WorldWideScience

Sample records for grassland plant diversity

  1. Herbivores and nutrients control grassland plant diversity via light limitation

    Science.gov (United States)

    Borer, Elizabeth T.; Seabloom, Eric W.; Gruner, Daniel S.; Harpole, W. Stanley; Hillebrand, Helmut; Lind, Eric M.; Alder, Peter B.; Alberti, Juan; Anderson, T. Michael; Bakker, Jonathan D.; Biederman, Lori; Blumenthal, Dana; Brown, Cynthia S.; Brudvig, Lars A.; Buckley, Yvonne M.; Cadotte, Marc; Chu, Cheng-Jin; Cleland, Elsa E.; Crawley, Michael J.; Daleo, Pedro; Damschen, Ellen Ingman; Davies, Kendi F.; DeCrappeo, Nicole M.; Du, Guozhen; Firn, Jennifer; Hautier, Yann; Heckman, Robert W.; Hector, Andy; HilleRisLambers, Janneke; Iribarne, Oscar; Klein, Julia A.; Knops, Johannes M.H.; La Pierre, Kimberly J.; Leakey, Andrew D.B.; Li, Wei; MacDougall, Andrew S.; McCulley, Rebecca L.; Melbourne, Brett A.; Mitchell, Charles E.; Moore, Joslin L.; Mortensen, Brent; O'Halloran, Lydia R.; Orrock, John L.; Pascual, Jesús; Prober, Suzanne M.; Pyke, David A.; Risch, Anita C.; Schuetz, Martin; Smith, Melinda D.; Stevens, Carly J.; Sullivan, Lauren L.; Williams, Ryan J.; Wragg, Peter D.; Wright, Justin P.; Yang, Louie H.

    2014-01-01

    Human alterations to nutrient cycles and herbivore communities are affecting global biodiversity dramatically. Ecological theory predicts these changes should be strongly counteractive: nutrient addition drives plant species loss through intensified competition for light, whereas herbivores prevent competitive exclusion by increasing ground-level light, particularly in productive systems. Here we use experimental data spanning a globally relevant range of conditions to test the hypothesis that herbaceous plant species losses caused by eutrophication may be offset by increased light availability due to herbivory. This experiment, replicated in 40 grasslands on 6 continents, demonstrates that nutrients and herbivores can serve as counteracting forces to control local plant diversity through light limitation, independent of site productivity, soil nitrogen, herbivore type and climate. Nutrient addition consistently reduced local diversity through light limitation, and herbivory rescued diversity at sites where it alleviated light limitation. Thus, species loss from anthropogenic eutrophication can be ameliorated in grasslands where herbivory increases ground-level light.

  2. Acidification of sandy grasslands - consequences for plant diversity

    DEFF Research Database (Denmark)

    Olsson, Pål Axel; Mårtensson, Linda-Maria; Bruun, Hans Henrik

    2009-01-01

    soil; a number of nationally red-listed species showed a similar pattern. Plant species diversity and number of red-listed species increased with slope. Where the topsoil had been acidified, limestone was rarely present above a depth of 30 cm. The presence of limestone restricts the availability......Questions: (1) Does soil acidification in calcareous sandy grasslands lead to loss of plant diversity? (2) What is the relationship between the soil content of lime and the plant availability of mineral nitrogen (N) and phosphorus (P) in sandy grasslands? Location: Sandy glaciofluvial deposits......). Environmental variables were recorded at each plot, and soil samples were analysed for exchangeable P and N, as well as limestone content and pH. Data were analysed with regression analysis and canonical correspondence analysis. Results: Plant species richness was highest on weakly acid to slightly alkaline...

  3. Plant diversity predicts beta but not alpha diversity of soil microbes across grasslands worldwide

    Science.gov (United States)

    Prober, Suzanne M.; Leff, Jonathan W.; Bates, Scott T.; Borer, Elizabeth T.; Firn, Jennifer; Harpole, W. Stanley; Lind, Eric M.; Seabloom, Eric W.; Adler, Peter B.; Bakker, Jonathan D.; Cleland, Elsa E.; DeCrappeo, Nicole; DeLorenze, Elizabeth; Hagenah, Nicole; Hautier, Yann; Hofmockel, Kirsten S.; Kirkman, Kevin P.; Knops, Johannes M. H.; La Pierre, Kimberly J.; MacDougall, Andrew S.; McCulley, Rebecca L.; Mitchell, Charles E.; Risch, Anita C.; Schuetz, Martin; Stevens, Carly J.; Williams, Ryan J.; Fierer, Noah

    2015-01-01

    Aboveground–belowground interactions exert critical controls on the composition and function of terrestrial ecosystems, yet the fundamental relationships between plant diversity and soil microbial diversity remain elusive. Theory predicts predominantly positive associations but tests within single sites have shown variable relationships, and associations between plant and microbial diversity across broad spatial scales remain largely unexplored. We compared the diversity of plant, bacterial, archaeal and fungal communities in one hundred and forty-five 1 m2 plots across 25 temperate grassland sites from four continents. Across sites, the plant alpha diversity patterns were poorly related to those observed for any soil microbial group. However, plant beta diversity (compositional dissimilarity between sites) was significantly correlated with the beta diversity of bacterial and fungal communities, even after controlling for environmental factors. Thus, across a global range of temperate grasslands, plant diversity can predict patterns in the composition of soil microbial communities, but not patterns in alpha diversity.

  4. Temporal dynamics of soil nematode communities in a grassland plant diversity experiment.

    NARCIS (Netherlands)

    Viketoft, M.; Sohlenius, B.; Bostrom, S.; Palmborg, C.; Bengtsson, J.; Berg, M.P.; Kuss-Danell, K.

    2011-01-01

    We report here on an 8-year study examining links between plant and nematode communities in a grassland plant diversity experiment, located in the north of Sweden on previous agricultural soil. The examined plots contained 1, 4 and 12 common grassland plant species from three functional groups;

  5. Long-term effects of plant diversity and composition on soil nematode communities in grassland.

    NARCIS (Netherlands)

    Viketoft, M.; Bengtsson, J.; Sohlenius, B.; Berg, M.P.; Petchey, O.; Palmborg, C.; Huss-Daniel, K.

    2009-01-01

    An important component of plant-soil feedbacks is how plant species identity and diversity influence soil organism communities. We examine the effects of grassland plant species growing alone and together up to a richness of 12 species on nematode diversity and feeding group composition, eight years

  6. DIVERSITY OF PLANT COMMUNITIES IN SECONDARY SUCCESSION OF IMPERATA GRASSLANDS IN SAMBOJA LESTARI, EAST KALIMANTAN, INDONESIA

    Directory of Open Access Journals (Sweden)

    Ishak Yassir

    2016-06-01

    Full Text Available Regeneration of  Imperata grassland areas is becoming increasingly important, both to create new secondary forest and to recover the original biodiversity. The diversity of  plant communities in secondary succession of  Imperata grasslands was studied using 45 subplots of  9 linear transects (10 m x 100 m. Data was collected and all stems over 10 cm dbh were identified, the Importance Values Index (IVI for all trees were calculated, saplings and seedlings were counted  and analysed, and soil samples were taken and analysed. Results showed that  after more than 10 years of  regeneration, 65 families were encountered consisting of  164 species, which were dominated by Vernonia arborea Buch.-Ham, Vitex pinnata L., Macaranga gigantea (Reichb.f. & Zoll. Muell.Arg., Symplocos crassipes C.B. Clarke, Artocarpus odoratissimus Miq., and Bridelia glauca Blume. The effects of  regeneration, from Imperata grassland to secondary forest, on soil were the strongest in the A-horizon where an increase in carbon, N content, and pH were observed. Our result shows that Imperata grasslands appear to be permanent because of  frequent fires and human interferences and so far few efforts have been made to promote sustainable rehabilitation. If  protected from fire and other disturbances, such as shifting cultivation, Imperata grassland will grow and develop into secondary forest.

  7. Diversity of arbuscular mycorrhizal fungi in grassland spontaneously developed on area polluted by a fertilizer plant

    International Nuclear Information System (INIS)

    Renker, C.; Blanke, V.; Buscot, F.

    2005-01-01

    Mycorrhizal colonization and diversity of arbuscular mycorrhizal fungi (AMF) were analyzed in a calcareous grassland with residual phosphate contamination 10 years after the closure of a pollutant fertilizer plant in Thuringia (Germany). AMF were detected in 21 of 22 plant species analyzed. Mean mycorrhization levels reached up to 74.5% root length colonized. AMF diversity was analyzed based on 104 sequences of the internal transcribed spacer (ITS) of the ribosomal DNA. Phylogenetic analyses revealed a total of 6 species all belonging to the genus Glomus. There was no overlap between species detected as active mycorrhizas on roots (2 taxa) or as spores (4 taxa). Compared to the regional context, the diversity of AMF at our field site was reduced, which may reflect a residual disturbance effect. However, none of the detected species was exclusive to the polluted site as they are commonly found in the region. - Almost all plant species were mycorrhizal

  8. Relationships between Plant Diversity and Grasshopper Diversity and Abundance in the Little Missouri National Grassland

    Directory of Open Access Journals (Sweden)

    David H. Branson

    2011-01-01

    Full Text Available A continuing challenge in orthopteran ecology is to understand what determines grasshopper species diversity at a given site. In this study, the objective was to determine if variation in grasshopper abundance and diversity between 23 sites in western North Dakota (USA could be explained by variation in plant species richness and diversity. In this system with relatively low plant diversity, grasshopper species richness and abundance were not significantly associated with plant species richness in either year. Although a number of significant associations between plant diversity and grasshopper diversity were found through regression analyses, results differed greatly between years indicating that plant species richness and diversity did not lead to strong effects on grasshopper diversity metrics. Plant species richness appears to be too coarse grained to lead to accurate predictions of grasshopper species richness in this system dominated by generalist grasshopper species.

  9. Incorporating biodiversity into rangeland health: Plant species richness and diversity in great plains grasslands

    Science.gov (United States)

    Symstad, Amy J.; Jonas, Jayne L.

    2011-01-01

    Indicators of rangeland health generally do not include a measure of biodiversity. Increasing attention to maintaining biodiversity in rangelands suggests that this omission should be reconsidered, and plant species richness and diversity are two metrics that may be useful and appropriate. Ideally, their response to a variety of anthropogenic and natural drivers in the ecosystem of interest would be clearly understood, thereby providing a means to diagnose the cause of decline in an ecosystem. Conceptual ecological models based on ecological principles and hypotheses provide a framework for this understanding, but these models must be supported by empirical evidence if they are to be used for decision making. To that end, we synthesize results from published studies regarding the responses of plant species richness and diversity to drivers that are of management concern in Great Plains grasslands, one of North America's most imperiled ecosystems. In the published literature, moderate grazing generally has a positive effect on these metrics in tallgrass prairie and a neutral to negative effect in shortgrass prairie. The largest published effects on richness and diversity were caused by moderate grazing in tallgrass prairies and nitrogen fertilization in shortgrass prairies. Although weather is often cited as the reason for considerable annual fluctuations in richness and diversity, little information about the responses of these metrics to weather is available. Responses of the two metrics often diverged, reflecting differences in their sensitivity to different types of changes in the plant community. Although sufficient information has not yet been published for these metrics to meet all the criteria of a good indicator in Great Plains Grasslands, augmenting current methods of evaluating rangeland health with a measure of plant species richness would reduce these shortcomings and provide information critical to managing for biodiversity.

  10. Experimental Manipulation of Grassland Plant Diversity Induces Complex Shifts in Aboveground Arthropod Diversity

    Science.gov (United States)

    Hertzog, Lionel R.; Meyer, Sebastian T.; Weisser, Wolfgang W.; Ebeling, Anne

    2016-01-01

    Changes in producer diversity cause multiple changes in consumer communities through various mechanisms. However, past analyses investigating the relationship between plant diversity and arthropod consumers focused only on few aspects of arthropod diversity, e.g. species richness and abundance. Yet, shifts in understudied facets of arthropod diversity like relative abundances or species dominance may have strong effects on arthropod-mediated ecosystem functions. Here we analyze the relationship between plant species richness and arthropod diversity using four complementary diversity indices, namely: abundance, species richness, evenness (equitability of the abundance distribution) and dominance (relative abundance of the dominant species). Along an experimental gradient of plant species richness (1, 2, 4, 8, 16 and 60 plant species), we sampled herbivorous and carnivorous arthropods using pitfall traps and suction sampling during a whole vegetation period. We tested whether plant species richness affects consumer diversity directly (i), or indirectly through increased productivity (ii). Further, we tested the impact of plant community composition on arthropod diversity by testing for the effects of plant functional groups (iii). Abundance and species richness of both herbivores and carnivores increased with increasing plant species richness, but the underlying mechanisms differed between the two trophic groups. While higher species richness in herbivores was caused by an increase in resource diversity, carnivore richness was driven by plant productivity. Evenness of herbivore communities did not change along the gradient in plant species richness, whereas evenness of carnivores declined. The abundance of dominant herbivore species showed no response to changes in plant species richness, but the dominant carnivores were more abundant in species-rich plant communities. The functional composition of plant communities had small impacts on herbivore communities, whereas

  11. Experimental Manipulation of Grassland Plant Diversity Induces Complex Shifts in Aboveground Arthropod Diversity.

    Science.gov (United States)

    Hertzog, Lionel R; Meyer, Sebastian T; Weisser, Wolfgang W; Ebeling, Anne

    2016-01-01

    Changes in producer diversity cause multiple changes in consumer communities through various mechanisms. However, past analyses investigating the relationship between plant diversity and arthropod consumers focused only on few aspects of arthropod diversity, e.g. species richness and abundance. Yet, shifts in understudied facets of arthropod diversity like relative abundances or species dominance may have strong effects on arthropod-mediated ecosystem functions. Here we analyze the relationship between plant species richness and arthropod diversity using four complementary diversity indices, namely: abundance, species richness, evenness (equitability of the abundance distribution) and dominance (relative abundance of the dominant species). Along an experimental gradient of plant species richness (1, 2, 4, 8, 16 and 60 plant species), we sampled herbivorous and carnivorous arthropods using pitfall traps and suction sampling during a whole vegetation period. We tested whether plant species richness affects consumer diversity directly (i), or indirectly through increased productivity (ii). Further, we tested the impact of plant community composition on arthropod diversity by testing for the effects of plant functional groups (iii). Abundance and species richness of both herbivores and carnivores increased with increasing plant species richness, but the underlying mechanisms differed between the two trophic groups. While higher species richness in herbivores was caused by an increase in resource diversity, carnivore richness was driven by plant productivity. Evenness of herbivore communities did not change along the gradient in plant species richness, whereas evenness of carnivores declined. The abundance of dominant herbivore species showed no response to changes in plant species richness, but the dominant carnivores were more abundant in species-rich plant communities. The functional composition of plant communities had small impacts on herbivore communities, whereas

  12. Changes in grassland management and plant diversity in a marginal region of the Carpathian Mts. in 1999-2015.

    Science.gov (United States)

    Halada, Ľuboš; David, Stanislav; Hreško, Juraj; Klimantová, Alexandra; Bača, Andrej; Rusňák, Tomáš; Buraľ, Miroslav; Vadel, Ľuboš

    2017-12-31

    The political change from socialism to democracy in countries of Central and Eastern Europe at the end of the 20th century induced broad changes in agriculture mostly due to land ownership changes and strong reduction of subsidies to agriculture. This resulted in agricultural decline, including grassland abandonment, which influenced grassland biodiversity and conservation. Between 1999 and 2015 we studied the grasslands in the area depopulated in the early 1980's in the Poloniny National Park (NE Slovakia, Carpathian Mts.). The aim of the study was to examine influence of environmental factors and grassland management driven by the Common Agricultural Policy (CAP) to plant community structure and taxonomical diversity. We identified altitude and soil properties as the main environmental factors: altitude determines climate gradient and probably also management intensity gradient and soil properties express soil fertility via A-horizon depth. We identified remarkable increase of proportion of managed grasslands from only 8% in 1999 to 40% in 2012-2015; other 7% of sampled grasslands were recently restored and prepared for future management. The average species richness in grasslands managed in 2012-2015 increased from 47.5 species per record in 1999 to 54.2 species in 2012-2015, the increase was found statistically significant. In 2012-2015, we observed statistically significant difference in the average species richness between managed (54.2) and abandoned grasslands (46.3). The agricultural subsidies of the CAP drive the grassland management in the study area. Therefore, we conclude that CAP enabled grassland biodiversity maintenance in significant part of the Poloniny National Park following start of its application in 2004 and above provided figures can be considered as indicators of the CAP effectiveness in our study area. However, the conservation of mountain meadows remains a challenge because of their poor accessibility. Copyright © 2017 Elsevier B.V. All

  13. Does plant diversity affect the water balance of established grassland systems?

    Science.gov (United States)

    Leimer, Sophia; Bischoff, Sebastian; Blaser, Stefan; Boch, Steffen; Busch, Verena; Escher, Peter; Fischer, Markus; Kaupenjohann, Martin; Kerber, Katja; Klaus, Valentin; Michalzik, Beate; Prati, Daniel; Schäfer, Deborah; Schmitt, Barbara; Schöning, Ingo; Schwarz, Martin T.; Siemens, Jan; Thieme, Lisa; Wilcke, Wolfgang

    2017-04-01

    The water cycle drives nutrient cycles and plant productivity. The impact of land use on the water cycle has been extensively studied and there is experimental evidence that biodiversity modifies the water cycle in grasslands. However, the combined influences of land-use and associated biodiversity on the water cycle in established land-use systems are unclear. Therefore, we investigated how evapotranspiration (ETa), downward water flux (DF), and capillary rise (CR) in topsoil and subsoil are related to land-use and plant diversity in established, commercially managed grassland and compared these results to findings from experiments where plant diversity was manipulated. In three Central European regions ("Biodiversity Exploratories"), we studied 29 grassland plots (50 m x 50 m; 9-11 plots per region) from 2010 to 2015. The land-use types cover pasture, mown pasture, and meadow in at least triplicate per region. On each plot, we measured soil water contents, meteorological data (hourly resolution), cumulative precipitation (biweekly), plant species richness, the number of plants in the functional groups of grasses, herbs, and legumes (annually), and root biomass (once). Potential evapotranspiration (ETp) was calculated from meteorological data per plot. Missing data points of ETp and soil water contents were estimated with Bayesian hierarchical models. ETa, DF, and CR were calculated for two soil layers with a soil water balance model. The model is based on changes in soil water storage between subsequent observation dates and ETp, which was partitioned between soil layers according to root distribution. Water fluxes in annual resolution were statistically analyzed for land-use and biodiversity effects using repeated-measures analysis of variance (ANOVA). Land-use type did not affect water fluxes. Species richness did not influence DF and CR. DF from topsoil was higher on plots with more grass species, which is opposite to the results from a manipulative

  14. Relationships between plant diversity and grasshopper diversity and abundance in the Little Missouri National Grassland

    Science.gov (United States)

    A continuing challenge in Orthoptera ecology is to understand what determines grasshopper species diversity at a given site. In this study, the objective was to determine if variation in grasshopper abundance and diversity between 23 sites in western North Dakota (USA) could be explained by variatio...

  15. Weed suppression greatly increased by plant diversity in intensively managed grasslands: A continental-scale experiment.

    Science.gov (United States)

    Connolly, John; Sebastià, Maria-Teresa; Kirwan, Laura; Finn, John Anthony; Llurba, Rosa; Suter, Matthias; Collins, Rosemary P; Porqueddu, Claudio; Helgadóttir, Áslaug; Baadshaug, Ole H; Bélanger, Gilles; Black, Alistair; Brophy, Caroline; Čop, Jure; Dalmannsdóttir, Sigridur; Delgado, Ignacio; Elgersma, Anjo; Fothergill, Michael; Frankow-Lindberg, Bodil E; Ghesquiere, An; Golinski, Piotr; Grieu, Philippe; Gustavsson, Anne-Maj; Höglind, Mats; Huguenin-Elie, Olivier; Jørgensen, Marit; Kadziuliene, Zydre; Lunnan, Tor; Nykanen-Kurki, Paivi; Ribas, Angela; Taube, Friedhelm; Thumm, Ulrich; De Vliegher, Alex; Lüscher, Andreas

    2018-03-01

    Grassland diversity can support sustainable intensification of grassland production through increased yields, reduced inputs and limited weed invasion. We report the effects of diversity on weed suppression from 3 years of a 31-site continental-scale field experiment.At each site, 15 grassland communities comprising four monocultures and 11 four-species mixtures based on a wide range of species' proportions were sown at two densities and managed by cutting. Forage species were selected according to two crossed functional traits, "method of nitrogen acquisition" and "pattern of temporal development".Across sites, years and sown densities, annual weed biomass in mixtures and monocultures was 0.5 and 2.0 t  DM ha -1 (7% and 33% of total biomass respectively). Over 95% of mixtures had weed biomass lower than the average of monocultures, and in two-thirds of cases, lower than in the most suppressive monoculture (transgressive suppression). Suppression was significantly transgressive for 58% of site-years. Transgressive suppression by mixtures was maintained across years, independent of site productivity.Based on models, average weed biomass in mixture over the whole experiment was 52% less (95% confidence interval: 30%-75%) than in the most suppressive monoculture. Transgressive suppression of weed biomass was significant at each year across all mixtures and for each mixture.Weed biomass was consistently low across all mixtures and years and was in some cases significantly but not largely different from that in the equiproportional mixture. The average variability (standard deviation) of annual weed biomass within a site was much lower for mixtures (0.42) than for monocultures (1.77). Synthesis and applications . Weed invasion can be diminished through a combination of forage species selected for complementarity and persistence traits in systems designed to reduce reliance on fertiliser nitrogen. In this study, effects of diversity on weed suppression were

  16. Plant species diversity affects infiltration capacity in an experimental grassland through changes in soil properties

    NARCIS (Netherlands)

    Fischer, C.; Tischer, J.; Roscher, C.; Eisenhauer, N.; Ravenek, J.; Gleixner, G.; Attinger, S.; Jensen, B.; Kroon, de H.; Mommer, L.; Scheu, S.; Hildebrandt, A.

    2015-01-01

    Background and aims Soil hydraulic properties drive water distribution and availability in soil. There exists limited knowledge of how plant species diversity might influence soil hydraulic properties. Methods We quantified the change in infiltration capacity affected by soil structural variables

  17. Fire frequency and tree canopy structure influence plant species diversity in a forest-grassland ecotone

    Science.gov (United States)

    David W. Peterson; Peter B. Reich

    2008-01-01

    Disturbances and environmental heterogeneity are two factors thought to influence plant species diversity, but their effects are still poorly understood in many ecosystems. We surveyed understory vegetation and measured tree canopy cover on permanent plots spanning an experimental fire frequency gradient to test fire frequency and tree canopy effects on plant species...

  18. Plant diversity moderates drought stress in grasslands: Implications from a large real-world study on "1"3C natural abundances

    International Nuclear Information System (INIS)

    Klaus, Valentin H.; Hölzel, Norbert; Prati, Daniel; Schmitt, Barbara; Schöning, Ingo; Schrumpf, Marion; Solly, Emily F.; Hänsel, Falk; Fischer, Markus; Kleinebecker, Till

    2016-01-01

    Land-use change and intensification play a key role in the current biodiversity crisis. The resulting species loss can have severe effects on ecosystem functions and services, thereby increasing ecosystem vulnerability to climate change. We explored whether land-use intensification (i.e. fertilization intensity), plant diversity and other potentially confounding environmental factors may be significantly related to water use (i.e. drought stress) of grassland plants. Drought stress was assessed using δ"1"3C abundances in aboveground plant biomass of 150 grassland plots across a gradient of land-use intensity. Under water shortage, plants are forced to increasingly take up the heavier "1"3C due to closing stomata leading to an enrichment of "1"3C in biomass. Plants were sampled at the community level and for single species, which belong to three different functional groups (one grass, one herb, two legumes). Results show that plant diversity was significantly related to the δ"1"3C signal in community, grass and legume biomass indicating that drought stress was lower under higher diversity, although this relation was not significant for the herb species under study. Fertilization, in turn, mostly increased drought stress as indicated by more positive δ"1"3C values. This effect was mostly indirect by decreasing plant diversity. In line with these results, we found similar patterns in the δ"1"3C signal of the organic matter in the topsoil, indicating a long history of these processes. Our study provided strong indication for a positive biodiversity-ecosystem functioning relationship with reduced drought stress at higher plant diversity. However, it also underlined a negative reinforcing situation: as land-use intensification decreases plant diversity in grasslands, this might subsequently increases drought sensitivity. Vice-versa, enhancing plant diversity in species-poor agricultural grasslands may moderate negative effects of future climate change. - Highlights

  19. Plant diversity moderates drought stress in grasslands: Implications from a large real-world study on {sup 13}C natural abundances

    Energy Technology Data Exchange (ETDEWEB)

    Klaus, Valentin H., E-mail: v.klaus@uni-muenster.de [Münster University, Institute for Landscape Ecology, Heisenbergstr. 2, 48149 Münster (Germany); Hölzel, Norbert [Münster University, Institute for Landscape Ecology, Heisenbergstr. 2, 48149 Münster (Germany); Prati, Daniel; Schmitt, Barbara [University of Bern, Institute of Plant Sciences, Altenbergrain 21, 3013 Bern (Switzerland); Schöning, Ingo; Schrumpf, Marion; Solly, Emily F. [Max-Planck-Institute for Biogeochemistry, Hans-Knöll-Str. 10, 07745 Jena (Germany); Hänsel, Falk [University Marburg, Environmental Informatics, Faculty of Geography, Deutschhausstr. 12, 35037 Marburg (Germany); Fischer, Markus [University of Bern, Institute of Plant Sciences, Altenbergrain 21, 3013 Bern (Switzerland); Kleinebecker, Till [Münster University, Institute for Landscape Ecology, Heisenbergstr. 2, 48149 Münster (Germany)

    2016-10-01

    Land-use change and intensification play a key role in the current biodiversity crisis. The resulting species loss can have severe effects on ecosystem functions and services, thereby increasing ecosystem vulnerability to climate change. We explored whether land-use intensification (i.e. fertilization intensity), plant diversity and other potentially confounding environmental factors may be significantly related to water use (i.e. drought stress) of grassland plants. Drought stress was assessed using δ{sup 13}C abundances in aboveground plant biomass of 150 grassland plots across a gradient of land-use intensity. Under water shortage, plants are forced to increasingly take up the heavier {sup 13}C due to closing stomata leading to an enrichment of {sup 13}C in biomass. Plants were sampled at the community level and for single species, which belong to three different functional groups (one grass, one herb, two legumes). Results show that plant diversity was significantly related to the δ{sup 13}C signal in community, grass and legume biomass indicating that drought stress was lower under higher diversity, although this relation was not significant for the herb species under study. Fertilization, in turn, mostly increased drought stress as indicated by more positive δ{sup 13}C values. This effect was mostly indirect by decreasing plant diversity. In line with these results, we found similar patterns in the δ{sup 13}C signal of the organic matter in the topsoil, indicating a long history of these processes. Our study provided strong indication for a positive biodiversity-ecosystem functioning relationship with reduced drought stress at higher plant diversity. However, it also underlined a negative reinforcing situation: as land-use intensification decreases plant diversity in grasslands, this might subsequently increases drought sensitivity. Vice-versa, enhancing plant diversity in species-poor agricultural grasslands may moderate negative effects of future

  20. Balance matters : N:P stoichiometry and plant diversity in grassland ecosystems

    NARCIS (Netherlands)

    Fujita, Y.

    2010-01-01

    Eutrophication of Nitrogen (N) and Phosphorus (P) is threatening the functioning and biodiversity of grassland ecosystems. A well known effect of eutrophication on grasslands is an increase of above-ground productivity, which intensifies light competition and allows only a few competitive species to

  1. Longterm changes in plant diversity of grasslands under agricultural and conservation management

    NARCIS (Netherlands)

    Snoo, de G.R.; Naus, N.; Verhulst, J.; Ruijven, van J.; Schaffers, A.P.

    2012-01-01

    Question In many industrialized countries biodiversity is declining. Although changes in species composition and species richness have been documented for many individual systems, little long-term research has been done on a regional scale. We compared the temporal patterns of plant diversity over

  2. Positive interactions between large herbivores and grasshoppers, and their consequences for grassland plant diversity.

    Science.gov (United States)

    Zhong, Zhiwei; Wang, Deli; Zhu, Hui; Wang, Ling; Feng, Chao; Wang, Zhongnan

    2014-04-01

    Although the influence of positive interactions on plant and sessile communities has been well documented, surprisingly little is known about their role in structuring terrestrial animal communities. We evaluated beneficial interactions between two distantly related herbivore taxa, large vertebrate grazers (sheep) and smaller insect grazers (grasshoppers), using a set of field experiments in eastern Eurasian steppe of China. Grazing by large herbivores caused significantly higher grasshopper density, and this pattern persisted until the end of the experiment. Grasshoppers, in turn, increased the foraging time of larger herbivores, but such response occurred only during the peak of growing season (August). These reciprocal interactions were driven by differential herbivore foraging preferences for plant resources; namely, large herbivores preferred Artemisia forbs, whereas grasshoppers preferred Leymus grass. The enhancement of grasshopper density in areas grazed by large herbivores likely resulted from the selective consumption of Artemisia forbs by vertebrate grazers, which may potentially improve the host finding of grasshoppers. Likewise, grasshoppers appeared to benefit large herbivores by decreasing the cover and density of the dominant grass Leymus chinensis, which hampers large herbivores' access to palatable forbs. Moreover, we found that large herbivores grazing alone may significantly decrease plant diversity, yet grasshoppers appeared to mediate such negative effects when they grazed with large herbivores. Our results suggest that the positive, reciprocal interactions in terrestrial herbivore communities may be more prevalent and complex than previously thought.

  3. Patterns of plant diversity loss and species turnover resulting from land abandonment and intensification in semi-natural grasslands.

    Science.gov (United States)

    Uchida, Kei; Koyanagi, Tomoyo F; Matsumura, Toshikazu; Koyama, Asuka

    2018-07-15

    Land-use changes cause biodiversity loss in semi-natural ecosystems worldwide. Biotic homogenization has led to biodiversity loss, mainly through declines in species composition turnover. Elucidating patterns of turnover in species composition could enhance our understanding of how anthropogenic activities affect community assembly. Here, we focused on whether the decreasing patterns in plant diversity and turnover of species composition resulting from land-use change vary in two regions. We estimated the species diversity and composition of semi-natural grasslands surrounding paddy fields in satoyama landscapes. We examined the differences in species diversity and composition across three land-use types (abandoned, traditional, and intensified) in two regions (Hyogo and Niigata Prefectures, Japan), which were characterized by different climatic conditions. We then assessed alpha-, beta-, and gamma-diversity to compare the patterns of diversity losses in the two regions as a result of land-use changes. In each region, gamma-diversity was consistently higher in the traditional sites compared to abandoned or intensified sites. The analyses revealed that most of the beta-diversity in traditional sites differed significantly from those of abandoned and intensified sites in both regions. However, the beta-diversity of total and perennial species did not differ between traditional and abandoned sites in the Hyogo region. We noted that the beta-diversity of total and perennial species in intensified sites was much lower than that in the traditional sites of the Niigata region. Overall, the patterns of alpha- and gamma-diversity loss were similar in both study regions. Although the biotic homogenization was caused by intensified land-use in the Niigata region, this hypothesis did not completely explain the loss of biodiversity in the abandoned sites in the Hyogo region. The present study contributes to the growing body of work investigating changes in biodiversity as a

  4. How do earthworms, soil texture and plant composition affect infiltration along an experimental plant diversity gradient in grassland?

    Science.gov (United States)

    Fischer, Christine; Roscher, Christiane; Jensen, Britta; Eisenhauer, Nico; Baade, Jussi; Attinger, Sabine; Scheu, Stefan; Weisser, Wolfgang W; Schumacher, Jens; Hildebrandt, Anke

    2014-01-01

    Infiltration is a key process in determining the water balance, but so far effects of earthworms, soil texture, plant species diversity and their interaction on infiltration capacity have not been studied. We measured infiltration capacity in subplots with ambient and reduced earthworm density nested in plots of different plant species (1, 4, and 16 species) and plant functional group richness and composition (1 to 4 groups; legumes, grasses, small herbs, tall herbs). In summer, earthworm presence significantly increased infiltration, whereas in fall effects of grasses and legumes on infiltration were due to plant-mediated changes in earthworm biomass. Effects of grasses and legumes on infiltration even reversed effects of texture. We propose two pathways: (i) direct, probably by modifying the pore spectrum and (ii) indirect, by enhancing or suppressing earthworm biomass, which in turn influenced infiltration capacity due to change in burrowing activity of earthworms. Overall, the results suggest that spatial and temporal variations in soil hydraulic properties can be explained by biotic processes, especially the presence of certain plant functional groups affecting earthworm biomass, while soil texture had no significant effect. Therefore biotic parameters should be taken into account in hydrological applications.

  5. How do earthworms, soil texture and plant composition affect infiltration along an experimental plant diversity gradient in grassland?

    Directory of Open Access Journals (Sweden)

    Christine Fischer

    Full Text Available BACKGROUND: Infiltration is a key process in determining the water balance, but so far effects of earthworms, soil texture, plant species diversity and their interaction on infiltration capacity have not been studied. METHODOLOGY/PRINCIPAL FINDINGS: We measured infiltration capacity in subplots with ambient and reduced earthworm density nested in plots of different plant species (1, 4, and 16 species and plant functional group richness and composition (1 to 4 groups; legumes, grasses, small herbs, tall herbs. In summer, earthworm presence significantly increased infiltration, whereas in fall effects of grasses and legumes on infiltration were due to plant-mediated changes in earthworm biomass. Effects of grasses and legumes on infiltration even reversed effects of texture. We propose two pathways: (i direct, probably by modifying the pore spectrum and (ii indirect, by enhancing or suppressing earthworm biomass, which in turn influenced infiltration capacity due to change in burrowing activity of earthworms. CONCLUSIONS/SIGNIFICANCE: Overall, the results suggest that spatial and temporal variations in soil hydraulic properties can be explained by biotic processes, especially the presence of certain plant functional groups affecting earthworm biomass, while soil texture had no significant effect. Therefore biotic parameters should be taken into account in hydrological applications.

  6. Relationship between soil chemical factors and grassland diversity

    NARCIS (Netherlands)

    Janssens, F; Peeters, A; Tallowin, JRB; Bakker, JP; Bekker, RM; Fillat, F; Oomes, MJM

    Many studies carried out during these last few years have focused on the factors influencing plant diversity in species-rich grasslands. This is due to the fact that these ecosystems, among the most diversified in temperate climates, are extremely threatened; in some areas, they have almost

  7. Species turnover drives β-diversity patterns across multiple spatial scales of plant-galling interactions in mountaintop grasslands.

    Science.gov (United States)

    Coelho, Marcel Serra; Carneiro, Marco Antônio Alves; Branco, Cristina Alves; Borges, Rafael Augusto Xavier; Fernandes, Geraldo Wilson

    2018-01-01

    This study describes differences in species richness and composition of the assemblages of galling insects and their host plants at different spatial scales. Sampling was conducted along altitudinal gradients composed of campos rupestres and campos de altitude of two mountain complexes in southeastern Brazil: Espinhaço Range and Mantiqueira Range. The following hypotheses were tested: i) local and regional richness of host plants and galling insects are positively correlated; ii) beta diversity is the most important component of regional diversity of host plants and galling insects; and iii) Turnover is the main mechanism driving beta diversity of both host plants and galling insects. Local richness of galling insects and host plants increased with increasing regional richness of species, suggesting a pattern of unsaturated communities. The additive partition of regional richness (γ) into local and beta components shows that local richnesses (α) of species of galling insects and host plants are low relative to regional richness; the beta (β) component incorporates most of the regional richness. The multi-scale analysis of additive partitioning showed similar patterns for galling insects and host plants with the local component (α) incorporated a small part of regional richness. Beta diversity of galling insects and host plants were mainly the result of turnover, with little contribution from nesting. Although the species composition of galling insects and host plant species varied among sample sites, mountains and even mountain ranges, local richness remained relatively low. In this way, the addition of local habitats with different landscapes substantially affects regional richness. Each mountain contributes fundamentally to the composition of regional diversity of galling insects and host plants, and so the design of future conservation strategies should incorporate multiple scales.

  8. Soil environmental conditions and microbial build-up mediate the effect of plant diversity on soil nitrifying and denitrifying enzyme activities in temperate grasslands.

    Directory of Open Access Journals (Sweden)

    Xavier Le Roux

    Full Text Available Random reductions in plant diversity can affect ecosystem functioning, but it is still unclear which components of plant diversity (species number - namely richness, presence of particular plant functional groups, or particular combinations of these and associated biotic and abiotic drivers explain the observed relationships, particularly for soil processes. We assembled grassland communities including 1 to 16 plant species with a factorial separation of the effects of richness and functional group composition to analyze how plant diversity components influence soil nitrifying and denitrifying enzyme activities (NEA and DEA, respectively, the abundance of nitrifiers (bacterial and archaeal amoA gene number and denitrifiers (nirK, nirS and nosZ gene number, and key soil environmental conditions. Plant diversity effects were largely due to differences in functional group composition between communities of identical richness (number of sown species, though richness also had an effect per se. NEA was positively related to the percentage of legumes in terms of sown species number, the additional effect of richness at any given legume percentage being negative. DEA was higher in plots with legumes, decreased with increasing percentage of grasses, and increased with richness. No correlation was observed between DEA and denitrifier abundance. NEA increased with the abundance of ammonia oxidizing bacteria. The effect of richness on NEA was entirely due to the build-up of nitrifying organisms, while legume effect was partly linked to modified ammonium availability and nitrifier abundance. Richness effect on DEA was entirely due to changes in soil moisture, while the effects of legumes and grasses were partly due to modified nitrate availability, which influenced the specific activity of denitrifiers. These results suggest that plant diversity-induced changes in microbial specific activity are important for facultative activities such as denitrification

  9. Effects of plant diversity, N fertilization, and elevated carbon dioxide on grassland soil N cycling in a long-term experiment.

    Science.gov (United States)

    Mueller, Kevin E; Hobbie, Sarah E; Tilman, David; Reich, Peter B

    2013-04-01

    The effects of global environmental changes on soil nitrogen (N) pools and fluxes have consequences for ecosystem functions such as plant productivity and N retention. In a 13-year grassland experiment, we evaluated how elevated atmospheric carbon dioxide (CO2 ), N fertilization, and plant species richness alter soil N cycling. We focused on soil inorganic N pools, including ammonium and nitrate, and two N fluxes, net N mineralization and net nitrification. In contrast with existing hypotheses, such as progressive N limitation, and with observations from other, often shorter, studies, elevated CO2 had relatively static and small, or insignificant, effects on soil inorganic N pools and fluxes. Nitrogen fertilization had inconsistent effects on soil N transformations, but increased soil nitrate and ammonium concentrations. Plant species richness had increasingly positive effects on soil N transformations over time, likely because in diverse subplots the concentrations of N in roots increased over time. Species richness also had increasingly positive effects on concentrations of ammonium in soil, perhaps because more carbon accumulated in soils of diverse subplots, providing exchange sites for ammonium. By contrast, subplots planted with 16 species had lower soil nitrate concentrations than less diverse subplots, especially when fertilized, probably due to greater N uptake capacity of subplots with 16 species. Monocultures of different plant functional types had distinct effects on N transformations and nitrate concentrations, such that not all monocultures differed from diverse subplots in the same manner. The first few years of data would not have adequately forecast the effects of N fertilization and diversity on soil N cycling in later years; therefore, the dearth of long-term manipulations of plant species richness and N inputs is a hindrance to forecasting the state of the soil N cycle and ecosystem functions in extant plant communities. © 2012 Blackwell

  10. Positive plant diversity-soil stability relationships are mediated through roots in the Songnen Grassland: Chronosequence evidence

    Science.gov (United States)

    Liang-Jun Hu; Ping Li; Qinfeng Guo

    2013-01-01

    Living plant diversity (excluding the litter issue) may affect below-ground properties and processes, which is critical to obtaining an integrated biodiversity-ecosystem functioning theory. However, related patterns and underlying mechanisms have rarely been examined, especially lacking long-term evidence. We conducted a factorial crossed sample survey to examine the...

  11. Grassland ecology and diversity (Ecologia y diversidad de pastizales)

    Science.gov (United States)

    Laurie B. Abbott

    2006-01-01

    Grasslands of the Chihuahuan Desert region are ecologically and economically important. These grasslands are valued for their rangeland, wildlife, watershed, and recreation resources. Biological diversity also raises the value of grassland communities. The potential for multiple uses within the region increases as the diversity of the resource base increases. In order...

  12. Distribution, species diversity and composition of plant communities in relation to various affecting factors in an alpine grassland at Bandipora, Kashmir

    International Nuclear Information System (INIS)

    Dad, J. M.

    2016-01-01

    This study provides a broad understanding of vascular plant richness and community structure of mountain grassland (Matri) at Bandipora, Kashmir and links it various environmental variables. Employing a stratified sampling design, six sites were selected wherein vegetation was sampled by placing quadrats (n=210). Elucidating an important effect of topography and anthropic pressure, numerical classification TWINSPAN segregated the quadrats into seven community types. Contrary to species rich communities which showed an explicit composition and localized distribution, the other communities depicted a vague composition and stretched unevenly between the lower and middle altitudes. Using canonical correspondence analysis (CCA), elevation and disturbance were found as most influencing factors whereas steepness of slope, organic carbon, soil reaction (pH) and soil salinity (electrical conductivity) were other important factors. Indices of diversity measured at two measurement scales varied differently between communities and at a macro scale (site level) highest values were recorded in least disturbed communities. However, on a micro scale (quadrat level) the indices behaved differently. For effective conservation of these species rich grasslands, acknowledging the local level variability in vegetation structure is all but crucial. (author)

  13. PLANT DIVERSITY

    Science.gov (United States)

    Habitat change statistics and species-area curves were used to estimate the effects of alternative future scenarios for agriculture on plant diversity in Iowa farmlands. Study areas were two watersheds in central Iowa of about 50 and 90 square kilometers, respectively. Future s...

  14. [Community structure and diversity of soil arthropods in naturally restored sandy grasslands after grazing].

    Science.gov (United States)

    Liu, Ren-tao; Zhao, Ha-lin; Zhao, Xue-yong

    2010-11-01

    Taking the Naiman Desertification Research Station under Chinese Academy of Sciences as a base, an investigation was conducted on the community structure of soil arthropods in the naturally restored sandy grasslands after different intensity grazing disturbance, with the effects of vegetation and soil on this community structure approached. In the non-grazing grassland, soil arthropods were rich in species and more in individuals, and had the highest diversity. In the restored grassland after light grazing, soil arthropods had the lowest evenness and diversity. In the restored grassland after moderate grazing, the individuals of soil arthropods were lesser but the major groups were more, and the evenness and diversity were higher. In the restored grassland after heavy grazing, the individuals of soil arthropods were more but the major groups were lesser, and the diversity was higher. Plant individuals' number, vegetation height and coverage, and soil alkalinity were the main factors affecting the soil arthropod community in naturally restored grasslands after different intensity grazing disturbance. It was implied that after 12-year exclosure of grassland, soil arthropod community could be recovered to some degree, while grazing disturbance had long-term negative effects on the arthropod community.

  15. BETA DIVERSITY AND COMMUNITY DIFFERENTIATION IN DRY PERENNIAL SAND GRASSLANDS

    Directory of Open Access Journals (Sweden)

    E. KOVACS-LANG

    2011-01-01

    Full Text Available The spatial variability of species composition was studied in perennial sand grasslands in Hungary at multiple scales. Three sites were compared along an aridity gradient. Existing differences in climate along this ca. 200 km gradient correspond to regional climate changes predicted for the next 20-30 years. Six stands of Festucetum vaginatae grasslands were selected at each site within 400 x 1200 m areas for representing the coarse-scale within-site heterogeneity. Fine-scale compositional heterogeneity of vegetation within stands was sampled by recording the presence of species along 52 m long circular belt transects of 1040 units of 5 cm x 5 cm contiguous microquadrats. This sampling design enabled us to study the patterns of species combinations at a wide range of scales. The highest variability of plant species combinations appeared at very fine scales, between 10 cm and 25 cm. Differences in beta diversity along the gradient were scale-dependent. We found a decreasing trend of beta diversity with increasing aridity at fine scale, and on the contrary, an increasing trend at landscape scale. We conclude that the major trend of the vegetation differentiation due to aridity is the decrease of compositional variability at fine-scale accompanied by a coarse-scale diversification.

  16. Effects of large herbivores on grassland arthropod diversity.

    Science.gov (United States)

    van Klink, R; van der Plas, F; van Noordwijk, C G E Toos; WallisDeVries, M F; Olff, H

    2015-05-01

    Both arthropods and large grazing herbivores are important components and drivers of biodiversity in grassland ecosystems, but a synthesis of how arthropod diversity is affected by large herbivores has been largely missing. To fill this gap, we conducted a literature search, which yielded 141 studies on this topic of which 24 simultaneously investigated plant and arthropod diversity. Using the data from these 24 studies, we compared the responses of plant and arthropod diversity to an increase in grazing intensity. This quantitative assessment showed no overall significant effect of increasing grazing intensity on plant diversity, while arthropod diversity was generally negatively affected. To understand these negative effects, we explored the mechanisms by which large herbivores affect arthropod communities: direct effects, changes in vegetation structure, changes in plant community composition, changes in soil conditions, and cascading effects within the arthropod interaction web. We identify three main factors determining the effects of large herbivores on arthropod diversity: (i) unintentional predation and increased disturbance, (ii) decreases in total resource abundance for arthropods (biomass) and (iii) changes in plant diversity, vegetation structure and abiotic conditions. In general, heterogeneity in vegetation structure and abiotic conditions increases at intermediate grazing intensity, but declines at both low and high grazing intensity. We conclude that large herbivores can only increase arthropod diversity if they cause an increase in (a)biotic heterogeneity, and then only if this increase is large enough to compensate for the loss of total resource abundance and the increased mortality rate. This is expected to occur only at low herbivore densities or with spatio-temporal variation in herbivore densities. As we demonstrate that arthropod diversity is often more negatively affected by grazing than plant diversity, we strongly recommend considering the

  17. Ecological mechanisms underlying arthropod species diversity in grasslands.

    Science.gov (United States)

    Joern, Anthony; Laws, Angela N

    2013-01-01

    Arthropods are an important component of grassland systems, contributing significantly to biodiversity and ecosystem structure and function. Climate, fire, and grazing by large herbivores are important drivers in grasslands worldwide. Arthropod responses to these drivers are highly variable and clear patterns are difficult to find, but responses are largely indirect with respect to changes in resources, species interactions, habitat structure, and habitat heterogeneity resulting from interactions among fire, grazing, and climate. Here, we review these ecological mechanisms influencing grassland arthropod diversity. We summarize hypotheses describing species diversity at local and regional scales and then discuss specific factors that may affect arthropod diversity in grassland systems. These factors include direct and indirect effects of grazing, fire, and climate, species interactions, above- and belowground interactions, and landscape-level effects.

  18. Soil invertebrate fauna enhances grassland succession and diversity.

    Science.gov (United States)

    De Deyn, Gerlinde B; Raaijmakers, Ciska E; Zoomer, H Rik; Berg, Matty P; de Ruiter, Peter C; Verhoef, Herman A; Bezemer, T Martijn; van der Putten, Wim H

    2003-04-17

    One of the most important areas in ecology is to elucidate the factors that drive succession in ecosystems and thus influence the diversity of species in natural vegetation. Significant mechanisms in this process are known to be resource limitation and the effects of aboveground vertebrate herbivores. More recently, symbiotic and pathogenic soil microbes have been shown to exert a profound effect on the composition of vegetation and changes therein. However, the influence of invertebrate soil fauna on succession has so far received little attention. Here we report that invertebrate soil fauna might enhance both secondary succession and local plant species diversity. Soil fauna from a series of secondary grassland succession stages selectively suppress early successional dominant plant species, thereby enhancing the relative abundance of subordinate species and also that of species from later succession stages. Soil fauna from the mid-succession stage had the strongest effect. Our results clearly show that soil fauna strongly affects the composition of natural vegetation and we suggest that this knowledge might improve the restoration and conservation of plant species diversity.

  19. [Diversity and distribution of grasshoppers (Orthoptera: Acridoidea) in grasslands of the Southern Pampas region, Argentina].

    Science.gov (United States)

    Mariottini, Yanina; De Wysiecki, María Laura; Lange, Carlos Ernesto

    2013-03-01

    In Argentina, the grasslands of Pampas region comprise approximately 15% of the country. As in other grasslands of the world, grasshoppers are among the most important native herbivores. Their economic importance has been recognized in Argentina since the mid to late nineteenth century, since outbreaks of different species have become recurrent phenomena. Therefore, the main objective of this work was to study their diversity and distribution in grasslands of the Southern Pampas region (Laprida county, Buenos Aires province), as one of the most affected areas. The study was conducted during five seasons (2005-10). Sampling sites were represented by the most common plant communities in this area, classified in four categories: native grasslands, disturbed grasslands, implanted pastures and halophilous grasslands. The samplings were conducted from mid-spring to early autumn, with five or six samples per season. We estimated the following population descriptors: species richness (S), eveness (E), dominance (J), and diversity index (H'). In order to evaluate the similitude of the grasshopper communities present in the different plant communities, we used qualitative and quantitative coefficients of similitude. A total of 22 species of grasshoppers were collected, of which 21 belong to the family Acrididae. The subfamily Melanoplinae was the most diverse with eight species. The largest species richness was recorded in native grasslands (18). The different communities of grasshoppers had similar indices of evenness and dominance (p>0.05). Considering all plant communities, the average value of Shannon-Wiener index was 1.58+/-0.075. There was a positive correlation between evenness index and species richness (pgrasshoppers species richness, and diversity of grasshoppers. According to the qualitative indices applied, the similitude between different grasshopper communities was higher than 60%. In general, the species that had a higher frequency of occurrence showed greater

  20. Resource-Mediated Indirect Effects of Grassland Management on Arthropod Diversity

    Science.gov (United States)

    Simons, Nadja K.; Gossner, Martin M.; Lewinsohn, Thomas M.; Boch, Steffen; Lange, Markus; Müller, Jörg; Pašalić, Esther; Socher, Stephanie A.; Türke, Manfred; Fischer, Markus; Weisser, Wolfgang W.

    2014-01-01

    Intensive land use is a driving force for biodiversity decline in many ecosystems. In semi-natural grasslands, land-use activities such as mowing, grazing and fertilization affect the diversity of plants and arthropods, but the combined effects of different drivers and the chain of effects are largely unknown. In this study we used structural equation modelling to analyse how the arthropod communities in managed grasslands respond to land use and whether these responses are mediated through changes in resource diversity or resource quantity (biomass). Plants were considered resources for herbivores which themselves were considered resources for predators. Plant and arthropod (herbivores and predators) communities were sampled on 141 meadows, pastures and mown pastures within three regions in Germany in 2008 and 2009. Increasing land-use intensity generally increased plant biomass and decreased plant diversity, mainly through increasing fertilization. Herbivore diversity decreased together with plant diversity but showed no response to changes in plant biomass. Hence, land-use effects on herbivore diversity were mediated through resource diversity rather than quantity. Land-use effects on predator diversity were mediated by both herbivore diversity (resource diversity) and herbivore quantity (herbivore biomass), but indirect effects through resource quantity were stronger. Our findings highlight the importance of assessing both direct and indirect effects of land-use intensity and mode on different trophic levels. In addition to the overall effects, there were subtle differences between the different regions, pointing to the importance of regional land-use specificities. Our study underlines the commonly observed strong effect of grassland land use on biodiversity. It also highlights that mechanistic approaches help us to understand how different land-use modes affect biodiversity. PMID:25188423

  1. Effects of large herbivores on grassland arthropod diversity

    NARCIS (Netherlands)

    van Klink, R.; van der Plas, F.; van Noordwijk, C. G. E. (Toos); WallisDeVries, M. F.; Olff, H.

    Both arthropods and large grazing herbivores are important components and drivers of biodiversity in grassland ecosystems, but a synthesis of how arthropod diversity is affected by large herbivores has been largely missing. To fill this gap, we conducted a literature search, which yielded 141

  2. Avian diversity in the Naliya Grassland, Abdasa Taluka, Kachchh, India

    Directory of Open Access Journals (Sweden)

    Sandeep B Munjpara

    2012-03-01

    Full Text Available Naliya Grassland is one of the significant grasslands of Gujarat. In this study the importance of the Naliya Grassland has been explored with special reference to avian diversity. Field work for the study was carried out throughout the year of 2007 on a monthly basis covering three distinct seasons to explore avian diversity. A total of 177 species belonging to 54 families were recorded wherein most species belonged to the family Accipitridae (20 species followed by Alaudidae (11 species. Of the total families, five were represented by more than seven species, 18 families by 3-7 species and 31 families by one or two species respectively. Among the species observed, 16 species ware globally threatened (three Critically Endangered, four Endangered and nine Near Threatened. Most of the species were chiefly terrestrial (68.2%, about 23.9% species were freshwater dependant and 7.9% utilized mixed habitats. Maximum species richness was recorded in the monsoons and minimum in summer. Constant turnover and fluctuation in species richness occurred because of seasonal immigration and emigration. Maximum emigration took place during February and March and maximum immigration occurred during June and July. Many water dependant birds attracted to the flooded grassland during the monsoons explained the high species richness during this season. In winter, the area was inhabited by resident species as well as many migratory species.

  3. Plant-conservative agriculture of acid and degraded Raña-grassland enhances diversity of the common soil mites (Oribatida)

    Energy Technology Data Exchange (ETDEWEB)

    Jorrín, J.; González-Fernández, P.

    2016-11-01

    The seminatural prairie of the Raña of Cañamero (Spain) is a degraded and unproductive agrosystem with acid and stony soils, and low coverage of xerophytic grasses. In a project about secondary reconversion of the raña-prairie to a more productive cropland, an experimental field (EF) was established to assess the effect on plot-productivity of the interaction between correction of soil pH (liming) with three cropping systems: a no-tilled and annually fertilized and improved prairies, and a conventionally-tilled forage crop. The EF model of management was designed as plant-conservative, because no herbicide was applied after seeding to preserve the post-emergence of wild herbs and the natural grass diversity of the prairie. Between 2008 and 2012, we analysed the effect of managing factors (initial conventional-tillage, fertilization, liming and cropping) and agricultural predictors (pH, C:N ratio, soil bulk density and herbaceous biomass) on the alpha(α)-diversity of one of the major group of soil animals, the oribatids. In relation to the raña-prairie, all EF-plots improved their soil bulk density (ρs) and herbaceous biomass (t/ha), and enhanced desirable α-diversity values (richness, abundance and community equity). We conclude that the plant-conservative model: i) do not affect statistically the species richness of the prairie; ii) the desirable α-diversity responses are negatively correlated with soil bulk density and positively with herbaceous biomass, and iii) the low input or minimum intervention model, of an initial and conventional till and annual fertilisation, is the threshold and optimal model of agricultural management to improving oribatids diversity of the raña-soil. (Author)

  4. Dissimilar response of plant and soil biota communities to long-term nutrient adition in grasslands

    NARCIS (Netherlands)

    Wal, van der A.; Geerts, R.H.E.M.; Korevaar, H.; Schouten, A.J.; Jagers op Akkerhuis, G.A.J.M.; Rutgers, M.; Mulder, C.

