Gravitational effects in field gravitation theory
International Nuclear Information System (INIS)
Denisov, V.I.; Logunov, A.A.; Mestvirishvili, M.A.; Vlasov, A.A.
1979-01-01
The possibilities to describe various gravitation effects of field gravitation theory (FGT) are considered. Past-Newtonian approximation of the FGT has been constructed and on the basis of this approximation it has been shown that the field theory allows one to describe the whole set of experimental facts. The comparison of post-Newtonian parameters in FGT with those in the Einstein's theory makes it clear that these two; theories are undistinguishable from the viewpoint of any experiments, realized with post-Newtonian accuracy. Gravitational field of an island type source with spherically symmetrical distribution of matter and unstationary homogeneous model of Universe, which allows to describe the effect of cosmological red shift, are considered
The gravitational Schwinger effect and attenuation of gravitational waves
McDougall, Patrick Guarneri
This paper will discuss the possible production of photons from gravitational waves. This process is shown to be possible by examining Feynman diagrams, the Schwinger Effect, and Hawking Radiation. The end goal of this project is to find the decay length of a gravitational wave and assert that this decay is due to photons being created at the expense of the gravitational wave. To do this, we first find the state function using the Klein Gordon equation, then find the current due to this state function. We then take the current to be directly proportional to the production rate per volume. This is then used to find the decay length that this kind of production would produce, gives a prediction of how this effect will change the distance an event creating a gravitational wave will be located, and shows that this effect is small but can be significant near the source of a gravitational wave.
Gravitational waves and dragging effects
Bičák, Jiří; Katz, Joseph; Lynden-Bell, Donald
2008-08-01
Linear and rotational dragging effects of gravitational waves on local inertial frames are studied in purely vacuum spacetimes. First, the linear dragging caused by a simple cylindrical pulse is investigated. Surprisingly strong transverse effects of the pulse are exhibited. The angular momentum in cylindrically symmetric spacetimes is then defined and confronted with some results in the literature. In the main part, a general procedure is developed for studying weak gravitational waves with translational but not axial symmetry which can carry angular momentum. After a suitable averaging the rotation of local inertial frames due to such rotating waves can be calculated explicitly and illustrated graphically. This is done in detail in the accompanying paper. Finally, the rotational dragging is given for strong cylindrical waves interacting with a rotating cosmic string with a small angular momentum.
Fab Four: When John and George Play Gravitation and Cosmology
Directory of Open Access Journals (Sweden)
J.-P. Bruneton
2012-01-01
Full Text Available Scalar-tensor theories of gravitation attract again a great interest since the discovery of the Chameleon mechanism and of the Galileon models. The former allows reconciling the presence of a scalar field with the constraints from Solar System experiments. The latter leads to inflationary models that do not need ad hoc potentials. Further generalizations lead to a tensor-scalar theory, dubbed the “Fab Four,” with only first and second order derivatives of the fields in the equations of motion that self-tune to a vanishing cosmological constant. This model needs to be confronted with experimental data in order to constrain its large parameter space. We present some results regarding a subset of this theory named “John,” which corresponds to a nonminimal derivative coupling between the scalar field and the Einstein tensor in the action. We show that this coupling gives rise to an inflationary model with very unnatural initial conditions. Thus, we include the term named “George,” namely, a nonminimal, but nonderivative, coupling between the scalar field and Ricci scalar. We find a more natural inflationary model, and, by performing a post-Newtonian analysis, we derive the set of equations that constrain the parameter space with data from experiments in the Solar System.
Gravitational effects of global strings
International Nuclear Information System (INIS)
Aryal, M.; Everett, A.E.
1986-01-01
We have obtained the gravitational field, in the weak-field approximation, of cosmic strings formed in a phase transition in which a global symmetry is broken (global strings). The effect of this field on light rays passing a global string is found, and the resulting formation of double images and production of discontinuities in the microwave background temperature compared with the corresponding results for gauge strings. There are some differences in the case of global strings, reflecting the fact that the space surrounding such strings is not purely conical. However, the differences between gauge and global strings with masses suitable to explain galaxy formation are small, and the task of distinguishing them observationally appears difficult at best
Gravitational Casimir–Polder effect
Directory of Open Access Journals (Sweden)
Jiawei Hu
2017-04-01
Full Text Available The interaction due to quantum gravitational vacuum fluctuations between a gravitationally polarizable object modelled as a two-level system and a gravitational boundary is investigated. This quantum gravitational interaction is found to be position-dependent, which induces a force in close analogy to the Casimir–Polder force in the electromagnetic case. For a Dirichlet boundary, the quantum gravitational potential for the polarizable object in its ground-state is shown to behave like z−5 in the near zone, and z−6 in the far zone, where z is the distance to the boundary. For a concrete example, where a Bose–Einstein condensate is taken as a gravitationally polarizable object, the relative correction to the radius of the BEC caused by fluctuating quantum gravitational waves in vacuum is found to be of order 10−21. Although the correction is far too small to observe in comparison with its electromagnetic counterpart, it is nevertheless of the order of the gravitational strain caused by a recently detected black hole merger on the arms of the LIGO.
Critical Effects in Gravitational Collapse
International Nuclear Information System (INIS)
Chmaj, T.
2000-01-01
The models of gravitational collapse of a dynamical system are investigated by means of the Einstein equations. Different types conjunctions to gravitational field are analyzed and it is shown that in the case of week scalar field (low energy density) the system evaluated to flat space while in the case of strong field (high energy density) to black hole
Gravitational effects of global textures
International Nuclear Information System (INIS)
Noetzold, D.
1990-03-01
A solution for the dynamics of global textures is obtained. Their gravitational field during the collapse and the subsequent evolution is found to be given solely by a space-time dependent ''deficit solid angle.'' The frequency shift of photons traversing this gravitational field is calculated. The space-time dependent texture metric locally contracts the volume of three-space and thereby induces overdensities in homogeneous matter distributions. There are no gravitational forces unless matter has a nonzero angular momentum with respect to the texture origin which would be the case for moving textures
Effect of the Earth's gravitational field on the detection of gravitational waves
International Nuclear Information System (INIS)
Denisov, V.I.; Eliseev, V.A.
1988-01-01
We consider the laboratory detection of high-frequency gravitational waves in theories of gravitation based on a pseudo-Euclidean space-time. We analyze the effects due to the Earth's gravitational field on the propagation velocities of gravitational and electromagnetic waves in these theories. Experiments to test the predictions of this class of theories are discussed
The Gravitation of the Moon Plays Pivotal Roles in the Occurrence of the Acute Myocardial Infarction
Directory of Open Access Journals (Sweden)
Ryotaro Wake
2008-01-01
Full Text Available Acute myocardial infarction (AMI is a social burden. However, being able to predict AMI could lead to prevention. A previous study showed only the relation between the lunar phase and the occurrence of AMI, but the period it takes for the moon to orbit around the earth and the period of the lunar phase differ. This study investigated the effect of the gravitation of the moon on AMI. Data was comprised of 1369 consecutive patients with first AMI at 5 hospitals from October, 1984 to December, 1997. The universal gravitation of the moon was calculated and compared to the earth onset time of AMI. Universal gravitation of the moon was derived by G*m/d2 (G: universal gravitation constant, m: the mass of the moon, d: the distance between the center of the moon and the center of the earth. The relationship between m/d2 and the cases of AMI was determined. There was an increase in cases, when there is a distance of more than 399864 km from the center of the earth to the center of the moon. The gravitation of more than 399864 km was determined to be weaker gravitation. It is confirmed that the number of AMI patients significantly increases at weaker gravitation periods in this multicenter trial. In conclusion, these results suggest that the gravitation of the moon may have an influence on the occurrence of AMI.
Velocity Memory Effect for polarized gravitational waves
Zhang, P.-M.; Duval, C.; Gibbons, G. W.; Horvathy, P. A.
2018-05-01
Circularly polarized gravitational sandwich waves exhibit, as do their linearly polarized counterparts, the Velocity Memory Effect: freely falling test particles in the flat after-zone fly apart along straight lines with constant velocity. In the inside zone their trajectories combine oscillatory and rotational motions in a complicated way. For circularly polarized periodic gravitational waves some trajectories remain bounded, while others spiral outward. These waves admit an additional "screw" isometry beyond the usual five. The consequences of this extra symmetry are explored.
The gravitational-wave memory effect
International Nuclear Information System (INIS)
Favata, Marc
2010-01-01
The nonlinear memory effect is a slowly growing, non-oscillatory contribution to the gravitational-wave amplitude. It originates from gravitational waves that are sourced by the previously emitted waves. In an ideal gravitational-wave interferometer a gravitational wave with memory causes a permanent displacement of the test masses that persists after the wave has passed. Surprisingly, the nonlinear memory affects the signal amplitude starting at leading (Newtonian-quadrupole) order. Despite this fact, the nonlinear memory is not easily extracted from current numerical relativity simulations. After reviewing the linear and nonlinear memory I summarize some recent work, including (1) computations of the memory contribution to the inspiral waveform amplitude (thus completing the waveform to third post-Newtonian order); (2) the first calculations of the nonlinear memory that include all phases of binary black hole coalescence (inspiral, merger, ringdown); and (3) realistic estimates of the detectability of the memory with LISA.
Effect of Earth gravitational field on the detection of gravitational waves
International Nuclear Information System (INIS)
Denisov, V.I.; Eliseev, V.A.
1987-01-01
Results of laboratory detection of high-frequency gravitational waves from the view point of gravitation theories formulated on the basis of pseudoeuclidean space-time are calculated. Peculiarities due to different effects of the Earth gravitational field on the rates of gravitational and electromagnetic wave propagation in these theories are analysed. Experiments on check of predictions of the given class of theories are suggested
The memory effect for plane gravitational waves
Zhang, P.-M.; Duval, C.; Gibbons, G. W.; Horvathy, P. A.
2017-09-01
We give an account of the gravitational memory effect in the presence of the exact plane wave solution of Einstein's vacuum equations. This allows an elementary but exact description of the soft gravitons and how their presence may be detected by observing the motion of freely falling particles. The theorem of Bondi and Pirani on caustics (for which we present a new proof) implies that the asymptotic relative velocity is constant but not zero, in contradiction with the permanent displacement claimed by Zel'dovich and Polnarev. A non-vanishing asymptotic relative velocity might be used to detect gravitational waves through the "velocity memory effect", considered by Braginsky, Thorne, Grishchuk, and Polnarev.
The gravitational analogue of the Witten effect
International Nuclear Information System (INIS)
Foda, O.
1984-06-01
In the presence of massive fermions, and assuming a non-vanishing theta-parameter as the only source of CP-violation, the Witten effect [a shift in the electric charge of a magnetic monopole due to CP-non-conservation] is shown to follow from an anomalous chiral commutator. Next, given the gravitational contribution to the chiral anomaly, the corresponding anomalous commutator for Dirac fermion currents in a gravitational background is derived. From that, we infer the equivalence of a theta R-tilde R term in the Lagrangian to a shift in the mass parameter of the NUT metric, in proportion to theta. This is interpreted as the gravitational analogue of the Witten effect. Its relevance to certain Kaluza-Klein monopoles is briefly discussed. (author)
Gravitational analogue of the Witten effect
Energy Technology Data Exchange (ETDEWEB)
Foda, O. (International Centre for Theoretical Physics, Trieste (Italy))
1985-07-22
In the presence of massive fermions, and assuming a non-vanishing theta-parameter as the only source of CP violation, the Witten effect (a shift in the electric charge of a magnetic monopole due to CP non-conservation) is shown to follow from an anomalous chiral commutator. Next, given the gravitational contribution to the chiral anomaly, the corresponding anomalous commutator for Dirac fermion currents in a gravitational background is derived. From that, we infer the equivalence of a thetaR tildeR term in the lagrangian to a shift in the mass parameter of the NUT metric, in proportion to theta. This is interpreted as the gravitational analogue of the Witten effect. Its relevance to certain Kaluza-Klein monopoles is briefly discussed.
The gravitational analogue of the Witten effect
International Nuclear Information System (INIS)
Foda, O.
1985-01-01
In the presence of massive fermions, and assuming a non-vanishing theta-parameter as the only source of CP violation, the Witten effect (a shift in the electric charge of a magnetic monopole due to CP non-conservation) is shown to follow from an anomalous chiral commutator. Next, given the gravitational contribution to the chiral anomaly, the corresponding anomalous commutator for Dirac fermion currents in a gravitational background is derived. From that, we infer the equivalence of a thetaR tildeR term in the lagrangian to a shift in the mass parameter of the NUT metric, in proportion to theta. This is interpreted as the gravitational analogue of the Witten effect. Its relevance to certain Kaluza-Klein monopoles is briefly discussed. (orig.)
Environmental Effects for Gravitational-wave Astrophysics
International Nuclear Information System (INIS)
Barausse, Enrico; Cardoso, Vitor; Pani, Paolo
2015-01-01
The upcoming detection of gravitational waves by terrestrial interferometers will usher in the era of gravitational-wave astronomy. This will be particularly true when space-based detectors will come of age and measure the mass and spin of massive black holes with exquisite precision and up to very high redshifts, thus allowing for better understanding of the symbiotic evolution of black holes with galaxies, and for high-precision tests of General Relativity in strong-field, highly dynamical regimes. Such ambitious goals require that astrophysical environmental pollution of gravitational-wave signals be constrained to negligible levels, so that neither detection nor estimation of the source parameters are significantly affected. Here, we consider the main sources for space-based detectors - the inspiral, merger and ringdown of massive black-hole binaries and extreme mass-ratio inspirals - and account for various effects on their gravitational waveforms, including electromagnetic fields, cosmological evolution, accretion disks, dark matter, “firewalls” and possible deviations from General Relativity. We discover that the black-hole quasinormal modes are sharply different in the presence of matter, but the ringdown signal observed by interferometers is typically unaffected. The effect of accretion disks and dark matter depends critically on their geometry and density profile, but is negligible for most sources, except for few special extreme mass-ratio inspirals. Electromagnetic fields and cosmological effects are always negligible. We finally explore the implications of our findings for proposed tests of General Relativity with gravitational waves, and conclude that environmental effects will not prevent the development of precision gravitational-wave astronomy. (paper)
Measuring gravitational effects on antimatter in space
Directory of Open Access Journals (Sweden)
Piacentino Giovanni Maria
2017-01-01
Full Text Available A direct measurement of the gravitational acceleration of antimatter has never been performed to date. Recently, such an experiment has been proposed, using antihydrogen with an atom interferometer and an antihydrogen confinament has been realized at CERN. In alternative we propose an experimental test of the gravitational interaction with antimatter by measuring the branching fraction of the CP violating decay of KL in space. In fact, even if the theoretical Standard Model explains the CPV with the presence of pure phase in the KMC Kobaiashi-Maskava-Cabibbo matrix, ample room is left for contributions by other interactions and forces to generate CPV in the mixing of the neutral K and B mesons. Gravitation is a good candidate and we show that at the altitude of the International Space Station, gravitational effects may change the level of CP violation such that a 5 sigma discrimination may be obtained by collecting the KL produced by the cosmic proton flux within a few years.
Quantum Gravitational Effects on the Boundary
James, F.; Park, I. Y.
2018-04-01
Quantum gravitational effects might hold the key to some of the outstanding problems in theoretical physics. We analyze the perturbative quantum effects on the boundary of a gravitational system and the Dirichlet boundary condition imposed at the classical level. Our analysis reveals that for a black hole solution, there is a contradiction between the quantum effects and the Dirichlet boundary condition: the black hole solution of the one-particle-irreducible action no longer satisfies the Dirichlet boundary condition as would be expected without going into details. The analysis also suggests that the tension between the Dirichlet boundary condition and loop effects is connected with a certain mechanism of information storage on the boundary.
Misner, Charles W; Wheeler, John Archibald
2017-01-01
First published in 1973, Gravitation is a landmark graduate-level textbook that presents Einstein’s general theory of relativity and offers a rigorous, full-year course on the physics of gravitation. Upon publication, Science called it “a pedagogic masterpiece,” and it has since become a classic, considered essential reading for every serious student and researcher in the field of relativity. This authoritative text has shaped the research of generations of physicists and astronomers, and the book continues to influence the way experts think about the subject. With an emphasis on geometric interpretation, this masterful and comprehensive book introduces the theory of relativity; describes physical applications, from stars to black holes and gravitational waves; and portrays the field’s frontiers. The book also offers a unique, alternating, two-track pathway through the subject. Material focusing on basic physical ideas is designated as Track 1 and formulates an appropriate one-semester graduate-level...
Gravitational Effects on Brain and Behavior
Young, Laurence R.
1991-01-01
Visual, vestibular, tactile, proprioceptive, and perhaps auditory clues are combined with knowledge of commanded voluntary movement to produce a single, usually consistent, perception of spatial orientation. The recent Spacelab flights have provided especially valuable observations on the effects of weightlessness and space flight. The response of the otolith organs to weightlessness and readapting to Earth's gravitation is described. Reference frames for orientation are briefly discussed.
International Nuclear Information System (INIS)
Fennelly, A.J.
1978-01-01
Investigations of several problems of gravitation are discussed. The question of the existence of black holes is considered. While black holes like those in Einstein's theory may not exist in other gravity theories, trapped surfaces implying such black holes certainly do. The theories include those of Brans-Dicke, Lightman-Lee, Rosen, and Yang. A similar two-tensor theory of Yilmaz is investigated and found inconsistent and nonviable. The Newman-Penrose formalism for Riemannian geometries is adapted to general gravity theories and used to implement a search for twisting solutions of the gravity theories for empty and nonempty spaces. The method can be used to find the gravitational fields for all viable gravity theories. The rotating solutions are of particular importance for strong field interpretation of the Stanford/Marshall gyroscope experiment. Inhomogeneous cosmologies are examined in Einstein's theory as generalizations of homogeneous ones by raising the dimension of the invariance groups by one more parameter. The nine Bianchi classifications are extended to Rosen's theory of gravity for homogeneous cosmological models
Effective gravitational coupling in modified teleparallel theories
Abedi, Habib; Capozziello, Salvatore; D'Agostino, Rocco; Luongo, Orlando
2018-04-01
In the present study, we consider an extended form of teleparallel Lagrangian f (T ,ϕ ,X ) , as function of a scalar field ϕ , its kinetic term X and the torsion scalar T . We use linear perturbations to obtain the equation of matter density perturbations on sub-Hubble scales. The gravitational coupling is modified in scalar modes with respect to the one of general relativity, albeit vector modes decay and do not show any significant effects. We thus extend these results by involving multiple scalar field models. Further, we study conformal transformations in teleparallel gravity and we obtain the coupling as the scalar field is nonminimally coupled to both torsion and boundary terms. Finally, we propose the specific model f (T ,ϕ ,X )=T +∂μϕ ∂μϕ +ξ T ϕ2 . To check its goodness, we employ the observational Hubble data, constraining the coupling constant, ξ , through a Monte Carlo technique based on the Metropolis-Hastings algorithm. Hence, fixing ξ to its best-fit value got from our numerical analysis, we calculate the growth rate of matter perturbations and we compare our outcomes with the latest measurements and the predictions of the Λ CDM model.
The sky pattern of the linearized gravitational memory effect
International Nuclear Information System (INIS)
Mädler, Thomas; Winicour, Jeffrey
2016-01-01
The gravitational memory effect leads to a net displacement in the relative positions of test particles. This memory is related to the change in the strain of the gravitational radiation field between infinite past and infinite future retarded times. There are three known sources of the memory effect: (i) the loss of energy to future null infinity by massless fields or particles, (ii) the ejection of massive particles to infinity from a bound system and (iii) homogeneous, source-free gravitational waves. In the context of linearized theory, we show that asymptotic conditions controlling these known sources of the gravitational memory effect rule out any other possible sources with physically reasonable stress–energy tensors. Except for the source-free gravitational waves, the two other known sources produce gravitational memory with E -mode radiation strain, characterized by a certain curl-free sky pattern of their polarization. Thus our results show that the only known source of B -mode gravitational memory is of primordial origin, corresponding in the linearized theory to a homogeneous wave entering from past null infinity. (paper)
Sources and astrophysical effects of gravitational waves
International Nuclear Information System (INIS)
Rees, M.J.
1974-01-01
The probable sources of short intense gravitational wave emissions are discussed and it is concluded, on the basis of current astrophysical ideas, that the number of events detected by an apparatus such as Weber's would not be more than one pulse par century. Some proposed explanations of a higher event rate are examined briefly but it is suggested that the sensitivity would probably have to be improved by a factor 10 8 if a few events per year due to extragalactic supernovae are to be detectable. The article concludes by mentioning several other kinds of gravitational waves of potential interest in astrophysics
The gravitational lens effect and its optical equivalents
International Nuclear Information System (INIS)
Freitas, L.R. de.
1987-01-01
This work presents the evolution of the use of the so called gravitational lens effect from a simple observational teste of the General Relativity theory to an instrument to measure cosmological parameters. A detailed analysis of how a gravitational ''lens'' deflects light without forming images is shown for the case of the deflector with spherical symmetry. In addition, the exact optical equivalent of a cylindrical gravitational lens, which forms true images, is proposed. Finally the problem of the formation of multiple images and the related astronomical observations is discussed. (author) [pt
Effect of extra dimensions on gravitational waves from cosmic strings.
O'Callaghan, Eimear; Chadburn, Sarah; Geshnizjani, Ghazal; Gregory, Ruth; Zavala, Ivonne
2010-08-20
We show how the motion of cosmic superstrings in extra dimensions can modify the gravitational wave signal from cusps. Additional dimensions both round off cusps, as well as reducing the probability of their formation, and thus give a significant dimension dependent damping of the gravitational waves. We look at the implication of this effect for LIGO and LISA, as well as commenting on more general frequency bands.
Soft Gravitons & the Memory Effect for Plane Gravitational Waves
Zhang, P. -M.; Duval, C.; Gibbons, G. W.; Horvathy, P. A.
2017-01-01
The "gravitational memory effect" due to an exact plane wave provides us with an elementary description of the diffeomorphisms associated with soft gravitons. It is explained how the presence of the latter may be detected by observing the motion of freely falling particles or other forms of gravitational wave detection. Numerical calculations confirm the relevance of the first, second and third time integrals of the Riemann tensor pointed out earlier. Solutions for various profiles are constr...
Gravitational lens effect and pregalactic halo objects
International Nuclear Information System (INIS)
Bontz, R.J.
1979-01-01
The changes in flux, position, and size of a distant extended (galaxy, etc.) source that result from the gravitational lens action of a massive opaque object are discussed. The flux increase is described by a single function of two parameters. One of these parameters characterizes the strength of the gravitational lens, the other describes the alignment of source and lens object. This function also describes the relative intensity of the images formed by lens. ( A similar formalism is discussed by Bourassa et al. for a point source). The formalism is applied to the problem of the galactic halo. It appears that a massive (10 1 2 M/sub sun/) spherical halo surrounding the visible part of the galaxy is consistent with the observable properties of extragalactic sources
Effect of Excess Gravitational Force on Cultured Myotubes in Vitro
Directory of Open Access Journals (Sweden)
Shigehiro Hashimoto
2013-06-01
Full Text Available An effect of an excess gravitational force on cultured myoblasts has been studied in an experimental system with centrifugal force in vitro. Mouse myoblasts (C2C12 were seeded on a culture dish of 35 mm diameter, and cultured in the Dulbecco's Modified Eagle's Medium until the sub-confluent condition. To apply the excess gravitational force on the cultured cells, the dish was set in a conventional centrifugal machine. Constant gravitational force was applied to the cultured cells for three hours. Variations were made on the gravitational force (6 G, 10 G, 100 G, 500 G, and 800 G with control of the rotational speed of the rotator in the centrifugal machine. Morphology of the cells was observed with a phasecontrast microscope for eight days. The experimental results show that the myotube thickens day by day after the exposure to the excess gravitational force field. The results also show that the higher excess gravitational force thickens myotubes. The microscopic study shows that myotubes thicken with fusion each other.
Thermal effects in gravitational Hartree systems
Energy Technology Data Exchange (ETDEWEB)
Aki, Gonca L. [Weierstrass-Institut fuer Angewandte Analysis und Stochastik (WIAS) im Forschungsverbund Berlin e.V. (Germany); Dolbeault, Jean [Paris-Dauphine Univ. (FR). Ceremade (UMR CNRS 7534); Sparber, Christof [Illinois Univ., Chicago, IL (United States). Dept. of Mathematics, Statistics, and Computer Science
2010-07-01
We consider the non-relativistic Hartree model in the gravitational case, i.e. with attractive Coulomb-Newton interaction. For a given mass M>0, we construct stationary states with non-zero temperature T by minimizing the corresponding free energy functional. It is proved that minimizers exist if and only if the temperature of the system is below a certain threshold T*>0 (possibly infinite), which itself depends on the specific choice of the entropy functional. We also investigate whether the corresponding minimizers are mixed or pure quantum states and characterize a critical temperature T{sub c} element of (0,T*) above which mixed states appear. (orig.)
Thermal Effects in Gravitational Hartree Systems
Aki, Gonca L.
2011-04-06
We consider the non-relativistic Hartree model in the gravitational case, i. e. with attractive Coulomb-Newton interaction. For a given mass M > 0, we construct stationary states with non-zero temperature T by minimizing the corresponding free energy functional. It is proved that minimizers exist if and only if the temperature of the system is below a certain threshold T* > 0 (possibly infinite), which itself depends on the specific choice of the entropy functional. We also investigate whether the corresponding minimizers are mixed or pure quantum states and characterize a critical temperature Tc ∈ (0,T*) above which mixed states appear. © 2011 Springer Basel AG.
Thermal Effects in Gravitational Hartree Systems
Aki, Gonca L.; Dolbeault, Jean; Sparber, Christof
2011-01-01
We consider the non-relativistic Hartree model in the gravitational case, i. e. with attractive Coulomb-Newton interaction. For a given mass M > 0, we construct stationary states with non-zero temperature T by minimizing the corresponding free energy functional. It is proved that minimizers exist if and only if the temperature of the system is below a certain threshold T* > 0 (possibly infinite), which itself depends on the specific choice of the entropy functional. We also investigate whether the corresponding minimizers are mixed or pure quantum states and characterize a critical temperature Tc ∈ (0,T*) above which mixed states appear. © 2011 Springer Basel AG.
Experimental tests for some quantum effects in gravitation
International Nuclear Information System (INIS)
Hari Dass, N.D.
1976-01-01
The existing impressive tests for general relativity are shown not to yield very useful information on the possible quantum gravitational interactions. The possibility is raised here that intrinsic spins may behave differently from orbital angular momenta in external gravitational fields. The dominant spin interactions are most generally characterised by three parameters α 1 , α 2 , α 3 . All the metric theories of gravitation predict α 1 = α 2 = 0. Indirect limits posed on these parameters by existing data are not very meaningful (αsub(i) 10 ). Feasible experiments based on the neutron electric dipole moment measurement techniques are discussed and shown to offer the possibility of measuring αsub(i) approximately 1. Other possible experimental set ups are also briefly reviewed. The existence of these effects is shown to imply the breakdown of the equivalence principle. In particular αsub(i)not equal 0 α 2 not equal 0 also implies the breakdown of discrete symmetries in gravitation (C.P.T.). Theoretical frameworks that accomodate such effects are analysed. A reinterpretation of Einstein's generalised gravitational theory as well as a recent theoretical proposal of Hayashi are shown to be sufficiently general for this purpose. Other important implications of these quantum effects are discussed in detail. (Auth.)
Cosmological perturbation effects on gravitational-wave luminosity distance estimates
Bertacca, Daniele; Raccanelli, Alvise; Bartolo, Nicola; Matarrese, Sabino
2018-06-01
Waveforms of gravitational waves provide information about a variety of parameters for the binary system merging. However, standard calculations have been performed assuming a FLRW universe with no perturbations. In reality this assumption should be dropped: we show that the inclusion of cosmological perturbations translates into corrections to the estimate of astrophysical parameters derived for the merging binary systems. We compute corrections to the estimate of the luminosity distance due to velocity, volume, lensing and gravitational potential effects. Our results show that the amplitude of the corrections will be negligible for current instruments, mildly important for experiments like the planned DECIGO, and very important for future ones such as the Big Bang Observer.
International Nuclear Information System (INIS)
Tao Fuzhen; He Zhiqiang
1983-01-01
If the effect of gravitational wave on electromagnetic fields is used, and the gravitational wave is detected through the changes in electromagnetic fields, one can expect that the difficulty about the weakness of the signal of mechanical receiver can be avoided. Because of the effect of gravitational wave, the electromagnetic field emits energy, therefore, the energy which is detected will be higher than that by the mechanical receiver. The authors consider the Maxwell equations on the curved spacetime. They give solutions when the detecting fields are a free electromagnetic wave, standing wave and a constant field. (Auth.)
Gravitational effective action at second order in curvature and gravitational waves
Calmet, Xavier; Capozziello, Salvatore; Pryer, Daniel
2017-09-01
We consider the full effective theory for quantum gravity at second order in curvature including non-local terms. We show that the theory contains two new degrees of freedom beyond the massless graviton: namely a massive spin-2 ghost and a massive scalar field. Furthermore, we show that it is impossible to fine-tune the parameters of the effective action to eliminate completely the classical spin-2 ghost because of the non-local terms in the effective action. Being a classical field, it is not clear anyway that this ghost is problematic. It simply implies a repulsive contribution to Newton's potential. We then consider how to extract the parameters of the effective action and show that it is possible to measure, at least in principle, the parameters of the local terms independently of each other using a combination of observations of gravitational waves and measurements performed by pendulum type experiments searching for deviations of Newton's potential.
Gravitational effective action at second order in curvature and gravitational waves
International Nuclear Information System (INIS)
Calmet, Xavier; Pryer, Daniel; Capozziello, Salvatore
2017-01-01
We consider the full effective theory for quantum gravity at second order in curvature including non-local terms. We show that the theory contains two new degrees of freedom beyond the massless graviton: namely a massive spin-2 ghost and a massive scalar field. Furthermore, we show that it is impossible to fine-tune the parameters of the effective action to eliminate completely the classical spin-2 ghost because of the non-local terms in the effective action. Being a classical field, it is not clear anyway that this ghost is problematic. It simply implies a repulsive contribution to Newton's potential. We then consider how to extract the parameters of the effective action and show that it is possible to measure, at least in principle, the parameters of the local terms independently of each other using a combination of observations of gravitational waves and measurements performed by pendulum type experiments searching for deviations of Newton's potential. (orig.)
Gravitational effective action at second order in curvature and gravitational waves.
Calmet, Xavier; Capozziello, Salvatore; Pryer, Daniel
2017-01-01
We consider the full effective theory for quantum gravity at second order in curvature including non-local terms. We show that the theory contains two new degrees of freedom beyond the massless graviton: namely a massive spin-2 ghost and a massive scalar field. Furthermore, we show that it is impossible to fine-tune the parameters of the effective action to eliminate completely the classical spin-2 ghost because of the non-local terms in the effective action. Being a classical field, it is not clear anyway that this ghost is problematic. It simply implies a repulsive contribution to Newton's potential. We then consider how to extract the parameters of the effective action and show that it is possible to measure, at least in principle, the parameters of the local terms independently of each other using a combination of observations of gravitational waves and measurements performed by pendulum type experiments searching for deviations of Newton's potential.
Dark matter as a non-linear effect of gravitation
International Nuclear Information System (INIS)
Maia, M.D.; Capistrano, A.J.S.
2006-01-01
The rotation curves of stars in disk galaxies are calculated with the Newtonian law of motion applied to a scalar potential derived from the geodesic equation, only, under the slow motion condition, the so-called Nearly Newtonian Gravity (NNG). A nearly Newtonian gravitational potential, Φ NN = -1/2 c 2 (1+g 44 ), is obtained, characterized by an exact solution of Einsteins equations, with the non-linear effects present in the component g 44 . This gravitational field lies somewhere between General Relativity and Newtonian Gravity. Therefore, Einsteins equations and the equivalence principle are preserved, but the general covariance is broken. The resulting curves are remarkably close to the observed rotation curves in spiral galaxies, suggesting that a substantial component of dark matter may be explained by the non-linearity of Einsteins equations. (author)
Gravitational Effects on Cellular Flame Structure
Dunsky, C. M.; Fernandez-Pello, A. C.
1991-01-01
An experimental investigation has been conducted of the effect of gravity on the structure of downwardly propagating, cellular premixed propane-oxygen-nitrogen flames anchored on a water-cooled porous-plug burner. The flame is subjected to microgravity conditions in the NASA Lewis 2.2-second drop tower, and flame characteristics are recorded on high-speed film. These are compared to flames at normal gravity conditions with the same equivalence ratio, dilution index, mixture flow rate, and ambient pressure. The results show that the cellular instability band, which is located in the rich mixture region, changes little under the absence of gravity. Lifted normal-gravity flames near the cellular/lifted limits, however, are observed to become cellular when gravity is reduced. Observations of a transient cell growth period following ignition point to heat loss as being an important mechanism in the overall flame stability, dominating the stabilizing effect of buoyancy for these downwardly-propagating burner-anchored flames. The pulsations that are observed in the plume and diffusion flame generated downstream of the premixed flame in the fuel rich cases disappear in microgravity, verifying that these fluctuations are gravity related.
Gravitational effective action at second order in curvature and gravitational waves
Energy Technology Data Exchange (ETDEWEB)
Calmet, Xavier; Pryer, Daniel [University of Sussex, Department of Physics and Astronomy, Brighton (United Kingdom); Capozziello, Salvatore [Universita di Napoli ' ' Federico II' ' , Dipartimento di Fisica ' ' E. Pancini' ' , Naples (Italy); Istituto Nazionale di Fisica Nucleare (INFN), Naples (Italy); Gran Sasso Science Institute, L' Aquila (Italy)
2017-09-15
We consider the full effective theory for quantum gravity at second order in curvature including non-local terms. We show that the theory contains two new degrees of freedom beyond the massless graviton: namely a massive spin-2 ghost and a massive scalar field. Furthermore, we show that it is impossible to fine-tune the parameters of the effective action to eliminate completely the classical spin-2 ghost because of the non-local terms in the effective action. Being a classical field, it is not clear anyway that this ghost is problematic. It simply implies a repulsive contribution to Newton's potential. We then consider how to extract the parameters of the effective action and show that it is possible to measure, at least in principle, the parameters of the local terms independently of each other using a combination of observations of gravitational waves and measurements performed by pendulum type experiments searching for deviations of Newton's potential. (orig.)
Direct probe of dark energy through gravitational lensing effect
Energy Technology Data Exchange (ETDEWEB)
He, Hong-Jian [T. D. Lee Institute, and School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Zhang, Zhen, E-mail: hjhe@tsinghua.edu.cn, E-mail: zh.zhang@pku.edu.cn [Center for High Energy Physics, Peking University, Beijing 100871 (China)
2017-08-01
We show that gravitational lensing can provide a direct method to probe the nature of dark energy at astrophysical scales. For lensing system as an isolated astrophysical object, we derive the dark energy contribution to gravitational potential as a repulsive power-law term, containing a generic equation of state parameter w . We find that it generates w -dependent and position-dependent modification to the conventional light orbital equation of w =−1. With post-Newtonian approximation, we compute its direct effect for an isolated lensing system at astrophysical scales and find that the dark energy force can deflect the path of incident light rays. We demonstrate that the dark-energy-induced deflection angle Δα{sub DE}∝ M {sup (1+1/3} {sup w} {sup )} (with 1+1/3 w > 0), which increases with the lensing mass M and consistently approaches zero in the limit M → 0. This effect is distinctive because dark energy tends to diffuse the rays and generates concave lensing effect . This is in contrast to the conventional convex lensing effect caused by both visible and dark matter. Measuring such concave lensing effect can directly probe the existence and nature of dark energy. We estimate this effect and show that the current gravitational lensing experiments are sensitive to the direct probe of dark energy at astrophysical scales. For the special case w =−1, our independent study favors the previous works that the cosmological constant can affect light bending, but our prediction qualitatively and quantitatively differ from the literature, including our consistent realization of Δα{sub DE} → 0 (under 0 M → ) at the leading order.
Physical effects in gravitational field of black holes
International Nuclear Information System (INIS)
Frolov, V.P.
1986-01-01
A large number of problems related to peculiarities of physical processes in a strong gravitational field of black holes has been considered. Energy shift and the complete structure of physical fields for charged sources near a black hole have been investigated. Density matrix and generating functional for quantum effects in stationary black holes have been calculated. Contributions of massless and massive fields to vacuum polarization in black holes have been investigated and influence of quantum effects on the global structure of a black hole has been discussed
Flow within an evaporating glycerol-water binary droplet: Segregation by gravitational effects
Li, Yaxing; Lv, Pengyu; Diddens, Christian; Wijshoff, Herman; Versluis, Michel; Lohse, Detlef
2017-11-01
The flow within an evaporating glycerol-water binary droplet with Bond number Bo PIV for both sessile and pendant droplets during evaporation process, which surprisingly show opposite radial flow directions - inward and outward, respectively. This observation clearly reveals that gravitational effects play a crucial role in controlling flow fields within the evaporating droplets. We theoretically analyse that this gravity-driven effect is caused by density gradients due to the local concentration difference of glycerol within the droplet triggered by different volatilities of the two components during evaporation. Finally, for confirmation, we numerically simulate the process, revealing a good agreement with experimental results.
Astrometric and Timing Effects of Gravitational Waves from Localized Sources
Kopeikin, Sergei M.; Schafer, Gerhard; Gwinn, Carl R.; Eubanks, T. Marshall
1998-01-01
A consistent approach for an exhaustive solution of the problem of propagation of light rays in the field of gravitational waves emitted by a localized source of gravitational radiation is developed in the first post-Minkowskian and quadrupole approximation of General Relativity. We demonstrate that the equations of light propagation in the retarded gravitational field of an arbitrary localized source emitting quadrupolar gravitational waves can be integrated exactly. The influence of the gra...
Gravitational lensing as a mechanism for effective cloaking
International Nuclear Information System (INIS)
Tippett, Benjamin K.
2011-01-01
In light of the surge in popularity of electromagnetic cloaking devices, we consider whether it is possible to use general relativity to cloak a volume of spacetime through gravitational lensing. We explore the cloaking properties of a spacetime through a ray-tracing procedure, wherein we plot the spatial trajectories of a congruence of initially parallel null geodesics as they cross the geometry. In this context, a cloaking device would cause all of the null geodesics in an initially parallel congruence incident upon the cloaking geometry to circumnavigate an internal region, and as the geodesics emerge from the geometry, they regain their original configuration. Thus, if gravitational lensing were used as a mechanism for cloaking, the internal region would be causally isolated from the external spacetime. For this reason, we propose an effective cloaking geometry wherein (only) most of ingoing null geodesics will splay away from a central region, and then regain their initial configuration as they exit the geometry. Thus, a compact object sitting within the effective cloaking geometry will impede a smaller cross section of the null congruence, and therefore appear optically smaller from all sides. We build our effective cloaking geometry by connecting a Minkowski spacetime exterior to a spherically symmetric, curved spacetime along a timelike hypersurface of constant radius using the Israel junction conditions. The junction conditions require a shell of matter of infinitesimal width confined to the junction surface. The matter required to build such a spacetime must violate the null energy condition.
Gravitational wave echoes from macroscopic quantum gravity effects
Energy Technology Data Exchange (ETDEWEB)
Barceló, Carlos [Instituto de Astrofísica de Andalucía (IAA-CSIC),Glorieta de la Astronomía, 18008 Granada (Spain); Carballo-Rubio, Raúl [The Cosmology & Gravity Group and the Laboratory for Quantum Gravity & Strings,Department of Mathematics & Applied Mathematics, University of Cape Town,Private Bag, Rondebosch 7701 (South Africa); Garay, Luis J. [Departamento de Física Teórica II,Universidad Complutense de Madrid, 28040 Madrid (Spain); Instituto de Estructura de la Materia (IEM-CSIC),Serrano 121, 28006 Madrid (Spain)
2017-05-10
New theoretical approaches developed in the last years predict that macroscopic quantum gravity effects in black holes should lead to modifications of the gravitational wave signals expected in the framework of classical general relativity, with these modifications being characterized in certain scenarios by the existence of dampened repetitions of the primary signal. Here we use the fact that non-perturbative corrections to the near-horizon external geometry of black holes are necessary for these modifications to exist, in order to classify different proposals and paradigms with respect to this criterion and study in a neat and systematic way their phenomenology. Proposals that lead naturally to the existence of echoes in the late-time ringdown of gravitational wave signals from black hole mergers must share the replacement of black holes by horizonless configurations with a physical surface showing reflective properties in the relevant range of frequencies. On the other hand, proposals or paradigms that restrict quantum gravity effects on the external geometry to be perturbative, such as black hole complementarity or the closely related firewall proposal, do not display echoes. For the sake of completeness we exploit the interplay between the timescales associated with the formation of firewalls and the mechanism behind the existence of echoes in order to conclude that even unconventional distortions of the firewall concept (such as naked firewalls) do not lead to this phenomenon.
Gravitational effects on measurements of the muon dipole moments
Directory of Open Access Journals (Sweden)
Andrew Kobach
2016-10-01
Full Text Available If the technology for muon storage rings one day permits sensitivity to precession at the order of 10−8 Hz, the local gravitational field of Earth can be a dominant contribution to the precession of the muon, which, if ignored, can fake the signal for a nonzero muon electric dipole moment (EDM. Specifically, the effects of Earth's gravity on the motion of a muon's spin is indistinguishable from it having a nonzero EDM of magnitude dμ∼10−29 ecm in a storage ring with vertical magnetic field of ∼1 T, which is significantly larger than the expected upper limit in the Standard Model, dμ≲10−36 ecm. As a corollary, measurements of Earth's local gravitational field using stored muons would be a unique test to distinguish classical gravity from general relativity with a bonafide quantum mechanical entity, i.e., an elementary particle's spin.
Nonlinear effects in Pulsations of Compact Stars and Gravitational Waves
International Nuclear Information System (INIS)
Passamonti, A
2007-01-01
Nonlinear stellar oscillations can be studied by using a multiparameter perturbative approach, which is appropriate for investigating the low and mild nonlinear dynamical regimes. We present the main properties of our perturbative framework for describing, in the time domain, the nonlinear coupling between the radial and nonradial perturbations of spherically symmetric and perfect fluid compact stars. This particular coupling can be described by gauge invariant quantities that obeys a system of partial differential equations with source terms, which are made up of product of first order radial and nonradial perturbations. We report the results of numerical simulations for both the axial and polar coupling perturbations, that exhibit in the stellar dynamics and in the associated gravitational wave signal some interesting nonlinear effects, such as combination harmonics and resonances. In particular, we concentrate on the axial case, where the linear axial perturbations describe a harmonic component of a differentially rotating neutron star. The gravitational wave signal of this stellar configuration mirrors at second perturbative order the spectral features of the linear radial normal modes. In addition, a signal amplification appears when one of the radial frequencies is close to the axial w-mode frequencies of the star
Gravitational effects of condensate dark matter on compact stellar objects
International Nuclear Information System (INIS)
Li, X.Y.; Wang, F.Y.; Cheng, K.S.
2012-01-01
We study the gravitational effect of non-self-annihilating dark matter on compact stellar objects. The self-interaction of condensate dark matter can give high accretion rate of dark matter onto stars. Phase transition to condensation state takes place when the dark matter density exceeds the critical value. A compact degenerate dark matter core is developed and alter the structure and stability of the stellar objects. Condensate dark matter admixed neutron stars is studied through the two-fluid TOV equation. The existence of condensate dark matter deforms the mass-radius relation of neutron stars and lower their maximum baryonic masses and radii. The possible effects on the Gamma-ray Burst rate in high redshift are discussed
The effective gravitational decoupling between dark matter and the CMB
Voruz, Luc; Tram, Thomas
2014-01-01
We present a detailed and self-contained analytical derivation of the evolution of sub-horizon cosmological perturbations before decoupling, based on previous work by S. Weinberg. These solutions are valid in the minimal LCDM scenario, to first order in perturbation theory, in the tight-coupling limit and neglecting neutrino shear stress. We compare them to exact numerical solutions computed by a Boltzmann code, and we find the two to be in very good agreement. The analytic solutions show explicitly that CDM and the baryon-photon fluid effectively behave as separate self-gravitating fluids until the epoch of baryon drag. This in turn leads to the surprising conclusion that the CMB is much less sensitive to the clustering properties of minimally coupled Dark Matter models than what would be naively expected.
Gravitational lens effect of wall-like objects and its cosmological implications
International Nuclear Information System (INIS)
Tomita, Kenji.
1990-08-01
First we derive the gravitational deflection angle of light rays passing through a disk consisting of pressureless matter, and show that it behaves like a convex lens. Next we derive the two-ray difference of deflection angles by help of the Raychaudhuri equation, in the cases when the wall-like objects are dust walls and domain-walls. Moreover we derive the two-ray difference of deflection angles in a low mass-density regions lying between wall-like objects. This region plays a role of a concave lens, but it is shown that its effect is minor, compared with the effect of wall-like objects. On the basis of these deflection angle differences, we consider the gravitational lens effect of uniform wall-like objects which may exist homogeneously on the cosmological scale, and show that, in the case when the wall-like objects appear at the epoch of z = 5, the measured angles of the cosmic background radiation may be increased about 3-2 times owing to the integrated convex lens effect and so its measured anisotropy may be smaller by a factor of about 10-6 than the intrinsic one. (author)
Axial gravitational waves in FLRW cosmology and memory effects
Kulczycki, Wojciech; Malec, Edward
2017-09-01
We show initial data for gravitational axial waves that are twice differentiable but that are not C2. They generate wave pulses that interact with matter in the radiation cosmological era. This forces the radiation matter to rotate. This rotation is permanent—it persists after the passage of the gravitational pulse. The observed inhomogeneities of the cosmic microwave background radiation put a bound onto discontinuities of superhorizon metric perturbations. We explicitly show that a class of smooth initial metrics that are at least C2 gives rise to gravitational wave pulses that do not interact with the background during the radiation epoch.
Evidence of Non-local Chemical, Thermal and Gravitational Effects
Directory of Open Access Journals (Sweden)
Hu H.
2007-04-01
Full Text Available Quantum entanglement is ubiquitous in the microscopic world and manifests itself macroscopically under some circumstances. But common belief is that it alone cannot be used to transmit information nor could it be used to produce macroscopic non- local effects. Yet we have recently found evidence of non-local effects of chemical substances on the brain produced through it. While our reported results are under independent verifications by other groups, we report here our experimental findings of non-local chemical, thermal and gravitational effects in simple physical systems such as reservoirs of water quantum-entangled with water being manipulated in a remote reservoir. With the aids of high-precision instruments, we have found that the pH value, temperature and gravity of water in the detecting reservoirs can be non-locally affected through manipulating water in the remote reservoir. In particular, the pH value changes in the same direction as that being manipulated; the temperature can change against that of local environment; and the gravity apparently can also change against local gravity. These non-local effects are all reproducible and can be used for non-local signalling and many other purposes. We suggest that they are mediated by quantum entanglement between nuclear and/or electron spins in treated water and discuss the implications of these results.
Finite mirror effects in advanced interferometric gravitational wave detectors
International Nuclear Information System (INIS)
Lundgren, Andrew P.; Bondarescu, Ruxandra; Tsang, David; Bondarescu, Mihai
2008-01-01
Thermal noise is expected to be the dominant source of noise in the most sensitive frequency band of second-generation, ground-based gravitational-wave detectors. Reshaping the beam to a flatter, wider profile which probes more of the mirror surface reduces this noise. The 'Mesa' beam shape has been proposed for this purpose and was subsequently generalized to a family of hyperboloidal beams with two parameters: twist angle α and beam width D. Varying α allows a continuous transition from the nearly flat (α=0) to the nearly concentric (α=π) Mesa beam configurations. We analytically prove that in the limit D→∞ hyperboloidal beams become Gaussians. The ideal beam choice for reducing thermal noise is the widest possible beam that satisfies the Advanced LIGO (Laser Interferometer Gravitational-wave Observatory) diffraction loss design constraint of 1 part per million (ppm) per bounce for a mirror radius of 17 cm. In the past the diffraction loss has often been calculated using the clipping approximation that, in general, underestimates the diffraction loss. We develop a code using pseudospectral methods to compute the diffraction loss directly from the propagator. We find that the diffraction loss is not a strictly monotonic function of beam width, but has local minima that occur due to finite mirror effects and leads to natural choices of D. For an α=π Mesa beam a local minimum occurs at D=10.67 cm and leads to a diffraction loss of 1.4 ppm. We then compute the thermal noise for the entire hyperboloidal family. We find that if one requires a diffraction loss of strictly 1 ppm, the α=0.91π hyperboloidal beam is optimal, leading to the coating thermal noise (the dominant source of noise for fused-silica mirrors) being lower by about 10% than for a Mesa beam while other types of thermal noise decrease as well. We then develop an iterative process that reconstructs the mirror to specifically account for finite mirror effects. This allows us to increase the D
Escaping the crunch: Gravitational effects in classical transitions
International Nuclear Information System (INIS)
Johnson, Matthew C.; Yang, I-Sheng
2010-01-01
During eternal inflation, a landscape of vacua can be populated by the nucleation of bubbles. These bubbles inevitably collide, and collisions sometimes displace the field into a new minimum in a process known as a classical transition. In this paper, we examine some new features of classical transitions that arise when gravitational effects are included. Using the junction condition formalism, we study the conditions for energy conservation in detail, and solve explicitly for the types of allowed classical transition geometries. We show that the repulsive nature of domain walls, and the de Sitter expansion associated with a positive energy minimum, can allow for classical transitions to vacua of higher energy than that of the colliding bubbles. Transitions can be made out of negative or zero energy (terminal) vacua to a de Sitter phase, restarting eternal inflation, and populating new vacua. However, the classical transition cannot produce vacua with energy higher than the original parent vacuum, which agrees with previous results on the construction of pockets of false vacuum. We briefly comment on the possible implications of these results for various measure proposals in eternal inflation.
OBSERVATIONAL SELECTION EFFECTS WITH GROUND-BASED GRAVITATIONAL WAVE DETECTORS
Energy Technology Data Exchange (ETDEWEB)
Chen, Hsin-Yu; Holz, Daniel E. [University of Chicago, Chicago, Illinois 60637 (United States); Essick, Reed; Vitale, Salvatore; Katsavounidis, Erik [LIGO, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)
2017-01-20
Ground-based interferometers are not perfect all-sky instruments, and it is important to account for their behavior when considering the distribution of detected events. In particular, the LIGO detectors are most sensitive to sources above North America and the Indian Ocean, and as the Earth rotates, the sensitive regions are swept across the sky. However, because the detectors do not acquire data uniformly over time, there is a net bias on detectable sources’ right ascensions. Both LIGO detectors preferentially collect data during their local night; it is more than twice as likely to be local midnight than noon when both detectors are operating. We discuss these selection effects and how they impact LIGO’s observations and electromagnetic (EM) follow-up. Beyond galactic foregrounds associated with seasonal variations, we find that equatorial observatories can access over 80% of the localization probability, while mid-latitudes will access closer to 70%. Facilities located near the two LIGO sites can observe sources closer to their zenith than their analogs in the south, but the average observation will still be no closer than 44° from zenith. We also find that observatories in Africa or the South Atlantic will wait systematically longer before they can begin observing compared to the rest of the world; though, there is a preference for longitudes near the LIGOs. These effects, along with knowledge of the LIGO antenna pattern, can inform EM follow-up activities and optimization, including the possibility of directing observations even before gravitational-wave events occur.
OBSERVATIONAL SELECTION EFFECTS WITH GROUND-BASED GRAVITATIONAL WAVE DETECTORS
International Nuclear Information System (INIS)
Chen, Hsin-Yu; Holz, Daniel E.; Essick, Reed; Vitale, Salvatore; Katsavounidis, Erik
2017-01-01
Ground-based interferometers are not perfect all-sky instruments, and it is important to account for their behavior when considering the distribution of detected events. In particular, the LIGO detectors are most sensitive to sources above North America and the Indian Ocean, and as the Earth rotates, the sensitive regions are swept across the sky. However, because the detectors do not acquire data uniformly over time, there is a net bias on detectable sources’ right ascensions. Both LIGO detectors preferentially collect data during their local night; it is more than twice as likely to be local midnight than noon when both detectors are operating. We discuss these selection effects and how they impact LIGO’s observations and electromagnetic (EM) follow-up. Beyond galactic foregrounds associated with seasonal variations, we find that equatorial observatories can access over 80% of the localization probability, while mid-latitudes will access closer to 70%. Facilities located near the two LIGO sites can observe sources closer to their zenith than their analogs in the south, but the average observation will still be no closer than 44° from zenith. We also find that observatories in Africa or the South Atlantic will wait systematically longer before they can begin observing compared to the rest of the world; though, there is a preference for longitudes near the LIGOs. These effects, along with knowledge of the LIGO antenna pattern, can inform EM follow-up activities and optimization, including the possibility of directing observations even before gravitational-wave events occur.
