Measurement of gravitational acceleration of antimatter
International Nuclear Information System (INIS)
Rouhani, S.
1989-12-01
The minute yet effective impact of gravitational potential in the central region of a long tube magnetic container of non-neutral plasmas can be utilized for the measurement of the gravitational acceleration of antimatter particles. The slight change in distribution of plasma particles along the gravitational field affects the internal electric field of the plasma, which in turn affects the frequency of the magnetron motion of its particles. Thus, a rather straightforward relation is established between the gravitational acceleration of the particles and their magnetron frequencies, which is measurable directly, determining the value of the gravitational acceleration. (author). 7 refs, 3 figs
Normalization of Gravitational Acceleration Models
Eckman, Randy A.; Brown, Aaron J.; Adamo, Daniel R.
2011-01-01
Unlike the uniform density spherical shell approximations of Newton, the con- sequence of spaceflight in the real universe is that gravitational fields are sensitive to the nonsphericity of their generating central bodies. The gravitational potential of a nonspherical central body is typically resolved using spherical harmonic approximations. However, attempting to directly calculate the spherical harmonic approximations results in at least two singularities which must be removed in order to generalize the method and solve for any possible orbit, including polar orbits. Three unique algorithms have been developed to eliminate these singularities by Samuel Pines [1], Bill Lear [2], and Robert Gottlieb [3]. This paper documents the methodical normalization of two1 of the three known formulations for singularity-free gravitational acceleration (namely, the Lear [2] and Gottlieb [3] algorithms) and formulates a general method for defining normalization parameters used to generate normalized Legendre Polynomials and ALFs for any algorithm. A treatment of the conventional formulation of the gravitational potential and acceleration is also provided, in addition to a brief overview of the philosophical differences between the three known singularity-free algorithms.
Acceleration of low energy charged particles by gravitational waves
Energy Technology Data Exchange (ETDEWEB)
Voyatzis, G. [University of Thessaloniki, Department of Physics, 54124 Thessaloniki (Greece)]. E-mail: voyatzis@auth.gr; Vlahos, L. [University of Thessaloniki, Department of Physics, 54124 Thessaloniki (Greece); Ichtiaroglou, S. [University of Thessaloniki, Department of Physics, 54124 Thessaloniki (Greece); Papadopoulos, D. [University of Thessaloniki, Department of Physics, 54124 Thessaloniki (Greece)
2006-04-03
The acceleration of charged particles in the presence of a magnetic field and gravitational waves is under consideration. It is shown that the weak gravitational waves can cause the acceleration of low energy particles under appropriate conditions. Such conditions may be satisfied close to the source of the gravitational waves if the magnetized plasma is in a turbulent state.
Acceleration of low energy charged particles by gravitational waves
International Nuclear Information System (INIS)
Voyatzis, G.; Vlahos, L.; Ichtiaroglou, S.; Papadopoulos, D.
2006-01-01
The acceleration of charged particles in the presence of a magnetic field and gravitational waves is under consideration. It is shown that the weak gravitational waves can cause the acceleration of low energy particles under appropriate conditions. Such conditions may be satisfied close to the source of the gravitational waves if the magnetized plasma is in a turbulent state
Thermal gravitational waves in accelerating universe
Directory of Open Access Journals (Sweden)
B Ghayour
2013-10-01
Full Text Available Gravitational waves are considered in thermal vacuum state. The amplitude and spectral energy density of gravitational waves are found enhanced in thermal vacuum state compared to its zero temperature counterpart. Therefore, the allowed amount of enhancement depends on the upper bound of WMAP-5 and WMAP-7 for the amplitude and spectral energy density of gravitational waves. The enhancement of amplitude and spectral energy density of the waves in thermal vacuum state is consistent with current accelerating phase of the universe. The enhancement feature of amplitude and spectral energy density of the waves is independent of the expansion model of the universe and hence the thermal effect accounts for it. Therefore, existence of thermal gravitational waves is not ruled out
Normalization and Implementation of Three Gravitational Acceleration Models
Eckman, Randy A.; Brown, Aaron J.; Adamo, Daniel R.; Gottlieb, Robert G.
2016-01-01
Unlike the uniform density spherical shell approximations of Newton, the consequence of spaceflight in the real universe is that gravitational fields are sensitive to the asphericity of their generating central bodies. The gravitational potential of an aspherical central body is typically resolved using spherical harmonic approximations. However, attempting to directly calculate the spherical harmonic approximations results in at least two singularities that must be removed to generalize the method and solve for any possible orbit, including polar orbits. Samuel Pines, Bill Lear, and Robert Gottlieb developed three unique algorithms to eliminate these singularities. This paper documents the methodical normalization of two of the three known formulations for singularity-free gravitational acceleration (namely, the Lear and Gottlieb algorithms) and formulates a general method for defining normalization parameters used to generate normalized Legendre polynomials and Associated Legendre Functions (ALFs) for any algorithm. A treatment of the conventional formulation of the gravitational potential and acceleration is also provided, in addition to a brief overview of the philosophical differences between the three known singularity-free algorithms.
Vibration Energy Harvester with Bi-stable Curved Beam Spring Offset by Gravitational Acceleration
International Nuclear Information System (INIS)
Yamamoto, Koki; Fujita, Takayuki; Kanda, Kensuke; Maenaka, Kazusuke; Badel, Adrien; Formosa, Fabien
2015-01-01
We developed MEMS bi-stable spring for vibration energy harvester (VEH), which consists of intrinsically curved shape spring and gravitational acceleration. By applying the gravitational acceleration, the curved beam is offset to the gravity direction. It will make more symmetrical bi-stable motion and the symmetry is improved from 3.3 to 65.4%. We proposed that the combination between curved beam and gravity acceleration for decreasing snap- through acceleration. From the analytical result, we investigate the combination can effective to use for decreasing of snap-through force. We also fabricated the prototype device by using MEMS fabrication process. The frequency response for horizontal direction and the acceleration response for vertical direction are measured. The acceleration response shows that the gravitational acceleration improves the symmetry of snap-through force. (paper)
A new method of measuring gravitational acceleration in an undergraduate laboratory program
Wang, Qiaochu; Wang, Chang; Xiao, Yunhuan; Schulte, Jurgen; Shi, Qingfan
2018-01-01
This paper presents a high accuracy method to measure gravitational acceleration in an undergraduate laboratory program. The experiment is based on water in a cylindrical vessel rotating about its vertical axis at a constant speed. The water surface forms a paraboloid whose focal length is related to rotational period and gravitational acceleration. This experimental setup avoids classical source errors in determining the local value of gravitational acceleration, so prevalent in the common simple pendulum and inclined plane experiments. The presented method combines multiple physics concepts such as kinematics, classical mechanics and geometric optics, offering the opportunity for lateral as well as project-based learning.
Gravitational Core-Mantle Coupling and the Acceleration of the Earth
Rubincam, David Parry; Smith, David E. (Technical Monitor)
2001-01-01
Gravitational core-mantle coupling may be the cause of the observed variable acceleration of the Earth's rotation on the 1000 year timescale. The idea is that density inhomogeneities which randomly come and go in the liquid outer core gravitationally attract density inhomogeneities in the mantle and crust, torquing the mantle and changing its rotation state. The corresponding torque by the mantle on the core may also explain the westward drift of the magnetic field of 0.2 deg per year. Gravitational core-mantle coupling would stochastically affect the rate of change of the Earth's obliquity by just a few per cent. Its contribution to polar wander would only be about 0.5% the presently observed rate. Tidal friction is slowing down the rotation of the Earth, overwhelming a smaller positive acceleration from postglacial rebound. Coupling between the liquid outer core of the Earth and the mantle has long been a suspected reason for changes in the length-of-day. The present investigation focuses on the gravitational coupling between the density anomalies in the convecting liquid outer core and those in the mantle and crust as a possible cause for the observed nonsecular acceleration on the millenial timescale. The basic idea is as follows. There are density inhomogeneities caused by blobs circulating in the outer core like the blobs in a lava lamp; thus the outer core's gravitational field is not featureless. Moreover, these blobs will form and dissipate somewhat randomly. Thus there will be a time variability to the fields. These density inhomogeneities will gravitationally attract the density anomalies in the mantle.
Measuring test mass acceleration noise in space-based gravitational wave astronomy
Congedo, Giuseppe
2015-03-01
The basic constituent of interferometric gravitational wave detectors—the test-mass-to-test-mass interferometric link—behaves as a differential dynamometer measuring effective differential forces, comprising an integrated measure of gravity curvature, inertial effects, as well as nongravitational spurious forces. This last contribution is going to be characterized by the LISA Pathfinder mission, a technology precursor of future space-borne detectors like eLISA. Changing the perspective from displacement to acceleration can benefit the data analysis of LISA Pathfinder and future detectors. The response in differential acceleration to gravitational waves is derived for a space-based detector's interferometric link. The acceleration formalism can also be integrated into time delay interferometry by building up the unequal-arm Michelson differential acceleration combination. The differential acceleration is nominally insensitive to the system's free evolution dominating the slow displacement dynamics of low-frequency detectors. Working with acceleration also provides an effective way to subtract measured signals acting as systematics, including the actuation forces. Because of the strong similarity with the equations of motion, the optimal subtraction of systematic signals, known within some amplitude and time shift, with the focus on measuring the noise provides an effective way to solve the problem and marginalize over nuisance parameters. The F statistic, in widespread use throughout the gravitation waves community, is included in the method and suitably generalized to marginalize over linear parameters and noise at the same time. The method is applied to LPF simulator data and, thanks to its generality, can also be applied to the data reduction and analysis of future gravitational wave detectors.
An experimental test of Newton's law of gravitation for small accelerations
International Nuclear Information System (INIS)
Schubert, Sven
2011-10-01
The experiment presented in this thesis has been designed to test Newton's law of gravitation in the limit of small accelerations caused by weak gravitational forces. It is located at DESY, Hamburg, and is a modification of an experiment that was carried out in Wuppertal, Germany, until 2002 in order to measure the gravitational constant G. The idea of testing Newton's law in the case of small accelerations emerged from the question whether the flat rotation curves of spiral galaxies can be traced back to Dark Matter or to a law of gravitation that deviates from Newton on cosmic scales like e.g. MOND (Modified Newtonian Dynamics). The core of this experiment is a microwave resonator which is formed by two spherical concave mirrors that are suspended as pendulums. Masses between 1 and 9 kg symmetrically change their distance to the mirrors from far to near positions. Due to the increased gravitational force the mirrors are pulled apart and the length of the resonator increases. This causes a shift of the resonance frequency which can be translated into a shift of the mirror distance. The small masses are sources of weak gravitational forces and cause accelerations on the mirrors of about 10 -10 m/s 2 . These forces are comparable to those between stars on cosmic scales and the accelerations are in the vicinity of the characteristic acceleration of MOND a 0 ∼ 1.2.10 -10 m/s 2 , where deviations from Newton's law are expected. Thus Newton's law could be directly checked for correctness under these conditions. First measurements show that due to the sensitivity of this experiment many systematic influences have to be accounted for in order to get consistent results. Newton's law has been confirmed with an accuracy of 3%. MOND has also been checked. In order to be able to distinguish Newton from MOND with other interpolation functions the accuracy of the experiment has to be improved. (orig.)
Possible measurements of the gravitational acceleration with neutral antimatter
International Nuclear Information System (INIS)
Beverini, N.; Torelli, G.; Lagomarsino, V.; Manuzio, G.; Scuri, F.
1989-01-01
The interest in measuring the gravitational acceleration using neutral antimatter is discussed as well as the advantages compared with using charged antimatter, and a few possible experimental schemes are briefly discussed. (orig.)
Relic gravitational waves in the accelerating Universe
International Nuclear Information System (INIS)
Zhang Yang; Yuan Yefei; Zhao Wen; Chen Yingtian
2005-01-01
Recent observations have indicated that the Universe at the present stage is in an accelerating expansion, a process that has great implications. We evaluate the spectrum of relic gravitational waves in the current accelerating Universe and find that there are new features appearing in the resulting spectrum as compared to the decelerating models. In the low-frequency range the peak of the spectrum is now located at a frequency ν E ∼ (OMEGA m /OMEGA Λ ) 1/3 ν H , where ν H is the Hubble frequency, and there appears a new segment of spectrum between ν E and ν H . In all other intervals of frequencies ≥ν H , the spectral amplitude acquires an extra factor (OMEGA m /OMEGA Λ ), due to the current acceleration; otherwise the shape of the spectrum is similar to that in the decelerating models. The recent WMAP result of CMB anisotropies is used to normalize the amplitude for gravitational waves. The slope of the power spectrum depends sensitively on the scale factor a(τ) ∝ vertical bar τ vertical bar 1+β during the inflationary stage with β = -2 for the exact de Sitter space. With increasing β, the resulting spectrum is tilted to be flatter with more power at high frequencies, and the sensitivity of the second science run of the LIGO detectors puts a restriction on the parameter β ≤ -1.8. We also give a numerical solution which confirms these features
An experimental test of Newton's law of gravitation for small accelerations
Energy Technology Data Exchange (ETDEWEB)
Schubert, Sven
2011-10-15
The experiment presented in this thesis has been designed to test Newton's law of gravitation in the limit of small accelerations caused by weak gravitational forces. It is located at DESY, Hamburg, and is a modification of an experiment that was carried out in Wuppertal, Germany, until 2002 in order to measure the gravitational constant G. The idea of testing Newton's law in the case of small accelerations emerged from the question whether the flat rotation curves of spiral galaxies can be traced back to Dark Matter or to a law of gravitation that deviates from Newton on cosmic scales like e.g. MOND (Modified Newtonian Dynamics). The core of this experiment is a microwave resonator which is formed by two spherical concave mirrors that are suspended as pendulums. Masses between 1 and 9 kg symmetrically change their distance to the mirrors from far to near positions. Due to the increased gravitational force the mirrors are pulled apart and the length of the resonator increases. This causes a shift of the resonance frequency which can be translated into a shift of the mirror distance. The small masses are sources of weak gravitational forces and cause accelerations on the mirrors of about 10{sup -10} m/s{sup 2}. These forces are comparable to those between stars on cosmic scales and the accelerations are in the vicinity of the characteristic acceleration of MOND a{sub 0} {approx} 1.2.10{sup -10} m/s{sup 2}, where deviations from Newton's law are expected. Thus Newton's law could be directly checked for correctness under these conditions. First measurements show that due to the sensitivity of this experiment many systematic influences have to be accounted for in order to get consistent results. Newton's law has been confirmed with an accuracy of 3%. MOND has also been checked. In order to be able to distinguish Newton from MOND with other interpolation functions the accuracy of the experiment has to be improved. (orig.)
Test of the law of gravitation at small accelerations
Energy Technology Data Exchange (ETDEWEB)
Meyer, H. [Wuppertal Univ. (Germany); Lohrmann, E.; Schubert, S. [Hamburg Univ. (Germany). Inst. fuer Experimentalphysik; Bartel, W.; Glazov, A.; Loehr, B.; Niebuhr, C.; Wuensch, E. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Joensson, L.; Kempf, G. [Lund Univ. (Sweden)
2011-12-15
Newton's Law of Gravitation has been tested at small values a of the acceleration, down to a {approx}10{sup -10} ms{sup -2}, the approximate value of MOND's constant a{sub 0}. No deviations were found. (orig.)
Lombriser, Lucas; Lima, Nelson A.
2017-02-01
With the advent of gravitational-wave astronomy marked by the aLIGO GW150914 and GW151226 observations, a measurement of the cosmological speed of gravity will likely soon be realised. We show that a confirmation of equality to the speed of light as indicated by indirect Galactic observations will have important consequences for a very large class of alternative explanations of the late-time accelerated expansion of our Universe. It will break the dark degeneracy of self-accelerated Horndeski scalar-tensor theories in the large-scale structure that currently limits a rigorous discrimination between acceleration from modified gravity and from a cosmological constant or dark energy. Signatures of a self-acceleration must then manifest in the linear, unscreened cosmological structure. We describe the minimal modification required for self-acceleration with standard gravitational-wave speed and show that its maximum likelihood yields a 3σ poorer fit to cosmological observations compared to a cosmological constant. Hence, equality between the speeds challenges the concept of cosmic acceleration from a genuine scalar-tensor modification of gravity.
Energy Technology Data Exchange (ETDEWEB)
Lombriser, Lucas, E-mail: llo@roe.ac.uk; Lima, Nelson A.
2017-02-10
With the advent of gravitational-wave astronomy marked by the aLIGO GW150914 and GW151226 observations, a measurement of the cosmological speed of gravity will likely soon be realised. We show that a confirmation of equality to the speed of light as indicated by indirect Galactic observations will have important consequences for a very large class of alternative explanations of the late-time accelerated expansion of our Universe. It will break the dark degeneracy of self-accelerated Horndeski scalar–tensor theories in the large-scale structure that currently limits a rigorous discrimination between acceleration from modified gravity and from a cosmological constant or dark energy. Signatures of a self-acceleration must then manifest in the linear, unscreened cosmological structure. We describe the minimal modification required for self-acceleration with standard gravitational-wave speed and show that its maximum likelihood yields a 3σ poorer fit to cosmological observations compared to a cosmological constant. Hence, equality between the speeds challenges the concept of cosmic acceleration from a genuine scalar–tensor modification of gravity.
Directory of Open Access Journals (Sweden)
Lucas Lombriser
2017-02-01
Full Text Available With the advent of gravitational-wave astronomy marked by the aLIGO GW150914 and GW151226 observations, a measurement of the cosmological speed of gravity will likely soon be realised. We show that a confirmation of equality to the speed of light as indicated by indirect Galactic observations will have important consequences for a very large class of alternative explanations of the late-time accelerated expansion of our Universe. It will break the dark degeneracy of self-accelerated Horndeski scalar–tensor theories in the large-scale structure that currently limits a rigorous discrimination between acceleration from modified gravity and from a cosmological constant or dark energy. Signatures of a self-acceleration must then manifest in the linear, unscreened cosmological structure. We describe the minimal modification required for self-acceleration with standard gravitational-wave speed and show that its maximum likelihood yields a 3σ poorer fit to cosmological observations compared to a cosmological constant. Hence, equality between the speeds challenges the concept of cosmic acceleration from a genuine scalar–tensor modification of gravity.
A measurement of the gravitational acceleration of the anti-proton
Holzscheiter, M H
1990-01-01
A fundamental experiment in gravity proposed by us, is the measurement of the gravitational force on antimatter. This measurement would constitute the first direct test of the Weak Equivalence Principle (WEP) for antimatter. The availability of low-energy antiprotons at CERN has made such an experiment feasible, and a proposal to carry out such a measurement has been accepted by the CERN Program Committee. We plan to use a time-of-flight technique similar to that pioneered by Fairbank and Witteborn in their measurement of the gravitational force on an electron. Very slow particles are launched into a vertical drift tube and the time-of-flight spectrum of these particles is recorded. This spectrum will exhibit a cut-off point directly related to the gravitational acceleration of the particles. Obtaining very slow antiprotons involves several stages of deceleration. Antiprotons from LEAR will be initially decelerated from 2 MeY to tens of kilovolts by passing them through a thin foil. After capture and cooling ...
Kilic, Cevahir; Raible, Christoph C.; Stocker, Thomas F.; Kirk, Edilbert
2017-01-01
Fundamental to the redistribution of energy in a planetary atmosphere is the general circulation and its meridional structure. We use a general circulation model of the atmosphere in an aquaplanet configuration with prescribed sea surface temperature and investigate the influence of the gravitational acceleration g on the structure of the circulation. For g =g0 = 9.81 ms-2 , three meridional cells exist in each hemisphere. Up to about g /g0 = 1.4 all cells increase in strength. Further increasing this ratio results in a weakening of the thermally indirect cell, such that a two- and finally a one-cell structure of the meridional circulation develops in each hemisphere. This transition is explained by the primary driver of the thermally direct Hadley cell: the diabatic heating at the equator which is proportional to g. The analysis of the energetics of the atmospheric circulation based on the Lorenz energy cycle supports this finding. For Earth-like gravitational accelerations transient eddies are primarily responsible for the meridional heat flux. For large gravitational accelerations, the direct zonal mean conversion of energy dominates the meridional heat flux.
A measurement of the gravitational acceleration of the antiproton
International Nuclear Information System (INIS)
Holzscheiter, M.H.
1990-01-01
A fundamental experiment in gravity proposed by us, is the measurement of the gravitational force on antimatter. This measurement would constitute the first direct test of the Weak Equivalence Principle (WEP) for antimatter. The availability of low-energy antiprotons at CERN has made such an experiment feasible, and a proposal to carry out such a measurement has been accepted by the CERN Program Committee. We plan to use a time-of-flight technique similar to that pioneered by Fairbank and Witteborn in their measurement of the gravitational force on an electron. Very slow particles are launched into a vertical drift tube and the time-of-flight spectrum of these particles is recorded. This spectrum will exhibit a cut-off point directly related to the gravitational acceleration of the particles. Obtaining very slow antiprotons involves several stages of deceleration. Antiprotons from LEAR will be initially decelerated from 2 MeV to tens of kilovolts by passing them through a thin foil. After capture and cooling in a series of ion traps, the antiprotons will be in a thermal distribution with a temperature of a few degrees Kelvin. These ultra-cold antiprotons will then be released a few at a time into the drift tube. A detector will measure the arrival time of the particles at the exit of the drift tube. H - -ion, which have almost identical electromagnetic properties to the antiprotons, will be used for comparison and as a calibration standard. 7 refs., 1 fig
Energy Technology Data Exchange (ETDEWEB)
Schubert, Sven
2008-09-15
The attempt to explain the rotational curves of spiral galaxies by means of Newton's gravitational law fails. There, where gravitational accelerations a{sub G}<10{sup -10} m/s{sup 2} act, the prediction no more agrees with the observation. Two alternatives are discussed: Either in the galaxies dark matter exists, wehich is just so distributed that the dynamics in the galaxies change as wanted. Ore the gravitational law must be corrected in the limit of small accelerations. This approach is called MOND (Modified Newtonian Dynamic). In this thesis an experiment is presented, which allows to check Newton's gravitational law at small values of the acceleration: Two spherical reflectors pend oppositely in a distance of 24 cm on tungsten wires and form a microwave resonator. On both sides of the resonator a test mass with a weight between 2.9 and 20.1 kg is located. If these masses are moved to and fro, their gravitational force effects a distance change {delta}b of the mirrors by around 0.3 to 20.0 nm. This can be determined via the shift of the resonance frequency of the resonator accurately determined up to 10{sup 12}m. Because of the low weight of the test masses on the mirrors accelerations a{sub G}{approx}10{sup 10} m/s{sup 2} act. If the measurement is performed with different, at left anf right however identical masses M, {delta}b{proportional_to}M should result, if Newton's gravitational laws is valid in the limit of small accelerations. In this thesis the controls necessary for the measurement and the calculator driving are described. Finally the results of a first resonance measurement are presented.
The Utilization of High-Frequency Gravitational Waves for Global Communications
Directory of Open Access Journals (Sweden)
Robert M L Baker
2012-10-01
Full Text Available For over 1000 years electromagnetic radiation has been utilized for long-distance communication. Smoke signals, heliographs, telegraphs, telephones and radio have all served our previous communication needs. Nevertheless, electromagnetic radiation has one major difficulty: it is easily absorbed. In this paper we consider a totally different radiation, a radiation that is not easily absorbed: gravitational radiation. Such radiation, like gravity itself, is not absorbed by earth, water or any material substance. In particular we discuss herein means to generate and detect high-frequency gravitational waves or HFGWs, and how they can be utilized for communication. There are two barriers to their practical utilization: they are extremely difficult to generate (a large power required to generate very weak GWs and it is extremely difficult to detect weak GWs. We intend to demonstrate theoretically in this paper their phase-coherent generation utilizing an array of in-phase microelectro-mechanical systems or MEMS resonator elements in which the HFGW flux is proportional to the square of the number of elements. This process solves the transmitter difficulty. Three HFGW detectors have previously been built; but their sensitivity is insufficient for meaningful HFGW reception; greater sensitivity is necessary. A new Li-Baker HFGW detector, discussed herein, is based upon a different measurement technique than the other detectors and is predicted to achieve a sensitivity to satisfy HFGW communication needs.
Accelerator science and its civil and utility engineering work
International Nuclear Information System (INIS)
Yoshioka, Masakazu
2006-01-01
In large-scale accelerator projects such as TRISTAN and J-PARC, approximately half of the total project costs are spent on the civil and utility engineering work for the accelerator. In addition, the quality of civil and utility engineering has a large effect on the quality of the beam. With increasing scale of projects, there is growing specialization of the people in charge of the accelerator on the one hand, and the people in charge of civil and utility engineering on the other. Mutual understanding between the people in charge is therefore important in such cases. From the experience I have accumulated working on the facilities of many large projects, I have become keenly aware of the necessity for both accelerator-literate civil engineering specialists and civil engineering-literate accelerator researchers. A straight-forward method for satisfying this requirement is to systematize accelerator science as a science with civil and utility engineering for accelerators recognized as its sub-field. When new projects launched, the methodology of the natural sciences should be incorporated whereby past experience is fully utilized and then new technologies and knowledge are accumulated. (author)
Dark Energy and Inflation from Gravitational Waves
Directory of Open Access Journals (Sweden)
Leonid Marochnik
2017-10-01
Full Text Available In this seven-part paper, we show that gravitational waves (classical and quantum produce the accelerated de Sitter expansion at the start and at the end of the cosmological evolution of the Universe. In these periods, the Universe contains no matter fields but contains classical and quantum metric fluctuations, i.e., it is filled with classical and quantum gravitational waves. In such evolution of the Universe, dominated by gravitational waves, the de Sitter state is the exact solution to the self-consistent equations for classical and quantum gravitational waves and background geometry for the empty space-time with FLRW metric. In both classical and quantum cases, this solution is of the instanton origin since it is obtained in the Euclidean space of imaginary time with the subsequent analytic continuation to real time. The cosmological acceleration from gravitational waves provides a transparent physical explanation to the coincidence, threshold and “old cosmological constant” paradoxes of dark energy avoiding recourse to the anthropic principle. The cosmological acceleration from virtual gravitons at the start of the Universe evolution produces inflation, which is consistent with the observational data on CMB anisotropy. Section 1 is devoted to cosmological acceleration from classical gravitational waves. Section 2 is devoted to the theory of virtual gravitons in the Universe. Section 3 is devoted to cosmological acceleration from virtual gravitons. Section 4 discusses the consistency of the theory with observational data on dark energy and inflation. The discussion of mechanism of acceleration and cosmological scenario are contained in Sections 5 and 6. Appendix contains the theory of stochastic nonlinear gravitational waves of arbitrary wavelength and amplitude in an isotropic Universe.
Vector-tensor interaction of gravitation
Energy Technology Data Exchange (ETDEWEB)
Zhang Yuan-zhong; Guo han-ying
1982-11-01
In the paper, by using the equation of motion a particle, we show that the antigravity exist in the vector-tensor model of gravitation. Thus the motion of a particle deviates from the geodesic equation. In Newtonian approximation and weak gravitational field, acceleration of a particle in a spherically symmetric and astatic gravitation field is zero. The result is obviously not in agreement with gravitational phenomena.
Directory of Open Access Journals (Sweden)
Metin SALTIK
1996-03-01
Full Text Available According to classical electromagnetic theory, an accelerated charge or system of charges radiates electromagnetic waves. In a radio transmitter antenna charges are accelerated along the antenna and release electromagnetic waves, which is radiated at the velocity of light in the surrounding medium. All of the radio transmitters work on this principle today. In this study an analogy is established between the principles by which accelerated charge systems markes radiation and the accelerated mass system, and the systems cousing gravitational radiation are investigated.
Directory of Open Access Journals (Sweden)
J. B. T. Scott
2009-05-01
Full Text Available Pine Island Glacier, Antarctica, has been undergoing several related changes for at least two decades; these include acceleration, thinning and grounding line retreat. During the first major ground-based study between 2006 and 2008, GPS receivers were used to monitor ice flow from 55 km to 171 km inland, along the central flowline. At four sites both acceleration and thinning rates over the last two years exceeded rates observed at any other time over the last two decades. At the downstream site acceleration was 6.4% over 2007 and thinning was 3.5±0.5 ma^{−1}. Acceleration and thinning have spread rapidly inland with the acceleration 171 km inland at 4.1% over 2007, greater than any measured annual flow increase along the whole glacier prior to 2006. Increases in surface slope, and hence gravitational driving stress, correlate well with the acceleration and no sustained change in longitudinal stress gradient is needed to explain the force balance. There is no indication that the glacier is approaching a new steady state.
The Study of Expert System Utilization for the Accelerator Operation
International Nuclear Information System (INIS)
Budi-Santosa; Slamet-Santosa; Subari-Santosa
2000-01-01
The utilization of expert system in the accelerator laboratory has been studied. The study covers the utilization of expert system in the setting up experiment (tuning parameter), controlling system, safety or warning system. The results study shows, that using the expert system in the accelerator would be easy to operate the accelerator for user and operator. Increasing the skill of expert system could be updated without logical mechanism modification. (author)
Modified entropic gravitation in superconductors
International Nuclear Information System (INIS)
Matos, Clovis Jacinto de
2012-01-01
Verlinde recently developed a theoretical account of gravitation in terms of an entropic force. The central element in Verlinde’s derivation is information and its relation with entropy through the holographic principle. The application of this approach to the case of superconductors requires to take into account that information associated with superconductor’s quantum vacuum energy is not stored on Planck size surface elements, but in four volume cells with Planck-Einstein size. This has profound consequences on the type of gravitational force generated by the quantum vacuum condensate in superconductors, which is closely related with the cosmological repulsive acceleration responsible for the accelerated expansion of the Universe. Remarkably this new gravitational type force depends on the level of breaking of the weak equivalence principle for cooper pairs in a given superconducting material, which was previously derived by the author starting from similar principles. It is also shown that this new gravitational force can be interpreted as a surface force. The experimental detection of this new repulsive gravitational-type force appears to be challenging.
The gravitational properties of antimatter
International Nuclear Information System (INIS)
Goldman, T.; Hughes, R.J.; Nieto, M.M.
1986-09-01
It is argued that a determination of the gravitational acceleration of antimatter towards the earth is capable of imposing powerful constraints on modern quantum gravity theories. Theoretical reasons to expect non-Newtonian non-Einsteinian effects of gravitational strength and experimental suggestions of such effects are reviewed. 41 refs
Looking for new gravitational forces with antiprotons
International Nuclear Information System (INIS)
Nieto, M.M.; Bonner, B.E.
1987-01-01
Quite general arguments based on the principle of equivalence and modern field theory show that it is possible for the gravitational acceleration of antimatter to be different than that for matter. Further, there is no experimental evidence to rule out the possibility. In fact, some evidence indicates there may be unexpected effects. Thus, the planned experiment to measure the gravitational acceleration of antiprotons is of fundamental importance. 20 refs., 3 figs
Probing Positron Gravitation at HERA
International Nuclear Information System (INIS)
Gharibyan, Vahagn
2015-07-01
An equality of particle and antiparticle gravitational interactions holds in general relativity and is supported by indirect observations. Here I develop a method based on high energy Compton scattering to measure the gravitational interaction of accelerated charged particles. Within that formalism the Compton spectra measured at HERA rule out the positron's anti-gravity and hint for a positron's 1.3(0.2)% weaker coupling to the gravitational field relative to an electron.
Probing Positron Gravitation at HERA
Energy Technology Data Exchange (ETDEWEB)
Gharibyan, Vahagn
2015-07-15
An equality of particle and antiparticle gravitational interactions holds in general relativity and is supported by indirect observations. Here I develop a method based on high energy Compton scattering to measure the gravitational interaction of accelerated charged particles. Within that formalism the Compton spectra measured at HERA rule out the positron's anti-gravity and hint for a positron's 1.3(0.2)% weaker coupling to the gravitational field relative to an electron.
Accelerating Photons with Gravitational Radiation
Shore, Graham M
2001-01-01
The nature of superluminal photon propagation in the gravitational field describing radiation from a time-dependent, isolated source (the Bondi-Sachs metric) is considered in an effective theory which includes interactions which violate the strong equivalence principle. Such interactions are, for example, generated by vacuum polarisation in conventional QED in curved spacetime. The relation of the resulting light-cone modifications to the Peeling Theorem for the Bondi-Sachs spacetime is explained.
Feasibility study on the construction and utilization of charged particle accelerators
International Nuclear Information System (INIS)
Cho, S.W.; Chung, M.K.; Choe, B.H.; Lee, K.W.; In, S.Y.; Park, I.S.; Kang, S.S.
1981-01-01
This is a report on the thorough studies of feasible accelerator to be constructed in Korea from various aspects. By following the brief descriptions on the operational principles and applications of various types of particle accelerators, estimations of required budgeting for construction and operation of those accelerators are given in detail. From the forecasted availability of government investment to accelerator project and also from the expected great role of accelerators to be played for nuclear power developments, we draw three steps' development program of accelerator technology in Korea. The first step is mainly aimed to user development and accumulation of accelerator technology through the construction and utilization of 50-100MeV electron linear accelerator. The second step to be recommended is the construction of 20-30MeV proton linear accelerator which can be used as an injector for future proton synchrotron. The third step is construction and utilization of several GeV proton synchrotron. However, development of accelerator technology in advanced countries is so fast that above-mentioned second and third step may not be regarded to be definite plans
International Nuclear Information System (INIS)
Groeber, S; Vetter, M; Eckert, B; Jodl, H-J
2007-01-01
We suggest that different string pendulums are positioned at different locations on Earth and measure at each place the gravitational acceleration (accuracy Δg ∼ 0.01 m s -2 ). Each pendulum can be remotely controlled via the internet by a computer located somewhere on Earth. The theoretical part describes the physical origin of this phenomenon g(ψ), that the Earth's effective gravitational acceleration g depends on the angle of latitude ψ. Then, we present all necessary formula to deduce g(ψ) from oscillations of a string pendulum. The technical part explains tips and tricks to realize such an apparatus to measure all necessary values with sufficient accuracy. In addition, we justify the precise dimensions of a physical pendulum such that the formula for a mathematical pendulum is applicable to determine g(ψ) without introducing errors. To conclude, we describe the internet version-the string pendulum as a remotely controlled laboratory. The teaching relevance and educational value will be discussed in detail at the end of this paper including global experimenting, using the internet and communication techniques in teaching and new ways of teaching and learning methods
Utilization of accelerators for development of polymer materials
International Nuclear Information System (INIS)
Omichi, Hideki
1987-01-01
There are two processes in the development of polymer materials using accelerators. One is to induce graft polymerization by irradiating the electron beam of high dose rate, and another is to induce cross-linking or decomposition by irradiating on existing polymer materials. The former is mostly at the stage of research and development, while in the latter, the industrial utilization has advanced as bridged electric wires, foaming materials and thermal contraction materials. In this paper, the results of the basic research are mainly reported. The polymerization of vinyl monomers such as styrene easily advances by the irradiation of gamma ray or electron beam, accordingly, it is widely utilized as the object of basic research. When the plural radicals produced by the irradiation of polymers couple mutually or attach to double bonds, the polymer of large molecular weight arises, on the other hand, when radicals arise by the severance of main chains in polymers, the molecular weight decreases. The utilization of accelerators for the development of polymer materials is diversified. Hereafter, also particle accelerators will be used for this field. Already ion implantation, sputtering, hole-opening and so on for polymer materials began to be studied, and the new development of materials is expected. (Kako, I.)
Relic gravitational waves and the generalized second law
International Nuclear Information System (INIS)
Izquierdo, German; Pavon, Diego
2004-01-01
The generalized second law of gravitational thermodynamics is applied to the present era of accelerated expansion of the Universe. In spite of the fact that the entropy of matter and relic gravitational waves inside the event horizon diminish, the mentioned law is fulfilled provided that the expression for the entropy density of the gravitational waves satisfies a certain condition
GOTHIC: Gravitational oct-tree code accelerated by hierarchical time step controlling
Miki, Yohei; Umemura, Masayuki
2017-04-01
The tree method is a widely implemented algorithm for collisionless N-body simulations in astrophysics well suited for GPU(s). Adopting hierarchical time stepping can accelerate N-body simulations; however, it is infrequently implemented and its potential remains untested in GPU implementations. We have developed a Gravitational Oct-Tree code accelerated by HIerarchical time step Controlling named GOTHIC, which adopts both the tree method and the hierarchical time step. The code adopts some adaptive optimizations by monitoring the execution time of each function on-the-fly and minimizes the time-to-solution by balancing the measured time of multiple functions. Results of performance measurements with realistic particle distribution performed on NVIDIA Tesla M2090, K20X, and GeForce GTX TITAN X, which are representative GPUs of the Fermi, Kepler, and Maxwell generation of GPUs, show that the hierarchical time step achieves a speedup by a factor of around 3-5 times compared to the shared time step. The measured elapsed time per step of GOTHIC is 0.30 s or 0.44 s on GTX TITAN X when the particle distribution represents the Andromeda galaxy or the NFW sphere, respectively, with 224 = 16,777,216 particles. The averaged performance of the code corresponds to 10-30% of the theoretical single precision peak performance of the GPU.
A new method for testing Newton's gravitational law
International Nuclear Information System (INIS)
Schurr, J.; Klein, N.; Meyer, H.; Piel, H.; Walesch, H.
1991-01-01
A new experimental method is reported for determining the gravitational force of a laboratory test mass on a Fabry-Perot microwave resonator. The resonator consists of two Fabry-Perot mirrors suspended as pendulums. Changes of 2·10 -11 m in the pendulum separation can be resolved as a shift of the resonance frequency of the resonator. This limit corresponds to an acceleration of 7·10 -11 m s -2 of one mirror with respect to the other. In a first experiment, the gravitational acceleration generated by a 125 kg test mass was measured as a function of distance in the range of 10 to 15 cm and tested Newton's gravitational law with an accuracy of 1%. No deviation is found. Furthermore, the gravitational constant G is determined with similar precision. (author) 5 refs., 2 figs
Mass loss due to gravitational waves with Λ > 0
Saw, Vee-Liem
2017-07-01
The theoretical basis for the energy carried away by gravitational waves that an isolated gravitating system emits was first formulated by Hermann Bondi during the ’60s. Recent findings from the observation of distant supernovae revealed that the rate of expansion of our universe is accelerating, which may be well explained by sticking a positive cosmological constant into the Einstein field equations for general relativity. By solving the Newman-Penrose equations (which are equivalent to the Einstein field equations), we generalize this notion of Bondi mass-energy and thereby provide a firm theoretical description of how an isolated gravitating system loses energy as it radiates gravitational waves, in a universe that expands at an accelerated rate. This is in line with the observational front of LIGO’s first announcement in February 2016 that gravitational waves from the merger of a binary black hole system have been detected.
International symposium on utilization of accelerators. Proceedings
International Nuclear Information System (INIS)
2003-01-01
The programme of the IAEA in the Utilization of Low Energy Accelerators is implemented through the Department of Nuclear Sciences and Applications and the Department of Technical Cooperation. One aspect of the IAEA programme is to conduct symposia to highlight new developments, promote training and transfer of technology. Particle accelerators, originally developed for basic research in nuclear physics, have matured into versatile tools for applications in other branches of science, as well as in industry and medicine. In terms of numbers, electron accelerators have achieved the greatest usage being applied routinely for tasks like polymerisation of plastics, waste and flue gas treatment and sterilization of foodstuffs and medical devices. In addition, they are in widespread use in hospitals for cancer treatment. In the electronics industry, ion accelerators are utilized for implanting atoms into the surface layer of semiconductor materials. Ion implanters are also used for hardening metallic surfaces for medical implants and bearings. In the medical field, medium energy cyclotrons are used to produce isotopes for diagnostic, as well as, therapeutic applications. Recently, there has been an increased interest in proton accelerators with energies of a few hundred MeV for the treatment of deep lying tumours. Protons deposit most of their energy near the end of their path minimizing the radiation dose to surface tissue and vital organs that must be crossed to reach the target zone. Synchrotron radiation sources utilize high energy electrons that can be contained for many hours in storage rings in conjunction with specialized magnetic systems to emit synchrotron radiation in the wavelength range from infrared to X rays. Synchrotron radiation is used increasingly in macromolecular crystallography to locate the position of atoms in large protein molecules, to facilitate the understanding of the human genome and to design new anti-viral drugs. Synchrotron based X ray
A homogeneous static gravitational field and the principle of equivalence
International Nuclear Information System (INIS)
Chernikov, N.A.
2001-01-01
In this paper any gravitational field (both in the Einsteinian case and in the Newtonian case) is described by the connection, called gravitational. A homogeneous static gravitational field is considered in the four-dimensional area z>0 of a space-time with Cartesian coordinates x, y, z, and t. Such field can be created by masses, disposed outside the area z>0 with a density distribution independent of x, y, and t. Remarkably, in the four-dimensional area z>0, together with the primitive background connection, the primitive gravitational connection has been derived. In concordance with the Principle of Equivalence all components of such gravitational connection are equal to zero in the uniformly accelerated frame system, in which the gravitational force of attraction is balanced by the inertial force. However, all components of such background connection are equal to zero in the resting frame system, but not in the accelerated frame system
Quantum metrology for gravitational wave astronomy.
Schnabel, Roman; Mavalvala, Nergis; McClelland, David E; Lam, Ping K
2010-11-16
Einstein's general theory of relativity predicts that accelerating mass distributions produce gravitational radiation, analogous to electromagnetic radiation from accelerating charges. These gravitational waves (GWs) have not been directly detected to date, but are expected to open a new window to the Universe once the detectors, kilometre-scale laser interferometers measuring the distance between quasi-free-falling mirrors, have achieved adequate sensitivity. Recent advances in quantum metrology may now contribute to provide the required sensitivity boost. The so-called squeezed light is able to quantum entangle the high-power laser fields in the interferometer arms, and could have a key role in the realization of GW astronomy.
International Nuclear Information System (INIS)
Gonçalves, L D; Rocco, E M; De Moraes, R V
2013-01-01
A study evaluating the influence due to the lunar gravitational potential, modeled by spherical harmonics, on the gravity acceleration is accomplished according to the model presented in Konopliv (2001). This model provides the components x, y and z for the gravity acceleration at each moment of time along the artificial satellite orbit and it enables to consider the spherical harmonic degree and order up to100. Through a comparison between the gravity acceleration from a central field and the gravity acceleration provided by Konopliv's model, it is obtained the disturbing velocity increment applied to the vehicle. Then, through the inverse problem, the Keplerian elements of perturbed orbit of the satellite are calculated allowing the orbital motion analysis. Transfer maneuvers and orbital correction of lunar satellites are simulated considering the disturbance due to non-uniform gravitational potential of the Moon, utilizing continuous thrust and trajectory control in closed loop. The simulations are performed using the Spacecraft Trajectory Simulator-STRS, Rocco (2008), which evaluate the behavior of the orbital elements, fuel consumption and thrust applied to the satellite over the time
On the field theoretic description of gravitation
Nieuwenhuizen, T.M.; Kleinert, H.; Jantzen, R.T.; Ruffini, R.
2008-01-01
Maxwell started to describe gravitation as a field in Minkowski space. Such an approach brought Babak and Grishchuk in 1999 the gravitational energy-momentum tensor. Simple manipulations allow the Einstein equations to take the form Aµν = (8πG/c4)Θµν, where A is the acceleration tensor and Θ, the
Experimental hint for gravitational CP violation
Energy Technology Data Exchange (ETDEWEB)
Gharibyan, Vahagn [Deutsches Elektronen-Synchrotron, Hamburg (Germany). MDI Group
2016-01-15
An equality of particle and antiparticle gravitational interactions holds in general relativity and is supported by indirect observations. Gravity dependence on rotation or spin direction is experimentally constrained only at low energies. Here a method based on high energy Compton scattering is developed to measure the gravitational interaction of accelerated charged particles. Within that formalism the Compton spectra measured at HERA rule out the positron's anti-gravity and hint for a gravitational CP violation around 13 GeV energies, at a maximal level of 1.3±0.2% for the charge and 0.68±0.09% for the space parity. A stronger gravitational coupling to left helicity electrons relative to right helicity positrons is detected.
Experimental hint for gravitational CP violation
International Nuclear Information System (INIS)
Gharibyan, Vahagn
2016-01-01
An equality of particle and antiparticle gravitational interactions holds in general relativity and is supported by indirect observations. Gravity dependence on rotation or spin direction is experimentally constrained only at low energies. Here a method based on high energy Compton scattering is developed to measure the gravitational interaction of accelerated charged particles. Within that formalism the Compton spectra measured at HERA rule out the positron's anti-gravity and hint for a gravitational CP violation around 13 GeV energies, at a maximal level of 1.3±0.2% for the charge and 0.68±0.09% for the space parity. A stronger gravitational coupling to left helicity electrons relative to right helicity positrons is detected.
Promoting International Cooperation and Public Acceptance in Utilizing Proton Accelerator Technology
International Nuclear Information System (INIS)
Choi, Byung Ho; Hahn, Bong Oh; Lee, Jae Hyung; Kim, Kyu Ryung; Joo, Po Kook; Kim, In Kyu; Kim, Hyun Joon; Noh, Seung Jeong
2002-11-01
Proton engineering's main tool will be a high power proton accelerator which is to be established within next 10 years in the frame of Proton engineering Frontier Project. It is necessary for public to understand the meaning and importance of the project so that Project activities such as site preparation can be efficiently completed. And, it is required to establish a sound plan of international cooperation, and to develop user program to establish domestic foundation in utilizing the accelerator. Along with public relations activities through newspapers and broadcasting, there were more than 20 times of project presentations requested by various local governments, universities, and scientific societies. which resulted in strong support of the project from various societies. Based on collected information through actual visits to and internet surveys on foreign accelerators, a recommendation of international cooperation scheme has been made to complement domestic technological weak points, and there were discussions with some foreign organizations for that purpose. Especially, KEK of Japan, IHEP of China and KAERI have been deliberating on planning detail cooperation programs in developing and utilizing accelerator among 3 countries Some research items related with NT/BT/IT and utilizing proton beam were planned to be implemented in the Project. And a user program implemented in the Project In order to be prepared for future use of the accelerator. In order to upbring junior researchers for future days, an accelerator summer school has been planned to be held annually inviting prominent foreign and domestic lecturers
An Atomic Gravitational Wave Interferometric Sensor (AGIS)
Energy Technology Data Exchange (ETDEWEB)
Dimopoulos, Savas; /Stanford U., Phys. Dept.; Graham, Peter W.; /SLAC; Hogan, Jason M.; Kasevich, Mark A.; /Stanford U., Phys. Dept.; Rajendran, Surjeet; /SLAC /Stanford U., Phys. Dept.
2008-08-01
We propose two distinct atom interferometer gravitational wave detectors, one terrestrial and another satellite-based, utilizing the core technology of the Stanford 10m atom interferometer presently under construction. Each configuration compares two widely separated atom interferometers run using common lasers. The signal scales with the distance between the interferometers, which can be large since only the light travels over this distance, not the atoms. The terrestrial experiment with baseline {approx} 1 km can operate with strain sensitivity {approx} 10{sup -19}/{radical}Hz in the 1 Hz-10 Hz band, inaccessible to LIGO, and can detect gravitational waves from solar mass binaries out to megaparsec distances. The satellite experiment with baseline {approx} 1000 km can probe the same frequency spectrum as LISA with comparable strain sensitivity {approx} 10{sup -20}/{radical}Hz. The use of ballistic atoms (instead of mirrors) as inertial test masses improves systematics coming from vibrations, acceleration noise, and significantly reduces spacecraft control requirements. We analyze the backgrounds in this configuration and discuss methods for controlling them to the required levels.
Gravitational Waves: A New Observational Window
Camp, Jordan B.
2010-01-01
The era of gravitational wave astronomy is rapidly approaching, with a likely start date around the middle of this decade ' Gravitational waves, emitted by accelerated motions of very massive objects, provide detailed information about strong-field gravity and its sources, including black holes and neutron stars, that electromagnetic probes cannot access. In this talk I will discuss the anticipated sources and the status of the extremely sensitive detectors (both ground and space based) that will make gravitational wave detections possible. As ground based detectors are now taking data, I will show some initial science results related to measured upper limits on gravitational wave signals. Finally Z will describe new directions including advanced detectors and joint efforts with other fields of astronomy.
International Nuclear Information System (INIS)
Liu Yuan; Du Zhihui; Chung, Shin Kee; Hooper, Shaun; Blair, David; Wen Linqing
2012-01-01
We present a graphics processing unit (GPU)-accelerated time-domain low-latency algorithm to search for gravitational waves (GWs) from coalescing binaries of compact objects based on the summed parallel infinite impulse response (SPIIR) filtering technique. The aim is to facilitate fast detection of GWs with a minimum delay to allow prompt electromagnetic follow-up observations. To maximize the GPU acceleration, we apply an efficient batched parallel computing model that significantly reduces the number of synchronizations in SPIIR and optimizes the usage of the memory and hardware resource. Our code is tested on the CUDA ‘Fermi’ architecture in a GTX 480 graphics card and its performance is compared with a single core of Intel Core i7 920 (2.67 GHz). A 58-fold speedup is achieved while giving results in close agreement with the CPU implementation. Our result indicates that it is possible to conduct a full search for GWs from compact binary coalescence in real time with only one desktop computer equipped with a Fermi GPU card for the initial LIGO detectors which in the past required more than 100 CPUs. (paper)
Gravitation is a Gradient in the Velocity of Light
Froedge, Dt
2017-01-01
It is well known that a photon moving in a gravitational field has a trajectory that can be defined by Fermat's principle with a variable speed of light and no other gravitational influence. If it can be shown that a particle composed of speed of light sub-particles has the same acceleration in a variable index of refraction as a particle in a gravitational field, then there is no need to ascribe any other mechanism to gravitation than a gradient in c. This makes gravitation an electromagnetic phenomenon, and if QFT can illustrate a gradient in c can be produced by the internal motion of lightspeed sub-particles then the unification of QM and gravitation becomes more straightforward. http://www.arxdtf.org/css/GravAPS.pdf.
Breaking a dark degeneracy with gravitational waves
Energy Technology Data Exchange (ETDEWEB)
Lombriser, Lucas; Taylor, Andy, E-mail: llo@roe.ac.uk, E-mail: ant@roe.ac.uk [Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh, EH9 3HJ (United Kingdom)
2016-03-01
We identify a scalar-tensor model embedded in the Horndeski action whose cosmological background and linear scalar fluctuations are degenerate with the concordance cosmology. The model admits a self-accelerated background expansion at late times that is stable against perturbations with a sound speed attributed to the new field that is equal to the speed of light. While degenerate in scalar fluctuations, self-acceleration of the model implies a present cosmological tensor mode propagation at ∼<95 % of the speed of light with a damping of the wave amplitude that is ∼>5 % less efficient than in general relativity. We show that these discrepancies are endemic to self-accelerated Horndeski theories with degenerate large-scale structure and are tested with measurements of gravitational waves emitted by events at cosmological distances. Hence, gravitational-wave cosmology breaks the dark degeneracy in observations of the large-scale structure between two fundamentally different explanations of cosmic acceleration—a cosmological constant and a scalar-tensor modification of gravity. The gravitational wave event GW150914 recently detected with the aLIGO instruments and its potential association with a weak short gamma-ray burst observed with the Fermi GBM experiment may have provided this crucial measurement.
Resonant interaction of photons with gravitational waves
International Nuclear Information System (INIS)
Mendonca, J.T.; Drury, L. O'C.
2002-01-01
The interaction of photons with a low-amplitude gravitational wave propagating in a flat space-time is studied by using an exact model of photon dynamics. The existence of nearly resonant interactions between the photons and the gravitational waves, which can take place over large distances, can lead to a strong photon acceleration. Such a resonant mechanism can eventually be useful to build consistent new models of gamma-ray emitters
International Nuclear Information System (INIS)
Stuchlik, Zdenek; Kolos, Martin
2016-01-01
To test the role of large-scale magnetic fields in accretion processes, we study the dynamics of the charged test particles in the vicinity of a black hole immersed into an asymptotically uniform magnetic field. Using the Hamiltonian formalism of the charged particle dynamics, we examine chaotic scattering in the effective potential related to the black hole gravitational field combined with the uniform magnetic field. Energy interchange between the translational and oscillatory modes of the charged particle dynamics provides a mechanism for charged particle acceleration along the magnetic field lines. This energy transmutation is an attribute of the chaotic charged particle dynamics in the combined gravitational and magnetic fields only, the black hole rotation is not necessary for such charged particle acceleration. The chaotic scatter can cause a transition to the motion along the magnetic field lines with small radius of the Larmor motion or vanishing Larmor radius, when the speed of the particle translational motion is largest and it can be ultra-relativistic. We discuss the consequences of the model of ionization of test particles forming a neutral accretion disc, or heavy ions following off-equatorial circular orbits, and we explore the fate of heavy charged test particles after ionization where no kick of heavy ions is assumed and only the switch-on effect of the magnetic field is relevant. We demonstrate that acceleration and escape of the ionized particles can be efficient along the Kerr black hole symmetry axis parallel to the magnetic field lines. We show that a strong acceleration of the ionized particles to ultra-relativistic velocities is preferred in the direction close to the magnetic field lines. Therefore, the process of ionization of Keplerian discs around the Kerr black holes can serve as a model of relativistic jets. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Stuchlik, Zdenek; Kolos, Martin [Silesian University in Opava, Faculty of Philosophy and Science, Institute of Physics and Research Centre of Theoretical Physics and Astrophysics, Opava (Czech Republic)
2016-01-15
To test the role of large-scale magnetic fields in accretion processes, we study the dynamics of the charged test particles in the vicinity of a black hole immersed into an asymptotically uniform magnetic field. Using the Hamiltonian formalism of the charged particle dynamics, we examine chaotic scattering in the effective potential related to the black hole gravitational field combined with the uniform magnetic field. Energy interchange between the translational and oscillatory modes of the charged particle dynamics provides a mechanism for charged particle acceleration along the magnetic field lines. This energy transmutation is an attribute of the chaotic charged particle dynamics in the combined gravitational and magnetic fields only, the black hole rotation is not necessary for such charged particle acceleration. The chaotic scatter can cause a transition to the motion along the magnetic field lines with small radius of the Larmor motion or vanishing Larmor radius, when the speed of the particle translational motion is largest and it can be ultra-relativistic. We discuss the consequences of the model of ionization of test particles forming a neutral accretion disc, or heavy ions following off-equatorial circular orbits, and we explore the fate of heavy charged test particles after ionization where no kick of heavy ions is assumed and only the switch-on effect of the magnetic field is relevant. We demonstrate that acceleration and escape of the ionized particles can be efficient along the Kerr black hole symmetry axis parallel to the magnetic field lines. We show that a strong acceleration of the ionized particles to ultra-relativistic velocities is preferred in the direction close to the magnetic field lines. Therefore, the process of ionization of Keplerian discs around the Kerr black holes can serve as a model of relativistic jets. (orig.)
Vestibular nuclei and cerebellum put visual gravitational motion in context.