    2009-01-01

    The long-term effect of fertilizers on plant diversity and productivity is well known, but long-term effects on soil biota communities have received relatively little attention. Here, we used an exceptional long-lasting (>40 years) grassland fertilization experiment to investigate the long-term

  5. Frequent fire promotes diversity and cover of biological soil crusts in a derived temperate grassland.

    Science.gov (United States)

    O'Bryan, Katharine E; Prober, Suzanne Mary; Lunt, Ian D; Eldridge, David J

    2009-04-01

    The intermediate disturbance hypothesis (IDH) predicts that species diversity is maximized at moderate disturbance levels. This model is often applied to grassy ecosystems, where disturbance can be important for maintaining vascular plant composition and diversity. However, effects of disturbance type and frequency on cover and diversity of non-vascular plants comprising biological soil crusts are poorly known, despite their potentially important role in ecosystem function. We established replicated disturbance regimes of different type (fire vs. mowing) and frequency (2, 4, 8 yearly and unburnt) in a high-quality, representative Themeda australis-Poa sieberiana derived grassland in south-eastern Australia. Effects on soil crust bryophytes and lichens (hereafter cryptogams) were measured after 12 years. Consistent with expectations under IDH, cryptogam richness and abundance declined under no disturbance, likely due to competitive exclusion by vascular plants as well as high soil turnover by soil invertebrates beneath thick grass. Disturbance type was also significant, with burning enhancing richness and abundance more than mowing. Contrary to expectations, however, cryptogam richness increased most dramatically under our most frequent and recent (2 year) burning regime, even when changes in abundance were accounted for by rarefaction analysis. Thus, from the perspective of cryptogams, 2-year burning was not an adequately severe disturbance regime to reduce diversity, highlighting the difficulty associated with expression of disturbance gradients in the application of IDH. Indeed, significant correlations with grassland structure suggest that cryptogam abundance and diversity in this relatively mesic (600 mm annual rainfall) grassland is maximised by frequent fires that reduce vegetation and litter cover, providing light, open areas and stable soil surfaces for colonisation. This contrasts with detrimental effects of 2-year burning on native perennial grasses

  6. Seeding method influences warm-season grass abundance and distribution but not local diversity in grassland restoration

    Science.gov (United States)

    Yurkonis, Kathryn A.; Wilsey, Brian J.; Moloney, Kirk A.; Drobney, Pauline; Larson, Diane L.

    2010-01-01

    Ecological theory predicts that the arrangement of seedlings in newly restored communities may influence future species diversity and composition. We test the prediction that smaller distances between neighboring seeds in drill seeded grassland plantings would result in lower species diversity, greater weed abundance, and larger conspecific patch sizes than otherwise similar broadcast seeded plantings. A diverse grassland seed mix was either drill seeded, which places seeds in equally spaced rows, or broadcast seeded, which spreads seeds across the ground surface, into 24 plots in each of three sites in 2005. In summer 2007, we measured species abundance in a 1 m2 quadrat in each plot and mapped common species within the quadrat by recording the most abundant species in each of 64 cells. Quadrat-scale diversity and weed abundance were similar between drilled and broadcast plots, suggesting that processes that limited establishment and controlled invasion were not affected by such fine-scale seed distribution. However, native warm-season (C4) grasses were more abundant and occurred in less compact patches in drilled plots. This difference in C4 grass abundance and distribution may result from increased germination or vegetative propagation of C4 grasses in drilled plots. Our findings suggest that local plant density may control fine-scale heterogeneity and species composition in restored grasslands, processes that need to be further investigated to determine whether seed distributions can be manipulated to increase diversity in restored grasslands.

  7. No evidence of complementary water use along a plant species richness gradient in temperate experimental grasslands.

    Directory of Open Access Journals (Sweden)

    Dörte Bachmann

    Full Text Available Niche complementarity in resource use has been proposed as a key mechanism to explain the positive effects of increasing plant species richness on ecosystem processes, in particular on primary productivity. Since hardly any information is available for niche complementarity in water use, we tested the effects of plant diversity on spatial and temporal complementarity in water uptake in experimental grasslands by using stable water isotopes. We hypothesized that water uptake from deeper soil depths increases in more diverse compared to low diverse plant species mixtures. We labeled soil water in 8 cm (with 18O and 28 cm depth (with ²H three times during the 2011 growing season in 40 temperate grassland communities of varying species richness (2, 4, 8 and 16 species and functional group number and composition (legumes, grasses, tall herbs, small herbs. Stable isotope analyses of xylem and soil water allowed identifying the preferential depth of water uptake. Higher enrichment in 18O of xylem water than in ²H suggested that the main water uptake was in the upper soil layer. Furthermore, our results revealed no differences in root water uptake among communities with different species richness, different number of functional groups or with time. Thus, our results do not support the hypothesis of increased complementarity in water use in more diverse than in less diverse communities of temperate grassland species.

  8. Ecosystem development in roadside grasslands: Biotic control, plant-soil interactions, and dispersal limitations

    Science.gov (United States)

    Garcia-Palacios, P.; Bowker, M.A.; Maestre, F.T.; Soliveres, S.; Valladares, F.; Papadopoulos, J.; Escudero, A.

    2011-01-01

    Roadside grasslands undergoing secondary succession are abundant, and represent ecologically meaningful examples of novel, human-created ecosystems. Interactions between plant and soil communities (hereafter plant-soil interactions) are of major importance in understanding the role of biotic control in ecosystem functioning, but little is known about these links in the context of ecosystem restoration and succession. The assessment of the key biotic communities and interactions driving ecosystem development will help practitioners to better allocate the limited resources devoted to roadside grassland restoration. We surveyed roadside grasslands from three successional stages (0-2, 7-9, and > 20 years) in two Mediterranean regions of Spain. Structural equation modeling was used to evaluate how interactions between plants, biological soil crusts (BSCs), and soil microbial functional diversity (soil microorganisms) affect indicators of ecosystem development and restoration: plant similarity to the reference ecosystem, erosion control, and soil C storage and N accumulation. Changes in plant community composition along the successional gradient exerted the strongest influence on these indicators. High BSC cover was associated with high soil stability, and high soil microbial functional diversity from late-successional stages was associated with high soil fertility. Contrary to our expectations, the indirect effects of plants, mediated by either BSCs or soil microorganisms, were very weak in both regions, suggesting a minor role for plant-soil interactions upon ecosystem development indicators over long periods. Our results suggest that natural vegetation dynamics effectively improved ecosystem development within a time frame of 20 years in the grasslands evaluated. They also indicate that this time could be shortened if management actions focus on: (1) maintaining wellconserved natural areas close to roadsides to enhance plant compositional changes towards late

  9. Responses of Ammonia-Oxidising Bacterial Communities to Nitrogen, Lime, and Plant Species in Upland Grassland Soil

    International Nuclear Information System (INIS)

    Rooney, D.C.; Kennedy, N.M.; Clipson, N.J.W.; Rooney, D.C.; Kennedy, N.M.; Gleeson, D.B.

    2010-01-01

    Agricultural improvement of semi natural grasslands has been shown to result in changes to plant and microbial diversity, with consequences for ecosystem functioning. A microcosm approach was used to elucidate the effects of two key components of agricultural improvement (nitrogen addition and liming) on ammonia-oxidising bacterial (AOB) communities in an upland grassland soil. Plant species characteristic of unimproved and improved pastures (A. capillaries and L. perenne) were planted in microcosms, and lime, nitrogen (NH 4 NO 3 ), or lime plus nitrogen added. The AOB community was profiled using terminal restriction fragment length polymorphism (TRFLP) of the amoA gene. AOB community structure was largely altered by NH 4 NO 3 addition, rather than liming, although interactions between nitrogen addition and plant species were also evident. Results indicate that nitrogen addition drives shifts in the structure of key microbial communities in upland grassland soils, and that plant species may play a significant role in determining AOB community structure

  10. Root chemistry and soil fauna, but not soil abiotic conditions explain the effects of plant diversity on root decomposition

    NARCIS (Netherlands)

    Chen, Hongmei; Oram, Natalie J.; Barry, Kathryn E.; Mommer, Liesje; Ruijven, van Jasper; Kroon, de Hans; Ebeling, Anne; Eisenhauer, Nico; Fischer, Christine; Gleixner, Gerd; Gessler, Arthur; González Macé, Odette; Hacker, Nina; Hildebrandt, Anke; Lange, Markus; Scherer-lorenzen, Michael; Scheu, Stefan; Oelmann, Yvonne; Wagg, Cameron; Wilcke, Wolfgang; Wirth, Christian; Weigelt, Alexandra

    2017-01-01

    Plant diversity influences many ecosystem functions including root decomposition. However, due to the presence of multiple pathways via which plant diversity may affect root decomposition, our mechanistic understanding of their relationships is limited. In a grassland biodiversity experiment, we

  11. Nitrogen acquisition by plants and microorganisms in a temperate grassland.

    Science.gov (United States)

    Liu, Qianyuan; Qiao, Na; Xu, Xingliang; Xin, Xiaoping; Han, Jessie Yc; Tian, Yuqiang; Ouyang, Hua; Kuzyakov, Yakov

    2016-03-10

    Nitrogen (N) limitation is common in most terrestrial ecosystems, often leading to strong competition between microorganisms and plants. The mechanisms of niche differentiation to reduce this competition remain unclear. Short-term (15)N experiments with NH4(+), NO3(-), and glycine were conducted in July, August and September in a temperate grassland to evaluate the chemical, spatial and temporal niche differentiation by competition between plants and microorganisms for N. Microorganisms preferred NH4(+) and NO3(-), while plants preferred NO3(-). Both plants and microorganisms acquired more N in August and September than in July. The soil depth had no significant effects on microbial uptake, but significantly affected plant N uptake. Plants acquired 67% of their N from the 0-5 cm soil layer and 33% from the 5-15 cm layer. The amount of N taken up by microorganisms was at least seven times than plants. Although microorganisms efficiently compete for N with plants, the competition is alleviated through chemical partitioning mainly in deeper soil layer. In the upper soil layer, neither chemical nor temporal niche separation is realized leading to strong competition between plants and microorganisms that modifies N dynamics in grasslands.

  12. How Fencing Affects the Soil Quality and Plant Biomass in the Grassland of the Loess Plateau.

    Science.gov (United States)

    Zeng, Quanchao; Liu, Yang; Xiao, Li; Huang, Yimei

    2017-09-25

    Overgrazing is a severe problem in several regions in Northwestern China and has caused serious land degradation. Secondary natural succession plays an important role in the accumulation of soil carbon and nitrogen contents. Estimating the effects of grazing exclusion on soil quality and plant diversity will improve our understanding of the succession process after overgrazing and promote judicious management of degraded pastures. This experiment was designed to measure soil properties and plant diversity following an age chronosequence of grasslands (ages ranged from one year, 12 years, 20 years, and 30 years) in Northwestern China. The results showed that continuous fencing resulted in a considerable increase in plant coverage, plant biomass (above- and below-ground biomass), and plant diversity, which can directly or indirectly improve the accumulation of soil organic carbon and total nitrogen content. The plant coverage and the above- and below-ground biomass linearly increased along the succession time, whereas soil organic C and N contents showed a significant decline in the first 12 years and, subsequently, a significant increase. The increased plant biomass caused an increase in soil organic carbon and soil total nitrogen. These results suggested that soil restoration and plant cover were an incongruous process. Generally, soil restoration is a slow process and falls behind vegetation recovery after grazing exclusion. Although the accumulation of soil C and N stocks needed a long term, vegetation restoration was a considerable option for the degraded grassland due to the significant increase of plant biomass, diversity, and soil C and N stocks. Therefore, fencing with natural succession should be considered in the design of future degraded pastures.

  13. Impacts of atmospheric pollution on the plant communities of British acid grasslands

    Energy Technology Data Exchange (ETDEWEB)

    Payne, Richard J., E-mail: r.payne@mmu.ac.uk [School of Science and the Environment, Manchester Metropolitan University, Chester St., Manchester M1 5GD (United Kingdom); Geography, School of Environment and Development, University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom); Stevens, Carly J. [Faculty of Science, Open University, Walton Hall, Milton Keynes MK7 6AA (United Kingdom); Lancaster Environment Centre, Lancaster University, Bailrigg, Lancaster LA1 4YQ (United Kingdom); Dise, Nancy B. [School of Science and the Environment, Manchester Metropolitan University, Chester St., Manchester M1 5GD (United Kingdom); Gowing, David J. [Faculty of Science, Open University, Walton Hall, Milton Keynes MK7 6AA (United Kingdom); Pilkington, Michael G.; Phoenix, Gareth K. [Department of Animal and Plant Sciences, Alfred Denny Building, University of Sheffield, Sheffield S10 2TN (United Kingdom); Emmett, Bridget A. [Centre for Ecology and Hydrology, Environment Centre Wales, Deiniol Road, Bangor, Gwynedd LL57 2UW (United Kingdom); Ashmore, Michael R. [Environment Department, University of York, Heslington, York YO10 5DD (United Kingdom)

    2011-10-15

    Air pollutants are recognised as important agents of ecosystem change but few studies consider the effects of multiple pollutants and their interactions. Here we use ordination, constrained cluster analysis and indicator value analyses to identify potential environmental controls on species composition, ecological groupings and indicator species in a gradient study of UK acid grasslands. The community composition of these grasslands is related to climate, grazing, ozone exposure and nitrogen deposition, with evidence for an interaction between the ecological impacts of base cation and nitrogen deposition. Ozone is a key agent in species compositional change but is not associated with a reduction in species richness or diversity indices, showing the subtly different drivers on these two aspects of ecosystem degradation. Our results demonstrate the effects of multiple interacting pollutants, which may collectively have a greater impact than any individual agent. - Highlights: > Ozone exposure, N and base cation deposition modify UK acid grassland composition. > Ozone influences community composition without reducing species richness. > Nitrogen and base cation deposition have interacting impacts. > Distinct species responses to pollutants suggest potential for bioindication. - Ozone exposure and nitrogen deposition have distinct but additive impacts on the plant communities of British acid grasslands.

  14. Impacts of atmospheric pollution on the plant communities of British acid grasslands

    International Nuclear Information System (INIS)

    Payne, Richard J.; Stevens, Carly J.; Dise, Nancy B.; Gowing, David J.; Pilkington, Michael G.; Phoenix, Gareth K.; Emmett, Bridget A.; Ashmore, Michael R.

    2011-01-01

    Air pollutants are recognised as important agents of ecosystem change but few studies consider the effects of multiple pollutants and their interactions. Here we use ordination, constrained cluster analysis and indicator value analyses to identify potential environmental controls on species composition, ecological groupings and indicator species in a gradient study of UK acid grasslands. The community composition of these grasslands is related to climate, grazing, ozone exposure and nitrogen deposition, with evidence for an interaction between the ecological impacts of base cation and nitrogen deposition. Ozone is a key agent in species compositional change but is not associated with a reduction in species richness or diversity indices, showing the subtly different drivers on these two aspects of ecosystem degradation. Our results demonstrate the effects of multiple interacting pollutants, which may collectively have a greater impact than any individual agent. - Highlights: → Ozone exposure, N and base cation deposition modify UK acid grassland composition. → Ozone influences community composition without reducing species richness. → Nitrogen and base cation deposition have interacting impacts. → Distinct species responses to pollutants suggest potential for bioindication. - Ozone exposure and nitrogen deposition have distinct but additive impacts on the plant communities of British acid grasslands.

  15. Changes in plant species richness induce functional shifts in soil nematode communities in experimental grassland.

    Directory of Open Access Journals (Sweden)

    Nico Eisenhauer

    Full Text Available Changes in plant diversity may induce distinct changes in soil food web structure and accompanying soil feedbacks to plants. However, knowledge of the long-term consequences of plant community simplification for soil animal food webs and functioning is scarce. Nematodes, the most abundant and diverse soil Metazoa, represent the complexity of soil food webs as they comprise all major trophic groups and allow calculation of a number of functional indices.We studied the functional composition of nematode communities three and five years after establishment of a grassland plant diversity experiment (Jena Experiment. In response to plant community simplification common nematode species disappeared and pronounced functional shifts in community structure occurred. The relevance of the fungal energy channel was higher in spring 2007 than in autumn 2005, particularly in species-rich plant assemblages. This resulted in a significant positive relationship between plant species richness and the ratio of fungal-to-bacterial feeders. Moreover, the density of predators increased significantly with plant diversity after five years, pointing to increased soil food web complexity in species-rich plant assemblages. Remarkably, in complex plant communities the nematode community shifted in favour of microbivores and predators, thereby reducing the relative abundance of plant feeders after five years.The results suggest that species-poor plant assemblages may suffer from nematode communities detrimental to plants, whereas species-rich plant assemblages support a higher proportion of microbivorous nematodes stimulating nutrient cycling and hence plant performance; i.e. effects of nematodes on plants may switch from negative to positive. Overall, food web complexity is likely to decrease in response to plant community simplification and results of this study suggest that this results mainly from the loss of common species which likely alter plant-nematode interactions.

  16. Plant species' origin predicts dominance and response to nutrient enrichment and herbivores in global grasslands

    Science.gov (United States)

    Seabloom, Eric W.; Borer, Elizabeth T.; Buckley, Yvonne M.; Cleland, Elsa E.; Davies, Kendi F.; Firn, Jennifer; Harpole, W. Stanley; Hautier, Yann; Lind, Eric M.; MacDougall, Andrew S.; Orrock, John L.; Prober, Suzanne M.; Adler, Peter B.; Anderson, T. Michael; Bakker, Jonathan D.; Biederman, Lori A.; Blumenthal, Dana M.; Brown, Cynthia S.; Brudvig, Lars A.; Cadotte, Marc; Chu, Chengjin; Cottingham, Kathryn L.; Crawley, Michael J.; Damschen, Ellen I.; Dantonio, Carla M.; DeCrappeo, Nicole M.; Du, Guozhen; Fay, Philip A.; Frater, Paul; Gruner, Daniel S.; Hagenah, Nicole; Hector, Andy; Hillebrand, Helmut; Hofmockel, Kirsten S.; Humphries, Hope C.; Jin, Virginia L.; Kay, Adam; Kirkman, Kevin P.; Klein, Julia A.; Knops, Johannes M. H.; La Pierre, Kimberly J.; Ladwig, Laura; Lambrinos, John G.; Li, Qi; Li, Wei; Marushia, Robin; McCulley, Rebecca L.; Melbourne, Brett A.; Mitchell, Charles E.; Moore, Joslin L.; Morgan, John; Mortensen, Brent; O'Halloran, Lydia R.; Pyke, David A.; Risch, Anita C.; Sankaran, Mahesh; Schuetz, Martin; Simonsen, Anna; Smith, Melinda D.; Stevens, Carly J.; Sullivan, Lauren; Wolkovich, Elizabeth; Wragg, Peter D.; Wright, Justin; Yang, Louie

    2015-01-01

    Exotic species dominate many communities; however the functional significance of species' biogeographic origin remains highly contentious. This debate is fuelled in part by the lack of globally replicated, systematic data assessing the relationship between species provenance, function and response to perturbations. We examined the abundance of native and exotic plant species at 64 grasslands in 13 countries, and at a subset of the sites we experimentally tested native and exotic species responses to two fundamental drivers of invasion, mineral nutrient supplies and vertebrate herbivory. Exotic species are six times more likely to dominate communities than native species. Furthermore, while experimental nutrient addition increases the cover and richness of exotic species, nutrients decrease native diversity and cover. Native and exotic species also differ in their response to vertebrate consumer exclusion. These results suggest that species origin has functional significance, and that eutrophication will lead to increased exotic dominance in grasslands. PMID:26173623

  17. Genetic Diversity and Spatial Genetic Structure of the Grassland Perennial Saxifraga granulata along Two River Systems.

    Directory of Open Access Journals (Sweden)

    Sascha van der Meer

    Full Text Available Due to changes in land use, the natural habitats of an increasing number of plant species have become more and more fragmented. In landscapes that consist of patches of suitable habitat, the frequency and extent of long-distance seed dispersal can be expected to be an important factor determining local genetic diversity and regional population structure of the remaining populations. In plant species that are restricted to riparian habitats, rivers can be expected to have a strong impact on the dynamics and spatial genetic structure of populations as they may enable long-distance seed dispersal and thus maintain gene flow between fragmented populations. In this study, we used polymorphic microsatellite markers to investigate the genetic diversity and the spatial genetic structure of 28 populations of Saxifraga granulata along two rivers in central Belgium. We hypothesized that rivers might be essential for gene flow among increasingly isolated populations of this species. Genetic diversity was high (HS = 0.68, which to a certain extent can be explained by the octoploid nature of S. granulata in the study area. Populations along the Dijle and Demer rivers were also highly differentiated (G"ST = 0.269 and 0.164 and DEST = 0.190 and 0.124, respectively and showed significant isolation-by-distance, indicating moderate levels of gene flow primarily between populations that are geographically close to each other. Along the river Demer population genetic diversity was higher upstream than downstream, suggesting that seed dispersal via the water was not the primary mode of dispersal. Overall, these results indicate that despite increasing fragmentation populations along both rivers were highly genetically diverse. The high ploidy level and longevity of S. granulata have most likely buffered negative effects of fragmentation on genetic diversity and the spatial genetic structure of populations in riparian grasslands.

  18. Vegetation diversity of salt-rich grasslands in Southeast Europe

    Czech Academy of Sciences Publication Activity Database

    Eliáš, P. Jr.; Sopotlieva, D.; Dítě, D.; Hájková, Petra; Apostolova, I.; Senko, D.; Melečková, Z.; Hájek, Michal

    2013-01-01

    Roč. 16, č. 3 (2013), s. 521-537 ISSN 1402-2001 R&D Projects: GA ČR GA206/09/0329 Institutional research plan: CEZ:AV0Z60050516 Institutional support: RVO:67985939 Keywords : salt marshes * vegetation survey * grasslands Subject RIV: EF - Botanics Impact factor: 2.416, year: 2013

  19. Floristic and vegetation structure of a grassland plant community on shallow basalt in southern Brazil

    Directory of Open Access Journals (Sweden)

    Marcelo Fett Pinto

    2013-03-01

    Full Text Available Few studies have adequately described the floristic and structural features of natural grasslands associated with shallow basalt soils in southern Brazil. This study was carried out on natural grazing land used for livestock production in the municipality of Santana do Livramento, in the Campanha region of the state of Rio Grande do Sul, Brazil. The aim of the study was to describe the floristic and structural diversity of the area. The floristic list obtained comprises 229 plant taxa from 40 botanical families, with a predominance of the families Poaceae (62, Asteraceae (28, Fabaceae (16 and Cyperaceae (12. The estimated diversity and evenness in the community were 3.00 and 0.874, respectively. Bare soil and rock outcrops accounted for 19.3% of the area, resulting in limited forage availability. Multivariate analysis revealed two well-defined groups among the sampling units. One group showed a high degree of internal aggregation, associated with deep soils, and was characterized by the presence of tussocks, whereas the other was less aggregate and was characterized by prostrate species growing on shallow soil. Ordination analysis indicated a gradient of moisture and of soil depth in the study area, resulting in different vegetation patterns. These patterns were analogous to the vegetation physiognomies described for Uruguayan grasslands. Overall, the grassland community studied is similar to others found throughout southern Brazil, although it harbors more winter forage species. In addition, the rare grass Paspalum indecorum Mez is locally dominant in some patches, behaving similarly to P. notatum Fl., a widespread grass that dominates extensive grassland areas in southern Brazil.

  20. Species Richness Responses to Structural or Compositional Habitat Diversity between and within Grassland Patches: A Multi-Taxon Approach

    Science.gov (United States)

    Lengyel, Szabolcs; Déri, Eszter; Magura, Tibor

    2016-01-01

    Habitat diversity (spatial heterogeneity within and between habitat patches in a landscape, HD) is often invoked as a driver of species diversity at small spatial scales. However, the effect of HD on species richness (SR) of multiple taxa is not well understood. We quantified HD and SR in a wet-dry gradient of open grassland habitats in Hortobágy National Park (E-Hungary) and tested the effect of compositional and structural factors of HD on SR of flowering plants, orthopterans, true bugs, spiders, ground beetles and birds. Our dataset on 434 grassland species (170 plants, 264 animals) showed that the wet-dry gradient (compositional HD at the between-patch scale) was primarily related to SR in orthopterans, ground-dwelling arthropods, and all animals combined. The patchiness, or plant association richness, of the vegetation (compositional HD at the within-patch scale) was related to SR of vegetation-dwelling arthropods, whereas vegetation height (structural HD at the within-patch scale) was related to SR of ground-dwelling arthropods and birds. Patch area was related to SR only in birds, whereas management (grazing, mowing, none) was related to SR of plants and true bugs. All relationships between HD and SR were positive, indicating increasing SR with increasing HD. However, total SR was not related to HD because different taxa showed similar positive responses to different HD variables. Our findings, therefore, show that even though HD positively influences SR in a wide range of grassland taxa, each taxon responds to different compositional or structural measures of HD, resulting in the lack of a consistent relationship between HD and SR when taxon responses are pooled. The idiosyncratic responses shown here exemplify the difficulties in detecting general HD-SR relationships over multiple taxa. Our results also suggest that management and restoration aimed specifically to sustain or increase the diversity of habitats are required to conserve biodiversity in

  1. Species Richness Responses to Structural or Compositional Habitat Diversity between and within Grassland Patches: A Multi-Taxon Approach.

    Directory of Open Access Journals (Sweden)

    Szabolcs Lengyel

    Full Text Available Habitat diversity (spatial heterogeneity within and between habitat patches in a landscape, HD is often invoked as a driver of species diversity at small spatial scales. However, the effect of HD on species richness (SR of multiple taxa is not well understood. We quantified HD and SR in a wet-dry gradient of open grassland habitats in Hortobágy National Park (E-Hungary and tested the effect of compositional and structural factors of HD on SR of flowering plants, orthopterans, true bugs, spiders, ground beetles and birds. Our dataset on 434 grassland species (170 plants, 264 animals showed that the wet-dry gradient (compositional HD at the between-patch scale was primarily related to SR in orthopterans, ground-dwelling arthropods, and all animals combined. The patchiness, or plant association richness, of the vegetation (compositional HD at the within-patch scale was related to SR of vegetation-dwelling arthropods, whereas vegetation height (structural HD at the within-patch scale was related to SR of ground-dwelling arthropods and birds. Patch area was related to SR only in birds, whereas management (grazing, mowing, none was related to SR of plants and true bugs. All relationships between HD and SR were positive, indicating increasing SR with increasing HD. However, total SR was not related to HD because different taxa showed similar positive responses to different HD variables. Our findings, therefore, show that even though HD positively influences SR in a wide range of grassland taxa, each taxon responds to different compositional or structural measures of HD, resulting in the lack of a consistent relationship between HD and SR when taxon responses are pooled. The idiosyncratic responses shown here exemplify the difficulties in detecting general HD-SR relationships over multiple taxa. Our results also suggest that management and restoration aimed specifically to sustain or increase the diversity of habitats are required to conserve

  2. Vascular plants and a brief history of the Kiowa and Rita Blanca National Grasslands

    Science.gov (United States)

    Donald L. Hazlett; Michael H. Schiebout; Paulette L. Ford

    2009-01-01

    Administered by the USDA Forest Service, the Kiowa and Rita Blanca National Grasslands occupy 230,000 acres of public land extending from northeastern New Mexico into the panhandles of Oklahoma and Texas. A mosaic of topographic features including canyons, plateaus, rolling grasslands and outcrops supports a diverse flora. Eight hundred twenty six (826) species of...

  3. Long-term reactions of plants and macroinvertebrates to extreme floods in floodplain grasslands.

    Science.gov (United States)

    Ilg, Christiane; Dziock, Frank; Foeckler, Francis; Follner, Klaus; Gerisch, Michael; Glaeser, Judith; Rink, Anke; Schanowski, Arno; Scholz, Mathias; Deichner, Oskar; Henle, Klaus

    2008-09-01

    Extreme summertime flood events are expected to become more frequent in European rivers due to climate change. In temperate areas, where winter floods are common, extreme floods occurring in summer, a period of high physiological activity, may seriously impact floodplain ecosystems. Here we report on the effects of the 2002 extreme summer flood on flora and fauna of the riverine grasslands of the Middle Elbe (Germany), comparing pre- and post-flooding data collected by identical methods. Plants, mollusks, and carabid beetles differed considerably in their response in terms of abundance and diversity. Plants and mollusks, displaying morphological and behavioral adaptations to flooding, showed higher survival rates than the carabid beetles, the adaptation strategies of which were mainly linked to life history. Our results illustrate the complexity of responses of floodplain organisms to extreme flood events. They demonstrate that the efficiency of resistance and resilience strategies is widely dependent on the mode of adaptation.

  4. Does species diversity limit productivity in natural grassland communities?

    NARCIS (Netherlands)

    Grace, James B.; Anderson, T. Michael; Smith, Melinda D.; Seabloom, Eric; Andelman, Sandy J.; Meche, Gayna; Weiher, Evan; Allain, Larry K.; Jutila, Heli; Sankaran, Mahesh; Knops, Johannes; Ritchie, Mark; Willig, Michael R.

    Theoretical analyses and experimental studies of synthesized assemblages indicate that under particular circumstances species diversity can enhance community productivity through niche complementarity. It remains unclear whether this process has important effects in mature natural ecosystems where

  5. Seasonal dynamics and vertical distribution of plant-feeding nematode communities in grasslands

    NARCIS (Netherlands)

    Verschoor, B.C.; Goede, de R.G.M.; Hoop, de J.W.; Vries, de F.W.

    2001-01-01

    The vertical distribution and seasonal dynamics of plant- and fungal-feeding nematode taxa in permanent grasslands were investigated. Dolichodoridae, Paratylenchus, Pratylenchus, Tylenchidae and Aphelenchoides dominated the upper 10 cm soil and their numbers strongly decreased with depth. The

  6. Plant species occurrence patterns in Eurasian grasslands reflect adaptation to nutrient ratios

    NARCIS (Netherlands)

    Roeling, Ineke S.; Ozinga, Wim A.; van Dijk, Jerry; Eppinga, Maarten B.; Wassen, Martin J.

    2018-01-01

    Previous studies of Eurasian grasslands have suggested that nutrient ratios, rather than absolute nutrient availabilities and associated productivity, may be driving plant species richness patterns. However, the underlying assumption that species occupy distinct niches along nutrient ratio gradients

  7. How much will it cost to save grassland diversity?

    NARCIS (Netherlands)

    Hodgson, JG; Montserrat-Marti, G; Tallowin, J; Thompson, K; Diaz, S; Cabido, M; Grime, JP; Wilson, PJ; Band, [No Value; Bogard, A; Cabido, R; Caceres, D; Castro-Diez, P; Ferrer, C; Maestro-Martinez, M; Perez-Rontome, MC; Charles, M; Cornelissen, JHC; Dabbert, S; Perez-Harguindeguy, N; Krimly, T; Sijtsma, FJ; Strijker, D; Vendramini, F; Guerrero-Campo, J; Hynd, A; Jones, G; Romo-Diez, A; Espuny, LD; Villar-Salvador, P; Zak, MR

    Conservation initiatives are failing to arrest the global loss of biodiversity. From our mechanistic studies of ecology and economics, we suggest that for grazing lands the root cause of this failure is a powerful economic deterrent to measures designed to protect diversity. We identify an

  8. Soil invertebrate fauna enhances grassland succession and diversity

    NARCIS (Netherlands)

    Deyn, de G.B.; Raaijmakers, C.E.; Zoomer, H.R.; Berg, M.P.; Ruiter, de P.C.; Verhoef, H.A.; Bezemer, T.M.; Putten, van der W.H.

    2003-01-01

    One of the most important areas in ecology is to elucidate the factors that drive succession in ecosystems and thus influence the diversity of species in natural vegetation. Significant mechanisms in this process are known to be resource limitation(1-3) and the effects of aboveground vertebrate

  9. How much will it cost to save grassland diversity?

    NARCIS (Netherlands)

    Hodgson, J.G.; Montserrat-Mart, G.; Tallowin, J.; Thompson, K.; Diaz, S.; Cabido, M.; Grime, J.P.; Wilson, P.J.; Band, S.R.; Bogard, A.; Cabido, R.; Ciceres, D.; Castro-Diez, P.; Ferrer, C.; Maestro-Martinez, M.; Perez-Rontome, M.C.; Charles, M.; Cornelissen, J.H.C.; Dabbert, S.; Perez-Harguindeguy, N.; Sijtsma, F.; Strijker, D.; Vendramini, F.; Vogel, T.; Guerrero-Campo, J.; Gupta, P.L.; Hynd, A.; Jones, G.; Romo-Diez, A.; Rorison, I.H.; De Torres Espuny, L.; Villar-Salvador, P.; Zak, M.R.

    2005-01-01

    Conservation initiatives are failing to arrest the global loss of biodiversity. From our mechanistic studies of ecology and economics, we suggest that for grazing lands the root cause of this failure is a powerful economic deterrent to measures designed to protect diversity. We identify an

  10. Plutonium in a grassland ecosystem. [Rocky Flats Plant

    Energy Technology Data Exchange (ETDEWEB)

    Little, C.A.

    1976-08-01

    A study was made of plutonium contamination of grassland at the Rocky Flats plant northwest of Denver, Colorado. Of interest were: the definition of major plutonium-containing ecosystem compartments; the relative amounts in those compartments; how those values related to studies done in other geographical areas; whether or not the predominant isotopes, /sup 238/Pu and /sup 239/Pu, behaved differently; and what mechanisms might have allowed for the observed patterns of contamination. Samples of soil, litter, vegetation, arthropods, and small mammals were collected for Pu analysis and mass determination from each of two macroplots. Small aliquots (5 g or less) were analyzed by a rapid liquid scintillation technique and by alpha spectrometry. Of the compartments sampled, greater than 99 percent of the total plutonium was contained in the soil and the concentrations were significantly inversely correlated with distance from the contamination source, depth of the sample, and particle size of the sieved soil samples. The soil data suggested that the distribution of contamination largely resulted from physical transport processes.

  11. Addition of multiple limiting resources reduces grassland diversity

    NARCIS (Netherlands)

    Harpole, W Stanley; Sullivan, Lauren L; Lind, Eric M; Firn, Jennifer; Adler, Peter B; Borer, Elizabeth T; Chase, Jonathan; Fay, Philip A; Hautier, Yann; Hillebrand, Helmut; MacDougall, Andrew S; Seabloom, Eric W; Williams, Ryan; Bakker, Jonathan D; Cadotte, Marc W; Chaneton, Enrique J; Chu, Chengjin; Cleland, Elsa E; D'Antonio, Carla; Davies, Kendi F; Gruner, Daniel S; Hagenah, Nicole; Kirkman, Kevin; Knops, Johannes M H; La Pierre, Kimberly J; McCulley, Rebecca L; Moore, Joslin L; Morgan, John W; Prober, Suzanne M; Risch, Anita C; Schuetz, Martin; Stevens, Carly J; Wragg, Peter D

    2016-01-01

    Niche dimensionality provides a general theoretical explanation for biodiversity-more niches, defined by more limiting factors, allow for more ways that species can coexist. Because plant species compete for the same set of limiting resources, theory predicts that addition of a limiting resource

  12. Evaluating productivity-biodiversity relationship and spectral diversity in prairie grasslands under different fire management treatments using in-situ and remote sensing hyperspectral data

    Science.gov (United States)

    Gholizadeh, H.; Gamon, J. A.; Zygielbaum, A. I.; Schweiger, A. K.; Cavender-Bares, J.; Yang, Y.; Knops, J. M. H.

    2017-12-01

    Grasslands cover as much as 25% of the Earth's surface and account for approximately 20% of overall terrestrial productivity and contribute to global biodiversity. To optimize the status of grasslands and to counteract their degradation, different management practices have been adopted. Fire has been shown to be an important management practice in the maintenance of grasslands. Our main goals were 1) to evaluate the productivity-biodiversity relationship in grasslands under fire treatment, and 2) to evaluate the capability of hyperspectral remote sensing in estimating biodiversity using spectral data (i.e. spectral diversity). We used above-ground biomass (as a surrogate for productivity), species richness (SR; as a surrogate for biodiversity), and airborne hyperspectral data from a natural grassland with fire treatment (20 plots), and a natural grassland without fire treatment (21 plots), all located at the Cedar Creek Ecosystem Science Reserve in Central Minnesota, USA. The productivity-biodiversity relationship for the fire treatment plots showed a hump-shaped model with adjusted R2=0.37, whereas the relationship for the non-burned plots were non-significant. The relationship between SR and spectral diversity (SD) were positive linear for both treatments; however, the relationship for plots with fire treatment was higher (adjusted R2 = 0.34 vs. 0.19). It is assumed that post-fire foliar nutrients increase soil nitrogen and phosphorus which facilitate post-fire growth and induce higher above-ground biomass and chlorophyll content in plants. Overall, the results of this study showed that management practices affect the productivity-biodiversity relationship and illustrated the effect of fire treatment on remote sensing of biodiversity.

  13. Specialist plant species harbour higher reproductive performances in recently restored calcareous grasslands than in reference habitats

    OpenAIRE

    Harzé, Mélanie; Mahy, Grégory; Bizoux, Jean-Philippe; Piqueray, Julien; Monty, Arnaud

    2015-01-01

    Background and aims_Calcareous grasslands are local biodiversity hotspots in temperate regions that suffered intensive fragmentation. Ecological restoration projects took place all over Europe. Their success has traditionally been assessed using a plant community approach. However, population ecology can also be useful to assess restoration success and to understand underlying mechanisms. Methods_We took advantage of three calcareous grassland sites in Southern Belgium, where reference p...

  14. Extensive Management Promotes Plant and Microbial Nitrogen Retention in Temperate Grassland

    Science.gov (United States)

    de Vries, Franciska T.; Bloem, Jaap; Quirk, Helen; Stevens, Carly J.; Bol, Roland; Bardgett, Richard D.

    2012-01-01

    Leaching losses of nitrogen (N) from soil and atmospheric N deposition have led to widespread changes in plant community and microbial community composition, but our knowledge of the factors that determine ecosystem N retention is limited. A common feature of extensively managed, species-rich grasslands is that they have fungal-dominated microbial communities, which might reduce soil N losses and increase ecosystem N retention, which is pivotal for pollution mitigation and sustainable food production. However, the mechanisms that underpin improved N retention in extensively managed, species-rich grasslands are unclear. We combined a landscape-scale field study and glasshouse experiment to test how grassland management affects plant and soil N retention. Specifically, we hypothesised that extensively managed, species-rich grasslands of high conservation value would have lower N loss and greater N retention than intensively managed, species-poor grasslands, and that this would be due to a greater immobilisation of N by a more fungal-dominated microbial community. In the field study, we found that extensively managed, species-rich grasslands had lower N leaching losses. Soil inorganic N availability decreased with increasing abundance of fungi relative to bacteria, although the best predictor of soil N leaching was the C/N ratio of aboveground plant biomass. In the associated glasshouse experiment we found that retention of added 15N was greater in extensively than in intensively managed grasslands, which was attributed to a combination of greater root uptake and microbial immobilisation of 15N in the former, and that microbial immobilisation increased with increasing biomass and abundance of fungi. These findings show that grassland management affects mechanisms of N retention in soil through changes in root and microbial uptake of N. Moreover, they support the notion that microbial communities might be the key to improved N retention through tightening linkages

  15. Contribution of above- and below-ground plant traits to the structure and function of grassland soil microbial communities.

    Science.gov (United States)

    Legay, N; Baxendale, C; Grigulis, K; Krainer, U; Kastl, E; Schloter, M; Bardgett, R D; Arnoldi, C; Bahn, M; Dumont, M; Poly, F; Pommier, T; Clément, J C; Lavorel, S

    2014-10-01

    Abiotic properties of soil are known to be major drivers of the microbial community within it. Our understanding of how soil microbial properties are related to the functional structure and diversity of plant communities, however, is limited and largely restricted to above-ground plant traits, with the role of below-ground traits being poorly understood. This study investigated the relative contributions of soil abiotic properties and plant traits, both above-ground and below-ground, to variations in microbial processes involved in grassland nitrogen turnover. In mountain grasslands distributed across three European sites, a correlative approach was used to examine the role of a large range of plant functional traits and soil abiotic factors on microbial variables, including gene abundance of nitrifiers and denitrifiers and their potential activities. Direct effects of soil abiotic parameters were found to have the most significant influence on the microbial groups investigated. Indirect pathways via plant functional traits contributed substantially to explaining the relative abundance of fungi and bacteria and gene abundances of the investigated microbial communities, while they explained little of the variance in microbial activities. Gene abundances of nitrifiers and denitrifiers were most strongly related to below-ground plant traits, suggesting that they were the most relevant traits for explaining variation in community structure and abundances of soil microbes involved in nitrification and denitrification. The results suggest that consideration of plant traits, and especially below-ground traits, increases our ability to describe variation in the abundances and the functional characteristics of microbial communities in grassland soils. © The Author 2014. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Simulation of the decomposition and nitrogen mineralization of aboveground plant material in two unfertilized grassland ecosystems.

    NARCIS (Netherlands)

    Bloemhof, H.S.; Berendse, F.

    1995-01-01

    A simple model of the decomposition and nitrogen mineralization of plant material from two unfertilized grassland ecosystems has been developed, with only the proportion of leaves and stems in the original material, the initial nitrogen contents of these plant parts and temperature as input data.

  17. The Effects of Timing of Grazing on Plant and Arthropod Communities in High-Elevation Grasslands

    Science.gov (United States)

    Davis, Stacy C.; Burkle, Laura A.; Cross, Wyatt F.; Cutting, Kyle A.

    2014-01-01

    Livestock grazing can be used as a key management tool for maintaining healthy ecosystems. However, the effectiveness of using grazing to modify habitat for species of conservation concern depends on how the grazing regime is implemented. Timing of grazing is one grazing regime component that is less understood than grazing intensity and grazer identity, but is predicted to have important implications for plant and higher trophic level responses. We experimentally assessed how timing of cattle grazing affected plant and arthropod communities in high-elevation grasslands of southwest Montana to better evaluate its use as a tool for multi-trophic level management. We manipulated timing of grazing, with one grazing treatment beginning in mid-June and the other in mid-July, in two experiments conducted in different grassland habitat types (i.e., wet meadow and upland) in 2011 and 2012. In the upland grassland experiment, we found that both early and late grazing treatments reduced forb biomass, whereas graminoid biomass was only reduced with late grazing. Grazing earlier in the growing season versus later did not result in greater recovery of graminoid or forb biomass as expected. In addition, the density of the most ubiquitous grassland arthropod order (Hemiptera) was reduced by both grazing treatments in upland grasslands. A comparison of end-of-season plant responses to grazing in upland versus wet meadow grasslands revealed that grazing reduced graminoid biomass in the wet meadow and forb biomass in the upland, irrespective of timing of grazing. Both grazing treatments also reduced end-of-season total arthropod and Hemiptera densities and Hemiptera biomass in both grassland habitat types. Our results indicate that both early and late season herbivory affect many plant and arthropod characteristics in a similar manner, but grazing earlier may negatively impact species of conservation concern requiring forage earlier in the growing season. PMID:25338008

  18. Soil bacterial and fungal diversity differently correlated with soil biochemistry in alpine grassland ecosystems in response to environmental changes

    Science.gov (United States)

    Zhang, Yong; Dong, Shikui; Gao, Qingzhu; Liu, Shiliang; Ganjurjav, Hasbagan; Wang, Xuexia; Su, Xukun; Wu, Xiaoyu

    2017-03-01

    To understand effects of soil microbes on soil biochemistry in alpine grassland ecosystems under environmental changes, we explored relationships between soil microbial diversity and soil total nitrogen, organic carbon, available nitrogen and phosphorus, soil microbial biomass and soil enzyme activities in alpine meadow, alpine steppe and cultivated grassland on the Qinghai-Tibetan plateau under three-year warming, enhanced precipitation and yak overgrazing. Soil total nitrogen, organic carbon and NH4-N were little affected by overgrazing, warming or enhanced precipitation in three types of alpine grasslands. Soil microbial biomass carbon and phosphorus along with the sucrase and phosphatase activities were generally stable under different treatments. Soil NO3-N, available phosphorus, urease activity and microbial biomass nitrogen were increased by overgrazing in the cultivated grassland. Soil bacterial diversity was positively correlated with, while soil fungal diversity negatively with soil microbial biomass and enzyme activities. Soil bacterial diversity was negatively correlated with, while soil fungal diversity positively with soil available nutrients. Our findings indicated soil bacteria and fungi played different roles in affecting soil nutrients and microbiological activities that might provide an important implication to understand why soil biochemistry was generally stable under environmental changes in alpine grassland ecosystems.

  19. The drivers of plant diversity

    DEFF Research Database (Denmark)

    Jensen, Kristine Engemann

    dataset consisting of 72,533 vascular plant species in 432 families covering the New World. Eight plant growth forms were defined based on woodiness, structure, and root traits, and species names were standardized to the latest accepted scientific name. The data is used in Paper II and IV In Paper II we....... The study emphasise that using big, collected datasets is not without limitations, and we recommend using rarefaction for species richness estimation from such datasets. Paper IV investigates a well-known macroecological pattern, the latitudinal diversity gradient, for nine vascular plant functional groups......In this thesis we use a “big data” approach to describe and explain large-scale patterns of plant diversity. The botanical data used for the six papers come from three different databases covering the New World, North America, and Europe respectively. The data on plant distributions were combined...

  20. Does resource availability, resource heterogeneity or species turnover mediate changes in plant species richness in grazed grasslands?

    NARCIS (Netherlands)

    Bakker, C; Blair, JM; Knapp, AK

    2003-01-01

    Grazing by large ungulates often increases plant species richness in grasslands of moderate to high productivity. In a mesic North American grassland with and without the presence of bison (Bos bison), a native ungulate grazer, three non-exclusive hypotheses for increased plant species richness in

  1. Plant hydraulic diversity buffers forest ecosystem responses to drought

    Science.gov (United States)

    Anderegg, W.; Konings, A. G.; Trugman, A. T.; Pacala, S. W.; Yu, K.; Sulman, B. N.; Sperry, J.; Bowling, D. R.

    2017-12-01

    Drought impacts carbon, water, and energy cycles in forests and may pose a fundamental threat to forests in future climates. Plant hydraulic transport of water is central to tree drought responses, including curtailing of water loss and the risk of mortality during drought. The effect of biodiversity on ecosystem function has typically been examined in grasslands, yet the diversity of plant hydraulic strategies may influence forests' response to drought. In a combined analysis of eddy covariance measurements, remote-sensing data of plant water content variation, model simulations, and plant hydraulic trait data, we test the degree to which plant water stress schemes influence the carbon cycle and how hydraulic diversity within and across ecosystems affects large-scale drought responses. We find that current plant functional types are not well-suited to capture hydraulic variation and that higher hydraulic diversity buffers ecosystem variation during drought. Our results demonstrate that tree functional diversity, particularly hydraulic diversity, may be critical to simulate in plant functional types in current land surface model projections of future vegetation's response to climate extremes.

  2. Factors that influence the beta-diversity of spider communities in northwestern Argentinean Grasslands

    Directory of Open Access Journals (Sweden)

    Sandra M. Rodriguez-Artigas

    2016-04-01

    Full Text Available Beta-diversity, defined as spatial replacement in species composition, is crucial to the understanding of how local communities assemble. These changes can be driven by environmental or geographic factors (such as geographic distance, or a combination of the two. Spiders have been shown to be good indicators of environmental quality. Accordingly, spiders are used in this work as model taxa to establish whether there is a decrease in community similarity that corresponds to geographic distance in the grasslands of the Campos & Malezales ecoregion (Corrientes. Furthermore, the influence of climactic factors and local vegetation heterogeneity (environmental factors on assemblage composition was evaluated. Finally, this study evaluated whether the differential dispersal capacity of spider families is a factor that influences their community structure at a regional scale. Spiders were collected with a G-Vac from vegetation in six grassland sites in the Campos & Malezales ecoregion that were separated by a minimum of 13 km. With this data, the impact of alpha-diversity and different environmental variables on the beta-diversity of spider communities was analysed. Likewise, the importance of species replacement and nesting on beta-diversity and their contribution to the regional diversity of spider families with different dispersion capacities was evaluated. The regional and site-specific inventories obtained were complete. The similarity between spider communities declined as the geographic distance between sites increased. Environmental variables also influenced community composition; stochastic events and abiotic forces were the principal intervening factors in assembly structure. The differential dispersal capacity of spider groups also influenced community structure at a regional scale. The regional beta-diversity, as well as species replacement, was greater in high and intermediate vagility spiders; while nesting was greater in spiders with low

  3. Impact of weather on dynamics of plant functional groups in an abandoned limestone grassland

    Directory of Open Access Journals (Sweden)

    Zbigniew Dzwonko

    2011-12-01

    Full Text Available We examined to what extend the rate and direction of changes in unmanaged grassland depend on fluctuations in climatic conditions. Vegetation data from permanent plots in a semi-natural grassland in southern Poland collected over 12 years were used. Relations between weather variables, time, and the cover of 41 more frequent species and 14 plant functional groups were analysed. The greatest effect on the dynamics of species and functional groups had precipitation in spring and/or early summer, particularly in the current year. The majority of plant groups were significantly affected also by the temperature in spring and early summer in one of the three previous years. During 12 years, the cover of annuals and biennials, short plants, and plants with small leaves decreased, while the cover of taller plants, plants with larger leaves, and with vegetative spread increased. The analyses suggest that these successional changes were not directly associated with climatic conditions but were affected by them indirectly through interspecific competition. The fluctuations in climatic conditions, chiefly precipitation, had a significant effect on both the composition and the rate of changes in abandoned grassland. The increase in the cover of tall perennial species with broad leaves hindered succession towards woodland despite of the presence of woods in the closed vicinity. It can be expected that during drier periods colonisation of grassland by later successional species could be easier.

  4. Species Diversity and Botanical Composition of Permanent Grassland as a Response to Different Grazing Management Practices

    Directory of Open Access Journals (Sweden)

    Marie Štýbnarová

    2015-01-01

    Full Text Available The effects of different levels of grazing utilization (two, three and four grazing cycles per year and mineral fertilization (nil-fertilization; N100P30K60 on the botanical composition of permanent grasslands were studied in the locality of Rapotín (Czech Republic, 332 m a.s.l. from 2003–2010. The vegetation of the experimental pasture was classified as Cynosurion. It was found that moderate treatment (three grazing cycles per year without mineral fertilization showed the highest value of diversity index (DI = 6.08, and maximum dominance of legumes (Dmax = 9.1%, particularly Trifolium repens. The highest dominance of grasses (Dmax = 77.7%, mainly Dactylis glomerata and Elytrigia repens, was achieved with the fertilized treatment utilized in two grazing cycles per year. Based on RDA results, tested management treatments explained 26% of species composition variability, where effect of number of grazing cycles per year was five-times higher than effect of fertilization. We recommend grassland utilization in three grazing cycles per year as the most suitable way from the objective of both species diversity and botanical composition of pastures in similar site conditions. Pasture fertilization should be more controlled by careful consideration of individual pasture goals, actual nutrient status of the soil and possible environmental risks.

  5. Scale dependence of the diversity-stability relationship in a temperate grassland.

    Science.gov (United States)

    Zhang, Yunhai; He, Nianpeng; Loreau, Michel; Pan, Qingmin; Han, Xingguo

    2018-05-01

    A positive relationship between biodiversity and ecosystem stability has been reported in many ecosystems; however, it has yet to be determined whether and how spatial scale affects this relationship. Here, for the first time, we assessed the effects of alpha, beta and gamma diversity on ecosystem stability and the scale dependence of the slope of the diversity-stability relationship.By employing a long-term (33 years) dataset from a temperate grassland, northern China, we calculated the all possible spatial scales with the complete combination from the basic 1-m 2 plots.Species richness was positively associated with ecosystem stability through species asynchrony and overyielding at all spatial scales (1, 2, 3, 4 and 5 m 2 ). Both alpha and beta diversity were positively associated with gamma stability.Moreover, the slope of the diversity-area relationship was significantly higher than that of the stability-area relationship, resulting in a decline of the slope of the diversity-stability relationship with increasing area. Synthesis. With the positive species diversity effect on ecosystem stability from small to large spatial scales, our findings demonstrate the need to maintain a high biodiversity and biotic heterogeneity as insurance against the risks incurred by ecosystems in the face of global environmental changes.

  6. Experimental effects of herbivore density on above-ground plant biomass in an alpine grassland ecosystem

    OpenAIRE

    Austrheim, Gunnar; Speed, James David Mervyn; Martinsen, Vegard; Mulder, Jan; Mysterud, Atle

    2014-01-01

    Herbivores may increase or decrease aboveground plant productivity depending on factors such as herbivore density and habitat productivity. The grazing optimization hypothesis predicts a peak in plant production at intermediate herbivore densities, but has rarely been tested experimentally in an alpine field setting. In an experimental design with three densities of sheep (high, low, and no sheep), we harvested aboveground plant biomass in alpine grasslands prior to treatment and after five y...

  7. Woody plant encroachment of grasslands: a comparison of terrestrial and wetland settings.

    Science.gov (United States)

    Saintilan, Neil; Rogers, Kerrylee

    2015-02-01

    A global trend of woody plant encroachment of terrestrial grasslands is co-incident with woody plant encroachment of wetland in freshwater and saline intertidal settings. There are several arguments for considering tree encroachment of wetlands in the context of woody shrub encroachment of grassland biomes. In both cases, delimitation of woody shrubs at regional scales is set by temperature thresholds for poleward extent, and by aridity within temperature limits. Latitudinal expansion has been observed for terrestrial woody shrubs and mangroves, following recent warming, but most expansion and thickening has been due to the occupation of previously water-limited grassland/saltmarsh environments. Increases in atmospheric CO₂, may facilitate the recruitment of trees in terrestrial and wetland settings. Improved water relations, a mechanism that would predict higher soil moisture in grasslands and saltmarshes, and also an enhanced capacity to survive arid conditions, reinforces local mechanisms of change. The expansion of woody shrubs and mangroves provides a negative feedback on elevated atmospheric CO₂ by increasing carbon sequestration in grassland and saltmarsh, and is a significant carbon sink globally. These broad-scale vegetation shifts may represent a new stable state, reinforced by positive feedbacks between global change drivers and endogenic mechanisms of persistence in the landscape.

  8. Root interactions in a diverse grassland : the role of root traits in belowground productivity and decomposition

    NARCIS (Netherlands)

    Oram, Natalie J.

    2018-01-01

    Background Plant diversity influences ecosystem functioning. A positive relation between plant diversity and productivity above- and belowground has been established. Aboveground, this effect has been shown to be due to complementarity effects, interactions between species in a mixture

  9. The relationship between soil physical properties and alpine plant diversity on Qinghai-Tibet Plateau

    Directory of Open Access Journals (Sweden)

    Lin Tang

    2015-04-01

    Full Text Available Through a large-scale research, we examined the heterogeneity of soil properties and plant diversity, as well as their relationships across alpine grassland types on Qinghai-Tibet Plateau. The soil pH and EC value increased with the constant deepening of the soil in all the three alpine grassland types which in order of absolute value in every soil layer were alpine desert steppe, alpine steppe and alpine meadow. Among the three grassland types, the alpine meadow possessed the highest SM but the lowest SBD. For plant diversity, alpine meadow was the highest, alpine desert steppe ranked the second and alpine steppe was the last. SM and SBD were the highest influential soil physical properties to species richness, but with opposite effects.