THE EFFECT OF ENVIRONMENT ON SHEAR IN STRONG GRAVITATIONAL LENSES
International Nuclear Information System (INIS)
Wong, Kenneth C.; Zabludoff, Ann I.; Keeton, Charles R.; Williams, Kurtis A.; Momcheva, Ivelina G.
2011-01-01
Using new photometric and spectroscopic data in the fields of nine strong gravitational lenses that lie in galaxy groups, we analyze the effects of both the local group environment and line-of-sight (LOS) galaxies on the lens potential. We use Monte Carlo simulations to derive the shear directly from measurements of the complex lens environment, providing the first detailed independent check of the shear obtained from lens modeling. We account for possible tidal stripping of the group galaxies by varying the fraction of total mass apportioned between the group dark matter halo and individual group galaxies. The environment produces an average shear of γ = 0.08 (ranging from 0.02 to 0.17), significant enough to affect quantities derived from lens observables. However, the direction and magnitude of the shears do not match those obtained from lens modeling in three of the six four-image systems in our sample (B1422, RXJ1131, and WFI2033). The source of this disagreement is not clear, implying that the assumptions inherent in both the environment and lens model approaches must be reconsidered. If only the local group environment of the lens is included, the average shear is γ = 0.05 (ranging from 0.01 to 0.14), indicating that LOS contributions to the lens potential are not negligible. We isolate the effects of various theoretical and observational uncertainties on our results. Of those uncertainties, the scatter in the Faber-Jackson relation and error in the group centroid position dominate. Future surveys of lens environments should prioritize spectroscopic sampling of both the local lens environment and objects along the LOS, particularly those bright (I< 21.5) galaxies projected within 5' of the lens.
Why are predictions of general relativity theory for gravitational effects non-unique?
International Nuclear Information System (INIS)
Loskutov, Yu.M.
1990-01-01
Reasons of non-uniqueness of predictions of the general relativity theory (GRT) for gravitational effects are analyzed in detail. To authors' opinion, the absence of comparison mechanism of curved and plane metrics is the reason of non-uniqueness
A critical period for gravitational effects on otolith formation
Wiederhold, M.; Harrison, J.
Gravity and linear acceleration are sensed in fish by the saccule, utricle (as in mammals) and lagena, each with a solid otolith. Previous experiments in which eggs or larvae of a marine mollusk ( plysia) or fish larvae were raised on aA centrifuge, demonstrated that the size of the otolith or statoconia (in Aplysia) were reduced, in a graded manner, as the gfield was increased, suggesting that some- control mechanism was acting to normalize the weight of the mass. Pre-mated adult female swordtail fish (Xiphophorus helleri) were flown in the CEBAS aquarium system on space shuttle missions STS 89 and STS-90 (Neurolab). Developing- larvae were removed from the adult ovaries after shuttle landing. Otolith sizes were compared between ground- and flight -reared larvae of similar sizes. For later-stage swordtail larvae, with spine lengths from 3 to 6 mm from STS-90 (16 days), the growth of the otolith with increasing spine length was significantly greater in the flight - reared fish for all three otoliths, from the saccule (saggita), utricle (lapillus) and lagena (astericus). However, juvenile fish, 1 cm long at launch, showed no significant difference in otolith size between flight - and ground-reared animals. In very early stage larvae from STS-89 (9 days), with spine length of 1.5 to 3.5 mm, the utricular and saccular otoliths were actually larger in the ground-reared larvae. Thus, it appears that late-stage fish embryos reared in space do produce larger-than - normal otoliths, apparently in an attempt to c mpensate for the reduced weight ofo the test mass in space. However, the results from very early-stage larvae and juvenile fish suggest that there is a fairly short critical period during which altered gravity can affect the size of the test mass. Recent studies on the development of the inner ear of the zebrafish (Danio raria) may explain the critical period for gravitational effects on otolith growth. By 16 hours after zebrafish fertilization (at 28.5 o
Effect of Inhomogeneity of the Universe on a Gravitationally Bound ...
Indian Academy of Sciences (India)
2012-04-16
Apr 16, 2012 ... on a gravitationally bound local system such as the solar system. We con- ... method to describe the large-scale inhomogeneity of the Universe. ..... is regular at the origin r = 0 where the central body is located, and that the test.
Gravitational waves from gravitational collapse
Energy Technology Data Exchange (ETDEWEB)
Fryer, Christopher L [Los Alamos National Laboratory; New, Kimberly C [Los Alamos National Laboratory
2008-01-01
Gravitational wave emission from stellar collapse has been studied for nearly four decades. Current state-of-the-art numerical investigations of collapse include those that use progenitors with more realistic angular momentum profiles, properly treat microphysics issues, account for general relativity, and examine non-axisymmetric effects in three dimensions. Such simulations predict that gravitational waves from various phenomena associated with gravitational collapse could be detectable with ground-based and space-based interferometric observatories. This review covers the entire range of stellar collapse sources of gravitational waves: from the accretion induced collapse of a white dwarf through the collapse down to neutron stars or black holes of massive stars to the collapse of supermassive stars.
Gravitational Waves from Gravitational Collapse
Directory of Open Access Journals (Sweden)
Chris L. Fryer
2011-01-01
Full Text Available Gravitational-wave emission from stellar collapse has been studied for nearly four decades. Current state-of-the-art numerical investigations of collapse include those that use progenitors with more realistic angular momentum profiles, properly treat microphysics issues, account for general relativity, and examine non-axisymmetric effects in three dimensions. Such simulations predict that gravitational waves from various phenomena associated with gravitational collapse could be detectable with ground-based and space-based interferometric observatories. This review covers the entire range of stellar collapse sources of gravitational waves: from the accretion-induced collapse of a white dwarf through the collapse down to neutron stars or black holes of massive stars to the collapse of supermassive stars.
Gravitational Waves from Gravitational Collapse.
Fryer, Chris L; New, Kimberly C B
2011-01-01
Gravitational-wave emission from stellar collapse has been studied for nearly four decades. Current state-of-the-art numerical investigations of collapse include those that use progenitors with more realistic angular momentum profiles, properly treat microphysics issues, account for general relativity, and examine non-axisymmetric effects in three dimensions. Such simulations predict that gravitational waves from various phenomena associated with gravitational collapse could be detectable with ground-based and space-based interferometric observatories. This review covers the entire range of stellar collapse sources of gravitational waves: from the accretion-induced collapse of a white dwarf through the collapse down to neutron stars or black holes of massive stars to the collapse of supermassive stars. Supplementary material is available for this article at 10.12942/lrr-2011-1.
Gravitational Effects on Plasma Waves in Environment of Sun and Neutron Star
International Nuclear Information System (INIS)
Lu Quankang; Hsiao-Ling Zhou
2014-01-01
Local plasma phenomena in environment of Sun are observed closely by spacecrafts in recent years. We provide a new method to apply general relativity to astro-plasma physics in small local area. The relativistic dispersion relations of Langmuir, electromagnetic and cyclotron waves are obtained. The red shifts of Langmuir and cyclotron frequencies are given analytically. A new equilibrium velocity distribution of particles soaked in local gravitational field is suggested. The gravitational effect of a neutron star is also estimated
Limiting the effects of earthquakes on gravitational-wave interferometers
Coughlin, Michael; Earle, Paul; Harms, Jan; Biscans, Sebastien; Buchanan, Christopher; Coughlin, Eric; Donovan, Fred; Fee, Jeremy; Gabbard, Hunter; Guy, Michelle; Mukund, Nikhil; Perry, Matthew
2017-01-01
Ground-based gravitational wave interferometers such as the Laser Interferometer Gravitational-wave Observatory (LIGO) are susceptible to ground shaking from high-magnitude teleseismic events, which can interrupt their operation in science mode and significantly reduce their duty cycle. It can take several hours for a detector to stabilize enough to return to its nominal state for scientific observations. The down time can be reduced if advance warning of impending shaking is received and the impact is suppressed in the isolation system with the goal of maintaining stable operation even at the expense of increased instrumental noise. Here, we describe an early warning system for modern gravitational-wave observatories. The system relies on near real-time earthquake alerts provided by the U.S. Geological Survey (USGS) and the National Oceanic and Atmospheric Administration (NOAA). Preliminary low latency hypocenter and magnitude information is generally available in 5 to 20 min of a significant earthquake depending on its magnitude and location. The alerts are used to estimate arrival times and ground velocities at the gravitational-wave detectors. In general, 90% of the predictions for ground-motion amplitude are within a factor of 5 of measured values. The error in both arrival time and ground-motion prediction introduced by using preliminary, rather than final, hypocenter and magnitude information is minimal. By using a machine learning algorithm, we develop a prediction model that calculates the probability that a given earthquake will prevent a detector from taking data. Our initial results indicate that by using detector control configuration changes, we could prevent interruption of operation from 40 to 100 earthquake events in a 6-month time-period.
Limiting the effects of earthquakes on gravitational-wave interferometers
International Nuclear Information System (INIS)
Coughlin, Michael; Earle, Paul; Harms, Jan; Biscans, Sebastien; Donovan, Fred; Buchanan, Christopher; Coughlin, Eric; Fee, Jeremy; Guy, Michelle; Gabbard, Hunter; Mukund, Nikhil; Perry, Matthew
2017-01-01
Ground-based gravitational wave interferometers such as the Laser Interferometer Gravitational-wave Observatory (LIGO) are susceptible to ground shaking from high-magnitude teleseismic events, which can interrupt their operation in science mode and significantly reduce their duty cycle. It can take several hours for a detector to stabilize enough to return to its nominal state for scientific observations. The down time can be reduced if advance warning of impending shaking is received and the impact is suppressed in the isolation system with the goal of maintaining stable operation even at the expense of increased instrumental noise. Here, we describe an early warning system for modern gravitational-wave observatories. The system relies on near real-time earthquake alerts provided by the U.S. Geological Survey (USGS) and the National Oceanic and Atmospheric Administration (NOAA). Preliminary low latency hypocenter and magnitude information is generally available in 5 to 20 min of a significant earthquake depending on its magnitude and location. The alerts are used to estimate arrival times and ground velocities at the gravitational-wave detectors. In general, 90% of the predictions for ground-motion amplitude are within a factor of 5 of measured values. The error in both arrival time and ground-motion prediction introduced by using preliminary, rather than final, hypocenter and magnitude information is minimal. By using a machine learning algorithm, we develop a prediction model that calculates the probability that a given earthquake will prevent a detector from taking data. Our initial results indicate that by using detector control configuration changes, we could prevent interruption of operation from 40 to 100 earthquake events in a 6-month time-period. (paper)
R. Vlokh; M. Kostyrko
2006-01-01
Nonlinear effect of the gravitation field of spherically symmetric mass on the gravitational coefficient G has been analysed. In frame of the approaches of parametric optics and gravitation nonlinearity we have shown that the gravitation field of spherically symmetric mass can lead to changes in the gravitational coefficient G.
Marletto, C; Vedral, V
2017-12-15
All existing quantum-gravity proposals are extremely hard to test in practice. Quantum effects in the gravitational field are exceptionally small, unlike those in the electromagnetic field. The fundamental reason is that the gravitational coupling constant is about 43 orders of magnitude smaller than the fine structure constant, which governs light-matter interactions. For example, detecting gravitons-the hypothetical quanta of the gravitational field predicted by certain quantum-gravity proposals-is deemed to be practically impossible. Here we adopt a radically different, quantum-information-theoretic approach to testing quantum gravity. We propose witnessing quantumlike features in the gravitational field, by probing it with two masses each in a superposition of two locations. First, we prove that any system (e.g., a field) mediating entanglement between two quantum systems must be quantum. This argument is general and does not rely on any specific dynamics. Then, we propose an experiment to detect the entanglement generated between two masses via gravitational interaction. By our argument, the degree of entanglement between the masses is a witness of the field quantization. This experiment does not require any quantum control over gravity. It is also closer to realization than detecting gravitons or detecting quantum gravitational vacuum fluctuations.
Gravitational effects of cosmic strings in Friedmann universes
International Nuclear Information System (INIS)
Veeraraghavan, S.
1988-01-01
Cosmic strings have been invoked recently as a possible source of the primordial density fluctuations in matter which gave rise to large-scale structure by the process of gravitational collapse. If cosmic strings did indeed seed structure formation then they would also leave an observable imprint upon the microwave and gravitational wave backgrounds, and upon structure on the very largest scales. In this work, the energy-momentum tensor appropriate to a cosmic string configuration in the flat Friedmann universe is first obtained and then used in the linearized Einstein equations to obtain the perturbations of the background space-time and the ambient matter. The calculation is full self-consistent to linear order because it takes into account compensation, or the response of the ambient matter density field to the presence of the string configuration, and is valid for an arbitrarily curved and moving configuration everywhere except very close to a string segment. The single constraint is that the dimensionless string tension Gμ/c 2 must be small compared to unity, but this condition is satisfied in any theory that leads to strings of cosmological relevance. The gravitational wave spectrum and the microwave background temperature fluctuations from a single infinite straight and static string are calculated. The statistically expected fluctuations from an ensemble of such strings with a mean density equal to that found in computer simulations of the evolution of string networks is also calculated. These fluctuations are compared with the observational data on the microwave background to constrain Gμ. Lastly, the role of infinite strings in the formation of the large-scale structure on scales of tens of Megaparsecs observed in deep redshift surveys is examined
Sun, Xiaohang; Lee, Hoon Joo; Michielsen, Stephen; Wilusz, Eugene
2018-05-01
Although profiles of axisymmetric capillary bridges between two cylindrical fibers have been extensively studied, little research has been reported on capillary bridges under external forces such as the gravitational force. This is because external forces add significant complications to the Laplace-Young equation, making it difficult to predict drop profiles based on analytical approaches. In this paper, simulations of capillary bridges between two vertically stacked cylindrical fibers with gravitational effect taken into consideration are studied. The asymmetrical structure of capillary bridges that are hard to predict based on analytical approaches was studied via a numerical approach based on Surface Evolver (SE). The axial and the circumferential spreading of liquids on two identical fibers in the presence of gravitational effects are predicted to determine when the gravitational effects are significant or can be neglected. The effect of liquid volume, equilibrium contact angle, the distance between two fibers and fiber radii. The simulation results were verified by comparing them with experimental measurements. Based on SE simulations, curves representing the spreading of capillary bridges along the two cylindrical fibers were obtained. The gravitational effect was scaled based on the difference of the spreading on upper and lower fibers.
Tests of the gravitational redshift effect in space-born and ground-based experiments
Vavilova, I. B.
2018-02-01
This paper provides a brief overview of experiments as concerns with the tests of the gravitational redshift (GRS) effect in ground-based and space-born experiments. In particular, we consider the GRS effects in the gravitational field of the Earth, the major planets of the Solar system, compact stars (white dwarfs and neutron stars) where this effect is confirmed with a higher accuracy. We discuss availabilities to confirm the GRS effect for galaxies and galaxy clusters in visible and X-ray ranges of the electromagnetic spectrum.
Rahvar, Sohrab
2018-05-01
In this work, we study the interaction of the electromagnetic wave (EW) from a distant quasar with the gravitational wave (GW) sourced by the binary stars. While in the regime of geometric optics, the light bending due to this interaction is negligible, we show that the phase shifting on the wavefront of an EW can produce the diffraction pattern on the observer plane. The diffraction of the light (with the wavelength of λe) by the gravitational wave playing the role of gravitational grating (with the wavelength of λg) has the diffraction angle of Δβ ˜ λe/λg. The relative motion of the observer, the source of gravitational wave and the quasar results in a relative motion of the observer through the interference pattern on the observer plane. The consequence of this fringe crossing is the modulation in the light curve of a quasar with the period of few hours in the microwave wavelength. The optical depth for the observation of this phenomenon for a Quasar with the multiple images strongly lensed by a galaxy where the light trajectory of some of the images crosses the lensing galaxy is τ ≃ 0.2. By shifting the time-delay of the light curves of the multiple images in a strong lensed quasar and removing the intrinsic variations of a quasar, our desired signals, as a new method for detection of GWs can be detected.
Playing with QCD I: effective field theories
International Nuclear Information System (INIS)
Fraga, Eduardo S.
2009-01-01
The building blocks of hadrons are quarks and gluons, although color is confined into singlet states. QCD is believed to be the fundamental theory of strong interactions. Its asymptotically free nature puts the vacuum out of reach for perturbation theory. The Lagrangian of QCD and the Feynman rules associated were built by using the Gauge Principle, starting from the quark matter fields and obtaining gluons as connections. A simpler, and sometimes necessary or complementary, approach is provided by effective field theories or effective models, especially when one has to deal with the nonperturbative sector of the theory. (author)
Gravitational Field effects on the Decoherence Process and the Quantum Speed Limit.
Dehdashti, Sh; Avazzadeh, Z; Xu, Z; Shen, J Q; Mirza, B; Wang, H
2017-11-08
In this paper we use spinor transformations under local Lorentz transformations to investigate the curvature effect on the quantum-to-classical transition, described in terms of the decoherence process and of the quantum speed limit. We find that gravitational fields (introduced adopting the Schwarzschild and anti-de Sitter geometries) affect both the decoherence process and the quantum speed limit of a quantum particle with spin-1/2. In addition, as a tangible example, we study the effect of the Earth's gravitational field, characterized by the Rindler space-time, on the same particle. We find that the effect of the Earth's gravitational field on the decoherence process and quantum speed limit is very small, except when the mean speed of the quantum particle is comparable to the speed of light.
Dynamical 3-Space: Gravitational Wave Detection and the Shnoll Effect
Directory of Open Access Journals (Sweden)
Rothall D. P.
2013-10-01
Full Text Available Shnoll has investigated the non-Poisson scatter of rate measurements in various phenomena such as biological and chemical reactions, radioactive decay, photodiode current leakage and germanium semiconductor noise, and attributed the scatter to cosmophysical factors. While Shnoll didn’t pinpoint the nature of the cosmophysical factors the Process Physics model of reality leads to a description of space, which is dynamic and fractal and exhibits reverberation eects, and which oers an explanation for the scattering anomaly. The work presented here shows a new way of generating the eects Shnoll discovered, through studying the phase dierence of RF EM waves travelling through a dual coaxial cable Gravitational Wave Detector experiment.
On the effects of gravitational fields on the electrical properties of matter
International Nuclear Information System (INIS)
Opat, G.I.
1993-01-01
A discussion of the electrical state of a conducting solid in a static gravitational field is presented. The analysis of the stress-gravitational force balance inside the solid is complicated, however, outside the solid, in the evanescent electron field, the analysis of such a balance simplifies greatly. As a consequence of this external analysis, an expression for the electric field external to the body is presented which includes the direct effect of gravity on the electrons, as well as the indirect effect due to the stress induced by gravity acting on the bulk solid. Such fields are an important determinant of the gravitational motion of charged particles within metallic shields. 4 refs., 1 fig
International Nuclear Information System (INIS)
Bassi, Angelo; Großardt, André; Ulbricht, Hendrik
2017-01-01
We discuss effects of loss of coherence in low energy quantum systems caused by or related to gravitation, referred to as gravitational decoherence. These effects, resulting from random metric fluctuations, for instance, promise to be accessible by relatively inexpensive table-top experiments, way before the scales where true quantum gravity effects become important. Therefore, they can provide a first experimental view on gravity in the quantum regime. We will survey models of decoherence induced both by classical and quantum gravitational fluctuations; it will be manifest that a clear understanding of gravitational decoherence is still lacking. Next we will review models where quantum theory is modified, under the assumption that gravity causes the collapse of the wave functions, when systems are large enough. These models challenge the quantum-gravity interplay, and can be tested experimentally. In the last part we have a look at the state of the art of experimental research. We will review efforts aiming at more and more accurate measurements of gravity ( G and g ) and ideas for measuring conventional and unconventional gravity effects on nonrelativistic quantum systems. (topical review)
Ciufolini, I; Moschella, U; Fre, P
2001-01-01
Gravitational waves (GWs) are a hot topic and promise to play a central role in astrophysics, cosmology, and theoretical physics. Technological developments have led us to the brink of their direct observation, which could become a reality in the coming years. The direct observation of GWs will open an entirely new field: GW astronomy. This is expected to bring a revolution in our knowledge of the universe by allowing the observation of previously unseen phenomena, such as the coalescence of compact objects (neutron stars and black holes), the fall of stars into supermassive black holes, stellar core collapses, big-bang relics, and the new and unexpected.With a wide range of contributions by leading scientists in the field, Gravitational Waves covers topics such as the basics of GWs, various advanced topics, GW detectors, astrophysics of GW sources, numerical applications, and several recent theoretical developments. The material is written at a level suitable for postgraduate students entering the field.
The effect of the equatorially symmetric zonal winds of Saturn on its gravitational field
Kong, Dali; Zhang, Keke; Schubert, Gerald; Anderson, John D.
2018-04-01
The penetration depth of Saturn’s cloud-level winds into its interior is unknown. A possible way of estimating the depth is through measurement of the effect of the winds on the planet’s gravitational field. We use a self-consistent perturbation approach to study how the equatorially symmetric zonal winds of Saturn contribute to its gravitational field. An important advantage of this approach is that the variation of its gravitational field solely caused by the winds can be isolated and identified because the leading-order problem accounts exactly for rotational distortion, thereby determining the irregular shape and internal structure of the hydrostatic Saturn. We assume that (i) the zonal winds are maintained by thermal convection in the form of non-axisymmetric columnar rolls and (ii) the internal structure of the winds, because of the Taylor-Proundman theorem, can be uniquely determined by the observed cloud-level winds. We calculate both the variation ΔJn , n = 2, 4, 6 … of the axisymmetric gravitational coefficients Jn caused by the zonal winds and the non-axisymmetric gravitational coefficients ΔJnm produced by the columnar rolls, where m is the azimuthal wavenumber of the rolls. We consider three different cases characterized by the penetration depth 0.36, R S, 0.2, R S and 0.1, R S, where R S is the equatorial radius of Saturn at the 1-bar pressure level. We find that the high-degree gravitational coefficient (J 12 + ΔJ 12) is dominated, in all the three cases, by the effect of the zonal flow with |ΔJ 12/J 12| > 100% and that the size of the non-axisymmetric coefficients ΔJ mn directly reflects the depth and scale of the flow taking place in the Saturnian interior.
The Play Factor: Effect of Social Skills Group Play Therapy on Adolescent African-American Males
Earls, Melissa K.
2009-01-01
The purpose of this study was to examine the effectiveness of Social Skills Group Play Therapy on remedying the social skills deficits of adolescent African-American males. Additionally, the study investigated whether age and grade level impacted the outcome of the intervention. The participants were adolescent African-American males ages 10 to…
Effect of polarization force on the Jeans instability of self-gravitating dusty plasma
International Nuclear Information System (INIS)
Prajapati, R.P.
2011-01-01
The effect of polarization force acting on massive charged dust grains is investigated analytically on the Jeans instability of self-gravitating dusty plasma. The gravitational force acting on the massive negatively charged interstellar dust grains are considered in presence of both electrical and polarization forces. The basic equations of the problem are formulated and a general dispersion relation is obtained using plane wave approximation in low frequency wave mode. The effect of polarization force in the dispersion relation of the problem, condition of the Jeans instability and expression of the critical Jeans wave number is examined. The unstable growing modes due to self-gravitational force are studied in the situation when polarization force on the dust grain exceeds over the electrical force in magnitude. It is observed that the polarization force increases the growth rate of the system. -- Highlights: → Jeans instability of gravitating dusty plasma with polarization force is investigated. → The fundamental Jeans instability criterion is modified due to polarization effect. → The critical Jeans length decreases due to increase in polarization force. → Polarization force destabilizes the unstable Jeans mode. → The collapsing of interstellar dusty cloud is discussed.
Effect of Playful Balancing Training - A Pilot Randomized Controlled Trial
DEFF Research Database (Denmark)
Lund, Henrik Hautop; Jessen, Jari Due
2013-01-01
We used the modular playware in the form of modular interactive tiles for playful training of community-dwelling elderly with balancing problem. During short-term play on the modular interactive tiles, the elderly were playing physical, interactive games that were challenging their dynamic balance...... increase in balancing performance (DGI score: 21.3) after short-term playful training with the modular interactive tiles, whereas the control group remained with a score indicating balancing problems and risk of falling (DGI score: 16.6). The small pilot randomized controlled trial suggests...... that the playful interaction with the modular interactive tiles has a significant effect even after a very short time of play. The average total training time to obtain the statistical significant effect amounted to just 2h45m....
International Nuclear Information System (INIS)
Arun, K. G.; Buonanno, Alessandra; Ochsner, Evan; Faye, Guillaume
2009-01-01
We provide ready-to-use time-domain gravitational waveforms for spinning compact binaries with precession effects through 1.5 post-Newtonian (PN) order in amplitude, and compute their mode decomposition using spin-weighted -2 spherical harmonics. In the presence of precession, the gravitational-wave modes (l,m) contain harmonics originating from combinations of the orbital frequency and precession frequencies. We find that the gravitational radiation from binary systems with large mass asymmetry and large inclination angle can be distributed among several modes. For example, during the last stages of inspiral, for some maximally spinning configurations, the amplitude of the (2, 0) and (2, 1) modes can be comparable to the amplitude of the (2, 2) mode. If the mass ratio is not too extreme, the l=3 and l=4 modes are generally 1 or 2 orders of magnitude smaller than the l=2 modes. Restricting ourselves to spinning, nonprecessing compact binaries, we apply the stationary-phase approximation and derive the frequency-domain gravitational waveforms including spin-orbit and spin(1)-spin(2) effects through 1.5PN and 2PN order, respectively, in amplitude, and 2.5PN order in phase. Since spin effects in the amplitude through 2PN order affect only the first and second harmonics of the orbital phase, they do not extend the mass reach of gravitational-wave detectors. However, they can interfere with other harmonics and lower or raise the signal-to-noise ratio depending on the spin orientation. These ready-to-use waveforms could be employed in the data analysis of the spinning, inspiraling binaries as well as in comparison studies at the interface between analytical and numerical relativity.
Effective gravitational wave stress-energy tensor in alternative theories of gravity
International Nuclear Information System (INIS)
Stein, Leo C.; Yunes, Nicolas
2011-01-01
The inspiral of binary systems in vacuum is controlled by the stress-energy of gravitational radiation and any other propagating degrees of freedom. For gravitational waves, the dominant contribution is characterized by an effective stress-energy tensor at future null infinity. We employ perturbation theory and the short-wavelength approximation to compute this stress-energy tensor in a wide class of alternative theories. We find that this tensor is generally a modification of that first computed by Isaacson, where the corrections can dominate over the general relativistic term. In a wide class of theories, however, these corrections identically vanish at asymptotically flat, future, null infinity, reducing the stress-energy tensor to Isaacson's. We exemplify this phenomenon by first considering dynamical Chern-Simons modified gravity, which corrects the action via a scalar field and the contraction of the Riemann tensor and its dual. We then consider a wide class of theories with dynamical scalar fields coupled to higher-order curvature invariants and show that the gravitational wave stress-energy tensor still reduces to Isaacson's. The calculations presented in this paper are crucial to perform systematic tests of such modified gravity theories through the orbital decay of binary pulsars or through gravitational wave observations.
Theory of gravitational interactions
Gasperini, Maurizio
2017-01-01
This is the second edition of a well-received book that is a modern, self-contained introduction to the theory of gravitational interactions. The new edition includes more details on gravitational waves of cosmological origin, the so-called brane world scenario, and gravitational time-delay effects. The first part of the book follows the traditional presentation of general relativity as a geometric theory of the macroscopic gravitational field, while the second, more advanced part discusses the deep analogies (and differences) between a geometric theory of gravity and the “gauge” theories of the other fundamental interactions. This fills a gap within the traditional approach to general relativity which usually leaves students puzzled about the role of gravity. The required notions of differential geometry are reduced to the minimum, allowing room for aspects of gravitational physics of current phenomenological and theoretical interest, such as the properties of gravitational waves, the gravitational inter...
Effects of Static Stretching and Playing Soccer on Knee Laxity
Baumgart, Christian; Gokeler, Alli; Donath, Lars; Hoppe, Matthias W.; Freiwald, Juergen
Objective: This study investigated exercise-induced effects of static stretching and playing soccer on anterior tibial translation (ATT) of the knee joint. Design: Randomized controlled trial. Setting: University biomechanics laboratory. Participants: Thirty-one athletes were randomly assigned into
Effect of combined teaching method (role playing and storytelling ...
African Journals Online (AJOL)
Effect of combined teaching method (role playing and storytelling) on creative ... Remember me ... Background and Purpose: Storytelling promotes imagination and satisfies curiosity in children and creates learning opportunities in them.
Effects of Static Stretching and Playing Soccer on Knee Laxity
Baumgart, Christian; Gokeler, Alli; Donath, Lars; Hoppe, Matthias W.; Freiwald, Juergen
2015-01-01
Objective: This study investigated exercise-induced effects of static stretching and playing soccer on anterior tibial translation (ATT) of the knee joint. Design: Randomized controlled trial. Setting: University biomechanics laboratory. Participants: Thirty-one athletes were randomly assigned into
Gravitational-recoil effects on fermion propagation in space-time foam
Ellis, John R.; Nanopoulos, Dimitri V.; Volkov, G.
2000-01-01
Motivated by the possible experimental opportunities to test quantum gravity via its effects on high-energy neutrinos propagating through space-time foam, we discuss how to incorporate spin structures in our D-brane description of gravitational recoil effects in vacuo. We also point to an interesting analogous condensed-matter system. We use a suitable supersymmetrization of the Born-Infeld action for excited D-brane gravitational backgrounds to argue that energetic fermions may travel slower than the low-energy velocity of light: pulses of neutrinos at energies approaching 10^{19} eV: these would be observable only if M \\gsim 10^{27} GeV.
Shibata, Masaru; Kiuchi, Kenta
2017-06-01
Employing a simplified version of the Israel-Stewart formalism of general-relativistic shear-viscous hydrodynamics, we explore the evolution of a remnant massive neutron star of binary neutron star merger and pay special attention to the resulting gravitational waveforms. We find that for the plausible values of the so-called viscous alpha parameter of the order 10-2 the degree of the differential rotation in the remnant massive neutron star is significantly reduced in the viscous time scale, ≲5 ms . Associated with this, the degree of nonaxisymmetric deformation is also reduced quickly, and as a consequence, the amplitude of quasiperiodic gravitational waves emitted also decays in the viscous time scale. Our results indicate that for modeling the evolution of the merger remnants of binary neutron stars we would have to take into account magnetohydrodynamics effects, which in nature could provide the viscous effects.
Probing the dark side of the Universe with weak gravitational lensing effects
International Nuclear Information System (INIS)
Fu Li-Ping; Fan Zu-Hui
2014-01-01
Arising from gravitational deflections of light rays by large-scale structures in the Universe, weak-lensing effects have been recognized as one of the most important probes in cosmological studies. In this paper, we review the main progress in weak-lensing analyses, and discuss the challenges in future investigations aiming to understand the dark side of the Universe with unprecedented precisions. (invited reviews)
Wiegert, P. A.
2011-01-01
Interstellar meteoroids, solid particles arriving from outside our Solar System, are not easily distinguished from local meteoroids. A velocity above the escape velocity of the Sun is often used as an indicator of a possible interstellar origin. We demonstrate that the gravitational slingshot effect, resulting from the passage of local meteoroid near a planet, can produce hyperbolic meteoroids at the Earth s orbit with excess velocities comparable to those expected of interstellar meteoroids.
Gravitational interaction to one loop in effective quantum gravity
International Nuclear Information System (INIS)
Akhundov, A.
1996-10-01
The authors carry out the first step of a program conceived, in order to build a realistic model, having the particle spectrum of the standard model and renormalized masses, interaction terms and coupling, etc. which include the class of quantum gravity corrections, obtained by handling gravity as an effective theory. This provides an adequate picture at low energies, i.e. much less than the scale of strong gravity (the Planck mass). Hence the results are valid, irrespectively of any proposal for the full quantum gravity as a fundamental theory. The authors consider only non-analytic contributions to the one-loop scattering matrix elements, which provide the dominant quantum effect at long distance. These contributions are finite and independent from the finite value of the renormalization counter terms of the effective Lagrangian. The authors calculate the interaction of two heavy scalar particles, i.e. close to rest, due to the effective quantum gravity to the one loop order and compare with similar results in the literature
Gravitational interaction to one loop in effective quantum gravity
Energy Technology Data Exchange (ETDEWEB)
Akhundov, A. [Universitaet-gesamthochschule Siegen (Germany)]|[Azerbaijan Academy of Sciences, Baku (Azerbaijan). Institute of Physics; Bellucci, S. [INFN, Laboratori Nazionali di Frascati, Rome (Italy); Shiekh, A. [International Centre for Theoretical Physics, Trieste (Italy)
1996-10-01
The authors carry out the first step of a program conceived, in order to build a realistic model, having the particle spectrum of the standard model and renormalized masses, interaction terms and coupling, etc. which include the class of quantum gravity corrections, obtained by handling gravity as an effective theory. This provides an adequate picture at low energies, i.e. much less than the scale of strong gravity (the Planck mass). Hence the results are valid, irrespectively of any proposal for the full quantum gravity as a fundamental theory. The authors consider only non-analytic contributions to the one-loop scattering matrix elements, which provide the dominant quantum effect at long distance. These contributions are finite and independent from the finite value of the renormalization counter terms of the effective Lagrangian. The authors calculate the interaction of two heavy scalar particles, i.e. close to rest, due to the effective quantum gravity to the one loop order and compare with similar results in the literature.
Gravitational waves, neutrino emissions and effects of hyperons in binary neutron star mergers
International Nuclear Information System (INIS)
Kiuchi, Kenta; Sekiguchi, Yuichiro; Kyutoku, Koutarou; Shibata, Masaru
2012-01-01
Numerical simulations for the merger of binary neutron stars are performed in full general relativity incorporating both nucleonic and hyperonic finite-temperature equations of state (EOS) and neutrino cooling. It is found that for the nucleonic and hyperonic EOS, a hyper-massive neutron star (HMNS) with a long lifetime (t life ≥ 10 ms) is the outcome for the total mass ≅2.7M sun . For the total mass ≅3 M sun , a long-lived (short-lived with t life ≅ 3 ms) HMNS is the outcome for the nucleonic (hyperonic) EOS. It is shown that the typical total neutrino luminosity of the HMNS is ∼3-6 x 10 53 erg s -1 and the effective amplitude of gravitational waves from the HMNS is 1-4 x 10 -22 at f ≅ 2-3.2 kHz for a source of distance of 100 Mpc. During the HMNS phase, characteristic frequencies of gravitational waves shift to a higher frequency for the hyperonic EOS in contrast to the nucleonic EOS in which they remain constant approximately. Our finding suggests that the effects of hyperons are well imprinted in gravitational waves and their detection will give us a potential opportunity to explore the composition of the neutron star matter. We present the neutrino luminosity curve when a black hole is formed as well. (paper)
Gravitational frequency shift effect in the solar system
International Nuclear Information System (INIS)
Sarmiento G, A.
1983-01-01
An extension of the Parameterized Post-Newtonian (PPN) formalism to third order in the expansion parameter m/r (where m = GM/c 2 denotes the mass of the source of the field and r the distance to its center) is used to derive analytical expressions accurate to the same order for the prediction of the experimental measurments of the frequency shift effect on electromagnetic signals travelling within the solar system. An experimental situation is considered for which it is seen that the consequences of including higher order terms are undetectable by present-day observations or experiments. Some deliberations on issues in the historic context in which the development of the relevant ideas took place is considered necessary to round this work out and is presented in an introductory section. (author)
Energy Technology Data Exchange (ETDEWEB)
Miller, Jonah Maxwell [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2017-10-18
This report has slides on Gravitational Waves; Pound and Rebka: A Shocking Fact; Light is a Ruler; Gravity is the Curvature of Spacetime; Gravitational Waves Made Simple; How a Gravitational Wave Affects Stuff Here; LIGO; This Detection: Neutron Stars; What the Gravitational Wave Looks Like; The Sound of Merging Neutron Stars; Neutron Star Mergers: More than GWs; The Radioactive Cloud; The Kilonova; and finally Summary, Multimessenger Astronomy.
Hoffmann, William F
1964-01-01
Remarks on the observational basis of general relativity ; Riemannian geometry ; gravitation as geometry ; gravitational waves ; Mach's principle and experiments on mass anisotropy ; the many faces of Mach ; the significance for the solar system of time-varying gravitation ; relativity principles and the role of coordinates in physics ; the superdense star and the critical nucleon number ; gravitation and light ; possible effects on the solar system of φ waves if they exist ; the Lyttleton-Bondi universe and charge equality ; quantization of general relativity ; Mach's principle as boundary condition for Einstein's equations.
Energy Technology Data Exchange (ETDEWEB)
Leutwyler, H; Mallik, S
1986-12-01
The effective action for fermions moving in external gravitational and gauge fields is analyzed in terms of the corresponding external field propagator. The central object in our approach is the covariant energy-momentum tensor which is extracted from the regular part of the propagator at short distances. It is shown that the Lorentz anomaly, the conformal anomaly and the gauge anomaly can be expressed in terms of the local polynomials which determine the singular part of the propagator. (There are no coordinate anomalies). Except for the conformal anomaly, for which we give explicit representations only in dless than or equal to4, we consider an arbitrary number of dimensions.
Short-Term Effects of Playing Computer Games on Attention
Tahiroglu, Aysegul Yolga; Celik, Gonca Gul; Avci, Ayse; Seydaoglu, Gulsah; Uzel, Mehtap; Altunbas, Handan
2010-01-01
Objective: The main aim of the present study is to investigate the short-term cognitive effects of computer games in children with different psychiatric disorders and normal controls. Method: One hundred one children are recruited for the study (aged between 9 and 12 years). All participants played a motor-racing game on the computer for 1 hour.…
Atomoxetine/Methylphenidate Effects on Social Play Behavior
Directory of Open Access Journals (Sweden)
J Gordon Millichap
2015-02-01
Full Text Available Researchers at Utrecht University, The Netherlands, and University “Roma Tre,” Rome, Italy, studied the neural substrates of the previously identified social play-suppressant effects of methylphenidate (MPH and atomoxetine, drugs widely used for the treatment of attention-deficit hyperactivity disorder (ADHD.
Confronting Prejudiced Comments: Effectiveness of a Role-Playing Exercise
Lawson, Timothy J.; McDonough, Tracy A.; Bodle, James H.
2010-01-01
We examined whether a role-playing exercise, similar to that developed by Plous (2000), increases students' ability to generate effective responses to prejudiced comments. We assessed social psychology students' (n = 23) ability to respond to prejudiced comments before and after the exercise, and compared their performance to that of 2 other…
Spontaneous Lorentz violation and the long-range gravitational preferred-frame effect
International Nuclear Information System (INIS)
Graesser, Michael L.; Jenkins, Alejandro; Wise, Mark B.
2005-01-01
Lorentz-violating operators involving Standard Model fields are tightly constrained by experimental data. However, bounds are more model-independent for Lorentz violation appearing in purely gravitational couplings. The spontaneous breaking of Lorentz invariance by the vacuum expectation value of a vector field selects a universal rest frame. This affects the propagation of the graviton, leading to a modification of Newton's law of gravity. We compute the size of the long-range preferred-frame effect in terms of the coefficients of the two-derivative operators in the low-energy effective theory that involves only the graviton and the Goldstone bosons
THE EFFECTIVENESS OF ROLE PLAY IN TEACHING SPEAKING
Directory of Open Access Journals (Sweden)
Lilis Suryani
2015-12-01
Full Text Available Speaking is one of essential skills that should be mastered by students. In fact, the students face difficulties in speaking such as difficulty to arrange the sentences, fear of making mistakes, and lack of motivation. It is supported by Nunan (1993, he states that there are some challenges in teaching speaking skill in EFL classroom namely lack of motivation, and they tend to use their first language. Related to those problems, role play is offered to overcome the problems in speaking. The aim of the research was to know the effect of using role play in teaching speaking. The research used pre-experimental design with one group pre test and post test design which consist of 30 students as the sample. The data were obtained by using pre test and post test. Then, obtained data were analyzed by using SPSS 20. The result of the research showed that significance value was .00 and it is lower than the significance level .05. It means that the null hypothesis was rejected. Thus, teaching speaking by using role play has a significant effect on improving the students’ speaking ability. Keywords: role play, speaking, motivation
Short-term effects of playing computer games on attention.
Tahiroglu, Aysegul Yolga; Celik, Gonca Gul; Avci, Ayse; Seydaoglu, Gulsah; Uzel, Mehtap; Altunbas, Handan
2010-05-01
The main aim of the present study is to investigate the short-term cognitive effects of computer games in children with different psychiatric disorders and normal controls. One hundred one children are recruited for the study (aged between 9 and 12 years). All participants played a motor-racing game on the computer for 1 hour. The TBAG form of the Stroop task was administered to all participants twice, before playing and immediately after playing the game. Participants with improved posttest scores, compared to their pretest scores, used the computer on average 0.67 +/- 1.1 hr/day, while the average administered was measured at 1.6 +/- 1.4 hr/day and 1.3 +/- 0.9 hr/day computer use for participants with worse or unaltered scores, respectively. According to the regression model, male gender, younger ages, duration of daily computer use, and ADHD inattention type were found to be independent risk factors for worsened posttest scores. Time spent playing computer games can exert a short-term effect on attention as measured by the Stroop test.
Bhakta, S.; Prajapati, R. P.
2018-02-01
The effects of Hall current and finite electrical resistivity are studied on the stability of uniformly rotating and self-gravitating anisotropic quantum plasma. The generalized Ohm's law modified by Hall current and electrical resistivity is used along with the quantum magnetohydrodynamic fluid equations. The general dispersion relation is derived using normal mode analysis and discussed in the parallel and perpendicular propagations. In the parallel propagation, the Jeans instability criterion, expression of critical Jeans wavenumber, and Jeans length are found to be independent of non-ideal effects and uniform rotation but in perpendicular propagation only rotation affects the Jeans instability criterion. The unstable gravitating mode modified by Bohm potential and the stable Alfven mode modified by non-ideal effects are obtained separately. The criterion of firehose instability remains unaffected due to the presence of non-ideal effects. In the perpendicular propagation, finite electrical resistivity and quantum pressure anisotropy modify the dispersion relation, whereas no effect of Hall current was observed in the dispersion characteristics. The Hall current, finite electrical resistivity, rotation, and quantum corrections stabilize the growth rate. The stability of the dynamical system is analyzed using the Routh-Hurwitz criterion.
Does Playing Pay? The Fitness-Effect of Free Play during Childhood
Directory of Open Access Journals (Sweden)
Werner Greve
2014-04-01
Full Text Available Evolutionary developmental psychology claims that the sequences and processes of human development, in fact the mere fact of ontogeny itself, have to be viewed as evolutionary products. However, although the functional benefits of childish behavior (child playing for cognitive and emotional development have been shown repeatedly, claiming evolutionary adaptiveness of playing in childhood suggests that childish play supports evolutionary success in mature stages of development. This hypothesis is tested in a study with N = 134 adults (93 females; age range 20–66 years. Participants were asked to recollect their play experiences during childhood in detail, and to report their current developmental status with respect to several aspects of social success. Results show that the opportunity for and the promotion of free play in childhood significantly predict some indicators of social success. Additional analyses strive to explore mediating processes for this relationship. In particular, the mediating role of individual adaptivity (flexibility of goal adjustment is investigated. Results suggest that freely playing in childhood promotes developmental resources, in particular individual adaptivity in adulthood, which, in turn, promote developmental success.
Does playing pay? The fitness-effect of free play during childhood.
Greve, Werner; Thomsen, Tamara; Dehio, Cornelia
2014-04-29
Evolutionary developmental psychology claims that the sequences and processes of human development, in fact the mere fact of ontogeny itself, have to be viewed as evolutionary products. However, although the functional benefits of childish behavior (child playing) for cognitive and emotional development have been shown repeatedly, claiming evolutionary adaptiveness of playing in childhood suggests that childish play supports evolutionary success in mature stages of development. This hypothesis is tested in a study with N=134 adults (93 females; age range 20-66 years). Participants were asked to recollect their play experiences during childhood in detail, and to report their current developmental status with respect to several aspects of social success. Results show that the opportunity for and the promotion of free play in childhood significantly predict some indicators of social success. Additional analyses strive to explore mediating processes for this relationship. In particular, the mediating role of individual adaptivity (flexibility of goal adjustment) is investigated. Results suggest that freely playing in childhood promotes developmental resources, in particular individual adaptivity in adulthood, which, in turn, promote developmental success.
Effects of Chinese opera on the reproductions of Ibsen's plays
Directory of Open Access Journals (Sweden)
Miriam Leung Che LAU
2015-02-01
Full Text Available As part of a globalized phenomenon, the reproductions of Ibsen’s plays on the Chinese theatrical stage increasingly focus upon the exploration and expansion of new cultural forms, as Patrice Pavis defines interculturalism as “grasping the dialectical of exchanges of civilities between cultures”. However, how do we evaluate the effectiveness of the many “intercultural” productions that surround us today? I attempt to answer this question by comparing two Chinese reproductions of Ibsen’s plays that employ elements of Chinese opera on varying scales. The first one is a total transformation of Hedda Gabler into a Hangzhou yue opera form, Xin Bi Tian Gao (Aspirations Higher than the Sky, 心比天高 in 2006. As part of the yue opera tradition, Hedda Gabler was staged in an all-female cast. The second one is a fragmented insertion of a Peking opera excerpt into the staging of A Doll’s House by the National Experimental Theatre of China in 1998. One of the highlights of the play is a Norwegian actress, who plays Nora, singing and dancing a short Peking opera excerpt, thus replacing the tarantella dance in the original play. Contextualising the multiple perspectives towards interculturalism by Patrice Pavis, Richard Schechner and Rustom Bharucha, I aim to explore how the appropriation of Chinese opera in such performances might strengthen or weaken the reciprocal flows between the source and target cultures in Pavis’s “hourglass model”, and whether the initial attempt of revitalising both Chinese and Western art forms has backfired and misproduced Bertolt Brecht’s alienation effect directed at the contemporary audience.
Testing effective quantum gravity with gravitational waves from extreme mass ratio inspirals
International Nuclear Information System (INIS)
Yunes, N; Sopuerta, C F
2010-01-01
Testing deviation of GR is one of the main goals of the proposed Laser Interferometer Space Antenna. For the first time, we consistently compute the generation of gravitational waves from extreme-mass ratio inspirals (stellar compact objects into supermassive black holes) in a well-motivated alternative theory of gravity, that to date remains weakly constrained by double binary pulsar observations. The theory we concentrate on is Chern-Simons (CS) modified gravity, a 4-D, effective theory that is motivated both from string theory and loop-quantum gravity, and which enhances the Einstein-Hilbert action through the addition of a dynamical scalar field and the parity-violating Pontryagin density. We show that although point particles continue to follow geodesics in the modified theory, the background about which they inspiral is a modification to the Kerr metric, which imprints a CS correction on the gravitational waves emitted. CS modified gravitational waves are sufficiently different from the General Relativistic expectation that they lead to significant dephasing after 3 weeks of evolution, but such dephasing will probably not prevent detection of these signals, but instead lead to a systematic error in the determination of parameters. We end with a study of radiation-reaction in the modified theory and show that, to leading-order, energy-momentum emission is not CS modified, except possibly for the subdominant effect of scalar-field emission. The inclusion of radiation-reaction will allow for tests of CS modified gravity with space-borne detectors that might be two orders of magnitude larger than current binary pulsar bounds.
Relativistic gravitation theory
International Nuclear Information System (INIS)
Logunov, A.A.; Mestvirishvili, M.A.
1984-01-01
On the basis of the special relativity and geometrization principle a relativistic gravitation theory (RGT) is unambiguously constructed with the help of a notion of a gravitational field as a physical field in Faraday-Maxwell spirit, which posesses energy momentum and spins 2 and 0. The source of gravitation field is a total conserved energy-momentum tensor for matter and for gravitation field in Minkowski space. In the RGT conservation laws for the energy momentum and angular momentum of matter and gravitational field hold rigorously. The theory explains the whole set of gravitation experiments. Here, due to the geometrization principle the Riemannian space is of a field origin since this space arises effectively as a result of the gravitation field origin since this space arises effectively as a result of the gravitation field action on the matter. The RGT astonishing prediction is that the Universe is not closed but ''flat''. It means that in the Universe there should exist a ''missing'' mass in some form of matter
Effects of gravitational and optical stimulation on the perception of target elevation
Cohen, M. M.; Stoper, A. E.; Welch, R. B.; DeRoshia, C. W.
2001-01-01
To examine the combined effects of gravitational and optical stimulation on perceived target elevation, we independently altered gravitational-inertial force and both the orientation and the structure of a background visual array. While being exposed to 1.0, 1.5, or 2.0 Gz in the human centrifuge at NASA Ames Research Center, observers attempted to set a target to the apparent horizon. The target was viewed against the far wall of a box that was pitched at various angles. The box was brightly illuminated, had only its interior edges dimly illuminated, or was kept dark. Observers lowered their target settings as Gz was increased; this effect was weakened when the box was illuminated. Also, when the box was visible, settings were displaced in the same direction as that in which the box was pitched. We attribute our results to the combined influence of otolith-oculomotor mechanisms that underlie the elevator illusion and visual-oculomotor mechanisms (optostatic responses) that underlie the perceptual effects of viewing pitched visual arrays.
Distinguishing f(R) theories from general relativity by gravitational lensing effect
Energy Technology Data Exchange (ETDEWEB)
Liu, Hongguang [Beijing Normal University, Department of Physics, Beijing (China); Aix Marseille Universite et Universite de Toulon, Centre de Physique Theorique (UMR 7332), Marseille (France); Wang, Xin; Li, Haida; Ma, Yongge [Beijing Normal University, Department of Physics, Beijing (China)
2017-11-15
The post-Newtonian formulation of a general class of f(R) theories is set up in a third-order approximation. It turns out that the information of a specific form of f(R) gravity is encoded in the Yukawa potential, which is contained in the perturbative expansion of the metric components. Although the Yukawa potential is canceled in the second-order expression of the effective refraction index of light, detailed analysis shows that the difference of the lensing effect between the f(R) gravity and general relativity does appear at the third order when √(f''(0)/f{sup '}(0)) is larger than the distance d{sub 0} to the gravitational source. However, the difference between these two kinds of theories will disappear in the axially symmetric spacetime region. Therefore only in very rare case the f(R) theories are distinguishable from general relativity by gravitational lensing effect in a third-order post-Newtonian approximation. (orig.)
Hinderer, Tanja; Taracchini, Andrea; Foucart, Francois; Buonanno, Alessandra; Steinhoff, Jan; Duez, Matthew; Kidder, Lawrence E; Pfeiffer, Harald P; Scheel, Mark A; Szilagyi, Bela; Hotokezaka, Kenta; Kyutoku, Koutarou; Shibata, Masaru; Carpenter, Cory W
2016-05-06
Extracting the unique information on ultradense nuclear matter from the gravitational waves emitted by merging neutron-star binaries requires robust theoretical models of the signal. We develop a novel effective-one-body waveform model that includes, for the first time, dynamic (instead of only adiabatic) tides of the neutron star as well as the merger signal for neutron-star-black-hole binaries. We demonstrate the importance of the dynamic tides by comparing our model against new numerical-relativity simulations of nonspinning neutron-star-black-hole binaries spanning more than 24 gravitational-wave cycles, and to other existing numerical simulations for double neutron-star systems. Furthermore, we derive an effective description that makes explicit the dependence of matter effects on two key parameters: tidal deformability and fundamental oscillation frequency.
Hinderer, Tanja; Taracchini, Andrea; Foucart, Francois; Buonanno, Alessandra; Steinhoff, Jan; Duez, Matthew; Kidder, Lawrence E.; Pfeiffer, Harald P.; Scheel, Mark A.; Szilagyi, Bela; Hotokezaka, Kenta; Kyutoku, Koutarou; Shibata, Masaru; Carpenter, Cory W.
2016-05-01
Extracting the unique information on ultradense nuclear matter from the gravitational waves emitted by merging neutron-star binaries requires robust theoretical models of the signal. We develop a novel effective-one-body waveform model that includes, for the first time, dynamic (instead of only adiabatic) tides of the neutron star as well as the merger signal for neutron-star-black-hole binaries. We demonstrate the importance of the dynamic tides by comparing our model against new numerical-relativity simulations of nonspinning neutron-star-black-hole binaries spanning more than 24 gravitational-wave cycles, and to other existing numerical simulations for double neutron-star systems. Furthermore, we derive an effective description that makes explicit the dependence of matter effects on two key parameters: tidal deformability and fundamental oscillation frequency.
