principles on the basis of which one would conclude that the gravitational radius of test bodies can impose fundamental limitations on the measurability of coordinates and time in quantum theory, limitations of the type ΔxΔT(>=)(thetak)/csup(4)(more precisely Δrsub(gr)ΔT(>=)(thetak)/csup(4)) as a consequence of the relation ΔEΔT(>=)theta. Corresponding limitations arise for measurability of the average electrostatic field Δanti ΣΔT(>=)(theta√k)/rsub(gr)sup(2)c and of the gravitational field (the Cristoffel symbols [sub(μγ)sup(α)]):Δ[sub(44)sup(1)]ΔT(>=)(thetak)/(rsub(gr)sup(2)c)
Canonical quantum theory of gravitational field with higher derivatives
International Nuclear Information System (INIS)
Kawasaki, Shoichiro; Kimura, Tadahiko; Kitago, Koichi.
1981-01-01
A renormalizable gravitational theory with higher derivatives is canonically quantized in the Landau gauge. Field equations and various equal-time commutation relations are explicitly given. The main results obtained in this work are 1) the equal-time commutation relations involving b sub(μ) exhibit the tensor-like behaviour and 2) the theory has the 16-dimensional Poincare-like superalgebra. These results are just the same as those discovered by Nakanishi in the Einstein case. (author)
Einstein-Rosen gravitational waves
International Nuclear Information System (INIS)
Astefanoaei, Iordana; Maftei, Gh.
2001-01-01
In this paper we analyse the behaviour of the gravitational waves in the approximation of the far matter fields, considering the indirect interaction between the matter sources and the gravitational field, in a cosmological model based on the Einstein-Rosen solution, Because the properties of the gravitational waves obtained as the solutions of Einstein fields equations (the gravitational field equations) are most obvious in the weak gravitational fields we consider here, the gravitational field in the linear approximation. Using the Newman-Penrose formalism, we calculate in the null-tetradic base (e a ), the spin coefficients, the directional derivates and the tetradic components of Ricci and Weyl tensors. From the Einstein field equations we obtained the solution for b(z, t) what described the behaviour of gravitational wave in Einstein-Rosen Universe and in the particular case, when t → ∞, p(z, t) leads us to the primordial gravitational waves in the Einstein-Rosen Universe. (authors)
Stability of a Kahler-type neutrino-gravitational field
International Nuclear Information System (INIS)
Lynch, J.T.
1999-01-01
In this work the deficiencies, suffered by the model for the neutrino-gravitational field using Kahler-type fermion fields, are removed by a more appropriate choice for the right-acting connection group of the spinor geometry, namely the two-parameter Abelian subgroup of SU(3). The action of this two-parameter group from the right on the 4x4 sixteen component Kahler spinor field also has interesting consequences in regard to Pauli's excursion principle and the structure of massive particles
Physical effects in gravitational field of black holes
International Nuclear Information System (INIS)
Frolov, V.P.
1986-01-01
A large number of problems related to peculiarities of physical processes in a strong gravitational field of black holes has been considered. Energy shift and the complete structure of physical fields for charged sources near a black hole have been investigated. Density matrix and generating functional for quantum effects in stationary black holes have been calculated. Contributions of massless and massive fields to vacuum polarization in black holes have been investigated and influence of quantum effects on the global structure of a black hole has been discussed
Do Gravitational Fields Have Mass? Or on the Nature of Dark Matter
Kunst, Ernst Karl
1999-01-01
As has been shown before (a brief comment will be given in the text), relativistic mass and relativistic time dilation of moving bodies are equivalent as well as time and mass in the rest frame. This implies that the time dilation due to the gravitational field is combined with inertial and gravitational mass as well and permits the computation of the gravitational action of the vacuum constituting the gravitational field in any distance from the source of the field. Theoretical predictions a...
Coupling non-gravitational fields with simplicial spacetimes
International Nuclear Information System (INIS)
McDonald, Jonathan R; Miller, Warner A
2010-01-01
The inclusion of source terms in discrete gravity is a long-standing problem. Providing a consistent coupling of source to the lattice in the Regge calculus (RC) yields a robust unstructured spacetime mesh applicable to both numerical relativity and quantum gravity. RC provides a particularly insightful approach to this problem with its purely geometric representation of spacetime. The simplicial building blocks of RC enable us to represent all matter and fields in a coordinate-free manner. We provide an interpretation of RC as a discrete exterior calculus framework into which non-gravitational fields naturally couple with the simplicial lattice. Using this approach we obtain a consistent mapping of the continuum action for non-gravitational fields to the Regge lattice. In this paper we apply this framework to scalar, vector and tensor fields. In particular we reconstruct the lattice action for (1) the scalar field, (2) Maxwell field tensor and (3) Dirac particles. The straightforward application of our discretization techniques to these three fields demonstrates a universal implementation of the coupling source to the lattice in RC.
International Nuclear Information System (INIS)
Fukushima, Toshio
2017-01-01
In order to obtain the gravitational field of a general finite body inside its Brillouin sphere, we developed a new method to compute the field accurately. First, the body is assumed to consist of some layers in a certain spherical polar coordinate system and the volume mass density of each layer is expanded as a Maclaurin series of the radial coordinate. Second, the line integral with respect to the radial coordinate is analytically evaluated in a closed form. Third, the resulting surface integrals are numerically integrated by the split quadrature method using the double exponential rule. Finally, the associated gravitational acceleration vector is obtained by numerically differentiating the numerically integrated potential. Numerical experiments confirmed that the new method is capable of computing the gravitational field independently of the location of the evaluation point, namely whether inside, on the surface of, or outside the body. It can also provide sufficiently precise field values, say of 14–15 digits for the potential and of 9–10 digits for the acceleration. Furthermore, its computational efficiency is better than that of the polyhedron approximation. This is because the computational error of the new method decreases much faster than that of the polyhedron models when the number of required transcendental function calls increases. As an application, we obtained the gravitational field of 433 Eros from its shape model expressed as the 24 × 24 spherical harmonic expansion by assuming homogeneity of the object.
Energy Technology Data Exchange (ETDEWEB)
Fukushima, Toshio, E-mail: Toshio.Fukushima@nao.ac.jp [National Astronomical Observatory/SOKENDAI, Ohsawa, Mitaka, Tokyo 181-8588 (Japan)
2017-10-01
In order to obtain the gravitational field of a general finite body inside its Brillouin sphere, we developed a new method to compute the field accurately. First, the body is assumed to consist of some layers in a certain spherical polar coordinate system and the volume mass density of each layer is expanded as a Maclaurin series of the radial coordinate. Second, the line integral with respect to the radial coordinate is analytically evaluated in a closed form. Third, the resulting surface integrals are numerically integrated by the split quadrature method using the double exponential rule. Finally, the associated gravitational acceleration vector is obtained by numerically differentiating the numerically integrated potential. Numerical experiments confirmed that the new method is capable of computing the gravitational field independently of the location of the evaluation point, namely whether inside, on the surface of, or outside the body. It can also provide sufficiently precise field values, say of 14–15 digits for the potential and of 9–10 digits for the acceleration. Furthermore, its computational efficiency is better than that of the polyhedron approximation. This is because the computational error of the new method decreases much faster than that of the polyhedron models when the number of required transcendental function calls increases. As an application, we obtained the gravitational field of 433 Eros from its shape model expressed as the 24 × 24 spherical harmonic expansion by assuming homogeneity of the object.
Quantum limit on time measurement in a gravitational field
International Nuclear Information System (INIS)
Sinha, Supurna; Samuel, Joseph
2015-01-01
Good clocks are of importance both to fundamental physics and for applications in astronomy, metrology and global positioning systems. In a recent technological breakthrough, researchers at NIST have been able to achieve a stability of one part in 10 18 using an ytterbium clock. This naturally raises the question of whether there are fundamental limits to time keeping. In this article we point out that gravity and quantum mechanics set a fundamental limit on the fractional frequency uncertainty of clocks. This limit comes from a combination of the uncertainty relation, the gravitational redshift and the relativistic time dilation effect. For example, a single ion aluminium clock in a terrestrial gravitational field cannot achieve a fractional frequency uncertainty better than one part in 10 22 . This fundamental limit explores the interaction between gravity and quantum mechanics on a laboratory scale. (paper)
Some approximate calculations in SU2 lattice mean field theory
International Nuclear Information System (INIS)
Hari Dass, N.D.; Lauwers, P.G.
1981-12-01
Approximate calculations are performed for small Wilson loops of SU 2 lattice gauge theory in mean field approximation. Reasonable agreement is found with Monte Carlo data. Ways of improving these calculations are discussed. (Auth.)
Radiation reaction force and unification of electromagnetic and gravitational fields
International Nuclear Information System (INIS)
Lo, C.Y.; Goldstein, G.R.; Napier, A.
1981-04-01
A unified theory of electromagnetic and gravitational fields should modify classical electrodynamics such that the radiation reaction force is accounted for. The analysis leads to a five-dimensional unified theory of five variables. The theory is supported by showing that, for the case of a charged particle moving in a constant magnetic field, the radiation reaction force is indeed included. Moreover, this example shows explicitly that physical changes are associated with the fifth variable. Thus, the notion of a physical five-dimensional space should be seriously taken into consideration
Gauge-invariant intense-field approximations to all orders
International Nuclear Information System (INIS)
Faisal, F H M
2007-01-01
We present a gauge-invariant formulation of the so-called strong-field KFR approximations in the 'velocity' and 'length' gauges and demonstrate their equivalence in all orders. The theory thus overcomes a longstanding discrepancy between the strong-field velocity and the length-gauge approximations for non-perturbative processes in intense laser fields. (fast track communication)
Classical particles with spin in electromagnetic and gravitational fields
International Nuclear Information System (INIS)
Amorim, R.M. de.
1977-02-01
Following a review of several problems connected with classical particles with intrinsic angular momentum are reproduced the Frenkel equations (with the condition S sup(μν)U sub(ν)=0) by means of a holonomic variational principle, and have related them to Bargann, Michel and Tededgie equations. The treatment is then generalized to the case in wich S sup(μν)U sub(ν)=0 and the resulting equation coincide in the linearized limit with those obtained by Suttorp and de Groot. Also, by using variational principles, the generalizations to Frenkel equations are obtained, as well as to those of Suttorp and de Groot when electromagnetic and gravitational interactions are considered. Finally, those equations are analysed according to a scheme proposed by Oliveira and Tiommo where the gravitational interactions are described by gravielectric and gravimagnetic fields. The analogies in these equations of motion between the gravitational and eletromagnetic interactions, in the case in which the particle has a giromagnetic factor g=1, are shown. The last results complete a previous study by wald. (Author) [pt
Torres-Forné, Alejandro; Cerdá-Durán, Pablo; Passamonti, Andrea; Font, José A.
2018-03-01
Gravitational waves from core-collapse supernovae are produced by the excitation of different oscillation modes in the protoneutron star (PNS) and its surroundings, including the shock. In this work we study the relationship between the post-bounce oscillation spectrum of the PNS-shock system and the characteristic frequencies observed in gravitational-wave signals from core-collapse simulations. This is a fundamental first step in order to develop a procedure to infer astrophysical parameters of the PNS formed in core-collapse supernovae. Our method combines information from the oscillation spectrum of the PNS, obtained through linear perturbation analysis in general relativity of a background physical system, with information from the gravitational-wave spectrum of the corresponding non-linear, core-collapse simulation. Using results from the simulation of the collapse of a 35 M⊙ pre-supernova progenitor we show that both types of spectra are indeed related and we are able to identify the modes of oscillation of the PNS, namely g-modes, p-modes, hybrid modes, and standing accretion shock instability (SASI) modes, obtaining a remarkably close correspondence with the time-frequency distribution of the gravitational-wave modes. The analysis presented in this paper provides a proof of concept that asteroseismology is indeed possible in the core-collapse scenario, and it may serve as a basis for future work on PNS parameter inference based on gravitational-wave observations.
Hawking radiation of a vector field and gravitational anomalies
International Nuclear Information System (INIS)
Murata, Keiju; Miyamoto, Umpei
2007-01-01
Recently, the relation between Hawking radiation and gravitational anomalies has been used to estimate the flux of Hawking radiation for a large class of black objects. In this paper, we extend the formalism, originally proposed by Robinson and Wilczek, to the Hawking radiation of vector particles (photons). It is explicitly shown, with the Hamiltonian formalism, that the theory of an electromagnetic field on d-dimensional spherical black holes reduces to one of an infinite number of massive complex scalar fields on 2-dimensional spacetime, for which the usual anomaly-cancellation method is available. It is found that the total energy emitted from the horizon for the electromagnetic field is just (d-2) times that for a scalar field. The results support the picture that Hawking radiation can be regarded as an anomaly eliminator on horizons. Possible extensions and applications of the analysis are discussed
Gravitational field equations on and off a 3-brane world
International Nuclear Information System (INIS)
Aliev, A N; Guemruekcueoglu, A E
2004-01-01
The effective gravitational field equations on and off a 3-brane world possessing a Z 2 mirror symmetry and embedded in a five-dimensional bulk spacetime with cosmological constant were derived by Shiromizu, Maeda and Sasaki (SMS) in the framework of the Gauss-Codazzi projective approach with the subsequent specialization to the Gaussian normal coordinates in the neighbourhood of the brane. However, the Gaussian normal coordinates imply a very special slicing of spacetime and clearly, the consistent analysis of the brane dynamics would benefit from complete freedom in the slicing of spacetime, pushing the layer surfaces in the fifth dimension at any rates of evolution and in arbitrary positions. We rederive the SMS effective gravitational field equations on a 3-brane and generalize the off-brane equations to the case where there is an arbitrary energy-momentum tensor in the bulk. We use a more general setting to allow for acceleration of the normals to the brane surface through the lapse function and the shift vector in the spirit of Arnowitt, Deser and Misner. We show that the gravitational influence of the bulk spacetime on the brane may be described by a traceless second-rank tensor W ij , constructed from the 'electric' part of the bulk Riemann tensor. We also present the evolution equations for the tensor W ij , as well as for the corresponding 'magnetic' part of the bulk curvature. These equations involve terms determined by both the nonvanishing acceleration of normals in the nongeodesic slicing of spacetime and the presence of other fields in the bulk
International Nuclear Information System (INIS)
Braginsky, V.B.; Kardashev, N.S.; Polnarev, A.G.; Novikov, I.D.
1989-12-01
Propagation of an electromagnetic wave in the field of gravitational waves is considered. Attention is given to the principal difference between the electromagnetic wave propagation in the field of random gravitational waves and the electromagnetic wave propagation in a medium with a randomly-inhomogeneous refraction index. It is shown that in the case of the gravitation wave field the phase shift of an electromagnetic wave does not increase with distance. The capability of space radio interferometry to detect relic gravitational waves as well as gravitational wave bursts of non cosmological origin are analyzed. (author). 64 refs, 2 figs
Topological geons with self-gravitating phantom scalar field
Kratovitch, P. V.; Potashov, I. M.; Tchemarina, Ju V.; Tsirulev, A. N.
2017-12-01
A topological geon is the quotient manifold M/Z 2 where M is a static spherically symmetric wormhole having the reflection symmetry with respect to its throat. We distinguish such asymptotically at solutions of the Einstein equations according to the form of the time-time metric function by using the quadrature formulas of the so-called inverse problem for self-gravitating spherically symmetric scalar fields. We distinguish three types of geon spacetimes and illustrate them by simple examples. We also study possible observational effects associated with bounded geodesic motion near topological geons.
Spin in stationary gravitational fields and rotating frames
International Nuclear Information System (INIS)
Obukhov, Yuri N.; Silenko, Alexander J.; Teryaev, Oleg V.
2010-01-01
A spin motion of particles in stationary spacetimes is investigated in the framework of the classical gravity and relativistic quantum mechanics. We bring the Dirac equation for relativistic particles in nonstatic spacetimes to the Hamiltonian form and perform the Foldy-Wouthuysen transformation. We show the importance of the choice of tetrads for description of spin dynamics in the classical gravity. We derive classical and quantum mechanical equations of motion of the spin for relativistic particles in stationary gravitational fields and rotating frames and establish the full agreement between the classical and quantum mechanical approaches.
Numerical computation of gravitational field for general axisymmetric objects
Fukushima, Toshio
2016-10-01
We developed a numerical method to compute the gravitational field of a general axisymmetric object. The method (I) numerically evaluates a double integral of the ring potential by the split quadrature method using the double exponential rules, and (II) derives the acceleration vector by numerically differentiating the numerically integrated potential by Ridder's algorithm. Numerical comparison with the analytical solutions for a finite uniform spheroid and an infinitely extended object of the Miyamoto-Nagai density distribution confirmed the 13- and 11-digit accuracy of the potential and the acceleration vector computed by the method, respectively. By using the method, we present the gravitational potential contour map and/or the rotation curve of various axisymmetric objects: (I) finite uniform objects covering rhombic spindles and circular toroids, (II) infinitely extended spheroids including Sérsic and Navarro-Frenk-White spheroids, and (III) other axisymmetric objects such as an X/peanut-shaped object like NGC 128, a power-law disc with a central hole like the protoplanetary disc of TW Hya, and a tear-drop-shaped toroid like an axisymmetric equilibrium solution of plasma charge distribution in an International Thermonuclear Experimental Reactor-like tokamak. The method is directly applicable to the electrostatic field and will be easily extended for the magnetostatic field. The FORTRAN 90 programs of the new method and some test results are electronically available.
On synthetic gravitational waves from multi-field inflation
Ozsoy, Ogan
2018-04-01
We revisit the possibility of producing observable tensor modes through a continuous particle production process during inflation. Particularly, we focus on the multi-field realization of inflation where a spectator pseudoscalar σ induces a significant amplification of the U(1) gauge fields through the coupling propto σFμνtilde Fμν. In this model, both the scalar σ and the Abelian gauge fields are gravitationally coupled to the inflaton sector, therefore they can only affect the primordial scalar and tensor fluctuations through their mixing with gravitational fluctuations. Recent studies on this scenario show that the sourced contributions to the scalar correlators can be dangerously large to invalidate a large tensor power spectrum through the particle production mechanism. In this paper, we re-examine these recent claims by explicitly calculating the dominant contribution to the scalar power and bispectrum. Particularly, we show that once the current limits from CMB data are taken into account, it is still possible to generate a signal as large as r ≈ 10‑3 and the limitations on the model building are more relaxed than what was considered before.
Modification of linear response theory for mean-field approximations
Hütter, M.; Öttinger, H.C.
1996-01-01
In the framework of statistical descriptions of many particle systems, the influence of mean-field approximations on the linear response theory is studied. A procedure, analogous to one where no mean-field approximation is involved, is used in order to determine the first order response of the
Exact Foldy-Wouthuysen transformation for gravitational waves and magnetic field background
International Nuclear Information System (INIS)
Goncalves, Bruno; Obukhov, Yuri N.; Shapiro, Ilya L.
2007-01-01
We consider an exact Foldy-Wouthuysen transformation for the Dirac spinor field on the combined background of a gravitational wave and constant uniform magnetic field. By taking the classical limit of the spinor field Hamiltonian, we arrive at the equations of motion for the nonrelativistic spinning particle. Two different kinds of gravitational fields are considered and in both cases the effect of the gravitational wave on the spinor field and on the corresponding spinning particle may be enforced by a sufficiently strong magnetic field. This result can be relevant for astrophysical applications and, in principle, useful for creating the gravitational wave detectors based on atomic physics and precise interferometry
Gravitational field strength and generalized Komar-integral
International Nuclear Information System (INIS)
Simon, W.
1984-01-01
We define a 'gravitational field strength' in theories of the Einstein-Cartan type admitting a Killing-vector. This field strength is a second rank, antisymmetric, divergence-free tensor, whose ('Komar-') integral over a closed 2-surface gives a physically meaningful quantity. We find conditions on the Lagrange-density of the theory which ensure the existence of such a tensor, and show that they are satisfied for N = 2-supergravity and for a special case of the bosonic sector of N = 4-supergravity. We discuss a possible application of the generalized Komar-integral in the theory of stationary black holes. We also consider the Kaluza-Klein-approach to the 'field-strength-problem', which turns out to be particularly rewarding in the application to black holes. (Author)
A model of Saturn inferred from its measured gravitational field
Kong, Dali; Zhang, Keke; Schubert, Gerald; Anderson, John D.
2018-04-01
We present an interior model of Saturn with an ice-rock core, a metallic region, an outer molecular envelope and a thin transition layer between the metallic and molecular regions. The shape of Saturn’s 1 bar surface is irregular and determined fully self-consistently by the required equilibrium condition. While the ice-rock core is assumed to have a uniform density, three different equations of state are adopted for the metallic, molecular and transition regions. The Saturnian model is constrained by its known mass, its known equatorial and polar radii, and its known zonal gravitational coefficients, J 2n , n = 1, 2, 3. The model produces an ice-rock core with equatorial radius 0.203 R S, where R S is the equatorial radius of Saturn at the 1-bar pressure surface; the core density ρ c = 10388.1 kgm‑3 corresponding to 13.06 Earth masses; and an analytical expression describing the Saturnian irregular shape of the 1-bar pressure level. The model also predicts the values of the higher-order gravitational coefficients, J 8, J 10 and J 12, for the hydrostatic Saturn and suggests that Saturn’s convective dynamo operates in the metallic region approximately defined by 0.2 R S < r e < 0.7 R S, where r e denotes the equatorial radial distance from the Saturnian center of figure.
Gravitational field of massive point particle in general relativity
International Nuclear Information System (INIS)
Fiziev, P.P.
2003-10-01
Using various gauges of the radial coordinate we give a description of the static spherically symmetric space-times with point singularity at the center and vacuum outside the singularity. We show that in general relativity (GR) there exist infinitely many such solutions to the Einstein equations which are physically different and only some of them describe the gravitational field of a single massive point particle. In particular, we show that the widespread Hilbert's form of Schwarzschild solution does not solve the Einstein equations with a massive point particle's stress-energy tensor. Novel normal coordinates for the field and a new physical class of gauges are proposed, in this way achieving a correct description of a point mass source in GR. We also introduce a gravitational mass defect of a point particle and determine the dependence of the solutions on this mass defect. In addition we give invariant characteristics of the physically and geometrically different classes of spherically symmetric static space-times created by one point mass. (author)
Gravitation field algorithm and its application in gene cluster
Directory of Open Access Journals (Sweden)
Zheng Ming
2010-09-01
Full Text Available Abstract Background Searching optima is one of the most challenging tasks in clustering genes from available experimental data or given functions. SA, GA, PSO and other similar efficient global optimization methods are used by biotechnologists. All these algorithms are based on the imitation of natural phenomena. Results This paper proposes a novel searching optimization algorithm called Gravitation Field Algorithm (GFA which is derived from the famous astronomy theory Solar Nebular Disk Model (SNDM of planetary formation. GFA simulates the Gravitation field and outperforms GA and SA in some multimodal functions optimization problem. And GFA also can be used in the forms of unimodal functions. GFA clusters the dataset well from the Gene Expression Omnibus. Conclusions The mathematical proof demonstrates that GFA could be convergent in the global optimum by probability 1 in three conditions for one independent variable mass functions. In addition to these results, the fundamental optimization concept in this paper is used to analyze how SA and GA affect the global search and the inherent defects in SA and GA. Some results and source code (in Matlab are publicly available at http://ccst.jlu.edu.cn/CSBG/GFA.
Reentering the Gravitational Fringe Field of the Solar System
Fisher, P. C.
A 1998 proposal to the National Aeronautics and Space Administration (NASA) described how to update an earlier proposal outline for an experiment involving a manned spacecraft that traveled to just outside the gravitational field of the solar system. The recent proposal briefly describes how to initiate a 25-year program to launch a seven-year mission. Very little thought has been given to astronomical/astrophysical investigations that might be carried out over seven years, but one or more generations of NASA's Terrestrial Planet Finder program might be included. Only a little serious thought has been given to how to reenter the solar system's gravitational fringe field, but access to several procedures and three-fold redundancy seems desirable. Some details of the proposed paper study will be given. Non-responsibility statement, from source document of calendar 1973. This document was prepared while the author was on an unpaid leave of absence from The Lockheed Missiles and Space Company (LMSC) of Palo Alto, California. The comments made herein are partly the results of experiments carried out over a number of years. For a portion of this time, both NASA and LMSC financed the author's space astronomy investigations. It may be that either or both these institutions may possess some proprietary rights to portions of the ideas and information presented. This work was supported by Ruffner Associates, Inc.
Determining Symmetry Properties of Gravitational Fields of Terrestrial Group Planets
Directory of Open Access Journals (Sweden)
R.A. Kascheev
2016-09-01
Full Text Available Numerous models of gravity fields of the Solar system bodies have been constructed recently owing to successful space missions. These models are sets of harmonic coefficients of gravity potential expansion in series of spherical functions, which is Laplace series. The sets of coefficients are different in quantity of numerical parameters, sources and composition of the initial observational data, methods to obtain and process them, and, consequently, in a variety of properties and accuracy characteristics. For this reason, the task of comparison of different models of celestial bodies considered in the paper is of interest and relevant. The main purpose of this study is comparison of the models of gravitational potential of the Earth, Moon, Mars, and Venus with the quantitative criteria of different types of symmetries developed by us. It is assumed that some particular symmetry of the density distribution function of the planetary body causes similar symmetry of its gravitational potential. The symmetry of gravitational potential, in its turn, imposes additional conditions (restrictions, which must be satisfied by the harmonic coefficients. The paper deals with seven main types of symmetries: central, axial, two symmetries specular relative to the equatorial planes and prime meridian, as well as three rotational symmetries (at π angle around the coordinate system axes. According to the results of calculations carried out for the Earth, Moon, Mars, and Venus, the values of the criteria vary considerably for different types of symmetries and for different planets. It means that the specific value of each criterion corresponding to a particular celestial body is indicative of the properties and internal structure characteristics of the latter and, therefore, it can be used as a tool for comparative planetology. On the basis of the performed calculations, it is possible to distinguish two groups of celestial bodies having similar properties of
International Nuclear Information System (INIS)
Asanov, G.S.
1979-01-01
It is shown the description of gravitational field in the riemannian space-time by means of the absolute parallelism structure makes it possible to formulate an integrable covariant law of energy-momentum conservation for gravitational field, by imposing on the energy-momentum tensor the condition of vanishing of the covariant divergence (in the sense of the absolute parallelism). As a result of taking into account covariant constraints for the tetrads of the absolute parallelism, the Lagrangian density turns out to be not geometrised anymore and leads to the unambiguous conservation law of the type mentioned in the N-body problem. Covariant field equations imply the existence of the special euclidean coordinates outside of static neighbourhoods of gravitationing bodies. In these coordinates determined by the tetrads of the absolute parallelism, the linear approximation is not connected with any noncovariant assumptions
Gravitational self-interactions of a degenerate quantum scalar field
Chakrabarty, Sankha S.; Enomoto, Seishi; Han, Yaqi; Sikivie, Pierre; Todarello, Elisa M.
2018-02-01
We develop a formalism to help calculate in quantum field theory the departures from the description of a system by classical field equations. We apply the formalism to a homogeneous condensate with attractive contact interactions and to a homogeneous self-gravitating condensate in critical expansion. In their classical descriptions, such condensates persist forever. We show that in their quantum description, parametric resonance causes quanta to jump in pairs out of the condensate into all modes with wave vector less than some critical value. We calculate, in each case, the time scale over which the homogeneous condensate is depleted and after which a classical description is invalid. We argue that the duration of classicality of inhomogeneous condensates is shorter than that of homogeneous condensates.
Pair production in the gravitational field of a cosmic string
Harari, Diego D.; Skarzhinsky, Vladimir D.
1990-04-01
We show that many elementary particle physics processes, such as pair production by a high energy photon, that take place in Minkowski space only if a non-uniform external field provides for momentum non-conservation, do occur in the space-time around a straight cosmic string, even though the space is locally flat and there is no local gravitational potential. We exemplify this mechanism through the evaluation of the cross section per unit length of string for the decay of a massless scalar particle into a pair of massive particles. The cross sections for this kind of processes are typically small. Nevertheless, it is interesting to realize how these reactions occur due to topological properties of space, rather than to the action of a local field. V.S. is grateful to Mario Castagnino for hospitality at the Instituto de Astronomía y Física del Espacio during a visit while this work was done.
Gravitational field self-limitation and its role in the Universe
Energy Technology Data Exchange (ETDEWEB)
Gershtein, Semen S; Logunov, Anatolii A; Mestvirishvili, Mirian A [State Research Center ' Institute of High Energy Physics' , Protvino, Moscow Region (Russian Federation)
2006-11-30
It is shown that according to the relativistic theory of gravity, the gravitational field slows down the rate of time flow but stops doing so when the field is strong, thus displaying its tendency toward self-limitation of the gravitational potential. This property of the gravitational field prevents massive bodies from collapsing and allows a homogeneous isotropic universe to evolve cyclically. (physics of our days)
Synthesis Of Ultrasound Field Sources Based on Phase Screen Approximation
Directory of Open Access Journals (Sweden)
Sukhanov Dmitry
2018-01-01
Full Text Available Here is proposed the method for synthesizing the sources of an acoustic field on the basis of an approximation of the phase screen. The technology of manufacturing ultrasonic phased arrays providing the formation of a field of a given distribution is proposed. An experimental setup has been developed for the formation of a vortex field at a distance of 10 cm.
Einstein-Podolsky-Rosen correlation in a gravitational field
International Nuclear Information System (INIS)
Terashima, Hiroaki; Ueda, Masahito
2004-01-01
For quantum communication in a gravitational field, the properties of the Einstein-Podolsky-Rosen (EPR) correlation are studied within the framework of general relativity. Acceleration and gravity are shown to deteriorate the perfect anticorrelation of an EPR pair of spins in the same direction, and apparently decrease the degree of the violation of Bell's inequality. To maintain the perfect EPR correlation and the maximal violation of Bell's inequality, observers must measure the spins in appropriately chosen different directions which depend on the velocity of the particles, the curvature of the space-time, and the positions of the observers. Near the event horizon of a black hole, the appropriate directions depend so sensitively on the positions of the observers that even a very small uncertainty in the identification of the observers' positions leads to a fatal error in quantum communication, unless the observers fall into the black hole together with the particles
Dynamics of a bubble rising in gravitational field
Directory of Open Access Journals (Sweden)
De Bernardis Enrico
2016-03-01
Full Text Available The rising motion in free space of a pulsating spherical bubble of gas and vapour driven by the gravitational force, in an isochoric, inviscid liquid is investigated. The liquid is at rest at the initial time, so that the subsequent flow is irrotational. For this reason, the velocity field due to the bubble motion is described by means of a potential, which is represented through an expansion based on Legendre polynomials. A system of two coupled, ordinary and nonlinear differential equations is derived for the vertical position of the bubble center of mass and for its radius. This latter equation is a modified form of the Rayleigh-Plesset equation, including a term proportional to the kinetic energy associated to the translational motion of the bubble.
An application of information theory to stochastic classical gravitational fields
Angulo, J.; Angulo, J. C.; Angulo, J. M.
2018-06-01
The objective of this study lies on the incorporation of the concepts developed in the Information Theory (entropy, complexity, etc.) with the aim of quantifying the variation of the uncertainty associated with a stochastic physical system resident in a spatiotemporal region. As an example of application, a relativistic classical gravitational field has been considered, with a stochastic behavior resulting from the effect induced by one or several external perturbation sources. One of the key concepts of the study is the covariance kernel between two points within the chosen region. Using this concept and the appropriate criteria, a methodology is proposed to evaluate the change of uncertainty at a given spatiotemporal point, based on available information and efficiently applying the diverse methods that Information Theory provides. For illustration, a stochastic version of the Einstein equation with an added Gaussian Langevin term is analyzed.
Fokker-Planck-Rosenbluth-type equations for self-gravitating systems in the 1PN approximation
International Nuclear Information System (INIS)
Ramos-Caro, Javier; Gonzalez, Guillermo A
2008-01-01
We present two formulations of Fokker-Planck-Rosenbluth-type (FPR) equations for many-particle self-gravitating systems, with first-order relativistic corrections in the post-Newtonian approach (1PN). The first starts from a covariant Fokker-Planck equation for a simple gas, introduced recently by Chacon-Acosta and Kremer (2007 Phys. Rev. E 76 021201). The second derivation is based on the establishment of an 1PN-BBGKY hierarchy, developed systematically from the 1PN microscopic law of force and using the Klimontovich-Dupree (KD) method. We close the hierarchy by the introduction of a two-point correlation function that describes adequately the relaxation process. This picture reveals an aspect that is not considered in the first formulation: the contribution of ternary correlation patterns to the diffusion coefficients, as a consequence of the nature of 1PN interaction. Both formulations can be considered as a generalization of the equation derived by Rezania and Sobouti (2000 Astron. Astrophys. 354 1110), to stellar systems where the relativistic effects of gravitation play a significant role
Gravitational waves in bouncing cosmologies from gauge field production
Energy Technology Data Exchange (ETDEWEB)
Ben-Dayan, Ido, E-mail: ido.bendayan@gmail.com [Department of Physics, Ben-Gurion University of the Negev, P.O. Box 653, Be' er-Sheva 8410500 (Israel)
2016-09-01
We calculate the gravitational waves (GW) spectrum produced in various Early Universe scenarios from gauge field sources, thus generalizing earlier inflationary calculations to bouncing cosmologies. We consider generic couplings between the gauge fields and the scalar field dominating the energy density of the Universe. We analyze the requirements needed to avoid a backreaction that will spoil the background evolution. When the scalar is coupled only to F F-tilde term, the sourced GW spectrum is exponentially enhanced and parametrically the square of the vacuum fluctuations spectrum, P {sup s} {sub T} ∼ (P {sup v} {sub T} ){sup 2}, giving an even bluer spectrum than the standard vacuum one. When the scalar field is also coupled to F {sup 2} term, the amplitude is still exponentially enhanced, but the spectrum can be arbitrarily close to scale invariant (still slightly blue), n {sub T} ∼> 0, that is distinguishable form the slightly red inflationary one. Hence, we have a proof of concept of observable GW on CMB scales in a bouncing cosmology.
Hirt, Christian; Rexer, Moritz; Claessens, Sten; Rummel, Reiner
2017-10-01
Comparisons between high-degree models of the Earth's topographic and gravitational potential may give insight into the quality and resolution of the source data sets, provide feedback on the modelling techniques and help to better understand the gravity field composition. Degree correlations (cross-correlation coefficients) or reduction rates (quantifying the amount of topographic signal contained in the gravitational potential) are indicators used in a number of contemporary studies. However, depending on the modelling techniques and underlying levels of approximation, the correlation at high degrees may vary significantly, as do the conclusions drawn. The present paper addresses this problem by attempting to provide a guide on global correlation measures with particular emphasis on approximation effects and variants of topographic potential modelling. We investigate and discuss the impact of different effects (e.g., truncation of series expansions of the topographic potential, mass compression, ellipsoidal versus spherical approximation, ellipsoidal harmonic coefficient versus spherical harmonic coefficient (SHC) representation) on correlation measures. Our study demonstrates that the correlation coefficients are realistic only when the model's harmonic coefficients of a given degree are largely independent of the coefficients of other degrees, permitting degree-wise evaluations. This is the case, e.g., when both models are represented in terms of SHCs and spherical approximation (i.e. spherical arrangement of field-generating masses). Alternatively, a representation in ellipsoidal harmonics can be combined with ellipsoidal approximation. The usual ellipsoidal approximation level (i.e. ellipsoidal mass arrangement) is shown to bias correlation coefficients when SHCs are used. Importantly, gravity models from the International Centre for Global Earth Models (ICGEM) are inherently based on this approximation level. A transformation is presented that enables a
Perturbative stability of the approximate Killing field eigenvalue problem
International Nuclear Information System (INIS)
Beetle, Christopher; Wilder, Shawn
2014-01-01
An approximate Killing field may be defined on a compact, Riemannian geometry by solving an eigenvalue problem for a certain elliptic operator. This paper studies the effect of small perturbations in the Riemannian metric on the resulting vector field. It shows that small metric perturbations, as measured using a Sobolev-type supremum norm on the space of Riemannian geometries on a fixed manifold, yield small perturbations in the approximate Killing field, as measured using a Hilbert-type square integral norm. It also discusses applications to the problem of computing the spin of a generic black hole in general relativity. (paper)
Strong field gravitational lensing by a charged Galileon black hole
Energy Technology Data Exchange (ETDEWEB)
Zhao, Shan-Shan; Xie, Yi, E-mail: clefairy035@163.com, E-mail: yixie@nju.edu.cn [School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China)
2016-07-01
Strong field gravitational lensings are dramatically disparate from those in the weak field by representing relativistic images due to light winds one to infinity loops around a lens before escaping. We study such a lensing caused by a charged Galileon black hole, which is expected to have possibility to evade no-hair theorem. We calculate the angular separations and time delays between different relativistic images of the charged Galileon black hole. All these observables can potentially be used to discriminate a charged Galileon black hole from others. We estimate the magnitudes of these observables for the closest supermassive black hole Sgr A*. The strong field lensing observables of the charged Galileon black hole can be close to those of a tidal Reissner-Nordström black hole or those of a Reissner-Nordström black hole. It will be helpful to distinguish these black holes if we can separate the outermost relativistic images and determine their angular separation, brightness difference and time delay, although it requires techniques beyond the current limit.
Nonlinear gravitational self-force: Field outside a small body
Pound, Adam
2012-10-01
A small extended body moving through an external spacetime gαβ creates a metric perturbation hαβ, which forces the body away from geodesic motion in gαβ. The foundations of this effect, called the gravitational self-force, are now well established, but concrete results have mostly been limited to linear order. Accurately modeling the dynamics of compact binaries requires proceeding to nonlinear orders. To that end, I show how to obtain the metric perturbation outside the body at all orders in a class of generalized wave gauges. In a small buffer region surrounding the body, the form of the perturbation can be found analytically as an expansion for small distances r from a representative worldline. Given only a specification of the body’s multipole moments, the field obtained in the buffer region suffices to find the metric everywhere outside the body via a numerical puncture scheme. Following this procedure at first and second order, I calculate the field in the buffer region around an arbitrarily structured compact body at sufficiently high order in r to numerically implement a second-order puncture scheme, including effects of the body’s spin. I also define nth-order (local) generalizations of the Detweiler-Whiting singular and regular fields and show that in a certain sense, the body can be viewed as a skeleton of multipole moments.
Einstein's equations of motion in the gravitational field of an oblate ...
African Journals Online (AJOL)
In an earlier paper we derived Einstein's geometrical gravitational field equations for the metric tensor due to an oblate spheroidal massive body. In this paper we derive the corresponding Einstein's equations of motion for a test particle of nonzero rest mass in the gravitational field exterior to a homogeneous oblate ...
On quantum electrodynamics in an external gravitational field. Part 2. Discussion of the effects
International Nuclear Information System (INIS)
Lotze, K.H.
1978-01-01
The S matrix constructed in Part I of this work is evaluated for processes which it includes. Some of them are discussed in more detail: pair creation and scattering in an external gravitational field, pair creation by a photon and creation of an electron-positron pair and a photon in an external gravitational field. (author)
On the possibility of a fourth test of general relativity in earth's gravitational field
International Nuclear Information System (INIS)
Zhang Yuan-zhong.
1981-03-01
In the paper the possibility for a fourth test of general relativity (i.e. relativistic time delay) in Earth's gravitational field is discussed. The effects of Earth's gravitational field on an interferometer and a resonant cavity are calculated by means of both two definitions of physical length. (author)
Efficient approximation of random fields for numerical applications
Harbrecht, Helmut; Peters, Michael; Siebenmorgen, Markus
2015-01-01
We consider the rapid computation of separable expansions for the approximation of random fields. We compare approaches based on techniques from the approximation of non-local operators on the one hand and based on the pivoted Cholesky decomposition on the other hand. We provide an a-posteriori error estimate for the pivoted Cholesky decomposition in terms of the trace. Numerical examples validate and quantify the considered methods.