  10. effect of bush burning on herbaceous plant diversity in lagos state

    African Journals Online (AJOL)

    conducted to assess the effect of bush burning on plant species diversity. Three frequently burnt ... also believed to rid the grassland of parasitic insects and to prevent the encroachment of ..... The effect of smoke inhalation on lung function and ...

  11. Effects of plant species identity, diversity and soil fertility on biodegradation of phenanthrene in soil

    NARCIS (Netherlands)

    Oyelami, A.O.; Okere, U.V.; Orwin, K.; Deyn, de G.B.; Jones, K.C.; Semple, K.T.

    2013-01-01

    The work presented in this paper investigated the effects of plant species composition, species diversity and soil fertility on biodegradation of 14C-phenanthrene in soil. The two soils used were of contrasting fertility, taken from long term unfertilised and fertilised grassland, showing

  12. Effect of Cutting Pattern and Fertilization Level on Species Diversity and Evaluation of Grassland Quality

    Directory of Open Access Journals (Sweden)

    Josef Raus

    2014-01-01

    Full Text Available The effects of fertilization level and cutting pattern on the species diversity and quality of a meadow stand were assessed in 2004–2012 in the small plot trial established in 2003 in Vatín, Vysočina Region, Czech Republic. Four levels of fertilization (none; N0 + P30 + K60 kg∙ha−1; N90 + P30 + K60 kg∙ha−1; N180 + P30 + K60 kg∙ha−1 were combined with four treatments of exploitation intensity (4 cuts per year, first cut on 15th May, every next after 45 days; 3 cuts per year, first cut on 30th May, every next after 60 days; 2 cuts per year, first cut on 15th June, next after 90 days; 2 cuts per year, first cut on 30th June, next after 90 days. Numbers of species, Simpson’s diversity index and evaluation of grassland quality according to Novák (2004 were evaluated. Numbers of species and Simpson’s diversity index were significantly affected by both fertilization level and cutting pattern. Species richness decreased along with increasing fertilization rates from 29.4 (no fertilization to 27.8 (N180PK. When comparing cutting pattern treatments the highest species richness was found in four-cut swards (29.6 in average of fertilization levels and it declines towards late double-cut regime (27.2. The Simpson’s index generally increased from two-cut swards to four-cut and from fertilized treatments to control. Grassland quality was significantly affected by cutting pattern. Values increased from four-cut swards (38.1 to two-cut ones (43.8 and 44.0 in early and late harvest respectively.

  13. Plant diversity surpasses plant functional groups and plant productivity as driver of soil biota in the long term.

    Directory of Open Access Journals (Sweden)

    Nico Eisenhauer

    2011-01-01

    Full Text Available One of the most significant consequences of contemporary global change is the rapid decline of biodiversity in many ecosystems. Knowledge of the consequences of biodiversity loss in terrestrial ecosystems is largely restricted to single ecosystem functions. Impacts of key plant functional groups on soil biota are considered to be more important than those of plant diversity; however, current knowledge mainly relies on short-term experiments.We studied changes in the impacts of plant diversity and presence of key functional groups on soil biota by investigating the performance of soil microorganisms and soil fauna two, four and six years after the establishment of model grasslands. The results indicate that temporal changes of plant community effects depend on the trophic affiliation of soil animals: plant diversity effects on decomposers only occurred after six years, changed little in herbivores, but occurred in predators after two years. The results suggest that plant diversity, in terms of species and functional group richness, is the most important plant community property affecting soil biota, exceeding the relevance of plant above- and belowground productivity and the presence of key plant functional groups, i.e. grasses and legumes, with the relevance of the latter decreasing in time.Plant diversity effects on biota are not only due to the presence of key plant functional groups or plant productivity highlighting the importance of diverse and high-quality plant derived resources, and supporting the validity of the singular hypothesis for soil biota. Our results demonstrate that in the long term plant diversity essentially drives the performance of soil biota questioning the paradigm that belowground communities are not affected by plant diversity and reinforcing the importance of biodiversity for ecosystem functioning.

  14. Grassland Arthropods Are Controlled by Direct and Indirect Interactions with Cattle but Are Largely Unaffected by Plant Provenance.

    Science.gov (United States)

    Farrell, Kelly Anne; Harpole, W Stanley; Stein, Claudia; Suding, Katharine N; Borer, Elizabeth T

    2015-01-01

    Cattle grazing and invasion by non-native plant species are globally-ubiquitous changes occurring to plant communities that are likely to reverberate through whole food webs. We used a manipulative field experiment to quantify how arthropod community structure differed in native and non-native California grassland communities in the presence and absence of grazing. The arthropod community was strongly affected by cattle grazing: the biovolume of herbivorous arthropods was 79% higher in grazed than ungrazed plots, whereas the biovolume of predatory arthropods was 13% higher in ungrazed plots. In plots where non-native grasses were grazed, arthropod biovolume increased, possibly in response to increased plant productivity or increased nutritional quality of rapidly-growing annual plants. Grazing may thus affect plant biomass both through the direct removal of biomass, and through arthropod-mediated impacts. We also expected the arthropod community to differ between native and non-native plant communities; surprisingly, arthropod richness and diversity did not vary consistently between these grass community types, although arthropod abundance was slightly higher in plots with native and ungrazed grasses. These results suggest that whereas cattle grazing affects the arthropod community via direct and indirect pathways, arthropod community changes commonly associated with non-native plant invasions may not be due to the identity or dominance of the invasive species in those systems, but to accompanying changes in plant traits or functional group composition, not seen in this experiment because of the similarity of the plant communities.

  15. Grassland Arthropods Are Controlled by Direct and Indirect Interactions with Cattle but Are Largely Unaffected by Plant Provenance.

    Directory of Open Access Journals (Sweden)

    Kelly Anne Farrell

    Full Text Available Cattle grazing and invasion by non-native plant species are globally-ubiquitous changes occurring to plant communities that are likely to reverberate through whole food webs. We used a manipulative field experiment to quantify how arthropod community structure differed in native and non-native California grassland communities in the presence and absence of grazing. The arthropod community was strongly affected by cattle grazing: the biovolume of herbivorous arthropods was 79% higher in grazed than ungrazed plots, whereas the biovolume of predatory arthropods was 13% higher in ungrazed plots. In plots where non-native grasses were grazed, arthropod biovolume increased, possibly in response to increased plant productivity or increased nutritional quality of rapidly-growing annual plants. Grazing may thus affect plant biomass both through the direct removal of biomass, and through arthropod-mediated impacts. We also expected the arthropod community to differ between native and non-native plant communities; surprisingly, arthropod richness and diversity did not vary consistently between these grass community types, although arthropod abundance was slightly higher in plots with native and ungrazed grasses. These results suggest that whereas cattle grazing affects the arthropod community via direct and indirect pathways, arthropod community changes commonly associated with non-native plant invasions may not be due to the identity or dominance of the invasive species in those systems, but to accompanying changes in plant traits or functional group composition, not seen in this experiment because of the similarity of the plant communities.

  16. Interspecific neighbor interactions promote the positive diversity-productivity relationship in experimental grassland communities.

    Directory of Open Access Journals (Sweden)

    Yuhua Zhang

    Full Text Available Because the frequency of heterospecific interactions inevitably increases with species richness in a community, biodiversity effects must be expressed by such interactions. However, little is understood how heterospecific interactions affect ecosystem productivity because rarely are biodiversity ecosystem functioning experiments spatially explicitly manipulated. To test the effect of heterospecific interactions on productivity, direct evidence of heterospecific neighborhood interaction is needed. In this study we conducted experiments with a detailed spatial design to investigate whether and how heterospecific neighborhood interactions promote primary productivity in a grassland community. The results showed that increasing the heterospecific: conspecific contact ratio significantly increased productivity. We found there was a significant difference in the variation in plant height between monoculture and mixture communities, suggesting that height-asymmetric competition for light plays a central role in promoting productivity. Heterospecific interactions make tall plants grow taller and short plants become smaller in mixtures compared to monocultures, thereby increasing the efficiency of light interception and utilization. Overyielding in the mixture communities arises from the fact that the loss in the growth of short plants is compensated by the increased growth of tall plants. The positive correlation between species richness and primary production was strengthened by increasing the frequency of heterospecific interactions. We conclude that species richness significantly promotes primary ecosystem production through heterospecific neighborhood interactions.

  17. Interspecific neighbor interactions promote the positive diversity-productivity relationship in experimental grassland communities.

    Science.gov (United States)

    Zhang, Yuhua; Wang, Yongfan; Yu, Shixiao

    2014-01-01

    Because the frequency of heterospecific interactions inevitably increases with species richness in a community, biodiversity effects must be expressed by such interactions. However, little is understood how heterospecific interactions affect ecosystem productivity because rarely are biodiversity ecosystem functioning experiments spatially explicitly manipulated. To test the effect of heterospecific interactions on productivity, direct evidence of heterospecific neighborhood interaction is needed. In this study we conducted experiments with a detailed spatial design to investigate whether and how heterospecific neighborhood interactions promote primary productivity in a grassland community. The results showed that increasing the heterospecific: conspecific contact ratio significantly increased productivity. We found there was a significant difference in the variation in plant height between monoculture and mixture communities, suggesting that height-asymmetric competition for light plays a central role in promoting productivity. Heterospecific interactions make tall plants grow taller and short plants become smaller in mixtures compared to monocultures, thereby increasing the efficiency of light interception and utilization. Overyielding in the mixture communities arises from the fact that the loss in the growth of short plants is compensated by the increased growth of tall plants. The positive correlation between species richness and primary production was strengthened by increasing the frequency of heterospecific interactions. We conclude that species richness significantly promotes primary ecosystem production through heterospecific neighborhood interactions.

  18. Mapping Plant Functional Groups in Subalpine Grassland of the Greater Caucasus

    Directory of Open Access Journals (Sweden)

    Anja Magiera

    2018-02-01

    Full Text Available Plant functional groups—in our case grass, herbs, and legumes—and their spatial distribution can provide information on key ecosystem functions such as species richness, nitrogen fixation, and erosion control. Knowledge about the spatial distribution of plant functional groups provides valuable information for grassland management. This study described and mapped the distribution of grass, herb, and legume coverage of the subalpine grassland in the high-mountain Kazbegi region, Greater Caucasus, Georgia. To test the applicability of new sensors, we compared the predictive power of simulated hyperspectral canopy reflectance, simulated multispectral reflectance, simulated vegetation indices, and topographic variables for modeling plant functional groups. The tested grassland showed characteristic differences in species richness; in grass, herb, and legume coverage; and in connected structural properties such as yield. Grass (Hordeum brevisubulatum was dominant in biomass-rich hay meadows. Herb-rich grassland featured the highest species richness and evenness, whereas legume-rich grassland was accompanied by a high coverage of open soil and showed dominance of a single species, Astragalus captiosus. The best model fits were achieved with a combination of reflectance, vegetation indices, and topographic variables as predictors. Random forest models for grass, herb, and legume coverage explained 36%, 25%, and 37% of the respective variance, and their root mean square errors varied between 12–15%. Hyperspectral and multispectral reflectance as predictors resulted in similar models. Because multispectral data are more easily available and often have a higher spatial resolution, we suggest using multispectral parameters enhanced by vegetation indices and topographic parameters for modeling grass, herb, and legume coverage. However, overall model fits were merely moderate, and further testing, including stronger gradients and the addition of

  19. Biodiversity of Soil Microbial Communities Following Woody Plant Invasion of Grassland: An Assessment Using Molecular Methods

    Science.gov (United States)

    Kantola, I. B.; Gentry, T. J.; Filley, T. R.; Boutton, T. W.

    2012-12-01

    Woody plants have encroached into grasslands, savannas, and other grass-dominated ecosystems throughout the world during the last century. This dramatic vegetation change is likely driven by livestock grazing, altered fire frequencies, elevated atmospheric CO2 concentrations, and/or changes in atmospheric deposition patterns. Woody invasion often results in significant changes in ecosystem function, including alterations in above- and belowground primary productivity, soil C, N, and P storage and turnover, and the size and activity of the soil microbial biomass pool. The purpose of this study was to examine the relationships and interactions between plant communities and soil microbial communities in the Rio Grande Plains region of southern Texas where grasslands have been largely replaced by woodlands. Research was conducted along a successional chronosequence representing the stages of woody plant encroachment from open grassland to closed-canopy woodland. To characterize soil microbial community composition, soil samples (0-7.5 cm) were collected in remnant grasslands (representing time 0) and near the centers of woody plant clusters, groves, and drainage woodlands ranging in age from 10 to 130 yrs. Ages of woody plant stands were determined by dendrochronology. Community DNA was extracted from each soil sample with a MoBio PowerMax Soil DNA isolation kit. The DNA concentrations were quantified on a NanoDrop ND-1000 spectrophotometer and diluted to a standard concentration. Pyrosequencing was performed by the Research and Testing Laboratory (Lubbock, TX) according to Roche 454 Titanium chemistry protocols. Samples were amplified with primers 27F and 519R for bacteria, and primers ITS1F and ITS4 for fungi. Sequences were aligned using BioEdit and the RDP Pipeline and analyzed in MOTHUR. Non-metric multidimensional scaling of the operational taxonomic units identified by pyrosequencing revealed that both bacterial and fungal community composition were

  20. New phytotoxic diterpenoids from Vellozia gigantea (Velloziaceae), an endemic neotropical plant living in the endangered Brazilian biome Rupestrian grasslands

    Science.gov (United States)

    Vellozia gigantea is a rare, ancient and endemic neotropical plant present in the Brazilian Rupestrian grasslands. The dichloromethane extract of V. gigantea adventitious roots was phytotoxic against Lactuca sativa, Agrostis stolonifera and Lemna paucicostata, and showed larvicidal activity against ...

  1. Nitrogen transfer from forage legumes to nine neighbouring plants in a multi-species grassland

    DEFF Research Database (Denmark)

    Pirhofer-Walzl, Karin; Rasmussen, Jim; Jensen, Henning Høgh

    2012-01-01

    Legumes play a crucial role in nitrogen supply to grass-legume mixtures for ruminant fodder. To quantify N transfer from legumes to neighbouring plants in multi-species grasslands we established a grass-legume-herb mixture on a loamy-sandy site in Denmark. White clover (Trifolium repens L.), red...... amounts of N from legumes than dicotyledonous plants which generally have taproots. Slurry application mainly increased N transfer from legumes to grasses. During the growing season the three legumes transferred approximately 40 kg N ha-1 to neighbouring plants. Below-ground N transfer from legumes...

  2. Diversidad y distribución de acridios (Orthoptera: Acridoidea en pastizales del sur de la región pampeana, Argentina Diversity and distribution of grasshoppers (Orthoptera: Acridoidea in grasslands of the Southern Pampas region, Argentina

    Directory of Open Access Journals (Sweden)

    Yanina Mariottini

    2013-03-01

    Full Text Available Los acridios son componentes nativos de los pastizales, dichos sistemas han sido modificados debido a la intensificación de las actividades agrícola-ganaderas y por lo tanto se considera importante estudiar las comunidades de acridios asociadas. Se estudió la diversidad y distribución de acridios en el Sur de la región pampeana a través de muestreos realizados en las comunidades vegetales más representativas del partido de Laprida, provincia de Buenos Aires, durante cinco temporadas (2005-2010. Se recolectaron 22 especies. La subfamilia Melanoplinae fue la más diversa (ocho especies. La mayor cantidad de especies se observó en los pastizales nativos (18. La diversidad en los pastizales alterados (1.75±0.096 fue superior (pIn Argentina, the grasslands of Pampas region comprise approximately 15% of the country. As in other grasslands of the world, grasshoppers are among the most important native herbivores. Their economic importance has been recognized in Argentina since the mid to late nineteenth century, since outbreaks of different species have become recurrent phenomena. Therefore, the main objective of this work was to study their diversity and distribution in grasslands of the Southern Pampas region (Laprida county, Buenos Aires province, as one of the most affected areas. The study was conducted during five seasons (2005-10. Sampling sites were represented by the most common plant communities in this area, classified in four categories: native grasslands, disturbed grasslands, implanted pastures and halophilous grasslands. The samplings were conducted from mid-spring to early autumn, with five or six samples per season. We estimated the following population descriptors: species richness (S, eveness (E, dominance (J, and diversity index (H´. In order to evaluate the similitude of the grasshopper communities present in the different plant communities, we used qualitative and quantitative coefficients of similitude. A total of 22

  3. Diversity reduces invasibility in experimental plant communities: the role of plant species

    NARCIS (Netherlands)

    Van Ruijven, J.; De Deyn, G.B.; Berendse, F.

    2003-01-01

    Several studies have presented experimental evidence that diversity reduces invasibility in grassland communities. The interpretation of these results has been disputed recently and it was proposed that sampling effects were responsible for the observed decrease of invasibility with diversity. The

  4. SOWING GRASSLANDS – EFFICIENT SOLUTION FOR ZOOTEHNICAL PRODUCTION

    Directory of Open Access Journals (Sweden)

    VALENTINA OFELIA ROBESCU

    2008-05-01

    Full Text Available Recruitment is critical for the maintenance of plant populations and community diversity, but sexual regeneration is considered to be infrequent in climatically harsh habitats such as sub alpine grasslands. For this reasons it is very important to improve the grassland. In this paper we study the interaction among milk production, fertilizations and flower composition in sub alpine grasslands. The agrochemical indicators are important because they influence the pasture value and at the final the milk production.

  5. Soil microbial community structure is unaltered by plant invasion, vegetation clipping, and nitrogen fertilization in experimental semi-arid grasslands

    Directory of Open Access Journals (Sweden)

    Chelsea J Carey

    2015-05-01

    Full Text Available Global and regional environmental changes often co-occur, creating complex gradients of disturbance on the landscape. Soil microbial communities are an important component of ecosystem response to environmental change, yet little is known about how microbial structure and function respond to multiple disturbances, or whether multiple environmental changes lead to unanticipated interactive effects. Our study used experimental semi-arid grassland plots in a Mediterranean-climate to determine how soil microbial communities in a seasonally variable ecosystem respond to one, two, or three simultaneous environmental changes: exotic plant invasion, plant invasion + vegetation clipping (to simulate common management practices like mowing or livestock grazing, plant invasion + nitrogen (N fertilization, and plant invasion + clipping + N fertilization. We examined microbial community structure 5-6 years after plot establishment via sequencing of >1 million 16S rRNA genes. Abiotic soil properties (soil moisture, temperature, pH, and inorganic N and microbial functioning (nitrification and denitrification potentials were also measured and showed treatment-induced shifts, including altered NO3- availability, temperature, and nitrification potential. Despite these changes, bacterial and archaeal communities showed little variation in composition and diversity across treatments. Even communities in plots exposed to three interacting environmental changes were similar to those in restored native grassland plots. Historical exposure to large seasonal and inter-annual variations in key soil properties, in addition to prior site cultivation, may select for a functionally plastic or largely dormant microbial community, resulting in a microbial community that is structurally robust to single and multiple environmental changes.

  6. Enhancing the diversity of breeding invertebrates within field margins of intensively managed grassland: Effects of alternative management practices.

    Science.gov (United States)

    Fritch, Rochelle A; Sheridan, Helen; Finn, John A; McCormack, Stephen; Ó hUallacháin, Daire

    2017-11-01

    Severe declines in biodiversity have been well documented for many taxonomic groups due to intensification of agricultural practices. Establishment and appropriate management of arable field margins can improve the diversity and abundance of invertebrate groups; however, there is much less research on field margins within grassland systems. Three grassland field margin treatments (fencing off the existing vegetation "fenced"; fencing with rotavation and natural regeneration "rotavated" and; fencing with rotavation and seeding "seeded") were compared to a grazed control in the adjacent intensively managed pasture. Invertebrates were sampled using emergence traps to investigate species breeding and overwintering within the margins. Using a manipulation experiment, we tested whether the removal of grazing pressure and nutrient inputs would increase the abundance and richness of breeding invertebrates within grassland field margins. We also tested whether field margin establishment treatments, with their different vegetation communities, would change the abundance and richness of breeding invertebrates in the field margins. Exclusion of grazing and nutrient inputs led to increased abundance and richness in nearly all invertebrate groups that we sampled. However, there were more complex effects of field margin establishment treatment on the abundance and richness of invertebrate taxa. Each of the three establishment treatments supported a distinct invertebrate community. The removal of grazing from grassland field margins provided a greater range of overwintering/breeding habitat for invertebrates. We demonstrate the capacity of field margin establishment to increase the abundance and richness in nearly all invertebrate groups in study plots that were located on previously more depauperate areas of intensively managed grassland. These results from grassland field margins provide evidence to support practical actions that can inform Greening (Pillar 1) and agri

  7. The Effect of Re-Planting Trees on Soil Microbial Communities in a Wildfire-Induced Subalpine Grassland

    Directory of Open Access Journals (Sweden)

    Ed-Haun Chang

    2017-10-01

    Full Text Available Wildfire often causes tremendous changes in ecosystems, particularly in subalpine and alpine areas, which are vulnerable due to severe climate conditions such as cold temperature and strong wind. This study aimed to clarify the effect of tree re-planting on ecosystem services such as the soil microbial community after several decades. We compared the re-planted forest and grassland with the mature forest as a reference in terms of soil microbial biomass C and N (Cmic and Nmic, enzyme activities, phospholipid fatty acids (PLFA composition, and denaturing gradient gel electrophoresis (DGGE. The Cmic and Nmic did not differ among the grassland, re-planted forest and mature forest soil; however, ratios of Cmic/Corg and Nmic/Ntot decreased from the grassland to re-planted forest and mature forest soil. The total PLFAs and those attributed to bacteria and Gram-positive and Gram-negative bacteria did not differ between the re-planted forest and grassland soil. Principle component analysis of the PLFA content separated the grassland from re-planted forest and mature forest soil. Similarly, DGGE analysis revealed changes in both bacterial and fungal community structures with changes in vegetation. Our results suggest that the microbial community structure changes with the re-planting of trees after a fire event in this subalpine area. Recovery of the soil microbial community to the original state in a fire-damaged site in a subalpine area may require decades, even under a re-planted forest.

  8. Abundance and diversity of CO2-fixing bacteria in grassland soils close to natural carbon dioxide springs.

    Science.gov (United States)

    Videmsek, Urska; Hagn, Alexandra; Suhadolc, Marjetka; Radl, Viviane; Knicker, Heike; Schloter, Michael; Vodnik, Dominik

    2009-07-01

    Gaseous conditions at natural CO2 springs (mofettes) affect many processes in these unique ecosystems. While the response of plants to extreme and fluctuating CO2 concentrations ([CO2]) is relatively well documented, little is known on microbial life in mofette soil. Therefore, it was the aim of this study to investigate the abundance and diversity of CO2-fixing bacteria in grassland soils in different distances to a natural carbon dioxide spring. Samples of the same soil type were collected from the Stavesinci mofette, a natural CO2 spring which is known for very pure CO2 emissions, at different distances from the CO2 releasing vents, at locations that clearly differed in soil CO2 efflux (from 12.5 to over 200 micromol CO2 m(-2) s(-1) yearly average). Bulk and rhizospheric soil samples were included into analyses. The microbial response was followed by a molecular analysis of cbbL genes, encoding for the large subunit of RubisCO, a carboxylase which is of crucial importance for C assimilation in chemolitoautotrophic microbes. In all samples analyzed, the "red-like" type of cbbL genes could be detected. In contrast, the "green-like" type of cbbL could not be measured by the applied technique. Surprisingly, a reduction of "red-like" cbbL genes copies was observed in bulk soil and rhizosphere samples from the sites with the highest CO2 concentrations. Furthermore, the diversity pattern of "red-like" cbbL genes changed depending on the CO(2) regime. This indicates that only a part of the autotrophic CO2-fixing microbes could adapt to the very high CO2 concentrations and adverse life conditions that are governed by mofette gaseous regime.

  9. Impacts of weather on long-term patterns of plant richness and diversity vary with location and management.

    Science.gov (United States)

    Jonas, Jayne L; Buhl, Deborah A; Symstad, Amy J

    2015-09-01

    Better understanding the influence of precipitation and temperature on plant assemblages is needed to predict the effects of climate change. Many studies have examined the relationship between plant productivity and weather (primarily precipitation), but few have directly assessed the relationship between plant richness or diversity and weather despite their increased use as metrics of ecosystem condition. We focus on the grasslands of central North America, which are characterized by high temporal climatic variability. Over the next 100 years, these grasslands are predicted to experience further increased variability in growing season precipitation, as well as increased temperatures, due to global climate change. We assess the portion of interannual variability of richness and diversity explained by weather, how relationships between these metrics and weather vary among plant assemblages, and which aspects of weather best explain temporal variability. We used an information-theoretic approach to assess relationships between long-term plant richness and diversity patterns and a priori weather covariates using six data sets from four grasslands. Weather explained up to 49% and 63% of interannual variability in total plant species richness and diversity, respectively. However, richness and diversity responses to specific weather variables varied both among sites and among experimental treatments within sites. In general, we found many instances in which temperature was of equal or greater importance as precipitation, as well as evidence of the importance of lagged effects and precipitation or temperature variability. Although precipitation has been shown to be a key driver of productivity in grasslands, our results indicate that increasing temperatures alone, without substantial changes in precipitation patterns, could have measurable effects on Great Plains grassland plant assemblages and biodiversity metrics. Our results also suggest that richness and diversity

  10. Diversity effects on root length production and loss in an experimental grassland community

    NARCIS (Netherlands)

    Mommer, L.; Padilla, F.M.; Ruijven, van J.; Caluwe, de H.; Smit-Tiekstra, A.E.; Berendse, F.; Kroon, de H.

    2015-01-01

    Advances in root ecology have revealed that root standing biomass is higher in species-rich plant communities than in species-poor communities. Currently, we do not know whether this below-ground diversity effect is the result of enhanced root production or reduced root mortality or both, which is

  11. Diverse Effects of a Seven-Year Experimental Grassland Fragmentation on Major Invertebrate Groups.

    Science.gov (United States)

    Braschler, Brigitte; Baur, Bruno

    2016-01-01

    Habitat fragmentation is a major driver of biodiversity loss, but observed effects vary and may depend on the group examined. Time since fragmentation may explain some differences between taxonomical groups, as some species and thus species composition respond with a delay to changes in their environment. Impacts of drivers of global change may thus be underestimated in short-term studies. In our study we experimentally fragmented nutrient-poor dry calcareous grasslands and studied the response of species richness, individual density and species composition of various groups of invertebrates (gastropods, ants, ground beetles, rove beetles, orthoptera, spiders, woodlice) in 12 small (1.5 m * 1.5 m) and 12 large (4.5 m * 4.5 m) fragments and their corresponding control plots after 7 years. We further examined responses to fragmentation in relation to body size and habitat preferences. Responses to fragmentation varied between taxonomical groups. While spider species richness and individual density were lower in fragments, the opposite was true for an orthopteran species and woodlice. Species composition and β-diversity differed between fragments and control plots for some groups. However, the interaction treatment*plot size was rarely significant. Species with high occupancy rates in undisturbed control plots responded more negatively to the fragmentation, while species with large body size were relatively more abundant in fragments in some groups. No effect of the fragmentation was found for ants, which may have the longest lag times because of long-lived colonies. However, relationships between abundance and the species' preferences for environmental factors affected by edge effects indicate that ant diversity too may be affected in the longer-term. Our results show the importance of considering different groups in conservation management in times of widespread fragmentation of landscapes. While species richness may respond slowly, changes in abundance related to

  12. Diverse Effects of a Seven-Year Experimental Grassland Fragmentation on Major Invertebrate Groups.

    Directory of Open Access Journals (Sweden)

    Brigitte Braschler

    Full Text Available Habitat fragmentation is a major driver of biodiversity loss, but observed effects vary and may depend on the group examined. Time since fragmentation may explain some differences between taxonomical groups, as some species and thus species composition respond with a delay to changes in their environment. Impacts of drivers of global change may thus be underestimated in short-term studies. In our study we experimentally fragmented nutrient-poor dry calcareous grasslands and studied the response of species richness, individual density and species composition of various groups of invertebrates (gastropods, ants, ground beetles, rove beetles, orthoptera, spiders, woodlice in 12 small (1.5 m * 1.5 m and 12 large (4.5 m * 4.5 m fragments and their corresponding control plots after 7 years. We further examined responses to fragmentation in relation to body size and habitat preferences. Responses to fragmentation varied between taxonomical groups. While spider species richness and individual density were lower in fragments, the opposite was true for an orthopteran species and woodlice. Species composition and β-diversity differed between fragments and control plots for some groups. However, the interaction treatment*plot size was rarely significant. Species with high occupancy rates in undisturbed control plots responded more negatively to the fragmentation, while species with large body size were relatively more abundant in fragments in some groups. No effect of the fragmentation was found for ants, which may have the longest lag times because of long-lived colonies. However, relationships between abundance and the species' preferences for environmental factors affected by edge effects indicate that ant diversity too may be affected in the longer-term. Our results show the importance of considering different groups in conservation management in times of widespread fragmentation of landscapes. While species richness may respond slowly, changes in

  13. Small mammals as indicators of cryptic plant species diversity in the central Chilean plant endemicity hotspot

    Directory of Open Access Journals (Sweden)

    Meredith Root-Bernstein

    2014-12-01

    Full Text Available Indicator species could help to compensate for a shortfall of knowledge about the diversity and distributions of undersampled and cryptic species. This paper provides background knowledge about the ecological interactions that affect and are affected by herbaceous diversity in central Chile, as part of the indicator species selection process. We focus on the ecosystem engineering role of small mammals, primarily the degu Octodon degus. We also consider the interacting effects of shrubs, trees, avian activity, livestock, slope, and soil quality on herbaceous communities in central Chile. We sampled herbaceous diversity on a private landholding characterized by a mosaic of savanna, grassland and matorral, across a range of degu disturbance intensities. We find that the strongest factors affecting endemic herbaceous diversity are density of degu runways, shrub cover and avian activity. Our results show that the degu, a charismatic and easily identifiable and countable species, could be used as an indicator species to aid potential conservation actions such as private protected area uptake. We map areas in central Chile where degus may indicate endemic plant diversity. This area is larger than expected, and suggests that significant areas of endemic plant communities may still exist, and should be identified and protected. Keywords: Cryptic species, Diversity, Endemic, Indicator species, Octodon degus, Plant

  14. Soil Seed Bank and Plant Community Development in Passive Restoration of Degraded Sandy Grasslands

    Directory of Open Access Journals (Sweden)

    Renhui Miao

    2016-06-01

    Full Text Available To evaluate the efficacy of passive restoration on soil seed bank and vegetation recovery, we measured the species composition and density of the soil seed bank, as well as the species composition, density, coverage, and height of the extant vegetation in sites passively restored for 0, 4, 7, and 12 years (S0, S4, S7, and S12 in a degraded grassland in desert land. Compared with S0, three more species in the soil seed bank at depths of 0–30 cm and one more plant species in the community was detected in S12. Seed density within the topsoil (0–5 cm was five times higher in S12 than that in S0. Plant densities in S7 and S12 were triple and quadruple than that in S0. Plant coverage was increased by 1.5 times (S4, double (S7, and triple (S12 compared with S0. Sørensen’s index of similarity in species composition between the soil seed bank and the plant community were high (0.43–0.63, but it was lower in short-term restoration sites (S4 and S7 than that in no and long-term restoration sites (S0 and S12. The soil seed bank recovered more slowly than the plant community under passive restoration. Passive restoration is a useful method to recover the soil seed bank and vegetation in degraded grasslands.

  15. Plant assemblage composition and soil P concentration differentially affect communities of AM and total fungi in a semi-arid grassland.

    Science.gov (United States)

    Klabi, Rim; Bell, Terrence H; Hamel, Chantal; Iwaasa, Alan; Schellenberg, Mike; Raies, Aly; St-Arnaud, Marc

    2015-01-01

    Adding inorganic P- and N-fixing legumes to semi-arid grasslands can increase forage yield, but soil nutrient concentrations and plant cover may also interact to modify soil fungal populations, impacting short- and long-term forage production. We tested the effect of plant assemblage (seven native grasses, seven native grasses + the domesticated N-fixing legume Medicago sativa, seven native grasses + the native N-fixing legume Dalea purpurea or the introduced grass Bromus biebersteinii + M. sativa) and soil P concentration (addition of 0 or 200 P2O5 kg ha(-1) at sowing) on the diversity and community structure of arbuscular mycorrhizal (AM) fungi and total fungi over two consecutive years, using 454-pyrosequencing of 18S rDNA and ITS amplicons. Treatment effects were stronger in the wet year (2008) than the dry year (2009). The presence of an N-fixing legume with native grasses generally increased AM fungal diversity, while the interaction between soil P concentration and plant assemblage modified total fungal community structure in 2008. Excluding interannual variations, which are likely driven by moisture and plant productivity, AM fungal communities in semi-arid grasslands appear to be primarily affected by plant assemblage composition, while the composition of other fungi is more closely linked to soil P. © FEMS 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Leaf bacterial diversity mediates plant diversity and ecosystem function relationships.

    Science.gov (United States)

    Laforest-Lapointe, Isabelle; Paquette, Alain; Messier, Christian; Kembel, Steven W

    2017-06-01

    Research on biodiversity and ecosystem functioning has demonstrated links between plant diversity and ecosystem functions such as productivity. At other trophic levels, the plant microbiome has been shown to influence host plant fitness and function, and host-associated microbes have been proposed to influence ecosystem function through their role in defining the extended phenotype of host organisms However, the importance of the plant microbiome for ecosystem function has not been quantified in the context of the known importance of plant diversity and traits. Here, using a tree biodiversity-ecosystem functioning experiment, we provide strong support for the hypothesis that leaf bacterial diversity is positively linked to ecosystem productivity, even after accounting for the role of plant diversity. Our results also show that host species identity, functional identity and functional diversity are the main determinants of leaf bacterial community structure and diversity. Our study provides evidence of a positive correlation between plant-associated microbial diversity and terrestrial ecosystem productivity, and a new mechanism by which models of biodiversity-ecosystem functioning relationships can be improved.

  17. How does pedogenesis drive plant diversity?

    Science.gov (United States)

    Laliberté, Etienne; Grace, James B.; Huston, Michael A.; Lambers, Hans; Teste, François P.; Turner, Benjamin L.; Wardle, David A.

    2013-01-01

    Some of the most species-rich plant communities occur on ancient, strongly weathered soils, whereas those on recently developed soils tend to be less diverse. Mechanisms underlying this well-known pattern, however, remain unresolved. Here, we present a conceptual model describing alternative mechanisms by which pedogenesis (the process of soil formation) might drive plant diversity. We suggest that long-term soil chronosequences offer great, yet largely untapped, potential as 'natural experiments' to determine edaphic controls over plant diversity. Finally, we discuss how our conceptual model can be evaluated quantitatively using structural equation modeling to advance multivariate theories about the determinants of local plant diversity. This should help us to understand broader-scale diversity patterns, such as the latitudinal gradient of plant diversity.

  18. Soil communities promote temporal stability and species asynchrony in experimental grassland communities

    NARCIS (Netherlands)

    Pellkofer, Sarah; Van Der Heijden, Marcel G A; Schmid, Bernhard; Wagg, Cameron

    2016-01-01

    Background Over the past two decades many studies have demonstrated that plant species diversity promotes primary productivity and stability in grassland ecosystems. Additionally, soil community characteristics have also been shown to influence the productivity and composition of plant communities,

  19. Herbivory and eutrophication mediate grassland plant nutrient responses across a global climatic gradient

    Science.gov (United States)

    Anderson, T. Michael; Griffith, Daniel M.; Grace, James B.; Lind, Eric M.; Adler, Peter B.; Biederman, Lori A.; Blumenthal, Dana M.; Daleo, Pedro; Firn, Jennifer; Hagenah, Nicole; Harpole, W. Stanley; MacDougall, Andrew S.; McCulley, Rebecca L.; Prober, Suzanne M.; Risch, Anita C.; Sankaran, Mahesh; Schütz, Martin; Seabloom, Eric W.; Stevens, Carly J.; Sullivan, Lauren; Wragg, Peter; Borer, Elizabeth T.

    2018-01-01

    Plant stoichiometry, the relative concentration of elements, is a key regulator of ecosystem functioning and is also being altered by human activities. In this paper we sought to understand the global drivers of plant stoichiometry and compare the relative contribution of climatic vs. anthropogenic effects. We addressed this goal by measuring plant elemental (C, N, P and K) responses to eutrophication and vertebrate herbivore exclusion at eighteen sites on six continents. Across sites, climate and atmospheric N deposition emerged as strong predictors of plot‐level tissue nutrients, mediated by biomass and plant chemistry. Within sites, fertilization increased total plant nutrient pools, but results were contingent on soil fertility and the proportion of grass biomass relative to other functional types. Total plant nutrient pools diverged strongly in response to herbivore exclusion when fertilized; responses were largest in ungrazed plots at low rainfall, whereas herbivore grazing dampened the plant community nutrient responses to fertilization. Our study highlights (1) the importance of climate in determining plant nutrient concentrations mediated through effects on plant biomass, (2) that eutrophication affects grassland nutrient pools via both soil and atmospheric pathways and (3) that interactions among soils, herbivores and eutrophication drive plant nutrient responses at small scales, especially at water‐limited sites.

  20. Genetic diversity within a dominant plant outweighs plant species diversity in structuring an arthropod community.

    Science.gov (United States)

    Crawford, Kerri M; Rudgers, Jennifer A

    2013-05-01

    Plant biodiversity is being lost at a rapid rate. This has spurred much interest in elucidating the consequences of this loss for higher trophic levels. Experimental tests have shown that both plant species diversity and genetic diversity within a plant species can influence arthropod community structure. However, the majority of these studies have been conducted in separate systems, so their relative importance is currently unresolved. Furthermore, potential interactions between the two levels of diversity, which likely occur in natural systems, have not been investigated. To clarify these issues, we conducted three experiments in a freshwater sand dune ecosystem. We (1) independently manipulated plant species diversity, (2) independently manipulated genetic diversity within the dominant plant species, Ammophila breviligulata, and (3) jointly manipulated genetic diversity within the dominant plant and species diversity. We found that genetic diversity within the dominant plant species, Ammophila breviligulata, more strongly influenced arthropod communities than plant species diversity, but this effect was dependent on the presence of other species. In species mixtures, A. breviligulata genetic diversity altered overall arthropod community composition, and arthropod richness and abundance peaked at the highest level of genetic diversity. Positive nonadditive effects of diversity were detected, suggesting that arthropods respond to emergent properties of diverse plant communities. However, in the independent manipulations where A. breviligulata was alone, effects of genetic diversity were weaker, with only arthropod richness responding. In contrast, plant species diversity only influenced arthropods when A. breviligulata was absent, and then only influenced herbivore abundance. In addition to showing that genetic diversity within a dominant plant species can have large effects on arthropod community composition, these results suggest that understanding how species

  1. The interplay of stress and mowing disturbance for the intensity and importance of plant interactions in dry calcareous grasslands.

    Science.gov (United States)

    Maalouf, Jean-Paul; Le Bagousse-Pinguet, Yoann; Marchand, Lilian; Touzard, Blaise; Michalet, Richard

    2012-09-01

    There is still debate regarding the direction and strength of plant interactions under intermediate to high levels of stress. Furthermore, little is known on how disturbance may interact with physical stress in unproductive environments, although recent theory and models have shown that this interplay may induce a collapse of plant interactions and diversity. The few studies assessing such questions have considered the intensity of biotic interactions but not their importance, although this latter concept has been shown to be very useful for understanding the role of interactions in plant communities. The objective of this study was to assess the interplay between stress and disturbance for plant interactions in dry calcareous grasslands. A field experiment was set up in the Dordogne, southern France, where the importance and intensity of biotic interactions undergone by four species were measured along a water stress gradient, and with and without mowing disturbance. The importance and intensity of interactions varied in a very similar way along treatments. Under undisturbed conditions, plant interactions switched from competition to neutral with increasing water stress for three of the four species, whereas the fourth species was not subject to any significant biotic interaction along the gradient. Responses to disturbance were more species-specific; for two species, competition disappeared with mowing in the wettest conditions, whereas for the two other species, competition switched to facilitation with mowing. Finally, there were no significant interactions for any species in the disturbed and driest conditions. At very high levels of stress, plant performances become too weak to allow either competition or facilitation and disturbance may accelerate the collapse of interactions in dry conditions. The results suggest that the importance and direction of interactions are more likely to be positively related in stressful environments.

  2. The relationship between plant species richness and soil pH vanishes with increasing aridity across Eurasian dry grasslands

    Czech Academy of Sciences Publication Activity Database

    Palpurina, S.; Wagner, V.; von Wehrden, H.; Hájek, M.; Horsák, M.; Brinkert, A.; Hölzel, N.; Wesche, K.; Kamp, J.; Hájková, Petra; Danihelka, Jiří; Lustyk, P.; Merunková, K.; Preislerová, Z.; Kočí, M.; Kubešová, S.; Cherosov, M. M.; Ermakov, N.; German, D.; Gogoleva, P. A.; Lashchinsky, N.; Martynenko, V. B.; Chytrý, M.

    2017-01-01

    Roč. 26, č. 4 (2017), s. 425-434 ISSN 1466-822X Institutional support: RVO:67985939 Keywords : diversity-environment relationship * dry grassland * precipitation * soil pH Subject RIV: EH - Ecology, Behaviour OBOR OECD: Ecology Impact factor: 6.045, year: 2016

  3. Controls upon microbial accessibility to soil organic matter following woody plant encroachment into grasslands

    Science.gov (United States)

    Creamer, C. A.; Boutton, T. W.; Filley, T. R.

    2009-12-01

    Woody plant encroachment (WPE) into savannas and grasslands is a global phenomenon that alters soil organic matter (SOM) dynamics through changes in litter quality and quantity, soil structure, microbial ecology, and soil hydrology. To elucidate the controls upon microbial accessibility to SOM, bulk soils from a chronosequence of progressive WPE into native grasslands at the Texas A&M Agricultural Experimental Station La Copita Research Area were incubated for one year. The quantity and stable carbon isotope composition of respired CO2, plant biopolymer chemistry in SOM, and microbial community structure were tracked. Respiration rates declined steadily over the course of the experiment with 15-25% of the total CO2 respired released in the first month of incubation. Between 8 and 18% of the total carbon was mineralized to CO2 throughout the incubation. After day 84 a significantly (p evidence of enhanced carbon stabilization in these respiration experiments. In fact, a greater proportion of total carbon was lost from the soil of mature woody stands than from young stands, suggesting carbon accumulation observed with WPE may be due to greater input rates or microbial dynamics not captured in the laboratory incubation. A cluster approximately 34 years in age represents a transition point in WPE where respiration dynamics become distinct between grassland and wooded elements. By day 84 of the incubation CO2 respired from all soils was depleted with respect to bulk SOM (1.5 to 5‰) and this pattern remained for the rest of the incubation. As the depletion of CO2 relative to bulk SOM was observed in grassland and cluster soils, we hypothesized the depleted signature resulted from the utilization of depleted biopolymers, specifically lignin, cutin and suberin, as hypothesized by others. Quantitative and isotopic comparisons of these monomers prior to and following the incubation will determine if selective compound utilization is a reason for this depletion. The results

  4. [Soil catalase activity of main plant communities in Leymus chinensis grassland in northeast China].

    Science.gov (United States)

    Lu, Ping; Guo, Jixun; Zhu, Li

    2002-06-01

    The seasonal dynamics of soil catalase activity of three different plants communities in Leymus chinensis grassland in northeast China were in a parabolas shape. The seasonal variation of Chloris virgata community was greater than those of Leymus chinensis community and Puccinellia tenuiflora community, and "seed effect" might be the main reason. The correlation between the activity of soil catalase in different soil layers and environmental factors were analyzed. The results showed that the activity of soil catalase was decreased gradually with depth of soil layer. The activity of soil catalase was closely correlated with rainfall and air temperature, and it was affected by soil temperature, soil moisture, and their interactions. The correlation between the activity and aboveground vegetation was very significant, and the growing condition of plant communities could be reflected by the activity of soil catalase.

  5. Effects of ecological compensation meadows on arthropod diversity in adjacent intensively managed grassland

    NARCIS (Netherlands)

    Albrecht, M.; Duelli, P.; Obrist, M.K.; Müller, C.; Schüpbach, B.; Kleijn, D.; Schmid, B.

    2010-01-01

    An important goal of ecological compensation areas (ECAs) is to increase biodiversity in adjacent intensively managed farmland and the agricultural landscape at large. We tested whether this goal can be achieved in the case of the agri-environmental restoration scheme implemented for Swiss grassland

  6. The Balkan wet grassland vegetation: a prerequisite to better understanding of European habitat diversity

    Czech Academy of Sciences Publication Activity Database

    Hájek, Michal; Hájková, Petra; Sopotlieva, D.; Apostolova, I.; Velev, N.

    2008-01-01

    Roč. 195, č. 2 (2008), s. 197-213 ISSN 1385-0237 Grant - others:GA AV ČR(CZ) KJB6163302 Institutional research plan: CEZ:AV0Z60050516 Keywords : climate * vegetation * grasslands Subject RIV: EF - Botanics Impact factor: 1.730, year: 2008

  7. A comunidade de abelhas (Hymenoptera, Apidae s. l. em uma área restrita de campo natural no Parque Estadual de Vila Velha, Paraná: diversidade, fenologia e fontes florais de alimento The bee community (Hymenoptera, Apidae s. l. in a restricted area of native grassland in the Vila Velha State Park, Paraná: diversity, phenology and food plants

    Directory of Open Access Journals (Sweden)

    Rodrigo B. Gonçalves

    2005-12-01

    Full Text Available Coletas sistemáticas de abelhas em uma área restrita no Parque Estadual de Vila Velha, Paraná, no período de outubro de 2002 a outubro de 2003, resultaram em 1552 espécimes pertencentes a 181 espécies. Estas espécies estão distribuídas em 58 gêneros, 24 tribos e 5 subfamílias. As plantas visitadas correspondem a 113 espécies, em 72 gêneros e 38 famílias. Megachile com 20 espécies foi o gênero mais rico e Ceratina o gênero mais abundante dentre os gêneros nativos. Apis mellifera foi a espécie mais coletada, correspondendo a 28% do total de indivíduos, e Bombus atratus foi a espécie mais abundante dentre as abelhas nativas. A riqueza e a equitabilidade nos meses foram variáveis, sendo março o mais rico e novembro o de maior equitabilidade. Apesar de tradicionalmente considerados parte das estepes sulinas, os campos de Vila Velha apresentam uma fauna de abelhas contendo várias espécies típicas de cerrado. O igual número de espécies entre as subfamílias Apinae e Halictinae também apontam para uma peculiaridade de sua fauna. Listas de abelhas e plantas coletadas são apresentadas em anexo.A standardized survey of bees visiting blooming plants in an area covered by natural grasslands in the Vila Velha State Park was conducted from October, 2002, to October, 2003. A total of 1552 specimens belonging to 181 species were collected. These species are distributed in 58 genera, 24 tribes and 5 subfamilies. The visited plants belong to 113 species, in 72 genera and 38 families. Megachile, with 20 species, was the richest genus, while Ceratina was the most abundant native genus. Apis mellifera was the most abundant species, with 28% of all bees collected. Among the native species, Bombus atratus was the most abundant. Monthly richness and equitability varied along the year, March being the richest, and November, the most equitable. Despite being traditionally placed within the southern steppes, the open grasslands of Vila Velha

  8. Ethnomedicinal Plant DIversity in Thailand

    DEFF Research Database (Denmark)

    Phumthum, Methee; Srithi, Kamonnate; Inta, Angkhana

    2018-01-01

    Ethnopharmacological relevance: Plants have provided medicine to humans for thousands of years, and in most parts of the world people still use traditional plant-derived medicine. Knowledge related to traditional use provides an important alternative to unavailable or expensive western medicine i...

  9. Relationship between plant biodiversity and heavy metal bioavailability in grasslands overlying an abandoned mine.

    Science.gov (United States)

    Hernández, A J; Pastor, J

    2008-04-01

    Abandoned metal mines in the Sierra de Guadarrama, Madrid, Spain, are often located in areas of high ecological value. This is true of an abandoned barium mine situated in the heart of a bird sanctuary. Today the area sustains grasslands, interspersed with oakwood formations of Quercus ilex and heywood scrub (Retama sphaerocarpa L.), used by cattle, sheep and wild animals. Our study was designed to establish a relationship between the plant biodiversity of these grasslands and the bioavailability of heavy metals in the topsoil layer of this abandoned mine. We conducted soil chemical analyses and performed a greenhouse evaluation of the effects of different soil heavy metal concentrations on biodiversity. The greenhouse bioassays were run for 6 months using soil samples obtained from the mine polluted with heavy metals (Cu, Zn, Pb and Cd) and from a control pasture. Soil heavy metal and Na concentrations, along with the pH, had intense negative effects on plant biodiversity, as determined through changes in the Shannon index and species richness. Numbers of grasses, legumes, and composites were reduced, whilst other species (including ruderals) were affected to a lesser extent. Zinc had the greatest effect on biodiversity, followed by Cd and Cu. When we compared the sensitivity of the biodiversity indicators to the different metal content variables, pseudototal metal concentrations determined by X-ray fluorescence (XRF) were the most sensitive, followed by available and soluble metal contents. Worse correlations between biodiversity variables and metal variables were shown by pseudototal contents obtained by plasma emission spectroscopy (ICP-OES). Our results highlight the importance of using as many different indicators as possible to reliably assess the response shown by plants to heavy metal soil pollution.

  10. Root-induced decomposer growth and plant N uptake are not positively associated among a set of grassland plants

    DEFF Research Database (Denmark)

    Saj, S.; Mikola, J.; Ekelund, Flemming

    2008-01-01

    It is known that plant species can induce development of different soil decomposer communities and that they differ in their influence on organic matter decomposition and N mineralization in soil. However, no study has so far assessed whether these two observations are related to each other. Base...... that plant traits such as competitive ability for soil mineral N were more important for plant uptake of litter-N than those that directly affected the growth of soil decomposers.......It is known that plant species can induce development of different soil decomposer communities and that they differ in their influence on organic matter decomposition and N mineralization in soil. However, no study has so far assessed whether these two observations are related to each other. Based...... on the hypothesis that root-induced growth of soil decomposers leads to accelerated decomposition of SOM and increased plant N availability in soil, we predicted that (1) among a set of grassland plants the abundance of soil decomposers in the plant rhizosphere is positively associated with plant N uptake from soil...

  11. Urban Power Line Corridors as Novel Habitats for Grassland and Alien Plant Species in South-Western Finland.

    Directory of Open Access Journals (Sweden)

    Jussi Lampinen

    Full Text Available Regularly managed electric power line corridors may provide habitats for both early-successional grassland plant species and disturbance-dependent alien plant species. These habitats are especially important in urban areas, where they can help conserve native grassland species and communities in urban greenspace. However, they can also provide further footholds for potentially invasive alien species that already characterize urban areas. In order to implement power line corridors into urban conservation, it is important to understand which environmental conditions in the corridors favor grassland species and which alien species. Likewise it is important to know whether similar environmental factors in the corridors control the species composition of the two groups. We conducted a vegetation study in a 43 kilometer long urban power line corridor network in south-western Finland, and used generalized linear models and distance-based redundancy analysis to determine which environmental factors best predict the occurrence and composition of grassland and alien plant species in the corridors. The results imply that old corridors on dry soils and steep slopes characterized by a history as open areas and pastures are especially suitable for grassland species. Corridors suitable for alien species, in turn, are characterized by productive soils and abundant light and are surrounded by a dense urban fabric. Factors controlling species composition in the two groups are somewhat correlated, with the most important factors including light abundance, soil moisture, soil calcium concentration and soil productivity. The results have implications for grassland conservation and invasive alien species control in urban areas.

  12. Does introduction of clover in an agricultural grassland affect the food base and functional diversity of Collembola?

    DEFF Research Database (Denmark)

    D'Annibale, Alessandra; Sechi, Valentina; Larsen, Thomas

    2017-01-01

    plots with either perennial ryegrass (Lolium perenne L.), whiteclover (Trifolium repens L.) or a mixture of both in a Danish agricultural grassland 6 and 14 months after establishing the leys (September and May, respectively). Diet preferences were investigated via stable isotope analyses (SIA...... in the white clover than ryegrass plots. Changes in taxa specific density and traits distribution as a response to the C:N ratio of plant material, suggest that plant material quality was the main factor affecting the collembolan community,especially when comparing the two sampling occasions. Functional...... richness decreased under conditions of low quality material. In contrast to our hypothesis, population densities did not increase under mixture treatment and functional richness decreased. Our results suggest that habitat changes, via different plant composition, can affect some functional groups, having...

  13. Impact of Grassland Reseeding, Herbicide spraying and Ploughing on Diversity and Abundance of Soil Arthropods.

    OpenAIRE

    Wei Liu; Wei Liu; Wei Liu; Junling Zhang; Stuart L Norris; Phil Murray

    2016-01-01

    In order to determine the interactive effect of reseeding, herbicide spraying and ploughing on soil fauna communities, we conducted a grassland reseeding experiment combined with pre-reseed management to examine how with the whole reseeding process affects soil faunal composition. Sampling occasions and exact treatments were as follows: 1) before chemical herbicide spray; 2) after spray but before ploughing; 3) after ploughing but before reseeding; and 4) after one year of recovery. Our resul...

  14. Belowground Carbon Allocation and Plant-Microbial Interactions Drive Resistance and Resilience of Mountain Grassland Communities to Drought

    Science.gov (United States)

    Karlowsky, S.; Augusti, A.; Ingrisch, J.; Hasibeder, R.; Lavorel, S.; Bahn, M.; Gleixner, G.

    2016-12-01

    Belowground carbon allocation (BCA) and plant-microbial interactions are crucial for the functioning of terrestrial ecosystems. Recent research suggests that extreme events can have severe effects on these processes but it is unknown how land use intensity potentially modifies their responses. We studied the resistance and resilience of mountain grassland communities to prolonged drought and investigated the role of plant C allocation and soil microbial communities in mediating drought resistance and immediate recovery. In a common garden experiment we exposed monoliths from an abandoned grassland and a hay meadow to an early summer drought. Two independent 13C pulse labeling experiments were conducted, the first during peak drought and the second during the recovery phase. The 13C incorporation was analyzed in above- and belowground plant parts and in phospho- and neutral lipid fatty acids of soil microorganisms. In addition, a 15N label was added at the rewetting to determine plant N uptake. We found that C uptake, BCA and C transfer to soil microorganisms were less strongly reduced by drought in the abandoned grassland than in the meadow. Moreover, drought induced an increase of arbuscular mycorrhiza fungi (AMF) marker in the abandoned grassland. Nevertheless, C uptake and related parameters were quickly recovered and N uptake increased in the meadow during recovery. Unexpectedly, AMF and their C uptake were generally reduced during recovery, while bacteria increased and quickly recovered C uptake, particularly in the meadow. Our results showed a negative relation between high resistance and fast recovery. The more resistant abandoned grassland plant communities seemed to invest more C below ground and into interactions with AMF during drought, likely to access water through their hyphal network. Conversely, meadow communities invested more C from recent photosynthesis into bacterial communities during recovery, obviously to gain more nutrients for regrowth

  15. Elevated CO2 and water addition enhance nitrogen turnover in grassland plants with implications for temporal stability.