Miller, William L; Maffei, Vincenzo; Bosco, Gianfranco; Iosa, Marco; Zago, Myrka; Macaluso, Emiliano; Lacquaniti, Francesco
2008-04-01
Animal survival in the forest, and human success on the sports field, often depend on the ability to seize a target on the fly. All bodies fall at the same rate in the gravitational field, but the corresponding retinal motion varies with apparent viewing distance. How then does the brain predict time-to-collision under gravity? A perspective context from natural or pictorial settings might afford accurate predictions of gravity's effects via the recovery of an environmental reference from the scene structure. We report that embedding motion in a pictorial scene facilitates interception of gravitational acceleration over unnatural acceleration, whereas a blank scene eliminates such bias. Functional magnetic resonance imaging (fMRI) revealed blood-oxygen-level-dependent correlates of these visual context effects on gravitational motion processing in the vestibular nuclei and posterior cerebellar vermis. Our results suggest an early stage of integration of high-level visual analysis with gravity-related motion information, which may represent the substrate for perceptual constancy of ubiquitous gravitational motion.
A modified Friedmann equation for a system with varying gravitational mass
Gorkavyi, Nick; Vasilkov, Alexander
2018-05-01
The Laser Interferometer Gravitational-Wave Observatory (LIGO) detection of gravitational waves that take away 5 per cent of the total mass of two merging black holes points out on the importance of considering varying gravitational mass of a system. Using an assumption that the energy-momentum pseudo-tensor of gravitational waves is not considered as a source of gravitational field, we analyse a perturbation of the Friedmann-Robertson-Walker metric caused by the varying gravitational mass of a system. This perturbation leads to a modified Friedmann equation that contains a term similar to the `cosmological constant'. Theoretical estimates of the effective cosmological constant quantitatively corresponds to observed cosmological acceleration.
Acceleration Measurements Using Smartphone Sensors: Dealing with the Equivalence Principle
Monteiro, Martín; Cabeza, Cecilia; Martí, Arturo C.
2014-01-01
Acceleration sensors built into smartphones, i-pads or tablets can conveniently be used in the physics laboratory. By virtue of the equivalence principle, a sensor fixed in a non-inertial reference frame cannot discern between a gravitational field and an accelerated system. Accordingly, acceleration values read by these sensors must be corrected for the gravitational component. A physical pendulum was studied by way of example, and absolute acceleration and rotation angle values were derived...
The international atomic energy agency's programme on utilization of accelerators
Energy Technology Data Exchange (ETDEWEB)
Dytlewski, Nikolai [International Atomic Energy Agency, Wagramer Str. 5, A-1400 Vienna (Austria); Mank, Guenter [International Atomic Energy Agency, Wagramer Str. 5, A-1400 Vienna (Austria)]. E-mail: g.mank@iaea.org; Rosengard, Ulf [International Atomic Energy Agency, Wagramer Str. 5, A-1400 Vienna (Austria); Bamford, Samuel [International Atomic Energy Agency, Wagramer Str. 5, A-1400 Vienna (Austria); Markowicz, Andrzej [International Atomic Energy Agency, Wagramer Str. 5, A-1400 Vienna (Austria); Wegrzynek, Dariusz [International Atomic Energy Agency, Wagramer Str. 5, A-1400 Vienna (Austria)
2006-06-23
Low-energy accelerators have in the past produced a major part of our current knowledge of nuclear physics. Today they are mainly used for applied research and industrial applications. In view of this, the International Atomic Energy Agency (IAEA) has during recent years initiated several Coordinated Research Projects (CRPs) concerning Ion Beam Analysis of Materials, Accelerator Mass Spectrometry and Nuclear Microprobe Techniques. The CRPs involve laboratories from developing as well as developed Member States, networking on a common topic coordinated by the IAEA. In order to facilitate networking, the IAEA has recently published the 'World Survey of Accelerator Based Analytical Techniques' available on the Internet and as a CD-ROM. The IAEA maintains also a beamline at a 6 MV Van de Graaff accelerator in the Rudjer Boskovic Institute, Zagreb, Croatia. Small and medium power accelerator driven spallation neutron sources will become more important as many small neutron producing research reactors are approaching the end of their useful working life. The IAEA has, within its Department for Nuclear Sciences and Applications, a programme on the Effective Utilization of Accelerators. This programme helps Member States, in particular developing Member States, in finding new areas of applications for their low and medium energy accelerators through increased participation in activities such as Coordinated Research Projects, Technical Meetings and Conferences. This paper describes the IAEA's current programme on accelerator utilization and proposed future activities.
Dark Energy and Dark Matter Phenomena and the Universe with Variable Gravitational Mass
Gorkavyi, N.
2005-12-01
Generation of high-frequency gravitational waves near the singularity is a crucial factor for understanding the origin and dynamics of the Universe. Emission of gravitational waves increases with a decreasing radius of collapsed object much faster than a gravitational force itself. Gravitationally unstable matter of the Universe will be completely converted into gravitational radiation during the Big Crunch. According to Misner, Thorne & Wheeler (Gravitation, 1977, p.959) plane gravitational waves have not gravitational mass or spacetime is flat everywhere outside the pulse. We can propose that the gravitational mass of the Universe is vanished after converting matter into gravitational waves. This hypothesis in the framework of Einstein's theory of gravitation can solve the problem of singularity without contradiction with theorems by Penrose-Hawking; explain the acceleration of our Universe as the effect of a retarded gravitational potential (Gorkavyi, BAAS, 2003, 35, #3) and the low quadrupole in fluctuations in CMB as result of blue-shift effect in a gravitational field. Proposed solution of dark energy problem free from coincidence problems. The hypothesis keeps best parts of Big Bang theory and inflation model without any unknown physical fields or new dimensions. According to this hypothesis a relic sea of high-frequency gravitational radiation in our Universe can be very dense. Interaction of relic gravitational waves with gravitational fields of galaxies and stars can create an additional dynamical effects like pressure of relic radiation that proportional to gravitational potential GM/(Rc2). This effect can be responsible for dark matter phenomena in galaxies and the Pioneer acceleration in the solar system (Gorkavyi, BAAS, 2005, 37, #2).
Asymmetric rotator as a detector of monochromatic gravitational waves
International Nuclear Information System (INIS)
Gliner, Eh.B.; Mitrofanov, I.G.
1979-01-01
The interaction between a rotating asymmetric (principal moments of inertia are different) body with a gravitational wave is considered. A resonance rotational detector of monocrhomatic gravitational waves is proposed in which the turning due to the incident wave and the rotation which ensures resonance between the detector and wave correspond to different degrees of freedom. This significantly facilitates the creation of such detectors. The interference due to the gradient of the gravitational acceleration of the Earth and to rotation of the detector as a whole is estimated
Relativistic gravitation theory for the modified Newtonian dynamics paradigm
International Nuclear Information System (INIS)
Bekenstein, Jacob D.
2004-01-01
The modified Newtonian dynamics (MOND) paradigm of Milgrom can boast of a number of successful predictions regarding galactic dynamics; these are made without the assumption that dark matter plays a significant role. MOND requires gravitation to depart from Newtonian theory in the extragalactic regime where dynamical accelerations are small. So far relativistic gravitation theories proposed to underpin MOND have either clashed with the post-Newtonian tests of general relativity, or failed to provide significant gravitational lensing, or violated hallowed principles by exhibiting superluminal scalar waves or an a priori vector field. We develop a relativistic MOND inspired theory which resolves these problems. In it gravitation is mediated by metric, a scalar, and a 4-vector field, all three dynamical. For a simple choice of its free function, the theory has a Newtonian limit for nonrelativistic dynamics with significant acceleration, but a MOND limit when accelerations are small. We calculate the β and γ parameterized post-Newtonian coefficients showing them to agree with solar system measurements. The gravitational light deflection by nonrelativistic systems is governed by the same potential responsible for dynamics of particles. To the extent that MOND successfully describes dynamics of a system, the new theory's predictions for lensing by that system's visible matter will agree as well with observations as general relativity's predictions made with a dynamically successful dark halo model. Cosmological models based on the theory are quite similar to those based on general relativity; they predict slow evolution of the scalar field. For a range of initial conditions, this last result makes it easy to rule out superluminal propagation of metric, scalar, and vector waves
Issues in gravitational wave detection with space missions
International Nuclear Information System (INIS)
Davies, R.W.
1974-01-01
Two masses gravitating freely in the solar system and separated by several astronomical units can be used as antennae for the detection of monochromatic gravitational radiations emitted by double stars. If one of these masses is an artificial satellite the relative acceleration can be measured by employing the Doppler effect of the radio signal from the satellite. For this purpose the standard clock should be stable to within 10 -18
International Nuclear Information System (INIS)
Miyazaki, Osamu; Awa, Yasuaki; Isaka, Koji; Kutsukake, Kenichi; Komeda, Masao; Shibata, Ko; Hiyama, Kazuhisa; Suzuki, Mayu; Sone, Takuya; Ohuchi, Tomoaki; Terakado, Yuichi; Sataka, Masao
2009-06-01
The Department of Research Reactors and Tandem Accelerator is in charge of the operation, utilization and technical development of JRR-3(Japan Research Reactor-3), JRR-4(Japan Research Reactor-4), NSRR(Nuclear Safety Research Reactor) and Tandem Accelerator. This annual report describes a summary of activities of services and technical developments carried out in the period between April 1, 2007 and March 31, 2008. The activities were categorized into five service/development fields: (1) Operation and maintenance of research reactors and tandem accelerator. (2) Utilization of research reactors and tandem accelerator. (3) Upgrading of utilization techniques of research reactors and tandem accelerator. (4) Safety administration for research reactors and tandem accelerator. (5) International cooperation. Also contained are lists of publications, meetings, granted permissions on lows and regulations concerning atomic energy, commendation, plans and outcomes in service and technical developments and so on. (author)
International Nuclear Information System (INIS)
Ishii, Tetsuro; Nakamura, Kiyoshi; Kawamata, Satoshi; Yamada, Yusuke; Kawashima, Kazuhiro; Asozu, Takuhiro; Nakamura, Takemi; Arai, Masaji; Yoshinari, Shuji; Sataka, Masao
2012-03-01
The Department of Research Reactors and Tandem Accelerator is in charge of the operation, utilization and technical development of JRR-3(Japan Research Reactor No.3), JRR-4(Japan Research Reactor No.4), NSRR(Nuclear Safety Research Reactor) and Tandem Accelerator. This annual report describes a summary of activities of services and technical developments carried out in the period between April 1, 2010 and March 31, 2011. The activities were categorized into five service/development fields: (1) Operation and maintenance of research reactors and tandem accelerator, (2) Utilization of research reactors and tandem accelerator, (3) Upgrading of utilization techniques of research reactors and tandem accelerator, (4) Safety administration for research reactors and tandem accelerator, (5) International cooperation. Also contained are lists of publications, meetings, granted permissions on lows and regulations concerning atomic energy, commendation, outcomes in service and technical developments and so on. (author)
Eliminating line of sight in elliptic guides using gravitational curving
International Nuclear Information System (INIS)
Kleno, Kaspar H.; Willendrup, Peter K.; Knudsen, Erik; Lefmann, Kim
2011-01-01
Eliminating fast neutrons (λ<0.5A) by removing direct line of sight between the source and the target sample is a well established technique. This can be done with little loss of transmission for a straight neutron guide by horizontal curving. With an elliptic guide shape, however, curving the guide would result in a breakdown of the geometrical focusing mechanism inherent to the elliptical shape, resulting in unwanted reflections and loss of transmission. We present a new and yet untried idea by curving a guide in such a way as to follow the ballistic curve of a neutron in the gravitational field, while still retaining the elliptic shape seen from the accelerated reference frame of the neutron. Analytical calculations and ray-tracing simulations show that this method is useful for cold neutrons at guide lengths in excess of 100 m. We will present some of the latest results for guide optimization relevant for instrument design at the ESS, in particular an off-backscattering spectrometer which utilizes the gravitational curving, for 6.66 A neutrons over a guide length of 300 m.
Experience utilizing a 3.7 MeV tandem cascade accelerator (TCA) for PET radioisotope production
International Nuclear Information System (INIS)
Welch, M.J.; Gaehle, G.; Dence, C.S.
1994-01-01
A 3.7 MeV TCA was installed at Washington University in the Spring of 1993 for evaluation as a PET isotope production accelerator. The accelerator was installed in a specially designed suite consisting of the accelerator room, a open-quotes hot labclose quotes and a open-quotes cold labclose quotes. The accelerator has been utilized routinely for PET isotope production since it's installation. Although the major radionuclide produced utilizing the TCA is oxygen-15, techniques for the production of fluorine-18 and nitrogen-13 have been developed. The novel techniques used to produce usable quantities of these latter two isotopes will be discussed
The GENGA code: gravitational encounters in N-body simulations with GPU acceleration
International Nuclear Information System (INIS)
Grimm, Simon L.; Stadel, Joachim G.
2014-01-01
We describe an open source GPU implementation of a hybrid symplectic N-body integrator, GENGA (Gravitational ENcounters with Gpu Acceleration), designed to integrate planet and planetesimal dynamics in the late stage of planet formation and stability analyses of planetary systems. GENGA uses a hybrid symplectic integrator to handle close encounters with very good energy conservation, which is essential in long-term planetary system integration. We extended the second-order hybrid integration scheme to higher orders. The GENGA code supports three simulation modes: integration of up to 2048 massive bodies, integration with up to a million test particles, or parallel integration of a large number of individual planetary systems. We compare the results of GENGA to Mercury and pkdgrav2 in terms of energy conservation and performance and find that the energy conservation of GENGA is comparable to Mercury and around two orders of magnitude better than pkdgrav2. GENGA runs up to 30 times faster than Mercury and up to 8 times faster than pkdgrav2. GENGA is written in CUDA C and runs on all NVIDIA GPUs with a computing capability of at least 2.0.
The GENGA code: gravitational encounters in N-body simulations with GPU acceleration
Energy Technology Data Exchange (ETDEWEB)
Grimm, Simon L.; Stadel, Joachim G., E-mail: sigrimm@physik.uzh.ch [Institute for Computational Science, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich (Switzerland)
2014-11-20
We describe an open source GPU implementation of a hybrid symplectic N-body integrator, GENGA (Gravitational ENcounters with Gpu Acceleration), designed to integrate planet and planetesimal dynamics in the late stage of planet formation and stability analyses of planetary systems. GENGA uses a hybrid symplectic integrator to handle close encounters with very good energy conservation, which is essential in long-term planetary system integration. We extended the second-order hybrid integration scheme to higher orders. The GENGA code supports three simulation modes: integration of up to 2048 massive bodies, integration with up to a million test particles, or parallel integration of a large number of individual planetary systems. We compare the results of GENGA to Mercury and pkdgrav2 in terms of energy conservation and performance and find that the energy conservation of GENGA is comparable to Mercury and around two orders of magnitude better than pkdgrav2. GENGA runs up to 30 times faster than Mercury and up to 8 times faster than pkdgrav2. GENGA is written in CUDA C and runs on all NVIDIA GPUs with a computing capability of at least 2.0.
International Nuclear Information System (INIS)
Ishii, Tetsuro; Nakamura, Kiyoshi; Kawamata, Satoshi; Ishikuro, Yasuhiro; Kawashima, Kazuhito; Kabumoto, Hiroshi; Nakamura, Takemi; Tamura, Itaru; Kawasaki, Sayuri; Sataka, Masao
2013-03-01
The Department of Research Reactors and Tandem Accelerator is in charge of the operation, utilization and technical development of JRR-3(Japan Research Reactor No.3), JRR-4(Japan Research Reactor No.4), NSRR(Nuclear Safety Research Reactor) and Tandem Accelerator. This annual report describes a summary of activities of services and technical developments carried out in the period between April 1, 2011 and March 31, 2012. The activities were categorized into six service/development fields: (1) Recovery from the Great East Japan Earthquake, (2) Operation and maintenance of research reactors and tandem accelerator, (3) Utilization of research reactors and tandem accelerator, (4) Upgrading of utilization techniques of research reactors and tandem accelerator, (5) Safety administration for research reactors and tandem accelerator, (6) International cooperation. Also contained are lists of publications, meetings, granted permissions on lows and regulations concerning atomic energy, number of staff members dispatched to Fukushima for the technical assistance, commendation, outcomes in service and technical developments and so on. (author)
Virgo an interferometer for gravitational wave detection
International Nuclear Information System (INIS)
Passaquieti, R.
2000-01-01
Gravitational waves propagating from rapidly accelerating star masses can be detected by means of interfer- ometric techniques. The Virgo detector is a Michelson interferometer, with two 3 km long Fabry-Perot cavities, that is going to be built in the countryside of Pisa (Italy). Principles of interferometric gravitational wave detection, and the main noise sources in the Virgo apparatus are treated. The Virgo optical scheme and its main components are also described. Finally, an overview on the status of works at the Virgo site is presented
Utilization of 5 MeV electron accelerator center and perspective
International Nuclear Information System (INIS)
Tanaka, Hiromi
1990-01-01
Electron beam process gives instantaneous effect as compared with heating process, and has such merits that energy consumption is very small, objects can be treated from outside, harmful chemicals are not used and treatment can be done as packed. The spread of electron beam process is largely due to the results of the development of highly reliable accelerators and utilization technologies, but as observed from all industrial fields, it is limited to only a part. In order to contribute to the solution of problems and the spread of electron beam process, Sumitomo Heavy Industries, Ltd. installed a 5 MeV, 200 kW large power accelerator developed by RDI in USA in the Electron Irradiation Application and Development Center opened in Tsukuba City. The Center was completed in June, 1989, and has carried out the activities of the development of irradiation utilization technologies, test irradiation and entrusted irradiation service. The features of electron beam process are high dose rate, the possibility of on and off as occasion demands, the preparation of radiation sources and the disposal of wastes being unnecessary, and no environmental problem. The industrialized processes, the types, energy and use of electron accelerators, the Tsukuba irradiation facilities and others are reported. (K.I.)
Experiment to measure the gravitational force on the antiproton
International Nuclear Information System (INIS)
Brown, R.E.
1985-01-01
A collaboration has been formed to measure the acceleration of antiprotons in the earth's gravitational field. The technique is to produce, decelerate, and trap quantities of antiprotons, to cool them to untralow energy, and to measure their acceleration in a time-of-flight experiment. Present plans and the results of initial efforts toward this end are presented
Leading gravitational corrections and a unified universe
DEFF Research Database (Denmark)
Codello, Alessandro; Jain, Rajeev Kumar
2016-01-01
Leading order gravitational corrections to the Einstein-Hilbert action can lead to a consistent picture of the universe by unifying the epochs of inflation and dark energy in a single framework. While the leading local correction induces an inflationary phase in the early universe, the leading...... nonlocal term leads to an accelerated expansion of the universe at the present epoch. We argue that both the leading UV and IR terms can be obtained within the framework of a covariant effective field theory of gravity. The perturbative gravitational corrections therefore provide a fundamental basis...
Measuring gravitational effects on antimatter in space
Directory of Open Access Journals (Sweden)
Piacentino Giovanni Maria
2017-01-01
Full Text Available A direct measurement of the gravitational acceleration of antimatter has never been performed to date. Recently, such an experiment has been proposed, using antihydrogen with an atom interferometer and an antihydrogen confinament has been realized at CERN. In alternative we propose an experimental test of the gravitational interaction with antimatter by measuring the branching fraction of the CP violating decay of KL in space. In fact, even if the theoretical Standard Model explains the CPV with the presence of pure phase in the KMC Kobaiashi-Maskava-Cabibbo matrix, ample room is left for contributions by other interactions and forces to generate CPV in the mixing of the neutral K and B mesons. Gravitation is a good candidate and we show that at the altitude of the International Space Station, gravitational effects may change the level of CP violation such that a 5 sigma discrimination may be obtained by collecting the KL produced by the cosmic proton flux within a few years.
Principle of equivalence and a theory of gravitation
International Nuclear Information System (INIS)
Shelupsky, D.
1985-01-01
We examine a well-known thought experiment often used to explain why we should expect a ray of light to be bent by gravity; according to this the light bends downward in the gravitational field because this is just what an observer would see if there were no field and he were accelerating upward instead. We show that this description of the action of Newtonian gravity in a flat space-time corresponds to an old two-index symmetric tensor field theory of gravitation
A Gravitational Wave Detector Based on an Atom Interferometer
National Aeronautics and Space Administration — Gravitational waves are tiny perturbations in the curvature of space-time that arise from accelerating masses – according to Einstein's general theory of relativity....
Mazzitelli, Francisco D.; Trombetta, Leonardo G.
2018-03-01
In a recent paper [Q. Wang, Z. Zhu, and W. G. Unruh, Phys. Rev. D 95, 103504 (2017), 10.1103/PhysRevD.95.103504] it was argued that, due to the fluctuations around its mean value, vacuum energy gravitates differently from what was previously assumed. As a consequence, the Universe would accelerate with a small Hubble expansion rate, solving the cosmological constant and dark energy problems. We point out here that the results depend on the type of cutoff used to evaluate the vacuum energy. In particular, they are not valid when one uses a covariant cutoff such that the zero-point energy density is positive definite.
The Discovery of Gravitational Repulsion by Johannes Droste
McGruder, Charles Hosewell; VanDerMeer, B. Wieb
2018-01-01
In 1687 Newton published his universal law of gravitation, which states that the gravitational force is always attractive. This law is based on our terrestrial experience with slowly moving bodies (v Einstein completed his theory of general relativity (also referred to as Einstein’s Theory of Gravitation), which is valid not just for slowly moving bodies but also for those with relativistic velocities. In 1916 Johannes Droste submitted a PhD thesis on general relativity to his advisor, H.A. Lorentz. In it he calculated the motion of a particle in what he called a “single center” and today we call the Schwarzschild field and found that highly relativistic particles experience gravitational repulsion. Thus, his thesis written in Dutch and never before translated contains the discovery of gravitational repulsion. Because of its historical importance we translate the entire section of his thesis containing the discovery of gravitational repulsion. We also translate his thesis in the hope of clearing up a major historical misconception. Namely, that David Hilbert in 1917 discovered gravitational repulsion. In fact, Hilbert rediscovered it, apparently completely independent of Droste’s work. Finally we note that one of the biggest mysteries of astrophysics is the question of how highly energetic particles in relativistic jets and cosmic rays are accelerated. It has been suggested that gravitational repulsion is the mechanism responsible for these phenomena. An historical understanding of gravitational repulsion is therefore pertinent.
Mass loss due to gravitational waves with $\\Lambda>0$
Saw, Vee-Liem
2017-01-01
The theoretical basis for the energy carried away by gravitational waves that an isolated gravitating system emits was first formulated by Hermann Bondi during the 1960s. Recent findings from looking at distant supernovae revealed that the rate of expansion of our universe is accelerating, which may be well-explained by sticking in a positive cosmological constant into the Einstein field equations for general relativity. By solving the Newman-Penrose equations (which are equivalent to the Ein...
International symposium on utilization of accelerators. Book of extended synopses
Energy Technology Data Exchange (ETDEWEB)
NONE
2001-07-01
This book presents the extended synopses of papers presented at the International Symposium on Utilization of Accelerators hosted by the Government of Brazil through its Instituto de Pesquisas Energeticas e Nucleares (IPEN). The synopses are presented unedited as they were received from the authors. Abstracts are not available for all of the synopses. Separate analytics were prepared.
International symposium on utilization of accelerators. Book of extended synopses
International Nuclear Information System (INIS)
2001-01-01
This book presents the extended synopses of papers presented at the International Symposium on Utilization of Accelerators hosted by the Government of Brazil through its Instituto de Pesquisas Energeticas e Nucleares (IPEN). The synopses are presented unedited as they were received from the authors. Abstracts are not available for all of the synopses. Separate analytics were prepared
Isolation of gravitational waves from displacement noise and utility of a time-delay device
Energy Technology Data Exchange (ETDEWEB)
Somiya, Kentaro [Max-Planck Institut fuer Gravitationsphysik, Am Muehlenberg 1, 14476 Potsdam (Germany); Goda, Keisuke [LIGO Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Chen, Yanbei [Max-Planck Institut fuer Gravitationsphysik, Am Muehlenberg 1, 14476 Potsdam (Germany); Mikhailov, Eugeniy E [Department of Physics, College of William and Mary, Williamsburg, VA 23187 (United States)
2007-05-15
Interferometers with kilometer-scale arms have been built for gravitational-wave detections on the ground; ones with much longer arms are being planned for space-based detection. One fundamental motivation for long baseline interferometry is from displacement noise. In general, the longer the arm length L, the larger the motion the gravitational-wave induces on the test masses, until L becomes comparable to the gravitational wavelength. Recently, schemes have been invented, in which displacement noise can be evaded by employing differences between the influence of test-mass motions and that of gravitational waves on light propagation. However, in these schemes, such differences only becomes significant when Lapproaches the gravitational wavelength. In this paper, we explore a use of artificial time delay in displacement-noise-free interferometers, which will shift the frequency band of the effect being significant and may improve their shot-noise-limited sensitivity at low frequencies.
Isolation of gravitational waves from displacement noise and utility of a time-delay device
International Nuclear Information System (INIS)
Somiya, Kentaro; Goda, Keisuke; Chen, Yanbei; Mikhailov, Eugeniy E
2007-01-01
Interferometers with kilometer-scale arms have been built for gravitational-wave detections on the ground; ones with much longer arms are being planned for space-based detection. One fundamental motivation for long baseline interferometry is from displacement noise. In general, the longer the arm length L, the larger the motion the gravitational-wave induces on the test masses, until L becomes comparable to the gravitational wavelength. Recently, schemes have been invented, in which displacement noise can be evaded by employing differences between the influence of test-mass motions and that of gravitational waves on light propagation. However, in these schemes, such differences only becomes significant when Lapproaches the gravitational wavelength. In this paper, we explore a use of artificial time delay in displacement-noise-free interferometers, which will shift the frequency band of the effect being significant and may improve their shot-noise-limited sensitivity at low frequencies
General relativity: An introduction to the theory of the gravitational field
International Nuclear Information System (INIS)
Stephani, H.
1985-01-01
The entire treatment presented here is framed by questions which led to and now lead out of the general theory of relativity: can an absolute acceleration be defined meaningfully? Do gravitational effects propagate with infinite velocity as Newton required? Can the general theory correctly reflect the dynamics of the whole universe while consistently describing stellar evolution? Can a theory which presupposes measurement of properties of space through the interaction of matter be made compatible with a theory in which dimensions of the objects measured are so small that location loses meaning? The book gives the mathematics necessary to understand the theory and begins in Riemannian geometry. Contents, abridged: Foundations of Riemannian geometry. Foundations of Einstein's theory of gravitation. Linearised theory of gravitation, far fields and gravitational waves. Invariant characterisation of exact solutions. Gravitational collapse and black holes. Cosmology. Non-Einsteinian theories of gravitation. Index
Teaching Universal Gravitation with Vector Games
Lowry, Matthew
2008-01-01
Like many high school and college physics teachers, I have found playing vector games to be a useful way of illustrating the concepts of inertia, velocity, and acceleration. Like many, I have also had difficulty in trying to get students to understand Newton's law of universal gravitation, specifically the inverse-square law and its application to…
International Nuclear Information System (INIS)
Murayama, Yoji; Ishii, Tetsuro; Nakamura, Kiyoshi; Uno, Yuki; Ishikuro, Yasuhiro; Kawashima, Kazuhito; Ishizaki, Nobuhiro; Matsumura, Taichi; Nagahori, Kazuhisa; Odauchi, Shouji; Maruo, Takeshi
2014-03-01
The Department of Research Reactor and Tandem Accelerator is in charge of the operation, utilization and technical development of JRR-3(Japan Research Reactor No.3), JRR-4(Japan Research Reactor No.4), NSRR(Nuclear Safety Research Reactor), Tandem Accelerator and RI Production Facility. This annual report describes a summary of activities of services and technical developments carried out in the period between April 1, 2012 and March 31, 2013. The activities were categorized into five service/development fields: (1) Operation and maintenance of research reactors and tandem accelerator, (2) Utilization of research reactors and tandem accelerator, (3) Upgrading of utilization techniques of research reactors and tandem accelerator, (4) Safety administration for department of research reactor and tandem accelerator, (5) International cooperation. Also contained are lists of publications, meetings, granted permissions on laws and regulations concerning atomic energy, number of staff members dispatched to Fukushima for the technical assistance, outcomes in service and technical developments and so on. (author)
International Nuclear Information System (INIS)
Fukushima, Toshio
2017-01-01
In order to obtain the gravitational field of a general finite body inside its Brillouin sphere, we developed a new method to compute the field accurately. First, the body is assumed to consist of some layers in a certain spherical polar coordinate system and the volume mass density of each layer is expanded as a Maclaurin series of the radial coordinate. Second, the line integral with respect to the radial coordinate is analytically evaluated in a closed form. Third, the resulting surface integrals are numerically integrated by the split quadrature method using the double exponential rule. Finally, the associated gravitational acceleration vector is obtained by numerically differentiating the numerically integrated potential. Numerical experiments confirmed that the new method is capable of computing the gravitational field independently of the location of the evaluation point, namely whether inside, on the surface of, or outside the body. It can also provide sufficiently precise field values, say of 14–15 digits for the potential and of 9–10 digits for the acceleration. Furthermore, its computational efficiency is better than that of the polyhedron approximation. This is because the computational error of the new method decreases much faster than that of the polyhedron models when the number of required transcendental function calls increases. As an application, we obtained the gravitational field of 433 Eros from its shape model expressed as the 24 × 24 spherical harmonic expansion by assuming homogeneity of the object.
Energy Technology Data Exchange (ETDEWEB)
Fukushima, Toshio, E-mail: Toshio.Fukushima@nao.ac.jp [National Astronomical Observatory/SOKENDAI, Ohsawa, Mitaka, Tokyo 181-8588 (Japan)
2017-10-01
In order to obtain the gravitational field of a general finite body inside its Brillouin sphere, we developed a new method to compute the field accurately. First, the body is assumed to consist of some layers in a certain spherical polar coordinate system and the volume mass density of each layer is expanded as a Maclaurin series of the radial coordinate. Second, the line integral with respect to the radial coordinate is analytically evaluated in a closed form. Third, the resulting surface integrals are numerically integrated by the split quadrature method using the double exponential rule. Finally, the associated gravitational acceleration vector is obtained by numerically differentiating the numerically integrated potential. Numerical experiments confirmed that the new method is capable of computing the gravitational field independently of the location of the evaluation point, namely whether inside, on the surface of, or outside the body. It can also provide sufficiently precise field values, say of 14–15 digits for the potential and of 9–10 digits for the acceleration. Furthermore, its computational efficiency is better than that of the polyhedron approximation. This is because the computational error of the new method decreases much faster than that of the polyhedron models when the number of required transcendental function calls increases. As an application, we obtained the gravitational field of 433 Eros from its shape model expressed as the 24 × 24 spherical harmonic expansion by assuming homogeneity of the object.
R. Vlokh; M. Kostyrko
2006-01-01
Nonlinear effect of the gravitation field of spherically symmetric mass on the gravitational coefficient G has been analysed. In frame of the approaches of parametric optics and gravitation nonlinearity we have shown that the gravitation field of spherically symmetric mass can lead to changes in the gravitational coefficient G.
Theoretical approaches to laser spectroscopy in the presence of gravitational fields
International Nuclear Information System (INIS)
Borde, C.J.; Sharma, J.; Tourrenc, P.; Damour, T.
1983-01-01
We present a general framework in which non-linear optical phenomena for an ensemble of accelerated atoms can be studied. We show the equivalence of various approaches through frame transformations. This equivalence is understood within the context of a covariant formalism which is briefly sketched. The choice of the frame, in which the atoms are not accelerated but where the light spectrum and the atomic source term are correspondingly modified, leads to the simplest calculated. It enables one to use the usual density matrix diagrams and associated rules. Explicit examples are given in the case of a sinusoidal gravitational wave. Finally a brief discussion of the signal-to-noise of the sidebands induced by gravitational waves on saturation resonances is outlined
Gravitational lensing: a unique probe of dark matter and dark energy
Ellis, Richard S.
2010-01-01
I review the development of gravitational lensing as a powerful tool of the observational cosmologist. After the historic eclipse expedition organized by Arthur Eddington and Frank Dyson, the subject lay observationally dormant for 60 years. However, subsequent progress has been astonishingly rapid, especially in the past decade, so that gravitational lensing now holds the key to unravelling the two most profound mysteries of our Universe—the nature and distribution of dark matter, and the origin of the puzzling cosmic acceleration first identified in the late 1990s. In this non-specialist review, I focus on the unusual history and achievements of gravitational lensing and its future observational prospects. PMID:20123743
Simple Explanation for why Parallel-Propagating Photons do not Gravitationally Attract
Directory of Open Access Journals (Sweden)
Jensen R.
2015-09-01
Full Text Available In this article it is shown that photons of light, when traveling in parallel, do not attract one another gravitationally. This has been shown previously using general relativity, however here it is only assumed a Newtonian approximation to the gravitational attraction between photons. The explanation for the lack of gravitational attraction is simple: as co-moving objects accelerate in parallel, the flow of time is retarded, as observed by a stationary observer, according to special relativity. Hence so is the tendency for the objects to move toward one another. As the velocity of the objects approach c, the time required for the objects to approach one another approaches infinity, and so there is no gravitational attraction between objects which move parallel at the speed of light.
Chiral gravitational waves and baryon superfluid dark matter
Alexander, Stephon; McDonough, Evan; Spergel, David N.
2018-05-01
We develop a unified model of darkgenesis and baryogenesis involving strongly interacting dark quarks, utilizing the gravitational anomaly of chiral gauge theories. In these models, both the visible and dark baryon asymmetries are generated by the gravitational anomaly induced by the presence of chiral primordial gravitational waves. We provide a concrete model of an SU(2) gauge theory with two massless quarks. In this model, the dark quarks condense and form a dark baryon charge superfluid (DBS), in which the Higgs-mode acts as cold dark matter. We elucidate the essential features of this dark matter scenario and discuss its phenomenological prospects.
MAGIA - using atom interferometry to determine the Newtonian gravitational constant
International Nuclear Information System (INIS)
Stuhler, J; Fattori, M; Petelski, T; Tino, G M
2003-01-01
We describe our experiment MAGIA (misura accurata di G mediante interferometria atomica), in which we will use atom interferometry to perform a high precision measurement of the Newtonian gravitational constant G. Free-falling laser-cooled atoms in a vertical atomic fountain will be accelerated due to the gravitational potential of nearby source masses (SMs). Detecting this acceleration with techniques of Raman atom interferometry will enable us to assign a value to G. To suppress systematic effects we will implement a double-differential measurement. This includes launching two atom clouds in a gradiometer configuration and moving the SMs to different vertical positions. We briefly summarize the general idea of the MAGIA experiment and put it in the context of other high precision G-measurements. We present the current status of the experiment and report on analyses of the expected measurement accuracy
The impact of particle production on gravitational baryogenesis
Energy Technology Data Exchange (ETDEWEB)
Lima, J.A.S., E-mail: jas.lima@iag.usp.br [Departamento de Astronomia, Universidade de São Paulo, Rua do Matão 1226, 05508-900, São Paulo (Brazil); Singleton, D., E-mail: dougs@csufresno.edu [Department of Physics, California State University Fresno, Fresno, CA 93740-8031 (United States); ICTP South American Institute for Fundamental Research, UNESP – Univ. Estadual Paulista, Rua Dr. Bento T. Ferraz 271, 01140-070, São Paulo, SP (Brazil); Institute of Experimental and Theoretical Physics Al-Farabi KazNU, Almaty, 050040 (Kazakhstan)
2016-11-10
Baryogenesis driven by curvature effects is investigated by taking into account gravitationally induced particle production in the very early Universe. In our scenario, the baryon asymmetry is generated dynamically during an inflationary epoch powered by ultra-relativistic particles. The adiabatic particle production rate provides both the needed negative pressure to accelerate the radiation dominated Universe and a non-zero chemical potential which distinguishes baryons and anti-baryons thereby producing a baryon asymmetry in agreement with the observed value. Reciprocally, the present day asymmetry may be used to determine the inflationary scale at early times. Successful gravitational baryogenesis is dynamically generated for many different choices of the relevant model parameters.
Seismic and Gravitational Studies of Melting in the Mantle's Thermal Boundary Layers
National Research Council Canada - National Science Library
Van Ark, Emily M
2007-01-01
.... The first study uses seafloor bathymetry and small variations in the gravitational acceleration over the Hawaii-Emperor seamount chain to constrain the changes in the igneous production of the hot...
Baker, John; Thorpe, Ira
2012-01-01
Thoroughly studied classic space-based gravitational-wave missions concepts such as the Laser Interferometer Space Antenna (LISA) are based on laser-interferometry techniques. Ongoing developments in atom-interferometry techniques have spurred recently proposed alternative mission concepts. These different approaches can be understood on a common footing. We present an comparative analysis of how each type of instrument responds to some of the noise sources which may limiting gravitational-wave mission concepts. Sensitivity to laser frequency instability is essentially the same for either approach. Spacecraft acceleration reference stability sensitivities are different, allowing smaller spacecraft separations in the atom interferometry approach, but acceleration noise requirements are nonetheless similar. Each approach has distinct additional measurement noise issues.
Spallicci, Alessandro D. A. M.
2017-09-01
Comments are due on a recent paper by McGruder III (2017) in which the author deals with the concept of gravitational repulsion in the context of the Schwarzschild-Droste solution. Repulsion (deceleration) for ingoing particles into a black hole is a concept proposed several times starting from Droste himself in 1916. It is a coordinate effect appearing to an observer at a remote distance from the black hole and when coordinate time is employed. Repulsion has no bearing and relation to the local physics of the black hole, and moreover it cannot be held responsible for accelerating outgoing particles. Thereby, the energy boost of cosmic rays cannot be produced by repulsion.
International Nuclear Information System (INIS)
Van Ausdeln, L.A.; Cordes, G.A.; Haskell, K.J.; Jones, J.L.
2002-01-01
Measurements performed utilizing particle accelerators rely on the stability and reproducibility of the accelerator operation, most notably for beam flux (beam current) and beam energy. This can be vital when the measurements rely on previous calibrations performed to establish a standard on which to base the end result of the measurement. The authors have designed a monitoring and control virtual instrument (VI) based on National Instruments LabVIEW TM which calls external modeling code that is written in a standard programming language. The LabVIEWTM virtual instrument allows the user to monitor multiple accelerator parameters while permitting user control of the most important four of these parameters which determine machine operation. The external modeling code, the Advanced Data Validation and Verification System (ADVVS), incorporates as a kernel the Universal Process Model (UPM) software from Triant Technologies, Inc. The kernel executes the accelerator modeling function based on previously acquired history data of the relevant parameters for accelerator operation for conditions of interest. This history data is stored as a reference set prior to subsequent operation. During accelerator operation, 11 accelerator parameters are input to ADVVS from the LabVIEW TM virtual instrument. The ADVVS uses the reference files to predict the eleven parameter values that would normally be expected for optimal accelerator operation. The set of 11 model values is the nearest model state. This multivariate modeling approach presented two principal advantages: 1. The ADVVS allowed rapid detection of anomalous accelerator behavior variant from normal accelerator behavior recorded in the reference set of the kernel. 2. The ADVVS presented a methodology to incrementally tune the accelerator back to optimal operation, thus maintaining highly stable and reproducible operation. In the future, this methodology may also be utilized to tune the accelerator initially or move
Testing the gravitational instability hypothesis?
Babul, Arif; Weinberg, David H.; Dekel, Avishai; Ostriker, Jeremiah P.
1994-01-01
We challenge a widely accepted assumption of observational cosmology: that successful reconstruction of observed galaxy density fields from measured galaxy velocity fields (or vice versa), using the methods of gravitational instability theory, implies that the observed large-scale structures and large-scale flows were produced by the action of gravity. This assumption is false, in that there exist nongravitational theories that pass the reconstruction tests and gravitational theories with certain forms of biased galaxy formation that fail them. Gravitational instability theory predicts specific correlations between large-scale velocity and mass density fields, but the same correlations arise in any model where (a) structures in the galaxy distribution grow from homogeneous initial conditions in a way that satisfies the continuity equation, and (b) the present-day velocity field is irrotational and proportional to the time-averaged velocity field. We demonstrate these assertions using analytical arguments and N-body simulations. If large-scale structure is formed by gravitational instability, then the ratio of the galaxy density contrast to the divergence of the velocity field yields an estimate of the density parameter Omega (or, more generally, an estimate of beta identically equal to Omega(exp 0.6)/b, where b is an assumed constant of proportionality between galaxy and mass density fluctuations. In nongravitational scenarios, the values of Omega or beta estimated in this way may fail to represent the true cosmological values. However, even if nongravitational forces initiate and shape the growth of structure, gravitationally induced accelerations can dominate the velocity field at late times, long after the action of any nongravitational impulses. The estimated beta approaches the true value in such cases, and in our numerical simulations the estimated beta values are reasonably accurate for both gravitational and nongravitational models. Reconstruction tests
Thermal duality and gravitational collapse
International Nuclear Information System (INIS)
Hewitt, Michael
2015-01-01
Thermal duality is a relationship between the behaviour of heterotic string models of the E(8)×E(8) or SO(32) types at inversely related temperatures, a variant of T duality in the Euclidean regime. This duality would have consequences for the nature of the Hagedorn transition in these string models. We propose that the vacuum admits a family of deformations in situations where there are closed surfaces of constant area but high radial acceleration (a string regularized version of a Penrose trapped surface), such as would be formed in situations of extreme gravitational collapse. This would allow a radical resolution of the firewall paradox by allowing quantum effects to significantly modify the spacetime geometry around a collapsed object. A string bremsstrahlung process would convert the kinetic energy of infalling matter in extreme gravitational collapse to form a region of the deformed vacuum, which would be equivalent to forming a high temperature string phase. A heuristic criterion for the conversion process is presented, relating Newtonian gravity to the string tension, suggesting an upper limit to the strength of the gravitational interaction. This conversion process might have observable consequences for charged particles falling into a rotating collapsed object by producing high energy particles via a variant of the Penrose process. (paper)
Experimental Limits on Gravitational Waves in the MHz frequency Range
Energy Technology Data Exchange (ETDEWEB)
Lanza, Robert Jr. [Univ. of Chicago, IL (United States)
2015-03-01
This thesis presents the results of a search for gravitational waves in the 1-11MHz frequency range using dual power-recycled Michelson laser interferometers at Fermi National Accelerator Laboratory. An unprecedented level of sensitivity to gravitational waves in this frequency range has been achieved by cross-correlating the output fluctuations of two identical and colocated 40m long interferometers. This technique produces sensitivities better than two orders of magnitude below the quantum shot-noise limit, within integration times of less than 1 hour. 95% confidence level upper limits are placed on the strain amplitude of MHz frequency gravitational waves at the 10^{-21} Hz^{-1/2} level, constituting the best direct limits to date at these frequencies. For gravitational wave power distributed over this frequency range, a broadband upper limit of 2.4 x 10^{-21}Hz^{-1/2} at 95% confidence level is also obtained. This thesis covers the detector technology, the commissioning and calibration of the instrument, the statistical data analysis, and the gravitational wave limit results. Particular attention is paid to the end-to-end calibration of the instrument’s sensitivity to differential arm length motion, and so to gravitational wave strain. A detailed statistical analysis of the data is presented as well.
Gravitational Waves from Gravitational Collapse
Directory of Open Access Journals (Sweden)
Chris L. Fryer
2011-01-01
Full Text Available Gravitational-wave emission from stellar collapse has been studied for nearly four decades. Current state-of-the-art numerical investigations of collapse include those that use progenitors with more realistic angular momentum profiles, properly treat microphysics issues, account for general relativity, and examine non-axisymmetric effects in three dimensions. Such simulations predict that gravitational waves from various phenomena associated with gravitational collapse could be detectable with ground-based and space-based interferometric observatories. This review covers the entire range of stellar collapse sources of gravitational waves: from the accretion-induced collapse of a white dwarf through the collapse down to neutron stars or black holes of massive stars to the collapse of supermassive stars.
Gravitational waves from gravitational collapse
Energy Technology Data Exchange (ETDEWEB)
Fryer, Christopher L [Los Alamos National Laboratory; New, Kimberly C [Los Alamos National Laboratory
2008-01-01
Gravitational wave emission from stellar collapse has been studied for nearly four decades. Current state-of-the-art numerical investigations of collapse include those that use progenitors with more realistic angular momentum profiles, properly treat microphysics issues, account for general relativity, and examine non-axisymmetric effects in three dimensions. Such simulations predict that gravitational waves from various phenomena associated with gravitational collapse could be detectable with ground-based and space-based interferometric observatories. This review covers the entire range of stellar collapse sources of gravitational waves: from the accretion induced collapse of a white dwarf through the collapse down to neutron stars or black holes of massive stars to the collapse of supermassive stars.
Thorium utilization in heavy water moderated Accelerator Driven Systems
International Nuclear Information System (INIS)
Bajpai, Anil; Degweker, S.B.; Ghosh, Biplab
2011-01-01
Research on Accelerator Driven Systems (ADSs) is being carried out around the world primarily with the objective of waste transmutation. Presently, the volume of waste in India is small and therefore there is little incentive to develop ADS based waste transmutation technology immediately. With limited indigenous U availability and the presence of large Th deposits in the country, there is a clear incentive to develop Th related technologies. India also has vast experience in design, construction and operation of heavy water moderated reactors. Heavy water moderated reactors employing solid Th fuels can be self sustaining, but the discharge burnups are too low to be economical. A possible way to improve the performance such reactors is to use an external neutron source as is done in ADS. This paper discusses our studies on Th utilization in heavy water moderated ADSs. The study is carried out at the lattice level. The time averaged k-infinity of the Th bundle from zero burnup up to the discharge burnup is taken to be the same as the core (ensemble) averaged k-infinity. For the purpose of the analysis we have chosen standard PHWR and AHWR assemblies. Variation of the pitch and coolant (H 2 O/D 2 O) are studied. Both, the once through cycle and the recycling option are studied. In the latter case the study is carried out for various enrichments (% 233 U in Th) of the recycled Th fuel bundles. The code DTF as modified for lattice and burnup calculations (BURNTRAN) was used for carrying out the study. The once through cycle represents the most attractive ADS concept (Th burner ADS) possible for Th utilization. It avoids reprocessing of Th spent fuel and in the ideal situation the use of any fissile material either initially or for sustaining itself. The gain in this system is however rather low requiring a high power accelerator and a substantial fraction of the power generated to be fed back to the accelerator. The self sustaining Th-U cycle in a heavy moderated ADS
Gravitational Waves from Gravitational Collapse.
Fryer, Chris L; New, Kimberly C B
2011-01-01
Gravitational-wave emission from stellar collapse has been studied for nearly four decades. Current state-of-the-art numerical investigations of collapse include those that use progenitors with more realistic angular momentum profiles, properly treat microphysics issues, account for general relativity, and examine non-axisymmetric effects in three dimensions. Such simulations predict that gravitational waves from various phenomena associated with gravitational collapse could be detectable with ground-based and space-based interferometric observatories. This review covers the entire range of stellar collapse sources of gravitational waves: from the accretion-induced collapse of a white dwarf through the collapse down to neutron stars or black holes of massive stars to the collapse of supermassive stars. Supplementary material is available for this article at 10.12942/lrr-2011-1.
The earth's gravitational field
Digital Repository Service at National Institute of Oceanography (India)
Ramprasad, T.
. But to say that gravity acts downwards is not correct. Gravity acts down, no matter where you stand on the Earth. It is better to say that on Earth gravity pulls objects towards the centre of the Earth. So no matter where you are on Earth all objects fall... pull than objects at the poles. In combination, the equatorial bulge and the effects of centrifugal force mean that sea-level gravitational acceleration increases from about 9.780 m/s² at the equator to about 9.832 m/s² at the poles, so an object...
International Nuclear Information System (INIS)
Osa, Akihiko; Imahashi, Masaki; Hirane, Nobuhiko; Motome, Yuiko; Tayama, Hidekazu; Tamura, Itaru; Harada, Yuko; Sakata, Mami; Kadokura, Masakazu; Takita, Chiharu
2017-02-01
The Department of Research Reactor and Tandem Accelerator is in charge of the operation, utilization and technical development of JRR-3 (Japan Research Reactor No.3), JRR-4 (Japan Research Reactor No.4), NSRR (Nuclear Safety Research Reactor), Tandem Accelerator and RI Production Facility. This annual report describes the activities of our department in fiscal year of 2014. We carried out the operation and maintenance, utilization, upgrading of utilization techniques, safety administration, and international cooperation. Also contained are lists of publications, meetings, granted permissions on laws and regulations concerning atomic energy, outcomes in service and technical developments and so on. (author)
International Nuclear Information System (INIS)
Kashima, Yoichi; Murayama, Yoji; Nakamura, Kiyoshi; Uno, Yuki; Hirane, Nobuhiko; Ohuchi, Hitoshi; Ishizaki, Nobuhiro; Matsumura, Taichi; Nagahori, Kazuhisa; Harada, Yuko; Kadokura, Masakazu; Machi, Sumire; Takita, Chiharu
2015-02-01
The Department of Research Reactor and Tandem Accelerator is in charge of the operation, utilization and technical development of JRR-3(Japan Research Reactor No.3), JRR-4(Japan Research Reactor No.4), NSRR(Nuclear Safety Research Reactor), Tandem Accelerator and RI Production Facility. This annual report describes the activities of our department in fiscal year of 2013. We carried out the operation and maintenance, utilization, upgrading of utilization techniques, safety administration and international cooperation. Also contained are lists of publications, meetings, granted permissions on laws and regulations concerning atomic energy, outcomes in service and technical developments and so on. (author)
Quantization of electromagnetic and gravitational perturbations of a Kerr black hole
International Nuclear Information System (INIS)
Candelas, P.; Chrzanowski, P.; Howard, K.W.
1981-01-01
The electromagnetic and gravitational fluctuations about the classical gravitational field of a rotating black hole are quantized by imposing commutation relations on the Newman-Penrose quantities phi 0 and psi 0 . Two examples which illustrate the utility of the formalism concern the vacuum expectation value of the stress-energy tensor for the electromagnetic field in the Boulware vacuum and the response of an Unruh box coupled to fluctuations of the gravitational field. These quantities are computed in the vicinity of the horizon
Light rays and the tidal gravitational pendulum
Farley, A. N. St J.
2018-05-01
Null geodesic deviation in classical general relativity is expressed in terms of a scalar function, defined as the invariant magnitude of the connecting vector between neighbouring light rays in a null geodesic congruence projected onto a two-dimensional screen space orthogonal to the rays, where λ is an affine parameter along the rays. We demonstrate that η satisfies a harmonic oscillator-like equation with a λ-dependent frequency, which comprises terms accounting for local matter affecting the congruence and tidal gravitational effects from distant matter or gravitational waves passing through the congruence, represented by the amplitude, of a complex Weyl driving term. Oscillating solutions for η imply the presence of conjugate or focal points along the rays. A polarisation angle, is introduced comprising the orientation of the connecting vector on the screen space and the phase, of the Weyl driving term. Interpreting β as the polarisation of a gravitational wave encountering the light rays, we consider linearly polarised waves in the first instance. A highly non-linear, second-order ordinary differential equation, (the tidal pendulum equation), is then derived, so-called due to its analogy with the equation describing a non-linear, variable-length pendulum oscillating under gravity. The variable pendulum length is represented by the connecting vector magnitude, whilst the acceleration due to gravity in the familiar pendulum formulation is effectively replaced by . A tidal torque interpretation is also developed, where the torque is expressed as a coupling between the moment of inertia of the pendulum and the tidal gravitational field. Precessional effects are briefly discussed. A solution to the tidal pendulum equation in terms of familiar gravitational lensing variables is presented. The potential emergence of chaos in general relativity is discussed in the context of circularly, elliptically or randomly polarised gravitational waves encountering the null
Kinetic theory in maximal-acceleration invariant phase space
International Nuclear Information System (INIS)
Brandt, H.E.
1989-01-01
A vanishing directional derivative of a scalar field along particle trajectories in maximal acceleration invariant phase space is identical in form to the ordinary covariant Vlasov equation in curved spacetime in the presence of both gravitational and nongravitational forces. A natural foundation is thereby provided for a covariant kinetic theory of particles in maximal-acceleration invariant phase space. (orig.)
Gravitational torque frequency analysis for the Einstein elevator experiment
Energy Technology Data Exchange (ETDEWEB)
Ashenberg, Joshua [Harvard-Smithsonian Center for Astrophysics (CfA), Cambridge, MA (United States); Lorenzini, Enrico C [University of Padova, Padua (Italy)
2007-09-07
Testing the principle of equivalence with a differential acceleration detector that spins while free falling requires a reliable extraction of a very small violation signal from the noise in the output signal frequency spectrum. The experiment is designed such that the violation signal is modulated by the spin of the test bodies. The possible violation signal is mixed with the intrinsic white noise of the detector and the colored noise associated with the modulation of gravitational perturbations, through the spin, and inertial-motion-related noise. In order to avoid false alarms the frequencies of the gravitational disturbances and the violation signal must be separate. This paper presents a model for the perturbative gravitational torque that affects the measurement. The torque is expanded in an asymptotic series to the fourth order and then expressed as a frequency spectrum. A spectral analysis shows the design conditions for frequency separation between the perturbing torque and the violation signal.
Modeling of Non-Gravitational Forces for Precise and Accurate Orbit Determination
Hackel, Stefan; Gisinger, Christoph; Steigenberger, Peter; Balss, Ulrich; Montenbruck, Oliver; Eineder, Michael
2014-05-01
Remote sensing satellites support a broad range of scientific and commercial applications. The two radar imaging satellites TerraSAR-X and TanDEM-X provide spaceborne Synthetic Aperture Radar (SAR) and interferometric SAR data with a very high accuracy. The precise reconstruction of the satellite's trajectory is based on the Global Positioning System (GPS) measurements from a geodetic-grade dual-frequency Integrated Geodetic and Occultation Receiver (IGOR) onboard the spacecraft. The increasing demand for precise radar products relies on validation methods, which require precise and accurate orbit products. An analysis of the orbit quality by means of internal and external validation methods on long and short timescales shows systematics, which reflect deficits in the employed force models. Following the proper analysis of this deficits, possible solution strategies are highlighted in the presentation. The employed Reduced Dynamic Orbit Determination (RDOD) approach utilizes models for gravitational and non-gravitational forces. A detailed satellite macro model is introduced to describe the geometry and the optical surface properties of the satellite. Two major non-gravitational forces are the direct and the indirect Solar Radiation Pressure (SRP). The satellite TerraSAR-X flies on a dusk-dawn orbit with an altitude of approximately 510 km above ground. Due to this constellation, the Sun almost constantly illuminates the satellite, which causes strong across-track accelerations on the plane rectangular to the solar rays. The indirect effect of the solar radiation is called Earth Radiation Pressure (ERP). This force depends on the sunlight, which is reflected by the illuminated Earth surface (visible spectra) and the emission of the Earth body in the infrared spectra. Both components of ERP require Earth models to describe the optical properties of the Earth surface. Therefore, the influence of different Earth models on the orbit quality is assessed. The scope of
International Nuclear Information System (INIS)
Grandemange, Pierre
2013-01-01
The Gravitational Behaviour of Anti-hydrogen at Rest experiment - GBAR - is designed to perform a direct measurement of the weak equivalence principle on antimatter by measuring the acceleration (g-bar) of anti-hydrogen atoms in free fall. Its originality is to produce H-bar + ions and use sympathetic cooling to achieve μK temperature. H-bar + ions are produced by the reactions: p-bar + Ps → H-bar + e - , and H-bar + Ps → H-bar + + e - , where p-bar is an antiproton, Ps stands for positronium (the bound-state of a positron and an electron), H-bar is the anti-hydrogen and H-bar + the anti-ion associated. To produce enough Ps atoms, 2*10 10 positrons must be impinged on a porous SiO 2 target within 100 ns. Such an intense flux requires the accumulation (collection and cooling) of the positrons in a particle trap. This thesis describes the injector being commissioned at CEA Saclay for GBAR. It consists of a Penning-Malmberg trap (moved from RIKEN) fed by a slow positron beam. A 4.3 MeV linear accelerator shooting electrons on a tungsten target produces the pulsed positron beam, which is moderated by a multi-grid tungsten moderator. The slow positron flux is 10 4 e + /pulse, or 2*10 6 e + /s at 200 Hz. This work presents the first ever accumulation of low-energy positrons produced by an accelerator (rather than a radioactive source) and their cooling by a prepared reservoir of 2*10 10 cold electrons. (author) [fr
An elementary approach to the gravitational Doppler shift
International Nuclear Information System (INIS)
Wörner, C H; Rojas, Roberto
2017-01-01
In college physics courses, treatment of the Doppler effect is usually done far from the first introduction to kinematics. This paper aims to apply a graphical treatment to describe the gravitational redshift, by considering the Doppler effect in two accelerated reference frames and exercising the equivalence principle. This approach seems appropriate to discuss with beginner students and could serve to enrich the didactic processes. (paper)
Does a Gravitational Aberration Contribute to the Accelerated Expansion of the Universe?