Efficient approximation of random fields for numerical applications
Harbrecht, Helmut
2015-01-07
We consider the rapid computation of separable expansions for the approximation of random fields. We compare approaches based on techniques from the approximation of non-local operators on the one hand and based on the pivoted Cholesky decomposition on the other hand. We provide an a-posteriori error estimate for the pivoted Cholesky decomposition in terms of the trace. Numerical examples validate and quantify the considered methods.
Gravitational waves from non-Abelian gauge fields at a tachyonic transition
Tranberg, Anders; Tähtinen, Sara; Weir, David J.
2018-04-01
We compute the gravitational wave spectrum from a tachyonic preheating transition of a Standard Model-like SU(2)-Higgs system. Tachyonic preheating involves exponentially growing IR modes, at scales as large as the horizon. Such a transition at the electroweak scale could be detectable by LISA, if these non-perturbatively large modes translate into non-linear dynamics sourcing gravitational waves. Through large-scale numerical simulations, we find that the spectrum of gravitational waves does not exhibit such IR features. Instead, we find two peaks corresponding to the Higgs and gauge field mass, respectively. We find that the gravitational wave production is reduced when adding non-Abelian gauge fields to a scalar-only theory, but increases when adding Abelian gauge fields. In particular, gauge fields suppress the gravitational wave spectrum in the IR. A tachyonic transition in the early Universe will therefore not be detectable by LISA, even if it involves non-Abelian gauge fields.
Addendum. Relation for the Light Absorption in the Presence of Gravitation Field
R.Vlokh; M.Kostyrko
2005-01-01
We argue for the validity of relation for electromagnetic wave electric field derived by us earlier. It includes an imaginary part responsible for the absorption induced by gravitation field of spherically symmetric mass.
Merging Belief Propagation and the Mean Field Approximation
DEFF Research Database (Denmark)
Riegler, Erwin; Kirkelund, Gunvor Elisabeth; Manchón, Carles Navarro
2010-01-01
We present a joint message passing approach that combines belief propagation and the mean field approximation. Our analysis is based on the region-based free energy approximation method proposed by Yedidia et al., which allows to use the same objective function (Kullback-Leibler divergence......) as a starting point. In this method message passing fixed point equations (which correspond to the update rules in a message passing algorithm) are then obtained by imposing different region-based approximations and constraints on the mean field and belief propagation parts of the corresponding factor graph....... Our results can be applied, for example, to algorithms that perform joint channel estimation and decoding in iterative receivers. This is demonstrated in a simple example....
Classical field theory on electrodynamics, non-Abelian gauge theories and gravitation
Scheck, Florian
2012-01-01
The book describes Maxwell's equations first in their integral, directly testable form, then moves on to their local formulation. The first two chapters cover all essential properties of Maxwell's equations, including their symmetries and their covariance in a modern notation. Chapter 3 is devoted to Maxwell theory as a classical field theory and to solutions of the wave equation. Chapter 4 deals with important applications of Maxwell theory. It includes topical subjects such as metamaterials with negative refraction index and solutions of Helmholtz' equation in paraxial approximation relevant for the description of laser beams. Chapter 5 describes non-Abelian gauge theories from a classical, geometric point of view, in analogy to Maxwell theory as a prototype, and culminates in an application to the U(2) theory relevant for electroweak interactions. The last chapter 6 gives a concise summary of semi-Riemannian geometry as the framework for the classical field theory of gravitation. The chapter concludes wit...
The dilute random field Ising model by finite cluster approximation
International Nuclear Information System (INIS)
Benyoussef, A.; Saber, M.
1987-09-01
Using the finite cluster approximation, phase diagrams of bond and site diluted three-dimensional simple cubic Ising models with a random field have been determined. The resulting phase diagrams have the same general features for both bond and site dilution. (author). 7 refs, 4 figs
Improved Gravitation Field Algorithm and Its Application in Hierarchical Clustering
Zheng, Ming; Sun, Ying; Liu, Gui-xia; Zhou, You; Zhou, Chun-guang
2012-01-01
Background Gravitation field algorithm (GFA) is a new optimization algorithm which is based on an imitation of natural phenomena. GFA can do well both for searching global minimum and multi-minima in computational biology. But GFA needs to be improved for increasing efficiency, and modified for applying to some discrete data problems in system biology. Method An improved GFA called IGFA was proposed in this paper. Two parts were improved in IGFA. The first one is the rule of random division, which is a reasonable strategy and makes running time shorter. The other one is rotation factor, which can improve the accuracy of IGFA. And to apply IGFA to the hierarchical clustering, the initial part and the movement operator were modified. Results Two kinds of experiments were used to test IGFA. And IGFA was applied to hierarchical clustering. The global minimum experiment was used with IGFA, GFA, GA (genetic algorithm) and SA (simulated annealing). Multi-minima experiment was used with IGFA and GFA. The two experiments results were compared with each other and proved the efficiency of IGFA. IGFA is better than GFA both in accuracy and running time. For the hierarchical clustering, IGFA is used to optimize the smallest distance of genes pairs, and the results were compared with GA and SA, singular-linkage clustering, UPGMA. The efficiency of IGFA is proved. PMID:23173043
International Nuclear Information System (INIS)
Baxter, Mathew; Van Gorder, Robert A
2013-01-01
We obtain solutions to a transformation of the axially symmetric Ernst equation, which governs a class of exact solutions of Einstein's field equations. Physically, the equation serves as a model of axially symmetric stationary vacuum gravitational fields. By an application of the method of homotopy analysis, we are able to construct approximate analytic solutions to the relevant boundary value problem in the case where exact solutions are not possible. The results presented constitute a solution for a complicated nonlinear and singular initial value problem. Through appropriate selection of the auxiliary linear operator and convergence control parameter, we are able to obtain low order approximations which minimize residual error over the problem domain. The benefit to such approach is that we obtain very accurate approximations after computing very few terms, hence the computational efficiency is high. Finally, an exact solution is provided in a special case, and this corresponds to the analytical solutions obtained in the more general case. The approximate solutions agree qualitatively with the exact solutions. (paper)
Quadrupole mass detector in the field of weak plane gravitational waves
International Nuclear Information System (INIS)
Borisova, L.B.
1978-01-01
Studied is the behaviour of the system which consists of two test particles connected by a string (quadrupole mass detector) and placed in the field of weak plane monochromatic gravitational waves. It is shown that at cross orientation of the detector the gravitational wave effecting such a system excites oscillations in it with the frequency equal to that of the gravitational wave source. The role of the driving force is played by the periodical change with the time of the equilibrium position. The gravitational wave does not influence the detector at its longitudinal orientation
Quantum phenomena in gravitational field; Phenomenes quantiques dans le champ gravitationnel
Energy Technology Data Exchange (ETDEWEB)
Bourdel, Th. [Laboratoire Charles-Fabry de l' Institut d' Optique, CNRS, Univ. Paris-Sud, Campus Polytechnique RD128, 91127 Palaiseau (France); Doser, M. [CERN, Geneva 23, CH-1211 (Switzerland); Ernest, A.D. [Faculty of Science, Charles Sturt University, Wagga Wagga (Australia); Voronin, A.Y. [Lebedev Institute, 53 Leninskii pr., Moscow, RU-119991 (Russian Federation); Voronin, V.V. [PNPI, Orlova Roscha, Gatchina, RU-188300 (Russian Federation)
2010-10-15
The subjects presented here are very different. Their common feature is that they all involve quantum phenomena in a gravitational field: gravitational quantum states of ultracold anti-hydrogen above a material surface and measuring a gravitational interaction of anti-hydrogen in AEGIS, a quantum trampoline for ultracold atoms, and a hypothesis on naturally occurring gravitational quantum states, an Eoetvoes-type experiment with cold neutrons and others. Considering them together, however, we could learn that they have many common points both in physics and in methodology. (authors)
General relativity: An introduction to the theory of the gravitational field
International Nuclear Information System (INIS)
Stephani, H.
1985-01-01
The entire treatment presented here is framed by questions which led to and now lead out of the general theory of relativity: can an absolute acceleration be defined meaningfully? Do gravitational effects propagate with infinite velocity as Newton required? Can the general theory correctly reflect the dynamics of the whole universe while consistently describing stellar evolution? Can a theory which presupposes measurement of properties of space through the interaction of matter be made compatible with a theory in which dimensions of the objects measured are so small that location loses meaning? The book gives the mathematics necessary to understand the theory and begins in Riemannian geometry. Contents, abridged: Foundations of Riemannian geometry. Foundations of Einstein's theory of gravitation. Linearised theory of gravitation, far fields and gravitational waves. Invariant characterisation of exact solutions. Gravitational collapse and black holes. Cosmology. Non-Einsteinian theories of gravitation. Index
Energy-momentum tensor of the gravitational field for material spheres
International Nuclear Information System (INIS)
Sokolov, S.N.
1990-01-01
Density of the energy-momentum tensor of a gravitational field which can be defined in the general relativity theory with the help of ideas of the relativistic gravitational theory is found for the case of material spheres. A relationship of this quantity with the Riemann tensor R αβγδ is discussed
Massive and mass-less Yang-Mills and gravitational fields
Veltman, M.J.G.; Dam, H. van
1970-01-01
Massive and mass-less Yang-Mills and gravitational fields are considered. It is found that there is a discrete difference between the zero-mass theories and the very small, but non-zero mass theories. In the case of gravitation, comparison of massive and mass-less theories with experiment, in
Gravitational collapse of dark energy field configurations and supermassive black hole formation
International Nuclear Information System (INIS)
Jhalani, V.; Kharkwal, H.; Singh, A.
2016-01-01
Dark energy is the dominant component of the total energy density of our Universe. The primary interaction of dark energy with the rest of the Universe is gravitational. It is therefore important to understand the gravitational dynamics of dark energy. Since dark energy is a low-energy phenomenon from the perspective of particle physics and field theory, a fundamental approach based on fields in curved space should be sufficient to understand the current dynamics of dark energy. Here, we take a field theory approach to dark energy. We discuss the evolution equations for a generic dark energy field in curved space-time and then discuss the gravitational collapse for dark energy field configurations. We describe the 3 + 1 BSSN formalism to study the gravitational collapse of fields for any general potential for the fields and apply this formalism to models of dark energy motivated by particle physics considerations. We solve the resulting equations for the time evolution of field configurations and the dynamics of space-time. Our results show that gravitational collapse of dark energy field configurations occurs and must be considered in any complete picture of our Universe. We also demonstrate the black hole formation as a result of the gravitational collapse of the dark energy field configurations. The black holes produced by the collapse of dark energy fields are in the supermassive black hole category with the masses of these black holes being comparable to the masses of black holes at the centers of galaxies.
Gravitational collapse of dark energy field configurations and supermassive black hole formation
Energy Technology Data Exchange (ETDEWEB)
Jhalani, V.; Kharkwal, H.; Singh, A., E-mail: anupamsingh.iitk@gmail.com [L. N. Mittal Institute of Information Technology, Physics Department (India)
2016-11-15
Dark energy is the dominant component of the total energy density of our Universe. The primary interaction of dark energy with the rest of the Universe is gravitational. It is therefore important to understand the gravitational dynamics of dark energy. Since dark energy is a low-energy phenomenon from the perspective of particle physics and field theory, a fundamental approach based on fields in curved space should be sufficient to understand the current dynamics of dark energy. Here, we take a field theory approach to dark energy. We discuss the evolution equations for a generic dark energy field in curved space-time and then discuss the gravitational collapse for dark energy field configurations. We describe the 3 + 1 BSSN formalism to study the gravitational collapse of fields for any general potential for the fields and apply this formalism to models of dark energy motivated by particle physics considerations. We solve the resulting equations for the time evolution of field configurations and the dynamics of space-time. Our results show that gravitational collapse of dark energy field configurations occurs and must be considered in any complete picture of our Universe. We also demonstrate the black hole formation as a result of the gravitational collapse of the dark energy field configurations. The black holes produced by the collapse of dark energy fields are in the supermassive black hole category with the masses of these black holes being comparable to the masses of black holes at the centers of galaxies.
Approximate representations of propagators in an external field
International Nuclear Information System (INIS)
Fried, H.M.
1979-01-01
A method of forming approximate representations for propagators with external field dependence is suggested and discussed in the context of potential scattering. An integro-differential equation in D+1 variables, where D represents the dimensionality of Euclidian space-time, is replaced by a Volterra equation in one variable. Approximate solutions to the latter provide a generalization of the Bloch-Nordsieck representation, containing the effects of all powers of hard-potential interactions, each modified by a characteristic soft-potential dependence [fr
Conservation laws and gravitational radiation
International Nuclear Information System (INIS)
Rastall, P.
1977-01-01
A total stress-momentum is defined for gravitational fields and their sources. The Lagrangian density is slightly different from that in the previous version of the theory, and the field equations are considerably simplified. The post-Newtonian approximation of the theory is unchanged. The existence and nature of weak gravitational waves are discussed. (author)
Dynamical passage to approximate equilibrium shapes for spinning, gravitating rubble asteroids
Sharma, Ishan; Jenkins, James T.; Burns, Joseph A.
2009-03-01
Many asteroids are thought to be particle aggregates held together principally by self-gravity. Here we study — for static and dynamical situations — the equilibrium shapes of spinning asteroids that are permitted for rubble piles. As in the case of spinning fluid masses, not all shapes are compatible with a granular rheology. We take the asteroid to always be an ellipsoid with an interior modeled as a rigid-plastic, cohesion-less material with a Drucker-Prager yield criterion. Using an approximate volume-averaged procedure, based on the classical method of moments, we investigate the dynamical process by which such objects may achieve equilibrium. We first collapse our dynamical approach to its statical limit to derive regions in spin-shape parameter space that allow equilibrium solutions to exist. At present, only a graphical illustration of these solutions for a prolate ellipsoid following the Drucker-Prager failure law is available [Sharma, I., Jenkins, J.T., Burns, J.A., 2005a. Bull. Am. Astron. Soc. 37, 643; Sharma, I., Jenkins, J.T., Burns, J.A., 2005b. Equilibrium shapes of ellipsoidal soil asteroids. In: García-Rojo, R., Hermann, H.J., McNamara, S. (Eds.), Proceedings of the 5th International Conference on Micromechanics of Granular Media, vol. 1. A.A. Balkema, UK; Holsapple, K.A., 2007. Icarus 187, 500-509]. Here, we obtain the equilibrium landscapes for general triaxial ellipsoids, as well as provide the requisite governing formulae. In addition, we demonstrate that it may be possible to better interpret the results of Richardson et al. [Richardson, D.C., Elankumaran, P., Sanderson, R.E., 2005. Icarus 173, 349-361] within the context of a Drucker-Prager material. The graphical result for prolate ellipsoids in the static limit is the same as those of Holsapple [Holsapple, K.A., 2007. Icarus 187, 500-509] because, when worked out, his final equations will match ours. This is because, though the formalisms to reach these expressions differ, in statics
Nonstandard approximation schemes for lower dimensional quantum field theories
International Nuclear Information System (INIS)
Fitzpatrick, D.A.
1981-01-01
The purpose of this thesis has been to apply two different nonstandard approximation schemes to a variety of lower-dimensional schemes. In doing this, we show their applicability where (e.g., Feynman or Rayleigh-Schroedinger) approximation schemes are inapplicable. We have applied the well-known mean-field approximation scheme by Guralnik et al. to general lower dimensional theories - the phi 4 field theory in one dimension, and the massive and massless Thirring models in two dimensions. In each case, we derive a bound-state propagator and then expand the theory in terms of the original and bound-state propagators. The results obtained can be compared with previously known results thereby show, in general, reasonably good convergence. In the second half of the thesis, we develop a self-consistent quantum mechanical approximation scheme. This can be applied to any monotonic polynomial potential. It has been applied in detail to the anharmonic oscillator, and the results in several analytical domains are very good, including extensive tables of numerical results
Approximating tunneling rates in multi-dimensional field spaces
Energy Technology Data Exchange (ETDEWEB)
Masoumi, Ali; Olum, Ken D.; Wachter, Jeremy M., E-mail: ali@cosmos.phy.tufts.edu, E-mail: kdo@cosmos.phy.tufts.edu, E-mail: Jeremy.Wachter@tufts.edu [Institute of Cosmology, Department of Physics and Astronomy, Tufts University, Medford, MA 02155 (United States)
2017-10-01
Quantum mechanics makes the otherwise stable vacua of a theory metastable through the nucleation of bubbles of the new vacuum. This in turn causes a first order phase transition. These cosmological phase transitions may have played an important role in settling our universe into its current vacuum, and they may also happen in future. The most important frameworks where vacuum decay happens contain a large number of fields. Unfortunately, calculating the tunneling rates in these models is very time-consuming. In this paper we present a simple approximation for the tunneling rate by reducing it to a one-field problem which is easy to calculate. We demonstrate the validity of this approximation using our recent code 'Anybubble' for several classes of potentials.
Gravitational waves from Abelian gauge fields and cosmic strings at preheating
International Nuclear Information System (INIS)
Dufaux, Jean-Francois; Figueroa, Daniel G.; Garcia-Bellido, Juan
2010-01-01
Primordial gravitational waves provide a very important stochastic background that could be detected soon with interferometric gravitational wave antennas or indirectly via the induced patterns in the polarization anisotropies of the cosmic microwave background. The detection of these waves will open a new window into the early Universe, and therefore it is important to characterize in detail all possible sources of primordial gravitational waves. In this paper we develop theoretical and numerical methods to study the production of gravitational waves from out-of-equilibrium gauge fields at preheating. We then consider models of preheating after hybrid inflation, where the symmetry breaking field is charged under a local U(1) symmetry. We analyze in detail the dynamics of the system in both momentum and configuration space. We show that gauge fields leave specific imprints in the resulting gravitational wave spectra, mainly through the appearance of new peaks at characteristic frequencies that are related to the mass scales in the problem. We also show how these new features in the spectra correlate with stringlike spatial configurations in both the Higgs and gauge fields that arise due to the appearance of topological winding numbers of the Higgs around Nielsen-Olesen strings. We study in detail the time evolution of the spectrum of gauge fields and gravitational waves as these strings evolve and decay before entering a turbulent regime where the gravitational wave energy density saturates.
Pan, Zhen; Anderes, Ethan; Knox, Lloyd
2018-05-01
One of the major targets for next-generation cosmic microwave background (CMB) experiments is the detection of the primordial B-mode signal. Planning is under way for Stage-IV experiments that are projected to have instrumental noise small enough to make lensing and foregrounds the dominant source of uncertainty for estimating the tensor-to-scalar ratio r from polarization maps. This makes delensing a crucial part of future CMB polarization science. In this paper we present a likelihood method for estimating the tensor-to-scalar ratio r from CMB polarization observations, which combines the benefits of a full-scale likelihood approach with the tractability of the quadratic delensing technique. This method is a pixel space, all order likelihood analysis of the quadratic delensed B modes, and it essentially builds upon the quadratic delenser by taking into account all order lensing and pixel space anomalies. Its tractability relies on a crucial factorization of the pixel space covariance matrix of the polarization observations which allows one to compute the full Gaussian approximate likelihood profile, as a function of r , at the same computational cost of a single likelihood evaluation.
Sums over geometries and improvements on the mean field approximation
International Nuclear Information System (INIS)
Sacksteder, Vincent E. IV
2007-01-01
The saddle points of a Lagrangian due to Efetov are analyzed. This Lagrangian was originally proposed as a tool for calculating systematic corrections to the Bethe approximation, a mean-field approximation which is important in statistical mechanics, glasses, coding theory, and combinatorial optimization. Detailed analysis shows that the trivial saddle point generates a sum over geometries reminiscent of dynamically triangulated quantum gravity, which suggests new possibilities to design sums over geometries for the specific purpose of obtaining improved mean-field approximations to D-dimensional theories. In the case of the Efetov theory, the dominant geometries are locally treelike, and the sum over geometries diverges in a way that is similar to quantum gravity's divergence when all topologies are included. Expertise from the field of dynamically triangulated quantum gravity about sums over geometries may be able to remedy these defects and fulfill the Efetov theory's original promise. The other saddle points of the Efetov Lagrangian are also analyzed; the Hessian at these points is nonnormal and pseudo-Hermitian, which is unusual for bosonic theories. The standard formula for Gaussian integrals is generalized to nonnormal kernels
Vector-tensor interaction of gravitation
Energy Technology Data Exchange (ETDEWEB)
Zhang Yuan-zhong; Guo han-ying
1982-11-01
In the paper, by using the equation of motion a particle, we show that the antigravity exist in the vector-tensor model of gravitation. Thus the motion of a particle deviates from the geodesic equation. In Newtonian approximation and weak gravitational field, acceleration of a particle in a spherically symmetric and astatic gravitation field is zero. The result is obviously not in agreement with gravitational phenomena.
Czech Academy of Sciences Publication Activity Database
Plocková, Jana; Chmelík, Josef
2006-01-01
Roč. 1118, č. 2 (2006), s. 253-260 ISSN 0021-9673 R&D Projects: GA MZe QD1005 Institutional research plan: CEZ:AV0Z40310501 Keywords : gravitational field flow fractionation * focusing elution mode * carrier liquid density Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.554, year: 2006
Electromagnetic signatures of far-field gravitational radiation in the 1 + 3 approach
International Nuclear Information System (INIS)
Chua, Alvin J K; Cañizares, Priscilla; Gair, Jonathan R
2015-01-01
Gravitational waves (GWs) from astrophysical sources can interact with background electromagnetic fields, giving rise to distinctive and potentially detectable electromagnetic signatures. In this paper, we study such interactions for far-field gravitational radiation using the 1 + 3 approach to relativity. Linearized equations for the electromagnetic field on perturbed Minkowski space are derived and solved analytically. The inverse Gertsenshteĭn conversion of GWs in a static electromagnetic field is rederived, and the resultant electromagnetic radiation is shown to be significant for highly magnetized pulsars in compact binary systems. We also obtain a variety of nonlinear interference effects for interacting gravitational and electromagnetic waves, although wave–wave resonances previously described in the literature are absent when the electric–magnetic self-interaction is taken into account. The fluctuation and amplification of electromagnetic energy flux as the GW strength increases towards the gravitational–electromagnetic frequency ratio is a possible signature of gravitational radiation from extended astrophysical sources. (paper)
New exact solution for the exterior gravitational field of a charged spinning mass
International Nuclear Information System (INIS)
Chamorro, A.; Manko, V.S.; Denisova, T.E.
1991-01-01
An exact asymptotically flat solution of the Einstein-Maxwell equations describing the exterior gravitational field of a charged rotating axisymmetric mass possessing an arbitrary set of multipole moments is presented explicitly
New exact solution for the exterior gravitational field of a spinning mass
International Nuclear Information System (INIS)
Manko, V.S.
1990-01-01
An exact asymptotically flat solution of the vacuum Einstein equations representing the exterior gravitational field of a stationary axisymmetric mass with an arbitrary mass-multipole structure is presented
International Nuclear Information System (INIS)
Poisson, Eric
2004-01-01
The first objective of this work is to obtain practical prescriptions to calculate the absorption of mass and angular momentum by a black hole when external processes produce gravitational radiation. These prescriptions are formulated in the time domain (in contrast with the frequency-domain formalism of Teukolsky and Press) within the framework of black-hole perturbation theory. Two such prescriptions are presented. The first is based on the Teukolsky equation and it applies to general (rotating) black holes. The second is based on the Regge-Wheeler and Zerilli equations and it applies to nonrotating black holes. The second objective of this work is to apply the time-domain absorption formalisms to situations in which the black hole is either small or slowly moving; the mass of the black hole is then assumed to be much smaller than the radius of curvature of the external spacetime in which the hole moves. In the context of this small-hole/slow-motion approximation, the equations of black-hole perturbation theory can be solved analytically, and explicit expressions can be obtained for the absorption of mass and angular momentum. The changes in the black-hole parameters can then be understood in terms of an interaction between the tidal gravitational fields supplied by the external universe and the hole's tidally-induced mass and current quadrupole moments. For a nonrotating black hole the quadrupole moments are proportional to the rate of change of the tidal fields on the hole's world line. For a rotating black hole they are proportional to the tidal fields themselves. When placed in identical environments, a rotating black hole absorbs more energy and angular momentum than a nonrotating black hole
Primordial gravitational waves induced by magnetic fields in an ekpyrotic scenario
Directory of Open Access Journals (Sweden)
Asuka Ito
2017-08-01
Full Text Available Both inflationary and ekpyrotic scenarios can account for the origin of the large scale structure of the universe. It is often said that detecting primordial gravitational waves is the key to distinguish both scenarios. We show that this is not true if the gauge kinetic function is present in the ekpyrotic scenario. In fact, primordial gravitational waves sourced by the gauge field can be produced in an ekpyrotic universe. We also study scalar fluctuations sourced by the gauge field and show that it is negligible compared to primordial gravitational waves. This comes from the fact that the fast roll condition holds in ekpyrotic models.
International Nuclear Information System (INIS)
Barack, Leor; Sago, Norichika
2011-01-01
We study conservative finite-mass corrections to the motion of a particle in a bound (eccentric) strong-field orbit around a Schwarzschild black hole. We assume the particle's mass μ is much smaller than the black hole mass M, and explore post-geodesic corrections of O(μ/M). Our analysis uses numerical data from a recently developed code that outputs the Lorenz-gauge gravitational self-force (GSF) acting on the particle along the eccentric geodesic. First, we calculate the O(μ/M) conservative correction to the periastron advance of the orbit, as a function of the (gauge-dependent) semilatus rectum and eccentricity. A gauge-invariant description of the GSF precession effect is made possible in the circular-orbit limit, where we express the correction to the periastron advance as a function of the invariant azimuthal frequency. We compare this relation with results from fully nonlinear numerical-relativistic simulations. In order to obtain a gauge-invariant measure of the GSF effect for fully eccentric orbits, we introduce a suitable generalization of Detweiler's circular-orbit ''redshift'' invariant. We compute the O(μ/M) conservative correction to this invariant, expressed as a function of the two invariant frequencies that parametrize the orbit. Our results are in good agreement with results from post-Newtonian calculations in the weak-field regime, as we shall report elsewhere. The results of our study can inform the development of analytical models for the dynamics of strongly gravitating binaries. They also provide an accurate benchmark for future numerical-relativistic simulations.
General projective relativity and the vector-tensor gravitational field
International Nuclear Information System (INIS)
Arcidiacono, G.
1986-01-01
In the general projective relativity, the induced 4-dimensional metric is symmetric in three cases, and we obtain the vector-tensor, the scalar-tensor, and the scalar-vector-tensor theories of gravitation. In this work we examine the vector-tensor theory, similar to the Veblen's theory, but with a different physical interpretation
Electromagnetic Waves in a Uniform Gravitational Field and Planck's Postulate
Acedo, Luis; Tung, Michael M.
2012-01-01
The gravitational redshift forms the central part of the majority of the classical tests for the general theory of relativity. It could be successfully checked even in laboratory experiments on the earth's surface. The standard derivation of this effect is based on the distortion of the local structure of spacetime induced by large masses. The…
Gravitational field of spherical domain wall in higher dimension
Indian Academy of Sciences (India)
An exact solution of Einstein's equations is found describing the gravitational ﬁeld of a spherical domain wall with nonvanishing stress component in the direction perpendicular to the plane of the wall. Also we have studied the motion of test particle around the domain wall.
Canonical field quantization in an external time-dependent gravitational field
International Nuclear Information System (INIS)
Il'yn, S.B.; Tagirov, E.A.
1975-01-01
The Green functions of the quantum scalar fiels interacting with gravitation of the homogeneous isotropic closed Universe are studied. They have been determined as an expectation value of the time-ordered product of two field operators in the cyclic states of various, in general, unitary-nonequivalent representations of canonical commutation relations. The reqularity properties of these functions are shown to be the same as of the Feynman propagator obtained for arbitrary Riemannian space-time only in the representations that from a class unitary equivalence
Droplet rotation model apply in steam uniform flow and gravitational field
International Nuclear Information System (INIS)
Zhang Jinyi; Bo Hanliang; Sun Yuliang; Wang Dazhong
2012-01-01
The mechanism droplet movement behavior and the qualitative description of droplet trajectory in the steam uniform flow field in the gravitational field were researched with droplet rotation model. According to the mechanism of gravitational field and uniform flow fields, the effects on droplets movement were analyzed and the importance of lift forces was also discussed. Finally, a general trajectory and mechanism of the droplets movement was derived which lays the groundwork for the qualitative analysis of the single-drop model and could be general enough to be used in many applications. (authors)
On gravitational wave energy in Einstein gravitational theory
International Nuclear Information System (INIS)
Folomeshkin, V.N.; Vlasov, A.A.
1978-01-01
By the example of precise wave solutions for the Einstein equations it is shown that a standard commonly adopted formulation of energy-momentum problem with pseudotensors provides us either with a zero or sign-variable values for the energy of gravitational waves. It is shown that if in the Einstein gravitational theory a strict transition to the limits of weak fields is realised then the theory gives us an unambiguous zero result for weak gravitational waves. The well-known non-zero result arises due to incorrect transition to weak field approximation in the Einstein gravitation theory
Equations of motion derived from a generalization of Einstein's equation for the gravitational field
International Nuclear Information System (INIS)
Mociutchi, C.
1980-01-01
The extended Einstein's equation, combined with a vectorial theory of maxwellian type of the gravitational field, leads to: a) the equation of motion; b) the equation of the trajectory for the static case of spherical symmetry, the test particle having a rest mass other than zero, and c) the propagation of light on null geodesics. All the basic tests of the theory given by Einstein's extended equation. Thus, the new theory of gravitation suggested by us is competitive. (author)
Performance and Flow Field of a Gravitation Vortex Type Water Turbine
Nishi, Yasuyuki; Inagaki, Terumi
2017-01-01
A gravitation vortex type water turbine, which mainly comprises a runner and a tank, generates electricity by introducing a flow of water into the tank and using the gravitation vortex generated when the water drains from the bottom of the tank. This water turbine is capable of generating electricity using a low head and a low flow rate with relatively simple structure. However, because its flow field has a free surface, this water turbine is extremely complicated, and thus its relevance to p...
The gravitational field of a charged global monopole
Energy Technology Data Exchange (ETDEWEB)
Min-Qiang Lu [East China Univ. of Science and Tecnology, Shangai (China). School of Fundamental Education]|[East China Inst. for Theoretical Physics, Shangai (China)
1998-10-01
A charged global monopole formed as a consequence of the spontaneous breakdown of a global symmetry should have a mass that grows linearly with the distance off its core where the gravitational effect of this configuration is equivalent to that of the deficit solid angle in the metric and the relatively tiny mass at the origin. In this paper it is shown that this small effective mass depends on the charge in that there exists a negative mass when the charge number Q is less than a critical value Q{sub c}r and that there appears a positive one when Q>Q{sub c}r.
Critical opalescence of neutrons in nonuniform liquid in the gravitation field
International Nuclear Information System (INIS)
Sugakov, V.I.; Chalyj, A.V.; Chernenko, L.M.
1991-01-01
Single elastic scattering of neutrons has been investigated in a liquid near the critical point. Double differential cross sections of neutron scattering are obtained in such a system with allowance for the gravitational effect and in various approximation for the pair correlation function of density fluctuations
On the effects of gravitational fields on the electrical properties of matter
International Nuclear Information System (INIS)
Opat, G.I.
1993-01-01
A discussion of the electrical state of a conducting solid in a static gravitational field is presented. The analysis of the stress-gravitational force balance inside the solid is complicated, however, outside the solid, in the evanescent electron field, the analysis of such a balance simplifies greatly. As a consequence of this external analysis, an expression for the electric field external to the body is presented which includes the direct effect of gravity on the electrons, as well as the indirect effect due to the stress induced by gravity acting on the bulk solid. Such fields are an important determinant of the gravitational motion of charged particles within metallic shields. 4 refs., 1 fig
Directory of Open Access Journals (Sweden)
Chifu E. N.
2009-07-01
Full Text Available General Relativistic metric tensors for gravitational fields exterior to homogeneous spherical mass distributions rotating with constant angular velocity about a fixed di- ameter are constructed. The coeffcients of affine connection for the gravitational field are used to derive equations of motion for test particles. The laws of conservation of energy and angular momentum are deduced using the generalized Lagrangian. The law of conservation of angular momentum is found to be equal to that in Schwarzschild’s gravitational field. The planetary equation of motion and the equation of motion for a photon in the vicinity of the rotating spherical mass distribution have rotational terms not found in Schwarzschild’s field.
Nelson's stochastic quantization of free linearized gravitational field and its Markovian structure
International Nuclear Information System (INIS)
Lim, S.C.
1983-05-01
It is shown that by applying Nelson's stochastic quantization scheme to free linearized gravitational field tensor one can associate with the resulting stochastic system a stochastic tensor field which coincides with the ''space'' part of the Riemannian tensor in Euclidean space-time. However, such a stochastic field fails to satisfy the Markov property. Instead, it satisfies the reflection positivity. The Markovian structure of the stochastic fields associated with the electromagnetic field is also discussed. (author)
International Nuclear Information System (INIS)
Palenzuela, Carlos; Lehner, Luis; Yoshida, Shin
2010-01-01
In addition to producing loud gravitational waves, the dynamics of a binary black hole system could induce emission of electromagnetic radiation by affecting the behavior of plasmas and electromagnetic fields in their vicinity. We study how the electromagnetic fields are affected by a pair of orbiting black holes through the merger. In particular, we show how the binary's dynamics induce a variability in possible electromagnetically induced emissions as well as an enhancement of electromagnetic fields during the late-merge and merger epochs. These time dependent features will likely leave their imprint in processes generating detectable emissions and can be exploited in the detection of electromagnetic counterparts of gravitational waves.
International Nuclear Information System (INIS)
Barut, A.O.; Cruz, M.G.
1992-08-01
We use the method of analytic continuation of the equation of motion including the self-fields to evaluate the radiation reaction for a classical relativistic spinning point particle in interaction with scalar, tensor and linearized gravitational fields in flat spacetime. In the limit these equations reduce to those of spinless particles. We also show the renormalizability of these theories. (author). 10 refs
Stability of self-gravitating homogeneous spheroid with azimuthal magnetic field. I
International Nuclear Information System (INIS)
Antonov, V.A.; Zheleznyak, O.A.
1988-01-01
The influence of a frozen magnetic field on the stability of a self-gravitating homogeneous spheroid with respect to a deformation that transforms it into a triaxial ellipsoid is investigated. It is shown that an azimuthal magnetic field is a stabilizing factor, allowing the spheroid to be stable at e > e/sub cr/ = 0.95285
Gravitational Field effects on the Decoherence Process and the Quantum Speed Limit.
Dehdashti, Sh; Avazzadeh, Z; Xu, Z; Shen, J Q; Mirza, B; Wang, H
2017-11-08
In this paper we use spinor transformations under local Lorentz transformations to investigate the curvature effect on the quantum-to-classical transition, described in terms of the decoherence process and of the quantum speed limit. We find that gravitational fields (introduced adopting the Schwarzschild and anti-de Sitter geometries) affect both the decoherence process and the quantum speed limit of a quantum particle with spin-1/2. In addition, as a tangible example, we study the effect of the Earth's gravitational field, characterized by the Rindler space-time, on the same particle. We find that the effect of the Earth's gravitational field on the decoherence process and quantum speed limit is very small, except when the mean speed of the quantum particle is comparable to the speed of light.
Gravitational field of static p -branes in linearized ghost-free gravity
Boos, Jens; Frolov, Valeri P.; Zelnikov, Andrei
2018-04-01
We study the gravitational field of static p -branes in D -dimensional Minkowski space in the framework of linearized ghost-free (GF) gravity. The concrete models of GF gravity we consider are parametrized by the nonlocal form factors exp (-□/μ2) and exp (□2/μ4) , where μ-1 is the scale of nonlocality. We show that the singular behavior of the gravitational field of p -branes in general relativity is cured by short-range modifications introduced by the nonlocalities, and we derive exact expressions of the regularized gravitational fields, whose geometry can be written as a warped metric. For large distances compared to the scale of nonlocality, μ r →∞ , our solutions approach those found in linearized general relativity.
A possible unification of the electromagnetic and weak interaction with the gravitational field
International Nuclear Information System (INIS)
Tauber, G.E.
1982-01-01
It is suggested that the generators of SL(6,c) containing the Lorentz group SL(2,c) and SU 3 as sub-groups, may be unified with the gravitational field. For that purpose they are combined into a single ''tetrad'' whose completeness relation then yields the gravitational potentials. The appropriate field equations are written down in analogy with previous formulations given by Einstein and others. Upon projecting on the space tetrad the contributions of these internal variables may be isolated and the relevant equations found. (Auth.)
On the creation of gravitational wave by photon in external electromagnetic field
International Nuclear Information System (INIS)
Hoang Ngoc Long; Le Khac Huong
1989-08-01
The creation of the gravitational wave by the photon in an electromagnetic field is considered. We show that when the momentum of the photon is perpendicular to the field, the probability of the gravitational wave creation is largest in the direction of the motion of the photon. A numerical evaluation shows that the probability of creation in the direction mentioned is much larger than that in the direction considered, namely in the direction perpendicular to the photon momentum and may have the observable value in the present technical conditions. (author). 10 refs
On the discovery of the gravitational field equations by Einstein and Hilbert: new materials
International Nuclear Information System (INIS)
Vizgin, Vladimir P
2001-01-01
This article describes the history of discovery of the equations of gravitational field by Albert Einstein and David Hilbert in November 1915. The proof sheet of Hilbert's lecture report, made on 20 November 1915 and published in March 1916, rediscovered in 1997 in the archive of the university of Goettingen, throws new light on the history of this discovery. We also discuss the early history of the general theory of relativity that led to the expression of the general covariant equations of gravitational field. (from the history of physics)
On the universality of MOG weak field approximation at galaxy cluster scale
Directory of Open Access Journals (Sweden)
Ivan De Martino
2017-07-01
Full Text Available In its weak field limit, Scalar-tensor-vector gravity theory introduces a Yukawa-correction to the gravitational potential. Such a correction depends on the two parameters, α which accounts for the modification of the gravitational constant, and μ⁎−1 which represents the scale length on which the scalar field propagates. These parameters were found to be universal when the modified gravitational potential was used to fit the galaxy rotation curves and the mass profiles of galaxy clusters, both without Dark Matter. We test the universality of these parameters using the temperature anisotropies due to the thermal Sunyaev–Zeldovich effect. In our model the intra-cluster gas is in hydrostatic equilibrium within the modified gravitational potential well and it is described by a polytropic equation of state. We predict the thermal Sunyaev–Zeldovich temperature anisotropies produced by Coma cluster, and we compare them with those obtained using the Planck 2013 Nominal maps. In our analysis, we find α and the scale length, respectively, to be consistent and to depart from their universal values. Our analysis points out that the assumption of the universality of the Yukawa-correction to the gravitational potential is ruled out at more than 3.5σ at galaxy clusters scale, while demonstrating that such a theory of gravity is capable to fit the cluster profile if the scale dependence of the gravitational potential is restored.
Light propagation in 2PN approximation in the field of one moving monopole I. Initial value problem
Zschocke, Sven
2018-03-01
In this investigation the light propagation in the gravitational field of one arbitrarily moving body with monopole structure is considered in the second post-Newtonian approximation. It is found that the light trajectory depends on the acceleration of the body. Some of these acceleration terms are important in order to get well-defined logarithmic functions with dimensionless arguments, while all the other acceleration terms are negligible on the pico-second level of accuracy in time-delay measurements. The expressions of the observables total light deflection and time delay are determined.