    Science.gov (United States)

    Dijkstra, Feike A; Carrillo, Yolima; Blumenthal, Dana M; Mueller, Kevin E; LeCain, Dan R; Morgan, Jack A; Zelikova, Tamara J; Williams, David G; Follett, Ronald F; Pendall, Elise

    2018-05-01

    Temporal variation in soil nitrogen (N) availability affects growth of grassland communities that differ in their use and reuse of N. In a 7-year-long climate change experiment in a semi-arid grassland, the temporal stability of plant biomass production varied with plant N turnover (reliance on externally acquired N relative to internally recycled N). Species with high N turnover were less stable in time compared to species with low N turnover. In contrast, N turnover at the community level was positively associated with asynchrony in biomass production, which in turn increased community temporal stability. Elevated CO 2 and summer irrigation, but not warming, enhanced community N turnover and stability, possibly because treatments promoted greater abundance of species with high N turnover. Our study highlights the importance of plant N turnover for determining the temporal stability of individual species and plant communities affected by climate change. © 2018 John Wiley & Sons Ltd/CNRS.

  16. Grazing damage to plants and gastropod and grasshopper densities in a CO 2-enrichment experiment on calcareous grassland

    Science.gov (United States)

    Ledergerber, Stephan; Thommen, G. Heinrich; Baur, Bruno

    Plant-herbivore interactions may change as atmospheric CO 2 concentrations continue to rise. We examined the effects of elevated atmospheric CO 2 and CO 2-exposure chambers on the grazing damage to plants, and on the abundances of potential herbivores (terrestrial gastropods and grasshoppers) in a calcareous grassland in the Jura mountains of Switzerland (village of Nenzlingen). Individuals of most plant species examined showed slight grazing damage. However, plots with CO 2 enrichment and plots with ambient atmosphere did not differ in the extent of grazing damage. Similarly, plots with CO 2 enrichment and plots with ambient atmosphere did not differ in either gastropod or grasshopper density. Experimental plots with and without chambers did not differ in the number of gastropods. However, the densities of gastropods and grasshoppers and extent of grazing damage to plants were generally lower in the experimental area than in the grassland outside the experimental field.

  17. plant diversity, vegetation structure and relationship between plant

    African Journals Online (AJOL)

    Preferred Customer

    patterns of plant diversity were evaluated on the basis of species richness as the total number ... threatened due to habitat conversion, loss, and ... the conservation of highland forest bird species .... the economic and social welfare of the rural.

  18. Rapid top-down regulation of plant C:N:P stoichiometry by grasshoppers in an Inner Mongolia grassland ecosystem.

    Science.gov (United States)

    Zhang, Guangming; Han, Xingguo; Elser, James J

    2011-05-01

    Understanding how food web interactions alter the processing of limiting nutrient elements is an important goal of ecosystem ecology. An experiment manipulating densities of the grasshopper Oedaleus asiaticus was performed to assess top-down effects of grasshoppers on C:N:P stoichiometry of plants and soil in a grassland ecosystem in Inner Mongolia (China). With increased grasshopper feeding, plant biomass declined fourfold, litter abundance increased 30%, and the plant community became dominated by non-host plant taxa. Plant stoichiometric response depended on whether or not the plant was a grasshopper host food species: C:N and C:P ratios increased with increasing grasshopper density (GD) for host plants but decreased in non-host plants. These data suggest either a direct transfer of grasshopper-recycled nutrients from host to non-host plants or a release of non-host plants from nutrient competition with heavily grazed host plants. Litterfall C:N and C:P decreased across moderate levels of grasshopper density but no effects on C:N:P stoichiometry in the surface soil were observed, possibly due to the short experimental period. Our observations of divergent C:N:P stoichiometric response among plant species highlight the important role of grasshopper herbivory in regulating plant community structure and nutrient cycling in grassland ecosystems.

  19. Subsurface earthworm casts can be important soil microsites specifically influencing the growth of grassland plants.

    Science.gov (United States)

    Zaller, Johann G; Wechselberger, Katharina F; Gorfer, Markus; Hann, Patrick; Frank, Thomas; Wanek, Wolfgang; Drapela, Thomas

    Earthworms (Annelida: Oligochaeta) deposit several tons per hectare of casts enriched in nutrients and/or arbuscular mycorrhizal fungi (AMF) and create a spatial and temporal soil heterogeneity that can play a role in structuring plant communities. However, while we begin to understand the role of surface casts, it is still unclear to what extent plants utilize subsurface casts. We conducted a greenhouse experiment using large mesocosms (volume 45 l) to test whether (1) soil microsites consisting of earthworm casts with or without AMF (four Glomus taxa) affect the biomass production of 11 grassland plant species comprising the three functional groups grasses, forbs, and legumes, (2) different ecological groups of earthworms (soil dwellers- Aporrectodea caliginosa vs. vertical burrowers- Lumbricus terrestris ) alter potential influences of soil microsites (i.e., four earthworms × two subsurface microsites × two AMF treatments). Soil microsites were artificially inserted in a 25-cm depth, and afterwards, plant species were sown in a regular pattern; the experiment ran for 6 months. Our results show that minute amounts of subsurface casts (0.89 g kg -1 soil) decreased the shoot and root production of forbs and legumes, but not that of grasses. The presence of earthworms reduced root biomass of grasses only. Our data also suggest that subsurface casts provide microsites from which root AMF colonization can start. Ecological groups of earthworms did not differ in their effects on plant production or AMF distribution. Taken together, these findings suggest that subsurface earthworm casts might play a role in structuring plant communities by specifically affecting the growth of certain functional groups of plants.

  20. Habitats as complex odour environments: how does plant diversity affect herbivore and parasitoid orientation?

    Directory of Open Access Journals (Sweden)

    Nicole Wäschke

    Full Text Available Plant diversity is known to affect success of host location by pest insects, but its effect on olfactory orientation of non-pest insect species has hardly been addressed. First, we tested in laboratory experiments the hypothesis that non-host plants, which increase odour complexity in habitats, affect the host location ability of herbivores and parasitoids. Furthermore, we recorded field data of plant diversity in addition to herbivore and parasitoid abundance at 77 grassland sites in three different regions in Germany in order to elucidate whether our laboratory results reflect the field situation. As a model system we used the herb Plantago lanceolata, the herbivorous weevil Mecinus pascuorum, and its larval parasitoid Mesopolobus incultus. The laboratory bioassays revealed that both the herbivorous weevil and its larval parasitoid can locate their host plant and host via olfactory cues even in the presence of non-host odour. In a newly established two-circle olfactometer, the weeviĺs capability to detect host plant odour was not affected by odours from non-host plants. However, addition of non-host plant odours to host plant odour enhanced the weeviĺs foraging activity. The parasitoid was attracted by a combination of host plant and host volatiles in both the absence and presence of non-host plant volatiles in a Y-tube olfactometer. In dual choice tests the parasitoid preferred the blend of host plant and host volatiles over its combination with non-host plant volatiles. In the field, no indication was found that high plant diversity disturbs host (plant location by the weevil and its parasitoid. In contrast, plant diversity was positively correlated with weevil abundance, whereas parasitoid abundance was independent of plant diversity. Therefore, we conclude that weevils and parasitoids showed the sensory capacity to successfully cope with complex vegetation odours when searching for hosts.

  1. Relationship between plant diversity and spatial stability of ...

    African Journals Online (AJOL)

    Theory predicts that greater biodiversity is expected to enhance stability of ecosystem. In field experiment, we created some diversity-level assemblages by removing functional groups across two grassland ecosystems and evaluated the responses of spatial stability of aboveground net primary productivity (ANPP) to varying ...

  2. Distribution of dominant arbuscular mycorrhizal fungi among five plant species in undisturbed vegetation of a coastal grassland

    DEFF Research Database (Denmark)

    Holtgrewe-Stukenbrock, Eva; Rosendahl, Søren

    2005-01-01

    Most plant species in mixed grassland vegetation are colonized by arbuscular mycorrhizal (AM) fungi. Previous studies have reported differences in host preferences among AM fungi, although the fungi are known to lack host specificity. In the present study, the distribution of phylogenetic groups...... of AM fungi belonging to a clade of Glomus species was studied in five plant species from a coastal grassland in Denmark. The occurrence of the fungi was determined by PCR analyses of fungal large subunit ribosomal DNA sequences amplified from root fragments using a specific primer set. The results...... showed that the dominant Glomus species were able to colonize all the studied plant species, supporting the view that the AM fungi represent a large underground interconnecting mycelial network....

  3. Plant effects on soil carbon storage and turnover in montane beech (Nothofagus) forest and adjacent tussock grassland in New Zealand

    International Nuclear Information System (INIS)

    Tate, K.R.; Scott, N.A.; Ross, D.J.; Parshotam, A.; Claydon, J.J.

    2000-01-01

    Land cover is a critical factor that influences, and is influenced by, atmospheric chemistry and potential climate changes. As considerable uncertainty exists about the effects of differences in land cover on below-ground carbon (C) storage, we have compared soil C contents and turnover at adjacent, unmanaged, indigenous forest (Nothofagus solandri var. cliffortiodes) and grassland (Chionochloa pallens) sites near the timberline in the same climo-edaphic environment in Craigieburn Forest Park, Canterbury, New Zealand. Total soil profile C was 13% higher in the grassland than in the forest ( 19.9 v. 16.7 kg/m 2 ), and based on bomb 14 C measurements, the differences mainly resulted from more recalcitrant soil C in the grassland (5.3 v. 3.0 kg/m 2 ). Estimated annual net primary production was about 0.4 kg C/m 2 for the forest and 0.5 kg C/m 2 for the grassland; estimated annual root production was about 0.2 and 0.4 kg C/m 2 , respectively. In situ soil surface CO 2 -C production was similar in the grassland and the forest. The accumulation of recalcitrant soil C was unrelated to differences in mineral weathering or soil texture, but was apparently enhanced by greater soil water retention in the grassland ecosystem. Thus, contrary to model (ROTHC) predictions, this soil C fraction could be expected to respond to the effects of climate change on precipitation patterns. Overall, our results suggest that the different patterns of soil C accumulation in these ecosystems have resulted from differences in plant C inputs, soil aluminium, and soil physical characteristics, rather than from differences in soil mineral weathering or texture. Copyright (2000) CSIRO Australia

  4. Grassland biodiversity can pay.

    Science.gov (United States)

    Binder, Seth; Isbell, Forest; Polasky, Stephen; Catford, Jane A; Tilman, David

    2018-04-10

    The biodiversity-ecosystem functioning (BEF) literature provides strong evidence of the biophysical basis for the potential profitability of greater diversity but does not address questions of optimal management. BEF studies typically focus on the ecosystem outputs produced by randomly assembled communities that only differ in their biodiversity levels, measured by indices such as species richness. Landholders, however, do not randomly select species to plant; they choose particular species that collectively maximize profits. As such, their interest is not in comparing the average performance of randomly assembled communities at each level of biodiversity but rather comparing the best-performing communities at each diversity level. Assessing the best-performing mixture requires detailed accounting of species' identities and relative abundances. It also requires accounting for the financial cost of individual species' seeds, and the economic value of changes in the quality, quantity, and variability of the species' collective output-something that existing multifunctionality indices fail to do. This study presents an assessment approach that integrates the relevant factors into a single, coherent framework. It uses ecological production functions to inform an economic model consistent with the utility-maximizing decisions of a potentially risk-averse private landowner. We demonstrate the salience and applicability of the framework using data from an experimental grassland to estimate production relationships for hay and carbon storage. For that case, our results suggest that even a risk-neutral, profit-maximizing landowner would favor a highly diverse mix of species, with optimal species richness falling between the low levels currently found in commercial grasslands and the high levels found in natural grasslands.

  5. Ecosystem-scale fluxes in seminatural Pyrenean grasslands: role of annual dynamics of plant functional types

    Science.gov (United States)

    Altimir, Nuria; Ibañez, Mercedes; Elbers, Jan; Rota, Cristina; Arias, Claudia; Carrara, Arnaud; Nogues, Salvador; Sebastia, Maria-Teresa

    2013-04-01

    The net ecosystem exchange (NEE) and the annual C balance of a site are in general modulated by light, temperature and availability of water and other resources to the plants. In grasslands, NEE is expected to depend strongly on the vegetation with a relationship that can be summarized by the above-ground biomass, its amount and dynamics. Any factor controlling the amount of green biomass is expected to have a strong impact on the short-term NEE, such as amount of solar radiation, water availability and grazing pressure. These controls are modulated differently depending on the plant functional type enduring them. Furthermore, as different guilds follow different functional strategies for optimization of the resources, they also present different patterns of change in their capacities such as photosynthetic fixation, belowground C allocation, and C loss via respiration. We examined these relationships at several semi-natural pastures to determine how the seasonal distribution of plant functional types is detected in the short-term ecosystem exchange and what role it plays. We have looked into these patterns to determine the general variation of key processes and whether different temporal patterns arise between different guilds. The study sites are in the Pyrenees, on the mountain pastures of La Bertolina, Alinyà, and Castellar at 1300, 1700, 1900 m a.s.l. respectively. We performed ecosystem-scale flux measurements by means of micrometeorologial stations combined with a thorough description of the vegetation including below- and above-ground biomass and leaf area as well as monitoring of natural abundance of C isotopes, discriminated by plant functional types. We present here the results of the study.

  6. Methods for evaluation of the invasibility of grasslands

    DEFF Research Database (Denmark)

    Strandberg, M. T.; Strandberg, B.; Erneberg, M.

    The number of non-native plant species in Danish dry acidic grasslands was positively correlated with the cover of disturbance in the form of molehills, anthills, mouseholes and erosion due trampling or digging by large herbivores/livestock. Natural disturbance in acidic grassland ecosystems...... not grazed by livestock therefore is important for the occurrence of non-native species, and probably also for the occurrence of a high native floristic diversity....

  7. Plant parasite control and soil fauna diversity.

    Science.gov (United States)

    Lavelle, Patrick; Blouin, Manuel; Boyer, Johnny; Cadet, Patrice; Laffray, Daniel; Pham-Thi, Anh-Thu; Reversat, Georges; Settle, William; Zuily, Yasmine

    2004-07-01

    The use of pesticides to control plant parasites and diseases has generated serious problems of public health and environmental quality, leading to the promotion of alternative Integrated Pest Management strategies that tend to rely more on natural processes and the active participation of farmers as observers and experimenters in their own fields. We present three case studies that point at different options provided by locally available populations of soil organisms, the maintenance of diverse populations of pests or increased resistance of plants to pest attacks by their interactions with earthworms and other useful soil organisms. These examples demonstrate the diversity of options offered by the non-planned agro-ecosystem diversity in pest control and the need to identify management options that maintain this biodiversity.

  8. Influence of land use intensity on the diversity of ammonia oxidizing bacteria and archaea in soils from grassland ecosystems.

    Science.gov (United States)

    Meyer, Annabel; Focks, Andreas; Radl, Viviane; Welzl, Gerhard; Schöning, Ingo; Schloter, Michael

    2014-01-01

    In the present study, the influence of the land use intensity on the diversity of ammonia oxidizing bacteria (AOB) and archaea (AOA) in soils from different grassland ecosystems has been investigated in spring and summer of the season (April and July). Diversity of AOA and AOB was studied by TRFLP fingerprinting of amoA amplicons. The diversity from AOB was low and dominated by a peak that could be assigned to Nitrosospira. The obtained profiles for AOB were very stable and neither influenced by the land use intensity nor by the time point of sampling. In contrast, the obtained patterns for AOA were more complex although one peak that could be assigned to Nitrosopumilus was dominating all profiles independent from the land use intensity and the sampling time point. Overall, the AOA profiles were much more dynamic than those of AOB and responded clearly to the land use intensity. An influence of the sampling time point was again not visible. Whereas AOB profiles were clearly linked to potential nitrification rates in soil, major TRFs from AOA were negatively correlated to DOC and ammonium availability and not related to potential nitrification rates.

  9. Scale and diversity following manipulation of productivity and disturbance in Californian coastal grasslands

    DEFF Research Database (Denmark)

    Sandel, Brody Steven; Corbin, Jeff

    2012-01-01

    the responses of species–area relationships to experimental manipulations are more consistent than richness at any single scale. Location Northern Californian coastal grasslands. Methods We applied disturbance and productivity reduction treatments over 4 yr at two sites. We assessed changes in species richness...... known. We ask whether the response of species richness to experimental manipulation of productivity and disturbance varies across small spatial scales (0.016–4 m2). We show that species–area relationships are well suited to summarize cross-scale responses of species richness, and ask whether...... over five grain sizes, encompassing a 256-fold range of plot size. This allowed us to construct a species–area relationship for each experimental plot in each sampling year. We used the slope of the species–area relationship to summarize changes in species richness across multiple spatial scales...

  10. Species richness of arbuscular mycorrhizal fungi: associations with grassland plant richness and biomass

    Czech Academy of Sciences Publication Activity Database

    Hiiesalu, Inga; Pärtel, M.; Davison, J.; Gerhold, P.; Metsis, M.; Moora, M.; Öpik, M.; Vasar, M.; Zobel, M.; Wilson, S. D.

    2014-01-01

    Roč. 203, č. 1 (2014), s. 233-244 ISSN 1469-8137 R&D Projects: GA MŠk EE2.3.30.0048 Institutional research plan: CEZ:AV0Z60050516 Institutional support: RVO:67985939 Keywords : belowground plant richness * diversity * productivity Subject RIV: EH - Ecology, Behaviour Impact factor: 6.545, year: 2013

  11. Local variation in conspecific plant density influences plant-soil feedback in a natural grassland

    NARCIS (Netherlands)

    Kos, M.; Veendrick, Johan; Bezemer, T.M.

    2013-01-01

    Several studies have argued that under field conditions plant–soil feedback may be related to the local density of a plant species, but plant–soil feedback is often studied by comparing conspecific and heterospecific soils or by using mixed soil samples collected from different locations and plant

  12. Impact of Grassland Reseeding, Herbicide Spraying and Ploughing on Diversity and Abundance of Soil Arthropods

    Science.gov (United States)

    Liu, Wei; Zhang, Junling; Norris, Stuart L.; Murray, Philip J.

    2016-01-01

    In order to determine the interactive effect of reseeding, herbicide spraying and ploughing on soil fauna communities, we conducted a grassland reseeding experiment combined with pre-reseed management to examine how with the whole reseeding process affects soil faunal composition. Sampling occasions and exact treatments were as follows: (1) before chemical herbicide spray; (2) after spray but before ploughing; (3) after ploughing but before reseeding; and (4) after 1 year of recovery. Our results demonstrate that, Acari and Collembola were the two soil fauna taxa with the highest abundance and accounted for around 96% of the relative total abundance among the various managements. Herbicide application tended to increase soil invertebrate abundance. Conversely, subsequent ploughing significantly reduced soil invertebrate abundance and had an obvious negative effect on soil primary and secondary decomposers, which were mainly due to the variations of Acari (especially Oribatida) and Coleoptera group abundance. Moreover, reseeding also reduced the individual number of the groups mentioned above, and favored those predators with a larger body size and individual weight. After 1 year recovery, Collembola abundance recovered to the pre-treatment levels, while with Arthropod and Acari groups were still fluctuating. PMID:27555863

  13. Impact of Grassland Reseeding, Herbicide Spraying and Ploughing on Diversity and Abundance of Soil Arthropods.

    Science.gov (United States)

    Liu, Wei; Zhang, Junling; Norris, Stuart L; Murray, Philip J

    2016-01-01

    In order to determine the interactive effect of reseeding, herbicide spraying and ploughing on soil fauna communities, we conducted a grassland reseeding experiment combined with pre-reseed management to examine how with the whole reseeding process affects soil faunal composition. Sampling occasions and exact treatments were as follows: (1) before chemical herbicide spray; (2) after spray but before ploughing; (3) after ploughing but before reseeding; and (4) after 1 year of recovery. Our results demonstrate that, Acari and Collembola were the two soil fauna taxa with the highest abundance and accounted for around 96% of the relative total abundance among the various managements. Herbicide application tended to increase soil invertebrate abundance. Conversely, subsequent ploughing significantly reduced soil invertebrate abundance and had an obvious negative effect on soil primary and secondary decomposers, which were mainly due to the variations of Acari (especially Oribatida) and Coleoptera group abundance. Moreover, reseeding also reduced the individual number of the groups mentioned above, and favored those predators with a larger body size and individual weight. After 1 year recovery, Collembola abundance recovered to the pre-treatment levels, while with Arthropod and Acari groups were still fluctuating.

  14. Impact of Grassland Reseeding, Herbicide spraying and Ploughing on Diversity and Abundance of Soil Arthropods.

    Directory of Open Access Journals (Sweden)

    Wei Liu

    2016-08-01

    Full Text Available In order to determine the interactive effect of reseeding, herbicide spraying and ploughing on soil fauna communities, we conducted a grassland reseeding experiment combined with pre-reseed management to examine how with the whole reseeding process affects soil faunal composition. Sampling occasions and exact treatments were as follows: 1 before chemical herbicide spray; 2 after spray but before ploughing; 3 after ploughing but before reseeding; and 4 after one year of recovery. Our results demonstrate that, Acari and Collembola were the two soil fauna taxa with the highest abundance and accounted for around 96% of the relative total abundance among the various managements. Herbicide application tended to increase soil invertebrate abundance. Conversely, subsequent ploughing significantly reduced soil invertebrate abundance and had an obvious negative effect on soil primary and secondary decomposers, which were mainly due to the variations of Acari (especially Oribatida and Coleoptera group abundance. Moreover, reseeding also reduced the individual number of the groups mentioned above, and favoured those predators with a larger body size and individual weight. After one year recovery, Collembola abundance recovered to the pre-treatment levels, while with Arthropod and Acari groups were still fluctuating.

  15. Diversity and distribution of autotrophic microbial community along environmental gradients in grassland soils on the Tibetan Plateau.

    Science.gov (United States)

    Guo, Guangxia; Kong, Weidong; Liu, Jinbo; Zhao, Jingxue; Du, Haodong; Zhang, Xianzhou; Xia, Pinhua

    2015-10-01

    Soil microbial autotrophs play a significant role in CO2 fixation in terrestrial ecosystem, particularly in vegetation-constrained ecosystems with environmental stresses, such as the Tibetan Plateau characterized by low temperature and high UV. However, soil microbial autotrophic communities and their driving factors remain less appreciated. We investigated the structure and shift of microbial autotrophic communities and their driving factors along an elevation gradient (4400-5100 m above sea level) in alpine grassland soils on the Tibetan Plateau. The autotrophic microbial communities were characterized by quantitative PCR, terminal restriction fragment length polymorphism (T-RFLP), and cloning/sequencing of cbbL genes, encoding the large subunit for the CO2 fixation protein ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO). High cbbL gene abundance and high RubisCO enzyme activity were observed and both significantly increased with increasing elevations. Path analysis identified that soil RubisCO enzyme causally originated from microbial autotrophs, and its activity was indirectly driven by soil water content, temperature, and NH4 (+) content. Soil autotrophic microbial community structure dramatically shifted along the elevation and was jointly driven by soil temperature, water content, nutrients, and plant types. The autotrophic microbial communities were dominated by bacterial autotrophs, which were affiliated with Rhizobiales, Burkholderiales, and Actinomycetales. These autotrophs have been well documented to degrade organic matters; thus, metabolic versatility could be a key strategy for microbial autotrophs to survive in the harsh environments. Our results demonstrated high abundance of microbial autotrophs and high CO2 fixation potential in alpine grassland soils and provided a novel model to identify dominant drivers of soil microbial communities and their ecological functions.

  16. Plant diversity and plant identity influence Fusarium communities in soil.

    Science.gov (United States)

    LeBlanc, Nicholas; Kinkel, Linda; Kistler, H Corby

    2017-01-01

    Fusarium communities play important functional roles in soil and in plants as pathogens, endophytes, and saprotrophs. This study tests how rhizosphere Fusarium communities may vary with plant species, changes in the diversity of the surrounding plant community, and soil physiochemical characteristics. Fusarium communities in soil associated with the roots of two perennial prairie plant species maintained as monocultures or growing within polyculture plant communities were characterized using targeted metagenomics. Amplicon libraries targeting the RPB2 locus were generated from rhizosphere soil DNAs and sequenced using pyrosequencing. Sequences were clustered into operational taxonomic units (OTUs) and assigned a taxonomy using the Evolutionary Placement Algorithm. Fusarium community composition was differentiated between monoculture and polyculture plant communities, and by plant species in monoculture, but not in polyculture. Taxonomic classification of the Fusarium OTUs showed a predominance of F. tricinctum and F. oxysporum as well of the presence of a clade previously only found in the Southern Hemisphere. Total Fusarium richness was not affected by changes in plant community richness or correlated with soil physiochemical characteristics. However, OTU richness within two predominant phylogenetic lineages within the genus was positively or negatively correlated with soil physiochemical characteristics among samples within each lineage. This work shows that plant species, plant community richness, and soil physiochemical characteristics may all influence the composition and richness of Fusarium communities in soil.

  17. Study of Plant Species Composition of Grasslands in Mugla Village Region (Western Rhodopes, South Bulgaria

    Directory of Open Access Journals (Sweden)

    Plamen S. Stoyanov

    2016-06-01

    Full Text Available The study presents data on the diversity of grass species in the region of the village of Mugla (the Western Rhodopes. One hundred forty-one species of higher plants belonging to 40families were registered. (Apiaceae, Aspleniaceae, Asteraceae, Boraginaceae, Brassicaceae,Campanulaceae, Caryophyllaceae, Cistaceae, Cyperaceae, Dipsacaceae, Equisetaceae, Ericaceae,Euphorbiaceae, Fabaceae, Gentianaceae, Geraniaceae, Gesneriaceae, Hypericaceae, Juncaceae,Lamiaceae, Lemnaceae, Liliaceae, Linaceae, Menyanthaceae, Oleacea, Onagraceae, Orchidaceae,Parnassiaceae, Plantaginaceae, Plumbaginaceae, Poaceae, Polygalaceae, Primulaceae,Ranunculaceae, Rosaceae, Rubiaceae, Saxifragaceae, Scrophulariaceae, Valerianaceae andViolaceae. Their conservation status was presented, as well as medicinal plants.

  18. Diverse urban plantings managed with sufficient resource availability can increase plant productivity and arthropod diversity

    Directory of Open Access Journals (Sweden)

    Jonathon eMuller

    2014-10-01

    Full Text Available Buildings structures and surfaces are explicitly being used to grow plants, and these ‘urban plantings’ are typically designed for aesthetic value. Urban plantings also have the potential to contribute significant ‘ecological values’ by increasing urban habitat for animals such as arthropods and by increasing plant productivity. In this study, we evaluated how the provision of these additional ecological values is affected by plant species richness; the availability of essential resources for plants, such as water, light, space; and soil characteristics. We sampled 33 plantings located on the exterior of three buildings in the urban centre of Brisbane, Australia (subtropical climatic region over two, six week sampling periods characterised by different temperature and rainfall conditions. Plant cover was estimated as a surrogate for productivity as destructive sampling of biomass was not possible. We measured weekly light levels (photosynthetically active radiation, plant CO2 assimilation, soil CO2 efflux, and arthropod diversity.Differences in plant cover were best explained by a three-way interaction of plant species richness, management water regime and sampling period. As the richness of plant species increased in a planter, productivity and total arthropod richness also increased significantly - likely due to greater habitat heterogeneity and quality. Overall we found urban plantings can provide additional ecological values if essential resources are maintained within a planter such as water, light and soil temperature. Diverse urban plantings that are managed with these principles in mind can contribute to the attraction of diverse arthropod communities, and lead to increased plant productivity within a dense urban context.

  19. Effects of plant species identity, diversity and soil fertility on biodegradation of phenanthrene in soil

    Energy Technology Data Exchange (ETDEWEB)

    Oyelami, Ayodeji O; Okere, Uchechukwu V; Orwin, Kate H; De Deyn, Gerlinde B; Jones, Kevin C [Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ (United Kingdom); Semple, Kirk T., E-mail: k.semple@lancaster.ac.uk [Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ (United Kingdom)

    2013-02-15

    The work presented in this paper investigated the effects of plant species composition, species diversity and soil fertility on biodegradation of {sup 14}C-phenanthrene in soil. The two soils used were of contrasting fertility, taken from long term unfertilised and fertilised grassland, showing differences in total nitrogen content (%N). Plant communities consisted of six different plant species: two grasses, two forbs, and two legume species, and ranged in species richness from 1 to 6. The degradation of {sup 14}C-phenanthrene was evaluated by measuring indigenous catabolic activity following the addition of the contaminant to soil using respirometry. Soil fertility was a driving factor in all aspects of {sup 14}C-phenanthrene degradation; lag phase, maximum rates and total extents of {sup 14}C-phenanthrene mineralisation were higher in improved soils compared to unimproved soils. Plant identity had a significant effect on the lag phase and extents of mineralisation. Soil fertility was the major influence also on abundance of microbial communities. - Highlights: Black-Right-Pointing-Pointer Two grassland soils of contrasting fertility showing differences in total nitrogen content (%N) were used in this study. Black-Right-Pointing-Pointer The effects of individual plant species and plant diversity on mineralisation of {sup 14}C-phenanthrene in soil were investigated. Black-Right-Pointing-Pointer Soil fertility was the major influence on mineralisation of {sup 14}C-phenanthrene, and abundance of microbial community. Black-Right-Pointing-Pointer The presence of a specific plant plays a role in the extent of mineralisation of phenanthrene in soil. - Soil management was the main driver for the mineralisation of {sup 14}C-phenanthrene in soil.

  20. Effects of plant species identity, diversity and soil fertility on biodegradation of phenanthrene in soil

    International Nuclear Information System (INIS)

    Oyelami, Ayodeji O.; Okere, Uchechukwu V.; Orwin, Kate H.; De Deyn, Gerlinde B.; Jones, Kevin C.; Semple, Kirk T.

    2013-01-01

    The work presented in this paper investigated the effects of plant species composition, species diversity and soil fertility on biodegradation of 14 C-phenanthrene in soil. The two soils used were of contrasting fertility, taken from long term unfertilised and fertilised grassland, showing differences in total nitrogen content (%N). Plant communities consisted of six different plant species: two grasses, two forbs, and two legume species, and ranged in species richness from 1 to 6. The degradation of 14 C-phenanthrene was evaluated by measuring indigenous catabolic activity following the addition of the contaminant to soil using respirometry. Soil fertility was a driving factor in all aspects of 14 C-phenanthrene degradation; lag phase, maximum rates and total extents of 14 C-phenanthrene mineralisation were higher in improved soils compared to unimproved soils. Plant identity had a significant effect on the lag phase and extents of mineralisation. Soil fertility was the major influence also on abundance of microbial communities. - Highlights: ► Two grassland soils of contrasting fertility showing differences in total nitrogen content (%N) were used in this study. ► The effects of individual plant species and plant diversity on mineralisation of 14 C-phenanthrene in soil were investigated. ► Soil fertility was the major influence on mineralisation of 14 C-phenanthrene, and abundance of microbial community. ► The presence of a specific plant plays a role in the extent of mineralisation of phenanthrene in soil. - Soil management was the main driver for the mineralisation of 14 C-phenanthrene in soil.

  1. Realistic diversity loss and variation in soil depth independently affect community-level plant nitrogen use.

    Science.gov (United States)

    Selmants, Paul C; Zavaleta, Erika S; Wolf, Amelia A

    2014-01-01

    Numerous experiments have demonstrated that diverse plant communities use nitrogen (N) more completely and efficiently, with implications for how species conservation efforts might influence N cycling and retention in terrestrial ecosystems. However, most such experiments have randomly manipulated species richness and minimized environmental heterogeneity, two design aspects that may reduce applicability to real ecosystems. Here we present results from an experiment directly comparing how realistic and randomized plant species losses affect plant N use across a gradient of soil depth in a native-dominated serpentine grassland in California. We found that the strength of the species richness effect on plant N use did not increase with soil depth in either the realistic or randomized species loss scenarios, indicating that the increased vertical heterogeneity conferred by deeper soils did not lead to greater complementarity among species in this ecosystem. Realistic species losses significantly reduced plant N uptake and altered N-use efficiency, while randomized species losses had no effect on plant N use. Increasing soil depth positively affected plant N uptake in both loss order scenarios but had a weaker effect on plant N use than did realistic species losses. Our results illustrate that realistic species losses can have functional consequences that differ distinctly from randomized losses, and that species diversity effects can be independent of and outweigh those of environmental heterogeneity on ecosystem functioning. Our findings also support the value of conservation efforts aimed at maintaining biodiversity to help buffer ecosystems against increasing anthropogenic N loading.

  2. Taxonomical and functional diversity turnover in Mediterranean grasslands: interactions between grazing, habitat type and rainfall

    Czech Academy of Sciences Publication Activity Database

    Carmona, C. P.; Azcárate, F. M.; de Bello, Francesco; Ollero, H. S.; Lepš, Jan; Peco, B.

    2012-01-01

    Roč. 49, č. 5 (2012), 1084-1093 ISSN 0021-8901 Institutional research plan: CEZ:AV0Z60050516; CEZ:AV0Z50070508 Institutional support: RVO:67985939 ; RVO:60077344 Keywords : Dehesa * diversity partitioning * functional redundancy * grazing management Subject RIV: EH - Ecology, Behaviour Impact factor: 4.740, year: 2012

  3. Effect of degradation intensity on grassland ecosystem services in the alpine region of Qinghai-Tibetan Plateau, China.

    Directory of Open Access Journals (Sweden)

    Lu Wen

    Full Text Available The deterioration of alpine grassland has great impact on ecosystem services in the alpine region of Qinghai-Tibetan Plateau. However, the effect of grassland degradation on ecosystem services and the consequence of grassland deterioration on economic loss still remains a mystery. So, in this study, we assessed four types of ecosystem services following the Millennium Ecosystem Assessment classification, along a degradation gradient. Five sites of alpine grassland at different levels of degradation were investigated in Guoluo Prefecture of Qinghai Province, China. The species composition, aboveground biomass, soil total organic carbon (TOC, and soil total nitrogen (TN were tested to evaluate major ecological services of the alpine grassland. We estimated the value of primary production, carbon storage, nitrogen recycling, and plant diversity. The results show the ecosystem services of alpine grassland varied along the degradation gradient. The ecosystem services of degraded grassland (moderate, heavy and severe were all significantly lower than non-degraded grassland. Interestingly, the lightly degraded grassland provided more economic benefit from carbon maintenance and nutrient sequestration compared to non-degraded. Due to the destruction of the alpine grassland, the economic loss associated with decrease of biomass in 2008 was $198/ha. Until 2008, the economic loss caused by carbon emissions and nitrogen loss on severely degraded grassland was up to $8 033/ha and $13 315/ha, respectively. Urgent actions are required to maintain or promote the ecosystem services of alpine grassland in the Qinghai-Tibetan Plateau.

  4. Effect of degradation intensity on grassland ecosystem services in the alpine region of Qinghai-Tibetan Plateau, China.

    Science.gov (United States)

    Wen, Lu; Dong, Shikui; Li, Yuanyuan; Li, Xiaoyan; Shi, Jianjun; Wang, Yanlong; Liu, Demei; Ma, Yushou

    2013-01-01

    The deterioration of alpine grassland has great impact on ecosystem services in the alpine region of Qinghai-Tibetan Plateau. However, the effect of grassland degradation on ecosystem services and the consequence of grassland deterioration on economic loss still remains a mystery. So, in this study, we assessed four types of ecosystem services following the Millennium Ecosystem Assessment classification, along a degradation gradient. Five sites of alpine grassland at different levels of degradation were investigated in Guoluo Prefecture of Qinghai Province, China. The species composition, aboveground biomass, soil total organic carbon (TOC), and soil total nitrogen (TN) were tested to evaluate major ecological services of the alpine grassland. We estimated the value of primary production, carbon storage, nitrogen recycling, and plant diversity. The results show the ecosystem services of alpine grassland varied along the degradation gradient. The ecosystem services of degraded grassland (moderate, heavy and severe) were all significantly lower than non-degraded grassland. Interestingly, the lightly degraded grassland provided more economic benefit from carbon maintenance and nutrient sequestration compared to non-degraded. Due to the destruction of the alpine grassland, the economic loss associated with decrease of biomass in 2008 was $198/ha. Until 2008, the economic loss caused by carbon emissions and nitrogen loss on severely degraded grassland was up to $8 033/ha and $13 315/ha, respectively. Urgent actions are required to maintain or promote the ecosystem services of alpine grassland in the Qinghai-Tibetan Plateau.

  5. Assessing the Roles of Fire Frequency and Precipitation in Determining Woody Plant Expansion in Central U.S. Grasslands

    Science.gov (United States)

    Brunsell, N. A.; Van Vleck, E. S.; Nosshi, M.; Ratajczak, Z.; Nippert, J. B.

    2017-10-01

    Woody plant expansion into grasslands and savannas is occurring and accelerating worldwide and often impacts ecosystem processes. Understanding and predicting the environmental and ecological impacts of encroachment has led to a variety of methodologies for assessing its onset, transition, and stability, generally relying on dynamical systems approaches. Here we continue this general line of investigation to facilitate the understanding of the roles of precipitation frequency and intensity and fire frequency on the conversion of grasslands to woody-dominated systems focusing on the central United States. A low-dimensional model with stochastic precipitation and fire disturbance is introduced to examine the complex interactions between precipitation and fire as mechanisms that may suppress or facilitate increases in woody cover. By using Lyapunov exponents, we are able to ascertain the relative control exerted on woody encroachment through these mechanisms. Our results indicate that precipitation frequency is a more important control on woody encroachment than the intensity of individual precipitation events. Fire, however, exerts a much more dominant impact on the limitation of encroachment over the range of precipitation variability considered here. These results indicate that fire management may be an effective strategy to slow the onset of woody species into grasslands. While climate change might predict a reduced potential for woody encroachment in the near future, these results indicate a reduction in woody fraction may be unlikely when considering anthropogenic fire suppression.

  6. The interactive effects of fire and diversity on short-term responses of ecosystem processes in experimental mediterranean grasslands.

    Science.gov (United States)

    Dimitrakopoulos, Panayiotis G; Siamantziouras, Akis-Stavros D; Galanidis, Alexandros; Mprezetou, Irene; Troumbis, Andreas Y

    2006-06-01

    We conducted a field experiment using constructed communities to test whether species richness contributed to the maintenance of ecosystem processes under fire disturbance. We studied the effects of diversity components (i.e., species richness and species composition) upon productivity, structural traits of vegetation, decomposition rates, and soil nutrients between burnt and unburnt experimental Mediterranean grassland communities. Our results demonstrated that fire and species richness had interactive effects on aboveground biomass production and canopy structure components. Fire increased biomass production of the highest-richness communities. The effects of fire on aboveground biomass production at different levels of species richness were derived from changes in both vertical and horizontal canopy structure of the communities. The most species-rich communities appeared to be more resistant to fire in relation to species-poor ones, due to both compositional and richness effects. Interactive effects of fire and species richness were not important for belowground processes. Decomposition rates increased with species richness, related in part to increased levels of canopy structure traits. Fire increased soil nutrients and long-term decomposition rate. Our results provide evidence that composition within richness levels had often larger effects on the stability of aboveground ecosystem processes in the face of fire disturbance than species richness per se.

  7. Topography- and management-mediated resource gradients maintain rare and common plant diversity around paddy terraces.

    Science.gov (United States)

    Uematsu, Yuta; Ushimaru, Atushi

    2013-09-01

    Examining the causes of interspecific differences in susceptibility to bidirectional land-use changes (land abandonment and use-intensification) is important for understanding the mechanisms of global biodiversity loss in agricultural landscapes. We tested the hypothesis that rare (endangered) plant species prefer wet and oligotrophic areas within topography- and management-mediated resource (soil water content, nutrient, and aboveground biomass) gradients, making them more susceptible to both abandonment and use-intensification of agricultural lands. We demonstrated that topography and management practices generated resource gradients in seminatural grasslands around traditional paddy terraces. Terraced topography and management practices produced a soil moisture gradient within levees and a nutrient gradient within paddy terraces. Both total and rare species diversity increased with soil water content. Total species diversity increased in more eutrophied areas with low aboveground biomass, whereas rare species diversity was high under oligotrophic conditions. Rare and common species were differentially distributed along the human-induced nutrient gradient, with rare species preferring wet, nutrient-poor environments in the agricultural landscapes studied. We suggest that conservation efforts should concentrate on wet, nutrient-poor areas within such landscapes, which can be located easily using land-use and topography maps. This strategy would reduce the costs of finding and conserving rare grassland species in a given agricultural landscape.

  8. Relationships between Plant Diversity and the Abundance and α-Diversity of Predatory Ground Beetles (Coleoptera: Carabidae) in a Mature Asian Temperate Forest Ecosystem

    Science.gov (United States)

    Zou, Yi; Sang, Weiguo; Bai, Fan; Axmacher, Jan Christoph

    2013-01-01

    A positive relationship between plant diversity and both abundance and diversity of predatory arthropods is postulated by the Enemies Hypothesis, a central ecological top-down control hypothesis. It has been supported by experimental studies and investigations of agricultural and grassland ecosystems, while evidence from more complex mature forest ecosystems is limited. Our study was conducted on Changbai Mountain in one of the last remaining large pristine temperate forest environments in China. We used predatory ground beetles (Coleoptera: Carabidae) as target taxon to establish the relationship between phytodiversity and their activity abundance and diversity. Results showed that elevation was the only variable included in both models predicting carabid activity abundance and α-diversity. Shrub diversity was negatively and herb diversity positively correlated with beetle abundance, while shrub diversity was positively correlated with beetle α-diversity. Within the different forest types, a negative relationship between plant diversity and carabid activity abundance was observed, which stands in direct contrast to the Enemies Hypothesis. Furthermore, plant species density did not predict carabid α-diversity. In addition, the density of herbs, which is commonly believed to influence carabid movement, had little impact on the beetle activity abundance recorded on Changbai Mountain. Our study indicates that in a relatively large and heterogeneous mature forest area, relationships between plant and carabid diversity are driven by variations in environmental factors linked with altitudinal change. In addition, traditional top-down control theories that are suitable in explaining diversity patterns in ecosystems of low diversity appear to play a much less pronounced role in highly complex forest ecosystems. PMID:24376582

  9. Relationships between plant diversity and the abundance and α-diversity of predatory ground beetles (Coleoptera: Carabidae) in a mature Asian temperate forest ecosystem.

    Science.gov (United States)

    Zou, Yi; Sang, Weiguo; Bai, Fan; Axmacher, Jan Christoph

    2013-01-01

    A positive relationship between plant diversity and both abundance and diversity of predatory arthropods is postulated by the Enemies Hypothesis, a central ecological top-down control hypothesis. It has been supported by experimental studies and investigations of agricultural and grassland ecosystems, while evidence from more complex mature forest ecosystems is limited. Our study was conducted on Changbai Mountain in one of the last remaining large pristine temperate forest environments in China. We used predatory ground beetles (Coleoptera: Carabidae) as target taxon to establish the relationship between phytodiversity and their activity abundance and diversity. Results showed that elevation was the only variable included in both models predicting carabid activity abundance and α-diversity. Shrub diversity was negatively and herb diversity positively correlated with beetle abundance, while shrub diversity was positively correlated with beetle α-diversity. Within the different forest types, a negative relationship between plant diversity and carabid activity abundance was observed, which stands in direct contrast to the Enemies Hypothesis. Furthermore, plant species density did not predict carabid α-diversity. In addition, the density of herbs, which is commonly believed to influence carabid movement, had little impact on the beetle activity abundance recorded on Changbai Mountain. Our study indicates that in a relatively large and heterogeneous mature forest area, relationships between plant and carabid diversity are driven by variations in environmental factors linked with altitudinal change. In addition, traditional top-down control theories that are suitable in explaining diversity patterns in ecosystems of low diversity appear to play a much less pronounced role in highly complex forest ecosystems.

  10. Relationships between plant diversity and the abundance and α-diversity of predatory ground beetles (Coleoptera: Carabidae in a mature Asian temperate forest ecosystem.

    Directory of Open Access Journals (Sweden)

    Yi Zou

    Full Text Available A positive relationship between plant diversity and both abundance and diversity of predatory arthropods is postulated by the Enemies Hypothesis, a central ecological top-down control hypothesis. It has been supported by experimental studies and investigations of agricultural and grassland ecosystems, while evidence from more complex mature forest ecosystems is limited. Our study was conducted on Changbai Mountain in one of the last remaining large pristine temperate forest environments in China. We used predatory ground beetles (Coleoptera: Carabidae as target taxon to establish the relationship between phytodiversity and their activity abundance and diversity. Results showed that elevation was the only variable included in both models predicting carabid activity abundance and α-diversity. Shrub diversity was negatively and herb diversity positively correlated with beetle abundance, while shrub diversity was positively correlated with beetle α-diversity. Within the different forest types, a negative relationship between plant diversity and carabid activity abundance was observed, which stands in direct contrast to the Enemies Hypothesis. Furthermore, plant species density did not predict carabid α-diversity. In addition, the density of herbs, which is commonly believed to influence carabid movement, had little impact on the beetle activity abundance recorded on Changbai Mountain. Our study indicates that in a relatively large and heterogeneous mature forest area, relationships between plant and carabid diversity are driven by variations in environmental factors linked with altitudinal change. In addition, traditional top-down control theories that are suitable in explaining diversity patterns in ecosystems of low diversity appear to play a much less pronounced role in highly complex forest ecosystems.

  11. Comparison of remote sensing and plant trait-based modelling to predict ecosystem services in subalpine grasslands

    Czech Academy of Sciences Publication Activity Database

    Homolová, Lucie; Schaepman, M. E.; Lamarque, L.; Clevers, J.G.P.W.; de Bello, Francesco; Thuiller, W.; Lavorel, S.

    2014-01-01

    Roč. 5, č. 8 (2014), č. článku 100. ISSN 2150-8925 Institutional support: RVO:67179843 ; RVO:67985939 Keywords : land-use change * leaf chlorophyll content * imaging spectroscopy * water-content * aviris data * spectral reflectance * hyperspectral data * species richness * area index * vegetation * aisa * biomass * ecosystem properties * ecosystem services * linear regression * remote sensing * spatial heterogeneity * subalpine grasslands Subject RIV: EH - Ecology, Behaviour; EF - Botanics (BU-J) OBOR OECD: Remote sensing; Plant sciences, botany (BU-J) Impact factor: 2.255, year: 2014

  12. Grassland birds wintering at U.S. Navy facilities in southern Texas

    Science.gov (United States)

    Woodin, Marc C.; Skoruppa, Mary Kay; Bryan, Pearce D.; Ruddy, Amanda J.; Hickman, Graham C.

    2010-01-01

    Grassland birds have undergone widespread decline throughout North America during the past several decades. Causes of this decline include habitat loss and fragmentation because of conversion of grasslands to cropland, afforestation in the East, brush and shrub invasion in the Southwest and western United States, and planting of exotic grass species to enhance forage production. A large number of exotic plant species, including grasses, have been introduced in North America, but most research on the effects of these invasions on birds has been limited to breeding birds, primarily those in northern latitudes. Research on the effects of exotic grasses on birds in winter has been extremely limited.This is the first study in southern Texas to examine and compare winter bird responses to native and exotic grasslands. This study was conducted during a period of six years (2003–2009) on United States Navy facilities in southern Texas including Naval Air Station–Corpus Christi, Naval Air Station–Kingsville, Naval Auxiliary Landing Field Waldron, Naval Auxiliary Landing Field Orange Grove, and Escondido Ranch, all of which contained examples of native grasslands, exotic grasslands, or both. Data from native and exotic grasslands were collected and compared for bird abundance and diversity; ground cover, vegetation density, and floristic diversity; bird and vegetation relationships; diversity of insects and arachnids; and seed abundance and diversity. Effects of management treatments in exotic grasslands were evaluated by comparing numbers and diversity of birds and small mammals in mowed, burned, and control areas.To determine bird abundance and bird species richness, birds were surveyed monthly (December–February) during the winters of 2003–2008 in transects (100 meter × 20 meter) located in native and exotic grasslands distributed at all five U.S. Navy facilities. To compare vegetation in native and exotic grasslands, vegetation characteristics were measured

  13. Disturbance is required for CO2-dependent promotion of woody plant growth in grasslands

    DEFF Research Database (Denmark)

    Loveys, Beth R.; Egerton, John J. G.; Bruhn, Dan

    2010-01-01

    The relative effects of disturbance (here defined as bare soil), competition for edaphic resources, thermal interference and elevated [CO2] on growth of tree seedlings in grasslands were studied under field conditions. Snow gum (Eucalyptus pauciflora Sieb. ex Spreng.) seedlings were grown in open...

  14. Flower resource and land management drives hoverfly communities and bee abundance in seminatural and agricultural grasslands.

    Science.gov (United States)

    Lucas, Andrew; Bull, James C; de Vere, Natasha; Neyland, Penelope J; Forman, Dan W

    2017-10-01

    Pollination is a key ecosystem service, and appropriate management, particularly in agricultural systems, is essential to maintain a diversity of pollinator guilds. However, management recommendations frequently focus on maintaining plant communities, with the assumption that associated invertebrate populations will be sustained. We tested whether plant community, flower resources, and soil moisture would influence hoverfly (Syrphidae) abundance and species richness in floristically-rich seminatural and floristically impoverished agricultural grassland communities in Wales (U.K.) and compared these to two Hymenoptera genera, Bombus, and Lasioglossum . Interactions between environmental variables were tested using generalized linear modeling, and hoverfly community composition examined using canonical correspondence analysis. There was no difference in hoverfly abundance, species richness, or bee abundance, between grassland types. There was a positive association between hoverfly abundance, species richness, and flower abundance in unimproved grasslands. However, this was not evident in agriculturally improved grassland, possibly reflecting intrinsically low flower resource in these habitats, or the presence of plant species with low or relatively inaccessible nectar resources. There was no association between soil moisture content and hoverfly abundance or species richness. Hoverfly community composition was influenced by agricultural improvement and the amount of flower resource. Hoverfly species with semiaquatic larvae were associated with both seminatural and agricultural wet grasslands, possibly because of localized larval habitat. Despite the absence of differences in hoverfly abundance and species richness, distinct hoverfly communities are associated with marshy grasslands, agriculturally improved marshy grasslands, and unimproved dry grasslands, but not with improved dry grasslands. Grassland plant community cannot be used as a proxy for pollinator

  15. Grassland Sustainability

    Science.gov (United States)

    Deborah U. Potter; Paulette L. Ford

    2004-01-01

    In this chapter we discuss grassland sustainability in the Southwest, grassland management for sustainability, national and local criteria and indicators of sustainable grassland ecosystems, and monitoring for sustainability at various scales. Ecological sustainability is defined as: [T]he maintenance or restoration of the composition, structure, and processes of...

  16. Cenozoic plant diversity of Yunnan: A review

    Directory of Open Access Journals (Sweden)

    Yongjiang Huang

    2016-12-01

    Full Text Available Yunnan in southwestern China is renowned for its high plant diversity. To understand how this modern botanical richness formed, it is critical to investigate the past biodiversity throughout the geological time. In this review, we present a summary on plant diversity, floristics and climates in the Cenozoic of Yunnan and document their changes, by compiling published palaeobotanical sources. Our review demonstrates that thus far a total of 386 fossil species of ferns, gymnosperms and angiosperms belonging to 170 genera within 66 families have been reported from the Cenozoic, particularly the Neogene, of Yunnan. Angiosperms display the highest richness represented by 353 species grouped into 155 genera within 60 families, with Fagaceae, Fabaceae, Lauraceae and Juglandaceae being the most diversified. Most of the families and genera recorded as fossils still occur in Yunnan, but seven genera have disappeared, including Berryophyllum, Cedrelospermum, Cedrus, Palaeocarya, Podocarpium, Sequoia and Wataria. The regional extinction of these genera is commonly referred to an aridification of the dry season associated with Asian monsoon development. Floristic analyses indicate that in the late Miocene, Yunnan had three floristic regions: a northern subtropical floristic region in the northeast, a subtropical floristic region in the east, and a tropical floristic region in the southwest. In the late Pliocene, Yunnan saw two kinds of floristic regions: a subalpine floristic region in the northwest, and two subtropical floristic regions separately in the southwest and the eastern center. These floristic concepts are verified by results from our areal type analyses which suggest that in the Miocene southwestern Yunnan supported the most Pantropic elements, while in the Pliocene southwestern Yunnan had abundant Tropical Asia (Indo–Malaysia type and East Asia and North America disjunct type that were absent from northwestern Yunnan. From the late Miocene to

  17. New Pesticidal Diterpenoids from Vellozia gigantea (Velloziaceae, an Endemic Neotropical Plant Living in the Endangered Brazilian Biome Rupestrian Grasslands

    Directory of Open Access Journals (Sweden)

    Mariana C. Ferreira

    2017-01-01

    Full Text Available Vellozia gigantea is a rare, ancient, and endemic neotropical plant present in the Brazilian Rupestrian grasslands. The dichloromethane extract of V. gigantea adventitious roots was phytotoxic against Lactuca sativa, Agrostis stolonifera, and Lemna paucicostata, and showed larvicidal activity against Aedes aegypti. Phytotoxicity bioassay-directed fractionation of the extract revealed one new isopimaradiene, 8(9,15-isopimaradien-1,3,7,11-tetraone, and three new cleistanthane diterpenoids, 7-oxo-8,11,13-cleistanthatrien-3-ol, 3,20-epoxy-7-oxo-8,11,13-cleistanthatrien-3-ol, and 20-nor-3,7-dioxo-1,8,11,13-cleistanthatetraen-10-ol. These new structures are proposed based on interpretation of 1H, 13C, COSY, NOESY, HSQC, and HMBC NMR data. 8(9,15-isopimaradien-1,3,7,11-tetraone was especially phytotoxic with an IC50 value (30 μM comparable to those of commercial herbicides clomazone, EPTC, and naptalam. In addition, 7-oxo-8,11,13-cleistanthatrien-3-ol provided 100% mortality at a concentration of 125 ppm against one-day-old Ae. aegypti larvae. Our results show that ancient and unique plants, like the endangered narrowly endemic neotropical species V. gigantea present in the Rupestrian grasslands, should also be protected because they can be sources of new bioactive compounds.

  18. Seed-bank structure and plant-recruitment conditions regulate the dynamics of a grassland-shrubland Chihuahuan ecotone.