CERN. Geneva
2005-01-01
We will present a brief introduction to the physics of gravitational waves and their properties. We will review potential astrophysical sources of gravitational waves, and the physics and astrophysics that can be learned from their study. We will survey the techniques and technologies for detecting gravitational waves for the first time, including bar detectors and broadband interferometers, and give a brief status report on the international search effort, with special emphasis on the LIGO detectors and search results.
A gravitational entropy proposal
International Nuclear Information System (INIS)
Clifton, Timothy; Tavakol, Reza; Ellis, George F R
2013-01-01
We propose a thermodynamically motivated measure of gravitational entropy based on the Bel–Robinson tensor, which has a natural interpretation as the effective super-energy–momentum tensor of free gravitational fields. The specific form of this measure differs depending on whether the gravitational field is Coulomb-like or wave-like, and reduces to the Bekenstein–Hawking value when integrated over the interior of a Schwarzschild black hole. For scalar perturbations of a Robertson–Walker geometry we find that the entropy goes like the Hubble weighted anisotropy of the gravitational field, and therefore increases as structure formation occurs. This is in keeping with our expectations for the behaviour of gravitational entropy in cosmology, and provides a thermodynamically motivated arrow of time for cosmological solutions of Einstein’s field equations. It is also in keeping with Penrose’s Weyl curvature hypothesis. (paper)
Effects of gravitational lensing and companion motion on the binary pulsar timing
International Nuclear Information System (INIS)
Rafikov, Roman R.; Lai Dong
2006-01-01
The measurement of the Shapiro time delay in binary pulsar systems with highly-inclined orbit can be affected both by the motion of the pulsar's companion because of the finite time it takes a photon to cross the binary, and by the gravitational light bending if the orbit is sufficiently edge-on relative to the line of sight. Here we calculate the effect of retardation due to the companion's motion on various time delays in pulsar binaries, including the Shaipro delay, the geometric lensing delay, and the lens-induced delays associated with the pulsar rotation. Our results can be applied to systems so highly inclined that near conjunction gravitational lensing of the pulsar radiation by the companion becomes important (the recently discovered double pulsar system J0737-3039 may exemplify such a system). To the leading order, the effect of retardation is to shift all the delay curves backward in time around the orbit conjunction, without affecting the shape and amplitude of the curves. The time shift is of order the photon orbit crossing time, and ranges from a second to a few minutes for the observed binary pulsar systems. In the double pulsar system J0737-3039, the motion of the companion may also affect the interpretation of the recent correlated interstellar scintillation measurements. Finally, we show that lensing sets an upper limit on the magnitude of the frame-dragging time delay caused by the companion's spin, and makes this delay unobservable in stellar-mass binary pulsar systems
Estes, R. H.
1977-01-01
A computer software system is described which computes global numerical solutions of the integro-differential Laplace tidal equations, including dissipation terms and ocean loading and self-gravitation effects, for arbitrary diurnal and semidiurnal tidal constituents. The integration algorithm features a successive approximation scheme for the integro-differential system, with time stepping forward differences in the time variable and central differences in spatial variables. Solutions for M2, S2, N2, K2, K1, O1, P1 tidal constituents neglecting the effects of ocean loading and self-gravitation and a converged M2, solution including ocean loading and self-gravitation effects are presented in the form of cotidal and corange maps.
Energy Technology Data Exchange (ETDEWEB)
Zakharov, Aleksandr F [Russian Federation State Scientific Center ' A.I. Alikhanov Institute for Theoretical and Experimental Physics' , Moscow (Russian Federation); Sazhin, Mikhail V [P.K. Shternberg State Astronomical Institute at the M.V. Lomonosov Moscow State University, Moscow (Russian Federation)
1998-10-31
The foundations of standard microlensing theory are discussed as applied to stars in the Galactic bulge, Magellanic Clouds or other nearby galaxies and gravitational microlenses assumed to lie in-between these stars and the terrestrial observer. In contrast to the review article by Gurevich et al. [48], microlensing by compact objects is mainly considered. Criteria for the identification of microlensing events are discussed as also are microlensing events not satisfying these criteria, such as non-symmetrical light curves and chromatic and polarization effects. The Large Magellanic Cloud (LMC) and Galactic bulge microlensing data of the MACHO group are discussed in detail and also the LMC data of EROS and the Galactic bulge data of OGLE are presented. A detailed comparison of theoretical predictions and observations is given. (reviews of topical problems)
International Nuclear Information System (INIS)
Zakharov, Aleksandr F; Sazhin, Mikhail V
1998-01-01
The foundations of standard microlensing theory are discussed as applied to stars in the Galactic bulge, Magellanic Clouds or other nearby galaxies and gravitational microlenses assumed to lie in-between these stars and the terrestrial observer. In contrast to the review article by Gurevich et al. [48], microlensing by compact objects is mainly considered. Criteria for the identification of microlensing events are discussed as also are microlensing events not satisfying these criteria, such as non-symmetrical light curves and chromatic and polarization effects. The Large Magellanic Cloud (LMC) and Galactic bulge microlensing data of the MACHO group are discussed in detail and also the LMC data of EROS and the Galactic bulge data of OGLE are presented. A detailed comparison of theoretical predictions and observations is given. (reviews of topical problems)
The Effect Playing Online GamesOn The Players
Directory of Open Access Journals (Sweden)
Christopher Akami J.S
2014-11-01
Full Text Available Online game is a game that requires internet connection to play and while playing a lot of individuals do not care about a lot of things. Games can also influence the gamers to have bad behavior. However, playing online games can be exciting although only playing for a moment.
The Effect Playing Online GamesOn The Players
Christopher Akami J.S
2014-01-01
Online game is a game that requires internet connection to play and while playing a lot of individuals do not care about a lot of things. Games can also influence the gamers to have bad behavior. However, playing online games can be exciting although only playing for a moment.
Effects of Static Stretching and Playing Soccer on Knee Laxity.
Baumgart, Christian; Gokeler, Alli; Donath, Lars; Hoppe, Matthias W; Freiwald, Jürgen
2015-11-01
This study investigated exercise-induced effects of static stretching and playing soccer on anterior tibial translation (ATT) of the knee joint. Randomized controlled trial. University biomechanics laboratory. Thirty-one athletes were randomly assigned into a stretching (26.9 ± 6.2 years, 1.77 ± 0.09 m, 67.9 ± 10.7 kg) and a control group (27.9 ± 7.4 years, 1.75 ± 0.08 m, 72.0 ± 14.9 kg). Thirty-one amateur soccer players in an additional soccer group (25.1 ± 5.6 years, 1.74 ± 0.10 m, 71.8 ± 14.8 kg). All participants had no history of knee injury requiring surgery and any previous knee ligament or cartilage injury. The stretching group performed 4 different static stretching exercises with a duration of 2 × 20 seconds interspersed with breaks of 10 seconds. The soccer group completed a 90-minute soccer-specific training program. The control group did not perform any physical activity for approximately 30 minutes. Anterior tibial translation was measured with the KT-1000 knee arthrometer at forces of 67 N, 89 N, and maximal manual force (Max) before and after the intervention. There was a significant increase in ATT after static stretching and playing soccer at all applied forces. Maximal manual testing revealed a mean increase of ATT after static stretching of 2.1 ± 1.6 mm (P soccer of 1.0 ± 1.5 mm (P = 0.001). The ATT increase after static stretching at 67 and 89 N is significantly higher than in controls. At maximum manual testing, significant differences were evident between all groups. Static stretching and playing soccer increase ATT and may consequently influence mechanical factors of the anterior cruciate ligament. The ATT increase after static stretching was greater than after playing soccer. The observed increase in ATT after static stretching and playing soccer may be associated with changes in kinesthetic perception and sensorimotor control, activation of muscles, joint stability, overall performance, and higher injury risk.
Roach, Lindsay; Keats, Melanie
2018-01-01
Fundamental movement skill interventions are important for promoting physical activity, but the optimal intervention model for preschool children remains unclear. We compared two 8-week interventions, a structured skill-station and a planned active play approach, to a free-play control condition on pre- and postintervention fundamental movement skills. We also collected data regarding program attendance and perceived enjoyment. We found a significant interaction effect between intervention type and time. A Tukey honest significant difference analysis supported a positive intervention effect showing a significant difference between both interventions and the free-play control condition. There was a significant between-group difference in group attendance such that mean attendance was higher for both the free-play and planned active play groups relative to the structured skill-based approach. There were no differences in attendance between free-play and planned active play groups, and there were no differences in enjoyment ratings between the two intervention groups. In sum, while both interventions led to improved fundamental movement skills, the active play approach offered several logistical advantages. Although these findings should be replicated, they can guide feasible and sustainable fundamental movement skill programs within day care settings.
Effective Gravitational Theories in String Theory and the AdS/CFT Correspondence
DEFF Research Database (Denmark)
Pedersen, Andreas Vigand
an effective theory for higher dimensional extended black holes in a uid/elastic perturbative derivative expansion. Moreover, we show that the approach is quite universal and can be extended to various supergravities. Finally, we consider a new generalization of the method, which allows us to treat (SUGRA...... as low/high spin. As a byproduct of our analysis, we find a new stationary dipole-charged black hole solution on the AdS S backgrounds of type IIB/M-theory. We finally consider, via a double scaling extremal limit, a novel null-wave zero-temperature giant graviton exhibiting a BPS spectrum. Finally......We consider various aspects of effective gravitational theories, including supergravity, within the framework of the blackfold approach. The thesis is naturally split into three parts. In the first part of the thesis, we explore the blackfold approach and explain how it is possible to write down...
Neutron stars, magnetic fields, and gravitational waves
International Nuclear Information System (INIS)
Lamb, F.K.
2001-01-01
The r-modes of rapidly spinning young neutron stars have recently attracted attention as a promising source of detectable gravitational radiation. These neutron stars are expected to have magnetic fields ∼ 10 12 G. The r-mode velocity perturbation causes differential motion of the fluid in the star; this is a kinematic effect. In addition, the radiation-reaction associated with emission of gravitational radiation by r-waves drives additional differential fluid motions; this is a dynamic effect. These differential fluid motions distort the magnetic fields of neutron stars and may therefore play an important role in determining the structure of neutron star magnetic fields. If the stellar field is ∼ 10 16 (Ω/Ω B ) G or stronger, the usual r-modes are no longer normal modes of the star; here Ω and Ω B are the angular velocities of the star and at which mass shedding occurs. Much weaker magnetic fields can prevent gravitational radiation from amplifying the r-modes or damp existing r-mode oscillations on a relatively short timescale by extracting energy from the modes faster than gravitational wave emission can pump energy into them. The onset of proton superconductivity in the cores of newly formed magnetic neutron stars typically increases the effect on the r-modes of the magnetic field in the core by many orders of magnitude. Once the core has become superconducting, magnetic fields of the order of 10 12 G or greater are usually sufficient to damp r-modes that have been excited by emission of gravitational radiation and to suppress any further emission. A rapid drop in the strength of r-mode gravitational radiation from young neutron stars may therefore signal the onset of superconductivity in the core and provide a lower bound on the strength of the magnetic field there. Hence, measurements of r-mode gravitational waves from newly formed neutron stars may provide valuable diagnostic information about magnetic field strengths, cooling processes, and the
Spinning gravitating objects in the effective field theory in the post-Newtonian scheme
Energy Technology Data Exchange (ETDEWEB)
Levi, Michele [Université Pierre et Marie Curie-Paris VI, CNRS-UMR 7095,Institut d’Astrophysique de Paris, 98 bis Boulevard Arago, 75014 Paris (France); Sorbonne Universités, Institut Lagrange de Paris,98 bis Boulevard Arago, 75014 Paris (France); Steinhoff, Jan [Max-Planck-Institute for Gravitational Physics (Albert-Einstein-Institute),Am Mühlenberg 1, 14476 Potsdam-Golm (Germany); Centro Multidisciplinar de Astrofisica, Instituto Superior Tecnico, Universidade de Lisboa,Avenida Rovisco Pais 1, 1049-001 Lisboa (Portugal)
2015-09-30
We introduce a formulation for spinning gravitating objects in the effective field theory in the post-Newtonian scheme in the context of the binary inspiral problem. We aim at an effective action, where all field modes below the orbital scale are integrated out. We spell out the relevant degrees of freedom, in particular the rotational ones, and the associated symmetries. Building on these symmetries, we introduce the minimal coupling part of the point particle action in terms of gauge rotational variables, and construct the spin-induced nonminimal couplings, where we obtain the leading order couplings to all orders in spin. We specify the gauge for the rotational variables, where the unphysical degrees of freedom are eliminated already from the Feynman rules, and all the orbital field modes are integrated out. The equations of motion of the spin can be directly obtained via a proper variation of the action, and Hamiltonians may be straightforwardly derived. We implement this effective field theory for spin to derive all spin dependent potentials up to next-to-leading order to quadratic level in spin, namely up to the third post-Newtonian order for rapidly rotating compact objects. In particular, the proper next-to-leading order spin-squared potential and Hamiltonian for generic compact objects are also derived. For the implementations we use the nonrelativistic gravitational field decomposition, which is found here to eliminate higher-loop Feynman diagrams also in spin dependent sectors, and facilitates derivations. This formulation for spin is thus ideal for treatment of higher order spin dependent sectors.
Effect of Preoperative Play Interventions on Post Surgery Anxiety
Directory of Open Access Journals (Sweden)
Narges Alirezaei
2008-12-01
Full Text Available "n "nObjective: Many studies have shown that the level of postoperative distress and anxiety in children is associated with the amount of anxiety during the pre operative period. In this study, we compared the effect of pre-operational attending in a playroom and using play activities on the level of anxiety increment after surgery in an intervention and a control group of Iranian children. "n "nMethod: In a clinical trial, 75 children aged 5 to 12 enrolled in the intervention and the control group. The anxiety symptoms were assessed using State-Trait Anxiety Inventory for Children, Revised Children's Manifest Anxiety Scale, and Yale modified Pre operative Anxiety Scale. The mean differences of pre and post operative anxiety scores were calculated and compared using the ANCOVA statistical method. "n "nResults: The two groups had similar demographic characteristics except for age which was higher in the control group. The baseline anxiety score was lower in the intervention compare to the control group and was statistically significant. There was a significant reduction in the trend of anxiety increment after surgery in the intervention group in comparison to the control group. "n "nConclusion: Attending in playrooms and using play activities may reduce the trend of increment in the anxiety level induced by surgical procedures.
Relativistic theory of gravitation
International Nuclear Information System (INIS)
Logunov, A.A.; Mestvirishvilli, M.A.
1985-01-01
In the present paper a relativistic theory of gravitation (RTG) is constructed in a unique way on the basis of the special relativity and geometrization principle. In this, a gravitational field is treated as the Faraday-Maxwell spin-2 and spin-0 physical field possessing energy and momentum. The source of a gravitational field is the total conserved energy-momentum tensor of matter and of a gravitational field in Minkowski space. In the RTG, the conservation laws are strictly fulfilled for the energy-momentum and for the angular momentum of matter and a gravitational field. The theory explains the whole available set of experiments on gravitation. In virtue of the geometrization principle, the Riemannian space in our theory is of field origin, since it appears as an effective force space due to the action of a gravitational field on matter. The RTg leads to an exceptionally strong prediction: The Universe is not closed but just ''flat''. This suggests that in the Universe a ''hidden mass'' should exist in some form of matter
The Effects of Playing Educational Video Games on Kindergarten Achievement.
Din, Feng S.; Calao, Josephine
2001-01-01
Investigated whether kindergarten students who played Sony PlayStation educational video games for 40 minutes daily for 11 weeks learned better than peers who did not play such games. Found that the experimental group gained significantly more than the control group in spelling and decoding on the Wide Range Achievement Test-R3. Found no…
Directory of Open Access Journals (Sweden)
Keren Stern-Ellran
2016-10-01
Full Text Available To contribute to young children's development, sensory enrichment is often provided via colorful play areas. However, little is known about the effects of colorful environments on children while they engage in age-appropriate tasks and games. Studies in adults suggest that aspects of color can distract attention and impair performance, and children are known to have less developed attentional and executive abilities than adults. Preliminary studies conducted in children aged 5-8 suggest that the colorfulness of both distal (e.g., wall decorations and proximal (e.g., the surface of the desktop environments can have a disruptive effect on children's performance. The present research seeks to extend the previous studies to an even younger age group and focus on proximal colorfulness. With a sample of 15 pre-schoolers (3-4 years old we examined whether a colorful play surface compared to a non-colorful (white play surface would affect engagement in developmentally appropriate structured play. Our pilot findings suggest that a colorful play surface interfered with preschoolers' structured play, inducing more behaviors indicating disruption in task execution compared with a non-colorful play surface. The implications of the current study for practice and further research are discussed.
Directory of Open Access Journals (Sweden)
Lorenzo Iorio
2014-09-01
Full Text Available We analytically compute the long-term orbital variations of a test particle orbiting a central body acted upon by an incident monochromatic plane gravitational wave. We assume that the characteristic size of the perturbed two-body system is much smaller than the wavelength of the wave. Moreover, we also suppose that the wave's frequency νg is much smaller than the particle's orbital one nb. We make neither a priori assumptions about the direction of the wavevector kˆ nor on the orbital configuration of the particle. While the semi-major axis a is left unaffected, the eccentricity e, the inclination I, the longitude of the ascending node Ω, the longitude of pericenter ϖ and the mean anomaly ℳ undergo non-vanishing long-term changes of the form dΨ/dt=F(Kij;e,I,Ω,ω,Ψ=e,I,Ω,ϖ,M, where Kij, i,j=1,2,3 are the coefficients of the tidal matrix K. Thus, in addition to the variations of its orientation in space, the shape of the orbit would be altered as well. Strictly speaking, such effects are not secular trends because of the slow modulation introduced by K and by the orbital elements themselves: they exhibit peculiar long-term temporal patterns which would be potentially of help for their detection in multidecadal analyses of extended data records of planetary observations of various kinds. In particular, they could be useful in performing independent tests of the inflation-driven ultra-low gravitational waves whose imprint may have been indirectly detected in the Cosmic Microwave Background by the Earth-based experiment BICEP2. Our calculation holds, in general, for any gravitationally bound two-body system whose orbital frequency nb is much larger than the frequency νg of the external wave, like, e.g., extrasolar planets and the stars orbiting the Galactic black hole. It is also valid for a generic perturbation of tidal type with constant coefficients over timescales of the order of the orbital period of the perturbed particle.
Effect of a gravitational wave on electromagnetic radiation confined in a cavity
International Nuclear Information System (INIS)
Tourrenc, P.
1978-01-01
Gravitational radiation is considered within the first-order approximation. A pattern of an electromagnetic cavity is studied: Gravitational waves give rise to a deformation of the planes limiting the cavity. This deformation alters the electromagnetic radiation. Several cases are studied and orders of magnitude are put forward. (author)
On quantum electrodynamics in an external gravitational field. Part 2. Discussion of the effects
International Nuclear Information System (INIS)
Lotze, K.H.
1978-01-01
The S matrix constructed in Part I of this work is evaluated for processes which it includes. Some of them are discussed in more detail: pair creation and scattering in an external gravitational field, pair creation by a photon and creation of an electron-positron pair and a photon in an external gravitational field. (author)
Quadrupole mass detector in the field of weak plane gravitational waves
International Nuclear Information System (INIS)
Borisova, L.B.
1978-01-01
Studied is the behaviour of the system which consists of two test particles connected by a string (quadrupole mass detector) and placed in the field of weak plane monochromatic gravitational waves. It is shown that at cross orientation of the detector the gravitational wave effecting such a system excites oscillations in it with the frequency equal to that of the gravitational wave source. The role of the driving force is played by the periodical change with the time of the equilibrium position. The gravitational wave does not influence the detector at its longitudinal orientation
International Nuclear Information System (INIS)
Bondi, H.
1979-01-01
In spite of the strength of gravitational focres between celestial bodies, gravitational capture is not a simple concept. The principles of conservation of linear momentum and of conservation of angular momentum, always impose severe constraints, while conservation of energy and the vital distinction between dissipative and non-dissipative systems allows one to rule out capture in a wide variety of cases. In complex systems especially those without dissipation, long dwell time is a more significant concept than permanent capture. (author)
Gravitational waves and antennas
CERN. Geneva
2003-01-01
Gravitational waves and their detection represent today a hot topic, which promises to play a central role in astrophysics, cosmology and theoretical physics. Technological developments have enabled the construction of such sensitive detectors that the detection of gravitational radiation and the start of a new astronomy could become a reality during the next few years. This is expected to bring a revolution in our knowledge of the universe by allowing the observation of hiterto unseen phenomena such as coalescence of compact objects (neutron stars and black holes) fall of stars into supermassive black holes, stellar core collapses, big bang relics and the new and unexpected. In these lectures I give a brief overview of this challenging field of modern physics. Topics : Basic properties of gravitational radiation. Astrophysical sources. Principle of operation of detectors. Interferometers (both ground based and space-based), bars and spheres. Present status of the experiments, their recent results and their f...
Zhu, Tao; Wang, Anzhong; Kirsten, Klaus; Cleaver, Gerald; Sheng, Qin
2018-02-01
Loop quantum cosmology provides a resolution of the classical big bang singularity in the deep Planck era. The evolution, prior to the usual slow-roll inflation, naturally generates excited states at the onset of the slow-roll inflation. It is expected that these quantum gravitational effects could leave its fingerprints on the primordial perturbation spectrum and non-Gaussianity, and lead to some observational evidences in the cosmic microwave background. While the impact of the quantum effects on the primordial perturbation spectrum has been already studied and constrained by current data, in this paper we continue to study such effects but now on the non-Gaussianity of the primordial curvature perturbations. We present detailed and analytical calculations of the non-Gaussianity and show explicitly that the corrections due to the quantum effects are at the same magnitude of the slow-roll parameters in the observable scales and thus are well within current observational constraints. Despite this, we show that the non-Gaussianity in the squeezed limit can be enhanced at superhorizon scales and it is these effects that can yield a large statistical anisotropy on the power spectrum through the Erickcek-Kamionkowski-Carroll mechanism.
Effect of computer game playing on baseline laparoscopic simulator skills.
Halvorsen, Fredrik H; Cvancarova, Milada; Fosse, Erik; Mjåland, Odd
2013-08-01
Studies examining the possible association between computer game playing and laparoscopic performance in general have yielded conflicting results and neither has a relationship between computer game playing and baseline performance on laparoscopic simulators been established. The aim of this study was to examine the possible association between previous and present computer game playing and baseline performance on a virtual reality laparoscopic performance in a sample of potential future medical students. The participating students completed a questionnaire covering the weekly amount and type of computer game playing activity during the previous year and 3 years ago. They then performed 2 repetitions of 2 tasks ("gallbladder dissection" and "traverse tube") on a virtual reality laparoscopic simulator. Performance on the simulator were then analyzed for association to their computer game experience. Local high school, Norway. Forty-eight students from 2 high school classes volunteered to participate in the study. No association between prior and present computer game playing and baseline performance was found. The results were similar both for prior and present action game playing and prior and present computer game playing in general. Our results indicate that prior and present computer game playing may not affect baseline performance in a virtual reality simulator.
The Powerful Effect of Play in a Child's Education
Rivera, Miquela
2009-01-01
Play is a great equalizer. It is a universal, natural human pursuit. It need not--and should not--be based on or require expensive toys. Instead, children need an atmosphere in which exploration and play are valued and encouraged, a print-rich environment in which books--these can be borrowed from a library--encourage verbal skills; materials…
Ultra-low-frequency dust-electromagnetic modes in self-gravitating magnetized dusty plasmas
International Nuclear Information System (INIS)
Mamun, A.A.
1999-07-01
Obliquely propagating ultra-low-frequency dust-electromagnetic waves in a self-gravitating, warm, magnetized two fluid dusty plasma system have been investigated. Two special cases, namely, dust-Alfven mode propagating parallel to the external magnetic field and dust-magnetosonic mode propagating perpendicular to the external magnetic field have also been considered. It has been shown that effects of self-gravitational field, dust fluid temperature, and obliqueness significantly modify the dispersion properties of these ultra-low-frequency dust-electromagnetic modes. It is also found that these effects of self-gravitational field and dust/ion fluid temperature play no role in parallel propagating dust-Alfven mode, but in obliquely propagating dust-Alfven mode or perpendicular propagating dust-magnetosonic mode the effect of self-gravitational field plays a destabilizing role whereas the effect of dust/ion fluid temperature plays a stabilizing role. (author)
Analysis of Weyl-affine theories of gravity in terms of the gravitational frequency shift effect
International Nuclear Information System (INIS)
Coley, A.A.; Sarmiento, G.A.
1986-01-01
A subclass of nonmetric theories of gravity, called Weyl-affine theories of gravity (WATGs), is analyzed by calculating their predictions for the gravitational frequency shift undergone by a wave signal in a planned solar probe. The analysis is carried out using a formalism in a spherically symmetric and static gravitational field. One of the advantages of the formalism is that any possible ''nonmetricity'' is contained in an arbitrary function, λ, of the Newtonian gravitational potential, U. The numerical results are calculated for a situation modeling a future experiment in the solar system. In the calculations, the metric components and the function, λ, are expanded up to third order in U. Within the limits of the gravitational redshift experiments performed to date, it is found that WATGs must coincide with their metric counterparts (i.e., λ is unity). It is hoped that the planned solar probe will test the nature of the theories under investigation to a higher degree of accuracy
Directory of Open Access Journals (Sweden)
Mirko Tessari
2015-06-01
Full Text Available The aim of this study was to determine the elastic stockings effect on healthy workers (HW who are exposed to a prolonged hydrostatic pressure overload for professional reasons. The cohort was composed by 20 HW who voluntarily underwent a water plethysmography test before and after eight hour of standing up in an operating room, wearing elastic stockings. After 8 h of gravity exposure, we demonstrated the absence of leg volume increase in case of elastic stockings use. In the morning measurement we found that the lower limb volume was 1967.5 mL±224, while in the evening it was 1962.5 mL±227 (P<0.0828. The decreased volume is significantly correlated with the time that was spent under gravity forces for working purpose wearing elastic stockings (R2=0.99, P<0.0001. Our experiment demonstrates that elastic stockings may effectively counteract the increased leg volume over time in workers who are exposed to prolonged gravitational gradient. Further longitudinal studies are needed to determine if the above effect could correct one of the major risk factors for the development of chronic venous insufficiency.
Search for dark matter effects on gravitational signals from neutron star mergers
Ellis, John; Hektor, Andi; Hütsi, Gert; Kannike, Kristjan; Marzola, Luca; Raidal, Martti; Vaskonen, Ville
2018-06-01
Motivated by the recent detection of the gravitational wave signal emitted by a binary neutron star merger, we analyse the possible impact of dark matter on such signals. We show that dark matter cores in merging neutron stars may yield an observable supplementary peak in the gravitational wave power spectral density following the merger, which could be distinguished from the features produced by the neutron components.
arXiv Search for Dark Matter Effects on Gravitational Signals from Neutron Star Mergers
Ellis, John; Hütsi, Gert; Kannike, Kristjan; Marzola, Luca; Raidal, Martti; Vaskonen, Ville
2018-06-10
Motivated by the recent detection of the gravitational wave signal emitted by a binary neutron star merger, we analyse the possible impact of dark matter on such signals. We show that dark matter cores in merging neutron stars may yield an observable supplementary peak in the gravitational wave power spectral density following the merger, which could be distinguished from the features produced by the neutron components.
Search for dark matter effects on gravitational signals from neutron star mergers
Ellis, John; Hektor, Andi; Hütsi, Gert; Kannike, Kristjan; Marzola, Luca; Raidal, Martti; Vaskonen, Ville
2018-01-01
Motivated by the recent detection of the gravitational wave signal emitted by a binary neutron star merger, we analyse the possible impact of dark matter on such signals. We show that dark matter cores in merging neutron stars may yield an observable supplementary peak in the gravitational wave power spectral density following the merger, which could be distinguished from the features produced by the neutron components.
Relativistic theory of gravitation
International Nuclear Information System (INIS)
Logunov, A.A.; Mestvirishvili, M.A.
1986-01-01
In the present paper a relativistic theory of gravitation (RTG) is unambiguously constructed on the basis of the special relativity and geometrization principle. In this a gravitational field is treated as the Faraday--Maxwell spin-2 and spin-0 physical field possessing energy and momentum. The source of a gravitational field is the total conserved energy-momentum tensor of matter and of a gravitational field in Minkowski space. In the RTG the conservation laws are strictly fulfilled for the energy-moment and for the angular momentum of matter and a gravitational field. The theory explains the whole available set of experiments on gravity. By virtue of the geometrization principle, the Riemannian space in our theory is of field origin, since it appears as an effective force space due to the action of a gravitational field on matter. The RTG leads to an exceptionally strong prediction: The universe is not closed but just ''flat.'' This suggests that in the universe a ''missing mass'' should exist in a form of matter
Effects of playing video games on perceptions of one's humanity.
Greitemeyer, Tobias
2013-01-01
According to self-perception theory, individuals infer their characteristics by observing their own behavior. In the present research, the hypothesis is examined whether helping behavior increases perceptions of one's own humanity even when help is given that does not benefit a real person. In fact, two studies revealed that playing a prosocial video game (where the goal is to help and care for other game characters) led to increased perceptions of the player's own humanity (in particular, for positive humanity traits). Results also revealed that playing a violent, relative to a neutral, video game decreased perceptions of humanity on positive humanity traits and increased perceptions of humanity on negative humanity traits. Taken together, it appears that being helpful while playing video games leads to the perception of being more human, whereas being harmful while playing video games leads players to perceive themselves negatively.
International Nuclear Information System (INIS)
Brown, Duncan A.; Zimmerman, Peter J.
2010-01-01
Inspiralling compact binaries are expected to circularize before their gravitational-wave signals reach the sensitive frequency band of ground-based detectors. Current searches for gravitational waves from compact binaries using the LIGO and Virgo detectors therefore use circular templates to construct matched filters. Binary formation models have been proposed which suggest that some systems detectable by the LIGO-Virgo network may have non-negligible eccentricity. We investigate the ability of the restricted 3.5 post-Newtonian order TaylorF2 template bank, used by LIGO and Virgo to search for gravitational waves from compact binaries with masses M≤35M · , to detect binaries with nonzero eccentricity. We model the gravitational waves from eccentric binaries using the x-model post-Newtonian formalism proposed by Hinder et al.[I. Hinder, F. Hermann, P. Laguna, and D. Shoemaker, arXiv:0806.1037v1]. We find that small residual eccentricities (e 0 · · . For eccentricities e 0 > or approx. 0.1, the loss in matched filter signal-to-noise ratio due to eccentricity can be significant and so templates which include eccentric effects will be required to perform optimal searches for such systems.
Dodelson, Scott
2017-01-01
Gravitational lensing is a consequence of general relativity, where the gravitational force due to a massive object bends the paths of light originating from distant objects lying behind it. Using very little general relativity and no higher level mathematics, this text presents the basics of gravitational lensing, focusing on the equations needed to understand the phenomena. It then applies them to a diverse set of topics, including multiply imaged objects, time delays, extrasolar planets, microlensing, cluster masses, galaxy shape measurements, cosmic shear, and lensing of the cosmic microwave background. This approach allows undergraduate students and others to get quickly up to speed on the basics and the important issues. The text will be especially relevant as large surveys such as LSST and Euclid begin to dominate the astronomical landscape. Designed for a one semester course, it is accessible to anyone with two years of undergraduate physics background.
Gravitational amplitudes in black hole evaporation: the effect of non-commutative geometry
International Nuclear Information System (INIS)
Grezia, Elisabetta Di; Esposito, Giampiero; Miele, Gennaro
2006-01-01
Recent work in the literature has studied the quantum-mechanical decay of a Schwarzschild-like black hole, formed by gravitational collapse, into almost-flat spacetime and weak radiation at a very late time. The relevant quantum amplitudes have been evaluated for bosonic and fermionic fields, showing that no information is lost in collapse to a black hole. On the other hand, recent developments in non-commutative geometry have shown that, in general relativity, the effects of non-commutativity can be taken into account by keeping the standard form of the Einstein tensor on the left-hand side of the field equations and introducing a modified energy-momentum tensor as a source on the right-hand side. The present paper, relying on the recently obtained non-commutativity effect on a static, spherically symmetric metric, considers from a new perspective the quantum amplitudes in black hole evaporation. The general relativity analysis of spin-2 amplitudes is shown to be modified by a multiplicative factor F depending on a constant non-commutativity parameter and on the upper limit R of the radial coordinate. Limiting forms of F are derived which are compatible with the adiabatic approximation here exploited. Approximate formulae for the particle emission rate are also obtained within this framework
Light and/or atomic beams to detect ultraweak gravitational effects
Directory of Open Access Journals (Sweden)
Tartaglia Angelo
2014-06-01
Full Text Available We shall review the opportunities lent by ring lasers and atomic beams interferometry in order to reveal gravitomagnetic effects on Earth. Both techniques are based on the asymmetric propagation of waves in the gravitational field of a rotating mass; actually the times of flight for co- or counter-rotating closed paths turn out to be different. After discussing properties and limitations of the two approaches we shall describe the proposed GINGER experiment which is being developed for the Gran Sasso National Laboratories in Italy. The experimental apparatus will consist of a three-dimensional array of square rings, 6m × 6m, that is planned to reach a sensitivity in the order of 1prad/√Hertz or better. This sensitivity would be one order of magnitude better than the best existing ring, which is the G-ring in Wettzell, Bavaria, and would allow for the terrestrial detection of the Lense-Thirring effect and possibly of deviations from General Relativity. The possibility of using either the ring laser approach or atomic interferometry in a space mission will also be considered. The technology problems are under experimental study using both the German G-ring and the smaller G-Pisa ring, located at the Gran Sasso.
THE EFFECT OF GRAVITATION ON THE POLARIZATION STATE OF A LIGHT RAY
Energy Technology Data Exchange (ETDEWEB)
Ghosh, Tanay; Sen, A. K. [Department of Physics Assam University, Silchar-788011, Assam (India)
2016-12-10
In the present work, detailed calculations have been carried out on the rotation of the polarization vector of an electromagnetic wave due to the presence of a gravitational field of a rotating body. This has been done using the general expression of Maxwell’s equation in curved spacetime. Considering the far-field approximation (i.e., the impact parameter is greater than the Schwarzschild radius and rotation parameter), the amount of rotation of the polarization vector as a function of impact parameter has been obtained for a rotating body (considering Kerr geometry). The present work shows that the rotation of the polarization vector cannot be observed in the case of Schwarzschild geometry. This work also calculates the rotational effect when considering prograde and retrograde orbits for the light ray. Although the present work demonstrates the effect of rotation of the polarization vector, it confirms that there would be no net polarization of an electromagnetic wave due to the curved spacetime geometry in a Kerr field.
Quantum-Gravitational Effects on Primordial Power Spectra in Slow-Roll Inflationary Models
Directory of Open Access Journals (Sweden)
David Brizuela
2018-01-01
Full Text Available We review the computation of the power spectra of inflationary gauge-invariant perturbations in the context of canonical quantum gravity for generic slow-roll models. A semiclassical approximation, based on an expansion in inverse powers of the Planck mass, is applied to the complete Wheeler–DeWitt equation describing a perturbed inflationary universe. This expansion leads to a hierarchy of equations at consecutive orders of the approximation and allows us to write down a corrected Schrödinger equation that encodes information about quantum-gravitational effects. The analytical dependence of the correction to the power spectrum on the wavenumber is obtained. Nonetheless, some numerical work is needed in order to obtain its precise value. Finally, it is shown that the correction turns out to be positive, which leads to an enhancement of the power spectrum especially prominent for large scales. We will also discuss whether this correction leads to a measurable effect in the cosmic microwave background anisotropies.
Parametric mechanisms for detecting gravitational waves
International Nuclear Information System (INIS)
Pustovoit, V.I.; Chernozatonskii, L.A.
1981-01-01
An intense electromagnetic wave and a gravitational wave can interact to effectively generate electromagnetic waves at sum and difference frequencies. The self-effect of a monochromatic electromagnetic wave through a gravitational field leads to third-harmonic generation
Schäfer, G.; Schutz, B.
1996-01-01
Gravity is truly universal. It is the force that pulls us to the Earth, that keeps the planets and moons in their orbits, and that causes the tides on the Earth to ebb and flow. It even keeps the Sun shining. Yet on a laboratory scale gravity is extremely weak. The Coulomb force between two protons is 1039 times stronger than the gravitational force between them. Moreover, Newton's gravitational constant is the least accurately known of the fundamental constants: it has been measured to 1 par...
Snow load effect on earth's rotation and gravitational field, 1979-1985
Chao, B. Fong; O'Connor, William P.; Chang, Alfred T. C.; Hall, Dorothy K.; Foster, James L.
1987-01-01
A global, monthly snow depth data set has been generated from the Nimbus 7 satellite observations using passive microwave remote-sensing techniques. Seven years of data, 1979-1985, are analyzed to compute the snow load effects on the earth's rotation and low-degree zonal gravitational field. The resultant time series show dominant seasonal cycles. The annual peak-to-peak variation in J2 is found to be 2.3 x 10 to the -10th, that in J3 to be 1.1 x 10 to the -10th, and believed to decrease rapidly for higher degrees. The corresponding change in the length of day is 41 micro-s. The annual wobble excitation is (4.9 marc sec, -109 deg) for the prograde motion component and (4.8 marc sec, -28 deg) for the retrograde motion component. The excitation power of the Chandler wobble due to the snow load is estimated to be about 25 dB less than the power needed to maintain the observed Chandler wobble.
Energy Technology Data Exchange (ETDEWEB)
Goldbaum, Nathan J. [National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, 1205 W. Clark St., Urbana, IL 61801 (United States); Krumholz, Mark R. [Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2601 (Australia); Forbes, John C., E-mail: ngoldbau@illinois.edu [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States)
2016-08-10
Self-gravity and stellar feedback are capable of driving turbulence and transporting mass and angular momentum in disk galaxies, but the balance between them is not well understood. In the previous paper in this series, we showed that gravity alone can drive turbulence in galactic disks, regulate their Toomre Q parameters to ∼1, and transport mass inwards at a rate sufficient to fuel star formation in the centers of present-day galaxies. In this paper we extend our models to include the effects of star formation feedback. We show that feedback suppresses galaxies’ star formation rates by a factor of ∼5 and leads to the formation of a multi-phase atomic and molecular interstellar medium. Both the star formation rate and the phase balance produced in our simulations agree well with observations of nearby spirals. After our galaxies reach steady state, we find that the inclusion of feedback actually lowers the gas velocity dispersion slightly compared to the case of pure self-gravity, and also slightly reduces the rate of inward mass transport. Nevertheless, we find that, even with feedback included, our galactic disks self-regulate to Q ∼ 1, and transport mass inwards at a rate sufficient to supply a substantial fraction of the inner disk star formation. We argue that gravitational instability is therefore likely to be the dominant source of turbulence and transport in galactic disks, and that it is responsible for fueling star formation in the inner parts of galactic disks over cosmological times.
Black holes and fundamental fields: Hair, kicks, and a gravitational Magnus effect
Okawa, Hirotada; Cardoso, Vitor
2014-11-01
Scalar fields pervade theoretical physics and are a fundamental ingredient to solve the dark matter problem, to realize the Peccei-Quinn mechanism in QCD or the string-axiverse scenario. They are also a useful proxy for more complex matter interactions, such as accretion disks or matter in extreme conditions. Here, we study the collision between scalar "clouds" and rotating black holes. For the first time we are able to compare analytic estimates and strong field, nonlinear numerical calculations for this problem. As the black hole pierces through the cloud it accretes according to the Bondi-Hoyle prediction, but is deflected through a purely kinematic gravitational "anti-Magnus" effect, which we predict to be present also during the interaction of black holes with accretion disks. After the interaction is over, we find large recoil velocities in the transverse direction. The end-state of the process belongs to the vacuum Kerr family if the scalar is massless, but can be a hairy black hole when the scalar is massive.
Alternative equations of gravitation
International Nuclear Information System (INIS)
Pinto Neto, N.
1983-01-01
It is shown, trough a new formalism, that the quantum fluctuation effects of the gravitational field in Einstein's equations are analogs to the effects of a continuum medium in Maxwell's Electrodynamics. Following, a real example of the applications of these equations is studied. Qunatum fluctuations effects as perturbation sources in Minkowski and Friedmann Universes are examined. (L.C.) [pt
The gravitational properties of antimatter
International Nuclear Information System (INIS)
Goldman, T.; Hughes, R.J.; Nieto, M.M.
1986-09-01
It is argued that a determination of the gravitational acceleration of antimatter towards the earth is capable of imposing powerful constraints on modern quantum gravity theories. Theoretical reasons to expect non-Newtonian non-Einsteinian effects of gravitational strength and experimental suggestions of such effects are reviewed. 41 refs
Generalized Sagnac effect with the ring-laser and other optradiches in the PPN gravitational theory
International Nuclear Information System (INIS)
Campbell, S.O.
1976-01-01
The scope of study is: The object under study is an experiment to measure the ''dragging of inertial frames'' effect (a post-Newtonian gravitational effect) using two closed-loop optical beams traveling in opposite directions (such a device is denoted an ''optradich''; an example is the ringlaser). A theoretical viewpoint with simple formulas based on the Parametrized Post-Newtonian (PPN) formalism is developed from a study of the literature: the Sagnac effect is generalized to the Post-Newtonian level of approximation. Some differences with a few previous papers are noted and sometimes discussed. Then the formulas are applied to two simple cases. Numerical results are given for an optradich attached to earth, and for optradiches orbiting earth, jupiter, and the sun. The ringlaser, whose further development may make the experiment feasible, is discussed briefly: its basic principle, its potential sensitivity, and some practical considerations. Some aspects of the experiment are also discussed briefly: land optradiches versus orbiting optradiches, Schiff's gyroscope experiment versus the optradich experiment, the present outlook for optradich experiments, and possible scientific benefits of optradich and experiments. Findings and conclusions are the numerical results (see above) are so small that it appears quite doubtful that optradich experiments could verify them in the balance of this century. There seem to be a few interesting effects which Schiff's gyroscope at present cannot measure, but which an assumed ''super'' optradich can measure. Orbiting optradiches and land optradiches may be complementary, but further study is recommended. Despite the discouraging prospects for optradich experiments, efforts should be made to develop sufficiently sensitive optradiches because of the scientific benefits that could be had
Effect of gravitational focusing on annual modulation in dark-matter direct-detection experiments.
Lee, Samuel K; Lisanti, Mariangela; Peter, Annika H G; Safdi, Benjamin R
2014-01-10
The scattering rate in dark-matter direct-detection experiments should modulate annually due to Earth's orbit around the Sun. The rate is typically thought to be extremized around June 1, when the relative velocity of Earth with respect to the dark-matter wind is maximal. We point out that gravitational focusing can alter this modulation phase. Unbound dark-matter particles are focused by the Sun's gravitational potential, affecting their phase-space density in the lab frame. Gravitational focusing can result in a significant overall shift in the annual-modulation phase, which is most relevant for dark matter with low scattering speeds. The induced phase shift for light O(10) GeV dark matter may also be significant, depending on the threshold energy of the experiment.
International Nuclear Information System (INIS)
Palenzuela, Carlos; Lehner, Luis; Yoshida, Shin
2010-01-01
In addition to producing loud gravitational waves, the dynamics of a binary black hole system could induce emission of electromagnetic radiation by affecting the behavior of plasmas and electromagnetic fields in their vicinity. We study how the electromagnetic fields are affected by a pair of orbiting black holes through the merger. In particular, we show how the binary's dynamics induce a variability in possible electromagnetically induced emissions as well as an enhancement of electromagnetic fields during the late-merge and merger epochs. These time dependent features will likely leave their imprint in processes generating detectable emissions and can be exploited in the detection of electromagnetic counterparts of gravitational waves.
Effect of undetected gravitational lenses on statistical measures of quasar evolution
International Nuclear Information System (INIS)
Turner, E.L.
1980-01-01
Brightness amplifications by undetected gravitational lenses could be responsible in part for the apparent evolution of quasars, particularly for those which appear to be of high luminosity. It is shown that values of Vover-bar/over-barVover-bar/sub M/> or =0.6 and number-magnitude slopes > or =0.9 need not necessarily imply source density evolution if lensing events are common. Quasar samples which are defined by flux limits and minimum luminosities will preferentially include gravitational lens systems. Even if lensing events are quite rare, a large fraction of the lensed quasars will appear more luminous than the most luminous unlensed quasar
Assessing the Effectiveness of Gravitational Wave Outreach Video Games in High School Students
Wheeler, Jonathan
Students and faculty at the Gravitational Wave Group in Birmingham, UK developed a remake of the classic 1972 game of Pong. Black Hole Pong was developed to be used in events such as science fairs as a way to engage children and pique interest in black holes. I present the results of a study which assesses the utility of Black Hole Pong and its successors in raising awareness of gravitational wave research, and in fostering conceptual understanding of astrophysics and gravity. Of particular interest in this study is potential use in high school science classrooms during astrophysics units.
Discovery of two new gravitation lens systems
International Nuclear Information System (INIS)
Guertler, J.
1988-01-01
The discovery of new quasar and radio galaxy double images produced by the gravitation lens effect is reported. The light deflecting galaxies acting as gravitational lenses could be made visible by means of image processing procedures
The Effects of In-Service Training on Teachers' Beliefs and Practices in Children's Play
Vu, Jennifer A.; Han, Myae; Buell, Martha J.
2015-01-01
Early childhood educators are often aware of the general importance of play in children's development; however, they are often less aware of how play can support both academic and social learning and what their own roles can be in children's play. In this study, we examined the effect that professional development training about play would have on…
Jing, Mengguo; Li, Hui
2015-01-01
This study examined the developmental trend of pretend play behaviour and the effect of partner's gender in Singaporean preschoolers. Peer dyadic play among 70 children, ranging in age from three to five years, was observed in a standardised toy play context. Videotaped recordings of the play were analysed using two scales--the Smilansky Scale for…
Interaction of gravitational plane waves
International Nuclear Information System (INIS)
Ferrari, V.
1988-01-01
The mathematical theory of colliding, infinite-fronted, plane gravitational waves is presented. The process of focusing, the creation of singularities and horizons, due to the interaction, and the lens effect due to a beam-like gravitational wave are discussed
Hakim, Rémi
1994-01-01
Il existe à l'heure actuelle un certain nombre de théories relativistes de la gravitation compatibles avec l'expérience et l'observation. Toutefois, la relativité générale d'Einstein fut historiquement la première à fournir des résultats théoriques corrects en accord précis avec les faits.
Brewer, Jeffrey David
The National Aeronautics and Space Administration is planning for long-duration manned missions to the Moon and Mars. For feasible long-duration space travel, improvements in exercise countermeasures are necessary to maintain cardiovascular fitness, bone mass throughout the body and the ability to perform coordinated movements in a constant gravitational environment that is six orders of magnitude higher than the "near weightlessness" condition experienced during transit to and/or orbit of the Moon, Mars, and Earth. In such gravitational transitions feedback and feedforward postural control strategies must be recalibrated to ensure optimal locomotion performance. In order to investigate methods of improving postural control adaptation during these gravitational transitions, a treadmill based precision stepping task was developed to reveal changes in neuromuscular control of locomotion following both simulated partial gravity exposure and post-simulation exercise countermeasures designed to speed lower extremity impedance adjustment mechanisms. The exercise countermeasures included a short period of running with or without backpack loads immediately after partial gravity running. A novel suspension type partial gravity simulator incorporating spring balancers and a motor-driven treadmill was developed to facilitate body weight off loading and various gait patterns in both simulated partial and full gravitational environments. Studies have provided evidence that suggests: the environmental simulator constructed for this thesis effort does induce locomotor adaptations following partial gravity running; the precision stepping task may be a helpful test for illuminating these adaptations; and musculoskeletal loading in the form of running with or without backpack loads may improve the locomotor adaptation process.
The effect of sources on horizons that may develop when plane gravitational waves collide
International Nuclear Information System (INIS)
Chandrasekhar, Subrahmanyan; Xanthopoulos, B.C.
1987-01-01
Colliding plane gravitational waves that lead to the development of a horizon and a subsequent time-like singularity are coupled with an electromagnetic field, a perfect fluid, and null dust (consisting of massless particles). The coupling of the gravitational waves with an electromagnetic field does not affect, in any essential way, the development of the horizon or the time-like singularity if the polarizations of the colliding gravitational waves are not parallel. If the polarizations are parallel, the space-like singularity which occurs in the vacuum is transformed into a horizon followed by a three-dimensional time-like singularity by the merest presence of the electromagnetic field. The coupling of the gravitational waves with a perfect fluid and null dust affect the development of horizons and singularities in radically different ways: the perfect fluid affects the development decisively in all cases but qualitatively in the same way, while null dust prevents the development of horizons and allows only the development of space-like singularities. The contrasting behaviours of a perfect fluid and of null dust in the framework of general relativity is compared with the behaviours one may expect, under similar circumstances, in the framework of special relativity. (author)
Energy Technology Data Exchange (ETDEWEB)
Troxel, M.A.; Peel, Austin; Ishak, Mustapha, E-mail: troxel@utdallas.edu, E-mail: austin.peel@utdallas.edu, E-mail: mishak@utdallas.edu [Department of Physics, The University of Texas at Dallas, Richardson, TX, 75083 (United States)
2013-12-01
We study the effects and implications of anisotropies at the scale of galaxy clusters by building an exact general relativistic model of a cluster using the inhomogeneous and anisotropic Szekeres metric. The model is built from a modified Navarro-Frenk-White (NFW) density profile. We compare this to a corresponding spherically symmetric structure in the Lemaȋtre-Tolman (LT) model and quantify the impact of introducing varying levels of anisotropy. We examine two physical measures of gravitational infall — the growth rate of density and the velocity of the source dust in the model. We introduce a generalization of the LT dust velocity profile for the Szekeres metric and demonstrate its consistency with the growth rate of density. We find that the growth rate of density in one substructure increases by 0.5%, 1.5%, and 3.75% for 5%, 10%, and 15% levels of introduced anisotropy, which is measured as the fractional displaced mass relative to the spherically symmetric case. The infall velocity of the dust is found to increase by 2.5, 10, and 20 km s{sup −1} (0.5%, 2%, and 4.5%), respectively, for the same three levels of anisotropy. This response to the anisotropy in a structure is found to be strongly nonlinear with respect to the strength of anisotropy. These relative velocities correspond to an equivalent increase in the total mass of the spherically symmetric structure of 1%, 3.8%, and 8.4%, indicating that not accounting for the presence of anisotropic mass distributions in cluster models can strongly bias the determination of physical properties like the total mass.
Effects of transients in LIGO suspensions on searches for gravitational waves.