Gravitational radiation quadrupole formula is valid for gravitationally interacting systems
International Nuclear Information System (INIS)
Walker, M.; Will, C.M.
1980-01-01
An argument is presented for the validity of the quadrupole formula for gravitational radiation energy loss in the far field of nearly Newtonian (e.g., binary stellar) systems. This argument differs from earlier ones in that it determines beforehand the formal accuracy of approximation required to describe gravitationally self-interacting systems, uses the corresponding approximate equation of motion explicitly, and evaluate the appropriate asymptotic quantities by matching along the correct space-time light cones
Selfinteraction force in a theory of gravitation with higher derivatives
International Nuclear Information System (INIS)
Jankiewicz, C.
1981-01-01
Approximate equations of motion are derived from gravitational field equations with higher derivatives. The approximation takes into account the selfinteraction force. The selfinteraction force coincides with the analogous force resulting from the Einstein field equations. (author)
Classical field theory. On electrodynamics, non-Abelian gauge theories and gravitation. 2. ed.
Energy Technology Data Exchange (ETDEWEB)
Scheck, Florian
2018-04-01
Scheck's successful textbook presents a comprehensive treatment, ideally suited for a one-semester course. The textbook describes Maxwell's equations first in their integral, directly testable form, then moves on to their local formulation. The first two chapters cover all essential properties of Maxwell's equations, including their symmetries and their covariance in a modern notation. Chapter 3 is devoted to Maxwell's theory as a classical field theory and to solutions of the wave equation. Chapter 4 deals with important applications of Maxwell's theory. It includes topical subjects such as metamaterials with negative refraction index and solutions of Helmholtz' equation in paraxial approximation relevant for the description of laser beams. Chapter 5 describes non-Abelian gauge theories from a classical, geometric point of view, in analogy to Maxwell's theory as a prototype, and culminates in an application to the U(2) theory relevant for electroweak interactions. The last chapter 6 gives a concise summary of semi-Riemannian geometry as the framework for the classical field theory of gravitation. The chapter concludes with a discussion of the Schwarzschild solution of Einstein's equations and the classical tests of general relativity. The new concept of this edition presents the content divided into two tracks: the fast track for master's students, providing the essentials, and the intensive track for all wanting to get in depth knowledge of the field. Cleary labeled material and sections guide students through the preferred level of treatment. Numerous problems and worked examples will provide successful access to Classical Field Theory.
Casimir effect of two conducting parallel plates in a general weak gravitational field
Energy Technology Data Exchange (ETDEWEB)
Nazari, Borzoo [University of Tehran, Faculty of Engineering Science, College of Engineering, P.O. Box 11155-4563, Tehran (Iran, Islamic Republic of)
2015-10-15
We calculate the finite vacuum energy density of the scalar and electromagnetic fields inside a Casimir apparatus made up of two conducting parallel plates in a general weak gravitational field. The metric of the weak gravitational field has a small deviation from flat spacetime inside the apparatus, and we find it by expanding the metric in terms of small parameters of the weak background. We show that the metric found can be transformed via a gauge transformation to the Fermi metric. We solve the Klein-Gordon equation exactly and find mode frequencies in Fermi spacetime. Using the fact that the electromagnetic field can be represented by two scalar fields in the Fermi spacetime, we find general formulas for the energy density and mode frequencies of the electromagnetic field. Some well-known weak backgrounds are examined and consistency of the results with the literature is shown. (orig.)
Reheating signature in the gravitational wave spectrum from self-ordering scalar fields
Energy Technology Data Exchange (ETDEWEB)
Kuroyanagi, Sachiko [Asia Pacific Center for Theoretical Physics, Pohang, Gyeongbuk, 790-784 (Korea, Republic of); Hiramatsu, Takashi [Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto, 606-8502 Japan (Japan); Yokoyama, Jun' ichi, E-mail: skuro@nagoya-u.jp, E-mail: hiramatz@yukawa.kyoto-u.ac.jp, E-mail: yokoyama@resceu.s.u-tokyo.ac.jp [Research Center for the Early Universe (RESCEU), School of Science, The University of Tokyo, Tokyo, 113-0033 Japan (Japan)
2016-02-01
We investigate the imprint of reheating on the gravitational wave spectrum produced by self-ordering of multi-component scalar fields after a global phase transition. The equation of state of the Universe during reheating, which usually has different behaviour from that of a radiation-dominated Universe, affects the evolution of gravitational waves through the Hubble expansion term in the equations of motion. This gives rise to a different power-law behavior of frequency in the gravitational wave spectrum. The reheating history is therefore imprinted in the shape of the spectrum. We perform 512{sup 3} lattice simulations to investigate how the ordering scalar field reacts to the change of the Hubble expansion and how the reheating effect arises in the spectrum. We also compare the result with inflation-produced gravitational waves, which has a similar spectral shape, and discuss whether it is possible to distinguish the origin between inflation and global phase transition by detecting the shape with future direct detection gravitational wave experiments such as DECIGO.
Responses of the Brans-Dicke field due to gravitational collapses
International Nuclear Information System (INIS)
Hwang, Dong-il; Yeom, Dong-han
2010-01-01
We study responses of the Brans-Dicke field due to gravitational collapses of scalar field pulses using numerical simulations. Double-null formalism is employed to implement the numerical simulations. If we supply a scalar field pulse, it will asymptotically form a black hole via dynamical interactions of the Brans-Dicke field. Hence, we can observe the responses of the Brans-Dicke field by two different regions. First, we observe the late time behaviors after the gravitational collapse, which include formations of a singularity and an apparent horizon. Second, we observe the fully dynamical behaviors during the gravitational collapse and view the energy-momentum tensor components. For the late time behaviors, if the Brans-Dicke coupling is greater (or smaller) than -1.5, the Brans-Dicke field decreases (or increases) during the gravitational collapse. Since the Brans-Dicke field should be relaxed to the asymptotic value with the elapse of time, the final apparent horizon becomes time-like (or space-like). For the dynamical behaviors, we observed the energy-momentum tensors around ω ∼ -1.5. If the Brans-Dicke coupling is greater than -1.5, the T uu component can be negative at the outside of the black hole. This can allow an instantaneous inflating region during the gravitational collapse. If the Brans-Dicke coupling is less than -1.5, the oscillation of the T vv component allows the apparent horizon to shrink. This allows a combination that violates weak cosmic censorship. Finally, we discuss the implications of the violation of the null energy condition and weak cosmic censorship.
Responses of the Brans-Dicke field due to gravitational collapses
Energy Technology Data Exchange (ETDEWEB)
Hwang, Dong-il; Yeom, Dong-han, E-mail: enotsae@gmail.co, E-mail: innocent@muon.kaist.ac.k [Department of Physics, KAIST, Daejeon 305-701 (Korea, Republic of)
2010-10-21
We study responses of the Brans-Dicke field due to gravitational collapses of scalar field pulses using numerical simulations. Double-null formalism is employed to implement the numerical simulations. If we supply a scalar field pulse, it will asymptotically form a black hole via dynamical interactions of the Brans-Dicke field. Hence, we can observe the responses of the Brans-Dicke field by two different regions. First, we observe the late time behaviors after the gravitational collapse, which include formations of a singularity and an apparent horizon. Second, we observe the fully dynamical behaviors during the gravitational collapse and view the energy-momentum tensor components. For the late time behaviors, if the Brans-Dicke coupling is greater (or smaller) than -1.5, the Brans-Dicke field decreases (or increases) during the gravitational collapse. Since the Brans-Dicke field should be relaxed to the asymptotic value with the elapse of time, the final apparent horizon becomes time-like (or space-like). For the dynamical behaviors, we observed the energy-momentum tensors around {omega} {approx} -1.5. If the Brans-Dicke coupling is greater than -1.5, the T{sub uu} component can be negative at the outside of the black hole. This can allow an instantaneous inflating region during the gravitational collapse. If the Brans-Dicke coupling is less than -1.5, the oscillation of the T{sub vv} component allows the apparent horizon to shrink. This allows a combination that violates weak cosmic censorship. Finally, we discuss the implications of the violation of the null energy condition and weak cosmic censorship.
Electromagnetic-gravitational conversion cross sections in external electromagnetic fields
International Nuclear Information System (INIS)
Hoang Ngoc Long; Dang Van Soa; Tuan Tran, A.
1994-09-01
The classical processes: the conversion of photons into gravitons in the static electromagnetic fields are considered by using Feynman perturbation techniques. The differential cross sections are presented for the conversion in the electric field of the flat condenser and the magnetic field of the solenoid. A numerical evaluation shows that the cross sections may have the observable value in the present technical scenario. (author). 11 refs
Mapping Orbits regarding Perturbations due to the Gravitational Field of a Cube
Directory of Open Access Journals (Sweden)
Flaviane C. F. Venditti
2015-01-01
Full Text Available The orbital dynamics around irregular shaped bodies is an actual topic in astrodynamics, because celestial bodies are not perfect spheres. When it comes to small celestial bodies, like asteroids and comets, it is even more import to consider the nonspherical shape. The gravitational field around them may generate trajectories that are different from Keplerian orbits. Modeling an irregular body can be a hard task, especially because it is difficult to know the exact shape when observing it from the Earth, due to their small sizes and long distances. Some asteroids have been observed, but it is still a small amount compared to all existing asteroids in the Solar System. An approximation of their shape can be made as a sum of several known geometric shapes. Some three-dimensional figures have closed equations for the potential and, in this work, the formulation of a cube is considered. The results give the mappings showing the orbits that are less perturbed and then have a good potential to be used by spacecrafts that need to minimize station-keeping maneuvers. Points in the orbit that minimizes the perturbations are found and they can be used for constellations of nanosatellites.
The effect of the equatorially symmetric zonal winds of Saturn on its gravitational field
Kong, Dali; Zhang, Keke; Schubert, Gerald; Anderson, John D.
2018-04-01
The penetration depth of Saturn’s cloud-level winds into its interior is unknown. A possible way of estimating the depth is through measurement of the effect of the winds on the planet’s gravitational field. We use a self-consistent perturbation approach to study how the equatorially symmetric zonal winds of Saturn contribute to its gravitational field. An important advantage of this approach is that the variation of its gravitational field solely caused by the winds can be isolated and identified because the leading-order problem accounts exactly for rotational distortion, thereby determining the irregular shape and internal structure of the hydrostatic Saturn. We assume that (i) the zonal winds are maintained by thermal convection in the form of non-axisymmetric columnar rolls and (ii) the internal structure of the winds, because of the Taylor-Proundman theorem, can be uniquely determined by the observed cloud-level winds. We calculate both the variation ΔJn , n = 2, 4, 6 … of the axisymmetric gravitational coefficients Jn caused by the zonal winds and the non-axisymmetric gravitational coefficients ΔJnm produced by the columnar rolls, where m is the azimuthal wavenumber of the rolls. We consider three different cases characterized by the penetration depth 0.36, R S, 0.2, R S and 0.1, R S, where R S is the equatorial radius of Saturn at the 1-bar pressure level. We find that the high-degree gravitational coefficient (J 12 + ΔJ 12) is dominated, in all the three cases, by the effect of the zonal flow with |ΔJ 12/J 12| > 100% and that the size of the non-axisymmetric coefficients ΔJ mn directly reflects the depth and scale of the flow taking place in the Saturnian interior.
Equations of motion for anisotropic nonlinear elastic continuum in gravitational field
International Nuclear Information System (INIS)
Sokolov, S.N.
1994-01-01
Equations of motion for anisotropic nonlinear elastic continuum in the gravitational field are written in the form convenient for numerical calculations. The energy-stress tensor is expressed through scalar and tensor products of three vectors frozen in the continuum. Examples of expansion of the energy-stress tensor into scalar and tensor invariants corresponding to some crystal classes are given. 47 refs
Newton\\'s equation of motion in the gravitational field of an oblate ...
African Journals Online (AJOL)
In this paper, we derived Newton's equation of motion for a satellite in the gravitational scalar field of a uniformly rotating, oblate spheriodal Earth using spheriodal coordinates. The resulting equation is solved for the corresponding precession and the result compared with similar ones. JONAMP Vol. 11 2007: pp. 279-286 ...
Note on the evolution of the gravitational potential in Rastall scalar field theories
International Nuclear Information System (INIS)
Fabris, J.C.; Hamani Daouda, M.; Piattella, O.F.
2012-01-01
We investigate the evolution of the gravitational potential in Rastall scalar field theories. In a single component model a consistent perturbation theory, formulated in the Newtonian gauge, is possible only for γ=1, which is the General Relativity limit. On the other hand, the addition of another canonical fluid component allows to consider the case γ≠1.
Post-Newtonian (and higher order) observational constraints on gravitation field theories
International Nuclear Information System (INIS)
Nordtvedt, K.
1982-01-01
The empirically confirmed premise that gravity is a metric theory is accepted. The general class of all Lagrangian-based metric field theories of gravity is considered. A collection of observational tests of gravitational phenomena which points to a specific metric theory of gravity and rules out alternatives is created
International Nuclear Information System (INIS)
Rumpf, H.
1984-01-01
Synchronization by slow clock transport is shown to be equivalent so that by electromagnetic signals for clocks moving along the trajectories of a timelike Killing vector field, provided the gravitational redshift is corrected for and the synchronization paths are the same. (Author)
Statistical metastability of a classical ideal gas in the Schwarzschild gravitational field
International Nuclear Information System (INIS)
Gaina, A.B.; Zaslavskii, O.B.
1990-01-01
A classical ideal gas in the Schwarzschild gravitational field is considered. The lifetime of a gas influenced by thermal fluctuations has been calculated. It is shown that thermal effects can lead to the electric charging of a black hole in a plasma containing particles with different masses. (author)
Vogt, D.; Letelier, P.S.
2005-01-01
An exact but simple general relativistic model for the gravitational field of active galactic nuclei is constructed, based on the superposition in Weyl coordinates of a black hole, a Chazy-Curzon disk and two rods, which represent matter jets. The influence of the rods on the matter properties of
International Nuclear Information System (INIS)
Zhu Chunhua; Zha Chaozheng
2005-01-01
The detection of a particle in electromagnetic plus gravitational fields is investigated. We obtain a set of quantum nondemolition variables. The continuous measurements of these nondemolition parameters are analyzed in the framework of restricted path integral formalism. We manipulate the corresponding propagators, and deduce the probabilities associated with the possible measurement outputs.
Palatnik, Dmitriy
2002-01-01
In this note one suggests a possibility of direct observation of the $\\theta$-parameter, introduced in the Born--Infeld theory of electroweak and gravitational fields, developed in quant-ph/0202024. Namely, one may treat $\\theta$ as a universal constant, responsible for correction to the Coulomb and Newton laws, allowing direct interaction between electrical charges and masses.
New exact solutions of Einstein's field equations: gravitational force can also be repulsive!
International Nuclear Information System (INIS)
Dietz, W.
1988-01-01
This article has not been written for specialists of exact solutions of Einstein's field equations but for physicists who are interested in nontrivial information on this topic. We recall the history and some basic properties of exact solutions of Einstein's vacuum equations. We show that the field equations for stationary axisymmetric vacuum gravitational fields can be expressed by only one nonlinear differential equation for a complex function. This compact form of the field equations allows the generation of almost all stationary axisymmetric vacuum gravitational fields. We present a new stationary two-body solution of Einstein's equations as an application of this generation technique. This new solution proves the existence of a macroscopic, repulsive spin-spin interaction in general relativity. Some estimates that are related to this new two-body solution are given
Some consequences of the law of local energy conservation in the gravitational field
International Nuclear Information System (INIS)
Beshtoev, Kh.M.
2001-01-01
At gravitational interactions of bodies and particles there appears the defect of masses, i.e. the energy yields since the bodies (or particles) are attracted. It is shown that this changing of the effective mass of the body (or the particle) in the external gravitational field leads to changes of the measurement units: velocity and length (relative to the standard measurement units). The expression describing the advance of the perihelion of the planet (the Mercury) has been obtained. This expression is mathematically identical to Einstein's equation for the advance of the perihelion of the Mercury
A study of fermions coupled to gauge and gravitational fields on a cylinder
Energy Technology Data Exchange (ETDEWEB)
Lano, R.P. [Iowa Univ., Iowa City, IA (United States). Dept. of Physics and Astronomy; Rodgers, V.G.J. [Iowa Univ., Iowa City, IA (United States). Dept. of Physics and Astronomy
1995-03-06
Fermions on a cylinder coupled to background gravitation and gauge fields are examined by studying the geometric action associated with the symmetries of such a system. We are able to show that the gauge coupling constant is constrained to a value of 1/N where N is an integer. Furthermore, in direct analogy with a Yang-Mills theory a new gravitational theory is introduced which couples to the fermions by promoting the coadjoint vector of the diffeomorphism sector to a dynamical variable. The classical dynamics of this theory are examined by displaying its symplectic structure and showing that it is equivalent to a one-dimensional system. ((orig.)).
Stochastic quantization and gauge-fixing of the linearized gravitational field
International Nuclear Information System (INIS)
Hueffel, H.; Rumpf, H.
1984-01-01
Due to the indefiniteness of the Euclidean gravitational action the Parisi-Wu stochastic quantization scheme fails in the case of the gravitational field. Therefore we apply a recently proposed modification of stochastic quantization that works in Minkowski space and preserves all the advantages of the original Parisi-Wu method; in particular no gauge-fixing is required. Additionally stochastic gauge-fixing may be introduced and is also studied in detail. The graviton propagators obtained with and without stochastic gauge-fixing all exhibit a noncausal contribution, but apart from this effect the gauge-invariant quantities are the same as those of standard quantization. (Author)
Canonical quantum theory of gravitational field with higher derivatives, 2
International Nuclear Information System (INIS)
Kawasaki, Shoichiro; Kimura, Tadahiko
1982-01-01
The asymptotic fields in a canonically quantized graviational field with higher derivatives are analyzed. A possible mechanism of the recovery of the physical S-matrix unitarity is discussed. The constraint nabla sub(μ)(B sup(μν) + (Beta /α)g sup(μν)B) = 0 due to the Bianchi identity on R sub(μν) is treated by Dirac's method. (author)
Quantum fields on manifolds: PCT and gravitationally induced thermal states
International Nuclear Information System (INIS)
Sewell, G.L.
1982-01-01
We formulate an axiomatic scheme, designed to provide a framework for a general, rigorous theory of relativistic quantum fields on a class of manifolds, that includes Kruskal's extension of Schwarzchild space-time, as well as Minkowski space-time. The scheme is an adaptation of Wightman's to this class of manifolds. We infer from it that, given an arbitrary field (in general, interacting) on a manifold X, the restriction of the field to a certain open submanifold X/sup( + ), whose boundaries are event horizons, satisfies the Kubo--Martin--Schwinger (KMS) thermal equilibrium conditions. This amounts to a rigorous, model-independent proof of a generalized Hawking--Unruh effect. Further, in cases where the field enjoys a certain PCT symmetry, the conjugation governing the KMS condition is just the PCT operator. The key to these results is an analogue, that we prove, of the Bisognano--Wichmann theorem [J. Math. Phys. 17, (1976), Theorem 1]. We also construct an alternative scheme by replacing a regularity condition at an event horizon by the assumption that the field in X/sup( + ) is in a ground, rather then a thermal, state. We show that, in this case, the observables in X/sup( + ) are uncorrelated to those in its causal complement, X/sup( - ), and thus that the event horizons act as physical barriers. Finally, we argue that the choice between the two schemes must be dictated by the prevailing conditions governing the state of the field
Astrometric and Timing Effects of Gravitational Waves from Localized Sources
Kopeikin, Sergei M.; Schafer, Gerhard; Gwinn, Carl R.; Eubanks, T. Marshall
1998-01-01
A consistent approach for an exhaustive solution of the problem of propagation of light rays in the field of gravitational waves emitted by a localized source of gravitational radiation is developed in the first post-Minkowskian and quadrupole approximation of General Relativity. We demonstrate that the equations of light propagation in the retarded gravitational field of an arbitrary localized source emitting quadrupolar gravitational waves can be integrated exactly. The influence of the gra...
Bound states of spin-half particles in a static gravitational field close to the black hole field
Spencer-Smith, A. F.; Gossel, G. H.; Berengut, J. C.; Flambaum, V. V.
2013-03-01
We consider the bound-state energy levels of a spin-1/2 fermion in the gravitational field of a near-black hole object. In the limit that the metric of the body becomes singular, all binding energies tend to the rest-mass energy (i.e. total energy approaches zero). We present calculations of the ground state energy for three specific interior metrics (Florides, Soffel and Schwarzschild) for which the spectrum collapses and becomes quasi-continuous in the singular metric limit. The lack of zero or negative energy states prior to this limit being reached prevents particle pair production occurring. Therefore, in contrast to the Coulomb case, no pairs are produced in the non-singular static metric. For the Florides and Soffel metrics the singularity occurs in the black hole limit, while for the Schwarzschild interior metric it corresponds to infinite pressure at the centre. The behaviour of the energy level spectrum is discussed in the context of the semi-classical approximation and using general properties of the metric.
Pade approximants in field theory: pion and kaon systems
International Nuclear Information System (INIS)
Zinn-Justin, J.
1969-01-01
We construct the Pade approximants of the S-matrix, starting from the perturbation series, in the case of two body pion and kaon systems. We have three parameters. The seven lowest lying two body resonances (ρ, K * (890), φ, K * (1420), f 0 , f', A 2 ) are obtained within a few per cent of their actual masses. The Regge trajectories are rising, the intercepts of the ρ and f 0 agree well with the experimental values. In the appendices we give some properties and applications of the Pade approximants. (author) [fr
Charged Tori in Spherical Gravitational and Dipolar Magnetic Fields
Czech Academy of Sciences Publication Activity Database
Slaný, P.; Kovář, J.; Stuchlík, Z.; Karas, Vladimír
2013-01-01
Roč. 205, č. 1 (2013), 3/1-3/16 ISSN 0067-0049 R&D Projects: GA ČR(CZ) GC13-00070J Institutional support: RVO:67985815 Keywords : accretion * accretion disks * magnetic fields Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 14.137, year: 2013
Canonical quantum theory of gravitational field with higher derivatives, 3
International Nuclear Information System (INIS)
Kawasaki, Shoichiro; Kimura, Tadahiko
1983-01-01
A formulation which is invariant under an additional BRS transformation with nilpotency of order two is presented for the canonical theory of the renormalizable quantum gravity with higher derivatives. The canonical quantization is carried out and various equal time (anti-) commutation relations are derived. The asymptotic fields are reanalyzed. The physical particle contents are just the same as those obtained in previous papers. (author)
An Irrotational Flow Field That Approximates Flat Plate Boundary Conditions
Ruffa, Anthony A.
2004-01-01
An irrotational solution is derived for the steady-state Navier-Stokes equations that approximately satisfies the boundary conditions for flow over a finite flat plate. The nature of the flow differs substantially from boundary layer flow, with severe numerical difficulties in some regions.
International Nuclear Information System (INIS)
Lugovenko, V.N.; Pronin, V.P.; Kosheleva, L.V.
1989-01-01
A method for the correlation analysis of anomalous geophysical fields at different survey altitudes is proposed. The joint correlation analysis is performed for anomalous magnetic and gravitational fields for regions with different types of the Earth's crust. (author)
Gravitation: Field theory par excellence Newton, Einstein, and beyond
International Nuclear Information System (INIS)
Yilmaz, H.
1984-01-01
Newtonian gravity satifies the two principles of equivalence m/sub i/ = m/sub p/ (the passive principle) and m/sub a/ = m/sub p/ (the active principle). A relativistic gauge field concept in D = s+1 dimensional curved-space will, in general, violate these two principles as in m/sub p/ = αm/sub i/, m/sub a/ = lambdam/sub p/ where α = D: 3 and lambda measures the presence of the field stress-energy t/sup ν//sub μ/ in the field equations. It is shown that α = 1, lambda = 0 corresponds to general relativity and α = 1, lambda = 1 to the theory of the author. It is noted that the correspondence limit of general relativity is not Newton's theory but a theory suggested by Robert Hooke a few years before Newton published his in Principia. The gauge is independent of the two principles but had to do with local special relativistic correspondence and compatibility with quantum mechanics. It is shown that unless α = 1, lambda = 1 the generalized theory cannot predict correctly many observables effects, including the 532'' per century Newtonian part in Mercury's perihelion advance
Analytic Approximation to Radiation Fields from Line Source Geometry
International Nuclear Information System (INIS)
Michieli, I.
2000-01-01
Line sources with slab shields represent typical source-shield configuration in gamma-ray attenuation problems. Such shielding problems often lead to the generalized Secant integrals of the specific form. Besides numerical integration approach, various expansions and rational approximations with limited applicability are in use for computing the value of such integral functions. Lately, the author developed rapidly convergent infinite series representation of generalized Secant Integrals involving incomplete Gamma functions. Validity of such representation was established for zero and positive values of integral parameter a (a=0). In this paper recurrence relations for generalized Secant Integrals are derived allowing us simple approximate analytic calculation of the integral for arbitrary a values. It is demonstrated how truncated series representation can be used, as the basis for such calculations, when possibly negative a values are encountered. (author)
Large-N -approximated field theory for multipartite entanglement
Facchi, P.; Florio, G.; Parisi, G.; Pascazio, S.; Scardicchio, A.
2015-12-01
We try to characterize the statistics of multipartite entanglement of the random states of an n -qubit system. Unable to solve the problem exactly we generalize it, replacing complex numbers with real vectors with Nc components (the original problem is recovered for Nc=2 ). Studying the leading diagrams in the large-Nc approximation, we unearth the presence of a phase transition and, in an explicit example, show that the so-called entanglement frustration disappears in the large-Nc limit.
Magnetic structure of a nanoparticle in mean-field approximation
International Nuclear Information System (INIS)
Usov, N.A.; Gudoshnikov, S.A.
2005-01-01
Quantum mechanical Hartree-Fock approximation is used to calculate a magnetic state of a nanoparticle. The cases of ferromagnetic (FM), antiferromagnetic (AFM) and composite particles having an FM core surrounded by an AFM shell are considered in a unified manner. It is shown that effective interaction at the boundary between FM and AFM areas rotates FM and AFM spins perpendicular to each other. The coercive force of a composite particle increases as a function of the AFM shell thickness
Horizon thermodynamics and gravitational field equations in Horava-Lifshitz gravity
International Nuclear Information System (INIS)
Cai Ronggen; Ohta, Nobuyoshi
2010-01-01
We explore the relationship between the first law of thermodynamics and gravitational field equation at a static, spherically symmetric black hole horizon in Horava-Lifshitz theory with/without detailed balance. It turns out that as in the cases of Einstein gravity and Lovelock gravity, the gravitational field equation can be cast to a form of the first law of thermodynamics at the black hole horizon. This way we obtain the expressions for entropy and mass in terms of black hole horizon, consistent with those from other approaches. We also define a generalized Misner-Sharp energy for static, spherically symmetric spacetimes in Horava-Lifshitz theory. The generalized Misner-Sharp energy is conserved in the case without matter field, and its variation gives the first law of black hole thermodynamics at the black hole horizon.
Theory of a gauge gravitational field at localization of the Einstein group
International Nuclear Information System (INIS)
Tunyak, V.N.
1985-01-01
Theory of a gauge gravitational field when localizing a group of movements of the Einstein homogeneous static Universe (the R x SO Einstein group (4)) has been formulated. Proceeding from tetrade components of the Einstein Universe the relation between the Riemann metrics and gauge fields of the Einstein group has been established. Metric coherence with torsion transforming to the Kristoffel coherence of the Einstein Universe has been found when switching out gauge fields. It is shown that within the limit of infinite radius of the Einstein Universe curvature the given Einstein-invariant gauge theory transforms to the tetrade gravitation theory with localized triade rotations. Exact solutions in the form of nonsingular cosmological models have been obtained
BRS symmetry in stochastic quantization of the gravitational field
International Nuclear Information System (INIS)
Nakazawa, Naohito.
1989-12-01
We study stochastic quantization of gravity in terms of a BRS invariant canonical operator formalism. By introducing artificially canonical momentum variables for the original field variables, a canonical formulation of stochastic quantization is proposed in a sense that the Fokker-Planck hamiltonian is the generator of the fictitious time translation. Then we show that there exists a nilpotent BRS symmetry in an enlarged phase space for gravity (in general, for the first-class constrained systems). The stochastic action of gravity includes explicitly an unique De Witt's type superspace metric which leads to a geometrical interpretation of quantum gravity analogous to nonlinear σ-models. (author)
Approximate photochemical dynamics of azobenzene with reactive force fields
Li, Yan; Hartke, Bernd
2013-12-01
We have fitted reactive force fields of the ReaxFF type to the ground and first excited electronic states of azobenzene, using global parameter optimization by genetic algorithms. Upon coupling with a simple energy-gap transition probability model, this setup allows for completely force-field-based simulations of photochemical cis→trans- and trans→cis-isomerizations of azobenzene, with qualitatively acceptable quantum yields. This paves the way towards large-scale dynamics simulations of molecular machines, including bond breaking and formation (via the reactive force field) as well as photochemical engines (presented in this work).
Massive spin-two particle in a gravitational field
International Nuclear Information System (INIS)
Tauber, G.
1980-01-01
The spin-two particle is described by a symmetric tensor hsub(μupsilon) subject to the subsidiary conditions hsub(α)sup(α) deltasub(α)hsup(αβ) = O. Their covariant generalization and the 'wave equation' have been obtained directly from the Eulerian variational equations by algebraic methods only. In addition to the tensor field hsub(μupsilon) a symmetric third-rank tensor suplambda)GAMMAsub(μupsilon) sup(lambda)GAMMAsub(upsilonμ) as well as a vector field Asub(μ) have been added, neither of which enter in the final result. The Lagrangian function is taken as a linear sum of all combinations which can be constructed from these functions, as well as terms involving the curvature and its two possible contractions. Variation with respect to hsup(μupsilon), sup(lambda)GAMMAsub(μupsilon) and Asub(μ) independently gives the Euler equations. Combining the various trace equations and choice of arbitrary constants yields the subsidiary conditions, while the Euler equations themselves give the connection between the auxiliary functions and the tensor hsub(μupsilon) Finally, variation with respect to gsup(μupsilon) yields the energy-momentum tensor. (author)
International Nuclear Information System (INIS)
Bencivinni, Daniele
2011-01-01
The chapters about the propagation of the electromagnetic field, its properties in view of the propagation in space, the accompanying momentum, its kinetic energy and its mass-equivalent distribution of the total energy coupled to the relativistic mass represent today known and scientifically for a long time acknowledged as well as proved description of each phenomena. They are successively in a mathematically simple way formally listed and explained. The fundamental results of quantum mechanics, the quantum-mechanical momentum, Planck's action quantum etc. are also presented in a simplified way. Also the essential forms of special relativity theory concerning the propagation of energy and momentum are presented. In a last setpit is checked, whether a possible common entity between the listed scientific experiences can be established. Possible explanation approaches on the described connections and the subsequent results are presented. If the gravitational waves are interpreted as quantized electromagnetic quantum waves, as matter waves, which can be assigned to a mass in the sense of Louis de Broglie and are for instance detectable as electron waves, by means of the relativistic quantum-mechanical spatial radiation gravitation could be described. So the ''quantum-mechanical wave'' could be responsible for the generation of mass via the interaction of elementary quantum fields. The propagation of one of these as mass appearing interaction of bound quantum fields can carry a conventional momentum because of its kinetic energy. The interaction in the Bose-Einstein condensate shows that the cooled rest mass exhibits the picture of a standing wave, the wave front of which propagates into the space. Because of the massive superposition of interference pattern warns the gravitational respectively matter wave can no more be isolated. A spatial radiation is however possible. Matter can generate a radiation in front of the inertial mass (quantum waves). If it succeeds to
Back-reaction beyond the mean field approximation
International Nuclear Information System (INIS)
Kluger, Y.
1993-01-01
A method for solving an initial value problem of a closed system consisting of an electromagnetic mean field and its quantum fluctuations coupled to fermions is presented. By tailoring the large N f expansion method to the Schwinger-Keldysh closed time path (CTP) formulation of the quantum effective action, causality of the resulting equations of motion is ensured, and a systematic energy conserving and gauge invariant expansion about the electromagnetic mean field in powers of 1/N f is developed. The resulting equations may be used to study the quantum nonequilibrium effects of pair creation in strong electric fields and the scattering and transport processes of a relativistic e + e - plasma. Using the Bjorken ansatz of boost invariance initial conditions in which the initial electric mean field depends on the proper time only, we show numerical results for the case in which the N f expansion is truncated in the lowest order, and compare them with those of a phenomenological transport equation
Fuzzy Universal Model Approximator for Distributed Solar Collector Field Control
Elmetennani, Shahrazed
2014-07-01
This paper deals with the control of concentrating parabolic solar collectors by forcing the outlet oil temperature to track a set reference. A fuzzy universal approximate model is introduced in order to accurately reproduce the behavior of the system dynamics. The proposed model is a low order state space representation derived from the partial differential equation describing the oil temperature evolution using fuzzy transform theory. The resulting set of ordinary differential equations simplifies the system analysis and the control law design and is suitable for real time control implementation. Simulation results show good performance of the proposed model.
International Nuclear Information System (INIS)
Porter, Edward K
2005-01-01
In this study, we apply post-Newtonian (T-approximants) and resummed post-Newtonian (P-approximants) to the case of a test particle in equatorial orbit around a Kerr black hole. We compare the two approximants by measuring their effectualness (i.e., larger overlaps with the exact signal) and faithfulness (i.e., smaller biases while measuring the parameters of the signal) with the exact (numerical) waveforms. We find that in the case of prograde orbits, T-approximant templates obtain an effectualness of ∼0.99 for spins q ≤ 0.75. For 0.75 0.99 for all spins up to q = 0.95. The bias in the estimation of parameters is much lower in the case of P-approximants than T-approximants. We find that P-approximants are both effectual and faithful and should be more effective than T-approximants as a detection template family when q > 0. For q < 0, both T- and P-approximants perform equally well so that either of them could be used as a detection template family. However, for parameter estimation, the P-approximant templates still outperform the T-approximants
Dark sector impact on gravitational collapse of an electrically charged scalar field
Energy Technology Data Exchange (ETDEWEB)
Nakonieczna, Anna [Institute of Physics, Maria Curie-Skłodowska University,Plac Marii Curie-Skłodowskiej 1, 20-031 Lublin (Poland); Institute of Agrophysics, Polish Academy of Sciences,Doświadczalna 4, 20-290 Lublin (Poland); Rogatko, Marek [Institute of Physics, Maria Curie-Skłodowska University,Plac Marii Curie-Skłodowskiej 1, 20-031 Lublin (Poland); Nakonieczny, Łukasz [Institute of Theoretical Physics, Faculty of Physics, University of Warsaw,Pasteura 5, 02-093 Warszawa (Poland)
2015-11-04
Dark matter and dark energy are dominating components of the Universe. Their presence affects the course and results of processes, which are driven by the gravitational interaction. The objective of the paper was to examine the influence of the dark sector on the gravitational collapse of an electrically charged scalar field. A phantom scalar field was used as a model of dark energy in the system. Dark matter was modeled by a complex scalar field with a quartic potential, charged under a U(1)-gauge field. The dark components were coupled to the electrically charged scalar field via the exponential coupling and the gauge field-Maxwell field kinetic mixing, respectively. Complete non-linear simulations of the investigated process were performed. They were conducted from regular initial data to the end state, which was the matter dispersal or a singularity formation in a spacetime. During the collapse in the presence of dark energy dynamical wormholes and naked singularities were formed in emerging spacetimes. The wormhole throats were stabilized by the violation of the null energy condition, which occurred due to a significant increase of a value of the phantom scalar field function in its vicinity. The square of mass parameter of the dark matter scalar field potential controlled the formation of a Cauchy horizon or wormhole throats in the spacetime. The joint impact of dark energy and dark matter on the examined process indicated that the former decides what type of an object forms, while the latter controls the amount of time needed for the object to form. Additionally, the dark sector suppresses the natural tendency of an electrically charged scalar field to form a dynamical Reissner-Nordström spacetime during the gravitational collapse.
A new perturbative approximation applied to supersymmetric quantum field theory
International Nuclear Information System (INIS)
Bender, C.M.; Milton, K.A.; Pinsky, S.S.; Simmons, L.M. Jr.; Los Alamos National Lab.
1988-01-01
We show that a recently proposed graphical perturbative calculational scheme in quantum field theory is consistent with global supersymmetry invariance. We examine a two-dimensional supersymmetric quantum field theory in which we do not known of any other means for doing analytical calculations. We illustrate the power of this new technique by computing the ground-state energy density E to second order in this new perturbation theory. We show that there is a beautiful and delicate cancellation between infinite classes of graphs which leads to the result that E=0. (orig.)
International Nuclear Information System (INIS)
Wu Ning; Zhang Dahua
2007-01-01
A systematic method is developed to study the classical motion of a mass point in gravitational gauge field. First, by using Mathematica, a spherical symmetric solution of the field equation of gravitational gauge field is obtained, which is just the traditional Schwarzschild solution. Combining the principle of gauge covariance and Newton's second law of motion, the equation of motion of a mass point in gravitational field is deduced. Based on the spherical symmetric solution of the field equation and the equation of motion of a mass point in gravitational field, we can discuss classical tests of gauge theory of gravity, including the deflection of light by the sun, the precession of the perihelia of the orbits of the inner planets and the time delay of radar echoes passing the sun. It is found that the theoretical predictions of these classical tests given by gauge theory of gravity are completely the same as those given by general relativity.
Applying Mean-Field Approximation to Continuous Time Markov Chains
Kolesnichenko, A.V.; Senni, Valerio; Pourranjabar, Alireza; Remke, A.K.I.; Stoelinga, M.I.A.
2014-01-01
The mean-field analysis technique is used to perform analysis of a system with a large number of components to determine the emergent deterministic behaviour and how this behaviour modifies when its parameters are perturbed. The computer science performance modelling and analysis community has found
Microscopic mean field approximation and beyond with the Gogny force
Directory of Open Access Journals (Sweden)
Péru S.
2014-03-01
Full Text Available Fully consistent axially-symmetric-deformed quasiparticle random phase approximation calculations have been performed with the D1S Gogny force. A brief review on the main results obtained in this approach is presented. After a reminder on the method and on the first results concerning giant resonances in deformed Mg and Si isotopes, the multipole responses up to octupole in the deformed and heavy nucleus 238U are discussed. In order to analyse soft dipole modes in exotic nuclei, the dipole responses have been studied in Ne isotopes and in N=16 isotopes, for which results are presented. In these nuclei, the QRPA results on the low lying 2+ states are compared to the 5-Dimensional Collective Hamiltonian ones.
General Relativistic Theory of the VLBI Time Delay in the Gravitational Field of Moving Bodies
Kopeikin, Sergei
2003-01-01
The general relativistic theory of the gravitational VLBI experiment conducted on September 8, 2002 by Fomalont and Kopeikin is explained. Equations of radio waves (light) propagating from the quasar to the observer are integrated in the time-dependent gravitational field of the solar system by making use of either retarded or advanced solutions of the Einstein field equations. This mathematical technique separates explicitly the effects associated with the propagation of gravity from those associated with light in the integral expression for the relativistic VLBI time delay of light. We prove that the relativistic correction to the Shapiro time delay, discovered by Kopeikin (ApJ, 556, L1, 2001), changes sign if one retains direction of the light propagation but replaces the retarded for the advanced solution of the Einstein equations. Hence, this correction is associated with the propagation of gravity. The VLBI observation measured its speed, and that the retarded solution is the correct one.