    Science.gov (United States)

    Moreno-de Las Heras, Mariano; Turnbull, Laura; Wainwright, John

    2016-09-01

    Large areas of desert grasslands in the southwestern United States have shifted to sparse shrublands dominated by drought-tolerant woody species over the last 150 yr, accompanied by accelerated soil erosion. An important step toward the understanding of patterns in species dominance and vegetation change at desert grassland-shrubland transitions is the study of environmental limitations imposed by the shrub-encroachment phenomenon on plant establishment. Here, we analyze the structure of soil seed banks, environmental limitations for seed germination (i.e., soil-water availability and temperature), and simulated seedling emergence and early establishment of dominant species (black grama, Bouteloua eriopoda, and creosotebush, Larrea tridentata) across a Chihuahuan grassland-shrubland ecotone (Sevilleta National Wildlife Refuge, New Mexico, USA). Average viable seed density in soils across the ecotone is generally low (200-400 seeds/m 2 ), although is largely concentrated in densely vegetated areas (with peaks up to 800-1,200 seeds/m 2 in vegetated patches). Species composition in the seed bank is strongly affected by shrub encroachment, with seed densities of grass species sharply decreasing in shrub-dominated sites. Environmental conditions for seed germination and seedling emergence are synchronized with the summer monsoon. Soil-moisture conditions for seedling establishment of B. eriopoda take place with a recurrence interval ranging between 5 and 8 yr for grassland and shrubland sites, respectively, and are favored by strong monsoonal precipitation. Limited L. tridentata seed dispersal and a narrow range of rainfall conditions for early seedling establishment (50-100 mm for five to six consecutive weeks) constrain shrub-recruitment pulses to localized and episodic decadal events (9-25 yr recurrence intervals) generally associated with late-summer rainfall. Re-establishment of B. eriopoda in areas now dominated by L. tridentata is strongly limited by the

  19. Non-random co-occurrence of native and exotic plant species in Mediterranean grasslands

    Science.gov (United States)

    de Miguel, José M.; Martín-Forés, Irene; Acosta-Gallo, Belén; del Pozo, Alejandro; Ovalle, Carlos; Sánchez-Jardón, Laura; Castro, Isabel; Casado, Miguel A.

    2016-11-01

    Invasion by exotic species in Mediterranean grasslands has determined assembly patterns of native and introduced species, knowledge of which provides information on the ecological processes underlying these novel communities. We considered grasslands from Spain and Chile. For each country we considered the whole grassland community and we split species into two subsets: in Chile, species were classified as natives or colonizers (i.e. exotics); in Spain, species were classified as exclusives (present in Spain but not in Chile) or colonizers (Spanish natives and exotics into Chile). We used null models and co-occurrence indices calculated in each country for each one of 15 sites distributed along a precipitation gradient and subjected to similar silvopastoral exploitation. We compared values of species co-occurrence between countries and between species subsets (natives/colonizers in Chile; exclusives/colonizers in Spain) within each country and we characterised them according to climatic variables. We hypothesized that: a) the different coexistence time of the species in both regions should give rise to communities presenting a spatial pattern further from random in Spain than in Chile, b) the co-occurrence patterns in the grasslands are affected by mesoclimatic factors in both regions. The patterns of co-occurrence are similar in Spain and Chile, mostly showing a spatial pattern more segregated than expected by random. The colonizer species are more segregated in Spain than in Chile, possibly determined by the longer residence time of the species in the source area than in the invaded one. The segregation of species in Chile is related to water availability, being species less segregated in habitat with greater water deficit; in Spain no relationship with climatic variables was found. After an invasion process, our results suggest that the possible process of alteration of the original Chilean communities has not prevented the assembly between the native and

  20. Impact of soil warming on the plant metabolome of Icelandic grasslands

    Czech Academy of Sciences Publication Activity Database

    Gargallo-Garriga, A.; Ayala-Roque, M.; Sardans, J.; Bartrons, M.; Granda, V.; Sigurdsson, B. D.; Leblans, N. I.W.; Oravec, Michal; Urban, Otmar; Janssens, I. A.; Peñuelas, J.

    2017-01-01

    Roč. 7, č. 3 (2017), č. článku 44. E-ISSN 2218-1989 R&D Projects: GA MŠk(CZ) LM2015061; GA MŠk(CZ) LO1415 Institutional support: RVO:86652079 Keywords : Climate change * Geothermal bedrock channels * Grassland * Iceland * Metabolome * Warming Subject RIV: EH - Ecology, Behaviour OBOR OECD: Environmental sciences (social aspects to be 5.7)

  1. Positive effects of plant species diversity on productivity in the absence of legumes

    NARCIS (Netherlands)

    Ruijven, van J.; Berendse, F.

    2003-01-01

    We investigated the effect of species richness on productivity in randomly assembled grassland communities without legumes. Aboveground biomass increased with increasing species richness and different measures of complementarity showed strong increases with plant species richness. Increasing

  2. Soil stabilization linked to plant diversity and environmental context in coastal wetlands.

    Science.gov (United States)

    Ford, Hilary; Garbutt, Angus; Ladd, Cai; Malarkey, Jonathan; Skov, Martin W

    2016-03-01

    Plants play a pivotal role in soil stabilization, with above-ground vegetation and roots combining to physically protect soil against erosion. It is possible that diverse plant communities boost root biomass, with knock-on positive effects for soil stability, but these relationships are yet to be disentangled. We hypothesize that soil erosion rates fall with increased plant species richness, and test explicitly how closely root biomass is associated with plant diversity. We tested this hypothesis in salt marsh grasslands, dynamic ecosystems with a key role in flood protection. Using step-wise regression, the influences of biotic (e.g. plant diversity) and abiotic variables on root biomass and soil stability were determined for salt marshes with two contrasting soil types: erosion-resistant clay (Essex, southeast UK) and erosion-prone sand (Morecambe Bay, northwest UK). A total of 132 (30-cm depth) cores of natural marsh were extracted and exposed to lateral erosion by water in a re-circulating flume. Soil erosion rates fell with increased plant species richness ( R 2  = 0.55), when richness was modelled as a single explanatory variable, but was more important in erosion-prone ( R 2  = 0.44) than erosion-resistant ( R 2  = 0.18) regions. As plant species richness increased from two to nine species·m -2 , the coefficient of variation in soil erosion rate decreased significantly ( R 2  = 0.92). Plant species richness was a significant predictor of root biomass ( R 2  = 0.22). Step-wise regression showed that five key variables accounted for 80% of variation in soil erosion rate across regions. Clay-silt fraction and soil carbon stock were linked to lower rates, contributing 24% and 31%, respectively, to variation in erosion rate. In regional analysis, abiotic factors declined in importance, with root biomass explaining 25% of variation. Plant diversity explained 12% of variation in the erosion-prone sandy region. Our study indicates that soil stabilization

  3. Does interspecific competition alter effects of early season ozone exposure on plants from wet grasslands? Results of a three-year experiment in open-top chambers

    NARCIS (Netherlands)

    Tonneijck, A.E.G.; Franzaring, J.; Brouwer, G.; Metselaar, K.; Dueck, T.A.

    2004-01-01

    Chronic effects of ozone on wet grassland species early in the growing season might be altered by interspecific competition. Individual plants of Holcus lanatus, Lychnis flos-cuculi, Molinia caerulea and Plantago lanceolata were grown in monocultures and in mixed cultures with Agrostis capillaris.

  4. Does introduction of clover in an agricultural grassland affect the food base and functional diversity of Collembola?

    NARCIS (Netherlands)

    Annibale, D' Alessandra; Sechi, Valentina; Larsen, Thomas; Christensen, Søren; Krogh, Paul Henning; Eriksen, Jørgen

    2017-01-01

    Introduction of legumes (i.e. white clover) in agricultural grasslands is a common practice to improve yields, but how this affects soil fauna populations, particularly mesofauna, is still poorly understood. We investigated taxonomical and functional differences of Collembola communities between

  5. The structural and functional connectivity of the grassland plant Lychnis flos-cuculi

    Science.gov (United States)

    Aavik, T; Holderegger, R; Bolliger, J

    2014-01-01

    Understanding the relationship between structural and functional connectivity is essential for successful restoration and conservation management, particularly in intensely managed agricultural landscapes. We evaluated the relationship between structural and functional connectivity of the wetland plant Lychnis flos-cuculi in a fragmented agricultural landscape using landscape genetic and network approaches. First, we studied the effect of structural connectivity, such as geographic distance and various landscape elements (forest, agricultural land, settlements and ditch verges), on gene flow among populations as a measurement of functional connectivity. Second, we examined the effect of structural graph-theoretic connectivity measures on gene flow among populations and on genetic diversity within populations of L. flos-cuculi. Among landscape elements, forests hindered gene flow in L. flos-cuculi, whereas gene flow was independent of geographic distance. Among the structural graph-theoretic connectivity variables, only intrapopulation connectivity, which was based on population size, had a significant positive effect on gene flow, that is, more gene flow took place among larger populations. Unexpectedly, interpopulation connectivity of populations, which takes into account the spatial location and distance among populations, did not influence gene flow in L. flos-cuculi. However, higher observed heterozygosity and lower inbreeding was observed in populations characterised by higher structural interpopulation connectivity. This finding shows that a spatially coherent network of populations is significant for maintaining the genetic diversity of populations. Nevertheless, lack of significant relationships between gene flow and most of the structural connectivity measures suggests that structural connectivity does not necessarily correspond to functional connectivity. PMID:24253937

  6. Diverse role of CBL-interacting protein kinases in plant

    Indian Academy of Sciences (India)

    admin

    Diverse role of CBL-interacting protein kinases in plant. Most of the extracellular and ... to their role in stress signalling. Their role in transport of plant hormone auxin and mechanism of action in stress response shed new light on diverse role of.

  7. Effect of Plant Diversity on Diversity and Abundance of Arthropods in Winter Wheat Fields

    Directory of Open Access Journals (Sweden)

    A Khodashenas

    2011-02-01

    Full Text Available Abstract Plant biomass and diversity play an important role in enhancing of biodiversity of other trophic levels, specially arthropods in terrestrial ecosystems. In order to determine the effects of plants on diversity and abundance of arthropods, a study was carried out in three regions of Razavi and northern Khorasan provinces, Shirvan, Mashhad and Gonabad. In each region, high and low input fields of winter wheat and a natural system for comparison were selected. In ripening stage of wheat growth (90 stage of Zadoks, sampling was done by use of quadrate in each system with five replications. Plants in each quadrate were counted and species richness of plants was determined. Insect sampling was done by sweep net from surface of plants, then species richness and abundance of collected insects were determined. As a result, agricultural practices decreased plant species richness but diversity and abundance of insects and spiders increased in agricultural systems. Our finding revealed that abundance of insects and spiders were not affected by plant species richness and plant biomass was the main factor affecting on species richness and abundance of insects, spiders and beneficial insects. Therefore, decreasing plant species richness that arose from agricultural practices doesn’t effect on arthropods diversity and abundance and doesn’t decrease sustainability of agricultural systems. Irregular use of chemical inputs, specially pesticides, is the main factor to decreasing of plants and arthropods species richness in agricultural systems. Keywords: Plant diversity, Arthropod diversity, Arthropod abundance, Plant-insect interactions, Agricultural systems

  8. Impact of Altered Precipitation Patterns on Plant Productivity and Soil Respiration in a Northern Great Plains Grassland

    Science.gov (United States)

    Haase, L.; Flanagan, L. B.

    2017-12-01

    Precipitation patterns are expected to shift towards larger but fewer rain events, with longer intermittent dry periods, associated with climate change. The larger rain events may compensate for and help to mitigate climate change effects on key ecosystem functions such as plant productivity and soil respiration in semi-arid grasslands. We experimentally manipulated the amount and frequency of simulated precipitation added to trenched, treatment plots that were covered by rain shelters, and measured the response in plant productivity and soil respiration in a native, grassland ecosystem near Lethbridge, Alberta. We compared the observed responses to the predictions of a conceptual ecosystem response model developed by Knapp et al. 2008 (BioScience 58: 811-821). Two experiments were conducted during 14 weeks of the growing season from May-August. The first experiment (normal amount) applied total growing season precipitation of 180 mm (climate normal), and the second experiment (reduced amount) applied total precipitation of 90 mm. In both experiments, precipitation was applied at two frequencies, 1 rain event every week (normal frequency) and 1 rain event every two weeks (reduced frequency). In the normal amount experiment, the average rain event was 12.8 mm for the normal frequency treatment and 25.8 mm for the reduced frequency treatment. In the reduced amount experiment, the average rain event was 6.4 mm for the normal frequency treatment and 12.8 mm for the reduced frequency treatment. We hypothesized that larger but fewer rain events would result in increased plant productivity and soil respiration for both experiments. Plant greenness values calculated from digital photographs were used as a proxy for plant productivity, and showed significantly higher values for the normal vs. reduced amount experiment. Soil respiration rate also showed significantly higher values for the normal vs. reduced amount experiment. No significant treatment effect could be detected

  9. The effect of solar UV radiation of four plant species occurring in a coastal grassland vegetation in The Netherlands

    Energy Technology Data Exchange (ETDEWEB)

    Tosserams, M.; Rozema, J. [Vrije Univ., Dept. of Ecology and Ecotoxicology, Amsterdam (Netherlands); Pais, A. de Sa [Univ. de Tras-os-Montes e Alto Douro, Vila Real (Portugal)

    1996-09-01

    During the summer of 1992, growth and some physiological parameters of four native plant species occurring in a coastal grassland in The Netherlands, were studied after reduction of solar UV irradiance using different cut-off filters. Biomass production, morphology and photosynthesis of all species tested were unaffected by the different treatments. Litter production of Plantago lanceolata was increased in the absence of the total UV waveband, indicating a possible role for this waveband in plant senescence. Depletion of the total UV waveband from sunlight resulted in alterations in biomass allocation in Calamagrostis epigeios and Urtica dioica while no changes were observed in P. lanceolatata and Verbascum thapsus. In C. epigeios and increase in the specific leaf area was observed, whereas in U. dioica root weight per total plant weight was decreased resulting in an increase in the shoot/root ratio. Both photosynthetic and UV-absorbing pigment concentrations were altered by the different filter applications. When compared to control plants receiving full sunlight, depletion of UV-B resulted in a significant increase in chlorophyll concentration in U. dioica leaves, this however did not affect photosynthetic rate. The presence of UV-B radiation enhanced the UV-absorbance of leaf extract of all species except P. lanceolata. Optical characteristics of the leaves were also changed. Both the quantity (P. lanceolata and U. dioica) and the quality (all species) of radiation transmitted by the leaves was affected by the different treatments. (au) 44 refs.

  10. Effects of soil depth and plant-soil interaction on microbial community in temperate grasslands of northern China.

    Science.gov (United States)

    Yao, Xiaodong; Zhang, Naili; Zeng, Hui; Wang, Wei

    2018-07-15

    Although the patterns and drivers of soil microbial community composition are well studied, little is known about the effects of plant-soil interactions and soil depth on soil microbial distribution at a regional scale. We examined 195 soil samples from 13 sites along a climatic transect in the temperate grasslands of northern China to measure the composition of and factors influencing soil microbial communities within a 1-m soil profile. Soil microbial community composition was measured using phospholipid fatty acids (PLFA) analysis. Fungi predominated in topsoil (0-10 cm) and bacteria and actinomycetes in deep soils (40-100 cm), independent of steppe types. This variation was explained by contemporary environmental factors (including above- and below-ground plant biomass, soil physicochemical and climatic factors) >58% in the 0-40 cm of soil depth, but soils. Interestingly, when we considered the interactive effects between plant traits (above ground biomass and root biomass) and soil factors (pH, clay content, and soil total carbon, nitrogen, phosphorous), we observed a significant interaction effect occurring at depths of 10-20 cm soil layer, due to different internal and external factors of the plant-soil system along the soil profile. These results improve understanding of the drivers of soil microbial community composition at regional scales. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Relationship between Remote Sensing Data, Plant Biomass and Soil Nitrogen Dynamics in Intensively Managed Grasslands under Controlled Conditions.

    Science.gov (United States)

    Knoblauch, Christoph; Watson, Conor; Berendonk, Clara; Becker, Rolf; Wrage-Mönnig, Nicole; Wichern, Florian

    2017-06-23

    The sustainable use of grasslands in intensive farming systems aims to optimize nitrogen (N) inputs to increase crop yields and decrease harmful losses to the environment at the same time. To achieve this, simple optical sensors may provide a non-destructive, time- and cost-effective tool for estimating plant biomass in the field, considering spatial and temporal variability. However, the plant growth and related N uptake is affected by the available N in the soil, and therefore, N mineralization and N losses. These soil N dynamics and N losses are affected by the N input and environmental conditions, and cannot easily be determined non-destructively. Therefore, the question arises: whether a relationship can be depicted between N fertilizer levels, plant biomass and N dynamics as indicated by nitrous oxide (N₂O) losses and inorganic N levels. We conducted a standardized greenhouse experiment to explore the potential of spectral measurements for analyzing yield response, N mineralization and N₂O emissions in a permanent grassland. Ryegrass was subjected to four mineral fertilizer input levels over 100 days (four harvests) under controlled environmental conditions. The soil temperature and moisture content were automatically monitored, and the emission rates of N₂O and carbon dioxide (CO₂) were detected frequently. Spectral measurements of the swards were performed directly before harvesting. The normalized difference vegetation index (NDVI) and simple ratio (SR) were moderately correlated with an increasing biomass as affected by fertilization level. Furthermore, we found a non-linear response of increasing N₂O emissions to elevated fertilizer levels. Moreover, inorganic N and extractable organic N levels at the end of the experiment tended to increase with the increasing N fertilizer addition. However, microbial biomass C and CO₂ efflux showed no significant differences among fertilizer treatments, reflecting no substantial changes in the soil

  12. Assessment of interspecific interactions in plant communities: an illustration from the cold desert saltbush grasslands of North America

    Science.gov (United States)

    Freeman, Carl D.; Emlen, John M.

    1995-01-01

    Interspecific interactions influence both the productivity and composition of plant communities. Here, we propose new field procedures and analytical approaches for assessing interspecific interactions in nature and apply these procedures to the salt desert shrub grasslands of western Utah. Data were collected from two grazing treatments over a period of 2 years. The proposed equations were fairly consistent across both treatments and years. In addition to illustrating how to assess interspecific interactions within a community, we also develop a new approach for projecting the community composition as a result of some alteration, i.e. increase or decrease in the abundance of one or more species. Results demonstrate competition both within and between plant life-form groups. While introduced annuals were found to depress profoundly the likelihood of perennial plants replacing themselves, perennials had little influence on annuals. Thus, as native perennials die, they are more likely to be replaced by perennials than for the reverse to occur. Our results suggest that unless conditions change, these communities will become increasingly dominated by introduced annuals.

  13. Seasonal variation in nitrogen pools and 15N/13C natural abundances in different tissues of grassland plants

    Directory of Open Access Journals (Sweden)

    J. K. Schjoerring

    2012-05-01

    Full Text Available Seasonal changes in nitrogen (N pools, carbon (C content and natural abundance of 13C and 15N in different tissues of ryegrass plants were investigated in two intensively managed grassland fields in order to address their ammonia (NH3 exchange potential. Green leaves generally had the largest total N concentration followed by stems and inflorescences. Senescent leaves had the lowest N concentration, indicating N re-allocation. The seasonal pattern of the Γ value, i.e. the ratio between NH4+ and H+ concentrations, was similar for the various tissues of the ryegrass plants but the magnitude of Γ differed considerably among the different tissues. Green leaves and stems generally had substantially lower Γ values than senescent leaves and litter. Substantial peaks in Γ were observed during spring and summer in response to fertilization and grazing. These peaks were associated with high NH4+ rather than with low H+ concentrations. Peaks in Γ also appeared during the winter, coinciding with increasing δ15N values, indicating absorption of N derived from mineralization of soil organic matter. At the same time, δ13C values were declining, suggesting reduced photosynthesis and capacity for N assimilation. δ15N and δ13C values were more influenced by mean monthly temperature than by the accumulated monthly precipitation. In conclusion, ryegrass plants showed a clear seasonal pattern in N pools. Green leaves and stems of ryegrass plants generally seem to constitute a sink for NH3, while senescent leaves have a large potential for NH3 emission. However, management events such as fertilisation and grazing may create a high NH3 emission potential even in green plant parts. The obtained results provide input for future modelling of plant-atmosphere NH3 exchange.

  14. Severe plant invasions can increase mycorrhizal fungal abundance and diversity

    DEFF Research Database (Denmark)

    Lekberg, Ylva; Gibbons, Sean; Rosendahl, Søren

    2013-01-01

    Invasions by non-native plants can alter ecosystem functions and reduce native plant diversity, but relatively little is known about their effect on belowground microbial communities. We show that invasions by knapweed (Centaurea stoebe) and leafy spurge (Euphorbia esula, hereafter spurge...... plant provenance.The ISME Journal advance online publication, 14 March 2013; doi:10.1038/ismej.2013.41....

  15. The impact of plant chemical diversity on plant-herbivore interactions at the community level.

    Science.gov (United States)

    Salazar, Diego; Jaramillo, Alejandra; Marquis, Robert J

    2016-08-01

    Understanding the role of diversity in ecosystem processes and species interactions is a central goal of ecology. For plant-herbivore interactions, it has been hypothesized that when plant species diversity is reduced, loss of plant biomass to herbivores increases. Although long-standing, this hypothesis has received mixed support. Increasing plant chemical diversity with increasing plant taxonomic diversity is likely to be important for plant-herbivore interactions at the community level, but the role of chemical diversity is unexplored. Here we assess the effect of volatile chemical diversity on patterns of herbivore damage in naturally occurring patches of Piper (Piperaceae) shrubs in a Costa Rican lowland wet forest. Volatile chemical diversity negatively affected total, specialist, and generalist herbivore damage. Furthermore, there were differences between the effects of high-volatility and low-volatility chemical diversity on herbivore damage. High-volatility diversity reduced specialist herbivory, while low-volatility diversity reduced generalist herbivory. Our data suggest that, although increased plant diversity is expected to reduce average herbivore damage, this pattern is likely mediated by the diversity of defensive compounds and general classes of anti-herbivore traits, as well as the degree of specialization of the herbivores attacking those plants.

  16. Diversity and Gene Expression of Phosphatase Genes Provide Insight into Soil Phosphorus Dynamics in a New Zealand Managed Grassland

    Science.gov (United States)

    Dunfield, K. E.; Gaiero, J. R.; Condron, L.

    2017-12-01

    Healthy and diverse communities of soil organisms influence key soil ecosystem services such as carbon sequestration, water quality protection, climate regulation and nutrient cycling. Microbially driven mineralization of organic phosphorus is an important contributor to plant available inorganic orthophosphates. In acidic soils, microbes produce non-specific acid phosphatases (NSAPs) which act on common forms of organic phosphorus (P). Our current understanding of P turnover in soils has been limited by lack of research tools capable of targeting these genes. Thus, we developed a set of oligonucleotide PCR primers that targeted bacteria with the genetic potential for acid phosphatase production. A long term randomized-block pasture trial was sampled following 22 years of continued aerial biomass removal and retention. Primers were used to target genes encoding alkaline phosphatase (phoD) and the three classes (CAAP, CBAP, CCAP) of non-specific acid phosphatases. PCR amplicons targeting total genes and gene transcripts were sequenced using Illumina MiSeq to understand the diversity of the bacterial phosphatase producing communities. In general, the majority of operational taxonomic units (OTUs) were shared across both treatments and across metagenomes and transcriptomes. However, analysis of DNA OTUs revealed significantly different communities driven by treatment differences (P reduced Olsen P levels (15 vs. 36 mg kg-1 in retained treatment). Acid phosphatase activity was measured in all samples, and found to be highest in the biomass retained treatment (16.8 vs. 11.4 µmol g-1 dry soil h-1), likely elevated due to plant-derived enzymes; however, was still correlated to bacterial gene abundances. Overall, the phosphatase producing microbial communities responded to the effect of consistent P limitation as expected, through alteration in the composition of the community structure and through increased levels of gene expression of the phosphatase genes.

  17. Soil biota suppress positive plant diversity effects on productivity at high but not low soil fertility

    NARCIS (Netherlands)

    Luo, Shan; Deyn, De Gerlinde B.; Jiang, B.; Yu, Shixiao

    2017-01-01

    Plant community productivity commonly increases with increasing plant diversity, which is explained by complementarity among plant species in resource utilization (complementarity effect), or by selection of particularly productive plant species in diverse plant communities (selection effect).

  18. Endophytic actinobacteria of medicinal plants: diversity and bioactivity.

    Science.gov (United States)

    Golinska, Patrycja; Wypij, Magdalena; Agarkar, Gauravi; Rathod, Dnyaneshwar; Dahm, Hanna; Rai, Mahendra

    2015-08-01

    Endophytes are the microorganisms that exist inside the plant tissues without having any negative impact on the host plant. Medicinal plants constitute the huge diversity of endophytic actinobacteria of economical importance. These microbes have huge potential to synthesis of numerous novel compounds that can be exploited in pharmaceutical, agricultural and other industries. It is of prime importance to focus the present research on practical utilization of this microbial group in order to find out the solutions to the problems related to health, environment and agriculture. An extensive characterization of diverse population of endophytic actinobacteria associated with medicinal plants can provide a greater insight into the plant-endophyte interactions and evolution of mutualism. In the present review, we have discussed the diversity of endophytic actinobacteria of from medicinal plants their multiple bioactivities.

  19. Prescribed fire, soil inorganic nitrogen dynamics, and plant responses in a semiarid grassland

    Science.gov (United States)

    David J. Augustine; Paul Brewer; Dana M. Blumenthal; Justin D. Derner; Joseph C. von Fischer

    2014-01-01

    In arid and semiarid ecosystems, fire can potentially affect ecosystem dynamics through changes in soil moisture, temperature, and nitrogen cycling, as well as through direct effects on plant meristem mortality. We examined effects of annual and triennial prescribed fires conducted in early spring on soil moisture, temperature, and N, plant growth, and plant N content...

  20. Comparing arbuscular mycorrhizal communities of individual plants in a grassland biodiversity experiment

    NARCIS (Netherlands)

    Van de Voorde, T.F.J.; Van der Putten, W.H.; Gamper, H.A.; Hol, W.H.G.; Bezemer, T.M.

    2010-01-01

    Plants differ greatly in the soil organisms colonizing their roots. However, how soil organism assemblages of individual plant roots can be influenced by plant community properties remains poorly understood. We determined the composition of arbuscular mycorrhizal fungi (AMF) in Jacobaea vulgaris

  1. Contrasting land uses in Mediterranean agro-silvo-pastoral systems generated patchy diversity patterns of vascular plants and below-ground microorganisms.

    Science.gov (United States)

    Bagella, Simonetta; Filigheddu, Rossella; Caria, Maria Carmela; Girlanda, Mariangela; Roggero, Pier Paolo

    2014-12-01

    The aims of this paper were (i) to define how contrasting land uses affected plant biodiversity in Mediterranean agro-silvo-pastoral-systems across a gradient of disturbance regimes: cork oak forests, secondary grasslands, hay crops, grass covered vineyards, tilled vineyards; (ii) to determine whether these patterns mirrored those of below-ground microorganisms and whether the components of γ-diversity followed a similar model. The disturbance regimes affected plant assemblage composition. Species richness decreased with increasing land use intensity, the Shannon index showed the highest values in grasslands and hay crops. Plant assemblage composition patterns mirrored those of Basidiomycota and Ascomycota. Richness in Basidiomycota, denitrifying bacteria and microbial biomass showed the same trend as that observed for vascular plant richness. The Shannon index pattern of below-ground microorganisms was different from that of plants. The plant γ-diversity component model weakly mirrored those of Ascomycota. Patchy diversity patterns suggest that the maintenance of contrasting land uses associated with different productions typical of agro-silvo-pastoral-systems can guarantee the conservation of biodiversity. Copyright © 2014 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  2. Relative importance of current and past landscape structure and local habitat conditions for plant species richness in dry grassland-like forest openings.

    Science.gov (United States)

    Husáková, Iveta; Münzbergová, Zuzana

    2014-01-01

    In fragmented landscapes, plant species richness may depend not only on local habitat conditions but also on landscape structure. In addition, both present and past landscape structure may be important for species richness. There are, however, only a few studies that have investigated the relative importance of all of these factors. The aim of this study was to examine the effect of current and past landscape structures and habitat conditions on species richness at dry grassland-like forest openings in a forested landscape and to assess their relative importance for species richness. We analyzed information on past and present landscape structures using aerial photographs from 1938, 1973, 1988, 2000 and 2007. We calculated the area of each locality and its isolation in the present and in the past and the continuity of localities in GIS. At each locality, we recorded all vascular plant species (296 species in 110 forest openings) and information on abiotic conditions of the localities. We found that the current species richness of the forest openings was significantly determined by local habitat conditions as well as by landscape structure in the present and in the past. The highest species richness was observed on larger and more heterogeneous localities with rocks and shallow soils, which were already large and well connected to other localities in 1938. The changes in the landscape structure in the past can thus have strong effects on current species richness. Future studies attempting to understand determinants of species diversity in fragmented landscapes should also include data on past landscape structure, as it may in fact be more important than the present structure.

  3. Evaluating plant-soil feedback together with competition in a serpentine grassland.

    Science.gov (United States)

    Casper, Brenda B; Castelli, Jeffrey P

    2007-05-01

    Plants can alter biotic and abiotic soil characteristics in ways that feedback to change the performance of that same plant species relative to co-occurring plants. Most evidence for this plant-soil feedback comes from greenhouse studies of potted plants, and consequently, little is known about the importance of feedback in relation to other biological processes known to structure plant communities, such as plant-plant competition. In a field experiment with three C4 grasses, negative feedback was expressed through reduced survival and shoot biomass when seedlings were planted within existing clumps of conspecifics compared with clumps of heterospecifics. However, the combined effects of feedback and competition were species-specific. Only Andropogon gerardii exhibited feedback when competition with the clumps was allowed. For Sorghastrum nutans, strong interspecific competition eliminated the feedback expressed in the absence of competition, and Schizachyrium scoparium showed no feedback at all. That arbuscular mycorrhizal (AM) fungi may play a role in the feedback was indicated by higher AM root colonization with conspecific plant neighbours. We suggest that feedback and competition should not be viewed as entirely separate processes and that their importance in structuring plant communities cannot be judged in isolation from each other.

  4. Land-use intensification causes multitrophic homogenization of grassland communities.

    Science.gov (United States)

    Gossner, Martin M; Lewinsohn, Thomas M; Kahl, Tiemo; Grassein, Fabrice; Boch, Steffen; Prati, Daniel; Birkhofer, Klaus; Renner, Swen C; Sikorski, Johannes; Wubet, Tesfaye; Arndt, Hartmut; Baumgartner, Vanessa; Blaser, Stefan; Blüthgen, Nico; Börschig, Carmen; Buscot, Francois; Diekötter, Tim; Jorge, Leonardo Ré; Jung, Kirsten; Keyel, Alexander C; Klein, Alexandra-Maria; Klemmer, Sandra; Krauss, Jochen; Lange, Markus; Müller, Jörg; Overmann, Jörg; Pašalić, Esther; Penone, Caterina; Perović, David J; Purschke, Oliver; Schall, Peter; Socher, Stephanie A; Sonnemann, Ilja; Tschapka, Marco; Tscharntke, Teja; Türke, Manfred; Venter, Paul Christiaan; Weiner, Christiane N; Werner, Michael; Wolters, Volkmar; Wurst, Susanne; Westphal, Catrin; Fischer, Markus; Weisser, Wolfgang W; Allan, Eric

    2016-12-08

    Land-use intensification is a major driver of biodiversity loss. Alongside reductions in local species diversity, biotic homogenization at larger spatial scales is of great concern for conservation. Biotic homogenization means a decrease in β-diversity (the compositional dissimilarity between sites). Most studies have investigated losses in local (α)-diversity and neglected biodiversity loss at larger spatial scales. Studies addressing β-diversity have focused on single or a few organism groups (for example, ref. 4), and it is thus unknown whether land-use intensification homogenizes communities at different trophic levels, above- and belowground. Here we show that even moderate increases in local land-use intensity (LUI) cause biotic homogenization across microbial, plant and animal groups, both above- and belowground, and that this is largely independent of changes in α-diversity. We analysed a unique grassland biodiversity dataset, with abundances of more than 4,000 species belonging to 12 trophic groups. LUI, and, in particular, high mowing intensity, had consistent effects on β-diversity across groups, causing a homogenization of soil microbial, fungal pathogen, plant and arthropod communities. These effects were nonlinear and the strongest declines in β-diversity occurred in the transition from extensively managed to intermediate intensity grassland. LUI tended to reduce local α-diversity in aboveground groups, whereas the α-diversity increased in belowground groups. Correlations between the β-diversity of different groups, particularly between plants and their consumers, became weaker at high LUI. This suggests a loss of specialist species and is further evidence for biotic homogenization. The consistently negative effects of LUI on landscape-scale biodiversity underscore the high value of extensively managed grasslands for conserving multitrophic biodiversity and ecosystem service provision. Indeed, biotic homogenization rather than local diversity

  5. How do plant communities and flower visitors relate? A case study of semi-natural xerothermic grasslands

    Directory of Open Access Journals (Sweden)

    Damian Chmura

    2013-06-01

    Full Text Available The paper examines the relationships between the species composition of flower visitors and plants in the semi-natural xerothermic grasslands in southern and central Poland. Thirty 10 × 10 m permanent plots were laid out in total, mainly in nature reserves. The vegetation units studied were classified according to the Braun-Blanquet system; these were phytocoenoses of the Festuco-Brometea classes Inuletum ensifoliae, Adonido-Brachypodietum pinnati and the transitional plant community. Entomological research was performed using the Pollard method within the same plots. A particular site was visited only once and different sites were studied between April and August 2008. We applied, among others, co-correspondence-analysis Co-CA, detrended correspondence analysis (DCA and redundancy analysis (RDA to investigate the co-occurrence patterns of plants and flower visitors and their biotopic requirements. We found that the species composition of flower visitors cannot be predicted by floristic composition when the duration of the study is restricted to one day (but under similar weather conditions; however, there is a positive relationship between the species richness of insects and plants and a positive relationship between the number of plant species and the abundance of flower visitors. The Ellenberg moisture index and the cover of meadow species significantly explained the species composition of insects. The three various vegetation units and five dominant xerothermic species, i.e. Adonis vernalis, Anemone sylvestris, Inula ensifolia, Linum hirsutum and Carlina onopordifolia that were studied across time differed in the species richness of insects. Our results demonstrate that possible patterns in the species composition and the assembly rules of flower visitors are not apparent when the Pollard method is applied. Based on the data obtained using this method, the flower visiting assemblages seem not to be driven by competition and they primarily

  6. Plant Community Diversity After Herbicide Control of Spotted Knapweed

    OpenAIRE

    United States Department of Agriculture, Forest Service

    1992-01-01

    Herbicides were applied to four west-central Montana sites with light to moderate spotted knapweed (Centaurea maculosa Lam.) infestations. Althought knapweed suppression was high, 2 years after the spraying the communities were not converted to grass monocultures. No large declines in plant diversity were caused by the herbicides, and small depressions were probably transitory. By the third year, diversity had increased.

  7. Functional diversity in plant communities: Theory and analysis ...

    African Journals Online (AJOL)

    Plant functional diversity in community has become a key point in ecology studies recently. The development of species functional diversity was reviewed in the present work. Based on the former original research papers and reviews, we discussed the concept and connotation and put forward a new definition of functional ...

  8. Plant genotypic diversity reduces the rate of consumer resource utilization.

    Science.gov (United States)

    McArt, Scott H; Thaler, Jennifer S

    2013-07-07

    While plant species diversity can reduce herbivore densities and herbivory, little is known regarding how plant genotypic diversity alters resource utilization by herbivores. Here, we show that an invasive folivore--the Japanese beetle (Popillia japonica)--increases 28 per cent in abundance, but consumes 24 per cent less foliage in genotypic polycultures compared with monocultures of the common evening primrose (Oenothera biennis). We found strong complementarity for reduced herbivore damage among plant genotypes growing in polycultures and a weak dominance effect of particularly resistant genotypes. Sequential feeding by P. japonica on different genotypes from polycultures resulted in reduced consumption compared with feeding on different plants of the same genotype from monocultures. Thus, diet mixing among plant genotypes reduced herbivore consumption efficiency. Despite positive complementarity driving an increase in fruit production in polycultures, we observed a trade-off between complementarity for increased plant productivity and resistance to herbivory, suggesting costs in the complementary use of resources by plant genotypes may manifest across trophic levels. These results elucidate mechanisms for how plant genotypic diversity simultaneously alters resource utilization by both producers and consumers, and show that population genotypic diversity can increase the resistance of a native plant to an invasive herbivore.

  9. Diversity of amphibians and reptiles associated with grasslands of Janos-Casas Grandes, Chihuahua, Mexico (La diversidad de anfibios y reptiles asociada a los pastizales de Janos-Casas Grandes, Chihuahua, Mexico)

    Science.gov (United States)

    Georgina Santos-Barrera; Jesus Pacheco-Rodriguez

    2006-01-01

    Prairie-dog (Cynomys ludovicianus) colonies in northwest Chihuahua, Mexico, have been of great significance not only in initiating protection programs for the species but also in learning about the biological diversity (flora and fauna) of the natural grasslands of Janos-Casas Grandes, Chihuahua. Therefore a study of the herpetological fauna within the prairie-dog...

  10. Small-scale barriers mitigate desertification processes and enhance plant recruitment in a degraded semiarid grassland

    Science.gov (United States)

    Fick, Stephen E; Decker, Cheryl E.; Duniway, Michael C.; Miller, Mark E.

    2016-01-01

    Anthropogenic desertification is a problem that plagues drylands globally; however, the factors which maintain degraded states are often unclear. In Canyonlands National Park on the Colorado Plateau of southeastern Utah, many degraded grasslands have not recovered structure and function >40 yr after release from livestock grazing pressure, necessitating active restoration. We hypothesized that multiple factors contribute to the persistent degraded state, including lack of seed availability, surficial soil-hydrological properties, and high levels of spatial connectivity (lack of perennial vegetation and other surface structure to retain water, litter, seed, and sediment). In combination with seeding and surface raking treatments, we tested the effect of small barrier structures (“ConMods”) designed to disrupt the loss of litter, seed and sediment in degraded soil patches within the park. Grass establishment was highest when all treatments (structures, seed addition, and soil disturbance) were combined, but only in the second year after installation, following favorable climatic conditions. We suggest that multiple limiting factors were ameliorated by treatments, including seed limitation and microsite availability, seed removal by harvester ants, and stressful abiotic conditions. Higher densities of grass seedlings on the north and east sides of barrier structures following the summer months suggest that structures may have functioned as artificial “nurse-plants”, sheltering seedlings from wind and radiation as well as accumulating wind-blown resources. Barrier structures increased the establishment of both native perennial grasses and exotic annuals, although there were species-specific differences in mortality related to spatial distribution of seedlings within barrier structures. The unique success of all treatments combined, and even then only under favorable climatic conditions and in certain soil patches, highlights that restoration success (and

  11. Diversity and Plant Growth Promoting Proerties of Rhizobacteria ...

    African Journals Online (AJOL)

    The purpose of this study was to evaluate and assess the plant growth promoting characteristics and diversity of major tef rhizosphere isolates from central Ethiopia. A total of 162 bacteria were isolated from rhizosphere of tef [Eragrostis tef (Zucc.) Trotter] and characterized. While screening using some plant growth ...

  12. Diversity of medicinal plants and anthropogenic threats in the ...

    African Journals Online (AJOL)

    Diversity of medicinal plants and anthropogenic threats in the Samburu Central Sub-County of Kenya. ... Biodiversity of medicinal plants and effects of human activities on availability of traditional ... There is, therefore need to adopt management strategies that enhance the conservation of these valuable natural resources.

  13. Species composition, plant cover and diversity of recently reforested ...

    African Journals Online (AJOL)

    SERVER

    2007-12-17

    Dec 17, 2007 ... Deforestation, over-cultivation and rural growth have severely ... over-cultivation, plant populations changed, and biolo- ... Restoring community structure (e.g. species composi-tion ... plant diversity at all spatial scales are the criteria that should ..... taxonomic groups in recovering and restored forests.

  14. Forest climbing plants of West Africa: diversity, ecology and management

    NARCIS (Netherlands)

    Bongers, F.J.J.M.; Parren, M.P.E.; Traoré, D.

    2005-01-01

    Climbing plants, including lianas, represent a fascinating component of the ecology of tropical forests. This book focuses on the climbing plants of West African forests. Based on original research, it presents information on the flora (including a checklist), diversity (with overviews at several

  15. Plant trait-based models identify direct and indirect effects of climate change on bundles of grassland ecosystem services.

    Science.gov (United States)

    Lamarque, Pénélope; Lavorel, Sandra; Mouchet, Maud; Quétier, Fabien

    2014-09-23

    Land use and climate change are primary causes of changes in the supply of ecosystem services (ESs). Although the consequences of climate change on ecosystem properties and associated services are well documented, the cascading impacts of climate change on ESs through changes in land use are largely overlooked. We present a trait-based framework based on an empirical model to elucidate how climate change affects tradeoffs among ESs. Using alternative scenarios for mountain grasslands, we predicted how direct effects of climate change on ecosystems and indirect effects through farmers' adaptations are likely to affect ES bundles through changes in plant functional properties. ES supply was overall more sensitive to climate than to induced management change, and ES bundles remained stable across scenarios. These responses largely reflected the restricted extent of management change in this constrained system, which was incorporated when scaling up plot level climate and management effects on ecosystem properties to the entire landscape. The trait-based approach revealed how the combination of common driving traits and common responses to changed fertility determined interactions and tradeoffs among ESs.

  16. Patterns of fine-scale plant species richness in dry grasslands across the eastern Balkan Peninsula

    Czech Academy of Sciences Publication Activity Database

    Palpurina, S.; Chytrý, M.; Tzonev, R.; Danihelka, Jiří; Axmanová, I.; Merunková, K.; Duchoň, M.; Karakiev, T.

    2015-01-01

    Roč. 63, February (2015), s. 36-46 ISSN 1146-609X R&D Projects: GA ČR GB14-36079G Institutional support: RVO:67985939 Keywords : alpha diversity * soil chemistry * steppe Subject RIV: EF - Botanics Impact factor: 1.420, year: 2015

  17. Cellulose microfibril structure: inspirations from plant diversity

    Science.gov (United States)

    Roberts, A. W.

    2018-03-01

    Cellulose microfibrils are synthesized at the plasma membrane by cellulose synthase catalytic subunits that associate to form cellulose synthesis complexes. Variation in the organization of these complexes underlies the variation in cellulose microfibril structure among diverse organisms. However, little is known about how the catalytic subunits interact to form complexes with different morphologies. We are using an evolutionary approach to investigate the roles of different catalytic subunit isoforms in organisms that have rosette-type cellulose synthesis complexes.

  18. Diversity of vascular plants of Piestany and surroundings (presentation)

    International Nuclear Information System (INIS)

    Penzesova, A.; Galusova, T.

    2013-01-01

    In this presentation is a summary of the results of floristic research aimed at determining diversity of vascular plants of Piestany and its surroundings. Plant taxa we determined using the designation keys. We have compiled a list of plant species occurring in the monitored area, we evaluated the selected botanical-phytogeographical characteristics of flora, we've put together a list of local protected, endangered and rare species and a list of local invasive and expansive species according to sources. (Authors)

  19. El efecto del pastoreo sobre la diversidad florística y estructural en pastizales de montaña del centro de Argentina Grazing effects on the floristic and structural diversity in mountain grasslands from central Argentina

    Directory of Open Access Journals (Sweden)

    MARIANA NAI-BREGAGLIO

    2002-09-01

    vertical como horizontal, afectando probablemente a otros niveles tróficos del ecosistema. La alternancia en el espacio de los dos tipos de parches estudiados permitiría obtener un mejor compromiso entre pastoreo y conservación de la diversidad florística y estructuralThe effects of grazing and 10 years of cattle exclusion on floristic composition and diversity and on structural diversity were studied in natural mountain grasslands at Sierras de Córdoba (2,200 m of elevation, Argentine. We consider structural diversity as the arrangement complexity of biomass in space, both horizontal and vertical. The abundance of all plant species and their vertical and horizontal arrangement were recorded by means of 50 randomly assorted pins, each of them subdivided into 20 cm height intervals. Sampling was performed inside five replicates, each of them consisted of two adjacent 20 x 20 m plots separated by a fence, one grazed and another excluded from grazing. Floristic and vertical structure diversity were estimated by means of Shannon index. The variance in floristic and vertical structure diversity indexes were compared among treatments to study possible variations in the horizontal distribution of both floristic diversity and vertical structure, respectively. Species richness and floristic diversity were higher in grazed grasslands. Over 85 % of total plant species occurred at grazed grasslands, in contrast to 65 % in sites excluded from grazing. Only three exotic plant species were found, one of them exclusive to grazed sites. Cattle grazing produced a significant decrease in vertical structure diversity and in the variance in horizontal space of floristic diversity, but did not produce significant changes in the variance in horizontal space of vertical structure diversity. Although cattle grazing promotes lawns of high floristic diversity, it produces an over simplification of the community structure, both vertical and horizontal, probably affecting other trophic levels of

  20. The role of above-ground competition and nitrogen vs. phosphorus enrichment in seedling survival of common European plant species of semi-natural grasslands.

    Directory of Open Access Journals (Sweden)

    Tobias Ceulemans

    Full Text Available Anthropogenic activities have severely altered fluxes of nitrogen and phosphorus in ecosystems worldwide. In grasslands, subsequent negative effects are commonly attributed to competitive exclusion of plant species following increased above-ground biomass production. However, some studies have shown that this does not fully account for nutrient enrichment effects, questioning whether lowering competition by reducing grassland productivity through mowing or herbivory can mitigate the environmental impact of nutrient pollution. Furthermore, few studies so far discriminate between nitrogen and phosphorus pollution. We performed a full factorial experiment in greenhouse mesocosms combining nitrogen and phosphorus addition with two clipping regimes designed to relax above-ground competition. Next, we studied the survival and growth of seedlings of eight common European grassland species and found that five out of eight species showed higher survival under the clipping regime with the lowest above-ground competition. Phosphorus addition negatively affected seven plant species and nitrogen addition negatively affected four plant species. Importantly, the negative effects of nutrient addition and higher above-ground competition were independent of each other for all but one species. Our results suggest that at any given level of soil nutrients, relaxation of above-ground competition allows for higher seedling survival in grasslands. At the same time, even at low levels of above-ground competition, nutrient enrichment negatively affects survival as compared to nutrient-poor conditions. Therefore, although maintaining low above-ground competition appears essential for species' recruitment, for instance through mowing or herbivory, these management efforts are likely to be insufficient and we conclude that environmental policies aimed to reduce both excess nitrogen and particularly phosphorus inputs are also necessary.

  1. Altered Plant Litter and Microbial Composition Lead to Topsoil Organic Carbon Loss Over a Shrub-encroachment Gradient in an Inner Mongolia Grassland

    Science.gov (United States)

    Zhou, L.; Li, H.; Shen, H.; Xu, Y.; Wang, Y.; Xing, A.; Fang, J.

    2017-12-01

    Over the past 150 years, shrub encroachment has occurred in arid and semi-arid ecosystems resulting from climate change and increased human disturbance. Previous studies have revealed that shrub encroachment has substantial effects on habitat heterogeneity, aboveground biomass and bulk carbon content of grasslands, thereby affecting the regional carbon balance. Soil organic carbon (SOC) is mainly derived from aboveground litter, root litter and root exudates and is metabolized by microorganisms. The quality and quantity of plant litter together with soil microbial biomass are important drivers of SOC accumulation. However, the mechanisms regulating soil carbon accumulation by the shrub encroachment remain unclear and molecular evidence is particularly lacking. We use the data of the chemical composition of plant tissues and SOC, and the soil microbial communities to identify the effects of shrub encroachment on SOC accumulation in the top layer along a gradient of natural shrub cover in the grasslands of Inner Mongolia. Our finding indicates that nitrogen-rich legume-shrub encroachment led to soil carbon accumulation in the shrub patch, with more extensive carbon loss observed in the grassy matrix, which resulted in an overall carbon loss. In the pure grassland, a higher abundance of cutin and suberin and a lower concentration of free lipids were detected, suggesting the preservation of recalcitrant polymers derived from herb inputs. In the shrub-encroached grasslands, the labile shrub leaves did not decompose alone but were mixed with herb litter to promote the degradation of SOC via the priming of microbial activities. The SOC remained unchanged in the shrub patches with the increasing shrub cover, which might have been caused by the replacement of prior carbon decompositions with the fresh input of shrub leaves. Similarly, the SOC decreased significantly with increasing shrub cover in the grassy matrix, which likely resulted from insufficient fresh plant inputs

  2. Plants diversity and phytoaccumulators identification on the ...

    African Journals Online (AJOL)

    The dominant taxa on the old waste dumpsite having an average density superior to 5 plants/m2 and occurring less frequently on the control site were Alternanthera sessilis, Amaranthus spinosus, Cyperus rotundus, Cyperus iria, Eleusine indica, Euphorbia glomerifera, Ipomoea triloba, Portulaca oleracea and Trianthema ...

  3. Plants diversity and phytoaccumulators identification on the ...

    African Journals Online (AJOL)

    MESSOU AMAN

    2004) and depend on metals mobility, utilization by organisms or ... if they are consumed, because of the toxicity of some metals to ... Ellis and Salt, 2003; Pillay et al., 2003). Industrial .... (Pb), iron (Fe), and copper (Cu) were respectively of 250, 50, 5, ...... bioremediation and mechanisms of heavy metals tolerance of plants:.

  4. Long-Term Overgrazing-Induced Memory Decreases Photosynthesis of Clonal Offspring in a Perennial Grassland Plant.

    Science.gov (United States)

    Ren, Weibo; Hu, Ningning; Hou, Xiangyang; Zhang, Jize; Guo, Huiqin; Liu, Zhiying; Kong, Lingqi; Wu, Zinian; Wang, Hui; Li, Xiliang

    2017-01-01

    Previous studies of transgenerational plasticity have demonstrated that long-term overgrazing experienced by Leymus chinensis , an ecologically dominant, rhizomatous grass species in eastern Eurasian temperate grassland, significantly affects its clonal growth in subsequent generations. However, there is a dearth of information on the reasons underlying this overgrazing-induced memory effect in plant morphological plasticity. We characterized the relationship between a dwarf phenotype and photosynthesis function decline of L. chinensis from the perspective of leaf photosynthesis by using both field measurement and rhizome buds culture cultivated in a greenhouse. Leaf photosynthetic functions (net photosynthetic rate, stomatal conductance, intercellular carbon dioxide concentration, and transpiration rate) were significantly decreased in smaller L. chinensis individuals that were induced to have a dwarf phenotype by being heavily grazed in the field. This decreased photosynthetic function was maintained a generation after greenhouse tests in which grazing was excluded. Both the response of L. chinensis morphological traits and photosynthetic functions in greenhouse were deceased relative to those in the field experiment. Further, there were significant decreases in leaf chlorophyll content and Rubisco enzyme activities of leaves between bud-cultured dwarf and non-dwarf L. chinensis in the greenhouse. Moreover, gene expression patterns showed that the bud-cultured dwarf L. chinensis significantly down-regulated (by 1.86- to 5.33-fold) a series of key genes that regulate photosynthetic efficiency, stomata opening, and chloroplast development compared with the non-dwarf L. chinensis . This is among the first studies revealing a linkage between long-term overgrazing affecting the transgenerational morphological plasticity of clonal plants and physiologically adaptive photosynthesis function. Overall, clonal transgenerational effects in L. chinensis phenotypic traits

  5. Long-Term Overgrazing-Induced Memory Decreases Photosynthesis of Clonal Offspring in a Perennial Grassland Plant

    Directory of Open Access Journals (Sweden)

    Xiangyang Hou

    2017-04-01

    Full Text Available Previous studies of transgenerational plasticity have demonstrated that long-term overgrazing experienced by Leymus chinensis, an ecologically dominant, rhizomatous grass species in eastern Eurasian temperate grassland, significantly affects its clonal growth in subsequent generations. However, there is a dearth of information on the reasons underlying this overgrazing-induced memory effect in plant morphological plasticity. We characterized the relationship between a dwarf phenotype and photosynthesis function decline of L. chinensis from the perspective of leaf photosynthesis by using both field measurement and rhizome buds culture cultivated in a greenhouse. Leaf photosynthetic functions (net photosynthetic rate, stomatal conductance, intercellular carbon dioxide concentration, and transpiration rate were significantly decreased in smaller L. chinensis individuals that were induced to have a dwarf phenotype by being heavily grazed in the field. This decreased photosynthetic function was maintained a generation after greenhouse tests in which grazing was excluded. Both the response of L. chinensis morphological traits and photosynthetic functions in greenhouse were deceased relative to those in the field experiment. Further, there were significant decreases in leaf chlorophyll content and Rubisco enzyme activities of leaves between bud-cultured dwarf and non-dwarf L. chinensis in the greenhouse. Moreover, gene expression patterns showed that the bud-cultured dwarf L. chinensis significantly down-regulated (by 1.86- to 5.33-fold a series of key genes that regulate photosynthetic efficiency, stomata opening, and chloroplast development compared with the non-dwarf L. chinensis. This is among the first studies revealing a linkage between long-term overgrazing affecting the transgenerational morphological plasticity of clonal plants and physiologically adaptive photosynthesis function. Overall, clonal transgenerational effects in L. chinensis

  6. Spectral identification of plant communities for mapping of semi-natural grasslands

    DEFF Research Database (Denmark)

    Jacobsen, Anne; Nielsen, Allan Aasbjerg; Ejrnæs, Rasmus

    2000-01-01

    identification of plant communities was based on a hierarchical approach relating the test sites to i) management (Ma) and ii) flora (Fl) using spectral consistency and separability as the main criteria. Evaluation of spectral consistency was based on unsupervised clustering of test sites of Ma classes 1 to 7...... as a measure of plant community heterogeneity within management classes. The spectral analysis as well as the maximum likelihood classification indicated that the source of spectral variation within management classes might be related to vegetation composition....

  7. Using plant functional traits to guide restoration: A case study in California coastal grassland

    DEFF Research Database (Denmark)

    Sandel, Brody Steven; Corbin, Jeffrey; Krupa, Monica

    2011-01-01

    Restoration ecology can benefit greatly from developments in trait-based ecology that enable improved predictions of how the composition of plant communities will respond to changes in environmental conditions. Plant functional traits can be used to guide the restoration of degraded habitats...... generally from the treatments. Carbon addition led to large intraspecific trait shifts, with individuals in C addition plots having smaller, denser leaves and shorter stature. Species' trait plasticity, however, was not related to the community composition response to C addition.   Our study indicates...

  8. Impact of Soil Warming on the Plant Metabolome of Icelandic Grasslands

    Science.gov (United States)

    Gargallo-Garriga, Albert; Ayala-Roque, Marta; Granda, Victor; Sigurdsson, Bjarni D.; Leblans, Niki I. W.; Oravec, Michal; Urban, Otmar; Janssens, Ivan A.