Walker, M; Abbott, T D; Aston, S M; González, G; Macleod, D M; McIver, J; Abbott, B P; Abbott, R; Adams, C; Adhikari, R X; Anderson, S B; Ananyeva, A; Appert, S; Arai, K; Ballmer, S W; Barker, D; Barr, B; Barsotti, L; Bartlett, J; Bartos, I; Batch, J C; Bell, A S; Betzwieser, J; Billingsley, G; Birch, J; Biscans, S; Biwer, C; Blair, C D; Bork, R; Brooks, A F; Ciani, G; Clara, F; Countryman, S T; Cowart, M J; Coyne, D C; Cumming, A; Cunningham, L; Danzmann, K; Da Silva Costa, C F; Daw, E J; DeBra, D; DeRosa, R T; DeSalvo, R; Dooley, K L; Doravari, S; Driggers, J C; Dwyer, S E; Effler, A; Etzel, T; Evans, M; Evans, T M; Factourovich, M; Fair, H; Fernández Galiana, A; Fisher, R P; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Giaime, J A; Giardina, K D; Goetz, E; Goetz, R; Gras, S; Gray, C; Grote, H; Gushwa, K E; Gustafson, E K; Gustafson, R; Hall, E D; Hammond, G; Hanks, J; Hanson, J; Hardwick, T; Harry, G M; Heintze, M C; Heptonstall, A W; Hough, J; Izumi, K; Jones, R; Kandhasamy, S; Karki, S; Kasprzack, M; Kaufer, S; Kawabe, K; Kijbunchoo, N; King, E J; King, P J; Kissel, J S; Korth, W Z; Kuehn, G; Landry, M; Lantz, B; Lockerbie, N A; Lormand, M; Lundgren, A P; MacInnis, M; Márka, S; Márka, Z; Markosyan, A S; Maros, E; Martin, I W; Martynov, D V; Mason, K; Massinger, T J; Matichard, F; Mavalvala, N; McCarthy, R; McClelland, D E; McCormick, S; McIntyre, G; Mendell, G; Merilh, E L; Meyers, P M; Miller, J; Mittleman, R; Moreno, G; Mueller, G; Mullavey, A; Munch, J; Nuttall, L K; Oberling, J; Oliver, M; Oppermann, P; Oram, Richard J; O'Reilly, B; Ottaway, D J; Overmier, H; Palamos, J R; Paris, H R; Parker, W; Pele, A; Penn, S; Phelps, M; Pierro, V; Pinto, I; Principe, M; Prokhorov, L G; Puncken, O; Quetschke, V; Quintero, E A; Raab, F J; Radkins, H; Raffai, P; Reid, S; Reitze, D H; Robertson, N A; Rollins, J G; Roma, V J; Romie, J H; Rowan, S; Ryan, K; Sadecki, T; Sanchez, E J; Sandberg, V; Savage, R L; Schofield, R M S; Sellers, D; Shaddock, D A; Shaffer, T J; Shapiro, B; Shawhan, P; Shoemaker, D H; Sigg, D; Slagmolen, B J J; Smith, B; Smith, J R; Sorazu, B; Staley, A; Strain, K A; Tanner, D B; Taylor, R; Thomas, M; Thomas, P; Thorne, K A; Thrane, E; Torrie, C I; Traylor, G; Tuyenbayev, D; Vajente, G; Valdes, G; van Veggel, A A; Vecchio, A; Veitch, P J; Venkateswara, K; Vo, T; Vorvick, C; Ward, R L; Warner, J; Weaver, B; Weiss, R; Weßels, P; Willke, B; Wipf, C C; Worden, J; Wu, G; Yamamoto, H; Yancey, C C; Yu, Hang; Yu, Haocun; Zhang, L; Zucker, M E; Zweizig, J
2017-12-01
This paper presents an analysis of the transient behavior of the Advanced LIGO (Laser Interferometer Gravitational-wave Observatory) suspensions used to seismically isolate the optics. We have characterized the transients in the longitudinal motion of the quadruple suspensions during Advanced LIGO's first observing run. Propagation of transients between stages is consistent with modeled transfer functions, such that transient motion originating at the top of the suspension chain is significantly reduced in amplitude at the test mass. We find that there are transients seen by the longitudinal motion monitors of quadruple suspensions, but they are not significantly correlated with transient motion above the noise floor in the gravitational wave strain data, and therefore do not present a dominant source of background noise in the searches for transient gravitational wave signals. Using the suspension transfer functions, we compared the transients in a week of gravitational wave strain data with transients from a quadruple suspension. Of the strain transients between 10 and 60 Hz, 84% are loud enough that they would have appeared above the sensor noise in the top stage quadruple suspension monitors if they had originated at that stage at the same frequencies. We find no significant temporal correlation with the suspension transients in that stage, so we can rule out suspension motion originating at the top stage as the cause of those transients. However, only 3.2% of the gravitational wave strain transients are loud enough that they would have been seen by the second stage suspension sensors, and none of them are above the sensor noise levels of the penultimate stage. Therefore, we cannot eliminate the possibility of transient noise in the detectors originating in the intermediate stages of the suspension below the sensing noise.
Gmitrova, Vlasta
2013-01-01
We compared the efficiency of teacher's direct and indirect intervention into pretend play. Three hundred sixty-eight kindergarten children and 92 qualified kindergarten teachers were involved in the study. In the control group, a teacher indirectly initiated a play, creating a playing corner adjusted to the theme of the pretend play and during…
Nicholson, Julie; Shimpi, Priya Mariana
2015-01-01
Two case studies describe how two women, enrolled in an undergraduate course on play, were guided to examine play across their lifespan, critique the barriers that led to a decline in their play from childhood to young adulthood, and engage in cycles of documentation, dialogue, and analysis of their adult play experiences in order to discover…
Gravitational Mass, Its Mechanics - What It Is; How It Operates
Ellman, Roger
1999-01-01
The earlier paper, Inertial Mass, Its Mechanics - What It Is; How It Operates, developed the mechanics of inertial mass. The present paper is for the purpose of equivalently developing gravitation. The behavior of gravitation is well known, as described by Newton's Law of Gravitation. But just what gravitational mass is, how gravitational behavior comes about, what in material reality produces the effects of gravitational mass, has been little understood. The only extant hypotheses involve th...
Effects of Testosterone Administration on Strategic Gambling in Poker Play.
van Honk, Jack; Will, Geert-Jan; Terburg, David; Raub, Werner; Eisenegger, Christoph; Buskens, Vincent
2016-01-04
Testosterone has been associated with economically egoistic and materialistic behaviors, but -defensibly driven by reputable status seeking- also with economically fair, generous and cooperative behaviors. Problematically, social status and economic resources are inextricably intertwined in humans, thus testosterone's primal motives are concealed. We critically addressed this issue by performing a placebo-controlled single-dose testosterone administration in young women, who played a game of bluff poker wherein concerns for status and resources collide. The profit-maximizing strategy in this game is to mislead the other players by bluffing randomly (independent of strength of the hand), thus also when holding very poor cards (cold bluffing). The profit-maximizing strategy also dictates the players in this poker game to never call the other players' bluffs. For reputable-status seeking these materialistic strategies are disadvantageous; firstly, being caught cold bluffing damages one's reputation by revealing deceptive intent, and secondly, not calling the other players' bluffs signals submission in blindly tolerating deception. Here we show that testosterone administration in this game of bluff poker significantly reduces random bluffing, as well as cold bluffing, while significantly increasing calling. Our data suggest that testosterone in humans primarily motivates for reputable-status seeking, even when this elicits behaviors that are economically disadvantageous.
Smith, A. H.
1972-01-01
The physical principles of gravitation are discussed, such as gravitational and intertial forces, weight and mass, weightlessness, size and scale effects, scale limits of gravitational effects, and gravity as a biogenic factor. The behavior of the accelerative force gravitation, is described. This law proposes and quantifies the mutual gravitational attraction existing between all bodies of matter, the force being proportional to the product of masses, and inversely related to the square of the distance separating them. Gravity orientation, chronic acceleration, and hematology are examined. Systematic responses, such as circulation and renal functions, are also considered, along with animal response to a decreased acceleration field and physiology of hyper- and hypodynamic fields.
Zheng, Yahui; Hao, Binzheng; Wen, Yaxiang; Liu, Xiaojun
2018-01-01
The evolution of the Tsallis entropy in self-gravitating systems and plasmas is studied in this letter, which is determined by two factors. The first factor is the change of the microstate number of systems, whose spontaneous increase leads to the entropy's increase, consistent with the standard text book. The second is the evolution of the nonextensive parameter, whose evolution rate to time is opposite to the one of entropy. We find the correlation between heat radiation and time evolution of the nonextensive parameter in the self-gravitating systems and plasmas. In such systems, the emission of radiation heat leads to the increase of the parameter while the absorption of radiation heat results in the decrease of this parameter. This is consistent with the inference derived from the Clausius' definition of entropy. In order to evolve to the current state, the solar corona should absorb a large amount of radiation heat, which might be originated from the energy released by solar flare. The magnetic connection probably plays a role in the conversion of energy. A correct dynamics theory of magnetic connection should explain how the energy conversion is achieved.
Sibling Group Play Therapy: An Effective Alternative with an Elective Mute Child.
Barlow, Karen; And Others
1986-01-01
Presents the case study of an elective mute child. Describes the effects of sibling play therapy and lists implications for school counselors who might use group or sibling play therapy in their developmental guidance programs. (ABB)
Gravitational wave reception by a sphere
International Nuclear Information System (INIS)
Ashby, N.; Dreitlein, J.
1975-01-01
The reception of gravitational waves by an elastic self-gravitating spherical detector is studied in detail. The equations of motion of a detector driven by a gravitational wave are presented in the intuitively convenient coordinate system of Fermi. An exact analytic solution is given for the homogeneous isotropic sphere. Nonlinear effects of a massive self-gravitating system are computed for a body of mass equal to that of the earth, and are shown to be numerically important
An update on the effects of playing violent video games.
Anderson, Craig A
2004-02-01
This article presents a brief overview of existing research on the effects of exposure to violent video games. An updated meta-analysis reveals that exposure to violent video games is significantly linked to increases in aggressive behaviour, aggressive cognition, aggressive affect, and cardiovascular arousal, and to decreases in helping behaviour. Experimental studies reveal this linkage to be causal. Correlational studies reveal a linkage to serious, real-world types of aggression. Methodologically weaker studies yielded smaller effect sizes than methodologically stronger studies, suggesting that previous meta-analytic studies of violent video games underestimate the true magnitude of observed deleterious effects on behaviour, cognition, and affect.
Casimir effect of two conducting parallel plates in a general weak gravitational field
Energy Technology Data Exchange (ETDEWEB)
Nazari, Borzoo [University of Tehran, Faculty of Engineering Science, College of Engineering, P.O. Box 11155-4563, Tehran (Iran, Islamic Republic of)
2015-10-15
We calculate the finite vacuum energy density of the scalar and electromagnetic fields inside a Casimir apparatus made up of two conducting parallel plates in a general weak gravitational field. The metric of the weak gravitational field has a small deviation from flat spacetime inside the apparatus, and we find it by expanding the metric in terms of small parameters of the weak background. We show that the metric found can be transformed via a gauge transformation to the Fermi metric. We solve the Klein-Gordon equation exactly and find mode frequencies in Fermi spacetime. Using the fact that the electromagnetic field can be represented by two scalar fields in the Fermi spacetime, we find general formulas for the energy density and mode frequencies of the electromagnetic field. Some well-known weak backgrounds are examined and consistency of the results with the literature is shown. (orig.)
Effect of energy deposited by cosmic-ray particles on interferometric gravitational wave detectors
International Nuclear Information System (INIS)
Yamamoto, Kazuhiro; Hayakawa, Hideaki; Okada, Atsushi; Uchiyama, Takashi; Miyoki, Shinji; Ohashi, Masatake; Kuroda, Kazuaki; Kanda, Nobuyuki; Tatsumi, Daisuke; Tsunesada, Yoshiki
2008-01-01
We investigated the noise of interferometric gravitational wave detectors due to heat energy deposited by cosmic-ray particles. We derived a general formula that describes the response of a mirror against a cosmic-ray passage. We found that there are differences in the comic-ray responses (the dependence of temperature and cosmic-ray track position) in cases of interferometric and resonant gravitational wave detectors. The power spectral density of vibrations caused by low-energy secondary muons is 100 times smaller than the goal sensitivity of future second-generation interferometer projects, such as LCGT and Advanced LIGO. The arrival frequency of high-energy cosmic-ray muons that generate enough large showers inside mirrors of LCGT and Advanced LIGO is one per a millennium. We also discuss the probability of exotic-particle detection with interferometers.
Directory of Open Access Journals (Sweden)
Metin SALTIK
1996-03-01
Full Text Available According to classical electromagnetic theory, an accelerated charge or system of charges radiates electromagnetic waves. In a radio transmitter antenna charges are accelerated along the antenna and release electromagnetic waves, which is radiated at the velocity of light in the surrounding medium. All of the radio transmitters work on this principle today. In this study an analogy is established between the principles by which accelerated charge systems markes radiation and the accelerated mass system, and the systems cousing gravitational radiation are investigated.
International Nuclear Information System (INIS)
Turner, E.L.
1989-01-01
The author discusses how gravitational lens studies is becoming a major focus of extragalactic astronomy and cosmology. This review is organized into five parts: an overview of the observational situation, a look at the state of theoretical work on lenses, a detailed look at three recently discovered types of lensing phenomena (luminous arcs, radio rings, quasar-galaxy associations), a review of progress on two old problems in lens studies (deriving unique lens mass distribution models, measurements of differential time delays), and an attempt to look into the future of lens studies
THE MASS OF (4) VESTA DERIVED FROM ITS LARGEST GRAVITATIONAL EFFECTS
International Nuclear Information System (INIS)
Kuzmanoski, Mike; Novakovic, Bojan; Apostolovska, Gordana
2010-01-01
In this paper, we present a recalculated value of the mass of (4) Vesta, derived from its largest gravitational perturbations on selected asteroids during their mutual close encounters. This was done by using a new method for mass determination, which is based on the linking of pre-encounter observations to the orbit determined from post-encounter ones. The estimated weighted mean of the mass of (4) Vesta is (1.300 ± 0.001) x 10 -10 M sun .
Playing with QCD I: effective field theories. Third lecture
International Nuclear Information System (INIS)
Fraga, Eduardo S.
2009-01-01
One can construct useful effective models to describe the deconfining transition using the Polyakov loop as the building block. This procedure was generalized to a matrix model approach, including fermions as a background field (not discussed here). The chiral transition can be described using the chiral condensate as the order parameter. Nonzero (even if small) quark masses bring non-trivial consequences to the phase structure of QCD. Are deconfinement and chiral transition closely related? Do they happen at the same T? Several effective approaches available, but physics still unclear. (author)
Effectiveness of the Call in Beach Volleyball Attacking Play
Directory of Open Access Journals (Sweden)
Künzell Stefan
2014-12-01
Full Text Available In beach volleyball the setter has the opportunity to give her or his hitter a “call”. The call intends that the setter suggests to her or his partner where to place the attack in the opponent’s court. The effectiveness of a call is still unknown. We investigated the women’s and men’s Swiss National Beach Volleyball Championships in 2011 and analyzed 2185 attacks. We found large differences between female and male players. While men called in only 38.4% of attacks, women used calls in 85.5% of attacks. If the male players followed a given call, 63% of the attacks were successful. The success rate of attacks without any call was 55.8% and 47.6% when the call was ignored. These differences were not significant (χ2(2 = 4.55, p = 0.103. In women’s beach volleyball, the rate of successful attacks was 61.5% when a call was followed, 35% for attacks without a call, and 42.6% when a call was ignored. The differences were highly significant (χ2(2 = 23.42, p < 0.0005. Taking into account the findings of the present study, we suggested that the call was effective in women’s beach volleyball, while its effect in men’s game was unclear. Considering the quality of calls we indicate that there is a significant potential to increase the effectiveness of a call.
An Update on the Effects of Playing Violent Video Games
Anderson, Craig, A.
2004-01-01
This article presents a brief overview of existing research on the effects of exposure to violent video games. An updated meta-analysis reveals that exposure to violent video games is significantly linked to increases in aggressive behaviour, aggressive cognition, aggressive affect, and cardiovascular arousal, and to decreases in helping…
Poels, Karolien; van den Hoogen, Wouter; Ijsselsteijn, Wijnand; de Kort, Yvonne
2012-01-01
This study investigated how player emotions during game-play, measured through self-report and physiological recordings, predict playing time and game preferences. We distinguished between short-term (immediately after game-play) and long-term (after 3 weeks) playing time and game preferences. While pleasure was most predictive for short-term playing time and game preferences, arousal, particularly for game preferences, was most predictive on the longer term. This result was found through both self-report and physiological emotion measures. This study initiates theorizing about digital gaming as a hedonic consumer product and sketches future research endeavors of this topic.
Playing with QCD I: effective field theories. Fourth lecture
International Nuclear Information System (INIS)
Fraga, Eduardo S.
2009-01-01
Lattice QCD is just starting to explore the finite density region, still far away from the high-density low-temperature sector. pQCD at finite density seems to provide sensible results, even for not so large values of μ. Mass and gap effects provide important contributions to the EoS near the critical region. The phase diagram can be very rich in the high-μ sector, with different possibilities for pairing and color superconductivity. Astrophysical measurements are becoming increasingly precise, and will start killing models soon. Some signatures (for strange, quark or hybrid neutron stars) are still very similar, though. The interior of compact stars is a very rich and intricate medium, which may contain all sorts of condensates as well as deconfined quark matter. (author)
Geodesics analysis of colliding gravitational shock waves
International Nuclear Information System (INIS)
Pozdeeva, E.
2011-01-01
Full text: (author)We consider collision of charged gravitational shock waves with infinite transverse extension (charged gravitational walls). We study the influence of the charges on the trapped surface formation in the charged walls collision. This consideration has applications in the in heavy ion collisions using a holographic approach in which the charge plays the role of the chemical potential
Ultra-low-frequency dust-electromagnetic modes in self-gravitating magnetized dusty plasmas
International Nuclear Information System (INIS)
Banerjee, A.K.; Alam, M.N.; Mamun, A.A.
2001-01-01
Obliquely propagating ultra-low-frequency dust-electromagnetic waves in a self-gravitating, warm, magnetized, two fluid dusty plasma system have been investigated. Two special cases, namely, dust-Alfven mode propagating parallel to the external magnetic field and dust- magnetosonic mode propagating perpendicular to the external magnetic field have also been considered. It has been shown that effects of self-gravitational field, dust fluid temperature, and obliqueness significantly modify the dispersion properties of these ultra-low-frequency dust-electromagnetic modes. It is also found that in parallel propagating dust-Alfven mode these effects play no role, but in obliquely propagating dust-Alfven mode or perpendicular propagating dust-magnetosonic mode the effect of self-gravitational field plays destabilizing role whereas the effect of dust/ion fluid temperature plays stabilizing role. (author)
Measurement of gravitational acceleration of antimatter
International Nuclear Information System (INIS)
Rouhani, S.
1989-12-01
The minute yet effective impact of gravitational potential in the central region of a long tube magnetic container of non-neutral plasmas can be utilized for the measurement of the gravitational acceleration of antimatter particles. The slight change in distribution of plasma particles along the gravitational field affects the internal electric field of the plasma, which in turn affects the frequency of the magnetron motion of its particles. Thus, a rather straightforward relation is established between the gravitational acceleration of the particles and their magnetron frequencies, which is measurable directly, determining the value of the gravitational acceleration. (author). 7 refs, 3 figs
Anisotropic solutions by gravitational decoupling
Ovalle, J.; Casadio, R.; da Rocha, R.; Sotomayor, A.
2018-02-01
We investigate the extension of isotropic interior solutions for static self-gravitating systems to include the effects of anisotropic spherically symmetric gravitational sources by means of the gravitational decoupling realised via the minimal geometric deformation approach. In particular, the matching conditions at the surface of the star with the outer Schwarzschild space-time are studied in great detail, and we describe how to generate, from a single physically acceptable isotropic solution, new families of anisotropic solutions whose physical acceptability is also inherited from their isotropic parent.
Anisotropic solutions by gravitational decoupling
Energy Technology Data Exchange (ETDEWEB)
Ovalle, J. [Silesian University in Opava, Institute of Physics and Research Centre of Theoretical Physics and Astrophysics, Faculty of Philosophy and Science, Opava (Czech Republic); Universidad Simon Bolivar, Departamento de Fisica, Caracas (Venezuela, Bolivarian Republic of); Casadio, R. [Alma Mater Universita di Bologna, Dipartimento di Fisica e Astronomia, Bologna (Italy); Istituto Nazionale di Fisica Nucleare, Bologna (Italy); Rocha, R. da [Universidade Federal do ABC (UFABC), Centro de Matematica, Computacao e Cognicao, Santo Andre, SP (Brazil); Sotomayor, A. [Universidad de Antofagasta, Departamento de Matematicas, Antofagasta (Chile)
2018-02-15
We investigate the extension of isotropic interior solutions for static self-gravitating systems to include the effects of anisotropic spherically symmetric gravitational sources by means of the gravitational decoupling realised via the minimal geometric deformation approach. In particular, the matching conditions at the surface of the star with the outer Schwarzschild space-time are studied in great detail, and we describe how to generate, from a single physically acceptable isotropic solution, new families of anisotropic solutions whose physical acceptability is also inherited from their isotropic parent. (orig.)
Healy, James; Lousto, Carlos O.
2018-04-01
We present the results of 74 new simulations of nonprecessing spinning black hole binaries with mass ratios q =m1/m2 in the range 1 /7 ≤q ≤1 and individual spins covering the parameter space -0.95 ≤α1 ,2≤0.95 . We supplement those runs with 107 previous simulations to study the hangup effect in black hole mergers, i.e. the delay or prompt merger of spinning holes with respect to nonspinning binaries. We perform the numerical evolution for typically the last ten orbits before the merger and down to the formation of the final remnant black hole. This allows us to study the hangup effect for unequal mass binaries leading us to identify the spin variable that controls the number of orbits before merger as S→ hu.L ^ , where S→ hu=(1 +1/2 m/2 m1 )S→ 1+(1 +1/2 m/1 m2 )S→ 2 . We also combine the total results of those 181 simulations to obtain improved fitting formulas for the remnant final black hole mass, spin and recoil velocity as well as for the peak luminosity and peak frequency of the gravitational strain, and find new correlations among them. This accurate new set of simulations enhances the number of available numerical relativity waveforms available for parameter estimation of gravitational wave observations.
Forward modeling of space-borne gravitational wave detectors
International Nuclear Information System (INIS)
Rubbo, Louis J.; Cornish, Neil J.; Poujade, Olivier
2004-01-01
Planning is underway for several space-borne gravitational wave observatories to be built in the next 10 to 20 years. Realistic and efficient forward modeling will play a key role in the design and operation of these observatories. Space-borne interferometric gravitational wave detectors operate very differently from their ground-based counterparts. Complex orbital motion, virtual interferometry, and finite size effects complicate the description of space-based systems, while nonlinear control systems complicate the description of ground-based systems. Here we explore the forward modeling of space-based gravitational wave detectors and introduce an adiabatic approximation to the detector response that significantly extends the range of the standard low frequency approximation. The adiabatic approximation will aid in the development of data analysis techniques, and improve the modeling of astrophysical parameter extraction
Weight, gravitation, inertia, and tides
Pujol, Olivier; Lagoute, Christophe; Pérez, José-Philippe
2015-11-01
This paper deals with the factors that influence the weight of an object near the Earth's surface. They are: (1) the Earth's gravitational force, (2) the centrifugal force due to the Earth's diurnal rotation, and (3) tidal forces due to the gravitational field of the Moon and Sun, and other solar system bodies to a lesser extent. Each of these three contributions is discussed and expressions are derived. The relationship between weight and gravitation is thus established in a direct and pedagogical manner readily understandable by undergraduate students. The analysis applies to the Newtonian limit of gravitation. The derivation is based on an experimental (or operational) definition of weight, and it is shown that it coincides with the Earth’s gravitational force modified by diurnal rotation around a polar axis and non-uniformity of external gravitational bodies (tidal term). Two examples illustrate and quantify these modifications, respectively the Eötvös effect and the oceanic tides; tidal forces due to differential gravitation on a spacecraft and an asteroid are also proposed as examples. Considerations about inertia are also given and some comments are made about a widespread, yet confusing, explanation of tides based on a centrifugal force. Finally, the expression of the potential energy of the tide-generating force is established rigorously in the appendix.
Weight, gravitation, inertia, and tides
International Nuclear Information System (INIS)
Pujol, Olivier; Lagoute, Christophe; Pérez, José-Philippe
2015-01-01
This paper deals with the factors that influence the weight of an object near the Earth's surface. They are: (1) the Earth's gravitational force, (2) the centrifugal force due to the Earth's diurnal rotation, and (3) tidal forces due to the gravitational field of the Moon and Sun, and other solar system bodies to a lesser extent. Each of these three contributions is discussed and expressions are derived. The relationship between weight and gravitation is thus established in a direct and pedagogical manner readily understandable by undergraduate students. The analysis applies to the Newtonian limit of gravitation. The derivation is based on an experimental (or operational) definition of weight, and it is shown that it coincides with the Earth’s gravitational force modified by diurnal rotation around a polar axis and non-uniformity of external gravitational bodies (tidal term). Two examples illustrate and quantify these modifications, respectively the Eötvös effect and the oceanic tides; tidal forces due to differential gravitation on a spacecraft and an asteroid are also proposed as examples. Considerations about inertia are also given and some comments are made about a widespread, yet confusing, explanation of tides based on a centrifugal force. Finally, the expression of the potential energy of the tide-generating force is established rigorously in the appendix. (paper)
Mukherjee, Arunava; Messenger, Chris; Riles, Keith
2018-02-01
The LIGO's discovery of binary black hole mergers has opened up a new era of transient gravitational wave astronomy. The potential detection of gravitational radiation from another class of astronomical objects, rapidly spinning nonaxisymmetric neutron stars, would constitute a new area of gravitational wave astronomy. Scorpius X-1 (Sco X-1) is one of the most promising sources of continuous gravitational radiation to be detected with present-generation ground-based gravitational wave detectors, such as Advanced LIGO and Advanced Virgo. As the sensitivity of these detectors improve in the coming years, so will power of the search algorithms being used to find gravitational wave signals. Those searches will still require integration over nearly year long observational spans to detect the incredibly weak signals from rotating neutron stars. For low mass X-ray binaries such as Sco X-1 this difficult task is compounded by neutron star "spin wandering" caused by stochastic accretion fluctuations. In this paper, we analyze X-ray data from the R X T E satellite to infer the fluctuating torque on the neutron star in Sco X-1. We then perform a large-scale simulation to quantify the statistical properties of spin-wandering effects on the gravitational wave signal frequency and phase evolution. We find that there are a broad range of expected maximum levels of frequency wandering corresponding to maximum drifts of between 0.3 - 50 μ Hz /sec over a year at 99% confidence. These results can be cast in terms of the maximum allowed length of a coherent signal model neglecting spin-wandering effects as ranging between 5-80 days. This study is designed to guide the development and evaluation of Sco X-1 search algorithms.
Rudan, Dusko
2013-12-01
The paper offers a review of the development of the concept of play and playing. The true beginnings of the development of the theories of play are set as late as in the 19th century. It is difficult to define play as such; it may much more easily be defined through its antipode--work. In the beginning, play used to be connected with education; it was not before Freud's theory of psychoanalysis and Piaget's developmental psychology that the importance of play in a child's development began to be explained in more detail. The paper further tackles the role of play in the adult age. Detailed attention is paid to psychodynamic and psychoanalytic authors, in particular D. W. Winnicott and his understanding of playing in the intermediary (transitional) empirical or experiential space. In other words, playing occupies a space and time of its own. The neuroscientific concept of playing is also tackled, in the connection with development as well.
Effects of QCD equation of state on the stochastic gravitational wave background
Energy Technology Data Exchange (ETDEWEB)
Anand, Sampurn; Mohanty, Subhendra [Physical Research Laboratory, Ahmedabad 380009 (India); Dey, Ujjal Kumar, E-mail: sampurn@prl.res.in, E-mail: ujjal@cts.iitkgp.ernet.in, E-mail: mohanty@prl.res.in [Centre for Theoretical Studies, Indian Institute of Technology, Kharagpur 721302 (India)
2017-03-01
Cosmological phase transitions can be a source of Stochastic Gravitational Wave (SGW) background. Apart from the dynamics of the phase transition, the characteristic frequency and the fractional energy density Ω{sub gw} of the SGW depends upon the temperature of the transition. In this article, we compute the SGW spectrum in the light of QCD equation of state provided by the lattice results. We find that the inclusion of trace anomaly from lattice QCD, enhances the SGW signal generated during QCD phase transition by ∼ 50% and the peak frequency of the QCD era SGW are shifted higher by ∼ 25% as compared to the earlier estimates without trace anomaly. This result is extremely significant for testing the phase transition dynamics near QCD epoch.
Quantum biological gravitational wave detectors
International Nuclear Information System (INIS)
Kopvillem, U.Kh.
1985-01-01
A possibility of producing biological detectors of gravitational waves is considered. High sensitivity of biological systems to outer effects can be ensured by existence of molecule subgroups in Dicke states. Existence of clusters in Dicke state-giant electric dipoles (GED) is supposed in the Froehlich theory. Comparison of biological and physical detectors shows that GED systems have unique properties for detection of gravitational waves if the reception range is narrow
International Nuclear Information System (INIS)
Logunov, A.A.
1989-01-01
The author believes that the General Relativity Theory (GRT) suffers from a substantial deficiency since it ignors the fundamental laws of conservation of energy. Einstein neglected the classical concept of the field due to his belief in the truth of the principle of equivalence between forces of inertid gravitation. This equivalence leads, as the author says, to nonequivalence of these forces, making GRT logically contradictory from the physical point of view. The author considers GRT as a certain stage in the course of the study of space-time and gravitation, and suggests a new theory called the Relativistic Theory of Gravitation (RTG) which obeys the fundamental laws of conservation, and which is justified in some of its aspects by astronomical observations. RTG does not suffer from some deficiencies met in Einsteins theory. One is nonunique predictions of gravitation effects within the boundaries of the solar system. Also, RTG refuses some hypothesis as that of black holes. 7 refs
Cenikli, Abdullah
2016-01-01
The aims of the present research are to test the effects of running and playing exercises on leucocyte and differential leucocyte accounts, and to test the possible differences between running and playing exercises in terms of leucocyte accounts. They were thirty two male young soccer players. Participants arrived at the laboratory after a 12-hour…
Tabak, Filiz; Lebron, Mariana
2017-01-01
This paper describes the implementation of a role-play exercise to illustrate the influence of followership styles and effective communication on leader-follower relationship formation and development. We provide the pedagogical theory and evidence behind using role-plays in classroom settings, followed by a literature review pertaining to…
Effect of Short- and Long-Term Play Therapy Services on Teacher-Child Relationship Stress
Ray, Dee C.; Henson, Robin K.; Schottelkorb, April A.; Brown, April Garofano; Muro, Joel
2008-01-01
The purpose of the present study was to explore the effect of both short- and long term Child-Centered Play Therapy on teacher-student relationship stress. Teachers identified 58 students exhibiting emotional and behavioral difficulties who were randomly assigned to one of two treatment groups. Students in the short-term intensive play therapy…
Utz, S.; Jonas, K.J.; Tonkens, E.
2012-01-01
Game research suffers from using a variety of concepts to predict the (often negative) effects of playing games. These concepts often overlap (e.g., addiction or pathological gaming), include negative consequences in their definition, or are very game-specific (e.g., collective play). We argue that
Effects of Playing versus Observing Violent versus Nonviolent Video Games on Children's Aggression.
Graybill, Daniel; And Others
1987-01-01
Examined short-term effects of playing versus observing violent versus nonviolent video games on the aggression of elementary school children. Children (N=146) played or observed games for 14 minutes, then completed three measures of aggression. Found no differences between violent and nonviolent conditions on measures of aggression. (Author/NB)
Effects of video game playing on cerebral blood flow in young adults: a SPECT study.
Chou, Yuan-Hwa; Yang, Bang-Hung; Hsu, Ju-Wei; Wang, Shyh-Jen; Lin, Chun-Lung; Huang, Kai-Lin; Chien Chang, Alice; Lee, Shin-Min
2013-04-30
To study the impact of video game playing on the human brain, the effects of two video games playing on cerebral blood flow (CBF) in young adults were determined. Thirty healthy subjects comprising 18 males and 12 females who were familiar with video game playing were recruited. Each subject underwent three sessions of single photon emission computed tomography (SPECT) with a bolus injection of 20 mCi (99m)Tc ECD IV to measure their CBF. The first measurement was performed as baseline, the second and third measurements were performed after playing two different video games for 30 min, respectively. Statistic parametric mapping (SPM2) with Matlab 6.5 implemented on a personal computer was used for image analysis. CBF was significantly decreased in the prefrontal cortex and significantly increased in the temporal and occipital cortices after both video games playing. Furthermore, decreased CBF in the anterior cingulate cortex (ACC) which was significantly correlated with the number of killed characters was found after the violent game playing. The major finding of hypo-perfusion in prefrontal regions after video game playing is consistent with a previous study showing reduced or abnormal prefrontal cortex functions after video game playing. The second finding of decreased CBF in the ACC after playing the violent video game provides support for a previous hypothesis that the ACC might play a role in regulating violent behavior. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Compensation for gravitational sag of bent mirror
Energy Technology Data Exchange (ETDEWEB)
Mao, Chengwen; Jiang, Hui; He, Yan; Liang, Dongxu; Lan, Xuying; Yan, Shuai [Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, CAS, Shanghai 201800 (China); Shu, De-ming [Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439 (United States); Li, Aiguo, E-mail: aiguo.li@sinap.ac.cn [Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, CAS, Shanghai 201800 (China)
2017-05-01
The gravitational sag of aspheric bent mirrors with face-up or face-down geometry produces a nonnegligible optical error. As an effective compensation, width optimization is used to match the combined effects of the gravitational and bending moments. This method is described by analytical expressions and two calculation algorithms. The results of theoretical simulations and finite element analysis have proved that this method can reduce the slope error resulting from gravitational sag to the level of nano radians.
Compensation for gravitational sag of bent mirror
International Nuclear Information System (INIS)
Mao, Chengwen; Jiang, Hui; He, Yan; Liang, Dongxu; Lan, Xuying; Yan, Shuai; Shu, De-ming; Li, Aiguo
2017-01-01
The gravitational sag of aspheric bent mirrors with face-up or face-down geometry produces a nonnegligible optical error. As an effective compensation, width optimization is used to match the combined effects of the gravitational and bending moments. This method is described by analytical expressions and two calculation algorithms. The results of theoretical simulations and finite element analysis have proved that this method can reduce the slope error resulting from gravitational sag to the level of nano radians.
International Nuclear Information System (INIS)
Barack, Leor; Sago, Norichika
2011-01-01
We study conservative finite-mass corrections to the motion of a particle in a bound (eccentric) strong-field orbit around a Schwarzschild black hole. We assume the particle's mass μ is much smaller than the black hole mass M, and explore post-geodesic corrections of O(μ/M). Our analysis uses numerical data from a recently developed code that outputs the Lorenz-gauge gravitational self-force (GSF) acting on the particle along the eccentric geodesic. First, we calculate the O(μ/M) conservative correction to the periastron advance of the orbit, as a function of the (gauge-dependent) semilatus rectum and eccentricity. A gauge-invariant description of the GSF precession effect is made possible in the circular-orbit limit, where we express the correction to the periastron advance as a function of the invariant azimuthal frequency. We compare this relation with results from fully nonlinear numerical-relativistic simulations. In order to obtain a gauge-invariant measure of the GSF effect for fully eccentric orbits, we introduce a suitable generalization of Detweiler's circular-orbit ''redshift'' invariant. We compute the O(μ/M) conservative correction to this invariant, expressed as a function of the two invariant frequencies that parametrize the orbit. Our results are in good agreement with results from post-Newtonian calculations in the weak-field regime, as we shall report elsewhere. The results of our study can inform the development of analytical models for the dynamics of strongly gravitating binaries. They also provide an accurate benchmark for future numerical-relativistic simulations.
KaplanskiI, A S; Il'ina-Kakueva, E I; Durnova, G N; Alekseev, E A; Loginov, V I
1999-01-01
In a 3-wk experiment with tail-suspended rats histological and histomorphometric methods were used to determine the effects of graded gravitational loading (GGL) and anabolic steroid retabolil (nortestosterone decanoate) on the course of atrophy in soleus m. (SM), gastrocnemius m. (GM), tibia and humerus, and functioning of somatotrophic hormones (STH) of the pituitary and thyrocytes of the thyroid. Suspension was found to produce atrophy in SM and, to a less degree, in GM, partial transformation of SM slow fibers into the fast ones, suppression of the tibial longitudinal growth, demineralization of the tibial and humeral spongious metaphyses; besides, functional activities of STH-cells and thyrocytes were inhibited. Graded gravitational loading of rats by intermittence of suspension for 2 hrs slowed down atrophy in both muscles and osteopenia in tibia, stimulated the synthetic and secretory functions of STH-cells without any marked effect on thyrocytes or humeral osteopenia. GGL failed to influence the slow-to-fast transformation of SM fibers. Two injections of retabolil at the total dose of 3 mg/kg of the body mass somewhat interfered with the SM atrophy and humoral osteopenia, and were favorable to the synthetic but not secretory activity of STH-cells. Neither SM and tibial atrophies nor thyroid activity of the gland were improved. The prophylactic action of GGL upon the SM and humeral atrophies was significantly higher when combined with retabolil, whereas GM and tibia were not noticeably cured by retabolil. Inhibition of the SM atrophy and humeral osteopenia in rats treated with GGL and retabolil concurred with elevated activities of STH-cells and thyrocytes indirectly suggesting their more intensive production of the growth hormone and thyroid hormones, respectively.
General relativity and gravitation, 1989
International Nuclear Information System (INIS)
Ashby, N.; Bartlett, D.F.; Wyss, W.
1990-01-01
This volume records the lectures and symposia of the 12th International Conference on General Relativity and Gravitation. Plenary lecturers reviewed the major advances since the previous conference in 1986. The reviews cover classical and quantum theory of gravity, colliding gravitational waves, gravitational lensing, relativistic effects on pulsars, tests of the inverse square law, numerical relativity, cosmic microwave background radiation, experimental tests of gravity theory, gravitational wave detectors, and cosmology. The plenary lectures are complemented by summaries of symposia, provided by the chairmen. Almost 700 contributed papers were presented at these and they cover an even wider range of topics than the plenary talks. The book provides a comprehensive guide to research activity in both experimental and theoretical gravitation and its applications in astrophysics and cosmology. It will be essential reading for research workers in these fields, as well as theoretical and experimental physicists, astronomers, and mathematicians who wish to be acquainted with modern developments in gravitational theory and general relativity. All the papers and summaries of the workshop sessions are indexed separately. (16 united talks, 20 workshop sessions). (author)
Relative Effectiveness of Operant Conditioning and Play Therapy in Childhood Schizophrenia
Ney, Philip G.; And Others
1971-01-01
An experimental study designed to examine the relative effectiveness of operant conditioning and play therapy in improving the communication and social functioning of psychotic children was presented and discussed. (Author)
Hydrodynamics, fields and constants in gravitational theory
International Nuclear Information System (INIS)
Stanyukovich, K.P.; Mel'nikov, V.N.
1983-01-01
Results of original inveatigations into problems of standard gravitation theory and its generalizations are presented. The main attention is paid to the application of methods of continuous media techniques in the gravitation theory; to the specification of the gravitation role in phenomena of macro- and microworld, accurate solutions in the case, when the medium is the matter, assigned by hydrodynamic energy-momentum tensor; and to accurate solutions for the case when the medium is the field. GRT generalizations are analyzed, such as the new cosmologic hypothesis which is based on the gravitation vacuum theory. Investigations are performed into the quantization of cosmological models, effects of spontaneous symmetry violation and particle production in cosmology. Graeity theory with fundamental Higgs field is suggested in the framework of which in the atomic unit number one can explain possible variations of the effective gravitational bonds, and in the gravitation bond, variations of masses of all particles
Ewoldsen, David R; Eno, Cassie A; Okdie, Bradley M; Velez, John A; Guadagno, Rosanna E; DeCoster, Jamie
2012-05-01
Research on video games has yielded consistent findings that violent video games increase aggression and decrease prosocial behavior. However, these studies typically examined single-player games. Of interest is the effect of cooperative play in a violent video game on subsequent cooperative or competitive behavior. Participants played Halo II (a first-person shooter game) cooperatively or competitively and then completed a modified prisoner's dilemma task to assess competitive and cooperative behavior. Compared with the competitive play conditions, players in the cooperative condition engaged in more tit-for-tat behaviors-a pattern of behavior that typically precedes cooperative behavior. The social context of game play influenced subsequent behavior more than the content of the game that was played.
Prevention of gravitational collapse
International Nuclear Information System (INIS)
Moffat, J.W.; Taylor, J.G.
1981-01-01
We apply a new theory of gravitation to the question of gravitational collapse to show that collapse is prevented in this theory under very reasonable conditions. This result also extends to prevent ultimate collapse of the Universe. (orig.)
Underdevelopment’s gravitation
Directory of Open Access Journals (Sweden)
Marin Dinu
2013-09-01
Full Text Available The energy necessary to escape the gravitational pull of underdevelopment and to enter an evolutional trajectory dependent on the gravitational pull of development is unintelligible in economic terms.
Energy Technology Data Exchange (ETDEWEB)
Levi, Michele [Université Pierre et Marie Curie, CNRS-UMR 7095, Institut d' Astrophysique de Paris, 98 bis Boulevard Arago, 75014 Paris (France); Steinhoff, Jan, E-mail: michele.levi@upmc.fr, E-mail: jan.steinhoff@aei.mpg.de [Max-Planck-Institute for Gravitational Physics (Albert-Einstein-Institute), Am Mühlenberg 1, 14476 Potsdam-Golm (Germany)
2016-01-01
We implement the effective field theory for gravitating spinning objects in the post-Newtonian scheme at the next-to-next-to-leading order level to derive the gravitational spin-orbit interaction potential at the third and a half post-Newtonian order for rapidly rotating compact objects. From the next-to-next-to-leading order interaction potential, which we obtain here in a Lagrangian form for the first time, we derive straightforwardly the corresponding Hamiltonian. The spin-orbit sector constitutes the most elaborate spin dependent sector at each order, and accordingly we encounter a proliferation of the relevant Feynman diagrams, and a significant increase of the computational complexity. We present in detail the evaluation of the interaction potential, going over all contributing Feynman diagrams. The computation is carried out in terms of the ''nonrelativistic gravitational'' fields, which are advantageous also in spin dependent sectors, together with the various gauge choices included in the effective field theory for gravitating spinning objects, which also optimize the calculation. In addition, we automatize the effective field theory computations, and carry out the automated computations in parallel. Such automated effective field theory computations would be most useful to obtain higher order post-Newtonian corrections. We compare our Hamiltonian to the ADM Hamiltonian, and arrive at a complete agreement between the ADM and effective field theory results. Finally, we provide Hamiltonians in the center of mass frame, and complete gauge invariant relations among the binding energy, angular momentum, and orbital frequency of an inspiralling binary with generic compact spinning components to third and a half post-Newtonian order. The derivation presented here is essential to obtain further higher order post-Newtonian corrections, and to reach the accuracy level required for the successful detection of gravitational radiation.
Gravitational Physics Research
Wu, S. T.
2000-01-01
Gravitational physics research at ISPAE is connected with NASA's Relativity Mission (Gravity Probe B (GP-B)) which will perform a test of Einstein's General Relativity Theory. GP-B will measure the geodetic and motional effect predicted by General Relativity Theory with extremely stable and sensitive gyroscopes in an earth orbiting satellite. Both effects cause a very small precession of the gyroscope spin axis. The goal of the GP-B experiment is the measurement of the gyroscope precession with very high precision. GP-B is being developed by a team at Stanford University and is scheduled for launch in the year 2001. The related UAH research is a collaboration with Stanford University and MSFC. This research is focussed primarily on the error analysis and data reduction methods of the experiment but includes other topics concerned with experiment systems and their performance affecting the science measurements. The hydrogen maser is the most accurate and stable clock available. It will be used in future gravitational physics missions to measure relativistic effects such as the second order Doppler effect. The HMC experiment, currently under development at the Smithsonian Astrophysical Observatory (SAO), will test the performance and capability of the hydrogen maser clock for gravitational physics measurements. UAH in collaboration with the SAO science team will study methods to evaluate the behavior and performance of the HMC. The GP-B data analysis developed by the Stanford group involves complicated mathematical operations. This situation led to the idea to investigate alternate and possibly simpler mathematical procedures to extract the GP-B measurements form the data stream. Comparison of different methods would increase the confidence in the selected scheme.
Gravitational Anomaly and Transport Phenomena
International Nuclear Information System (INIS)
Landsteiner, Karl; Megias, Eugenio; Pena-Benitez, Francisco
2011-01-01
Quantum anomalies give rise to new transport phenomena. In particular, a magnetic field can induce an anomalous current via the chiral magnetic effect and a vortex in the relativistic fluid can also induce a current via the chiral vortical effect. The related transport coefficients can be calculated via Kubo formulas. We evaluate the Kubo formula for the anomalous vortical conductivity at weak coupling and show that it receives contributions proportional to the gravitational anomaly coefficient. The gravitational anomaly gives rise to an anomalous vortical effect even for an uncharged fluid.
Gravitational bending of light rays in plasma
International Nuclear Information System (INIS)
Tsupko, O. Yu.; Bisnovatyi-Kogan, G. S.
2010-01-01
We investigate the gravitational lensing effect in presence of plasma. We observe that in a homogeneous plasma the gravitational deflection angle differs from that in vacuum, and it depends on the frequency of the photon. We discuss observational consequences of this dependence for the point-mass lensing and estimate possibility of the observation of this effect by the planned project Radioastron.
Ridgely, Charles T.
2011-01-01
When two gravitating bodies reside in a material medium, Newton's law of universal gravitation must be modified to account for the presence of the medium. A modified expression of Newton's law is known in the literature, but lacks a clear connection with existing gravitational theory. Newton's law in the presence of a homogeneous material medium…
Detection of gravitational radiation
Energy Technology Data Exchange (ETDEWEB)
Holten, J.W. van [ed.
1994-12-31
In this report the main contributions presented at the named symposium are collected. These concern astrophysical sources of gravitational radiation, ultracryogenic gravitational wave experiments, read out and data analysis of gravitational wave antennas, cryogenic aspects of large mass cooling to mK temperatures, and metallurgical and engineering aspects of large Cu structure manufacturing. (HSI).
Detection of gravitational radiation
International Nuclear Information System (INIS)
Holten, J.W. van
1994-01-01
In this report the main contributions presented at the named symposium are collected. These concern astrophysical sources of gravitational radiation, ultracryogenic gravitational wave experiments, read out and data analysis of gravitational wave antennas, cryogenic aspects of large mass cooling to mK temperatures, and metallurgical and engineering aspects of large Cu structure manufacturing. (HSI)
Relativity theory and gravitation
International Nuclear Information System (INIS)
Bondi, H.
1986-01-01
The paper on relativity theory and gravitation is presented as a preface to the first of the articles submitted to the Journal on general relativity. Newtonian gravitation and and observation, relativity, and the sources of the gravitational field, are all discussed. (UK)
THE EFFECTIVENESS OF PLAY THERAPY AND MUSICAL THERAPY IN REDUCING THE HOSPITALIZATION STRESS
Directory of Open Access Journals (Sweden)
Yuni Sufyanti Arief
2017-07-01
Full Text Available Introduction: Hospitalization in pediatric patients may caused an anxiety and stress in all age levels. Several techniques can be applied to reduced hospitalization stress in children, such as playing therapy and music therapy. The objective of this study was to analyze the difference of effectiveness between both therapies in reducing the hospitalization stress in 4-6 years old children. Method: A quasy-experimental pre-posttest design was used in this study. There were 18 respondents, divided into three groups, i.e. group one receiving playing therapy, group two receiving music therapy and the last group as control group. Data were collected by using observation sheet before and after intervention to recognize the hospitalization stress. Data were analyzed by using Wilcoxon Signed Rank Test and Mann Whitney U Test with significance level of α<0.05. Result: Result showed that playing therapy and music therapy had significant effect to reduce the hospitalization stress with p=0.027 for play therapy, p=0.024 for musical therapy, and p=0.068 for control. Mann Whitney U Test revealed that there were no difference in the effectiveness of play therapy and musical therapy in reducing the hospitalization stress with p=0.009 for play therapy and control group, p=0.012 for music therapy and control group, and p=0.684 for playing therapy and musical therapy. Discussion: It can be concluded that play therapy and musical therapy are equally effective to reduce the hospitalization stress in children. It’s recommended for nurses in pediatric ward to do playg therapy and musical therapy periodically.
The earth's gravitational field
Digital Repository Service at National Institute of Oceanography (India)
Ramprasad, T.
. But to say that gravity acts downwards is not correct. Gravity acts down, no matter where you stand on the Earth. It is better to say that on Earth gravity pulls objects towards the centre of the Earth. So no matter where you are on Earth all objects fall... pull than objects at the poles. In combination, the equatorial bulge and the effects of centrifugal force mean that sea-level gravitational acceleration increases from about 9.780 m/s² at the equator to about 9.832 m/s² at the poles, so an object...
Gravitational waves in cold dark matter
Flauger, Raphael; Weinberg, Steven
2018-06-01
We study the effects of cold dark matter on the propagation of gravitational waves of astrophysical and primordial origin. We show that the dominant effect of cold dark matter on gravitational waves from astrophysical sources is a small frequency dependent modification of the propagation speed of gravitational waves. However, the magnitude of the effect is too small to be detected in the near future. We furthermore show that the spectrum of primordial gravitational waves in principle contains detailed information about the properties of dark matter. However, depending on the wavelength, the effects are either suppressed because the dark matter is highly nonrelativistic or because it contributes a small fraction of the energy density of the universe. As a consequence, the effects of cold dark matter on primordial gravitational waves in practice also appear too small to be detectable.
Gravitationally compact objects as nucleation sites for first-order vacuum phase transitions
International Nuclear Information System (INIS)
Samuel, D.A.; Hiscock, W.A.
1992-01-01
A characteristic of first-order phase transitions is their ability to be initiated by nucleation sites. In this paper we consider the role that gravitationally compact objects may play as nucleation sites for first-order phase transitions within quantum fields. As the presence of nucleation sites may prevent the onset of supercooling, the existence of nucleation sites for phase transitions within quantum fields may play an important role in some inflationary models of the Universe, in which the Universe is required to exist in a supercooled state for a period of time. In this paper we calculate the Euclidean action for an O(3) bubble nucleating about a gravitationally compact object, taken to be a boson star for simplicity. The gravitational field of the boson star is taken to be a small perturbation on flat space, and the O(3) action is calculated to linear order as a perturbation on the O(4) action. The Euclidean bubble profile is found by solving the (Higgs) scalar field equation numerically; the thin-wall approximation is not used. The gravitationally compact objects are found to have the effect of reducing the Euclidean action of the nucleating bubble, as compared to the Euclidean action for the bubble in flat spacetime. The effect is strongest when the size of the gravitationally compact object is comparable to the size of the nucleating bubble. Further, the size of the decrease in action increases as the nucleating ''star'' is made more gravitationally compact. Thus, gravitationally compact objects may play the role of nucleation sites. However, their importance to the process of false-vacuum decay is strongly dependent upon their number density within the Universe
Gravitational waves from supernova matter
International Nuclear Information System (INIS)
Scheidegger, S; Whitehouse, S C; Kaeppeli, R; Liebendoerfer, M
2010-01-01
We have performed a set of 11 three-dimensional magnetohydrodynamical (MHD) core-collapse supernova simulations in order to investigate the dependences of the gravitational wave signal on the progenitor's initial conditions. We study the effects of the initial central angular velocity and different variants of neutrino transport. Our models are started up from a 15M o-dot progenitor and incorporate an effective general relativistic gravitational potential and a finite temperature nuclear equation of state. Furthermore, the electron flavour neutrino transport is tracked by efficient algorithms for the radiative transfer of massless fermions. We find that non- and slowly rotating models show gravitational wave emission due to prompt- and lepton driven convection that reveals details about the hydrodynamical state of the fluid inside the protoneutron stars. Furthermore we show that protoneutron stars can become dynamically unstable to rotational instabilities at T/|W| values as low as ∼2% at core bounce. We point out that the inclusion of deleptonization during the postbounce phase is very important for the quantitative gravitational wave (GW) prediction, as it enhances the absolute values of the gravitational wave trains up to a factor of ten with respect to a lepton-conserving treatment.
International Nuclear Information System (INIS)
Kehayias, John; Profumo, Stefano
2010-01-01
Upcoming gravitational wave (GW) detectors might detect a stochastic background of GWs potentially arising from many possible sources, including bubble collisions from a strongly first-order electroweak phase transition. We investigate whether it is possible to connect, via a semi-analytical approximation to the tunneling rate of scalar fields with quartic potentials, the GW signal through detonations with the parameters entering the potential that drives the electroweak phase transition. To this end, we consider a finite temperature effective potential similar in form to the Higgs potential in the Standard Model (SM). In the context of a semi-analytic approximation to the three dimensional Euclidean action, we derive a general approximate form for the tunneling temperature and the relevant GW parameters. We explore the GW signal across the parameter space describing the potential which drives the phase transition. We comment on the potential detectability of a GW signal with future experiments, and physical relevance of the associated potential parameters in the context of theories which have effective potentials similar in form to that of the SM. In particular we consider singlet, triplet, higher dimensional operators, and top-flavor extensions to the Higgs sector of the SM. We find that the addition of a temperature independent cubic term in the potential, arising from a gauge singlet for instance, can greatly enhance the GW power. The other parameters have milder, but potentially noticeable, effects
Effects of "Fair Play Game" Strategy on Moderate to Vigorous Physical Activity in Physical Education
Azevedo, Liane B.; Vidoni, Carla; Dinsdale, Sarah
2016-01-01
Less than 50% of a PE lesson is usually spent in MVPA. A dependent-group contingency strategy, "Fair Play Game," has shown effectiveness in increasing MVPA during PE lessons among students from affluent schools. The purpose of this study was to determine the effectiveness of this strategy on MVPA among students from an undeserved…
Effects of Playing a Serious Computer Game on Body Mass Index and Nutrition Knowledge in Women.