International Nuclear Information System (INIS)
Rebreyend, D.; Pignol, G.; Baeßler, S.; Nesvizhevsky, V. V.; Protasov, K.; Voronin, A.
2014-01-01
Gravitational resonance spectroscopy consists in measuring the energy spectrum of bouncing ultracold neutrons above a mirror by inducing resonant transitions between different discrete quantum levels. We discuss how to induce the resonances with a flow through arrangement in the GRANIT spectrometer, excited by an oscillating magnetic field gradient. The spectroscopy could be realized in two distinct modes (so called DC and AC) using the same device to produce the magnetic excitation. We present calculations demonstrating the feasibility of the newly proposed AC mode
About the short-scale perturbations of plasma in gravitational field
International Nuclear Information System (INIS)
Gedalin, M.E.; Machabeli, G.Z.
1985-01-01
The problem of plasma wave generation and propagation in the presence of strong gravitational fields is studied in the framework of general relativity theory. The coupled relativistic hydrodynamic and Maxwellian equations are solved in circumstances of the surface of the neutron star. The wave solution of the system of equation is analyzed, some limit cases are discussed in detail. The instability criteria of relativistic plasma are also found. (D.Gy.)
On the identification of gravitation with the massless spin 2 field
International Nuclear Information System (INIS)
Meszaros, A.
1984-05-01
The identification of gravitation with the massless spin 2 gauge field (the gauge group is the group of translations) requires to restrict the solutions of Einstein's equations to the class of topologically trivial manifolds. It is shown that the validity of this restriction in nature is supported by the present-day empirical facts. The identification has a drastic impact on cosmology, because the fulfilment of the cosmological principle seems to be improbable. (author)
Unified theory of gravitation, electromagnetism, and the Yang-Mills field
International Nuclear Information System (INIS)
Borchsenius, K.
1976-01-01
The recent modification and extension of Einstein's nonsymmetric unified field theory for gravitation and electromagnetism is generalized to include the Yang-Mills field theory. The generalization consists in assuming that the components of the linear connection and of the fundamental tensor are not ordinary c numbers but are matrices related to some unitary symmetry. As an example we consider the SU(2) case. The theory is applied to the gauge-covariant formulation of electrically and isotopically charged spin-1/2 field theories
Gravitational and electromagnetic fields near an anti-de Sitter-like infinity
International Nuclear Information System (INIS)
Krtous, Pavel; Podolsky, Jiri
2004-01-01
We analyze the asymptotic structure of general gravitational and electromagnetic fields near an anti-de Sitter-like conformal infinity. The dependence of the radiative component of the fields on a null direction along which the infinity is approached is obtained. The directional pattern of outgoing and ingoing radiation, which supplements standard peeling property, is determined by the algebraic (Petrov) type of the fields and also by the orientation of the principal null directions with respect to timelike infinity. The dependence on the orientation is a new feature if compared to spacelike infinity
Analytic approximations to hamiltonian lattice field theories. Pt. 2
International Nuclear Information System (INIS)
Surany, P.
1983-01-01
It is shown that at weak coupling physical quantities in hamiltonian U(1) lattice gauge (or global symmetric) theories of arbitrary dimension are provided as expectation values in a d - 1 dimensional lagrangian Z(2) gauge (or spin) theory with calculable long-range interactions. Confinement and the existence of a magnetic mass gap are equivalent to the existence of infinite-range plaquette-plaquette (or link-link) correlations in the spin field. The existence of infinite range correlations is simply related to the dimension of the lattice and the transformation property of the order parameter. As expected, only the d = 2 + 1 U(1) gauge theory confines electric charges at all non-vanishing coupling. (orig.)
Nucleon motion in constant nucleodynamic field (p2 approximation)
International Nuclear Information System (INIS)
Karastoyanov, A.
1979-01-01
It uses the generalized Dirac equation in the form [-ca vector.(p vector - gA vector/c)+E-V-βmc 2 +(μsub(a)/c)β(σ vector.cB vector-iα vector.E vector] PSI = 0, where α vector and β are the Dirac matrices, c is the velocity of light in vacuum, p vector equals i(h/2π)nabla vector is the pulse operator, g is the nuclear charge, A vector is the nuclear vector potential, E is the total energy of the nucleon, V is its nuclear potential energy, m is its rest mass, μsub(a) = -lambdasub(a)g(h/2π)/2m is the value of the anomalous nuclodynamic dipole moment, σ vector is the Pauli matrix, B vector = rot A vector/c is the nucleodynamic field intensity, i is the imaginary unity, E = -grad V/g is the nucleostatic field intensity, PSI is the Dirac wave function and (h/2π) is the Dirac action constant. For a nucleon in rest the potentials at distance r are V 0 = -(g 2 /4π)[esup(-μr)/r+μEi(-μr)], A vector 0 =(lambda sub(a)-1) (g(h/2π)/2mc) (esup(-μr)/4πr 3 ) (σ vector xr vector) with μ=0,684 fm -1 , αsub(g)=g 2 /4π(h/2π)c=1/4, lambda sub(a)=15.96 = 16 - αsub(g)/2π.αsub(g)/2π is the first order radiation correction, while 16 corresponds to a nuclear analogue of the Dirac magnetic monopole gsub(d) = 16 g = n4π(h/2π)c/2g for n = 8. These values are confirmed by calculations. In the Schroedinger equation approach it explains the spin-spin, tensor and spin-orbit forces, the velocity, energy and state dependence of the nuclear forces, the hard potential core, the ''many-body'' nuclear forces and fine effects of the nuclear interactions. (A.K.)
Czech Academy of Sciences Publication Activity Database
Plocková, Jana; Matulík, František; Chmelík, Josef
2002-01-01
Roč. 955, č. 1 (2002), s. 95-103 ISSN 0021-9673 R&D Projects: GA AV ČR IAA4031805 Institutional research plan: CEZ:AV0Z4031919 Keywords : gravitational field-flow fractionation * field programming * hydrodynamic lift forces Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.098, year: 2002
Trapped Bose gas. Mean-field approximation and beyond
International Nuclear Information System (INIS)
Pitaevskii, L.P.
1998-01-01
The recent realization of Bose-Einstein condensation in atomic gases opens new possibilities for observation of macroscopic quantum phenomena. There are two important features of the system - weak interaction and significant spatial inhomogeneity. Because of this inhomogeneity a non-trivial 'zeroth-order' theory exists, compared to the 'first-order' Bogoliubov theory. This theory is based on the mean-field Gross-Pitaevskii equation for the condensate ψ -function. The equation is classical in its essence but contains the ℎ constant explicitly. Phenomena such as collective modes, interference, tunneling, Josephson-like current and quantized vortex lines can be described using this equation. The study of deviations from the zeroth-order theory arising from zero-point and thermal fluctuations is also of great interest. Thermal fluctuations are described by elementary excitations which define the thermodynamic behaviour of the system and result in Landau-type damping of collective modes. Fluctuations of the phase of the condensate wave function restrict the monochromaticity of the Josephson current. Fluctuations of the numbers of quanta result in the quantum collapse-revival of the collective oscillations. This phenomenon is considered in some details. Collapse time for the JILA experimental conditions turns out to be of the order of seconds. (Copyright (1998) World Scientific Publishing Co. Pte. Ltd)
International Nuclear Information System (INIS)
Peters, Thomas; Klessen, Ralf S.; Federrath, Christoph; Smith, Rowan J.; Schleicher, Dominik R. G.; Banerjee, Robi; Sur, Sharanya
2012-01-01
Stars form by the gravitational collapse of interstellar gas. The thermodynamic response of the gas can be characterized by an effective equation of state. It determines how gas heats up or cools as it gets compressed, and hence plays a key role in regulating the process of stellar birth on virtually all scales, ranging from individual star clusters up to the galaxy as a whole. We present a systematic study of the impact of thermodynamics on gravitational collapse in the context of high-redshift star formation, but argue that our findings are also relevant for present-day star formation in molecular clouds. We consider a polytropic equation of state, P = kρ Γ , with both sub-isothermal exponents Γ 1. We find significant differences between these two cases. For Γ > 1, pressure gradients slow down the contraction and lead to the formation of a virialized, turbulent core. Weak magnetic fields are strongly tangled and efficiently amplified via the small-scale turbulent dynamo on timescales corresponding to the eddy-turnover time at the viscous scale. For Γ < 1, on the other hand, pressure support is not sufficient for the formation of such a core. Gravitational contraction proceeds much more rapidly and the flow develops very strong shocks, creating a network of intersecting sheets and extended filaments. The resulting magnetic field lines are very coherent and exhibit a considerable degree of order. Nevertheless, even under these conditions we still find exponential growth of the magnetic energy density in the kinematic regime.
Nesvizhevsky, V V; Protasov, K V
2005-01-01
An upper limit to non-Newtonian attractive forces is obtained from the measurement of quantum states of neutrons in the Earth's gravitational field. This limit improves the existing constraints in the nanometer range.
International Nuclear Information System (INIS)
Stachel, J.
1977-01-01
A first-order Lagrangian is given, from which follow the definitions of the fully covariant form of the Riemann tensor Rsub(μνkappalambda) in terms of the affine connection and metric; the definition of the affine connection in terms of the metric; the Einstein field equations; and the definition of a set of gravitational 'superpotentials' closely connected with the Komar conservation laws (Phys. Rev.; 113:934 (1959)). Substitution of the definition of the affine connection into this Lagrangian results in a second-order Lagrangian, from which follow the definition of the fully covariant Riemann tensor in terms of the metric, the Einstein equations, and the definition of the gravitational 'superpotentials'. (author)
Three-dimensional loop quantum gravity: towards a self-gravitating quantum field theory
International Nuclear Information System (INIS)
Noui, Karim
2007-01-01
In a companion paper, we have emphasized the role of the Drinfeld double DSU(2) in the context of three-dimensional Riemannian loop quantum gravity coupled to massive spinless point particles. We make use of this result to propose a model for a self-gravitating quantum field theory (massive spinless non-causal scalar field) in three-dimensional Riemannian space. We start by constructing the Fock space of the free self-gravitating field: the vacuum is the unique DSU(2) invariant state, one-particle states correspond to DSU(2) unitary irreducible simple representations and any multi-particles states are obtained as the symmetrized tensor product between simple representations. The associated quantum field is defined by the usual requirement of covariance under DSU(2). Then, we introduce a DSU(2)-invariant self-interacting potential (the obtained model is a group field theory) and explicitly compute the lowest order terms (in the self-interaction coupling constant λ) of the propagator and of the three-point function. Finally, we compute the lowest order quantum gravity corrections (in the Newton constant G) to the propagator and to the three-point function
Collective-field-corrected strong field approximation for laser-irradiated metal clusters
International Nuclear Information System (INIS)
Keil, Th; Bauer, D
2014-01-01
The strong field approximation (SFA) formulated in terms of so-called ‘quantum orbits’ led to much insight into intense-laser driven ionization dynamics. In plain SFA, the emitted electron is treated as a free electron in the laser field alone. However, with improving experimental techniques and more advanced numerical simulations, it becomes more and more obvious that the plain SFA misses interesting effects even on a qualitative level. Examples are holographic side lobes, the low-energy structure, radial patterns in photoelectron spectra at low kinetic energies and strongly rotated angular distributions. For this reason, increasing efforts have been recently devoted to Coulomb corrections of the SFA. In the current paper, we follow a similar line but consider ionization of metal clusters. It is known that photoelectrons from clusters can be much more energetic than those emitted from atoms or small molecules, especially if the Mie resonance of the expanding cluster is evoked. We develop a SFA that takes the collective field inside the cluster via the simple rigid-sphere model into account. Our approach is based on field-corrected quantum orbits so that the acceleration process (or any other spectral feature of interest) can be investigated in detail. (paper)
Rivera, Susana
Throughout the last century, since the last decades of the XIX century, until present day, there had been many attempts to achieve the unification of the Forces of Nature. First unification was done by James Clerk Maxwell, with his Electromagnetic Theory. Then Max Plank developed his Quantum Theory. In 1905, Albert Einstein gave birth to the Special Relativity Theory, and in 1916 he came out with his General Relativity Theory. He noticed that there was an evident parallelism between the Gravitational Force, and the Electromagnetic Force. So, he tried to unify these forces of Nature. But Quantum Theory interposed on his way. On the 1940’s it had been developed the Quantum Electrodynamics (QED), and with it, the unified field theory had an arise interest. On the 60’s and 70’s there was developed the Quantum Chromodynamics (QCD). Along with these theories came the discovery of the strong interaction force and weak interaction force. And though there had been many attempts to unify all these forces of the nature, it could only be achieved the Unification of strong interaction, weak interaction and Electromagnetic Force. On the late 80”s and throughout the last two decades, theories such as “super-string theory”, “or the “M-theory”, among others, groups of Scientists, had been doing grand efforts and finally they came out with the unification of the forces of nature, being the only limitation the use of more than 11 dimensions. Using an ingenious mathematical tool known as the super symmetries, based on the Kaluza - Klein work, they achieve this goal. The strings of these theories are in the rank of 10-33 m. Which make them undetectable. There are many other string theories. The GEUFT theory is based on the existence of concentrated energy lines, which vibrates, expands and contracts, submitting and absorbing energy, matter and antimatter, and which yields a determined geometry, that gives as a result the formation of stars, galaxies, nebulae, clusters
Modelling of charged satellite motion in Earth's gravitational and magnetic fields
Abd El-Bar, S. E.; Abd El-Salam, F. A.
2018-05-01
In this work Lagrange's planetary equations for a charged satellite subjected to the Earth's gravitational and magnetic force fields are solved. The Earth's gravity, and magnetic and electric force components are obtained and expressed in terms of orbital elements. The variational equations of orbit with the considered model in Keplerian elements are derived. The solution of the problem in a fully analytical way is obtained. The temporal rate of changes of the orbital elements of the spacecraft are integrated via Lagrange's planetary equations and integrals of the normalized Keplerian motion obtained by Ahmed (Astron. J. 107(5):1900, 1994).
Vacuum-field solutions of Ross and Sen-Dunn theories of gravitation
International Nuclear Information System (INIS)
Krori, K.D.; Nandy, D.
1978-01-01
Vacuum-field solutions of Ross (Phys. Rev.; D5:284 (1972)) and Sen-Dunn (J. Math. Phys.; 12:578 (1971)) theories of gravitation have been obtained with the aid of a Friedmann-type metric. Non-static solutions are found showing that the Birkhoff theorem holds for neither theory. It has been observed that the two theories have a limited scope for vacuum solution as against the Brans-Dicke theory. Mach's principle, however, holds for both the theories. (author)
Directory of Open Access Journals (Sweden)
Chifu E. N.
2009-10-01
Full Text Available In this article, we formulate solutions to Einstein's geometrical field equations derived using our new approach. Our field equations exterior and interior to the mass distribution have only one unknown function determined by the mass or pressure distribution. Our obtained solutions yield the unknown function as generalizations of Newton's gravitational scalar potential. Thus, our solution puts Einstein's geometrical theory of gravity on same footing with Newton's dynamical theory; with the dependence of the field on one and only one unknown function comparable to Newton's gravitational scalar potential. Our results in this article are of much significance as the Sun and planets in the solar system are known to be more precisely oblate spheroidal in geometry. The oblate spheroidal geometries of these bodies have effects on their gravitational fields and the motions of test particles and photons in these fields.
Gravitational waves — A review on the theoretical foundations of gravitational radiation
Dirkes, Alain
2018-05-01
In this paper, we review the theoretical foundations of gravitational waves in the framework of Albert Einstein’s theory of general relativity. Following Einstein’s early efforts, we first derive the linearized Einstein field equations and work out the corresponding gravitational wave equation. Moreover, we present the gravitational potentials in the far away wave zone field point approximation obtained from the relaxed Einstein field equations. We close this review by taking a closer look on the radiative losses of gravitating n-body systems and present some aspects of the current interferometric gravitational waves detectors. Each section has a separate appendix contribution where further computational details are displayed. To conclude, we summarize the main results and present a brief outlook in terms of current ongoing efforts to build a spaced-based gravitational wave observatory.
On the gravitational radiation formula
International Nuclear Information System (INIS)
Schaefer, G.; Dehnen, H.
1980-01-01
For electromagnetically as well as gravitationally bound quantum mechanical many-body systems the coefficients of absorption and induced emission of gravitational radiation are calculated in the first-order approximation. The results are extended subsequently to systems with arbitrary non-Coulomb-like two-particle interaction potentials;it is shown explicitly that in all cases the perturbation of the binding potentials of the bound systems by the incident gravitational wave field itself must be taken into account. With the help of the thermodynamic equilibrium of gravitational radiation and quantised matter, the coefficients for spontaneous emission of gravitational radiation are derived and the gravitational radiation formula for emission of gravitational quadrupole radiation by bound quantum mechanical many-body systems is given. According to the correspondence principle the present result is completely identical with the well known classical radiation formula, by which recent criticism against this formula is refuted. Finally the quantum mechanical absorption cross section for gravitational quadrupole radiation is deduced and compared with the corresponding classical expressions. As a special example the vibrating two-mass quadrupole is treated explicitly. (author)
2> for a scalar field in 2D black holes: A new uniform approximation
International Nuclear Information System (INIS)
Frolov, V.; Sushkov, S.V.; Zelnikov, A.
2003-01-01
We study nonconformal quantum scalar fields and averages of their local observables (such as 2 > ren and μν > ren ) in the spacetime of a two-dimensional black hole. In order to get an analytical approximation for these expressions the WKB approximation is often used. We demonstrate that at the horizon the WKB approximation is violated for a nonconformal field, that is, when the field mass or/and the parameter of nonminimal coupling does not vanish. We propose a new 'uniform approximation' which solves this problem. We use this approximation to obtain an improved analytical approximation for 2 > ren in the two-dimensional black hole geometry. We compare the results obtained with numerical calculations
Cosmological models in globally geodesic coordinates. II. Near-field approximation
International Nuclear Information System (INIS)
Liu Hongya
1987-01-01
A near-field approximation dealing with the cosmological field near a typical freely falling observer is developed within the framework established in the preceding paper [J. Math. Phys. 28, xxxx(1987)]. It is found that for the matter-dominated era the standard cosmological model of general relativity contains the Newtonian cosmological model, proposed by Zel'dovich, as its near-field approximation in the observer's globally geodesic coordinate system
ZONAL TOROIDAL HARMONIC EXPANSIONS OF EXTERNAL GRAVITATIONAL FIELDS FOR RING-LIKE OBJECTS
Energy Technology Data Exchange (ETDEWEB)
Fukushima, Toshio, E-mail: Toshio.Fukushima@nao.ac.jp [National Astronomical Observatory, Ohsawa, Mitaka, Tokyo 181-8588 (Japan)
2016-08-01
We present an expression of the external gravitational field of a general ring-like object with axial and plane symmetries such as oval toroids or annular disks with an arbitrary density distribution. The main term is the gravitational field of a uniform, infinitely thin ring representing the limit of zero radial width and zero vertical height of the object. The additional term is derived from a zonal toroidal harmonic expansion of a general solution of Laplace’s equation outside the Brillouin toroid of the object. The special functions required are the point value and the first-order derivative of the zonal toroidal harmonics of the first kind, namely, the Legendre function of the first kind of half integer degree and an argument that is not less than unity. We developed a recursive method to compute them from two pairs of seed values explicitly expressed by some complete elliptic integrals. Numerical experiments show that appropriately truncated expansions converge rapidly outside the Brillouin toroid. The truncated expansion can be evaluated so efficiently that, for an oval toroid with an exponentially damping density profile, it is 3000–10,000 times faster than the two-dimensional numerical quadrature. A group of the Fortran 90 programs required in the new method and their sample outputs are available electronically.
Diffusion phenomenon at the interface of Cu-brass under a strong gravitational field
Energy Technology Data Exchange (ETDEWEB)
Ogata, Yudai; Tokuda, Makoto; Januszko, Kamila; Khandaker, Jahirul Islam; Mashimo, Tsutomu, E-mail: mashimo@gpo.kumamoto-u.ac.jp [Institute of Pulsed Power Science, Kumamoto University, Kumamoto 860-8555 (Japan); Iguchi, Yusuke [Department of Solid State Physics, Debrecen University, 4032 Debrecen (Hungary); Ono, Masao [Advanced Science Research Center, Japan Atomic Energy Agency (JAEA), Ibaraki 319-1195 (Japan)
2015-03-28
To investigate diffusion phenomenon at the interface between Cu and brass under a strong gravitational field generated by ultracentrifuge apparatus, we performed gravity experiments on samples prepared by electroplating with interfaces normal and parallel to the direction of gravity. For the parallel-mode sample, for which sedimentation cannot occur thorough the interface, the concentration change was significant within the lower gravity region; many pores were observed in this region. Many vacancies arising from crystal strain due to the strong gravitational field moved into the lower gravity region, and enhanced the atoms mobilities. For the two normal-mode samples, which have interface normal to the direction of gravity, the composition gradient of the brass-on-Cu sample was steeper than that for Cu-on-brass. This showed that the atoms of denser Cu diffuse in the direction of gravity, whereas Zn atoms diffuse in the opposite direction by sedimentation. The interdiffusion coefficients became higher in the Cu-on-brass sample, and became lower in the brass-on-Cu sample. This rise may be related to the behavior of the vacancies.
The importance of gravitational self-field effects in binary systems with compact objects
International Nuclear Information System (INIS)
Rudolph, E.; Boerner, G.
1978-01-01
The attraction force of two massive bodies connected by a rod is calculated in a post-post-Newtonian approximation. As far as is known to the authors this is the first calculation in such an order of approximation. Although the result already shows a complicated field-field interaction Newton's attraction force M 1 /M 2 /R 2 is reproduced as the leading term in powers of 1/R. (author)
Spinning gravitating objects in the effective field theory in the post-Newtonian scheme
Energy Technology Data Exchange (ETDEWEB)
Levi, Michele [Université Pierre et Marie Curie-Paris VI, CNRS-UMR 7095,Institut d’Astrophysique de Paris, 98 bis Boulevard Arago, 75014 Paris (France); Sorbonne Universités, Institut Lagrange de Paris,98 bis Boulevard Arago, 75014 Paris (France); Steinhoff, Jan [Max-Planck-Institute for Gravitational Physics (Albert-Einstein-Institute),Am Mühlenberg 1, 14476 Potsdam-Golm (Germany); Centro Multidisciplinar de Astrofisica, Instituto Superior Tecnico, Universidade de Lisboa,Avenida Rovisco Pais 1, 1049-001 Lisboa (Portugal)
2015-09-30
We introduce a formulation for spinning gravitating objects in the effective field theory in the post-Newtonian scheme in the context of the binary inspiral problem. We aim at an effective action, where all field modes below the orbital scale are integrated out. We spell out the relevant degrees of freedom, in particular the rotational ones, and the associated symmetries. Building on these symmetries, we introduce the minimal coupling part of the point particle action in terms of gauge rotational variables, and construct the spin-induced nonminimal couplings, where we obtain the leading order couplings to all orders in spin. We specify the gauge for the rotational variables, where the unphysical degrees of freedom are eliminated already from the Feynman rules, and all the orbital field modes are integrated out. The equations of motion of the spin can be directly obtained via a proper variation of the action, and Hamiltonians may be straightforwardly derived. We implement this effective field theory for spin to derive all spin dependent potentials up to next-to-leading order to quadratic level in spin, namely up to the third post-Newtonian order for rapidly rotating compact objects. In particular, the proper next-to-leading order spin-squared potential and Hamiltonian for generic compact objects are also derived. For the implementations we use the nonrelativistic gravitational field decomposition, which is found here to eliminate higher-loop Feynman diagrams also in spin dependent sectors, and facilitates derivations. This formulation for spin is thus ideal for treatment of higher order spin dependent sectors.
International Nuclear Information System (INIS)
Chrusciel, P.T.
1985-01-01
It is shown, that the interpretation of the Einstein energy-momentum ''pseudo-tensor'',''covariantized'' with the help of a background metric, as the energy-momentum tensor of the gravitational field with respect to a background field, is consistent with a geometric hamiltonian analysis. It is also shown, that the von Freud superpotential and the Komar superpotential describe the dynamics of the gravitational field in different function spaces, subject to different boundary conditions. One can pass from one superpotential to the other by performing a Legendre transformation on the boundary. It is explained why the ADM and the von Freud energy expressions are the same, for asymptotically flat space-times
International Nuclear Information System (INIS)
Chrusciel, P.T.
1983-09-01
It is shown that the interpretation of the Einstein energy-momentum ''pseudo-tensor'', ''covariantized'' with the help of a background metric, as the energy-momentum tensor of the gravitational field with respect to a background field is consistent with a geometric Hamiltonian analysis. It is also shown that the von Freud superpotential and the Komar superpotential describe the dynamics of the gravitational field in different function spaces, subject to different boundary conditions. One can pass from one superpotential to the other by performing a Legendre transformation on the boundary. (author)
The deflection angle of a gravitational source with a global monopole in the strong field limit
International Nuclear Information System (INIS)
Cheng Hongbo; Man Jingyun
2011-01-01
We investigate the gravitational lensing effect in the strong field background around the Schwarzschild black hole with extremely small mass and solid deficit angle subject to the global monopole by means of the strong field limit issue. We obtain the angular position and magnification of the relativistic images and show that they relate to the global monopole parameter η. We discuss that with the increase of the parameter η, the minimum impact parameter u m and angular separation s increase and the relative magnification r decreases. We also find that s grows extremely as the increasing parameter η becomes large enough. The deflection angle will become larger when the parameter η grows. The effect from the solid deficit angle is the dependence of angular position, angular separation, relative magnification and deflection angle on the parameter η, which may offer a way to characterize some possible distinct signatures of the Schwarzschild black hole with a solid deficit angle associated with the global monopole.
Linear and nonlinear stability criteria for compressible MHD flows in a gravitational field
Moawad, S. M.; Moawad
2013-10-01
The equilibrium and stability properties of ideal magnetohydrodynamics (MHD) of compressible flow in a gravitational field with a translational symmetry are investigated. Variational principles for the steady-state equations are formulated. The MHD equilibrium equations are obtained as critical points of a conserved Lyapunov functional. This functional consists of the sum of the total energy, the mass, the circulation along field lines (cross helicity), the momentum, and the magnetic helicity. In the unperturbed case, the equilibrium states satisfy a nonlinear second-order partial differential equation (PDE) associated with hydrodynamic Bernoulli law. The PDE can be an elliptic or a parabolic equation depending on increasing the poloidal flow speed. Linear and nonlinear Lyapunov stability conditions under translational symmetric perturbations are established for the equilibrium states.
Energy-momentum tensor for a Casimir apparatus in a weak gravitational field
International Nuclear Information System (INIS)
Bimonte, Giuseppe; Calloni, Enrico; Esposito, Giampiero; Rosa, Luigi
2006-01-01
The influence of the gravity acceleration on the regularized energy-momentum tensor of the quantized electromagnetic field between two plane-parallel conducting plates is derived. We use Fermi coordinates and work to first order in the constant acceleration parameter. A perturbative expansion, to this order, of the Green functions involved and of the energy-momentum tensor is derived by means of the covariant geodesic point-splitting procedure. In correspondence to the Green functions satisfying mixed and gauge-invariant boundary conditions, and Ward identities, the energy-momentum tensor is covariantly conserved and satisfies the expected relation between gauge-breaking and ghost parts, while a new simple formula for the trace anomaly is obtained to first order in the constant acceleration. A more systematic derivation is therefore obtained of the theoretical prediction according to which the Casimir device in a weak gravitational field will experience a tiny push in the upwards direction
International Nuclear Information System (INIS)
Singh, T.; Yadav, R.B.S.
1980-01-01
In the first part of the present paper the Newtonian analogue of force for the combined Kerr-NUT metric has been investigated. To the first order of approximation one component of the force vector corresponds to the Newtonian gravitational force. In the higher order of approximation the relativistic correction terms due to rotation and presence of gravitational analogue of a magnetic monopole are obtained. In the second part of the paper the motion of a freely falling body has been investigated. It is found that plane orbits are not possible. Also a radial fall is not possible and there is a rotational drag on the particle which has no Newtonian analogue. (author)
Volkmann, D; Buchen, B; Hejnowicz, Z; Tewinkel, M; Sievers, A
1991-09-01
During five rocket flights (TEXUS 18, 19, 21, 23 and 25), experiments were performed to investigate the behaviour of statoliths in rhizoids of the green alga Chara globularia Thuill. and in statocytes of cress (Lepidium sativum L.) roots, when the gravitational field changed to approx. 10(-4) · g (i.e. microgravity) during the parabolic flight (lasting for 301-390 s) of the rockets. The position of statoliths was only slightly influenced by the conditions during launch, e.g. vibration, acceleration and rotation of the rocket. Within approx. 6 min of microgravity conditions the shape of the statolith complex in the rhizoids changed from a transversely oriented lens into a longitudinally oriented spindle. The center of the statolith complex moved approx. 14 μm and 3.6 μm in rhizoids and root statocytes, respectively, in the opposite direction to the originally acting gravity vector. The kinetics of statolith displacement in rhizoids demonstrate that the velocity was nearly constant under microgravity whereas it decreased remarkably after inversion of rhizoids on Earth. It can be concluded that on Earth the position of statoliths in both rhizoids and root statocytes depends on the balance of two forces, i.e. the gravitational force and the counteracting force mediated by microfilaments.
Semiclassical approximations in a mean-field theory with collision terms
International Nuclear Information System (INIS)
Galetti, D.
1986-01-01
Semiclassical approximations in a mean-field theory with collision terms are discussed taking the time dependent Hartree-Fock method as framework in the obtainment of the relevant parameters.(L.C.) [pt
Mean-field approximation for spacing distribution functions in classical systems
González, Diego Luis; Pimpinelli, Alberto; Einstein, T. L.
2012-01-01
We propose a mean-field method to calculate approximately the spacing distribution functions p(n)(s) in one-dimensional classical many-particle systems. We compare our method with two other commonly used methods, the independent interval approximation and the extended Wigner surmise. In our mean-field approach, p(n)(s) is calculated from a set of Langevin equations, which are decoupled by using a mean-field approximation. We find that in spite of its simplicity, the mean-field approximation provides good results in several systems. We offer many examples illustrating that the three previously mentioned methods give a reasonable description of the statistical behavior of the system. The physical interpretation of each method is also discussed.
International Nuclear Information System (INIS)
Souza, Rafael S. de; Opher, Reuven
2011-01-01
The origin of magnetic fields in astrophysical objects is a challenging problem in astrophysics. Throughout the years, many scientists have suggested that non-minimal gravitational-electromagnetic coupling (NMGEC) could be the origin of the ubiquitous astrophysical magnetic fields. We investigate the possible origin of intense magnetic fields by NMGEC near rotating black holes, connected with quasars and gamma-ray bursts. Whereas these intense magnetic fields are difficult to explain astrophysically, we find that they are easily explained by NMGEC.
Magnetic field mapping of the UCNTau magneto-gravitational trap: design study
Energy Technology Data Exchange (ETDEWEB)
Libersky, Matthew Murray [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2014-09-04
The beta decay lifetime of the free neutron is an important input to the Standard Model of particle physics, but values measured using different methods have exhibited substantial disagreement. The UCN r experiment in development at Los Alamos National Laboratory (LANL) plans to explore better methods of measuring the neutron lifetime using ultracold neutrons (UCNs). In this experiment, UCNs are confined in a magneto-gravitational trap formed by a curved, asymmetric Halbach array placed inside a vacuum vessel and surrounded by holding field coils. If any defects present in the Halbach array are sufficient to reduce the local field near the surface below that needed to repel the desired energy level UCNs, loss by material interaction can occur at a rate similar to the loss by beta decay. A map of the magnetic field near the surface of the array is necessary to identify any such defects, but the array's curved geometry and placement in a vacuum vessel make conventional field mapping methods difficult. A system consisting of computer vision-based tracking and a rover holding a Hall probe has been designed to map the field near the surface of the array, and construction of an initial prototype has begun at LANL. The design of the system and initial results will be described here.
Creation of particles in the gravitational field and the boundary conditions for quantized fields
International Nuclear Information System (INIS)
Khrustalev, O.A.; Silaev, P.K.
1995-01-01
We prove, that if one impose the linear constraints on the quantized fields that satisfy different boundary conditions, it can leads to such a transformation between creation-annihilation operators, that corresponds to particle creation. We also prove, that the correspondence between field, quantized in Minkowski space and the field, quantized in Rindler space has Rindler space can't be observed. 7 refs
Dark matter cosmic string in the gravitational field of a black hole
Nakonieczny, Łukasz; Nakonieczna, Anna; Rogatko, Marek
2018-03-01
We examined analytically and proposed a numerical model of an Abelian Higgs dark matter vortex in the spacetime of a stationary axisymmetric Kerr black hole. In analytical calculations the dark matter sector was modeled by an addition of a U(1)-gauge field coupled to the visible sector. The backreaction analysis revealed that the impact of the dark vortex presence is far more complicated than causing only a deficit angle. The vortex causes an ergosphere shift and the event horizon velocity is also influenced by its presence. These phenomena are more significant than in the case of a visible vortex sector. The area of the event horizon of a black hole is diminished and this decline is larger in comparison to the Kerr black hole with an Abelian Higgs vortex case. After analyzing the gravitational properties for the general setup, we focused on the subset of models that are motivated by particle physics. We retained the Abelian Higgs model as a description of the dark matter sector (this sector contained a heavy dark photon and an additional complex scalar) and added a real scalar representing the real component of the Higgs doublet in the unitary gauge, as well as an additional U(1)-gauge field representing an ordinary electromagnetic field. Moreover, we considered two coupling channels between the visible and dark sectors, which were the kinetic mixing between the gauge fields and a quartic coupling between the scalar fields. After solving the equations of motion for the matter fields numerically we analyzed properties of the cosmic string in the dark matter sector and its influence on the visible sector fields that are directly coupled to it. We found out that the presence of the cosmic string induced spatial variation in the vacuum expectation value of the Higgs field and a nonzero electromagnetic field around the black hole.
Comment on 'Late-time tails of a self-gravitating massless scalar field revisited'
International Nuclear Information System (INIS)
Szpak, Nikodem
2009-01-01
Bizon et al (2009 Class. Quantum Grav. 26 175006) discuss the power-law tail in the long-time evolution of a spherically symmetric self-gravitating massless scalar field in odd spatial dimensions. They derive explicit expressions for the leading-order asymptotics for solutions with small initial data by using formal series expansions. Unfortunately, this approach misses an interesting observation that the actual decay rate is a product of asymptotic cancellations occurring due to a special structure of the nonlinear terms. Here, we show that one can calculate the leading asymptotics more directly by recognizing the special structure and cancellations already on the level of the wave equation. (comments and replies)
Figueroa, Daniel G; Torrentí, Francisco
2016-01-01
During or towards the end of inflation, the Standard Model (SM) Higgs forms a condensate with a large amplitude. Following inflation, the condensate oscillates, decaying non-perturbatively into the rest of the SM species. The resulting out-of-equilibrium dynamics converts a fraction of the energy available into gravitational waves (GW). We study this process using classical lattice simulations in an expanding box, following the energetically dominant electroweak gauge bosons $W^\\pm$ and $Z$. We characterize the GW spectrum as a function of the running couplings, Higgs initial amplitude, and post-inflationary expansion rate. As long as the SM is decoupled from the inflationary sector, the generation of this background is universally expected, independently of the nature of inflation. Our study demonstrates the efficiency of GW emission by gauge fields undergoing parametric resonance. The initial energy of the Higgs condensate represents however, only a tiny fraction of the inflationary energy. Consequently, th...
Time of flight and range of the motion of a projectile in a constant gravitational field
Directory of Open Access Journals (Sweden)
P. A. Karkantzakos
2009-01-01
Full Text Available In this paper we study the classical problem of the motion of a projectile in a constant gravitational field under the influenceof a retarding force proportional to the velocity. Specifically, we express the time of flight, the time of fall and the range ofthe motion as a function of the constant of resistance per unit mass of the projectile. We also prove that the time of fall isgreater than the time of rise with the exception of the case of zero constant of resistance where we have equality. Finally weprove a formula from which we can compute the constant of resistance per unit mass of the projectile from time of flight andrange of the motion when the acceleration due to gravity and the initial velocity of the projectile are known.
Dynamics of Equilibrium Points in a Uniformly Rotating Second-Order and Degree Gravitational Field
Feng, Jinglang; Hou, Xiyun
2017-07-01
Using tools such as periodic orbits and invariant manifolds, the global dynamics around equilibrium points (EPs) in a rotating second-order and degree gravitational field are studied. For EPs on the long axis, planar and vertical periodic families are computed, and their stability properties are investigated. Invariant manifolds are also computed, and their relation to the first-order resonances is briefly discussed. For EPs on the short axis, planar and vertical periodic families are studied, with special emphasis on the genealogy of the planar periodic families. Our studies show that the global dynamics around EPs are highly similar to those around libration points in the circular restricted three-body problem, such as spatial halo orbits, invariant manifolds, and the genealogy of planar periodic families.
Dynamics of Equilibrium Points in a Uniformly Rotating Second-Order and Degree Gravitational Field
International Nuclear Information System (INIS)
Feng, Jinglang; Hou, Xiyun
2017-01-01
Using tools such as periodic orbits and invariant manifolds, the global dynamics around equilibrium points (EPs) in a rotating second-order and degree gravitational field are studied. For EPs on the long axis, planar and vertical periodic families are computed, and their stability properties are investigated. Invariant manifolds are also computed, and their relation to the first-order resonances is briefly discussed. For EPs on the short axis, planar and vertical periodic families are studied, with special emphasis on the genealogy of the planar periodic families. Our studies show that the global dynamics around EPs are highly similar to those around libration points in the circular restricted three-body problem, such as spatial halo orbits, invariant manifolds, and the genealogy of planar periodic families.
Dynamics of Equilibrium Points in a Uniformly Rotating Second-Order and Degree Gravitational Field
Energy Technology Data Exchange (ETDEWEB)
Feng, Jinglang; Hou, Xiyun, E-mail: jinglang@nju.edu.cn, E-mail: silence@nju.edu.cn [School of Astronomy and Space Science, Nanjing University, 210093 (China)
2017-07-01
Using tools such as periodic orbits and invariant manifolds, the global dynamics around equilibrium points (EPs) in a rotating second-order and degree gravitational field are studied. For EPs on the long axis, planar and vertical periodic families are computed, and their stability properties are investigated. Invariant manifolds are also computed, and their relation to the first-order resonances is briefly discussed. For EPs on the short axis, planar and vertical periodic families are studied, with special emphasis on the genealogy of the planar periodic families. Our studies show that the global dynamics around EPs are highly similar to those around libration points in the circular restricted three-body problem, such as spatial halo orbits, invariant manifolds, and the genealogy of planar periodic families.
Improved model of the Earth's gravitational field: GEM-T1
International Nuclear Information System (INIS)
Marsh, J.G.; Lerch, F.J.; Christodoulidis, D.C.