Czech Academy of Sciences Publication Activity Database
Křížek, Michal
2009-01-01
Roč. 5, č. 5 (2009), s. 1030-1044 ISSN 1815-2406 R&D Projects: GA AV ČR(CZ) IAA100190803 Institutional research plan: CEZ:AV0Z10190503 Keywords : Hubble constant * causality gravitation * Earth Moon Subject RIV: BA - General Mathematics Impact factor: 2.077, year: 2009
Hochberg, K.; Gröber, S.; Kuhn, J.; Müller, A.
2014-03-01
Here, we show the possibility of analysing circular motion and acceleration using the acceleration sensors of smartphones. For instance, the known linear dependence of the radial acceleration on the distance to the centre (a constant angular frequency) can be shown using multiple smartphones attached to a revolving disc. As a second example, the decrease of the radial acceleration and the rotation frequency due to friction can be measured and fitted with a quadratic function, in accordance with theory. Finally, because the disc is not set up exactly horizontal, each smartphone measures a component of the gravitational acceleration that adds to the radial acceleration during one half of the period and subtracts from the radial acceleration during the other half. Hence, every graph shows a small modulation, which can be used to determine the rotation frequency, thus converting a ‘nuisance effect’ into a source of useful information, making additional measurements with stopwatches or the like unnecessary.
Error analysis of numerical gravitational waveforms from coalescing binary black holes
Fong, Heather; Chu, Tony; Kumar, Prayush; Pfeiffer, Harald; Boyle, Michael; Hemberger, Daniel; Kidder, Lawrence; Scheel, Mark; Szilagyi, Bela; SXS Collaboration
2016-03-01
The Advanced Laser Interferometer Gravitational-wave Observatory (Advanced LIGO) has finished a successful first observation run and will commence its second run this summer. Detection of compact object binaries utilizes matched-filtering, which requires a vast collection of highly accurate gravitational waveforms. This talk will present a set of about 100 new aligned-spin binary black hole simulations. I will discuss their properties, including a detailed error analysis, which demonstrates that the numerical waveforms are sufficiently accurate for gravitational wave detection purposes, as well as for parameter estimation purposes.
A physical process of the radial acceleration of disc galaxies
Wilhelm, Klaus; Dwivedi, Bhola N.
2018-03-01
An impact model of gravity designed to emulate Newton's law of gravitation is applied to the radial acceleration of disc galaxies. Based on this model (Wilhelm et al. 2013), the rotation velocity curves can be understood without the need to postulate any dark matter contribution. The increased acceleration in the plane of the disc is a consequence of multiple interactions of gravitons (called `quadrupoles' in the original paper) and the subsequent propagation in this plane and not in three-dimensional space. The concept provides a physical process that relates the fit parameter of the acceleration scale defined by McGaugh et al. (2016) to the mean free path length of gravitons in the discs of galaxies. It may also explain the gravitational interaction at low acceleration levels in MOdification of the Newtonian Dynamics (MOND, Milgrom 1983, 1994, 2015, 2016). Three examples are discussed in some detail: the spiral galaxies NGC 7814, NGC 6503 and M 33.
International Nuclear Information System (INIS)
Garrison, David; Ramirez, Christopher
2017-01-01
This work is a follow-up to the paper, ‘Numerical relativity as a tool for studying the early Universe’. In this article, we determine if cosmological gravitational waves can be accurately extracted from a dynamical spacetime using an averaging process as opposed to conventional methods of gravitational wave extraction using a complex Weyl scalar. We calculate the normalized energy density, strain and degree of polarization of gravitational waves produced by a simulated turbulent plasma similar to what was believed to have existed shortly after the electroweak scale. This calculation is completed using two numerical codes, one which utilizes full general relativity calculations based on modified BSSN equations while the other utilizes a linearized approximation of general relativity. Our results show that the spectrum of gravitational waves calculated from the nonlinear code using an averaging process is nearly indistinguishable from those calculated from the linear code. This result validates the use of the averaging process for gravitational wave extraction of cosmological systems. (paper)
Energy Technology Data Exchange (ETDEWEB)
Miller, Jonah Maxwell [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2017-10-18
This report has slides on Gravitational Waves; Pound and Rebka: A Shocking Fact; Light is a Ruler; Gravity is the Curvature of Spacetime; Gravitational Waves Made Simple; How a Gravitational Wave Affects Stuff Here; LIGO; This Detection: Neutron Stars; What the Gravitational Wave Looks Like; The Sound of Merging Neutron Stars; Neutron Star Mergers: More than GWs; The Radioactive Cloud; The Kilonova; and finally Summary, Multimessenger Astronomy.
Accelerating particles in general relativity (stationary C-metric)
International Nuclear Information System (INIS)
Farhoosh, H.
1979-01-01
The purpose of this thesis is to study the physical and geometrical properties of uniformly accelerating particles in the general theory of relativity and it consists of four main parts. In the first part the structure of the Killing horizons in the static vacuum C-metric which represents the gravitational field of a uniformly accelerating Schwarzschild like particle (non-rotating and spherically symmetric) is studied. In the second part these results are generalized to include the effects of the rotation of the source. For small acceleration and small rotation this solution reveals the existance of three Killing horizons. Two the these horizons are the Schwarzschild and the Rindler surfaces which are mainly due to the mass and the acceleration of the particle, respectively. In part three the radial geodesic and non-geodesic motions in the static vacuum C-metric (non-rotating case) are investigated. The effect of the dragging of the inertial frame is also shown in this part. In part four the radiative behavior of the stationary charged C-metric representing the electro-gravitational field of a uniformly accelerating and rotating charged particle with magnetic monopole and the NUT-parameter are investigated. The physical quantities - the news function, mass loss, mass, charge and the multipole moments - are calculated. It is also shown in this part that the magnetic monopole in the presence of rotation and acceleration affects the electric charge
Reconstructing the gravitational field of the local Universe
Desmond, Harry; Ferreira, Pedro G.; Lavaux, Guilhem; Jasche, Jens
2018-03-01
Tests of gravity at the galaxy scale are in their infancy. As a first step to systematically uncovering the gravitational significance of galaxies, we map three fundamental gravitational variables - the Newtonian potential, acceleration and curvature - over the galaxy environments of the local Universe to a distance of approximately 200 Mpc. Our method combines the contributions from galaxies in an all-sky redshift survey, haloes from an N-body simulation hosting low-luminosity objects, and linear and quasi-linear modes of the density field. We use the ranges of these variables to determine the extent to which galaxies expand the scope of generic tests of gravity and are capable of constraining specific classes of model for which they have special significance. Finally, we investigate the improvements afforded by upcoming galaxy surveys.
LISA Pathfinder: An important first step towards a space-based gravitational wave observatory
Thorpe, James
2017-08-01
ESA's LISA Pathfinder mission was launched on Dec 3rd, 2015 and completed earlier this Summer. During this relatively short mission, Pathfinder at its two science payloads, Europe's LISA Technology Package and NASA's Disturbance Reduction System, demonstrated several techniques and technologies that enable development of a future space-based gravitational wave observatory. Most notably, Pathfinder demonstrated that the technique of drag-free flight could be utilized to place a test mass in near-perfect free-fall, with residual accelerations at the femto-g level in the milliHertz band. Additionally, technologies such as precision bonded optical structures for metrology, micropropulsion systems, and non-contact charge control, were successfully tested, retiring risk for LISA. In this talk, I will present an overview of Pathfinder's results to date and some perspective on how this success will be leveraged into realizing LISA.
Primordial gravitational waves and cosmology.
Krauss, Lawrence M; Dodelson, Scott; Meyer, Stephan
2010-05-21
The observation of primordial gravitational waves could provide a new and unique window on the earliest moments in the history of the universe and on possible new physics at energies many orders of magnitude beyond those accessible at particle accelerators. Such waves might be detectable soon, in current or planned satellite experiments that will probe for characteristic imprints in the polarization of the cosmic microwave background, or later with direct space-based interferometers. A positive detection could provide definitive evidence for inflation in the early universe and would constrain new physics from the grand unification scale to the Planck scale.
Gravitational Wave Experiments - Proceedings of the First Edoardo Amaldi Conference
Coccia, E.; Pizzella, G.; Ronga, F.
1995-07-01
Production of Gravitational Radiation by Particle Accelerators and by High Power Lasers * NESTOR: An Underwater Cerenkov Detector for Neutrino Astronomy * A Cosmic-Ray Veto System for the Gravitational Wave Detector NAUTLUS * Interferometers * Development of a 20m Prototype Laser Interferometric Gravitational Wave Detector at NAO * Production of Higher-Order Light Modes by High Quality Optical Components * Vibration Isolation and Suspension Systems for Laser Interferometer Gravitational Wave Detectors * Quality Factors of Stainless Steel Pendulum Wires * Reduction of Suspension Thermal Noises in Laser Free Masses Gravitational Antenna by Correlation of the Output with Additional Optical Signal * Resonant Detectors * Regeneration Effects in a Resonant Gravitational Wave Detector * A Cryogenic Sapphire Transducer with Double Frequency Pumping for Resonant Mass GW Detectors * Effect of Parametric Instability of Gravitational Wave Antenna with Microwave Cavity Transducer * Resonators of Novel Geometry for Large Mass Resonant Transducers * Measurements on the Gravitational Wave Antenna ALTAIR Equipped with a BAE Transducer * The Rome BAE Transducer: Perspectives of its Application to Ultracryogenic Gravitational Wave Antennas * Behavior of a de SQUID Tightly Coupled to a High-Q Resonant Transducer * High Q-Factor LC Resonators for Optimal Coupling * Comparison Between Different Data Analysis Procedures for Gravitational Wave Pulse Detection * Supernova 1987A Rome Maryland Gravitational Radiation Antenna Observations * Analysis of the Data Recorded by the Maryland and Rome Gravitational-Wave Detectors and the Seismic Data from Moscow and Obninsk Station during SN1987A * Multitransducer Resonant Gravitational Antennas * Local Array of High Frequency Antennas * Interaction Cross-Sections for Spherical Resonant GW Antennae * Signal-To-Noise Analysis for a Spherical Gravitational Wave Antenna Instrumented with Multiple Transducers * On the Design of Ultralow Temperature Spherical
Vortex survival in 3D self-gravitating accretion discs
Lin, Min-Kai; Pierens, Arnaud
2018-04-01
Large-scale, dust-trapping vortices may account for observations of asymmetric protoplanetary discs. Disc vortices are also potential sites for accelerated planetesimal formation by concentrating dust grains. However, in 3D discs vortices are subject to destructive `elliptic instabilities', which reduces their viability as dust traps. The survival of vortices in 3D accretion discs is thus an important issue to address. In this work, we perform shearing box simulations to show that disc self-gravity enhances the survival of 3D vortices, even when self-gravity is weak in the classic sense (e.g. with a Toomre Q ≃ 5). We find a 3D, self-gravitating vortex can grow on secular timescales in spite of the elliptic instability. The vortex aspect-ratio decreases as it strengthens, which feeds the elliptic instability. The result is a 3D vortex with a turbulent core that persists for ˜103 orbits. We find when gravitational and hydrodynamic stresses become comparable, the vortex may undergo episodic bursts, which we interpret as interaction between elliptic and gravitational instabilities. We estimate the distribution of dust particles in self-gravitating, turbulent vortices. Our results suggest large-scale vortices in protoplanetary discs are more easily observed at large radii.
Swarm accelerometer data processing from raw accelerations to thermospheric neutral densities
DEFF Research Database (Denmark)
Siemes, Christian; da Encarnacao, Joao de Teixeira; Doornbos, Eelco
2016-01-01
The Swarm satellites were launched on November 22, 2013, and carry accelerometers and GPS receivers as part of their scientific payload. The GPS receivers do not only provide the position and time for the magnetic field measurements, but are also used for determining non-gravitational forces like...... in the acceleration measurements of Swarm B. We show the results of each processing stage, highlight the difficulties encountered, and comment on the quality of the thermospheric neutral density data set......., the most prominent being slow temperature-induced bias variations and sudden bias changes. In this paper, we describe the new, improved four-stage processing that is applied for transforming the disturbed acceleration measurements into scientifically valuable thermospheric neutral densities. In the first...... stage, the sudden bias changes in the acceleration measurements are manually removed using a dedicated software tool. The second stage is the calibration of the accelerometer measurements against the non-gravitational accelerations derived from the GPS receiver, which includes the correction...
Smith, A. H.
1972-01-01
The physical principles of gravitation are discussed, such as gravitational and intertial forces, weight and mass, weightlessness, size and scale effects, scale limits of gravitational effects, and gravity as a biogenic factor. The behavior of the accelerative force gravitation, is described. This law proposes and quantifies the mutual gravitational attraction existing between all bodies of matter, the force being proportional to the product of masses, and inversely related to the square of the distance separating them. Gravity orientation, chronic acceleration, and hematology are examined. Systematic responses, such as circulation and renal functions, are also considered, along with animal response to a decreased acceleration field and physiology of hyper- and hypodynamic fields.
Tropic responses of Phycomyces sporangiophores to gravitational and centrifugal stimuli.
DENNISON, D S
1961-09-01
A low-speed centrifuge was used to study the tropic responses of Phycomyces sporangiophores in darkness to the stimulus of combined gravitational and centrifugal forces. If this stimulus is constant the response is a relatively slow tropic reaction, which persists for up to 12 hours. The response is accelerated by increasing the magnitude of the gravitational-centrifugal force. A wholly different tropic response, the transient response, is elicited by an abrupt change in the gravitational-centrifugal stimulus. The transient response has a duration of only about 6 min. but is characterized by a high bending speed (about 5 degrees /min.). An analysis of the distribution of the transient response along the growing zone shows that the active phase of the response has a distribution similar to that of the light sensitivity for the light-growth and phototropic responses. Experiments in which sporangiophores are centrifuged in an inert dense fluid indicate that the sensory mechanism of the transient response is closely related to the physical deformation of the growing zone caused by the action of the gravitational-centrifugal force on the sporangiophore as a whole. However, the response to a steady gravitational-centrifugal force is most likely not connected with this deformation, but is probably triggered by the shifting of regions or particles of differing density relative to one another inside the cell.
Cooperstock's counterexample to the gravitational-radiation quadrupole formula
International Nuclear Information System (INIS)
Walker, M.
1986-01-01
Cooperstock has recently modified the axially symmetric gravitational two-body problem previously analyzed by himself, Lim, and Hobill by introducing a new assumption, that ''The system undergoes a smooth transition from the static state to free-fall and the motion. . .consists of the two bodies accelerating towards each other while undergoing slow tidal deformation.'' This assumption is inconsistent with his solution of the field equations. The quadrupole formula correctly describes the radiation emitted
On gravitational wave energy in Einstein gravitational theory
International Nuclear Information System (INIS)
Folomeshkin, V.N.; Vlasov, A.A.
1978-01-01
By the example of precise wave solutions for the Einstein equations it is shown that a standard commonly adopted formulation of energy-momentum problem with pseudotensors provides us either with a zero or sign-variable values for the energy of gravitational waves. It is shown that if in the Einstein gravitational theory a strict transition to the limits of weak fields is realised then the theory gives us an unambiguous zero result for weak gravitational waves. The well-known non-zero result arises due to incorrect transition to weak field approximation in the Einstein gravitation theory
A bio-inspired hair- based acceleration sensor
Droogendijk, H.
Crickets use so-called clavate hairs to sense (gravitational) acceleration to obtain information on their orientation. Inspired by this clavate hair system, a one-axis biomimetic accelerometer has been developed and fabricated using surface micromachining and SU- 8 lithography. Measu- rements show
Discontinuous Galerkin method for computing gravitational waveforms from extreme mass ratio binaries
International Nuclear Information System (INIS)
Field, Scott E; Hesthaven, Jan S; Lau, Stephen R
2009-01-01
Gravitational wave emission from extreme mass ratio binaries (EMRBs) should be detectable by the joint NASA-ESA LISA project, spurring interest in analytical and numerical methods for investigating EMRBs. We describe a discontinuous Galerkin (dG) method for solving the distributionally forced 1+1 wave equations which arise when modeling EMRBs via the perturbation theory of Schwarzschild black holes. Despite the presence of jump discontinuities in the relevant polar and axial gravitational 'master functions', our dG method achieves global spectral accuracy, provided that we know the instantaneous position, velocity and acceleration of the small particle. Here these variables are known, since we assume that the particle follows a timelike geodesic of the Schwarzschild geometry. We document the results of several numerical experiments testing our method, and in our concluding section discuss the possible inclusion of gravitational self-force effects.
Relativistic gravitation theory
International Nuclear Information System (INIS)
Logunov, A.A.; Mestvirishvili, M.A.
1984-01-01
On the basis of the special relativity and geometrization principle a relativistic gravitation theory (RGT) is unambiguously constructed with the help of a notion of a gravitational field as a physical field in Faraday-Maxwell spirit, which posesses energy momentum and spins 2 and 0. The source of gravitation field is a total conserved energy-momentum tensor for matter and for gravitation field in Minkowski space. In the RGT conservation laws for the energy momentum and angular momentum of matter and gravitational field hold rigorously. The theory explains the whole set of gravitation experiments. Here, due to the geometrization principle the Riemannian space is of a field origin since this space arises effectively as a result of the gravitation field origin since this space arises effectively as a result of the gravitation field action on the matter. The RGT astonishing prediction is that the Universe is not closed but ''flat''. It means that in the Universe there should exist a ''missing'' mass in some form of matter
Directory of Open Access Journals (Sweden)
T. Reubelt
2003-01-01
Full Text Available An algorithm for the (kinematic orbit analysis of a Low Earth Orbiting (LEO GPS tracked satellite to determine the spherical harmonic coefficients of the terrestrial gravitational field is presented. A contribution to existing long wavelength gravity field models is expected since the kinematic orbit of a LEO satellite can nowadays be determined with very high accuracy in the range of a few centimeters. To demonstrate the applicability of the proposed method, first results from the analysis of real CHAMP Rapid Science (dynamic Orbits (RSO and kinematic orbits are illustrated. In particular, we take advantage of Newton’s Law of Motion which balances the acceleration vector and the gradient of the gravitational potential with respect to an Inertial Frame of Reference (IRF. The satellite’s acceleration vector is determined by means of the second order functional of Newton’s Interpolation Formula from relative satellite ephemeris (baselines with respect to the IRF. Therefore the satellite ephemeris, which are normally given in a Body fixed Frame of Reference (BRF have to be transformed into the IRF. Subsequently the Newton interpolated accelerations have to be reduced for disturbing gravitational and non-gravitational accelerations in order to obtain the accelerations caused by the Earth’s gravitational field. For a first insight in real data processing these reductions have been neglected. The gradient of the gravitational potential, conventionally expressed in vector-valued spherical harmonics and given in a Body Fixed Frame of Reference, must be transformed from BRF to IRF by means of the polar motion matrix, the precession-nutation matrices and the Greenwich Siderial Time Angle (GAST. The resulting linear system of equations is solved by means of a least squares adjustment in terms of a Gauss-Markov model in order to estimate the spherical harmonics coefficients of the Earth’s gravitational field.Key words. space gravity spectroscopy
Quantum Accelerator Modes from the Farey Tree
International Nuclear Information System (INIS)
Buchleitner, A.; D'Arcy, M.B.; Fishman, S.; Gardiner, S.A.; Guarneri, I.; Ma, Z.-Y.; Rebuzzini, L.; Summy, G.S.
2006-01-01
We show that mode locking finds a purely quantum nondissipative counterpart in atom-optical quantum accelerator modes. These modes are formed by exposing cold atoms to periodic kicks in the direction of the gravitational field. They are anchored to generalized Arnol'd tongues, parameter regions where driven nonlinear classical systems exhibit mode locking. A hierarchy for the rational numbers known as the Farey tree provides an ordering of the Arnol'd tongues and hence of experimentally observed accelerator modes
Kuntsova, M Ia; Sveshnikov, V G; Timofeeva, E V
1978-01-01
In experiments on the shore crab H. sanguineus studies have been made of the effect of variable longitudinal acceleration during swinging (for 15--30 min) upon cardiac activity and gravitational reflexes. High sensitivity of gravitational receptors of the canal statocyst to the effect of acceleration was demonstrated. Removal of the statocysts increases the frequency and amplitude of cardiac contractions as revealed by ECG recording. Changes in stato-kinetic coordinations cause both the disorder of overturning reactions and the disorder of reciprocal inhibition in antagonistic muscles of the dactylopodite. Statocyst regulation of skeletal muscles and heart is presumably realised via contralateral inhibitory canal which is sensitive to linear accelerations.
Self-accelerating universe in scalar-tensor theories after GW170817
Crisostomi, Marco; Koyama, Kazuya
2018-04-01
The recent simultaneous detection of gravitational waves and a gamma-ray burst from a neutron star merger significantly shrank the space of viable scalar-tensor theories by demanding that the speed of gravity is equal to that of light. The survived theories belong to the class of degenerate higher order scalar-tensor theories. We study whether these theories are suitable as dark energy candidates. We find scaling solutions in the matter dominated universe that lead to de Sitter solutions at late times without the cosmological constant, realizing self-acceleration. We evaluate quasistatic perturbations around self-accelerating solutions and show that the stringent constraints coming from astrophysical objects and gravitational waves can be satisfied, leaving interesting possibilities to test these theories by cosmological observations.
Gravitational field equations on and off a 3-brane world
International Nuclear Information System (INIS)
Aliev, A N; Guemruekcueoglu, A E
2004-01-01
The effective gravitational field equations on and off a 3-brane world possessing a Z 2 mirror symmetry and embedded in a five-dimensional bulk spacetime with cosmological constant were derived by Shiromizu, Maeda and Sasaki (SMS) in the framework of the Gauss-Codazzi projective approach with the subsequent specialization to the Gaussian normal coordinates in the neighbourhood of the brane. However, the Gaussian normal coordinates imply a very special slicing of spacetime and clearly, the consistent analysis of the brane dynamics would benefit from complete freedom in the slicing of spacetime, pushing the layer surfaces in the fifth dimension at any rates of evolution and in arbitrary positions. We rederive the SMS effective gravitational field equations on a 3-brane and generalize the off-brane equations to the case where there is an arbitrary energy-momentum tensor in the bulk. We use a more general setting to allow for acceleration of the normals to the brane surface through the lapse function and the shift vector in the spirit of Arnowitt, Deser and Misner. We show that the gravitational influence of the bulk spacetime on the brane may be described by a traceless second-rank tensor W ij , constructed from the 'electric' part of the bulk Riemann tensor. We also present the evolution equations for the tensor W ij , as well as for the corresponding 'magnetic' part of the bulk curvature. These equations involve terms determined by both the nonvanishing acceleration of normals in the nongeodesic slicing of spacetime and the presence of other fields in the bulk
Gravitational effects in field gravitation theory
International Nuclear Information System (INIS)
Denisov, V.I.; Logunov, A.A.; Mestvirishvili, M.A.; Vlasov, A.A.
1979-01-01
The possibilities to describe various gravitation effects of field gravitation theory (FGT) are considered. Past-Newtonian approximation of the FGT has been constructed and on the basis of this approximation it has been shown that the field theory allows one to describe the whole set of experimental facts. The comparison of post-Newtonian parameters in FGT with those in the Einstein's theory makes it clear that these two; theories are undistinguishable from the viewpoint of any experiments, realized with post-Newtonian accuracy. Gravitational field of an island type source with spherically symmetrical distribution of matter and unstationary homogeneous model of Universe, which allows to describe the effect of cosmological red shift, are considered
Schubert, G.; Anderson, J. D.
2013-12-01
Titan's gravitational field is inferred from an analysis of archived radio Doppler data for six Cassini flybys. The analysis considers each flyby separately in contrast to the approach of lumping all the data together in a massive inversion. In this way it is possible to gain an improved understanding of the character of each flyby and its usefulness in constraining the gravitational coefficient C22 . Though our analysis is not yet complete and our final determination of C22 could differ from the result we report here by 1 or 2 sigma, we find a best-fit value of C22 equal to (13.21 × 0.17) × 10-6, significantly larger than the value of 10.0 × 10-6 obtained from an inversion of the lumped Cassini data. We also find no determination of the tidal Love number k2. The larger value of C22 implies a moment of inertia factor equal to 0.3819 × 0.0020 and a less differentiated Titan than is suggested by the smaller value. The larger value of C22 is consistent with an undifferentiated model of the satellite. While it is not possible to rule out either value of C22 , we prefer the larger value because its derivation results from a more hands on analysis of the data that extracts the weak hydrostatic signal while revealing the effects of gravity anomalies and unmodeled spacecraft accelerations on each of the six flybys.
Directory of Open Access Journals (Sweden)
Subieta Vasquez M. A.
2014-04-01
Full Text Available The AEg¯ $\\overline {\\rm{g}}$IS experiment [1] aims at directly measuring the gravitational acceleration g on a beam of cold antihydrogen (H¯$\\overline {\\rm{H}}$ to a precision of 1%, performing the first test with antimatter of the (WEP Weak Equivalence Principle. The experimental apparatus is sited at the Antiproton Decelerator (AD at CERN, Geneva, Switzerland. After production by mixing of antiprotons with Rydberg state positronium atoms (Ps, the H¯$\\overline {\\rm{H}}$ atoms will be driven to fly horizontally with a velocity of a few 100 ms−1 for a path length of about 1 meter. The small deflection, few tens of μm, will be measured using two material gratings (of period ∼ 80 μm coupled to a position-sensitive detector working as a moiré deflectometer similarly to what has been done with matter atoms [2]. The shadow pattern produced by the H¯$\\overline {\\rm{H}}$ beam will then be detected by reconstructing the annihilation points with a spatial resolution (∼ 2 μm of each antiatom at the end of the flight path by the sensitive-position detector. During 2012 the experimental apparatus has been commissioned with antiprotons and positrons. Since the AD will not be running during 2013,during the refurbishment of the CERN accelerators, the experiment is currently working with positrons, electrons and protons, in order to prepare the way for the antihydrogen production in late 2014.
Effect of Earth gravitational field on the detection of gravitational waves
International Nuclear Information System (INIS)
Denisov, V.I.; Eliseev, V.A.
1987-01-01
Results of laboratory detection of high-frequency gravitational waves from the view point of gravitation theories formulated on the basis of pseudoeuclidean space-time are calculated. Peculiarities due to different effects of the Earth gravitational field on the rates of gravitational and electromagnetic wave propagation in these theories are analysed. Experiments on check of predictions of the given class of theories are suggested
Anisotropic gravitational instability
International Nuclear Information System (INIS)
Polyachenko, V.L.; Fridman, A.M.
1988-01-01
Exact solutions of stability problems are obtained for two anisotropic gravitational systems of different geometries - a layer of finite thickness at rest and a rotating cylinder of finite radius. It is shown that the anisotropic gravitational instability which develops in both cases is of Jeans type. However, in contrast to the classical aperiodic Jeans instability, this instability is oscillatory. The physics of the anisotropic gravitational instability is investigated. It is shown that in a gravitating layer this instability is due, in particular, to excitation of previously unknown interchange-Jeans modes. In the cylinder, the oscillatory Jeans instability is associated with excitation of a rotational branch, this also being responsible for the beam gravitational instability. This is the reason why this instability and the anisotropic gravitational instability have so much in common
Testing general relativity on accelerators
Directory of Open Access Journals (Sweden)
Tigran Kalaydzhyan
2015-11-01
Full Text Available Within the general theory of relativity, the curvature of spacetime is related to the energy and momentum of the present matter and radiation. One of the more specific predictions of general relativity is the deflection of light and particle trajectories in the gravitational field of massive objects. Bending angles for electromagnetic waves and light in particular were measured with a high precision. However, the effect of gravity on relativistic massive particles was never studied experimentally. Here we propose and analyze experiments devoted to that purpose. We demonstrate a high sensitivity of the laser Compton scattering at high energy accelerators to the effects of gravity. The main observable – maximal energy of the scattered photons – would experience a significant shift in the ambient gravitational field even for otherwise negligible violation of the equivalence principle. We confirm predictions of general relativity for ultrarelativistic electrons of energy of tens of GeV at a current level of resolution and expect our work to be a starting point of further high-precision studies on current and future accelerators, such as PETRA, European XFEL and ILC.
Srivastava, S. K.
2008-01-01
Here, cosmology is obtained from the variable gravitational constant $ G \\propto \\phi^{-2}$ with $ \\phi(x) $ being a scalar and its fluctuations around the ground state. The gravitational action contains Einstein-Hilbert like term with variable $ G $, kinetic energy and self-interaction potential for $ \\phi(x) $. Two phase transitions take place in this model. The first one takes place at the GUT (grand unified theory) scale $ \\sim 2.45 \\times 10^{14}{\\rm GeV} $, when the early universe exits...
The gravitational Schwinger effect and attenuation of gravitational waves
McDougall, Patrick Guarneri
This paper will discuss the possible production of photons from gravitational waves. This process is shown to be possible by examining Feynman diagrams, the Schwinger Effect, and Hawking Radiation. The end goal of this project is to find the decay length of a gravitational wave and assert that this decay is due to photons being created at the expense of the gravitational wave. To do this, we first find the state function using the Klein Gordon equation, then find the current due to this state function. We then take the current to be directly proportional to the production rate per volume. This is then used to find the decay length that this kind of production would produce, gives a prediction of how this effect will change the distance an event creating a gravitational wave will be located, and shows that this effect is small but can be significant near the source of a gravitational wave.
The gravitational potential of a homogeneous polyhedron or don't cut corners
Werner, Robert A.
1994-01-01
A polyhedron can model irregularly shaped objects such as asteroids, comet nuclei, and small planetary satellites. With minor effort, such a model can incorporate important surface features such as large craters. Here we develop closed-form expressions for the exterior gravitational potential and acceleration components due to a constant-density polyhedron. An equipotential surface of Phobos is illustrated.
Foundations of gravitation theory: the principle of equivalence
International Nuclear Information System (INIS)
Haugan, M.P.
1978-01-01
A new framework is presented within which to discuss the principle of equivalence and its experimental tests. The framework incorporates a special structure imposed on the equivalence principle by the principle of energy conservation. This structure includes relations among the conceptual components of the equivalence principle as well as quantitative relations among the outcomes of its experimental tests. One of the most striking new results obtained through use of this framework is a connection between the breakdown of local Lorentz invariance and the breakdown of the principle that all bodies fall with the same acceleration in a gravitational field. An extensive discussion of experimental tests of the equivalence principle and their significance is also presented. Within the above framework, theory-independent analyses of a broad range of equivalence principle tests are possible. Gravitational redshift experiments. Doppler-shift experiments, the Turner-Hill and Hughes-Drever experiments, and a number of solar-system tests of gravitation theories are analyzed. Application of the techniques of theoretical nuclear physics to the quantitative interpretation of equivalence principle tests using laboratory materials of different composition yields a number of important results. It is found that current Eotvos experiments significantly demonstrate the compatibility of the weak interactions with the equivalence principle. It is also shown that the Hughes-Drever experiment is the most precise test of local Lorentz invariance yet performed. The work leads to a strong, tightly knit empirical basis for the principle of equivalence, the central pillar of the foundations of gravitation theory
Energy Technology Data Exchange (ETDEWEB)
Tone, Tatsuzo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment
2001-03-01
Overview of the historical evolution of nuclear energy systems development and related activities in JAERI is given in the report. This report reviews the research and development for light water reactor, fast breeder reactor, high temperature gas reactor, fusion reactor and utilization of accelerator-based neutron source. (author)
Utilization of electron beam accelerators for polymer processing
International Nuclear Information System (INIS)
Sarma, K.S.S.
2013-01-01
During the last decade, electron beam processing has been amply demonstrated to the Indian cable industry by BARC using 2 MeV/20 kW electron beam (EB) accelerator (ILU-6 EBA facility) located at BARC-BRIT complex, Vashi. The electron beam accelerator is a machine producing high energy electrons which are made to impinge on the materials for inducing physical, chemical and biological modifications. The process is carried out at room temperature and in ambient atmospheric conditions. Lately, quite a few numbers of accelerators have been installed by the private cable industry and carrying out cross-linking of cable insulations for high performance viz. high temperature stability, good flame retardancy, lesser solvent-swelling, thinner insulations etc. The indigenously made accelerators at EB centre, particularly the 3 MeV/30 kW accelerator will be of much help for Indian industry for polymer processing as the market is poised to grow by adapting the technology
Effect of the Earth's gravitational field on the detection of gravitational waves
International Nuclear Information System (INIS)
Denisov, V.I.; Eliseev, V.A.
1988-01-01
We consider the laboratory detection of high-frequency gravitational waves in theories of gravitation based on a pseudo-Euclidean space-time. We analyze the effects due to the Earth's gravitational field on the propagation velocities of gravitational and electromagnetic waves in these theories. Experiments to test the predictions of this class of theories are discussed
CERN. Geneva
2005-01-01
We will present a brief introduction to the physics of gravitational waves and their properties. We will review potential astrophysical sources of gravitational waves, and the physics and astrophysics that can be learned from their study. We will survey the techniques and technologies for detecting gravitational waves for the first time, including bar detectors and broadband interferometers, and give a brief status report on the international search effort, with special emphasis on the LIGO detectors and search results.
Exact relations for energy transfer in self-gravitating isothermal turbulence.
Banerjee, Supratik; Kritsuk, Alexei G
2017-11-01
Self-gravitating isothermal supersonic turbulence is analyzed in the asymptotic limit of large Reynolds numbers. Based on the inviscid invariance of total energy, an exact relation is derived for homogeneous (not necessarily isotropic) turbulence. A modified definition for the two-point energy correlation functions is used to comply with the requirement of detailed energy equipartition in the acoustic limit. In contrast to the previous relations (S. Galtier and S. Banerjee, Phys. Rev. Lett. 107, 134501 (2011)PRLTAO0031-900710.1103/PhysRevLett.107.134501; S. Banerjee and S. Galtier, Phys. Rev. E 87, 013019 (2013)PLEEE81539-375510.1103/PhysRevE.87.013019), the current exact relation shows that the pressure dilatation terms play practically no role in the energy cascade. Both the flux and source terms are written in terms of two-point differences. Sources enter the relation in a form of mixed second-order structure functions. Unlike the kinetic and thermodynamic potential energies, the gravitational contribution is absent from the flux term. An estimate shows that, for the isotropic case, the correlation between density and gravitational acceleration may play an important role in modifying the energy transfer in self-gravitating turbulence. The exact relation is also written in an alternative form in terms of two-point correlation functions, which is then used to describe scale-by-scale energy budget in spectral space.
General proof of the entropy principle for self-gravitating fluid in f(R) gravity
Energy Technology Data Exchange (ETDEWEB)
Fang, Xiongjun [Department of Physics and Key Laboratory of Low Dimensional Quantum Structures andQuantum Control of Ministry of Education, Hunan Normal University,Changsha, Hunan 410081 (China); Guo, Minyong [Department of Physics, Beijing Normal University,Beijing 100875 (China); Jing, Jiliang [Department of Physics and Key Laboratory of Low Dimensional Quantum Structures andQuantum Control of Ministry of Education, Hunan Normal University,Changsha, Hunan 410081 (China)
2016-08-29
The discussions on the connection between gravity and thermodynamics attract much attention recently. We consider a static self-gravitating perfect fluid system in f(R) gravity, which is an important theory could explain the accelerated expansion of the universe. We first show that the Tolman-Oppenheimer-Volkoff equation of f(R) theories can be obtained by thermodynamical method in spherical symmetric spacetime. Then we prove that the maximum entropy principle is also valid for f(R) gravity in general static spacetimes beyond spherical symmetry. The result shows that if the constraint equation is satisfied and the temperature of fluid obeys Tolmans law, the extrema of total entropy implies other components of gravitational equations. Conversely, if f(R) gravitational equation hold, the total entropy of the fluid should be extremum. Our work suggests a general and solid connection between f(R) gravity and thermodynamics.
Einstein-Rosen gravitational waves
International Nuclear Information System (INIS)
Astefanoaei, Iordana; Maftei, Gh.
2001-01-01
In this paper we analyse the behaviour of the gravitational waves in the approximation of the far matter fields, considering the indirect interaction between the matter sources and the gravitational field, in a cosmological model based on the Einstein-Rosen solution, Because the properties of the gravitational waves obtained as the solutions of Einstein fields equations (the gravitational field equations) are most obvious in the weak gravitational fields we consider here, the gravitational field in the linear approximation. Using the Newman-Penrose formalism, we calculate in the null-tetradic base (e a ), the spin coefficients, the directional derivates and the tetradic components of Ricci and Weyl tensors. From the Einstein field equations we obtained the solution for b(z, t) what described the behaviour of gravitational wave in Einstein-Rosen Universe and in the particular case, when t → ∞, p(z, t) leads us to the primordial gravitational waves in the Einstein-Rosen Universe. (authors)
Present status of TIARA electrostatic accelerator facility
Energy Technology Data Exchange (ETDEWEB)
Tajima, Satoshi; Takada, Isao; Mizuhashi, Kiyoshi; Saito, Yuichi; Uno, Sadanori; Okoshi, Kiyonori; Ishii, Yasuyuki; Nakajima, Yoshinori; Sakai, Takuro [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment
1996-12-01
The electrostatic accelerator, 3 MV tandem accelerator, 3 MV single end accelerator and 400 kV ion implantation equipment, which were installed in Takasaki Ion Irradiation Research Facility (TIARA) of Japan Atomic Energy Research Institute, have been used for the research on the advanced utilization of radiation mainly in material science by ion beam. The utilization is open to other researchers, and in fiscal year 1995, about 40% was the utilization by outsiders. The number of the experimental subjects adopted in fiscal year 1995 was 47, and the fields of research were space and environment materials, nuclear fusion reactor materials, new functional materials, biotechnology and base technology. The operation time in fiscal year 1995 was 1201, 1705 and 1505 hours for the tandem accelerator, single end accelerator and ion implantation equipment, respectively. The methods of experiment are reported. The troubles occurred in the tandem accelerator and single end accelerator are reported. As the diversification of beam utilization in the tandem accelerator, the utilizations of high energy molecular ions, low energy negative ions, multivalent ions by post stripper and low intensity ions by mesh attenuator have been attempted. These utilizations are described. (K.I.)
Numerical computation of gravitational field for general axisymmetric objects
Fukushima, Toshio
2016-10-01
We developed a numerical method to compute the gravitational field of a general axisymmetric object. The method (I) numerically evaluates a double integral of the ring potential by the split quadrature method using the double exponential rules, and (II) derives the acceleration vector by numerically differentiating the numerically integrated potential by Ridder's algorithm. Numerical comparison with the analytical solutions for a finite uniform spheroid and an infinitely extended object of the Miyamoto-Nagai density distribution confirmed the 13- and 11-digit accuracy of the potential and the acceleration vector computed by the method, respectively. By using the method, we present the gravitational potential contour map and/or the rotation curve of various axisymmetric objects: (I) finite uniform objects covering rhombic spindles and circular toroids, (II) infinitely extended spheroids including Sérsic and Navarro-Frenk-White spheroids, and (III) other axisymmetric objects such as an X/peanut-shaped object like NGC 128, a power-law disc with a central hole like the protoplanetary disc of TW Hya, and a tear-drop-shaped toroid like an axisymmetric equilibrium solution of plasma charge distribution in an International Thermonuclear Experimental Reactor-like tokamak. The method is directly applicable to the electrostatic field and will be easily extended for the magnetostatic field. The FORTRAN 90 programs of the new method and some test results are electronically available.
Gravitational waves from inflation
International Nuclear Information System (INIS)
Guzzetti, M.C.; Bartolo, N.; Liguori, M.; Matarrese, S.
2016-01-01
The production of a stochastic background of gravitational waves is a fundamental prediction of any cosmological inflationary model. The features of such a signal encode unique information about the physics of the Early Universe and beyond, thus representing an exciting, powerful window on the origin and evolution of the Universe. We review the main mechanisms of gravitational-wave production, ranging from quantum fluctuations of the gravitational field to other mechanisms that can take place during or after inflation. These include e.g. gravitational waves generated as a consequence of extra particle production during inflation, or during the (p)reheating phase. Gravitational waves produced in inflation scenarios based on modified gravity theories and second-order gravitational waves are also considered. For each analyzed case, the expected power spectrum is given. We discuss the discriminating power among different models, associated with the validity/violation of the standard consistency relation between tensor-to-scalar ratio r and tensor spectral index ηT. In light of the prospects for (directly/indirectly) detecting primordial gravitational waves, we give the expected present-day gravitational radiation spectral energy-density, highlighting the main characteristics imprinted by the cosmic thermal history, and we outline the signatures left by gravitational waves on the Cosmic Microwave Background and some imprints in the Large-Scale Structure of the Universe. Finally, current bounds and prospects of detection for inflationary gravitational waves are summarized.
Hoffmann, William F
1964-01-01
Remarks on the observational basis of general relativity ; Riemannian geometry ; gravitation as geometry ; gravitational waves ; Mach's principle and experiments on mass anisotropy ; the many faces of Mach ; the significance for the solar system of time-varying gravitation ; relativity principles and the role of coordinates in physics ; the superdense star and the critical nucleon number ; gravitation and light ; possible effects on the solar system of φ waves if they exist ; the Lyttleton-Bondi universe and charge equality ; quantization of general relativity ; Mach's principle as boundary condition for Einstein's equations.
Gravitational waves — A review on the theoretical foundations of gravitational radiation
Dirkes, Alain
2018-05-01
In this paper, we review the theoretical foundations of gravitational waves in the framework of Albert Einstein’s theory of general relativity. Following Einstein’s early efforts, we first derive the linearized Einstein field equations and work out the corresponding gravitational wave equation. Moreover, we present the gravitational potentials in the far away wave zone field point approximation obtained from the relaxed Einstein field equations. We close this review by taking a closer look on the radiative losses of gravitating n-body systems and present some aspects of the current interferometric gravitational waves detectors. Each section has a separate appendix contribution where further computational details are displayed. To conclude, we summarize the main results and present a brief outlook in terms of current ongoing efforts to build a spaced-based gravitational wave observatory.
Gravitational Casimir–Polder effect
Directory of Open Access Journals (Sweden)
Jiawei Hu
2017-04-01
Full Text Available The interaction due to quantum gravitational vacuum fluctuations between a gravitationally polarizable object modelled as a two-level system and a gravitational boundary is investigated. This quantum gravitational interaction is found to be position-dependent, which induces a force in close analogy to the Casimir–Polder force in the electromagnetic case. For a Dirichlet boundary, the quantum gravitational potential for the polarizable object in its ground-state is shown to behave like z−5 in the near zone, and z−6 in the far zone, where z is the distance to the boundary. For a concrete example, where a Bose–Einstein condensate is taken as a gravitationally polarizable object, the relative correction to the radius of the BEC caused by fluctuating quantum gravitational waves in vacuum is found to be of order 10−21. Although the correction is far too small to observe in comparison with its electromagnetic counterpart, it is nevertheless of the order of the gravitational strain caused by a recently detected black hole merger on the arms of the LIGO.
Theory of gravitational interactions
Gasperini, Maurizio
2017-01-01
This is the second edition of a well-received book that is a modern, self-contained introduction to the theory of gravitational interactions. The new edition includes more details on gravitational waves of cosmological origin, the so-called brane world scenario, and gravitational time-delay effects. The first part of the book follows the traditional presentation of general relativity as a geometric theory of the macroscopic gravitational field, while the second, more advanced part discusses the deep analogies (and differences) between a geometric theory of gravity and the “gauge” theories of the other fundamental interactions. This fills a gap within the traditional approach to general relativity which usually leaves students puzzled about the role of gravity. The required notions of differential geometry are reduced to the minimum, allowing room for aspects of gravitational physics of current phenomenological and theoretical interest, such as the properties of gravitational waves, the gravitational inter...
Moore, Guy S. M.; Moore, Richard E. M.
2013-10-01
All proposed gravitational explanations of the Pioneer anomaly must crucially face the Equivalence Principle. Thus, if Pioneers 10 and 11 were influenced by anomalous gravitational effects in regions containing other Solar System bodies, then those bodies should likewise be influenced, irrespective of their shape, composition or mass. Although the lack of any observed influence upon planetary orbits severely constrains such explanations, here we aim to construct by computer modeling, hypothetical gravitating annuli having no gravitational impact on planetary orbits from Mercury to Neptune. One model has a central zone, free of radial gravitation in the annular plane, and an ‘onset’ beyond Saturn’s orbit, where sunward annular gravitation increases to match the Pioneer anomaly data. Sharp nulls are included so that Uranus and Neptune escape this influence. Such models can be proportionately reduced in mass: a 1 % contribution to the anomaly requires an annulus of approximately 1 Earth mass. It is thus possible to comply with the JPL assessment of newly recovered data attributing 80 %, or more, of the anomaly to spacecraft heat, which appears to allow small contributions from other causes. Following the possibility of an increasing Kuiper belt density at great ranges, another model makes an outward small anomalous gravitation in the TNO region, tallying with an observed slight indication of such an effect, suggesting that New Horizons may slightly accelerate in this region.
An Atomic Gravitational Wave Interferometric Sensor (AGIS)
Dimopoulos, Savas; Graham, Peter W.; Hogan, Jason M.; Kasevich, Mark A.; Rajendran, Surjeet
2008-01-01
We propose two distinct atom interferometer gravitational wave detectors, one terrestrial and another satellite-based, utilizing the core technology of the Stanford 10 m atom interferometer presently under construction. Each configuration compares two widely separated atom interferometers run using common lasers. The signal scales with the distance between the interferometers, which can be large since only the light travels over this distance, not the atoms. The terrestrial experiment with ba...
Gravitational mass and Newton's universal gravitational law under relativistic conditions
International Nuclear Information System (INIS)
Vayenas, Constantinos G; Grigoriou, Dimitrios; Fokas, Athanasios
2015-01-01
We discuss the predictions of Newton's universal gravitational law when using the gravitational, m g , rather than the rest masses, m o , of the attracting particles. According to the equivalence principle, the gravitational mass equals the inertial mass, m i , and the latter which can be directly computed from special relativity, is an increasing function of the Lorentz factor, γ, and thus of the particle velocity. We consider gravitationally bound rotating composite states, and we show that the ratio of the gravitational force for gravitationally bound rotational states to the force corresponding to low (γ ≈ 1) particle velocities is of the order of (m Pl /m o ) 2 where mpi is the Planck mass (ħc/G) 1/2 . We also obtain a similar result, within a factor of two, by employing the derivative of the effective potential of the Schwarzschild geodesics of GR. Finally, we show that for certain macroscopic systems, such as the perihelion precession of planets, the predictions of this relativistic Newtonian gravitational law differ again by only a factor of two from the predictions of GR. (paper)
Gravitational collapse and the vacuum energy
International Nuclear Information System (INIS)
Campos, M
2014-01-01
To explain the accelerated expansion of the universe, models with interacting dark components (dark energy and dark matter) have been considered recently in the literature. Generally, the dark energy component is physically interpreted as the vacuum energy of the all fields that fill the universe. As the other side of the same coin, the influence of the vacuum energy on the gravitational collapse is of great interest. We study such collapse adopting different parameterizations for the evolution of the vacuum energy. We discuss the homogeneous collapsing star fluid, that interacts with a vacuum energy component, using the stiff matter case as example. We conclude this work with a discussion of the Cahill-McVittie mass for the collapsed object.
Radiation from Accelerating Electric Charges: The Third Derivative of Position
Butterworth, Edward
2010-03-01
While some textbooks appear to suggest that acceleration of an electric charge is both a necessary and sufficient cause for the generation of electromagnetic radiation, the question has in fact had an intricate and involved history. In particular, the acceleration of a charge in hyperbolic motion, the behavior of a charge supported against a gravitational force (and its implications for the Equivalence Principle), and a charge accelerated by a workless constraint have been the subject of repeated investigation. The present paper examines specifically the manner in which the third derivative of position enters into the equations of motion, and the implications this has for the emission of radiation. Plass opens his review article with the statement that ``A fundamental property of all charged particles is that electromagnetic energy is radiated whenever they are accelerated'' (Plass 1961; emphasis mine). His treatment of the equations of motion, however, emphasizes the importance of the occurrence of the third derivative of position therein, present in linear motion only when the rate of acceleration is increasing or decreasing. There appears to be general agreement that the presence of a nonzero third derivative indicates that this charge is radiating; but does its absence preclude radiation? This question leads back to the issues of charges accelerated by a uniform gravitational field. We will examine the equations of motion as presented in Fulton & Rohrlich (1960), Plass (1961), Barut (1964), Teitelboim (1970) and Mo & Papas (1971) in the light of more recent literature in an attempt to clarify this question.
The Scalar-Tensor Theory of Gravitation
International Nuclear Information System (INIS)
Ibanez, J
2003-01-01
Since the scalar-tensor theory of gravitation was proposed almost 50 years ago, it has recently become a robust alternative theory to Einstein's general relativity due to the fact that it appears to represent the lower level of a more fundamental theory and can serve both as a phenomenological theory to explain the recently observed acceleration of the universe, and to solve the cosmological constant problem. To my knowledge The Scalar-Tensor Theory of Gravitation by Y Fujii and K Maeda is the first book to develop a modern view on this topic and is one of the latest titles in the well-presented Cambridge Monographs on Mathematical Physics series. This book is an excellent readable introduction and up-to-date review of the subject. The discussion is well organized; after a comprehensible introduction to the Brans-Dicke theory and the important role played by conformal transformations, the authors review cosmologies with the cosmological constant and how the scalar-tensor theory can serve to explain the accelerating universe, including discussions on dark energy, quintessence and braneworld cosmologies. The book ends with a chapter devoted to quantum effects. To make easy the lectures of the book, each chapter starts with a summary of the subject to be dealt with. As the book proceeds, important issues like conformal frames and the weak equivalence principle are fully discussed. As the authors warn in the preface, the book is not encyclopedic (from my point of view the list of references is fairly short, for example, but this is a minor drawback) and the choice of included topics corresponds to the authors' interests. Nevertheless, the book seems to cover a broad range of the most essential aspects of the subject. Long and 'boring' mathematical derivations are left to appendices so as not to interrupt the flow of the reasoning, allowing the reader to focus on the physical aspects of each subject. These appendices are a valuable help in entering into the mathematical
Relativistic theory of gravitation
International Nuclear Information System (INIS)
Logunov, A.A.; Mestvirishvilli, M.A.
1985-01-01
In the present paper a relativistic theory of gravitation (RTG) is constructed in a unique way on the basis of the special relativity and geometrization principle. In this, a gravitational field is treated as the Faraday-Maxwell spin-2 and spin-0 physical field possessing energy and momentum. The source of a gravitational field is the total conserved energy-momentum tensor of matter and of a gravitational field in Minkowski space. In the RTG, the conservation laws are strictly fulfilled for the energy-momentum and for the angular momentum of matter and a gravitational field. The theory explains the whole available set of experiments on gravitation. In virtue of the geometrization principle, the Riemannian space in our theory is of field origin, since it appears as an effective force space due to the action of a gravitational field on matter. The RTg leads to an exceptionally strong prediction: The Universe is not closed but just ''flat''. This suggests that in the Universe a ''hidden mass'' should exist in some form of matter
CERN. Geneva HR-RFA
2006-01-01
We will present a brief introduction to the physics of gravitational waves and their properties. We will review potential astrophysical sources of gravitational waves, and the physics and astrophysics that can be learned from their study. We will survey the techniques and technologies for detecting gravitational waves for the first time, including bar detectors and broadband interferometers, and give a brief status report on the international search effort.
International Nuclear Information System (INIS)
Yunes, Nicolas; O'Shaughnessy, Richard; Owen, Benjamin J.; Alexander, Stephon
2010-01-01
Gravitational parity violation is a possibility motivated by particle physics, string theory, and loop quantum gravity. One effect of it is amplitude birefringence of gravitational waves, whereby left and right circularly polarized waves propagate at the same speed but with different amplitude evolution. Here we propose a test of this effect through coincident observations of gravitational waves and short gamma-ray bursts from binary mergers involving neutron stars. Such gravitational waves are highly left or right circularly polarized due to the geometry of the merger. Using localization information from the gamma-ray burst, ground-based gravitational wave detectors can measure the distance to the source with reasonable accuracy. An electromagnetic determination of the redshift from an afterglow or host galaxy yields an independent measure of this distance. Gravitational parity violation would manifest itself as a discrepancy between these two distance measurements. We exemplify such a test by considering one specific effective theory that leads to such gravitational parity violation, Chern-Simons gravity. We show that the advanced LIGO-Virgo network and all-sky gamma-ray telescopes can be sensitive to the propagating sector of Chern-Simons gravitational parity violation to a level roughly 2 orders of magnitude better than current stationary constraints from the LAGEOS satellites.
Does an atom interferometer test the gravitational redshift at the Compton frequency?