Shiyko, Mariya; Hallinan, Sean; Seif El-Nasr, Magy; Subramanian, Shree; Castaneda-Sceppa, Carmen
2016-06-02
Obesity and weight gain is a critical public health concern. Serious digital games are gaining popularity in the context of health interventions. They use persuasive and fun design features to engage users in health-related behaviors in a non-game context. As a young field, research about effectiveness and acceptability of such games for weight loss is sparse. The goal of this study was to evaluate real-world play patterns of SpaPlay and its impact on body mass index (BMI) and nutritional knowledge. SpaPlay is a computer game designed to help women adopt healthier dietary and exercise behaviors, developed based on Self-Determination theory and the Player Experience of Need Satisfaction (PENS) model. Progress in the game is tied to real-life activities (e.g., eating a healthy snack, taking a flight of stairs). We recruited 47 women to partake in a within-subject 90-day longitudinal study, with assessments taken at baseline, 1-, 2-, and 3- months. Women were on average, 29.8 years old (±7.3), highly educated (80.9% had BA or higher), 39% non-White, baseline BMI 26.98 (±5.6), who reported at least contemplating making changes in their diet and exercise routine based on the Stages of Change Model. We computed 9 indices from game utilization data to evaluate game play. We used general linear models to examine inter-individual differences between levels of play, and multilevel models to assess temporal changes in BMI and nutritional knowledge. Patterns of game play were mixed. Participants who reported being in the preparation or action stages of behavior change exhibited more days of play and more play regularity compared to those who were in the contemplation stage. Additionally, women who reported playing video games 1-2 hours per session demonstrated more sparse game play. Brief activities, such as one-time actions related to physical activity or healthy food, were preferred over activities that require a longer commitment (e.g., taking stairs every day for a week
Interaction of gravitational waves with superconductors
Energy Technology Data Exchange (ETDEWEB)
Inan, N.A.; Thompson, J.J. [University of California, Schools of Natural Sciences, Merced, CA (United States); Chiao, R.Y. [University of California, Schools of Natural Sciences and Engineering, Merced, CA (United States)
2017-06-15
Applying the Helmholtz Decomposition theorem to linearized General Relativity leads to a gauge-invariant formulation where the transverse-traceless part of the metric perturbation describes gravitational waves in matter. Gravitational waves incident on a superconductor can be described by a linear London-like constituent equation characterized by a ''gravitational shear modulus'' and a corresponding plasma frequency and penetration depth. Electric-like and magnetic-like gravitational tensor fields are defined in terms of the strain field of a gravitational wave. It is shown that in the DC limit, the magnetic-like tensor field is expelled from the superconductor in a gravitational Meissner-like effect. The Cooper pair density is described by the Ginzburg-Landau theory embedded in curved space-time. The ionic lattice is modeled by quantum harmonic oscillators coupled to gravitational waves and characterized by quasi-energy eigenvalues for the phonon modes. The formulation predicts the possibility of a dynamical Casimir effect since the zero-point energy of the ionic lattice phonons is found to be modulated by the gravitational wave, in a quantum analog of a ''Weber-bar effect.'' Applying periodic thermodynamics and the Debye model in the low-temperature limit leads to a free energy density for the ionic lattice. Lastly, we relate the gravitational strain of space to the strain of matter to show that the response to a gravitational wave is far less for the Cooper pair density than for the ionic lattice. This predicts a charge separation effect in the superconductor as a result of the gravitational wave. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Gravitational Analysis of the In-Band Wormhole Phenomenon
National Research Council Canada - National Science Library
Gopaul, Richard; Kruus, Peter; Sterne, Dan; Rivera, Brian
2006-01-01
...], for evaluating the effects of in-band wormhole attacks on OLSR routing. The gravitational analysis technique examines individual network topologies and results in the creation of a gravitational chart for each topology...
Gravitational waves: an introduction and a progress report
International Nuclear Information System (INIS)
Hamilton, W.O.
1983-01-01
The author gives a description of the effect an experimentalist has to measure to detect gravitational waves. He goes on to describe the design of gravitational wave detectors and the sensitivity of the components. (Auth.)
How Spherical Is a Cube (Gravitationally)?
Sanny, Jeff; Smith, David
2015-01-01
An important concept that is presented in the discussion of Newton's law of universal gravitation is that the gravitational effect external to a spherically symmetric mass distribution is the same as if all of the mass of the distribution were concentrated at the center. By integrating over ring elements of a spherical shell, we show that the…
Neutrino bursts and gravitational waves experiments
Energy Technology Data Exchange (ETDEWEB)
Castagnoli, C; Galeotti, P; Saavedra, O [Consiglio Nazionale delle Ricerche, Turin (Italy). Lab. di Cosmo-Geofisica
1978-05-01
Several experiments have been performed in many countries to observe gravitational waves or neutrino bursts. Since their simultaneous emission may occur in stellar collapse, the authors evaluate the effect of neutrino bursts on gravitational wave antennas and suggest the usefulness of a time correlation among the different detectors.
Amplification caused by gravitational bending of light
International Nuclear Information System (INIS)
Schneider, P.
1985-01-01
Gravitational bending of light may not only lead to multiple imaging (gravitational lens effect), but also affects the apparent luminosity of a source. It is shown here that a mass distribution near the line-of-sight to any source always increases the observable flux relative to the case in which the deflector is absent
Self-gravitation in Saturn's rings
International Nuclear Information System (INIS)
Salo, H.; Lukkari, J.
1982-01-01
In a ring-shaped collisional system self-gravitation reduces the equilibrium values of the geometric and optical thickness. In Saturn's rings both effects are appreciable. The previously found discrepancy between the calculated profile and the observed profile of the rings is chiefly caused by the omission of self-gravitation. (Auth.)
Gravitational radiation and 3D numerical relativity
International Nuclear Information System (INIS)
Nakamura, T.
1986-01-01
Study of Numerical Relativity in Kyoto is reviewed. Main topics discussed are 2D rotating collapse, phase cancellation effects and perturbation calculation of the gravitational radiation from a particle falling into a black hole. New numerical results on 3D time evolution of pure gravitational waves are also presented
Are the effects of Unreal violent video games pronounced when playing with a virtual reality system?
Arriaga, Patrícia; Esteves, Francisco; Carneiro, Paula; Monteiro, Maria Benedicta
2008-01-01
This study was conducted to analyze the short-term effects of violent electronic games, played with or without a virtual reality (VR) device, on the instigation of aggressive behavior. Physiological arousal (heart rate (HR)), priming of aggressive thoughts, and state hostility were also measured to test their possible mediation on the relationship between playing the violent game (VG) and aggression. The participants--148 undergraduate students--were randomly assigned to four treatment conditions: two groups played a violent computer game (Unreal Tournament), and the other two a non-violent game (Motocross Madness), half with a VR device and the remaining participants on the computer screen. In order to assess the game effects the following instruments were used: a BIOPAC System MP100 to measure HR, an Emotional Stroop task to analyze the priming of aggressive and fear thoughts, a self-report State Hostility Scale to measure hostility, and a competitive reaction-time task to assess aggressive behavior. The main results indicated that the violent computer game had effects on state hostility and aggression. Although no significant mediation effect could be detected, regression analyses showed an indirect effect of state hostility between playing a VG and aggression. Copyright 2008 Wiley-Liss, Inc.
Chirality and gravitational parity violation.
Bargueño, Pedro
2015-06-01
In this review, parity-violating gravitational potentials are presented as possible sources of both true and false chirality. In particular, whereas phenomenological long-range spin-dependent gravitational potentials contain both truly and falsely chiral terms, it is shown that there are models that extend general relativity including also coupling of fermionic degrees of freedom to gravity in the presence of torsion, which give place to short-range truly chiral interactions similar to that usually considered in molecular physics. Physical mechanisms which give place to gravitational parity violation together with the expected size of the effects and their experimental constraints are discussed. Finally, the possible role of parity-violating gravity in the origin of homochirality and a road map for future research works in quantum chemistry is presented. © 2015 Wiley Periodicals, Inc.
Sparse representation of Gravitational Sound
Rebollo-Neira, Laura; Plastino, A.
2018-03-01
Gravitational Sound clips produced by the Laser Interferometer Gravitational-Wave Observatory (LIGO) and the Massachusetts Institute of Technology (MIT) are considered within the particular context of data reduction. We advance a procedure to this effect and show that these types of signals can be approximated with high quality using significantly fewer elementary components than those required within the standard orthogonal basis framework. Furthermore, a local measure sparsity is shown to render meaningful information about the variation of a signal along time, by generating a set of local sparsity values which is much smaller than the dimension of the signal. This point is further illustrated by recourse to a more complex signal, generated by Milde Science Communication to divulge Gravitational Sound in the form of a ring tone.
Sandseter, Ellen Beate Hansen; Kennair, Leif Edward Ottesen
2011-06-21
This theoretical article views children's risky play from an evolutionary perspective, addressing specific evolutionary functions and especially the anti-phobic effects of risky play. According to the non-associative theory, a contemporary approach to the etiology of anxiety, children develop fears of certain stimuli (e.g., heights and strangers) that protect them from situations they are not mature enough to cope with, naturally through infancy. Risky play is a set of motivated behaviors that both provide the child with an exhilarating positive emotion and expose the child to the stimuli they previously have feared. As the child's coping skills improve, these situations and stimuli may be mastered and no longer be feared. Thus fear caused by maturational and age relevant natural inhibition is reduced as the child experiences a motivating thrilling activation, while learning to master age adequate challenges. It is concluded that risky play may have evolved due to this anti-phobic effect in normal child development, and it is suggested that we may observe an increased neuroticism or psychopathology in society if children are hindered from partaking in age adequate risky play.
Directory of Open Access Journals (Sweden)
Ellen Beate Hansen Sandseter
2011-04-01
Full Text Available This theoretical article views children's risky play from an evolutionary perspective, addressing specific evolutionary functions and especially the anti-phobic effects of risky play. According to the non-associative theory, a contemporary approach to the etiology of anxiety, children develop fears of certain stimuli (e.g., heights and strangers that protect them from situations they are not mature enough to cope with, naturally through infancy. Risky play is a set of motivated behaviors that both provide the child with an exhilarating positive emotion and expose the child to the stimuli they previously have feared. As the child's coping skills improve, these situations and stimuli may be mastered and no longer be feared. Thus fear caused by maturational and age relevant natural inhibition is reduced as the child experiences a motivating thrilling activation, while learning to master age adequate challenges. It is concluded that risky play may have evolved due to this anti-phobic effect in normal child development, and it is suggested that we may observe an increased neuroticism or psychopathology in society if children are hindered from partaking in age adequate risky play.
International Nuclear Information System (INIS)
Melchior, Anne-Laure
1995-01-01
This work is involved in baryonic dark matter search in galactic halos. An important collect of observational data has been initiated to test the hypothesis that this dark mass is made of compact objects such as brown dwarfs or small mass stars. The gravitational microlensing effect allows to probe this distribution of this mass type along the line of sight of nearby galaxies such as the Large Magellanic Cloud. A new way to detect these microlensing events has been proposed by P. Baillon et al.: the pixel method. The aim is to detect the amplification of stars which are unresolved or too faint to be seen by classical analysis. First, we present this method and the simulations which allow to establish its feasibility. Then, we describe the pixel analysis of the 91-92 EROS data on the Large Magellanic Cloud. The selection of luminosity variations with a shape compatible with microlensing events allows us to study the sensitivity of this analysis. We see how these results allow us to validate the pixel method applied on a large volume of data. This also shows the possibility to find luminosity variations which escape classical analysis research. Strengthened by these results, we finally describe the analysis of the AGAPE 94 data on the Andromeda galaxy which uses the same pixel method. Being ten times farther away than the Large Magellanic Cloud, the Andromeda galaxy has very few resolved stars, making the pixel method the only way of looking for microlensing events. (author) [fr
International Nuclear Information System (INIS)
Marrone, Daniel P.; Culverhouse, Thomas; Carlstrom, John E.; Greer, Christopher; Hennessy, Ryan; Leitch, Erik M.; Loh, Michael; Pryke, Clem; Smith, Graham P.; Hamilton-Morris, Victoria; Richard, Johan; Joy, Marshall; Bonamente, Massimiliano; Hasler, Nicole; Kneib, Jean-Paul; Hawkins, David; Lamb, James W.; Muchovej, Stephen; Miller, Amber; Mroczkowski, Tony
2009-01-01
We present the first measurement of the relationship between the Sunyaev-Zel'dovich effect (SZE) signal and the mass of galaxy clusters that uses gravitational lensing to measure cluster mass, based on 14 X-ray luminous clusters at z ≅ 0.2 from the Local Cluster Substructure Survey. We measure the integrated Compton y-parameter, Y, and total projected mass of the clusters (M GL ) within a projected clustercentric radius of 350 kpc, corresponding to mean overdensities of 4000-8000 relative to the critical density. We find self-similar scaling between M GL and Y, with a scatter in mass at fixed Y of 32%. This scatter exceeds that predicted from numerical cluster simulations, however, it is smaller than comparable measurements of the scatter in mass at fixed T X . We also find no evidence of segregation in Y between disturbed and undisturbed clusters, as had been seen with T X on the same physical scales. We compare our scaling relation to the Bonamente et al. relation based on mass measurements that assume hydrostatic equilibrium, finding no evidence for a hydrostatic mass bias in cluster cores (M GL = 0.98 ± 0.13 M HSE ), consistent with both predictions from numerical simulations and lensing/X-ray-based measurements of mass-observable scaling relations at larger radii. Overall our results suggest that the SZE may be less sensitive than X-ray observations to the details of cluster physics in cluster cores.
Jones, Michelle A
2017-09-12
Background : Indoor soft play can provide a safe but exciting physical activity opportunity regardless of environmental conditions. Relatively little is known about the quality or quantity of physical activity engaged in by children during indoor free soft play. The aim of this study was to evaluate the contribution indoor free soft play can make in enabling children to meet physical activity guidelines and to evaluate the effects of sex and body mass index category. Methods : Seventy-two boys and girls aged five to 10 years engaged in un-controlled indoor free soft play with a mean duration of 120.7 (27.1) min, during which physical activity was monitored using Actigraph accelerometers. Results : Children spent an average of 61.7 (24.2) min engaging in moderate to vigorous physical activity (MVPA) and 51.4% ( n = 37) achieved the recommended 60 min of MVPA through the single visit to the indoor soft play center. Boys (68.3 (25.7) min) engaged in significantly ( p < 0.05) more MVPA than girls (55.8 (21.4) min). Normal weight (65.7 (23.3) min) children engaged in significantly more MVPA than overweight children (48.0 (18.9) min). Conclusions : Attendance at a soft play indoor center has the potential to support children to engage in sufficient MVPA and overcome environmental factors that can restrict physical activity opportunities.
2017-01-01
Background: Indoor soft play can provide a safe but exciting physical activity opportunity regardless of environmental conditions. Relatively little is known about the quality or quantity of physical activity engaged in by children during indoor free soft play. The aim of this study was to evaluate the contribution indoor free soft play can make in enabling children to meet physical activity guidelines and to evaluate the effects of sex and body mass index category. Methods: Seventy-two boys and girls aged five to 10 years engaged in un-controlled indoor free soft play with a mean duration of 120.7 (27.1) min, during which physical activity was monitored using Actigraph accelerometers. Results: Children spent an average of 61.7 (24.2) min engaging in moderate to vigorous physical activity (MVPA) and 51.4% (n = 37) achieved the recommended 60 min of MVPA through the single visit to the indoor soft play center. Boys (68.3 (25.7) min) engaged in significantly (p < 0.05) more MVPA than girls (55.8 (21.4) min). Normal weight (65.7 (23.3) min) children engaged in significantly more MVPA than overweight children (48.0 (18.9) min). Conclusions: Attendance at a soft play indoor center has the potential to support children to engage in sufficient MVPA and overcome environmental factors that can restrict physical activity opportunities. PMID:28895904
Gravitational waves from inflation
International Nuclear Information System (INIS)
Guzzetti, M.C.; Bartolo, N.; Liguori, M.; Matarrese, S.
2016-01-01
The production of a stochastic background of gravitational waves is a fundamental prediction of any cosmological inflationary model. The features of such a signal encode unique information about the physics of the Early Universe and beyond, thus representing an exciting, powerful window on the origin and evolution of the Universe. We review the main mechanisms of gravitational-wave production, ranging from quantum fluctuations of the gravitational field to other mechanisms that can take place during or after inflation. These include e.g. gravitational waves generated as a consequence of extra particle production during inflation, or during the (p)reheating phase. Gravitational waves produced in inflation scenarios based on modified gravity theories and second-order gravitational waves are also considered. For each analyzed case, the expected power spectrum is given. We discuss the discriminating power among different models, associated with the validity/violation of the standard consistency relation between tensor-to-scalar ratio r and tensor spectral index ηT. In light of the prospects for (directly/indirectly) detecting primordial gravitational waves, we give the expected present-day gravitational radiation spectral energy-density, highlighting the main characteristics imprinted by the cosmic thermal history, and we outline the signatures left by gravitational waves on the Cosmic Microwave Background and some imprints in the Large-Scale Structure of the Universe. Finally, current bounds and prospects of detection for inflationary gravitational waves are summarized.
Consequences of Play: A Systematic Review of the Effects of Online Gaming
Sublette, Victoria Anne; Mullan, Barbara
2012-01-01
Massively Multiplayer Online Games (MMOGs) have received considerable attention in news headlines describing gamers who have died while engaging in excessive play. However, more common physical and psychosocial effects attributed to online video gaming are social isolation, increased aggression, and negative academic and occupational consequences.…
Teaching Play Skills to Visually Impaired Preschool Children: Its Effect on Social Interaction
Ozaydin, Latife
2015-01-01
The aim of this study is to assess the effects that teaching visually impaired (VI) preschool children play skills has on their abilities to initialize and respond to social interactions with their typically developing (TD) peers in a reverse mainstreaming preschool class. The subjects of the study were three female VI students regularly attending…
Can I Say Something? The Effects of Digital Game Play on Willingness to Communicate
Reinders, Hayo; Wattana, Sorada
2014-01-01
This paper reports on a study into the effects of digital game play on learners' Willingness to Communicate (WTC), or individuals' "readiness to enter into discourse at a particular time with a specific person or persons, using a L2" (MacIntyre, Dörnyei, Clément, & Noels, 1998, p. 547). Thirty Thai learners of English as a foreign…
Early Social Fear in Relation to Play with an Unfamiliar Peer: Actor and Partner Effects
Walker, Olga L.; Degnan, Kathryn A.; Fox, Nathan A.; Henderson, Heather A.
2015-01-01
The purpose of this study was to examine the associations between maternal reports of social fear at 24 months and social behaviors with an unfamiliar peer during play at 36 months, using the Actor-Partner Interdependence Model (APIM; Kashy & Kenny, 1999). The APIM model was used to not only replicate previous findings of direct effects of…
Let's Play at My House: Effects of the Home Environment on the Social Behavior of Children.
Jeffers, Victoria W.; Lore, Richard K.
1979-01-01
Results showed that preschool children at home initiated both more positive and aggressive social interactions and were more effective in attracting a visiting child into play than were children away from home. This was the case even when the child at home had been shyer during the first meeting of the children. (JMB)
Bakker, Marjoke; Van den Heuvel-Panhuizen, M.; Robitzsch, Alexander
2015-01-01
This study used a large-scale cluster randomized longitudinal experiment (N=719; 35schools) to investigate the effects of online mathematics mini-games on primary school students' multiplicative reasoning ability. The experiment included four conditions: playing at school, integrated in a lesson
Effects of the interstellar medium on detection of low-frequency gravitational waves
International Nuclear Information System (INIS)
Stinebring, Dan
2013-01-01
Time variable delays due to radio wave propagation in the ionized interstellar medium are a substantial source of error in pulsar timing array efforts. We describe the physical origin of these effects, discussing dispersive and scattering effects separately. Where possible, we give estimates of the magnitude of timing errors produced by these effects and their scaling with radio frequency. Although there is general understanding of the interstellar medium propagation errors to be expected with pulsar timing array observations, detailed comparison between theory and practice is still in its infancy, particularly with regard to scattering effects. (paper)
Schubert, G.; Anderson, J. D.
2013-12-01
Titan's gravitational field is inferred from an analysis of archived radio Doppler data for six Cassini flybys. The analysis considers each flyby separately in contrast to the approach of lumping all the data together in a massive inversion. In this way it is possible to gain an improved understanding of the character of each flyby and its usefulness in constraining the gravitational coefficient C22 . Though our analysis is not yet complete and our final determination of C22 could differ from the result we report here by 1 or 2 sigma, we find a best-fit value of C22 equal to (13.21 × 0.17) × 10-6, significantly larger than the value of 10.0 × 10-6 obtained from an inversion of the lumped Cassini data. We also find no determination of the tidal Love number k2. The larger value of C22 implies a moment of inertia factor equal to 0.3819 × 0.0020 and a less differentiated Titan than is suggested by the smaller value. The larger value of C22 is consistent with an undifferentiated model of the satellite. While it is not possible to rule out either value of C22 , we prefer the larger value because its derivation results from a more hands on analysis of the data that extracts the weak hydrostatic signal while revealing the effects of gravity anomalies and unmodeled spacecraft accelerations on each of the six flybys.
Trawick-Smith, Jeffrey; Swaminathan, Sudha; Baton, Brooke; Danieluk, Courtney; Marsh, Samantha; Szarwacki, Monika
2017-01-01
Block play has been included in early childhood classrooms for over a century, yet few studies have examined its effects on learning. Several previous investigations indicate that the complexity of block building is associated with math ability, but these studies were often conducted in adult-guided, laboratory settings. In the present…
Effect of Play Therapy Applications on Shyness Behaviors of Pre-school Children
Directory of Open Access Journals (Sweden)
Selda Kockaya
2017-03-01
Full Text Available The purpose of this research is to examine the impact of play therapy on a child who have shyness behavior through parent and teacher evaluations in preschool. The research was carried out with the participation of one shy student from six age groups who has been registered at 2014-2015 academic year in Saraykoy Central Mukerrem Tokat Kindergarten in Saraykoy, Denizli. AB experimental design was used from single subject design in the study. When results of the research examined, according to child's mother and teacher, play therapy intervention reduced emotional problems and peer relation problems and caused increase in prosocial behaviors. It could be said that play therapy program might have effective and significant impact on preschool children who have shyness behavior. [Psikiyatride Guncel Yaklasimlar - Current Approaches in Psychiatry 2017; 9(1.000: 31-44
Effect of playing tactics on goal scoring in Norwegian professional soccer.
Tenga, Albin; Holme, Ingar; Ronglan, Lars Tore; Bahr, Roald
2010-02-01
Methods that include an assessment of opponent interactions are thought to provide a more valid analysis of team match performance. The purpose of this study was to examine the effect of playing tactics on goal scoring by assessing opponent interactions in Norwegian elite soccer. The sample included 203 team possessions leading to goals (cases) and 1688 random team possessions (control group) from 163 of 182 (90%) matches played in the men's professional league during the 2004 season. Multidimensional qualitative data using ten ordered categorical variables were obtained to characterize each team possession. The proportion of goals scored during counterattacks (52%) was higher than during elaborate attacks (48%), while for the control group the proportion using elaborate attacks (59%) was higher than when using counterattacks (41%) (P = 0.002). Multiple logistic regression analyses showed that, for the main variable "team possession type", counterattacks were more effective than elaborate attacks when playing against an imbalanced defence (OR = 1.64; 95% confidence interval: 1.03 to 2.61; P = 0.038). Assessment of opponent interactions is critical to evaluate the effectiveness of offensive playing tactics on the probability of scoring goals, and improves the validity of team match-performance analysis in soccer.
Anisotropic gravitational instability
International Nuclear Information System (INIS)
Polyachenko, V.L.; Fridman, A.M.
1988-01-01
Exact solutions of stability problems are obtained for two anisotropic gravitational systems of different geometries - a layer of finite thickness at rest and a rotating cylinder of finite radius. It is shown that the anisotropic gravitational instability which develops in both cases is of Jeans type. However, in contrast to the classical aperiodic Jeans instability, this instability is oscillatory. The physics of the anisotropic gravitational instability is investigated. It is shown that in a gravitating layer this instability is due, in particular, to excitation of previously unknown interchange-Jeans modes. In the cylinder, the oscillatory Jeans instability is associated with excitation of a rotational branch, this also being responsible for the beam gravitational instability. This is the reason why this instability and the anisotropic gravitational instability have so much in common
The effect of group play therapy on social-emotional skills in pre-school children.
Chinekesh, Ahdieh; Kamalian, Mehrnoush; Eltemasi, Masoumeh; Chinekesh, Shirin; Alavi, Manijeh
2013-12-24
Childhood is important and critical period in human life. The foundation of ego is shaped in childhood. Play therapy is one of the successful strategies to help children with inner conflicts problems. This method of psychotherapy is base on the normal learning processes of children, provides solutions to relieve feelings of stress, and expands self-expression. Group play therapy can enhance the self-awareness, self- regulation, social communication, empathy and adoptability in children. Present study investigated the effects of play therapy on relational and emotional skills of pre-school children. For this purpose, the total numbers of 372 pre-school children were randomly selected, and divided into two equal groups (case and control). In next step, the BUSSE-SR methodology was used for evaluation and comparison of self-awareness, self-regulation, social interaction, empathy, adoptability, and control groups. Pre-test were performed for both groups and case group was involved in-group play therapy. According to the results of post-test, correlation of variables between case-control groups was examined by multivariate analysis of covariance. Frequency of boys and girls in our sample were 51.3 and 48.7 percent, respectively. The mean age of children was 5.1±0.6 year. According to the results of present study, play therapy significantly enhanced the social-emotional skills (Pplay therapy can be used in pre-school centers to help children learn problem-solving skills and communicate with others.
DEFF Research Database (Denmark)
Sicart (Vila), Miguel Angel
? In Play Matters, Miguel Sicart argues that to play is to be in the world; playing is a form of understanding what surrounds us and a way of engaging with others. Play goes beyond games; it is a mode of being human. We play games, but we also play with toys, on playgrounds, with technologies and design......, but not necessarily fun. Play can be dangerous, addictive, and destructive. Along the way, Sicart considers playfulness, the capacity to use play outside the context of play; toys, the materialization of play--instruments but also play pals; playgrounds, play spaces that enable all kinds of play; beauty...
Directory of Open Access Journals (Sweden)
Caterina ePesce
2016-03-01
Full Text Available In light of the interrelation between motor and cognitive development and the predictive value of the former for the latter, the secular decline observed in motor coordination ability as early as preschool urges identification of interventions that may jointly impact motor and cognitive efficiency.The aim of this study was twofold. It (1 explored the outcomes of enriched physical education, centered on deliberate play and cognitively challenging variability of practice, on motor coordination and cognitive processing; (2 examined whether motor coordination outcomes mediate intervention effects on children’s cognition, while controlling for moderation by lifestyle factors as outdoor play habits and weight status. Four hundred and sixty children aged 5-10 years participated in a 6-month group randomized intervention in physical education, with or without playful coordinative and cognitive enrichment. The weight status and spontaneous outdoor play habits of children (parental report of outdoor play were evaluated at baseline. Before and after the intervention, motor developmental level (Movement Assessment Battery for Children was evaluated in all children, who were then assessed either with a test of working memory (Random Number Generation task, or with a test of attention (from the Cognitive Assessment System, CAS.Children assigned to the ‘enriched’ intervention showed more pronounced improvements in all motor coordination assessments (manual dexterity, ball skills, static/dynamic balance. The beneficial effect on ball skills was amplified by the level of spontaneous outdoor play and weight status. Among indices of executive function and attention, only that of inhibition showed a differential effect of intervention type. Moderated mediation showed that the better outcome of the enriched physical education on ball skills mediated the better inhibition outcome, but only when the enrichment intervention was paralleled by a medium
Gravitational wave detector on the basis of light diffraction
International Nuclear Information System (INIS)
Segizboev, T.I.; Uzhinskij, V.V.
1985-01-01
A method for detection of gravitational waves by means of light diffraction at the first maximum on oscillations in optically transparent matter under effect of gravitational waves is considered. Intensity of light flux scattering on oscillations of elastic rod is calculated. A possibility of using the diffraction method for detection of gravitational waves is disclosed
CERN. Geneva HR-RFA
2006-01-01
We will present a brief introduction to the physics of gravitational waves and their properties. We will review potential astrophysical sources of gravitational waves, and the physics and astrophysics that can be learned from their study. We will survey the techniques and technologies for detecting gravitational waves for the first time, including bar detectors and broadband interferometers, and give a brief status report on the international search effort.
CERN. Geneva
2006-01-01
Gravitational wave astronomy is expected to become an observational field within the next decade. First direct detection of gravitational waves is possible with existing terrestrial-based detectors, and highly probable with proposed upgrades. In this three-part lecture series, we give an overview of the field, including material on gravitional wave sources, detection methods, some details of interferometric detectors, data analysis methods, and current results from observational data-taking runs of the LIGO and GEO projects.
Drozdova, A V
1975-10-01
General hypokinesia during 1--6 weeks resulted in dilatation of the interlobular veins. sinusoids and central veins. The sequence of alterations corresponded to terms of hypokinesia. After exposure to "gravitation stress--hypokinesia for 1--6 weeks" stagnation in the portal system of the liver was less than after exposure to hypokinesia alone, but unevenness of lumens in the interlobular veins and sinusoids was more pronounced. The foci of the vessel spasm were determined. The signs of stagnation in the system of the portal vein and unevenness of the width of all the links of the portal bed were most pronounced after combination "hypokinesia for 1--6 weeks-- gravitation stress".
Gravitational lensing in plasmic medium
Energy Technology Data Exchange (ETDEWEB)
Bisnovatyi-Kogan, G. S., E-mail: gkogan@iki.rssi.ru; Tsupko, O. Yu., E-mail: tsupko@iki.rssi.ru [Russian Academy of Sciences, Space Research Institute (Russian Federation)
2015-07-15
The influence of plasma on different effects of gravitational lensing is reviewed. Using the Hamiltonian approach for geometrical optics in a medium in the presence of gravity, an exact formula for the photon deflection angle by a black hole (or another body with a Schwarzschild metric) embedded in plasma with a spherically symmetric density distribution is derived. The deflection angle in this case is determined by the mutual combination of different factors: gravity, dispersion, and refraction. While the effects of deflection by the gravity in vacuum and the refractive deflection in a nonhomogeneous medium are well known, the new effect is that, in the case of a homogeneous plasma, in the absence of refractive deflection, the gravitational deflection differs from the vacuum deflection and depends on the photon frequency. In the presence of a plasma nonhomogeneity, the chromatic refractive deflection also occurs, so the presence of plasma always makes gravitational lensing chromatic. In particular, the presence of plasma leads to different angular positions of the same image if it is observed at different wavelengths. It is discussed in detail how to apply the presented formulas for the calculation of the deflection angle in different situations. Gravitational lensing in plasma beyond the weak deflection approximation is also considered.
International Nuclear Information System (INIS)
Ridgely, Charles T
2011-01-01
When two gravitating bodies reside in a material medium, Newton's law of universal gravitation must be modified to account for the presence of the medium. A modified expression of Newton's law is known in the literature, but lacks a clear connection with existing gravitational theory. Newton's law in the presence of a homogeneous material medium is herein derived on the basis of classical, Newtonian gravitational theory and by a general relativistic use of Archimedes' principle. It is envisioned that the techniques presented herein will be most useful to graduate students and those undergraduate students having prior experience with vector analysis and potential theory.
Relativistic gravitational instabilities
International Nuclear Information System (INIS)
Schutz, B.F.
1987-01-01
The purpose of these lectures is to review and explain what is known about the stability of relativistic stars and black holes, with particular emphases on two instabilities which are due entirely to relativistic effects. The first of these is the post-Newtonian pulsational instability discovered independently by Chandrasekhar (1964) and Fowler (1964). This effectively ruled out the then-popular supermassive star model for quasars, and it sets a limit to the central density of white dwarfs. The second instability was also discovered by Chandrasekhar (1970): the gravitational wave induced instability. This sets an upper bound on the rotation rate of neutron stars, which is near that of the millisecond pulsar PSR 1937+214, and which is beginning to constrain the equation of state of neutron matter. 111 references, 5 figures
Effects of prenatal exposure to opioids on focused attention in toddlers during free play.
Schneider, J W; Hans, S L
1996-08-01
The goals of this study were: (1) to determine if 24-month-old children exposed to opioids show decreased focused attention during free play compared with children of the same age who were not prenatally exposed; (2) to identify medical and social risk factors other than drug exposure that are related to focused attention; and (3) to determine if mothers' teaching ability had an effect on attention. Focused attention was rated during a 3-minute free play session for 30 toddlers who were methadone-exposed and for 44 comparison toddlers. The mother teaching the child to use a toy was also rated separately from the free play session. There was no difference in focused attention of 24 month olds during free play based only on prenatal exposure. Despite group differences in medical and social risk factors, only maternal IQ was significantly related to focused attention. Maternal instruction was strongly related to focused attention and mediated the effects of maternal IQ on attention.
Sensitivity of a combined gravitational antenna
International Nuclear Information System (INIS)
Kulagin, V.V.; Rudenko, V.N.
1986-01-01
A modification of a combined optico-acoustic gravitational antenna: a long-base laser interferometer, where free masses are changed by Weber resonators, is suggested. The combined gravitational antenna can possess sensitivity h min ∼ 10 -18 without deep cooling of Weber resonators and h min ∼ 10 -19 at helium temperaure of the resonators. This antenna has the following new quantities: presence of three independent responses, that permits to a considerable extent to exclude non-gravitational effects; presence of responses of two separated Weber resonators, that permits to register the wave character of gravitational perturbation by measuring phase shift between relaxation ''tails''. It means that one may with certainty register the wave structure of gravitational radiation for perturbation of metrics h, exceeding the threshold sensitivity of the known detectors by an order
Gravitational effect of distant earth relief within the territory of former Czechoslovakia
Czech Academy of Sciences Publication Activity Database
Mikuška, J.; Pašteka, R.; Mrlina, Jan; Marušiak, J.
2008-01-01
Roč. 52, č. 3 (2008), s. 381-396 ISSN 0039-3169 R&D Projects: GA AV ČR IAA3012308 Grant - others:EC(XE) ENK6-CT2000-00056; APVV(SK) APVV-99-002905 Institutional research plan: CEZ:AV0Z30120515 Keywords : Bouguer gravity anomaly * distant topographic effect * distant bathymetric correction Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 0.770, year: 2008
Effect of scalar field mass on gravitating charged scalar solitons and black holes in a cavity
Energy Technology Data Exchange (ETDEWEB)
Ponglertsakul, Supakchai, E-mail: supakchai.p@gmail.com; Winstanley, Elizabeth, E-mail: E.Winstanley@sheffield.ac.uk
2017-01-10
We study soliton and black hole solutions of Einstein charged scalar field theory in cavity. We examine the effect of introducing a scalar field mass on static, spherically symmetric solutions of the field equations. We focus particularly on the spaces of soliton and black hole solutions, as well as studying their stability under linear, spherically symmetric perturbations of the metric, electromagnetic field, and scalar field.
Focus on classical and quantum analogues for gravitational phenomena and related effects
International Nuclear Information System (INIS)
Leonhardt, Ulf; Maia, Clovis; Schützhold, Ralf
2012-01-01
Hawking's prediction that black holes are not black but radiate has been one of the intellectually most influential results of theoretical physics, but Hawking's theory has not so far been testable. Recent developments in analogue models of gravity might change that. This focus issue assembles a series of papers that report on steps towards this goal and related physical effects in a variety of physical systems. (editorial)
GASP. III. JO36: A Case of Multiple Environmental Effects at Play?
Energy Technology Data Exchange (ETDEWEB)
Fritz, Jacopo; Bruzual, Gustavo; Cervantes Sodi, Bernardo [Instituto de Radioastronomía y Astrofísica, UNAM, Campus Morelia, A.P. 3-72, C.P. 58089 (Mexico); Moretti, Alessia; Gullieuszik, Marco; Poggianti, Bianca; Vulcani, Benedetta; Bettoni, Daniela; Fasano, Giovanni [INAF-Osservatorio Astronomico di Padova, Vicolo dell’Osservatorio 5, Padova (Italy); Nicastro, Fabrizio [INAF-Osservatorio Astronomico di Roma, Via di Frascati 33, I-00040 Monte Porzio Catone, RM (Italy); Jaffé, Yara; Biviano, Andrea [INAF-Osservatorio Astronomico di Trieste, via G. B. Tiepolo 11, I-34131, Trieste (Italy); Charlot, Stéphane [Sorbonne Universités, UPMC-CNRS, UMR7095, Institut d’Astrophysique de Paris, F-75014 Paris (France); Bellhouse, Callum [University of Birmingham, School of Physics and Astronomy, Edgbaston, Birmingham (United Kingdom); Hau, George, E-mail: j.fritz@irya.unam.mx [European Southern Observatory, Alonso de Cordova 3107, Vitacura, Casilla 19001, Santiago de Chile (Chile)
2017-10-20
The so-called jellyfish galaxies are objects exhibiting disturbed morphology, mostly in the form of tails of gas stripped from the main body of the galaxy. Several works have strongly suggested ram pressure stripping to be the mechanism driving this phenomenon. Here, we focus on one of these objects, drawn from a sample of optically selected jellyfish galaxies, and use it to validate sinopsis, the spectral fitting code that will be used for the analysis of the GASP (GAs Stripping Phenomena in galaxies with MUSE) survey, and study the spatial distribution and physical properties of the gas and stellar populations in this galaxy. We compare the model spectra to those obtained with gandalf, a code with similar features widely used to interpret the kinematics of stars and gas in galaxies from IFU data. We find that sinopsis can reproduce the pixel-by-pixel spectra of this galaxy at least as well as gandalf does, providing reliable estimates of the underlying stellar absorption to properly correct the nebular gas emission. Using these results, we find strong evidences of a double effect of ram pressure exerted by the intracluster medium onto the gas of the galaxy. A moderate burst of star formation, dating between 20 and 500 Myr ago and involving the outer parts of the galaxy more strongly than the inner regions, was likely induced by a first interaction of the galaxy with the intracluster medium. Stripping by ram pressure, plus probable gas depletion due to star formation, contributed to create a truncated ionized gas disk. The presence of an extended stellar tail on only one side of the disk points instead to another kind of process, likely gravitational interaction by a fly-by or a close encounter with another galaxy in the cluster.
GASP. III. JO36: A Case of Multiple Environmental Effects at Play?
International Nuclear Information System (INIS)
Fritz, Jacopo; Bruzual, Gustavo; Cervantes Sodi, Bernardo; Moretti, Alessia; Gullieuszik, Marco; Poggianti, Bianca; Vulcani, Benedetta; Bettoni, Daniela; Fasano, Giovanni; Nicastro, Fabrizio; Jaffé, Yara; Biviano, Andrea; Charlot, Stéphane; Bellhouse, Callum; Hau, George
2017-01-01
The so-called jellyfish galaxies are objects exhibiting disturbed morphology, mostly in the form of tails of gas stripped from the main body of the galaxy. Several works have strongly suggested ram pressure stripping to be the mechanism driving this phenomenon. Here, we focus on one of these objects, drawn from a sample of optically selected jellyfish galaxies, and use it to validate sinopsis, the spectral fitting code that will be used for the analysis of the GASP (GAs Stripping Phenomena in galaxies with MUSE) survey, and study the spatial distribution and physical properties of the gas and stellar populations in this galaxy. We compare the model spectra to those obtained with gandalf, a code with similar features widely used to interpret the kinematics of stars and gas in galaxies from IFU data. We find that sinopsis can reproduce the pixel-by-pixel spectra of this galaxy at least as well as gandalf does, providing reliable estimates of the underlying stellar absorption to properly correct the nebular gas emission. Using these results, we find strong evidences of a double effect of ram pressure exerted by the intracluster medium onto the gas of the galaxy. A moderate burst of star formation, dating between 20 and 500 Myr ago and involving the outer parts of the galaxy more strongly than the inner regions, was likely induced by a first interaction of the galaxy with the intracluster medium. Stripping by ram pressure, plus probable gas depletion due to star formation, contributed to create a truncated ionized gas disk. The presence of an extended stellar tail on only one side of the disk points instead to another kind of process, likely gravitational interaction by a fly-by or a close encounter with another galaxy in the cluster.
Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact Binaries
Directory of Open Access Journals (Sweden)
Luc Blanchet
2014-02-01
Full Text Available To be observed and analyzed by the network of gravitational wave detectors on ground (LIGO, VIRGO, etc. and by the future detectors in space (eLISA, etc., inspiralling compact binaries -- binary star systems composed of neutron stars and/or black holes in their late stage of evolution -- require high-accuracy templates predicted by general relativity theory. The gravitational waves emitted by these very relativistic systems can be accurately modelled using a high-order post-Newtonian gravitational wave generation formalism. In this article, we present the current state of the art on post-Newtonian methods as applied to the dynamics and gravitational radiation of general matter sources (including the radiation reaction back onto the source and inspiralling compact binaries. We describe the post-Newtonian equations of motion of compact binaries and the associated Lagrangian and Hamiltonian formalisms, paying attention to the self-field regularizations at work in the calculations. Several notions of innermost circular orbits are discussed. We estimate the accuracy of the post-Newtonian approximation and make a comparison with numerical computations of the gravitational self-force for compact binaries in the small mass ratio limit. The gravitational waveform and energy flux are obtained to high post-Newtonian order and the binary's orbital phase evolution is deduced from an energy balance argument. Some landmark results are given in the case of eccentric compact binaries -- moving on quasi-elliptical orbits with non-negligible eccentricity. The spins of the two black holes play an important role in the definition of the gravitational wave templates. We investigate their imprint on the equations of motion and gravitational wave phasing up to high post-Newtonian order (restricting to spin-orbit effects which are linear in spins, and analyze the post-Newtonian spin precession equations as well as the induced precession of the orbital plane.
Effective field theory of statistical anisotropies for primordial bispectrum and gravitational waves
Energy Technology Data Exchange (ETDEWEB)
Rostami, Tahereh; Karami, Asieh; Firouzjahi, Hassan, E-mail: t.rostami@ipm.ir, E-mail: karami@ipm.ir, E-mail: firouz@ipm.ir [School of Astronomy, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of)
2017-06-01
We present the effective field theory studies of primordial statistical anisotropies in models of anisotropic inflation. The general action in unitary gauge is presented to calculate the leading interactions between the gauge field fluctuations, the curvature perturbations and the tensor perturbations. The anisotropies in scalar power spectrum and bispectrum are calculated and the dependence of these anisotropies to EFT couplings are presented. In addition, we calculate the statistical anisotropy in tensor power spectrum and the scalar-tensor cross correlation. Our EFT approach incorporates anisotropies generated in models with non-trivial speed for the gauge field fluctuations and sound speed for scalar perturbations such as in DBI inflation.
Norman, Gregory J; Adams, Marc A; Ramirez, Ernesto R; Carlson, Jordan A; Kerr, Jacqueline; Godbole, Suneeta; Dillon, Lindsay; Marshall, Simon J
2013-06-01
This study evaluated the effect of four active videogames (AVGs) varying in behavioral contingencies (behavior-consequence relations) on adolescent AVG play and overall activity levels over 4 weeks. Each AVG, manufactured by SSD/Xavix(®) (Shiseido Co. of Japan, Tokyo, Japan), was coded and scored for the number of positive and aversive behavioral contingencies within the games. "Bowling" and "Tennis" were classified as having "higher contingency scores," and "Boxing" and aerobic fitness training were classified as having "lower contingency scores." Adolescents (n=63; 11-15 years old; 62% male; 38% Hispanic; 44% overweight or obese) were randomized to play one of the four AVGs at home and recorded game play sessions in a paper log. Baseline and week 4 assessments were completed at home; week 1, 2, and 3 assessments were completed by telephone. Accelerometers were worn during baseline and weeks 1 and 4. Accelerometer-measured sedentary and light activity hours/day were stable over time, whereas moderate-vigorous physical activity minutes/day increased in the higher contingency group and decreased in the lower contingency group (interaction effect, 6.43, P=0.024). Reported game play minutes decreased in both groups from week 1 to week 4 (-29.42 minutes, P=0.001). There was some support for the hypothesis that AVGs with more behavioral contingencies, compared with AVGs with fewer behavioral contingencies, result in more physical activity. However, overall AVG play decreased substantially after the first week. Further study is needed to better understand how behavioral contingencies can be used in AVGs to enhance their potential to provide health benefits to game players.
DEFF Research Database (Denmark)
Parker, M. L.; Wilkins, D. R.; Fabian, A. C.
2014-01-01
gravitational radii (R-G) of the event horizon. The reflection fraction decreases sharply with increasing flux, consistent with a point source moving up to above 10 R-G as the source brightens. We constrain the spin parameter to greater than 0.9 at the 3 sigma confidence level. By adding a spin-dependent upper...
On the Effect of the Cosmological Expansion on the Gravitational Lensing by a Point Mass
Directory of Open Access Journals (Sweden)
Oliver F. Piattella
2016-10-01
Full Text Available We analyse the effect of the cosmological expansion on the deflection of light caused by a point mass, adopting the McVittie metric as the geometrical description of a point-like lens embedded in an expanding universe. In the case of a generic, non-constant Hubble parameter, H, we derive and approximately solve the null geodesic equations, finding an expression for the bending angle δ, which we expand in powers of the mass-to-closest approach distance ratio and of the impact parameter-to-lens distance ratio. It turns out that the leading order of the aforementioned expansion is the same as the one calculated for the Schwarzschild metric and that cosmological corrections contribute to δ only at sub-dominant orders. We explicitly calculate these cosmological corrections for the case of the H constant and find that they provide a correction of order 10−11 on the lens mass estimate.
Ruffini, R.
2004-07-01
Recent developments in obtaining a detailed model for gamma-ray bursts have shown the need for a deeper understanding of phenomena described by solutions of the Einstein-Maxwell equations, reviving interest in the behavior of charges close to a black hole. In particular a drastic difference has been found between the lines of force of a charged test particle in the fields of Schwarzschild and Reissner-Nordström black holes. This difference characterizes a general relativistic effect for the electric field of a charged test particle around a (charged) Reissner-Nordström black hole similar to the “Meissner effect” for a magnetic field around a superconductor. These new results are related to earlier work by Fermi and Hanni-Ruffini-Wheeler.
Parker, M. L.; Wilkins, D. R.; Fabian, A. C.; Grupe, D.; Dauser, T.; Matt, G.; Harrison, F. A.; Brenneman, L.; Boggs, S. E.; Christensen, F. E.;
2014-01-01
We present 3-50 keV NuSTAR observations of the active galactic nuclei Mrk 335 in a very low flux state. The spectrum is dominated by very strong features at the energies of the iron line at 5-7 keV and Compton hump from 10-30 keV. The source is variable during the observation, with the variability concentrated at low energies, which suggesting either a relativistic reflection or a variable absorption scenario. In this work, we focus on the reflection interpretation, making use of new relativistic reflection models that self consistently calculate the reflection fraction, relativistic blurring and angle-dependent reflection spectrum for different coronal heights to model the spectra. We find that the spectra can be well fitted with relativistic reflection, and that the lowest flux state spectrum is described by reflection alone, suggesting the effects of extreme light-bending occurring within approx. 2 gravitational radii (RG) of the event horizon. The reflection fraction decreases sharply with increasing flux, consistent with a point source moving up to above 10 RG as the source brightens. We constrain the spin parameter to greater than 0.9 at the 3(sigma) confidence level. By adding a spin-dependent upper limit on the reflection fraction to our models, we demonstrate that this can be a powerful way of constraining the spin parameter, particularly in reflection dominated states. We also calculate a detailed emissivity profile for the iron line, and find that it closely matches theoretical predictions for a compact source within a few RG of the black hole.
Estimation of pulmonary hypertension by perfusion lung scintigraphy: Gravitational effect of postural changes between the lateral decubitus positions
International Nuclear Information System (INIS)
Tanaka, Masao; Fujii, Tadashige; Hirayama, Jiro; Okubo, Shinichi; Sekiguchi, Morie
1990-01-01
To estimate pulmonary hypertension in patients with various heart diseases, we devised a new method using perfusion lung scintigraphy with 99m Tc-labelled macroaggregated albumin. In this method, changes in the distribution of pulmonary perfusion caused by gravitational effects, namely, changes in the total count ratios of the right lung against the left lung between right and left lateral decubitus positions (rt/lt), were assessed in 62 patients and in 10 normal subjects. The rt/lt ratios were calculated as indices of the above changes. They correlated significantly with mean pulmonary arterial pressure (mPAP) (γ=-0.62, P<0.001), pulmonary capillary wedge pressure (γ=-0.63, P<0.001) and pulmonary arteriolar resistance (γ=0.50, P<0.001) in all subjects. In 17 patients with valvular heart diseases, the ratio correlated significantly with mPAP (γ=-0.84, P<0.001). In 10 patients with various heart diseases, the U/S ratio, i.e. the index of changes in the count ratios of the upper field against the lower field for the right lung following postural change from the uprigth to the supine position, was also obtained as well as the rt/lt ratio. The latter evidenced a better correlation with mPAP (γ=-0.90, P<0.001) than the former (γ=-0.64, P<0.05). We conclude that this method is valuable as a noninvasive approach for the estimation of pulmonary hypertension. (orig.)
DEFF Research Database (Denmark)
Tychsen, Anders; Hitchens, Michael; Brolund, Thea
2008-01-01
Role-playing games (RPGs) are a well-known game form, existing in a number of formats, including tabletop, live action, and various digital forms. Despite their popularity, empirical studies of these games are relatively rare. In particular there have been few examinations of the effects of the v......Role-playing games (RPGs) are a well-known game form, existing in a number of formats, including tabletop, live action, and various digital forms. Despite their popularity, empirical studies of these games are relatively rare. In particular there have been few examinations of the effects...... of the various formats used by RPGs on the gaming experience. This article presents the results of an empirical study, examining how multi-player tabletop RPGs are affected as they are ported to the digital medium. Issues examined include the use of disposition assessments to predict play experience, the effect...... of group dynamics, the influence of the fictional game characters and the comparative play experience between the two formats. The results indicate that group dynamics and the relationship between the players and their digital characters, are integral to the quality of the gaming experience in multiplayer...
Iin Tri Marlinawati; Harsono Salimo; Bhisma Murti
2017-01-01
Background: The development of children's independence is important for their future competitiveness in the rapidly increasing social changes. Disturbance in the development of children's independence may have a negative future impact in adult life and children become dependent individuals. Efforts are needed to help children develop optimally. Some play groups have been introduced to meet this need in Surakarta, but no studies have been carried out to evaluate its effectiveness. This study a...
Proximal and distal effects of play on child compliance with a brain-injured parent.
Ducharme, J M; Rushford, N
2001-01-01
Individuals with brain injury may experience severe cognitive and other impairments. For brain-injured parents, such deficits may be associated with child behavior problems, including noncompliance. We assessed the effects of a play period conducted by a brain-injured father on the compliance of his son, who had become uncooperative with his father after the injury. The child consistently demonstrated improved compliance during proximal and distal compliance sessions that followed father-son ...
Rupp, Michael A; Sweetman, Richard; Sosa, Alejandra E; Smither, Janan A; McConnell, Daniel S
2017-11-01
We investigated the effects of a passive break, relaxation activity, and casual video game on affect, stress, engagement, and cognitive performance. Reducing stress and improving cognitive performance is critical across many domains. Previous studies investigated taking a break, relaxation techniques, or playing a game; however, these methods have not been compared within a single experiment. Participants completed a baseline affective and cognitive assessment (ACA), which included the Positive and Negative Affect Schedule, shortened version of the Dundee Stress State Questionnaire, and backward digit-span. Next, participants completed a vigilance task, followed by another ACA. Participants were then assigned at random to complete a break or relaxation activity or play a casual video game, followed by a final ACA. Participants who played the casual video game exhibited greater engagement and affective restoration than the relaxation condition. The break condition slightly decreased affect and prevented cognitive restoration. Playing a casual video game even briefly can restore individuals' affective abilities, making it a suitable activity to restore mood in response to stress. However, future research is needed to find activities capable of cognitive restoration. Many activities in life require sustained cognitive demand, which are stressful and decrease performance, especially for workers in performance-critical domains. Our research suggests some leisure activities are better than others for restoring fatigued affective processes.
The effect of presleep video-game playing on adolescent sleep.
Weaver, Edward; Gradisar, Michael; Dohnt, Hayley; Lovato, Nicole; Douglas, Paul
2010-04-15
Video-game use before bedtime has been linked with poor sleep outcomes for adolescents; however, experimental evidence to support this link is sparse. The present study investigated the capacity of presleep video-game playing to extend sleep latency and reduce subjective feelings of sleepiness in adolescents. The arousing psychophysiologic mechanisms involved and the impact of presleep video-game playing on sleep architecture were also explored. Thirteen male adolescent "evening types" (mean age = 16.6 years, SD = 1.1) participated in a counterbalanced, within-subjects design with experimental (active video gaming) and control (passive DVD watching) conditions. The experiment was conducted in the Flinders University Sleep Research Laboratory. Relative to the control condition, presleep video-game playing increased sleep-onset latency (Z= 2.45, p= .01) and reduced subjective sleepiness (Z = 2.36, p = .02)-but only slightly. Video gaming was related to changes in cognitive alertness (as measured by a power: p 0.05). Contrary to previous findings, sleep architecture was unaffected (both rapid eye movement and slow wave sleep: p > 0.05). Results suggest the direct effect of presleep video-game playing on adolescent sleep may be more modest than previously thought, suggesting that surveys linking stimulating presleep activities to poor sleep need substantiating with empirical evidence.