1987-07-01
Goddard Earth Model T1 (GEM-T1), which was developed from an analysis of direct satellite tracking observations, is the first in a new series of such models. GEM-T1 is complete to degree and order 36. It was developed using consistent reference parameters and extensive earth and ocean tidal models. It was simultaneously solved for gravitational and tidal terms, earth orientation parameters, and the orbital parameters of 580 individual satellite arcs. The solution used only satellite tracking data acquired on 17 different satellites and is predominantly based upon the precise laser data taken by third generation systems. In all, 800,000 observations were used. A major improvement in field accuracy was obtained. For marine geodetic applications, long wavelength geoidal modeling is twice as good as in earlier satellite-only GEM models. Orbit determination accuracy has also been substantially advanced over a wide range of satellites that have been tested
Quantum mean-field approximations for nuclear bound states and tunneling
International Nuclear Information System (INIS)
Negele, J.W.; Levit, S.; Paltiel, Z.; Massachusetts Inst. of Tech., Cambridge
1979-01-01
A conceptual framework has been presented in which observables are approximated in terms of a self-consistent quantum mean-field theory. Since the SPA (Stationary Phase Approximation) determines the optimal mean field to approximate a given observable, it is natural that when one changes the observable, the best mean field to describe it changes as well. Although the theory superficially appears applicable to any observable expressible in terms of an evolution operator, for example an S-matrix element, one would have to go far beyond the SPA to adequately approximate the overlap of two many-body wave functions. The most salient open problems thus concern quantitative assessment of the accuracy of the SPA, reformulation of the theory to accomodate hard cores, and selection of sensible expectation values of few-body operators to address in scattering problems
INFLUENCE OF THE GALACTIC GRAVITATIONAL FIELD ON THE POSITIONAL ACCURACY OF EXTRAGALACTIC SOURCES
International Nuclear Information System (INIS)
Larchenkova, Tatiana I.; Lutovinov, Alexander A.; Lyskova, Natalya S.
2017-01-01
We investigate the influence of random variations of the Galactic gravitational field on the apparent celestial positions of extragalactic sources. The basic statistical characteristics of a stochastic process (first-order moments, an autocorrelation function and a power spectral density) are used to describe a light ray deflection in a gravitational field of randomly moving point masses as a function of the source coordinates. We map a 2D distribution of the standard deviation of the angular shifts in positions of distant sources (including reference sources of the International Celestial Reference Frame) with respect to their true positions. For different Galactic matter distributions the standard deviation of the offset angle can reach several tens of μ as (microarcsecond) toward the Galactic center, decreasing down to 4–6 μ as at high galactic latitudes. The conditional standard deviation (“jitter”) of 2.5 μ as is reached within 10 years at high galactic latitudes and within a few months toward the inner part of the Galaxy. The photometric microlensing events are not expected to be disturbed by astrometric random variations anywhere except the inner part of the Galaxy as the Einstein–Chvolson times are typically much shorter than the jittering timescale. While a jitter of a single reference source can be up to dozens of μ as over some reasonable observational time, using a sample of reference sources would reduce the error in relative astrometry. The obtained results can be used for estimating the physical upper limits on the time-dependent accuracy of astrometric measurements.
INFLUENCE OF THE GALACTIC GRAVITATIONAL FIELD ON THE POSITIONAL ACCURACY OF EXTRAGALACTIC SOURCES
Energy Technology Data Exchange (ETDEWEB)
Larchenkova, Tatiana I. [ASC of P.N.Lebedev Physical Institute, Leninskiy prospect 53, Moscow 119991 (Russian Federation); Lutovinov, Alexander A.; Lyskova, Natalya S. [Space Research Institute, Russian Academy of Sciences, Profsoyuznaya 84/32, 117997 Moscow (Russian Federation)
2017-01-20
We investigate the influence of random variations of the Galactic gravitational field on the apparent celestial positions of extragalactic sources. The basic statistical characteristics of a stochastic process (first-order moments, an autocorrelation function and a power spectral density) are used to describe a light ray deflection in a gravitational field of randomly moving point masses as a function of the source coordinates. We map a 2D distribution of the standard deviation of the angular shifts in positions of distant sources (including reference sources of the International Celestial Reference Frame) with respect to their true positions. For different Galactic matter distributions the standard deviation of the offset angle can reach several tens of μ as (microarcsecond) toward the Galactic center, decreasing down to 4–6 μ as at high galactic latitudes. The conditional standard deviation (“jitter”) of 2.5 μ as is reached within 10 years at high galactic latitudes and within a few months toward the inner part of the Galaxy. The photometric microlensing events are not expected to be disturbed by astrometric random variations anywhere except the inner part of the Galaxy as the Einstein–Chvolson times are typically much shorter than the jittering timescale. While a jitter of a single reference source can be up to dozens of μ as over some reasonable observational time, using a sample of reference sources would reduce the error in relative astrometry. The obtained results can be used for estimating the physical upper limits on the time-dependent accuracy of astrometric measurements.
International Nuclear Information System (INIS)
Cristea, Gh.
1975-01-01
In the first part of this paper, additional data are given concerning a gravimeter consisting in a pendulum-laser set proposed in a previous paper of the author (1). This gravimeter could have a sensitivity of 0.1 microgal or even 0.01 microgal in the case of statistical measurements. If processing by an on-line computer is used, the pendulum-laser can constitute a gravimeter which, used in statistical measurements on a long time interval, could reach a sensitivity of 10 -12 g. The second part of the paper points out the advantages resulting from determining the velocity of the gravitational reaction in an artificial satellite of the earth. The main advantage is the very fact that this measurement can be achieved by means of the existant gravimeters. The massive reduction of the time error is due to the increase of the ''sinusoid'' frequency resulting from the recording being made on the gravimeter set on an artificial satellite turning around the earth in about 90 minutes
Particle in a standing wave field; beyond the oscillation center approximation
International Nuclear Information System (INIS)
Schmidt, G.
1982-01-01
The ponderomotive force arises in plasma physics as a weak field approximation on particle dynamics. Recent advances in stochasticity theory lead to the conclusion that for sufficiently strong fields, the ponderomotive potential well disappears, and significant portions of phase space are filled with stochastic trajectories. This is illustrated by numerically studying the phase space behavior of the oscillation center. (author)
Energy Technology Data Exchange (ETDEWEB)
Hashino, Katsuya, E-mail: hashino@jodo.sci.u-toyama.ac.jp [Department of Physics, University of Toyama, 3190 Gofuku, Toyama 930-8555 (Japan); Kakizaki, Mitsuru, E-mail: kakizaki@sci.u-toyama.ac.jp [Department of Physics, University of Toyama, 3190 Gofuku, Toyama 930-8555 (Japan); Kanemura, Shinya, E-mail: kanemu@sci.u-toyama.ac.jp [Department of Physics, University of Toyama, 3190 Gofuku, Toyama 930-8555 (Japan); Ko, Pyungwon, E-mail: pko@kias.re.kr [School of Physics, KIAS, Seoul 02455 (Korea, Republic of); Matsui, Toshinori, E-mail: matsui@kias.re.kr [School of Physics, KIAS, Seoul 02455 (Korea, Republic of)
2017-03-10
We calculate the spectrum of gravitational waves originated from strongly first order electroweak phase transition in the extended Higgs model with a real singlet scalar field. In order to calculate the bubble nucleation rate, we perform a two-field analysis and evaluate bounce solutions connecting the true and the false vacua using the one-loop effective potential at finite temperatures. Imposing the Sakharov condition of the departure from thermal equilibrium for baryogenesis, we survey allowed regions of parameters of the model. We then investigate the gravitational waves produced at electroweak bubble collisions in the early Universe, such as the sound wave, the bubble wall collision and the plasma turbulence. We find that the strength at the peak frequency can be large enough to be detected at future space-based gravitational interferometers such as eLISA, DECIGO and BBO. Predicted deviations in the various Higgs boson couplings are also evaluated at the zero temperature, and are shown to be large enough too. Therefore, in this model strongly first order electroweak phase transition can be tested by the combination of the precision study of various Higgs boson couplings at the LHC, the measurement of the triple Higgs boson coupling at future lepton colliders and the shape of the spectrum of gravitational wave detectable at future gravitational interferometers.
Directory of Open Access Journals (Sweden)
Katsuya Hashino
2017-03-01
Full Text Available We calculate the spectrum of gravitational waves originated from strongly first order electroweak phase transition in the extended Higgs model with a real singlet scalar field. In order to calculate the bubble nucleation rate, we perform a two-field analysis and evaluate bounce solutions connecting the true and the false vacua using the one-loop effective potential at finite temperatures. Imposing the Sakharov condition of the departure from thermal equilibrium for baryogenesis, we survey allowed regions of parameters of the model. We then investigate the gravitational waves produced at electroweak bubble collisions in the early Universe, such as the sound wave, the bubble wall collision and the plasma turbulence. We find that the strength at the peak frequency can be large enough to be detected at future space-based gravitational interferometers such as eLISA, DECIGO and BBO. Predicted deviations in the various Higgs boson couplings are also evaluated at the zero temperature, and are shown to be large enough too. Therefore, in this model strongly first order electroweak phase transition can be tested by the combination of the precision study of various Higgs boson couplings at the LHC, the measurement of the triple Higgs boson coupling at future lepton colliders and the shape of the spectrum of gravitational wave detectable at future gravitational interferometers.
The approximation of anomalous magnetic field by array of magnetized rods
Denis, Byzov; Lev, Muravyev; Natalia, Fedorova
2017-07-01
The method for calculation the vertical component of an anomalous magnetic field from its absolute value is presented. Conversion is based on the approximation of magnetic induction module anomalies by the set of singular sources and the subsequent calculation for the vertical component of the field with the chosen distribution. The rods that are uniformly magnetized along their axis were used as a set of singular sources. Applicability analysis of different methods of nonlinear optimization for solving the given task was carried out. The algorithm is implemented using the parallel computing technology on the NVidia GPU. The approximation and calculation of vertical component is demonstrated for regional magnetic field of North Eurasia territories.
Mean field approximation versus exact treatment of collisions in few-body systems
International Nuclear Information System (INIS)
Lemm, J.; Weiguny, A.; Giraud, B.G.
1990-01-01
A variational principle for calculating matrix elements of the full resolvent operator for a many-body system is studied. Its mean field approximation results in non-linear equations of Hartree (-Fock) type, with initial and final channel wave functions as driving terms. The mean field equations will in general have many solutions whereas the exact problem being linear, has a unique solution. In a schematic model with separable forces the mean field equations are analytically soluble, and for the exact problem the resulting integral equations are solved numerically. Comparing exact and mean field results over a wide range of system parameters, the mean field approach proves to be a very reliable approximation, which is not plagued by the notorious problem of defining asymptotic channels in the time-dependent mean field method. (orig.)
A second-order approximation of particle motion in the fringing field of a dipole magnet
International Nuclear Information System (INIS)
Tarantin, N.I.
1980-01-01
The radial and axial motion of charged particles in the fringing field of an arbitrary dipole magnet has been considered with accuracy to the second-order of small quantities. The dipole magnet has an inhomogeneous field and oblique entrance and exit boundaries in the form of second-order curves. The region of the fringing field has a variable extension. A new definition of the effective boundary of the real fringing field has a variable extension. A new definition of the effective boundary of the real fringing field of the dipole magnet is used. A better understanding of the influence of the fringing magnetic field on the motion of charged particles in the pole gap of the dipole magnet has been obtained. In particular, it is shown that it is important to take into account, in the second approximation, some terms related formally to the next approximations. The results are presented in a form convenient for practical calculations. (orig.)
Merging Belief Propagation and the Mean Field Approximation: A Free Energy Approach
DEFF Research Database (Denmark)
Riegler, Erwin; Kirkelund, Gunvor Elisabeth; Manchón, Carles Navarro
2013-01-01
We present a joint message passing approach that combines belief propagation and the mean field approximation. Our analysis is based on the region-based free energy approximation method proposed by Yedidia et al. We show that the message passing fixed-point equations obtained with this combination...... correspond to stationary points of a constrained region-based free energy approximation. Moreover, we present a convergent implementation of these message passing fixed-point equations provided that the underlying factor graph fulfills certain technical conditions. In addition, we show how to include hard...
Black holes and fundamental fields: Hair, kicks, and a gravitational Magnus effect
Okawa, Hirotada; Cardoso, Vitor
2014-11-01
Scalar fields pervade theoretical physics and are a fundamental ingredient to solve the dark matter problem, to realize the Peccei-Quinn mechanism in QCD or the string-axiverse scenario. They are also a useful proxy for more complex matter interactions, such as accretion disks or matter in extreme conditions. Here, we study the collision between scalar "clouds" and rotating black holes. For the first time we are able to compare analytic estimates and strong field, nonlinear numerical calculations for this problem. As the black hole pierces through the cloud it accretes according to the Bondi-Hoyle prediction, but is deflected through a purely kinematic gravitational "anti-Magnus" effect, which we predict to be present also during the interaction of black holes with accretion disks. After the interaction is over, we find large recoil velocities in the transverse direction. The end-state of the process belongs to the vacuum Kerr family if the scalar is massless, but can be a hairy black hole when the scalar is massive.
Plocková, J; Chmelík, J
2001-05-25
Gravitational field-flow fractionation (GFFF) utilizes the Earth's gravitational field as an external force that causes the settlement of particles towards the channel accumulation wall. Hydrodynamic lift forces oppose this action by elevating particles away from the channel accumulation wall. These two counteracting forces enable modulation of the resulting force field acting on particles in GFFF. In this work, force-field programming based on modulating the magnitude of hydrodynamic lift forces was implemented via changes of flow-rate, which was accomplished by a programmable pump. Several flow-rate gradients (step gradients, linear gradients, parabolic, and combined gradients) were tested and evaluated as tools for optimization of the separation of a silica gel particle mixture. The influence of increasing amount of sample injected on the peak resolution under flow-rate gradient conditions was also investigated. This is the first time that flow-rate gradients have been implemented for programming of the resulting force field acting on particles in GFFF.
Linear spin-zero quantum fields in external gravitational and scalar fields
International Nuclear Information System (INIS)
Kay, B.S.
1977-11-01
A general formalism for quantizing the covariant Klein Gordon equation in an arbitrary globally hyperbolic space-time is presented. It is argued that much of the conceptual confusion surrounding ''quantum field theory in curved space-time'' has been caused by the misapplication of a quantization procedure (the single representation formalism) which is really only suitable for quantizing stationary systems. Drawing on a close analogy with time-dependent external field problems in flat space-time, it is argued for the introduction of a new quantization procedure: the many vacuum formalism which accommodates non-stationary situations. In the many vacuum formalism, a whole family of different representations of the field algebra plays a role and dynamics is necessarily described in terms of isomorphisms between different algebras rather than automorphisms of a single algebra. It is shown how this many vacuum approach gives physically sensible results in the flat space-time case. In the curved space-time case, corresponding well defined formalism is obtained relying on rigorous results established in I. A principal feature is that a different vacuum state is obtained for each choice of Cauchy surface together with a choice of lapse and shift functions on that surface. Several questions-mathematical and interpretational- raised by the scheme are discussed
Matrix model approximations of fuzzy scalar field theories and their phase diagrams
Energy Technology Data Exchange (ETDEWEB)
Tekel, Juraj [Department of Theoretical Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynska Dolina, Bratislava, 842 48 (Slovakia)
2015-12-29
We present an analysis of two different approximations to the scalar field theory on the fuzzy sphere, a nonperturbative and a perturbative one, which are both multitrace matrix models. We show that the former reproduces a phase diagram with correct features in a qualitative agreement with the previous numerical studies and that the latter gives a phase diagram with features not expected in the phase diagram of the field theory.
General relativity and gravitational waves
Weber, Johanna
1961-01-01
An internationally famous physicist and electrical engineer, the author of this text was a pioneer in the investigation of gravitational waves. Joseph Weber's General Relativity and Gravitational Waves offers a classic treatment of the subject. Appropriate for upper-level undergraduates and graduate students, this text remains ever relevant. Brief but thorough in its introduction to the foundations of general relativity, it also examines the elements of Riemannian geometry and tensor calculus applicable to this field.Approximately a quarter of the contents explores theoretical and experimenta
Dynamically assisted Schwinger effect beyond the spatially-uniform-field approximation
Aleksandrov, I. A.; Plunien, G.; Shabaev, V. M.
2018-06-01
We investigate the phenomenon of electron-positron pair production from vacuum in the presence of a strong electric field superimposed by a weak but fast varying pulse which substantially increases the total particle yield. We employ a nonperturbative numerical technique and perform the calculations beyond the spatially-uniform-field approximation, i.e., dipole approximation, taking into account the coordinate dependence of the fast component. The analysis of the main characteristics of the pair-production process (momentum spectra of particles and total amount of pairs) reveals a number of important features which are absent within the previously used approximation. In particular, the structure of the momentum distribution is modified both qualitatively and quantitatively, and the total number of pairs created as well as the enhancement factor due to dynamical assistance become significantly smaller.
Approximate motion integral for a hydrogen atom in a magnetic field
International Nuclear Information System (INIS)
Solov'ev, E.A.
1981-01-01
It is shown that the Schroedinger equation for highly excited states of a hydrogen atom in a magnetic field H allows a separation of variables (within an accuracy of H 4 ) in elliptical-cylindrical coordinates on a sphere in a four-dimensional momentum space. A new classification and approximate selection rules are proposed for these states
The accuracy of the time-dependent self-consistent-field approximation for inelastic collisions
DEFF Research Database (Denmark)
Henriksen, Niels Engholm; Billing, Gert D.; Hansen, Flemming Yssing
1992-01-01
We study the accuracy of the time-dependent self-consistent-field approximation for collinear inelastic collisions between an atom and a diatomic molecule. Individual state-to-state transition probabilities, total energy transfer. and the global description of the wavefunction is considered...
Inverse bremsstrahlung heating beyond the first Born approximation for dense plasmas in laser fields
International Nuclear Information System (INIS)
Moll, M; Schlanges, M; Bornath, Th; Krainov, V P
2012-01-01
Inverse bremsstrahlung (IB) heating, an important process in the laser-matter interaction, involves two different kinds of interaction—the interaction of the electrons with the external laser field and the electron-ion interaction. This makes analytical approaches very difficult. In a quantum perturbative approach to the IB heating rate in strong laser fields, usually the first Born approximation with respect to the electron-ion potential is considered, whereas the influence of the electric field is taken exactly in the Volkov wave functions. In this paper, a perturbative treatment is presented adopting a screened electron-ion interaction potential. As a new result, we derive the momentum-dependent, angle-averaged heating rate in the first Born approximation. Numerical results are discussed for a broad range of field strengths, and the conditions for the applicability of a linear approximation for the heating rate are analyzed in detail. Going a step further in the perturbation series, we consider the transition amplitude in the second Born approximation, which enables us to calculate the heating rate up to the third order of the interaction strength. (paper)
Linear spin-zero quantum fields in external gravitational and scalar fields
International Nuclear Information System (INIS)
Kay, B.S.
1977-10-01
Mathematically rigorous results are given on the quantization of the covariant Klein-Gordon field with an external stationary scalar interaction in a stationary curved space-time. It is shown how, following Segal, Weinless etc., the problem reduces to finding a ''one-particle structure'' for the corresponding classical system. The main result is an existence theorem for such a one-particle structure for a precisely specified class of stationary space-times. Byproducts of our approach are (1)a discussion of when the equal-time hypersurfaces in a given stationary space-time are Cauchy; (2)a proof that when a one-particle structure exists it is unique a result of general interest for the quantization of linear systems; (3)a modification and extension of the methods of Chernoff [3] for proving the essential self-adjointness of ceratin partial differential operators
Relativity theory and gravitation
International Nuclear Information System (INIS)
Bondi, H.
1986-01-01
The paper on relativity theory and gravitation is presented as a preface to the first of the articles submitted to the Journal on general relativity. Newtonian gravitation and and observation, relativity, and the sources of the gravitational field, are all discussed. (UK)
Snow load effect on earth's rotation and gravitational field, 1979-1985
Chao, B. Fong; O'Connor, William P.; Chang, Alfred T. C.; Hall, Dorothy K.; Foster, James L.
1987-01-01
A global, monthly snow depth data set has been generated from the Nimbus 7 satellite observations using passive microwave remote-sensing techniques. Seven years of data, 1979-1985, are analyzed to compute the snow load effects on the earth's rotation and low-degree zonal gravitational field. The resultant time series show dominant seasonal cycles. The annual peak-to-peak variation in J2 is found to be 2.3 x 10 to the -10th, that in J3 to be 1.1 x 10 to the -10th, and believed to decrease rapidly for higher degrees. The corresponding change in the length of day is 41 micro-s. The annual wobble excitation is (4.9 marc sec, -109 deg) for the prograde motion component and (4.8 marc sec, -28 deg) for the retrograde motion component. The excitation power of the Chandler wobble due to the snow load is estimated to be about 25 dB less than the power needed to maintain the observed Chandler wobble.
Approximate Integrals of rf-driven Particle Motion in Magnetic Field
International Nuclear Information System (INIS)
Dodin, I.Y.; Fisch, N.J.
2004-01-01
For a particle moving in nonuniform magnetic field under the action of an rf wave, ponderomotive effects result from rf-driven oscillations nonlinearly coupled with Larmor rotation. Using Lagrangian and Hamiltonian formalism, we show how, despite this coupling, two independent integrals of the particle motion are approximately conserved. Those are the magnetic moment of free Larmor rotation and the quasi-energy of the guiding center motion parallel to the magnetic field. Under the assumption of non-resonant interaction of the particle with the rf field, these integrals represent adiabatic invariants of the particle motion
Bent dark soliton dynamics in two spatial dimensions beyond the mean field approximation
Mistakidis, Simeon; Katsimiga, Garyfallia; Koutentakis, Georgios; Kevrekidis, Panagiotis; Schmelcher, Peter; Theory Group of Fundamental Processes in Quantum Physics Team
2017-04-01
The dynamics of a bented dark soliton embedded in two spatial dimensions beyond the mean-field approximation is explored. We examine the case of a single bented dark soliton comparing the mean-field approximation to a correlated approach that involves multiple orbitals. Fragmentation is generally present and significantly affects the dynamics, especially in the case of stronger interparticle interactions and in that of lower atom numbers. It is shown that the presence of fragmentation allows for the appearance of solitonic and vortex structures in the higher-orbital dynamics. In particular, a variety of excitations including dark solitons in multiple orbitals and vortex-antidark complexes is observed to arise spontaneously within the beyond mean-field dynamics. Deutsche Forschungsgemeinschaft (DFG) in the framework of the SFB 925 ``Light induced dynamics and control of correlated quantum systems''.
The Newton constant and gravitational waves in some vector field adjusting mechanisms
Energy Technology Data Exchange (ETDEWEB)
Santillán, Osvaldo P. [IMAS (UBA-CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires 1428 (Argentina); Scornavacche, Marina, E-mail: firenzecita@hotmail.com, E-mail: marina.scorna@hotmail.com [Departamento de Física, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires 1428 (Argentina)
2017-10-01
At the present, there exist some Lorentz breaking scenarios which explain the smallness of the cosmological constant at the present era [1]–[2]. An important aspect to analyze is the propagation of gravitational waves and the screening or enhancement of the Newton constant G {sub N} in these models. The problem is that the Lorentz symmetry breaking terms may induce an unacceptable value of the Newton constant G {sub N} or introduce longitudinal modes in the gravitational wave propagation. Furthermore this breaking may spoil the standard dispersion relation ω= ck . In [3] the authors have presented a model suggesting that the behavior of the gravitational constant is correct for asymptotic times. In the present work, an explicit checking is made and we finally agree with these claims. Furthermore, it is suggested that the gravitational waves are also well behaved for large times. In the process, some new models with the same behavior are obtained, thus enlarging the list of possible adjustment mechanisms.
International Nuclear Information System (INIS)
Gogala, B.
1983-01-01
The equations of the gauge theory of gravitation are derived from a complex quadratic Lagrangian with torsion. The derivation is performed in a coordinate basis in a completely covariant way. (author)
Hard Thermal Loop approximation in the Light Front Quantum Field Theory
International Nuclear Information System (INIS)
Silva, Charles da Rocha; Perez, Silvana
2011-01-01
Full text: In this paper we generalize the Hard Thermal Loop approximation (HTL) for the Thermal Light Front Quantum Field Theory. This technique was developed by Braaten e Pisarski [PRL. 63 (1989) 1129, Nucl. Phys. B337 (1990) 569], for the Thermal Quantum Field Theory at equal time and is particularly useful to solve problems of convergence of the amplitudes within Quantum Chromodynamics, caused by the inherently nonperturbative behavior. The HTL approximation satisfies simple Ward identities, is ultraviolet finite and gauge independent. Here we use the light front generalized coordinates (GLFC) proposed by one of us (V. S. Alves, Ashok Das, e Silvana Perez [PRD. 66, (2002) 125008]) and analyze the one loop amplitudes for the λφ3 theory and the Quantum Electrodynamics in (3+1) dimensions at finite temperature in the HTL approximation. For the scalar theory, we evaluate the two-point function, recovering the usual dispersion relations. We also analyze the rotational invariance of the model. We then consider the Quantum Electrodynamics in (3+1) dimensions and calculate the polarization tensor and the vertex function at finite temperature in the HTL approximation. In future, our interest will be to apply the Generalized Light Front formalism to understand the confinement mechanism which occurs in the Quantum Chromodynamics. There is an expectation that the Light Front Quantum Field Theory formalism is more appropriate to study this problems. (author)
Hard Thermal Loop approximation in the Light Front Quantum Field Theory
Energy Technology Data Exchange (ETDEWEB)
Silva, Charles da Rocha [Instituto Federal de Educacao, Ciencia e Tecnologia do Para (IFPA), Belem, PA (Brazil); Universidade Federal do Para (UFPA), Belem, PA (Brazil); Perez, Silvana [Universidade Federal do Para (UFPA), Belem, PA (Brazil)
2011-07-01
Full text: In this paper we generalize the Hard Thermal Loop approximation (HTL) for the Thermal Light Front Quantum Field Theory. This technique was developed by Braaten e Pisarski [PRL. 63 (1989) 1129, Nucl. Phys. B337 (1990) 569], for the Thermal Quantum Field Theory at equal time and is particularly useful to solve problems of convergence of the amplitudes within Quantum Chromodynamics, caused by the inherently nonperturbative behavior. The HTL approximation satisfies simple Ward identities, is ultraviolet finite and gauge independent. Here we use the light front generalized coordinates (GLFC) proposed by one of us (V. S. Alves, Ashok Das, e Silvana Perez [PRD. 66, (2002) 125008]) and analyze the one loop amplitudes for the {lambda}{phi}3 theory and the Quantum Electrodynamics in (3+1) dimensions at finite temperature in the HTL approximation. For the scalar theory, we evaluate the two-point function, recovering the usual dispersion relations. We also analyze the rotational invariance of the model. We then consider the Quantum Electrodynamics in (3+1) dimensions and calculate the polarization tensor and the vertex function at finite temperature in the HTL approximation. In future, our interest will be to apply the Generalized Light Front formalism to understand the confinement mechanism which occurs in the Quantum Chromodynamics. There is an expectation that the Light Front Quantum Field Theory formalism is more appropriate to study this problems. (author)
Dhiman, Joginder Singh; Sharma, Rajni
2017-12-01
The effects of nonuniform rotation and magnetic field on the instability of a self gravitating infinitely extending axisymmetric cylinder of viscoelastic ferromagnetic medium have been studied using the Generalised Hydrodynamic (GH) model. The non-uniform magnetic field and rotation are acting along the axial direction of the cylinder and the propagation of the wave is considered along the radial direction, while the ferrofluid magnetization is taken collinear with the magnetic field. A general dispersion relation representing magnetization, magnetic permeability and viscoelastic relaxation time parameters is obtained using the normal mode analysis method in the linearized perturbation equation system. Jeans criteria which represent the onset of instability of self gravitating medium are obtained under the limits; when the medium behaves like a viscous liquid (strongly coupled limit) and a Newtonian liquid (weakly coupled limit). The effects of various parameters on the Jeans instability criteria and on the growth rate of self gravitating viscoelastic ferromagnetic medium have been discussed. It is found that the magnetic polarizability due to ferromagnetization of medium marginalizes the effect of non-uniform magnetic field on the Jeans instability, whereas the viscoelasticity of the medium has the usual stabilizing effect on the instability of the system. Further, it is found that the cylindrical geometry is more stable than the Cartesian one. The variation of growth rate against the wave number and radial distance has been depicted graphically.
International Nuclear Information System (INIS)
Bleyer, U.; Muecket, J.P.
1980-01-01
In general the Birkhoff theorem is violated in non-Einsteinian theories of gravitation. We show for theories in which the dynamical equations do not follow from the field equations that time-dependent vacuum solutions are needed in order to join nonstatic spherically symmetric incoherent matter distributions. It is shown for Treder's tetrad theories that such vacuum solutions exist and a continuous and unique junction is possible. In generalization of these results we consider the problem in what theories of gravitation the dynamical equations do not follow from the field equations. This consideration leads to non-Einsteinian theories like bimetric theories or Treder's tetrad theories containing supplementary geometrical quantities which are not dynamical variables of the theory. (author)
Malpetti, Daniele; Roscilde, Tommaso
2017-02-01
The mean-field approximation is at the heart of our understanding of complex systems, despite its fundamental limitation of completely neglecting correlations between the elementary constituents. In a recent work [Phys. Rev. Lett. 117, 130401 (2016), 10.1103/PhysRevLett.117.130401], we have shown that in quantum many-body systems at finite temperature, two-point correlations can be formally separated into a thermal part and a quantum part and that quantum correlations are generically found to decay exponentially at finite temperature, with a characteristic, temperature-dependent quantum coherence length. The existence of these two different forms of correlation in quantum many-body systems suggests the possibility of formulating an approximation, which affects quantum correlations only, without preventing the correct description of classical fluctuations at all length scales. Focusing on lattice boson and quantum Ising models, we make use of the path-integral formulation of quantum statistical mechanics to introduce such an approximation, which we dub quantum mean-field (QMF) approach, and which can be readily generalized to a cluster form (cluster QMF or cQMF). The cQMF approximation reduces to cluster mean-field theory at T =0 , while at any finite temperature it produces a family of systematically improved, semi-classical approximations to the quantum statistical mechanics of the lattice theory at hand. Contrary to standard MF approximations, the correct nature of thermal critical phenomena is captured by any cluster size. In the two exemplary cases of the two-dimensional quantum Ising model and of two-dimensional quantum rotors, we study systematically the convergence of the cQMF approximation towards the exact result, and show that the convergence is typically linear or sublinear in the boundary-to-bulk ratio of the clusters as T →0 , while it becomes faster than linear as T grows. These results pave the way towards the development of semiclassical numerical
Directory of Open Access Journals (Sweden)
Chifu E. N.
2009-07-01
Full Text Available Here, we present a profound and complete analytical solution to Einstein’s gravitational field equations exterior to astrophysically real or hypothetical time varying distribu- tions of mass or pressure within regions of spherical geometry. The single arbitrary function f in our proposed exterior metric tensor and constructed field equations makes our method unique, mathematically less combersome and astrophysically satisfactory. The obtained solution of Einstein’s gravitational field equations tends out to be a gen- eralization of Newton’s gravitational scalar potential exterior to the spherical mass or pressure distribution under consideration
Robertson, Brant E.; Ellis, Richard S.; Dunlop, James S.; McLure, Ross J.; Stark, Dan P.; McLeod, Derek
2014-01-01
Strong gravitational lensing provides a powerful means for studying faint galaxies in the distant universe. By magnifying the apparent brightness of background sources, massive clusters enable the detection of galaxies fainter than the usual sensitivity limit for blank fields. However, this gain in effective sensitivity comes at the cost of a reduced survey volume and, in this Letter, we demonstrate that there is an associated increase in the cosmic variance uncertainty. As an example, we sho...
Mean-field approximations of fixation time distributions of evolutionary game dynamics on graphs
Ying, Li-Min; Zhou, Jie; Tang, Ming; Guan, Shu-Guang; Zou, Yong
2018-02-01
The mean fixation time is often not accurate for describing the timescales of fixation probabilities of evolutionary games taking place on complex networks. We simulate the game dynamics on top of complex network topologies and approximate the fixation time distributions using a mean-field approach. We assume that there are two absorbing states. Numerically, we show that the mean fixation time is sufficient in characterizing the evolutionary timescales when network structures are close to the well-mixing condition. In contrast, the mean fixation time shows large inaccuracies when networks become sparse. The approximation accuracy is determined by the network structure, and hence by the suitability of the mean-field approach. The numerical results show good agreement with the theoretical predictions.
International Nuclear Information System (INIS)
Kowalska-Leszczynska, Izabela; Bulik, Tomasz; Bizouard, Marie-Anne; Robinet, Florent; Christensen, Nelson; Rohde, Maximilian; Coughlin, Michael; Gołkowski, Mark; Kubisz, Jerzy; Kulak, Andrzej; Mlynarczyk, Janusz
2017-01-01
It has been recognized that the magnetic fields from the Schumann resonances could affect the search for a stochastic gravitational-wave background by LIGO and Virgo. Presented here are the observations of short duration magnetic field transients that are coincident in the magnetometers at the LIGO and Virgo sites. Data from low-noise magnetometers in Poland and Colorado, USA, are also used and show short duration magnetic transients of global extent. We measure at least 2.3 coincident (between Poland and Colorado) magnetic transient events per day where one of the pulses exceeds 200 pT. Given the recently measured values of the magnetic coupling to differential arm motion for Advanced LIGO, there would be a few events per day that would appear simultaneously at the gravitational-wave detector sites and could move the test masses of order 10 −18 m. We confirm that in the advanced detector era short duration transient gravitational-wave searches must account for correlated magnetic field noise in the global detector network. (paper)
Dynamics of Fermat potentials in nonperturbative gravitational lensing
International Nuclear Information System (INIS)
Frittelli, Simonetta; Newman, Ezra T.
2002-01-01
We present a framework, based on the null-surface formulation of general relativity, for discussing the dynamics of Fermat potentials for gravitational lensing in a generic situation without approximations of any kind. Additionally, we derive two lens equations: one for the case of thick compact lenses and the other one for lensing by gravitational waves. These equations in principle generalize the astrophysical scheme for lensing by removing the thin-lens approximation while retaining the weak fields
Time dependent mean field approximation to the many-body S-matrix
International Nuclear Information System (INIS)
Alhassid, Y.; Koonin, S.E.
1980-01-01
Time-dependent Hartree-Fock (TDHF) calculations are a good description of some inclusive properties of deep inelastic heavy-ion collisions. The first steps toward a mean-field theory that approximates specific elements of the many-body S matrix are presented. A many-body system with pairwise interactions excited by an external, time-dependent one-body field is considered. The methods are used to solve the forced Lipkin model. The moduli of elastic and excitation amplitudes are plotted. 3 figures
Energy Technology Data Exchange (ETDEWEB)
Silvestre-Brac, Bernard [LPSC Universite Joseph Fourier, Grenoble 1, CNRS/IN2P3, Institut Polytechnique de Grenoble, Avenue des Martyrs 53, F-38026 Grenoble-Cedex (France); Semay, Claude; Buisseret, Fabien [Groupe de Physique Nucleaire Theorique, Universite de Mons-Hainaut, Academie universitaire Wallonie-Bruxelles, Place du Parc 20, B-7000 Mons (Belgium)], E-mail: silvestre@lpsc.in2p3.fr, E-mail: claude.semay@umh.ac.be, E-mail: fabien.buisseret@umh.ac.be
2009-06-19
The auxiliary field method is a new and efficient way to compute approximate analytical eigenenergies of the Schroedinger equation. This method has already been successfully applied to the case of central potentials of power-law and logarithmic forms. In the present work, we show that the Schroedinger equation with exponential potentials of the form -{alpha}r{sup {lambda}}exp(-{beta}r) can also be analytically solved by using the auxiliary field method. Closed formulae giving the critical heights and the energy levels of these potentials are presented. Special attention is drawn to the Yukawa potential and the pure exponential potential.
International Nuclear Information System (INIS)
Silvestre-Brac, Bernard; Semay, Claude; Buisseret, Fabien
2009-01-01
The auxiliary field method is a new and efficient way to compute approximate analytical eigenenergies of the Schroedinger equation. This method has already been successfully applied to the case of central potentials of power-law and logarithmic forms. In the present work, we show that the Schroedinger equation with exponential potentials of the form -αr λ exp(-βr) can also be analytically solved by using the auxiliary field method. Closed formulae giving the critical heights and the energy levels of these potentials are presented. Special attention is drawn to the Yukawa potential and the pure exponential potential
Ciufolini, I; Moschella, U; Fre, P
2001-01-01
Gravitational waves (GWs) are a hot topic and promise to play a central role in astrophysics, cosmology, and theoretical physics. Technological developments have led us to the brink of their direct observation, which could become a reality in the coming years. The direct observation of GWs will open an entirely new field: GW astronomy. This is expected to bring a revolution in our knowledge of the universe by allowing the observation of previously unseen phenomena, such as the coalescence of compact objects (neutron stars and black holes), the fall of stars into supermassive black holes, stellar core collapses, big-bang relics, and the new and unexpected.With a wide range of contributions by leading scientists in the field, Gravitational Waves covers topics such as the basics of GWs, various advanced topics, GW detectors, astrophysics of GW sources, numerical applications, and several recent theoretical developments. The material is written at a level suitable for postgraduate students entering the field.
Gravitational perturbation theory and synchrotron radiation
Energy Technology Data Exchange (ETDEWEB)
Breuer, R A [Max-Planck-Institut fuer Physik und Astrophysik, Muenchen (F.R. Germany). Inst. fuer Astrophysik
1975-01-01
This article presents methods and results for a gravitational perturbation theory which treats massless fields as linearized perturbations of an arbitrary gravitational vacuum background spacetime. The formalism is outlined for perturbations of type (22) spacetimes. As an application, high-frequency radiation emitted by particles moving approximately on relativistic circular geodesic orbits is computed. More precisely, the test particle assumption is made; throughout it is therefore assumed that the reaction of the radiation on the particle motion is negligible. In particular, these orbits are studied in the gravitational field of a spherically symmetric (Schwarzschild-) black hole as well as of a rotating (Kerr-) black hole. In this model, the outgoing radiation is highly focussed and of much higher fequency than the orbital frequency, i.e. one is dealing with 'gravitational synchrotron radiation'.
Normalization of Gravitational Acceleration Models
Eckman, Randy A.; Brown, Aaron J.; Adamo, Daniel R.
2011-01-01
Unlike the uniform density spherical shell approximations of Newton, the con- sequence of spaceflight in the real universe is that gravitational fields are sensitive to the nonsphericity of their generating central bodies. The gravitational potential of a nonspherical central body is typically resolved using spherical harmonic approximations. However, attempting to directly calculate the spherical harmonic approximations results in at least two singularities which must be removed in order to generalize the method and solve for any possible orbit, including polar orbits. Three unique algorithms have been developed to eliminate these singularities by Samuel Pines [1], Bill Lear [2], and Robert Gottlieb [3]. This paper documents the methodical normalization of two1 of the three known formulations for singularity-free gravitational acceleration (namely, the Lear [2] and Gottlieb [3] algorithms) and formulates a general method for defining normalization parameters used to generate normalized Legendre Polynomials and ALFs for any algorithm. A treatment of the conventional formulation of the gravitational potential and acceleration is also provided, in addition to a brief overview of the philosophical differences between the three known singularity-free algorithms.
Energy Technology Data Exchange (ETDEWEB)
Scheck, Florian [Mainz Univ. (Germany). Inst. fuer Physik
2017-09-01
The following topics are dealt with: Maxwell's equations together with their symmetry and covariance, the Maxwell theory as classical field theory, simple applications of Maxwell's theory, local gauge theories, classical field theory of gravitation. (HSI)
DEFF Research Database (Denmark)
Norman, Patrick; Bishop, David M.; Jensen, Hans Jørgen Aa
2001-01-01
Computationally tractable expressions for the evaluation of the linear response function in the multiconfigurational self-consistent field approximation were derived and implemented. The finite lifetime of the electronically excited states was considered and the linear response function was shown...... to be convergent in the whole frequency region. This was achieved through the incorporation of phenomenological damping factors that lead to complex response function values....