    2017-01-01

    Climate change is stronger at high than at temperate and tropical latitudes. The natural geothermal conditions in southern Iceland provide an opportunity to study the impact of warming on plants, because of the geothermal bedrock channels that induce stable gradients of soil temperature. We studied two valleys, one where such gradients have been present for centuries (long-term treatment), and another where new gradients were created in 2008 after a shallow crustal earthquake (short-term treatment). We studied the impact of soil warming (0 to +15 °C) on the foliar metabolomes of two common plant species of high northern latitudes: Agrostis capillaris, a monocotyledon grass; and Ranunculus acris, a dicotyledonous herb, and evaluated the dependence of shifts in their metabolomes on the length of the warming treatment. The two species responded differently to warming, depending on the length of exposure. The grass metabolome clearly shifted at the site of long-term warming, but the herb metabolome did not. The main up-regulated compounds at the highest temperatures at the long-term site were saccharides and amino acids, both involved in heat-shock metabolic pathways. Moreover, some secondary metabolites, such as phenolic acids and terpenes, associated with a wide array of stresses, were also up-regulated. Most current climatic models predict an increase in annual average temperature between 2–8 °C over land masses in the Arctic towards the end of this century. The metabolomes of A. capillaris and R. acris shifted abruptly and nonlinearly to soil warming >5 °C above the control temperature for the coming decades. These results thus suggest that a slight warming increase may not imply substantial changes in plant function, but if the temperature rises more than 5 °C, warming may end up triggering metabolic pathways associated with heat stress in some plant species currently dominant in this region. PMID:28832555

  9. [Energy accumulation and allocation of main plant populations in Aneurolepidium chinense grassland in Songnen Plain].

    Science.gov (United States)

    Qu, Guohui; Wen, Mingzhang; Guo, Jixun

    2003-05-01

    The calorific value of plants is dependent on their biological characteristics and energy-containing materials. The allocation of calorific value in different organs of Aneurolepidium chinese, Calamagrostic epigejos, Puccinellia tenuiflora and Chloris virgata was inflorescence > leaf > stem > dead standing. The seasonal dynamics of standing crop energy of aboveground part of four plant populations showed single-peak curve, and the energy production was Aneurolepidium chinense > Calamagrostic epigejos > Chloris virgata > Puccinellia tenuiflora. Energy increasing rate showed double-peak curve, with the first peak at heading stage and the second peak at maturing stage of seeds. Energy increasing rate was negative at the final stage of growth. The horizontal distribution of energy of aboveground part was that the allocation ratio of different organs at different growth stages was different. There existed a similar trend for vertical distribution of energy among four plant populations, i.e., was the vertical distribution of energy of aboveground part showed a tower shape, with the maximum value in 10-30 cm height. The vertical distribution of energy of underground part showed an inverted tower shape from soil surface to deeper layer, with the maximum value in 0-10 cm depth. The standing crop energy of underground part was about 3-4 times than that of aboveground part.

  10. Diversity begets diversity: host expansions and the diversification of plant-feeding insects

    Directory of Open Access Journals (Sweden)

    Nylin Sören

    2006-01-01

    Full Text Available Abstract Background Plant-feeding insects make up a large part of earth's total biodiversity. While it has been shown that herbivory has repeatedly led to increased diversification rates in insects, there has been no compelling explanation for how plant-feeding has promoted speciation rates. There is a growing awareness that ecological factors can lead to rapid diversification and, as one of the most prominent features of most insect-plant interactions, specialization onto a diverse resource has often been assumed to be the main process behind this diversification. However, specialization is mainly a pruning process, and is not able to actually generate diversity by itself. Here we investigate the role of host colonizations in generating insect diversity, by testing if insect speciation rate is correlated with resource diversity. Results By applying a variant of independent contrast analysis, specially tailored for use on questions of species richness (MacroCAIC, we show that species richness is strongly correlated with diversity of host use in the butterfly family Nymphalidae. Furthermore, by comparing the results from reciprocal sister group selection, where sister groups were selected either on the basis of diversity of host use or species richness, we find that it is likely that diversity of host use is driving species richness, rather than vice versa. Conclusion We conclude that resource diversity is correlated with species richness in the Nymphalidae and suggest a scenario based on recurring oscillations between host expansions – the incorporation of new plants into the repertoire – and specialization, as an important driving force behind the diversification of plant-feeding insects.

  11. Species diversity of plant communities from territories with natural origin radionuclides contamination

    Energy Technology Data Exchange (ETDEWEB)

    Kaneva, A.V.; Belykh, E.S.; Maystrenko, T.A.; Grusdev, B.I.; Zainullin, V.G.; Vakhrusheva, O.M. [Institute of Biology, Komi Scientific Center, Ural Division of RAS, Syktyvkar, 167982 (Russian Federation); Oughton, D. [Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Aas (Norway)

    2014-07-01

    Since plants dominate every landscape, the impact of any environmental stressor on plants can directly affect the structure and function of an ecosystem, resulting in decreased primary productivity and degradation of wildlife habitat. The investigation goal of the present research was to study how vascular plant species' composition at a former radium mining site could be related to i) soil contamination with heavy metals and uranium and thorium decay chain radionuclides and ii) soil agrochemical properties. Between the 1930's and 1950's, the commercial extraction of radium, storage of the uranium mill tailings and radium production wastes, together with deactivation of the site with a mixture of sand and gravel completely destroyed plant communities in the vicinity of Vodny settlement (Komi Republic, Russia). The plant cover recovery started more than 60 years ago, and resulted in overgrowing with common grassland plant species. Three meadow sites were investigated, one with low contamination (on the territory of former radium production plant), one with high contamination (waste storage cell) and a reference sites out of the radiochemical plant zone of influence, but with similar natural conditions. Geo-botanical descriptions revealed 134 vascular plant species from 34 families in the meadow communities studied. The greatest richness was seen for Poaceae, Asteraceae, Rosaceae and Fabaceae families; others had 1-5 species. The highest richness in diversity was seen at reference sites with 95 vascular plant species. 87 species were registered on low contaminated sites and 75 species on high contaminated. Perennial herbs were the dominant life form on all the studied meadow communities. Arboreal species expansion in vegetation was noted at both experimental and reference sites. Shannon index calculations indicated a significant (p<0.05) decrease in species diversity on sample areas of the highly contaminated radioactive waste storage cell. Mean values

  12. Native-plant amendments and topsoil addition enhance soil function in post-mining arid grasslands.

    Science.gov (United States)

    Kneller, Tayla; Harris, Richard J; Bateman, Amber; Muñoz-Rojas, Miriam

    2018-04-15

    One of the most critical challenges faced in restoration of disturbed arid lands is the limited availability of topsoil. In post-mining restoration, alternative soil substrates such as mine waste could be an adequate growth media to alleviate the topsoil deficit, but these materials often lack appropriate soil characteristics to support the development and survival of seedlings. Thus, addition of exogenous organic matter may be essential to enhance plant survival and soil function. Here, we present a case study in the arid Pilbara region (north-west Western Australia), a resource-rich area subject to intensive mining activities. The main objective of our study was to assess the effects of different restoration techniques such as soil reconstruction by blending available soil materials, sowing different compositions of plant species, and addition of a locally abundant native soil organic amendment (Triodia pungens biomass) on: (i) seedling recruitment and growth of Triodia wiseana, a dominant grass in Australian arid ecosystems, and (ii) soil chemical, physical, and biological characteristics of reconstructed soils, including microbial activity, total organic C, total N, and C and N mineralisation. The study was conducted in a 12-month multifactorial microcosms setting in a controlled environment. Our results showed that the amendment increased C and N contents of re-made soils, but these values were still lower than those obtained in the topsoil. High microbial activity and C mineralisation rates were found in the amended waste that contrasted the low N mineralisation but this did not translate into improved emergence or survival of T. wiseana. These results suggest a short- or medium-term soil N immobilisation caused by negative priming effect of fresh un-composted amendment on microbial communities. We found similar growth and survival rates of T. wiseana in topsoil and a blend of topsoil and waste (50:50) which highlights the importance of topsoil, even in a

  13. Effects of seed size and habitat on recruitment patterns in grassland and forest plants

    OpenAIRE

    Lönnberg, Karin

    2012-01-01

    A trade-off between seed size and seed number is central in seed ecology, and has been suggested to be related to a trade-off between competition and colonization, as well as to a trade-off between stress tolerance and fecundity. Large seeds endure hazards during establishment, such as shading, drought, litter coverage and competition from other plants, better than do small seeds, due to a larger amount of stored resources in the seed. Small seeds, however, are numerous and small-seeded speci...

  14. Effect of four plant species on soil 15N-access and herbage yield in temporary agricultural grasslands

    DEFF Research Database (Denmark)

    Pirhofter-Walzl, Karin; Eriksen, Jørgen; Rasmussen, Jim

    2013-01-01

    access to greater amounts of soil 15N compared with a shallow-rooting binary mixture, and if leguminous plants affect herbage yield and soil 15N-access. Methods 15N-enriched ammonium-sulphate was placed at three different soil depths (0.4, 0.8 and 1.2 m) to determine the depth dependent soil 15N....... This positive plant diversity effect could not be explained by complementary soil 15N-access of the different plant species from 0.4, 0.8 and 1.2 m soil depths, even though deep-rooting chicory acquired relatively large amounts of deep soil 15N and shallow-rooting perennial ryegrass when grown in a mixture...

  15. Local Plant Diversity Across Multiple Habitats Supports a Diverse Wild Bee Community in Pennsylvania Apple Orchards.

    Science.gov (United States)

    Kammerer, Melanie A; Biddinger, David J; Rajotte, Edwin G; Mortensen, David A

    2016-02-01

    Wild pollinators supply essential, historically undervalued pollination services to crops and other flowering plant communities with great potential to ensure agricultural production against the loss of heavily relied upon managed pollinators. Local plant communities provision wild bees with crucial floral and nesting resources, but the distribution of floristic diversity among habitat types in North American agricultural landscapes and its effect on pollinators are diverse and poorly understood, especially in orchard systems. We documented floristic diversity in typical mid-Atlantic commercial apple (Malus domestica Borkh.) orchards including the forest and orchard-forest edge ("edge") habitats surrounding orchards in a heterogeneous landscape in south-central Pennsylvania, USA. We also assessed the correlation between plant richness and orchard pollinator communities. In this apple production region, edge habitats are the most species rich, supporting 146 out of 202 plant species recorded in our survey. Plant species richness in the orchard and edge habitats were significant predictors of bee species richness and abundance in the orchard, as well as landscape area of the forest and edge habitats. Both the quantity and quality of forest and edges close to orchards play a significant role in provisioning a diverse wild bee community in this agroecosystem. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Recovery of plant diversity following N cessation: effects of recruitment, litter, and elevated N cycling.

    Science.gov (United States)

    Clark, Christopher M; Tilman, David

    2010-12-01

    Plant species richness has declined and composition shifted in response to elevated atmospheric deposition of biologically active nitrogen over much of the industrialized world. Litter thickness, litter nitrogen (N) content, and soil N mineralization rates often remain elevated long after inputs cease, clouding the prospects that plant community diversity and composition would recover should N inputs be reduced. Here we determined how N cycling, litter accumulation, and recruitment limitation influenced community recovery following cessation of long-term N inputs to prairie-like grasslands. We alleviated each of these potential inhibitors through a two-year full-factorial experiment involving organic carbon addition, litter removal, and seed addition. Seed addition had the largest effect on increasing seedling and species numbers and may be necessary to overcome long-term burial of seeds of target perennial grassland species. Litter removal increased light availability and bare sites for colonization, though it had little effect on reducing the biomass of competing neighbors or altering extractable soil N. Nonetheless, these positive influences were enough to lead to small increases in species richness within one year. We found that, although C addition quickly altered many factors assumed favorable for the target community (decreased N availability and biomass of nearby competitors, increased light and site availability), these changes were insufficient to positively impact species richness or seedling numbers over the experimental duration. However, only carbon addition had species-specific effects on the existing plant community, suggesting that its apparent limited utility may be more a result of slow recovery under ambient recruitment rather than from a lack of a restorative effect. There were dramatic interactions among treatments, with the positive effects of litter removal largely negated by carbon addition, and the positive effects of seed addition

  17. Density-dependency and plant-soil feedback: former plant abundance influences competitive interactions between two grassland plant species through plant-soil feedbacks

    NARCIS (Netherlands)

    Xue, W.; Bezemer, T.M.; Berendse, Frank

    2018-01-01

    Backgrounds and aims Negative plant-soil feedbacks (PSFs) are thought to promote species coexistence, but most evidence is derived from theoretical models and data from plant monoculture experiments. Methods We grew Anthoxanthum odoratum and Centaurea jacea in field plots in monocultures and in

  18. DNA from soil mirrors plant taxonomic and growth form diversity

    Czech Academy of Sciences Publication Activity Database

    Yoccoz, N. G.; Brathen, K. A.; Gielly, L.; Haile, J.; Edwards, M. E.; Goslar, T.; von Stedingk, H.; Brysting, A.; Coissac, E.; Pompanon, F.; Sonstebo, J. H.; Miquel, C.; Valentini, A.; de Bello, Francesco; Chave, J.; Thuiller, W.; Wincker, P.; Cruaud, C.; Gavory, F.; Rasmussen, M.; Gilbert, M. T. P.; Orlando, L.; Brochmann, C.; Willerslev, E.; Taberlet, P.

    2012-01-01

    Roč. 21, č. 15 (2012), s. 3647-3655 ISSN 0962-1083 R&D Projects: GA ČR GAP505/12/1296 Institutional research plan: CEZ:AV0Z60050516 Institutional support: RVO:67985939 Keywords : biodiversity assessment * environmental sequencing * plant diversity * DNA Subject RIV: EH - Ecology, Behaviour Impact factor: 6.275, year: 2012

  19. Vascular plant diversity and community Structure of nandi forests ...

    African Journals Online (AJOL)

    Abundance data of species was used for species diversity, similarity, species richness estimation and plant community analysis. PC-ORD, CANOCO and EstimateS were used to analyze the data. A total of 321 species ... Keywords: floristic composition, ordination, rarefaction, species accumulation, species richness.

  20. Diversity of vascular plants of Piestany and surroundings

    International Nuclear Information System (INIS)

    Penzesova, A.; Galusova, T.

    2013-01-01

    In the present work is a summary of the results of floristic research aimed at determining diversity of vascular plants of Piestany and its surroundings. Plant taxa we determined using the designation keys. We have compiled a list of plant species occurring in the monitored area, we evaluated the selected botanical-phytogeographical characteristics of flora, we've put together a list of local protected, endangered and rare species and a list of local invasive and expansive species according to sources. (Authors)

  1. A Brief Review of Molecular Techniques to Assess Plant Diversity

    Directory of Open Access Journals (Sweden)

    Ibrahim A. Arif

    2010-05-01

    Full Text Available Massive loss of valuable plant species in the past centuries and its adverse impact on environmental and socioeconomic values has triggered the conservation of plant resources. Appropriate identification and characterization of plant materials is essential for the successful conservation of plant resources and to ensure their sustainable use. Molecular tools developed in the past few years provide easy, less laborious means for assigning known and unknown plant taxa. These techniques answer many new evolutionary and taxonomic questions, which were not previously possible with only phenotypic methods. Molecular techniques such as DNA barcoding, random amplified polymorphic DNA (RAPD, amplified fragment length polymorphism (AFLP, microsatellites and single nucleotide polymorphisms (SNP have recently been used for plant diversity studies. Each technique has its own advantages and limitations. These techniques differ in their resolving power to detect genetic differences, type of data they generate and their applicability to particular taxonomic levels. This review presents a basic description of different molecular techniques that can be utilized for DNA fingerprinting and molecular diversity analysis of plant species.

  2. A Brief Review of Molecular Techniques to Assess Plant Diversity

    Science.gov (United States)

    Arif, Ibrahim A.; Bakir, Mohammad A.; Khan, Haseeb A.; Al Farhan, Ahmad H.; Al Homaidan, Ali A.; Bahkali, Ali H.; Sadoon, Mohammad Al; Shobrak, Mohammad

    2010-01-01

    Massive loss of valuable plant species in the past centuries and its adverse impact on environmental and socioeconomic values has triggered the conservation of plant resources. Appropriate identification and characterization of plant materials is essential for the successful conservation of plant resources and to ensure their sustainable use. Molecular tools developed in the past few years provide easy, less laborious means for assigning known and unknown plant taxa. These techniques answer many new evolutionary and taxonomic questions, which were not previously possible with only phenotypic methods. Molecular techniques such as DNA barcoding, random amplified polymorphic DNA (RAPD), amplified fragment length polymorphism (AFLP), microsatellites and single nucleotide polymorphisms (SNP) have recently been used for plant diversity studies. Each technique has its own advantages and limitations. These techniques differ in their resolving power to detect genetic differences, type of data they generate and their applicability to particular taxonomic levels. This review presents a basic description of different molecular techniques that can be utilized for DNA fingerprinting and molecular diversity analysis of plant species. PMID:20559503

  3. Effects of above-ground plant species composition and diversity on the diversity of soil-borne microorganisms

    NARCIS (Netherlands)

    Kowalchuk, G.A.; Buma, D.S; De Boer, W.; Klinkhamer, P.G.L.; Van Veen, J.A.

    2002-01-01

    A coupling of above-ground plant diversity and below-ground microbial diversity has been implied in studies dedicated to assessing the role of macrophyte diversity on the stability, resilience, and functioning of ecosystems. Indeed, above-ground plant communities have long been assumed to drive

  4. Dependence of the conservation status of acid grasslands at the Pohorje and Kozjak on socioeconomic parameters

    Directory of Open Access Journals (Sweden)

    Karmen KETIŠ

    2015-12-01

    Full Text Available Grassland habitats were studied on twenty farms on the area of the Radlje ob Dravi administration unit, in the transect from Kozjak to Pohorje at different altitudes. The aim of the study was to investigate how environmental and  socio-economic parameters influence the diversity of plant species and, consequently, the conservation of grassland on acid soils, which are rare in Slovenia and are therefore more protected. The socioeconomic structure of farms was studied on the basis of an inquiry carried out on farms. Part-time farms prevail; the average age of farmers is 56.5 years, and 30% of farmers has no education or just elementary school. The relationship among the environmental, socio-economic parameters and floristic structures of grasslands was studied using canonic-correspondence analysis. The impact of 16 parameters was analysed, of which six were determined not to be statistically significant. The occurrence of chosen plant species was analysed in relation to environmental and socioeconomic parameters. The efficiency of agro-environmental subsidies in relation to plant species diversity was evaluated. It was determined that the education and age of farmers influence the intensity of farming and consequently have an impact on the diversity of plants species and the conservation status of grasslands.

  5. Plant diversity in the homegardens of Karwar, Karnataka, India

    Directory of Open Access Journals (Sweden)

    SHIVANAND BHAT

    2014-10-01

    Full Text Available Bhat S, Bhandary MJ, Rajanna L. 2014. Plant diversity in the homegardens of Karwar, Karnataka, India. Biodiversitas 15: 229-235. A study was conducted in 50 selected home gardens of Karwar, Karnataka, India to document their floristic diversity and composition with regard to life forms and uses. As many as 210 species of flowering plants belonging to 69 families were recorded. Euphorbiaceae (13species, Apocynaceae (11spp., Cucurbitaceae (10 spp. and Fabaceae (10 spp. are the predominant families. Shrubs are the dominant life forms (73 spp. followed by trees (61 spp., herbs (42 spp. and climbers (24 spp.. Areca palm (Areca catechu, coconut palm (Cocos nucifera, mango tree (Mangifera indica, banana (Musa paradisiaca, shoe flower (Hibiscus rosa-sinensis and holy basil (Ocimum tenuiflorum are the most common plants occurring in all of the 50 studied gardens. 38% of the plant species are grown mainly for ornamental and aesthetic purposes while 33% of the species are used for obtaining food products like fruits and vegetables and 22% of the plants are mainly used for medicinal purposes. The predominance of ornamental species makes the home gardens of Karwar different from those occurring in other regions in which mostly food plants form the major component.

  6. Plant functional diversity affects climate-vegetation interaction

    Science.gov (United States)

    Groner, Vivienne P.; Raddatz, Thomas; Reick, Christian H.; Claussen, Martin

    2018-04-01

    We present how variations in plant functional diversity affect climate-vegetation interaction towards the end of the African Humid Period (AHP) in coupled land-atmosphere simulations using the Max Planck Institute Earth system model (MPI-ESM). In experiments with AHP boundary conditions, the extent of the green Sahara varies considerably with changes in plant functional diversity. Differences in vegetation cover extent and plant functional type (PFT) composition translate into significantly different land surface parameters, water cycling, and surface energy budgets. These changes have not only regional consequences but considerably alter large-scale atmospheric circulation patterns and the position of the tropical rain belt. Towards the end of the AHP, simulations with the standard PFT set in MPI-ESM depict a gradual decrease of precipitation and vegetation cover over time, while simulations with modified PFT composition show either a sharp decline of both variables or an even slower retreat. Thus, not the quantitative but the qualitative PFT composition determines climate-vegetation interaction and the climate-vegetation system response to external forcing. The sensitivity of simulated system states to changes in PFT composition raises the question how realistically Earth system models can actually represent climate-vegetation interaction, considering the poor representation of plant diversity in the current generation of land surface models.

  7. The microbiome of medicinal plants: diversity and importance for plant growth, quality and health.

    Science.gov (United States)

    Köberl, Martina; Schmidt, Ruth; Ramadan, Elshahat M; Bauer, Rudolf; Berg, Gabriele

    2013-12-20

    Past medicinal plant research primarily focused on bioactive phytochemicals, however, the focus is currently shifting due to the recognition that a significant number of phytotherapeutic compounds are actually produced by associated microbes or through interaction with their host. Medicinal plants provide an enormous bioresource of potential use in modern medicine and agriculture, yet their microbiome is largely unknown. The objective of this review is (i) to introduce novel insights into the plant microbiome with a focus on medicinal plants, (ii) to provide details about plant- and microbe-derived ingredients of medicinal plants, and (iii) to discuss possibilities for plant growth promotion and plant protection for commercial cultivation of medicinal plants. In addition, we also present a case study performed both to analyse the microbiome of three medicinal plants (Matricaria chamomilla L., Calendula officinalis L., and Solanum distichum Schumach. and Thonn.) cultivated on organically managed Egyptian desert farm and to develop biological control strategies. The soil microbiome of the desert ecosystem was comprised of a high abundance of Gram-positive bacteria of prime importance for pathogen suppression under arid soil conditions. For all three plants, we observed a clearly plant-specific selection of the microbes as well as highly specific diazotrophic communities that overall identify plant species as important drivers in structural and functional diversity. Lastly, native Bacillus spec. div. strains were able to promote plant growth and elevate the plants' flavonoid production. These results underline the numerous links between the plant-associated microbiome and the plant metabolome.

  8. Are there consistent grazing indicators in Drylands? Testing plant functional types of various complexity in South Africa's Grassland and Savanna Biomes.

    Directory of Open Access Journals (Sweden)

    Anja Linstädter

    Full Text Available Despite our growing knowledge on plants' functional responses to grazing, there is no consensus if an optimum level of functional aggregation exists for detecting grazing effects in drylands. With a comparative approach we searched for plant functional types (PFTs with a consistent response to grazing across two areas differing in climatic aridity, situated in South Africa's grassland and savanna biomes. We aggregated herbaceous species into PFTs, using hierarchical combinations of traits (from single- to three-trait PFTs. Traits relate to life history, growth form and leaf width. We first confirmed that soil and grazing gradients were largely independent from each other, and then searched in each biome for PFTs with a sensitive response to grazing, avoiding confounding with soil conditions. We found no response consistency, but biome-specific optimum aggregation levels. Three-trait PFTs (e.g. broad-leaved perennial grasses and two-trait PFTs (e.g. perennial grasses performed best as indicators of grazing effects in the semi-arid grassland and in the arid savanna biome, respectively. Some PFTs increased with grazing pressure in the grassland, but decreased in the savanna. We applied biome-specific grazing indicators to evaluate if differences in grazing management related to land tenure (communal versus freehold had effects on vegetation. Tenure effects were small, which we mainly attributed to large variability in grazing pressure across farms. We conclude that the striking lack of generalizable PFT responses to grazing is due to a convergence of aridity and grazing effects, and unlikely to be overcome by more refined classification approaches. Hence, PFTs with an opposite response to grazing in the two biomes rather have a unimodal response along a gradient of additive forces of aridity and grazing. The study advocates for hierarchical trait combinations to identify localized indicator sets for grazing effects. Its methodological approach may

  9. Are there consistent grazing indicators in Drylands? Testing plant functional types of various complexity in South Africa's Grassland and Savanna Biomes.

    Science.gov (United States)

    Linstädter, Anja; Schellberg, Jürgen; Brüser, Katharina; Moreno García, Cristian A; Oomen, Roelof J; du Preez, Chris C; Ruppert, Jan C; Ewert, Frank

    2014-01-01

    Despite our growing knowledge on plants' functional responses to grazing, there is no consensus if an optimum level of functional aggregation exists for detecting grazing effects in drylands. With a comparative approach we searched for plant functional types (PFTs) with a consistent response to grazing across two areas differing in climatic aridity, situated in South Africa's grassland and savanna biomes. We aggregated herbaceous species into PFTs, using hierarchical combinations of traits (from single- to three-trait PFTs). Traits relate to life history, growth form and leaf width. We first confirmed that soil and grazing gradients were largely independent from each other, and then searched in each biome for PFTs with a sensitive response to grazing, avoiding confounding with soil conditions. We found no response consistency, but biome-specific optimum aggregation levels. Three-trait PFTs (e.g. broad-leaved perennial grasses) and two-trait PFTs (e.g. perennial grasses) performed best as indicators of grazing effects in the semi-arid grassland and in the arid savanna biome, respectively. Some PFTs increased with grazing pressure in the grassland, but decreased in the savanna. We applied biome-specific grazing indicators to evaluate if differences in grazing management related to land tenure (communal versus freehold) had effects on vegetation. Tenure effects were small, which we mainly attributed to large variability in grazing pressure across farms. We conclude that the striking lack of generalizable PFT responses to grazing is due to a convergence of aridity and grazing effects, and unlikely to be overcome by more refined classification approaches. Hence, PFTs with an opposite response to grazing in the two biomes rather have a unimodal response along a gradient of additive forces of aridity and grazing. The study advocates for hierarchical trait combinations to identify localized indicator sets for grazing effects. Its methodological approach may also be useful

  10. [Species diversity of ex-situ cultivated Chinese medicinal plants].

    Science.gov (United States)

    Que, Ling; Chi, Xiu-Lian; Zang, Chun-Xin; Zhang, Yu; Chen, Min; Yang, Guang; Jin, An-Qi

    2018-03-01

    Ex-situ conservation is an important means to protect biological genetic resources. Resource protection has received more and more attention with the continuous improvement of the comprehensive utilization of traditional Chinese medicine resources. In this paper, the research and compilation of the species list of ex-situ cultivated medicinal plants in 12 Chinese Academy of Sciences botanic gardens and 19 specialized medicinal botanic gardens in China were carried out. Based on the Species 2000(2017) and other classification databases, species diversity of medicinal plants ex-situ cultivated in these botanical gardens were analyzed. The study found that there were 16 351 higher plant species in our country, belonging to 276 families and 1 936 genera. Of these, 6 949 specieswere medicinal plants, accounting for 50.4% of the total medicinal plants. There were 1 280 medicinal plants were in threatened status, accounting for 19.6% of all threatened species in the Chinese Biodiversity Red List, with ex-situ cultivated proportion of 59.5%. And 3 988 medicinal plants were Chinese endemic species, accounting for 22.5% of all Chinese endemic species, with ex-situ cultivated proportion of 53.3%. This article has reference significance for the management and protection of medicinal plant resources. Copyright© by the Chinese Pharmaceutical Association.

  11. Fungal diversity associated with Hawaiian Drosophila host plants.

    Directory of Open Access Journals (Sweden)

    Brian S Ort

    Full Text Available Hawaiian Drosophila depend primarily, sometimes exclusively, on specific host plants for oviposition and larval development, and most specialize further on a particular decomposing part of that plant. Differences in fungal community between host plants and substrate types may establish the basis for host specificity in Hawaiian Drosophila. Fungi mediate decomposition, releasing plant micronutrients and volatiles that can indicate high quality substrates and serve as cues to stimulate oviposition. This study addresses major gaps in our knowledge by providing the first culture-free, DNA-based survey of fungal diversity associated with four ecologically important tree genera in the Hawaiian Islands. Three genera, Cheirodendron, Clermontia, and Pisonia, are important host plants for Drosophila. The fourth, Acacia, is not an important drosophilid host but is a dominant forest tree. We sampled fresh and rotting leaves from all four taxa, plus rotting stems from Clermontia and Pisonia. Based on sequences from the D1/D2 domain of the 26S rDNA gene, we identified by BLAST search representatives from 113 genera in 13 fungal classes. A total of 160 operational taxonomic units, defined on the basis of ≥97% genetic similarity, were identified in these samples, but sampling curves show this is an underestimate of the total fungal diversity present on these substrates. Shannon diversity indices ranged from 2.0 to 3.5 among the Hawaiian samples, a slight reduction compared to continental surveys. We detected very little sharing of fungal taxa among the substrates, and tests of community composition confirmed that the structure of the fungal community differed significantly among the substrates and host plants. Based on these results, we hypothesize that fungal community structure plays a central role in the establishment of host preference in the Hawaiian Drosophila radiation.

  12. The microbiome of medicinal plants: diversity and importance for plant growth, quality and health

    Directory of Open Access Journals (Sweden)

    Martina eKöberl

    2013-12-01

    Full Text Available Past medicinal plant research primarily focused on bioactive phytochemicals, however the focus is currently shifting due to the recognition that a significant number of phytotherapeutic compounds are actually produced by associated microbes or through interaction with their host. Medicinal plants provide an enormous bioresource of potential use in modern medicine and agriculture, yet their microbiome is largely unknown. The objective of this review is i to introduce novel insights into the plant microbiome with a focus on medicinal plants, ii to provide details about plant- and microbe-derived ingredients of medicinal plants, and iii to discuss possibilities for plant growth promotion and plant protection for commercial cultivation of medicinal plants. In addition, we also present a case study performed both to analyse the microbiome of three medicinal plants (Matricaria chamomilla L., Calendula officinalis L. and Solanum distichum Schumach. and Thonn. cultivated on organically managed Egyptian desert farm and to develop biological control strategies. The soil microbiome of the desert ecosystem was comprised of a high abundance of Gram-positive bacteria of prime importance for pathogen suppression under arid soil conditions. For all three plants, we observed a clearly plant-specific selection of the microbes as well as highly specific diazotrophic communities that overall identify plant species as important drivers in structural and functional diversity. Lastly, native Bacillus spec. div. strains were able to promote plant growth and elevate the plants’ flavonoid production. These results underline the numerous links between the plant-associated microbiome and the plant metabolome.

  13. Medicinal plant diversity and traditional healing practices in eastern Nepal.

    Science.gov (United States)

    Shrestha, Nawal; Shrestha, Saugat; Koju, Laxmi; Shrestha, Krishna Kumar; Wang, Zhiheng

    2016-11-04

    The rich floral and ethnic composition of eastern Nepal and the widespread utilization of locally available medicinal plants offer remarkable opportunity for ethnomedicinal research. The present paper aims to explore medicinal plant diversity and use in the remote villages of eastern Nepal. It also aims to evaluate ethnopharmacological significance of the documented use reports and identify species of high indigenous priority. The study was undertaken in four villages located in the Sankhuwasabha district in eastern Nepal. Ethnomedicinal information was collected through structured interviews. The homogeneity of informant's knowledge and the relative importance of documented medicinal plants were validated by informant consensus factor and use value, respectively. Species preference for treatment of particular diseases was evaluated through fidelity level. We reported medicinal properties of 48 species belonging to 33 families and 40 genera, for the treatment of 37 human ailments. The uses of 10 medicinal plants were previously undocumented. The informant consensus factor (F IC ) ranged between 0.38 and 1 with about 50% of values greater than 0.80 and over 75% of values greater than 0.70, indicating moderate to high consensus among the informants on the use of medicinal plants in the region. Swertia chirayita was the most preferred species with significantly high use values, followed by Paris polyphylla and Neopicrorhiza scrophulariiflora. The remote villages in eastern Nepal possess rich floral and cultural diversity with strong consensus among informants on utilization of plants for local healthcare. The direct pharmacological evidence for medicinal properties of most species indicates high reliability of documented information. Careful and systematic screening of compounds isolated from these plants could possibly provide good opportunity for the discovery of novel medicines to treat life-threatening human diseases. We recommend prioritization of medicinal

  14. Effects of plant diversity on the concentration of secondary plant metabolites and the density of arthropods on focal plants in the field

    NARCIS (Netherlands)

    Kostenko, O.; Mulder, Patrick P. J.; Courbois, Matthijs; Bezemer, T. Martijn

    2017-01-01

    1.The diversity of the surrounding plant community can directly affect the abundance of insects on a focal plant as well as the size and quality of that focal plant. However, to what extent the effects of plant diversity on the arthropod community on a focal plant are mediated by host plant quality

  15. Enhancing (crop) plant photosynthesis by introducing novel genetic diversity.

    Science.gov (United States)

    Dann, Marcel; Leister, Dario

    2017-09-26

    Although some elements of the photosynthetic light reactions might appear to be ideal, the overall efficiency of light conversion to biomass has not been optimized during evolution. Because crop plants are depleted of genetic diversity for photosynthesis, efforts to enhance its efficiency with respect to light conversion to yield must generate new variation. In principle, three sources of natural variation are available: (i) rare diversity within extant higher plant species, (ii) photosynthetic variants from algae, and (iii) reconstruction of no longer extant types of plant photosynthesis. Here, we argue for a novel approach that outsources crop photosynthesis to a cyanobacterium that is amenable to adaptive evolution. This system offers numerous advantages, including a short generation time, virtually unlimited population sizes and high mutation rates, together with a versatile toolbox for genetic manipulation. On such a synthetic bacterial platform, 10 000 years of (crop) plant evolution can be recapitulated within weeks. Limitations of this system arise from its unicellular nature, which cannot reproduce all aspects of crop photosynthesis. But successful establishment of such a bacterial host for crop photosynthesis promises not only to enhance the performance of eukaryotic photosynthesis but will also reveal novel facets of the molecular basis of photosynthetic flexibility.This article is part of the themed issue 'Enhancing photosynthesis in crop plants: targets for improvement'. © 2017 The Author(s).

  16. Functional diversity of microbial decomposers facilitates plant coexistence in a plant-microbe-soil feedback model.

    Science.gov (United States)

    Miki, Takeshi; Ushio, Masayuki; Fukui, Shin; Kondoh, Michio

    2010-08-10

    Theory and empirical evidence suggest that plant-soil feedback (PSF) determines the structure of a plant community and nutrient cycling in terrestrial ecosystems. The plant community alters the nutrient pool size in soil by affecting litter decomposition processes, which in turn shapes the plant community, forming a PSF system. However, the role of microbial decomposers in PSF function is often overlooked, and it remains unclear whether decomposers reinforce or weaken litter-mediated plant control over nutrient cycling. Here, we present a theoretical model incorporating the functional diversity of both plants and microbial decomposers. Two fundamental microbial processes are included that control nutrient mineralization from plant litter: (i) assimilation of mineralized nutrient into the microbial biomass (microbial immobilization), and (ii) release of the microbial nutrients into the inorganic nutrient pool (net mineralization). With this model, we show that microbial diversity may act as a buffer that weakens plant control over the soil nutrient pool, reversing the sign of PSF from positive to negative and facilitating plant coexistence. This is explained by the decoupling of litter decomposability and nutrient pool size arising from a flexible change in the microbial community composition and decomposition processes in response to variations in plant litter decomposability. Our results suggest that the microbial community plays a central role in PSF function and the plant community structure. Furthermore, the results strongly imply that the plant-centered view of nutrient cycling should be changed to a plant-microbe-soil feedback system, by incorporating the community ecology of microbial decomposers and their functional diversity.

  17. Inter-varietal interactions among plants in genotypically diverse mixtures tend to decrease herbivore performance.

    Science.gov (United States)

    Grettenberger, Ian M; Tooker, John F

    2016-09-01

    Much research has explored the effects of plant species diversity on herbivore populations, but far less has considered effects of plant genotypic diversity, or how abiotic stressors, like drought, can modify effects. Mechanisms by which plant genotypic diversity affects herbivore populations remain largely unresolved. We used greenhouse studies with a model system of wheat (Triticum aestivum L.) and bird cherry-oat aphid (Rhopalosiphum padi L.) to determine whether the genotypic diversity of a plant's neighborhood influences performance and fitness of herbivores on a focal plant and if drought changes the influence of neighborhood diversity. Taken across all varieties we tested, plant-plant interactions in diverse neighborhoods reduced aphid performance and generated associational resistance, although effects on aphids depended on variety identity. In diverse mixtures, drought stress greatly diminished the genotypic diversity-driven reduction in aphid performance. Neighborhood diversity influenced mother aphid size, and appeared to partially explain how plant-plant interactions reduced the number of offspring produced in mixtures. Plant size did not mediate effects on aphid performance, although neighborhood diversity reduced plant mass across varieties and watering treatments. Our results suggest inter-varietal interactions in genotypic mixtures can affect herbivore performance in the absence of herbivore movement and that abiotic stress may diminish any effects. Accounting for how neighborhood diversity influences resistance of an individual plant to herbivores will help aid development of mixtures of varieties for managing insect pests and clarify the role of plant genotypic diversity in ecosystems.

  18. Interactions between above- and belowground biota: importance for small-scale vegetation mosaics in a grassland ecosystem

    NARCIS (Netherlands)

    Blomqvist, M.M.; Olff, H.; Blaauw, M.B.; Bongers, T.; Van der Putten, W.H.

    2000-01-01

    Grasslands are often characterised by small-scale mosaics in plant community composition that contribute to their diversity. Although above- and belowground biota can both cause such mosaics, few studies have addressed their interacting effects. We studied multi-trophic interactions between

  19. Interactions between above- and belowground biota : importance for small-scale vegetation mosaics in a grassland ecosystem

    NARCIS (Netherlands)

    Blomqvist, N.M.; Olff, H.; Blaauw, M.B.; Bongers, T.; Putten, van der W.H.

    2000-01-01

    Grasslands are often characterised by small-scale mosaics in plant community composition that contribute to their diversity. Although above- and belowground biota can both cause such mosaics, few studies have addressed their interacting effects. We studied multi-trophic interactions between

  20. Dry grassland biodiversity conservation using low-intensity sheep and goat grazing management: case study in Prague (Czech republic)

    Czech Academy of Sciences Publication Activity Database

    Dostálek, J.; Frantík, Tomáš

    2008-01-01

    Roč. 17, č. 3 (2008), s. 1439-1454 ISSN 0960-3115 Institutional research plan: CEZ:AV0Z60050516 Keywords : dry grassland * grazing * plant diversity conservation Subject RIV: EF - Botanics Impact factor: 1.473, year: 2008

  1. Plant diversity associated with pools in natural and restored peatlands

    Directory of Open Access Journals (Sweden)

    N. Fontaine

    2007-06-01

    Full Text Available This study describes plant assemblages associated with the edges of peatland pools. We conducted inventories in six natural peatlands in the province of Québec (Canada in order to measure the contribution of pools to species diversity in climatic regions where peatlands are used for peat extraction. We also carried out vegetation surveys in a peatland that has been restored after peat extraction/harvesting to determine whether pool vegetation establishes along the edges of created pools when dry surface restoration techniques only are used. Pools enhanced plant species richness in natural peatlands. Around created pools, species associated with natural pools were still absent, and non-bog species were present, six years after restoration. On this basis, we emphasise the importance of preserving natural peatlands with pools. In order to restore fully the plant diversity associated with peatlands at harvested sites, it may be necessary to modify pool excavation techniques so that created pools resemble more closely those in natural peatlands. Active introduction of the plant species or communities associated with natural pools may also be needed; candidate species for North America include Andromeda glaucophylla, Cladopodiella fluitans, Carex limosa, Eriophorum virginicum, Rhynchospora alba and Sphagnum cuspidatum.

  2. Are There Consistent Grazing Indicators in Drylands? Testing Plant Functional Types of Various Complexity in South Africa’s Grassland and Savanna Biomes

    Science.gov (United States)

    Linstädter, Anja; Schellberg, Jürgen; Brüser, Katharina; Moreno García, Cristian A.; Oomen, Roelof J.; du Preez, Chris C.; Ruppert, Jan C.; Ewert, Frank

    2014-01-01

    Despite our growing knowledge on plants’ functional responses to grazing, there is no consensus if an optimum level of functional aggregation exists for detecting grazing effects in drylands. With a comparative approach we searched for plant functional types (PFTs) with a consistent response to grazing across two areas differing in climatic aridity, situated in South Africa’s grassland and savanna biomes. We aggregated herbaceous species into PFTs, using hierarchical combinations of traits (from single- to three-trait PFTs). Traits relate to life history, growth form and leaf width. We first confirmed that soil and grazing gradients were largely independent from each other, and then searched in each biome for PFTs with a sensitive response to grazing, avoiding confounding with soil conditions. We found no response consistency, but biome-specific optimum aggregation levels. Three-trait PFTs (e.g. broad-leaved perennial grasses) and two-trait PFTs (e.g. perennial grasses) performed best as indicators of grazing effects in the semi-arid grassland and in the arid savanna biome, respectively. Some PFTs increased with grazing pressure in the grassland, but decreased in the savanna. We applied biome-specific grazing indicators to evaluate if differences in grazing management related to land tenure (communal versus freehold) had effects on vegetation. Tenure effects were small, which we mainly attributed to large variability in grazing pressure across farms. We conclude that the striking lack of generalizable PFT responses to grazing is due to a convergence of aridity and grazing effects, and unlikely to be overcome by more refined classification approaches. Hence, PFTs with an opposite response to grazing in the two biomes rather have a unimodal response along a gradient of additive forces of aridity and grazing. The study advocates for hierarchical trait combinations to identify localized indicator sets for grazing effects. Its methodological approach may also be

  3. Functional Trait Changes, Productivity Shifts and Vegetation Stability in Mountain Grasslands during a Short-Term Warming.

    Science.gov (United States)

    Debouk, Haifa; de Bello, Francesco; Sebastià, Maria-Teresa

    2015-01-01

    Plant functional traits underlie vegetation responses to environmental changes such as global warming, and consequently influence ecosystem processes. While most of the existing studies focus on the effect of warming only on species diversity and productivity, we further investigated (i) how the structure of community plant functional traits in temperate grasslands respond to experimental warming, and (ii) whether species and functional diversity contribute to a greater stability of grasslands, in terms of vegetation composition and productivity. Intact vegetation turves were extracted from temperate subalpine grassland (highland) in the Eastern Pyrenees and transplanted into a warm continental, experimental site in Lleida, in Western Catalonia (lowland). The impacts of simulated warming on plant production and diversity, functional trait structure, and vegetation compositional stability were assessed. We observed an increase in biomass and a reduction in species and functional diversity under short-term warming. The functional structure of the grassland communities changed significantly, in terms of functional diversity and community-weighted means (CWM) for several traits. Acquisitive and fast-growing species with higher SLA, early flowering, erect growth habit, and rhizomatous strategy became dominant in the lowland. Productivity was significantly positively related to species, and to a lower extent, functional diversity, but productivity and stability after warming were more dependent on trait composition (CWM) than on diversity. The turves with more acquisitive species before warming changed less in composition after warming. Results suggest that (i) the short-term warming can lead to the dominance of acquisitive fast growing species over conservative species, thus reducing species richness, and (ii) the functional traits structure in grassland communities had a greater influence on the productivity and stability of the community under short-term warming

  4. Functional Trait Changes, Productivity Shifts and Vegetation Stability in Mountain Grasslands during a Short-Term Warming.

    Directory of Open Access Journals (Sweden)

    Haifa Debouk

    Full Text Available Plant functional traits underlie vegetation responses to environmental changes such as global warming, and consequently influence ecosystem processes. While most of the existing studies focus on the effect of warming only on species diversity and productivity, we further investigated (i how the structure of community plant functional traits in temperate grasslands respond to experimental warming, and (ii whether species and functional diversity contribute to a greater stability of grasslands, in terms of vegetation composition and productivity. Intact vegetation turves were extracted from temperate subalpine grassland (highland in the Eastern Pyrenees and transplanted into a warm continental, experimental site in Lleida, in Western Catalonia (lowland. The impacts of simulated warming on plant production and diversity, functional trait structure, and vegetation compositional stability were assessed. We observed an increase in biomass and a reduction in species and functional diversity under short-term warming. The functional structure of the grassland communities changed significantly, in terms of functional diversity and community-weighted means (CWM for several traits. Acquisitive and fast-growing species with higher SLA, early flowering, erect growth habit, and rhizomatous strategy became dominant in the lowland. Productivity was significantly positively related to species, and to a lower extent, functional diversity, but productivity and stability after warming were more dependent on trait composition (CWM than on diversity. The turves with more acquisitive species before warming changed less in composition after warming. Results suggest that (i the short-term warming can lead to the dominance of acquisitive fast growing species over conservative species, thus reducing species richness, and (ii the functional traits structure in grassland communities had a greater influence on the productivity and stability of the community under short

  5. Negative and positive interactions among plants: effects of competitors and litter on seedling emergence and growth of forest and grassland species.

    Science.gov (United States)

    Loydi, A; Donath, T W; Otte, A; Eckstein, R L

    2015-05-01

    Living plant neighbours, but also their dead aboveground remains (i.e. litter), may individually exert negative or positive effects on plant recruitment. Although living plants and litter co-occur in most ecosystems, few studies have addressed their combined effects, and conclusions are ambivalent. Therefore, we examined the response in terms of seedling emergence and growth of herbaceous grassland and forest species to different litter types and amounts and the presence of competitors. We conducted a pot experiment testing the effects of litter type (grass, oak), litter amount (low, medium, high) and interspecific competition (presence or absence of four Festuca arundinacea individuals) on seedling emergence and biomass of four congeneric pairs of hemicryptophytes from two habitat types (woodland, grassland). Interactions between litter and competition were weak. Litter presence increased competitor biomass. It also had positive effects on seedling emergence at low litter amounts and negative effects at high litter amounts, while competition had no effect on seedling emergence. Seedling biomass was negatively affected by the presence of competitors, and this effect was stronger in combination with high amounts of litter. Litter affected seedling emergence while competition determined the biomass of the emerged individuals, both affecting early stages of seedling recruitment. High litter accumulation also reduced seedling biomass, but this effect seemed to be additive to competitor effects. This suggests that live and dead plant mass can affect species recruitment in natural systems, but the mechanisms by which they operate and their timing differ. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.

  6. Expanding Kenya's protected areas under the Convention on Biological Diversity to maximize coverage of plant diversity.

    Science.gov (United States)

    Scherer, Laura; Curran, Michael; Alvarez, Miguel

    2017-04-01

    Biodiversity is highly valuable and critically threatened by anthropogenic degradation of the natural environment. In response, governments have pledged enhanced protected-area coverage, which requires scarce biological data to identify conservation priorities. To assist this effort, we mapped conservation priorities in Kenya based on maximizing alpha (species richness) and beta diversity (species turnover) of plant communities while minimizing economic costs. We used plant-cover percentages from vegetation surveys of over 2000 plots to build separate models for each type of diversity. Opportunity and management costs were based on literature data and interviews with conservation organizations. Species richness was predicted to be highest in a belt from Lake Turkana through Mount Kenya and in a belt parallel to the coast, and species turnover was predicted to be highest in western Kenya and along the coast. Our results suggest the expanding reserve network should focus on the coast and northeastern provinces of Kenya, where new biological surveys would also fill biological data gaps. Meeting the Convention on Biological Diversity target of 17% terrestrial coverage by 2020 would increase representation of Kenya's plant communities by 75%. However, this would require about 50 times more funds than Kenya has received thus far from the Global Environment Facility. © 2016 Society for Conservation Biology.

  7. Spatial Patterns of Species Diversity and Phylogenetic Structure of Plant Communities in the Tianshan Mountains, Arid Central Asia

    Directory of Open Access Journals (Sweden)

    Hong-Xiang Zhang

    2017-12-01

    Full Text Available The Tianshan Mountains, located in arid Central Asia, have a humid climate and are biodiversity hotspots. Here, we aimed to clarify whether the pattern of species diversity and the phylogenetic structure of plant communities is affected by environmental variables and glacial refugia. In this study, plant community assemblies of 17 research sites with a total of 35 sample plots were investigated at the grassland/woodland boundaries on the Tianshan Mountains. Community phylogeny of these plant communities was constructed based on two plant DNA barcode regions. The indices of phylogenetic diversity and phylogenetic community structure were calculated for these sample plots. We first estimated the correlation coefficients between species richness (SR and environmental variables as well as the presence of glacial refugia. We then mapped the significant values of indices of community phylogeny (PD, RPD, NRI, and NTI to investigate the correlation between community phylogeny and environmental structure or macrozones in the study area. The results showed that a significantly higher value of SR was obtained for the refugial groups than for the colonizing groups (P < 0.05; presence of refugia and environmental variables were highly correlated to the pattern of variation in SR. Indices of community phylogeny were not significantly different between refugial and colonizing regions. Comparison with the humid western part showed that plant communities in the arid eastern part of the Tianshan Mountains tended to display more significant phylogenetic overdispersion. The variation tendency of the PhyloSor index showed that the increase in macro-geographical and environmental distance did not influence obvious phylogenetic dissimilarities between different sample plots. In conclusion, glacial refugia and environmental factors profoundly influenced the pattern of SR, but community phylogenetic structure was not affected by glacial refugia among different plant

  8. Phylogenetic and Functional Diversity of Fleshy-Fruited Plants Are Positively Associated with Seedling Diversity in a Tropical Montane Forest

    Directory of Open Access Journals (Sweden)

    Marcia C. Muñoz

    2017-08-01

    Full Text Available Mutualistic interactions between plants and animals can affect both plant and animal communities, and potentially leave imprints on plant demography. Yet, no study has simultaneously tested how trait variation in plant resources shapes the diversity of animal consumers, and how these interactions influence seedling recruitment. Here, we analyzed whether (i phylogenetic diversity and functional diversity of fruiting plants were correlated with the corresponding diversity of frugivorous birds, and (ii whether phylogenetic diversity and functional identity of plant and bird communities influenced the corresponding diversity and identity of seedling communities. We recorded mutualistic interactions between fleshy-fruited plants and frugivorous birds and seedling communities in 10 plots along an elevational gradient in the Colombian Andes. We built a phylogeny for plants/seedlings and birds and measured relevant morphological plant and bird traits that influence plant-bird interactions and seedling recruitment. We found that phylogenetic diversity and functional diversity of frugivorous birds were positively associated with the corresponding diversities of fruiting plants, consistent with a bottom-up effect of plants on birds. Moreover, the phylogenetic diversity of seedlings was related to the phylogenetic diversity of plants, but was unrelated to the phylogenetic diversity of frugivorous birds, suggesting that top-down effects of animals on seedlings were weak. Mean seed mass of seedling communities was positively associated with the mean fruit mass of plants, but was not associated with the mean avian body mass in the frugivore communities. Our study shows that variation in the traits of fleshy-fruited plants was associated with the diversity of frugivorous birds and affected the future trajectory of seedling recruitment, whereas the morphological traits of animal seed dispersers were unrelated to the phylogenetic and functional structure of

  9. Plant Community and Nitrogen Deposition as Drivers of Alpha and Beta Diversities of Prokaryotes in Reconstructed Oil Sand Soils and Natural Boreal Forest Soils

    Science.gov (United States)

    Prescott, Cindy E.; Renaut, Sébastien; Terrat, Yves; Grayston, Sue J.

    2017-01-01

    ABSTRACT The Athabasca oil sand deposit is one of the largest single oil deposits in the world. Following surface mining, companies are required to restore soil-like profiles that can support the previous land capabilities. The objective of this study was to assess whether the soil prokaryotic alpha diversity (α-diversity) and β-diversity in oil sand soils reconstructed 20 to 30 years previously and planted to one of three vegetation types (coniferous or deciduous trees and grassland) were similar to those found in natural boreal forest soils subject to wildfire disturbance. Prokaryotic α-diversity and β-diversity were assessed using massively parallel sequencing of 16S rRNA genes. The β-diversity, but not the α-diversity, differed between reconstructed and natural soils. Bacteria associated with an oligotrophic lifestyle were more abundant in natural forest soils, whereas bacteria associated with a copiotrophic lifestyle were more abundant in reconstructed soils. Ammonia-oxidizing archaea were most abundant in reconstructed soils planted with grasses. Plant species were the main factor influencing α-diversity in natural and in reconstructed soils. Nitrogen deposition, pH, and plant species were the main factors influencing the β-diversity of the prokaryotic communities in natural and reconstructed soils. The results highlight the importance of nitrogen deposition and aboveground-belowground relationships in shaping soil microbial communities in natural and reconstructed soils. IMPORTANCE Covering over 800 km2, land disturbed by the exploitation of the oil sands in Canada has to be restored. Here, we take advantage of the proximity between these reconstructed ecosystems and the boreal forest surrounding the oil sand mining area to study soil microbial community structure and processes in both natural and nonnatural environments. By identifying key characteristics shaping the structure of soil microbial communities, this study improved our understanding of

  10. Plant Community and Nitrogen Deposition as Drivers of Alpha and Beta Diversities of Prokaryotes in Reconstructed Oil Sand Soils and Natural Boreal Forest Soils.

    Science.gov (United States)

    Masse, Jacynthe; Prescott, Cindy E; Renaut, Sébastien; Terrat, Yves; Grayston, Sue J

    2017-05-01

    The Athabasca oil sand deposit is one of the largest single oil deposits in the world. Following surface mining, companies are required to restore soil-like profiles that can support the previous land capabilities. The objective of this study was to assess whether the soil prokaryotic alpha diversity (α-diversity) and β-diversity in oil sand soils reconstructed 20 to 30 years previously and planted to one of three vegetation types (coniferous or deciduous trees and grassland) were similar to those found in natural boreal forest soils subject to wildfire disturbance. Prokaryotic α-diversity and β-diversity were assessed using massively parallel sequencing of 16S rRNA genes. The β-diversity, but not the α-diversity, differed between reconstructed and natural soils. Bacteria associated with an oligotrophic lifestyle were more abundant in natural forest soils, whereas bacteria associated with a copiotrophic lifestyle were more abundant in reconstructed soils. Ammonia-oxidizing archaea were most abundant in reconstructed soils planted with grasses. Plant species were the main factor influencing α-diversity in natural and in reconstructed soils. Nitrogen deposition, pH, and plant species were the main factors influencing the β-diversity of the prokaryotic communities in natural and reconstructed soils. The results highlight the importance of nitrogen deposition and aboveground-belowground relationships in shaping soil microbial communities in natural and reconstructed soils. IMPORTANCE Covering over 800 km 2 , land disturbed by the exploitation of the oil sands in Canada has to be restored. Here, we take advantage of the proximity between these reconstructed ecosystems and the boreal forest surrounding the oil sand mining area to study soil microbial community structure and processes in both natural and nonnatural environments. By identifying key characteristics shaping the structure of soil microbial communities, this study improved our understanding of how

  11. Endophytic Fungal Diversity in Medicinal Plants of Western Ghats, India

    Directory of Open Access Journals (Sweden)

    Monnanda Somaiah Nalini

    2014-01-01

    Full Text Available Endophytes constitute an important component of microbial diversity, and in the present investigation, seven plant species with rich ethnobotanical uses representing six families were analyzed for the presence of endophytic fungi from their natural habitats during monsoon (May/June and winter (November/December seasons of 2007. Fungal endophytes were isolated from healthy plant parts such as stem, root, rhizome, and inflorescence employing standard isolation methods. One thousand five hundred and twenty-nine fungal isolates were obtained from 5200 fragments. Stem fragments harbored more endophytes (80.37% than roots (19.22%. 31 fungal taxa comprised of coelomycetes (65%, hyphomycetes (32%, and ascomycetes (3%. Fusarium, Acremonium, Colletotrichum, Chaetomium, Myrothecium, Phomopsis, and Pestalotiopsis spp. were commonly isolated. Diversity indices differed significantly between the seasons (P<0.001. Species richness was greater for monsoon isolations than winter. Host specificity was observed for few fungal endophytes. UPGMA cluster analysis grouped the endophytes into distinct clusters on the basis of genetic distance. This study is the first report on the diversity and host-specificity of endophytic fungal taxa were from the semi evergreen forest type in Talacauvery subcluster of Western Ghats.