Video Game Playing Effects on Obesity in an Adolescent with Autism Spectrum Disorder: A Case Study
Directory of Open Access Journals (Sweden)
Brandy E. Strahan
2015-01-01
Full Text Available Adolescent obesity has tripled in the past two decades, and adolescents with disabilities, specifically autism spectrum disorders (ASD, may be at greater risk for obesity due to the behavioral, physical, and psychosocial complications related to their disorder. This case study reports the effects of video game playing on an obese adolescent with ASD and illustrates the use of a multiple baseline single subject design. Over 12 weeks, the participant played inactive (6 weeks and active video games (6 weeks on the Wii console. Physiological data were evaluated weekly at home. Stress and anxiety were measured via the Stress Survey Schedule for Individuals with Autism and Other Pervasive Non-Developmental Disorders (SSS and the Behavior Assessment System for Children Second Edition (BASC-2 pre- and postintervention. The Therapy Attitude Inventory (TAI was used to determine parental perception of video game playing as a socially valid intervention to reduce stress and anxiety. Results demonstrated that active video game playing slowed and/or reduced weight and BMI with minimal changes to waist-to-hip ratios, triceps skinfolds, and stress and anxiety. This study demonstrates how alternative methods for physical activity may be used to improve health outcomes of overweight/obese adolescents with ASD and suggests directions for future research.
Competition of neutrino and gravitational radiation in neutron star formation
International Nuclear Information System (INIS)
Kazanas, D.; Schramm, D.N.
1976-01-01
The possibility is explored that neutrino radiation, rather than gravitational radiation, may be the dominant way by which non-radial pulsations are damped out in a collapsing star. If this is so it implies that hopes of detecting gravity waves from supernovae explosions are very optimistic. Neutron stars and black holes are probably the collapsed central remnants of a supernovae explosion. These objects presumably originate from collapse of the cores of sufficiently massive stars, following the cessation of thermonuclear burning. Although there is at present no completely consistent detailed theory as to how collapse of the core and the subsequent supernova explosion take place, a general model exists for the final stages of stellar evolution and supernovae explosions. According to this model the electrons of a sufficiently massive stellar core, due to the high density and temperature, become absorbed by the protons through the reaction p + e - → n + v. Very large numbers of neutrinos, resulting from this and other thermal processes, such as pair annihilation, plasma decay, and Bremsstrahlung, are emitted, taking away most of the gravitational energy of the collapse. These neutrinos possibly drive ejection of the overlying stellar mantle, whilst the neutron-rich core collapses further to a condensed remnant. Gravitational radiation comes into play only at very late stages of the collapse. All of this implies that neutrino radiation might contribute to the decay of the non-radial oscillations of the collapsing core and the newly formed neutron star, possibly damping out these oscillations much faster than gravitational radiation. In order to obtain a more quantitative answer to the question the effects of neutrino radiation on the non-radial oscillations are examined. The implication is that neutrino radiation, by more rapid damping of the non-radial oscillations of a newly formed neutron star in a supernova explosion, would hinder gravitational radiation and
Directory of Open Access Journals (Sweden)
Elisabetta Albi
Full Text Available It is generally known that bone loss is one of the most important complications for astronauts who are exposed to long-term microgravity in space. Changes in blood flow, systemic hormones, and locally produced factors were indicated as important elements contributing to the response of osteoblastic cells to loading, but research in this field still has many questions. Here, the possible biological involvement of thyroid C cells is being investigated. The paper is a comparison between a case of a wild type single mouse and a over-expressing pleiotrophin single mouse exposed to hypogravity conditions during the first animal experiment of long stay in International Space Station (91 days and three similar mice exposed to hypergravity (2Gs conditions. We provide evidence that both microgravity and hypergravity induce similar loss of C cells with reduction of calcitonin production. Pleiotrophin over-expression result in some protection against negative effects of gravity change. Potential implication of the gravity mechanic forces in the regulation of bone homeostasis via thyroid equilibrium is discussed.
Those Elusive Gravitational Waves
MOSAIC, 1976
1976-01-01
The presence of gravitational waves was predicted by Einstein in his theory of General Relativity. Since then, scientists have been attempting to develop a detector sensitive enough to measure these cosmic signals. Once the presence of gravitational waves is confirmed, scientists can directly study star interiors, galaxy cores, or quasars. (MA)
Gravitationally coupled electroweak monopole
Energy Technology Data Exchange (ETDEWEB)
Cho, Y.M., E-mail: ymcho7@konkuk.ac.kr [Administration Building 310-4, Konkuk University, Seoul 143-701 (Korea, Republic of); School of Physics and Astronomy, Seoul National University, Seoul 151-742 (Korea, Republic of); Kimm, Kyoungtae [Faculty of Liberal Education, Seoul National University, Seoul 151-747 (Korea, Republic of); Yoon, J.H. [Department of Physics, College of Natural Sciences, Konkuk University, Seoul 143-701 (Korea, Republic of)
2016-10-10
We present a family of gravitationally coupled electroweak monopole solutions in Einstein–Weinberg–Salam theory. Our result confirms the existence of globally regular gravitating electroweak monopole which changes to the magnetically charged black hole as the Higgs vacuum value approaches to the Planck scale. Moreover, our solutions could provide a more accurate description of the monopole stars and magnetically charged black holes.
Gravitational perturbations of the hydrogen atom
International Nuclear Information System (INIS)
Parker, L.
1983-01-01
The strength of a gravitational field is characterized by the Riemann curvature tensor. It is of interest to know how the curvature of space-time at the position of an atom affects its spectrum. The author gives a brief summary of work on the effects of curvature on the hydrogen atom. The results refer to an arbitrary metric and can be evaluated for particular space-times of interest. The possibility of using the effect of gravitational waves on the electromagnetic spectrum of hydrogen as a means of detecting gravitational waves is also investigated. (Auth.)
Particle production in a gravitational wave background
Jones, Preston; McDougall, Patrick; Singleton, Douglas
2017-03-01
We study the possibility that massless particles, such as photons, are produced by a gravitational wave. That such a process should occur is implied by tree-level Feynman diagrams such as two gravitons turning into two photons, i.e., g +g →γ +γ . Here we calculate the rate at which a gravitational wave creates a massless scalar field. This is done by placing the scalar field in the background of a plane gravitational wave and calculating the 4-current of the scalar field. Even in the vacuum limit of the scalar field it has a nonzero vacuum expectation value (similar to what occurs in the Higgs mechanism) and a nonzero current. We associate this with the production of scalar field quanta by the gravitational field. This effect has potential consequences for the attenuation of gravitational waves since the massless field is being produced at the expense of the gravitational field. This is related to the time-dependent Schwinger effect, but with the electric field replaced by the gravitational wave background and the electron/positron field quanta replaced by massless scalar "photons." Since the produced scalar quanta are massless there is no exponential suppression, as occurs in the Schwinger effect due to the electron mass.
Facilitating Social Play for Children with PDDs: Effects of Paired Robotic Devices
Directory of Open Access Journals (Sweden)
Soichiro Matsuda
2017-06-01
Full Text Available Interacting with toys and other people is fundamental for developing social communication skills. However, children with autism spectrum disorder (ASD are characterized by having a significant impairment in social interaction, which often leads to deficits in play skills. For this reason, methods of teaching play skills to young children with ASD have been well documented. Although previous studies have examined a variety of instructional strategies for teaching skills, few studies have evaluated the potential of using robotic devices. The purpose of the present study is to examine whether automatic feedback provided by colored lights and vibration via paired robotic devices, COLOLO, facilitates social play behaviors in children with ASD. We also explore how social play relates to social interaction. COLOLO is a system of paired spherical devices covered with soft fabric. All participants in this study were recruited as volunteers through the Department of Psychology at Keio University. The pilot study included three participants diagnosed with Pervasive Developmental Disorders (PDDs; 5- to 6-year-old boys, and compared experimental conditions with and without automatic feedback from the devices (colored lights and vibration. The results indicated that the participants in the condition that included feedback from the devices exhibited increased rates of ball contact and looking at the therapist’s ball, but did not exhibit increased rates of eye contact or positive affect. In the experimental study, a systematic replication of the pilot study was performed with three other participants diagnosed with PDDs (3- to 6-year-old boys, using an A-B-A-B design. Again, the results demonstrated that, in the condition with colored lights and vibration, the children increased ball contact as well as looking at the therapist’s ball. However, the results did not show the effect of automatic feedback consistently for three children. These findings are
Bosse, Hans Martin; Nickel, Martin; Huwendiek, Sören; Schultz, Jobst Hendrik; Nikendei, Christoph
2015-10-24
The few studies directly comparing the methodological approach of peer role play (RP) and standardized patients (SP) for the delivery of communication skills all suggest that both methods are effective. In this study we calculated the costs of both methods (given comparable outcomes) and are the first to generate a differential cost-effectiveness analysis of both methods. Medical students in their prefinal year were randomly assigned to one of two groups receiving communication training in Pediatrics either with RP (N = 34) or 19 individually trained SP (N = 35). In an OSCE with standardized patients using the Calgary-Cambridge Referenced Observation Guide both groups achieved comparable high scores (results published). In this study, corresponding costs were assessed as man-hours resulting from hours of work of SP and tutors. A cost-effectiveness analysis was performed. Cost-effectiveness analysis revealed a major advantage for RP as compared to SP (112 vs. 172 man hours; cost effectiveness ratio .74 vs. .45) at comparable performance levels after training with both methods. While both peer role play and training with standardized patients have their value in medical curricula, RP has a major advantage in terms of cost-effectiveness. This could be taken into account in future decisions.
Data quality studies of enhanced interferometric gravitational wave detectors
International Nuclear Information System (INIS)
McIver, Jessica
2012-01-01
Data quality assessment plays an essential role in the quest to detect gravitational wave signals in data from the LIGO and Virgo interferometric gravitational wave detectors. Interferometer data contain a high rate of noise transients from the environment, the detector hardware and the detector control systems. These transients severely limit the statistical significance of gravitational wave candidates of short duration and/or poorly modeled waveforms. This paper describes the data quality studies that have been performed in recent LIGO and Virgo observing runs to mitigate the impact of transient detector artifacts on the gravitational wave searches. (paper)
Effectiveness of Group Play Therapy on Symptoms of Oppositional Defiant Among Children
Directory of Open Access Journals (Sweden)
Narges Morshed
2015-12-01
Full Text Available Background and Objectives: With regard to the prevalence of Oppositional-Defiant Disorder in children and converting to the other disorders, if left untreated, this research aims to investigate the effectiveness of group play therapy on oppositional-defiant disorder symptoms among children. Materials and Methods: This study is interventional and quasi-experimental research. In this study based on cluster sampling method, 30 participants were selected and randomly assigned to the experimental and control groups. The tools discussed here included Child Behavior Checklist (CBCL, Raven's Progressive Matrixes, Teacher Report Form (TRF as well as a clinical interview with parents. Play therapy was provided weekly by group for the participants, in sixty-minute eight sessions. Participants were assessed in three stages of pre- interference post- interference and after two month intervals from completing sessions. SPSS18 and multi-variables covariance analysis method were used for analyzing data. Results: The results obtained by Mancova analysis showed that there was a significant decrease in oppositional defiant-disorder symptoms in comparison with control group reporting by parents and teacher (P < 0.001. In addition, the results indicated the same effect after two months. Conclusions: The results indicated the efficiency of group play therapy on decrease of oppositional defiant disorder symptoms among children. Accordingly using this treatment method on children was recommended to the therapists.
Gravitational Wave Experiments - Proceedings of the First Edoardo Amaldi Conference
Coccia, E.; Pizzella, G.; Ronga, F.
1995-07-01
Production of Gravitational Radiation by Particle Accelerators and by High Power Lasers * NESTOR: An Underwater Cerenkov Detector for Neutrino Astronomy * A Cosmic-Ray Veto System for the Gravitational Wave Detector NAUTLUS * Interferometers * Development of a 20m Prototype Laser Interferometric Gravitational Wave Detector at NAO * Production of Higher-Order Light Modes by High Quality Optical Components * Vibration Isolation and Suspension Systems for Laser Interferometer Gravitational Wave Detectors * Quality Factors of Stainless Steel Pendulum Wires * Reduction of Suspension Thermal Noises in Laser Free Masses Gravitational Antenna by Correlation of the Output with Additional Optical Signal * Resonant Detectors * Regeneration Effects in a Resonant Gravitational Wave Detector * A Cryogenic Sapphire Transducer with Double Frequency Pumping for Resonant Mass GW Detectors * Effect of Parametric Instability of Gravitational Wave Antenna with Microwave Cavity Transducer * Resonators of Novel Geometry for Large Mass Resonant Transducers * Measurements on the Gravitational Wave Antenna ALTAIR Equipped with a BAE Transducer * The Rome BAE Transducer: Perspectives of its Application to Ultracryogenic Gravitational Wave Antennas * Behavior of a de SQUID Tightly Coupled to a High-Q Resonant Transducer * High Q-Factor LC Resonators for Optimal Coupling * Comparison Between Different Data Analysis Procedures for Gravitational Wave Pulse Detection * Supernova 1987A Rome Maryland Gravitational Radiation Antenna Observations * Analysis of the Data Recorded by the Maryland and Rome Gravitational-Wave Detectors and the Seismic Data from Moscow and Obninsk Station during SN1987A * Multitransducer Resonant Gravitational Antennas * Local Array of High Frequency Antennas * Interaction Cross-Sections for Spherical Resonant GW Antennae * Signal-To-Noise Analysis for a Spherical Gravitational Wave Antenna Instrumented with Multiple Transducers * On the Design of Ultralow Temperature Spherical
The effect of two kinds of role playing on self-evaluation of improved assertiveness.
Kipper, D A
1992-03-01
The study investigated the "differential effect of role-playing enactments" hypothesis through self-evaluations of improvement in assertiveness by participants in an assertive training program. Twenty-two nonassertive Israeli students were trained in two groups: mimetic-replications (action modeling, n = 12) and spontaneous (self-produced action, n = 10) role-playing interventions. Comparisons of their scores on the Self-Expression College Scale (CSES) before and after the training showed that both groups significantly improved their self-evaluations, but the mimetic-replication group did better. In particular, this group scored significantly higher on the CSES first factor (the willingness to take risks in situations that involved other, significant persons).
Graybill, Daniel; And Others
1985-01-01
Examines effects of playing violent and nonviolent video games on children's aggressive ideation. Children played a violent or nonviolent video game for eight minutes. Provides initial support, at least on a short-term basis, for notion that the playing of video games affects children's aggression fantasies. (Author/DST)
Effectiveness of Client-centered Play Therapy on Fear and Anxiety in Preschool Children
Directory of Open Access Journals (Sweden)
Hoda Sadat Mosavi
2016-12-01
Full Text Available Background and Objective: Preschool period is playing main role in development and adjustment of children. Fear and anxiety are of externalizing disorders, providing untreated it leads to negative effects on individual and social relationship specially in adulthood therefore, this research investigates the influence of client-centered play therapy on fear and anxiety among preschool children (5-6 aged.Materials and Methods: This study is a quasi-experimental study with pre and post- tests. 14 male and female preschool children (5-6 aged who were obtaining scores higher than cut-off in Spence anxiety scale (SAS and fear survey schedule for children-revised (FSSC-R parents’ form questionnaires were selected, and then they were assigned randomly to the control and experimental groups. The experimental group received techniques of client-centered play therapy for six treatment sessions (45minutes for each session. The fear and anxiety were measured at the beginning and at end of therapeutic session, utilizing the Spence Children's Anxiety Scale and fear survey schedule for children-revised (FSSC-R parents’ form. Statistical analysis conducted by analysis of covariance (ANCOVA.Results: There is significantly difference in Mean (SD scores of pretest 130.4 (3.3 and posttest 127.1 (4.6 fear (P<0.001, F= 24.6 and in scores of pretest 58.6 (2.6 and post-test 48.28 (3.6 anxiety (P<0.001, F=19.5 between preschool children in pre and post-test.Conclusion: Findings indicated that client-centered play therapy has effective in reducing behavioral problem such as fear and anxiety disorders in preschool children. Therefore, it can be useful and applicable as the psychological therapeutic interventions for decreasing behavioral distress in children.
The effects of video game playing on attention, memory, and executive control.
Boot, Walter R; Kramer, Arthur F; Simons, Daniel J; Fabiani, Monica; Gratton, Gabriele
2008-11-01
Expert video game players often outperform non-players on measures of basic attention and performance. Such differences might result from exposure to video games or they might reflect other group differences between those people who do or do not play video games. Recent research has suggested a causal relationship between playing action video games and improvements in a variety of visual and attentional skills (e.g., [Green, C. S., & Bavelier, D. (2003). Action video game modifies visual selective attention. Nature, 423, 534-537]). The current research sought to replicate and extend these results by examining both expert/non-gamer differences and the effects of video game playing on tasks tapping a wider range of cognitive abilities, including attention, memory, and executive control. Non-gamers played 20+ h of an action video game, a puzzle game, or a real-time strategy game. Expert gamers and non-gamers differed on a number of basic cognitive skills: experts could track objects moving at greater speeds, better detected changes to objects stored in visual short-term memory, switched more quickly from one task to another, and mentally rotated objects more efficiently. Strikingly, extensive video game practice did not substantially enhance performance for non-gamers on most cognitive tasks, although they did improve somewhat in mental rotation performance. Our results suggest that at least some differences between video game experts and non-gamers in basic cognitive performance result either from far more extensive video game experience or from pre-existing group differences in abilities that result in a self-selection effect.
Radiatively-induced gravitational leptogenesis
Energy Technology Data Exchange (ETDEWEB)
McDonald, J.I., E-mail: pymcdonald@swansea.ac.uk; Shore, G.M., E-mail: g.m.shore@swansea.ac.uk
2015-12-17
We demonstrate how loop effects in gravitational backgrounds lead to a difference in the propagation of matter and antimatter, and show this is forbidden in flat space due to CPT and translation invariance. This mechanism, which is naturally present in beyond the standard model (BSM) theories exhibiting C and CP violation, generates a curvature-dependent chemical potential for leptons in the low-energy effective Lagrangian, allowing a matter–antimatter asymmetry to be generated in thermodynamic equilibrium, below the BSM scale.
The Hall-induced stability of gravitating fluids
Karmakar, P. K.; Goutam, H. P.
2018-05-01
We analyze the stability behavior of low-density partially ionized self-gravitating magnetized unbounded dusty plasma fluid in the presence of the Hall diffusion effects (HDEs) in the non-ideal magnetohydrodynamic (MHD) equilibrium framework. The effects of inhomogeneous self-gravity are methodically included in the basic model tapestry. Application of the Fourier plane-wave perturbative treatment decouples the structuration representative parameters into a linear generalized dispersion relation (sextic) in a judicious mean-fluid approximation. The dispersion analysis shows that the normal mode, termed as the gravito-magneto-acoustic (GMA) mode, is drastically modified due to the HDEs. This mode is highly dispersive, and driven unstable by the Hall current resulting from the symmetry-breaking of electrons and ions relative to the magnetic field. The mode feature, which is derived from a modified induction with the positive Hall, is against the ideal MHD. It is further demonstrated that the HDEs play stabilizing roles by supporting the cloud against gravitational collapse. Provided that the HDEs are concurrently switched off, the collapse occurs on the global spatial scale due to enhanced inward accretion of the gravitating dust constituents. It is seen explicitly that the enhanced dust-charge leads to stabilizing effects. Besides, the Hall-induced fluctuations, as propagatory wave modes, exhibit both normal and anomalous dispersions. The reliability checkup of the entailed results as diverse corollaries and special cases are illustratively discussed in the panoptic light of the earlier paradigmatic predictions available in the literature.
Effect of play therapy on behavioral problems of mal-adjusted pre-school children
Directory of Open Access Journals (Sweden)
Mehdi Khanbani
2011-01-01
Full Text Available Objective: The present research was conducted to study the effect of play therapy on reducing behavioral problems of mal-adjusted children (children with oppositional defiant disorder. Method: By using multistage cluster sampling, regions 6, 7, and 8 in Tehran were selected, and among kindergartens of these areas, 3 kindergartens under the support of welfare organization were randomly selected. From pre-school children of these 3 kindergartens, 40 children that could have behavioral disorder according to their teachers and parents complaints, were carefully tested, and among them, by the results obtained from child symptom inventory questionnaire (CSI-4, teacher's form, and a researcher-made self-control checklist, 16 children who showed severe symptoms of oppositional defiant disorder were selected, and they were randomly divided into control and experimental group. This research is quasi-experimental, and is done by the use of pre-test, post-test, and control group. Results: values of calculated F for oppositional defiant disorder in control and experimental group is meaningful after fixing the effect of pre-test (F(1,12=74/94, P<0/001 so there is a meaningful difference between means of disobedience disorder post-test scores in experimental and control group by having the fixed effect of pre-test effect. Comparison of adjusted means of 2 groups shows that the mean of attention-deficit hyperactivity disorder (ADHD in experimental group (M=14/09 is lower than control group (M=36/66. Therefore, applying play therapy in experimental group in comparison with control group, who did not receive these instructions, caused reduction in attention-deficit hyperactivity disorder (ADHD in pre-school children. Conclusion: Results of this research show that the children's disobedience is reduced by benefiting from play therapy.
Physical optics in a uniform gravitational field
Hacyan, Shahen
2012-01-01
The motion of a (quasi-)plane wave in a uniform gravitational field is studied. It is shown that the energy of an elliptically polarized wave does not propagate along a geodesic, but in a direction that is rotated with respect to the gravitational force. The similarity with the walk-off effect in anisotropic crystals or the optical Magnus effect in inhomogeneous media is pointed out.
Teaching Universal Gravitation with Vector Games
Lowry, Matthew
2008-01-01
Like many high school and college physics teachers, I have found playing vector games to be a useful way of illustrating the concepts of inertia, velocity, and acceleration. Like many, I have also had difficulty in trying to get students to understand Newton's law of universal gravitation, specifically the inverse-square law and its application to…
International Nuclear Information System (INIS)
Yunes, Nicolas; O'Shaughnessy, Richard; Owen, Benjamin J.; Alexander, Stephon
2010-01-01
Gravitational parity violation is a possibility motivated by particle physics, string theory, and loop quantum gravity. One effect of it is amplitude birefringence of gravitational waves, whereby left and right circularly polarized waves propagate at the same speed but with different amplitude evolution. Here we propose a test of this effect through coincident observations of gravitational waves and short gamma-ray bursts from binary mergers involving neutron stars. Such gravitational waves are highly left or right circularly polarized due to the geometry of the merger. Using localization information from the gamma-ray burst, ground-based gravitational wave detectors can measure the distance to the source with reasonable accuracy. An electromagnetic determination of the redshift from an afterglow or host galaxy yields an independent measure of this distance. Gravitational parity violation would manifest itself as a discrepancy between these two distance measurements. We exemplify such a test by considering one specific effective theory that leads to such gravitational parity violation, Chern-Simons gravity. We show that the advanced LIGO-Virgo network and all-sky gamma-ray telescopes can be sensitive to the propagating sector of Chern-Simons gravitational parity violation to a level roughly 2 orders of magnitude better than current stationary constraints from the LAGEOS satellites.
da Silva, Flávia Vieira; Yamaguchi, Natália Ueda; Lovato, Gilselaine Afonso; da Silva, Fernando Alves; Reis, Miria Hespanhol Miranda; de Amorim, Maria Teresa Pessoa Sousa; Tavares, Célia Regina Granhen; Bergamasco, Rosângela
2012-01-01
This study evaluates the performance of a polymeric microfiltration membrane, as well as its combination with a coconut granular activated carbon (GAC) pretreatment, in a gravitational filtration module, to improve the quality of water destined to human consumption. The proposed membrane and adsorbent were thoroughly characterized using instrumental techniques, such as contact angle, Brunauer-Emmett-Teller) and Fourier transform infrared spectroscopy analyses. The applied processes (membrane and GAC + membrane) were evaluated regarding permeate flux, fouling percentage, pH and removal of Escherichia coli, colour, turbidity and free chlorine. The obtained results for filtrations with and without GAC pretreatment were similar in terms of water quality. GAC pretreatment ensured higher chlorine removals, as well as higher initial permeate fluxes. This system, applying GAC as a pretreatment and a gravitational driven membrane filtration, could be considered as an alternative point-of-use treatment for water destined for human consumption.
Structure of gauge and gravitational anomalies*
International Nuclear Information System (INIS)
Alvarez-Gaume, L.; Ginsparg, P.
1985-01-01
It is shown how the form of the gauge and gravitational anomalies in quantum field theories may be derived from classical index theorems. The gravitational anomaly in both Einstein and Lorentz form is considered and their equivalence is exhibited. The formalism of gauge and gravitational theories is reviewed using the language of differential geometry, and notions from the theory of characteristic classes necessary for understanding the classical index theorems are introduced. The treatment of known topological results includes a pedagogical derivation of the Wess-Zumino effective Lagrangian in abitrary even dimension. The relation between various forms of the anomaly present in the literature is also clarified
Gravitational instability in isotropic MHD plasma waves
Cherkos, Alemayehu Mengesha
2018-04-01
The effect of compressive viscosity, thermal conductivity and radiative heat-loss functions on the gravitational instability of infinitely extended homogeneous MHD plasma has been investigated. By taking in account these parameters we developed the six-order dispersion relation for magnetohydrodynamic (MHD) waves propagating in a homogeneous and isotropic plasma. The general dispersion relation has been developed from set of linearized basic equations and solved analytically to analyse the conditions of instability and instability of self-gravitating plasma embedded in a constant magnetic field. Our result shows that the presence of viscosity and thermal conductivity in a strong magnetic field substantially modifies the fundamental Jeans criterion of gravitational instability.
Directory of Open Access Journals (Sweden)
Geoffrey L. Ream
2011-10-01
Full Text Available This study tested the hypothesis that playing video games while using or feeling the effects of a substance—referred to herein as “concurrent use”—is related to substance use problems after controlling for substance use frequency, video gaming as an enthusiastic hobby, and demographic factors. Data were drawn from a nationally representative online survey of adult video gamers conducted by Knowledge Networks, valid n = 2,885. Problem video game playing behavior was operationalized using Tejeiro Salguero and Bersabé Morán’s 2002 problem video game play (PVP measure, and measures for substance use problems were taken from the National Survey of Drug Use and Health (NSDUH. Separate structural equation modeling analyses were conducted for users of caffeine, tobacco, alcohol, and marijuana. In all four models, concurrent use was directly associated with substance use problems, but not with PVP. Video gaming as an enthusiastic hobby was associated with substance use problems via two indirect paths: through PVP for all substances, and through concurrent use for caffeine, tobacco, and alcohol only. Results illustrate the potential for “drug interaction” between self-reinforcing behaviors and addictive substances, with implications for the development of problem use.
Ream, Geoffrey L.; Elliott, Luther C.; Dunlap, Eloise
2011-01-01
This study tested the hypothesis that playing video games while using or feeling the effects of a substance—referred to herein as “concurrent use”—is related to substance use problems after controlling for substance use frequency, video gaming as an enthusiastic hobby, and demographic factors. Data were drawn from a nationally representative online survey of adult video gamers conducted by Knowledge Networks, valid n = 2,885. Problem video game playing behavior was operationalized using Tejeiro Salguero and Bersabé Morán’s 2002 problem video game play (PVP) measure, and measures for substance use problems were taken from the National Survey of Drug Use and Health (NSDUH). Separate structural equation modeling analyses were conducted for users of caffeine, tobacco, alcohol, and marijuana. In all four models, concurrent use was directly associated with substance use problems, but not with PVP. Video gaming as an enthusiastic hobby was associated with substance use problems via two indirect paths: through PVP for all substances, and through concurrent use for caffeine, tobacco, and alcohol only. Results illustrate the potential for “drug interaction” between self-reinforcing behaviors and addictive substances, with implications for the development of problem use. PMID:22073023
O'Leary, Kevin C; Pontifex, Matthew B; Scudder, Mark R; Brown, Michael L; Hillman, Charles H
2011-08-01
The effects of single bouts of aerobic exercise, exergaming, and action videogame play on event-related brain potentials (ERPs) and task performance indices of cognitive control were investigated using a modified flanker task that manipulated demands of attentional inhibition. Participants completed four counterbalanced sessions of 20 min of activity intervention (i.e., seated rest, seated videogame play, and treadmill-based and exergame-based aerobic exercise at 60% HR(max)) followed by cognitive testing once heart rate (HR) returned to within 10% of pre-activity levels. Results indicated decreased RT interference following treadmill exercise relative to seated rest and videogame play. P3 amplitude was increased following treadmill exercise relative to rest, suggesting an increased allocation of attentional resources during stimulus engagement. The seated videogame and exergame conditions did not differ from any other condition. The findings indicate that single bouts of treadmill exercise may improve cognitive control through an increase in the allocation of attentional resources and greater interference control during cognitively demanding tasks. However, similar benefits may not be derived following short bouts of aerobic exergaming or seated videogame participation. Although exergames may increase physical activity participation, they may not exert the same benefits to brain and cognition as more traditional physical activity behaviors. Copyright © 2011 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Ream, Geoffrey L; Elliott, Luther C; Dunlap, Eloise
2011-10-01
This study tested the hypothesis that playing video games while using or feeling the effects of a substance--referred to herein as "concurrent use"-is related to substance use problems after controlling for substance use frequency, video gaming as an enthusiastic hobby, and demographic factors. Data were drawn from a nationally representative online survey of adult video gamers conducted by Knowledge Networks, valid n = 2,885. Problem video game playing behavior was operationalized using Tejeiro Salguero and Bersabé Morán's 2002 problem video game play (PVP) measure, and measures for substance use problems were taken from the National Survey of Drug Use and Health (NSDUH). Separate structural equation modeling analyses were conducted for users of caffeine, tobacco, alcohol, and marijuana. In all four models, concurrent use was directly associated with substance use problems, but not with PVP. Video gaming as an enthusiastic hobby was associated with substance use problems via two indirect paths: through PVP for all substances, and through concurrent use for caffeine, tobacco, and alcohol only. Results illustrate the potential for "drug interaction" between self-reinforcing behaviors and addictive substances, with implications for the development of problem use.
International Nuclear Information System (INIS)
Kowalska-Leszczynska, Izabela; Bulik, Tomasz; Bizouard, Marie-Anne; Robinet, Florent; Christensen, Nelson; Rohde, Maximilian; Coughlin, Michael; Gołkowski, Mark; Kubisz, Jerzy; Kulak, Andrzej; Mlynarczyk, Janusz
2017-01-01
It has been recognized that the magnetic fields from the Schumann resonances could affect the search for a stochastic gravitational-wave background by LIGO and Virgo. Presented here are the observations of short duration magnetic field transients that are coincident in the magnetometers at the LIGO and Virgo sites. Data from low-noise magnetometers in Poland and Colorado, USA, are also used and show short duration magnetic transients of global extent. We measure at least 2.3 coincident (between Poland and Colorado) magnetic transient events per day where one of the pulses exceeds 200 pT. Given the recently measured values of the magnetic coupling to differential arm motion for Advanced LIGO, there would be a few events per day that would appear simultaneously at the gravitational-wave detector sites and could move the test masses of order 10 −18 m. We confirm that in the advanced detector era short duration transient gravitational-wave searches must account for correlated magnetic field noise in the global detector network. (paper)
International Nuclear Information System (INIS)
Tevikyan, R.V.
1986-01-01
This paper presents equations that describe particles with spins s = 0, 1/2, 1 completely and which also describe 2s + 2 limiting fields as E → ∞. It is shown that the ordinary Hilbert-Einstein action for the gravitation field must be augmented by the action for the Bose vacuum field. This means that one must introduce in the gravitational equations a cosmological term proportional to the square of the strength of the Bose vacuum field. It is shown that the theory of gravitation describes three realities: matter, field, and vacuum field. A new form of matter--the vacuum field--is introduced into field theory
Gravitational radiation reaction
International Nuclear Information System (INIS)
Tanaka, Takahiro
2006-01-01
We give a short personally-biased review on the recent progress in our understanding of gravitational radiation reaction acting on a point particle orbiting a black hole. The main motivation of this study is to obtain sufficiently precise gravitational waveforms from inspiraling binary compact starts with a large mass ratio. For this purpose, various new concepts and techniques have been developed to compute the orbital evolution taking into account the gravitational self-force. Combining these ideas with a few supplementary new ideas, we try to outline a path to our goal here. (author)
Presenting Newtonian gravitation
International Nuclear Information System (INIS)
Counihan, Martin
2007-01-01
The basic principles of the Newtonian theory of gravitation are presented in a way which students may find more logically coherent, mathematically accessible and physically interesting than other approaches. After giving relatively simple derivations of the circular hodograph and the elliptical orbit from the inverse-square law, the concept of gravitational energy is developed from vector calculus. It is argued that the energy density of a gravitational field may reasonably be regarded as -g 2 /8πG, and that the inverse-square law may be replaced by a Schwarzschild-like force law without the need to invoke non-Euclidean geometry
The Effect of Parental Involvement and Encouragement on Preschool Children's Symbolic Play
Marjanovic-Umek, Ljubica; Fekonja-Peklaj, Urška; Podlesek, Anja
2014-01-01
The purpose of our study was to examine the ways in which parents engage in play with their children within the family context and to establish which parental play behaviour predicts the play behaviour of their children during interactive play with toys. The sample included 58 children from 2;6 to 6 years old and their parents. The parent-child…
Can static regular black holes form from gravitational collapse?
International Nuclear Information System (INIS)
Zhang, Yiyang; Zhu, Yiwei; Modesto, Leonardo; Bambi, Cosimo
2015-01-01
Starting from the Oppenheimer-Snyder model, we know how in classical general relativity the gravitational collapse of matter forms a black hole with a central spacetime singularity. It is widely believed that the singularity must be removed by quantum-gravity effects. Some static quantum-inspired singularity-free black hole solutions have been proposed in the literature, but when one considers simple examples of gravitational collapse the classical singularity is replaced by a bounce, after which the collapsing matter expands for ever. We may expect three possible explanations: (i) the static regular black hole solutions are not physical, in the sense that they cannot be realized in Nature, (ii) the final product of the collapse is not unique, but it depends on the initial conditions, or (iii) boundary effects play an important role and our simple models miss important physics. In the latter case, after proper adjustment, the bouncing solution would approach the static one. We argue that the ''correct answer'' may be related to the appearance of a ghost state in de Sitter spacetimes with super Planckian mass. Our black holes have indeed a de Sitter core and the ghost would make these configurations unstable. Therefore we believe that these black hole static solutions represent the transient phase of a gravitational collapse but never survive as asymptotic states. (orig.)
Polman, Hanneke; de Castro, Bram Orobio; van Aken, Marcel A G
2008-01-01
There is great concern about the effects of playing violent video games on aggressive behavior. The present experimental study was aimed at investigating the differential effects of actively playing vs. passively watching the same violent video game on subsequent aggressive behavior. Fifty-seven children aged 10-13 either played a violent video game (active violent condition), watched the same violent video game (passive violent condition), or played a non-violent video game (active non-violent condition). Aggression was measured through peer nominations of real-life aggressive incidents during a free play session at school. After the active participation of actually playing the violent video game, boys behaved more aggressively than did the boys in the passive game condition. For girls, game condition was not related to aggression. These findings indicate that, specifically for boys, playing a violent video game should lead to more aggression than watching television violence. Copyright 2007 Wiley-Liss, Inc.
Vacuum polarization and non-Newtonian gravitation
International Nuclear Information System (INIS)
Long, D.R.
1980-01-01
Gell-Mann and Low have emphasized that, as first pointed out by Uehling and Serber, vacuum polarization effects produce a logarithmic modification to the Coulomb potential at small distances. Here, it is pointed out that, if these same considerations are applied to gravitation, the logarithmic term will have a sign opposite to that in the Coulomb case and in agreement with recent laboratory results on the gravitational ''constant''. Of considerable importance is the fact that such vacuum polarization effects cannot be observed in null experiments to test the gravitational inverse square law because the polarizing field is absent. It is a striking circumstance that the coefficient of the logarithm in QED is nearly the same as that found in gravitational experiments. (author)
Energy Technology Data Exchange (ETDEWEB)
Levi, Michele [Université Pierre et Marie Curie, CNRS-UMR 7095, Institut d' Astrophysique de Paris, 98 bis Boulevard Arago, 75014 Paris (France); Steinhoff, Jan, E-mail: michele.levi@upmc.fr, E-mail: jan.steinhoff@aei.mpg.de [Max-Planck-Institute for Gravitational Physics (Albert-Einstein-Institute), Am Mühlenberg 1, 14476 Potsdam-Golm (Germany)
2016-01-01
The next-to-next-to-leading order spin-squared interaction potential for generic compact binaries is derived for the first time via the effective field theory for gravitating spinning objects in the post-Newtonian scheme. The spin-squared sector is an intricate one, as it requires the consideration of the point particle action beyond minimal coupling, and mainly involves the spin-squared worldline couplings, which are quite complex, compared to the worldline couplings from the minimal coupling part of the action. This sector also involves the linear in spin couplings, as we go up in the nonlinearity of the interaction, and in the loop order. Hence, there is an excessive increase in the number of Feynman diagrams, of which more are higher loop ones. We provide all the Feynman diagrams and their values. The beneficial ''nonrelativistic gravitational'' fields are employed in the computation. This spin-squared correction, which enters at the fourth post-Newtonian order for rapidly rotating compact objects, completes the conservative sector up to the fourth post-Newtonian accuracy. The robustness of the effective field theory for gravitating spinning objects is shown here once again, as demonstrated in a recent series of papers by the authors, which obtained all spin dependent sectors, required up to the fourth post-Newtonian accuracy. The effective field theory of spinning objects allows to directly obtain the equations of motion, and the Hamiltonians, and these will be derived for the potential obtained here in a forthcoming paper.
Accelerating Photons with Gravitational Radiation
Shore, Graham M
2001-01-01
The nature of superluminal photon propagation in the gravitational field describing radiation from a time-dependent, isolated source (the Bondi-Sachs metric) is considered in an effective theory which includes interactions which violate the strong equivalence principle. Such interactions are, for example, generated by vacuum polarisation in conventional QED in curved spacetime. The relation of the resulting light-cone modifications to the Peeling Theorem for the Bondi-Sachs spacetime is explained.
The effects of video game play on the characteristics of saccadic eye movements.
Mack, David J; Ilg, Uwe J
2014-09-01
Video game play has become a common leisure activity all around the world. To reveal possible effects of playing video games, we measured saccades elicited by video game players (VGPs) and non-players (NVGPs) in two oculomotor tasks. First, our subjects performed a double-step task. Second, we asked our subjects to move their gaze opposite to the appearance of a visual target, i.e. to perform anti-saccades. As expected on the basis of previous studies, VGPs had significantly shorter saccadic reaction times (SRTs) than NVGPs for all saccade types. However, the error rates in the anti-saccade task did not reveal any significant differences. In fact, the error rates of VGPs were actually slightly lower compared to NVGPs (34% versus 40%, respectively). In addition, VGPs showed significantly higher saccadic peak velocities in every saccade type compared to NVGP. Our results suggest that faster SRTs in VGPs were associated with a more efficient motor drive for saccades. Taken together, our results are in excellent agreement with earlier reports of beneficial video game effects through the general reduction in SRTs. Our data clearly provides additional experimental evidence for an higher efficiency of the VGPs on the one hand and refutes the notion of a reduced impulse control in VGPs on the other. Copyright © 2014 Elsevier Ltd. All rights reserved.
Effect of play therapy on behavioral problems of maladjusted preschool children.
Jafari, Niloufar; Mohammadi, Mohammad Reza; Khanbani, Mehdi; Farid, Saeedeh; Chiti, Parisa
2011-01-01
The present research was conducted to study the effect of play therapy on reducing behavioral problems of children with oppositional defiant disorder. Using multistage cluster sampling, regions 6, 7, and 8 in Tehran were selected. Among kindergartens of these areas, 3 kindergartens which were supported by the welfare organization were randomly selected. Of all the pre-school children of these 3 kindergartens, 40 children who could have behavioral disorder, according to their teachers and parents, were carefully tested. Of them, 16 children who showed severe symptoms of oppositional defiant disorder, were selected via the results obtained from the child symptom inventory questionnaire (CSI-4), teacher's form, and a researcher-made self-control checklist, Then, the subjects were randomly divided into one control and one experimental group. This research is quasi-experimental, and is conducted using pre-test, post-test, and control group. Values of the calculated F for oppositional defiant disorder in control group and experimental group was meaningful after fixing the effect of pre-test (Pplay therapy reduced severity of ADHD in those children in experimental group compared to those in control group who did not receive such instructions. Results of this research demonstrates that children's disobedience can be reduced by play therapy.
Silverman, Michael J
2011-01-01
The purpose of this study was to implement and measure the effectiveness of a single-session assertiveness music therapy role playing protocol for psychiatric inpatients. Participants (N=133) were randomly assigned by group to one of three conditions: (a) Assertiveness Music Therapy, (b) No Music Assertiveness, or (c) Music No Assertiveness. Participants in both assertiveness conditions role played a number of different commonly occurring scenarios at an inpatient psychiatric facility and in the community. There were no significant between-group differences in posttest quality of life, locus of control, or other subscales. However, participants in both assertiveness conditions tended to have slightly higher internal locus of control and overall quality of life scores than participants in the music no assertiveness condition. Additionally, the assertiveness music therapy condition had higher attendance rates than the other conditions. A higher percentage of participants from both the assertiveness music therapy and music no assertiveness conditions indicated they thought their session was the most helpful/therapeutic group therapy session in which they had participated; this was not the case for the assertiveness no music condition. Future research is warranted to measure the effects of protocols that can help psychiatric patients generalize skills learned in treatment.
International Nuclear Information System (INIS)
Yilmaz, H.
1975-01-01
Schwinger's source theory is applied to the problem of gravitation and its quantization. It is shown that within the framework of a flat-space the source theory implementation leads to a violation of probability. To avoid the difficulty one must introduce a curved space-time hence the source concept may be said to necessitate the transition to a curved-space theory of gravitation. It is further shown that the curved-space theory of gravitation implied by the source theory is not equivalent to the conventional Einstein theory. The source concept leads to a different theory where the gravitational field has a stress-energy tensor t/sup nu//sub mu/ which contributes to geometric curvatures
Gravitational lensing of quasars
Eigenbrod, Alexander
2013-01-01
The universe, in all its richness, diversity and complexity, is populated by a myriad of intriguing celestial objects. Among the most exotic of them are gravitationally lensed quasars. A quasar is an extremely bright nucleus of a galaxy, and when such an object is gravitationally lensed, multiple images of the quasar are produced – this phenomenon of cosmic mirage can provide invaluable insights on burning questions, such as the nature of dark matter and dark energy. After presenting the basics of modern cosmology, the book describes active galactic nuclei, the theory of gravitational lensing, and presents a particular numerical technique to improve the resolution of astronomical data. The book then enters the heart of the subject with the description of important applications of gravitational lensing of quasars, such as the measurement of the famous Hubble constant, the determination of the dark matter distribution in galaxies, and the observation of the mysterious inner parts of quasars with much higher r...
Gravitational Waves and Neutrinos
Sturani, Riccardo
2018-01-01
We give an overview about the recent detection of gravitational waves by the Advanced LIGO first and second observing runs and by Advanced Virgo, with emphasis on the prospects for multi-messenger astronomy involving neutrinos detections.
CERN. Geneva
2016-01-01
In the past year, the LIGO-Virgo Collaboration announced the first secure detection of gravitational waves. This discovery heralds the beginning of gravitational wave astronomy: the use of gravitational waves as a tool for studying the dense and dynamical universe. In this talk, I will describe the full spectrum of gravitational waves, from Hubble-scale modes, through waves with periods of years, hours and milliseconds. I will describe the different techniques one uses to measure the waves in these bands, current and planned facilities for implementing these techniques, and the broad range of sources which produce the radiation. I will discuss what we might expect to learn as more events and sources are measured, and as this field matures into a standard part of the astronomical milieu.
Listening music of gravitation
International Nuclear Information System (INIS)
Anon.
2001-01-01
Achievements of precision experiments in Japan (TAMA project) and USA (LIGO Laboratory) in the field of registration of gravitation waves using interferometric gravitational wave detectors are described. Works of the GEO groups in Hannover (Germany) and Vigro (Italy) are noted. Interferometer operation in synchronization during 160 hours demonstrating viability of the technique and its reliability is recorded. Advances in the field of the data analysis with the aim of recording of cosmic signal from noise of the interferometer are noted [ru
Romero, Gustavo E.
2017-01-01
I discuss the recent claims made by Mario Bunge on the philosophical implications of the discovery of gravitational waves. I think that Bunge is right when he points out that the detection implies the materiality of spacetime, but I reject his identification of spacetime with the gravitational field. I show that Bunge's analysis of the spacetime inside a hollow sphere is defective, but this in no way affects his main claim.
Directory of Open Access Journals (Sweden)
Stavroulakis N.
2008-04-01
Full Text Available The equations of gravitation together with the equations of electromagnetism in terms of the General Theory of Relativity allow to conceive an interdependence between the gravitational field and the electromagnetic field. However the technical difficulties of the relevant problems have precluded from expressing clearly this interdependence. Even the simple problem related to the field generated by a charged spherical mass is not correctly solved. In the present paper we reexamine from the outset this problem and propose a new solution.
Looking for new gravitational forces with antiprotons
International Nuclear Information System (INIS)
Nieto, M.M.; Bonner, B.E.
1987-01-01
Quite general arguments based on the principle of equivalence and modern field theory show that it is possible for the gravitational acceleration of antimatter to be different than that for matter. Further, there is no experimental evidence to rule out the possibility. In fact, some evidence indicates there may be unexpected effects. Thus, the planned experiment to measure the gravitational acceleration of antiprotons is of fundamental importance. 20 refs., 3 figs
Exosome-mediated microRNA transfer plays a role in radiation-induced bystander effect.
Xu, Shuai; Wang, Jufang; Ding, Nan; Hu, Wentao; Zhang, Xurui; Wang, Bing; Hua, Junrui; Wei, Wenjun; Zhu, Qiyun
2015-01-01
Bystander effects can be induced through cellular communication between irradiated cells and non-irradiated cells. The signals that mediate this cellular communication, such as cytokines, reactive oxygen species, nitric oxide and even microRNAs, can be transferred between cells via gap junctions or extracellular medium. We have previously reported that miR-21, a well described DDR (DNA damage response) microRNA, is involved in radiation-induced bystander effects through a medium-mediated way. However, the mechanisms of the microRNA transfer have not been elucidated in details. In the present study, it was found that exosomes isolated from irradiated conditioned medium could induce bystander effects. Furthermore, we demonstrated plenty of evidences that miR-21, which is up-regulated as a result of mimic transfection or irradiation, can be transferred from donor or irradiated cells into extracellular medium and subsequently get access to the recipient or bystander cells through exosomes to induce bystander effects. Inhibiting the miR-21 expression in advance can offset the bystander effects to some extent. From all of these results, it can be concluded that the exosome-mediated microRNA transfer plays an important role in the radiation-induced bystander effects. These findings provide new insights into the functions of microRNAs and the cellular communication between the directly irradiated cells and the non-irradiated cells.
Gravitationally confined relativistic neutrinos
Vayenas, C. G.; Fokas, A. S.; Grigoriou, D.
2017-09-01
Combining special relativity, the equivalence principle, and Newton’s universal gravitational law with gravitational rather than rest masses, one finds that gravitational interactions between relativistic neutrinos with kinetic energies above 50 MeV are very strong and can lead to the formation of gravitationally confined composite structures with the mass and other properties of hadrons. One may model such structures by considering three neutrinos moving symmetrically on a circular orbit under the influence of their gravitational attraction, and by assuming quantization of their angular momentum, as in the Bohr model of the H atom. The model contains no adjustable parameters and its solution, using a neutrino rest mass of 0.05 eV/c2, leads to composite state radii close to 1 fm and composite state masses close to 1 GeV/c2. Similar models of relativistic rotating electron - neutrino pairs give a mass of 81 GeV/c2, close to that of W bosons. This novel mechanism of generating mass suggests that the Higgs mass generation mechanism can be modeled as a latent gravitational field which gets activated by relativistic neutrinos.
Directory of Open Access Journals (Sweden)
Moncada Jiménez, José
2012-01-01
Full Text Available The purpose of this manuscript will be to present scientific evidence regarding the effects of videogame playing on different aspects of the social life of children and adolescents, as well as the general potential psychological and physiological effects. A literature review from relevant databases has been performed, and experimental and meta-analytical studies have been scrutinized for positive and negative effects of videogames in children and adolescents. In general, it has been found that there is a billionaire videogame industry and yet, despite the worldwide popularity of videogames, research is still scarce and sometimes contradictory. Some research suggests a correlation between excess time video gaming on negative social and psychological aspects such as isolation and aggressive behavior; while other research suggests a positive association with motor learning, motor re-training and resilience. As far as physiological effects it has been reported that active videogames might promote higher energy expenditure than passive videogames; therefore, given an adequate parental instruction might provide videogames beneficial properties to combat the global epidemic of sedentary behavior and obesity. Videogames and everything related «to be» in front of a screen will be common to future generations, and therefore more systematic studies are required to determine the long-term exposure effects to these devices.
Harten, Nathan; Olds, Tim; Dollman, Jim
2008-09-01
Two studies were conducted to examine the interactions between gender, play area, motor skills and free play activity in 8-11 year old school children. In both studies, boys were more active than girls. In boys, but not in girls, energy expenditure was greater for high-skill than for low-skill children (p = 0.0002), and increased as play area increased (p = 0.01). These results suggest that motor skills and play space are important variables in determining the free play activity of boys, but not of girls. This may be related to widely different play styles among boys and girls.
Jessen, Jari Due; Lund, Henrik Hautop
2017-01-19
Loss of functional capabilities due to inactivity is one of the most common reasons for fall accidents, and it has been well established that loss of capabilities can be effectively reduced by physical activity. Pilot studies indicate a possible improvement in functional abilities of community dwelling elderly as a result of short-term playing with an exergame system in the form of interactive modular tiles. Such playful training may be motivational to perform and viewed by the subjects to offer life-fulfilling quality, while providing improvement in physical abilities, e.g. related to prevent fall accidents. The RCT will test for a variety of health parameters of community-dwelling elderly playing on interactive modular tiles. The study will be a single blinded, randomized controlled trial with 60 community-dwelling adults 70+ years. The trial will consist an intervention group of 30 participants training with the interactive modular tiles, and a control group of 30 participants that will receive the usual care provided to non-patient elderly. The intervention period will be 12 weeks. The intervention group will perform group training (4-5 individuals for 1 h training session with each participant receiving 13 min training) on the interactive tiles twice a week. Follow-up tests include 6-min Walk Test (6MWT), the 8-ft Timed Up & Go Test (TUG), and the Chair-Stand Test (CS) from the Senior Fitness Test, along with balancing tests (static test on Wii Board and Line Walk test). Secondary outcomes related to adherence, motivation and acceptability will be investigated through semi-structured interviews. Data will be collected from pre- and post-tests. Data will be analyzed for statistically significant differences by checking that there is a Gaussian distribution and then using paired t-test, otherwise using Wilcoxon signed-rank test. "Intention to treat" analysis will be done. The trial tests for increased mobility, agility, balancing and general fitness of
Relative age effects in Swiss junior soccer and their relationship with playing position.
Romann, Michael; Fuchslocher, Jörg
2013-01-01
Relative age effects (RAEs) refer to age differences between children in the same selection year. The present study investigated the prevalence of RAEs and their link to playing positions in Swiss junior soccer. Swiss male junior soccer players (n=50,581) representing 11% of the age-matched population - members of extra-curricular soccer teams - were evaluated to determine the influence of RAEs on Swiss junior soccer. Subgroups were the national talent development programme (n=2880), and U-15 to U-21 national teams (n=630). While no RAEs were found for the self-selected extra-curricular soccer teams or for the U-20 teams (P>0.05), significant RAEs were found for talent development and the national U-15 to U-19 and U-21 teams (Pborn early in the year were significantly overrepresented compared with goalkeepers, midfielders and strikers (Ptalent identification process for U-15 to U-18 teams, significantly influencing the selection of players in talent development teams already at an early age, but do not influence self-selected participation in extra-curricular soccer. Additionally, the RAE bias may be a predictor of playing positions in national teams. To minimise RAEs in Swiss soccer, systematic education for all coaches regarding RAEs should be established, in addition to a slotting system with rotating calendar cut-off dates.