Dark-Bright Soliton Dynamics Beyond the Mean-Field Approximation
Katsimiga, Garyfallia; Koutentakis, Georgios; Mistakidis, Simeon; Kevrekidis, Panagiotis; Schmelcher, Peter; Theory Group of Fundamental Processes in Quantum Physics Team
2017-04-01
The dynamics of dark bright solitons beyond the mean-field approximation is investigated. We first examine the case of a single dark-bright soliton and its oscillations within a parabolic trap. Subsequently, we move to the setting of collisions, comparing the mean-field approximation to that involving multiple orbitals in both the dark and the bright component. Fragmentation is present and significantly affects the dynamics, especially in the case of slower solitons and in that of lower atom numbers. It is shown that the presence of fragmentation allows for bipartite entanglement between the distinguishable species. Most importantly the interplay between fragmentation and entanglement leads to the decay of each of the initial mean-field dark-bright solitons into fast and slow fragmented dark-bright structures. A variety of excitations including dark-bright solitons in multiple (concurrently populated) orbitals is observed. Dark-antidark states and domain-wall-bright soliton complexes can also be observed to arise spontaneously in the beyond mean-field dynamics. Deutsche Forschungsgemeinschaft (DFG) in the framework of the SFB 925 ``Light induced dynamics and control of correlated quantum systems''.
The time-dependent relativistic mean-field theory and the random phase approximation
International Nuclear Information System (INIS)
Ring, P.; Ma, Zhong-yu; Van Giai, Nguyen; Vretenar, D.; Wandelt, A.; Cao, Li-gang
2001-01-01
The Relativistic Random Phase Approximation (RRPA) is derived from the Time-Dependent Relativistic Mean-Field (TD RMF) theory in the limit of small amplitude oscillations. In the no-sea approximation of the RMF theory, the RRPA configuration space includes not only the usual particle-hole ph-states, but also αh-configurations, i.e. pairs formed from occupied states in the Fermi sea and empty negative-energy states in the Dirac sea. The contribution of the negative-energy states to the RRPA matrices is examined in a schematic model, and the large effect of Dirac-sea states on isoscalar strength distributions is illustrated for the giant monopole resonance in 116 Sn. It is shown that, because the matrix elements of the time-like component of the vector-meson fields which couple the αh-configurations with the ph-configurations are strongly reduced with respect to the corresponding matrix elements of the isoscalar scalar meson field, the inclusion of states with unperturbed energies more than 1.2 GeV below the Fermi energy has a pronounced effect on giant resonances with excitation energies in the MeV region. The influence of nuclear magnetism, i.e. the effect of the spatial components of the vector fields is examined, and the difference between the nonrelativistic and relativistic RPA predictions for the nuclear matter compression modulus is explained
Energy Technology Data Exchange (ETDEWEB)
Harrington, B J; Shepard, H K [New Hampshire Univ., Durham (USA). Dept. of Physics
1976-03-22
By fully exploiting the mathematical and physical analogy to the Ginzburg-Landau theory of superconductivity, a complete discussion of the ground state behavior of the four-dimensional Abelian Higgs model in the static tree level approximation is presented. It is shown that a sufficiently strong external magnetic field can alter the ground state of the theory by restoring a spontaneously broken symmetry, or by creating a qualitatively different 'vortex' state. The energetically favored ground state is explicitly determined as a function of the external field and the ratio between coupling constants of the theory.
Cylindrical collapse and gravitational waves
Energy Technology Data Exchange (ETDEWEB)
Herrera, L [Escuela de FIsica, Faculdad de Ciencias, Universidad Central de Venezuela, Caracas, Venezuela (Venezuela); Santos, N O [Universite Pierre et Marie Curie, CNRS/FRE 2460 LERMA/ERGA, Tour 22-12, 4eme etage, BoIte 142, 4 place Jussieu, 75252 Paris Cedex 05 (France); Laboratorio Nacional de Computacao Cientifica, 25651-070 Petropolis RJ (Brazil); Centro Brasileiro de Pesquisas Fisicas, 22290-180 Rio de Janeiro RJ (Brazil)
2005-06-21
We study the matching conditions for a collapsing anisotropic cylindrical perfect fluid, and we show that its radial pressure is non-zero on the surface of the cylinder and proportional to the time-dependent part of the field produced by the collapsing fluid. This result resembles the one that arises for the radiation-though non-gravitational-in the spherically symmetric collapsing dissipative fluid, in the diffusion approximation.
Behera, Harihar
2017-12-01
Recently reported [Eur. Phys. J. C., 77, 549 (2017). https://doi.org/10.1140/epjc/s10052-017-5116-y] gravitoelectromagnetic equations of Ummarino and Gallerati (UG) in their linearized version of general relativity (GR) are shown to match with (a) our previously reported special relativistic Maxwellian Gravity equations in the non-relativistic limit and with (b) the non-relativistic equations derived here, when the speed of gravity c_g (an undetermined parameter of the theory here) is set equal to c (the speed of light in vacuum). Seen in the light of our new results, the UG equations satisfy the Correspondence Principle (cp), while many other versions of linearized GR equations that are being (or may be) used to interpret the experimental data defy the cp. Such new findings assume significance and relevance in the contexts of recent detection of gravitational waves and the gravitomagnetic field of the spinning earth and their interpretations. Being well-founded and self-consistent, the equations may be of interest and useful to researchers exploring the phenomenology of gravitomagnetism, gravitational waves and the novel interplay of gravity with different states of matter in flat space-time like UG's interesting work on superconductors in weak gravitational fields.
International Nuclear Information System (INIS)
Balakin, A.B.; Murzakhanov, Z.G.; Grunskaya, L.V.
1994-01-01
A proposal on the experimental detection of extremely low-frequency variations of the electromagnetic Earth field at the gravitational-wave frequency and method for correlation processing results of the experiments are described. 14 refs
Hartree-type approximation applied to a phi4 field theory
International Nuclear Information System (INIS)
Chang, S.-J.
1976-01-01
Recently, there has been considerable interest in studying the relativistic field theories by means of nonperturbative method. These studies are partially motivated by the now fashionable physical picture that the hadrons are created from an 'abnormal vacuum state'. This abnormal vacuum state is the ground state associated with a spontaneously broken symmetry and is usually characterized by the non-vanishing expectation value of one or more scale fields. Presently, nearly all understandings of hadrons in the above description are based on semi-classical calculations. It is important to know how significant are the effects of the quantum corrections. Some results on the quantum fluctuations in a phi 4 field theory based in a self-consistent Hartree-type approximation are described. (Auth.)
Directory of Open Access Journals (Sweden)
DePrince A
2010-01-01
Full Text Available Abstract We model the response of nanoscale Ag prolate spheroids to an external uniform static electric field using simulations based on the discrete dipole approximation, in which the spheroid is represented as a collection of polarizable subunits. We compare the results of simulations that employ subunit polarizabilities derived from the Clausius–Mossotti relation with those of simulations that employ polarizabilities that include a local environmental correction for subunits near the spheroid’s surface [Rahmani et al. Opt Lett 27: 2118 (2002]. The simulations that employ corrected polarizabilities give predictions in very good agreement with exact results obtained by solving Laplace’s equation. In contrast, simulations that employ uncorrected Clausius–Mossotti polarizabilities substantially underestimate the extent of the electric field “hot spot” near the spheroid’s sharp tip, and give predictions for the field enhancement factor near the tip that are 30 to 50% too small.
2010-01-01
We model the response of nanoscale Ag prolate spheroids to an external uniform static electric field using simulations based on the discrete dipole approximation, in which the spheroid is represented as a collection of polarizable subunits. We compare the results of simulations that employ subunit polarizabilities derived from the Clausius–Mossotti relation with those of simulations that employ polarizabilities that include a local environmental correction for subunits near the spheroid’s surface [Rahmani et al. Opt Lett 27: 2118 (2002)]. The simulations that employ corrected polarizabilities give predictions in very good agreement with exact results obtained by solving Laplace’s equation. In contrast, simulations that employ uncorrected Clausius–Mossotti polarizabilities substantially underestimate the extent of the electric field “hot spot” near the spheroid’s sharp tip, and give predictions for the field enhancement factor near the tip that are 30 to 50% too small. PMID:20672062
Reduced-rank approximations to the far-field transform in the gridded fast multipole method
Hesford, Andrew J.; Waag, Robert C.
2011-05-01
The fast multipole method (FMM) has been shown to have a reduced computational dependence on the size of finest-level groups of elements when the elements are positioned on a regular grid and FFT convolution is used to represent neighboring interactions. However, transformations between plane-wave expansions used for FMM interactions and pressure distributions used for neighboring interactions remain significant contributors to the cost of FMM computations when finest-level groups are large. The transformation operators, which are forward and inverse Fourier transforms with the wave space confined to the unit sphere, are smooth and well approximated using reduced-rank decompositions that further reduce the computational dependence of the FMM on finest-level group size. The adaptive cross approximation (ACA) is selected to represent the forward and adjoint far-field transformation operators required by the FMM. However, the actual error of the ACA is found to be greater than that predicted using traditional estimates, and the ACA generally performs worse than the approximation resulting from a truncated singular-value decomposition (SVD). To overcome these issues while avoiding the cost of a full-scale SVD, the ACA is employed with more stringent accuracy demands and recompressed using a reduced, truncated SVD. The results show a greatly reduced approximation error that performs comparably to the full-scale truncated SVD without degrading the asymptotic computational efficiency associated with ACA matrix assembly.
CERN. Geneva
2006-01-01
Gravitational wave astronomy is expected to become an observational field within the next decade. First direct detection of gravitational waves is possible with existing terrestrial-based detectors, and highly probable with proposed upgrades. In this three-part lecture series, we give an overview of the field, including material on gravitional wave sources, detection methods, some details of interferometric detectors, data analysis methods, and current results from observational data-taking runs of the LIGO and GEO projects.
Inverse scattering problem for a magnetic field in the Glauber approximation
International Nuclear Information System (INIS)
Bogdanov, I.V.
1985-01-01
New results in the general theory of scattering are obtained. An inverse problem at fixed energy for an axisymmetric magnetic field is formulated and solved within the frames of the quantum-mechanical Glauber approximation. The solution is found in quadratures in the form of an explicit inversion algorithm reproducing a vector potential by the angular dependence of the scattering amplitude. Extreme transitions from the eikonal inversion method to the classical and Born ones are investigated. Integral and differential equations are derived for the eikonal amplitude that ensure the real value of the vector potential and its energy independence. Magnetoelectric analogies the existence of equivalent axisymmetric electric and magnetic fields scattering charged particles in the same manner both in the Glauber and Born approximation are established. The mentioned analogies permit to simulate ion-potential scattering by potential one that is of interest from the practical viewpoint. Three-dimensional (excentral) eikonal inverse problems for the electric and magnetic fields are discussed. The results of the paper can be used in electron optics
International Nuclear Information System (INIS)
Kang Guo-Dong; Fang Mao-Fa; Ouyang Xi-Cheng; Deng Xiao-Juan
2010-01-01
Considering two identical two-level atoms interacting with a single-model dissipative coherent cavity field without rotating wave approximation, we explore the entanglement dynamics of the two atoms prepared in different states using concurrence. Interestingly, our results show that the entanglement between the two atoms that initially disentangled will come up to a large constant rapidly, and then keeps steady in the following time or always has its maximum when prepared in some special Bell states. The model considered in this study is a good candidate for quantum information processing especially for quantum computation as steady high-degree atomic entanglement resource obtained in dissipative cavity
Kong, Dali; Zhang, Keke; Schubert, Gerald; Anderson, John
2017-10-01
The structure/amplitude of the Jovian equatorially symmetric gravitational field is affected by both rotational distortion and the fast equatorially symmetric zonal flow. We construct a fully self-consistent, four-layer, non-spheroidal (i.e, the shape is irregular) model of Jupiter that comprises an inner core, a metallic region, an outer molecular envelope and a thin transition layer between the metallic and molecular regions. While the core is assumed to have a uniform density, three different equations of state are adopted for the metallic, molecular and transition regions. We solve the governing equations via a perturbation approach. The leading-order problem accounts for the full effect of rotational distortion, and determines the density, size and shape of the core, the location and thickness of the transition layer, and the shape of the 1-bar pressure level; it also produces the mass, the equatorial and polar radii of Jupiter, and the even zonal gravitational coefficients caused by the rotational distortion. The next-order problem determines the corrections caused by the zonal flow which is assumed to be confined within the molecular envelope and on cylinders parallel to the rotation axis. Our model provides the total even gravitational coefficients that can be compared with those acquired by the Juno spacecraft.
Nath, G.; Vishwakarma, J. P.
2016-11-01
Similarity solutions are obtained for the flow behind a spherical shock wave in a non-ideal gas under gravitational field with conductive and radiative heat fluxes, in the presence of a spatially decreasing azimuthal magnetic field. The shock wave is driven by a piston moving with time according to power law. The radiation is considered to be of the diffusion type for an optically thick grey gas model and the heat conduction is expressed in terms of Fourier's law for heat conduction. Similarity solutions exist only when the surrounding medium is of constant density. The gas is assumed to have infinite electrical conductivity and to obey a simplified van der Waals equation of state. It is shown that an increase of the gravitational parameter or the Alfven-Mach number or the parameter of the non-idealness of the gas decreases the compressibility of the gas in the flow-field behind the shock, and hence there is a decrease in the shock strength. The pressure and density vanish at the inner surface (piston) and hence a vacuum is formed at the center of symmetry. The shock waves in conducting non-ideal gas under gravitational field with conductive and radiative heat fluxes can be important for description of shocks in supernova explosions, in the study of a flare produced shock in the solar wind, central part of star burst galaxies, nuclear explosion etc. The solutions obtained can be used to interpret measurements carried out by space craft in the solar wind and in neighborhood of the Earth's magnetosphere.
International Nuclear Information System (INIS)
Main, J.; Wunner, G.
1997-01-01
Applying closed-orbit theory to the recurrence spectra of the hydrogen atom in a magnetic field, one can interpret most, but not all, structures semiclassically in terms of closed classical orbits. In particular, conventional closed-orbit theory fails near bifurcations of orbits where semiclassical amplitudes exhibit unphysical divergences. Here we analyze the role of ghost orbits living in complex phase space. The ghosts can explain resonance structures in the spectra of the hydrogen atom in a magnetic field at positions where no real orbits exist. For three different types of catastrophes, viz. fold, cusp, and butterfly catastrophes, we construct uniform semiclassical approximations and demonstrate that these solutions are completely determined by classical parameters of the real orbits and complex ghosts. copyright 1997 The American Physical Society
International Nuclear Information System (INIS)
Sun, Baoxi; Lu, Xiaofu; Shen, Pengnian; Zhao, Enguang
2003-01-01
The Debye screening masses of the σ, ω and neutral ρ mesons and the photon are calculated in the relativistic mean-field approximation. As the density of the nucleon increases, all the screening masses of mesons increase. A different result with Brown–Rho scaling is shown, which implies a reduction in the mass of all the mesons in the nuclear matter, except the pion. Replacing the masses of the mesons with their corresponding screening masses in the Walecka-1 model, five saturation properties of the nuclear matter are fixed reasonably, and then a density-dependent relativistic mean-field model is proposed without introducing the nonlinear self-coupling terms of mesons. (author)
Hamiltonian term for a uniform dc electric field under the adiabatic approximation
Siu, Zhuo Bin; Jalil, Mansoor B. A.; Tan, Seng Ghee
2018-02-01
In this work, we show that the disorder-free Kubo formula for the nonequilibrium value of an observable due to a dc electric field, represented by Exx ̂ in the Hamiltonian, can be interpreted as the standard time-independent theory response of the observable due to a time- and position-independent perturbation HMF. We derive the explicit expression for HMF and show that it originates from the adiabatic approximation to Kubo formula and the time-independent perturbation theory, as well as the Sundaram-Niu wave-packet formalism, we show that HMF reproduces the effect of the E field, i.e., Exx ̂ , up to the first order. This replacement suggests the emergence of a spin current term that is not captured by the standard Kubo formula spin current calculation. We illustrate this via the exemplary spin current for the heavy-hole spin-3/2 Luttinger system.
Theory of gravitational interactions
Gasperini, Maurizio
2017-01-01
This is the second edition of a well-received book that is a modern, self-contained introduction to the theory of gravitational interactions. The new edition includes more details on gravitational waves of cosmological origin, the so-called brane world scenario, and gravitational time-delay effects. The first part of the book follows the traditional presentation of general relativity as a geometric theory of the macroscopic gravitational field, while the second, more advanced part discusses the deep analogies (and differences) between a geometric theory of gravity and the “gauge” theories of the other fundamental interactions. This fills a gap within the traditional approach to general relativity which usually leaves students puzzled about the role of gravity. The required notions of differential geometry are reduced to the minimum, allowing room for aspects of gravitational physics of current phenomenological and theoretical interest, such as the properties of gravitational waves, the gravitational inter...
International Nuclear Information System (INIS)
Arbo, D.G.; Toekesi, K.; Miraglia, J.E.; FCEN, University of Buenos Aires
2008-01-01
Complete text of publication follows. We presented a theoretical study of the ionization of hydrogen atoms as a result of the interaction with an ultrashort external electric field. Doubly-differential momentum distributions and angular momentum distributions of ejected electrons calculated in the framework of the Coulomb-Volkov and strong field approximations, as well as classical calculations are compared with the exact solution of the time dependent Schroedinger equation. We have shown that the Coulomb-Volkov approximation (CVA) describes the quantum atomic ionization probabilities exactly when the external field is described by a sudden momentum transfer [1]. The velocity distribution of emitted electrons right after ionization by a sudden momentum transfer is given through the strong field approximation (SFA) within both the CVA and CTMC methods. In this case, the classical and quantum time dependent evolutions of an atom subject to a sudden momentum transfer are identical. The difference between the classical and quantum final momentum distributions resides in the time evolution of the escaping electron under the subsequent action of the Coulomb field. Furthermore, classical mechanics is incapable of reproducing the quantum angular momentum distribution due to the improper initial radial distribution used in the CTMC calculations, i.e., the microcanonical ensemble. We find that in the limit of high momentum transfer, based on the SFA, there is a direct relation between the cylindrical radial distribution dP/dρ and the final angular momentum distribution dP/dL. This leads to a close analytical expression for the partial wave populations (dP/dL) SFA-Q given by dP SFA-Q / dL = 4Z 3 L 2 / (Δp) 3 K 1 (2ZL/Δp) which, together with the prescription L = l + 1/2, reproduces quite accurately the quantum (CVA) results. Considering the inverse problem, knowing the final angular momentum distribution can lead to the inference of the initial probability distribution
Self-consistent Random Phase Approximation applied to a schematic model of the field theory
International Nuclear Information System (INIS)
Bertrand, Thierry
1998-01-01
The self-consistent Random Phase Approximation (SCRPA) is a method allowing in the mean-field theory inclusion of the correlations in the ground and excited states. It has the advantage of not violating the Pauli principle in contrast to RPA, that is based on the quasi-bosonic approximation; in addition, numerous applications in different domains of physics, show a possible variational character. However, the latter should be formally demonstrated. The first model studied with SCRPA is the anharmonic oscillator in the region where one of its symmetries is spontaneously broken. The ground state energy is reproduced by SCRPA more accurately than RPA, with no violation of the Ritz variational principle, what is not the case for the latter approximation. The success of SCRPA is the the same in case of ground state energy for a model mixing bosons and fermions. At the transition point the SCRPA is correcting RPA drastically, but far from this region the correction becomes negligible, both methods being of similar precision. In the deformed region in the case of RPA a spurious mode occurred due to the microscopical character of the model.. The SCRPA may also reproduce this mode very accurately and actually it coincides with an excitation in the exact spectrum
Rigorous study of the mean field approximation of Debye and Hueckel for Coulomb systems
International Nuclear Information System (INIS)
Kennedy, T.G.
1984-01-01
The statistical mechanics of a classical charge symmetric Coulomb system is studied in three dimensions in the limit that the plasma parameter (the inverse temperature divided by the Debye length) goes to zero. To make the system stable, a short range interaction, e.g., hard cores is included. This short range interaction is allowed to go to zero as the plasma parameter goes to zero. Debye and Hueckel used a mean field approximation to give a nonrigorous study of Coulomb systems in his limit. For a system with no external charge distribution, it is shown that the pressure, density, and correlation functions are asymptotic to their Debye-Hueckel approximations. These approximations consist of the ideal gas term plus a term of one lower order in the plasma parameter. The main tools are the Sine-Gordon transformation, the Mayer expansion, and some new correlation inequalities. The sine-Gordon transformation and the Mayer expansion are used to express the observables as functional integrals with respect to a Gaussian measure. The correlation inequalities help control these functional integrals
Finite element approximation of the fields of bulk and interfacial line defects
Zhang, Chiqun; Acharya, Amit; Puri, Saurabh
2018-05-01
A generalized disclination (g.disclination) theory (Acharya and Fressengeas, 2015) has been recently introduced that goes beyond treating standard translational and rotational Volterra defects in a continuously distributed defects approach; it is capable of treating the kinematics and dynamics of terminating lines of elastic strain and rotation discontinuities. In this work, a numerical method is developed to solve for the stress and distortion fields of g.disclination systems. Problems of small and finite deformation theory are considered. The fields of a single disclination, a single dislocation treated as a disclination dipole, a tilt grain boundary, a misfitting grain boundary with disconnections, a through twin boundary, a terminating twin boundary, a through grain boundary, a star disclination/penta-twin, a disclination loop (with twist and wedge segments), and a plate, a lenticular, and a needle inclusion are approximated. It is demonstrated that while the far-field topological identity of a dislocation of appropriate strength and a disclination-dipole plus a slip dislocation comprising a disconnection are the same, the latter microstructure is energetically favorable. This underscores the complementary importance of all of topology, geometry, and energetics in understanding defect mechanics. It is established that finite element approximations of fields of interfacial and bulk line defects can be achieved in a systematic and routine manner, thus contributing to the study of intricate defect microstructures in the scientific understanding and predictive design of materials. Our work also represents one systematic way of studying the interaction of (g.)disclinations and dislocations as topological defects, a subject of considerable subtlety and conceptual importance (Aharoni et al., 2017; Mermin, 1979).
International Nuclear Information System (INIS)
Lian-Huang, Li; Fu-Yuan, Guo
2009-01-01
This paper analyzes the characteristic of matching efficiency between the fundamental mode of two kinds of optical waveguides and its Gaussian approximate field. Then, it presents a new method where the mode-field half-width of Gaussian approximation for the fundamental mode should be defined according to the maximal matching efficiency method. The relationship between the mode-field half-width of the Gaussian approximate field obtained from the maximal matching efficiency and normalized frequency is studied; furthermore, two formulas of mode-field half-widths as a function of normalized frequency are proposed
Classical field theory on electrodynamics, non-abelian gauge theories and gravitation
Scheck, Florian
2018-01-01
Scheck’s successful textbook presents a comprehensive treatment, ideally suited for a one-semester course. The textbook describes Maxwell's equations first in their integral, directly testable form, then moves on to their local formulation. The first two chapters cover all essential properties of Maxwell's equations, including their symmetries and their covariance in a modern notation. Chapter 3 is devoted to Maxwell's theory as a classical field theory and to solutions of the wave equation. Chapter 4 deals with important applications of Maxwell's theory. It includes topical subjects such as metamaterials with negative refraction index and solutions of Helmholtz' equation in paraxial approximation relevant for the description of laser beams. Chapter 5 describes non-Abelian gauge theories from a classical, geometric point of view, in analogy to Maxwell's theory as a prototype, and culminates in an application to the U(2) theory relevant for electroweak interactions. The last chapter 6 gives a concise summary...
Jia, Mengyu; Wang, Shuang; Chen, Xueying; Gao, Feng; Zhao, Huijuan
2016-03-01
Most analytical methods for describing light propagation in turbid medium exhibit low effectiveness in the near-field of a collimated source. Motivated by the Charge Simulation Method in electromagnetic theory as well as the established discrete source based modeling, we have reported on an improved explicit model, referred to as "Virtual Source" (VS) diffuse approximation (DA), to inherit the mathematical simplicity of the DA while considerably extend its validity in modeling the near-field photon migration in low-albedo medium. In this model, the collimated light in the standard DA is analogously approximated as multiple isotropic point sources (VS) distributed along the incident direction. For performance enhancement, a fitting procedure between the calculated and realistic reflectances is adopted in the nearfield to optimize the VS parameters (intensities and locations). To be practically applicable, an explicit 2VS-DA model is established based on close-form derivations of the VS parameters for the typical ranges of the optical parameters. The proposed VS-DA model is validated by comparing with the Monte Carlo simulations, and further introduced in the image reconstruction of the Laminar Optical Tomography system.
Transverse signal decay under the weak field approximation: Theory and validation.
Berman, Avery J L; Pike, G Bruce
2018-07-01
To derive an expression for the transverse signal time course from systems in the motional narrowing regime, such as water diffusing in blood. This was validated in silico and experimentally with ex vivo blood samples. A closed-form solution (CFS) for transverse signal decay under any train of refocusing pulses was derived using the weak field approximation. The CFS was validated via simulations of water molecules diffusing in the presence of spherical perturbers, with a range of sizes and under various pulse sequences. The CFS was compared with more conventional fits assuming monoexponential decay, including chemical exchange, using ex vivo blood Carr-Purcell-Meiboom-Gill data. From simulations, the CFS was shown to be valid in the motional narrowing regime and partially into the intermediate dephasing regime, with increased accuracy with increasing Carr-Purcell-Meiboom-Gill refocusing rate. In theoretical calculations of the CFS, fitting for the transverse relaxation rate (R 2 ) gave excellent agreement with the weak field approximation expression for R 2 for Carr-Purcell-Meiboom-Gill sequences, but diverged for free induction decay. These same results were confirmed in the ex vivo analysis. Transverse signal decay in the motional narrowing regime can be accurately described analytically. This theory has applications in areas such as tissue iron imaging, relaxometry of blood, and contrast agent imaging. Magn Reson Med 80:341-350, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
Relativistic gravitation theory
International Nuclear Information System (INIS)
Logunov, A.A.; Mestvirishvili, M.A.
1984-01-01
On the basis of the special relativity and geometrization principle a relativistic gravitation theory (RGT) is unambiguously constructed with the help of a notion of a gravitational field as a physical field in Faraday-Maxwell spirit, which posesses energy momentum and spins 2 and 0. The source of gravitation field is a total conserved energy-momentum tensor for matter and for gravitation field in Minkowski space. In the RGT conservation laws for the energy momentum and angular momentum of matter and gravitational field hold rigorously. The theory explains the whole set of gravitation experiments. Here, due to the geometrization principle the Riemannian space is of a field origin since this space arises effectively as a result of the gravitation field origin since this space arises effectively as a result of the gravitation field action on the matter. The RGT astonishing prediction is that the Universe is not closed but ''flat''. It means that in the Universe there should exist a ''missing'' mass in some form of matter
Nonlinear coupled Alfven and gravitational waves
International Nuclear Information System (INIS)
Kaellberg, Andreas; Brodin, Gert; Bradley, Michael
2004-01-01
In this paper we consider nonlinear interaction between gravitational and electromagnetic waves in a strongly magnetized plasma. More specifically, we investigate the propagation of gravitational waves with the direction of propagation perpendicular to a background magnetic field and the coupling to compressional Alfven waves. The gravitational waves are considered in the high-frequency limit and the plasma is modeled by a multifluid description. We make a self-consistent, weakly nonlinear analysis of the Einstein-Maxwell system and derive a wave equation for the coupled gravitational and electromagnetic wave modes. A WKB-approximation is then applied and as a result we obtain the nonlinear Schroedinger equation for the slowly varying wave amplitudes. The analysis is extended to 3D wave pulses, and we discuss the applications to radiation generated from pulsar binary mergers. It turns out that the electromagnetic radiation from a binary merger should experience a focusing effect, that in principle could be detected
Theoretical approaches to laser spectroscopy in the presence of gravitational fields
International Nuclear Information System (INIS)
Borde, C.J.; Sharma, J.; Tourrenc, P.; Damour, T.
1983-01-01
We present a general framework in which non-linear optical phenomena for an ensemble of accelerated atoms can be studied. We show the equivalence of various approaches through frame transformations. This equivalence is understood within the context of a covariant formalism which is briefly sketched. The choice of the frame, in which the atoms are not accelerated but where the light spectrum and the atomic source term are correspondingly modified, leads to the simplest calculated. It enables one to use the usual density matrix diagrams and associated rules. Explicit examples are given in the case of a sinusoidal gravitational wave. Finally a brief discussion of the signal-to-noise of the sidebands induced by gravitational waves on saturation resonances is outlined
Robertson, Brant E.; Ellis, Richard S.; Dunlop, James S.; McLure, Ross J.; Stark, Dan P.; McLeod, Derek
2014-12-01
Strong gravitational lensing provides a powerful means for studying faint galaxies in the distant universe. By magnifying the apparent brightness of background sources, massive clusters enable the detection of galaxies fainter than the usual sensitivity limit for blank fields. However, this gain in effective sensitivity comes at the cost of a reduced survey volume and, in this Letter, we demonstrate that there is an associated increase in the cosmic variance uncertainty. As an example, we show that the cosmic variance uncertainty of the high-redshift population viewed through the Hubble Space Telescope Frontier Field cluster Abell 2744 increases from ~35% at redshift z ~ 7 to >~ 65% at z ~ 10. Previous studies of high-redshift galaxies identified in the Frontier Fields have underestimated the cosmic variance uncertainty that will affect the ultimate constraints on both the faint-end slope of the high-redshift luminosity function and the cosmic star formation rate density, key goals of the Frontier Field program.
Energy Technology Data Exchange (ETDEWEB)
Leutwyler, H; Mallik, S
1986-12-01
The effective action for fermions moving in external gravitational and gauge fields is analyzed in terms of the corresponding external field propagator. The central object in our approach is the covariant energy-momentum tensor which is extracted from the regular part of the propagator at short distances. It is shown that the Lorentz anomaly, the conformal anomaly and the gauge anomaly can be expressed in terms of the local polynomials which determine the singular part of the propagator. (There are no coordinate anomalies). Except for the conformal anomaly, for which we give explicit representations only in dless than or equal to4, we consider an arbitrary number of dimensions.
A bidirectional brain-machine interface algorithm that approximates arbitrary force-fields.
Directory of Open Access Journals (Sweden)
Alessandro Vato
Full Text Available We examine bidirectional brain-machine interfaces that control external devices in a closed loop by decoding motor cortical activity to command the device and by encoding the state of the device by delivering electrical stimuli to sensory areas. Although it is possible to design this artificial sensory-motor interaction while maintaining two independent channels of communication, here we propose a rule that closes the loop between flows of sensory and motor information in a way that approximates a desired dynamical policy expressed as a field of forces acting upon the controlled external device. We previously developed a first implementation of this approach based on linear decoding of neural activity recorded from the motor cortex into a set of forces (a force field applied to a point mass, and on encoding of position of the point mass into patterns of electrical stimuli delivered to somatosensory areas. However, this previous algorithm had the limitation that it only worked in situations when the position-to-force map to be implemented is invertible. Here we overcome this limitation by developing a new non-linear form of the bidirectional interface that can approximate a virtually unlimited family of continuous fields. The new algorithm bases both the encoding of position information and the decoding of motor cortical activity on an explicit map between spike trains and the state space of the device computed with Multi-Dimensional-Scaling. We present a detailed computational analysis of the performance of the interface and a validation of its robustness by using synthetic neural responses in a simulated sensory-motor loop.
Energy Technology Data Exchange (ETDEWEB)
Wald, R M [Chicago Univ., Ill. (USA). Lab. for Astrophysics and Space Research
1975-11-01
Hawking's analysis of particle creation by black holes is extended by explicity obtaining the expression for the quantum mechanical state vector PSI which results from particle creation starting from the vacuum during gravitational collapse. We first discuss the quantum field theory of a Hermitian scalar field in an external potential or in a curved but asymptotically flat spacetime with no horizon present. Making the necessary modification for the case when a horizon is present, we apply this theory for a massless Hermitian scalar field to get the state vector describing the steady state emission at late times for particle creation during gravitational collapse to a Schwarzschild black hole. We find that the state vector describing particle creation from the vacuum decomposes into a simple product of state vectors for each individual mode. The density matrix describing emission of particles to infinity by this particle creation process is found to be identical to that of black body emission. Thus, black hole emission agrees in complete detail with black body emission (orig./BJ).
Stellar explosion in the weak field approximation of the Brans-Dicke theory
International Nuclear Information System (INIS)
Hamity, Victor H; Barraco, Daniel E
2005-01-01
We treat a very crude model of an exploding star, in the weak field approximation of the Brans-Dicke theory, in a scenario that resembles some characteristic data of a type Ia supernova. The most noticeable feature, in the electromagnetic component, is the relationship between the absolute magnitude at maximum brightness of the star and the decline rate in one magnitude from that maximum. This characteristic has become one of the most accurate methods to measure luminosity distances to objects at cosmological distances (Phillips M M 1993 Astrophys. J. 413 L105; see www.all-science-fair-projects.com/ science f air p rojects e ncyclopedia/Supernova, for a brief description of supernovae types). An interesting result is that the active mass associated with the scalar field is totally radiated to infinity, representing a mass loss in the ratio of the 'tensor' component to the scalar component of 1 to (2ω + 3) (ω is the Brans-Dicke parameter), in agreement with a general result of Hawking (1972 Commun. Math. Phys. 25 167). Then, this model shows explicitly, in a dynamical case, the mechanism of the radiation of a scalar field, which is necessary to understand the Hawking result
Approximate KMS states for scalar and spinor fields in Friedmann-Robertson-Walker spacetimes
Energy Technology Data Exchange (ETDEWEB)
Dappiaggi, Claudio; Hack, Thomas-Paul [Hamburg Univ. (Germany). II. Inst. fuer Theoretische Physik; Pinamonti, Nicola [Roma ' ' Tor Vergata' ' Univ. (Italy). Dipt. di Matematica
2010-09-15
We construct and discuss Hadamard states for both scalar and Dirac spinor fields in a large class of spatially flat Friedmann-Robertson-Walker spacetimes characterised by an initial phase either of exponential or of power-law expansion. The states we obtain can be interpreted as being in thermal equilibrium at the time when the scale factor a has a specific value a = a{sub 0}. In the case a{sub 0} = 0, these states fulfil a strict KMS condition on the boundary of the spacetime, which is either a cosmological horizon, or a Big Bang hypersurface. Furthermore, in the conformally invariant case, they are conformal KMS states on the full spacetime. However, they provide a natural notion of an approximate KMS state also in the remaining cases, especially for massive fields. On the technical side, our results are based on a bulk-to-boundary reconstruction technique already successfully applied in the scalar case and here proven to be suitable also for spinor fields. The potential applications of the states we find range over a broad spectrum, but they appear to be suited to discuss in particular thermal phenomena such as the cosmic neutrino background or the quantum state of dark matter. (orig.)
Approximate KMS states for scalar and spinor fields in Friedmann-Robertson-Walker spacetimes
International Nuclear Information System (INIS)
Dappiaggi, Claudio; Hack, Thomas-Paul; Pinamonti, Nicola
2010-09-01
We construct and discuss Hadamard states for both scalar and Dirac spinor fields in a large class of spatially flat Friedmann-Robertson-Walker spacetimes characterised by an initial phase either of exponential or of power-law expansion. The states we obtain can be interpreted as being in thermal equilibrium at the time when the scale factor a has a specific value a = a 0 . In the case a 0 = 0, these states fulfil a strict KMS condition on the boundary of the spacetime, which is either a cosmological horizon, or a Big Bang hypersurface. Furthermore, in the conformally invariant case, they are conformal KMS states on the full spacetime. However, they provide a natural notion of an approximate KMS state also in the remaining cases, especially for massive fields. On the technical side, our results are based on a bulk-to-boundary reconstruction technique already successfully applied in the scalar case and here proven to be suitable also for spinor fields. The potential applications of the states we find range over a broad spectrum, but they appear to be suited to discuss in particular thermal phenomena such as the cosmic neutrino background or the quantum state of dark matter. (orig.)
A Case Study of On-the-fly Wide-field Radio Imaging Applied to the Gravitational Wave Event GW151226
Mooley, K. P.; Frail, D. A.; Myers, S. T.; Kulkarni, S. R.; Hotokezaka, K.; Singer, L. P.; Horesh, A.; Kasliwal, M. M.; Cenko, S. B.; Hallinan, G.
2018-04-01
We apply a newly developed on-the-fly mosaicing technique on the Jansky Very Large Array (VLA) at 3 GHz in order to carry out a sensitive search for an afterglow from the Advanced LIGO binary black hole merger event GW151226. In three epochs between 1.5 and 6 months post-merger, we observed a 100 deg2 region, with more than 80% of the survey region having an rms sensitivity of better than 150 μJy/beam, in the northern hemisphere with a merger containment probability of 10%. The data were processed in near real time and analyzed to search for transients and variables. No transients were found but we have demonstrated the ability to conduct blind searches in a time-frequency phase space where the predicted afterglow signals are strongest. If the gravitational wave event is contained within our survey region, the upper limit on any late-time radio afterglow from the merger event at an assumed mean distance of 440 Mpc is about 1029 erg s‑1 Hz‑1. Approximately 1.5% of the radio sources in the field showed variability at a level of 30%, and can be attributed to normal activity from active galactic nuclei. The low rate of false positives in the radio sky suggests that wide-field imaging searches at a few Gigahertz can be an efficient and competitive search strategy. We discuss our search method in the context of the recent afterglow detection from GW170817 and radio follow-up in future gravitational wave observing runs.
Directory of Open Access Journals (Sweden)
Wei Wei
2013-01-01
Full Text Available Since Wireless sensor networks (WSNs are dramatically being arranged in mission-critical applications,it changes into necessary that we consider application requirements in Internet of Things. We try to use WSNs to assist information query and navigation within a practical parking spaces environment. Integrated with high-performance OFDM by piece-wise polynomial approximation, we present a new method that is based on a diffusion equation and a position equation to accomplish the navigation process conveniently and efficiently. From the point of view of theoretical analysis, our jobs hold the lower constraint condition and several inappropriate navigation can be amended. Information diffusion and potential field are introduced to reach the goal of accurate navigation and gradient descent method is applied in the algorithm. Formula derivations and simulations manifest that the method facilitates the solution of typical sensor network configuration information navigation. Concurrently, we also treat channel estimation and ICI mitigation for very high mobility OFDM systems, and the communication is between a BS and mobile target at a terrible scenario. The scheme proposed here combines the piece-wise polynomial expansion to approximate timevariations of multipath channels. Two near symbols are applied to estimate the first-and second-order parameters. So as to improve the estimation accuracy and mitigate the ICI caused by pilot-aided estimation, the multipath channel parameters were reestimated in timedomain employing the decided OFDM symbol. Simulation results show that this method would improve system performance in a complex environment.