International Nuclear Information System (INIS)
Wolf, Peter; Borde, Christian J; Blanchet, Luc; Reynaud, Serge; Salomon, Christophe; Cohen-Tannoudji, Claude
2011-01-01
Atom interferometers allow the measurement of the acceleration of freely falling atoms with respect to an experimental platform at rest on Earth's surface. Such experiments have been used to test the universality of free fall by comparing the acceleration of the atoms to that of a classical freely falling object. In a recent paper, Mueller et al (2010 Nature 463 926-9) argued that atom interferometers also provide a very accurate test of the gravitational redshift (or universality of clock rates). Considering the atom as a clock operating at the Compton frequency associated with the rest mass, they claimed that the interferometer measures the gravitational redshift between the atom-clocks in the two paths of the interferometer at different values of gravitational potentials. In this paper, we analyze this claim in the frame of general relativity and of different alternative theories. We show that the difference of 'Compton phases' between the two paths of the interferometer is actually zero in a large class of theories, including general relativity, all metric theories of gravity, most non-metric theories and most theoretical frameworks used to interpret the violations of the equivalence principle. Therefore, in most plausible theoretical frameworks, there is no redshift effect and atom interferometers only test the universality of free fall. We also show that frameworks in which atom interferometers would test the redshift pose serious problems, such as (i) violation of the Schiff conjecture, (ii) violation of the Feynman path integral formulation of quantum mechanics and of the principle of least action for matter waves, (iii) violation of energy conservation, and more generally (iv) violation of the particle-wave duality in quantum mechanics. Standard quantum mechanics is no longer valid in such frameworks, so that a consistent interpretation of the experiment would require an alternative formulation of quantum mechanics. As such an alternative has not been
Relativity theory and gravitation
International Nuclear Information System (INIS)
Bondi, H.
1986-01-01
The paper on relativity theory and gravitation is presented as a preface to the first of the articles submitted to the Journal on general relativity. Newtonian gravitation and and observation, relativity, and the sources of the gravitational field, are all discussed. (UK)
Gribov, I. A.; Trigger, S. A.
2016-11-01
A large-scale self-similar crystallized phase of finite gravitationally neutral universe (GNU)—huge GNU-ball—with spherical 2D-boundary immersed into an endless empty 3D- space is considered. The main principal assumptions of this universe model are: (1) existence of stable elementary particles-antiparticles with the opposite gravitational “charges” (M+gr and M -gr), which have the same positive inertial mass M in = |M ±gr | ≥ 0 and are equally presented in the universe during all universe evolution epochs; (2) the gravitational interaction between the masses of the opposite charges” is repulsive; (3) the unbroken baryon-antibaryon symmetry; (4) M+gr-M-gr “charges” symmetry, valid for two equally presented matter-antimatter GNU-components: (a) ordinary matter (OM)-ordinary antimatter (OAM), (b) dark matter (DM)-dark antimatter (DAM). The GNU-ball is weightless crystallized dust of equally presented, mutually repulsive (OM+DM) clusters and (OAM+DAM) anticlusters. Newtonian GNU-hydrodynamics gives the observable spatial flatness and ideal Hubble flow. The GNU in the obtained large-scale self-similar crystallized phase preserves absence of the cluster-anticluster collisions and simultaneously explains the observable large-scale universe phenomena: (1) the absence of the matter-antimatter clusters annihilation, (2) the self-similar Hubble flow stability and homogeneity, (3) flatness, (4) bubble and cosmic-net structures as 3D-2D-1D decrystallization phases with decelerative (a ≤ 0) and accelerative (a ≥ 0) expansion epochs, (5) the dark energy (DE) phenomena with Λ VACUUM = 0, (6) the DE and DM fine-tuning nature and predicts (7) evaporation into isolated huge M±gr superclusters without Big Rip.
International Nuclear Information System (INIS)
Gribov, I A; Trigger, S A
2016-01-01
A large-scale self-similar crystallized phase of finite gravitationally neutral universe (GNU)—huge GNU-ball—with spherical 2D-boundary immersed into an endless empty 3D- space is considered. The main principal assumptions of this universe model are: (1) existence of stable elementary particles-antiparticles with the opposite gravitational “charges” ( M + gr and M -gr ), which have the same positive inertial mass M in = | M ±gr | ≥ 0 and are equally presented in the universe during all universe evolution epochs; (2) the gravitational interaction between the masses of the opposite charges” is repulsive; (3) the unbroken baryon-antibaryon symmetry; (4) M +gr -M -gr “charges” symmetry, valid for two equally presented matter-antimatter GNU-components: (a) ordinary matter (OM)-ordinary antimatter (OAM), (b) dark matter (DM)-dark antimatter (DAM). The GNU-ball is weightless crystallized dust of equally presented, mutually repulsive (OM+DM) clusters and (OAM+DAM) anticlusters. Newtonian GNU-hydrodynamics gives the observable spatial flatness and ideal Hubble flow. The GNU in the obtained large-scale self-similar crystallized phase preserves absence of the cluster-anticluster collisions and simultaneously explains the observable large-scale universe phenomena: (1) the absence of the matter-antimatter clusters annihilation, (2) the self-similar Hubble flow stability and homogeneity, (3) flatness, (4) bubble and cosmic-net structures as 3D-2D-1D decrystallization phases with decelerative (a ≤ 0) and accelerative (a ≥ 0) expansion epochs, (5) the dark energy (DE) phenomena with Λ VACUUM = 0, (6) the DE and DM fine-tuning nature and predicts (7) evaporation into isolated huge M ±gr superclusters without Big Rip. (paper)
Radiative processes for Rindler and accelerating observers and the stress-tensor detector
International Nuclear Information System (INIS)
Paola, R. De; Svaiter, N.F.
1996-04-01
It is considered a monopole detector interacting with a massive scalar field. Using the rotating wave approximation the radiative processes is discussed from the accelerated frame point of view. After this, it is obtained the Minkowski vacuum stress tensor measured by the accelerated observer using a non-gravitational stress sensor detector. Finally we analyse radiative processes of the monopole detector travelling in a world line that is inertial in the infinite past and has a constant proper acceleration in the infinite future. (author). 30 refs
Utilization of low-energy electron accelerators in Korea
International Nuclear Information System (INIS)
Lee, Byung Cheol
2003-01-01
There are more than 20 electron accelerators in Korea. Most of those are installed in factories for heat-resistant cables, heat-shrinkable cables, radial tires, foams, tube/ films, curing, etc. Four low-energy electron accelerators are in operation for research purposes such as polymer modification, purification of flue gas, waste water treatment, modification of semiconductor characteristics, etc. (author)
Utilization of low-energy electron accelerators in Korea
Energy Technology Data Exchange (ETDEWEB)
Lee, Byung Cheol [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)
2003-02-01
There are more than 20 electron accelerators in Korea. Most of those are installed in factories for heat-resistant cables, heat-shrinkable cables, radial tires, foams, tube/ films, curing, etc. Four low-energy electron accelerators are in operation for research purposes such as polymer modification, purification of flue gas, waste water treatment, modification of semiconductor characteristics, etc. (author)
Teaching the gravitational redshift: lessons from the history and philosophy of physics
International Nuclear Information System (INIS)
Scott, Robert B
2015-01-01
The equivalence principle and the notion of an ideal clock running independently of acceleration suggest that clocks are unaffected by gravity. The apparent contradiction with the gravitational redshift points to a subtlety in general relativity theory. Indeed, early attempts for a clear derivation of the gravitational redshift were fraught with errors and ambiguities, and much confusion endured for the next two decades. This suggests that the subject should be treated carefully in introductory textbooks on relativity theory. I analyze the weaknesses of the presentation in five otherwise excellent modern introductory general relativity books (by Rindler, Schutz, Hobson et al., Weinberg, and Carroll). I also present some analysis from an history and philosophy of physics article, which proves to be a great resource to learn about, anticipate, and clarify problems in teaching the redshift. (paper)
Exactly integrable analogue of a one-dimensional gravitating system
International Nuclear Information System (INIS)
Miller, Bruce N.; Yawn, Kenneth R.; Maier, Bill
2005-01-01
Exchange symmetry in acceleration partitions the configuration space of an N particle one-dimensional gravitational system (OGS) into N! equivalent cells. We take advantage of the resulting small angular separation between the forces in neighboring cells to construct a related integrable version of the system that takes the form of a central force problem in N-1 dimensions. The properties of the latter, including the construction of trajectories and possible continuum limits, are developed. Dynamical simulation is employed to compare the two models. For some initial conditions, excellent agreement is observed
Misner, Charles W; Wheeler, John Archibald
2017-01-01
First published in 1973, Gravitation is a landmark graduate-level textbook that presents Einstein’s general theory of relativity and offers a rigorous, full-year course on the physics of gravitation. Upon publication, Science called it “a pedagogic masterpiece,” and it has since become a classic, considered essential reading for every serious student and researcher in the field of relativity. This authoritative text has shaped the research of generations of physicists and astronomers, and the book continues to influence the way experts think about the subject. With an emphasis on geometric interpretation, this masterful and comprehensive book introduces the theory of relativity; describes physical applications, from stars to black holes and gravitational waves; and portrays the field’s frontiers. The book also offers a unique, alternating, two-track pathway through the subject. Material focusing on basic physical ideas is designated as Track 1 and formulates an appropriate one-semester graduate-level...
CERN. Geneva
2016-01-01
In the past year, the LIGO-Virgo Collaboration announced the first secure detection of gravitational waves. This discovery heralds the beginning of gravitational wave astronomy: the use of gravitational waves as a tool for studying the dense and dynamical universe. In this talk, I will describe the full spectrum of gravitational waves, from Hubble-scale modes, through waves with periods of years, hours and milliseconds. I will describe the different techniques one uses to measure the waves in these bands, current and planned facilities for implementing these techniques, and the broad range of sources which produce the radiation. I will discuss what we might expect to learn as more events and sources are measured, and as this field matures into a standard part of the astronomical milieu.
Development of beam utilization/application technology
Energy Technology Data Exchange (ETDEWEB)
Choi, B H; Kim, Y K; Song, T Y [and others
1999-05-01
High power proton accelerator is considered as one of national fundamental research facilities and a key to advanced nuclear technology development, having been widely used in an un detachable relationship with nuclear research in advanced countries. The high power proton accelerator will be installed in several phases as an up front facility of the nuclear waste transmutation system. It is expected that a common understanding and a general agreement over proper utilization of the accelerator should be deduced and that a user program for beam utilization and application should be firmly established in time for the completion of each phase of the accelerator. This high power proton accelerator will consist of several component accelerators and, from up front, accelerators such as injector, RFQ, CCDTL, etc. will be installed in sequence and deliver respectively at each stage beams of 3MeV, 20MeV, 100Mev, etc. to be variously utilized forindustries, defence industry, medical treatment, environmental protection and basic science research. In order for the accelerator to be fully utilized as a national fundamental research facility beyond nuclear field, it is necessary to formulate a proceeding plan of the user program for the accelerator and to cultivate industrial utilization/application studies of proton beams accelerated by injector or RFQ of the accelerator. (author). 38 refs., 84 tabs., 39 figs.
Development of beam utilization/application technology
International Nuclear Information System (INIS)
Choi, B. H.; Kim, Y.K.; Song, T.Y.
1999-05-01
High power proton accelerator is considered as one of national fundamental research facilities and a key to advanced nuclear technology development, having been widely used in an un detachable relationship with nuclear research in advanced countries. The high power proton accelerator will be installed in several phases as an up front facility of the nuclear waste transmutation system. It is expected that a common understanding and a general agreement over proper utilization of the accelerator should be deduced and that a user program for beam utilization and application should be firmly established in time for the completion of each phase of the accelerator. This high power proton accelerator will consist of several component accelerators and, from up front, accelerators such as injector, RFQ, CCDTL, etc. will be installed in sequence and deliver respectively at each stage beams of 3MeV, 20MeV, 100Mev, etc. to be variously utilized for industries, defence industry, medical treatment, environmental protection and basic science research. In order for the accelerator to be fully utilized as a national fundamental research facility beyond nuclear field, it is necessary to formulate a proceeding plan of the user program for the accelerator and to cultivate industrial utilization/application studies of proton beams accelerated by injector or RFQ of the accelerator. (author). 38 refs., 84 tabs., 39 figs
CERN. Geneva
2006-01-01
Gravitational wave astronomy is expected to become an observational field within the next decade. First direct detection of gravitational waves is possible with existing terrestrial-based detectors, and highly probable with proposed upgrades. In this three-part lecture series, we give an overview of the field, including material on gravitional wave sources, detection methods, some details of interferometric detectors, data analysis methods, and current results from observational data-taking runs of the LIGO and GEO projects.
Underdevelopment’s gravitation
Directory of Open Access Journals (Sweden)
Marin Dinu
2013-09-01
Full Text Available The energy necessary to escape the gravitational pull of underdevelopment and to enter an evolutional trajectory dependent on the gravitational pull of development is unintelligible in economic terms.
International Nuclear Information System (INIS)
Bassi, Angelo; Großardt, André; Ulbricht, Hendrik
2017-01-01
We discuss effects of loss of coherence in low energy quantum systems caused by or related to gravitation, referred to as gravitational decoherence. These effects, resulting from random metric fluctuations, for instance, promise to be accessible by relatively inexpensive table-top experiments, way before the scales where true quantum gravity effects become important. Therefore, they can provide a first experimental view on gravity in the quantum regime. We will survey models of decoherence induced both by classical and quantum gravitational fluctuations; it will be manifest that a clear understanding of gravitational decoherence is still lacking. Next we will review models where quantum theory is modified, under the assumption that gravity causes the collapse of the wave functions, when systems are large enough. These models challenge the quantum-gravity interplay, and can be tested experimentally. In the last part we have a look at the state of the art of experimental research. We will review efforts aiming at more and more accurate measurements of gravity ( G and g ) and ideas for measuring conventional and unconventional gravity effects on nonrelativistic quantum systems. (topical review)
Simultaneous measurement of gravity acceleration and gravity gradient with an atom interferometer
International Nuclear Information System (INIS)
Sorrentino, F.; Lien, Y.-H.; Rosi, G.; Tino, G. M.; Bertoldi, A.; Bodart, Q.; Cacciapuoti, L.; Angelis, M. de; Prevedelli, M.
2012-01-01
We demonstrate a method to measure the gravitational acceleration with a dual cloud atom interferometer; the use of simultaneous atom interferometers reduces the effect of seismic noise on the gravity measurement. At the same time, the apparatus is capable of accurate measurements of the vertical gravity gradient. The ability to determine the gravity acceleration and gravity gradient simultaneously and with the same instrument opens interesting perspectives in geophysical applications.
A Physical Model of Pulsars as Gravitational Shielding and Oscillating Neutron Stars
Directory of Open Access Journals (Sweden)
Zhang T. X.
2015-04-01
Full Text Available Pulsars are thought to be fast rotating neutron stars, synchronously emitting periodic Dirac-delta-shape radio-frequency pulses and Lorentzian-shape oscillating X-rays. The acceleration of charged particles along the magnetic field lines of neutron stars above the magnetic poles that deviate from the rotating axis initiates coherent beams of ra- dio emissions, which are viewed as pulses of radiation whenever the magnetic poles sweep the viewers. However, the conventional lighthouse model of pulsars is only con- ceptual. The mechanism through which particles are accelerated to produce coherent beams is still not fully understood. The process for periodically oscillating X-rays to emit from hot spots at the inner edge of accretion disks remains a mystery. In addition, a lack of reflecting X-rays of the pulsar by the Crab Nebula in the OFF phase does not support the lighthouse model as expected. In this study, we develop a physical model of pulsars to quantitatively interpret the emission characteristics of pulsars, in accor- dance with the author’s well-developed five-dimensional fully covariant Kaluza-Klein gravitational shielding theory and the physics of thermal and accelerating charged par- ticle radiation. The results obtained from this study indicate that, with the significant gravitational shielding by scalar field, a neutron star nonlinearly oscillates and produces synchronous periodically Dirac-delta-shape radio-frequency pulses (emitted by the os- cillating or accelerating charged particles as well as periodically Lorentzian-shape os- cillating X-rays (as the thermal radiation of neutron stars whose temperature varies due to the oscillation. This physical model of pulsars broadens our understanding of neu- tron stars and develops an innovative mechanism to model the emissions of pulsars.
On the gravitational radiation formula
International Nuclear Information System (INIS)
Schaefer, G.; Dehnen, H.
1980-01-01
For electromagnetically as well as gravitationally bound quantum mechanical many-body systems the coefficients of absorption and induced emission of gravitational radiation are calculated in the first-order approximation. The results are extended subsequently to systems with arbitrary non-Coulomb-like two-particle interaction potentials;it is shown explicitly that in all cases the perturbation of the binding potentials of the bound systems by the incident gravitational wave field itself must be taken into account. With the help of the thermodynamic equilibrium of gravitational radiation and quantised matter, the coefficients for spontaneous emission of gravitational radiation are derived and the gravitational radiation formula for emission of gravitational quadrupole radiation by bound quantum mechanical many-body systems is given. According to the correspondence principle the present result is completely identical with the well known classical radiation formula, by which recent criticism against this formula is refuted. Finally the quantum mechanical absorption cross section for gravitational quadrupole radiation is deduced and compared with the corresponding classical expressions. As a special example the vibrating two-mass quadrupole is treated explicitly. (author)
Cole, Michael H; van den Hoorn, Wolbert; Kavanagh, Justin K; Morrison, Steven; Hodges, Paul W; Smeathers, James E; Kerr, Graham K
2014-01-01
Although accelerometers are extensively used for assessing gait, limited research has evaluated the concurrent validity of these devices on less predictable walking surfaces or the comparability of different methods used for gravitational acceleration compensation. This study evaluated the concurrent validity of trunk accelerations derived from a tri-axial inertial measurement unit while walking on firm, compliant and uneven surfaces and contrasted two methods used to remove gravitational accelerations; i) subtraction of the best linear fit from the data (detrending); and ii) use of orientation information (quaternions) from the inertial measurement unit. Twelve older and twelve younger adults walked at their preferred speed along firm, compliant and uneven walkways. Accelerations were evaluated for the thoracic spine (T12) using a tri-axial inertial measurement unit and an eleven-camera Vicon system. The findings demonstrated excellent agreement between accelerations derived from the inertial measurement unit and motion analysis system, including while walking on uneven surfaces that better approximate a real-world setting (all differences firm surfaces (delta range: -0.05 to 0.06 vs. 0.00 to 0.14 m.s(-2)), whereas the quaternion method performed better when walking on compliant and uneven walkways (delta range: -0.16 to -0.02 vs. -0.07 to 0.07 m.s(-2)). The technique used to compensate for gravitational accelerations requires consideration in future research, particularly when walking on compliant and uneven surfaces. These findings demonstrate trunk accelerations can be accurately measured using a wireless inertial measurement unit and are appropriate for research that evaluates healthy populations in complex environments.
Cosmology and Gravitation: the grand scheme for High-Energy Physics
Binétruy, P.
2014-12-10
These lectures describe how the Standard Model of cosmology ( Λ CDM) has developped, based on observational facts but also on ideas formed in the context of the theory of fundamental interactions, both gravitational and non-gravitational, the latter being described by the Standard Model of high energy physics. It focuses on the latest developments, in particular the precise knowledge of the early Universe provided by the observation of the Cosmic Microwave Background and the discovery of the present acceleration of the expansion of the Universe. While insisting on the successes of the Standard Model of cosmology, we will stress that it rests on three pillars which involve many open questions: the theory of inflation, the nature of dark matter and of dark energy. We will devote one chapter to each of these issues, describing in particular how this impacts our views on the theory of fundamental interactions. More technical parts are given in italics. They may be skipped altogether.
Jaiswal, Rekha; Zia, Rashid
2018-04-01
In this paper, we have proposed a cosmological model, which is consistent with the new findings of `The Supernova Cosmology project' headed by Saul Perlmutter, and the `High-Z Supernova Search team', headed by Brian Schimdt. According to these new findings, the universe is undergoing an expansion with an increasing rate, in contrast to the earlier belief that the rate of expansion is constant or the expansion is slowing down. We have considered spatially homogeneous and anisotropic Bianchi-V dark energy model in Brans-Dicke theory of gravitation. We have taken the scale factor a(t)=k t^α e^{β t} , which results into variable deceleration parameter (DP). The graph of DP shows a transition from positive to negative, which shows that universe has passed through the past decelerated expansion to the current accelerated expansion phase. In this context, we have also calculated and plotted various parameters and observed that these are in good agreement with physical and kinematic properties of the universe and are also consistent with recent observations.
DEFF Research Database (Denmark)
Yang, Po; Dong, Feng; Codreanu, Valeriu
2018-01-01
design and hard-to-use. Little attentions have been paid to the applicability, usability and learnability of these tools for normal users. In this paper, we present an online automated CPU-to-GPU source translation system, (GPSME) for inexperienced users to utilize GPU capability in accelerating general...... SME applications. This system designs and implements a directive programming model with new kernel generation scheme and memory management hierarchy to optimize its performance. A web service interface is designed for inexperienced users to easily and flexibly invoke the automatic resource translator...
Ridgely, Charles T.
2011-01-01
When two gravitating bodies reside in a material medium, Newton's law of universal gravitation must be modified to account for the presence of the medium. A modified expression of Newton's law is known in the literature, but lacks a clear connection with existing gravitational theory. Newton's law in the presence of a homogeneous material medium…
Detection of gravitational radiation
Energy Technology Data Exchange (ETDEWEB)
Holten, J.W. van [ed.
1994-12-31
In this report the main contributions presented at the named symposium are collected. These concern astrophysical sources of gravitational radiation, ultracryogenic gravitational wave experiments, read out and data analysis of gravitational wave antennas, cryogenic aspects of large mass cooling to mK temperatures, and metallurgical and engineering aspects of large Cu structure manufacturing. (HSI).
Detection of gravitational radiation
International Nuclear Information System (INIS)
Holten, J.W. van
1994-01-01
In this report the main contributions presented at the named symposium are collected. These concern astrophysical sources of gravitational radiation, ultracryogenic gravitational wave experiments, read out and data analysis of gravitational wave antennas, cryogenic aspects of large mass cooling to mK temperatures, and metallurgical and engineering aspects of large Cu structure manufacturing. (HSI)
Relativistic theory of gravitation
International Nuclear Information System (INIS)
Logunov, A.A.; Mestvirishvili, M.A.
1986-01-01
In the present paper a relativistic theory of gravitation (RTG) is unambiguously constructed on the basis of the special relativity and geometrization principle. In this a gravitational field is treated as the Faraday--Maxwell spin-2 and spin-0 physical field possessing energy and momentum. The source of a gravitational field is the total conserved energy-momentum tensor of matter and of a gravitational field in Minkowski space. In the RTG the conservation laws are strictly fulfilled for the energy-moment and for the angular momentum of matter and a gravitational field. The theory explains the whole available set of experiments on gravity. By virtue of the geometrization principle, the Riemannian space in our theory is of field origin, since it appears as an effective force space due to the action of a gravitational field on matter. The RTG leads to an exceptionally strong prediction: The universe is not closed but just ''flat.'' This suggests that in the universe a ''missing mass'' should exist in a form of matter
Bulyzhenkov, I. E.
2018-02-01
Translational ordering of the internal kinematic chaos provides the Special Relativity referents for the geodesic motion of warm thermodynamical bodies. Taking identical mathematics, relativistic physics of the low speed transport of time-varying heat-energies differs from Newton's physics of steady masses without internal degrees of freedom. General Relativity predicts geodesic changes of the internal heat-energy variable under the free gravitational fall and the geodesic turn in the radial field center. Internal heat variations enable cyclic dynamics of decelerated falls and accelerated takeoffs of inertial matter and its structural self-organization. The coordinate speed of the ordered spatial motion takes maximum under the equipartition of relativistic internal and translational kinetic energies. Observable predictions are discussed for verification/falsification of the principle of equipartition as a new basic for the ordered motion and self-organization in external fields, including gravitational, electromagnetic, and thermal ones.
International Nuclear Information System (INIS)
Ridgely, Charles T
2011-01-01
When two gravitating bodies reside in a material medium, Newton's law of universal gravitation must be modified to account for the presence of the medium. A modified expression of Newton's law is known in the literature, but lacks a clear connection with existing gravitational theory. Newton's law in the presence of a homogeneous material medium is herein derived on the basis of classical, Newtonian gravitational theory and by a general relativistic use of Archimedes' principle. It is envisioned that the techniques presented herein will be most useful to graduate students and those undergraduate students having prior experience with vector analysis and potential theory.
Gravitational radiation reaction
International Nuclear Information System (INIS)
Tanaka, Takahiro
2006-01-01
We give a short personally-biased review on the recent progress in our understanding of gravitational radiation reaction acting on a point particle orbiting a black hole. The main motivation of this study is to obtain sufficiently precise gravitational waveforms from inspiraling binary compact starts with a large mass ratio. For this purpose, various new concepts and techniques have been developed to compute the orbital evolution taking into account the gravitational self-force. Combining these ideas with a few supplementary new ideas, we try to outline a path to our goal here. (author)
A gravitational entropy proposal
International Nuclear Information System (INIS)
Clifton, Timothy; Tavakol, Reza; Ellis, George F R
2013-01-01
We propose a thermodynamically motivated measure of gravitational entropy based on the Bel–Robinson tensor, which has a natural interpretation as the effective super-energy–momentum tensor of free gravitational fields. The specific form of this measure differs depending on whether the gravitational field is Coulomb-like or wave-like, and reduces to the Bekenstein–Hawking value when integrated over the interior of a Schwarzschild black hole. For scalar perturbations of a Robertson–Walker geometry we find that the entropy goes like the Hubble weighted anisotropy of the gravitational field, and therefore increases as structure formation occurs. This is in keeping with our expectations for the behaviour of gravitational entropy in cosmology, and provides a thermodynamically motivated arrow of time for cosmological solutions of Einstein’s field equations. It is also in keeping with Penrose’s Weyl curvature hypothesis. (paper)
Utilizing GPUs to Accelerate Turbomachinery CFD Codes
MacCalla, Weylin; Kulkarni, Sameer
2016-01-01
GPU computing has established itself as a way to accelerate parallel codes in the high performance computing world. This work focuses on speeding up APNASA, a legacy CFD code used at NASA Glenn Research Center, while also drawing conclusions about the nature of GPU computing and the requirements to make GPGPU worthwhile on legacy codes. Rewriting and restructuring of the source code was avoided to limit the introduction of new bugs. The code was profiled and investigated for parallelization potential, then OpenACC directives were used to indicate parallel parts of the code. The use of OpenACC directives was not able to reduce the runtime of APNASA on either the NVIDIA Tesla discrete graphics card, or the AMD accelerated processing unit. Additionally, it was found that in order to justify the use of GPGPU, the amount of parallel work being done within a kernel would have to greatly exceed the work being done by any one portion of the APNASA code. It was determined that in order for an application like APNASA to be accelerated on the GPU, it should not be modular in nature, and the parallel portions of the code must contain a large portion of the code's computation time.
Energy-momentum tensor for a Casimir apparatus in a weak gravitational field
International Nuclear Information System (INIS)
Bimonte, Giuseppe; Calloni, Enrico; Esposito, Giampiero; Rosa, Luigi
2006-01-01
The influence of the gravity acceleration on the regularized energy-momentum tensor of the quantized electromagnetic field between two plane-parallel conducting plates is derived. We use Fermi coordinates and work to first order in the constant acceleration parameter. A perturbative expansion, to this order, of the Green functions involved and of the energy-momentum tensor is derived by means of the covariant geodesic point-splitting procedure. In correspondence to the Green functions satisfying mixed and gauge-invariant boundary conditions, and Ward identities, the energy-momentum tensor is covariantly conserved and satisfies the expected relation between gauge-breaking and ghost parts, while a new simple formula for the trace anomaly is obtained to first order in the constant acceleration. A more systematic derivation is therefore obtained of the theoretical prediction according to which the Casimir device in a weak gravitational field will experience a tiny push in the upwards direction
Projective relativity, cosmology and gravitation
International Nuclear Information System (INIS)
Arcidiacono, G.
1986-01-01
This book describes the latest applications of projective geometry to cosmology and gravitation. The contents of the book are; the Poincare group and Special Relativity, the thermodynamics and electromagnetism, general relativity, gravitation and cosmology, group theory and models of universe, the special projective relativity, the Fantappie group and Big-Bang cosmology, a new cosmological projective mechanics, the plasma physics and cosmology, the projective magnetohydrodynamics field, projective relativity and waves propagation, the generalizations of the gravitational field, the general projective relativity, the projective gravitational field, the De Sitter Universe and quantum physics, the conformal relativity and Newton gravitation
The 5D Fully-Covariant Theory of Gravitation and Its Astrophysical Applications
Directory of Open Access Journals (Sweden)
Tianxi Zhang
2014-12-01
deflection, gravitational redshift, perihelion advance and radar echo delay of the 4D Einstein’s general relativity in the case of weak fields are also the tests of the 5D fully-covariant theory of gravitation. In the case of strong fields, especially when the matter is highly charged, however, the results from the 5D fully-covariant theory of gravitation are significantly different from the 4D Einstein’s general relativity. Applying this 5D gravity and its exact field solution, Zhang has recently developed a new redshift mechanism, called electric redshift, a new supernova explosion mechanism with gravitational field shielding, a new gravitationless black hole model, a modified neutron star mass-radius relation, a modified Friedmann equation for the accelerating universe, and so on. This paper provides an overview of this 5D fully-covariant theory of gravitation, including also its solution properties and astrophysical applications.
International Nuclear Information System (INIS)
2007-12-01
The Department of Research Reactors and Tandem Accelerator is in charge of the operation, utilization and technical development of JRR-3 (Japan Research Reactor-3), JRR-4 (Japan Research Reactor-4) and NSRR (Nuclear Safety Research Reactor) and Tandem Accelerator. The following services and technical developments were achieved in Japanese Fiscal Year 2006: 1) JRR-3 was operated for 181 days in 7 cycles and JRR-4 for 149 days in 37 cycles to provide neutrons for research and development of in-house and outside users. 2) JRR-3 and JRR-4 were utilized through deliberate coordination as follows, a) Neutron irradiations of 628 materials, for neutron transmutation doping of silicon etc. b) Capsule irradiations of 3,067 samples, for neutron activation analyses etc. c) Neutron beam experiments of 6,338 cases x days. 3) Concerning to the 10 times increasing plan of cold neutron beams from JRR-3, a pressure resistant test model of the high-performance neutron moderator vessel which had been designed to increase cold neutrons twice as much as the present one was fabricated. Various developments for upgrading cold neutron guide tubes with super mirrors were in progress. 4) Boron neutron capture therapy was carried out 34 times using JRR-4. Improved neutron collimators were built to fit well to any irregular outline for cancer around the neck. 5) NSRR carried out 4 times of pulse irradiations of high burn-up MOX fuels and 9 times of un-irradiated fuels to contribute to fuel safety researches. 6) The Tandem Accelerator was operated for 201 days to contribute to the researches of nuclear physics and solid state physics with high energy heavy ions. The new utilization program of sharing beam times with outside users was performed by carrying out 45 days. The beam intensity increasing program with a high performance ion source, in place of the compact one which has been working in the high voltage terminal, has made great progress. (author)
Accelerated expansion from a nonminimal gravitational coupling to matter
International Nuclear Information System (INIS)
Bertolami, O.; Frazao, P.; Paramos, J.
2010-01-01
It is shown that a nonminimal coupling between the scalar curvature and the matter Lagrangian density may account for the accelerated expansion of the Universe and provide, through mimicking, for a viable unification of dark energy and dark matter. An analytical exploration is first performed, and a numerical study is then used to validate the obtained results. The encountered scenario allows for a better grasp of the proposed mechanism, and sets up the discussion for improvements that can lead to a complete agreement with the observational data.
Evolution of gravitational orbits in the expanding universe
International Nuclear Information System (INIS)
Sereno, Mauro; Jetzer, Philippe
2007-01-01
The gravitational action of the smooth energy-matter components filling in the universe can affect the orbit of a planetary system. Changes are related to the acceleration of the cosmological scale size R. In a universe with significant dark matter, a gravitational system expands or contracts according to the amount and equation of state of the dark energy. At present time, the Solar System, according to the ΛCDM scenario emerging from observational cosmology, should be expanding if we consider only the effect of the cosmological background. Its fate is determined by the equation of state of the dark energy alone. The mean motion and periastron precession of a planet are directly sensitive to Re/R, whereas variations with time in the semimajor axis and eccentricity are related to its time variation. Actual bounds on the cosmological deceleration parameters q 0 from accurate astrometric data of perihelion precession and changes in the third Kepler's law in the Solar System fall short of 10 orders of magnitude with respect to estimates from observational cosmology. Future radio-ranging measurements of outer planets could improve actual bounds by 5 orders of magnitude
Gravitationally confined relativistic neutrinos
Vayenas, C. G.; Fokas, A. S.; Grigoriou, D.
2017-09-01
Combining special relativity, the equivalence principle, and Newton’s universal gravitational law with gravitational rather than rest masses, one finds that gravitational interactions between relativistic neutrinos with kinetic energies above 50 MeV are very strong and can lead to the formation of gravitationally confined composite structures with the mass and other properties of hadrons. One may model such structures by considering three neutrinos moving symmetrically on a circular orbit under the influence of their gravitational attraction, and by assuming quantization of their angular momentum, as in the Bohr model of the H atom. The model contains no adjustable parameters and its solution, using a neutrino rest mass of 0.05 eV/c2, leads to composite state radii close to 1 fm and composite state masses close to 1 GeV/c2. Similar models of relativistic rotating electron - neutrino pairs give a mass of 81 GeV/c2, close to that of W bosons. This novel mechanism of generating mass suggests that the Higgs mass generation mechanism can be modeled as a latent gravitational field which gets activated by relativistic neutrinos.
Yagi, Kent; Yang, Huan
2018-05-01
The recent discovery of gravitational-wave events has offered us unique test beds of gravity in the strong and dynamical field regime. One possible modification to General Relativity is the gravitational parity violation that arises naturally from quantum gravity. Such parity violation gives rise to the so-called amplitude birefringence in gravitational waves, in which one of the circularly polarized modes is amplified while the other one is suppressed during their propagation. In this paper, we study how well one can measure gravitational parity violation via the amplitude birefringence effect of gravitational waves sourced by stellar-mass black hole binaries. We choose Chern-Simons gravity as an example and work within an effective field theory formalism to ensure that the approximate theory is well posed. We consider gravitational waves from both individual sources and stochastic gravitational-wave backgrounds. Regarding bounds from individual sources, we estimate such bounds using a Fisher analysis and carry out Monte Carlo simulations by randomly distributing sources over their sky location and binary orientation. We find that the bounds on the scalar field evolution in Chern-Simons gravity from the recently discovered gravitational-wave events are too weak to satisfy the weak Chern-Simons approximation, while aLIGO with its design sensitivity can place meaningful bounds. Regarding bounds from stochastic gravitational-wave backgrounds, we set the threshold signal-to-noise ratio for detection of the parity-violation mode as 5 and estimate projected bounds with future detectors assuming that signals are consistent with no parity violation. In an ideal situation in which all the source parameters and binary black hole merger-rate history are known a priori, we find that a network of two third-generation detectors is able to place bounds that are comparable to or slightly stronger than binary pulsar bounds. In a more realistic situation in which one does not have
Hypersurface Homogeneous Cosmological Model in Modified Theory of Gravitation
Katore, S. D.; Hatkar, S. P.; Baxi, R. J.
2016-12-01
We study a hypersurface homogeneous space-time in the framework of the f (R, T) theory of gravitation in the presence of a perfect fluid. Exact solutions of field equations are obtained for exponential and power law volumetric expansions. We also solve the field equations by assuming the proportionality relation between the shear scalar (σ ) and the expansion scalar (θ ). It is observed that in the exponential model, the universe approaches isotropy at large time (late universe). The investigated model is notably accelerating and expanding. The physical and geometrical properties of the investigated model are also discussed.
Presenting Newtonian gravitation
International Nuclear Information System (INIS)
Counihan, Martin
2007-01-01
The basic principles of the Newtonian theory of gravitation are presented in a way which students may find more logically coherent, mathematically accessible and physically interesting than other approaches. After giving relatively simple derivations of the circular hodograph and the elliptical orbit from the inverse-square law, the concept of gravitational energy is developed from vector calculus. It is argued that the energy density of a gravitational field may reasonably be regarded as -g 2 /8πG, and that the inverse-square law may be replaced by a Schwarzschild-like force law without the need to invoke non-Euclidean geometry
Test Particles with Acceleration-Dependent Lagrangian
Toller, M.
2005-01-01
We consider a classical test particle subject to electromagnetic and gravitational fields, described by a Lagrangian depending on the acceleration and on a fundamental length. We associate to the particle a moving local reference frame and we study its trajectory in the principal fibre bundle of all the Lorentz frames. We discuss in this framework the general form of the Lagrange equations and the connection between symmetries and conservation laws (Noether theorem). We apply these results to...
Photon acceleration in laser wakefield accelerators
International Nuclear Information System (INIS)
Trines, R. M. G. M.
2007-01-01
If the index of a refraction of a dispersive medium, such as a plasma, changes in time, it can be used to change the frequency of light propagating through the medium. This effect is called photon acceleration. It has been predicted in both theory and simulations, and also been demonstrated experimentally for the case of moving ionization fronts in gases (the so-called ionization blueshift) as well as for laser-driven wakefields.Here, we present studies of photon acceleration in laser-driven plasma wakefields. The unique spectral characteristics of this process will be discussed, to distinguish it from e.g. photon acceleration by ionization fronts, frequency domain interferometry or self-phase modulation. The dynamics of the photons in laser-wakefield interaction are studied through both regular particle-in-cell and wave-kinetic simulations. The latter approach provides a powerful, versatile, and easy-to-use method to track the propagation of individual spectral components, providing new insight into the physics of laser-plasma interaction. Theory, simulations and experimental results will be brought together to provide a full understanding of the dynamics of a laser pulse in its own wakefield.Even though the wave-kinetic approach mentioned above has mainly been developed for the description of laser-plasma interaction, it can be applied to a much wider range of fast wave-slow wave interaction processes: Langmuir waves-ion acoustic waves, drift waves-zonal flow, Rossby waves-zonal flow, or even photons-gravitational waves. Several recent results in these areas will be shown, often with surprising results
International Nuclear Information System (INIS)
Axente, D.
2005-01-01
15 N utilization for nitride nuclear fuels production for nuclear power reactors and accelerator - driven systems is presented. Nitride nuclear fuel is the obvious choice for advanced nuclear reactors and ADS because of its favorable properties: a high melting point, excellent thermal conductivity, high fissile density, lower fission gas release and good radiation tolerance. The application of nitride fuels in nuclear reactors and ADS requires use of 15 N enriched nitrogen to suppress 14 C production due to (n,p) reaction on 14 N. Accelerator - driven system is a recent development merging of accelerator and fission reactor technologies to generate electricity and transmute long - lived radioactive wastes as minor actinides: Np, Am, Cm. A high-energy proton beam hitting a heavy metal target produces neutrons by spallation. The neutrons cause fission in the fuel, but unlike in conventional reactors, the fuel is sub-critical and fission ceases when the accelerator is turned off. Nitride fuel is a promising candidate for transmutation in ADS of minor actinides, which are converted into nitrides with 15 N for that purpose. Tacking into account that the world wide market is about 20 to 40 Kg 15 N annually, the supply of that isotope for nitride fuel production for nuclear power reactors and ADS would therefore demand an increase in production capacity by a factor of 1000. For an industrial plant producing 100 t/y 15 N, using present technology of isotopic exchange in NITROX system, the first separation stage of the cascade would be fed with 10M HNO 3 solution of 600 mc/h flow - rate. If conversion of HNO 3 into NO, NO 2 , at the enriching end of the columns, would be done with gaseous SO 2 , for a production plant of 100 t/y 15 N a consumption of 4 million t SO 2 /y and a production of 70 % H 2 SO 4 waste solution of 4.5 million mc/y are estimated. The reconversion of H 2 SO 4 into SO 2 in order to recycle of SO 2 is a problem to be solved to compensate the cost of SO 2
International Nuclear Information System (INIS)
Yilmaz, H.
1975-01-01
Schwinger's source theory is applied to the problem of gravitation and its quantization. It is shown that within the framework of a flat-space the source theory implementation leads to a violation of probability. To avoid the difficulty one must introduce a curved space-time hence the source concept may be said to necessitate the transition to a curved-space theory of gravitation. It is further shown that the curved-space theory of gravitation implied by the source theory is not equivalent to the conventional Einstein theory. The source concept leads to a different theory where the gravitational field has a stress-energy tensor t/sup nu//sub mu/ which contributes to geometric curvatures
Nuclear Quantum Gravitation - The Correct Theory
Kotas, Ronald
2016-03-01
Nuclear Quantum Gravitation provides a clear, definitive Scientific explanation of Gravity and Gravitation. It is harmonious with Newtonian and Quantum Mechanics, and with distinct Scientific Logic. Nuclear Quantum Gravitation has 10 certain, Scientific proofs and 21 more good indications. With this theory the Physical Forces are obviously Unified. See: OBSCURANTISM ON EINSTEIN GRAVITATION? http://www.santilli- Foundation.org/inconsistencies-gravitation.php and Einstein's Theory of Relativity versus Classical Mechanics http://www.newtonphysics.on.ca/einstein/
Tests for the existence of black holes through gravitational wave echoes
Cardoso, Vitor; Pani, Paolo
2017-09-01
The existence of black holes and spacetime singularities is a fundamental issue in science. Despite this, observations supporting their existence are scarce, and their interpretation is unclear. In this Perspective we outline the case for black holes that has been made over the past few decades, and provide an overview of how well observations adjust to this paradigm. Unsurprisingly, we conclude that observational proof for black holes is, by definition, impossible to obtain. However, just like Popper's black swan, alternatives can be ruled out or confirmed to exist with a single observation. These observations are within reach. In the coming years and decades, we will enter an era of precision gravitational-wave physics with more sensitive detectors. Just as accelerators have required larger and larger energies to probe smaller and smaller scales, more sensitive gravitational-wave detectors will probe regions closer and closer to the horizon, potentially reaching Planck scales and beyond. What may be there, lurking?
The Theory of Vortical Gravitational Fields
Directory of Open Access Journals (Sweden)
Rabounski D.
2007-04-01
Full Text Available This paper treats of vortical gravitational fields, a tensor of which is the rotor of the general covariant gravitational inertial force. The field equations for a vortical gravitational field (the Lorentz condition, the Maxwell-like equations, and the continuity equation are deduced in an analogous fashion to electrodynamics. From the equations it is concluded that the main kind of vortical gravitational fields is “electric”, determined by the non-stationarity of the acting gravitational inertial force. Such a field is a medium for traveling waves of the force (they are different to the weak deformation waves of the space metric considered in the theory of gravitational waves. Standing waves of the gravitational inertial force and their medium, a vortical gravitational field of the “magnetic” kind, are exotic, since a non-stationary rotation of a space body (the source of such a field is a very rare phenomenon in the Universe.
Gravitational quadrupolar coupling to equivalence principle test masses: the general case
International Nuclear Information System (INIS)
Lockerbie, N A
2002-01-01
This paper discusses the significance of the quadrupolar gravitational force in the context of test masses destined for use in equivalence principle (EP) experiments, such as STEP and MICROSCOPE. The relationship between quadrupolar gravity and rotational inertia for an arbitrary body is analysed, and the special, gravitational, role of a body's principal axes of inertia is revealed. From these considerations the gravitational quadrupolar force acting on a cylindrically symmetrical body, due to a point-like attracting source mass, is derived in terms of the body's mass quadrupole tensor. The result is shown to be in agreement with that obtained from MacCullagh's formula (as the starting point). The theory is then extended to cover the case of a completely arbitrary solid body, and a compact formulation for the quadrupolar force on such a body is derived. A numerical example of a dumb-bell's attraction to a local point-like gravitational source is analysed using this theory. Close agreement is found between the resulting quadrupolar force on the body and the difference between the net and the monopolar forces acting on it, underscoring the utility of the approach. A dynamical technique for experimentally obtaining the mass quadrupole tensors of EP test masses is discussed, and a means of validating the results is noted
International Nuclear Information System (INIS)
Mazarakis, M.G.; Smith, D.L.; Poukey, J.W.; Wagner, J.S.; Bennett, L.F.; Olson, W.R.; Turman, B.N.; Prestwich, K.R.; Wells, J.; Struve, K.
1992-01-01
The lifetime of the Ion Focusing Regime (IFR) channel following the pulsing of the post-accelerating gaps is critical for open-ended low energy devices. It dictates the number of allowable beam recirculations through the gaps. In the case of a closed racetrack configuration, it is significant but not as critical, since the presence of the electron beam focuses the ions and lengthens the lifetime of the ion channel. The authors have experimentally established that pulsing an accelerating gap perturbs the IFR channel. However for the parameters studied, the lifetime is long enough to allow at least four beam recirculations in a spiral device. In addition transparent grids of cusp fields positioned upstream and downstream from the gaps prevent them from perturbing the IFR channel. Experiments were performed with and without injected electron beams. For the experiments investigating the IFR channel interaction with the accelerating gap, the injector was removed and the beam line was extended downstream and upstream from the accelerating cavity. Only the first straight section of the RLA with one accelerating cavity (ET-2) was utilized. The acceleration and transport experiments were performed utilizing two injectors: first the low energy 1.3-MV Isolated Blumlein (IB) injector and most recently the new 4-MV 20-kA injector. Beams of 6--20 kA current were produced and successfully transported and accelerated through the ET-2 post-accelerating gap. For both injectors an apertured non-immersed ion-focused foilless diode was selected among various options. It is the simplest and easiest to operate and can be adjusted to provide variable beam impedance loads to the injector. The transport efficiencies were 90% for the low energy injector and 100% for the new 4-MV injector. The beam Gaussian profile and radius (5 mm) remain the same through acceleration. Experimental results will be presented and compared with numerical simulations
Assessing the Effectiveness of Gravitational Wave Outreach Video Games in High School Students
Wheeler, Jonathan
Students and faculty at the Gravitational Wave Group in Birmingham, UK developed a remake of the classic 1972 game of Pong. Black Hole Pong was developed to be used in events such as science fairs as a way to engage children and pique interest in black holes. I present the results of a study which assesses the utility of Black Hole Pong and its successors in raising awareness of gravitational wave research, and in fostering conceptual understanding of astrophysics and gravity. Of particular interest in this study is potential use in high school science classrooms during astrophysics units.
Dodelson, Scott
2017-01-01
Gravitational lensing is a consequence of general relativity, where the gravitational force due to a massive object bends the paths of light originating from distant objects lying behind it. Using very little general relativity and no higher level mathematics, this text presents the basics of gravitational lensing, focusing on the equations needed to understand the phenomena. It then applies them to a diverse set of topics, including multiply imaged objects, time delays, extrasolar planets, microlensing, cluster masses, galaxy shape measurements, cosmic shear, and lensing of the cosmic microwave background. This approach allows undergraduate students and others to get quickly up to speed on the basics and the important issues. The text will be especially relevant as large surveys such as LSST and Euclid begin to dominate the astronomical landscape. Designed for a one semester course, it is accessible to anyone with two years of undergraduate physics background.
Quantum phenomena in gravitational field
Bourdel, Th.; Doser, M.; Ernest, A. D.; Voronin, A. Yu.; Voronin, V. V.
2011-10-01
The subjects presented here are very different. Their common feature is that they all involve quantum phenomena in a gravitational field: gravitational quantum states of ultracold antihydrogen above a material surface and measuring a gravitational interaction of antihydrogen in AEGIS, a quantum trampoline for ultracold atoms, and a hypothesis on naturally occurring gravitational quantum states, an Eötvös-type experiment with cold neutrons and others. Considering them together, however, we could learn that they have many common points both in physics and in methodology.
Quantum phenomena in gravitational field
International Nuclear Information System (INIS)
Bourdel, Th.; Doser, M.; Ernest, A.D.; Voronin, A.Y.; Voronin, V.V.
2010-01-01
The subjects presented here are very different. Their common feature is that they all involve quantum phenomena in a gravitational field: gravitational quantum states of ultracold anti-hydrogen above a material surface and measuring a gravitational interaction of anti-hydrogen in AEGIS, a quantum trampoline for ultracold atoms, and a hypothesis on naturally occurring gravitational quantum states, an Eoetvoes-type experiment with cold neutrons and others. Considering them together, however, we could learn that they have many common points both in physics and in methodology. (authors)
The notions of mass in gravitational and particle physics
Castellani, Gianluca
It is presently thought that the mass of all of the elementary particles is determined by the Higgs field. This scalar field couples directly into the trace of the energy momentum tensor of the elementary particles. The attraction between two or more masses arises from the exchange of gravitational quantum particles of spin 2, called gravitons. The gravitational field couples directly into the energy momentum tensor. Then there is a close connection between the Higgs field, that originates the mass, and the gravitational field that dictates how the masses interact. Our purpose in this thesis is to discuss this close connection in terms of fundamental definitions of inertial and gravitational masses. On a practical level we explore two properties of mass from the viewpoint of coupling into the Higgs field: (i) The coupling of the both the Higgs and gravity to the energy-pressure tensor allows for the decay of the Higgs particle into two gravitons. We use the self energy part of the Higgs propagator to calculate the electromagnetic, weak, fermionic and gravitational decay rate of the Higgs particle. We show that the former process appears to dominate the other decay modes. Since the gravitons are detectable with virtually zero probability, the number of Higgs particles with observable decay products will be much less than previously expected. (ii) Some new experimental results seem to indicate that the mass of the heavy elementary particles like the Z,W+,W- and especially the top quark, depends on the particle environment in which these particles are produced. The presence of a Higgs field due to neighboring particles could be responsible for induced mass shifts. Further measurements of mass shift effects might give an indirect proof of the Higgs particle. Such can be in principle done by re-analyzing some of the production data e +e- → ZZ (or W+W-) already collected at the LEP experiment. About the physical property of the top quark, it is too early to arrive at
5-dimensional braneworld with gravitating Nambu–Goto matching conditions
Energy Technology Data Exchange (ETDEWEB)
Kofinas, Georgios, E-mail: gkofin@phys.uoa.gr [Research Group of Geometry, Dynamical Systems and Cosmology, Department of Information and Communication Systems Engineering, University of the Aegean, Karlovassi 83200, Samos (Greece); Zarikas, Vasilios, E-mail: vzarikas@teilam.gr [Department of Electrical Engineering, ATEI Lamias, 35100 Lamia (Greece)
2014-12-15
We continue the investigation of a recent proposal on alternative matching conditions for self-gravitating defects which generalize the standard matching conditions. The reasoning for this study is the need for consistency of the various codimension defects and the existence of a meaningful equation of motion at the probe limit, things that seem to lack from the standard approach. These matching conditions arise by varying the brane–bulk action with respect to the brane embedding fields (and not with respect to the bulk metric at the brane position) in a way that takes into account the gravitational back-reaction of the brane to the bulk. They always possess a Nambu–Goto probe limit and any codimension defect is seemingly consistent for any second order bulk gravity theory. Here, we consider in detail the case of a codimension-1 brane in five-dimensional Einstein gravity, derive the generic alternative junction conditions and find the Z{sub 2}-symmetric braneworld cosmology, as well as its bulk extension. Compared to the standard braneworld cosmology, the new one has an extra integration constant which accounts for the today matter and dark energy contents, therefore, there is more freedom for accommodating the observed cosmic features. One branch of the solution possesses the asymptotic linearized LFRW regime. We have constrained the parameters so that to have a recent passage from a long deceleration era to a small today acceleration epoch and we have computed the age of the universe, consistent with current data, and the time-varying dark energy equation of state. For a range of the parameters it is possible for the presented cosmology to provide a large acceleration in the high energy regime.
International Nuclear Information System (INIS)
Bondi, H.
1979-01-01
In spite of the strength of gravitational focres between celestial bodies, gravitational capture is not a simple concept. The principles of conservation of linear momentum and of conservation of angular momentum, always impose severe constraints, while conservation of energy and the vital distinction between dissipative and non-dissipative systems allows one to rule out capture in a wide variety of cases. In complex systems especially those without dissipation, long dwell time is a more significant concept than permanent capture. (author)
Linear projection of technical noise for interferometric gravitational-wave detectors
International Nuclear Information System (INIS)
Smith, J R; Ajith, P; Grote, H; Hewitson, M; Hild, S; Lueck, H; Strain, K A; Willke, B; Hough, J; Danzmann, K
2006-01-01
An international network of interferometric gravitational-wave detectors is now in operation, and has entered a period of intense commissioning focused on bringing the instruments to their theoretical sensitivity limits. To expedite this process, noise analysis techniques have been developed by the groups associated with each instrument. We present methods of noise analysis that were developed and utilized for the commissioning of the GEO 600 detector. The focal point of this paper is a technique called noise projection that is used to determine the levels of contribution of various noise sources to the detector output. Example applications of this method to control loops typical of those employed in an interferometric GW detector are presented. Possible extensions of noise projections, including technical noise subtraction and gravitational-wave vetoes are also discussed
Interaction of gravitational waves with superconductors
Energy Technology Data Exchange (ETDEWEB)
Inan, N.A.; Thompson, J.J. [University of California, Schools of Natural Sciences, Merced, CA (United States); Chiao, R.Y. [University of California, Schools of Natural Sciences and Engineering, Merced, CA (United States)
2017-06-15
Applying the Helmholtz Decomposition theorem to linearized General Relativity leads to a gauge-invariant formulation where the transverse-traceless part of the metric perturbation describes gravitational waves in matter. Gravitational waves incident on a superconductor can be described by a linear London-like constituent equation characterized by a ''gravitational shear modulus'' and a corresponding plasma frequency and penetration depth. Electric-like and magnetic-like gravitational tensor fields are defined in terms of the strain field of a gravitational wave. It is shown that in the DC limit, the magnetic-like tensor field is expelled from the superconductor in a gravitational Meissner-like effect. The Cooper pair density is described by the Ginzburg-Landau theory embedded in curved space-time. The ionic lattice is modeled by quantum harmonic oscillators coupled to gravitational waves and characterized by quasi-energy eigenvalues for the phonon modes. The formulation predicts the possibility of a dynamical Casimir effect since the zero-point energy of the ionic lattice phonons is found to be modulated by the gravitational wave, in a quantum analog of a ''Weber-bar effect.'' Applying periodic thermodynamics and the Debye model in the low-temperature limit leads to a free energy density for the ionic lattice. Lastly, we relate the gravitational strain of space to the strain of matter to show that the response to a gravitational wave is far less for the Cooper pair density than for the ionic lattice. This predicts a charge separation effect in the superconductor as a result of the gravitational wave. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Are the gravitational waves quantised?
International Nuclear Information System (INIS)
Lovas, Istvan
1997-01-01
If the gravitational waves are classical objects then the value of their correlation function is 1. If they are quantised, then there exist two possibilities: the gravitational waves are either completely coherent, then their correlation function is again 1, or they are only partially coherent, then their correlation function is expected to deviate from 1. Unfortunately such a deviation is not a sufficient proof for the quantised character of the gravitational waves. If the gravitational waves are quantised and generated by the change of the background metrical then they can be in a squeezed state. In a squeezed state there is a chance for the correlation between the phase of the wave and the quantum fluctuations. The observation of such a correlation would be a genuine proof of the quantised character of the gravitational wave
General relativity and gravitation, 1989
International Nuclear Information System (INIS)
Ashby, N.; Bartlett, D.F.; Wyss, W.