Fernandez, Jordi; Camerino, Oleguer; Anguera, M Teresa; Jonsson, Gudberg K
2009-08-01
In the field of sports research, there is a growing need for the rigorous collection of data that provide empirical evidence about the complex reality they refer to. Although sports psychology research has advanced considerably in recent years, in both extent and quality, one area of research that remains relatively unexplored is the dynamics of the sports group and the influence of the group on its members (George & Feltz, 1995; Widmeyer, Brawley, & Carron, 1992). Key aspects in this regard include the presence of regularities that are not detectable through visual inference or traditional methods of data analysis, the lack of standard observation instruments, and, assuming priority, the need to develop powerful, computerized coding systems, all of which must form part of an approach that is suitable for natural and habitual contexts. The present study is part of a broader research project concerning ACB teams (first Spanish basketball division) and considers the interaction context before teams try to score (where this is understood as how teams create scoring opportunities) as the core aspect that links team play. This investigation proposes a new model of analysis for studying the effectiveness and construction of offensive basketball plays in order to identify their outcomes, thus providing coaches with an important device for improving or consolidating them.
Nonlinear coupled Alfven and gravitational waves
International Nuclear Information System (INIS)
Kaellberg, Andreas; Brodin, Gert; Bradley, Michael
2004-01-01
In this paper we consider nonlinear interaction between gravitational and electromagnetic waves in a strongly magnetized plasma. More specifically, we investigate the propagation of gravitational waves with the direction of propagation perpendicular to a background magnetic field and the coupling to compressional Alfven waves. The gravitational waves are considered in the high-frequency limit and the plasma is modeled by a multifluid description. We make a self-consistent, weakly nonlinear analysis of the Einstein-Maxwell system and derive a wave equation for the coupled gravitational and electromagnetic wave modes. A WKB-approximation is then applied and as a result we obtain the nonlinear Schroedinger equation for the slowly varying wave amplitudes. The analysis is extended to 3D wave pulses, and we discuss the applications to radiation generated from pulsar binary mergers. It turns out that the electromagnetic radiation from a binary merger should experience a focusing effect, that in principle could be detected
Gravitational waves from freely precessing neutron stars
International Nuclear Information System (INIS)
Jones, D.I.
2001-01-01
The purpose of this study is to assess the likely detectability of gravitational waves from freely precessing neutron stars. We begin by presenting a neutron star model of sufficient complexity to take into account both the elasticity and fluidity of a realistic neutron star. We then examine the effect of internal dissipation (i.e. heat generation within the star) and gravitational radiation reaction on the wobble. This is followed by an examination of various astrophysical scenarios where some mechanism might pump the precessional motion. We estimate the gravitational wave amplitude in these situations. Finally, we conclude that gravitational radiation from freely precessing neutron stars is almost certainly limited to a level undetectable by a LIGO II detector by internal dissipation. (author)
Thermal gravitational waves in accelerating universe
Directory of Open Access Journals (Sweden)
B Ghayour
2013-10-01
Full Text Available Gravitational waves are considered in thermal vacuum state. The amplitude and spectral energy density of gravitational waves are found enhanced in thermal vacuum state compared to its zero temperature counterpart. Therefore, the allowed amount of enhancement depends on the upper bound of WMAP-5 and WMAP-7 for the amplitude and spectral energy density of gravitational waves. The enhancement of amplitude and spectral energy density of the waves in thermal vacuum state is consistent with current accelerating phase of the universe. The enhancement feature of amplitude and spectral energy density of the waves is independent of the expansion model of the universe and hence the thermal effect accounts for it. Therefore, existence of thermal gravitational waves is not ruled out
Quantum gravitational contributions to the beta function of quantum electrodynamics
International Nuclear Information System (INIS)
Felipe, Jean Carlos Coelho; Brito, Luis Cleber Tavares de; Nemes, Maria Carolina; Sampaio, Marcos
2011-01-01
Full text: Because of the negative mass dimension of the coupling constant perturbative Einstein quantum gravity (EQG) is nonrenormalizable. However, one can still make sense of EQG if it's interpreted as an effective field theory within a low energy expansion of a more fundamental theory. In an effective field theory all interactions compatible with its essential symmetry content are in principle allowed into the Lagrangian and thus it establishes a systematic framework to calculate quantum gravitational effects. This approach has been used to study the asymptotic behavior at high energies of quantum field theories that incorporate the gravitational field. Some studies analyze the asymptotic freedom for the coupling constants of some theories including gravitation near the Planck scale. For example, Robinson and Wilczek suggest that the gravitational field improve the asymptotic freedom of pure Yang-Mills near the Planck scale. Already , a similar calculation in the Maxwell-Einstein theory suggest that such conclusion is gauge dependence. This result was obtained by Pietrykowski. D. Toms say what the effective action is calculated in a gauge-condition independent version of the background field method using dimensional regularization it's argued that the gravitational field plays no role in the beta function of the Yang-Mills coupling. Another calculation done by Ebert, Plefka and Rodigast using conventional diagrammatic methods confirms the result obtained by Toms. In a recent publication, again published by Toms in 2010, claimed that quadratic divergent contributions were responsible to improve asymptotic freedom of fine structure constant by quantum gravity effects by using proper time cutoff regularization and effective action methods. However, the physical reality of the result in Tom's was questioned in recent work. This purpose of this work is to shed light on the origin of such controversies using only a diagrammatic analysis. As an effective model EQG is
Aerobic Games and Playful exercises in 9-YearOld Boys: Intensity and Fitness Effects
Directory of Open Access Journals (Sweden)
Gunnar E Mathisen
2016-04-01
Full Text Available Previous research on exercise for pre-adolescents with the purpose of improving aerobic fitness levels has yielded contradictory results. Sufficient training intensity, frequency and duration are the crucial factors in achieving this goal; the question, however, is whether it is possible to reach sufficient intensity levels using aerobic games and playful exercises. Variety and fun are the important factors in motivating children to participate in physical exercises and sports. Therefore, the aim of the study was to investigate the effect of high intensity exercises in pre-adolescent boys, using programs consisting of fun activities and aerobic games. The findings show that the participants achieved intensity levels above 80 % of HRpeak on average in about 60 % of the total exercise time, resulting in significantly improved aerobic fitness.
Directory of Open Access Journals (Sweden)
Ming-Puu Chen
2012-03-01
Full Text Available This study investigated the effects of novices’ learning style and gender consciousness on learning of programming concepts from game-based learning activities. Four classes of eighth graders with 59 males and 63 females participated in this study. Participants were identified as the diverger group and the converger group based on their stronger learning styles. Game-play activities were implemented to support participants’ learning of programming concepts. The results revealed that (a for the programming comprehension performance, the convergers outperformed the divergers; (b participants’ learning style and gender consciousness significantly affected their project performance; (c for the high gender consciousness learners, the convergers performed better at abstract conceptualization and active experimentation than the divergers did; (d for the divergers, the low gender consciousness learners possessed lower stereotype and were willing to challenge and performed better than the high gender consciousness learners; and (e all the participants revealed positive intrinsic and extrinsic motivation.
Foulkes, J D; Knowles, Z; Fairclough, S J; Stratton, G; O'Dwyer, M; Ridgers, N D; Foweather, L
2017-04-01
This study examined the effectiveness of an active play intervention on fundamental movement skills of 3- to 5-year-old children from deprived communities. In a cluster randomized controlled trial design, six preschools received a resource pack and a 6-week local authority program involving staff training with help implementing 60-minute weekly sessions and postprogram support. Six comparison preschools received a resource pack only. Twelve skills were assessed at baseline, postintervention, and at a 6-month follow-up using the Children's Activity and Movement in Preschool Study Motor Skills Protocol. One hundred and sixty-two children (Mean age = 4.64 ± 0.58 years; 53.1% boys) were included in the final analyses. There were no significant differences between groups for total fundamental movement skill, object-control skill or locomotor skill scores, indicating a need for program modification to facilitate greater skill improvements.
The multible, volatile and ambiguous effects of children's and young people's digital play
DEFF Research Database (Denmark)
Søndergaard, Dorte Marie
2018-01-01
Virtual, or digital, violence becomes embedded in children's everyday lives in a large variety of ways, dependent on its interaction with the comprehensive and complex social, relational and material-discursive processes that enact children's and young people's subjective becoming. In this chapter......, I will introduce poststructuralist and agential realist perspectives to show that digital play with violence may enact multiple, volatile and ambiguous material-discursive, relational and subjective effects. I will also show that understanding the processes involved in gaming demands situated...... universes with violent content become relevant to children and young people in their everyday lives - including the everyday lives of those who live in troubled school contexts textured by social tensions and sometimes containing bullying practices. The analytical questions furthermore attend to how...
Age-Related Cognitive Effects of Videogame Playing Across the Adult Life span.
Wang, Ping; Zhu, Xing-Ting; Liu, Han-Hui; Zhang, Yi-Wen; Hu, Yang; Li, Hui-Jie; Zuo, Xi-Nian
2017-08-01
Previous studies found positive influences of videogame playing on cognition. However, the age-related and task-related effects of videogame experience across the adult life span are still unknown. The current study aimed to systematically investigate this question. The current study used the cross-sectional approach. A total of 166 participants (84 videogame players [VGPs], 82 nonvideogame players [NVGPs]) at the age of 18-80 in the present study were recruited, including 62 young adults aged from 18 to 34 (35 VGPs, 27 NVGPs), 55 middle-aged adults aged between 35 and 59 (24 VGPs, 31 NVGPs), and 49 older adults aged between 60 and 80 (25 VGPs, 24 NVGPs). 1,2 A series of neuropsychological tests from different cognitive domains, including processing speed, visuospatial, attention, memory, and executive function, were conducted on participants. The age-related effects demonstrated that young and older adults benefited more from videogame experience than middle-aged adults. The task-related effects showed that VGPs benefited more from videogame experience in processing speed and visuospatial processing; next was executive function and attention, while no benefits in memory. The effect sizes suggested that the difference in extent between VGPs and NVGPs in processing speed and visuospatial processing is moderate, in attention and executive function is small, and in memory is negligible. The current findings support the beneficial effects and transfer effects of videogame experience; however, the effects presented age-specific and task-specific characteristics. The results provide useful insights for future videogame intervention studies for healthy adults of different ages.
Nelson, Andrew R
2009-01-01
The continued upsurge in the popularity of video games has lead to persistent debate over the effects of play, particularly the use of violent video games. The present experimental study aimed to replicate the results of numerous research groups who found that playing violent video games lead to an increase in aggression and to examine peer-observer perceptions of violent game play. Two experiments were carried out; the first used 24 participants in a within-subjects design being filmed while...
DEFF Research Database (Denmark)
Åkerstrøm Andersen, Niels; Pors, Justine Grønbæk
2014-01-01
This article studies the implications of current attempts by organizations to adapt to a world of constant change by introducing the notion of playful organizational membership. To this end we conduct a brief semantic history of organizational play and argue that when organizations play, employees...... are expected to engage in playful exploration of alternative selves. Drawing on Niklas Luhmann's theory of time and decision-making and Gregory Bateson's theory of play, the article analyses three empirical examples of how games play with conceptions of time. We explore how games represent an organizational...
Thermal duality and gravitational collapse
International Nuclear Information System (INIS)
Hewitt, Michael
2015-01-01
Thermal duality is a relationship between the behaviour of heterotic string models of the E(8)×E(8) or SO(32) types at inversely related temperatures, a variant of T duality in the Euclidean regime. This duality would have consequences for the nature of the Hagedorn transition in these string models. We propose that the vacuum admits a family of deformations in situations where there are closed surfaces of constant area but high radial acceleration (a string regularized version of a Penrose trapped surface), such as would be formed in situations of extreme gravitational collapse. This would allow a radical resolution of the firewall paradox by allowing quantum effects to significantly modify the spacetime geometry around a collapsed object. A string bremsstrahlung process would convert the kinetic energy of infalling matter in extreme gravitational collapse to form a region of the deformed vacuum, which would be equivalent to forming a high temperature string phase. A heuristic criterion for the conversion process is presented, relating Newtonian gravity to the string tension, suggesting an upper limit to the strength of the gravitational interaction. This conversion process might have observable consequences for charged particles falling into a rotating collapsed object by producing high energy particles via a variant of the Penrose process. (paper)
Zhang, Lei; Zhang, La; Li, Yin; Guo, Xin-Feng; Liu, Xu-Sheng
2016-11-01
Compared with herbal drugs, medicine processed from animals (animal medicine) was thought to have more bioactive substances and higher activities. Biotransformation effect often plays an important role in their effect. However, researches about effect of animal medicine on diabetic nephropathy and applying animal medicine as natural bio-transformer were seldom reported. The purpose of this paper was to reveal the use of Bombyx Mori L. on diabetic nephropathy from ancient to modern times. The classical literature indicated that Saosi Decoction (), which contains Bombyx Mori L. or silkworm cocoon, was applied to treat disorders congruent with modern disease diabetic nephropathy from the Ming to Qing Dynasty in ancient China. Modern studies showed that Bombyx Mori L. contains four main active constituents. Among these, 1-deoxynojirimycin (1-DNJ) and quercetin showed promising potential to be new agents in diabetic nephropathy treatment. The concentrations of 1-DNJ and the activities of quercetin in Bombyx Mori L. are higher than in mulberry leaves, because of the biotransformation in the Bombyx Mori L. body. However, these specifific components need further human and mechanistic studies to determine their therapeutic potential for this challenging condition.
Play, Playfulness, Creativity and Innovation
Directory of Open Access Journals (Sweden)
Patrick Bateson
2014-05-01
Full Text Available Play, as defined by biologists and psychologists, is probably heterogeneous. On the other hand, playfulness may be a unitary motivational state. Playful play as opposed to activities that merge into aggression is characterized by positive mood, intrinsic motivation, occurring in a protected context and easily disrupted by stress. Playful play is a good measure of positive welfare. It can occupy a substantial part of the waking-life of a young mammal or bird. Numerous functions for play have been proposed and they are by no means mutually exclusive, but some evidence indicates that those individual animals that play most are most likely to survive and reproduce. The link of playful play to creativity and hence to innovation in humans is strong. Considerable evidence suggests that coming up with new ideas requires a different mindset from usefully implementing a new idea.
Carlson, Sarah E.
2011-01-01
The purpose of this study was to examine the effectiveness of a play-based teacher consultation (PBTC) program on individual teachers' interpersonal classroom behaviors and teacher-child relationships. The research questions addressed the application of child-centered play therapy principles and PBTC increasing teacher responsiveness, decreasing…
Schlegel, C.; Woermann, U.; Shaha, M.; Rethans, J.J.; Vleuten, C.P.M. van der
2012-01-01
This study investigated the effectiveness of modules involving standardized patients and role-plays on training communication skills. The first module involved standardized patients and an Objective Structured Clinical Examination (OSCE); the second module consisted of peer role-plays and a written
Barlett, Christopher P; Rodeheffer, Christopher
2009-01-01
Previous research has shown that playing violent video game exposure can increase aggressive thoughts, aggressive feelings, and physiological arousal. This study compared the effects that playing a realistic violent, unrealistic violent, or nonviolent video game for 45 min has on such variables. For the purpose of this study, realism was defined as the probability of seeing an event in real life. Participants (N=74; 39 male, 35 female) played either a realistic violent, unrealistic violent, or nonviolent video game for 45 min. Aggressive thoughts and aggressive feelings were measured four times (every 15 min), whereas arousal was measured continuously. The results showed that, though playing any violent game stimulated aggressive thoughts, playing a more realistic violent game stimulated significantly more aggressive feelings and arousal over the course of play. Copyright 2009 Wiley-Liss, Inc.
Ohanian, Hans C
2013-01-01
The third edition of this classic textbook is a quantitative introduction for advanced undergraduates and graduate students. It gently guides students from Newton's gravitational theory to special relativity, and then to the relativistic theory of gravitation. General relativity is approached from several perspectives: as a theory constructed by analogy with Maxwell's electrodynamics, as a relativistic generalization of Newton's theory, and as a theory of curved spacetime. The authors provide a concise overview of the important concepts and formulas, coupled with the experimental results underpinning the latest research in the field. Numerous exercises in Newtonian gravitational theory and Maxwell's equations help students master essential concepts for advanced work in general relativity, while detailed spacetime diagrams encourage them to think in terms of four-dimensional geometry. Featuring comprehensive reviews of recent experimental and observational data, the text concludes with chapters on cosmology an...
The Scalar-Tensor Theory of Gravitation
International Nuclear Information System (INIS)
Ibanez, J
2003-01-01
Since the scalar-tensor theory of gravitation was proposed almost 50 years ago, it has recently become a robust alternative theory to Einstein's general relativity due to the fact that it appears to represent the lower level of a more fundamental theory and can serve both as a phenomenological theory to explain the recently observed acceleration of the universe, and to solve the cosmological constant problem. To my knowledge The Scalar-Tensor Theory of Gravitation by Y Fujii and K Maeda is the first book to develop a modern view on this topic and is one of the latest titles in the well-presented Cambridge Monographs on Mathematical Physics series. This book is an excellent readable introduction and up-to-date review of the subject. The discussion is well organized; after a comprehensible introduction to the Brans-Dicke theory and the important role played by conformal transformations, the authors review cosmologies with the cosmological constant and how the scalar-tensor theory can serve to explain the accelerating universe, including discussions on dark energy, quintessence and braneworld cosmologies. The book ends with a chapter devoted to quantum effects. To make easy the lectures of the book, each chapter starts with a summary of the subject to be dealt with. As the book proceeds, important issues like conformal frames and the weak equivalence principle are fully discussed. As the authors warn in the preface, the book is not encyclopedic (from my point of view the list of references is fairly short, for example, but this is a minor drawback) and the choice of included topics corresponds to the authors' interests. Nevertheless, the book seems to cover a broad range of the most essential aspects of the subject. Long and 'boring' mathematical derivations are left to appendices so as not to interrupt the flow of the reasoning, allowing the reader to focus on the physical aspects of each subject. These appendices are a valuable help in entering into the mathematical
Can the Sun shed light on neutrino gravitational interactions?
International Nuclear Information System (INIS)
Halprin, A.; Leung, C.N.
1991-01-01
We have examined the effects of a large gravitational field on the phenomenon of neutrino oscillations as contemplated in the Mikheyev-Smirnov-Wolfenstein mechanism. We find that the Sun's gravitational field would amplify any small breakdown in the universality of the gravitational coupling by many orders of magnitude. A breakdown of only 1 part in 10 14 would still make the gravitational effect comparable to the conventional weak interaction. The differing energy dependences of the two level-crossing mechanisms can therefore be used as a very sensitive tool to test the conventional universality hypothesis
Energy Technology Data Exchange (ETDEWEB)
Boss, Alan P., E-mail: aboss@carnegiescience.edu [Department of Terrestrial Magnetism, Carnegie Institution for Science, 5241 Broad Branch Road, NW, Washington, DC 20015-1305 (United States)
2017-02-10
Observational evidence exists for the formation of gas giant planets on wide orbits around young stars by disk gravitational instability, but the roles of disk instability and core accretion for forming gas giants on shorter period orbits are less clear. The controversy extends to population synthesis models of exoplanet demographics and to hydrodynamical models of the fragmentation process. The latter refers largely to the handling of radiative transfer in three-dimensional (3D) hydrodynamical models, which controls heating and cooling processes in gravitationally unstable disks, and hence dense clump formation. A suite of models using the β cooling approximation is presented here. The initial disks have masses of 0.091 M {sub ⊙} and extend from 4 to 20 au around a 1 M {sub ⊙} protostar. The initial minimum Toomre Qi values range from 1.3 to 2.7, while β ranges from 1 to 100. We show that the choice of Q {sub i} is equal in importance to the β value assumed: high Q{sub i} disks can be stable for small β , when the initial disk temperature is taken as a lower bound, while low Q{sub i} disks can fragment for high β . These results imply that the evolution of disks toward low Q{sub i} must be taken into account in assessing disk fragmentation possibilities, at least in the inner disk, i.e., inside about 20 au. The models suggest that if low Q{sub i} disks can form, there should be an as yet largely undetected population of gas giants orbiting G dwarfs between about 6 au and 16 au.
Benedek, Judit; Papp, Gábor; Kalmár, János
2018-04-01
Beyond rectangular prism polyhedron, as a discrete volume element, can also be used to model the density distribution inside 3D geological structures. The calculation of the closed formulae given for the gravitational potential and its higher-order derivatives, however, needs twice more runtime than that of the rectangular prism computations. Although the more detailed the better principle is generally accepted it is basically true only for errorless data. As soon as errors are present any forward gravitational calculation from the model is only a possible realization of the true force field on the significance level determined by the errors. So if one really considers the reliability of input data used in the calculations then sometimes the "less" can be equivalent to the "more" in statistical sense. As a consequence the processing time of the related complex formulae can be significantly reduced by the optimization of the number of volume elements based on the accuracy estimates of the input data. New algorithms are proposed to minimize the number of model elements defined both in local and in global coordinate systems. Common gravity field modelling programs generate optimized models for every computation points ( dynamic approach), whereas the static approach provides only one optimized model for all. Based on the static approach two different algorithms were developed. The grid-based algorithm starts with the maximum resolution polyhedral model defined by 3-3 points of each grid cell and generates a new polyhedral surface defined by points selected from the grid. The other algorithm is more general; it works also for irregularly distributed data (scattered points) connected by triangulation. Beyond the description of the optimization schemes some applications of these algorithms in regional and local gravity field modelling are presented too. The efficiency of the static approaches may provide even more than 90% reduction in computation time in favourable
Kelly, Bernard J.
2010-01-01
Einstein's General Theory of Relativity is our best classical description of gravity, and informs modern astronomy and astrophysics at all scales: stellar, galactic, and cosmological. Among its surprising predictions is the existence of gravitational waves -- ripples in space-time that carry energy and momentum away from strongly interacting gravitating sources. In my talk, I will give an overview of the properties of this radiation, recent breakthroughs in computational physics allowing us to calculate the waveforms from galactic mergers, and the prospect of direct observation with interferometric detectors such as LIGO and LISA.
Supersymmetry and gravitational duality
International Nuclear Information System (INIS)
Argurio, Riccardo; Dehouck, Francois; Houart, Laurent
2009-01-01
We study how the supersymmetry algebra copes with gravitational duality. As a playground, we consider a charged Taub-Newman-Unti-Tamburino(NUT) solution of D=4, N=2 supergravity. We find explicitly its Killing spinors, and the projection they obey provides evidence that the dual magnetic momenta necessarily have to appear in the supersymmetry algebra. The existence of such a modification is further supported using an approach based on the Nester form. In the process, we find new expressions for the dual magnetic momenta, including the NUT charge. The same expressions are then rederived using gravitational duality.
Lawver, Timothy; Blankenship, Kelly
2008-01-01
Play therapy is a treatment modality in which the therapist engages in play with the child. Its use has been documented in a variety of settings and with a variety of diagnoses. Treating within the context of play brings the therapist and the therapy to the level of the child. By way of an introduction to this approach, a case is presented of a six-year-old boy with oppositional defiant disorder. The presentation focuses on the events and interactions of a typical session with an established patient. The primary issues of the session are aggression, self worth, and self efficacy. These themes manifest themselves through the content of the child’s play and narration of his actions. The therapist then reflects these back to the child while gently encouraging the child toward more positive play. Though the example is one of nondirective play therapy, a wide range of variation exists under the heading of play therapy. PMID:19724720
Radiatively-induced gravitational leptogenesis
Directory of Open Access Journals (Sweden)
J.I. McDonald
2015-12-01
Full Text Available We demonstrate how loop effects in gravitational backgrounds lead to a difference in the propagation of matter and antimatter, and show this is forbidden in flat space due to CPT and translation invariance. This mechanism, which is naturally present in beyond the standard model (BSM theories exhibiting C and CP violation, generates a curvature-dependent chemical potential for leptons in the low-energy effective Lagrangian, allowing a matter–antimatter asymmetry to be generated in thermodynamic equilibrium, below the BSM scale.
Lang, Russell; O'Reilly, Mark; Sigafoos, Jeff; Machalicek, Wendy; Rispoli, Mandy; Lancioni, Giulio E.; Aguilar, Jeannie; Fragale, Christina
2010-01-01
The purpose of this study was to reduce stereotypy and challenging behavior during play skills instruction by adding an abolishing operation component (AOC) to the intervention strategy. An alternating treatments design compared one condition in which participants were allowed to engage in stereotypy freely before beginning the play skills…
Role-Playing in Science Education: An Effective Strategy for Developing Multiple Perspectives
Howes, Elaine V.; Cruz, Barbara C.
2009-01-01
Role-playing can be an engaging and creative strategy to use in the college classroom. Using official accounts, personal narratives, and diaries to recreate a particular time period, event, or personality, the instructional strategy alternately referred to as role-playing, dramatic improvisation, or first-person characterization can be an…
McDougall, Casey L.; Terrance, Cheryl; Weatherly, Jeffrey N.
2011-01-01
Previous research suggests that the actions of a confederate can alter participants' gambling behavior. In the present experiment, male participants played Blackjack either alone or in the presence of a confederate. The confederate either quit early in the session or played for the entire session. Across sessions in which the confederate played…
Vander Heyden, Karin; Huizinga, Mariette; Jolles, Jelle
Children practice their spatial skills when playing with spatial toys, such as construction materials, board games, and puzzles. Sex and SES differences are observed in the engagement in such spatial play activities at home, which relate to individual differences in spatial performance. The current
Effects of a Redesigned Classroom on Play Behaviour among Preschool Children
Acer, Dilek; Gözen, Göksu; Firat, Zehra Saadet; Kefeli, Hatice; Aslan, Büsra
2016-01-01
Current research exists regarding the play behaviour of students in various settings and with varying abilities. Regardless, there needs to be improved understanding of how students' play behaviour is affected when their classroom environment is significantly redesigned. This study examined, over a 21-week period between December 2013 and May…
Ohannessian, Christine McCauley
2018-01-15
Few studies have examined factors that moderate the relationship between playing video games and adolescent psychological adjustment. Therefore, the primary goal of this study was to examine the relationship between playing video games and anxiety symptomatology in a sample of 441 11th and 12th grade students, while considering both gender and the social context (whether they played alone or with others). Participants (66% non-Hispanic White) were administered a survey (including measures of technology use and anxiety symptomatology) in school at baseline and one year later. Both gender and the social context moderated the relationship between playing video games and anxiety symptomatology. Boys who played video games the most had the lowest levels of anxiety, whereas girls who played video games the most had the highest levels of anxiety. This relationship was exacerbated in the context of playing with others. Although the study has a number of strengths including the longitudinal design and the diverse sample, the study relied on self-report data. In addition, the sample was limited to adolescents residing in the Mid-Atlantic United States. Therefore, caution should be taken in regard to generalizing the results. Findings from this study underscore the need to consider both gender and the social context when examining the relationship between playing video games and adolescent psychological adjustment. Copyright © 2017 Elsevier B.V. All rights reserved.
Gravitational mass and Newton's universal gravitational law under relativistic conditions
International Nuclear Information System (INIS)
Vayenas, Constantinos G; Grigoriou, Dimitrios; Fokas, Athanasios
2015-01-01
We discuss the predictions of Newton's universal gravitational law when using the gravitational, m g , rather than the rest masses, m o , of the attracting particles. According to the equivalence principle, the gravitational mass equals the inertial mass, m i , and the latter which can be directly computed from special relativity, is an increasing function of the Lorentz factor, γ, and thus of the particle velocity. We consider gravitationally bound rotating composite states, and we show that the ratio of the gravitational force for gravitationally bound rotational states to the force corresponding to low (γ ≈ 1) particle velocities is of the order of (m Pl /m o ) 2 where mpi is the Planck mass (ħc/G) 1/2 . We also obtain a similar result, within a factor of two, by employing the derivative of the effective potential of the Schwarzschild geodesics of GR. Finally, we show that for certain macroscopic systems, such as the perihelion precession of planets, the predictions of this relativistic Newtonian gravitational law differ again by only a factor of two from the predictions of GR. (paper)
Einstein-Rosen gravitational waves
International Nuclear Information System (INIS)
Astefanoaei, Iordana; Maftei, Gh.
2001-01-01
In this paper we analyse the behaviour of the gravitational waves in the approximation of the far matter fields, considering the indirect interaction between the matter sources and the gravitational field, in a cosmological model based on the Einstein-Rosen solution, Because the properties of the gravitational waves obtained as the solutions of Einstein fields equations (the gravitational field equations) are most obvious in the weak gravitational fields we consider here, the gravitational field in the linear approximation. Using the Newman-Penrose formalism, we calculate in the null-tetradic base (e a ), the spin coefficients, the directional derivates and the tetradic components of Ricci and Weyl tensors. From the Einstein field equations we obtained the solution for b(z, t) what described the behaviour of gravitational wave in Einstein-Rosen Universe and in the particular case, when t → ∞, p(z, t) leads us to the primordial gravitational waves in the Einstein-Rosen Universe. (authors)
Gravitational Waves: The Evidence Mounts
Wick, Gerald L.
1970-01-01
Reviews the work of Weber and his colleagues in their attempts at detecting extraterrestial gravitational waves. Coincidence events recorded by special detectors provide the evidence for the existence of gravitational waves. Bibliography. (LC)
The Effect of Serious Video Game Play on Science Inquiry Scores
Hilosky, Alexandra Borzillo
American students are not developing the science inquiry skills needed to solve complex 21st century problems, thus impacting the workforce. In 2009, American high school students ranked 21 out of 26 in the category of problem-solving according to the Program for International Student Assessment. Serious video games have powerful epistemic value and are beneficial with respect to enhancing inquiry, effective problem-solving. The purpose of this correlational, quantitative study was to test Gee's assumption regarding the cycle of thinking (routinization, automatization, and deroutinization) by determining whether players status was a significant predictor of science inquiry scores, controlling for age, gender, and major. The 156 non-random volunteers who participated in this study were enrolled in a 2-year college in the northeastern U.S. Multiple regression analyses revealed that major was the strongest overall (significant) predictor, b = -.84, t(149) = -3.70, p video game play. Recommendations include using serious games as instructional tools and to assess student learning (formative and summative), especially among non-traditional learners.
Finite-key-size effect in a commercial plug-and-play QKD system
Chaiwongkhot, Poompong; Sajeed, Shihan; Lydersen, Lars; Makarov, Vadim
2017-12-01
A security evaluation against the finite-key-size effect was performed for a commercial plug-and-play quantum key distribution (QKD) system. We demonstrate the ability of an eavesdropper to force the system to distill key from a smaller length of sifted-key. We also derive a key-rate equation that is specific for this system. This equation provides bounds above the upper bound of secure key under finite-key-size analysis. From this equation and our experimental data, we show that the keys that have been distilled from the smaller sifted-key size fall above our bound. Thus, their security is not covered by finite-key-size analysis. Experimentally, we could consistently force the system to generate the key outside of the bound. We also test manufacturer’s software update. Although all the keys after the patch fall under our bound, their security cannot be guaranteed under this analysis. Our methodology can be used for security certification and standardization of QKD systems.
DEFF Research Database (Denmark)
Froes, Isabel
these practices, which compose the taxonomy of tablet play. My contribution lies in identifying and proposing a series of theoretical concepts that complement recent theories related to play and digital literacy studies. The data collected through observations informed some noteworthy aspects, including how...... with tablets’ physical and digital affordances shape children’s digital play. This thesis presents how young children’s current practices when playing with tablets inform digital experiences in Denmark and Japan. Through an interdisciplinary lens and a grounded theory approach, I have identified and mapped...... vocabulary in children’s digital play experiences. These early digital experiences set the rules for the playgrounds and assert digital tablets as twenty-first-century toys, shaping young children’s playful literacy....
Gravitation radiation observations
Glass, E. N.
2017-01-01
The notion of gravitational radiation begins with electromagnetic radiation. In 1887 Heinrich Hertz, working in one room, generated and received electromagnetic radiation. Maxwell's equations describe the electromagnetic field. The quanta of electromagnetic radiation are spin 1 photons. They are fundamental to atomic physics and quantum electrodynamics.
Glitches and gravitational waves
Indian Academy of Sciences (India)
A M Srivastava
2017-10-09
Oct 9, 2017 ... We also discuss gravitational wave production due to rapidly changing ... efficient source of energy loss during the cooling of the neutron star. ..... [3] U S Gupta, R K Mohapatra, A M Srivastava and V K. Tiwari, Phys. Rev. D 82 ...
Extragalactic Gravitational Collapse
Rees, Martin J.
After some introductory "numerology", routes towards black hole formation are briefly reviewed; some properties of black holes relevant to theories for active galactic nuclei are then described. Applications are considered to specific models for energy generation and the production of relativistic beams. The paper concludes with a discussion of extragalactic sources of gravitational waves.
Indian Academy of Sciences (India)
Keywords. General relativity; gravitational waves; astrophysics; interferometry. Author Affiliations. P Ajith1 K G Arun2. LIGO Laboratory and Theoretical Astrophysics California Institute of Technology MS 18-34, Pasadena CA 91125, USA. Chennai Mathematical Institute Plot H1, SIPCOT IT Park Siruseri, Padur Post Chennai ...
International Nuclear Information System (INIS)
Kikkawa, Keiji; Nakanishi, Noboru; Nariai, Hidekazu
1983-01-01
These proceedings contain the articles presented at the named symposium. They deal with geometrical aspects of gauge theory and gravitation, special problems in gauge theories, quantum field theory in curved space-time, quantum gravity, supersymmetry including supergravity, and grand unification. See hints under the relevant topics. (HSI)
DEFF Research Database (Denmark)
2003-01-01
The video Playful Interaction describes a future architectural office, and envisions ideas and concepts for playful interactions between people, materials and appliances in a pervasive and augmented working environment. The video both describes existing developments, technologies and designs...... as well as ideas not yet implemented such as playful modes of interaction with an augmented ball. Playful Interaction has been used as a hybrid of a vision video and a video prototype (1). Externally the video has been used to visualising our new ideas, and internally the video has also worked to inspire...
DEFF Research Database (Denmark)
Johansen, Stine Liv
Children’s play must nowadays be understood as a mediatized field in society and culture. Media – understood in a very broad sense - holds severe explanatory power in describing and understanding the practice of play, since play happens both with, through and inspired by media of different sorts........ In this presentation the case of ‘playing soccer’ will be outlined through its different mediated manifestations, including soccer games and programs on TV, computer games, magazines, books, YouTube videos and soccer trading cards....
DEFF Research Database (Denmark)
Karoff, Helle Skovbjerg
2013-01-01
The aim of this article is to develop a view of play as a relation between play practices and play moods based on an empirical study of children's everyday life and by using Bateson's term of ‘framing’ [(1955/2001). In Steps to an ecology of mind (pp. 75–80). Chicago: University of Chicago Press......], Schmidt's notion of ‘commonness’ [(2005). Om respekten. København: Danmarks Pædagogiske Universitets Forlag; (2011). On respect. Copenhagen: Danish School of Education University Press] and Heidegger's term ‘mood’ [(1938/1996). Time and being. Cornwall: Wiley-Blackwell.]. Play mood is a state of being...... in which we are open and ready, both to others and their production of meaning and to new opportunities for producing meaning. This play mood is created when we engage with the world during play practices. The article points out four types of play moods – devotion, intensity, tension and euphorica – which...
Can gravitational instantons really constrain axion inflation?
Energy Technology Data Exchange (ETDEWEB)
Hebecker, Arthur; Mangat, Patrick [Institut für Theoretische Physik, Universität Heidelberg,Philosophenweg 19, D-69120 Heidelberg (Germany); Theisen, Stefan [Max-Planck-Institut für Gravitationsphysik,Albert-Einstein-Institut, 14476 Golm (Germany); Witkowski, Lukas T. [Institut für Theoretische Physik, Universität Heidelberg,Philosophenweg 19, D-69120 Heidelberg (Germany)
2017-02-20
Axions play a central role in inflationary model building and other cosmological applications. This is mainly due to their flat potential, which is protected by a global shift symmetry. However, quantum gravity is known to break global symmetries, the crucial effect in the present context being gravitational instantons or Giddings-Strominger wormholes. We attempt to quantify, as model-independently as possible, how large a scalar potential is induced by this general quantum gravity effect. We pay particular attention to the crucial issue which solutions can or cannot be trusted in the presence of a moduli-stabilisation and a Kaluza-Klein scale. An important conclusion is that, due to specific numerical prefactors, the effect is surprisingly small even in UV-completions with the highest possible scale offered by string theory. As we go along, we discuss in detail Euclidean wormholes, cored and extremal instantons, and how the latter arise from 5d Reissner-Nordström black holes. We attempt to dispel possible doubts that wormholes contribute to the scalar potential by an explicit calculation. We analyse the role of stabilised dilaton-like moduli. Finally, we argue that Euclidean wormholes may be the objects satisfying the Weak Gravity Conjecture extended to instantons.
DEFF Research Database (Denmark)
Jessen, Jari Due; Lund, Henrik Hautop
2017-01-01
of community dwelling elderly as a result of short-term playing with an exergame system in the form of interactive modular tiles. Such playful training may be motivational to perform and viewed by the subjects to offer life-fulfilling quality, while providing improvement in physical abilities, e.g. related...... to prevent fall accidents. The RCT will test for a variety of health parameters of community-dwelling elderly playing on interactive modular tiles.Methods: The study will be a single blinded, randomized controlled trial with 60 community-dwelling adults 70+ years. The trial will consist an intervention group...... paired t-test, otherwise using Wilcoxon signed-rank test. "Intention to treat" analysis will be done.Discussion: The trial tests for increased mobility, agility, balancing and general fitness of community-dwelling elderly as a result of playing, in this case on modular interactive tiles. A positive...
Scalar field vacuum expectation value induced by gravitational wave background
Jones, Preston; McDougall, Patrick; Ragsdale, Michael; Singleton, Douglas
2018-06-01
We show that a massless scalar field in a gravitational wave background can develop a non-zero vacuum expectation value. We draw comparisons to the generation of a non-zero vacuum expectation value for a scalar field in the Higgs mechanism and with the dynamical Casimir vacuum. We propose that this vacuum expectation value, generated by a gravitational wave, can be connected with particle production from gravitational waves and may have consequences for the early Universe where scalar fields are thought to play an important role.
A constraint on the distance dependence of the gravitational constant
International Nuclear Information System (INIS)
Hut, P.
1981-01-01
Extended supergravity theories predict the existence of vector and scalar bosons, besides the gravitation, which in the static limit couple to the mass. An example is the gravitation, leading to antigravity. If these bosons have a small mass (approx. -4 eV), an observable Yukawa term would be present in the gravitational potential in the newtonian limit. This can be parametrized by a distance dependent effective gravitational constant G(γ). Defining G 0 = G (10 cm) and Gsub(e) = G (10 3 km), the comparison between theory and observations of the white dwarf Sirius B results in Gsub(c)/G 0 = 0.98 +- 0.08. (orig.)
Detecting high-frequency gravitational waves with optically levitated sensors.
Arvanitaki, Asimina; Geraci, Andrew A
2013-02-15
We propose a tunable resonant sensor to detect gravitational waves in the frequency range of 50-300 kHz using optically trapped and cooled dielectric microspheres or microdisks. The technique we describe can exceed the sensitivity of laser-based gravitational wave observatories in this frequency range, using an instrument of only a few percent of their size. Such a device extends the search volume for gravitational wave sources above 100 kHz by 1 to 3 orders of magnitude, and could detect monochromatic gravitational radiation from the annihilation of QCD axions in the cloud they form around stellar mass black holes within our galaxy due to the superradiance effect.
Konishi anomaly approach to gravitational F-terms
International Nuclear Information System (INIS)
David, Justin R.; Gava, Edi; Narain, K.S.
2003-04-01
We study gravitational corrections to the effective superpotential in theories with a single adjoint chiral multiplet, using the generalized Konishi anomaly and the gravitationally deformed chiral ring. We show that the genus one correction to the loop equation in the corresponding matrix model agrees with the gravitational corrected anomaly equations in the gauge theory. An important ingredient in the proof is the lack of factorization of chiral gauge invariant operators in presence of a supergravity background. We also find a genus zero gravitational correction to the superpotential, which can be removed by a field redefinition. (author)
Facilitating Social Play for Children with PDDs: Effects of Paired Robotic Devices
Soichiro Matsuda; Soichiro Matsuda; Eleuda Nunez; Masakazu Hirokawa; Junichi Yamamoto; Kenji Suzuki
2017-01-01
Interacting with toys and other people is fundamental for developing social communication skills. However, children with autism spectrum disorder (ASD) are characterized by having a significant impairment in social interaction, which often leads to deficits in play skills. For this reason, methods of teaching play skills to young children with ASD have been well documented. Although previous studies have examined a variety of instructional strategies for teaching skills, few studies have eval...
A new theory of space-time and gravitation
International Nuclear Information System (INIS)
Denisov, V.I.; Logunov, A.A.
1982-01-01
Field theory of gravitation is constructed. It uses a symmetrical second rank tensor field in pseudoeuclidean space-time for describing the gravitational field. The theory is based on the condition of the presence of conservation laws for gravitational field and matter taken together and on the geometrization principle. The field theory of gravitation has the same post-newtonian parame-- ters as the general relativity theory (GRT) which implies that both theories are indistinguishable from the viewpoint of any post- newtonian experiment. The description of the effects in strong gravitational fields as well as properties of gravitational waves in the field theory of gravitation and GRT differ significantly from each other. The distinctions between two theories include also the itational red shifti curving of light trajectories and timabsence in the field theory of gravitation of the effects of grav.. delay/ in processes of propagation of gravitational waves in external fields. These distinctions made it possible to suggest a number of experiments with gravitational waves in which the predictions of the field theory of gravitation can be compared with those of the GRT. Model of the Universe in the field theory of gravitation makes it possible to describe the cosmological red shift of the frequency. Character of the evolution in this mode is determined by the delay parameter q 0 : at q 0 0 >4-3/2xα the ''expansion'' at some moment will ''change'' to contraction'' and the Universe will return to the singular state, where α=8πepsilon 0 /3M 2 (H is the Hubble constant) [ru
Invited review: gravitational biology of the neuromotor systems: a perspective to the next era
Edgerton, V. R.; Roy, R. R.
2000-01-01
Earth's gravity has had a significant impact on the designs of the neuromotor systems that have evolved. Early indications are that gravity also plays a key role in the ontogenesis of some of these design features. The purpose of the present review is not to assess and interpret a body of knowledge in the usual sense of a review but to look ahead, given some of the general concepts that have evolved and observations made to date, which can guide our future approach to gravitational biology. We are now approaching an era in gravitational biology during which well-controlled experiments can be conducted for sustained periods in a microgravity environment. Thus it is now possible to study in greater detail the role of gravity in phylogenesis and ontogenesis. Experiments can range from those conducted on the simplest levels of organization of the components that comprise the neuromotor system to those conducted on the whole organism. Generally, the impact of Earth's gravitational environment on living systems becomes more complex as the level of integration of the biological phenomenon of interest increases. Studies of the effects of gravitational vectors on neuromotor systems have and should continue to provide unique insight into these mechanisms that control and maintain neural control systems designed to function in Earth's gravitational environment. A number of examples are given of how a gravitational biology perspective can lead to a clearer understanding of neuromotor disorders. Furthermore, the technologies developed for spaceflight studies have contributed and should continue to contribute to studies of motor dysfunctions, such as spinal cord injury and stroke. Disorders associated with energy support and delivery systems and how these functions are altered by sedentary life styles at 1 G and by space travel in a microgravity environment are also discussed.
Moduli destabilization via gravitational collapse
Energy Technology Data Exchange (ETDEWEB)
Hwang, Dong-il [Sogang Univ., Seoul (Korea, Republic of). Center for Quantum Spacetime; Pedro, Francisco G. [Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany). Theory Group; Yeom, Dong-han [Sogang Univ., Seoul (Korea, Republic of). Center for Quantum Spacetime; Kyoto Univ. (Japan). Yukawa Inst. for Theoretical Physics
2013-06-15
We examine the interplay between gravitational collapse and moduli stability in the context of black hole formation. We perform numerical simulations of the collapse using the double null formalism and show that the very dense regions one expects to find in the process of black hole formation are able to destabilize the volume modulus. We establish that the effects of the destabilization will be visible to an observer at infinity, opening up a window to a region in spacetime where standard model's couplings and masses can differ significantly from their background values.
Review on possible gravitational anomalies
International Nuclear Information System (INIS)
Amador, Xavier E
2005-01-01
This is an updated introductory review of 2 possible gravitational anomalies that has attracted part of the Scientific community: the Allais effect that occur during solar eclipses, and the Pioneer 10 spacecraft anomaly, experimented also by Pioneer 11 and Ulysses spacecrafts. It seems that, to date, no satisfactory conventional explanation exist to these phenomena, and this suggests that possible new physics will be needed to account for them. The main purpose of this review is to announce 3 other new measurements that will be carried on during the 2005 solar eclipses in Panama and Colombia (Apr. 8) and in Portugal (Oct.15)
Bashian, Kathleen Ryniker
1993-01-01
Describes a yearlong project at 12 Catholic middle schools in the Diocese of Arlington, Virginia, to incorporate the plays of William Shakespeare into the curriculum. Teachers attended university lectures and directed students in performances of the plays. Concludes that Shakespeare can be understood and enjoyed by middle school students. (BCY)
Do not play God: contrasting effects of deontological guilt and pride on decision-making
Mancini, Alessandra; Mancini, Francesco
2015-01-01
Recent accounts support the existence of two distinct feelings of guilt: altruistic guilt (AG), arising from the appraisal of not having been altruistic toward a victim and deontological guilt (DG), emerging from the appraisal of having violated an intuitive moral rule. Neuroimaging data has shown that the two guilt feelings trigger different neural networks, with DG selectively activating the insula, a brain area involved in the processing of disgust and self-reproach. Thus, insula activation could reflect the major involvement of self-reproach in DG rather than in AG. However, only a few studies have empirically tested whether and how DG and AG differently affect decision making and none have compared enhanced self-worth. Here we asked three groups of participants, respectively, induced with either pride, DG or AG, to participate in a third-party version of the ultimatum game in which they were asked to decide on behalf of others to accept or reject economic offers with several degrees of fairness. Results revealed that only deontological participants had higher median acceptances of Moderately Unfair offers as compared to proud participants. However fairness judgments were not different between groups, suggesting that deontological participants’ moral standards had not decreased. Crucially, a higher increase in DG was associated with an increase in the odds of accepting 30:70 offers. The opposite effects that DG and pride exert on self-worth can account for these results. Specifically, proud participants felt entitled enough to take action in order to restore equity, while deontological participants followed the “Do not play God” principle, which limited their decisional autonomy, not allowing them to decide on behalf of others. PMID:26379584
Do not play God: contrasting effects of deontological guilt and pride on decision-making.
Mancini, Alessandra; Mancini, Francesco
2015-01-01
Recent accounts support the existence of two distinct feelings of guilt: altruistic guilt (AG), arising from the appraisal of not having been altruistic toward a victim and deontological guilt (DG), emerging from the appraisal of having violated an intuitive moral rule. Neuroimaging data has shown that the two guilt feelings trigger different neural networks, with DG selectively activating the insula, a brain area involved in the processing of disgust and self-reproach. Thus, insula activation could reflect the major involvement of self-reproach in DG rather than in AG. However, only a few studies have empirically tested whether and how DG and AG differently affect decision making and none have compared enhanced self-worth. Here we asked three groups of participants, respectively, induced with either pride, DG or AG, to participate in a third-party version of the ultimatum game in which they were asked to decide on behalf of others to accept or reject economic offers with several degrees of fairness. Results revealed that only deontological participants had higher median acceptances of Moderately Unfair offers as compared to proud participants. However fairness judgments were not different between groups, suggesting that deontological participants' moral standards had not decreased. Crucially, a higher increase in DG was associated with an increase in the odds of accepting 30:70 offers. The opposite effects that DG and pride exert on self-worth can account for these results. Specifically, proud participants felt entitled enough to take action in order to restore equity, while deontological participants followed the "Do not play God" principle, which limited their decisional autonomy, not allowing them to decide on behalf of others.
Do not play God: contrasting effects of deontological guilt and pride on decision-making
Directory of Open Access Journals (Sweden)
Alessandra eMancini
2015-08-01
Full Text Available Recent accounts support the existence of two distinct feelings of guilt: altruistic guilt, arising from the appraisal of not having been altruistic towards a victim and deontological guilt, emerging from the appraisal of having violated an intuitive moral rule. Neuroimaging data has shown that the two guilt feelings trigger different neural networks, with deontological guilt selectively activating the insula, a brain area involved in the processing of disgust and self-reproach. Thus, insula activation could reflect the major involvement of self-reproach in deontological guilt rather than in altruistic guilt. However, only a few studies have empirically tested whether and how deontological and altruistic guilt differently affect decision making and none have compared enhanced self-worth. Here we asked three groups of participants, respectively induced with either pride, deontological or altruistic guilt, to participate in a third–party version of the ultimatum game in which they were asked to decide on behalf of others to accept or reject economic offers with several degrees of fairness. Results revealed that only deontological participants had higher median acceptances of Moderately Unfair offers as compared to proud participants. However fairness judgments were not different between groups, suggesting that deontological participants’ moral standards had not decreased. Crucially, a higher increase in deontological guilt was associated with an increase in the odds of accepting 30:70 offers. The opposite effects that deontological guilt and pride exert on self-worth can account for these results. Specifically, proud participants felt entitled enough to take action in order to restore equity, while deontological participants followed the Do not play God principle, which limited their decisional autonomy, not allowing them to decide on behalf of others.
Guchan, Zehra; Bayramlar, Kezban; Ergun, Nevin
2017-06-01
The aim of this paper is to determine the effects of playing soccer on various components of physical performance such as body composition, muscular endurance, anaerobic power, flexibility, balance, and speed of individuals with transtibial amputation. Twelve amputee football players aged 26.67±7.76 years and twelve sedentary individuals aged 33±6.7 years were involved in this study. Body composition, and isotonic and isometric endurance of trunk muscles were assessed. Vertical jump test, sit-and-reach test, modified Thomas test, Berg Balance Scale, L test, and figure-of-eight walk (F8W) test were used to assess other physical fitness parameters. The Body Mass Index, waist circumference and body fat percentages of the amputee soccer players were significantly lower than the sedentary amputees (Psoccer group (119.33±47.15 s) than the endurance in the control group (26.25±15.96 s) (Psoccer group had significantly higher anaerobic power than those in the control group (Psoccer group (P=0.002), whereas the modified Thomas test, which is also used to measure flexibility, indicated no significant difference among both groups (P>0.05). Balance was higher in the soccer group (P=0.023). The completion period of the F8W test was significantly lower in the soccer group (4.54±0.9 s) than in the control group (7.71±2.25 s) (Psoccer on physical fitness parameters of amputees, but further studies with randomized controlled trials, with larger populations, and with other sport branches should be conducted to motivate all amputees to participate in sports.
Advanced instrumentation for Solar System gravitational physics
Peron, Roberto; Bellettini, G.; Berardi, S.; Boni, A.; Cantone, C.; Coradini, A.; Currie, D. G.; Dell'Agnello, S.; Delle Monache, G. O.; Fiorenza, E.; Garattini, M.; Iafolla, V.; Intaglietta, N.; Lefevre, C.; Lops, C.; March, R.; Martini, M.; Nozzoli, S.; Patrizi, G.; Porcelli, L.; Reale, A.; Santoli, F.; Tauraso, R.; Vittori, R.
2010-05-01
The Solar System is a complex laboratory for testing gravitational physics. Indeed, its scale and hierarchical structure make possible a wide range of tests for gravitational theories, studying the motion of both natural and artificial objects. The usual methodology makes use of tracking information related to the bodies, fitted by a suitable dynamical model. Different equations of motion are provided by different theories, which can be therefore tested and compared. Future exploration scenarios show the possibility of placing deep-space probes near the Sun or in outer Solar System, thereby extending the available experimental data sets. In particular, the Earth-Moon is the most accurately known gravitational three-body laboratory, which is undergoing a new, strong wave of research and exploration (both robotic and manned). In addition, the benefits of a synergetic study of planetary science and gravitational physics are of the greatest importance (as shown by the success of the Apollo program), especially in the Earth-Moon, Mars-Phobos, Jovian and Saturnian sub-suystems. This scenarios open critical issues regarding the quality of the available dynamical models, i.e. their capability of fitting data without an excessive number of empirical hypotheses. A typical case is represented by the non-gravitational phenomena, which in general are difficult to model. More generally, gravitation tests with Lunar Laser Ranging, inner or outer Solar System probes and the appearance of the so-called 'anomalies'(like the one indicated by the Pioneers), whatever their real origin (either instrumental effects or due to new physics), show the necessity of a coordinated improvement of tracking and modelization techniques. A common research path will be discussed, employing the development and use of advanced instrumentation to cope with current limitations of Solar System gravitational tests. In particular, the use of high-sensitivity accelerometers, combined with microwave and laser
Gravitational lensing of gravitational waves: a statistical perspective
Li, Shun-Sheng; Mao, Shude; Zhao, Yuetong; Lu, Youjun
2018-05-01
In this paper, we study the strong gravitational lensing of gravitational waves (GWs) from a statistical perspective, with particular focus on the high frequency GWs from stellar binary black hole coalescences. These are most promising targets for ground-based detectors such as Advanced Laser Interferometer Gravitational Wave Observatory (aLIGO) and the proposed Einstein Telescope (ET) and can be safely treated under the geometrical optics limit for GW propagation. We perform a thorough calculation of the lensing rate, by taking account of effects caused by the ellipticity of lensing galaxies, lens environments, and magnification bias. We find that in certain GW source rate scenarios, we should be able to observe strongly lensed GW events once per year (˜1 yr-1) in the aLIGO survey at its design sensitivity; for the proposed ET survey, the rate could be as high as ˜80 yr-1. These results depend on the estimate of GW source abundance, and hence can be correspondingly modified with an improvement in our understanding of the merger rate of stellar binary black holes. We also compute the fraction of four-image lens systems in each survey, predicting it to be ˜30 per cent for the aLIGO survey and ˜6 per cent for the ET survey. Finally, we evaluate the possibility of missing some images due to the finite survey duration, by presenting the probability distribution of lensing time delays. We predict that this selection bias will be insignificant in future GW surveys, as most of the lens systems ({˜ } 90{per cent}) will have time delays less than ˜1 month, which will be far shorter than survey durations.