  12. Meta-scale mountain grassland observatories uncover commonalities as well as specific interactions among plant and non-rhizosphere soil bacterial communities.

    Science.gov (United States)

    Yashiro, Erika; Pinto-Figueroa, Eric; Buri, Aline; Spangenberg, Jorge E; Adatte, Thierry; Niculita-Hirzel, Helene; Guisan, Antoine; van der Meer, Jan Roelof

    2018-04-10

    Interactions between plants and bacteria in the non-rhizosphere soil are rarely assessed, because they are less direct and easily masked by confounding environmental factors. By studying plant vegetation alliances and soil bacterial community co-patterning in grassland soils in 100 sites across a heterogeneous mountain landscape in the western Swiss Alps, we obtained sufficient statistical power to disentangle common co-occurrences and weaker specific interactions. Plant alliances and soil bacterial communities tended to be synchronized in community turnover across the landscape, largely driven by common underlying environmental factors, such as soil pH or elevation. Certain alliances occurring in distinct, local, environmental conditions were characterized by co-occurring specialist plant and bacterial species, such as the Nardus stricta and Thermogemmatisporaceae. In contrast, some generalist taxa, like Anthoxanthum odoratum and 19 Acidobacteria species, spanned across multiple vegetation alliances. Meta-scale analyses of soil bacterial community composition and vegetation surveys, complemented with local edaphic measurements, can thus prove useful to identify the various types of plant-bacteria interactions and the environments in which they occur.

  13. Ecological analysis of plant cover of the permanent grassland ecosystem located in the vicinity of Novi Kneževac, Serbia

    Directory of Open Access Journals (Sweden)

    Knežević Aleksa

    2012-01-01

    Full Text Available A total of 205 taxa and stands of 12 plant communities were found to comprise the plant cover of the permanent grassland on the solonetz and solonchakic solonetz soils located in the vicinity of the town of Novi Kneževac (Vojvodina Province, Serbia. The registered taxa included 177 plant species, six subspecies, eight varieties, 13 forms and one lusus. The ecological analysis of the flora involved 191 taxa. That group consisted of 177 species, six subspecies, three varieties and five forms. The three varieties, Aster tripolium L. var. pannonicus ( Jacq. Beck, Chenopodium rubrum L. subsp. botryoides Sm. var. crassifolium (Hornem Kov. and Sonchus arvensis L. var. uliginosus (M.B. Grec. were used for analysis because their higher taxonomic categories were not recorded in the studied flora. The five forms, Aster sedifolius L. f. subsquamosus Soy, Bromus commutatus Schrad. f. violaceus Podp., Mentha aquatica L. f. erromera Top., Poa bulbosa L. f. vivipara Koel. and Scleranthus annus L. f. minimus Schur., were used for the same reason. The ecological analysis encompassed stands of all 12 recorded communities, i.e. ass. Scirpo-Phragmitetum W. Koch 1926, ass. Bolboschoenetum maritimi continentale Soy (1927 1957, ass. Acorelletum pannonici Soy (1939 1947, ass. Puccinelletum limosae (Rapcs. 1927 Soy 1930, ass. Pholiuro-Plantaginetum tenuiflorae (Rapcs. 1927 Wendel. 1943, ass. Hordeetum histricis (Soy 1933 Wendel. 1943, ass. Camphorosmetum annuae (Rapcs. 1916 Soy 1933 corr. Soy 1938, ass. Agrostio-Alopecuretum pratensis Soy (1933 1947, ass. Agrostio-Eleochariti-Alopecuretu geniculati (Magyar1928 Soy (1939 1947, ass. Artemisio-Festucetum pseudovinae (Magyar 1928 Soy 1945, ass. Achilleo-Festucetum pseudovinae (Magyar 1928 Soy 1945 and ass. Festuco-Andropogonetum ischaemi Vučk. 1985. The ecological analysis of the plant cover indicated that halophytes made 30.37% of the flora of the permanent grassland near the town of Novi Kneževac, and that the stands of

  14. Does interspecific competition alter effects of early season ozone exposure on plants from wet grasslands? Results of a three-year experiment in open-top chambers.

    Science.gov (United States)

    Tonneijck, A E G; Franzaring, J; Brouwer, G; Metselaar, K; Dueck, Th A

    2004-09-01

    Chronic effects of ozone on wet grassland species early in the growing season might be altered by interspecific competition. Individual plants of Holcus lanatus, Lychnis flos-cuculi, Molinia caerulea and Plantago lanceolata were grown in monocultures and in mixed cultures with Agrostis capillaris. Mesocosms were exposed to charcoal-filtered air plus 25 nl l(-1) ozone (CF+25), non-filtered air (NF), non-filtered air plus 25 nl l(-1) ozone (NF+25) and non-filtered air plus 50 nl l(-1) ozone (NF+50) early in the growing seasons of 2000 through 2002. Ozone-enhanced senescence and visible foliar injury were recorded on some of the target plants in the first year only. Ozone effects on biomass production were minimal and plant response to ozone did not differ between monocultures and mixed cultures. After three years, above-ground biomass of the plants in mixed culture compared to monocultures was three times greater for H. lanatus and two to four times smaller for the other species.

  15. Does interspecific competition alter effects of early season ozone exposure on plants from wet grasslands? Results of a three-year experiment in open-top chambers

    Energy Technology Data Exchange (ETDEWEB)

    Tonneijck, A.E.G.; Franzaring, J.; Brouwer, G.; Metselaar, K.; Dueck, Th.A

    2004-09-01

    Chronic effects of ozone on wet grassland species early in the growing season might be altered by interspecific competition. Individual plants of Holcus lanatus, Lychnis flos-cuculi, Molinia caerulea and Plantago lanceolata were grown in monocultures and in mixed cultures with Agrostis capillaris. Mesocosms were exposed to charcoal-filtered air plus 25 nl l{sup -1} ozone (CF + 25), non-filtered air (NF), non-filtered air plus 25 nl l{sup -1} ozone (NF + 25) and non-filtered air plus 50 nl l{sup -1} ozone (NF + 50) early in the growing seasons of 2000 through 2002. Ozone-enhanced senescence and visible foliar injury were recorded on some of the target plants in the first year only. Ozone effects on biomass production were minimal and plant response to ozone did not differ between monocultures and mixed cultures. After three years, above-ground biomass of the plants in mixed culture compared to monocultures was three times greater for H. lanatus and two to four times smaller for the other species.

  16. Does interspecific competition alter effects of early season ozone exposure on plants from wet grasslands? Results of a three-year experiment in open-top chambers

    International Nuclear Information System (INIS)

    Tonneijck, A.E.G.; Franzaring, J.; Brouwer, G.; Metselaar, K.; Dueck, Th.A.

    2004-01-01

    Chronic effects of ozone on wet grassland species early in the growing season might be altered by interspecific competition. Individual plants of Holcus lanatus, Lychnis flos-cuculi, Molinia caerulea and Plantago lanceolata were grown in monocultures and in mixed cultures with Agrostis capillaris. Mesocosms were exposed to charcoal-filtered air plus 25 nl l -1 ozone (CF + 25), non-filtered air (NF), non-filtered air plus 25 nl l -1 ozone (NF + 25) and non-filtered air plus 50 nl l -1 ozone (NF + 50) early in the growing seasons of 2000 through 2002. Ozone-enhanced senescence and visible foliar injury were recorded on some of the target plants in the first year only. Ozone effects on biomass production were minimal and plant response to ozone did not differ between monocultures and mixed cultures. After three years, above-ground biomass of the plants in mixed culture compared to monocultures was three times greater for H. lanatus and two to four times smaller for the other species

  17. Quantifying the pedo-ecohydrological structure and function of degraded, grassland ecosystems

    Science.gov (United States)

    Brazier, Richard E.

    2015-04-01

    Grassland ecosystems cover significant areas of the terrestrial land mass, across a range of geoclimates, from arctic tundra, through temperate and semi-arid landscapes. In very few locations, such grasslands may be termed 'pristine' in that they remain undamaged by human activities and resilient to changing climates. In far more cases, grasslands are being degraded, often irreversibly so, with significant implications for a number of ecosystem services related to water resources, soil quality, nutrient cycles, and therefore both global food and water security. This paper draws upon empirical research that has been undertaken over the last decade to characterise a range of different grasslands in terms of soil properties, vegetation structure and geomorphology and to understand how these structures or patterns might interact or control how the grassland ecosystems function. Particular emphasis is placed upon quantifying fluxes of water, within and from grasslands, but also fluxes of sediment, via the processes of soil erosion and finally fluxes of the macronutrients Nitrogen, Phosphorus and Carbon from the landscape to surface waters. Data are presented from semi-arid grasslands, which are subject to severe encroachment by woody species, temperate upland grasslands that have been 'improved' via drainage to support grazing, temperate lowland grasslands, that are unimproved (Culm or Rhôs pastures) and finally intensively managed grasslands in temperate regions, that have been significantly modified via land management practices to improve productivity. It is hypothesised that, once degraded, the structure and function of these very diverse grassland ecosystems follows the same negative trajectory, resulting in depleted soil depths, nutrient storage capacities and therefore reduced plant growth and long-term carbon sequestration. Results demonstrate that similar, but highly complex and non-linear responses to perturbation of the ecosystem are observed, regardless of

  18. Grassland degradation caused by tourism activities in Hulunbuir, Inner Mongolia, China

    International Nuclear Information System (INIS)

    Le, C; Ikazaki, K; Siriguleng; Kosaki, T; Kadono, A

    2014-01-01

    The recent increase in the number of tourists has raised serious concerns about grassland degradation by tourism activities in Inner Mongolia. Thus, we evaluated the effects of tourism activities on the vegetation and soil in Hulunbuir grassland. We identified all the plant species, measured the number and height of plant and plant coverage rate, and calculated species diversity, estimated above-ground biomass in use plot and non-use plot. We also measured soil hardness, and collected soil samples for physical and chemical analysis in both plots. The obtained results were as follows: a) the height of the dominant plants, plant coverage rate, species diversity, and above-ground biomass were significantly lower in use plot than in non-use plot, b) Carex duriuscula C.A.Mey., indicator plant for soil degradation, was dominant in use plot, c) soil hardness was significantly higher in use plot than in non-use plot, and spatial dependence of soil hardness was only found in the use plot, d) CEC, TC, TN and pH in the topsoil were significantly lower in use plot than non-use plot. On the basis of the results, we concluded that the tourism activities can be another major cause of the grassland degradation in Inner Mongolia

  19. Grassland degradation caused by tourism activities in Hulunbuir, Inner Mongolia, China

    Science.gov (United States)

    Le, C.; Ikazaki, K.; Siriguleng; Kadono, A.; Kosaki, T.

    2014-02-01

    The recent increase in the number of tourists has raised serious concerns about grassland degradation by tourism activities in Inner Mongolia. Thus, we evaluated the effects of tourism activities on the vegetation and soil in Hulunbuir grassland. We identified all the plant species, measured the number and height of plant and plant coverage rate, and calculated species diversity, estimated above-ground biomass in use plot and non-use plot. We also measured soil hardness, and collected soil samples for physical and chemical analysis in both plots. The obtained results were as follows: a) the height of the dominant plants, plant coverage rate, species diversity, and above-ground biomass were significantly lower in use plot than in non-use plot, b) Carex duriuscula C.A.Mey., indicator plant for soil degradation, was dominant in use plot, c) soil hardness was significantly higher in use plot than in non-use plot, and spatial dependence of soil hardness was only found in the use plot, d) CEC, TC, TN and pH in the topsoil were significantly lower in use plot than non-use plot. On the basis of the results, we concluded that the tourism activities can be another major cause of the grassland degradation in Inner Mongolia.

  20. POTENTIAL IMPACTS OF CLIMATE CHANGE ON PLANT DIVERSITY OF HILLY AREAS OF AZAD KASHMIR AND THEIR MITIGATION: A REVIEW

    Directory of Open Access Journals (Sweden)

    K. F. Akbar

    2017-08-01

    Full Text Available Azad Kashmir has variety of mountain ecosystems which are rich in floral and faunal diversity. These ecosystems are fragile and are under stress due to various natural and anthropogenic pressures. Mountain ecosystems of Azad Kashmir are more vulnerable to global warming and are expected to show its impacts rapidly. Climate change may cause major changes in distribution ranges of different vegetation types. As a result of climate change, the area of three vegetation groups (alpine, grassland/arid woodlands and deserts is expected to decrease and the areas of five types (cold conifer/mixed woodland, cold conifer/mixed forests, temperate conifer/mixed forests, warm conifer/mixed forests, and steppe/arid shrub lands are expected to increase. Climate change is going to affect conservation of plant species and ecosystems by causing direct loss of plant species and intensify the effects of existing threats such as habitat degradation, deforestation and over-harvesting of plants by local communities, pollution and invasive species. These stresses, acting individually and collectively on species, communities and ecosystems, are depleting and will continue to deplete biodiversity. The negative impacts of climate change are multi-dimensional and wide-ranging. Their mitigation requires an integrated and coordinated policy response for conservation of plant resources. These measures include a regular monitoring and observation system, restoration of degraded habitats and forests, identifying new solutions involving cross-sectoral linkages to conserve biological diversity of Azad Kashmir by supporting the intricate and complex responses of species and ecosystems to climate change.

  1. Flea abundance, diversity, and plague in Gunnison's prairie dogs (Cynomys gunnisoni) and their burrows in montane grasslands in northern New Mexico

    Science.gov (United States)

    Megan M. Friggens; Robert R. Parmenter; Michael Boyden; Paulette L. Ford; Kenneth Gage; Paul Keim

    2010-01-01

    Plague, a flea-transmitted infectious disease caused by the bacterium Yersinia pestis, is a primary threat to the persistence of prairie dog populations (Cynomys spp.). We conducted a 3-yr survey (2004-2006) of fleas from Gunnison's prairie dogs (Cynomys gunnisoni) and their burrows in montane grasslands in Valles Caldera National Preserve in New Mexico. Our...

  2. Importance of marginal habitats for grassland diversity: fallows and overgrown tall-grass steppe as key habitats of endangered ground-beetle Carabus hungaricus

    Czech Academy of Sciences Publication Activity Database

    Pokluda, Pavel; Hauck, David; Čížek, Lukáš

    2012-01-01

    Roč. 5, č. 1 (2012), s. 27-36 ISSN 1752-458X R&D Projects: GA MŠk LC06073; GA AV ČR KJB600960705 Institutional research plan: CEZ:AV0Z50070508 Keywords : blaps * Carpathian basin * continental grassland Subject RIV: EH - Ecology, Behaviour Impact factor: 1.937, year: 2012

  3. Soil stability and plant diversity in eco-engineering

    Science.gov (United States)

    Böll, Albert; Gerber, Werner; Rickli, Christian; Graf, Frank

    2010-05-01

    Slopes affected by superficial sliding and subsequently re-stabilised with eco-engineering measures were investigated, particularly related to soil stability and plant diversity. The sites are situated in three different areas of beech-fir-spruce forest associations of the higher montane zone of Switzerland. Climatic and site characteristics, in paraticular soil properties after the sliding event, of the three investigation areas are very similar. However, the number of species (shrubs and trees) used for the initial planting as well as the year of application of the eco-engineering measures differ substantially. In the investigation area Dallenwil-Wirzweli the biological measures taken in 1981 were restricted to one tree species, namely White Alder (Alnus incana). In Klosters, where measures were taken in 1983 as well as in the Arieschbach valley, where eco-engineering was applied in 1998, the initial planting consisted of 15 species either. Investigations in 2005/2006 revealed neither obvious differences among the three areas nor distinct correlations related to the diversity of the initial planting on the on hand and the development of the vegetation cover and soil stability on the other hand. During the available time of development, the soil aggregate stability increased by 30 to 39%. Compared to the corresponding climax association, the relative values of soil aggregate stability varied between 90 and 120%. Concurrently, the dry unit weight decreased between 1.1 and 3.1 kN/m3. The cumulative vegetation cover varied from 110 to 150%. Due to processes of soil development a distinct shift in the grain size distribution was noticed, from a well sorted gravel with clay and sand (GW-GC) to a silty gravel with sand (GM) in Dallenwil-Wirzweli and a silty to clayey gravel with sand (GC-GM) in Klosters and the Arieschbach valley. Furthermore, in all three investigation areas succession processes were observed that are comparable to average rates of natural secondary

  4. Ecosystem development in roadside grasslands: biotic control, plant–soil interactions and dispersal limitations

    Science.gov (United States)

    García-Palacios, Pablo; Bowker, Matthew A.; Maestre, Fernando T.; Soliveres, Santiago; Valladares, Fernando; Papadopoulos, Jorge; Escudero, Adrián

    2015-01-01

    Roadside grasslands undergoing secondary succession are abundant, and represent ecologically meaningful examples of novel, human-created ecosystems. Interactions between plant and soil communities (hereafter plant–soil interactions) are of major importance in understanding the role of biotic control in ecosystem functioning, but little is known about these links in the context of ecosystem restoration and succession. The assessment of the key biotic communities and interactions driving ecosystem development will help practitioners to better allocate the limited resources devoted to roadside grassland restoration. We surveyed roadside grasslands from three successional stages (0–2, 7–9 and > 20 years) in two Mediterranean regions of Spain. Structural equation modeling was used to evaluate how interactions between plants, biological soil crusts [BSCs], and soil microbial functional diversity [soil microorganisms] affect indicators of ecosystem development and restoration: plant similarity to the reference ecosystem, erosion control and soil C storage and N accumulation. Changes in plant community composition along the successional gradient exerted the strongest influence on these indicators. High BSC cover was associated with high soil stability, and high soil microbial functional diversity from late-successional stages was associated with high soil fertility. Contrary to our expectations, the indirect effects of plants, mediated by either BSCs or soil microorganisms, were very weak in both regions, suggesting a minor role for plant–soil interactions upon ecosystem development indicators over long periods. Our results suggest that natural vegetation dynamics effectively improved ecosystem development within a time frame of 20 years in the grasslands evaluated. They also indicate that this time could be shortened if management actions focus on: 1) maintain well-conserved natural areas close to roadsides to enhance plant compositional changes towards late

  5. Intraspecific chemical diversity among neighbouring plants correlates positively with plant size and herbivore load but negatively with herbivore damage.

    Science.gov (United States)

    Bustos-Segura, Carlos; Poelman, Erik H; Reichelt, Michael; Gershenzon, Jonathan; Gols, Rieta

    2017-01-01

    Intraspecific plant diversity can modify the properties of associated arthropod communities and plant fitness. However, it is not well understood which plant traits determine these ecological effects. We explored the effect of intraspecific chemical diversity among neighbouring plants on the associated invertebrate community and plant traits. In a common garden experiment, intraspecific diversity among neighbouring plants was manipulated using three plant populations of wild cabbage that differ in foliar glucosinolates. Plants were larger, harboured more herbivores, but were less damaged when plant diversity was increased. Glucosinolate concentration differentially correlated with generalist and specialist herbivore abundance. Glucosinolate composition correlated with plant damage, while in polycultures, variation in glucosinolate concentrations among neighbouring plants correlated positively with herbivore diversity and negatively with plant damage levels. The results suggest that intraspecific variation in secondary chemistry among neighbouring plants is important in determining the structure of the associated insect community and positively affects plant performance. © 2016 The Authors. Ecology Letters published by CNRS and John Wiley & Sons Ltd.

  6. Turnover of plant lineages shapes herbivore phylogenetic beta diversity along ecological gradients.

    Science.gov (United States)

    Pellissier, Loïc; Ndiribe, Charlotte; Dubuis, Anne; Pradervand, Jean-Nicolas; Salamin, Nicolas; Guisan, Antoine; Rasmann, Sergio

    2013-05-01

    Understanding drivers of biodiversity patterns is of prime importance in this era of severe environmental crisis. More diverse plant communities have been postulated to represent a larger functional trait-space, more likely to sustain a diverse assembly of herbivore species. Here, we expand this hypothesis to integrate environmental, functional and phylogenetic variation of plant communities as factors explaining the diversity of lepidopteran assemblages along elevation gradients in the Swiss Western Alps. According to expectations, we found that the association between butterflies and their host plants is highly phylogenetically structured. Multiple regression analyses showed the combined effect of climate, functional traits and phylogenetic diversity in structuring butterfly communities. Furthermore, we provide the first evidence that plant phylogenetic beta diversity is the major driver explaining butterfly phylogenetic beta diversity. Along ecological gradients, the bottom up control of herbivore diversity is thus driven by phylogenetically structured turnover of plant traits as well as environmental variables. © 2013 Blackwell Publishing Ltd/CNRS.

  7. Prioritizing conservation areas for coastal plant diversity under increasing urbanization.

    Science.gov (United States)

    Doxa, Aggeliki; Albert, Cécile Hélène; Leriche, Agathe; Saatkamp, Arne

    2017-10-01

    Coastal urban expansion will continue to drive further biodiversity losses, if conservation targets for coastal ecosystems are not defined and met. Prioritizing areas for future protected area networks is thus an urgent task in such urbanization-threatened ecosystems. Our aim is to quantify past and future losses of coastal vegetation priority areas due to urbanization and assess the effectiveness of the existing protected area network for conservation. We conduct a prioritization analysis, based on 82 coastal plants, including common and IUCN red list species, in a highly-urbanized but biotically diverse region, in South-Eastern France. We evaluate the role of protected areas, by taking into account both strict and multi-use areas. We assess the impact of past and future urbanization on high priority areas, by combining prioritization analyses and urbanization models. We show that half of the highly diverse areas have already been lost due to urbanization. Remaining top priority areas are also among the most exposed to future urban expansion. The effectiveness of the existing protected area (PA) network is only partial. While strict PAs coincide well with top priority areas, they only represent less than one third of priority areas. The effectiveness of multi-use PAs, such as the Natura 2000 network, also remains limited. Our approach highlights the impact of urbanization on plant conservation targets. By modelling urbanization, we manage to identify those areas where protection could be more efficient to limit further losses. We suggest to use our approach in the future to expand the PA network in order to achieve the 2020 Aichi biodiversity targets. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Literature study of plants diversity in Sempu Island Nature Reserve, East Java

    Directory of Open Access Journals (Sweden)

    RONY IRAWANTO

    2017-03-01

    Full Text Available Abstract. Irawanto R, Abywijaya IK, Mudiana D. 2017. Literature study of plants diversity in Sempu Island Nature Reserve, East Java. Pros Sem Nas Masy Biodiv Indon 3: 138-146. Purwodadi Botanic Garden have the task of plant conservation through inventories, exploration, collection and maintenance of plants, especially on dry lowland plants. Exploration activities and plants collection aim to conserve and save the plants from extinction, as well as conduct research and documentation of plant diversity in a region. It's related of the global strategy for plant conservation (GSPC target is known and documentation of plants diversity, especially in threatened habitats could be a priority. Sempu island's status as a nature reserve has a diversity of ecosystem and biodiversity of flora and fauna that are endemic and unique. This study aims to determine the plant's diversity in Island Sempu Nature Reserve based on a literature review of various studies that have been done. This study is a database for planning exploration activities, collecting, and documenting the plant's diversity in Sempu Island - East Java. Based on the literature review there are 282 species of plant diversity in Sempu Island, included in 80 families, contained in 10 blocks/location areas, namely Telaga Lele, Telaga Sat, Telaga Dowo, Gladakan, Baru-baru, Gua Macan, Teluk Ra’as, Teluk Semut, Air Tawar, dan Waru-Waru.Tenth blocks represent plants vegetation of mangrove forest, coastal forest, lowland tropical forests, and meadows.

  9. Grassland communities in the USA and expected trends associated with climate change

    Directory of Open Access Journals (Sweden)

    David Paul Belesky

    2016-06-01

    Full Text Available Grasslands, including managed grazinglands, represent one of the largest ecosystems on the planet. Managed grazinglands in particular tend to occupy marginal climatic and edaphic resource zones, thus exacerbating responses in net primary productivity relative to changes in system resources, including anthropogenic factors. Climate dynamism, as evident from the fossil record, appears to be a putative feature of our planet. Recent global trends in temperature and precipitation patterns seem to differ from long-term patterns and have been associated with human activities linked with increased greenhouse gas emissions; specifically CO2. Thus grasslands, with their diverse floristic components, and interaction with and dependence upon herbivores, have a remarkable ability to persist and sustain productivity in response to changing resource conditions. This resistance and resilience to change, including uncertain long-term weather conditions, establishes managed grasslands as an important means of protecting food security. We review responses of grassland communities across regions of the USA and consider the responses in productivity and system function with respect to climatic variation. Research is needed to identify plant resources and management technologies that strengthen our ability to capitalize upon physiological and anatomical features prevalent in grassland communities associated with varying growing conditions.

  10. Organic farming benefits local plant diversity in vineyard farms located in intensive agricultural landscapes.

    Science.gov (United States)

    Nascimbene, Juri; Marini, Lorenzo; Paoletti, Maurizio G

    2012-05-01

    The majority of research on organic farming has considered arable and grassland farming systems in Central and Northern Europe, whilst only a few studies have been carried out in Mediterranean agro-systems, such as vineyards, despite their economic importance. The main aim of the study was to test whether organic farming enhances local plant species richness in both crop and non-crop areas of vineyard farms located in intensive conventional landscapes. Nine conventional and nine organic farms were selected in an intensively cultivated region (i.e. no gradient in landscape composition) in northern Italy. In each farm, vascular plants were sampled in one vineyard and in two non-crop linear habitats, grass strips and hedgerows, adjacent to vineyards and therefore potentially influenced by farming. We used linear mixed models to test the effect of farming, and species longevity (annual vs. perennial) separately for the three habitat types. In our intensive agricultural landscapes organic farming promoted local plant species richness in vineyard fields, and grassland strips while we found no effect for linear hedgerows. Differences in species richness were not associated to differences in species composition, indicating that similar plant communities were hosted in vineyard farms independently of the management type. This negative effect of conventional farming was probably due to the use of herbicides, while mechanical operations and mowing regime did not differ between organic and conventional farms. In grassland strips, and only marginally in vineyards, we found that the positive effect of organic farming was more pronounced for perennial than annual species.

  11. Plant diversity in hedgerows amidst Atlantic Forest fragments

    Directory of Open Access Journals (Sweden)

    Carolina C. C. Oliveira

    2015-06-01

    Full Text Available Hedgerows are linear structures found in agricultural landscapes that may facilitate dispersal of plants and animals and also serve as habitat. The aim of this study was to investigate the relationships among diversity and ecological traits of woody plants, hedgerow characteristics (size, age, and origin, and the structure of the surrounding Atlantic Forest landscape. Field data were collected from 14 hedgerows, and landscape metrics from 1000-m buffers surrounding hedgerows were recorded from a thematic map. In all sampled hedgerows, arboreal species were predominantly zoochoric and early-succession species, and hedgerow width was an important factor explaining the richness and abundance of this group of species. Connection with forest vegetation did not explain richness and abundance of animal-dispersed species, but richness of non-zoochoric species increased in more connected hedgerows. These results suggest that hedgerows are probably colonized by species arriving from nearby early-succession sites, forest fragment edges, and isolated trees in the matrix. Nonetheless, hedgerows provide resources for frugivorous animals and influence landscape connectivity, highlighting the importance of these elements in the conservation of biodiversity in fragmented and rural landscapes.

  12. Linking plant hydraulics and beta diversity in tropical forests

    Energy Technology Data Exchange (ETDEWEB)

    Christoffersen, Bradley [Earth and Environmental Sciences, Los Alamos National Laboratory, Los Alamos NM 87545 USA; Meir, Patrick [School of GeoSciences, University of Edinburgh, Edinburgh EH9 3FE UK; Research School of Biology, Australian National University, Canberra ACT 2601 Australia; McDowell, Nate G. [Pacific Northwest National Laboratory, Richland WA 99352 USA

    2017-05-31

    In tropical forests, studies of xylem traits governing water transport through plants, or ‘hydraulic architecture’ (Tyree et al., 1991), and changes in species composition across environmental gradients, or ‘beta diversity’ (Gentry, 1988; Ackerly & Cornwell, 2007), have progressedmostly in parallel until recently (Hao et al., 2008; Bartlett et al., 2016). In this issue of New Phytologist, Cosme et al. (pp. 000–5 000) present a timely contribution to the intersection of plant hydraulic architecture (HA) with trait-based community ecology. Building on previous biogeographical work that demonstrated shifts in species composition (beta diversity) across a gradient from valleys to plateaus in central Amazonia (Schietti et al., 2014), Cosme et al. explore how variation in HA might underpin this sorting, sampling pairs of congeneric species restrictedmostly to either plateau or valley habitats. Valley species had significantly lower wood density and higher hydraulically-weighted vessel diameter and vessel area. By contrast, trees with some of the largest hydraulically-weighted vessel diameters existed in tall, deciduous plateau species, while the leaf: sapwood area ratio decreased with height in valley but not plateau species. These intriguing results suggest that species differentiation in water transport traits mediate edaphic filtering along the valley-toplateau gradient, in contrast to previous work where wood mechanical support mediated valley-to-plateau environmental filtering (Fortunel et al., 2014).

  13. Soil disturbance as a grassland restoration measure

    DEFF Research Database (Denmark)

    Schnoor, Tim; Bruun, Hans Henrik; Olsson, Pål Axel

    2015-01-01

    Soil disturbance is recognized as an important driver of biodiversity in dry grasslands, and can therefore be implemented as a restoration measure. However, because community re-assembly following disturbance includes stochastic processes, a focus only on species richness or establishment success...... to experimental disturbance treatments (ploughing or rotavation), and the vegetation was surveyed during four subsequent years of succession. Treated plots were compared with control plots representing untreated grassland, as well as nearby plots characterized by plant communities representing the restoration...

  14. Plant trait variation along an altitudinal gradient in Mediterranean high mountain grasslands: controlling the species turnover effect

    Czech Academy of Sciences Publication Activity Database

    Pescador, D. S.; de Bello, Francesco; Valladares, F.; Escudero, A.

    2015-01-01

    Roč. 10, č. 3 (2015), e0118876 E-ISSN 1932-6203 Institutional support: RVO:67985939 Keywords : intraspecific trait variability * altitude * filtering * functional diversity Subject RIV: EF - Botanics Impact factor: 3.057, year: 2015

  15. Plant diversity and biomass of Marudu bay mangroves in Malaysia

    International Nuclear Information System (INIS)

    Hanum, F.; Kudus, K.A.; Saari, N.S

    2012-01-01

    The mangroves of Marudu Bay in the state of Sabah is situated at the tip of Borneo Island, and at the southern limit of the Coral Triangle whose waters hold the highest diversity of corals, fish, molluscks, crustaceans and marine plant species in the world. The ecosystem shows a deterioration due to unsustainable fishing, pollution and encroachment, and these are impacting the Marudu Bay coastal communities economically. Fishing is the major economic activity here. Realising the importance of conserving the mangroves to uplift the socio-economic livelihood of the coastal community, a resource inventory of the mangroves and its productivity study were carried out. A total of 16 plant species in 12 genera and 9 families were identified. It was also found that 0.7 ha is capable of capturing all the species in the mangrove forest. The mangrove forests of Marudu Bay are dominated by Rhizopora apiculata and R. mucronata. The highest Importance Value index (IVI) was given by Rhizophora mucronata. Total Above Ground Biomass (TAGB) for 1-ha of mangrove forest in Marudu Bay was estimated to be 98.4 t/ha. It was found in other parallel studies that the mangroves of Marudu Bay are productive ecosystems that provide valuable habitats, nurseries and spawning grounds for various commercially important species of fish and invertebrates such as shrimp besides many species of wildlife. The mangroves at Marudu Bay are not only aesthetically attractive but provide opportunities for ecotourism activities that can be undertaken by the local community inhabiting the area to uplift their meagre income, These activities include mangrove cruising, recreational fishing, educational tourism and mangrove honey production, amongst others. This way, the degradation of the mangrove in Marudu Bay can be halted and reversed. (author)

  16. Ecological transition in Arizona's subalpine and montane grasslands

    Science.gov (United States)

    Michael R. White

    2000-01-01

    Important components of Southwest forest ecosystem are subalpine and montane grassland communities, Grassland communities provide habitat diversity for wildlife, forage for domestic livestock and wildlife, and contribute to the visual quality of an area. The objectives of this research were to determine if: 1) vegetation attributes and soil-surface cover variables of...

  17. Diversity of microbiota found in coffee processing wastewater treatment plant.

    Science.gov (United States)

    Pires, Josiane Ferreira; Cardoso, Larissa de Souza; Schwan, Rosane Freitas; Silva, Cristina Ferreira

    2017-11-13

    Cultivable microbiota presents in a coffee semi-dry processing wastewater treatment plant (WTP) was identified. Thirty-two operational taxonomic units (OTUs) were detected, these being 16 bacteria, 11 yeasts and 4 filamentous fungi. Bacteria dominated the microbial population (11.61 log CFU mL - 1 ), and presented the highest total diversity index when observed in the WTP aerobic stage (Shannon = 1.94 and Simpson = 0.81). The most frequent bacterial species were Enterobacter asburiae, Sphingobacterium griseoflavum, Chryseobacterium bovis, Serratia marcescens, Corynebacterium flavescens, Acetobacter orientalis and Acetobacter indonesiensis; these showed the largest total bacteria populations in the WTP, with approximately 10 log CFU mL - 1 . Yeasts were present at 7 log CFU mL - 1 of viable cells, with Hanseniaspora uvarum, Wickerhamomyces anomalus, Torulaspora delbrueckii, Saturnispora gosingensis, and Kazachstania gamospora being the prevalent species. Filamentous fungi were found at 6 log CFU mL - 1 , with Fusarium oxysporum the most populous species. The identified species have the potential to act as a biological treatment in the WTP, and the application of them for this purpose must be better studied.

  18. Diversity of MAPs in some plant communities of Stara Planina

    Directory of Open Access Journals (Sweden)

    Obratov-Petković Dragica

    2006-01-01

    Full Text Available The high floristic diversity of Stara Planina was the starting base for the research of medicinal and aromatic plants (MAPs in individual forest and meadow communities. The sites Javor and Prelesje, forest community Fagetum moesiacae montanum B. Jov. 1953, pioneer community of birch Betuletum verrucosae s.l. and meadow community Agrostietum vulgaris (capillaris Pavlović, Z. 1955, were researched as follows: soil types, floristic composition and structure of the community, percentage of MAPs, as well as the selection of species which, according to the predetermined criteria can be recommended for further exploitation. The study shows that the soil of the forest communities is eutric brown, and meadow soils are dystric and eutric humus-siliceous. The percentage of MAPs in the floristic structure of the study sites in forest and meadow communities is 32.35%. The following species can be recommended for the collection and utilisation: Hypericum perforatum L., Asperula odorata L., Dryopteris filix-mas (L Schott. Urtica dioica L., Euphorbia amygdaloides L., Prunella grandiflora L. Tanacetum vulgare L., Achillea millefolium L., Rumex acetosa L., Campanula glomerata L., Stachys officinalis (L Trevis., Plantago lanceolata W. et K., Potentilla erecta (L Rauchel, Chamaespartium sagittale (L P. Gibbs. Cynanchum vincetoxicum (L Pers., Euphrasia stricta Host., Fagus moesiaca (Matt Liebl. and Fragaria vesca L.

  19. Greater soil carbon accumulation in deeper soils in native- than in exotic-dominated grassland plantings in the southern Plains

    Science.gov (United States)

    Wilsey, B. J.; Xu, X.; Polley, H. W.; Hofmockel, K. S.

    2017-12-01

    Global change includes invasion by non-native plant species, and invasion may affect carbon cycling and storage. We tested predictions in central Texas in an experiment that compares mixtures of all exotic or all native species under two summer irrigation treatments (128 or 0 mm) that varies the amount of summer drought stress. At the end of the eighth growing season after establishment, soils were sampled in 10 cm increments to 100 cm depth to determine if soil C differed among treatments, and if treatments differentially affected soil C in deeper soils. Soil C content was significantly (5%) higher under native plantings than under exotic species plantings (P plantings increased with depth, and native plantings had higher soil C in deeper soil layers than in surface layers (native-exotic x depth, P plantings had decreasing soil C with depth. Soil C:N ratio and δ13C/12C were also significantly affected by native-exotic status, with soils in exotic plots having a significantly greater C4 contribution than native soils. Soil C was unaffected by summer irrigation treatments. Our results suggest that a significant amount of carbon could be sequestered by replacing exotic plant species with native species in the southern Plains, and that more work should be conducted at deeper soil depths. If we had restricted our analyses to surface soil layers (e.g. top 30 cm), we would have failed to detect depth differences between natives and exotics.

  20. Root biomass and exudates link plant diversity with soil bacterial and fungal biomass

    NARCIS (Netherlands)

    Eisenhauer, Nico; Lanoue, Arnaud; Strecker, Tanja; Scheu, Stefan; Steinauer, Katja; Thakur, Madhav P.; Mommer, Liesje

    2017-01-01

    Plant diversity has been shown to determine the composition and functioning of soil biota. Although root-derived organic inputs are discussed as the main drivers of soil communities, experimental evidence is scarce. While there is some evidence that higher root biomass at high plant diversity

  1. Diversity and Biological Activities of Endophytic Fungi Associated with Micropropagated Medicinal Plant Echinacea purpurea (L.) Moench

    Science.gov (United States)

    2012-08-01

    1105 Diversity and Biological Activities of Endophytic Fungi Associated with Micropropagated Medicinal Plant Echinacea purpurea (L.) Moench Luiz H...fungal community and micropropagated clones of E. purpurea was re-established after acclimatization to soil and the endophytic fungi produced compounds...Diversity and Biological Activities of Endophytic Fungi Associated with Micropropagated Medicinal Plant Echinacea purpurea (L.) Moench 5a. CONTRACT

  2. Data from: Root biomass and exudates link plant diversity with soil bacterial and fungal biomass

    NARCIS (Netherlands)

    Eisenhauer, Nico; Strecker, Tanja; Lanoue, Arnaud; Scheu, Stefan; Steinauer, Katja; Thakur, Madhav P.; Mommer, L.

    2017-01-01

    Plant diversity has been shown to determine the composition and functioning of soil biota. Although root-derived organic inputs are discussed as the main drivers of soil communities, experimental evidence is scarce. While there is some evidence that higher root biomass at high plant diversity

  3. Satellite-based assessment of grassland yields

    Science.gov (United States)

    Grant, K.; Siegmund, R.; Wagner, M.; Hartmann, S.

    2015-04-01

    Cutting date and frequency are important parameters determining grassland yields in addition to the effects of weather, soil conditions, plant composition and fertilisation. Because accurate and area-wide data of grassland yields are currently not available, cutting frequency can be used to estimate yields. In this project, a method to detect cutting dates via surface changes in radar images is developed. The combination of this method with a grassland yield model will result in more reliable and regional-wide numbers of grassland yields. For the test-phase of the monitoring project, a study area situated southeast of Munich, Germany, was chosen due to its high density of managed grassland. For determining grassland cutting robust amplitude change detection techniques are used evaluating radar amplitude or backscatter statistics before and after the cutting event. CosmoSkyMed and Sentinel-1A data were analysed. All detected cuts were verified according to in-situ measurements recorded in a GIS database. Although the SAR systems had various acquisition geometries, the amount of detected grassland cut was quite similar. Of 154 tested grassland plots, covering in total 436 ha, 116 and 111 cuts were detected using CosmoSkyMed and Sentinel-1A radar data, respectively. Further improvement of radar data processes as well as additional analyses with higher sample number and wider land surface coverage will follow for optimisation of the method and for validation and generalisation of the results of this feasibility study. The automation of this method will than allow for an area-wide and cost efficient cutting date detection service improving grassland yield models.

  4. (134)Cs and ¹³⁷Cs levels in a grassland, 32 km northwest of the Fukushima 1 Nuclear Power Plant, measured for two seasons after the fallout.

    Science.gov (United States)

    Terashima, Ichiro; Shiyomi, Masae; Fukuda, Hiroo

    2014-01-01

    We measured the levels of radioactive caesium (RACs; ¹³⁴Cs and ¹³⁷Cs) in plants and soil in a grassland, 32 km northwest of the Fukushima 1 Nuclear Power Plant, from June 2011 to October 2012. In 2011, the highest RACs levels (¹³⁴Cs + ¹³⁷Cs) in plants and in the 0-5 cm soil layer were approximately 80 kBq per kg dry weight (DW). Forage grasses and clovers in this grassland showed similar RACs levels. On a DW basis, the levels of RACs in these plants tended to increase with increasing biomass over both years, but the absolute levels decreased in 2012. The RACs levels in the soil decreased sharply with soil depth; the RACs level in the 5-10 cm soil layer was only 3 % of that in the 0-5 cm layer. The transfer factor (ratio of radioactivity in plant parts on DW basis to that in the 0-10 cm soil layer) was 0.5 and 1.0 for the aboveground and belowground plant parts, respectively, in 2011, and these values decreased by approximately 50 % in 2012. We discuss the possible mechanisms underlying these trends, and strategies to decrease the level of RACs in plants to the permissible level for forage.

  5. Effects of water and nitrogen addition on species turnover in temperate grasslands in northern China.

    Directory of Open Access Journals (Sweden)

    Zhuwen Xu

    Full Text Available Global nitrogen (N deposition and climate change have been identified as two of the most important causes of current plant diversity loss. However, temporal patterns of species turnover underlying diversity changes in response to changing precipitation regimes and atmospheric N deposition have received inadequate attention. We carried out a manipulation experiment in a steppe and an old-field in North China from 2005 to 2009, to test the hypothesis that water addition enhances plant species richness through increase in the rate of species gain and decrease in the rate of species loss, while N addition has opposite effects on species changes. Our results showed that water addition increased the rate of species gain in both the steppe and the old field but decreased the rates of species loss and turnover in the old field. In contrast, N addition increased the rates of species loss and turnover in the steppe but decreased the rate of species gain in the old field. The rate of species change was greater in the old field than in the steppe. Water interacted with N to affect species richness and species turnover, indicating that the impacts of N on semi-arid grasslands were largely mediated by water availability. The temporal stability of communities was negatively correlated with rates of species loss and turnover, suggesting that water addition might enhance, but N addition would reduce the compositional stability of grasslands. Experimental results support our initial hypothesis and demonstrate that water and N availabilities differed in the effects on rate of species change in the temperate grasslands, and these effects also depend on grassland types and/or land-use history. Species gain and loss together contribute to the dynamic change of species richness in semi-arid grasslands under future climate change.

  6. Island phytophagy: explaining the remarkable diversity of plant-feeding insects.

    Science.gov (United States)

    Joy, Jeffrey B; Crespi, Bernard J

    2012-08-22

    Plant-feeding insects have undergone unparalleled diversification among different plant taxa, yet explanations for variation in their diversity lack a quantitative, predictive framework. Island biogeographic theory has been applied to spatially discrete habitats but not to habitats, such as host plants, separated by genetic distance. We show that relationships between the diversity of gall-inducing flies and their host plants meet several fundamental predictions from island biogeographic theory. First, plant-taxon genetic distinctiveness, an integrator for long-term evolutionary history of plant lineages, is a significant predictor of variance in the diversity of gall-inducing flies among host-plant taxa. Second, range size and structural complexity also explain significant proportions of the variance in diversity of gall-inducing flies among different host-plant taxa. Third, as with other island systems, plant-lineage age does not predict species diversity. Island biogeographic theory, applied to habitats defined by genetic distance, provides a novel, comprehensive framework for analysing and explaining the diversity of plant-feeding insects and other host-specific taxa.

  7. Links between plant litter chemistry, species diversity, and below-ground ecosystem function.

    Science.gov (United States)

    Meier, Courtney L; Bowman, William D

    2008-12-16

    Decomposition is a critical source of plant nutrients, and drives the largest flux of terrestrial C to the atmosphere. Decomposing soil organic matter typically contains litter from multiple plant species, yet we lack a mechanistic understanding of how species diversity influences decomposition processes. Here, we show that soil C and N cycling during decomposition are controlled by the composition and diversity of chemical compounds within plant litter mixtures, rather than by simple metrics of plant species diversity. We amended native soils with litter mixtures containing up to 4 alpine plant species, and we used 9 litter chemical traits to evaluate the chemical composition (i.e., the identity and quantity of compounds) and chemical diversity of the litter mixtures. The chemical composition of the litter mixtures was the strongest predictor of soil respiration, net N mineralization, and microbial biomass N. Soil respiration and net N mineralization rates were also significantly correlated with the chemical diversity of the litter mixtures. In contrast, soil C and N cycling rates were poorly correlated with plant species richness, and there was no relationship between species richness and the chemical diversity of the litter mixtures. These results indicate that the composition and diversity of chemical compounds in litter are potentially important functional traits affecting decomposition, and simple metrics like plant species richness may fail to capture variation in these traits. Litter chemical traits therefore provide a mechanistic link between organisms, species diversity, and key components of below-ground ecosystem function.

  8. Regulation and diversity of plant polysaccharide utilisation in fungi

    NARCIS (Netherlands)

    Battaglia, E.

    2011-01-01

    Filamentous fungi obtain their nutrients by degrading dead or living plant material. Plant material consists of different cell wall and storage polysaccharides. Due to the complex structure and the variety of plant polysaccharides, filamentous fungi secrete a wide range of plant polysaccharide

  9. Relative Importance of Current and Past Landscape Structure and Local Habitat Conditions for Plant Species Richness in Dry Grassland-Like Forest Openings

    Czech Academy of Sciences Publication Activity Database

    Husáková, I.; Münzbergová, Zuzana

    2014-01-01

    Roč. 9, č. 5 (2014), s. 1-15 E-ISSN 1932-6203 Institutional support: RVO:67985939 Keywords : landscape structure * species richness * dry grassland Subject RIV: EF - Botanics Impact factor: 3.234, year: 2014

  10. Competitive interactions between a nonmycorrhizal invasive plant, Alliaria petiolata, and a suite of mycorrhizal grassland, old field, and forest species.

    Science.gov (United States)

    Poon, Gary T; Maherali, Hafiz

    2015-01-01

    The widespread invasion of the nonmycorrhizal biennial plant, Alliaria petiolata in North America is hypothesized to be facilitated by the production of novel biochemical weapons that suppress the growth of mycorrhizal fungi. As a result, A. petiolata is expected to be a strong competitor against plant species that rely on mycorrhizal fungi for nutrient uptake services. If A. petiolata is also a strong competitor for soil resources, it should deplete nutrients to levels lower than can be tolerated by weaker competitors. Because the negative effect of losing the fungal symbiont for mycorrhizal plants is greatest when nutrients are low, the ability of A. petiolata to simultaneously suppress fungi and efficiently take up soil nutrients should further strengthen its competitive ability against mycorrhizal plants. To test this hypothesis, we grew 27 mycorrhizal tree, forb and grass species that are representative of invaded habitats in the absence or presence of competition with A. petiolata in soils that had previously been experimentally planted with the invader or left as a control. A history of A. petiolata in soil reduced plant available forms of nitrogen by >50% and phosphorus by 17% relative to control soil. Average mycorrhizal colonization of competitor species was reduced by >50% in A. petiolata history versus control soil. Contrary to expectations, competition between A. petiolata and other species was stronger in control than history soil. The invader suppressed the biomass of 70% of competitor species in control soil but only 26% of species in history soil. In addition, A. petiolata biomass was reduced by 56% in history versus control soil, whereas the average biomass of competitor species was reduced by 15%. Thus, our results suggest that the negative effect of nutrient depletion on A. petiolata was stronger than the negative effect of suppressing mycorrhizal colonization on competitor species. These findings indicate that the inhibitory potential of A

  11. Links between plant litter chemistry, species diversity, and below-ground ecosystem function

    OpenAIRE

    Meier, Courtney L.; Bowman, William D.

    2008-01-01

    Decomposition is a critical source of plant nutrients, and drives the largest flux of terrestrial C to the atmosphere. Decomposing soil organic matter typically contains litter from multiple plant species, yet we lack a mechanistic understanding of how species diversity influences decomposition processes. Here, we show that soil C and N cycling during decomposition are controlled by the composition and diversity of chemical compounds within plant litter mixtures, rather than by simple metrics...

  12. Effects of plant diversity on primary production and species interactions in brackish water angiosperm communities

    DEFF Research Database (Denmark)

    Salo, Tiina; Gustafsson, Camilla; Boström, Christoffer

    2009-01-01

    Research on plant biodiversity and ecosystem functioning has mainly focused on terrestrial ecosystems, and our understanding of how plant species diversity and interactions affect processes in marine ecosystems is still limited. To investigate if plant species richness and composition influence...... plant productivity in brackish water angiosperm communities, a 14 wk field experiment was conducted. Using a replacement design with a standardized initial aboveground biomass, shoots of Zostera marina, Potamogeton filiformis and P. perfoliatus were planted on a shallow, sandy bottom in replicated...

  13. Effects Of Elevated Ozone On Leaf {delta} {sup 13} C And Leaf Conductance Of Plant Species Grown In Semi-Natural Grassland With Or Without Irrigation

    Energy Technology Data Exchange (ETDEWEB)

    Jaeggi, M.; Saurer, M.; Volk, M. [Agroscope-FAL (Switzerland); Fuhrer, J. [Agroscope-FAL (Switzerland)

    2005-03-01

    At the Swiss prealpine site Le Mouret (754 m a.s.l. 46deg 45min N / 7deg 10min E), semi-natural grassland species were kept under ambient or elevated ozone, paired with or without additional irrigation. Two of the four investigated grassland species showed an additive increase in {sup 13}C-values under drought and elevated ozone conditions. (author)

  14. Environmental Drivers of Patterns of Plant Diversity Along a Wide Environmental Gradient in Korean Temperate Forests

    Directory of Open Access Journals (Sweden)

    Chang-Bae Lee

    2016-01-01

    Full Text Available Understanding patterns of biodiversity and their drivers along environmental gradients is one of the central topics in ecology. However, whether diversity patterns along environmental gradients differ among diversity components as well as life forms and what kind of variables control or interact to shape the diversity patterns are poorly known. This study scrutinized the distribution patterns of three plant groups with four diversity indices and evaluated the effects of regional area, topography, topographic heterogeneity, climate, primary productivity, vegetation structure diversity and vegetation type diversity along an extensive elevational gradient on the Baekdudaegan Mountains in South Korea. Different elevational patterns, including hump-shaped, reversed hump-shaped, increasing, multimodal and no relationship, were observed among both the diversity indices and the plant groups. Regional area, habitat heterogeneity and climate were included to explain most of the elevational diversity patterns. In particular, habitat heterogeneity was the most important variable for explaining the patterns of diversity. The results suggest that patterns of elevational diversity may differ not only among plant groups but also among diversity indices and that such patterns are primarily caused by habitat heterogeneity in the Baekdudaegan Mountains because more heterogeneous and diverse habitats can support more coexisting species.

  15. Description and identification of four species of plant parasitic nematodes associated with grassland, fruit trees and maize in Romania.

    Science.gov (United States)

    Badi, M; Geraert, E

    2002-01-01

    Three species of plant parasitic nematodes present in two romanian soil samples were described and identified in the present study. The species belong to order tylenchida and to taxonomical families Tylenchidae (Basiria aberrans) and Belonolaimidae (Tylenchorhynchus georgiensis and Merlinius brevidens). The identification of the present specimens was based on the classical taxonomy, following morphological and morphometrical characters in the species specific identification keys.

  16. Life-history constraints in grassland plant species: a growth-defence trade-off is the norm

    Science.gov (United States)

    E.M. Lind; E.T. Borer; E.W. Seabloom; P.B. Adler; J.D. Bakker; D.M. Blumenthal; M. Crawley; K.F. Davies; J. Firn; D.S. Gruner; S. Harpole; Y. Hautier; H. Hillebrand; J.M.H. Knops; B.A. Melbourne; B. Mortensen; A.C. Risch; M. Schuetz; C.J. Stevens; P.D. Wragg

    2013-01-01

    Plant growth can be limited by resource acquisition and defence against consumers, leading to contrasting trade-off possibilities. The competition-defence hypothesis posits a trade-off between competitive ability and defence against enemies (e.g. herbivores and pathogens). The growth-defence hypothesis suggests that strong competitors for nutrients are also defended...

  17. Water- and plant-mediated responses of ecosystem carbon fluxes to warming and nitrogen addition on the Songnen grassland in northeast China.

    Directory of Open Access Journals (Sweden)

    Li Jiang

    Full Text Available Understanding how grasslands are affected by a long-term increase in temperature is crucial to predict the future impact of global climate change on terrestrial ecosystems. Additionally, it is not clear how the effects of global warming on grassland productivity are going to be altered by increased N deposition and N addition.In-situ canopy CO(2 exchange rates were measured in a meadow steppe subjected to 4-year warming and nitrogen addition treatments. Warming treatment reduced net ecosystem CO(2 exchange (NEE and increased ecosystem respiration (ER; but had no significant impacts on gross ecosystem productivity (GEP. N addition increased NEE, ER and GEP. However, there were no significant interactions between N addition and warming. The variation of NEE during the four experimental years was correlated with soil water content, particularly during early spring, suggesting that water availability is a primary driver of carbon fluxes in the studied semi-arid grassland.Ecosystem carbon fluxes in grassland ecosystems are sensitive to warming and N addition. In the studied water-limited grassland, both warming and N addition influence ecosystem carbon fluxes by affecting water availability, which is the primary driver in many arid and semiarid ecosystems. It remains unknown to what extent the long-term N addition would affect the turn-over of soil organic matter and the C sink size of this grassland.

  18. Diversity Strategies for Nuclear Power Plant Instrumentation and Control Systems

    International Nuclear Information System (INIS)

    Wood, Richard Thomas; Belles, Randy; Cetiner, Mustafa Sacit; Holcomb, David Eugene; Korsah, Kofi; Loebl, Andy; Mays, Gary T.; Muhlheim, Michael David; Mullens, James Allen; Poore, Willis P. III; Qualls, A.L.; Wilson, Thomas L.; Waterman, Michael E.