Finite nucleus Dirac mean field theory and random phase approximation using finite B splines
International Nuclear Information System (INIS)
McNeil, J.A.; Furnstahl, R.J.; Rost, E.; Shepard, J.R.; Department of Physics, University of Maryland, College Park, Maryland 20742; Department of Physics, University of Colorado, Boulder, Colorado 80309)
1989-01-01
We calculate the finite nucleus Dirac mean field spectrum in a Galerkin approach using finite basis splines. We review the method and present results for the relativistic σ-ω model for the closed-shell nuclei 16 O and 40 Ca. We study the convergence of the method as a function of the size of the basis and the closure properties of the spectrum using an energy-weighted dipole sum rule. We apply the method to the Dirac random-phase-approximation response and present results for the isoscalar 1/sup -/ and 3/sup -/ longitudinal form factors of 16 O and 40 Ca. We also use a B-spline spectral representation of the positive-energy projector to evaluate partial energy-weighted sum rules and compare with nonrelativistic sum rule results
Coherent states of quantum systems. [Hamiltonians, variable magnetic field, adiabatic approximation
Energy Technology Data Exchange (ETDEWEB)
Trifonov, D A
1975-01-01
Time-evolution of coherent states and uncertainty relations for quantum systems are considered as well as the relation between the various types of coherent states. The most general form of the Hamiltonians that keep the uncertainty products at a minimum is found using the coherent states. The minimum uncertainty packets are shown to be coherent states of the type nonstationary-system coherent states. Two specific systems, namely that of a generalized N-dimensional oscillator and that of a charged particle moving in a variable magnetic field, are treated as examples. The adiabatic approximation to the uncertainty products for these systems is also discussed and the minimality is found to be retained with an exponential accuracy.
Approximate solution of space and time fractional higher order phase field equation
Shamseldeen, S.
2018-03-01
This paper is concerned with a class of space and time fractional partial differential equation (STFDE) with Riesz derivative in space and Caputo in time. The proposed STFDE is considered as a generalization of a sixth-order partial phase field equation. We describe the application of the optimal homotopy analysis method (OHAM) to obtain an approximate solution for the suggested fractional initial value problem. An averaged-squared residual error function is defined and used to determine the optimal convergence control parameter. Two numerical examples are studied, considering periodic and non-periodic initial conditions, to justify the efficiency and the accuracy of the adopted iterative approach. The dependence of the solution on the order of the fractional derivative in space and time and model parameters is investigated.
A gravitational entropy proposal
International Nuclear Information System (INIS)
Clifton, Timothy; Tavakol, Reza; Ellis, George F R
2013-01-01
We propose a thermodynamically motivated measure of gravitational entropy based on the Bel–Robinson tensor, which has a natural interpretation as the effective super-energy–momentum tensor of free gravitational fields. The specific form of this measure differs depending on whether the gravitational field is Coulomb-like or wave-like, and reduces to the Bekenstein–Hawking value when integrated over the interior of a Schwarzschild black hole. For scalar perturbations of a Robertson–Walker geometry we find that the entropy goes like the Hubble weighted anisotropy of the gravitational field, and therefore increases as structure formation occurs. This is in keeping with our expectations for the behaviour of gravitational entropy in cosmology, and provides a thermodynamically motivated arrow of time for cosmological solutions of Einstein’s field equations. It is also in keeping with Penrose’s Weyl curvature hypothesis. (paper)
Non-Gaussianity in two-field inflation beyond the slow-roll approximation
Energy Technology Data Exchange (ETDEWEB)
Jung, Gabriel; Tent, Bartjan van, E-mail: gabriel.jung@th.u-psud.fr, E-mail: bartjan.van-tent@th.u-psud.fr [Laboratoire de Physique Théorique (UMR 8627), CNRS, Univ. Paris-Sud, Université Paris-Saclay, Bâtiment 210, 91405 Orsay Cedex (France)
2017-05-01
We use the long-wavelength formalism to investigate the level of bispectral non-Gaussianity produced in two-field inflation models with standard kinetic terms. Even though the Planck satellite has so far not detected any primordial non-Gaussianity, it has tightened the constraints significantly, and it is important to better understand what regions of inflation model space have been ruled out, as well as prepare for the next generation of experiments that might reach the important milestone of Δ f {sub NL}{sup local}=1. We derive an alternative formulation of the previously derived integral expression for f {sub NL}, which makes it easier to physically interpret the result and see which types of potentials can produce large non-Gaussianity. We apply this to the case of a sum potential and show that it is very difficult to satisfy simultaneously the conditions for a large f {sub NL} and the observational constraints on the spectral index n {sub s} . In the case of the sum of two monomial potentials and a constant we explicitly show in which small region of parameter space this is possible, and we show how to construct such a model. Finally, the new general expression for f {sub NL} also allows us to prove that for the sum potential the explicit expressions derived within the slow-roll approximation remain valid even when the slow-roll approximation is broken during the turn of the field trajectory (as long as only the ε slow-roll parameter remains small).
Fast and robust estimation of spectro-temporal receptive fields using stochastic approximations.
Meyer, Arne F; Diepenbrock, Jan-Philipp; Ohl, Frank W; Anemüller, Jörn
2015-05-15
The receptive field (RF) represents the signal preferences of sensory neurons and is the primary analysis method for understanding sensory coding. While it is essential to estimate a neuron's RF, finding numerical solutions to increasingly complex RF models can become computationally intensive, in particular for high-dimensional stimuli or when many neurons are involved. Here we propose an optimization scheme based on stochastic approximations that facilitate this task. The basic idea is to derive solutions on a random subset rather than computing the full solution on the available data set. To test this, we applied different optimization schemes based on stochastic gradient descent (SGD) to both the generalized linear model (GLM) and a recently developed classification-based RF estimation approach. Using simulated and recorded responses, we demonstrate that RF parameter optimization based on state-of-the-art SGD algorithms produces robust estimates of the spectro-temporal receptive field (STRF). Results on recordings from the auditory midbrain demonstrate that stochastic approximations preserve both predictive power and tuning properties of STRFs. A correlation of 0.93 with the STRF derived from the full solution may be obtained in less than 10% of the full solution's estimation time. We also present an on-line algorithm that allows simultaneous monitoring of STRF properties of more than 30 neurons on a single computer. The proposed approach may not only prove helpful for large-scale recordings but also provides a more comprehensive characterization of neural tuning in experiments than standard tuning curves. Copyright © 2015 Elsevier B.V. All rights reserved.
Nakonieczna, Anna; Yeom, Dong-han
2016-05-01
Investigating the dynamics of gravitational systems, especially in the regime of quantum gravity, poses a problem of measuring time during the evolution. One of the approaches to this issue is using one of the internal degrees of freedom as a time variable. The objective of our research was to check whether a scalar field or any other dynamical quantity being a part of a coupled multi-component matter-geometry system can be treated as a `clock' during its evolution. We investigated a collapse of a self-gravitating electrically charged scalar field in the Einstein and Brans-Dicke theories using the 2+2 formalism. Our findings concentrated on the spacetime region of high curvature existing in the vicinity of the emerging singularity, which is essential for the quantum gravity applications. We investigated several values of the Brans-Dicke coupling constant and the coupling between the Brans-Dicke and the electrically charged scalar fields. It turned out that both evolving scalar fields and a function which measures the amount of electric charge within a sphere of a given radius can be used to quantify time nearby the singularity in the dynamical spacetime part, in which the apparent horizon surrounding the singularity is spacelike. Using them in this respect in the asymptotic spacetime region is possible only when both fields are present in the system and, moreover, they are coupled to each other. The only nonzero component of the Maxwell field four-potential cannot be used to quantify time during the considered process in the neighborhood of the whole central singularity. None of the investigated dynamical quantities is a good candidate for measuring time nearby the Cauchy horizon, which is also singular due to the mass inflation phenomenon.
Yagi, Kent; Yang, Huan
2018-05-01
The recent discovery of gravitational-wave events has offered us unique test beds of gravity in the strong and dynamical field regime. One possible modification to General Relativity is the gravitational parity violation that arises naturally from quantum gravity. Such parity violation gives rise to the so-called amplitude birefringence in gravitational waves, in which one of the circularly polarized modes is amplified while the other one is suppressed during their propagation. In this paper, we study how well one can measure gravitational parity violation via the amplitude birefringence effect of gravitational waves sourced by stellar-mass black hole binaries. We choose Chern-Simons gravity as an example and work within an effective field theory formalism to ensure that the approximate theory is well posed. We consider gravitational waves from both individual sources and stochastic gravitational-wave backgrounds. Regarding bounds from individual sources, we estimate such bounds using a Fisher analysis and carry out Monte Carlo simulations by randomly distributing sources over their sky location and binary orientation. We find that the bounds on the scalar field evolution in Chern-Simons gravity from the recently discovered gravitational-wave events are too weak to satisfy the weak Chern-Simons approximation, while aLIGO with its design sensitivity can place meaningful bounds. Regarding bounds from stochastic gravitational-wave backgrounds, we set the threshold signal-to-noise ratio for detection of the parity-violation mode as 5 and estimate projected bounds with future detectors assuming that signals are consistent with no parity violation. In an ideal situation in which all the source parameters and binary black hole merger-rate history are known a priori, we find that a network of two third-generation detectors is able to place bounds that are comparable to or slightly stronger than binary pulsar bounds. In a more realistic situation in which one does not have
Dong, D,; Gross, R.S.; Dickey, J.
1996-01-01
Monthly mean gravitational field parameters (denoted here as C(sub even)) that represent linear combinations of the primarily even degree zonal spherical harmonic coefficients of the Earth's gravitational field have been recovered using LAGEOS I data and are compared with those derived from gridded global surface pressure data of the National meteorological center (NMC) spanning 1983-1992. The effect of equilibrium ocean tides and surface water variations are also considered. Atmospheric pressure and surface water fluctuations are shown to be the dominant cause of observed annual C(sub even) variations. Closure with observations is seen at the 1sigma level when atmospheric pressure, ocean tide and surface water effects are include. Equilibrium ocean tides are shown to be the main source of excitation at the semiannual period with closure at the 1sigma level seen when both atmospheric pressure and ocean tide effects are included. The inverted barometer (IB) case is shown to give the best agreement with the observation series. The potential of the observed C(sub even) variations for monitoring mass variations in the polar regions of the Earth and the effect of the land-ocean mask in the IB calculation are discussed.
International Nuclear Information System (INIS)
Lindner, J.
1992-09-01
In this thesis in the framework of our model of the field-strength dependent coupling the properties of infinitely extended, homogeneous, static, spin- and isospin-saturated nuclear matter are studied. Thereby we use the Hartree-Mean-Field and the Hartree-Fock approximation, whereby the influence of the antiparticle states in the Fermi sea is neglected. In chapter 2 the Lagrangian density basing to our model is fixed. Starting from the Walecka model we modify in the Lagrangian density the Linear coupling of the scalar field to the scalar density as follows g S φanti ψψ→g S f(φ) anti ψψ. In chapter 3 we fix three different functions f(φ). For these three cases and for the Walecka model with f(φ)=φ nuclear-matter calculations are performed. In chapter 4 for the Hartree-Fock calculations, but also very especially regarding the molecular-dynamics calculations, the properties of the Dirac spinors in the plane-wave representation are intensively studied. (orig.)
Mean field approximation for biased diffusion on Japanese inter-firm trading network.
Watanabe, Hayafumi
2014-01-01
By analysing the financial data of firms across Japan, a nonlinear power law with an exponent of 1.3 was observed between the number of business partners (i.e. the degree of the inter-firm trading network) and sales. In a previous study using numerical simulations, we found that this scaling can be explained by both the money-transport model, where a firm (i.e. customer) distributes money to its out-edges (suppliers) in proportion to the in-degree of destinations, and by the correlations among the Japanese inter-firm trading network. However, in this previous study, we could not specifically identify what types of structure properties (or correlations) of the network determine the 1.3 exponent. In the present study, we more clearly elucidate the relationship between this nonlinear scaling and the network structure by applying mean-field approximation of the diffusion in a complex network to this money-transport model. Using theoretical analysis, we obtained the mean-field solution of the model and found that, in the case of the Japanese firms, the scaling exponent of 1.3 can be determined from the power law of the average degree of the nearest neighbours of the network with an exponent of -0.7.
International Nuclear Information System (INIS)
Stuchlik, Zdenek; Kolos, Martin
2016-01-01
To test the role of large-scale magnetic fields in accretion processes, we study the dynamics of the charged test particles in the vicinity of a black hole immersed into an asymptotically uniform magnetic field. Using the Hamiltonian formalism of the charged particle dynamics, we examine chaotic scattering in the effective potential related to the black hole gravitational field combined with the uniform magnetic field. Energy interchange between the translational and oscillatory modes of the charged particle dynamics provides a mechanism for charged particle acceleration along the magnetic field lines. This energy transmutation is an attribute of the chaotic charged particle dynamics in the combined gravitational and magnetic fields only, the black hole rotation is not necessary for such charged particle acceleration. The chaotic scatter can cause a transition to the motion along the magnetic field lines with small radius of the Larmor motion or vanishing Larmor radius, when the speed of the particle translational motion is largest and it can be ultra-relativistic. We discuss the consequences of the model of ionization of test particles forming a neutral accretion disc, or heavy ions following off-equatorial circular orbits, and we explore the fate of heavy charged test particles after ionization where no kick of heavy ions is assumed and only the switch-on effect of the magnetic field is relevant. We demonstrate that acceleration and escape of the ionized particles can be efficient along the Kerr black hole symmetry axis parallel to the magnetic field lines. We show that a strong acceleration of the ionized particles to ultra-relativistic velocities is preferred in the direction close to the magnetic field lines. Therefore, the process of ionization of Keplerian discs around the Kerr black holes can serve as a model of relativistic jets. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Stuchlik, Zdenek; Kolos, Martin [Silesian University in Opava, Faculty of Philosophy and Science, Institute of Physics and Research Centre of Theoretical Physics and Astrophysics, Opava (Czech Republic)
2016-01-15
To test the role of large-scale magnetic fields in accretion processes, we study the dynamics of the charged test particles in the vicinity of a black hole immersed into an asymptotically uniform magnetic field. Using the Hamiltonian formalism of the charged particle dynamics, we examine chaotic scattering in the effective potential related to the black hole gravitational field combined with the uniform magnetic field. Energy interchange between the translational and oscillatory modes of the charged particle dynamics provides a mechanism for charged particle acceleration along the magnetic field lines. This energy transmutation is an attribute of the chaotic charged particle dynamics in the combined gravitational and magnetic fields only, the black hole rotation is not necessary for such charged particle acceleration. The chaotic scatter can cause a transition to the motion along the magnetic field lines with small radius of the Larmor motion or vanishing Larmor radius, when the speed of the particle translational motion is largest and it can be ultra-relativistic. We discuss the consequences of the model of ionization of test particles forming a neutral accretion disc, or heavy ions following off-equatorial circular orbits, and we explore the fate of heavy charged test particles after ionization where no kick of heavy ions is assumed and only the switch-on effect of the magnetic field is relevant. We demonstrate that acceleration and escape of the ionized particles can be efficient along the Kerr black hole symmetry axis parallel to the magnetic field lines. We show that a strong acceleration of the ionized particles to ultra-relativistic velocities is preferred in the direction close to the magnetic field lines. Therefore, the process of ionization of Keplerian discs around the Kerr black holes can serve as a model of relativistic jets. (orig.)
Gravitational waves from inflation
International Nuclear Information System (INIS)
Guzzetti, M.C.; Bartolo, N.; Liguori, M.; Matarrese, S.
2016-01-01
The production of a stochastic background of gravitational waves is a fundamental prediction of any cosmological inflationary model. The features of such a signal encode unique information about the physics of the Early Universe and beyond, thus representing an exciting, powerful window on the origin and evolution of the Universe. We review the main mechanisms of gravitational-wave production, ranging from quantum fluctuations of the gravitational field to other mechanisms that can take place during or after inflation. These include e.g. gravitational waves generated as a consequence of extra particle production during inflation, or during the (p)reheating phase. Gravitational waves produced in inflation scenarios based on modified gravity theories and second-order gravitational waves are also considered. For each analyzed case, the expected power spectrum is given. We discuss the discriminating power among different models, associated with the validity/violation of the standard consistency relation between tensor-to-scalar ratio r and tensor spectral index ηT. In light of the prospects for (directly/indirectly) detecting primordial gravitational waves, we give the expected present-day gravitational radiation spectral energy-density, highlighting the main characteristics imprinted by the cosmic thermal history, and we outline the signatures left by gravitational waves on the Cosmic Microwave Background and some imprints in the Large-Scale Structure of the Universe. Finally, current bounds and prospects of detection for inflationary gravitational waves are summarized.
Theoretical model of gravitational perturbation of current collector axisymmetric flow field
Walker, John S.; Brown, Samuel H.; Sondergaard, Neal A.
1990-05-01
Some designs of liquid-metal current collectors in homopolar motors and generators are essentially rotating liquid-metal fluids in cylindrical channels with free surfaces and will, at critical rotational speeds, become unstable. An investigation at David Taylor Research Center is being performed to understand the role of gravity in modifying this ejection instability. Some gravitational effects can be theoretically treated by perturbation techniques on the axisymmetric base flow of the liquid metal. This leads to a modification of previously calculated critical-current-collector ejection values neglecting gravity effects. The purpose of this paper is to document the derivation of the mathematical model which determines the perturbation of the liquid-metal base flow due to gravitational effects. Since gravity is a small force compared with the centrifugal effects, the base flow solutions can be expanded in inverse powers of the Froude number and modified liquid-flow profiles can be determined as a function of the azimuthal angle. This model will be used in later work to theoretically study the effects of gravity on the ejection point of the current collector.
Approximate Seismic Diffusive Models of Near-Receiver Geology: Applications from Lab Scale to Field
King, Thomas; Benson, Philip; De Siena, Luca; Vinciguerra, Sergio
2017-04-01
This paper presents a novel and simple method of seismic envelope analysis that can be applied at multiple scales, e.g. field, m to km scale and laboratory, mm to cm scale, and utilises the diffusive approximation of the seismic wavefield (Wegler, 2003). Coefficient values for diffusion and attenuation are obtained from seismic coda energies and are used to describe the rate at which seismic energy is scattered and attenuated into the local medium around a receiver. Values are acquired by performing a linear least squares inversion of coda energies calculated in successive time windows along a seismic trace. Acoustic emission data were taken from piezoelectric transducers (PZT) with typical resonance frequency of 1-5MHz glued around rock samples during deformation laboratory experiments carried out using a servo-controlled triaxial testing machine, where a shear/damage zone is generated under compression after the nucleation, growth and coalescence of microcracks. Passive field data were collected from conventional geophones during the 2004-2008 eruption of Mount St. Helens volcano (MSH), USA where a sudden reawakening of the volcanic activity and a new dome growth has occurred. The laboratory study shows a strong correlation between variations of the coefficients over time and the increase of differential stress as the experiment progresses. The field study links structural variations present in the near-surface geology, including those seen in previous geophysical studies of the area, to these same coefficients. Both studies show a correlation between frequency and structural feature size, i.e. landslide slip-planes and microcracks, with higher frequencies being much more sensitive to smaller scale features and vice-versa.
Gravitational waves from cosmic bubble collisions
International Nuclear Information System (INIS)
Kim, Dong-Hoon; Lee, Bum-Hoon; Lee, Wonwoo; Yang, Jongmann; Yeom, Dong-han
2015-01-01
Cosmic bubbles are nucleated through the quantum tunneling process. After nucleation they would expand and undergo collisions with each other. In this paper, we focus in particular on collisions of two equal-sized bubbles and compute gravitational waves emitted from the collisions. First, we study the mechanism of the collisions by means of a real scalar field and its quartic potential. Then, using this model, we compute gravitational waves from the collisions in a straightforward manner. In the quadrupole approximation, time-domain gravitational waveforms are directly obtained by integrating the energy-momentum tensors over the volume of the wave sources, where the energy-momentum tensors are expressed in terms of the scalar field, the local geometry and the potential. We present gravitational waveforms emitted during (i) the initial-to-intermediate stage of strong collisions and (ii) the final stage of weak collisions: the former is obtained numerically, in full General Relativity and the latter analytically, in the flat spacetime approximation. We gain qualitative insights into the time-domain gravitational waveforms from bubble collisions: during (i), the waveforms show the non-linearity of the collisions, characterized by a modulating frequency and cusp-like bumps, whereas during (ii), the waveforms exhibit the linearity of the collisions, featured by smooth monochromatic oscillations. (orig.)
Relativistic theory of gravitation
International Nuclear Information System (INIS)
Logunov, A.A.; Mestvirishvilli, M.A.
1985-01-01
In the present paper a relativistic theory of gravitation (RTG) is constructed in a unique way on the basis of the special relativity and geometrization principle. In this, a gravitational field is treated as the Faraday-Maxwell spin-2 and spin-0 physical field possessing energy and momentum. The source of a gravitational field is the total conserved energy-momentum tensor of matter and of a gravitational field in Minkowski space. In the RTG, the conservation laws are strictly fulfilled for the energy-momentum and for the angular momentum of matter and a gravitational field. The theory explains the whole available set of experiments on gravitation. In virtue of the geometrization principle, the Riemannian space in our theory is of field origin, since it appears as an effective force space due to the action of a gravitational field on matter. The RTg leads to an exceptionally strong prediction: The Universe is not closed but just ''flat''. This suggests that in the Universe a ''hidden mass'' should exist in some form of matter
Cosmological viability of the bimetric theory of gravitation
International Nuclear Information System (INIS)
Krygier, B.; Krempec-Krygier, J.
1983-01-01
The approximate solutions of field equations for flat radiative cosmological models in the second version of bimetric gravitation theory are discussed. They indicate that these cosmological models are ever expanding. The apparent magnitude-redshift relations for flat dust cosmological models for different theories of gravitation are described and compared. One can reject Dirac's additive creation theory and the first version of Rosen's bimetric theory on the basis of this observational test. (author)
Pereira, Jonas P.; Coelho, Jaziel G.; de Lima, Rafael C. R.
2018-05-01
Magnetars are neutron stars presenting bursts and outbursts of X- and soft-gamma rays that can be understood with the presence of very large magnetic fields. In this setting, nonlinear electrodynamics should be taken into account for a more accurate description of such compact systems. We study that in the context of ideal magnetohydrodynamics and make a realization of our analysis to the case of the well known Born-Infeld (BI) electromagnetism in order to come up with some of its astrophysical consequences. We focus here on toroidal magnetic fields as motivated by already known magnetars with low dipolar magnetic fields and their expected relevance in highly magnetized stars. We show that BI electrodynamics leads to larger toroidal magnetic fields when compared to Maxwell's electrodynamics. Hence, one should expect higher production of gravitational waves (GWs) and even more energetic giant flares from nonlinear stars. Given current constraints on BI's scale field, giant flare energetics and magnetic fields in magnetars, we also find that the maximum magnitude of magnetar ellipticities should be 10^{-6}-10^{-5}. Besides, BI electrodynamics may lead to a maximum increase of order 10-20% of the GW energy radiated from a magnetar when compared to Maxwell's, while much larger percentages may arise for other physically motivated scenarios. Thus, nonlinear theories of the electromagnetism might also be probed in the near future with the improvement of GW detectors.
Projective relativity, cosmology and gravitation
International Nuclear Information System (INIS)
Arcidiacono, G.
1986-01-01
This book describes the latest applications of projective geometry to cosmology and gravitation. The contents of the book are; the Poincare group and Special Relativity, the thermodynamics and electromagnetism, general relativity, gravitation and cosmology, group theory and models of universe, the special projective relativity, the Fantappie group and Big-Bang cosmology, a new cosmological projective mechanics, the plasma physics and cosmology, the projective magnetohydrodynamics field, projective relativity and waves propagation, the generalizations of the gravitational field, the general projective relativity, the projective gravitational field, the De Sitter Universe and quantum physics, the conformal relativity and Newton gravitation
Electromagnetic waves in gravitational wave spacetimes
International Nuclear Information System (INIS)
Haney, M.; Bini, D.; Ortolan, A.; Fortini, P.
2013-01-01
We have considered the propagation of electromagnetic waves in a space-time representing an exact gravitational plane wave and calculated the induced changes on the four-potential field Aμ of a plane electromagnetic wave. By choosing a suitable photon round-trip in a Michelson interferometer, we have been able to identify the physical effects of the exact gravitational wave on the electromagnetic field, i.e. phase shift, change of the polarization vector, angular deflection and delay. These results have been exploited to study the response of an interferometric gravitational wave detector beyond the linear approximation of the general theory of relativity. A much more detailed examination of this problem can be found in our paper recently published in Classical and Quantum Gravity (28 (2011) 235007).
International Nuclear Information System (INIS)
Mery, P.
1977-01-01
The operator and matrix Pade approximation are defined. The fact that these approximants can be derived from the Schwinger variational principle is emphasized. In potential theory, using this variational aspect it is shown that the matrix Pade approximation allow to reproduce the exact solution of the Lippman-Schwinger equation with any required accuracy taking only into account the knowledge of the first two coefficients in the Born expansion. The deep analytic structure of this variational matrix Pade approximation (hyper Pade approximation) is discussed
Directory of Open Access Journals (Sweden)
Stavroulakis N.
2008-04-01
Full Text Available The equations of gravitation together with the equations of electromagnetism in terms of the General Theory of Relativity allow to conceive an interdependence between the gravitational field and the electromagnetic field. However the technical difficulties of the relevant problems have precluded from expressing clearly this interdependence. Even the simple problem related to the field generated by a charged spherical mass is not correctly solved. In the present paper we reexamine from the outset this problem and propose a new solution.
Energy Technology Data Exchange (ETDEWEB)
Ramakrishnan, Raghunathan [Institute of Physical Chemistry and National Center for Computational Design and Discovery of Novel Materials (MARVEL), Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel (Switzerland); Rauhut, Guntram, E-mail: rauhut@theochem.uni-stuttgart.de [Institute for Theoretical Chemistry, University of Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart (Germany)
2015-04-21
Semi-quartic force fields (QFF) rely on a Taylor-expansion of the multi-dimensional Born-Oppenheimer potential energy surface (PES) and are frequently used within the calculation of anharmonic vibrational frequencies based on 2nd order vibrational perturbation theory (VPT2). As such they are usually determined by differentiation of the electronic energy with respect to the nuclear coordinates. Alternatively, potential energy surfaces can be expanded in terms of multi-mode expansions, which typically do not require any derivative techniques. The computational effort to retrieve QFF from size-reduced multi-mode expansions has been studied and has been compared with standard Taylor-expansions. As multi-mode expansions allow for the convenient introduction of subtle approximations, these will be discussed in some detail. In addition, a preliminary study about the applicability of a generalized Duschinsky transformation to QFFs is provided. This transformation allows for the efficient evaluation of VPT2 frequencies of isotopologues from the PES of the parent compound and thus avoids the recalculation of PESs in different axes systems.
Effect of scalar field mass on gravitating charged scalar solitons and black holes in a cavity
Energy Technology Data Exchange (ETDEWEB)
Ponglertsakul, Supakchai, E-mail: supakchai.p@gmail.com; Winstanley, Elizabeth, E-mail: E.Winstanley@sheffield.ac.uk
2017-01-10
We study soliton and black hole solutions of Einstein charged scalar field theory in cavity. We examine the effect of introducing a scalar field mass on static, spherically symmetric solutions of the field equations. We focus particularly on the spaces of soliton and black hole solutions, as well as studying their stability under linear, spherically symmetric perturbations of the metric, electromagnetic field, and scalar field.
Gao, Xian; Kobayashi, Tsutomu; Yamaguchi, Masahide; Yokoyama, Jun'ichi
2011-11-18
We completely clarify the feature of primordial non-Gaussianities of tensor perturbations in the most general single-field inflation model with second-order field equations. It is shown that the most general cubic action for the tensor perturbation h(ij) is composed only of two contributions, one with two spacial derivatives and the other with one time derivative on each h(ij). The former is essentially identical to the cubic term that appears in Einstein gravity and predicts a squeezed shape, while the latter newly appears in the presence of the kinetic coupling to the Einstein tensor and predicts an equilateral shape. Thus, only two shapes appear in the graviton bispectrum of the most general single-field inflation model, which could open a new clue to the identification of inflationary gravitational waves in observations of cosmic microwave background anisotropies as well as direct detection experiments.
Franović, Igor; Todorović, Kristina; Vasović, Nebojša; Burić, Nikola
2014-02-01
We consider the approximations behind the typical mean-field model derived for a class of systems made up of type II excitable units influenced by noise and coupling delays. The formulation of the two approximations, referred to as the Gaussian and the quasi-independence approximation, as well as the fashion in which their validity is verified, are adapted to reflect the essential properties of the underlying system. It is demonstrated that the failure of the mean-field model associated with the breakdown of the quasi-independence approximation can be predicted by the noise-induced bistability in the dynamics of the mean-field system. As for the Gaussian approximation, its violation is related to the increase of noise intensity, but the actual condition for failure can be cast in qualitative, rather than quantitative terms. We also discuss how the fulfillment of the mean-field approximations affects the statistics of the first return times for the local and global variables, further exploring the link between the fulfillment of the quasi-independence approximation and certain forms of synchronization between the individual units.
Energy levels of a scalar particle in a static gravitational field close to the black hole limit
Gossel, G. H.; Berengut, J. C.; Flambaum, V. V.
2011-10-01
The bound-state energy levels of a scalar particle in the gravitational field of finite-sized objects with interiors described by the Florides and Schwarzschild metrics are found. For these metrics, bound states with zero energy (where the binding energy is equal to the rest mass of the scalar particle) only exist when a singularity occurs in the metric. Therefore, in contrast to the Coulomb case, no pairs are produced in the non-singular static metric. For the Florides metric the singularity occurs in the black hole limit, while for the Schwarzschild interior metric it corresponds to infinite pressure at the center. Moreover, the energy spectrum is shown to become quasi-continuous as the metric becomes singular.
Wetherill, G. W.; Cox, L. P.
1985-01-01
The validity of the two-body approximation in calculating encounters between planetesimals has been evaluated as a function of the ratio of unperturbed planetesimal velocity (with respect to a circular orbit) to mutual escape velocity when their surfaces are in contact (V/V-sub-e). Impact rates as a function of this ratio are calculated to within about 20 percent by numerical integration of the equations of motion. It is found that when the ratio is greater than 0.4 the two-body approximation is a good one. Consequences of reducing the ratio to less than 0.02 are examined. Factors leading to an optimal size for growth of planetesimals from a swarm of given eccentricity and placing a limit on the extent of runaway accretion are derived.
Energy Technology Data Exchange (ETDEWEB)
Vacaru, Olivia [National College of Iasi (Romania); Vacaru, Sergiu I. [Quantum Gravity Research, Topanga, CA (United States); University ' ' Al.I. Cuza' ' Iasi, Project IDEI, Iasi (Romania); Werner-Heisenberg-Institute, Max-Planck-Institute for Physics, Munich (Germany); Leibniz University of Hannover, Institute for Theoretical Physics (Germany); Ruchin, Vyacheslav
2017-03-15
Using double 2 + 2 and 3 + 1 nonholonomic fibrations on Lorentz manifolds, we extend the concept of W-entropy for gravitational fields in general relativity (GR). Such F- and W-functionals were introduced in the Ricci flow theory of three dimensional (3-d) Riemannian metrics by Perelman (the entropy formula for the Ricci flow and its geometric applications. arXiv:math.DG/0211159). Non-relativistic 3-d Ricci flows are characterized by associated statistical thermodynamical values determined by W-entropy. Generalizations for geometric flows of 4-d pseudo-Riemannian metrics are considered for models with local thermodynamical equilibrium and separation of dissipative and non-dissipative processes in relativistic hydrodynamics. The approach is elaborated in the framework of classical field theories (relativistic continuum and hydrodynamic models) without an underlying kinetic description, which will be elaborated in other work. The 3 + 1 splitting allows us to provide a general relativistic definition of gravitational entropy in the Lyapunov-Perelman sense. It increases monotonically as structure forms in the Universe. We can formulate a thermodynamic description of exact solutions in GR depending, in general, on all spacetime coordinates. A corresponding 2 + 2 splitting with nonholonomic deformation of linear connection and frame structures is necessary for generating in very general form various classes of exact solutions of the Einstein and general relativistic geometric flow equations. Finally, we speculate on physical macrostates and microstate interpretations of the W-entropy in GR, geometric flow theories and possible connections to string theory (a second unsolved problem also contained in Perelman's work) in Polyakov's approach. (orig.)
Zhao, G.; Liu, J.; Chen, B.; Guo, R.; Chen, L.
2017-12-01
Forward modeling of gravitational fields at large-scale requires to consider the curvature of the Earth and to evaluate the Newton's volume integral in spherical coordinates. To acquire fast and accurate gravitational effects for subsurface structures, subsurface mass distribution is usually discretized into small spherical prisms (called tesseroids). The gravity fields of tesseroids are generally calculated numerically. One of the commonly used numerical methods is the 3D Gauss-Legendre quadrature (GLQ). However, the traditional GLQ integration suffers from low computational efficiency and relatively poor accuracy when the observation surface is close to the source region. We developed a fast and high accuracy 3D GLQ integration based on the equivalence of kernel matrix, adaptive discretization and parallelization using OpenMP. The equivalence of kernel matrix strategy increases efficiency and reduces memory consumption by calculating and storing the same matrix elements in each kernel matrix just one time. In this method, the adaptive discretization strategy is used to improve the accuracy. The numerical investigations show that the executing time of the proposed method is reduced by two orders of magnitude compared with the traditional method that without these optimized strategies. High accuracy results can also be guaranteed no matter how close the computation points to the source region. In addition, the algorithm dramatically reduces the memory requirement by N times compared with the traditional method, where N is the number of discretization of the source region in the longitudinal direction. It makes the large-scale gravity forward modeling and inversion with a fine discretization possible.
International Nuclear Information System (INIS)
Accioly, A.J.
1988-01-01
A theory of nonminimal coupling of electromagnetism and gravitation in the framework of Riomannian geometry is constructed. As a consequence the main difficulties concerning the Einstein-Maxwell theory are cleared away. The theory works as a kind of correction to the Einstein-Maxwell one for regions with strong curvature and for times much greater than the Planck time. A Reissner-Nordstroem-type solution is exhibited and comments are made on a parameter which somewhat resembles the ''Schwarzschild radius''. A mechanism of charge creation via nonminimal coupling is also discussed. We calculate the propagation of photons in a Robertson-Walker background and find that the effect of the nonminimal coupling in this case may be to deviate the photon from the null geodesics, increasing its velocity beyond the flat-space value. Taking into account this results, the observed isotropy of the background radiation can be explained in a simple way, regardless of any assumption about the state of the Universe prior to the Planck time. (author) [pt
PERIODIC ORBIT FAMILIES IN THE GRAVITATIONAL FIELD OF IRREGULAR-SHAPED BODIES
Energy Technology Data Exchange (ETDEWEB)
Jiang, Yu [State Key Laboratory of Astronautic Dynamics, Xi’an Satellite Control Center, Xi’an 710043 (China); Baoyin, Hexi, E-mail: jiangyu_xian_china@163.com [School of Aerospace Engineering, Tsinghua University, Beijing 100084 (China)
2016-11-01
The discovery of binary and triple asteroids in addition to the execution of space missions to minor celestial bodies in the past several years have focused increasing attention on periodic orbits around irregular-shaped celestial bodies. In the present work, we adopt a polyhedron shape model for providing an accurate representation of irregular-shaped bodies and employ the model to calculate their corresponding gravitational and effective potentials. We also investigate the characteristics of periodic orbit families and the continuation of periodic orbits. We prove a fact, which provides a conserved quantity that permits restricting the number of periodic orbits in a fixed energy curved surface about an irregular-shaped body. The collisions of Floquet multipliers are maintained during the continuation of periodic orbits around the comet 1P/Halley. Multiple bifurcations in the periodic orbit families about irregular-shaped bodies are also discussed. Three bifurcations in the periodic orbit family have been found around the asteroid 216 Kleopatra, which include two real saddle bifurcations and one period-doubling bifurcation.
PERIODIC ORBIT FAMILIES IN THE GRAVITATIONAL FIELD OF IRREGULAR-SHAPED BODIES
International Nuclear Information System (INIS)
Jiang, Yu; Baoyin, Hexi
2016-01-01
The discovery of binary and triple asteroids in addition to the execution of space missions to minor celestial bodies in the past several years have focused increasing attention on periodic orbits around irregular-shaped celestial bodies. In the present work, we adopt a polyhedron shape model for providing an accurate representation of irregular-shaped bodies and employ the model to calculate their corresponding gravitational and effective potentials. We also investigate the characteristics of periodic orbit families and the continuation of periodic orbits. We prove a fact, which provides a conserved quantity that permits restricting the number of periodic orbits in a fixed energy curved surface about an irregular-shaped body. The collisions of Floquet multipliers are maintained during the continuation of periodic orbits around the comet 1P/Halley. Multiple bifurcations in the periodic orbit families about irregular-shaped bodies are also discussed. Three bifurcations in the periodic orbit family have been found around the asteroid 216 Kleopatra, which include two real saddle bifurcations and one period-doubling bifurcation.
Energy Technology Data Exchange (ETDEWEB)
Miller, Jonah Maxwell [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2017-10-18
This report has slides on Gravitational Waves; Pound and Rebka: A Shocking Fact; Light is a Ruler; Gravity is the Curvature of Spacetime; Gravitational Waves Made Simple; How a Gravitational Wave Affects Stuff Here; LIGO; This Detection: Neutron Stars; What the Gravitational Wave Looks Like; The Sound of Merging Neutron Stars; Neutron Star Mergers: More than GWs; The Radioactive Cloud; The Kilonova; and finally Summary, Multimessenger Astronomy.
Particle content and degrees of freedom of a gravitational field in 4th order theories of gravity
International Nuclear Information System (INIS)
Moebius, K.; Akademie der Wissenschaften der DDR, Potsdam-Babelsberg. Einstein-Laboratorium fuer Theoretische Physik)
1988-01-01
In gravitational theories of 4-th order, the influence of certain properties of the field equations (tracelessness, conformal invariance, scale invariance respectively their breaking) for the 'particle content' (number of degrees of freedom, mass, spin) is investigated. Using the plane-wave ansatz valid in linearized theory it is possible to determine the mass content of the theory, but one cannot get assertions about the number of degrees of freedom and the spin states corresponding to the field quanta. In the linearized theory, this can be done with a spin projection formalism. Using the Cauchy initial value problem and a counting method first developed by Einstein one can get, however, a useful definition of the concept of the degrees of freedom for the full nonlinear theory. This is due to the fact that this method allows to incorporate the concrete structure of the field equations (and thus their nonlinearities). Analysing different general-relativistic field theories via these approaches the influence of the various structures of nonlinearities is discussed. It is, in particular, shown that those results obtained by the spin projection formalism can be reproduced by 'nonlinear methods'. (author)
Energy Technology Data Exchange (ETDEWEB)
Robertson, Brant E.; Stark, Dan P. [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Ellis, Richard S. [Department of Astronomy, California Institute of Technology, MS 249-17, Pasadena, CA 91125 (United States); Dunlop, James S.; McLure, Ross J.; McLeod, Derek, E-mail: brant@email.arizona.edu [Institute for Astronomy, University of Edinburgh, Royal Observatory, Edinburgh EH9 3HJ (United Kingdom)
2014-12-01
Strong gravitational lensing provides a powerful means for studying faint galaxies in the distant universe. By magnifying the apparent brightness of background sources, massive clusters enable the detection of galaxies fainter than the usual sensitivity limit for blank fields. However, this gain in effective sensitivity comes at the cost of a reduced survey volume and, in this Letter, we demonstrate that there is an associated increase in the cosmic variance uncertainty. As an example, we show that the cosmic variance uncertainty of the high-redshift population viewed through the Hubble Space Telescope Frontier Field cluster Abell 2744 increases from ∼35% at redshift z ∼ 7 to ≳ 65% at z ∼ 10. Previous studies of high-redshift galaxies identified in the Frontier Fields have underestimated the cosmic variance uncertainty that will affect the ultimate constraints on both the faint-end slope of the high-redshift luminosity function and the cosmic star formation rate density, key goals of the Frontier Field program.