1990-01-01
This volume records the lectures and symposia of the 12th International Conference on General Relativity and Gravitation. Plenary lecturers reviewed the major advances since the previous conference in 1986. The reviews cover classical and quantum theory of gravity, colliding gravitational waves, gravitational lensing, relativistic effects on pulsars, tests of the inverse square law, numerical relativity, cosmic microwave background radiation, experimental tests of gravity theory, gravitational wave detectors, and cosmology. The plenary lectures are complemented by summaries of symposia, provided by the chairmen. Almost 700 contributed papers were presented at these and they cover an even wider range of topics than the plenary talks. The book provides a comprehensive guide to research activity in both experimental and theoretical gravitation and its applications in astrophysics and cosmology. It will be essential reading for research workers in these fields, as well as theoretical and experimental physicists, astronomers, and mathematicians who wish to be acquainted with modern developments in gravitational theory and general relativity. All the papers and summaries of the workshop sessions are indexed separately. (16 united talks, 20 workshop sessions). (author)
BOOK REVIEW: The Scalar-Tensor Theory of Gravitation
Fujii, Yasunori; Maeda, Kei-ichi
2003-10-01
Since the scalar-tensor theory of gravitation was proposed almost 50 years ago, it has recently become a robust alternative theory to Einstein's general relativity due to the fact that it appears to represent the lower level of a more fundamental theory and can serve both as a phenomenological theory to explain the recently observed acceleration of the universe, and to solve the cosmological constant problem. To my knowledge The Scalar-Tensor Theory of Gravitation by Y Fujii and K Maeda is the first book to develop a modern view on this topic and is one of the latest titles in the well-presented Cambridge Monographs on Mathematical Physics series. This book is an excellent readable introduction and up-to-date review of the subject. The discussion is well organized; after a comprehensible introduction to the Brans-Dicke theory and the important role played by conformal transformations, the authors review cosmologies with the cosmological constant and how the scalar-tensor theory can serve to explain the accelerating universe, including discussions on dark energy, quintessence and braneworld cosmologies. The book ends with a chapter devoted to quantum effects. To make easy the lectures of the book, each chapter starts with a summary of the subject to be dealt with. As the book proceeds, important issues like conformal frames and the weak equivalence principle are fully discussed. As the authors warn in the preface, the book is not encyclopedic (from my point of view the list of references is fairly short, for example, but this is a minor drawback) and the choice of included topics corresponds to the authors' interests. Nevertheless, the book seems to cover a broad range of the most essential aspects of the subject. Long and 'boring' mathematical derivations are left to appendices so as not to interrupt the flow of the reasoning, allowing the reader to focus on the physical aspects of each subject. These appendices are a valuable help in entering into the mathematical
On the Phenomenology of an Accelerated Large-Scale Universe
Directory of Open Access Journals (Sweden)
Martiros Khurshudyan
2016-10-01
Full Text Available In this review paper, several new results towards the explanation of the accelerated expansion of the large-scale universe is discussed. On the other hand, inflation is the early-time accelerated era and the universe is symmetric in the sense of accelerated expansion. The accelerated expansion of is one of the long standing problems in modern cosmology, and physics in general. There are several well defined approaches to solve this problem. One of them is an assumption concerning the existence of dark energy in recent universe. It is believed that dark energy is responsible for antigravity, while dark matter has gravitational nature and is responsible, in general, for structure formation. A different approach is an appropriate modification of general relativity including, for instance, f ( R and f ( T theories of gravity. On the other hand, attempts to build theories of quantum gravity and assumptions about existence of extra dimensions, possible variability of the gravitational constant and the speed of the light (among others, provide interesting modifications of general relativity applicable to problems of modern cosmology, too. In particular, here two groups of cosmological models are discussed. In the first group the problem of the accelerated expansion of large-scale universe is discussed involving a new idea, named the varying ghost dark energy. On the other hand, the second group contains cosmological models addressed to the same problem involving either new parameterizations of the equation of state parameter of dark energy (like varying polytropic gas, or nonlinear interactions between dark energy and dark matter. Moreover, for cosmological models involving varying ghost dark energy, massless particle creation in appropriate radiation dominated universe (when the background dynamics is due to general relativity is demonstrated as well. Exploring the nature of the accelerated expansion of the large-scale universe involving generalized
Towards a gravitational wave observatory designer: sensitivity limits of spaceborne detectors
International Nuclear Information System (INIS)
Barke, S; Wang, Y; Delgado, J J Esteban; Tröbs, M; Heinzel, G; Danzmann, K
2015-01-01
The most promising concept for low frequency (millihertz to hertz) gravitational wave observatories are laser interferometric detectors in space. It is usually assumed that the noise floor for such a detector is dominated by optical shot noise in the signal readout. For this to be true, a careful balance of mission parameters is crucial to keep all other parasitic disturbances below shot noise. We developed a web application that uses over 30 input parameters and considers many important technical noise sources and noise suppression techniques to derive a realistic position noise budget. It optimizes free parameters automatically and generates a detailed report on all individual noise contributions. Thus one can easily explore the entire parameter space and design a realistic gravitational wave observatory. In this document we describe the different parameters, present all underlying calculations, and compare the final observatory’s sensitivity with astrophysical sources of gravitational waves. We use as an example parameters currently assumed to be likely applied to a space mission proposed to be launched in 2034 by the European Space Agency. The web application itself is publicly available on the Internet at http://spacegravity.org/designer. Future versions of the web application will incorporate the frequency dependence of different noise sources and include a more detailed model of the observatory’s residual acceleration noise. (paper)
Towards a gravitational wave observatory designer: sensitivity limits of spaceborne detectors
Barke, S.; Wang, Y.; Esteban Delgado, J. J.; Tröbs, M.; Heinzel, G.; Danzmann, K.
2015-05-01
The most promising concept for low frequency (millihertz to hertz) gravitational wave observatories are laser interferometric detectors in space. It is usually assumed that the noise floor for such a detector is dominated by optical shot noise in the signal readout. For this to be true, a careful balance of mission parameters is crucial to keep all other parasitic disturbances below shot noise. We developed a web application that uses over 30 input parameters and considers many important technical noise sources and noise suppression techniques to derive a realistic position noise budget. It optimizes free parameters automatically and generates a detailed report on all individual noise contributions. Thus one can easily explore the entire parameter space and design a realistic gravitational wave observatory. In this document we describe the different parameters, present all underlying calculations, and compare the final observatory’s sensitivity with astrophysical sources of gravitational waves. We use as an example parameters currently assumed to be likely applied to a space mission proposed to be launched in 2034 by the European Space Agency. The web application itself is publicly available on the Internet at http://spacegravity.org/designer. Future versions of the web application will incorporate the frequency dependence of different noise sources and include a more detailed model of the observatory’s residual acceleration noise.
Schäfer, G.; Schutz, B.
1996-01-01
Gravity is truly universal. It is the force that pulls us to the Earth, that keeps the planets and moons in their orbits, and that causes the tides on the Earth to ebb and flow. It even keeps the Sun shining. Yet on a laboratory scale gravity is extremely weak. The Coulomb force between two protons is 1039 times stronger than the gravitational force between them. Moreover, Newton's gravitational constant is the least accurately known of the fundamental constants: it has been measured to 1 par...
International Nuclear Information System (INIS)
Manoff, S.
1979-07-01
By utilization of the method of Lagrangians with covariant derivatives (MLCD) the different energy-momentum tensors (canonical, generalized canonical, symmetrical) and the relations between them are considered. On this basis, Einstein's theory of gravitation is studied as a field theory with a Lagrangian density of the type Lsub(g)=√-g.Lsub(g)(gsub(ij),Rsub(A)), (Rsub(A)=Rsub(ijkl)). It is shown that the energy-momentum tensors of the gravitational field can be defined for this theory. The symmetrical energy-momentum tensor of the gravitational field sub(gs)Tsub(k)sup(i), which in the general case is not a local conserved quantity (sub(gs)Tsub(k)sup(i)sub(;i) unequal 0) (in contrast to the material fields satisfying condition sub(Ms)Tsub(k)sup(i)sub(;i) = 0), is equal to zero for the gravitational field in vacuum (cosmological constant Λ = 0). Equations of the gravitational field of a new type are suggested, leading to equations of motion (sub(Ms)Tsub(k)sup(i) + sub(gs)Tsub(k)sup(i))sub(;i) = 0. The equations corresponding to the Lagrangian density Lsub(g)=(√-g/kappasub(o)) (R - lambda approximately), lambda approximately = const., are considered. The equations of Einstein Rsub(ij) = 0 are obtained in the case of gravitational field in vacuum. Some particular cases are examined as an illustration to material fields and the corresponding gravitational equations. (author)
Influence of tungsten fiber’s slow drift on the measurement of G with angular acceleration method
Energy Technology Data Exchange (ETDEWEB)
Luo, Jie; Wu, Wei-Huang; Zhan, Wen-Ze [School of Mechanical Engineering and Electronic Information, China University of Geosciences, Wuhan 430074 (China); Xue, Chao [MOE Key Laboratory of Fundamental Physical Quantities Measurement, School of Physics, Huazhong University of Science and Technology, Wuhan 430074 (China); School of Physics and Astronomy, Sun Yat-sen University, Guangzhou 510275 (China); Shao, Cheng-Gang, E-mail: cgshao@mail.hust.edu.cn; Wu, Jun-Fei [MOE Key Laboratory of Fundamental Physical Quantities Measurement, School of Physics, Huazhong University of Science and Technology, Wuhan 430074 (China); Milyukov, Vadim [Sternberg Astronomical Institute, Lomonosov Moscow State University, Moscow 119992 (Russian Federation)
2016-08-15
In the measurement of the gravitational constant G with angular acceleration method, the equilibrium position of torsion pendulum with tungsten fiber undergoes a linear slow drift, which results in a quadratic slow drift on the angular velocity of the torsion balance turntable under feedback control unit. The accurate amplitude determination of the useful angular acceleration signal with known frequency is biased by the linear slow drift and the coupling effect of the drifting equilibrium position and the room fixed gravitational background signal. We calculate the influences of the linear slow drift and the complex coupling effect on the value of G, respectively. The result shows that the bias of the linear slow drift on G is 7 ppm, and the influence of the coupling effect is less than 1 ppm.
Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact Binaries
Directory of Open Access Journals (Sweden)
Blanchet Luc
2006-06-01
Full Text Available The article reviews the current status of a theoretical approach to the problem of the emission of gravitational waves by isolated systems in the context of general relativity. Part A of the article deals with general post-Newtonian sources. The exterior field of the source is investigated by means of a combination of analytic post-Minkowskian and multipolar approximations. The physical observables in the far-zone of the source are described by a specific set of radiative multipole moments. By matching the exterior solution to the metric of the post-Newtonian source in the near-zone we obtain the explicit expressions of the source multipole moments. The relationships between the radiative and source moments involve many non-linear multipole interactions, among them those associated with the tails (and tails-of-tails of gravitational waves. Part B of the article is devoted to the application to compact binary systems. We present the equations of binary motion, and the associated Lagrangian and Hamiltonian, at the third post-Newtonian (3PN order beyond the Newtonian acceleration. The gravitational-wave energy flux, taking consistently into account the relativistic corrections in the binary moments as well as the various tail effects, is derived through 3.5PN order with respect to the quadrupole formalism. The binary's orbital phase, whose prior knowledge is crucial for searching and analyzing the signals from inspiralling compact binaries, is deduced from an energy balance argument.
Prevention of gravitational collapse
International Nuclear Information System (INIS)
Moffat, J.W.; Taylor, J.G.
1981-01-01
We apply a new theory of gravitation to the question of gravitational collapse to show that collapse is prevented in this theory under very reasonable conditions. This result also extends to prevent ultimate collapse of the Universe. (orig.)
Weight, gravitation, inertia, and tides
Pujol, Olivier; Lagoute, Christophe; Pérez, José-Philippe
2015-11-01
This paper deals with the factors that influence the weight of an object near the Earth's surface. They are: (1) the Earth's gravitational force, (2) the centrifugal force due to the Earth's diurnal rotation, and (3) tidal forces due to the gravitational field of the Moon and Sun, and other solar system bodies to a lesser extent. Each of these three contributions is discussed and expressions are derived. The relationship between weight and gravitation is thus established in a direct and pedagogical manner readily understandable by undergraduate students. The analysis applies to the Newtonian limit of gravitation. The derivation is based on an experimental (or operational) definition of weight, and it is shown that it coincides with the Earth’s gravitational force modified by diurnal rotation around a polar axis and non-uniformity of external gravitational bodies (tidal term). Two examples illustrate and quantify these modifications, respectively the Eötvös effect and the oceanic tides; tidal forces due to differential gravitation on a spacecraft and an asteroid are also proposed as examples. Considerations about inertia are also given and some comments are made about a widespread, yet confusing, explanation of tides based on a centrifugal force. Finally, the expression of the potential energy of the tide-generating force is established rigorously in the appendix.
Weight, gravitation, inertia, and tides
International Nuclear Information System (INIS)
Pujol, Olivier; Lagoute, Christophe; Pérez, José-Philippe
2015-01-01
This paper deals with the factors that influence the weight of an object near the Earth's surface. They are: (1) the Earth's gravitational force, (2) the centrifugal force due to the Earth's diurnal rotation, and (3) tidal forces due to the gravitational field of the Moon and Sun, and other solar system bodies to a lesser extent. Each of these three contributions is discussed and expressions are derived. The relationship between weight and gravitation is thus established in a direct and pedagogical manner readily understandable by undergraduate students. The analysis applies to the Newtonian limit of gravitation. The derivation is based on an experimental (or operational) definition of weight, and it is shown that it coincides with the Earth’s gravitational force modified by diurnal rotation around a polar axis and non-uniformity of external gravitational bodies (tidal term). Two examples illustrate and quantify these modifications, respectively the Eötvös effect and the oceanic tides; tidal forces due to differential gravitation on a spacecraft and an asteroid are also proposed as examples. Considerations about inertia are also given and some comments are made about a widespread, yet confusing, explanation of tides based on a centrifugal force. Finally, the expression of the potential energy of the tide-generating force is established rigorously in the appendix. (paper)
Rahvar, Sohrab
2018-05-01
In this work, we study the interaction of the electromagnetic wave (EW) from a distant quasar with the gravitational wave (GW) sourced by the binary stars. While in the regime of geometric optics, the light bending due to this interaction is negligible, we show that the phase shifting on the wavefront of an EW can produce the diffraction pattern on the observer plane. The diffraction of the light (with the wavelength of λe) by the gravitational wave playing the role of gravitational grating (with the wavelength of λg) has the diffraction angle of Δβ ˜ λe/λg. The relative motion of the observer, the source of gravitational wave and the quasar results in a relative motion of the observer through the interference pattern on the observer plane. The consequence of this fringe crossing is the modulation in the light curve of a quasar with the period of few hours in the microwave wavelength. The optical depth for the observation of this phenomenon for a Quasar with the multiple images strongly lensed by a galaxy where the light trajectory of some of the images crosses the lensing galaxy is τ ≃ 0.2. By shifting the time-delay of the light curves of the multiple images in a strong lensed quasar and removing the intrinsic variations of a quasar, our desired signals, as a new method for detection of GWs can be detected.
Directory of Open Access Journals (Sweden)
Dominique Brun-Battistini
2017-10-01
Full Text Available Richard C. Tolman analyzed the relation between a temperature gradient and a gravitational field in an equilibrium situation. In 2012, Tolman’s law was generalized to a non-equilibrium situation for a simple dilute relativistic fluid. The result in that scenario, obtained by introducing the gravitational force through the molecular acceleration, couples the heat flux with the metric coefficients and the gradients of the state variables. In the present paper it is shown, by explicitly describing the single particle orbits as geodesics in Boltzmann’s equation, that a gravitational field drives a heat flux in this type of system. The calculation is devoted solely to the gravitational field contribution to this heat flux in which a Newtonian limit to the Schwarzschild metric is assumed. The corresponding transport coefficient, which is obtained within a relaxation approximation, corresponds to the dilute fluid in a weak gravitational field. The effect is negligible in the non-relativistic regime, as evidenced by the direct evaluation of the corresponding limit.
On the anomalous acceleration in the solar system
International Nuclear Information System (INIS)
Palle, D.
2005-01-01
We study an impact of the cosmological environment on the cosmological environment on the solar gravitational system by the imbedding formalism of Gautreau. It turns out that the cosmic mean-mass density and the cosmological constant give negligible small contribution to the gravity potentials. On the other hand, the cosmic acceleration beyond the Robertson-Walker geometry can considerably influence the curvature of spacetime in the solar system. The resulting anomalous constant acceleration towards the Sun is order of magnitude smaller than that measured by Pioneer 10 and 11. However, it is larger than the second order terms of potentials, thus well within the sensitivity of new gravity probes such as the LATOR mission (Author)
Status report of pelletron accelerator and ECR based heavy ion accelerator programme
International Nuclear Information System (INIS)
Gupta, A.K.
2015-01-01
The BARC-TIFR Pelletron Accelerator is completing twenty seven years of round-the-clock operation, serving diverse users from institutions within and outside DAE. Over the years, various developmental activities and application oriented programs have been initiated at Pelletron Accelerator Facility, resulting into enhanced utilization of the accelerator. We have also been pursuing an ECR based heavy ion accelerator programme under XII th Plan, consisting of an 18 GHz superconducting ECR (Electron Cyclotron Resonance) ion source and a room temperature RFQ (Radio Frequency Quadrupole) followed by low and high beta superconducting niobium resonator cavities. This talk will provide the current status of Pelletron Accelerator and the progress made towards the ECR based heavy ion accelerator program at BARC. (author)
Energy Technology Data Exchange (ETDEWEB)
Blair, D G; Barriga, P; Coward, D; Dumas, J-C; Fan, Y; Gras, S; Howell, E; Ju, L; Miao, H [School of Physics, University of Western Australia, Perth, WA 6009 (Australia); Brooks, A F; Hosken, D J; Munch, J; Veitch, P J [Department of Physics, The University of Adelaide, Adelaide, SA, 5005 Australia (Australia); Charlton, P [School of Computing and Mathematics, Charles Sturt University, NSW 2678 (Australia); Galloway, D [School of Mathematical Sciences, Monash University, Vic 3800 (Australia); Hughes, S [Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139-4307 (United States); McClelland, D E; Scott, S M; Slagmolen, B J J [Department of Physics, Australian National University, Canberra, ACT 0200 (Australia); Melatos, A [School of Physics University of Melbourne, Parkville Vic 3010 Australia (Australia)], E-mail: dgb@physics.uwa.edu.au (and others)
2008-07-15
The proposed southern hemisphere gravitational wave detector AIGO increases the projected average baseline of the global array of ground based gravitational wave detectors by a factor {approx}4. This allows the world array to be substantially improved. The orientation of AIGO allows much better resolution of both wave polarisations. This enables better distance estimates for inspiral events, allowing unambiguous optical identification of host galaxies for about 25% of neutron star binary inspiral events. This can allow Hubble Law estimation without optical identification of an outburst, and can also allow deep exposure imaging with electromagnetic telescopes to search for weak afterglows. This allows independent estimates of cosmological acceleration and dark energy as well as improved understanding of the physics of neutron star and black hole coalescences. This paper reviews and summarises the science benefits of AIGO and presents a preliminary conceptual design.
International Nuclear Information System (INIS)
Blair, D G; Barriga, P; Coward, D; Dumas, J-C; Fan, Y; Gras, S; Howell, E; Ju, L; Miao, H; Brooks, A F; Hosken, D J; Munch, J; Veitch, P J; Charlton, P; Galloway, D; Hughes, S; McClelland, D E; Scott, S M; Slagmolen, B J J; Melatos, A
2008-01-01
The proposed southern hemisphere gravitational wave detector AIGO increases the projected average baseline of the global array of ground based gravitational wave detectors by a factor ∼4. This allows the world array to be substantially improved. The orientation of AIGO allows much better resolution of both wave polarisations. This enables better distance estimates for inspiral events, allowing unambiguous optical identification of host galaxies for about 25% of neutron star binary inspiral events. This can allow Hubble Law estimation without optical identification of an outburst, and can also allow deep exposure imaging with electromagnetic telescopes to search for weak afterglows. This allows independent estimates of cosmological acceleration and dark energy as well as improved understanding of the physics of neutron star and black hole coalescences. This paper reviews and summarises the science benefits of AIGO and presents a preliminary conceptual design
Accelerated FRW solutions in Chern-Simons gravity
International Nuclear Information System (INIS)
Cataldo, Mauricio; Crisostomo, Juan; Gomez, Fernando; Salgado, Patricio; Campo, Sergio del; Quinzacara, Cristian C.
2014-01-01
We consider a five-dimensional Einstein-Chern-Simons action which is composed of a gravitational sector and a sector of matter where the gravitational sector is given by a Chern-Simons gravity action instead of the Einstein-Hilbert action and where the matter sector is given by the so-called perfect fluid. It is shown that (i) the Einstein-Chern-Simons (EChS) field equations subject to suitable conditions can be written in a similar way to the Einstein-Maxwell field equations; (ii) these equations have solutions that describe an accelerated expansion for the three possible cosmological models of the universe, namely, spherical expansion, flat expansion, and hyperbolic expansion when α a parameter of the theory, is greater than zero. This result allows us to conjecture that these solutions are compatible with the era of dark energy and that the energy-momentum tensor for the field h a , a bosonic gauge field from the Chern-Simons gravity action, corresponds to a form of positive cosmological constant. It is also shown that the EChS field equations have solutions compatible with the era of matter: (i) In the case of an open universe, the solutions correspond to an accelerated expansion (α > 0) with a minimum scale factor at initial time that, when time goes to infinity, the scale factor behaves as a hyperbolic sine function. (ii) In the case of a flat universe, the solutions describe an accelerated expansion whose scale factor behaves as an exponential function of time. (iii) In the case of a closed universe there is found only one solution for a universe in expansion, which behaves as a hyperbolic cosine function of time. (orig.)
Gravitational radiation quadrupole formula is valid for gravitationally interacting systems
International Nuclear Information System (INIS)
Walker, M.; Will, C.M.
1980-01-01
An argument is presented for the validity of the quadrupole formula for gravitational radiation energy loss in the far field of nearly Newtonian (e.g., binary stellar) systems. This argument differs from earlier ones in that it determines beforehand the formal accuracy of approximation required to describe gravitationally self-interacting systems, uses the corresponding approximate equation of motion explicitly, and evaluate the appropriate asymptotic quantities by matching along the correct space-time light cones
Testing the gravitational inverse-square law
International Nuclear Information System (INIS)
Adelberger, Eric; Heckel, B.; Hoyle, C.D.
2005-01-01
If the universe contains more than three spatial dimensions, as many physicists believe, our current laws of gravity should break down at small distances. When Isaac Newton realized that the acceleration of the Moon as it orbited around the Earth could be related to the acceleration of an apple as it fell to the ground, it was the first time that two seemingly unrelated physical phenomena had been 'unified'. The quest to unify all the forces of nature is one that still keeps physicists busy today. Newton showed that the gravitational attraction between two point bodies is proportional to the product of their masses and inversely proportional to the square of the distance between them. Newton's theory, which assumes that the gravitational force acts instantaneously, remained essentially unchallenged for roughly two centuries until Einstein proposed the general theory of relativity in 1915. Einstein's radical new theory made gravity consistent with the two basic ideas of relativity: the world is 4D - the three directions of space combined with time - and no physical effect can travel faster than light. The theory of general relativity states that gravity is not a force in the usual sense but a consequence of the curvature of this space-time produced by mass or energy. However, in the limit of low velocities and weak gravitational fields, Einstein's theory still predicts that the gravitational force between two point objects obeys an inverse-square law. One of the outstanding challenges in physics is to finish what Newton started and achieve the ultimate 'grand unification' - to unify gravity with the other three fundamental forces (the electromagnetic force, and the strong and weak nuclear forces) into a single quantum theory. In string theory - one of the leading candidates for an ultimate theory - the fundamental entities of nature are 1D strings and higher-dimensional objects called 'branes', rather than the point-like particles we are familiar with. String
International Nuclear Information System (INIS)
Tajima, T.
2008-01-01
This note intends to motivate our effort toward the advent of new methods of particle acceleration, utilizing the fast rising laser technology. By illustrating the underlying principles in an intuitive manner and thus less jargon-clad fashion, we seek a direction in which we shall be able to properly control and harness the promise of laser acceleration. First we review the idea behind the laser wakefield. We then go on to examine ion acceleration by laser. We examine the sheath acceleration in particular and look for the future direction that allows orderly acceleration of ions in high energies
Utilization of pion production accelerators in biomedical applications
International Nuclear Information System (INIS)
Rosen, L.
1979-01-01
A discussion is presented of biomedical applications of pion-producing accelerators in a number of areas, but with emphasis on pion therapy for treatment of solid, non-metastasized malignancies. The problem of cancer management is described from the standpoint of the physicist, magnitude of the problem, and its social and economic impact. Barriers to successful treatment are identified, mainly with regard to radiation therapy. The properties and characteristics of π mesons, first postulated on purely theoretical grounds by H. Yukawa are described. It is shown how they can be used to treat human cancer and why they appear to have dramatic advantages over conventional forms of radiation by virtue of the fact that they permit localization of energy deposition, preferentially, in the tumor volume. The Clinton P. Anderson Meson Physics Facility (LAMPF), and its operating characteristics, are briefly described, with emphasis on the biomedical channel. The design of a relatively inexpensive accelerator specifically for pion therapy is described as is also the status of clinical trials using the existing Clinton P. Anderson Meson Physics Facility. The advantages of proton over electron accelerator for the production of high quality, high intensity negative pion beams suitable for radiation therapy of malignancies is also addressed. Other current, medically related applications of LAMPF technology are also discussed
Gravitational wave reception by a sphere
International Nuclear Information System (INIS)
Ashby, N.; Dreitlein, J.
1975-01-01
The reception of gravitational waves by an elastic self-gravitating spherical detector is studied in detail. The equations of motion of a detector driven by a gravitational wave are presented in the intuitively convenient coordinate system of Fermi. An exact analytic solution is given for the homogeneous isotropic sphere. Nonlinear effects of a massive self-gravitating system are computed for a body of mass equal to that of the earth, and are shown to be numerically important
Are the gravitational waves quantised?
International Nuclear Information System (INIS)
Lovas, I.
1998-01-01
The question whether gravitational waves are quantised or not can be investigated by the help of correlation measurements. If the gravitational waves are classical objects then the value of their correlation function is 1. However, if they are quantised, then there exist two possibilities: the gravitational waves are either completely coherent, then the correlation function is again 1, or they are partially coherent, then the correlation function is expected to deviate from 1. If the gravitational waves are generated by the change of the background metrics then they can be in a squeezed state. In a squeezed state there is a chance for the correlation between the phase of the wave and the quantum fluctuations. (author)
Transient multimessenger astronomy with gravitational waves
International Nuclear Information System (INIS)
Marka, S
2011-01-01
Comprehensive multimessenger astronomy with gravitational waves is a pioneering field bringing us interesting results and presenting us with exciting challenges for the future. During the era of the operation of advanced interferometric gravitational wave detectors, we will have the opportunity to investigate sources of gravitational waves that are also expected to be observable through other messengers, such as gamma rays, x-rays, optical, radio, and/or neutrino emission. Multimessenger searches for gravitational waves with the LIGO-GEO600-Virgo interferometer network have already produced insights on cosmic events and it is expected that the simultaneous observation of electromagnetic or neutrino emission could be a crucial aspect for the first direct detection of gravitational waves in the future. Trigger time, direction and expected frequency range enhances our ability to search for gravitational wave signatures with amplitudes closer to the noise floor of the detector. Furthermore, multimessenger observations will enable the extraction of otherwise unaccessible scientific insight. We summarize the status of transient multimessenger detection efforts as well as mention some of the open questions that might be resolved by advanced or third generation gravitational wave detector networks.
Achieving resonance in the Advanced LIGO gravitational-wave interferometer
International Nuclear Information System (INIS)
Staley, A; Martynov, D; Abbott, R; Adhikari, R X; Arai, K; Brooks, A F; Ballmer, S; Barsotti, L; Evans, M; Fritschel, P; DeRosa, R T; Effler, A; Dwyer, S; Gray, C; Izumi, K; Frolov, V V; Guido, C J; Heintze, M; Gustafson, R; Hoak, D
2014-01-01
Interferometric gravitational-wave detectors are complex instruments comprised of a Michelson interferometer enhanced by multiple coupled cavities. Active feedback control is required to operate these instruments and keep the cavities locked on resonance. The optical response is highly nonlinear until a good operating point is reached. The linear operating range is between 0.01% and 1% of a fringe for each degree of freedom. The resonance lock has to be achieved in all five degrees of freedom simultaneously, making the acquisition difficult. Furthermore, the cavity linewidth seen by the laser is only ∼1 Hz, which is four orders of magnitude smaller than the linewidth of the free running laser. The arm length stabilization system is a new technique used for arm cavity locking in Advanced LIGO. Together with a modulation technique utilizing third harmonics to lock the central Michelson interferometer, the Advanced LIGO detector has been successfully locked and brought to an operating point where detecting gravitational-waves becomes feasible. (paper)
Gravitational lensing of quasars
Eigenbrod, Alexander
2013-01-01
The universe, in all its richness, diversity and complexity, is populated by a myriad of intriguing celestial objects. Among the most exotic of them are gravitationally lensed quasars. A quasar is an extremely bright nucleus of a galaxy, and when such an object is gravitationally lensed, multiple images of the quasar are produced – this phenomenon of cosmic mirage can provide invaluable insights on burning questions, such as the nature of dark matter and dark energy. After presenting the basics of modern cosmology, the book describes active galactic nuclei, the theory of gravitational lensing, and presents a particular numerical technique to improve the resolution of astronomical data. The book then enters the heart of the subject with the description of important applications of gravitational lensing of quasars, such as the measurement of the famous Hubble constant, the determination of the dark matter distribution in galaxies, and the observation of the mysterious inner parts of quasars with much higher r...
Ohanian, Hans C
2013-01-01
The third edition of this classic textbook is a quantitative introduction for advanced undergraduates and graduate students. It gently guides students from Newton's gravitational theory to special relativity, and then to the relativistic theory of gravitation. General relativity is approached from several perspectives: as a theory constructed by analogy with Maxwell's electrodynamics, as a relativistic generalization of Newton's theory, and as a theory of curved spacetime. The authors provide a concise overview of the important concepts and formulas, coupled with the experimental results underpinning the latest research in the field. Numerous exercises in Newtonian gravitational theory and Maxwell's equations help students master essential concepts for advanced work in general relativity, while detailed spacetime diagrams encourage them to think in terms of four-dimensional geometry. Featuring comprehensive reviews of recent experimental and observational data, the text concludes with chapters on cosmology an...
da Rocha-Neto, J. F.; Morais, B. R.
2018-04-01
In the context of the teleparallel equivalent of general relativity the concept of gravitational pressure and gravitational energy-momentum arisen in a natural way. In the case of a Friedmann-Lemaitre-Robertson-Walker space FLRW we obtain the total energy contained inside the apparent horizon and the radial pressure over the apparent horizon area. We use these definitions to written a thermodynamics relation TAdSA = dEA+PAdVA at the apparent horizon, where EA is the total energy inside the apparent horizon, VA is the areal volume of the apparent horizon, PA is the radial pressure over the apparent horizon area, SA is the entropy which can be assumed as one quarter of the apparent horizon area only for a non stationary apparent horizon. We identify TA as the temperature at the surface of the apparent horizon. We shown that for all expanding accelerated FLRW model of universe the radial pressure is positive.
International Nuclear Information System (INIS)
Tevikyan, R.V.
1986-01-01
This paper presents equations that describe particles with spins s = 0, 1/2, 1 completely and which also describe 2s + 2 limiting fields as E → ∞. It is shown that the ordinary Hilbert-Einstein action for the gravitation field must be augmented by the action for the Bose vacuum field. This means that one must introduce in the gravitational equations a cosmological term proportional to the square of the strength of the Bose vacuum field. It is shown that the theory of gravitation describes three realities: matter, field, and vacuum field. A new form of matter--the vacuum field--is introduced into field theory
Prospects for comparison of matter and antimatter gravitation with ALPHA-g
Bertsche, W. A.
2018-03-01
The ALPHA experiment has recently entered an expansion phase of its experimental programme, driven in part by the expected benefits of conducting experiments in the framework of the new AD + ELENA antiproton facility at CERN. With antihydrogen trapping now a routine operation in the ALPHA experiment, the collaboration is leading progress towards precision atomic measurements on trapped antihydrogen atoms, with the first excitation of the 1S-2S transition and the first measurement of the antihydrogen hyperfine spectrum (Ahmadi et al. 2017 Nature 541, 506-510 (doi:10.1038/nature21040); Nature 548, 66-69 (doi:10.1038/nature23446)). We are building on these successes to extend our physics programme to include a measurement of antimatter gravitation. We plan to expand a proof-of-principle method (Amole et al. 2013 Nat. Commun. 4, 1785 (doi:10.1038/ncomms2787)), first demonstrated in the original ALPHA apparatus, and perform a precise measurement of antimatter gravitational acceleration with the aim of achieving a test of the weak equivalence principle at the 1% level. The design of this apparatus has drawn from a growing body of experience on the simulation and verification of antihydrogen orbits confined within magnetic-minimum atom traps. The new experiment, ALPHA-g, will be an additional atom-trapping apparatus located at the ALPHA experiment with the intention of measuring antihydrogen gravitation. This article is part of the Theo Murphy meeting issue 'Antiproton physics in the ELENA era'.
Prospects for comparison of matter and antimatter gravitation with ALPHA-g.
Bertsche, W A
2018-03-28
The ALPHA experiment has recently entered an expansion phase of its experimental programme, driven in part by the expected benefits of conducting experiments in the framework of the new AD + ELENA antiproton facility at CERN. With antihydrogen trapping now a routine operation in the ALPHA experiment, the collaboration is leading progress towards precision atomic measurements on trapped antihydrogen atoms, with the first excitation of the 1S-2S transition and the first measurement of the antihydrogen hyperfine spectrum (Ahmadi et al. 2017 Nature 541 , 506-510 (doi:10.1038/nature21040); Nature 548 , 66-69 (doi:10.1038/nature23446)). We are building on these successes to extend our physics programme to include a measurement of antimatter gravitation. We plan to expand a proof-of-principle method (Amole et al. 2013 Nat. Commun. 4 , 1785 (doi:10.1038/ncomms2787)), first demonstrated in the original ALPHA apparatus, and perform a precise measurement of antimatter gravitational acceleration with the aim of achieving a test of the weak equivalence principle at the 1% level. The design of this apparatus has drawn from a growing body of experience on the simulation and verification of antihydrogen orbits confined within magnetic-minimum atom traps. The new experiment, ALPHA-g, will be an additional atom-trapping apparatus located at the ALPHA experiment with the intention of measuring antihydrogen gravitation.This article is part of the Theo Murphy meeting issue 'Antiproton physics in the ELENA era'. © 2018 The Authors.
Those Elusive Gravitational Waves
MOSAIC, 1976
1976-01-01
The presence of gravitational waves was predicted by Einstein in his theory of General Relativity. Since then, scientists have been attempting to develop a detector sensitive enough to measure these cosmic signals. Once the presence of gravitational waves is confirmed, scientists can directly study star interiors, galaxy cores, or quasars. (MA)
Directory of Open Access Journals (Sweden)
Maryam Goodarzian Ghahfarokhi
2014-05-01
Full Text Available In this study experiment was conducted to evaluated the effect of accelerated aging on germination characteristics, seed reserve utilization and malondialdehyde of two wheat cultivars. The experiment was conducted in factorial with a randomized complete block design with 3 replications. Results of variance analysis showed that, seed aging had significant effects on germination percentage, germination index, normal seedling percentage, mean time to germination, malondialdehyde content, seedling dry weight, weight of utilized (mobilized seed reserve and electrical conductivity. The highest germination percentage, germination index, normal seedling percentage, seedling dry weight and weight of utilized (mobilized seed reserve and the minimum mean time to germination, electrical conductivity and malondialdehyde content were attained from Verinak cultivar under control conditions (0 day aging. Results indicates that germination percentage, germination index, normal seedling percentage, seedling dry weight, and weight of utilized (mobilized seed reserve decreased significantly as seed aging progressed. But, mean time to germination, electrical conductivity and malondialdehyde content increased significantly as seed aging progressed. Also, the decrease in seed reserve mobilization rate was the cause of decreased other traits.
Quantum Emulation of Gravitational Waves.
Fernandez-Corbaton, Ivan; Cirio, Mauro; Büse, Alexander; Lamata, Lucas; Solano, Enrique; Molina-Terriza, Gabriel
2015-07-14
Gravitational waves, as predicted by Einstein's general relativity theory, appear as ripples in the fabric of spacetime traveling at the speed of light. We prove that the propagation of small amplitude gravitational waves in a curved spacetime is equivalent to the propagation of a subspace of electromagnetic states. We use this result to propose the use of entangled photons to emulate the evolution of gravitational waves in curved spacetimes by means of experimental electromagnetic setups featuring metamaterials.
The energy-momentum problem and gravitation theory
International Nuclear Information System (INIS)
Logunov, A.A.; Folomeshkin, V.N.
1977-01-01
General properties of geometrized gravitation theories are considered. A covariant formulation of conservation laws in an arbitrary Riemann space-time is presented. In the Einstein theory both symmetric and canonical energy-momentum tensors of the matter and gravitational field system and, in particular, energy-momentum of free gravitational waves prove to be equal to zero. Since gravitational waves carry the curvature and, consequently, affect the detector, this bears witness to an intrinsic contradiction of the Einstein theory. To realize the sources of difficulties concerning energy-momentum in the Einstein theory the gravitational field is treated in the same way as all the other physical fields, i.e. in terms of usual Lorentz-invariant field theory. Unification of this approach with the Einstein idea of geometrization enables to construct the geometrized theory, which is free from contradictions, has clearly defined the notions of gravitation field energy-momentum and satisfactorily describes all known experimental facts. To construct a logically consistent theory one should geometrize only the density of the matter Lagrangian. The gravitation field equations are formulated in terms of the Euclidean space-time with a metric tensor γsub(ik), while the matter motion may be completely described in terms of the non-Euclidean space-time with a metric tensor gsub(ik). For strong gravitational fields the predictions of the quasi-linear theory under consideration appriciably differ from those of the Einstein formulation of the gravitation theory. No black holes are present in the theory. The results of the calculation for the energy flow of gravitational waves are rigorously unambiguous and show that gravitational waves carry positively definite energy
Relic gravitational waves and cosmology
International Nuclear Information System (INIS)
Grishchuk, Leonid P
2005-01-01
The paper begins with a brief recollection of interactions of the author with Ya B Zeldovich in the context of the study of relic gravitational waves. The principles and early results on the quantum-mechanical generation of cosmological perturbations are then summarized. The expected amplitudes of relic gravitational waves differ in various frequency windows, and therefore the techniques and prospects of their detection are distinct. One section of the paper describes the present state of efforts in direct detection of relic gravitational waves. Another section is devoted to indirect detection via the anisotropy and polarization measurements of the cosmic microwave background (CMB) radiation. It is emphasized throughout the paper that the inference about the existence and expected amount of relic gravitational waves is based on a solid theoretical foundation and the best available cosmological observations. It is also explained in great detail what went wrong with the so-called 'inflationary gravitational waves', whose amount is predicted by inflationary theorists to be negligibly small, thus depriving them of any observational significance. (reviews of topical problems)
Sensitivity of a combined gravitational antenna
International Nuclear Information System (INIS)
Kulagin, V.V.; Rudenko, V.N.
1986-01-01
A modification of a combined optico-acoustic gravitational antenna: a long-base laser interferometer, where free masses are changed by Weber resonators, is suggested. The combined gravitational antenna can possess sensitivity h min ∼ 10 -18 without deep cooling of Weber resonators and h min ∼ 10 -19 at helium temperaure of the resonators. This antenna has the following new quantities: presence of three independent responses, that permits to a considerable extent to exclude non-gravitational effects; presence of responses of two separated Weber resonators, that permits to register the wave character of gravitational perturbation by measuring phase shift between relaxation ''tails''. It means that one may with certainty register the wave structure of gravitational radiation for perturbation of metrics h, exceeding the threshold sensitivity of the known detectors by an order
Theory and experiment in gravitational physics
Will, C. M.
New technological advances have made it feasible to conduct measurements with precision levels which are suitable for experimental tests of the theory of general relativity. This book has been designed to fill a new need for a complete treatment of techniques for analyzing gravitation theory and experience. The Einstein equivalence principle and the foundations of gravitation theory are considered, taking into account the Dicke framework, basic criteria for the viability of a gravitation theory, experimental tests of the Einstein equivalence principle, Schiff's conjecture, and a model theory devised by Lightman and Lee (1973). Gravitation as a geometric phenomenon is considered along with the parametrized post-Newtonian formalism, the classical tests, tests of the strong equivalence principle, gravitational radiation as a tool for testing relativistic gravity, the binary pulsar, and cosmological tests.
Davis, J. L.; Vinogradova, N. T.
2017-12-01
Tide-gauge records from the North Atlantic reveal significant acceleration in sea level starting in the late 20th century. We have analyzed the tide-gauge data using a model in which the accelerations are assumed to be zero prior to 1990. The estimated accelerations range from -1 to +3 m cy-2 and exhibit a systematic spatial variability. Davis and Vinogradova [2017] demonstrated that to model this variability in sea-level acceleration requires contributions from several distinct physical processes: accelerated mass loss from the Greenland and Antarctic Ice Sheets and acceleration associated with ocean circulation and heat uptake. Atmospheric pressure also contributes to the observed changes in sea level, at a much smaller amplitude. Because we are focusing on sea-level accelerations (i.e., sea-level rate changes), the contribution from Glacial Isostatic Adjustment (GIA) is negligible. Modeling of observed sea-level acceleration is achieved using external constraints for the important physical processes. Using GRACE results, we can calculate the sea-level "fingerprints" for Greenland and Antarctica associated with mass loading and gravitational perturbations. For the North Atlantic, Greenland induces a significant spatial variation in sea-level change—dominated by the solid-Earth response to the mass loss—whereas Antarctica contributes a spatially constant acceleration. The observations prefer a scaling of the solid-Earth/gravitational response, and we present the implications of this result for ice-mass changes prior to the onset of GRACE observations (2002-3).
Gravitational waves from self-ordering scalar fields
Fenu, Elisa; Durrer, Ruth; Garcia-Bellido, Juan
2009-01-01
Gravitational waves were copiously produced in the early Universe whenever the processes taking place were sufficiently violent. The spectra of several of these gravitational wave backgrounds on subhorizon scales have been extensively studied in the literature. In this paper we analyze the shape and amplitude of the gravitational wave spectrum on scales which are superhorizon at the time of production. Such gravitational waves are expected from the self ordering of randomly oriented scalar fields which can be present during a thermal phase transition or during preheating after hybrid inflation. We find that, if the gravitational wave source acts only during a small fraction of the Hubble time, the gravitational wave spectrum at frequencies lower than the expansion rate at the time of production behaves as $\\Omega_{\\rm GW}(f) \\propto f^3$ with an amplitude much too small to be observable by gravitational wave observatories like LIGO, LISA or BBO. On the other hand, if the source is active for a much longer tim...
Development of bipolar pulse accelerator for intense pulsed ion beam acceleration
International Nuclear Information System (INIS)
Fujioka, Y.; Mitsui, C.; Kitamura, I.; Takahashi, T.; Masugata, K.; Tanoue, H.; Arai, K.
2003-01-01
To improve the purity of an intense pulsed ion beams a new type of pulsed ion beam accelerator named 'bipolar pulse accelerator (BPA)' was proposed. In the accelerator purity of the beam is expected. To confirm the principle of the accelerator experimental system was developed. The system utilizes B y type magnetically insulated acceleration gap and operated with single polar negative pulse. A coaxial gas puff plasma gun placed in the grounded anode was used as an ion source, and source plasma (nitrogen) of current density approx. = 25 A/cm 2 , duration approx. = 1.5 μs was injected into the acceleration gap. The ions are successfully accelerated from the grounded anode to the drift tube by applying negative pulse of voltage 180 kV, duration 60 ns to the drift tube. Pulsed ion beam of current density approx. = 40 A/cm 2 , duration approx. 60 ns was obtained at 42 mm downstream from the anode surface. (author)
Gravitational Waves: The Evidence Mounts
Wick, Gerald L.
1970-01-01
Reviews the work of Weber and his colleagues in their attempts at detecting extraterrestial gravitational waves. Coincidence events recorded by special detectors provide the evidence for the existence of gravitational waves. Bibliography. (LC)
Casimir apparatuses in a weak gravitational field
DEFF Research Database (Denmark)
Bimonte, Giuseppe; Calloni, Enrico; Esposito, Giampiero
2009-01-01
We review and assess a part of the recent work on Casimir apparatuses in the weak gravitational field of the Earth. For a free, real massless scalar field subject to Dirichlet or Neumann boundary conditions on the parallel plates, the resulting regularized and renormalized energy-momentum tensor...... is covariantly conserved, while the trace anomaly vanishes if the massless field is conformally coupled to gravity. Conformal coupling also ensures a finite Casimir energy and finite values of the pressure upon parallel plates. These results have been extended to an electromagnetic field subject to perfect...... conductor (hence idealized) boundary conditions on parallel plates, by various authors. The regularized and renormalized energy-momentum tensor has beene valuated up to second order in the gravity acceleration. In both the scalar and the electromagnetic case, studied to first order in the gravity...
Gravitational Wave Speed: Undefined. Experiments Proposed
Directory of Open Access Journals (Sweden)
Daniel Russell
2018-04-01
Full Text Available Since changes in all 4 dimensions of spacetime are components of displacement for gravitational waves, a theoretical result is presented that their speed is undefined, and that the Theory of Relativity is not reliable to predict their speed. Astrophysical experiments are proposed with objectives to directly measure gravitational wave speed, and to verify these theoretical results. From the circumference of two merging black hole's final orbit, it is proposed to make an estimate of a total duration of the last ten orbits, before gravitational collapse, for comparison with durations of reported gravitational wave signals. It is proposed to open a new field of engineering of spacetime wave modulation with an objective of faster and better data transmission and communication through the Earth, the Sun, and deep space. If experiments verify that gravitational waves have infinite speed, it is concluded that a catastrophic gravitational collapse, such as a merger of quasars, today, would re-define the geometry and curvature of spacetime on Earth, instantly, without optical observations of this merger visible, until billions of years in the future.
PREFACE: 8th Edoardo Amaldi Conference on Gravitational Waves
Marka, Zsuzsa; Marka, Szabolcs
2010-04-01
(The attached PDF contains select pictures from the Amaldi8 Conference) At Amaldi7 in Sydney in 2007 the Gravitational Wave International Committee (GWIC), which oversees the Amaldi meetings, decided to hold the 8th Edoardo Amaldi Conference on Gravitational Waves at Columbia University in the City of New York. With this decision, Amaldi returned to North America after a decade. The previous two years have seen many advances in the field of gravitational wave detection. By the summer of 2009 the km-scale ground based interferometric detectors in the US and Europe were preparing for a second long-term scientific run as a worldwide detector network. The advanced or second generation detectors had well-developed plans and were ready for the production phase or started construction. The European-American space mission, LISA Pathfinder, was progressing towards deployment in the foreseeable future and it is expected to pave the ground towards gravitational wave detection in the milliHertz regime with LISA. Plans were developed for an additional gravitational wave detector in Australia and in Japan (in this case underground) to extend the worldwide network of detectors for the advanced detector era. Japanese colleagues also presented plans for a space mission, DECIGO, that would bridge the gap between the LISA and ground-based interferometer frequency range. Compared to previous Amaldi meetings, Amaldi8 had new elements representing emerging trends in the field. For example, with the inclusion of pulsar timing collaborations to the GWIC, gravitational wave detection using pulsar timing arrays was recognized as one of the prominent directions in the field and was represented at Amaldi8 as a separate session. By 2009, searches for gravitational waves based on external triggers received from electromagnetic observations were already producing significant scientific results and plans existed for pointing telescopes by utilizing gravitational wave trigger events. Such
Directory of Open Access Journals (Sweden)
Youssef Chebli
Full Text Available Plants are able to sense the magnitude and direction of gravity. This capacity is thought to reside in selected cell types within the plant body that are equipped with specialized organelles called statoliths. However, most plant cells do not possess statoliths, yet they respond to changes in gravitational acceleration. To understand the effect of gravity on the metabolism and cellular functioning of non-specialized plant cells, we investigated a rapidly growing plant cell devoid of known statoliths and without gravitropic behavior, the pollen tube. The effects of hyper-gravity and omnidirectional exposure to gravity on intracellular trafficking and on cell wall assembly were assessed in Camellia pollen tubes, a model system with highly reproducible growth behavior in vitro. Using an epi-fluorescence microscope mounted on the Large Diameter Centrifuge at the European Space Agency, we were able to demonstrate that vesicular trafficking is reduced under hyper-gravity conditions. Immuno-cytochemistry confirmed that both in hyper and omnidirectional gravity conditions, the characteristic spatial profiles of cellulose and callose distribution in the pollen tube wall were altered, in accordance with a dose-dependent effect on pollen tube diameter. Our findings suggest that in response to gravity induced stress, the pollen tube responds by modifying cell wall assembly to compensate for the altered mechanical load. The effect was reversible within few minutes demonstrating that the pollen tube is able to quickly adapt to changing stress conditions.
Resonant-bar gravitational radiation antennas
International Nuclear Information System (INIS)
Blair, D.G.
1987-01-01
This paper reviews the concept of gravitational radiation, and describes the worldwide research programme for the development of high-sensitivity resonant-bar antennas which are aimed at detecting gravitational radiation from astrophysical sources. (author)
Problem of energy-momentum and theory of gravitation
International Nuclear Information System (INIS)
Logunov, A.A.; Folomeshkin, V.N.
1977-01-01
General properties of geometrised theories of gravitation are considered. Covariant formulation of conservation laws in arbitrary riemannian space-time is given. In the Einstein theory the symmetric as well as canonical energy-momentum tensor of the system ''matter plus gravitational field'' and in particular, the energy-momentum of free gravitational waves, turns out to be equal to zero. To understand the origin of the problems and difficulties concerning the energy-momentum in the Einstein theory, the gravitational filed is considered in the usual framework of the Lorentz invariant field theory, just like any other physical field. Combination of the approach proposed with the Einstein's idea of geometrization makes it possible to formulate the geometrised gravitation theory, in which there are no inner contradictions, the energy-momentum of gravitational field is defined precisely and all the known experimental facts are described successfully. For strong gravitational fields the predictions of the quasilinear geometrised theory under consideration are different from those of the gravitational theory in the Einstein formulation. Black holes are absent in the theory. Evaluation of the energy-flux of gravitational waves leads to unambiguous results and shows that the gravitational waves transfer the positive-definite energy
On black holes and gravitational waves
Loinger, Angelo
2002-01-01
Black holes and gravitational waves are theoretical entities of today astrophysics. Various observed phenomena have been associated with the concept of black hole ; until now, nobody has detected gravitational waves. The essays contained in this book aim at showing that the concept of black holes arises from a misinterpretation of general relativity and that gravitational waves cannot exist.
The Japanese space gravitational wave antenna - DECIGO
International Nuclear Information System (INIS)
Kawamura, S; Seto, N; Sato, S; Arai, K; Ando, M; Tsubono, K; Agatsuma, K; Akutsu, T; Akutsu, T; Arase, Y; Nakamura, T; Tanaka, T; Funaki, I; Takashima, T; Numata, K; Ioka, K; Kanda, N; Aoyanagi, Koh-Suke; Araya, A; Asada, H
2008-01-01
DECi-hertz Interferometer Gravitational wave Observatory (DECIGO) is the future Japanese space gravitational wave antenna. The goal of DECIGO is to detect gravitational waves from various kinds of sources mainly between 0.1 Hz and 10 Hz and thus to open a new window of observation for gravitational wave astronomy. DECIGO will consist of three drag-free spacecraft, 1000 km apart from each other, whose relative displacements are measured by a Fabry-Perot Michelson interferometer. We plan to launch DECIGO pathfinder first to demonstrate the technologies required to realize DECIGO and, if possible, to detect gravitational waves from our galaxy or nearby galaxies
Gravitational waves in cold dark matter
Flauger, Raphael; Weinberg, Steven
2018-06-01
We study the effects of cold dark matter on the propagation of gravitational waves of astrophysical and primordial origin. We show that the dominant effect of cold dark matter on gravitational waves from astrophysical sources is a small frequency dependent modification of the propagation speed of gravitational waves. However, the magnitude of the effect is too small to be detected in the near future. We furthermore show that the spectrum of primordial gravitational waves in principle contains detailed information about the properties of dark matter. However, depending on the wavelength, the effects are either suppressed because the dark matter is highly nonrelativistic or because it contributes a small fraction of the energy density of the universe. As a consequence, the effects of cold dark matter on primordial gravitational waves in practice also appear too small to be detectable.
Anisotropic solutions by gravitational decoupling
Ovalle, J.; Casadio, R.; da Rocha, R.; Sotomayor, A.
2018-02-01
We investigate the extension of isotropic interior solutions for static self-gravitating systems to include the effects of anisotropic spherically symmetric gravitational sources by means of the gravitational decoupling realised via the minimal geometric deformation approach. In particular, the matching conditions at the surface of the star with the outer Schwarzschild space-time are studied in great detail, and we describe how to generate, from a single physically acceptable isotropic solution, new families of anisotropic solutions whose physical acceptability is also inherited from their isotropic parent.
Anisotropic solutions by gravitational decoupling
Energy Technology Data Exchange (ETDEWEB)
Ovalle, J. [Silesian University in Opava, Institute of Physics and Research Centre of Theoretical Physics and Astrophysics, Faculty of Philosophy and Science, Opava (Czech Republic); Universidad Simon Bolivar, Departamento de Fisica, Caracas (Venezuela, Bolivarian Republic of); Casadio, R. [Alma Mater Universita di Bologna, Dipartimento di Fisica e Astronomia, Bologna (Italy); Istituto Nazionale di Fisica Nucleare, Bologna (Italy); Rocha, R. da [Universidade Federal do ABC (UFABC), Centro de Matematica, Computacao e Cognicao, Santo Andre, SP (Brazil); Sotomayor, A. [Universidad de Antofagasta, Departamento de Matematicas, Antofagasta (Chile)
2018-02-15
We investigate the extension of isotropic interior solutions for static self-gravitating systems to include the effects of anisotropic spherically symmetric gravitational sources by means of the gravitational decoupling realised via the minimal geometric deformation approach. In particular, the matching conditions at the surface of the star with the outer Schwarzschild space-time are studied in great detail, and we describe how to generate, from a single physically acceptable isotropic solution, new families of anisotropic solutions whose physical acceptability is also inherited from their isotropic parent. (orig.)
Directory of Open Access Journals (Sweden)
Stavroulakis N.
2008-04-01
Full Text Available The equations of gravitation together with the equations of electromagnetism in terms of the General Theory of Relativity allow to conceive an interdependence between the gravitational field and the electromagnetic field. However the technical difficulties of the relevant problems have precluded from expressing clearly this interdependence. Even the simple problem related to the field generated by a charged spherical mass is not correctly solved. In the present paper we reexamine from the outset this problem and propose a new solution.