Directory of Open Access Journals (Sweden)
N. O. Artyukhova
2017-12-01
Full Text Available The article stands for a research of the drying process efficiency of various approaches of reciprocal movement organization of drying agent and disperse material. It focuses on the results of shelf dryer investigation. The test condition was as follows: backflow of the drying agent and disperse material movement; backflow of the drying agent and disperse material movement with the drying agent recirculation; backflow of the drying agent and disperse material movement with the bypassing of drying agent and it’s putting on separate stage of gravitational shelf dryer. The influence of the drying agent movement organization on the characteristics of disperse material and drying agent, energy costs for this process and its efficiency is shown. The recommendations of usage of represented approaches of flows movement organization depending on the desired final moisture of the material as well as its physical and chemical properties are given. The proposed ways of reciprocal flows movement organization allow to reduce the costs of drying agent heating or to increase the efficiency of moisture removal at constant energy consumption.
Effect of increase in allotted time on game playing performance: Case study of an online word game
Putthiwanit, Chutinon; Kincart, Andrew
2011-01-01
Online game players tend to differ in the duration of time they play. However, no matter whether the time on playing an online game is spent positively or negatively, we may assume that when the duration of each online-game round is increased, players tend to engage in more interaction with their opponents. Though there are a significant number of research studies on time usage in computer games, there is no research exploring the direct effect of time on online game playing performance. As a...
Projective relativity, cosmology and gravitation
International Nuclear Information System (INIS)
Arcidiacono, G.
1986-01-01
This book describes the latest applications of projective geometry to cosmology and gravitation. The contents of the book are; the Poincare group and Special Relativity, the thermodynamics and electromagnetism, general relativity, gravitation and cosmology, group theory and models of universe, the special projective relativity, the Fantappie group and Big-Bang cosmology, a new cosmological projective mechanics, the plasma physics and cosmology, the projective magnetohydrodynamics field, projective relativity and waves propagation, the generalizations of the gravitational field, the general projective relativity, the projective gravitational field, the De Sitter Universe and quantum physics, the conformal relativity and Newton gravitation
On the quantum corrected gravitational collapse
International Nuclear Information System (INIS)
Torres, Ramón; Fayos, Francesc
2015-01-01
Based on a previously found general class of quantum improved exact solutions composed of non-interacting (dust) particles, we model the gravitational collapse of stars. As the modeled star collapses a closed apparent 3-horizon is generated due to the consideration of quantum effects. The effect of the subsequent emission of Hawking radiation related to this horizon is taken into consideration. Our computations lead us to argue that a total evaporation could be reached. The inferred global picture of the spacetime corresponding to gravitational collapse is devoid of both event horizons and shell-focusing singularities. As a consequence, there is no information paradox and no need of firewalls
On the quantum corrected gravitational collapse
Directory of Open Access Journals (Sweden)
Ramón Torres
2015-07-01
Full Text Available Based on a previously found general class of quantum improved exact solutions composed of non-interacting (dust particles, we model the gravitational collapse of stars. As the modeled star collapses a closed apparent 3-horizon is generated due to the consideration of quantum effects. The effect of the subsequent emission of Hawking radiation related to this horizon is taken into consideration. Our computations lead us to argue that a total evaporation could be reached. The inferred global picture of the spacetime corresponding to gravitational collapse is devoid of both event horizons and shell-focusing singularities. As a consequence, there is no information paradox and no need of firewalls.
On the quantum corrected gravitational collapse
Torres, Ramón; Fayos, Francesc
2015-07-01
Based on a previously found general class of quantum improved exact solutions composed of non-interacting (dust) particles, we model the gravitational collapse of stars. As the modeled star collapses a closed apparent 3-horizon is generated due to the consideration of quantum effects. The effect of the subsequent emission of Hawking radiation related to this horizon is taken into consideration. Our computations lead us to argue that a total evaporation could be reached. The inferred global picture of the spacetime corresponding to gravitational collapse is devoid of both event horizons and shell-focusing singularities. As a consequence, there is no information paradox and no need of firewalls.
Age matters: The effect of onset age of video game play on task-switching abilities.
Hartanto, Andree; Toh, Wei Xing; Yang, Hwajin
2016-05-01
Although prior research suggests that playing video games can improve cognitive abilities, recent empirical studies cast doubt on such findings (Unsworth et al., 2015). To reconcile these inconsistent findings, we focused on the link between video games and task switching. Furthermore, we conceptualized video-game expertise as the onset age of active video-game play rather than the frequency of recent gameplay, as it captures both how long a person has played video games and whether the individual began playing during periods of high cognitive plasticity. We found that the age of active onset better predicted switch and mixing costs than did frequency of recent gameplay; specifically, players who commenced playing video games at an earlier age reaped greater benefits in terms of task switching than did those who started at a later age. Moreover, improving switch costs required a more extensive period of video-game experience than did mixing costs; this finding suggests that certain cognitive abilities benefit from different amounts of video game experience.
Eskasasnanda, I Dewa Putu
2017-01-01
Science and technology development causes a lot of changes in any fields including the form of popular games among the Junior and Senior High School students in Indonesia. The traditional games that are famous formerly have been replaced by the modern games like online video game. This article discusses the cause and effect of the online video game playing on the Junior and Senior High Schools students in Malang. This study reveal that students play video games online due to peers pressure; a...
Long gravitational waves in a closed universe
International Nuclear Information System (INIS)
Grishchuk, L.P.; Doroshkevich, A.G.; Yudin, V.M.
The important part played by long gravitational waves in the evolution of a homogeneous closed universe (model of type IX in Biancki's classification) is discussed. It is shown that the metric of this model can be represented in the form of a sum of a background metric, describing nonstationary space of constant positive curvature, and a group of terms that may be interpreted as a set of gravitational waves of maximal length compatible with closure of the space. This subdivision of the metric is exact and does not presuppose necessary smallness of the wave corrections. For this reason the behavior of the wave terms can be traced at all stages of their evolution--both in the epoch when the contribution of the ''energy density'' and ''pressure'' of the gravitational waves to the dynamics of the background universe is negligibly small and in the epoch when this contribution is dominant. It was demonstrated, in particular, that in the limiting case of complete absence of ordinary matter the scale factor of the background metric, because of the negativity of gravitational ''pressure,''can pass during the evolution of the universe through a state of stable regular minimum
Gozli, Davood G; Bavelier, Daphne; Pratt, Jay
2014-10-12
Research on the impact of action video game playing has revealed performance advantages on a wide range of perceptual and cognitive tasks. It is not known, however, if playing such games confers similar advantages in sensorimotor learning. To address this issue, the present study used a manual motion-tracking task that allowed for a sensitive measure of both accuracy and improvement over time. When the target motion pattern was consistent over trials, gamers improved with a faster rate and eventually outperformed non-gamers. Performance between the two groups, however, did not differ initially. When the target motion was inconsistent, changing on every trial, results revealed no difference between gamers and non-gamers. Together, our findings suggest that video game playing confers no reliable benefit in sensorimotor control, but it does enhance sensorimotor learning, enabling superior performance in tasks with consistent and predictable structure. Copyright © 2014. Published by Elsevier B.V.
Effect of opponent type on moral emotions and responses to video game play.
Lin, Shu-Fang
2011-11-01
This study suggests that fighting against different types of opponents in video games (e.g., human opponents vs. monster opponents) may lead to different emotional responses and moral judgments toward game characters. Based on Bandura's moral disengagement theory, this study proposes that shooting at monster opponents makes game players feel less guilty and judge the player-controlled character as more morally justified. An experiment was conducted in which participants played shooting games with either human opponents or monster opponents. The results show that when playing against monster opponents, participants felt both less ashamed and less guilty, reported enjoying the game more, and judged their character as more justified than participants who played against human opponents.
A modified Friedmann equation for a system with varying gravitational mass
Gorkavyi, Nick; Vasilkov, Alexander
2018-05-01
The Laser Interferometer Gravitational-Wave Observatory (LIGO) detection of gravitational waves that take away 5 per cent of the total mass of two merging black holes points out on the importance of considering varying gravitational mass of a system. Using an assumption that the energy-momentum pseudo-tensor of gravitational waves is not considered as a source of gravitational field, we analyse a perturbation of the Friedmann-Robertson-Walker metric caused by the varying gravitational mass of a system. This perturbation leads to a modified Friedmann equation that contains a term similar to the `cosmological constant'. Theoretical estimates of the effective cosmological constant quantitatively corresponds to observed cosmological acceleration.
Hirt, Christian; Rexer, Moritz; Claessens, Sten; Rummel, Reiner
2017-10-01
Comparisons between high-degree models of the Earth's topographic and gravitational potential may give insight into the quality and resolution of the source data sets, provide feedback on the modelling techniques and help to better understand the gravity field composition. Degree correlations (cross-correlation coefficients) or reduction rates (quantifying the amount of topographic signal contained in the gravitational potential) are indicators used in a number of contemporary studies. However, depending on the modelling techniques and underlying levels of approximation, the correlation at high degrees may vary significantly, as do the conclusions drawn. The present paper addresses this problem by attempting to provide a guide on global correlation measures with particular emphasis on approximation effects and variants of topographic potential modelling. We investigate and discuss the impact of different effects (e.g., truncation of series expansions of the topographic potential, mass compression, ellipsoidal versus spherical approximation, ellipsoidal harmonic coefficient versus spherical harmonic coefficient (SHC) representation) on correlation measures. Our study demonstrates that the correlation coefficients are realistic only when the model's harmonic coefficients of a given degree are largely independent of the coefficients of other degrees, permitting degree-wise evaluations. This is the case, e.g., when both models are represented in terms of SHCs and spherical approximation (i.e. spherical arrangement of field-generating masses). Alternatively, a representation in ellipsoidal harmonics can be combined with ellipsoidal approximation. The usual ellipsoidal approximation level (i.e. ellipsoidal mass arrangement) is shown to bias correlation coefficients when SHCs are used. Importantly, gravity models from the International Centre for Global Earth Models (ICGEM) are inherently based on this approximation level. A transformation is presented that enables a
Yagi, Kent; Yang, Huan
2018-05-01
The recent discovery of gravitational-wave events has offered us unique test beds of gravity in the strong and dynamical field regime. One possible modification to General Relativity is the gravitational parity violation that arises naturally from quantum gravity. Such parity violation gives rise to the so-called amplitude birefringence in gravitational waves, in which one of the circularly polarized modes is amplified while the other one is suppressed during their propagation. In this paper, we study how well one can measure gravitational parity violation via the amplitude birefringence effect of gravitational waves sourced by stellar-mass black hole binaries. We choose Chern-Simons gravity as an example and work within an effective field theory formalism to ensure that the approximate theory is well posed. We consider gravitational waves from both individual sources and stochastic gravitational-wave backgrounds. Regarding bounds from individual sources, we estimate such bounds using a Fisher analysis and carry out Monte Carlo simulations by randomly distributing sources over their sky location and binary orientation. We find that the bounds on the scalar field evolution in Chern-Simons gravity from the recently discovered gravitational-wave events are too weak to satisfy the weak Chern-Simons approximation, while aLIGO with its design sensitivity can place meaningful bounds. Regarding bounds from stochastic gravitational-wave backgrounds, we set the threshold signal-to-noise ratio for detection of the parity-violation mode as 5 and estimate projected bounds with future detectors assuming that signals are consistent with no parity violation. In an ideal situation in which all the source parameters and binary black hole merger-rate history are known a priori, we find that a network of two third-generation detectors is able to place bounds that are comparable to or slightly stronger than binary pulsar bounds. In a more realistic situation in which one does not have
Dark Energy and Dark Matter Phenomena and the Universe with Variable Gravitational Mass
Gorkavyi, N.
2005-12-01
Generation of high-frequency gravitational waves near the singularity is a crucial factor for understanding the origin and dynamics of the Universe. Emission of gravitational waves increases with a decreasing radius of collapsed object much faster than a gravitational force itself. Gravitationally unstable matter of the Universe will be completely converted into gravitational radiation during the Big Crunch. According to Misner, Thorne & Wheeler (Gravitation, 1977, p.959) plane gravitational waves have not gravitational mass or spacetime is flat everywhere outside the pulse. We can propose that the gravitational mass of the Universe is vanished after converting matter into gravitational waves. This hypothesis in the framework of Einstein's theory of gravitation can solve the problem of singularity without contradiction with theorems by Penrose-Hawking; explain the acceleration of our Universe as the effect of a retarded gravitational potential (Gorkavyi, BAAS, 2003, 35, #3) and the low quadrupole in fluctuations in CMB as result of blue-shift effect in a gravitational field. Proposed solution of dark energy problem free from coincidence problems. The hypothesis keeps best parts of Big Bang theory and inflation model without any unknown physical fields or new dimensions. According to this hypothesis a relic sea of high-frequency gravitational radiation in our Universe can be very dense. Interaction of relic gravitational waves with gravitational fields of galaxies and stars can create an additional dynamical effects like pressure of relic radiation that proportional to gravitational potential GM/(Rc2). This effect can be responsible for dark matter phenomena in galaxies and the Pioneer acceleration in the solar system (Gorkavyi, BAAS, 2005, 37, #2).
Yang, G.S.; Huesmann, L.R.; Bushman, B.J.
2014-01-01
Previous research has shown that violent video games can increase aggression in players immediately after they play. The present research examines the effects of one subtle cue within violent video games that might moderate these effects-whether the avatar is male or female. One common stereotype is
Swan, Karrie L.
2011-01-01
A growing disparity between the mental health needs of children and their lack of treatment served as the basis of this study. To address this existent gap, I proposed that child-centered play therapy (CCPT), a holistic treatment that fosters children's emotional, developmental, and social growth would serve as a viable treatment. The purpose of…
Practice Makes Poorer: Practice Gambling Modes and Their Effects on Real-Play in Simulated Roulette
Bednarz, Jana; Delfabbro, Paul; King, Daniel
2013-01-01
The aim of this study was to examine the role of free-play modes on gambling behaviour in computer-based roulette. Eighty participants were randomly allocated to one of four pre-exposure conditions: no exposure (control group), a loss condition, a break-even and a profit condition in which the return to player was greater than 100%. Behavioural…
The Effect of Exposure to an Agressive Cartoon on Children's Play.
Cameron, Samuel M.; And Others
The authors discuss their replications of 2 prominent studies in the area of modeling aggressive behavior; those of Lovaas and Bandura. In the first, they predicted that, given the same socio-economic background, there would be no differences between black and white children in the amount of aggressive play subsequent to viewing an aggressive…
Global gravitational anomalies
International Nuclear Information System (INIS)
Witten, E.
1985-01-01
A general formula for global gauge and gravitational anomalies is derived. It is used to show that the anomaly free supergravity and superstring theories in ten dimensions are all free of global anomalies that might have ruined their consistency. However, it is shown that global anomalies lead to some restrictions on allowed compactifications of these theories. For example, in the case of O(32) superstring theory, it is shown that a global anomaly related to π 7 (O(32)) leads to a Dirac-like quantization condition for the field strength of the antisymmetric tensor field. Related to global anomalies is the question of the number of fermion zero modes in an instanton field. It is argued that the relevant gravitational instantons are exotic spheres. It is shown that the number of fermion zero modes in an instanton field is always even in ten dimensional supergravity. (orig.)
Gravitational properties of antimatter
International Nuclear Information System (INIS)
Goldman, T.; Nieto, M.M.
1985-01-01
Quantum gravity is at the forefront of modern particle physics, yet there are no direct tests, for antimatter, of even the principle of equivalence. We note that modern descriptions of gravity, such as fibre bundles and higher dimensional spacetimes, allow violations of the commonly stated form of the principle of equivalence, and of CPT. We review both indirect arguments and experimental tests of the expected gravitational properties of CPT-conjugate states. We conclude that a direct experimental test of the gravitational properties of antimatter, at the 1% (or better) level, would be of great value. We identify some experimental reasons which make the antiproton a prime candidate for this test, and we strongly urge that such an experiment be done at LEAR. 21 references
Gravitation and electromagnetism
Apsel, D
1979-01-01
Through an examination of the Bohm-Aharonov experiment, a new theory of gravitation and electromagnetism is proposed. The fundamental assumption of the theory is that the motion of a particle in a combination of gravitational and electromagnetic fields is determined from a variational principle of the form delta integral /sub A//sup B /d tau =0. The form of the physical time is determined from an examination of the Maxwell-Einstein action function. The field and motion equations are formally identical to those of Maxwell-Einstein theory. The theory predicts that even in a field-free region of space, electromagnetic potentials can alter the phase of a wave function and the lifetime of a charged particle. The phase alteration has been observed in the Bohm-Aharonov experiment. There is an indication that the lifetime alteration has shown up in a recent CERN storage ring experiment. Experimental tests are proposed. (11 refs).
Kopczyński, W.; Trautman, A.
This book is a revised translation of the Polish original "Czasoprzestrzeń i grawitacja", Warszawa (Poland), Państwowe Wydawnictwo Naukowe, 1984. Ideas about space and time are at the root of one's understanding of nature, both at the intuitive level of everyday experience and in the framework of sophisticated physical theories. These ideas have led to the development of geometry and its applications to physics. The contemporary physical theory of space and time, including its extention to the phenomena of gravitation, is Einstein's theory of relativity. The book is a short introduction to this theory. A great deal of emphasis is given to the geometrical aspects of relativity theory and its comparison with the Newtonian view of the world. There are short chapters on the origins of Einstein's theory, gravitational waves, cosmology, spinors and the Einstein-Cartan theory.
Gravitational clustering of galaxies in the CfA slice
International Nuclear Information System (INIS)
Crane, P.; Saslaw, W.C.
1988-01-01
The clustering properties of the Galaxies in the CfA slice have been analyzed by comparing the properties of the neighbor distributions to the predictions of gravitational clustering theory. The agreement is excellent and implies that the observed structures can be explained by gravitational effects alone and do not require exotic explanations
Neutrinos from gravitational collapse
International Nuclear Information System (INIS)
Mayle, R.; Wilson, J.R.; Schramm, D.N.
1986-05-01
Detailed calculations are made of the neutrino spectra emitted during gravitational collapse events (Type II supernovae). Those aspects of the neutrino signal which are relatively independent of the collapse model and those aspects which are sensitive to model details are discussed. The easier-to-detect high energy tail of the emitted neutrinos has been calculated using the Boltzmann equation which is compared with the result of the traditional multi-group flux limited diffusion calculations. 8 figs., 28 refs
Energy Technology Data Exchange (ETDEWEB)
Goldoni, R
1980-11-22
A bimetric theory of gravitation within a Machian framework is developed on the basis of considerations which are completely divorced from Newton's theory. The theory is assumed to hold in any conceivable cosmos and possesses the Machian properties of being singular in the absence of matter and of explicitly incorporating the idea that properties of space-time are determined not only by local matter, but also by the average distribution of cosmological matter.
Gravitation, Symmetry and Undergraduates
Jorgensen, Jamie
2001-04-01
This talk will discuss "Project Petrov" Which is designed to investigate gravitational fields with symmetry. Project Petrov represents a collaboration involving physicists, mathematicians as well as graduate and undergraduate math and physics students. An overview of Project Petrov will be given, with an emphasis on students' contributions, including software to classify and generate Lie algebras, to classify isometry groups, and to compute the isometry group of a given metric.
International Nuclear Information System (INIS)
Penrose, R.
1986-01-01
The author's definition for the mass-momentum/angular momentum surrounded by a spacelike 2-surface with S/sup 2/ topology is presented. This definition is motivated by some ideas from twistor theory in relation to linearized gravitational theory. The status of this definition is examined in relation to many examples which have been worked out. The reason for introducing a slight modification of the original definition is also presented
General Relativity and Gravitation
Ehlers, J.; Murdin, P.
2000-11-01
The General Theory of Relativity (GR), created by Albert Einstein between 1907 and 1915, is a theory both of gravitation and of spacetime structure. It is based on the assumption that matter, via its energy-momentum, interacts with the metric of spacetime, which is considered (in contrast to Newtonian physics and SPECIAL RELATIVITY) as a dynamical field having degrees of freedom of its own (GRAVI...
Fivebrane gravitational anomalies
International Nuclear Information System (INIS)
Becker, Katrin; Becker, Melanie
2000-01-01
Freed, Harvey, Minasian and Moore (FHMM) have proposed a mechanism to cancel the gravitational anomaly of the M-theory fivebrane coming from diffeomorphisms acting on the normal bundle. This procedure is based on a modification of the conventional M-theory Chern-Simons term. We apply the FHMM mechanism in the ten-dimensional type IIA theory. We then analyze the relation to the anomaly cancellation mechanism for the type IIA fivebrane proposed by Witten
Light rays and the tidal gravitational pendulum
Farley, A. N. St J.
2018-05-01
Null geodesic deviation in classical general relativity is expressed in terms of a scalar function, defined as the invariant magnitude of the connecting vector between neighbouring light rays in a null geodesic congruence projected onto a two-dimensional screen space orthogonal to the rays, where λ is an affine parameter along the rays. We demonstrate that η satisfies a harmonic oscillator-like equation with a λ-dependent frequency, which comprises terms accounting for local matter affecting the congruence and tidal gravitational effects from distant matter or gravitational waves passing through the congruence, represented by the amplitude, of a complex Weyl driving term. Oscillating solutions for η imply the presence of conjugate or focal points along the rays. A polarisation angle, is introduced comprising the orientation of the connecting vector on the screen space and the phase, of the Weyl driving term. Interpreting β as the polarisation of a gravitational wave encountering the light rays, we consider linearly polarised waves in the first instance. A highly non-linear, second-order ordinary differential equation, (the tidal pendulum equation), is then derived, so-called due to its analogy with the equation describing a non-linear, variable-length pendulum oscillating under gravity. The variable pendulum length is represented by the connecting vector magnitude, whilst the acceleration due to gravity in the familiar pendulum formulation is effectively replaced by . A tidal torque interpretation is also developed, where the torque is expressed as a coupling between the moment of inertia of the pendulum and the tidal gravitational field. Precessional effects are briefly discussed. A solution to the tidal pendulum equation in terms of familiar gravitational lensing variables is presented. The potential emergence of chaos in general relativity is discussed in the context of circularly, elliptically or randomly polarised gravitational waves encountering the null
Curvature bound from gravitational catalysis
Gies, Holger; Martini, Riccardo
2018-04-01
We determine bounds on the curvature of local patches of spacetime from the requirement of intact long-range chiral symmetry. The bounds arise from a scale-dependent analysis of gravitational catalysis and its influence on the effective potential for the chiral order parameter, as induced by fermionic fluctuations on a curved spacetime with local hyperbolic properties. The bound is expressed in terms of the local curvature scalar measured in units of a gauge-invariant coarse-graining scale. We argue that any effective field theory of quantum gravity obeying this curvature bound is safe from chiral symmetry breaking through gravitational catalysis and thus compatible with the simultaneous existence of chiral fermions in the low-energy spectrum. With increasing number of dimensions, the curvature bound in terms of the hyperbolic scale parameter becomes stronger. Applying the curvature bound to the asymptotic safety scenario for quantum gravity in four spacetime dimensions translates into bounds on the matter content of particle physics models.
Gravitational lenses and the cosmological evolution of quasars
International Nuclear Information System (INIS)
Avni, Y.
1981-01-01
A heuristic model for the effect of gravitational lenses on the apparent cosmological evolution of quasars is considered. The model satisfies the requirement of average flux conservation and has no net mean amplification. This requirement is shown to be numerically important in studying the effect. On the basis of the values of the evolution indicators calculated from the model, it is concluded that it is premature to assert that lensing plays an important role in affecting the apparent evolution. A qualitative, model independent observational test for the effect is suggested. The test estimates the distances where lensing is dominant. An application of this test to a complete sample of quasars indicates that lensing cannot completely account for the apparent evolution, except in an extreme situation
Nondissipative gravitational turbulence
International Nuclear Information System (INIS)
Gurevich, A.V.; Zybin, K.P.
1988-01-01
The nonlinear stage of development of the Jeans instability in a cold nondissipative gravitating gas is considered. It is shown that for a time exceeding the Jeans time a nondissipative gravitational singularity (NGS) is formed in the vicinity of a local density maximum. The NGS is a stationary dynamic structure, the basis of which is the singularity. The density of the gas at the center of the NGS (for r → 0) tends to infinity, and the field potential and the mean velocity of the trapped gas, possess a power singularity. The turbulent state arises as the result of development of the instability in the case of an irregular initial density distribution. It is an hierarchic structure consisting of nested moving NGS of various sizes, the NGS of smaller dimensions being trapped in the field of a NGS of larger dimensions. The scaling relations for each given NGS in this case hold for both the gas density and density of smaller size trapped NGS. A brief comparison with the observational data shows that the real hierarchic structure of the Universe ranging from scales pertaining to spherical stellar clusters up to those of rich galaxy clusters is apparently a developed gravitational turbulence
Wei, Ran
2007-06-01
This study examines the effects of exposure to online videogame violence on Chinese adolescents' attitudes toward violence, empathy, and aggressive behavior. Results of bivariate analyses show that playing violent videogames on the Internet was associated with greater tolerance of violence, a lower emphatic attitude, and more aggressive behavior. Results of hierarchical regression analyses showed sustained relationships between exposure and pro-violent attitudes and empathy when exposure was examined simultaneously with gender, computer use, and Internet use. However, the linkage between exposure and aggression became non-significant, suggesting that the effects of playing violent videogames were greater for attitudinal outcomes than on overt behavior. Gender differences in playing videogames and in effects were also found.
Electromagnetic waves in gravitational wave spacetimes
International Nuclear Information System (INIS)
Haney, M.; Bini, D.; Ortolan, A.; Fortini, P.
2013-01-01
We have considered the propagation of electromagnetic waves in a space-time representing an exact gravitational plane wave and calculated the induced changes on the four-potential field Aμ of a plane electromagnetic wave. By choosing a suitable photon round-trip in a Michelson interferometer, we have been able to identify the physical effects of the exact gravitational wave on the electromagnetic field, i.e. phase shift, change of the polarization vector, angular deflection and delay. These results have been exploited to study the response of an interferometric gravitational wave detector beyond the linear approximation of the general theory of relativity. A much more detailed examination of this problem can be found in our paper recently published in Classical and Quantum Gravity (28 (2011) 235007).
Leading gravitational corrections and a unified universe
DEFF Research Database (Denmark)
Codello, Alessandro; Jain, Rajeev Kumar
2016-01-01
Leading order gravitational corrections to the Einstein-Hilbert action can lead to a consistent picture of the universe by unifying the epochs of inflation and dark energy in a single framework. While the leading local correction induces an inflationary phase in the early universe, the leading...... nonlocal term leads to an accelerated expansion of the universe at the present epoch. We argue that both the leading UV and IR terms can be obtained within the framework of a covariant effective field theory of gravity. The perturbative gravitational corrections therefore provide a fundamental basis...
Promoting oral care in the preschool child: effects of a playful learning intervention
Directory of Open Access Journals (Sweden)
Cecília Helena de Siqueira Sigaud
Full Text Available ABSTRACT Objective: To compare the number of appropriate behaviors for tooth brushing before and after a playful learning intervention with preschool children. Method: A quasi-experimental, quantitative, before and after study design was conducted in an early childhood educational institution, with children between three and five years of age. The intervention consisted of three meetings with educational activities about tooth brushing, whose outcome was evaluated by means of observation of ten behaviors suitable for tooth brushing. Results: Forty-four children participated in the study. The mean of adequate behaviors was 4.4 before the intervention, and 8.5 after the intervention. A significant increase in the adoption of appropriate behaviors for tooth brushing (p <0.01 was identified. Conclusion: Nurses can enhance oral health promotion actions with preschoolers in preschool institution using playful learning interventions
The effect of violent video game playing on gamer's views of victims of crime
McLean, L
2015-01-01
This research was designed to explore the relationship between violent video game play and attitudes towards victims. As the violent genre of games become more popular and as the graphics and content becomes even more realistic and immersive, there has been concern that this media form offers a different perspective on violence to players than more passive forms of media. Much of the research in the area of violent video game research has focused on changes in players in terms of aggressive b...
Effect of Playing Video Games on Laparoscopic Skills Performance: A Systematic Review.
Glassman, Daniel; Yiasemidou, Marina; Ishii, Hiro; Somani, Bhaskar Kumar; Ahmed, Kamran; Biyani, Chandra Shekhar
2016-02-01
The advances in both video games and minimally invasive surgery have allowed many to consider the potential positive relationship between the two. This review aims to evaluate outcomes of studies that investigated the correlation between video game skills and performance in laparoscopic surgery. A systematic search was conducted on PubMed/Medline and EMBASE databases for the MeSH terms and keywords including "video games and laparoscopy," "computer games and laparoscopy," "Xbox and laparoscopy," "Nintendo Wii and laparoscopy," and "PlayStation and laparoscopy." Cohort, case reports, letters, editorials, bulletins, and reviews were excluded. Studies in English, with task performance as primary outcome, were included. The search period for this review was 1950 to December 2014. There were 57 abstracts identified: 4 of these were found to be duplicates; 32 were found to be nonrelevant to the research question. Overall, 21 full texts were assessed; 15 were excluded according to the Medical Education Research Study Quality Instrument quality assessment criteria. The five studies included in this review were randomized controlled trials. Playing video games was found to reduce error in two studies (P 0.002 and P 0.045). For the same studies, however, several other metrics assessed were not significantly different between the control and intervention group. One study showed a decrease in the time for the group that played video games (P 0.037) for one of two laparoscopic tasks performed. In the same study, however, when the groups were reversed (initial control group became intervention and vice versa), a difference was not demonstrated (P for peg transfer 1 - 0.465, P for cobra robe - 0.185). Finally, two further studies found no statistical difference between the game playing group and the control group's performance. There is a very limited amount of evidence to support that the use of video games enhances surgical simulation performance.
Yang, Grace S; Huesmann, L Rowell; Bushman, Brad J
2014-01-01
Previous research has shown that violent video games can increase aggression in players immediately after they play. The present research examines the effects of one subtle cue within violent video games that might moderate these effects-whether the avatar is male or female. One common stereotype is that males are more aggressive than females. Thus, playing a violent video game as a male avatar, compared to a female avatar, should be more likely to prime aggressive thoughts and inclinations in players and lead to more aggressive behavior afterwards. Male and female university students (N = 242) were randomly assigned to play a violent video game as a male or female avatar. After gameplay, participants gave an ostensible partner who hated spicy food hot sauce to eat. The amount of hot sauce given was used to measure aggression. Consistent with priming theory, results showed that both male and female participants who played a violent game as a male avatar behaved more aggressively afterwards than those who played as female avatar. The priming effects of the male avatar were somewhat stronger for male participants than for female participants, suggesting that male participants identified more with the male avatar than did the female participants. These results are particularly noteworthy because they are consistent with another recent experiment showing that playing a violent game as an avatar with a different stereotypically aggressive attribute (black skin color) stimulates more aggression than playing as an avatar without the stereotypically aggressive attribute (Yang et al., 2014, Social Psychological and Personality Science). © 2014 Wiley Periodicals, Inc.
Effects of playing video games on pain response during a cold pressor task.
Raudenbush, Bryan; Koon, Jerrod; Cessna, Trevor; McCombs, Kristin
2009-04-01
Two studies assessed whether playing video games would significantly distract participants from painful stimulation via a cold pressor test. In Study 1, participants (8 men, 22 women, M age = 18.5 yr., SD = 1.3) in an action-oriented game condition tolerated pain for a longer time period and reported lower pain intensity ratings than those in a nonaction-oriented game or a nongame control condition. No differences were found on scores of aggressiveness, competitiveness, or prior video game experience, suggesting that these factors play little role. In Study 2, participants (14 men, 13 women, M age = 19.7 yr., SD = 1.3) engaged in six video game conditions (action, fighting, puzzle, sports, arcade, and boxing) and a nongame control condition. Video game play produced an increase in pulse, which was greatest during the action, fighting, sports, and boxing games. Pain tolerance was greatest during the sports and fighting games. Thus, certain games produce greater distraction, which may have implications for the medical field as an adjunct to pain management.
Directory of Open Access Journals (Sweden)
Nicole L. Johnson
2011-06-01
Full Text Available The non-medical use of prescription opiates, such as Vicodin® and MSContin®, has increased dramatically over the past decade. Of particular concern is the rising popularity of these drugs in adolescent female populations. Use during this critical developmental period could have significant long-term consequences for both the female user as well as potential effects on her future offspring. To address this issue, we have begun modeling adolescent opiate exposure in female rats and have observed significant transgenerational effects despite the fact that all drugs are withdrawn several weeks prior to pregnancy. The purpose of the current set of studies was to determine whether adolescent morphine exposure modifies postpartum care. In addition, we also examined juvenile play behavior in both male and female offspring. The choice of the social play paradigm was based on previous findings demonstrating effects of both postpartum care and opioid activity on play behavior. The findings revealed subtle modifications in the maternal behavior of adolescent morphine-exposed females, primarily related to the amount of time females’ spend nursing and in non-nursing contact with their young. In addition, male offspring of adolescent morphine-exposed mothers (MOR-F1 demonstrate decreased rough and tumble play behaviors, with no significant differences in general social behaviors (i.e. social grooming and social exploration. Moreover, there was a tendency toward increased rough and tumble play in MOR-F1 females, demonstrating the sex-specific nature of these effects. Given the importance of the postpartum environment on neurodevelopment, it is possible that modifications in maternal-offspring interactions, related to a history of adolescent opiate exposure, plays a role in the observed transgenerational effects. Overall, these studies indicate that the long-term consequences of adolescent opiate exposure can impact both the female and her future offspring.
DEFF Research Database (Denmark)
Hammar, Emil
This paper aims to identify an understanding of digital games in virtual environments by using Don Ihde’s (1990) postphenomenological approach to how technology mediates the world to human beings in conjunction with Hans-Georg Gadamer’s (1993) notion of play . Through this tentatively proposed am...... amalgamation of theories I point towards an alternative understanding of the relationship between play and game as not only dialectic, but also as socially and ethically relevant qua the design and implementation of the game as technology....
Panksepp, Jaak; Burgdorf, Jeff; Turner, Cortney; Gordon, Nakia
2003-06-01
It has been recently shown that human adolescents with Attention Deficit/Hyperactivity Disorder (ADHD) have frontal lobe deficits, especially on the right sides of their brains (). ADHD is commonly treated with psychostimulants which may have adverse consequences. Hence, less invasive therapies need to be developed. In the present work, we tested the ability of right frontal lesions to induce hyperactivity in rats. We also evaluated the effects of chronic play therapy during early adolescence to reduce both hyperactivity and the elevated playfulness later in development. Play therapy was able to reduce both hyperactivity and excessive playfulness. In additional work, we found that access to rough-and-tumble play in normal animals could enhance subsequent behavioral indices of behavioral inhibition (i.e., freezing in response to a startle stimulus) that appeared to be independent of increased fearfulness and fatigue. Overall, these results suggest that (1) neonatal frontal lobe lesions can be used as an animal model of the overactivity in ADHD and (2) rough-and-tumble play therapy may be a new useful treatment for ADHD.
Alsafi, Z; Hameed, Y; Amin, P; Shamsad, S; Raja, U; Alsafi, A; Hamady, M S
2017-09-01
To investigate the effect of playing computer games and manual dexterity on catheter-wire manipulation in a mechanical aortic model. Medical student volunteers filled in a preprocedure questionnaire assessing their exposure to computer games. Their manual dexterity was measured using a smartphone game. They were then shown a video clip demonstrating renal artery cannulation and were asked to reproduce this. All attempts were timed. Two-tailed Student's t-test was used to compare continuous data, while Fisher's exact test was used for categorical data. Fifty students aged 18-22 years took part in the study. Forty-six completed the task at an average of 168 seconds (range 103-301 seconds). There was no significant difference in the dexterity score or time to cannulate the renal artery between male and female students. Students who played computer games for >10 hours per week had better dexterity scores than those who did not play computer games: 9.1 versus 10.2 seconds (p=0.0237). Four of 19 students who did not play computer games failed to complete the task, while all of those who played computer games regularly completed the task (p=0.0168). Playing computer games is associated with better manual dexterity and ability to complete a basic interventional radiology task for novices. Copyright © 2017 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.
Directory of Open Access Journals (Sweden)
Cem YAŞIN
2014-02-01
Full Text Available While the first level agenda setting researches focus on the transfer of issue salience from the media to public agenda, second level agenda setting researches interest in the attributes emphasized in the news and their affect on the public agenda. Some of these researches tends to analysis the media agenda. Influences of the news media on each other are studied by the inter-media agenda setting researches at at both the first and second levels. The same researches examine also the effects of different types of media on each other. However there is the problem of lack of a systematic theoretical model. This is caused by the differentiation in the aims of researchers and in their research objects. The other problem in the inter-media agenda setting researches is that there is no research on the agenda setting effects of the newspapers which have different ideological and political identities. This research aims to scrutinize the inter-media agenda-setting effects among various newspapers that have got different points of view. The research is designed to test the central gravitation effects of the mainstream news papers. Here the Murder of Hrant Dink is selected as a case study.
On gravitational wave energy in Einstein gravitational theory
International Nuclear Information System (INIS)
Folomeshkin, V.N.; Vlasov, A.A.
1978-01-01
By the example of precise wave solutions for the Einstein equations it is shown that a standard commonly adopted formulation of energy-momentum problem with pseudotensors provides us either with a zero or sign-variable values for the energy of gravitational waves. It is shown that if in the Einstein gravitational theory a strict transition to the limits of weak fields is realised then the theory gives us an unambiguous zero result for weak gravitational waves. The well-known non-zero result arises due to incorrect transition to weak field approximation in the Einstein gravitation theory
Gravitational lenses and cosmological evolution
International Nuclear Information System (INIS)
Peacock, J.A.
1982-01-01
The effect of gravitational lensing on the apparent cosmological evolution of extragalactic radio sources is investigated. Models for a lens population consisting of galaxies and clusters of galaxies are constructed and used to calculate the distribution of amplification factors caused by lensing. Although many objects at high redshifts are predicted to have flux densities altered by 10 to 20 per cent relative to a homogeneous universe, flux conservation implies that de-amplification is as common as amplification. The effects on cosmological evolution as inferred from source counts and redshift data are thus relatively small; the slope of the counts is not large enough for intrinsically rare lensing events of high amplitude to corrupt observed samples. Lensing effects may be of greater importance for optically selected quasars, where lenses of mass as low as approximately 10 -4 solar mass can cause large amplifications. (author)
DEFF Research Database (Denmark)
Wollin, M; Thorborg, K; Pizzari, T
2017-01-01
. Competitive football match play has a significant acute and transient effect on isometric hamstring strength and associated pain levels during resisted knee flexion in male international youth players. Range of motion measures appear to remain relatively unaffected by match play. Isometric hamstring strength......The aim of this study was to investigate the effect of competitive football match play on hamstring strength and lower limb flexibility. Fifteen male international youth football players were included. Hamstring strength and associated pain ratings, ankle dorsiflexion, hip extension, knee extension...... and flexion range of motion were evaluated immediately post-match and at intervals of 24, 48, and 72 h post-match. Strength significantly reduced post-match (P
International Nuclear Information System (INIS)
Wen, Dehua; Li, Baoan; Krastev, P.G.
2010-01-01
The frequencies and damping times of the axial w-mode oscillations of neutron stars are investigated using a nuclear equation of state (EOS) partially constrained by the available terrestrial laboratory data. It is found that the nuclear symmetry energy E sym (ρ), especially its high density behavior, plays an important role in determining both the eigen-frequencies and the damping times of these oscillations. (author)
Evidence for secondary gravitationally lensed images in radio quasistellar objects
International Nuclear Information System (INIS)
Rousey, C.E.
1977-01-01
Evidence is sought for the observability of the gravitational lens effect by studying the internal radio structures of quasistellar objects. Since the majority of the radio emitting quasars were observed to be multiply structured at radio wavelengths, and since the gravitational deflection of light is essentially frequency independent, these sources are very suitable objects for the investigation of gravitational imaging. From the theoretical framework of gravitational imaging, particularly in the treatment of the gravitational lenses as ''point-mass'' deflectors, several selection criteria were imposed on a sample of 208 radio emitting quasars in order to filter out only those sources which may be exhibiting radio imaging. The employment of further selection criteria, obtained from the consideration of the observed optical fields around the quasars, resulted in a small filtered sample of 10 quasars which are good candidates for exhibiting the gravitational lens effect. In particular, two quasars, 3C 268.4 and 3C 286, are observed to have good evidence for the presence of suitable gravitational lenses. Image models were computed for the image candidates which predict the masses and distances of the gravitational deflectors as well as estimations of the ''time delays'' of the images. It is also suggested that measurements of these image time delays may enable one to place stringent limits on the value of the Hubble constant
Theory of antennas for gravitational radiation
International Nuclear Information System (INIS)
Hirakawa, Hiromasa; Narihara, Kazumichi; Fujimoto, Masakatsu.
1976-01-01
A theory of antennas for gravitational radiation is presented. On the basis of the eigenmode system and the structure symmetry, the emission and reception characteristics and the directivity pattern of antennas are treated. The antenna thermal noise is discussed in connection with the coupling constant of vibration sensors and with the effect of cold-damping. (auth.)
Why does gravitational radiation produce vorticity?
International Nuclear Information System (INIS)
Herrera, L; Barreto, W; Carot, J; Prisco, A Di
2007-01-01
We calculate the vorticity of worldlines of observers at rest in a Bondi-Sachs frame, produced by gravitational radiation, in a general Sachs metric. We claim that such an effect is related to the super-Poynting vector, in a similar way as the existence of the electromagnetic Poynting vector is related to the vorticity in stationary electrovacuum spacetimes
DEFF Research Database (Denmark)
Pors, Justine Grønbæk; Åkerstrøm Andersen, Niels
2015-01-01
intact. In its final sections, the article discusses what happens to conditions of decision-making when organisations do not just see undecidability as a given condition, but as a limited resource indispensable for change and renewal. The article advances discussions of organisational play by exploring...
Rogers, Liz; Steffan, Dana
2009-01-01
This article describes how to use clay as a potential material for young children to explore. As teachers, the authors find that their dialogue about the potential of clay as a learning medium raises many questions: (1) What makes clay so enticing? (2) Why are teachers noticing different play and conversation around the clay table as compared to…
Leung, Shuk-kwan S.; Lo, Jane-Jane
2010-01-01
This article features Sweet play math, a "math by the month" activity that involves decorating and making sugar cubes. Teachers may want to substitute straws, paper squares, alphabet blocks, or such commercially made manipulatives as Unifix[R] cubes for the real sweets. Given no allergy concerns, teachers and students alike would enjoy some sweet…
Gilbert, Juan E.
The acceptance of animation technologies is increasing. Video games, such as Sony PlayStation (SONY, 2002), have become part of the culture for young people from kindergarten through undergraduate school. Animation technologies have been implemented into educational systems in the form of animated pedagogical agents (Johnson, 2000). The research…
DEFF Research Database (Denmark)
Bang, Jytte Susanne
2012-01-01
The present article explores the role of music-related artefacts and technologies in children’s lives. More specifically, it analyzes how four 10- to 11-year old girls use CDs and DVD games in their music-play activities and which developmental themes and potentials may accrue from such activitie...
Cline, Jane E.; Smith, Brandy A.
2016-01-01
The inclusion of activities to develop sensory awareness, spatial thinking, and physical dexterity, operationalized through hands-on science lessons such as water play, have long been part of early childhood education. This practical article addresses Next Generation Science Standards K-2 ETS1-3 and K-2 ETS1-2 by having four-year-old…
Bayesian reconstruction of gravitational wave bursts using chirplets
Millhouse, Margaret; Cornish, Neil J.; Littenberg, Tyson
2018-05-01
The LIGO-Virgo Collaboration uses a variety of techniques to detect and characterize gravitational waves. One approach is to use templates—models for the signals derived from Einstein's equations. Another approach is to extract the signals directly from the coherent response of the detectors in the LIGO-Virgo network. Both approaches played an important role in the first gravitational wave detections. Here we extend the BayesWave analysis algorithm, which reconstructs gravitational wave signals using a collection of continuous wavelets, to use a generalized wavelet family, known as chirplets, that have time-evolving frequency content. Since generic gravitational wave signals have frequency content that evolves in time, a collection of chirplets provides a more compact representation of the signal, resulting in more accurate waveform reconstructions, especially for low signal-to-noise events, and events that occupy a large time-frequency volume.
INVESTIGATION ON THE EFFECT OF USER'S EXPERIENCE TO MOTIVATE PLAYING ONLINE GAMES
RYAN RANDY SURYONO; APOL PRIBADI SUBRIADI
2016-01-01
Internet technology has been growing and become one of the options for people to interact with others. Now days, one of the most famous usage of the internet was as an entertainment. Online game was a sample. For this reason, therefore the online business games also growth among the public. As someone frequently play the online games, interaction with other users could increase, which would lead for more users to join the game�s community. In this community, users might perform specific roles...
Gauge theories, time-dependence of the gravitational constant and antigravity in the early universe
International Nuclear Information System (INIS)
Linde, A.D.
1980-01-01
It is shown that the interaction of the gravitational field with matter leads to a strong modification of the effective gravitational constant in the early universe. In certain cases this leads even to the change of sign of the gravitational constant, i.e. to antigravity in the early universe. (orig.)
Quantum Emulation of Gravitational Waves.
Fernandez-Corbaton, Ivan; Cirio, Mauro; Büse, Alexander; Lamata, Lucas; Solano, Enrique; Molina-Terriza, Gabriel
2015-07-14
Gravitational waves, as predicted by Einstein's general relativity theory, appear as ripples in the fabric of spacetime traveling at the speed of light. We prove that the propagation of small amplitude gravitational waves in a curved spacetime is equivalent to the propagation of a subspace of electromagnetic states. We use this result to propose the use of entangled photons to emulate the evolution of gravitational waves in curved spacetimes by means of experimental electromagnetic setups featuring metamaterials.
Probing Positron Gravitation at HERA
International Nuclear Information System (INIS)
Gharibyan, Vahagn
2015-07-01
An equality of particle and antiparticle gravitational interactions holds in general relativity and is supported by indirect observations. Here I develop a method based on high energy Compton scattering to measure the gravitational interaction of accelerated charged particles. Within that formalism the Compton spectra measured at HERA rule out the positron's anti-gravity and hint for a positron's 1.3(0.2)% weaker coupling to the gravitational field relative to an electron.
Probing Positron Gravitation at HERA
Energy Technology Data Exchange (ETDEWEB)
Gharibyan, Vahagn
2015-07-15
An equality of particle and antiparticle gravitational interactions holds in general relativity and is supported by indirect observations. Here I develop a method based on high energy Compton scattering to measure the gravitational interaction of accelerated charged particles. Within that formalism the Compton spectra measured at HERA rule out the positron's anti-gravity and hint for a positron's 1.3(0.2)% weaker coupling to the gravitational field relative to an electron.
Massive scalar counterpart of gravitational waves in scalarized neutron star binaries
Energy Technology Data Exchange (ETDEWEB)
Wang, Jing [Sun Yat-sen University, School of Physics and Astronomy, Guangzhou (China)
2017-09-15
In analogy with spontaneous magnetization of ferromagnets below the Curie temperature, a neutron star (NS), with a compactness above a certain critical value, may undergo spontaneous scalarization and exhibit an interior nontrivial scalar configuration. Consequently, the exterior spacetime is changed, and an external scalar field appears, which subsequently triggers a scalarization of its companion. The dynamical interplay produces a gravitational scalar counterpart of tensor gravitational waves. In this paper, we resort to scalar-tensor theory and demonstrate that the gravitational scalar counterpart from a double neutron star (DNS) and a neutron star-white dwarf (NS-WD) system become massive. We report that (1) a gravitational scalar background field, arising from convergence of external scalar fields, plays the role of gravitational scalar counterpart in scalarized DNS binary, and the appearance of a mass-dimensional constant in a Higgs-like gravitational scalar potential is responsible for a massive gravitational scalar counterpart with a mass of the order of the Planck scale; (2) a dipolar gravitational scalar radiated field, resulting from differing binding energies of NS and WD, plays the role of a gravitational scalar counterpart in scalarized orbital shrinking NS-WDs, which oscillates around a local and scalar-energy-density-dependent minimum of the gravitational scalar potential and obtains a mass of the order of about 10{sup -21} eV/c{sup 2}. (orig.)
Mousavi, Bahareh; Safarzadeh, Sahar
2016-01-01
This study aimed to determine the effectiveness of the group play therapy on the insecure attachment and social skills of orphans in Ahvaz city. Statistical population included all orphans in Ahvaz city, of whom 30 students were selected whose scores in insecure attachment and in social skills were one standard deviation higher and one standard…
De Grove, Frederik; Van Looy, Jan; Neys, Joyce; Jansz, Jeroen
2012-01-01
The goal of this study is to gain insight into the effects of context on educational game experience. Using a quasi-experimental setup, it compares the playing and learning experiences of adolescent players of the awareness-raising game PING in a domestic (N=135) and a school (N=121) context. Results indicate that both gaming (identification,…
Trawick-Smith, Jeffrey; Wolff, Jennifer; Koschel, Marley; Vallarelli, Jamie
2015-01-01
This study examined the effects of nine toys on the play of 60 3- and 4-year-old children in culturally diverse preschool classrooms. The toys, which varied in their features and intended uses, were selected from a list of those that were nominated by teachers and parents as being developmentally beneficial. Each toy was video recorded for 240 h…
DEFF Research Database (Denmark)
Bradley, Paul S; Carling, Chris; Archer, Dave
2011-01-01
The aim of this study was to examine the effect of playing formation on high-intensity running and technical performance during elite soccer matches. Twenty English FA Premier League games were analysed using a multiple-camera computerized tracking system (n = 153 players). Overall ball possession...
Directory of Open Access Journals (Sweden)
Niloofar Ghodousi
2017-11-01
Discussion: It seems that one of the effective ways to lessen externalizing behavior problems among street and working children is cognitive-behavioral play therapy; therefore, coaches and teachers of such children are recommended to make use of this method to lower their behavioral problems.
Zupan, M; Rehn, T; de Oliveira, D; Keeling, L J
2016-01-01
It is known that tactile stimulation (TS) during ontogeny modifies brain plasticity and enhances the motor and cognitive skills. Our hypothesis was that early handling including TS would increase play and exploratory behaviour in commercial pigs under standardized test conditions. Piglets from 13 litters were subjected to three handling treatments from 5 to 35 days of age: all the piglets were handled (H), none of the piglets were handled (NH) or half of the piglets in the litter were handled (50/50). At 42 days of age, the pigs' behaviour was observed in pairs in a novel pen with a 'toy' (tug rope). The main results were that more locomotor play was performed by pigs from litters where all or half of them had been handled, whereas social exploratory behaviour was more pronounced in pigs from litters where half of them had been handled. Although behaviour was affected by the interaction of treatment with sex or with weight category, we propose that the handling procedure does seem to have acted to increase locomotor skills and that handling half of the piglets in the litter may have triggered a series of socio-emotional interactions that were beneficial for the whole group.
Quantum phenomena in gravitational field
Bourdel, Th.; Doser, M.; Ernest, A. D.; Voronin, A. Yu.; Voronin, V. V.
2011-10-01
The subjects presented here are very different. Their common feature is that they all involve quantum phenomena in a gravitational field: gravitational quantum states of ultracold antihydrogen above a material surface and measuring a gravitational interaction of antihydrogen in AEGIS, a quantum trampoline for ultracold atoms, and a hypothesis on naturally occurring gravitational quantum states, an Eötvös-type experiment with cold neutrons and others. Considering them together, however, we could learn that they have many common points both in physics and in methodology.