International Nuclear Information System (INIS)
Robertson, Brant E.; Stark, Dan P.; Ellis, Richard S.; Dunlop, James S.; McLure, Ross J.; McLeod, Derek
2014-01-01
Strong gravitational lensing provides a powerful means for studying faint galaxies in the distant universe. By magnifying the apparent brightness of background sources, massive clusters enable the detection of galaxies fainter than the usual sensitivity limit for blank fields. However, this gain in effective sensitivity comes at the cost of a reduced survey volume and, in this Letter, we demonstrate that there is an associated increase in the cosmic variance uncertainty. As an example, we show that the cosmic variance uncertainty of the high-redshift population viewed through the Hubble Space Telescope Frontier Field cluster Abell 2744 increases from ∼35% at redshift z ∼ 7 to ≳ 65% at z ∼ 10. Previous studies of high-redshift galaxies identified in the Frontier Fields have underestimated the cosmic variance uncertainty that will affect the ultimate constraints on both the faint-end slope of the high-redshift luminosity function and the cosmic star formation rate density, key goals of the Frontier Field program
Infrared behavior of closed superstrings in strong magnetic and gravitational fields
International Nuclear Information System (INIS)
Kiritsis, E.; Kounnas, C.
1995-01-01
A large class of four-dimensional supersymmetric ground states of closed superstrings with a non-zero mass gap are constructed. For such ground states we turn on chromo-magnetic fields as well as curvature. The exact spectrum as function of the chromo-magnetic fields and curvature is derived. We examine the behavior of the spectrum, and find that there is a maximal value for the magnetic field H max similar M planck 2 . At this value all states that couple to the magnetic field become infinitely massive and decouple. We also find tachyonic instabilities for strong background fields of the order O (μM planck ) where μ is the mass gap of the theory. Unlike the field theory case, we find that such ground states become stable again for magnetic fields of the order O (M 2 planck ). The implications of these results are discussed. (orig.)
Relativistic theory of gravitation
International Nuclear Information System (INIS)
Logunov, A.A.; Mestvirishvili, M.A.
1986-01-01
In the present paper a relativistic theory of gravitation (RTG) is unambiguously constructed on the basis of the special relativity and geometrization principle. In this a gravitational field is treated as the Faraday--Maxwell spin-2 and spin-0 physical field possessing energy and momentum. The source of a gravitational field is the total conserved energy-momentum tensor of matter and of a gravitational field in Minkowski space. In the RTG the conservation laws are strictly fulfilled for the energy-moment and for the angular momentum of matter and a gravitational field. The theory explains the whole available set of experiments on gravity. By virtue of the geometrization principle, the Riemannian space in our theory is of field origin, since it appears as an effective force space due to the action of a gravitational field on matter. The RTG leads to an exceptionally strong prediction: The universe is not closed but just ''flat.'' This suggests that in the universe a ''missing mass'' should exist in a form of matter
Listening music of gravitation
International Nuclear Information System (INIS)
Anon.
2001-01-01
Achievements of precision experiments in Japan (TAMA project) and USA (LIGO Laboratory) in the field of registration of gravitation waves using interferometric gravitational wave detectors are described. Works of the GEO groups in Hannover (Germany) and Vigro (Italy) are noted. Interferometer operation in synchronization during 160 hours demonstrating viability of the technique and its reliability is recorded. Advances in the field of the data analysis with the aim of recording of cosmic signal from noise of the interferometer are noted [ru
Rosolen, A.; Peco, C.; Arroyo, M.
2013-01-01
We present an adaptive meshfree method to approximate phase-field models of biomembranes. In such models, the Helfrich curvature elastic energy, the surface area, and the enclosed volume of a vesicle are written as functionals of a continuous phase-field, which describes the interface in a smeared manner. Such functionals involve up to second-order spatial derivatives of the phase-field, leading to fourth-order Euler–Lagrange partial differential equations (PDE). The solutions develop sharp i...
International Nuclear Information System (INIS)
Scheck, Florian
2010-01-01
Stringent presentation of field theory, mediates the connection from the classicalelectrodynamics up to modern gauge theories. The compact presentation is ideal for the bachelor study. New chapter on general relativity theory. Deepens the learned by numerous application from laser physic, metamaterials and different more. Theoretical physics 3. Classical field theory. On electrodynamics, non-Abelian, and gravitation is the third of five volumes on theoretical physics by professor Scheck. The cycle theoretical physics comprehends: Volume 1: Mechanics. From Newtons law to the deterministic chaos. Volume 2: Nonrelativistic quantum theory. From the hydrogen atom to the many-particle systems. Volume 3: Classical field theory. From the electrodynamics to the gauge theories. Volume 5: From the laws of thermodynamics to the quantum statistics. This textbook mediates modern theoretical physics in string presentation illustrated by many examples. It contains numerous problems with solution hints ore exemplary, complete solutions. The third edition was revised in many single topics, especially the chapter on general relativity theory was supplemented by an extensive analysis of the Schwarzschild solution. [de
Czech Academy of Sciences Publication Activity Database
Chmelík, Josef; Mazanec, Karel; Bohačenko, I.; Psota, V.
2007-01-01
Roč. 30, 9-10 (2007), s. 1289-1301 ISSN 1082-6076 R&D Projects: GA MZe QD1005 Institutional research plan: CEZ:AV0Z40310501 Keywords : gravitational field- flow fractionation * starch granules * barley varieties Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 0.977, year: 2007
Energy Technology Data Exchange (ETDEWEB)
Levi, Michele [Université Pierre et Marie Curie, CNRS-UMR 7095, Institut d' Astrophysique de Paris, 98 bis Boulevard Arago, 75014 Paris (France); Steinhoff, Jan, E-mail: michele.levi@upmc.fr, E-mail: jan.steinhoff@aei.mpg.de [Max-Planck-Institute for Gravitational Physics (Albert-Einstein-Institute), Am Mühlenberg 1, 14476 Potsdam-Golm (Germany)
2016-01-01
We implement the effective field theory for gravitating spinning objects in the post-Newtonian scheme at the next-to-next-to-leading order level to derive the gravitational spin-orbit interaction potential at the third and a half post-Newtonian order for rapidly rotating compact objects. From the next-to-next-to-leading order interaction potential, which we obtain here in a Lagrangian form for the first time, we derive straightforwardly the corresponding Hamiltonian. The spin-orbit sector constitutes the most elaborate spin dependent sector at each order, and accordingly we encounter a proliferation of the relevant Feynman diagrams, and a significant increase of the computational complexity. We present in detail the evaluation of the interaction potential, going over all contributing Feynman diagrams. The computation is carried out in terms of the ''nonrelativistic gravitational'' fields, which are advantageous also in spin dependent sectors, together with the various gauge choices included in the effective field theory for gravitating spinning objects, which also optimize the calculation. In addition, we automatize the effective field theory computations, and carry out the automated computations in parallel. Such automated effective field theory computations would be most useful to obtain higher order post-Newtonian corrections. We compare our Hamiltonian to the ADM Hamiltonian, and arrive at a complete agreement between the ADM and effective field theory results. Finally, we provide Hamiltonians in the center of mass frame, and complete gauge invariant relations among the binding energy, angular momentum, and orbital frequency of an inspiralling binary with generic compact spinning components to third and a half post-Newtonian order. The derivation presented here is essential to obtain further higher order post-Newtonian corrections, and to reach the accuracy level required for the successful detection of gravitational radiation.
International Nuclear Information System (INIS)
Kotler, Z.; Neria, E.; Nitzan, A.
1991-01-01
The use of the time-dependent self-consistent field approximation (TDSCF) in the numerical solution of quantum curve crossing and tunneling dynamical problems is investigated. Particular emphasis is given to multiconfiguration TDSCF (MCTDSCF) approximations, which are shown to perform considerably better with only a small increase in computational effort. We investigate a number of simple models in which a 'system' characterized by two electronic potential surfaces evolves while interacting with a 'bath' mode described by an harmonic oscillator, and compare exact numerical solutions to one- and two-configuration TDSCF approximations. We also introduce and investigate a semiclassical approximation in which the 'bath' mode is described by semiclassical wavepackets (one for each electronic state) and show that for all models investigated this scheme works very well in comparison with the fully quantum MCTDSCF approximation. This provides a potentially very useful method to simulate strongly quantum systems coupled to an essentially classical environment. (orig.)
Twisting gravitational waves and eigenvector fields for SL(2,C on an infinite jet
Directory of Open Access Journals (Sweden)
J. D. Finley III
2000-07-01
Full Text Available A system of coupled vector-field-valued partial differential equations is presented, the solutions to which would determine two coupled, infinite-dimensional vector-field realizations of the group SL(2,C. While the general solution is (partially presented, the complicated nature of that solution is deplored, and the hope expressed that someone can replace it by something much more natural. The physical origins of the problem are briefly described. The problem arises out of searches for Backlund transforms of a system of PDE's that describe twisting, Petrov type N solutions of Einstein's vacuum field equations.
Effective field theory of statistical anisotropies for primordial bispectrum and gravitational waves
Energy Technology Data Exchange (ETDEWEB)
Rostami, Tahereh; Karami, Asieh; Firouzjahi, Hassan, E-mail: t.rostami@ipm.ir, E-mail: karami@ipm.ir, E-mail: firouz@ipm.ir [School of Astronomy, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of)
2017-06-01
We present the effective field theory studies of primordial statistical anisotropies in models of anisotropic inflation. The general action in unitary gauge is presented to calculate the leading interactions between the gauge field fluctuations, the curvature perturbations and the tensor perturbations. The anisotropies in scalar power spectrum and bispectrum are calculated and the dependence of these anisotropies to EFT couplings are presented. In addition, we calculate the statistical anisotropy in tensor power spectrum and the scalar-tensor cross correlation. Our EFT approach incorporates anisotropies generated in models with non-trivial speed for the gauge field fluctuations and sound speed for scalar perturbations such as in DBI inflation.
Pineda, M.; Stamatakis, M.
2017-07-01
Modeling the kinetics of surface catalyzed reactions is essential for the design of reactors and chemical processes. The majority of microkinetic models employ mean-field approximations, which lead to an approximate description of catalytic kinetics by assuming spatially uncorrelated adsorbates. On the other hand, kinetic Monte Carlo (KMC) methods provide a discrete-space continuous-time stochastic formulation that enables an accurate treatment of spatial correlations in the adlayer, but at a significant computation cost. In this work, we use the so-called cluster mean-field approach to develop higher order approximations that systematically increase the accuracy of kinetic models by treating spatial correlations at a progressively higher level of detail. We further demonstrate our approach on a reduced model for NO oxidation incorporating first nearest-neighbor lateral interactions and construct a sequence of approximations of increasingly higher accuracy, which we compare with KMC and mean-field. The latter is found to perform rather poorly, overestimating the turnover frequency by several orders of magnitude for this system. On the other hand, our approximations, while more computationally intense than the traditional mean-field treatment, still achieve tremendous computational savings compared to KMC simulations, thereby opening the way for employing them in multiscale modeling frameworks.
Infinite order quantum-gravitational correlations
Knorr, Benjamin
2018-06-01
A new approximation scheme for nonperturbative renormalisation group equations for quantum gravity is introduced. Correlation functions of arbitrarily high order can be studied by resolving the full dependence of the renormalisation group equations on the fluctuation field (graviton). This is reminiscent of a local potential approximation in O(N)-symmetric field theories. As a first proof of principle, we derive the flow equation for the ‘graviton potential’ induced by a conformal fluctuation and corrections induced by a gravitational wave fluctuation. Indications are found that quantum gravity might be in a non-metric phase in the deep ultraviolet. The present setup significantly improves the quality of previous fluctuation vertex studies by including infinitely many couplings, thereby testing the reliability of schemes to identify different couplings to close the equations, and represents an important step towards the resolution of the Nielsen identity. The setup further allows one, in principle, to address the question of putative gravitational condensates.
Directory of Open Access Journals (Sweden)
Valery Chepizhenko
2012-09-01
Full Text Available In article schemes have been offered and characteristics of virtual meters of artificial force fields for the conflicts resolution in the aeronavigation environment have been investigated.
Perihelic shift of planets due to the gravitational field of the charged Sun
International Nuclear Information System (INIS)
Teli, M.T.; Palaskar, D.
1984-01-01
The perihelic shift of planets due to the charged Sun is calculated. The results when compared with experimental shifts suggest that the planets Mercury, Venus and Icarus do not possess self-electromagnetic fields
Self-consistent-field calculations of atoms and ions using a modified local-density approximation
International Nuclear Information System (INIS)
Liberman, D.A.; Albritton, J.R.; Wilson, B.G.; Alley, W.E.
1994-01-01
Local-density-approximation calculations of atomic structure are useful for the description of atoms and ions in plasmas. The large number of different atomic configurations that exist in typical plasmas leads one to consider the expression of total energies in terms of a Taylor series in the orbital occupation numbers. Two schemes for computing the second derivative Taylor-series coefficients are given; the second, and better one, uses the linear response method developed by Zangwill and Soven [Phys. Rev. A 21, 1561 (1980)] for the calculation of optical response in atoms. A defect in the local-density approximation causes some second derivatives involving Rydberg orbitals to be infinite. This is corrected by using a modified local-density approximation that had previously been proposed [Phys. Rev. B 2, 244 (1970)
Critical Effects in Gravitational Collapse
International Nuclear Information System (INIS)
Chmaj, T.
2000-01-01
The models of gravitational collapse of a dynamical system are investigated by means of the Einstein equations. Different types conjunctions to gravitational field are analyzed and it is shown that in the case of week scalar field (low energy density) the system evaluated to flat space while in the case of strong field (high energy density) to black hole
The soliton solution of the PHI24 field theory in the Hartree approximation
International Nuclear Information System (INIS)
Altenbokum, M.
1984-01-01
In this thesis in a simple model which possesses at the classical level a soliton solution a quantum-mechanical soliton sector shall be constructed in a Hartree-Fock approximation without application of semiclassical procedures. To this belongs beside the determination of the excitation spectrum of the applied Hamiltonian the knowledge of the corresponding infinitely-much eigenfunctions. The existing translational invariance of a classical soliton solution which implies the existence of a degenerated ground state by presence of a massless excitation is removed by quantum fluctuations. By removing of this degeneration conventional approximation procedures for this sector of the Hilbert space become for the first time immediately possible. (HSI) [de
Pajevic, Sinisa; Aldroubi, Akram; Basser, Peter J
2002-01-01
The effective diffusion tensor of water, D, measured by diffusion tensor MRI (DT-MRI), is inherently a discrete, noisy, voxel-averaged sample of an underlying macroscopic effective diffusion tensor field, D(x). Within fibrous tissues this field is presumed to be continuous and smooth at a gross anatomical length scale. Here a new, general mathematical framework is proposed that uses measured DT-MRI data to produce a continuous approximation to D(x). One essential finding is that the continuous tensor field representation can be constructed by repeatedly performing one-dimensional B-spline transforms of the DT-MRI data. The fidelity and noise-immunity of this approximation are tested using a set of synthetically generated tensor fields to which background noise is added via Monte Carlo methods. Generally, these tensor field templates are reproduced faithfully except at boundaries where diffusion properties change discontinuously or where the tensor field is not microscopically homogeneous. Away from such regions, the tensor field approximation does not introduce bias in useful DT-MRI parameters, such as Trace(D(x)). It also facilitates the calculation of several new parameters, particularly differential quantities obtained from the tensor of spatial gradients of D(x). As an example, we show that they can identify tissue boundaries across which diffusion properties change rapidly using in vivo human brain data. One important application of this methodology is to improve the reliability and robustness of DT-MRI fiber tractography.
Miyagawa, Akihisa; Harada, Makoto; Okada, Tetsuo
2018-02-06
We present a novel analytical principle in which an analyte (according to its concentration) induces a change in the density of a microparticle, which is measured as a vertical coordinate in a coupled acoustic-gravitational (CAG) field. The density change is caused by the binding of gold nanoparticles (AuNP's) on a polystyrene (PS) microparticle through avidin-biotin association. The density of a 10-μm PS particle increases by 2% when 500 100-nm AuNP's are bound to the PS. The CAG can detect this density change as a 5-10 μm shift of the levitation coordinate of the PS. This approach, which allows us to detect 700 AuNP's bound to a PS particle, is utilized to detect biotin in solution. Biotin is detectable at a picomolar level. The reaction kinetics plays a significant role in the entire process. The kinetic aspects are also quantitatively discussed based on the levitation behavior of the PS particles in the CAG field.
Gravitational lensing in metric theories of gravity
International Nuclear Information System (INIS)
Sereno, Mauro
2003-01-01
Gravitational lensing in metric theories of gravity is discussed. I introduce a generalized approximate metric element, inclusive of both post-post-Newtonian contributions and a gravitomagnetic field. Following Fermat's principle and standard hypotheses, I derive the time delay function and deflection angle caused by an isolated mass distribution. Several astrophysical systems are considered. In most of the cases, the gravitomagnetic correction offers the best perspectives for an observational detection. Actual measurements distinguish only marginally different metric theories from each other
Hydrogen atom excitation in intense attosecond laser field: Gauge dependence of dipole approximation
Energy Technology Data Exchange (ETDEWEB)
Aldarmaa, Ch., E-mail: aldaraa2004@yahoo.com, E-mail: l-xemee@yahoo.com; Khenmedekh, L., E-mail: aldaraa2004@yahoo.com, E-mail: l-xemee@yahoo.com [Theoretical Physics and Simulation Group, School of Materials Technology, MUST (Mongolia); Lkhagva, O. [School of Physics and Electronics, NUM (Mongolia)
2014-03-24
It is assumed that, the atomic excitations probability can be calculated using first order perturbation theory and dipole approximations. The validity of the dipole approximations had been examined by comparing the results with the results obtained by exact calculations within the first order perturbation theory[2]. Figure 1 shows the time dependence of the transition probability in the dipole approximation. From these plots it is obvious that, the probabilities obtained in the length gauge are higher than that in the velocity gauge, in the interaction period (−τ/2
Ruffini, R.
2004-07-01
Recent developments in obtaining a detailed model for gamma-ray bursts have shown the need for a deeper understanding of phenomena described by solutions of the Einstein-Maxwell equations, reviving interest in the behavior of charges close to a black hole. In particular a drastic difference has been found between the lines of force of a charged test particle in the fields of Schwarzschild and Reissner-Nordström black holes. This difference characterizes a general relativistic effect for the electric field of a charged test particle around a (charged) Reissner-Nordström black hole similar to the “Meissner effect” for a magnetic field around a superconductor. These new results are related to earlier work by Fermi and Hanni-Ruffini-Wheeler.
International Nuclear Information System (INIS)
Veryaskin, A.V.; Lapchinskij, V.G.; Nekrasov, V.I.; Rubakov, V.A.
1981-01-01
Behaviour of vacuum symmetry in the model of self-acting scalar field in the open and closed isotropic cosmological spaces is investigated. Considered are the cases with the mass squared of the scalar field m 2 >0, m 2 =0 and m 2 2 2 =0 at exponentially large scale factors the study of the problem on the behaviour of the symmetry requires exceeding the limits of the perturbation theory. The final behaviour of the vacuum symmetry in the open model at small radii depends on combined effect of all the external factors [ru
Estimation of neutral-beam-induced field reversal in MFTF by an approximate scaling law
International Nuclear Information System (INIS)
Shearer, J.W.
1980-01-01
Scaling rules are derived for field-reversed plasmas whose dimensions are common multiples of the ion gyroradius in the vacuum field. These rules are then applied to the tandem MFTF configuration, and it is shown that field reversal appears to be possible for neutral beam currents of the order of 150 amperes, provided that the electron temperature is at least 500 eV
Dang Chien, Nguyen; Shih, Chun-Hsing; Hoa, Phu Chi; Minh, Nguyen Hong; Thi Thanh Hien, Duong; Nhung, Le Hong
2016-06-01
The two-band Kane model has been popularly used to calculate the band-to-band tunneling (BTBT) current in tunnel field-effect transistor (TFET) which is currently considered as a promising candidate for low power applications. This study theoretically clarifies the maximum electric field approximation (MEFA) of direct BTBT Kane model and evaluates its appropriateness for low bandgap semiconductors. By analysing the physical origin of each electric field term in the Kane model, it has been elucidated in the MEFA that the local electric field term must be remained while the nonlocal electric field terms are assigned by the maximum value of electric field at the tunnel junction. Mathematical investigations have showed that the MEFA is more appropriate for low bandgap semiconductors compared to high bandgap materials because of enhanced tunneling probability in low field regions. The appropriateness of the MEFA is very useful for practical uses in quickly estimating the direct BTBT current in low bandgap TFET devices.
Presenting Newtonian gravitation
International Nuclear Information System (INIS)
Counihan, Martin
2007-01-01
The basic principles of the Newtonian theory of gravitation are presented in a way which students may find more logically coherent, mathematically accessible and physically interesting than other approaches. After giving relatively simple derivations of the circular hodograph and the elliptical orbit from the inverse-square law, the concept of gravitational energy is developed from vector calculus. It is argued that the energy density of a gravitational field may reasonably be regarded as -g 2 /8πG, and that the inverse-square law may be replaced by a Schwarzschild-like force law without the need to invoke non-Euclidean geometry
A not concerning the gravitational indistinguishability of a neutrino field and Stokesian fluids
International Nuclear Information System (INIS)
Novello, M.
1979-01-01
It is shown that the source of the Novello-Soares cosmological model may be either a neutrino field or a stokesian fluid. The authors make some comments on the problem that such an arbitrariness causes for Rainich's already unified program. (Auth.)
Remark on the gravitational field produced by an infinite straight string
International Nuclear Information System (INIS)
Francisco, G.; Matsas, G.E.A.
1989-01-01
The results predicted by Newtonian gravity and general relativity are compared regarding the field produced by an infinite gauge string with constant density λ. A simple gedankenexperiment is suggested to stress the remarkable differences between these two theories. The existence of the usual Newtonian limit is discussed in this case
Space-time description of particle creation in gravitational and electromagnetic fields
International Nuclear Information System (INIS)
Mamaev, S.G.; Trunov, N.N.
1983-01-01
The dynamics of the creation of pairs of particles from the vacuum in strong time-dependent external fields is studied. The space-time correlation function of the pair is determined. An analysis of the behavior of this function allows one, in particular, to study the pair-creation process, to distinguish between real and virtual particles, etc
Gravitational lensing due to dark matter modelled by a vector field
International Nuclear Information System (INIS)
Kiselev, V V; Yudin, D I
2006-01-01
The specified constant 4-vector field reproducing the spherically symmetric stationary metric of a cold dark matter halo in the region of flat rotation curves results in a constant angle of light deflection at small impact distances. The effective deflecting mass is a factor π/2 greater than the dark matter mass. The perturbation of deflection picture due to the halo edge is evaluated
International Nuclear Information System (INIS)
Fiedler, B.; Schimming, R.
1983-01-01
The fourth order field equations proposed by TREDER with a linear combination of BACH's tensor and EINSTEIN's tensor on the left-hand side admit static centrally symmetric solutions which are analytical and non-flat in some neighborhood of the centre of symmetry. (author)
Exact Solutions of the Field Equations for Empty Space in the Nash Gravitational Theory
Directory of Open Access Journals (Sweden)
Matthew T. Aadne
2017-02-01
Full Text Available John Nash has proposed a new theory of gravity. We define a Nash-tensor equal to the curvature tensor appearing in the Nash field equations for empty space, and calculate its components for two cases: 1. A static, spherically symmetric space; and 2. The expanding, homogeneous and isotropic space of the Friedmann-Lemaitre-Robertson-Walker (FLRW universe models. We find the general, exact solution of Nash’s field equations for empty space in the static case. The line element turns out to represent the Schwarzschild-de Sitter spacetime. Also we find the simplest non-trivial solution of the field equations in the cosmological case, which gives the scale factor corresponding to the de Sitter spacetime. Hence empty space in the Nash theory corresponds to a space with Lorentz Invariant Vacuum Energy (LIVE in the Einstein theory. This suggests that dark energy may be superfluous according to the Nash theory. We also consider a radiation filled universe model in an effort to find out how energy and matter may be incorporated into the Nash theory. A tentative interpretation of the Nash theory as a unified theory of gravity and electromagnetism leads to a very simple form of the field equations in the presence of matter. It should be noted, however, that the Nash theory is still unfinished. A satisfying way of including energy momentum into the theory has yet to be found.
Fukushima, Toshio
2017-06-01
Reviewed are recently developed methods of the numerical integration of the gravitational field of general two- or three-dimensional bodies with arbitrary shape and mass density distribution: (i) an axisymmetric infinitely-thin disc (Fukushima 2016a, MNRAS, 456, 3702), (ii) a general infinitely-thin plate (Fukushima 2016b, MNRAS, 459, 3825), (iii) a plane-symmetric and axisymmetric ring-like object (Fukushima 2016c, AJ, 152, 35), (iv) an axisymmetric thick disc (Fukushima 2016d, MNRAS, 462, 2138), and (v) a general three-dimensional body (Fukushima 2016e, MNRAS, 463, 1500). The key techniques employed are (a) the split quadrature method using the double exponential rule (Takahashi and Mori, 1973, Numer. Math., 21, 206), (b) the precise and fast computation of complete elliptic integrals (Fukushima 2015, J. Comp. Appl. Math., 282, 71), (c) Ridder's algorithm of numerical differentiaion (Ridder 1982, Adv. Eng. Softw., 4, 75), (d) the recursive computation of the zonal toroidal harmonics, and (e) the integration variable transformation to the local spherical polar coordinates. These devices succesfully regularize the Newton kernel in the integrands so as to provide accurate integral values. For example, the general 3D potential is regularly integrated as Φ (\\vec{x}) = - G \\int_0^∞ ( \\int_{-1}^1 ( \\int_0^{2π} ρ (\\vec{x}+\\vec{q}) dψ ) dγ ) q dq, where \\vec{q} = q (√{1-γ^2} cos ψ, √{1-γ^2} sin ψ, γ), is the relative position vector referred to \\vec{x}, the position vector at which the potential is evaluated. As a result, the new methods can compute the potential and acceleration vector very accurately. In fact, the axisymmetric integration reproduces the Miyamoto-Nagai potential with 14 correct digits. The developed methods are applied to the gravitational field study of galaxies and protoplanetary discs. Among them, the investigation on the rotation curve of M33 supports a disc-like structure of the dark matter with a double-power-law surface
Neutrino`s helicity in a gravitational field; Helicite des neutrinos dans un champ gravitationnel
Energy Technology Data Exchange (ETDEWEB)
Pansart, J.P.
1996-12-31
By using approximated solutions of Dirac`s equation, we show that there is no helicity reversal for light neutrinos in the Schwarzschild metric nor in an expanding universe. The actual coupling between a particle spin and the angular momentum of a heavy rotating body induces a possible helicity reversal but with an unobservable probability proportional to m{sup 2}{sub p} / E{sup 2}, where m{sub p} is the particle mass and E its energy. In these calculations, the helicity is defined through the spin orientation with respect to the current and not with respect to the linear momentum. This definition gives simple expressions and is equal to the usual definition in the case of a flat space. (N.T.). 10 refs.
Pairing in a two-dimensional two-band very anisotropic model in the mean field approximation
International Nuclear Information System (INIS)
Fazakas, A.B.; Pitis, R.
1993-09-01
A two-dimensional model is proposed: there are two kinds of sites, with one electronic state per site; tunneling takes place only in one direction; the interaction involves only electrons on different sites. The existence of a phase transition involving interband pairing of electrons is discussed in the mean field approximation. (author)
CERN. Geneva
2005-01-01
We will present a brief introduction to the physics of gravitational waves and their properties. We will review potential astrophysical sources of gravitational waves, and the physics and astrophysics that can be learned from their study. We will survey the techniques and technologies for detecting gravitational waves for the first time, including bar detectors and broadband interferometers, and give a brief status report on the international search effort, with special emphasis on the LIGO detectors and search results.
Vasin, A L
2003-01-01
Appropriateness of representation of a biological object surface as an equipotential surface has been proved for conditions of a quasistatic exposure to EMF of frequencies lower than 1 MHz. The conditions, at which a self capacitance of a biological object is its basic electrical parameter, have been considered. A factor of animal-to-human approximation of low-frequency EMF exposure conditions was estimated on the basis of equal dose loading in biological objects of different geometric sizes.
Null Geodesics and Strong Field Gravitational Lensing of Black Hole with Global Monopole
International Nuclear Information System (INIS)
Iftikhar, Sehrish; Sharif, M.
2015-01-01
We study two interesting features of a black hole with an ordinary as well as phantom global monopole. Firstly, we investigate null geodesics which imply unstable orbital motion of particles for both cases. Secondly, we evaluate deflection angle in strong field regime. We then find Einstein rings, magnifications, and observables of the relativistic images for supermassive black hole at the center of galaxy NGC4486B. We also examine time delays for different galaxies and present our results numerically. It is found that the deflection angle for ordinary/phantom global monopole is greater/smaller than that of Schwarzschild black hole. In strong field limit, the remaining properties of these black holes are quite different from the Schwarzschild black hole
Class of Exact Solutions for a Cosmological Model of Unified Gravitational and Quintessence Fields
Asenjo, Felipe A.; Hojman, Sergio A.
2017-07-01
A new approach to tackle Einstein equations for an isotropic and homogeneous Friedmann-Robertson-Walker Universe in the presence of a quintessence scalar field is devised. It provides a way to get a simple exact solution to these equations. This solution determines the quintessence potential uniquely and it differs from solutions which have been used to study inflation previously. It relays on a unification of geometry and dark matter implemented through the definition of a functional relation between the scale factor of the Universe and the quintessence field. For a positive curvature Universe, this solution produces perpetual accelerated expansion rate of the Universe, while the Hubble parameter increases abruptly, attains a maximum value and decreases thereafter. The behavior of this cosmological solution is discussed and its main features are displayed. The formalism is extended to include matter and radiation.
International Nuclear Information System (INIS)
Souza Alves, Marcelo de.
1990-03-01
Some general aspects on field theories in curved space-time and a introduction to conformal symmetry are presented.The behavior of the physical systems under Weyl transformations is discussed. The quantization of such systems are performed through the functional integration method. The regularization in curved space-time is also discussed. An application of this analysis in String theories is made. 42 refs
Null Geodesics and Strong Field Gravitational Lensing in a String Cloud Background
International Nuclear Information System (INIS)
Iftikhar, Sehrish; Sharif, M.
2015-01-01
This paper is devoted to studying two interesting issues of a black hole with string cloud background. Firstly, we investigate null geodesics and find unstable orbital motion of particles. Secondly, we calculate deflection angle in strong field limit. We then find positions, magnifications, and observables of relativistic images for supermassive black hole at the galactic center. We conclude that string parameter highly affects the lensing process and results turn out to be quite different from the Schwarzschild black hole
Does the Equivalence between Gravitational Mass and Energy Survive for a Quantum Body?
Directory of Open Access Journals (Sweden)
Lebed A. G.
2012-10-01
Full Text Available We consider the simplest quantum composite body, a hydrogen atom, in the presence of a weak external gravitational field. We show that passive gravitational mass operator of the atom in the post-Newtonian approximation of general relativity does not commute with its energy operator, taken in the absence of the field. Nevertheless, the equivalence between the expectations values of passive gravitational mass and energy is shown to survive at a macroscopic level for stationary quantum states. Breakdown of the equiva- lence between passive gravitational mass and energy at a microscopic level for station- ary quantum states can be experimentally detected by studying unusual electromagnetic radiation, emitted by the atoms, supported and moved in the Earth gravitational field with constant velocity, using spacecraft or satellite.
Dirac particle in a plane wave field and the semi-classical approximation
Energy Technology Data Exchange (ETDEWEB)
Bourouaine, S. [Department of Physics, Faculty of Sciences, Mentouri University, Constantine (Algeria)
2005-04-01
In this paper we investigate the influence of photon represented by plane wave field on Dirac particle in the context of path integral approach given by Fradkin and Gitman formalism. In our case, although the action relative to Dirac particle in plane wave field seems to be non quadratic, the result obtained by semi-classical approach is the same as that found by an exact calculation. Hence; when we add the plane wave field to any quadratic actions related to Fradkin and Gitman approach, the total action behaves like quadratic. (Abstract Copyright [2005], Wiley Periodicals, Inc.)
Dirac particle in a plane wave field and the semi-classical approximation
International Nuclear Information System (INIS)
Bourouaine, S.
2005-01-01
In this paper we investigate the influence of photon represented by plane wave field on Dirac particle in the context of path integral approach given by Fradkin and Gitman formalism. In our case, although the action relative to Dirac particle in plane wave field seems to be non quadratic, the result obtained by semi-classical approach is the same as that found by an exact calculation. Hence; when we add the plane wave field to any quadratic actions related to Fradkin and Gitman approach, the total action behaves like quadratic. (Abstract Copyright [2005], Wiley Periodicals, Inc.)
International Nuclear Information System (INIS)
Lucchesi, D M; Peron, R; Visco, M; Anselmo, L; Pardini, C; Bassan, M; Pucacco, G
2015-01-01
In this work, the Laser Ranged Satellites Experiment (LARASE) is presented. This is a research program that aims to perform new refined tests and measurements of gravitation in the field of the Earth in the weak field and slow motion (WFSM) limit of general relativity (GR). For this objective we use the free available data relative to geodetic passive satellite lasers tracked from a network of ground stations by means of the satellite laser ranging (SLR) technique. After a brief introduction to GR and its WFSM limit, which aims to contextualize the physical background of the tests and measurements that LARASE will carry out, we focus on the current limits of validation of GR and on current constraints on the alternative theories of gravity that have been obtained with the precise SLR measurements of the two LAGEOS satellites performed so far. Afterward, we present the scientific goals of LARASE in terms of upcoming measurements and tests of relativistic physics. Finally, we introduce our activities and we give a number of new results regarding the improvements to the modelling of both gravitational and non-gravitational perturbations to the orbit of the satellites. These activities are a needed prerequisite to improve the forthcoming new measurements of gravitation. An innovation with respect to the past is the specialization of the models to the LARES satellite, especially for what concerns the modelling of its spin evolution, the neutral drag perturbation and the impact of Earth's solid tides on the satellite orbit. (paper)
Romero, Gustavo E.
2017-01-01
I discuss the recent claims made by Mario Bunge on the philosophical implications of the discovery of gravitational waves. I think that Bunge is right when he points out that the detection implies the materiality of spacetime, but I reject his identification of spacetime with the gravitational field. I show that Bunge's analysis of the spacetime inside a hollow sphere is defective, but this in no way affects his main claim.
The quantum transverse spin-2 Ising model with a bimodal random-field in the pair approximation
International Nuclear Information System (INIS)
Canko, O.; Albayrak, E.; Keskin, M.
2005-01-01
In this paper, we have investigated the bimodal random-field spin-2 Ising system in a transverse field by combining the pair approximation with the discretized path-integral representation. The exact equations for the second-order phase transition lines and tricritical points are obtained in terms of the random field H, the transverse field G and the coordination number z. It is found that there are some critical values for H and G where the tricritical points disappear for given z. We have also observed that the system presents reentrant behavior which may be caused by the quantum effects and randomness. The phase diagram with respect to the random field and the second-order phase transition temperature are studied extensively for given values of the transverse field and the coordination number
Energy Technology Data Exchange (ETDEWEB)
Chan, Chi-kwan; Psaltis, Dimitrios; Özel, Feryal; Marrone, Daniel [Steward Observatory and Department of Astronomy, University of Arizona, 933 N. Cherry Avenue, Tucson, AZ 85721 (United States); Medeiros, Lia [Department of Physics, Broida Hall, University of California, Santa Barbara, Santa Barbara, CA 93106 (United States); Sadowski, Aleksander [MIT Kavli Institute for Astrophysics and Space Research, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Narayan, Ramesh, E-mail: chanc@email.arizona.edu [Institute for Theory and Computation, Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)
2015-10-20
We explore the variability properties of long, high-cadence general relativistic magnetohydrodynamic (GRMHD) simulations across the electromagnetic spectrum using an efficient, GPU-based radiative transfer algorithm. We focus on both standard and normal evolution (SANE) and magnetically arrested disk (MAD) simulations with parameters that successfully reproduce the time-averaged spectral properties of Sgr A* and the size of its image at 1.3 mm. We find that the SANE models produce short-timescale variability with amplitudes and power spectra that closely resemble those inferred observationally. In contrast, MAD models generate only slow variability at lower flux levels. Neither set of models shows any X-ray flares, which most likely indicates that additional physics, such as particle acceleration mechanisms, need to be incorporated into the GRMHD simulations to account for them. The SANE models show strong, short-lived millimeter/infrared (IR) flares, with short (≲1 hr) time lags between the millimeter and IR wavelengths, that arise from the combination of short-lived magnetic flux tubes and strong-field gravitational lensing near the horizon. Such events provide a natural explanation for the observed IR flares with no X-ray counterparts.
Exploring gravitational lensing model variations in the Frontier Fields galaxy clusters
Harris James, Nicholas John; Raney, Catie; Brennan, Sean; Keeton, Charles
2018-01-01
Multiple groups have been working on modeling the mass distributions of the six lensing galaxy clusters in the Hubble Space Telescope Frontier Fields data set. The magnification maps produced from these mass models will be important for the future study of the lensed background galaxies, but there exists significant variation in the different groups’ models and magnification maps. We explore the use of two-dimensional histograms as a tool for visualizing these magnification map variations. Using a number of simple, one- or two-halo singular isothermal sphere models, we explore the features that are produced in 2D histogram model comparisons when parameters such as halo mass, ellipticity, and location are allowed to vary. Our analysis demonstrates the potential of 2D histograms as a means of observing the full range of differences between the Frontier Fields groups’ models.This work has been supported by funding from National Science Foundation grants PHY-1560077 and AST-1211385, and from the Space Telescope Science Institute.
Reggeon field theory at D = 2 in two-loop approximation
International Nuclear Information System (INIS)
Eremyan, Sh.S.; Nazaryan, A.E.
1982-01-01
A general method of constructing an explicit representation is developed for the pomeron propagator in the presence of additional parameters, such as the pomeron production threshold xi 0 , momentum transfer K vector or the intercept shift delta 0 . The method is shown to be applicable in both one-loop and two-loop approximations. The obtained general formulae allow to consider the pomeron propagator in both asymptotic region and the region of the perturbation theory applicability. Besides, they provide the smooth matching of both these regions. The observed values are calculated, and the results connected with asymptotically high energies are discussed
DEFF Research Database (Denmark)
Opper, Manfred; Winther, Ole
2001-01-01
We develop an advanced mean held method for approximating averages in probabilistic data models that is based on the Thouless-Anderson-Palmer (TAP) approach of disorder physics. In contrast to conventional TAP. where the knowledge of the distribution of couplings between the random variables...... is required. our method adapts to the concrete couplings. We demonstrate the validity of our approach, which is so far restricted to models with nonglassy behavior? by replica calculations for a wide class of models as well as by simulations for a real data set....
Gravitational and electromagnetic potentials of the stationary Einstein-Maxwell field equations
International Nuclear Information System (INIS)
Jones, T.C.
1979-01-01
Associated with the stationary Einstein-Maxwell field equations is an infinite hierarchy of potentials. The basic characteristics of these potentials are examined in general and then in greater detail for the particular case of the Reissner-Nordstrom metric. Thier essential utility in the process of solution generation is elucidated, and the necessary equations for solution generation are developed. Appropriate generating functions, which contain the complete infinite hierarchy of potentials, are developed and analyzed. Particular attention is paid to the inherent gauge freedom of these generating functions. Two methods of solution generation, which yield asymptotically flat solutions in vacuum, are generalized to include electromagnetism. One method, using potentials consistent with the Harrison transformation and the Reissner-Nordstrom metric, is discussed in detail, and its resultant difficulties are explored