Gravitational states of antihydrogen near material surface
Energy Technology Data Exchange (ETDEWEB)
Voronin, Alexei Yu., E-mail: dr.a.voronin@gmail.com [P.N. Lebedev Physical Institute (Russian Federation); Froelich, Piotr [Uppsala University, Department of Quantum Chemistry (Sweden); Nesvizhevsky, Valery V. [Institut Laue-Langevin (ILL) (France)
2012-12-15
We present a theoretical study of the motion of antihydrogen atoms in the Earth's gravitational field near a material surface. We predict the existence of long-living quasistationary states of antihydrogen in a superposition of the gravitational and Casimir-van der Waals potentials of the surface. We suggest an interferometric method of measuring the energy difference between such gravitational states, hence the gravitational mass of antihydrogen.
A new theory of space-time and gravitation
International Nuclear Information System (INIS)
Denisov, V.I.; Logunov, A.A.
1982-01-01
Field theory of gravitation is constructed. It uses a symmetrical second rank tensor field in pseudoeuclidean space-time for describing the gravitational field. The theory is based on the condition of the presence of conservation laws for gravitational field and matter taken together and on the geometrization principle. The field theory of gravitation has the same post-newtonian parame-- ters as the general relativity theory (GRT) which implies that both theories are indistinguishable from the viewpoint of any post- newtonian experiment. The description of the effects in strong gravitational fields as well as properties of gravitational waves in the field theory of gravitation and GRT differ significantly from each other. The distinctions between two theories include also the itational red shifti curving of light trajectories and timabsence in the field theory of gravitation of the effects of grav.. delay/ in processes of propagation of gravitational waves in external fields. These distinctions made it possible to suggest a number of experiments with gravitational waves in which the predictions of the field theory of gravitation can be compared with those of the GRT. Model of the Universe in the field theory of gravitation makes it possible to describe the cosmological red shift of the frequency. Character of the evolution in this mode is determined by the delay parameter q 0 : at q 0 0 >4-3/2xα the ''expansion'' at some moment will ''change'' to contraction'' and the Universe will return to the singular state, where α=8πepsilon 0 /3M 2 (H is the Hubble constant) [ru
Workshop on Accelerator Operation (WAO 2001)
International Nuclear Information System (INIS)
Bailey, R.
2001-01-01
The 3rd Workshop on Accelerator Operation (WAO 2001) followed earlier workshops in 1996 and 1998. Most topics relevant for the efficient and effective operation of accelerators were covered. These included the tools and utilities necessary in the control rooms; the organization of accelerator operation (process monitoring, shift work, stress); the monitoring of beam quality; safety issues and standards; and questions particularly relevant for superconducting accelerators, in particular cryogenics. (author)
Gravitational waves from self-ordering scalar fields
International Nuclear Information System (INIS)
Fenu, Elisa; Durrer, Ruth; Figueroa, Daniel G.; García-Bellido, Juan
2009-01-01
Gravitational waves were copiously produced in the early Universe whenever the processes taking place were sufficiently violent. The spectra of several of these gravitational wave backgrounds on subhorizon scales have been extensively studied in the literature. In this paper we analyze the shape and amplitude of the gravitational wave spectrum on scales which are superhorizon at the time of production. Such gravitational waves are expected from the self ordering of randomly oriented scalar fields which can be present during a thermal phase transition or during preheating after hybrid inflation. We find that, if the gravitational wave source acts only during a small fraction of the Hubble time, the gravitational wave spectrum at frequencies lower than the expansion rate at the time of production behaves as Ω GW (f) ∝ f 3 with an amplitude much too small to be observable by gravitational wave observatories like LIGO, LISA or BBO. On the other hand, if the source is active for a much longer time, until a given mode which is initially superhorizon (kη * 1, we find that the gravitational wave energy density is frequency independent, i.e. scale invariant. Moreover, its amplitude for a GUT scale scenario turns out to be within the range and sensitivity of BBO and marginally detectable by LIGO and LISA. This new gravitational wave background can compete with the one generated during inflation, and distinguishing both may require extra information
A new geometrical gravitational theory
International Nuclear Information System (INIS)
Obata, T.; Chiba, J.; Oshima, H.
1981-01-01
A geometrical gravitational theory is developed. The field equations are uniquely determined apart from one unknown dimensionless parameter ω 2 . It is based on an extension of the Weyl geometry, and by the extension the gravitational coupling constant and the gravitational mass are made to be dynamical and geometrical. The fundamental geometrical objects in the theory are a metric gsub(μν) and two gauge scalars phi and psi. The theory satisfies the weak equivalence principle, but breaks the strong one generally. u(phi, psi) = phi is found out on the assumption that the strong one keeps holding good at least for bosons of low spins. Thus there is the simple correspondence between the geometrical objects and the gravitational objects. Since the theory satisfies the weak one, the inertial mass is also dynamical and geometrical in the same way as is the gravitational mass. Moreover, the cosmological term in the theory is a coscalar of power -4 algebraically made of psi and u(phi, psi), so it is dynamical, too. Finally spherically symmetric exact solutions are given. The permissible range of the unknown parameter ω 2 is experimentally determined by applying the solutions to the solar system. (author)
Gravitational waves from supernova matter
International Nuclear Information System (INIS)
Scheidegger, S; Whitehouse, S C; Kaeppeli, R; Liebendoerfer, M
2010-01-01
We have performed a set of 11 three-dimensional magnetohydrodynamical (MHD) core-collapse supernova simulations in order to investigate the dependences of the gravitational wave signal on the progenitor's initial conditions. We study the effects of the initial central angular velocity and different variants of neutrino transport. Our models are started up from a 15M o-dot progenitor and incorporate an effective general relativistic gravitational potential and a finite temperature nuclear equation of state. Furthermore, the electron flavour neutrino transport is tracked by efficient algorithms for the radiative transfer of massless fermions. We find that non- and slowly rotating models show gravitational wave emission due to prompt- and lepton driven convection that reveals details about the hydrodynamical state of the fluid inside the protoneutron stars. Furthermore we show that protoneutron stars can become dynamically unstable to rotational instabilities at T/|W| values as low as ∼2% at core bounce. We point out that the inclusion of deleptonization during the postbounce phase is very important for the quantitative gravitational wave (GW) prediction, as it enhances the absolute values of the gravitational wave trains up to a factor of ten with respect to a lepton-conserving treatment.
Gravitational scattering of electromagnetic radiation
Brooker, J. T.; Janis, A. I.
1980-01-01
The scattering of electromagnetic radiation by linearized gravitational fields is studied to second order in a perturbation expansion. The incoming electromagnetic radiation can be of arbitrary multipole structure, and the gravitational fields are also taken to be advanced fields of arbitrary multipole structure. All electromagnetic multipole radiation is found to be scattered by gravitational monopole and time-varying dipole fields. No case has been found, however, in which any electromagnetic multipole radiation is scattered by gravitational fields of quadrupole or higher-order multipole structure. This lack of scattering is established for infinite classes of special cases, and is conjectured to hold in general. The results of the scattering analysis are applied to the case of electromagnetic radiation scattered by a moving mass. It is shown how the mass and velocity may be determined by a knowledge of the incident and scattered radiation.
Korytov, M. S.; Shcherbakov, V. S.; Titenko, V. V.
2018-01-01
Limitation of the swing of the bridge crane cargo rope is a matter of urgency, as it can significantly improve the efficiency and safety of the work performed. In order to completely dampen the pendulum swing after the break-up of a bridge or a bridge-crane freight cart to maximum speed, it is necessary, in the normal repulsion control of the electric motor, to split the process of dispersion into a minimum of three gaps. For a dynamic system of swinging of a bridge crane on a flexible cable hanger in a separate vertical plane, an analytical solution was obtained to determine the temporal dependence of the cargo rope angle relative to the gravitational vertical when the cargo suspension point moves with constant acceleration. The resulting analytical dependence of the cargo rope angle and its first derivative can break the process of dispersing the cargo suspension point into three stages of dispersal and braking with various accelerations and enter maximum speed of movement of the cargo suspension point. In doing so, the condition of eliminating the swings of the cargo rope relative to the gravitational vertical is fulfilled. Provides examples of the maximum speed output constraints-to-time when removing the rope swing.
International Nuclear Information System (INIS)
Nyambuya, Golden Gadzirayi
2010-01-01
This paper is part of a series on the Azimuthally Symmetric Theory of Gravitation (ASTG). This theory is built on Laplace-Poisson's well known equation and it has been shown that the ASTG is capable of explaining, from a purely classical physics standpoint, the precession of the perihelion of solar planets as a consequence of the azimuthal symmetry emerging from the spin of the Sun. This symmetry has and must have an influence on the emergent gravitational field. We show herein that the emergent equations from the ASTG, under some critical conditions determined by the spin, do possess repulsive gravitational fields in the polar regions of the gravitating body in question. This places the ASTG on an interesting pedestal to infer the origins of outflows as a repulsive gravitational phenomenon. Outflows are a ubiquitous phenomenon found in star forming systems and their true origin is a question yet to be settled. Given the current thinking on their origin, the direction that the present paper takes is nothing short of an asymptotic break from conventional wisdom; at the very least, it is a complete paradigm shift because gravitation is not at all associated with this process, but rather it is thought to be an all-attractive force that only tries to squash matter together onto a single point. Additionally, we show that the emergent Azimuthally Symmetric Gravitational Field from the ASTG strongly suggests a solution to the supposed Radiation Problem that is thought to be faced by massive stars in their process of formation. That is, at ∼ 8-10 M sun , radiation from the nascent star is expected to halt the accretion of matter. We show that in-falling material will fall onto the equatorial disk and from there, this material will be channeled onto the forming star via the equatorial plane, thus accretion of mass continues well past the value of ∼ 8-10 M sun , albeit via the disk. Along the equatorial plane, the net force (with the radiation force included) on any
Gravitational effects of global textures
International Nuclear Information System (INIS)
Noetzold, D.
1990-03-01
A solution for the dynamics of global textures is obtained. Their gravitational field during the collapse and the subsequent evolution is found to be given solely by a space-time dependent ''deficit solid angle.'' The frequency shift of photons traversing this gravitational field is calculated. The space-time dependent texture metric locally contracts the volume of three-space and thereby induces overdensities in homogeneous matter distributions. There are no gravitational forces unless matter has a nonzero angular momentum with respect to the texture origin which would be the case for moving textures
Interaction of gravitational plane waves
International Nuclear Information System (INIS)
Ferrari, V.
1988-01-01
The mathematical theory of colliding, infinite-fronted, plane gravitational waves is presented. The process of focusing, the creation of singularities and horizons, due to the interaction, and the lens effect due to a beam-like gravitational wave are discussed
Laboratory generation of gravitational waves
International Nuclear Information System (INIS)
Pinto, I.M.; Rotoli, G.
1988-01-01
The authors have performed calculations on the basic type of gravitational wave electromagnetic laboratory generators. Their results show that laboratory generations of gravitational wave is at limit of state-of-the-art of present-day giant electromagnetic field generation
Wang, Sai; Wang, Yi-Fan; Huang, Qing-Guo; Li, Tjonnie G. F.
2018-05-01
Advanced LIGO's discovery of gravitational-wave events is stimulating extensive studies on the origin of binary black holes. Assuming that the gravitational-wave events can be explained by binary primordial black hole mergers, we utilize the upper limits on the stochastic gravitational-wave background given by Advanced LIGO as a new observational window to independently constrain the abundance of primordial black holes in dark matter. We show that Advanced LIGO's first observation run gives the best constraint on the primordial black hole abundance in the mass range 1 M⊙≲MPBH≲100 M⊙, pushing the previous microlensing and dwarf galaxy dynamics constraints tighter by 1 order of magnitude. Moreover, we discuss the possibility to detect the stochastic gravitational-wave background from primordial black holes, in particular from subsolar mass primordial black holes, by Advanced LIGO in the near future.
Wang, Sai; Wang, Yi-Fan; Huang, Qing-Guo; Li, Tjonnie G F
2018-05-11
Advanced LIGO's discovery of gravitational-wave events is stimulating extensive studies on the origin of binary black holes. Assuming that the gravitational-wave events can be explained by binary primordial black hole mergers, we utilize the upper limits on the stochastic gravitational-wave background given by Advanced LIGO as a new observational window to independently constrain the abundance of primordial black holes in dark matter. We show that Advanced LIGO's first observation run gives the best constraint on the primordial black hole abundance in the mass range 1M_{⊙}≲M_{PBH}≲100M_{⊙}, pushing the previous microlensing and dwarf galaxy dynamics constraints tighter by 1 order of magnitude. Moreover, we discuss the possibility to detect the stochastic gravitational-wave background from primordial black holes, in particular from subsolar mass primordial black holes, by Advanced LIGO in the near future.
International Nuclear Information System (INIS)
Johansson, E.
1986-01-01
Interactions of high-energy particles with atomic nuclei, in particular heavy ones, leads to a strong emission of neutrons. Preferably these high-energy particles are protons or deuterons obtained from a linear accelerator. The neutrons emitted are utilized in the conversion of U238 to Pu239 or of Th232 to U233. The above is the basis of the accelerator breeder, a concept studied abroad in many variants. No such breeder has, however, so far been built, but there exists vast practical experience on the neutron production and on the linear accelerator. Some of the variants mentioned are described in the report, after a presentation of general characteristics for the particle-nucleus interaction and for the linear accelerator. (author)
Gravitationally coupled electroweak monopole
Energy Technology Data Exchange (ETDEWEB)
Cho, Y.M., E-mail: ymcho7@konkuk.ac.kr [Administration Building 310-4, Konkuk University, Seoul 143-701 (Korea, Republic of); School of Physics and Astronomy, Seoul National University, Seoul 151-742 (Korea, Republic of); Kimm, Kyoungtae [Faculty of Liberal Education, Seoul National University, Seoul 151-747 (Korea, Republic of); Yoon, J.H. [Department of Physics, College of Natural Sciences, Konkuk University, Seoul 143-701 (Korea, Republic of)
2016-10-10
We present a family of gravitationally coupled electroweak monopole solutions in Einstein–Weinberg–Salam theory. Our result confirms the existence of globally regular gravitating electroweak monopole which changes to the magnetically charged black hole as the Higgs vacuum value approaches to the Planck scale. Moreover, our solutions could provide a more accurate description of the monopole stars and magnetically charged black holes.
Directory of Open Access Journals (Sweden)
Roberto Peron
2017-07-01
Full Text Available A dedicated mission in low Earth orbit is proposed to test predictions of gravitational interaction theories and to directly measure the atmospheric density in a relevant altitude range, as well as to provide a metrological platform able to tie different space geodesy techniques. The concept foresees a small spacecraft to be placed in a dawn-dusk eccentric orbit between 450 and 1200 km of altitude. The spacecraft will be tracked from the ground with high precision, and a three-axis accelerometer package on-board will measure the non-gravitational accelerations acting on its surface. Estimates of parameters related to fundamental physics and geophysics should be obtained by a precise orbit determination, while the accelerometer data will be instrumental in constraining the atmospheric density. Along with the mission scientific objectives, a conceptual configuration is described together with an analysis of the dynamical environment experienced by the spacecraft and the accelerometer.
A radiometer for stochastic gravitational waves
International Nuclear Information System (INIS)
Ballmer, Stefan W
2006-01-01
The LIGO Scientific Collaboration recently reported a new upper limit on an isotropic stochastic background of gravitational waves obtained based on the data from the third LIGO science run (S3). Here I present a new method for obtaining directional upper limits on stochastic gravitational waves that essentially implements a gravitational wave radiometer. The LIGO Scientific Collaboration intends to use this method for future LIGO science runs
Detecting gravitational waves from accreting neutron stars
Watts, A.L.; Krishnan, B.
2009-01-01
The gravitational waves emitted by neutron stars carry unique information about their structure and composition. Direct detection of these gravitational waves, however, is a formidable technical challenge. In a recent study we quantified the hurdles facing searches for gravitational waves from the
The Japanese space gravitational wave antenna; DECIGO
Kawamura, Seiji; Ando, Masaki; Nakamura, Takashi; Tsubono, Kimio; Tanaka, Takahiro; Funaki, Ikkoh; Seto, Naoki; Numata, Kenji; Sato, Shuichi; Ioka, Kunihito; Kanda, Nobuyuki; Takashima, Takeshi; Agatsuma, Kazuhiro; Akutsu, Tomotada; Akutsu, Tomomi
2008-01-01
DECi-hertz Interferometer Gravitational wave Observatory (DECIGO) is the future Japanese space gravitational wave antenna. The goal of DECIGO is to detect gravitational waves from various kinds of sources mainly between 0.1 Hz and 10 Hz and thus to open a new window of observation for gravitational wave astronomy. DECIGO will consist of three drag-free spacecraft, 1000 km apart from each other, whose relative displacements are measured by a Fabry—Perot Michelson interferometer. We plan to lau...
The Japanese space gravitational wave antenna - DECIGO
Kawamura, Seiji; Ando, Masaki; Nakamura, Takashi; Tsubono, Kimio; Tanaka, Takahiro; Funaki, Iklkoh; Seto, Naoki; Numata, Kenji; Sato, Shuichi; Ioka, Kunihito; Kanda, Nobuyuki; Takashima, Takeshi; Agatsuma, Kazuhiro; Akutsu, Tomotada; Akutsu, Tomomi
2008-01-01
DECi-hertz Interferometer Gravitational wave Observatory (DECIGO) is the future Japanese space gravitational wave antenna. The goal of DECIGO is to detect gravitational waves from various kinds of sources mainly between 0.1 Hz and 10 Hz and thus to open a new window of observation for gravitational wave astronomy. DECIGO will consist of three drag-free spacecraft, 1000 km apart from each other, whose relative displacements are measured by a Fabry—Perot Michelson interferometer. We plan to lau...
Gravitational waves from instabilities in relativistic stars
International Nuclear Information System (INIS)
Andersson, Nils
2003-01-01
This paper provides an overview of stellar instabilities as sources of gravitational waves. The aim is to put recent work on secular and dynamical instabilities in compact stars in context, and to summarize the current thinking about the detectability of gravitational waves from various scenarios. As a new generation of kilometre length interferometric detectors is now coming online this is a highly topical theme. The review is motivated by two key questions for future gravitational-wave astronomy: are the gravitational waves from various instabilities detectable? If so, what can these gravitational-wave signals teach us about neutron star physics? Even though we may not have clear answers to these questions, recent studies of the dynamical bar-mode instability and the secular r-mode instability have provided new insights into many of the difficult issues involved in modelling unstable stars as gravitational-wave sources. (topical review)
International Nuclear Information System (INIS)
Luce, J.S.
1978-01-01
A collective field accelerator which operates with a vacuum diode and utilizes a grooved cathode and a dielectric anode that operates with a relativistic electron beam with a ν/γ of approx. 1, and a plurality of dielectric lenses having an axial magnetic field thereabout to focus the collectively accelerated electrons and ions which are ejected from the anode. The anode and lenses operate as unoptimized r-f cavities which modulate and focus the beam
International Nuclear Information System (INIS)
Chen, Zhihuan; Yuan, Xiaohui; Tian, Hao; Ji, Bin
2014-01-01
Highlights: • We propose an improved gravitational search algorithm (IGSA). • IGSA is applied to parameter identification of water turbine regulation system (WTRS). • WTRS is modeled by considering the impact of turbine speed on torque and water flow. • Weighted objective function strategy is applied to parameter identification of WTRS. - Abstract: Parameter identification of water turbine regulation system (WTRS) is crucial in precise modeling hydropower generating unit (HGU) and provides support for the adaptive control and stability analysis of power system. In this paper, an improved gravitational search algorithm (IGSA) is proposed and applied to solve the identification problem for WTRS system under load and no-load running conditions. This newly algorithm which is based on standard gravitational search algorithm (GSA) accelerates convergence speed with combination of the search strategy of particle swarm optimization and elastic-ball method. Chaotic mutation which is devised to stepping out the local optimal with a certain probability is also added into the algorithm to avoid premature. Furthermore, a new kind of model associated to the engineering practices is built and analyzed in the simulation tests. An illustrative example for parameter identification of WTRS is used to verify the feasibility and effectiveness of the proposed IGSA, as compared with standard GSA and particle swarm optimization in terms of parameter identification accuracy and convergence speed. The simulation results show that IGSA performs best for all identification indicators
The gravitational-wave memory effect
International Nuclear Information System (INIS)
Favata, Marc
2010-01-01
The nonlinear memory effect is a slowly growing, non-oscillatory contribution to the gravitational-wave amplitude. It originates from gravitational waves that are sourced by the previously emitted waves. In an ideal gravitational-wave interferometer a gravitational wave with memory causes a permanent displacement of the test masses that persists after the wave has passed. Surprisingly, the nonlinear memory affects the signal amplitude starting at leading (Newtonian-quadrupole) order. Despite this fact, the nonlinear memory is not easily extracted from current numerical relativity simulations. After reviewing the linear and nonlinear memory I summarize some recent work, including (1) computations of the memory contribution to the inspiral waveform amplitude (thus completing the waveform to third post-Newtonian order); (2) the first calculations of the nonlinear memory that include all phases of binary black hole coalescence (inspiral, merger, ringdown); and (3) realistic estimates of the detectability of the memory with LISA.
Highlights in gravitation and cosmology
International Nuclear Information System (INIS)
Iyer, B.R.; Kembhavi, Ajit; Narlikar, J.V.; Vishveshwara, C.V.
1988-01-01
This book assesses research into gravitation and cosmology by examining the subject from various viewpoints: the classical and quantum pictures, along with the cosmological and astrophysical applications. There are 35 articles by experts of international standing. Each defines the state of the art and contains a concise summary of our present knowledge of a facet of gravitational physics. These edited papers are based on those first given at an international conference held in Goa, India at the end of 1987. The following broad areas are covered: classical relativity, quantum gravity, cosmology, black holes, compact objects, gravitational radiation and gravity experiments. In this volume there are also summaries of discussions on the following special topics: exact solutions of cosmological equations, mathematical aspects of general relativity, the early universe, and quantum gravity. For research workers in cosmology and gravitation this reference book provides a broad view of present achievements and current problems. (author)
Advanced interferometric gravitational-wave detectors
Saulson, Peter R
2019-01-01
Gravitational waves are one of the most exciting and promising emerging areas of physics and astrophysics today. The detection of gravitational waves will rank among the most significant physics discoveries of the 21st century.Advanced Interferometric Gravitational-Wave Detectors brings together many of the world's top experts to deliver an authoritative and in-depth treatment on current and future detectors. Volume I is devoted to the essentials of gravitational-wave detectors, presenting the physical principles behind large-scale precision interferometry, the physics of the underlying noise sources that limit interferometer sensitivity, and an explanation of the key enabling technologies that are used in the detectors. Volume II provides an in-depth look at the Advanced LIGO and Advanced Virgo interferometers that have just finished construction, as well as examining future interferometric detector concepts. This two-volume set will provide students and researchers the comprehensive background needed to und...
Gravitational waves from scalar field accretion
International Nuclear Information System (INIS)
Nunez, Dario; Degollado, Juan Carlos; Moreno, Claudia
2011-01-01
Our aim in this work is to outline some physical consequences of the interaction between black holes and scalar field halos in terms of gravitational waves. In doing so, the black hole is taken as a static and spherically symmetric gravitational source, i.e. the Schwarzschild black hole, and we work within the test field approximation, considering that the scalar field lives in the curved space-time outside the black hole. We focused on the emission of gravitational waves when the black hole is perturbed by the surrounding scalar field matter. The symmetries of the space-time and the simplicity of the matter source allow, by means of a spherical harmonic decomposition, to study the problem by means of a one-dimensional description. Some properties of such gravitational waves are discussed as a function of the parameters of the infalling scalar field, and allow us to make the conjecture that the gravitational waves carry information on the type of matter that generated them.
Fundamentals of interferometric gravitational wave detectors
Saulson, Peter R
2017-01-01
LIGO's recent discovery of gravitational waves was headline news around the world. Many people will want to understand more about what a gravitational wave is, how LIGO works, and how LIGO functions as a detector of gravitational waves.This book aims to communicate the basic logic of interferometric gravitational wave detectors to students who are new to the field. It assumes that the reader has a basic knowledge of physics, but no special familiarity with gravitational waves, with general relativity, or with the special techniques of experimental physics. All of the necessary ideas are developed in the book.The first edition was published in 1994. Since the book is aimed at explaining the physical ideas behind the design of LIGO, it stands the test of time. For the second edition, an Epilogue has been added; it brings the treatment of technical details up to date, and provides references that would allow a student to become proficient with today's designs.
Kelly, Bernard J.
2010-01-01
Einstein's General Theory of Relativity is our best classical description of gravity, and informs modern astronomy and astrophysics at all scales: stellar, galactic, and cosmological. Among its surprising predictions is the existence of gravitational waves -- ripples in space-time that carry energy and momentum away from strongly interacting gravitating sources. In my talk, I will give an overview of the properties of this radiation, recent breakthroughs in computational physics allowing us to calculate the waveforms from galactic mergers, and the prospect of direct observation with interferometric detectors such as LIGO and LISA.
Gravitational-wave detector realized by a superconductor
International Nuclear Information System (INIS)
Ishidoshiro, K.; Ando, M.; Takamori, A.; Okada, K.; Tsubono, K.
2010-01-01
In this article, we present a new gravitational-wave detector based on superconducting magnetic levitation and results of its prototype test. Our detector is composed of the suspended test mass that is rotated by gravitational waves. Gravitational wave signals are readout by monitoring its angular motion. Superconducting magnetic levitation is used for the suspension of the test mass, since it has many advantages, such as zero mechanical loss and resonant frequency around its suspension axis in an ideal situation. For the study of actual performance of such gravitational-wave detector, a prototype detector has been developed. Using the prototype detector, the actual loss factor and resonant frequency are measured as 1.2 x 10 -8 Nms/rad and 5 mHz respectively. A detector noise is also evaluated. The current noise level is determined by the magnetic coupling with external magnetic field and mechanical coupling between translation and angular motion. The prototype detector has already one of the lowest noise levels for gravitational waves at 0.1 Hz among current gravitational-wave detectors. We have succeeded at the demonstration of the advantages of our torsion gravitational-wave detector.
Exact piecewise flat gravitational waves
van de Meent, M.
2011-01-01
We generalize our previous linear result (van de Meent 2011 Class. Quantum Grav 28 075005) in obtaining gravitational waves from our piecewise flat model for gravity in 3+1 dimensions to exact piecewise flat configurations describing exact planar gravitational waves. We show explicitly how to
Gravitation. [Book on general relativity
Misner, C. W.; Thorne, K. S.; Wheeler, J. A.
1973-01-01
This textbook on gravitation physics (Einstein's general relativity or geometrodynamics) is designed for a rigorous full-year course at the graduate level. The material is presented in two parallel tracks in an attempt to divide key physical ideas from more complex enrichment material to be selected at the discretion of the reader or teacher. The full book is intended to provide competence relative to the laws of physics in flat space-time, Einstein's geometric framework for physics, applications with pulsars and neutron stars, cosmology, the Schwarzschild geometry and gravitational collapse, gravitational waves, experimental tests of Einstein's theory, and mathematical concepts of differential geometry.
Non-Euclidean Geometry and Gravitation
Directory of Open Access Journals (Sweden)
Stavroulakis N.
2006-04-01
Full Text Available A great deal of misunderstandings and mathematical errors are involved in the currently accepted theory of the gravitational field generated by an isotropic spherical mass. The purpose of the present paper is to provide a short account of the rigorous mathematical theory and exhibit a new formulation of the problem. The solution of the corresponding equations of gravitation points out several new and unusual features of the stationary gravitational field which are related to the non-Euclidean structure of the space. Moreover it precludes the black hole from being a mathematical and physical notion.
The Brookhaven National Laboratory Accelerator Test Facility
International Nuclear Information System (INIS)
Batchelor, K.
1992-01-01
The Brookhaven National Laboratory Accelerator Test Facility comprises a 50 MeV traveling wave electron linear accelerator utilizing a high gradient, photo-excited, raidofrequency electron gun as an injector and an experimental area for study of new acceleration methods or advanced radiation sources using free electron lasers. Early operation of the linear accelerator system including calculated and measured beam parameters are presented together with the experimental program for accelerator physics and free electron laser studies
Hydrodynamics, fields and constants in gravitational theory
International Nuclear Information System (INIS)
Stanyukovich, K.P.; Mel'nikov, V.N.
1983-01-01
Results of original inveatigations into problems of standard gravitation theory and its generalizations are presented. The main attention is paid to the application of methods of continuous media techniques in the gravitation theory; to the specification of the gravitation role in phenomena of macro- and microworld, accurate solutions in the case, when the medium is the matter, assigned by hydrodynamic energy-momentum tensor; and to accurate solutions for the case when the medium is the field. GRT generalizations are analyzed, such as the new cosmologic hypothesis which is based on the gravitation vacuum theory. Investigations are performed into the quantization of cosmological models, effects of spontaneous symmetry violation and particle production in cosmology. Graeity theory with fundamental Higgs field is suggested in the framework of which in the atomic unit number one can explain possible variations of the effective gravitational bonds, and in the gravitation bond, variations of masses of all particles
Accelerator-breeder, an application of high-energy accelerators to solving our energy problems
International Nuclear Information System (INIS)
Grand, P.; Batchelor, K.; Powell, J.R.; Steinberg, M.
1977-01-01
The rising costs of 235 U and other fossil fuels, and the schedule for implementing the breeder reactor have renewed interest in the utilization of accelerators for breeding 233 U or 239 Pu. A discussion is given of some of the basic accelerator parameters and choices to be made in order to meet the technical and economic requirements of such a facility
Tello-Ortiz, F.; Velazquez, L.
2016-10-01
This work is devoted to the thermodynamics of gravitational clustering, a collective phenomenon with a great relevance in the N-body cosmological problem. We study a classical self-gravitating gas of identical non-relativistic particles defined on the sphere {{{S}}3}\\subset {{{R}}4} by considering gravitational interaction that corresponds to this geometric space. The analysis is performed within microcanonical description of an isolated Hamiltonian system by combining continuum approximation and the steepest descend method. According to numerical solution of resulting equations, the gravitational clustering can be associated with two microcanonical phase transitions. A first phase transition with a continuous character is associated with breakdown of SO(4) symmetry of this model. The second one is the gravitational collapse, whose continuous or discontinuous character crucially depends on the regularization of short-range divergence of gravitation potential. We also derive the thermodynamic limit of this model system, the astrophysical counterpart of the Gibbs-Duhem relation, the order parameters that characterize its phase transitions and the equation of state. Other interesting behavior is the existence of states with negative heat capacities, which appear when the effects of gravitation turn dominant for energies sufficiently low. Finally, we comment on the relevance of some of these results in the study of astrophysical and cosmological situations. Special interest deserves the gravitational modification of the equation of state due to the local inhomogeneities of matter distribution. Although this feature is systematically neglected in studies about universe expansion, the same one is able to mimic an effect that is attributed to the dark energy: a negative pressure.
Spinor approach to gravitational motion and precession
International Nuclear Information System (INIS)
Hestenes, D.
1986-01-01
The translational and rotational equations of motion for a small rigid body in a gravitational field are combined in a single spinor equation. Besides its computational advantages, this unifies the description of gravitational interaction in classical and quantum theory. Explicit expressions for gravitational precession rates are derived. (author)
Physics, Astrophysics and Cosmology with Gravitational Waves.
Sathyaprakash, B S; Schutz, Bernard F
2009-01-01
Gravitational wave detectors are already operating at interesting sensitivity levels, and they have an upgrade path that should result in secure detections by 2014. We review the physics of gravitational waves, how they interact with detectors (bars and interferometers), and how these detectors operate. We study the most likely sources of gravitational waves and review the data analysis methods that are used to extract their signals from detector noise. Then we consider the consequences of gravitational wave detections and observations for physics, astrophysics, and cosmology.
The confrontation between gravitation theory and experiment
International Nuclear Information System (INIS)
Will, C.M.
1979-01-01
After an introductory section, an analysis is given of the foundations of gravitation theory - principles of equivalence, the fundamental criteria for the viability of a gravitational theory, and the experiments that support those criteria. One of the principal conclusions is that the correct, viable theory of gravity must in all probability be a 'metric' theory. Attention is focussed on solar-system tests, using a 'theory of theories' known as the parametrized post-Newtonian formalism that encompasses most metric theories of gravity and that is ideally suited to the solar-system arena. Gravitational radiation is discussed as a possible tool for testing gravitational theory. The binary pulsar, a new , 'stellar-system' testing ground is studied. Tests of gravitation theory in a cosmic arena are described. (U.K.)
Pelletron accelerator at Panjab University Chandigarh
International Nuclear Information System (INIS)
Singh, Nirmal; Mehta, Devinder
2006-01-01
The purpose of pelletron accelerator at Panjab University is to develop a low-energy accelerator laboratory within the university infrastructure. It will be housing a tandem electrostatic accelerator. The facility will bring together the available scientific expertise from a wide range of applications, viz. medical, biological and physical sciences and engineering that utilize accelerator-based technologies and techniques. It will play an important role in promoting integrated research and education across scientific disciplines available in the campus. (author)
Cardiovascular Responses of Snakes to Gravitational Gradients
Hsieh, Shi-Tong T.; Lillywhite, H. B.; Ballard, R. E.; Hargens, A. R.; Holton, Emily M. (Technical Monitor)
1998-01-01
Snakes are useful vertebrates for studies of gravitational adaptation, owing to their elongate body and behavioral diversification. Scansorial species have evolved specializations for regulating hemodynamics during exposure to gravitational stress, whereas, such adaptations are less well developed in aquatic and non-climbing species. We examined responses of the amphibious snake,\\italicize (Nerodia rhombifera), to increments of Gz (head-to-tail) acceleration force on both a short- and long-arm centrifuge (1.5 vs. 3.7 m radius, from the hub to tail end of snake). We recorded heart rate, dorsal aortic pressure, and carotid arterial blood flow during stepwise 0.25 G increments of Gz force (referenced at the tail) in conscious animals. The Benz tolerance of a snake was determined as the Gz level at which carotid blood flow ceased and was found to be significantly greater at the short- than long-arm centrifuge radius (1.57 Gz vs. 2.0 Gz, respectively; P=0.016). A similar pattern of response was demonstrated in semi-arboreal rat snakes,\\italicize{Elaphe obsoleta}, which are generally more tolerant of Gz force (2.6 Gz at 1.5m radius) than are water snakes. The tolerance differences of the two species reflected cardiovascular responses, which differed quantitatively but not qualitatively: heart rates increased while arterial pressure and blood flow decreased in response to increasing levels of Gz. Thus, in both species of snakes, a reduced gradient of Gz force (associated with greater centrifuge radius) significantly decreases the Gz level that can be tolerated.
International Nuclear Information System (INIS)
Logunov, A.A.
1989-01-01
The author believes that the General Relativity Theory (GRT) suffers from a substantial deficiency since it ignors the fundamental laws of conservation of energy. Einstein neglected the classical concept of the field due to his belief in the truth of the principle of equivalence between forces of inertid gravitation. This equivalence leads, as the author says, to nonequivalence of these forces, making GRT logically contradictory from the physical point of view. The author considers GRT as a certain stage in the course of the study of space-time and gravitation, and suggests a new theory called the Relativistic Theory of Gravitation (RTG) which obeys the fundamental laws of conservation, and which is justified in some of its aspects by astronomical observations. RTG does not suffer from some deficiencies met in Einsteins theory. One is nonunique predictions of gravitation effects within the boundaries of the solar system. Also, RTG refuses some hypothesis as that of black holes. 7 refs
Academic Training: Gravitational Waves Astronomy
2006-01-01
2006-2007 ACADEMIC TRAINING PROGRAMME LECTURE SERIES 16, 17, 18 October from 11:00 to 12:00 - Main Auditorium, bldg. 500 Gravitational Waves Astronomy M. LANDRY, LIGO Hanford Observatory, Richland, USA Gravitational wave astronomy is expected to become an observational field within the next decade. First direct detection of gravitational waves is possible with existing terrestrial-based detectors, and highly probable with proposed upgrades. In this three-part lecture series, we give an overview of the field, including material on gravitional wave sources, detection methods, some details of interferometric detectors, data analysis methods, and current results from observational data-taking runs of the LIGO and GEO projects. ENSEIGNEMENT ACADEMIQUE ACADEMIC TRAINING Françoise Benz 73127 academic.training@cern.ch If you wish to participate in one of the following courses, please tell to your supervisor and apply electronically from the course description pages that can be found on the Web at: http://www...
Academic Training: Gravitational Waves Astronomy
2006-01-01
2006-2007 ACADEMIC TRAINING PROGRAMME LECTURE SERIES 16, 17, 18 October from 11:00 to 12:00 - Main Auditorium, bldg. 500 Gravitational Waves Astronomy M. LANDRY, LIGO Hanford Observatory, Richland, USA Gravitational wave astronomy is expected to become an observational field within the next decade. First direct detection of gravitational waves is possible with existing terrestrial-based detectors, and highly probable with proposed upgrades. In this three-part lecture series, we give an overview of the field, including material on gravitional wave sources, detection methods, some details of interferometric detectors, data analysis methods, and current results from observational data-taking runs of the LIGO and GEO projects.ENSEIGNEMENT ACADEMIQUE ACADEMIC TRAINING Françoise Benz 73127 academic.training@cern.ch If you wish to participate in one of the following courses, please tell to your supervisor and apply electronically from the course description pages that can be found on the Web at: http://www.cern...
Romero, Gustavo E.
2017-01-01
I discuss the recent claims made by Mario Bunge on the philosophical implications of the discovery of gravitational waves. I think that Bunge is right when he points out that the detection implies the materiality of spacetime, but I reject his identification of spacetime with the gravitational field. I show that Bunge's analysis of the spacetime inside a hollow sphere is defective, but this in no way affects his main claim.
Static Test for a Gravitational Force Coupled to Type 2 YBCO Superconductors
Li, Ning; Noever, David; Robertson, Tony; Koczor, Ron; Brantley, Whitt
1997-01-01
As a Bose condensate, superconductors provide novel conditions for revisiting previously proposed couplings between electromagnetism and gravity. Strong variations in Cooper pair density, large conductivity and low magnetic permeability define superconductive and degenerate condensates without the traditional density limits imposed by the Fermi energy (approx. 10(exp -6) g cc. Recent experiments have reported anomalous weight loss for a test mass suspended above a rotating type II, YBCO superconductor, with the percentage change (0.05 - 2.1 %) independent of the test mass' chemical composition and diamagnetic properties. A variation of 5 parts per 10' was reported above a stationary (non-rotating) superconductor. In experiments using a sensitive gravimeter, bulk YBCO superconductors were stably levitated in a DC magnetic field. Changes in acceleration were measured to be less than 2 parts in 108 of the normal gravitational acceleration. This result puts new limits on the strength and range of the proposed coupling between static superconductors and gravity.
Rapid Monte Carlo Simulation of Gravitational Wave Galaxies
Breivik, Katelyn; Larson, Shane L.
2015-01-01
With the detection of gravitational waves on the horizon, astrophysical catalogs produced by gravitational wave observatories can be used to characterize the populations of sources and validate different galactic population models. Efforts to simulate gravitational wave catalogs and source populations generally focus on population synthesis models that require extensive time and computational power to produce a single simulated galaxy. Monte Carlo simulations of gravitational wave source populations can also be used to generate observation catalogs from the gravitational wave source population. Monte Carlo simulations have the advantes of flexibility and speed, enabling rapid galactic realizations as a function of galactic binary parameters with less time and compuational resources required. We present a Monte Carlo method for rapid galactic simulations of gravitational wave binary populations.
Physics, Astrophysics and Cosmology with Gravitational Waves
Directory of Open Access Journals (Sweden)
Sathyaprakash B. S.
2009-03-01
Full Text Available Gravitational wave detectors are already operating at interesting sensitivity levels, and they have an upgrade path that should result in secure detections by 2014. We review the physics of gravitational waves, how they interact with detectors (bars and interferometers, and how these detectors operate. We study the most likely sources of gravitational waves and review the data analysis methods that are used to extract their signals from detector noise. Then we consider the consequences of gravitational wave detections and observations for physics, astrophysics, and cosmology.
Feasibility analysis of gravitational experiments in space
Everitt, C. W. F.
1977-01-01
Experiments on gravitation and general relativity suggested by different workers in the past ten or more years are reviewed, their feasibility examined, and the advantages of performing them in space were studied. The experiments include: (1) the gyro relativity experiment; (2) experiments to test the equivalence of gravitational and inertial mass; (3) an experiment to look for nongeodesic motion of spinning bodies in orbit around the earth; (4) experiments to look for changes of the gravitational constant G with time; (5) a variety of suggestions; laboratory tests of experimental gravity; and (6) gravitational wave experiments.
Gravitational Wave Astrophysics: Opening the New Frontier
Centrella, Joan
2012-01-01
A new era in astronomy will begin when the gravitational wave window onto the universe opens in approx. 5 years, as ground-based detectors make the first detections in the high-frequency regime. Since the universe is nearly transparent to gravitational waves, these signals carry direct information about their sources - such as masses, spins, luminosity distances, and orbital parameters - through dense, obscured regions across cosmic time. This talk will explore gravitational waves as cosmic messengers, highlighting key sources and opportunities for multi-messenger astronomy across the gravitational wave spectrum.
Gravitational Waves and Time Domain Astronomy
Centrella, Joan; Nissanke, Samaya; Williams, Roy
2012-01-01
The gravitational wave window onto the universe will open in roughly five years, when Advanced LIGO and Virgo achieve the first detections of high frequency gravitational waves, most likely coming from compact binary mergers. Electromagnetic follow-up of these triggers, using radio, optical, and high energy telescopes, promises exciting opportunities in multi-messenger time domain astronomy. In the decade, space-based observations of low frequency gravitational waves from massive black hole mergers, and their electromagnetic counterparts, will open up further vistas for discovery. This two-part workshop featured brief presentations and stimulating discussions on the challenges and opportunities presented by gravitational wave astronomy. Highlights from the workshop, with the emphasis on strategies for electromagnetic follow-up, are presented in this report.
Vacuum polarization and non-Newtonian gravitation
International Nuclear Information System (INIS)
Long, D.R.
1980-01-01
Gell-Mann and Low have emphasized that, as first pointed out by Uehling and Serber, vacuum polarization effects produce a logarithmic modification to the Coulomb potential at small distances. Here, it is pointed out that, if these same considerations are applied to gravitation, the logarithmic term will have a sign opposite to that in the Coulomb case and in agreement with recent laboratory results on the gravitational ''constant''. Of considerable importance is the fact that such vacuum polarization effects cannot be observed in null experiments to test the gravitational inverse square law because the polarizing field is absent. It is a striking circumstance that the coefficient of the logarithm in QED is nearly the same as that found in gravitational experiments. (author)
International Nuclear Information System (INIS)
Nariai, Hidekazu.
1986-06-01
In similar to Misner and Sharp's formalism in general relativity for a spherical gravitational collapse, a formalism for the spherical gravitational collapse is presented on the basis of a generalized theory of gravitation in the sense of Utiyama-DeWitt (which was later extended by Parker's school and Zel'dovich's one). The resulted formalism is somewhat similar to that developed by me in 1972 based on the scalar-tensor theory of gravity. (author)
Particle production in a gravitational wave background
Jones, Preston; McDougall, Patrick; Singleton, Douglas
2017-03-01
We study the possibility that massless particles, such as photons, are produced by a gravitational wave. That such a process should occur is implied by tree-level Feynman diagrams such as two gravitons turning into two photons, i.e., g +g →γ +γ . Here we calculate the rate at which a gravitational wave creates a massless scalar field. This is done by placing the scalar field in the background of a plane gravitational wave and calculating the 4-current of the scalar field. Even in the vacuum limit of the scalar field it has a nonzero vacuum expectation value (similar to what occurs in the Higgs mechanism) and a nonzero current. We associate this with the production of scalar field quanta by the gravitational field. This effect has potential consequences for the attenuation of gravitational waves since the massless field is being produced at the expense of the gravitational field. This is related to the time-dependent Schwinger effect, but with the electric field replaced by the gravitational wave background and the electron/positron field quanta replaced by massless scalar "photons." Since the produced scalar quanta are massless there is no exponential suppression, as occurs in the Schwinger effect due to the electron mass.
International Nuclear Information System (INIS)
Nelson, S; Poole, B; Caporaso, G
2007-01-01
Proton accelerator structures for medical applications using Dielectric Wall Accelerator (DWA) technology allow for the utilization of high electric field gradients on the order of 100 MV/m to accelerate the proton bunch. Medical applications involving cancer therapy treatment usually desire short bunch lengths on the order of hundreds of picoseconds in order to limit the extent of the energy deposited in the tumor site (in 3D space, time, and deposited proton charge). Electromagnetic simulations of the DWA structure, in combination with injections of proton bunches have been performed using 3D finite difference codes in combination with particle pushing codes. Electromagnetic simulations of DWA structures includes these effects and also include the details of the switch configuration and how that switch time affects the electric field pulse which accelerates the particle beam
Plant design and beam utilization
International Nuclear Information System (INIS)
Svendsen, E.B.
1983-01-01
Plant design and beam utilization are two things closely tied together: without a proper plant design, one can never get good beam utilization. When a company decides to build an irradiation facility, there are some major decisions to be made right in the beginning. These decisions can be most important for the long-term success or failure of the irradiation facility, because the company normally will have to live with these decisions during the whole life-time of the irradiation equipment. To start with the decision has to be made whether to select a cobalt-60 irradiation plant or an accelerator irradiation plant. This decision can only be reached after a careful study of the products and the 'weight' and the material of the products the company wants to irradiate. As an old accelerator-man, I tend to personally favor accelerators, although I am very impressed by the newer cobalt-60 pallet irradiation plants from A.E.C.L. I believe that they have a great future in the emerging field of food irradiation. As I have primarily been involved with accelerators during the last 14 years, this paper is only dealing with different design approaches and utilizations of accelerator-plants. (author)
Production of Purely Gravitational Dark Matter
Ema, Yohei; Nakayama, Kazunori; Tang, Yong
2018-01-01
In the purely gravitational dark matter scenario, the dark matter particle does not have any interaction except for gravitational one. We study the gravitational particle production of dark matter particle in such a minimal setup and show that correct amount of dark matter can be produced depending on the inflation model and the dark matter mass. In particular, we carefully evaluate the particle production rate from the transition epoch to the inflaton oscillation epoch in a realistic inflati...
Merging Black Holes and Gravitational Waves
Centrella, Joan
2009-01-01
This talk will focus on simulations of binary black hole mergers and the gravitational wave signals they produce. Applications to gravitational wave detection with LISA, and electronagnetic counterparts, will be highlighted.
Krishnamurthy, Parthasarathy; Hui, Sam K; Shivkumar, Narayanan; Gowda, Chandrasekhar; Pushpalatha, R
2016-01-01
Peer-led outreach is a critical element of HIV and STI-reduction interventions aimed at sex workers. We study the association between peer-led outreach to sex workers and the time to utilize health facilities for timely STI syndromic-detection and treatment. Using data on the timing of peer-outreach interventions and clinic visits, we utilize an Extended Cox model to assess whether peer educator outreach intensity is associated with accelerated clinic utilization among sex workers. Our data comes from 2705 female sex workers registered into Pragati, a women-in-sex-work outreach program, and followed from 2008 through 2012. We analyze this data using an Extended Cox model with the density of peer educator visits in a 30-day rolling window as the key predictor, while controlling for the sex workers' age, client volume, location of sex work, and education level. The principal outcome of interest is the timing of the first voluntary clinic utilization. More frequent peer visit is associated with earlier first clinic visit (HR: 1.83, 95% CI, 1.75-1.91, p educator outreach. Peer outreach density is associated with increased likelihood of-and shortened duration to-clinic utilization among female sex workers, suggesting potential staff resourcing implications. Given the observational nature of our study, however, these findings should be interpreted as an association rather than as a causal relationship.
Self-gravitation in Saturn's rings
International Nuclear Information System (INIS)
Salo, H.; Lukkari, J.
1982-01-01
In a ring-shaped collisional system self-gravitation reduces the equilibrium values of the geometric and optical thickness. In Saturn's rings both effects are appreciable. The previously found discrepancy between the calculated profile and the observed profile of the rings is chiefly caused by the omission of self-gravitation. (Auth.)
International Nuclear Information System (INIS)
Itoh, Yousuke; Futamase, Toshifumi; Hattori, Makoto
2009-01-01
Gravitational waves propagate along null geodesics like light rays in the geometrical optics approximation, and they may have a chance to suffer from gravitational lensing by intervening objects, as is the case for electromagnetic waves. Long wavelengths of gravitational waves and compactness of possible sources may enable us to extract information in the interference among the lensed images. We point out that the interference term contains information of relative transverse velocity of the source-lens-observer system, which may be obtained by possible future space-borne gravitational wave detectors such as BBO/DECIGO.
International Nuclear Information System (INIS)
Bonnie Madre; Charles Reece; Joseph Ozelis; Valerie Bookwalter
2003-01-01
Jefferson Lab has developed a web-based system that integrates commercial database, data analysis, document archiving and retrieval, and user interface software, into a coherent knowledge management product (Pansophy). This product provides important tools for the successful pursuit of major projects such as accelerator system development and construction, by offering elements of process and procedure control, data capture and review, and data mining and analysis. After a period of initial development, Pansophy is now being used in Jefferson Lab's SNS superconducting linac construction effort, as a means for structuring and implementing the QA program, for process control and tracking, and for cryomodule test data capture and presentation/analysis. Development of Pansophy is continuing, in particular data queries and analysis functions that are the cornerstone of its utility
Progress in gravitational wave detection: Interferometers
International Nuclear Information System (INIS)
Kuroda, Kazuaki
2002-01-01
A gravitational wave (GW) is a physical entity of space-time derived from Einstein's theory of general relativity. Challenging projects to observe gravitational waves are being conducted throughout the world. A Japanese project involving a 300 m baseline laser interferometer, TAMA, achieved 1000 hr of continuous observation with the best sensitivity in the world during the summer of 2001. After achieving promising results, the realization of LCGT (Large-scale Cryogenic Gravitational wave Telescope) will become possible in the near future
To theory of gravitational interaction
Minkevich, A. V.
2008-01-01
Some principal problems of general relativity theory and attempts of their solution are discussed. The Poincare gauge theory of gravity as natural generalization of Einsteinian gravitation theory is considered. The changes of gravitational interaction in the frame of this theory leading to the solution of principal problems of general relativity theory are analyzed.
Possible role of torsion in gravitational theories
International Nuclear Information System (INIS)
Nieh, H.T.
1983-01-01
Torsion is of interest in an indirect way, in that it has the potential of being an important ingredient in a future successful quantum theory of gravitation. Einstein's theory of gravitation, despite its simplicity and elegance, and its successes in large-scale gravitational phenomena, can only be regarded as a macroscopic classical theory. It is a non-renormalizable quantum field theory, and, therefore, lacks the status of a good microscopic theory. It is the search for a successful quantum field theory of gravitation that poses as one of the great challenges to theoretical physics today. (Auth.)
The Japanese space gravitational wave antenna-DECIGO
International Nuclear Information System (INIS)
Kawamura, Seiji; Nakamura, Takashi; Ando, Masaki
2006-01-01
DECi-hertz Interferometer Gravitational wave Observatory (DECIGO) is the future Japanese space gravitational wave antenna. It aims at detecting various kinds of gravitational waves between 1 mHz and 100 Hz frequently enough to open a new window of observation for gravitational wave astronomy. The pre-conceptual design of DECIGO consists of three drag-free satellites, 1000 km apart from each other, whose relative displacements are measured by a Fabry-Perot Michelson interferometer. We plan to launch DECIGO in 2024 after a long and intense development phase, including two pathfinder missions for verification of required technologies
Konishi anomaly approach to gravitational F-terms
International Nuclear Information System (INIS)
David, Justin R.; Gava, Edi; Narain, K.S.
2003-04-01
We study gravitational corrections to the effective superpotential in theories with a single adjoint chiral multiplet, using the generalized Konishi anomaly and the gravitationally deformed chiral ring. We show that the genus one correction to the loop equation in the corresponding matrix model agrees with the gravitational corrected anomaly equations in the gauge theory. An important ingredient in the proof is the lack of factorization of chiral gauge invariant operators in presence of a supergravity background. We also find a genus zero gravitational correction to the superpotential, which can be removed by a field redefinition. (author)
Actuality of the Einstein theory of gravitation
International Nuclear Information System (INIS)
Ivanenko, D.D.
1982-01-01
Problems of actuality of the Einstein theory of gravitation are lightened. The great Einstein theory of gravitation is shown to remain a reliable base of understanding of modern physical world pattern and its inevitable further inexhaustible precising. The main GRT difficulties are enumirated: determination of reference systems, presence of singularities in the theory, absence of consistent determination of the gravity energy, impossibility of accounting the relations between atomic, gravitational and cosmological characteristics. The attention is paid to gauge, twistor problems and to unified interaction theory. The great contribution of the soviet science in the theory of gravitation is stressed
International Nuclear Information System (INIS)
Csaki, Csaba; Erlich, Joshua; Grojean, Christophe
2001-01-01
Brane worlds are theories with extra spatial dimensions in which ordinary matter is localized on a (3+1) dimensional submanifold. Such theories could have interesting consequences for particle physics and gravitational physics. In this essay we concentrate on the cosmological constant (CC) problem in the context of brane worlds. We show how extra-dimensional scenarios may violate Lorentz invariance in the gravity sector of the effective 4D theory, while particle physics remains unaffected. In such theories the usual no-go theorems for adjustment of the CC do not apply, and we indicate a possible explanation of the smallness of the CC. Lorentz violating effects would manifest themselves in gravitational waves travelling with a speed different from light, which can be searched for in gravitational wave experiments
Gravitational Waves from Oscillons after Inflation.
Antusch, Stefan; Cefalà, Francesco; Orani, Stefano
2017-01-06
We investigate the production of gravitational waves during preheating after inflation in the common case of field potentials that are asymmetric around the minimum. In particular, we study the impact of oscillons, comparatively long lived and spatially localized regions where a scalar field (e.g., the inflaton) oscillates with large amplitude. Contrary to a previous study, which considered a symmetric potential, we find that oscillons in asymmetric potentials associated with a phase transition can generate a pronounced peak in the spectrum of gravitational waves that largely exceeds the linear preheating spectrum. We discuss the possible implications of this enhanced amplitude of gravitational waves. For instance, for low scale inflation models, the contribution from the oscillons can strongly enhance the observation prospects at current and future gravitational wave detectors.
Gravitational perturbation theory and synchrotron radiation
Energy Technology Data Exchange (ETDEWEB)
Breuer, R A [Max-Planck-Institut fuer Physik und Astrophysik, Muenchen (F.R. Germany). Inst. fuer Astrophysik
1975-01-01
This article presents methods and results for a gravitational perturbation theory which treats massless fields as linearized perturbations of an arbitrary gravitational vacuum background spacetime. The formalism is outlined for perturbations of type (22) spacetimes. As an application, high-frequency radiation emitted by particles moving approximately on relativistic circular geodesic orbits is computed. More precisely, the test particle assumption is made; throughout it is therefore assumed that the reaction of the radiation on the particle motion is negligible. In particular, these orbits are studied in the gravitational field of a spherically symmetric (Schwarzschild-) black hole as well as of a rotating (Kerr-) black hole. In this model, the outgoing radiation is highly focussed and of much higher fequency than the orbital frequency, i.e. one is dealing with 'gravitational synchrotron radiation'.
International Nuclear Information System (INIS)
Fennelly, A.J.
1978-01-01
Investigations of several problems of gravitation are discussed. The question of the existence of black holes is considered. While black holes like those in Einstein's theory may not exist in other gravity theories, trapped surfaces implying such black holes certainly do. The theories include those of Brans-Dicke, Lightman-Lee, Rosen, and Yang. A similar two-tensor theory of Yilmaz is investigated and found inconsistent and nonviable. The Newman-Penrose formalism for Riemannian geometries is adapted to general gravity theories and used to implement a search for twisting solutions of the gravity theories for empty and nonempty spaces. The method can be used to find the gravitational fields for all viable gravity theories. The rotating solutions are of particular importance for strong field interpretation of the Stanford/Marshall gyroscope experiment. Inhomogeneous cosmologies are examined in Einstein's theory as generalizations of homogeneous ones by raising the dimension of the invariance groups by one more parameter. The nine Bianchi classifications are extended to Rosen's theory of gravity for homogeneous cosmological models
Gravitational wave emission from oscillating millisecond pulsars
Alford, Mark G.; Schwenzer, Kai
2015-02-01
Neutron stars undergoing r-mode oscillation emit gravitational radiation that might be detected on the Earth. For known millisecond pulsars the observed spin-down rate imposes an upper limit on the possible gravitational wave signal of these sources. Taking into account the physics of r-mode evolution, we show that only sources spinning at frequencies above a few hundred Hertz can be unstable to r-modes, and we derive a more stringent universal r-mode spin-down limit on their gravitational wave signal. We find that this refined bound limits the gravitational wave strain from millisecond pulsars to values below the detection sensitivity of next generation detectors. Young sources are therefore a more promising option for the detection of gravitational waves emitted by r-modes and to probe the interior composition of compact stars in the near future.
Electron accelerators for waste processing
International Nuclear Information System (INIS)
Kon'kov, N.G.
1976-01-01
The documents of the International symposium on radiation vaste processing are presented. Questions on waste utilization with the help of electron accelerators are considered. The electron accelerators are shown to have an advantage over some other ionizing radiation sources. A conclusion is made that radiation methods of waste processing are extensively elaborated in many developed countries. It has been pointed out that an electron accelerator is a most cheap and safe ionizing radiation source primarily for processing of gaseous and liquid wastes
Numerical investigations of gravitational collapse
Energy Technology Data Exchange (ETDEWEB)
Csizmadia, Peter; Racz, Istvan, E-mail: iracz@rmki.kfki.h [RMKI, Budapest, Konkoly Thege Miklos ut 29-33, H-1121 (Hungary)
2010-03-01
Some properties of a new framework for simulating generic 4-dimensional spherically symmetric gravitating systems are discussed. The framework can be used to investigate spacetimes that undergo complete gravitational collapse. The analytic setup is chosen to ensure that our numerical method is capable to follow the time evolution everywhere, including the black hole region.
Conservation laws and gravitational radiation
International Nuclear Information System (INIS)
Rastall, P.
1977-01-01
A total stress-momentum is defined for gravitational fields and their sources. The Lagrangian density is slightly different from that in the previous version of the theory, and the field equations are considerably simplified. The post-Newtonian approximation of the theory is unchanged. The existence and nature of weak gravitational waves are discussed. (author)
Gravitational wave signals and cosmological consequences of gravitational reheating
Artymowski, Michał; Czerwińska, Olga; Lalak, Zygmunt; Lewicki, Marek
2018-04-01
Reheating after inflation can proceed even if the inflaton couples to Standard Model (SM) particles only gravitationally. However, particle production during the transition between de-Sitter expansion and a decelerating Universe is rather inefficient and the necessity to recover the visible Universe leads to a non-standard cosmological evolution initially dominated by remnants of the inflaton field. We remain agnostic to the specific dynamics of the inflaton field and discuss a generic scenario in which its remnants behave as a perfect fluid with a general barotropic parameter w. Using CMB and BBN constraints we derive the allowed range of inflationary scales. We also show that this scenario results in a characteristic primordial Gravitational Wave (GW) spectrum which gives hope for observation in upcoming runs of LIGO as well as in other planned experiments.
Post-Newtonian gravitational bremsstrahlung
International Nuclear Information System (INIS)
Turner, M.; Will, C.M.
1978-01-01
We present formulae and numerical results for the gravitational radiation emitted during a low-deflection encounter between two massive bodies (''gravitational bremsstrahlung''). Our results are valid through post-Newtonian order within general relativity. We discuss in detail the gravitational waveform (transverse-traceless part of the metric perturbation tensor), the toal luminosity and total emitted energy, the angular distribution of emitted energy (antenna pattern), and the frequency spectrum. We also present a method of ''boosting'' the accuracy of these quantities to post-3/2-Newtonian order. A numerical comparison of our results with those of Peters and of Kovacs and Thorne shows that the post-Newtonian method is reliable to better than 0.1% at v=0.1c, to a few percent at v=0.35c, and to 10--20% at v=0.5c. We also compare our results with those of Smarr
Quantum field theory in gravitational background
International Nuclear Information System (INIS)
Narnhofer, H.
1986-01-01
The author suggests ignoring the influence of the quantum field on the gravitation as the first step to combine quantum field theory and gravitation theory, but to consider the gravitational field as fixed and thus study quantum field theory on a manifold. This subject evoked interest when thermal radiation of a black hole was predicted. The author concentrates on the free quantum field and can split the problem into two steps: the Weyl-algebra of the free field and the Wightman functional on the tangent space
Parametric mechanisms for detecting gravitational waves
International Nuclear Information System (INIS)
Pustovoit, V.I.; Chernozatonskii, L.A.
1981-01-01
An intense electromagnetic wave and a gravitational wave can interact to effectively generate electromagnetic waves at sum and difference frequencies. The self-effect of a monochromatic electromagnetic wave through a gravitational field leads to third-harmonic generation
Critical Effects in Gravitational Collapse
International Nuclear Information System (INIS)
Chmaj, T.
2000-01-01
The models of gravitational collapse of a dynamical system are investigated by means of the Einstein equations. Different types conjunctions to gravitational field are analyzed and it is shown that in the case of week scalar field (low energy density) the system evaluated to flat space while in the case of strong field (high energy density) to black hole
Gravitational Mass, Its Mechanics - What It Is; How It Operates
Ellman, Roger
1999-01-01
The earlier paper, Inertial Mass, Its Mechanics - What It Is; How It Operates, developed the mechanics of inertial mass. The present paper is for the purpose of equivalently developing gravitation. The behavior of gravitation is well known, as described by Newton's Law of Gravitation. But just what gravitational mass is, how gravitational behavior comes about, what in material reality produces the effects of gravitational mass, has been little understood. The only extant hypotheses involve th...
International Nuclear Information System (INIS)
Pakter, R.; Schneider, R.S.; Rizzato, F.B.
1993-01-01
The cyclotron-resonance laser accelerator (CRLA), where a coherent electromagnetic wave may transfer a large amount of energy to a beam of electrons gravitating in a guide magnetic field is studied. This large amount of transferred energy takes place due to the autoresonance mechanism where, under some ideal conditions, an initial wave-particle synchronism is self-sustained throughout the accelerating period. An improved analysis of the mentioned self-consistent wave-particle interaction, taking into account a possible frequency mismatch between wave and particles. It is also shown how the frequency mismatch can compensate the dispersion effects. (L.C.J.A.)
Gravitational-Wave Stochastic Background from Cosmic Strings
International Nuclear Information System (INIS)
Siemens, Xavier; Creighton, Jolien; Mandic, Vuk
2007-01-01
We consider the stochastic background of gravitational waves produced by a network of cosmic strings and assess their accessibility to current and planned gravitational wave detectors, as well as to big bang nucleosynthesis (BBN), cosmic microwave background (CMB), and pulsar timing constraints. We find that current data from interferometric gravitational wave detectors, such as Laser Interferometer Gravitational Wave Observatory (LIGO), are sensitive to areas of parameter space of cosmic string models complementary to those accessible to pulsar, BBN, and CMB bounds. Future more sensitive LIGO runs and interferometers such as Advanced LIGO and Laser Interferometer Space Antenna (LISA) will be able to explore substantial parts of the parameter space
Cosmic matter-antimatter asymmetry and gravitational force
Hsu, J. P.
1980-01-01
Cosmic matter-antimatter asymmetry due to the gravitational interaction alone is discussed, considering the gravitational coupling of fermion matter related to the Yang-Mills (1954) gauge symmetry with the unique generalization of the four-dimensional Poincare group. Attention is given to the case of weak static fields which determines the space-time metric where only large source terms are retained. In addition, considering lowest-order Feynman diagrams, there are presented gravitational potential energies between fermions, between antifermions, and between a fermion and an antifermion. It is concluded that the gravitational force between matter is different from that between antimatter; implications from this concerning the evolution of the universe are discussed.
Chiral primordial gravitational waves from a Lifshitz point.
Takahashi, Tomohiro; Soda, Jiro
2009-06-12
We study primordial gravitational waves produced during inflation in quantum gravity at a Lifshitz point proposed by Horava. Assuming power-counting renormalizability, foliation-preserving diffeomorphism invariance, and the condition of detailed balance, we show that primordial gravitational waves are circularly polarized due to parity violation. The chirality of primordial gravitational waves is a quite robust prediction of quantum gravity at a Lifshitz point which can be tested through observations of cosmic microwave background radiation and stochastic gravitational waves.
Gravitational perturbations of the hydrogen atom
International Nuclear Information System (INIS)
Parker, L.
1983-01-01
The strength of a gravitational field is characterized by the Riemann curvature tensor. It is of interest to know how the curvature of space-time at the position of an atom affects its spectrum. The author gives a brief summary of work on the effects of curvature on the hydrogen atom. The results refer to an arbitrary metric and can be evaluated for particular space-times of interest. The possibility of using the effect of gravitational waves on the electromagnetic spectrum of hydrogen as a means of detecting gravitational waves is also investigated. (Auth.)
Displacement-noise-free gravitational-wave detection
International Nuclear Information System (INIS)
Kawamura, Seiji; Chen Yanbei
2004-01-01
We present a new idea that allows us to detect gravitational waves without being disturbed by any kind of displacement noise, based on the fact that gravitational waves and test-mass motions affect the propagations of light differently. We demonstrate this idea by analyzing a simple toy model consisting of three equally-separated objects on a line. By taking a certain combination of light travel times between these objects, we construct an observable free from the displacement of each object, which has a reasonable sensitivity to gravitational waves
Listening music of gravitation
International Nuclear Information System (INIS)
Anon.
2001-01-01
Achievements of precision experiments in Japan (TAMA project) and USA (LIGO Laboratory) in the field of registration of gravitation waves using interferometric gravitational wave detectors are described. Works of the GEO groups in Hannover (Germany) and Vigro (Italy) are noted. Interferometer operation in synchronization during 160 hours demonstrating viability of the technique and its reliability is recorded. Advances in the field of the data analysis with the aim of recording of cosmic signal from noise of the interferometer are noted [ru
Gravitational-wave mediated preheating
Energy Technology Data Exchange (ETDEWEB)
Alexander, Stephon [Center for Cosmic Origins and Department of Physics and Astronomy, Dartmouth College, Hanover, NH 03755 (United States); Cormack, Sam, E-mail: samuel.c.cormack.gr@dartmouth.edu [Center for Cosmic Origins and Department of Physics and Astronomy, Dartmouth College, Hanover, NH 03755 (United States); Marcianò, Antonino [Center for Field Theory and Particle Physics & Department of Physics, Fudan University, 200433 Shanghai (China); Yunes, Nicolás [Department of Physics, Montana State University, Bozeman, MT 59717 (United States); Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106 (United States)
2015-04-09
We propose a new preheating mechanism through the coupling of the gravitational field to both the inflaton and matter fields, without direct inflaton–matter couplings. The inflaton transfers power to the matter fields through interactions with gravitational waves, which are exponentially enhanced due to an inflation–graviton coupling. One such coupling is the product of the inflaton to the Pontryagin density, as in dynamical Chern–Simons gravity. The energy scales involved are constrained by requiring that preheating happens fast during matter domination.
Electromagnetic projectile acceleration utilizing distributed energy sources
International Nuclear Information System (INIS)
Parker, J.V.
1982-01-01
Circuit equations are derived for an electromagnetic projectile accelerator (railgun) powered by a large number of capacitive discharge circuits distributed along its length. The circuit equations are put into dimensionless form and the parameters governing the solutions derived. After specializing the equations to constant spacing between circuits, the case of lossless rails and negligible drag is analyzed to show that the electrical to kinetic energy transfer efficiency is equal to sigma/2, where sigma = 2mS/Lq 2 0 and m is the projectile mass, S the distance between discharge circuit, Lthe rail inductance per unit length, and q 0 the charge on the first stage capacitor. For sigma = 2 complete transfer of electrical to kinetic energy is predicted while for sigma>2 the projective-discharge circuit system is unstable. Numerical solutions are presented for both lossless rails and for finite rail resistance. When rail resistance is included, >70% transfer is calculated for accelerators of arbitrary length. The problem of projectile startup is considered and a simple modification of the first two stages is described which provides proper startup. Finally, the results of the numerical solutions are applied to a practical railgun design. A research railgun designed for repeated operation at 50 km/sec is described. It would have an overall length of 77 m, an electrical efficiency of 81%, a stored energy per stage of 105 kJ, and a charge transfer of <50 C per stage. A railgun of this design appears to be practicable with current pulsed power technology
A background-dependent approach to the theory of gravitation
International Nuclear Information System (INIS)
Goldoni, R.
1976-01-01
Using the covariant formulation of Newton's gravitational equation as derived previously by the present author (Goldoni, Gen. Relativ. Gravitation; 7:731 (1976)) as a starting point, relativistic gravitational equations are found which are supposed to hold in any conceivable universe, describe a purely geometrical theory of gravitation and explicitly incorporate Mach's principle. (U.K.)
International Nuclear Information System (INIS)
Dolesi, R.; Hueller, M.; Nicolodi, D.; Tombolato, D.; Vitale, S.; Wass, P. J.; Weber, W. J.; Evans, M.; Fritschel, P.; Weiss, R.; Gundlach, J. H.; Hagedorn, C. A.; Schlamminger, S.; Ciani, G.; Cavalleri, A.
2011-01-01
We present an analysis of Brownian force noise from residual gas damping of reference test masses as a fundamental sensitivity limit in small force experiments. The resulting acceleration noise increases significantly when the distance of the test mass to the surrounding experimental apparatus is smaller than the dimension of the test mass itself. For the Advanced LIGO interferometric gravitational wave observatory, where the relevant test mass is a suspended 340 mm diameter cylindrical end mirror, the force noise power is increased by roughly a factor 40 by the presence of a similarly shaped reaction mass at a nominal separation of 5 mm. The force noise, of order 20 fN/Hz 1/2 for 2x10 -6 Pa of residual H 2 gas, rivals quantum optical fluctuations as the dominant noise source between 10 and 30 Hz. We present here a numerical and analytical analysis for the gas damping force noise for Advanced LIGO, backed up by experimental evidence from several recent measurements. Finally, we discuss the impact of residual gas damping on the gravitational wave sensitivity and possible mitigation strategies.
Iz ''general relativity'' necessary for the Einstein gravitation theory gravitation theory
International Nuclear Information System (INIS)
Bondi, G.
1982-01-01
Main principles of relativity and gravitation theories are deeply analyzed. Problems of boundaries of applicability for these theories and possible ways of their change and generalization are discussed. It is shown that the notion of general relativity does not introduce any post-newton physics - it only deals with coordinate transformations. It is supposed that ''general relativity'' is a physically senseless phrase which can be considered only as a historical remainder of an interesting philosophic discourse. The paper reveals that there exists appropriate physical substantiation of the Einstein gravitation theory not including a physically senseless concept of general relativity and promoting its fundamental relations with the experiment
Gravitational waves and antennas
CERN. Geneva
2003-01-01
Gravitational waves and their detection represent today a hot topic, which promises to play a central role in astrophysics, cosmology and theoretical physics. Technological developments have enabled the construction of such sensitive detectors that the detection of gravitational radiation and the start of a new astronomy could become a reality during the next few years. This is expected to bring a revolution in our knowledge of the universe by allowing the observation of hiterto unseen phenomena such as coalescence of compact objects (neutron stars and black holes) fall of stars into supermassive black holes, stellar core collapses, big bang relics and the new and unexpected. In these lectures I give a brief overview of this challenging field of modern physics. Topics : Basic properties of gravitational radiation. Astrophysical sources. Principle of operation of detectors. Interferometers (both ground based and space-based), bars and spheres. Present status of the experiments, their recent results and their f...
Vignettes in Gravitation and Cosmology
Sriramkumar, L
2012-01-01
This book comprises expository articles on different aspects of gravitation and cosmology that are aimed at graduate students. The topics discussed are of contemporary interest assuming only an elementary introduction to gravitation and cosmology. The presentations are to a certain extent pedagogical in nature, and the material developed is not usually found in sufficient detail in recent textbooks in these areas.
Einstein-Podolsky-Rosen correlation in a gravitational field
International Nuclear Information System (INIS)
Terashima, Hiroaki; Ueda, Masahito
2004-01-01
For quantum communication in a gravitational field, the properties of the Einstein-Podolsky-Rosen (EPR) correlation are studied within the framework of general relativity. Acceleration and gravity are shown to deteriorate the perfect anticorrelation of an EPR pair of spins in the same direction, and apparently decrease the degree of the violation of Bell's inequality. To maintain the perfect EPR correlation and the maximal violation of Bell's inequality, observers must measure the spins in appropriately chosen different directions which depend on the velocity of the particles, the curvature of the space-time, and the positions of the observers. Near the event horizon of a black hole, the appropriate directions depend so sensitively on the positions of the observers that even a very small uncertainty in the identification of the observers' positions leads to a fatal error in quantum communication, unless the observers fall into the black hole together with the particles
Sparse representation of Gravitational Sound
Rebollo-Neira, Laura; Plastino, A.
2018-03-01
Gravitational Sound clips produced by the Laser Interferometer Gravitational-Wave Observatory (LIGO) and the Massachusetts Institute of Technology (MIT) are considered within the particular context of data reduction. We advance a procedure to this effect and show that these types of signals can be approximated with high quality using significantly fewer elementary components than those required within the standard orthogonal basis framework. Furthermore, a local measure sparsity is shown to render meaningful information about the variation of a signal along time, by generating a set of local sparsity values which is much smaller than the dimension of the signal. This point is further illustrated by recourse to a more complex signal, generated by Milde Science Communication to divulge Gravitational Sound in the form of a ring tone.
Seismic hazard assessment for Guam and the Northern Mariana Islands
Mueller, Charles S.; Haller, Kathleen M.; Luco, Nicholas; Petersen, Mark D.; Frankel, Arthur D.
2012-01-01
We present the results of a new probabilistic seismic hazard assessment for Guam and the Northern Mariana Islands. The Mariana island arc has formed in response to northwestward subduction of the Pacific plate beneath the Philippine Sea plate, and this process controls seismic activity in the region. Historical seismicity, the Mariana megathrust, and two crustal faults on Guam were modeled as seismic sources, and ground motions were estimated by using published relations for a firm-rock site condition. Maps of peak ground acceleration, 0.2-second spectral acceleration for 5 percent critical damping, and 1.0-second spectral acceleration for 5 percent critical damping were computed for exceedance probabilities of 2 percent and 10 percent in 50 years. For 2 percent probability of exceedance in 50 years, probabilistic peak ground acceleration is 0.94 gravitational acceleration at Guam and 0.57 gravitational acceleration at Saipan, 0.2-second spectral acceleration is 2.86 gravitational acceleration at Guam and 1.75 gravitational acceleration at Saipan, and 1.0-second spectral acceleration is 0.61 gravitational acceleration at Guam and 0.37 gravitational acceleration at Saipan. For 10 percent probability of exceedance in 50 years, probabilistic peak ground acceleration is 0.49 gravitational acceleration at Guam and 0.29 gravitational acceleration at Saipan, 0.2-second spectral acceleration is 1.43 gravitational acceleration at Guam and 0.83 gravitational acceleration at Saipan, and 1.0-second spectral acceleration is 0.30 gravitational acceleration at Guam and 0.18 gravitational acceleration at Saipan. The dominant hazard source at the islands is upper Benioff-zone seismicity (depth 40–160 kilometers). The large probabilistic ground motions reflect the strong concentrations of this activity below the arc, especially near Guam.
Gravity's kiss the detection of gravitational waves
Collins, Harry
2017-01-01
Scientists have been trying to confirm the existence of gravitational waves for fifty years. Then, in September 2015, came a "very interesting event" (as the cautious subject line in a physicist's email read) that proved to be the first detection of gravitational waves. In Gravity's Kiss, Harry Collins -- who has been watching the science of gravitational wave detection for forty-three of those fifty years and has written three previous books about it -- offers a final, fascinating account, written in real time, of the unfolding of one of the most remarkable scientific discoveries ever made. Predicted by Einstein in his theory of general relativity, gravitational waves carry energy from the collision or explosion of stars. Dying binary stars, for example, rotate faster and faster around each other until they merge, emitting a burst of gravitational waves. It is only with the development of extraordinarily sensitive, highly sophisticated detectors that physicists can now confirm Einstein's prediction. This is...
Possibility of Landau damping of gravitational waves
International Nuclear Information System (INIS)
Gayer, S.; Kennel, C.F.
1979-01-01
There is considerable uncertainty in the literature concerning whether or not transverse traceless gravitational waves can Landau damp. Physically, the issue is whether particles of nonzero mass can comove with surfaces of constant wave phase, and therefore, loosely, whether gravitational waves can have phase speeds less than that of light. We approach the question of Landau damping in various ways. We consider first the propagation of small-amplitude gravitational waves in an ideal fluid-filled Robertson-Walker universe of zero spatial curvature. We argue that the principle of equivalence requires those modes to be lightlike. We show that a freely moving particle interacting only with the collective fields cannot comove with such waves if it has nonzero mass. The equation for gravitational waves in collisionless kinetic gases differs from that for fluid media only by terms so small that deviations from lightlike propagation are unmeasurable. Thus, we conclude that Landau damping of small-amplitude, transverse traceless gravitational waves is not possible
Gravitational instability of thermally anisotropic plasma
International Nuclear Information System (INIS)
Singh, B.; Kalra, G.L.
1986-01-01
The equations of Chew, Goldberger, and Low (1956) modified to include the heat flux vector and self-gravitation are used to study the gravitational instability of unbounded plasma placed in a uniform static magnetic field. The linear stability analysis shows that some of the additional terms which arise as a result of higher moments are of the same order of magnitude as the terms in the original Chew, Goldberger, and Low theory. The influence of these terms on the gravitational instability has been specially examined. It is found that the gravitational instability sets in at a comparatively shorter wavelength and the growth rate is enhanced owing to the inclusion of these terms in the case where the propagation vector is along the magnetic field. The condition for instability is, however, unaltered when the direction of propagation is transverse to the direction of magnetic field. 19 references
Coupling and decoupling of the accelerating units for pulsed synchronous linear accelerator
Shen, Yi; Liu, Yi; Ye, Mao; Zhang, Huang; Wang, Wei; Xia, Liansheng; Wang, Zhiwen; Yang, Chao; Shi, Jinshui; Zhang, Linwen; Deng, Jianjun
2017-12-01
A pulsed synchronous linear accelerator (PSLA), based on the solid-state pulse forming line, photoconductive semiconductor switch, and high gradient insulator technologies, is a novel linear accelerator. During the prototype PSLA commissioning, the energy gain of proton beams was found to be much lower than expected. In this paper, the degradation of the energy gain is explained by the circuit and cavity coupling effect of the accelerating units. The coupling effects of accelerating units are studied, and the circuit topologies of these two kinds of coupling effects are presented. Two methods utilizing inductance and membrane isolations, respectively, are proposed to reduce the circuit coupling effects. The effectiveness of the membrane isolation method is also supported by simulations. The decoupling efficiency of the metal drift tube is also researched. We carried out the experiments on circuit decoupling of the multiple accelerating cavity. The result shows that both circuit decoupling methods could increase the normalized voltage.
Gravitational lensing of gravitational waves: a statistical perspective
Li, Shun-Sheng; Mao, Shude; Zhao, Yuetong; Lu, Youjun
2018-05-01
In this paper, we study the strong gravitational lensing of gravitational waves (GWs) from a statistical perspective, with particular focus on the high frequency GWs from stellar binary black hole coalescences. These are most promising targets for ground-based detectors such as Advanced Laser Interferometer Gravitational Wave Observatory (aLIGO) and the proposed Einstein Telescope (ET) and can be safely treated under the geometrical optics limit for GW propagation. We perform a thorough calculation of the lensing rate, by taking account of effects caused by the ellipticity of lensing galaxies, lens environments, and magnification bias. We find that in certain GW source rate scenarios, we should be able to observe strongly lensed GW events once per year (˜1 yr-1) in the aLIGO survey at its design sensitivity; for the proposed ET survey, the rate could be as high as ˜80 yr-1. These results depend on the estimate of GW source abundance, and hence can be correspondingly modified with an improvement in our understanding of the merger rate of stellar binary black holes. We also compute the fraction of four-image lens systems in each survey, predicting it to be ˜30 per cent for the aLIGO survey and ˜6 per cent for the ET survey. Finally, we evaluate the possibility of missing some images due to the finite survey duration, by presenting the probability distribution of lensing time delays. We predict that this selection bias will be insignificant in future GW surveys, as most of the lens systems ({˜ } 90{per cent}) will have time delays less than ˜1 month, which will be far shorter than survey durations.
Problems of generation and reception of gravitational waves
International Nuclear Information System (INIS)
Pisarev, A.F.
1975-01-01
The present day status of the problems of gravitation, wave radiation and reception is surveyed. The physical presentation and mathematical description of the processes of radiation, propagation and interaction of gravitation waves with matter and the electromagnetic field are given. The experiments on the search for gravitation waves of astophysical nature are analysed. The laboratory and cosmic sources of these waves and the methods of their reception are described. Special attention is drawn to the analysis of the proposals to perform a complete laboratory gravitation wave experiment
Environmental Effects for Gravitational-wave Astrophysics
International Nuclear Information System (INIS)
Barausse, Enrico; Cardoso, Vitor; Pani, Paolo
2015-01-01
The upcoming detection of gravitational waves by terrestrial interferometers will usher in the era of gravitational-wave astronomy. This will be particularly true when space-based detectors will come of age and measure the mass and spin of massive black holes with exquisite precision and up to very high redshifts, thus allowing for better understanding of the symbiotic evolution of black holes with galaxies, and for high-precision tests of General Relativity in strong-field, highly dynamical regimes. Such ambitious goals require that astrophysical environmental pollution of gravitational-wave signals be constrained to negligible levels, so that neither detection nor estimation of the source parameters are significantly affected. Here, we consider the main sources for space-based detectors - the inspiral, merger and ringdown of massive black-hole binaries and extreme mass-ratio inspirals - and account for various effects on their gravitational waveforms, including electromagnetic fields, cosmological evolution, accretion disks, dark matter, “firewalls” and possible deviations from General Relativity. We discover that the black-hole quasinormal modes are sharply different in the presence of matter, but the ringdown signal observed by interferometers is typically unaffected. The effect of accretion disks and dark matter depends critically on their geometry and density profile, but is negligible for most sources, except for few special extreme mass-ratio inspirals. Electromagnetic fields and cosmological effects are always negligible. We finally explore the implications of our findings for proposed tests of General Relativity with gravitational waves, and conclude that environmental effects will not prevent the development of precision gravitational-wave astronomy. (paper)
The electromagnetic interferent antennae for gravitational waves detection
International Nuclear Information System (INIS)
Kulak, A.
1984-01-01
An electromagnetic wave propagating in the toroidal waveguide is considered as an electromagnetic gravitational antenna. An interferometric method is applied to measure the disturbances of phase of the electromagnetic field caused by the incident gravitational wave. The calculations presented take into account the dispersive and dissipative phenomena occurring during the interaction between electromagnetic and gravitational fields. The active cross-section of the antenna interacting with coherent and pulsed gravitational radiation is estimated. Experimental possibilities presently available are discussed. Limiting fluxes in the astrophysical range of frequencies measured by the interferometric electromagnetic antenna are a factor of ten or so smaller than in the case of a classic mechanical antenna. Moreover the antenna could be used for carrying out a gravitational Hertz experiment. (author)
Collett, Thomas E; Bacon, David
2017-03-03
Probing the relative speeds of gravitational waves and light acts as an important test of general relativity and alternative theories of gravity. Measuring the arrival time of gravitational waves (GWs) and electromagnetic (EM) counterparts can be used to measure the relative speeds, but only if the intrinsic time lag between emission of the photons and gravitational waves is well understood. Here we suggest a method that does not make such an assumption, using future strongly lensed GW events and EM counterparts; Biesiada et al. [J. Cosmol. Astropart. Phys.10 (2014) 080JCAPBP1475-751610.1088/1475-7516/2014/10/080] forecast that 50-100 strongly lensed GW events will be observed each year with the Einstein Telescope. A single strongly lensed GW event would produce robust constraints on c_{GW}/c_{γ} at the 10^{-7} level, if a high-energy EM counterpart is observed within the field of view of an observing γ-ray burst monitor.
Fundamentals of the relativistic theory of gravitation
International Nuclear Information System (INIS)
Logunov, A.A.; Mestvirishvili, M.A.
1986-01-01
An extended exposition of the relativistic theory of gravitation (RTG) proposed by Logunov, Vlasov, and Mestvirishvili is presented. The RTG was constructed uniquely on the basis of the relativity principle and the geometrization principle by regarding the gravitational field as a physical field in the spirit of Faraday and Maxwell possessing energy, momentum, and spins 2 and 0. In the theory, conservation laws for the energy, momentum, and angular momentum for the matter and gravitational field taken together are strictly satisfied. The theory explains all the existing gravitational experiments. When the evolution of the universe is analyzed, the theory leads to the conclusion that the universe is infinite and flat, and it is predicted to contain a large amount of hidden mass. This missing mass exceeds by almost 40 times the amount of matter currently observed in the universe. The RTG predicts that gravitational collapse, which for a comoving observer occurs after a finite proper time, does not lead to infinite compression of matter but is halted at a certain finite density of the collapsing body. Therefore, according to the RTG there cannot be any objects in nature in which the gravitational contraction of matter to infinite density occurs, i.e., there are no black holes
Gravitational consequences of modern field theories
Horowitz, Gary T.
1989-01-01
Some gravitational consequences of certain extensions of Einstein's general theory of relativity are discussed. These theories are not alternative theories of gravity in the usual sense. It is assumed that general relativity is the appropriate description of all gravitational phenomena which were observed to date.
Holographic entanglement entropy and gravitational anomalies
Castro, A.; Detournay, S.; Iqbal, N.; Perlmutter, E.
2014-01-01
We study entanglement entropy in two-dimensional conformal field theories with a gravitational anomaly. In theories with gravity duals, this anomaly is holographically represented by a gravitational Chern-Simons term in the bulk action. We show that the anomaly broadens the Ryu-Takayanagi minimal
Radiation and detection of gravitational waves in laboratory conditions
International Nuclear Information System (INIS)
Bogolyubov, P.N.; Pisarev, A.F.; Shavokhina, N.S.
1981-01-01
Two variants are proposed and analyzed for an experiment on radiation and detection of gravitational waves in laboratory conditions in the optical and superhigh frequency range (band). In the first variant the laser light is parametrically transformed to the gravitational wave in the optical-inhomogeneous medium. The gravitational flux produced is registered by the inverse parametric transformation of the gravitational to light wave. In the second variant the radiation of gravitational waves is realized through hypersonic oscillations in piezocrystals, and the reception of waves is made by the superconducting coaxial resonator in which the gravitational wave resonantly transforms into the electromag= . netic wave. The analysis performed testifies to the possibility of an experiment of this type at the present time [ru
Gravitational waves from cosmic bubble collisions
International Nuclear Information System (INIS)
Kim, Dong-Hoon; Lee, Bum-Hoon; Lee, Wonwoo; Yang, Jongmann; Yeom, Dong-han
2015-01-01
Cosmic bubbles are nucleated through the quantum tunneling process. After nucleation they would expand and undergo collisions with each other. In this paper, we focus in particular on collisions of two equal-sized bubbles and compute gravitational waves emitted from the collisions. First, we study the mechanism of the collisions by means of a real scalar field and its quartic potential. Then, using this model, we compute gravitational waves from the collisions in a straightforward manner. In the quadrupole approximation, time-domain gravitational waveforms are directly obtained by integrating the energy-momentum tensors over the volume of the wave sources, where the energy-momentum tensors are expressed in terms of the scalar field, the local geometry and the potential. We present gravitational waveforms emitted during (i) the initial-to-intermediate stage of strong collisions and (ii) the final stage of weak collisions: the former is obtained numerically, in full General Relativity and the latter analytically, in the flat spacetime approximation. We gain qualitative insights into the time-domain gravitational waveforms from bubble collisions: during (i), the waveforms show the non-linearity of the collisions, characterized by a modulating frequency and cusp-like bumps, whereas during (ii), the waveforms exhibit the linearity of the collisions, featured by smooth monochromatic oscillations. (orig.)
Spherically symmetric radiation in gravitational collapse
International Nuclear Information System (INIS)
Bridy, D.J.
1983-01-01
This paper investigates a previously neglected mode by which a star may lose energy in the late stages of gravitational collapse to the black hole state. A model consisting of a Schwarzschild exterior matched to a Friedman interior of collapsing pressureless dust is studied. The matter of the collapsing star is taken as the source of a massive vector boson field and a detailed boundary value problem is carried out. Vector mesons are strongly coupled to all nucleons and will be radiated by ordinary matter during the collapse. The time dependent coupling between interior and exterior modes matched across the moving boundary of the collapsing star and the presence of the gravitational fields and their gradients in the field equations may give rise to a parametric amplification mechanism and permit the gravitational field to pump energy into the boson field, greatly enhancing the amount of boson radiation. The significance of a radiative mechanism driven by collapse is that it can react back upon the collapsing source and deprive it of some of the very mass that drives the collapse via its self gravitation. If the mass loss is great enough, this may provide a mechanism to slow or even halt gravitational collapse in some cases
Recent developments on high-energy gravitational scattering
CERN. Geneva
2015-01-01
After a quick reminder of earlier results I will discuss some recent progress in the high-energy gravitational scattering of particles, strings, and branes and, in particular: 1. Gravitational bremsstrahlung; 2. Causality constraints in the presence of higher derivative corrections; 3. Absorption of an energetic closed string by a stack of D-branes. These developments should eventually help us understand how information is preserved in the quantum analog of classical gravitational collapse.
Nondissipative gravitational turbulence
International Nuclear Information System (INIS)
Gurevich, A.V.; Zybin, K.P.
1988-01-01
The nonlinear stage of development of the Jeans instability in a cold nondissipative gravitating gas is considered. It is shown that for a time exceeding the Jeans time a nondissipative gravitational singularity (NGS) is formed in the vicinity of a local density maximum. The NGS is a stationary dynamic structure, the basis of which is the singularity. The density of the gas at the center of the NGS (for r → 0) tends to infinity, and the field potential and the mean velocity of the trapped gas, possess a power singularity. The turbulent state arises as the result of development of the instability in the case of an irregular initial density distribution. It is an hierarchic structure consisting of nested moving NGS of various sizes, the NGS of smaller dimensions being trapped in the field of a NGS of larger dimensions. The scaling relations for each given NGS in this case hold for both the gas density and density of smaller size trapped NGS. A brief comparison with the observational data shows that the real hierarchic structure of the Universe ranging from scales pertaining to spherical stellar clusters up to those of rich galaxy clusters is apparently a developed gravitational turbulence
Recent progress in particle accelerators
International Nuclear Information System (INIS)
Cole, F.T.; Mills, F.E.
1988-01-01
Many accelerators have also been built for medical radiography and therapy. Electron accelerators for this application are available commercially, using the electrons directly or bremsstrahlung photons. Neutrons produced by accelerator beams have also been used for therapy with considerable success, and several proton accelerators built for physics research have been adapted for direct therapy with protons. The first proton accelerator specifically for therapy is now being built. Separate from what might be called conventional accelerator technology, an entirely new field utilizing very highly pulsed power has been developed, and beams of short pulses of thousands or millions of amperes peak current in the MeV energy range are now available. These beams have important applications in high-energy particle acceleration, controlled fusion, industrial treatment of materials, and possibly in food preservation. All of these accelerators make use of external fields of acceleration. There is also vigorous research into new methods of acceleration, in many schemes making use of the intense accelerating fields, generated by laser beams or by plasma states of matter. This research has not as yet made traditional kinds of accelerators outmoded, but many workers hope that early in the next century there will be practical new acceleration methods making use of these very high fields. These developments are discussed in detail
Theory of gravitational-inertial field of universe. 2
International Nuclear Information System (INIS)
Davtyan, O.K.
1978-01-01
Application of the equations of the gravitational-inertial field to the problem of free motion in the inertial field (to the cosmologic problem) leads to results according to which (1) all Galaxies in the Universe 'disperse' from each other according to Hubble's law, (2) the 'dispersion' of bodies represents a free motion in the inertial field and Hubble's law represents a law of motion of free body in the inertial field, (3) for arbitrary mean distribution densities of space masses different from zero the space is Lobachevskian. All critical systems (with Schwarzschild radius) are specific because they exist in maximal-inertial and gravitational potentials. The Universe represents a critical system, it exists under the Schwarzschild radius. In high-potential inertial and gravitational fields the material mass in a static state or in motion with deceleration is subject to an inertial and gravitational 'annihilation'. At the maximal value of inertial and gravitational potentials (= c 2 ) the material mass is being completely 'evaporated' transforming into radiation mass. The latter is being concentrated in the 'horizon' of the critical system. All critical systems-black holes-represent geon systems, i.e. local formations of gravitational-electromagnetic radiations, held together by their own gravitational and inertial fields. The Universe, being a critical system, is 'wrapped' in a geon crown. (author)
Three-point statistics of cosmological stochastic gravitational waves
International Nuclear Information System (INIS)
Adshead, Peter; Lim, Eugene A.
2010-01-01
We consider the three-point function (i.e. the bispectrum or non-Gaussianity) for stochastic backgrounds of gravitational waves. We estimate the amplitude of this signal for the primordial inflationary background, gravitational waves generated during preheating, and for gravitational waves produced by self-ordering scalar fields following a global phase transition. To assess detectability, we describe how to extract the three-point signal from an idealized interferometric experiment and compute the signal to noise ratio as a function of integration time. The three-point signal for the stochastic gravitational wave background generated by inflation is unsurprisingly tiny. For gravitational radiation generated by purely causal, classical mechanisms we find that, no matter how nonlinear the process is, the three-point correlations produced vanish in direct detection experiments. On the other hand, we show that in scenarios where the B-mode of the cosmic microwave background is sourced by gravitational waves generated by a global phase transition, a strong three-point signal among the polarization modes is also produced. This may provide another method of distinguishing inflationary B-modes. To carry out this computation, we have developed a diagrammatic approach to the calculation of stochastic gravitational waves sourced by scalar fluids, which has applications beyond the present scenario.
Stability of merons in gravitational models
International Nuclear Information System (INIS)
Akdeniz, K.G.; Hacinliyan, A.; Kalayci, J.
1982-11-01
The stability properties of merons are investigated in gravitational models by taking the DeAFF model as a theoretical laboratory. We find that in gravitational models containing Yang-Mills fields merons are unstable. Stability might be possible in N=4 supergravity models with Asub(μ)=0. (author)
Considerations concerning the definition and distribution of gravitational energy
International Nuclear Information System (INIS)
Gottlieb, I.; Ionescu-Pallas, N.
1986-01-01
In this paper the author reviews Einstein's gravitational field equations in a covariant form in a flat space-time. Several equations are examined for gravitational energy distribution. For a single pointlike gravitational source at rest, of mass, M/sub o/, they obtain E = M/sub o/c/sup 2/. For the case of Cartesian coordinates, agreement is obtained with Landau-Fock formulation of gravitational energy
Chirality and gravitational parity violation.
Bargueño, Pedro
2015-06-01
In this review, parity-violating gravitational potentials are presented as possible sources of both true and false chirality. In particular, whereas phenomenological long-range spin-dependent gravitational potentials contain both truly and falsely chiral terms, it is shown that there are models that extend general relativity including also coupling of fermionic degrees of freedom to gravity in the presence of torsion, which give place to short-range truly chiral interactions similar to that usually considered in molecular physics. Physical mechanisms which give place to gravitational parity violation together with the expected size of the effects and their experimental constraints are discussed. Finally, the possible role of parity-violating gravity in the origin of homochirality and a road map for future research works in quantum chemistry is presented. © 2015 Wiley Periodicals, Inc.
Gravitational Waves and Dark Energy
Directory of Open Access Journals (Sweden)
Peter L. Biermann
2014-12-01
Full Text Available The idea that dark energy is gravitational waves may explain its strength and its time-evolution. A possible concept is that dark energy is the ensemble of coherent bursts (solitons of gravitational waves originally produced when the first generation of super-massive black holes was formed. These solitons get their initial energy as well as keep up their energy density throughout the evolution of the universe by stimulating emission from a background, a process which we model by working out this energy transfer in a Boltzmann equation approach. New Planck data suggest that dark energy has increased in strength over cosmic time, supporting the concept here. The transit of these gravitational wave solitons may be detectable. Key tests include pulsar timing, clock jitter and the radio background.
Experimental signatures of gravitational wave bursters
International Nuclear Information System (INIS)
Dubath, Florian; Foffa, Stefano; Gasparini, Maria Alice; Maggiore, Michele; Sturani, Riccardo
2005-01-01
Gravitational wave bursters are sources which emit repeatedly bursts of gravitational waves, and have been recently suggested as potentially interesting candidates for gravitational wave (GW) detectors. Mechanisms that could give rise to a GW burster can be found for instance in highly magnetized neutron stars (the 'magnetars' which explain the phenomenon of soft gamma repeaters), in accreting neutron stars and in hybrid stars with a quark core. We point out that these sources have very distinctive experimental signatures. In particular, as already observed in the γ-ray bursts from soft gamma repeaters, the energy spectrum of the events is a power-law, dN∼E -γ dE with γ≅1.6, and they have a distribution of waiting times (the times between one outburst and the next) significantly different from the distribution of uncorrelated events. We discuss possible detection strategies that could be used to search for these events in existing gravitational wave detectors
Nonlinear coupled Alfven and gravitational waves
International Nuclear Information System (INIS)
Kaellberg, Andreas; Brodin, Gert; Bradley, Michael
2004-01-01
In this paper we consider nonlinear interaction between gravitational and electromagnetic waves in a strongly magnetized plasma. More specifically, we investigate the propagation of gravitational waves with the direction of propagation perpendicular to a background magnetic field and the coupling to compressional Alfven waves. The gravitational waves are considered in the high-frequency limit and the plasma is modeled by a multifluid description. We make a self-consistent, weakly nonlinear analysis of the Einstein-Maxwell system and derive a wave equation for the coupled gravitational and electromagnetic wave modes. A WKB-approximation is then applied and as a result we obtain the nonlinear Schroedinger equation for the slowly varying wave amplitudes. The analysis is extended to 3D wave pulses, and we discuss the applications to radiation generated from pulsar binary mergers. It turns out that the electromagnetic radiation from a binary merger should experience a focusing effect, that in principle could be detected
International Nuclear Information System (INIS)
Brodowski, J.; Maschke, A.W.; Mobley, R.M.; Keane, J.T.; Meier, E.
1979-01-01
The objective of building a low-cost pre-accelerator for low energy heavy ion particle accelerator was realized by using standard, readily available material and hardware. Some savings were obtained in the construction of the dome by avoiding welding, expensive metal spinnings and unnecessary corona rings. Larger monetary economies were realized by unique approach to building the high voltage column utilizing a glass tube
International Nuclear Information System (INIS)
Tao Fuzhen; He Zhiqiang
1983-01-01
If the effect of gravitational wave on electromagnetic fields is used, and the gravitational wave is detected through the changes in electromagnetic fields, one can expect that the difficulty about the weakness of the signal of mechanical receiver can be avoided. Because of the effect of gravitational wave, the electromagnetic field emits energy, therefore, the energy which is detected will be higher than that by the mechanical receiver. The authors consider the Maxwell equations on the curved spacetime. They give solutions when the detecting fields are a free electromagnetic wave, standing wave and a constant field. (Auth.)
Variable Acceleration Force Calibration System (VACS)
Rhew, Ray D.; Parker, Peter A.; Johnson, Thomas H.; Landman, Drew
2014-01-01
Conventionally, force balances have been calibrated manually, using a complex system of free hanging precision weights, bell cranks, and/or other mechanical components. Conventional methods may provide sufficient accuracy in some instances, but are often quite complex and labor-intensive, requiring three to four man-weeks to complete each full calibration. To ensure accuracy, gravity-based loading is typically utilized. However, this often causes difficulty when applying loads in three simultaneous, orthogonal axes. A complex system of levers, cranks, and cables must be used, introducing increased sources of systematic error, and significantly increasing the time and labor intensity required to complete the calibration. One aspect of the VACS is a method wherein the mass utilized for calibration is held constant, and the acceleration is changed to thereby generate relatively large forces with relatively small test masses. Multiple forces can be applied to a force balance without changing the test mass, and dynamic forces can be applied by rotation or oscillating acceleration. If rotational motion is utilized, a mass is rigidly attached to a force balance, and the mass is exposed to a rotational field. A large force can be applied by utilizing a large rotational velocity. A centrifuge or rotating table can be used to create the rotational field, and fixtures can be utilized to position the force balance. The acceleration may also be linear. For example, a table that moves linearly and accelerates in a sinusoidal manner may also be utilized. The test mass does not have to move in a path that is parallel to the ground, and no re-leveling is therefore required. Balance deflection corrections may be applied passively by monitoring the orientation of the force balance with a three-axis accelerometer package. Deflections are measured during each test run, and adjustments with respect to the true applied load can be made during the post-processing stage. This paper will
Japanese space gravitational wave antenna DECIGO and DPF
Musha, Mitsuru
2017-11-01
The gravitational wave detection will open a new gravitational wave astronomy, which gives a fruitful insight about early universe or birth and death of stars. In order to detect gravitational wave, we planed a space gravitational wave detector, DECIGO (DECi-heltz Interferometer Gravitational wave Observatory), which consists of three drag-free satellites forming triangle shaped Fabry-Perot laser interferometer with the arm length of 1000 km, and whose strain sensitivity is designed to be 2x10-24 /√Hz around 0.1 Hz. Before launching DECIGO around 2030, a milestone mission named DECIGO pathfinder (DPF) is planed to be launched whose main purpose is the feasibility test of the key technologies for DECIGO. In the present paper, the conceptual design and current status of DECIGO and DPF are reviewed.
Hunting for dark particles with gravitational waves
Energy Technology Data Exchange (ETDEWEB)
Giudice, Gian F.; McCullough, Matthew; Urbano, Alfredo [CERN, Theoretical Physics Department,Geneva (Switzerland)
2016-10-03
The LIGO observation of gravitational waves from a binary black hole merger has begun a new era in fundamental physics. If new dark sector particles, be they bosons or fermions, can coalesce into exotic compact objects (ECOs) of astronomical size, then the first evidence for such objects, and their underlying microphysical description, may arise in gravitational wave observations. In this work we study how the macroscopic properties of ECOs are related to their microscopic properties, such as dark particle mass and couplings. We then demonstrate the smoking gun exotic signatures that would provide observational evidence for ECOs, and hence new particles, in terrestrial gravitational wave observatories. Finally, we discuss how gravitational waves can test a core concept in general relativity: Hawking’s area theorem.
Hunting for Dark Particles with Gravitational Waves
Giudice, Gian F.
2017-12-01
The LIGO observation of gravitational waves from a binary black hole merger has begun a new era in fundamental physics. If new dark sector particles, be they bosons or fermions, can coalesce into exotic compact objects (ECOs) of astronomical size, then the first evidence for such objects, and their underlying microphysical description, may arise in gravitational wave observations. In this work we study how the macroscopic properties of ECOs are related to their microscopic properties, such as dark particle mass and couplings. We then demonstrate the smoking gun exotic signatures that would provide observational evidence for ECOs, and hence new particles, in terrestrial gravitational wave observatories. Finally, we discuss how gravitational waves can test a core concept in general relativity: Hawking's area theorem.
Hunting for dark particles with gravitational waves
International Nuclear Information System (INIS)
Giudice, Gian F.; McCullough, Matthew; Urbano, Alfredo
2016-01-01
The LIGO observation of gravitational waves from a binary black hole merger has begun a new era in fundamental physics. If new dark sector particles, be they bosons or fermions, can coalesce into exotic compact objects (ECOs) of astronomical size, then the first evidence for such objects, and their underlying microphysical description, may arise in gravitational wave observations. In this work we study how the macroscopic properties of ECOs are related to their microscopic properties, such as dark particle mass and couplings. We then demonstrate the smoking gun exotic signatures that would provide observational evidence for ECOs, and hence new particles, in terrestrial gravitational wave observatories. Finally, we discuss how gravitational waves can test a core concept in general relativity: Hawking’s area theorem.
Gravitational waves from freely precessing neutron stars
International Nuclear Information System (INIS)
Jones, D.I.
2001-01-01
The purpose of this study is to assess the likely detectability of gravitational waves from freely precessing neutron stars. We begin by presenting a neutron star model of sufficient complexity to take into account both the elasticity and fluidity of a realistic neutron star. We then examine the effect of internal dissipation (i.e. heat generation within the star) and gravitational radiation reaction on the wobble. This is followed by an examination of various astrophysical scenarios where some mechanism might pump the precessional motion. We estimate the gravitational wave amplitude in these situations. Finally, we conclude that gravitational radiation from freely precessing neutron stars is almost certainly limited to a level undetectable by a LIGO II detector by internal dissipation. (author)
Hunting for Dark Particles with Gravitational Waves
Giudice, Gian F.; Urbano, Alfredo
2016-01-01
The LIGO observation of gravitational waves from a binary black hole merger has begun a new era in fundamental physics. If new dark sector particles, be they bosons or fermions, can coalesce into exotic compact objects (ECOs) of astronomical size, then the first evidence for such objects, and their underlying microphysical description, may arise in gravitational wave observations. In this work we study how the macroscopic properties of ECOs are related to their microscopic properties, such as dark particle mass and couplings. We then demonstrate the smoking gun exotic signatures that would provide observational evidence for ECOs, and hence new particles, in terrestrial gravitational wave observatories. Finally, we discuss how gravitational waves can test a core concept in general relativity: Hawking's area theorem.
Compensation for gravitational sag of bent mirror
Energy Technology Data Exchange (ETDEWEB)
Mao, Chengwen; Jiang, Hui; He, Yan; Liang, Dongxu; Lan, Xuying; Yan, Shuai [Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, CAS, Shanghai 201800 (China); Shu, De-ming [Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439 (United States); Li, Aiguo, E-mail: aiguo.li@sinap.ac.cn [Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, CAS, Shanghai 201800 (China)
2017-05-01
The gravitational sag of aspheric bent mirrors with face-up or face-down geometry produces a nonnegligible optical error. As an effective compensation, width optimization is used to match the combined effects of the gravitational and bending moments. This method is described by analytical expressions and two calculation algorithms. The results of theoretical simulations and finite element analysis have proved that this method can reduce the slope error resulting from gravitational sag to the level of nano radians.
New theory of space-time and gravitation
International Nuclear Information System (INIS)
Denisov, V.I.; Logunov, A.A.
1982-01-01
It is shown that the general theory of relativity is not satisfactory physical theory, since in it there are no laws of conservation for the matter and gravitational field taken together and it does not satisfy the principle of correspondence with Newton's theory. In the present paper, we construct a new theory of gravitation which possesses conservation laws, can describe all the existing gravitational experiments, satisfies the correspondence principle, and predicts a number of fundamental consequences
Compensation for gravitational sag of bent mirror
International Nuclear Information System (INIS)
Mao, Chengwen; Jiang, Hui; He, Yan; Liang, Dongxu; Lan, Xuying; Yan, Shuai; Shu, De-ming; Li, Aiguo
2017-01-01
The gravitational sag of aspheric bent mirrors with face-up or face-down geometry produces a nonnegligible optical error. As an effective compensation, width optimization is used to match the combined effects of the gravitational and bending moments. This method is described by analytical expressions and two calculation algorithms. The results of theoretical simulations and finite element analysis have proved that this method can reduce the slope error resulting from gravitational sag to the level of nano radians.
Spatially modulated instabilities of holographic gauge-gravitational anomaly
Energy Technology Data Exchange (ETDEWEB)
Liu, Yan [Department of Space Science, and International Research Institute of Multidisciplinary Science,Beihang University,Beijing 100191 (China); Instituto de Fisica Teorica UAM/CSIC, Universidad Autonoma de Madrid,Cantoblanco, 28049 Madrid (Spain); Pena-Benitez, Francisco [Dipartimento di Fisica, Università di Perugia, I.N.F.N. Sezione di Perugia,Via A. Pascoli, I-06123 Perugia (Italy)
2017-05-19
We performed a study of the perturbative instabilities in Einstein-Maxwell-Chern-Simons theory with a gravitational Chern-Simons term, which is dual to a strongly coupled field theory with both chiral and mixed gauge-gravitational anomaly. With an analysis of the fluctuations in the near horizon regime at zero temperature, we found that there might be two possible sources of instabilities. The first one corresponds to a real mass-squared which is below the BF bound of AdS{sub 2}, and it leads to the bell-curve phase diagram at finite temperature. The effect of mixed gauge-gravitational anomaly is emphasised. Another source of instability is independent of gauge Chern-Simons coupling and exists for any finite gravitational Chern-Simons coupling. There is a singular momentum close to which unstable mode appears. The possible implications of this singular momentum are discussed. Our analysis suggests that the theory with a gravitational Chern-Simons term around Reissner-Nordström black hole is unreliable unless the gravitational Chern-Simons coupling is treated as a small perturbative parameter.
A cyclotron resonance laser accelerator
International Nuclear Information System (INIS)
Sprangle, P.; Tang, C.M.; Vlahos, L.
1983-01-01
A laser acceleration mechanism which utilizes a strong static, almost uniform, magnetic field together with an intense laser pulse is analyzed. The interaction and acceleration mechanism relies on a self resonance effect. Since the laser field is assumed to be diffraction limited, the magnetic field must be spatially varied to maintain resonance. The effective accelerating gradient is shown to scale like 1/√E /SUB b/ , where E /SUB b/ is the electron energy. For a numerical illustration the authors consider a 1 x 10 13 W/cm 2 , CO 2 laser and show that electrons can be accelerated to more than 500 MeV in a distance of 15 m (approximately two Rayleigh lengths)
Neutrino bursts and gravitational waves experiments
Energy Technology Data Exchange (ETDEWEB)
Castagnoli, C; Galeotti, P; Saavedra, O [Consiglio Nazionale delle Ricerche, Turin (Italy). Lab. di Cosmo-Geofisica
1978-05-01
Several experiments have been performed in many countries to observe gravitational waves or neutrino bursts. Since their simultaneous emission may occur in stellar collapse, the authors evaluate the effect of neutrino bursts on gravitational wave antennas and suggest the usefulness of a time correlation among the different detectors.
Physics of interferometric gravitational wave detectors
Indian Academy of Sciences (India)
The Caltech-MIT joint LIGO project is operating three long-baseline interferometers (one of 2 km and two of 4 km) in order to unambiguously measure the infinitesimal displacements of isolated test masses which convey the signature of gravitational waves from astrophysical sources. An interferometric gravitational wave ...
Mental imagery of gravitational motion.
Gravano, Silvio; Zago, Myrka; Lacquaniti, Francesco
2017-10-01
There is considerable evidence that gravitational acceleration is taken into account in the interaction with falling targets through an internal model of Earth gravity. Here we asked whether this internal model is accessed also when target motion is imagined rather than real. In the main experiments, naïve participants grasped an imaginary ball, threw it against the ceiling, and caught it on rebound. In different blocks of trials, they had to imagine that the ball moved under terrestrial gravity (1g condition) or under microgravity (0g) as during a space flight. We measured the speed and timing of the throwing and catching actions, and plotted ball flight duration versus throwing speed. Best-fitting duration-speed curves estimate the laws of ball motion implicit in the participant's performance. Surprisingly, we found duration-speed curves compatible with 0g for both the imaginary 0g condition and the imaginary 1g condition, despite the familiarity with Earth gravity effects and the added realism of performing the throwing and catching actions. In a control experiment, naïve participants were asked to throw the imaginary ball vertically upwards at different heights, without hitting the ceiling, and to catch it on its way down. All participants overestimated ball flight durations relative to the durations predicted by the effects of Earth gravity. Overall, the results indicate that mental imagery of motion does not have access to the internal model of Earth gravity, but resorts to a simulation of visual motion. Because visual processing of accelerating/decelerating motion is poor, visual imagery of motion at constant speed or slowly varying speed appears to be the preferred mode to perform the tasks. Copyright © 2017 Elsevier Ltd. All rights reserved.
Preliminary report on the utilization of the Fermilab site for a future accelerator
International Nuclear Information System (INIS)
1996-10-01
This report is a preliminary assessment of the utility of the Fermilab site for future accelerator projects. It responds to a request from the Director to evaluate how the Fermilab site and infrastructure may be relevant to future accelerator projects in the U.S. The SSC experience suggests that any major new project will have to be based on the existing infrastructure at one of the National Laboratories. This work presents only the technical issues and the benefits of the Fermilab site and infrastructure. The projects treated are: (1) A really large hadron collider based on the ''Pipetron'' vision of low-field (2 Tesla) magnets in a small diameter tunnel. Another option, not treated in detail, is a hadron collider using high field magnets. (2) Muon Colliders with 250 GeV and 2 TeV per beam. (3) A linear electron collider with 250 to 500 GeV per beam. The infrastructure of the state of Illinois - geology, hydrology, power and surface water- seems remarkably well suited to any of these projects. The geology of most of Illinois, including Fermilab, contains a dolomite layer that: has low seismic activity, is at an appropriate depth to provide radiation protection, is essentially impervious to water movement and thus satisfies hydrology requirements. There is adequate electrical power - both locally and statewide. We first give brief overviews of the Fermilab and Illinois infrastructure - geology, hydrology, power, and water - and then a summary of each project. On the basis of what we have learned, we feel that Fermilab must be considered seriously as a site for any of these projects. Beyond this point, however site-specific plans will need to be developed for each of the projects
International Nuclear Information System (INIS)
2009-01-01
Applications of particle accelerators cover a number of areas, from strategic and applied research, safety and security, environmental applications, materials research and analytical sciences, to radioisotope production and radiation processing. Accelerator based techniques and pulsed neutron sources are expected to lead to new initiatives in materials research of relevance for both the nuclear and non-nuclear fields. Material science studies with the use of accelerators, neutron beams and other nuclear analytical methods are relevant to the development of advanced reactors, nuclear fuel cycle needs and fusion research. In this regard, a better understanding of the irradiation effects in materials for energy and non-energy applications is needed, and is reflected in accelerator techniques for modification and analysis of materials for nuclear technologies. Accelerator applications for innovative nuclear systems aiming at rad-waste transmutation (e.g., accelerator driven systems) are being pursued in many countries. Research and development using accelerators involves a broad spectrum of skills to build a cadre of trained experts in nuclear techniques in IAEA Member States, and to generate knowledge for innovative methodologies and tools. The present conference is also being held in cooperation with the American Nuclear Society (ANS), which successfully organized the series of accelerator applications conferences known as AccApp. The ANS series of topical meetings has provided a forum for the global exchange of scientific and technical knowledge on a wide variety of related topics since the first AccApp took place in 1997 in Albuquerque, USA. The last conference which was held in 2007 in Pocatello, USA, was jointly organized by the ANS and the IAEA. The main objectives of the conference are to promote exchange of information among IAEA Member States representatives/delegates and to discuss new trends in accelerator applications including nuclear materials research
Quantum biological gravitational wave detectors
International Nuclear Information System (INIS)
Kopvillem, U.Kh.
1985-01-01
A possibility of producing biological detectors of gravitational waves is considered. High sensitivity of biological systems to outer effects can be ensured by existence of molecule subgroups in Dicke states. Existence of clusters in Dicke state-giant electric dipoles (GED) is supposed in the Froehlich theory. Comparison of biological and physical detectors shows that GED systems have unique properties for detection of gravitational waves if the reception range is narrow
Nonponderomotive electron acceleration in ultrashort surface-plasmon fields
Energy Technology Data Exchange (ETDEWEB)
Racz, Peter; Dombi, Peter [Wigner Research Centre for Physics, Konkoly-Thege M. ut 29-33, H-1121 Budapest (Hungary)
2011-12-15
We investigate the nonponderomotive nature of ultrafast plasmonic electron acceleration in strongly decaying electromagnetic fields generated by few-cycle and single-cycle femtosecond laser pulses. We clearly identify the conditions contributing to nonponderomotive acceleration and establish fundamental scaling laws and carrier-envelope phase effects. These all-optically accelerated compact, femtosecond electron sources can be utilized in contemporary ultrafast methods.
Cosmic acceleration of Earth and the Moon by dark matter
Nordtvedt, Kenneth L.
1994-01-01
In order to test the hypothesis that the gravitational interaction between our Galaxy's dark matter and the ordinary matter in Earth and the Moon might not fulfill the equivalence principle (universality of free fall), we consider the pertinent perturbation of the lunar orbit -- a sidereal month period range oscillation resulting from a spatially fixed polarization of the orbit. Lunar laser ranging (LLR) data can measure this sidereal perturbation to an accuracy equal to or better than its existing measurement of the synodic month period range oscillation amplitude (+/- 3 cm) which has been used for testing whether Earth and the Moon accelerate at equal rates toward the Sun. Because of the slow precession rate of the Moon's perigree (8.9 yr period), the lunar orbit is particularly sensitive to a cosmic acceleration; the LLR fit of the orbit places an upper limit of 10(exp -13) cm/sq. s for any cosmic differential acceleration between Earth (Fe) and the Moon (silicates). This is 10(exp -5) of the total galactic acceleration of the solar system, of which, it has been suggested, a large portion is produced by dark matter.
Electrical Engineering in Los Alamos Neutron Science Center Accelerator
Energy Technology Data Exchange (ETDEWEB)
Silva, Michael James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2017-11-30
The field of electrical engineering plays a significant role in particle accelerator design and operations. Los Alamos National Laboratories LANSCE facility utilizes the electrical energy concepts of power distribution, plasma generation, radio frequency energy, electrostatic acceleration, signals and diagnostics. The culmination of these fields produces a machine of incredible potential with uses such as isotope production, neutron spallation, neutron imaging and particle analysis. The key isotope produced in LANSCE isotope production facility is Strontium-82 which is utilized for medical uses such as cancer treatment and positron emission tomography also known as PET scans. Neutron spallation is one of the very few methods used to produce neutrons for scientific research the other methods are natural decay of transuranic elements from nuclear reactors. Accelerator produce neutrons by accelerating charged particles into neutron dense elements such as tungsten imparting a neutral particle with kinetic energy, this has the benefit of producing a large number of neutrons as well as minimizing the waste generated. Utilizing the accelerator scientist can gain an understanding of how various particles behave and interact with matter to better understand the natural laws of physics and the universe around us.
Ciufolini, I; Moschella, U; Fre, P
2001-01-01
Gravitational waves (GWs) are a hot topic and promise to play a central role in astrophysics, cosmology, and theoretical physics. Technological developments have led us to the brink of their direct observation, which could become a reality in the coming years. The direct observation of GWs will open an entirely new field: GW astronomy. This is expected to bring a revolution in our knowledge of the universe by allowing the observation of previously unseen phenomena, such as the coalescence of compact objects (neutron stars and black holes), the fall of stars into supermassive black holes, stellar core collapses, big-bang relics, and the new and unexpected.With a wide range of contributions by leading scientists in the field, Gravitational Waves covers topics such as the basics of GWs, various advanced topics, GW detectors, astrophysics of GW sources, numerical applications, and several recent theoretical developments. The material is written at a level suitable for postgraduate students entering the field.
Gravitation in the 'quasi-classical' theory
International Nuclear Information System (INIS)
Wignall, J.W.G.; Zangari, M.
1990-01-01
The 'quasi-classical' picture of particles as extendend periodic disturbances in a classical nonlinear field, previously shown to imply all the equations of Maxwell electrodynamics with very little formal input, is here applied to the other known long-range force, gravitation. It is shown that the picture's absolute interpretation of inertial mass and four-potential as measures of the local spacing between equal-phase hypersurfaces, together with the empirically established proportionality of gravitational 'charge' to inertial mass, leads naturally to the gravitational red-shift formula, and it thus provides a physical basis for the spacetime curvature that is the central idea of Einstein's general theory of relativity. 16 refs., 1 fig
Structure of gauge and gravitational anomalies*
International Nuclear Information System (INIS)
Alvarez-Gaume, L.; Ginsparg, P.
1985-01-01
It is shown how the form of the gauge and gravitational anomalies in quantum field theories may be derived from classical index theorems. The gravitational anomaly in both Einstein and Lorentz form is considered and their equivalence is exhibited. The formalism of gauge and gravitational theories is reviewed using the language of differential geometry, and notions from the theory of characteristic classes necessary for understanding the classical index theorems are introduced. The treatment of known topological results includes a pedagogical derivation of the Wess-Zumino effective Lagrangian in abitrary even dimension. The relation between various forms of the anomaly present in the literature is also clarified
International Nuclear Information System (INIS)
Mizumoto, Motoharu
1995-01-01
Science and Technology Agency decided 'Options making extra gains of actinides and fission products (OMEGA)' and to promote the related researches. Also in JAERI, the research on the group separation method for separating transuranic elements, strontium and cesium from high level radioactive wastes has been carried out since the beginning of 1970s. Also the concept of the fast reactors using minor actinide mixture fuel is being established, and the accelerator annihilation treatment utilizing the nuclear spallation reaction by high energy protons has been examined. In this report, from the viewpoint of the application of accelerators to atomic energy field, the annihilation treatment method by the nuclear spallation reaction utilizing high intensity proton accelerators, the plan of the various engineering utilization of proton beam, and the development of accelerators in JAERI are described. The way of thinking on the annihilation treatment of radioactive waste, the system using fast neutrons, the way of thinking on the development of high intensity proton accelerator technology, the steps of the development, the research and development for constructing the basic technology accelerator, 2 MeV beam acceleration test, the basic technology accelerator utilization facility and so on are reported. (K.I.)
Gravitational waves from binary black holes
Indian Academy of Sciences (India)
It is almost a century since Einstein predicted the existence of gravitational waves as one of the consequences of his general theory of relativity. A brief historical overview including Chandrasekhar's contribution to the subject is ﬁrst presented. The current status of the experimental search for gravitational waves and the ...
A generalized variational principle of gravitation
International Nuclear Information System (INIS)
El-Tahir, A.
1987-09-01
Generalized fourth order differential equations of gravitation are derived. Though similar to those earlier obtained by Lanczos, the present derivation is based on more general assumptions. The geometry-gravity dualism is discussed and the nonlinearity of gravitation is shown to be constrained by the curvature of space. (author). 5 refs
The sky pattern of the linearized gravitational memory effect
International Nuclear Information System (INIS)
Mädler, Thomas; Winicour, Jeffrey
2016-01-01
The gravitational memory effect leads to a net displacement in the relative positions of test particles. This memory is related to the change in the strain of the gravitational radiation field between infinite past and infinite future retarded times. There are three known sources of the memory effect: (i) the loss of energy to future null infinity by massless fields or particles, (ii) the ejection of massive particles to infinity from a bound system and (iii) homogeneous, source-free gravitational waves. In the context of linearized theory, we show that asymptotic conditions controlling these known sources of the gravitational memory effect rule out any other possible sources with physically reasonable stress–energy tensors. Except for the source-free gravitational waves, the two other known sources produce gravitational memory with E -mode radiation strain, characterized by a certain curl-free sky pattern of their polarization. Thus our results show that the only known source of B -mode gravitational memory is of primordial origin, corresponding in the linearized theory to a homogeneous wave entering from past null infinity. (paper)
Gravitational wave memory in ΛCDM cosmology
International Nuclear Information System (INIS)
Bieri, Lydia; Garfinkle, David; Yunes, Nicolás
2017-01-01
We examine gravitational wave memory in the case where sources and detector are in a ΛCDM cosmology. We consider the case where the Universe can be highly inhomogeneous, but gravitational radiation is treated in the short wavelength approximation. We find results very similar to those of gravitational wave memory in an asymptotically flat spacetime; however, the overall magnitude of the memory effect is enhanced by a redshift-dependent factor. In addition, we find the memory can be affected by lensing. (paper)
Gravitational wave searches using the DSN (Deep Space Network)
International Nuclear Information System (INIS)
Nelson, S.J.; Armstrong, J.W.
1988-01-01
The Deep Space Network Doppler spacecraft link is currently the only method available for broadband gravitational wave searches in the 0.01 to 0.001 Hz frequency range. The DSN's role in the worldwide search for gravitational waves is described by first summarizing from the literature current theoretical estimates of gravitational wave strengths and time scales from various astrophysical sources. Current and future detection schemes for ground based and space based detectors are then discussed. Past, present, and future planned or proposed gravitational wave experiments using DSN Doppler tracking are described. Lastly, some major technical challenges to improve gravitational wave sensitivities using the DSN are discussed
Gravitational lensing in plasmic medium
Energy Technology Data Exchange (ETDEWEB)
Bisnovatyi-Kogan, G. S., E-mail: gkogan@iki.rssi.ru; Tsupko, O. Yu., E-mail: tsupko@iki.rssi.ru [Russian Academy of Sciences, Space Research Institute (Russian Federation)
2015-07-15
The influence of plasma on different effects of gravitational lensing is reviewed. Using the Hamiltonian approach for geometrical optics in a medium in the presence of gravity, an exact formula for the photon deflection angle by a black hole (or another body with a Schwarzschild metric) embedded in plasma with a spherically symmetric density distribution is derived. The deflection angle in this case is determined by the mutual combination of different factors: gravity, dispersion, and refraction. While the effects of deflection by the gravity in vacuum and the refractive deflection in a nonhomogeneous medium are well known, the new effect is that, in the case of a homogeneous plasma, in the absence of refractive deflection, the gravitational deflection differs from the vacuum deflection and depends on the photon frequency. In the presence of a plasma nonhomogeneity, the chromatic refractive deflection also occurs, so the presence of plasma always makes gravitational lensing chromatic. In particular, the presence of plasma leads to different angular positions of the same image if it is observed at different wavelengths. It is discussed in detail how to apply the presented formulas for the calculation of the deflection angle in different situations. Gravitational lensing in plasma beyond the weak deflection approximation is also considered.
GLINT. Gravitational-wave laser INterferometry triangle
Aria, Shafa; Azevedo, Rui; Burow, Rick; Cahill, Fiachra; Ducheckova, Lada; Holroyd, Alexa; Huarcaya, Victor; Järvelä, Emilia; Koßagk, Martin; Moeckel, Chris; Rodriguez, Ana; Royer, Fabien; Sypniewski, Richard; Vittori, Edoardo; Yttergren, Madeleine
2017-11-01
When the universe was roughly one billion years old, supermassive black holes (103-106 solar masses) already existed. The occurrence of supermassive black holes on such short time scales are poorly understood in terms of their physical or evolutionary processes. Our current understanding is limited by the lack of observational data due the limits of electromagnetic radiation. Gravitational waves as predicted by the theory of general relativity have provided us with the means to probe deeper into the history of the universe. During the ESA Alpach Summer School of 2015, a group of science and engineering students devised GLINT (Gravitational-wave Laser INterferometry Triangle), a space mission concept capable of measuring gravitational waves emitted by black holes that have formed at the early periods after the big bang. Morespecifically at redshifts of 15 big bang) in the frequency range 0.01 - 1 Hz. GLINT design strain sensitivity of 5× 10^{-24} 1/√ { {Hz}} will theoretically allow the study of early black holes formations as well as merging events and collapses. The laser interferometry, the technology used for measuring gravitational waves, monitors the separation of test masses in free-fall, where a change of separation indicates the passage of a gravitational wave. The test masses will be shielded from disturbing forces in a constellation of three geocentric orbiting satellites.
The 'gravitating' tensor in the dualistic theory
International Nuclear Information System (INIS)
Mahanta, M.N.
1989-01-01
The exact microscopic system of Einstein-type field equations of the dualistic gravitation theory is investigated as well as an analysis of the modified energy-momentum tensor or so called 'gravitating' tensor is presented
Gravitational Waves from a Dark Phase Transition.
Schwaller, Pedro
2015-10-30
In this work, we show that a large class of models with a composite dark sector undergo a strong first order phase transition in the early Universe, which could lead to a detectable gravitational wave signal. We summarize the basic conditions for a strong first order phase transition for SU(N) dark sectors with n_{f} flavors, calculate the gravitational wave spectrum and show that, depending on the dark confinement scale, it can be detected at eLISA or in pulsar timing array experiments. The gravitational wave signal provides a unique test of the gravitational interactions of a dark sector, and we discuss the complementarity with conventional searches for new dark sectors. The discussion includes the twin Higgs and strongly interacting massive particle models as well as symmetric and asymmetric composite dark matter scenarios.
International Nuclear Information System (INIS)
Esarey, E.; Ting, A.; Sprangle, P.
1989-01-01
The laser wakefield accelerator (LWFA) is a novel plasma based electron acceleration scheme which utilizes a relativistic optical guiding mechanism for laser pulse propagation. In the LWFA, a short, high power, single frequency laser pulse is propagated through a plasma. As the laser pulse propagates, its radial and axial ponderomotive forces nonresonantly generate large amplitude plasma waves (wakefields) with a phase velocity equal to the group velocity of the pulse. A properly phased electron bunch may then be accelerated by the axial wakefield and focused by the transverse wakefield. Optical guiding of the laser pulse in the plasma is necessary in order to achieve high energies in a single stage of acceleration. At sufficiently high laser powers, optical guiding may be achieved through relativistic effects associated with the plasma electrons. Preliminary analysis indicates that this scheme may overcome some of the difficulties present in the plasma beat wave accelerator and in the plasma wakefield accelerator. Analytical and numerical calculations are presented which study both laser pulse propagation within a plasma as well as the subsequent generation of large amplitude plasma waves. In addition, the generation of large amplitude plasma waves in regimes where the plasma waves become highly nonlinear is examined
Compact multi-energy electron linear accelerators
International Nuclear Information System (INIS)
Tanabe, E.; Hamm, R.W.
1985-01-01
Two distinctly different concepts that have been developed for compact multi-energy, single-section, standing-wave electron linear accelerator structures are presented. These new concepts, which utilize (a) variable nearest neighbor couplings and (b) accelerating field phase switching, provide the capability of continuously varying the electron output energy from the accelerator without degrading the energy spectrum. These techniques also provide the means for continuously varying the energy spectrum while maintaining a given average electron energy, and have been tested successfully with several accelerators of length from 0.1 m to 1.9 m. Theoretical amd experimental results from these accelerators, and demonstrated applications of these techniques to medical and industrial linear accelerator technology will be described. In addition, possible new applications available to research and industry from these techniques are presented. (orig.)
An embedded acceleration measurement capability for EXPRESS Rack Payloads
International Nuclear Information System (INIS)
Foster, William M. II; Sutliff, Thomas J.
2000-01-01
The International Space Station provides a microgravity environment allowing long duration studies to be made on phenomena masked by the presence of earth's gravitational effects. Studies are also enabled in areas requiring a substantial decrease in steady-state and vibratory acceleration environments. In anticipation microgravity science experiments being targeted for EXPRESS (EXpedite the PRocessing of Experiments to Space Station) Racks, a capability has been provided to simplify and conduct a consistent measurement of the microgravity environment for payloads. The Space Acceleration Measurement System-II (SAMS-II) project has collaborated with the EXPRESS Rack Project to embed an electronics unit within the four EXPRESS Racks equipped with Active Rack Isolation Systems (ARIS). Each SAMS-II unit provides a standardized means for payload acceleration measurements to be acquired. Access to this capability is via front panel connections similar to those of power, data and water cooling provided for EXPRESS payloads. Furthermore, an International Subrack Interface Standard (ISIS) drawer configuration has been developed to provide measurement capability to the non-ARIS equipped EXPRESS Racks, as well as to other ISIS-configured racks, for non-isolated experimental measurement needs. This paper describes the SAMS-II acceleration measurement capabilities provided to ISS users and, in particular, to the EXPRESS Rack community
Supersymmetry and gravitational duality
International Nuclear Information System (INIS)
Argurio, Riccardo; Dehouck, Francois; Houart, Laurent
2009-01-01
We study how the supersymmetry algebra copes with gravitational duality. As a playground, we consider a charged Taub-Newman-Unti-Tamburino(NUT) solution of D=4, N=2 supergravity. We find explicitly its Killing spinors, and the projection they obey provides evidence that the dual magnetic momenta necessarily have to appear in the supersymmetry algebra. The existence of such a modification is further supported using an approach based on the Nester form. In the process, we find new expressions for the dual magnetic momenta, including the NUT charge. The same expressions are then rederived using gravitational duality.
Discovery of two new gravitation lens systems
International Nuclear Information System (INIS)
Guertler, J.
1988-01-01
The discovery of new quasar and radio galaxy double images produced by the gravitation lens effect is reported. The light deflecting galaxies acting as gravitational lenses could be made visible by means of image processing procedures
Some aspects of gravitational waves in an isotropic background universe
International Nuclear Information System (INIS)
Pandey, S.N.
1981-06-01
Gravitational waves are an inescapable consequence of the relativistic theory of gravitation. They are meaningfully comparable with electromagnetic waves. However, they are not conformally invariant. So, to investigate this property for gravitational waves, modified field equations are obtained of which the underlying Lagrangian is based on gravitation only. It gives, if helicity is preserved, amplitude modification, and the wave is represented by Bessel function of zero order. Some aspects of this theory are discussed with reference to gravitational waves only. (author)
Energy Technology Data Exchange (ETDEWEB)
Spentzouris, P.; /Fermilab; Cary, J.; /Tech-X, Boulder; McInnes, L.C.; /Argonne; Mori, W.; /UCLA; Ng, C.; /SLAC; Ng, E.; Ryne, R.; /LBL, Berkeley
2011-11-14
The design and performance optimization of particle accelerators are essential for the success of the DOE scientific program in the next decade. Particle accelerators are very complex systems whose accurate description involves a large number of degrees of freedom and requires the inclusion of many physics processes. Building on the success of the SciDAC-1 Accelerator Science and Technology project, the SciDAC-2 Community Petascale Project for Accelerator Science and Simulation (ComPASS) is developing a comprehensive set of interoperable components for beam dynamics, electromagnetics, electron cooling, and laser/plasma acceleration modelling. ComPASS is providing accelerator scientists the tools required to enable the necessary accelerator simulation paradigm shift from high-fidelity single physics process modeling (covered under SciDAC1) to high-fidelity multiphysics modeling. Our computational frameworks have been used to model the behavior of a large number of accelerators and accelerator R&D experiments, assisting both their design and performance optimization. As parallel computational applications, the ComPASS codes have been shown to make effective use of thousands of processors. ComPASS is in the first year of executing its plan to develop the next-generation HPC accelerator modeling tools. ComPASS aims to develop an integrated simulation environment that will utilize existing and new accelerator physics modules with petascale capabilities, by employing modern computing and solver technologies. The ComPASS vision is to deliver to accelerator scientists a virtual accelerator and virtual prototyping modeling environment, with the necessary multiphysics, multiscale capabilities. The plan for this development includes delivering accelerator modeling applications appropriate for each stage of the ComPASS software evolution. Such applications are already being used to address challenging problems in accelerator design and optimization. The ComPASS organization
Gravitational waves in hybrid quintessential inflationary models
International Nuclear Information System (INIS)
Sa, Paulo M; Henriques, Alfredo B
2011-01-01
The generation of primordial gravitational waves is investigated within the hybrid quintessential inflationary model. Using the method of continuous Bogoliubov coefficients, we calculate the full gravitational-wave energy spectrum. The post-inflationary kination period, characteristic of quintessential inflationary models, leaves a clear signature on the spectrum, namely, a sharp rise of the gravitational-wave spectral energy density Ω GW at high frequencies. For appropriate values of the parameters of the model, Ω GW can be as high as 10 -12 in the MHz-GHz range of frequencies.
International Nuclear Information System (INIS)
Roy, Fabrice
2004-01-01
We study the formation of self-gravitating systems and their properties by means of N-body simulations of gravitational collapse. First, we summarize the major analytical results concerning the collisionless Boltzmann equation and the Poisson's equation which describe the dynamics of collisionless gravitational systems. We present a study of some analytical solutions of this coupled system of equations. We then present the software used to perform the simulations. Some of this has been parallelized and implemented with the aid of MPI. For this reason we give a brief overview of it. Finally, we present the results of the numerical simulations. Analysis of these results allows us to explain some features of self-gravitating systems and the initial conditions needed to trigger the Antonov instability and the radial orbit instability. (author) [fr
Gravitational-wave research: Current status and future prospects
International Nuclear Information System (INIS)
Thorne, K.S.
1980-01-01
There is a reasonably good change that in the 1980s cosmic gravitational waves will be discovered and will become a powerful tool for astronomy. This prospect has stimulated a three-pronged research effort. First, relativity theorists are developing new mathematical tools for the analysis of gravitational radiation: including (i) methods of analyzing the generation of gravity waves by sources with strong self-gravity and large internal velocities (e.g., collisions of black holes), (ii) methods of computing radiation reaction in sources, and (iii) methods of analyzing how gravitational waves propagate through our lumpy curved-space Universe. Second, astrophysicists are attempting to identify the most promissing sources of gravitational waves, and are using the relativity theorists' mathematical tools to estimate the characteristics of the waves they emit. Third, with the estimated wave characteristics in mind, experimenters are designing and constructing a second generation of gravitational-wave detectors: detectors of three types: Doppler tracking of interplanetary spacecraft, Earth-based laser interferometers, and Earth-based Weber-type resonant bars. This article reviews, in brief, all three prongs of the research effort and gives references to more detailed articles about specialized aspects of gravitational-wave physics
Inertial reference frames and gravitational forces
International Nuclear Information System (INIS)
Santavy, I.
1981-01-01
The connection between different definitions of inertial, i.e. fundamental, reference frames and the corresponding characterisation of gravitational fields by gravitational forces are considered from the point of view of their possible interpretation in university introductory courses. The introduction of a special class of reference frames, denoted 'mixed reference frames' is proposed and discussed. (author)
Development of bipolar-pulse accelerator for intense pulsed ion beam acceleration
Energy Technology Data Exchange (ETDEWEB)
Masugata, Katsumi [Department of Electrical and Electronic System Engineering, Toyama University, 3190 Gofuku, Toyama 930-8555 (Japan)]. E-mail: masugata@eng.toyama-u.ac.jp; Shimizu, Yuichro [Department of Electrical and Electronic System Engineering, Toyama University, 3190 Gofuku, Toyama 930-8555 (Japan); Fujioka, Yuhki [Department of Electrical and Electronic System Engineering, Toyama University, 3190 Gofuku, Toyama 930-8555 (Japan); Kitamura, Iwao [Department of Electrical and Electronic System Engineering, Toyama University, 3190 Gofuku, Toyama 930-8555 (Japan); Tanoue, Hisao [National Institute of Advanced Industry Science and Technology, 1-1-1, Umezono, Tsukuba-shi, Ibaraki 305-8568 (Japan); Arai, Kazuo [National Institute of Advanced Industry Science and Technology, 1-1-1, Umezono, Tsukuba-shi, Ibaraki 305-8568 (Japan)
2004-12-21
To improve the purity of intense pulsed ion beams, a new type of pulsed ion beam accelerator named 'bipolar pulse accelerator' was proposed. To confirm the principle of the accelerator a prototype of the experimental system was developed. The system utilizes By type magnetically insulated acceleration gap and operated with single polar negative pulse. A coaxial gas puff plasma gun was used as an ion source, which was placed inside the grounded anode. Source plasma (nitrogen) of current density {approx}25A/cm2, duration {approx}1.5{mu}s was injected into the acceleration gap by the plasma gun. The ions were successfully accelerated from the grounded anode to the drift tube by applying negative pulse of voltage 240kV, duration 100ns to the drift tube. Pulsed ion beam of current density {approx}40A/cm2, duration {approx}50ns was obtained at 41mm downstream from the anode surface. To evaluate the irradiation effect of the ion beam to solid material, an amorphous silicon thin film of thickness {approx}500nm was used as the target, which was deposited on the glass substrate. The film was found to be poly-crystallized after 4-shots of the pulsed nitrogen ion beam irradiation.
Gravitational-wave detection using redshifted 21-cm observations
International Nuclear Information System (INIS)
Bharadwaj, Somnath; Guha Sarkar, Tapomoy
2009-01-01
A gravitational-wave traversing the line of sight to a distant source produces a frequency shift which contributes to redshift space distortion. As a consequence, gravitational waves are imprinted as density fluctuations in redshift space. The gravitational-wave contribution to the redshift space power spectrum has a different μ dependence as compared to the dominant contribution from peculiar velocities. This, in principle, allows the two signals to be separated. The prospect of a detection is most favorable at the highest observable redshift z. Observations of redshifted 21-cm radiation from neutral hydrogen hold the possibility of probing very high redshifts. We consider the possibility of detecting primordial gravitational waves using the redshift space neutral hydrogen power spectrum. However, we find that the gravitational-wave signal, though present, will not be detectable on superhorizon scales because of cosmic variance and on subhorizon scales where the signal is highly suppressed.
Congratulations on the direct detection of gravitational waves
2016-01-01
This week saw the announcement of an extraordinary physics result: the first direct detection of gravitational waves by the LIGO Scientific Collaboration, which includes the GEO team, and the Virgo Collaboration, using the twin Laser Interferometer Gravitational-wave Observatory (LIGO) detectors located in Livingston, Louisiana, and Hanford, Washington, USA. Albert Einstein predicted gravitational waves in a paper published 100 years ago in 1916. They are a natural consequence of the theory of general relativity, which describes the workings of gravity and was published a few months earlier. Until now, they have remained elusive. Gravitational waves are tiny ripples in space-time produced by violent gravitational phenomena. Because the fractional change in the space-time geometry can be at the level of 10-21 or smaller, extremely sophisticated, high-sensitivity instruments are needed to detect them. Recently, the Advanced LIGO detector increased its sensitivity by alm...
Nesbet, Robert K.
2018-05-01
Velocities in stable circular orbits about galaxies, a measure of centripetal gravitation, exceed the expected Kepler/Newton velocity as orbital radius increases. Standard Λ cold dark matter (ΛCDM) attributes this anomaly to galactic dark matter. McGaugh et al. have recently shown for 153 disc galaxies that observed radial acceleration is an apparently universal function of classical acceleration computed for observed galactic baryonic mass density. This is consistent with the empirical modified Newtonian dynamics (MOND) model, not requiring dark matter. It is shown here that suitably constrained ΛCDM and conformal gravity (CG) also produce such a universal correlation function. ΛCDM requires a very specific dark matter distribution, while the implied CG non-classical acceleration must be independent of galactic mass. All three constrained radial acceleration functions agree with the empirical baryonic v4 Tully-Fisher relation. Accurate rotation data in the nominally flat velocity range could distinguish between MOND, ΛCDM, and CG.
An unofficial history of Japanese accelerators. Part four
International Nuclear Information System (INIS)
Inoue, Makoto
2005-01-01
History of accelerator development in Japan is overviewed for a period after 1980. In the first part, big accelerator projects including Japan-U.S. Science and Technology Cooperation Program, participation in SSC project, Big Hadron Project and RCNP ring cyclotron project are looked back. In the second part, the spread of small- and medium-scale accelerator utilization are overviewed. The third part is devoted to view the relation between the atomic energy research and accelerators. Organizations of Japanese accelerator society are surveyed in the last section. (K.Y.)
Advanced instrumentation for Solar System gravitational physics
Peron, Roberto; Bellettini, G.; Berardi, S.; Boni, A.; Cantone, C.; Coradini, A.; Currie, D. G.; Dell'Agnello, S.; Delle Monache, G. O.; Fiorenza, E.; Garattini, M.; Iafolla, V.; Intaglietta, N.; Lefevre, C.; Lops, C.; March, R.; Martini, M.; Nozzoli, S.; Patrizi, G.; Porcelli, L.; Reale, A.; Santoli, F.; Tauraso, R.; Vittori, R.
2010-05-01
The Solar System is a complex laboratory for testing gravitational physics. Indeed, its scale and hierarchical structure make possible a wide range of tests for gravitational theories, studying the motion of both natural and artificial objects. The usual methodology makes use of tracking information related to the bodies, fitted by a suitable dynamical model. Different equations of motion are provided by different theories, which can be therefore tested and compared. Future exploration scenarios show the possibility of placing deep-space probes near the Sun or in outer Solar System, thereby extending the available experimental data sets. In particular, the Earth-Moon is the most accurately known gravitational three-body laboratory, which is undergoing a new, strong wave of research and exploration (both robotic and manned). In addition, the benefits of a synergetic study of planetary science and gravitational physics are of the greatest importance (as shown by the success of the Apollo program), especially in the Earth-Moon, Mars-Phobos, Jovian and Saturnian sub-suystems. This scenarios open critical issues regarding the quality of the available dynamical models, i.e. their capability of fitting data without an excessive number of empirical hypotheses. A typical case is represented by the non-gravitational phenomena, which in general are difficult to model. More generally, gravitation tests with Lunar Laser Ranging, inner or outer Solar System probes and the appearance of the so-called 'anomalies'(like the one indicated by the Pioneers), whatever their real origin (either instrumental effects or due to new physics), show the necessity of a coordinated improvement of tracking and modelization techniques. A common research path will be discussed, employing the development and use of advanced instrumentation to cope with current limitations of Solar System gravitational tests. In particular, the use of high-sensitivity accelerometers, combined with microwave and laser
Detecting the Stochastic Gravitational-Wave Background
Colacino, Carlo Nicola
2017-12-01
The stochastic gravitational-wave background (SGWB) is by far the most difficult source of gravitational radiation detect. At the same time, it is the most interesting and intriguing one. This book describes the initial detection of the SGWB and describes the underlying mathematics behind one of the most amazing discoveries of the 21st century. On the experimental side it would mean that interferometric gravitational wave detectors work even better than expected. On the observational side, such a detection could give us information about the very early Universe, information that could not be obtained otherwise. Even negative results and improved upper bounds could put constraints on many cosmological and particle physics models.
The present gravitational wave detection effort
International Nuclear Information System (INIS)
Riles, Keith
2010-01-01
Gravitational radiation offers a new non-electromagnetic window through which to observe the universe. The LIGO and Virgo Collaborations have completed a first joint data run with unprecedented sensitivities to gravitational waves. Results from searches in the data for a variety of astrophysical sources are presented. A second joint data run with improved detector sensitivities is underway, and soon major upgrades will be carried out to build Advanced LIGO and Advanced Virgo with expected improvements in event rates of more than 1000. In parallel there is a vigorous effort in the radio pulsar community to detect nHz gravitational waves via the timing residuals in an array of pulsars at different locations in the sky.
Gravitational Field Shielding by Scalar Field and Type II Superconductors
Directory of Open Access Journals (Sweden)
Zhang B. J.
2013-01-01
Full Text Available The gravitational field shielding by scalar field and type II superconductors are theoret- ically investigated. In accord with the well-developed five-dimensional fully covariant Kaluza-Klein theory with a scalar field, which unifies the Einsteinian general relativity and Maxwellian electromagnetic theory, the scalar field cannot only polarize the space as shown previously, but also flatten the space as indicated recently. The polariza- tion of space decreases the electromagnetic field by increasing the equivalent vacuum permittivity constant, while the flattening of space decreases the gravitational field by decreasing the equivalent gravitational constant. In other words, the scalar field can be also employed to shield the gravitational field. A strong scalar field significantly shield the gravitational field by largely decreasing the equivalent gravitational constant. According to the theory of gravitational field shielding by scalar field, the weight loss experimentally detected for a sample near a rotating ceramic disk at very low tempera- ture can be explained as the shielding of the Earth gravitational field by the Ginzburg- Landau scalar field, which is produced by the type II superconductors. The significant shielding of gravitational field by scalar field produced by superconductors may lead to a new spaceflight technology in future.
Interaction of gravitational waves with magnetic and electric fields
International Nuclear Information System (INIS)
Barrabes, C.; Hogan, P. A.
2010-01-01
The existence of large-scale magnetic fields in the universe has led to the observation that if gravitational waves propagating in a cosmological environment encounter even a small magnetic field then electromagnetic radiation is produced. To study this phenomenon in more detail we take it out of the cosmological context and at the same time simplify the gravitational radiation to impulsive waves. Specifically, to illustrate our findings, we describe the following three physical situations: (1) a cylindrical impulsive gravitational wave propagating into a universe with a magnetic field, (2) an axially symmetric impulsive gravitational wave propagating into a universe with an electric field and (3) a 'spherical' impulsive gravitational wave propagating into a universe with a small magnetic field. In cases (1) and (3) electromagnetic radiation is produced behind the gravitational wave. In case (2) no electromagnetic radiation appears after the wave unless a current is established behind the wave breaking the Maxwell vacuum. In all three cases the presence of the magnetic or electric fields results in a modification of the amplitude of the incoming gravitational wave which is explicitly calculated using the Einstein-Maxwell vacuum field equations.
How Spherical Is a Cube (Gravitationally)?
Sanny, Jeff; Smith, David
2015-01-01
An important concept that is presented in the discussion of Newton's law of universal gravitation is that the gravitational effect external to a spherically symmetric mass distribution is the same as if all of the mass of the distribution were concentrated at the center. By integrating over ring elements of a spherical shell, we show that the…
Gravitational-wave astronomy: delivering on the promises
Schutz, B. F.
2018-05-01
Now that LIGO and Virgo have begun to detect gravitational-wave events with regularity, the field of gravitational-wave astronomy is beginning to realize its promise. Binary black holes and, very recently, binary neutron stars have been observed, and we are already learning much from them. The future, with improved sensitivity, more detectors and detectors like LISA in different frequency bands, has even more promise to open a completely hidden side of the Universe to our exploration. This article is part of a discussion meeting issue `The promises of gravitational-wave astronomy'.
Superconductor in a weak static gravitational field
Energy Technology Data Exchange (ETDEWEB)
Ummarino, Giovanni Alberto [Dipartimento DISAT, Politecnico di Torino, Turin (Italy); National Research Nuclear University MEPhI-Moscow Engineering Physics Institute, Moscow (Russian Federation); Gallerati, Antonio [Dipartimento DISAT, Politecnico di Torino, Turin (Italy)
2017-08-15
We provide the detailed calculation of a general form for Maxwell and London equations that takes into account gravitational corrections in linear approximation. We determine the possible alteration of a static gravitational field in a superconductor making use of the time-dependent Ginzburg-Landau equations, providing also an analytic solution in the weak field condition. Finally, we compare the behavior of a high-T{sub c} superconductor with a classical low-T{sub c} superconductor, analyzing the values of the parameters that can enhance the reduction of the gravitational field. (orig.)
New Metrics from a Fractional Gravitational Field
International Nuclear Information System (INIS)
El-Nabulsi, Rami Ahmad
2017-01-01
Agop et al. proved in Commun. Theor. Phys. (2008) that, a Reissner–Nordstrom type metric is obtained, if gauge gravitational field in a fractal spacetime is constructed by means of concepts of scale relativity. We prove in this short communication that similar result is obtained if gravity in D-spacetime dimensions is fractionalized by means of the Glaeske–Kilbas–Saigo fractional. Besides, non-singular gravitational fields are obtained without using extra-dimensions. We present few examples to show that these gravitational fields hold a number of motivating features in spacetime physics. (paper)
The theory of space, time and gravitation
Fock, V
2015-01-01
The Theory of Space, Time, and Gravitation, 2nd Revised Edition focuses on Relativity Theory and Einstein's Theory of Gravitation and correction of the misinterpretation of the Einsteinian Gravitation Theory. The book first offers information on the theory of relativity and the theory of relativity in tensor form. Discussions focus on comparison of distances and lengths in moving reference frames; comparison of time differences in moving reference frames; position of a body in space at a given instant in a fixed reference frame; and proof of the linearity of the transformation linking two iner
Gravitational waves in hybrid quintessential inflationary models
Energy Technology Data Exchange (ETDEWEB)
Sa, Paulo M [Departamento de Fisica, Faculdade de Ciencias e Tecnologia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro (Portugal); Henriques, Alfredo B, E-mail: pmsa@ualg.pt, E-mail: alfredo.henriques@ist.utl.pt [Centro Multidisciplinar de Astrofisica - CENTRA and Departamento de Fisica, Instituto Superior Tecnico, UTL, Av. Rovisco Pais, 1049-001 Lisboa (Portugal)
2011-09-22
The generation of primordial gravitational waves is investigated within the hybrid quintessential inflationary model. Using the method of continuous Bogoliubov coefficients, we calculate the full gravitational-wave energy spectrum. The post-inflationary kination period, characteristic of quintessential inflationary models, leaves a clear signature on the spectrum, namely, a sharp rise of the gravitational-wave spectral energy density {Omega}{sub GW} at high frequencies. For appropriate values of the parameters of the model, {Omega}{sub GW} can be as high as 10{sup -12} in the MHz-GHz range of frequencies.
Observing a Gravitational Wave Background With Lisa
National Research Council Canada - National Science Library
Tinto, M; Armstrong, J; Estabrook, F
2000-01-01
.... Comparison of the conventional Michelson interferometer observable with the fully-symmetric Sagnac data-type allows unambiguous discrimination between a gravitational wave background and instrumental noise. The method presented here can be used to detect a confusion-limited gravitational wave background.
Problems of generation and reception of gravitational waves. [Review
Energy Technology Data Exchange (ETDEWEB)
Pisarev, A F [Joint Inst. for Nuclear Research, Dubna (USSR)
1975-01-01
The present day status of the problems of gravitation, wave radiation and reception is surveyed. The physical presentation and mathematical description of the processes of radiation, propagation and interaction of gravitation waves with matter and the electromagnetic field are given. The experiments on the search for gravitation waves of astophysical nature are analysed. The laboratory and cosmic sources of these waves and the methods of their reception are described. Special attention is drawn to the analysis of the proposals to perform a complete laboratory gravitation wave experiment.
Directional radiative cooling thermal compensation for gravitational wave interferometer mirrors
Energy Technology Data Exchange (ETDEWEB)
Justin Kamp, Carl [Department of Chemical Reaction Engineering, Chalmers University of Technology, SE-412 96 Goteborg (Sweden)], E-mail: carl.kamp@chalmers.se; Kawamura, Hinata [Yokoyama Junior High School, Sanda, Hachioji, Tokyo 193-0832 (Japan); Passaquieti, Roberto [Dipartimento di Fisica ' Enrico Fermi' and INFN Sezione di Pisa, Universita' di Pisa, Largo Bruno Pontecorvo, I-56127 Pisa (Italy); DeSalvo, Riccardo [LIGO Observatories, California Institute of Technology, Pasadena, CA 91125 (United States)
2009-08-21
The concept of utilizing directional radiative cooling to correct the problem of thermal lensing in the mirrors of the LIGO/VIRGO gravitational wave detectors has been shown and has prospects for future use. Two different designs utilizing this concept, referred to as the baffled and parabolic mirror solutions, have been proposed with different means of controlling the cooling power. The technique takes advantage of the power naturally radiated by the mirror surfaces at room temperature to prevent their heating by the powerful stored laser beams. The baffled solution has been simulated via COMSOL Multiphysics as a design tool. Finally, the parabolic mirror concept was experimentally validated with the results falling in close agreement with theoretical cooling calculations. The technique of directional radiative thermal correction can be reversed to image heat rings on the mirrors periphery to remotely and dynamically correct their radius of curvature without subjecting the mirror to relevant perturbations.
The problem of infinite self-energy in electrodynamics and gravitation
Energy Technology Data Exchange (ETDEWEB)
Sinha, K P; Sivaram, C [Indian Inst. of Science, Bangalore. Div. of Physics and Mathematical Sciences
1975-02-01
The appearance of infinities in the self-energies of point particles in both classical and quantum electrodynamics has been a persistent problem for the last several decades. This problem is discussed at length in relation to the Newtonian theory of gravitation and the modern (relativity) theory on gravitation. Gravitational contraction and the mass and radius of the electron are treated in detail. The spacetime properties around the Schwarzchild radius of the electron are modified to explain the divergences. The quantum gravitational mass and the quantum gravitational length are mentioned. It is pointed out that the out-off at the Schwarzchild radius applies not only to photon but also to the virtual quanta of all fields with which the particle interacts. Arguments are extended to explain the gravitational interactions of the proton. The interactions of the hadrons through f-gravity are explained. Recent work on renormalisibility (i.e. removal of divergences) of quantum gravitation are mentioned.
Scalar-metric and scalar-metric-torsion gravitational theories
International Nuclear Information System (INIS)
Aldersley, S.J.
1977-01-01
The techniques of dimensional analysis and of the theory of tensorial concomitants are employed to study field equations in gravitational theories which incorporate scalar fields of the Brans-Dicke type. Within the context of scalar-metric gravitational theories, a uniqueness theorem for the geometric (or gravitational) part of the field equations is proven and a Lagrangian is determined which is uniquely specified by dimensional analysis. Within the context of scalar-metric-torsion gravitational theories a uniqueness theorem for field Lagrangians is presented and the corresponding Euler-Lagrange equations are given. Finally, an example of a scalar-metric-torsion theory is presented which is similar in many respects to the Brans-Dicke theory and the Einstein-Cartan theory
Software for virtual accelerator designing
International Nuclear Information System (INIS)
Kulabukhova, N.; Ivanov, A.; Korkhov, V.; Lazarev, A.
2012-01-01
The article discusses appropriate technologies for software implementation of the Virtual Accelerator. The Virtual Accelerator is considered as a set of services and tools enabling transparent execution of computational software for modeling beam dynamics in accelerators on distributed computing resources. Distributed storage and information processing facilities utilized by the Virtual Accelerator make use of the Service-Oriented Architecture (SOA) according to a cloud computing paradigm. Control system tool-kits (such as EPICS, TANGO), computing modules (including high-performance computing), realization of the GUI with existing frameworks and visualization of the data are discussed in the paper. The presented research consists of software analysis for realization of interaction between all levels of the Virtual Accelerator and some samples of middle-ware implementation. A set of the servers and clusters at St.-Petersburg State University form the infrastructure of the computing environment for Virtual Accelerator design. Usage of component-oriented technology for realization of Virtual Accelerator levels interaction is proposed. The article concludes with an overview and substantiation of a choice of technologies that will be used for design and implementation of the Virtual Accelerator. (authors)
Directory of Open Access Journals (Sweden)
Parthasarathy Krishnamurthy
Full Text Available Peer-led outreach is a critical element of HIV and STI-reduction interventions aimed at sex workers. We study the association between peer-led outreach to sex workers and the time to utilize health facilities for timely STI syndromic-detection and treatment. Using data on the timing of peer-outreach interventions and clinic visits, we utilize an Extended Cox model to assess whether peer educator outreach intensity is associated with accelerated clinic utilization among sex workers.Our data comes from 2705 female sex workers registered into Pragati, a women-in-sex-work outreach program, and followed from 2008 through 2012. We analyze this data using an Extended Cox model with the density of peer educator visits in a 30-day rolling window as the key predictor, while controlling for the sex workers' age, client volume, location of sex work, and education level. The principal outcome of interest is the timing of the first voluntary clinic utilization.More frequent peer visit is associated with earlier first clinic visit (HR: 1.83, 95% CI, 1.75-1.91, p < .001. In addition, 18% of all syndrome-based STI detected come from clinic visits in which the sex worker reports no symptoms, underscoring the importance of inducing clinic visits in the detection of STI. Additional models to test the robustness of these findings indicate consistent beneficial effect of peer educator outreach.Peer outreach density is associated with increased likelihood of-and shortened duration to-clinic utilization among female sex workers, suggesting potential staff resourcing implications. Given the observational nature of our study, however, these findings should be interpreted as an association rather than as a causal relationship.
Linear interaction of gravitational waves
International Nuclear Information System (INIS)
Ciubotariu, C.D.
1992-01-01
Starting with the linearized Einstein equations written in the same form as Maxwell equations, a damping term is found in the wave equation. The analogy with the propagation of the electromagnetic wave in ohmic media is obvious if we introduce an 'ohmic relation' for gravitational interaction. The possibility of the amplification of gravitational waves by a suitable choice of the velocity field of a dust ('dust with negative viscosity'), for example by the use of the free-electron laser principle, is indicated. (Author)
Astrophysical sources of gravitational waves
Energy Technology Data Exchange (ETDEWEB)
Losurdo, G. E-mail: losurdo@galileo.pi.infn.it
2000-05-01
The interferometric detectors of gravitational waves (GW) (such as VIRGO and LIGO) will search for events in a frequency band within a few Hz and a few kHz, where several sources are expected to emit. In this talk we outline briefly the current theoretical knowledge on the emission of GW in events such as the coalescence of compact binaries, the gravitational collapse, the spinning of a neutron stars. Expected amplitudes are compared with the target sensitivity of the VIRGO/LIGO interferometric detectors.
Introduction to the theory of gravitational radiation
International Nuclear Information System (INIS)
Damour, T.
1987-01-01
In these lectures our attention is restricted to the analytical investigations of the theory of gravitational radiation. There exist already several reviews concerning this topic and, in particular, a recent detailed review, by Thorne, where gravitational radiation theory is put in a form suitable for astrophysical studies. This is why the scope of these lectures is limited to supplement the existing reviews in two ways. First, both the basic concepts of gravitational radiation theory, and the precise conditions, as well as the limitations, of validity of some of the well-known results in this theory are presented. Indeed, as these results have been, or will be, applied in astrophysics, it is important to have clearly in mind both what they mean, and when they can be legitimately applied. Second, a progress report on some of the ongoing analytical research in gravitational radiation theory is presented. 144 references
Gravitational analogue of the Witten effect
Energy Technology Data Exchange (ETDEWEB)
Foda, O. (International Centre for Theoretical Physics, Trieste (Italy))
1985-07-22
In the presence of massive fermions, and assuming a non-vanishing theta-parameter as the only source of CP violation, the Witten effect (a shift in the electric charge of a magnetic monopole due to CP non-conservation) is shown to follow from an anomalous chiral commutator. Next, given the gravitational contribution to the chiral anomaly, the corresponding anomalous commutator for Dirac fermion currents in a gravitational background is derived. From that, we infer the equivalence of a thetaR tildeR term in the lagrangian to a shift in the mass parameter of the NUT metric, in proportion to theta. This is interpreted as the gravitational analogue of the Witten effect. Its relevance to certain Kaluza-Klein monopoles is briefly discussed.
The dawn of gravitational wave astronomy
CERN. Geneva
2016-01-01
On Sep 14 2015, gravitational waves were for the first time detected directly. This observation by the LIGO interferometric detectors marks the dawn of a new era in our observational study of the cosmos as a qualitatively new window to its exploration has been opened. This talk reviews some of the fundamental concepts of gravitational waves and the methodology employed for their observation. The first event, dubbed GW150914, and the properties of its source, as inferred from the observation, will be discussed. The talk concludes with a selected set of the most important topics where we expect gravitational-wave observations to deepen and either challenge or confirm our present understanding of the laws and the history of our universe.
Gravitational Lensing from a Spacetime Perspective
Directory of Open Access Journals (Sweden)
Perlick Volker
2004-09-01
Full Text Available The theory of gravitational lensing is reviewed from a spacetime perspective, without quasi-Newtonian approximations. More precisely, the review covers all aspects of gravitational lensing where light propagation is described in terms of lightlike geodesics of a metric of Lorentzian signature. It includes the basic equations and the relevant techniques for calculating the position, the shape, and the brightness of images in an arbitrary general-relativistic spacetime. It also includes general theorems on the classification of caustics, on criteria for multiple imaging, and on the possible number of images. The general results are illustrated with examples of spacetimes where the lensing features can be explicitly calculated, including the Schwarzschild spacetime, the Kerr spacetime, the spacetime of a straight string, plane gravitational waves, and others.
Electromagnetic waves in gravitational wave spacetimes
International Nuclear Information System (INIS)
Haney, M.; Bini, D.; Ortolan, A.; Fortini, P.
2013-01-01
We have considered the propagation of electromagnetic waves in a space-time representing an exact gravitational plane wave and calculated the induced changes on the four-potential field Aμ of a plane electromagnetic wave. By choosing a suitable photon round-trip in a Michelson interferometer, we have been able to identify the physical effects of the exact gravitational wave on the electromagnetic field, i.e. phase shift, change of the polarization vector, angular deflection and delay. These results have been exploited to study the response of an interferometric gravitational wave detector beyond the linear approximation of the general theory of relativity. A much more detailed examination of this problem can be found in our paper recently published in Classical and Quantum Gravity (28 (2011) 235007).
Industrial accelerators and their applications
Hamm, Marianne E
2012-01-01
This unique new book is a comprehensive review of the many current industrial applications of particle accelerators, written by experts in each of these fields. Readers will gain a broad understanding of the principles of these applications, the extent to which they are employed, and the accelerator technology utilized. The book also serves as a thorough introduction to these fields for non-experts and laymen. Due to the increased interest in industrial applications, there is a growing interest among accelerator physicists and many other scientists worldwide in understanding how accelerators are used in various applications. The government agencies that fund scientific research with accelerators are also seeking more information on the many commercial applications that have been or can be developed with the technology developments they are funding. Many industries are also doing more research on how they can improve their products or processes using particle beams.