    2010-01-01

    This report presents the technical basis for establishing acceptable mitigating strategies that resolve diversity and defense-in-depth (D3) assessment findings and conform to U.S. Nuclear Regulatory Commission (NRC) requirements. The research approach employed to establish appropriate diversity strategies involves investigation of available documentation on D3 methods and experience from nuclear power and nonnuclear industries, capture of expert knowledge and lessons learned, determination of best practices, and assessment of the nature of common-cause failures (CCFs) and compensating diversity attributes. The research described in this report does not provide guidance on how to determine the need for diversity in a safety system to mitigate the consequences of potential CCFs. Rather, the scope of this report provides guidance to the staff and nuclear industry after a licensee or applicant has performed a D3 assessment per NUREG/CR-6303 and determined that diversity in a safety system is needed for mitigating the consequences of potential CCFs identified in the evaluation of the safety system design features. Succinctly, the purpose of the research described in this report was to answer the question, 'If diversity is required in a safety system to mitigate the consequences of potential CCFs, how much diversity is enough?' The principal results of this research effort have identified and developed diversity strategies, which consist of combinations of diversity attributes and their associated criteria. Technology, which corresponds to design diversity, is chosen as the principal system characteristic by which diversity criteria are grouped to form strategies. The rationale for this classification framework involves consideration of the profound impact that technology-focused design diversity provides. Consequently, the diversity usage classification scheme involves three families of strategies: (1) different technologies, (2) different approaches within the same

  19. Diversity Strategies for Nuclear Power Plant Instrumentation and Control Systems

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Richard Thomas [ORNL; Belles, Randy [ORNL; Cetiner, Mustafa Sacit [ORNL; Holcomb, David Eugene [ORNL; Korsah, Kofi [ORNL; Loebl, Andy [ORNL; Mays, Gary T [ORNL; Muhlheim, Michael David [ORNL; Mullens, James Allen [ORNL; Poore III, Willis P [ORNL; Qualls, A L [ORNL; Wilson, Thomas L [ORNL; Waterman, Michael E. [U.S. Nuclear Regulatory Commission

    2010-02-01

    This report presents the technical basis for establishing acceptable mitigating strategies that resolve diversity and defense-in-depth (D3) assessment findings and conform to U.S. Nuclear Regulatory Commission (NRC) requirements. The research approach employed to establish appropriate diversity strategies involves investigation of available documentation on D3 methods and experience from nuclear power and nonnuclear industries, capture of expert knowledge and lessons learned, determination of best practices, and assessment of the nature of common-cause failures (CCFs) and compensating diversity attributes. The research described in this report does not provide guidance on how to determine the need for diversity in a safety system to mitigate the consequences of potential CCFs. Rather, the scope of this report provides guidance to the staff and nuclear industry after a licensee or applicant has performed a D3 assessment per NUREG/CR-6303 and determined that diversity in a safety system is needed for mitigating the consequences of potential CCFs identified in the evaluation of the safety system design features. Succinctly, the purpose of the research described in this report was to answer the question, 'If diversity is required in a safety system to mitigate the consequences of potential CCFs, how much diversity is enough?' The principal results of this research effort have identified and developed diversity strategies, which consist of combinations of diversity attributes and their associated criteria. Technology, which corresponds to design diversity, is chosen as the principal system characteristic by which diversity criteria are grouped to form strategies. The rationale for this classification framework involves consideration of the profound impact that technology-focused design diversity provides. Consequently, the diversity usage classification scheme involves three families of strategies: (1) different technologies, (2) different approaches within

  20. Environmental conditions influence the plant functional diversity effect on potential denitrification.

    Directory of Open Access Journals (Sweden)

    Ariana E Sutton-Grier

    2011-02-01

    Full Text Available Global biodiversity loss has prompted research on the relationship between species diversity and ecosystem functioning. Few studies have examined how plant diversity impacts belowground processes; even fewer have examined how varying resource levels can influence the effect of plant diversity on microbial activity. In a field experiment in a restored wetland, we examined the role of plant trait diversity (or functional diversity, (FD and its interactions with natural levels of variability of soil properties, on a microbial process, denitrification potential (DNP. We demonstrated that FD significantly affected microbial DNP through its interactions with soil conditions; increasing FD led to increased DNP but mainly at higher levels of soil resources. Our results suggest that the effect of species diversity on ecosystem functioning may depend on environmental factors such as resource availability. Future biodiversity experiments should examine how natural levels of environmental variability impact the importance of biodiversity to ecosystem functioning.

  1. Changes in plant functional groups, litter quality, and soil carbon and nitrogen mineralization with sheep grazing in an Inner Mongolian Grassland

    Science.gov (United States)

    Barger, N.N.; Ojima, D.S.; Belnap, J.; Shiping, W.; Yanfen, W.; Chen, Z.

    2004-01-01

    This study reports on changes in plant functional group composition, litter quality, and soil C and N mineralization dynamics from a 9-year sheep grazing study in Inner Mongolia. Addressed are these questions: 1) How does increasing grazing intensity affect plant community composition? 2) How does increasing grazing intensity alter soil C and N mineralization dynamics? 3) Do changes in soil C and N mineralization dynamics relate to changes in plant community composition via inputs of the quality or quantity of litter? Grazing plots were set up near the Inner Mongolia Grassland Ecosystem Research Station (IMGERS) with 5 grazing intensities: 1.3, 2.7, 4.0, 5.3, and 6.7 sheep ha -1??yr-1. Plant cover was lower with increasing grazing intensity, which was primarily due to a dramatic decline in grasses, Carex duriuscula, and Artemisia frigida. Changes in litter mass and percentage organic C resulted in lower total C in the litter layer at 4.0 and 5.3 sheep ha-1??yr-1 compared with 2.7 sheep ha -1??yr-1. Total litter N was lower at 5.3 sheep ha-1??yr-1 compared with 2.7 sheep ha -1??yr-1. Litter C:N ratios, an index of litter quality, were significantly lower at 4.0 sheep ha-1??yr -1 relative to 1.3 and 5.3 sheep ha-1??yr -1. Cumulative C mineralized after 16 days decreased with increasing grazing intensity. In contrast, net N mineralization (NH4+ + NO3-) after a 12-day incubation increased with increasing grazing intensity. Changes in C and N mineralization resulted in a narrowing of CO2-C:net Nminratios with increasing grazing intensity. Grazing explained 31% of the variability in the ratio of CO 2-C:net Nmin. The ratio of CO2-C:net N min was positively correlated with litter mass. Furthermore, there was a positive correlation between litter mass and A. frigida cover. Results suggest that as grazing intensity increases, microbes become more C limited resulting in decreased microbial growth and demand for N.

  2. Fungal-host diversity among mycoheterotrophic plants increases proportionally to their fungal-host overlap.

    Science.gov (United States)

    Gomes, Sofia I F; Merckx, Vincent S F T; Saavedra, Serguei

    2017-05-01

    The vast majority of plants obtain an important proportion of vital resources from soil through mycorrhizal fungi. Generally, this happens in exchange of photosynthetically fixed carbon, but occasionally the interaction is mycoheterotrophic, and plants obtain carbon from mycorrhizal fungi. This process results in an antagonistic interaction between mycoheterotrophic plants and their fungal hosts. Importantly, the fungal-host diversity available for plants is restricted as mycoheterotrophic interactions often involve narrow lineages of fungal hosts. Unfortunately, little is known whether fungal-host diversity may be additionally modulated by plant-plant interactions through shared hosts. Yet, this may have important implications for plant competition and coexistence. Here, we use DNA sequencing data to investigate the interaction patterns between mycoheterotrophic plants and arbuscular mycorrhizal fungi. We find no phylogenetic signal on the number of fungal hosts nor on the fungal hosts shared among mycoheterotrophic plants. However, we observe a potential trend toward increased phylogenetic diversity of fungal hosts among mycoheterotrophic plants with increasing overlap in their fungal hosts. While these patterns remain for groups of plants regardless of location, we do find higher levels of overlap and diversity among plants from the same location. These findings suggest that species coexistence cannot be fully understood without attention to the two sides of ecological interactions.

  3. Plant diversity and conservation in China: planning a strategic bioresource for a sustainable future.

    Science.gov (United States)

    Huang, Hongwen

    2011-01-01

    China is one of the richest countries for plant diversity with approximately 33 000 vascular plant species, ranking second in the world. However, the plant diversity in China is increasingly threatened, with an estimated 4000–5000 plant species being threatened or on the verge of extinction, making China, proportionally, one of the highest priorities for global plant biodiversity conservation. Coming in the face of the current ecological crisis, it is timely that China has launched China's Strategy for Plant Conservation (CSPC). China has increasingly recognized the importance of plant diversity in efforts to conserve and sustainably use its plant diversity. More than 3000 nature reserves have been established, covering approximately 16% of the land surface of China. These natural reserves play important roles in plant conservation, covering more than 85% of types of terrestrial natural ecosystems, 40% of types of natural wetlands, 20% of native forests and 65% of natural communities of vascular plants. Meanwhile, the flora conserved in botanical gardens is also extensive. A recent survey shows that the 10 largest botanical gardens have living collections of 43 502 taxa, with a total of 24 667 species in ex situ conservation. These provide an important reserve of plant resources for sustainable economic and social development in China. Plant diversity is the basis for bioresources and sustainable utilization. The 21st century is predicted to be an era of bio-economy driven by advances of bioscience and biotechnology. Bio-economy may become the fourth economy form after agricultural, industrial, and information and information technology economies, having far-reaching impacts on sustainable development in agriculture, forestry, environmental protection, light industry, food supply and health care and other micro-economy aspects. Thus, a strategic and forward vision for conservation of plant diversity and sustainable use of plant resources in the 21st century is of

  4. Genome Size Diversity and Its Impact on the Evolution of Land Plants

    Directory of Open Access Journals (Sweden)

    Jaume Pellicer

    2018-02-01

    Full Text Available Genome size is a biodiversity trait that shows staggering diversity across eukaryotes, varying over 64,000-fold. Of all major taxonomic groups, land plants stand out due to their staggering genome size diversity, ranging ca. 2400-fold. As our understanding of the implications and significance of this remarkable genome size diversity in land plants grows, it is becoming increasingly evident that this trait plays not only an important role in shaping the evolution of plant genomes, but also in influencing plant community assemblages at the ecosystem level. Recent advances and improvements in novel sequencing technologies, as well as analytical tools, make it possible to gain critical insights into the genomic and epigenetic mechanisms underpinning genome size changes. In this review we provide an overview of our current understanding of genome size diversity across the different land plant groups, its implications on the biology of the genome and what future directions need to be addressed to fill key knowledge gaps.

  5. High genetic diversity declines towards the geographic range periphery of Adonis vernalis, a Eurasian dry grassland plant

    Czech Academy of Sciences Publication Activity Database

    Hirsch, H.; Wagner, V.; Danihelka, Jiří; Ruprecht, E.; Sánchez-Gómez, P.; Seifert, M.; Hensen, I.

    2015-01-01

    Roč. 17, č. 6 (2015), s. 1233-1241 ISSN 1435-8603 Institutional support: RVO:67985939 Keywords : genetic differentiation * phylogeography * species distribution range Subject RIV: EF - Botanics Impact factor: 2.216, year: 2015

  6. Plant species and functional group effects on abiotic and microbial soil properties and plant-soil feedback responses in two grasslands

    NARCIS (Netherlands)

    Bezemer, T.M.; Lawson, C.S.; Hedlund, K.; Edwards, A.R.; Brooks, A.J.; Igual, J.M.; Mortimer, S.R.; Putten, van der W.H.

    2006-01-01

    1 Plant species differ in their capacity to influence soil organic matter, soil nutrient availability and the composition of soil microbial communities. Their influences on soil properties result in net positive or negative feedback effects, which influence plant performance and plant community

  7. Plant species richness regulates soil respiration through changes in productivity.

    NARCIS (Netherlands)

    Tavares Correa Dias, A.; van Ruijven, J.; Berendse, F.

    2010-01-01

    Soil respiration is an important pathway of the C cycle. However, it is still poorly understood how changes in plant community diversity can affect this ecosystem process. Here we used a long-term experiment consisting of a gradient of grassland plant species richness to test for effects of

  8. Plant species richness regulates soil respiration through changes in productivity

    NARCIS (Netherlands)

    Dias, A.A.; Ruijven, van J.; Berendse, F.

    2010-01-01

    Soil respiration is an important pathway of the C cycle. However, it is still poorly understood how changes in plant community diversity can affect this ecosystem process. Here we used a long-term experiment consisting of a gradient of grassland plant species richness to test for effects of

  9. Assessing diversity of prairie plants using remote sensing

    Science.gov (United States)

    Gamon, J. A.; Wang, R.

    2017-12-01

    Biodiversity loss endangers ecosystem services and is considered as a global change that may generate unacceptable environmental consequences for the Earth system. Global biodiversity observations are needed to provide a better understanding of biodiversity - ecosystem services relationships and to provide a stronger foundation for conserving the Earth's biodiversity. While remote sensing metrics have been applied to estimate α biodiversity directly through optical diversity, a better understanding of the mechanisms behind the optical diversity-biodiversity relationship is needed. We designed a series of experiments at Cedar Creek Ecosystem Science Reserve, MN, to investigate the scale dependence of optical diversity and explore how species richness, evenness, and composition affect optical diversity. We collected hyperspectral reflectance of 16 prairie species using both a full-range field spectrometer fitted with a leaf clip, and an imaging spectrometer carried by a tram system to simulate plot-level images with different species richness, evenness, and composition. Two indicators of spectral diversity were explored: the coefficient of variation (CV) of spectral reflectance in space, and spectral classification using a Partial Least Squares Discriminant Analysis (PLS-DA). Our results showed that sampling methods (leaf clip-derived data vs. image-derived data) affected the optical diversity estimation. Both optical diversity indices were affected by species richness and evenness (Pguide regional studies of biodiversity estimation using high spatial and spectral resolution remote sensing.

  10. Density-independent mortality and increasing plant diversity are associated with differentiation of Taraxacum officinale into r- and K-strategists.

    Directory of Open Access Journals (Sweden)

    Annett Lipowsky

    Full Text Available Differential selection between clones of apomictic species may result in ecological differentiation without mutation and recombination, thus offering a simple system to study adaptation and life-history evolution in plants.We caused density-independent mortality by weeding to colonizer populations of the largely apomictic Taraxacum officinale (Asteraceae over a 5-year period in a grassland biodiversity experiment (Jena Experiment. We compared the offspring of colonizer populations with resident populations deliberately sown into similar communities. Plants raised from cuttings and seeds of colonizer and resident populations were grown under uniform conditions. Offspring from colonizer populations had higher reproductive output, which was in general agreement with predictions of r-selection theory. Offspring from resident populations had higher root and leaf biomass, fewer flower heads and higher individual seed mass as predicted under K-selection. Plants grown from cuttings and seeds differed to some degree in the strength, but not in the direction, of their response to the r- vs. K-selection regime. More diverse communities appeared to exert stronger K-selection on resident populations in plants grown from cuttings, while we did not find significant effects of increasing species richness on plants grown from seeds.Differentiation into r- and K-strategists suggests that clones with characteristics of r-strategists were selected in regularly weeded plots through rapid colonization, while increasing plant diversity favoured the selection of clones with characteristics of K-strategists in resident populations. Our results show that different selection pressures may result in a rapid genetic differentiation within a largely apomictic species. Even under the assumption that colonizer and resident populations, respectively, happened to be r- vs. K-selected already at the start of the experiment, our results still indicate that the association of these

  11. Density-independent mortality and increasing plant diversity are associated with differentiation of Taraxacum officinale into r- and K-strategists.

    Science.gov (United States)

    Lipowsky, Annett; Roscher, Christiane; Schumacher, Jens; Schmid, Bernhard

    2012-01-01

    Differential selection between clones of apomictic species may result in ecological differentiation without mutation and recombination, thus offering a simple system to study adaptation and life-history evolution in plants. We caused density-independent mortality by weeding to colonizer populations of the largely apomictic Taraxacum officinale (Asteraceae) over a 5-year period in a grassland biodiversity experiment (Jena Experiment). We compared the offspring of colonizer populations with resident populations deliberately sown into similar communities. Plants raised from cuttings and seeds of colonizer and resident populations were grown under uniform conditions. Offspring from colonizer populations had higher reproductive output, which was in general agreement with predictions of r-selection theory. Offspring from resident populations had higher root and leaf biomass, fewer flower heads and higher individual seed mass as predicted under K-selection. Plants grown from cuttings and seeds differed to some degree in the strength, but not in the direction, of their response to the r- vs. K-selection regime. More diverse communities appeared to exert stronger K-selection on resident populations in plants grown from cuttings, while we did not find significant effects of increasing species richness on plants grown from seeds. Differentiation into r- and K-strategists suggests that clones with characteristics of r-strategists were selected in regularly weeded plots through rapid colonization, while increasing plant diversity favoured the selection of clones with characteristics of K-strategists in resident populations. Our results show that different selection pressures may result in a rapid genetic differentiation within a largely apomictic species. Even under the assumption that colonizer and resident populations, respectively, happened to be r- vs. K-selected already at the start of the experiment, our results still indicate that the association of these strategies with

  12. The California Valley grassland

    Science.gov (United States)

    Keeley, J.E.; Schoenherr, Allan A.

    1990-01-01

    Grasslands are distributed throughout California from Oregon to Baja California Norte and from the coast to the desert (Brown 1982) (Figure 1). This review will focus on the dominant formation in cismontane California, a community referred to as Valley Grassland (Munz 1959). Today, Valley Grassland is dominated by non-native annual grasses in genera such as Avena (wild oat), Bromus (brome grass), and Hordeum (barley), and is often referred to as the California annual grassland. On localized sites, native perennial bunchgrasses such as Stipa pultra (purple needle grass) may dominate and such sites are interpreted to be remnants of the pristine valley grassland. In northwestern California a floristically distinct formation of the Valley Grassland, known as Coast Prairie (Munz 1959) or Northern Coastal Grassland (Holland and Keil 1989) is recognized. The dominant grasses include many native perennial bunchgrasses in genera such as Agrostis, Calamagrostis, Danthonia, Deschampsia, Festuca, Koeleria and Poa (Heady et al. 1977). Non-native annuals do not dominate, but on some sites non-native perennials like Anthoxanthum odoratum may colonize the native grassland (Foin and Hektner 1986). Elevationally, California's grasslands extend from sea level to at leas 1500 m. The upper boundary is vague because montane grassland formations are commonly referred to as meadows; a community which Munz (1959) does not recognize. Holland and Keil (1989) describe the montane meadow as an azonal community; that is, a community restricted not so much to a particular climatic zone but rather controlled by substrate characteristics. They consider poor soil-drainage an over-riding factor in the development of montane meadows and, in contrast to grasslands, meadows often remain green through the summer drought. Floristically, meadows are composed of graminoids; Cyperaceae, Juncaceae, and rhizomatous grasses such as Agropyron (wheat grass). Some bunchgrasses, such as Muhlenbergia rigens, are

  13. Habitat Heterogeneity Affects Plant and Arthropod Species Diversity and Turnover in Traditional Cornfields.

    Science.gov (United States)

    Martínez, Eliana; Rös, Matthias; Bonilla, María Argenis; Dirzo, Rodolfo

    2015-01-01

    The expansion of the agricultural frontier by the clearing of remnant forests has led to human-dominated landscape mosaics. Previous studies have evaluated the effect of these landscape mosaics on arthropod diversity at local spatial scales in temperate and tropical regions, but little is known about fragmentation effects in crop systems, such as the complex tropical traditional crop systems that maintain a high diversity of weeds and arthropods in low-Andean regions. To understand the factors that influence patterns of diversity in human-dominated landscapes, we investigate the effect of land use types on plant and arthropod diversity in traditionally managed cornfields, via surveys of plants and arthropods in twelve traditional cornfields in the Colombian Andes. We estimated alpha and beta diversity to analyze changes in diversity related to land uses within a radius of 100 m to 1 km around each cornfield. We observed that forests influenced alpha diversity of plants, but not of arthropods. Agricultural lands had a positive relationship with plants and herbivores, but a negative relationship with predators. Pastures positively influenced the diversity of plants and arthropods. In addition, forest cover seemed to influence changes in plant species composition and species turnover of herbivore communities among cornfields. The dominant plant species varied among fields, resulting in high differentiation of plant communities. Predator communities also exhibited high turnover among cornfields, but differences in composition arose mainly among rare species. The crop system evaluated in this study represents a widespread situation in the tropics, therefore, our results can be of broad significance. Our findings suggest that traditional agriculture may not homogenize biological communities, but instead could maintain the regional pool of species through high beta diversity.

  14. Habitat Heterogeneity Affects Plant and Arthropod Species Diversity and Turnover in Traditional Cornfields.

    Directory of Open Access Journals (Sweden)

    Eliana Martínez

    Full Text Available The expansion of the agricultural frontier by the clearing of remnant forests has led to human-dominated landscape mosaics. Previous studies have evaluated the effect of these landscape mosaics on arthropod diversity at local spatial scales in temperate and tropical regions, but little is known about fragmentation effects in crop systems, such as the complex tropical traditional crop systems that maintain a high diversity of weeds and arthropods in low-Andean regions. To understand the factors that influence patterns of diversity in human-dominated landscapes, we investigate the effect of land use types on plant and arthropod diversity in traditionally managed cornfields, via surveys of plants and arthropods in twelve traditional cornfields in the Colombian Andes. We estimated alpha and beta diversity to analyze changes in diversity related to land uses within a radius of 100 m to 1 km around each cornfield. We observed that forests influenced alpha diversity of plants, but not of arthropods. Agricultural lands had a positive relationship with plants and herbivores, but a negative relationship with predators. Pastures positively influenced the diversity of plants and arthropods. In addition, forest cover seemed to influence changes in plant species composition and species turnover of herbivore communities among cornfields. The dominant plant species varied among fields, resulting in high differentiation of plant communities. Predator communities also exhibited high turnover among cornfields, but differences in composition arose mainly among rare species. The crop system evaluated in this study represents a widespread situation in the tropics, therefore, our results can be of broad significance. Our findings suggest that traditional agriculture may not homogenize biological communities, but instead could maintain the regional pool of species through high beta diversity.

  15. Disturbance in dry coastal dunes in Denmark promotes diversity of plants and arthropods

    DEFF Research Database (Denmark)

    Brunbjerg, Ane Kirstine; Jørgensen, Gorm Pilgaard; Nielsen, Kristian Mandsberg

    2015-01-01

    of three disturbance types (burning, trampling and blowouts) on plant and arthropod species richness and composition in dry coastal dunes in Jutland, Denmark. Environmental variables, plant presence–absence and arthropod abundance were measured in 150 1 × 2 m plots along transects in blowouts, burned areas...... on plant and arthropod composition. Indicator species analysis revealed plant and arthropod species indicative for different disturbances. Plant and arthropod species richness and the number of annual plant species generally increased with disturbance, and plant and arthropod richness and composition...... responded differently to different disturbances. Arthropod communities were more diverse in disturbed plots and hosted species often found in early successional habitats of potential conservation value. Disturbance promoted β-diversity, but affected plants more than arthropods, likely because...

  16. Supporting biodiversity by prescribed burning in grasslands - A multi-taxa approach.

    Science.gov (United States)

    Valkó, Orsolya; Deák, Balázs; Magura, Tibor; Török, Péter; Kelemen, András; Tóth, Katalin; Horváth, Roland; Nagy, Dávid D; Debnár, Zsuzsanna; Zsigrai, György; Kapocsi, István; Tóthmérész, Béla

    2016-12-01

    There are contrasting opinions on the use of prescribed burning management in European grasslands. On the one hand, prescribed burning can be effectively used for the management of open landscapes, controlling dominant species, reducing accumulated litter or decreasing wildfire risk. On the other hand burning can have a detrimental impact on grassland biodiversity by supporting competitor grasses and by threatening several rare and endangered species, especially arthropods. We studied the effects of prescribed burning in alkaline grasslands of high conservation interest. Our aim was to test whether dormant-season prescribed burning can be an alternative conservation measure in these grasslands. We selected six sites in East-Hungary: in three sites, a prescribed fire was applied in November 2011, while three sites remained unburnt. We studied the effects of burning on soil characteristics, plant biomass and on the composition of vegetation and arthropod assemblages (isopods, spiders, ground beetles and rove beetles). Soil pH, organic matter, potassium and phosphorous did not change, but soluble salt content increased significantly in the burnt sites. Prescribed burning had several positive effects from the nature conservation viewpoint. Shannon diversity and the number of flowering shoots were higher, and the cover of the dominant grass Festuca pseudovina was lower in the burnt sites. Graminoid biomass was lower, while total, green and forb biomass were higher in the burnt plots compared to the control. The key finding of our study was that prescribed burning did not decrease the abundance and diversity of arthropod taxa. Species-level analyses showed that out of the most abundant invertebrate species, 10 were not affected, 1 was negatively and 1 was positively affected by burning. Moreover, our results suggest that prescribed burning leaving unburnt patches can be a viable management tool in open landscapes, because it supports plant diversity and does not threaten

  17. Ecological Effects of Roads on the Plant Diversity of Coastal Wetland in the Yellow River Delta

    Directory of Open Access Journals (Sweden)

    Yunzhao Li

    2014-01-01

    Full Text Available The 26 sample sites in 7 study plots adjacent to asphalt road and earth road in coastal wetland in the Yellow River Delta were selected to quantify plant diversity using quadrat sampling method in plant bloom phase of July and August 2012. The indice of βT and Jaccard’s coefficient were applied to evaluate the species diversity. The results showed that the plant diversities and alien plants were high in the range of 0–20 m to the road verge. There were more exotics and halophytes in plots of asphalt roadside than that of earth roadside. However, proportion of halophytes in habitats of asphalt roadsides was lower than that of earth roadside. By comparing β-diversity, there were more common species in the asphalt roadsides than that in the earth roadsides. The similarity of plant communities in studied plots of asphalt roadsides and earth roadsides increased with increasing the distance to road verge. The effect range of roads for plant diversity in study region was about 20 m to road verge. Our results indicate that the construction and maintenance of roads in wetland could increase the plant species diversities of communities and risk of alien species invasion.

  18. Ecological Effects of Roads on the Plant Diversity of Coastal Wetland in the Yellow River Delta

    Science.gov (United States)

    Li, Yunzhao; Du, Siyao; Han, Guangxuan; Qu, Fanzhu; Wang, Guangmei; Fu, Yuqin; Zhan, Chao

    2014-01-01

    The 26 sample sites in 7 study plots adjacent to asphalt road and earth road in coastal wetland in the Yellow River Delta were selected to quantify plant diversity using quadrat sampling method in plant bloom phase of July and August 2012. The indice of β T and Jaccard's coefficient were applied to evaluate the species diversity. The results showed that the plant diversities and alien plants were high in the range of 0–20 m to the road verge. There were more exotics and halophytes in plots of asphalt roadside than that of earth roadside. However, proportion of halophytes in habitats of asphalt roadsides was lower than that of earth roadside. By comparing β-diversity, there were more common species in the asphalt roadsides than that in the earth roadsides. The similarity of plant communities in studied plots of asphalt roadsides and earth roadsides increased with increasing the distance to road verge. The effect range of roads for plant diversity in study region was about 20 m to road verge. Our results indicate that the construction and maintenance of roads in wetland could increase the plant species diversities of communities and risk of alien species invasion. PMID:25147872

  19. Epigenetic diversity increases the productivity and stability of plant populations

    Czech Academy of Sciences Publication Activity Database

    Latzel, Vít; Allan, E.; Bortolini Silveira, A.; Colot, V.; Fischer, M.; Bossdorf, O.

    2013-01-01

    Roč. 4, Nov 2013 (2013), s. 1-7, č. 2875 ISSN 2041-1723 Institutional support: RVO:67985939 Keywords : Arabidopsis thaliana * ecosystem * diversity Subject RIV: EF - Botanics Impact factor: 10.742, year: 2013

  20. Landscape and Local Controls of Insect Biodiversity in Conservation Grasslands: Implications for the Conservation of Ecosystem Service Providers in Agricultural Environments

    Directory of Open Access Journals (Sweden)

    Thomas O. Crist

    2014-07-01

    Full Text Available The conservation of biodiversity in intensively managed agricultural landscapes depends on the amount and spatial arrangement of cultivated and natural lands. Conservation incentives that create semi-natural grasslands may increase the biodiversity of beneficial insects and their associated ecosystem services, such as pollination and the regulation of insect pests, but the effectiveness of these incentives for insect conservation are poorly known, especially in North America. We studied the variation in species richness, composition, and functional-group abundances of bees and predatory beetles in conservation grasslands surrounded by intensively managed agriculture in Southwest Ohio, USA. Characteristics of grassland patches and surrounding land-cover types were used to predict insect species richness, composition, and functional-group abundance using linear models and multivariate ordinations. Bee species richness was positively influenced by forb cover and beetle richness was positively related to grass cover; both taxa had greater richness in grasslands surrounded by larger amounts of semi-natural land cover. Functional groups of bees and predatory beetles defined by body size and sociality varied in their abundance according to differences in plant composition of grassland patches, as well as the surrounding land-cover diversity. Intensive agriculture in the surrounding landscape acted as a filter to both bee and beetle species composition in conservation grasslands. Our results support the need for management incentives to consider landscape-level processes in the conservation of biodiversity and ecosystem services.

  1. PLANT DIVERSITY OF THE ZHELTOKAMENSKIY OPEN CAST MINES

    Directory of Open Access Journals (Sweden)

    Yarova T.A.

    2012-11-01

    Full Text Available Floristic structure data of soil algae, lichens, mosses, and vascular plants are given. Rare plant species which are protected at the Ukrainian, European, and International levels were revealed. The species list of trees and bushes was conducted. The soil analysis was carried out by such parameters: pH-value, the maintenance of hygroscopic water, the maintenance of mineral substances. Vegetation biomass on the open cast mines sample areas is defined. Ecological analysis of the biotopes of registered algae species was performed. The ecological analysis of the vascular plants species biotopes was carried out.The estimation of the perspective vegetation pattern was suggested for natural restoration of the open cast mines. The plant species are selected according to the ecological and morphological characteristics for plant rehabilitation and planting of open cast mines.

  2. Decomposition of standing litter in arid grasslands: Interactions between sunlight, non-rainfall moisture, microbes, and plant traits

    Science.gov (United States)

    Logan, J. R. V.; Jacobson, P. J.; Jacobson, K. M.; Evans, S.

    2017-12-01

    Although arid lands make up 40% of the Earth's land surface, we still lack a strong understanding of carbon cycling and plant decomposition in these systems. One reason for this is that field studies typically only focus on decomposition at or below the ground surface even though standing dead litter (material that has not yet fallen to the ground) accounts for more than 50% of total necromass in many of these systems. While recent work has begun to recognize the important and unique aspects of standing litter decomposition, few studies have investigated specific mechanisms controlling rates of mass loss. We hypothesized that initial photodegradation of the outer plant cuticle of standing litter is an important determinant of litter decomposition because this process increases moisture absorption and subsequent opportunities for biological decomposition. Our preliminary results offer support for this hypothesis. We found that standing grass stems with their cuticles artificially removed had greater water absorbance and more than 400% greater mass loss over a 6-month period relative to controls with intact cuticles. Additionally, spectroscopic measurements of cuticle integrity showed damage to the litter surface after a period of extended photodegradation, allowing increased moisture uptake during simulated fog/dew events. These findings are especially important in the context of recent work by us and others showing that non-rainfall moisture (fog, dew, and water vapor) plays a much larger role in arid land decomposition than previously thought. Improving our understanding of the mechanisms driving decomposition of standing litter will enable us to develop a more predictive understanding of carbon storage in arid lands.

  3. Soil acidification and liming in grassland production and grassland soil fertility in Slovenia

    Directory of Open Access Journals (Sweden)

    Jure ČOP

    2015-12-01

    Full Text Available This paper reviews the evidences on grassland soil acidity and liming in relation to soil processes and herbage production. There is also an outline of the present state of soil acidity and acidity-related traits – contents of organic matter (OM, phosphorus (P and potassium (K in Slovene grassland. In grassland, soil acidification is an ongoing process under humid climate conditions. It is mainly driven by leaching of nutrients, net loss of cations due to retention in livestock products, use of physiologically acid fertilizers, acid rain and N2 fixation. This process is reduced by strong pH buffering capacity of the soil and by physiologically basic fertilizers. Acid grassland soils in Slovenia are widely distributed in spite of the fact that 44% of the total land has developed from a carbonate parent material. Of the 1713 grassland soil samples analysed during 2005-2007 45% were regarded as acid ones (pH < 5.5; in KCl, 57% as soils with very low P status (˂ 6 mg P2O5/100 g soil and 22% as soils with very low K status (˂ 10 mg K2O/100 soil. Increased content of soil organic matter was identified for alpine pastures (˃ 10 % OM in 44% of samples, mainly as a result of low decomposition rate. Liming of acid grassland soils did not always reflect in a higher herbage yield. The cause for this inefficiency is plant composition of grassland. Thus, many grassland plants with relatively high production potential have adapted to acid soil conditions. To illustrate the inconsistent liming effect three researches are reviewed. In the first two researches liming along with fertilizer application did not increase the yield comparing to the fertilized control while in the third research the increase amounted 26 %. Liming improves considerably botanical composition of the acid grassland (e.g. sward where Common Bent – Agrostis tenuis Sibth. – prevails and thus indirectly affects palatability and nutritive value of herbage. Grassland liming has a weak

  4. Diversity, classification and function of the plant protein kinase superfamily

    OpenAIRE

    Lehti-Shiu, Melissa D.; Shiu, Shin-Han

    2012-01-01

    Eukaryotic protein kinases belong to a large superfamily with hundreds to thousands of copies and are components of essentially all cellular functions. The goals of this study are to classify protein kinases from 25 plant species and to assess their evolutionary history in conjunction with consideration of their molecular functions. The protein kinase superfamily has expanded in the flowering plant lineage, in part through recent duplications. As a result, the flowering plant protein kinase r...

  5. COENOLOGICAL SHIFT FOLLOWING FERTILIZATION IN MEDITERRANEAN GRASSLAND

    Directory of Open Access Journals (Sweden)

    ALESSANDRO SERAFINI SAULI

    2006-05-01

    Full Text Available In Rome both meadows of CentraI-European affinity and Mediterranean dry grasslands are presento We studied a site (Parco Regionale Urbano de] Pineto in Rome with very diverse vegetation, where species belonging to both coenologica] groups oceur. Wc fertilized a grassland with a combination of phosphorus (P and nitrogen (N. After fertilization diagDostie species of Helianthemetea guttati (Thcrophytes dccrease while species of MolinioArrhenatheretea (Hemicriptophytes increase. In a climate as that of Rome, transition between Mediterranean (with summer drought and Central European (without summer drought, nutrients availability modulates the distribution of vegetation Classes with respectively Mediterranean or Central-Europe affinities.

  6. Species richness, but not phylogenetic diversity, influences community biomass production and temporal stability in a re-examination of 16 grassland biodiversity studies

    NARCIS (Netherlands)

    Venail, P.; Gross, K.; Oakley, T.H.; Narwani, A.; Allan, E.; Flombaum, P.; Isbell, F.; Joshi, J.; Reich, P.B.; Tilman, D.; Ruijven, van J.; Cardinale, B.J.

    2015-01-01

    1.Hundreds of experiments have now manipulated species richness of various groups of organisms and examined how this aspect of biological diversity influences ecosystem functioning. Ecologists have recently expanded this field to look at whether phylogenetic diversity among species, often quantified

  7. [Research progress and trend on grassland agroecology].

    Science.gov (United States)

    Ren, Jizhou; Li, Xianglin; Hou, Fujiang

    2002-08-01

    The connotation, progress, research frontiers and developmental trend of grassland agroecology are discussed in this paper. The interface theory, structure and function, coupling and discordance, and health assessment of grassland agroecosystems were recognized as the four research frontiers of the discipline. There exist three primary interfaces in a grassland agroecosystem, i.e., vegetation-site, grassland-animal and production-management. Research into a series of the ecological processes that occurred at these interfaces is the key to revealing the features of the system behavior. There are four sections in a grassland agroecosystem, i.e., pre-plant, plant, animal and post-biotic sections. System coupling and discordance are the two important concepts to describe interactions among the production sections. System coupling among the sections can lead to system improvement by exerting the potential of system capacity. Health of an ecosystem is a reflection of its structure and function, and health assessment is a measurement of its orderliness and service value.

  8. Diverse Lifestyles and Strategies of Plant Pathogenesis Encoded in the Genomes of Eighteen Dothideomycetes

    Energy Technology Data Exchange (ETDEWEB)

    Ohm, Robin A.; Feau, Nicolas; Henrissat, Bernard; Schoch, Conrad L.; Horwitz, Benjamin A.; Barry, Kerrie W.; Condon, Bradford J.; Copeland, Alex C.; Dhillon, Braham; Glaser, Fabian; Hesse, Cedar N.; Kosti, Idit; LaButti, Kurt; Lindquist, Erika A.; Lucas, Susan; Salamov, Asaf A.; Bradshaw, Rosie E.; Ciuffetti, Lynda; Hamelin, Richard C.; Kema, Gert H. J.; Lawrence, Christopher; Scott, James A.; Spatafora, Joseph W.; Turgeon, B. Gillian; de Wit, Pierre J. G. M.; Zhong, Shaobin; Goodwin, Stephen B.; Grigoriev, Igor V.

    2013-03-05

    The class of Dothideomycetes is one of the largest and most diverse groups of fungi. Many are plant pathogens and pose a serious threat to agricultural crops that are grown for biofuel, food or feed. Most Dothideomycetes have only a single host plant, and related species can have very diverse hosts. Eighteen genomes of Dothideomycetes have currently been sequenced by the Joint Genome Institute and other sequencing centers. Here we describe the results of comparative analyses of the fungi in this group.

  9. Diverse Lifestyles and Strategies of Plant Pathogenesis Encoded in the Genomes of Eighteen Doethideomycetes Fungi

    Energy Technology Data Exchange (ETDEWEB)

    Ohm, Robin A.; Feau, Nicolas; Henrissat, Bernard; Schoch, Conrad L.; Horwitz, Benjamin A.; Barry, Kerrie W.; Condon, Bradford J.; Copeland, Alex C.; Dhillon, Braham; Glaser, Fabien; Hesse, Cedar N.; Kosti, Idit; LaButti, Kurt; Lindquist, Erika A.; Lucas, Susan; Salamov, Asaf A.; Bradshaw, Rosie E.; Ciuffetti, Lynda; Hamelin, Richard C.; Kema, Gert H. J.; Lawrence, Christopher; Scott, James A.; Spatafora, Joseph W.; Turgeon, B. Gillian; de Wit, Pierre J. G. M.; Zhong, Shaobin; Goodwin, Stephen B.; Grigoriev, Igor V.

    2012-03-13

    The class of Dothideomycetes is one of the largest and most diverse groups of fungi. Many are plant pathogens and pose a serious threat to agricultural crops grown for biofuel, food or feed. Most Dothideomycetes have only a single host and related species can have very diverse host plants. Eighteen genomes of Dothideomycetes have currently been sequenced by the Joint Genome Institute and other sequencing centers. Here we describe the results of comparative analyses of the fungi in this group.

  10. Invasive plant erodes local song diversity in a migratory passerine

    Science.gov (United States)

    Yvette K. Ortega; Aubree Benson; Erick Greene

    2014-01-01

    Exotic plant invasions threaten ecosystems globally, but we still know little about the specific consequences for animals. Invasive plants can alter the quality of breeding habitat for songbirds, thereby impacting important demographic traits such as dispersal, philopatry, and age structure. These demographic effects may in turn alter song-learning conditions to affect...

  11. Dry flue gas desulfurization by-product application effects on plant uptake and soil storage changes in a managed grassland.

    Science.gov (United States)

    Burgess-Conforti, Jason R; Brye, Kristofor R; Miller, David M; Pollock, Erik D; Wood, Lisa S

    2018-02-01

    Environmental regulations mandate that sulfur dioxide (SO 2 ) be removed from the flue gases of coal-fired power plants, which results in the generation of flue gas desulfurization (FGD) by-products. These FGD by-products may be a viable soil amendment, but the large amounts of trace elements contained in FGD by-products are potentially concerning. The objective of this study was to evaluate the effects of land application of a high-Ca dry FGD (DFGD) by-product on trace elements in aboveground biomass and soil. A high-Ca DFGD by-product was applied once at a rate of 9 Mg ha -1 on May 18, 2015 to small plots with mixed-grass vegetation. Soil and biomass were sampled prior to application and several times thereafter. Aboveground dry matter and tissue As, Co, Cr, Hg, Se, U, and V concentrations increased (P  0.05) from pre-application levels or the unamended control within 3 to 6 months of application. Soil pH in the amended treatment 6 months after application was greater (P by-product application compared to the unamended control. High-Ca DFGD by-products appear to be useful as a soil amendment, but cause at least a temporary increase in tissue concentrations of trace elements, which may be problematic for animal grazing situations.

  12. Past climate-driven range shifts and population genetic diversity in arctic plants

    DEFF Research Database (Denmark)

    Pellissier, Loïc; Eidesen, Pernille Bronken; Ehrich, Dorothee

    2016-01-01

    High intra-specific genetic diversity is necessary for species adaptation to novel environments under climate change, but species tracking suitable conditions are losing alleles through successive founder events during range shift. Here, we investigated the relationship between range shift since ...... the Last Glacial Maximum (LGM) and extant population genetic diversity across multiple plant species to understand variability in species responses...

  13. Geographical patterns in the beta diversity of China's woody plants

    DEFF Research Database (Denmark)

    Wang, Zhiheng; Fang, Jingyun; Tang, Zhiyao

    2012-01-01

    Beta diversity (i.e. species turnover rate across space) is fundamental for understanding mechanisms controlling large-scale species richness patterns. However, the influences on beta diversity are still a matter of debate. In particular, the relative role of environmental and spatial processes (e.......g. environmental niche versus dispersal limitation of species) remains elusive, and the influence of species range size has been poorly tested. Here, using distribution maps of 11 405 woody species in China (ca 9.6 ¿ 106 km2), we investigated 1) the geographical and directional patterns of beta diversity for all...... with their environmental niches due to dispersal limitation induced by China’s topography and/or their low dispersal ability. The projected rapid climatic changes will likely endanger such species. Species dispersal processes should be taken into account in future conservation strategies in China....

  14. Ex situ Conservation Effort through the Inventory of Plant Diversity in Mount Seblat, Bengkulu

    Directory of Open Access Journals (Sweden)

    Imawan Wahyu Hidayat

    2017-12-01

    Full Text Available Mount Seblat, as part a of Kerinci Seblat National Park (KSNP, is a pristine and natural mountain, particularly from disturbances and destructions by human activities. Nevertheless, the richness of biological resources especially plant diversity.in this area has not been more explored. The purpose of this study was to conduct an inventory of plant diversity and to determine the plant species composition. The inventory activities were conducted by plants collection along the ascent route. The results were then be maintained through ex situ conservation method in Cibodas Botanical Garden (CBG. The study was conducted by exploratory method, from Seblat Ulu Village (641 m asl up to altitude of 1,037 m asl. There were 18 points of plant sample observation with an area of 5 x 5 square meters per point. Plant collection obtained 380 specimens. Five groups of most collected plants were Lauraceae (18 species, Rubiaceae (8 species, Anacardiaceae (6 species, Annonaceae (5 species, and Fagaceae (4 species. In order to enrich the plants collection as well as conduct the ex situ conservation effort, plants from Orchidaceae were also collected which resulted in 33 species. These results were an important initial inventory of plant diversity of Mount Seblat, considering that there was no record as well as very limited current information. When the environment disturbance tends to increase, this information may act as a reference and an initial database to develop plants conservation effort and strategy in the future.

  15. Fatty Acid Diversity is Not Associated with Neutral Genetic Diversity in Native Populations of the Biodiesel Plant Jatropha curcas L.

    Science.gov (United States)

    Martínez-Díaz, Yesenia; González-Rodríguez, Antonio; Rico-Ponce, Héctor Rómulo; Rocha-Ramírez, Víctor; Ovando-Medina, Isidro; Espinosa-García, Francisco J

    2017-01-01

    Jatropha curcas L. (Euphorbiaceae) is a shrub native to Mexico and Central America, which produces seeds with a high oil content that can be converted to biodiesel. The genetic diversity of this plant has been widely studied, but it is not known whether the diversity of the seed oil chemical composition correlates with neutral genetic diversity. The total seed oil content, the diversity of profiles of fatty acids and phorbol esters were quantified, also, the genetic diversity obtained from simple sequence repeats was analyzed in native populations of J. curcas in Mexico. Using the fatty acids profiles, a discriminant analysis recognized three groups of individuals according to geographical origin. Bayesian assignment analysis revealed two genetic groups, while the genetic structure of the populations could not be explained by isolation-by-distance. Genetic and fatty acid profile data were not correlated based on Mantel test. Also, phorbol ester content and genetic diversity were not associated. Multiple linear regression analysis showed that total oil content was associated with altitude and seasonality of temperature. The content of unsaturated fatty acids was associated with altitude. Therefore, the cultivation planning of J. curcas should take into account chemical variation related to environmental factors. © 2017 Wiley-VHCA AG, Zurich, Switzerland.

  16. β-Diversity of functional groups of woody plants in a tropical dry forest in Yucatan.

    Directory of Open Access Journals (Sweden)

    Jorge Omar López-Martínez

    Full Text Available Two main theories have attempted to explain variation in plant species composition (β-diversity. Niche theory proposes that most of the variation is related to environment (environmental filtering, whereas neutral theory posits that dispersal limitation is the main driver of β-diversity. In this study, we first explored how α- and β-diversity of plant functional groups defined by growth form (trees, shrubs and lianas, which represent different strategies of resource partitioning, and dispersal syndrome (autochory, anemochory and zoochory, which represent differences in dispersal limitation vary with successional age and topographic position in a tropical dry forest. Second, we examined the effects of environmental, spatial, and spatially-structured environmental factors on β-diversity of functional groups; we used the spatial structure of sampling sites as a proxy for dispersal limitation, and elevation, soil properties and forest stand age as indicators of environmental filtering. We recorded 200 species and 22,245 individuals in 276 plots; 120 species were trees, 41 shrubs and 39 lianas. We found that β-diversity was highest for shrubs, intermediate for lianas and lowest for trees, and was slightly higher for zoochorous than for autochorous and anemochorous species. All three dispersal syndromes, trees and shrubs varied in composition among vegetation classes (successional age and topographic position, whilst lianas did not. β-diversity was influenced mostly by proxies of environmental filtering, except for shrubs, for which the influence of dispersal limitation was more important. Stand age and topography significantly influenced α-diversity across functional groups, but showed a low influence on β-diversity -possibly due to the counterbalancing effect of resprouting on plant distribution and composition. Our results show that considering different plant functional groups reveals important differences in both α- and β-diversity

  17. Simulated geographic variations of plant species richness, evenness and abundance using climatic constraints on plant functional diversity

    International Nuclear Information System (INIS)

    Kleidon, Axel; Pavlick, Ryan; Reu, Bjoern; Adams, Jonathan

    2009-01-01

    Among the most pronounced large-scale geographic patterns of plant biodiversity are the increase in plant species richness towards the tropics, a more even distribution of the relative abundances of plant species in the tropics, and a nearly log-normal relative abundance distribution. Here we use an individual-based plant diversity model that relates climatic constraints to feasible plant growth strategies to show that all three basic diversity patterns can be predicted merely from the climatic constraints acting upon plant ecophysiological trade-offs. Our model predicts that towards objectively 'harsher' environments, the range of feasible growth strategies resulting in reproductive plants is reduced, thus resulting in lower functional plant species richness. The reduction of evenness is attributed to a more rapid decline in productivity from the most productive to less productive plant growth strategies since the particular setup of the strategy becomes more important in maintaining high productivity in harsher environments. This approach is also able to reproduce the increase in the deviation from a log-normal distribution towards more evenly distributed communities of the tropics. Our results imply that these general biodiversity relationships can be understood primarily by considering the climatic constraints on plant ecophysiological trade-offs.

  18. Importance and functions of European grasslands.

    Science.gov (United States)

    Carlier, L; De Vliegher, A; Van Cleemput, O; Boeckx, P

    2005-01-01

    The European agricultural policy is not simple and needs to accommodate also social and environmental requirements. Grassland will continue to be an important form of land use in Europe, but with increased diversity in management objectives and systems used. Besides its role as basic nutrient for herbivores and ruminants grasslands have opportunities for adding value by exploiting positive health characteristics in animal products from grassland and through the delivery of environmental benefits. In fact grasslands contribute to a high degree to the struggle against erosion and to the regularizing of water regimes, to the purification of fertilizers and pesticides and to biodiversity. Finally they have aesthetic role and recreational function as far as they provide public access that other agricultural uses do not allow. But even for grassland it is very difficult to create a good frame for its different tasks (1) the provision of forage for livestock, (2) protection and conservation of soil and water resources, (3) furnishing a habitat for wildlife, both flora and fauna and (4) contribution to the attractiveness of the landscape. Nevertheless it is the only crop, able to fulfil so many tasks and to fit so many requirements.

  19. Volume, value and floristic diversity of Gabon's medicinal plant markets

    NARCIS (Netherlands)

    Towns, A.M.; Quiroz Villarreal, D.K.; Guinee, L.; Boer, H.; Andel, van T.

    2014-01-01

    Ethnopharmacological relevance - African medicinal plant markets offer insight into commercially important species, salient health concerns in the region, and possible conservation priorities. Still, little quantitative data is available on the trade in herbal medicine in Central Africa. The aim of

  20. Diversity and distribution of medicinal plants in North Sinai, Egypt

    African Journals Online (AJOL)

    Administrator

    2008-07-22

    Jul 22, 2008 ... cinal plants in Sinai have attracted the attention of many ecologists ...... species are divided among many genera as opposed to one in which most species .... topographic variations are the main driving factors controlling the ...

  1. Medicinal plant diversity of Sitamata wildlife sanctuary, Rajasthan, India.

    Science.gov (United States)

    Jain, Anita; Katewa, S S; Galav, P K; Sharma, Pallavi

    2005-11-14

    The present study has been carried out in Sitamata wildlife sanctuary of Chittorgarh and Udaipur district located in south-west region of Rajasthan. A field survey of the study area was carried out during 2002-2004 to document the medicinal utility of herbs occurring in this area. Two hundred fourty-three genera belonging to 76 families have been reported which are used by the tribals of about 50 villages around the sanctuary as means of primary health care to cure various ailments. The study revealed the new ethnobotanical uses of 24 plant species belonging to 20 genera. A list of plant species along with their local name, plant part/s used and mode of administration for effective control in different ailments of ethnomedicinal plants are given.

  2. Relationship between plant diversity and spatial stability of ...

    African Journals Online (AJOL)

    hope&shola

    2010-10-04

    Oct 4, 2010 ... binary. (0) non legume; (1) legume. where S is the total number of species in the community, Pi, Pj are the relative abundances of the i th and j th species. dij shows the functional trait discrepancy between stochastic two species. Q expresses the sum of trait diversity dissimilarity for all the species in.

  3. PLANT DIVERSITY OF THE ZHELTOKAMENSKIY OPEN CAST MINES

    OpenAIRE

    Yarova T.A.; Yarovyi S. A.; Bren A.G.; Baraboha N. N.; Baraboha A. P.; Vovk O. A.

    2012-01-01

    Floristic structure data of soil algae, lichens, mosses, and vascular plants are given. Rare plant species which are protected at the Ukrainian, European, and International levels were revealed. The species list of trees and bushes was conducted. The soil analysis was carried out by such parameters: pH-value, the maintenance of hygroscopic water, the maintenance of mineral substances. Vegetation biomass on the open cast mines sample areas is defined. Ecological analysis of the biotopes of ...

  4. Monitoring shifts in plant diversity in response to climate change: A method for landscapes

    Science.gov (United States)

    Stohlgren, T.J.; Owen, A.J.; Lee, M.

    2000-01-01

    Improved sampling designs are needed to detect, monitor, and predict plant migrations and plant diversity changes caused by climate change and other human activities. We propose a methodology based on multi-scale vegetation plots established across forest ecotones which provide baseline data on patterns of plant diversity, invasions of exotic plant species, and plant migrations at landscape scales in Rocky Mountain National Park, Colorado, USA. We established forty two 1000-m2 plots in relatively homogeneous forest types and the ecotones between them on 14 vegetation transects. We found that 64% of the variance in understory species distributions at landscape scales were described generally by gradients of elevation and under-canopy solar radiation. Superimposed on broad-scale climatic gradients are small-scale gradients characterized by patches of light, pockets of fertile soil, and zones of high soil moisture. Eighteen of the 42 plots contained at least one exotic species; monitoring exotic plant invasions provides a means to assess changes in native plant diversity and plant migrations. Plant species showed weak affinities to overstory vegetation types, with 43% of the plant species found in three or more vegetation types. Replicate transects along several environmental gradients may provide the means to monitor plant diversity and species migrations at landscape scales because: (1) ecotones may play crucial roles in expanding the geophysiological ranges of many plant species; (2) low affinities of understory species to overstory forest types may predispose vegetation types to be resilient to rapid environmental change; and (3) ecotones may help buffer plant species from extirpation and extinction.

  5. Plant-associated microbiomes in arid lands: diversity, ecology and biotechnological potential

    KAUST Repository

    Soussi, Asma

    2015-08-28

    Background: Aridification is a worldwide serious threat directly affecting agriculture and crop production. In arid and desert areas, it has been found that microbial diversity is huge, built of microorganisms able to cope with the environmental harsh conditions by developing adaptation strategies. Plants growing in arid lands or regions facing prolonged abiotic stresses such as water limitation and salt accumulation have also developed specific physiological and molecular stress responses allowing them to thrive under normally unfavorable conditions. Scope: Under such extreme selection pressures, special root-associated bacterial assemblages, endowed with capabilities of plant growth promotion (PGP) and extremophile traits, are selected by the plants. In this review, we provide a general overview on the microbial diversity in arid lands and deserts versus specific microbial assemblages associated with plants. The ecological drivers that shape this diversity, how plant-associated microbiomes are selected, and their biotechnological potential are discussed. Conclusions: Selection and recruitment of the plant associated bacterial assemblages is mediated by the combination of the bio-pedo-agroclimatic conditions and the plant species or varieties. Diversity and functional redundancy of these associated PGPR makes them very active in supporting plant improvement, health and resistance to drought, salt and related stresses. Implementing proper biotechnological applications of the arid and desert-adapted PGPR constitute the challenge to be raised.

  6. Diversity of Paenibacillus polymyxa strains isolated from the rhizosphere of maize planted in Cerrado soil

    NARCIS (Netherlands)

    Weid, von der I.; Paiva, E.; Nobrega, A.; Elsas, van J.D.; Seldin, L.

    2000-01-01

    Paenibacillus polymyxa populations present in the rhizosphere of maize (cultivar BR-201) planted in Cerrado soil were investigated in order to assess their diversity at four stages of plant growth. A total of 67 strains were isolated and all strains were identified as P. polymyxa by classical

  7. Out of the shadows : multiple nutrient limitations drive relationships among biomass, light and plant diversity

    NARCIS (Netherlands)

    Harpole, W. Stanley; Sullivan, Lauren L.; Lind, Eric M.; Firn, Jennifer; Adler, Peter B.; Borer, Elizabeth T.; Chase, Jonathan; Fay Jennifer Firn, Philip A.; Hautier, Yann; Hillebrand, Helmut; MacDougall, Andrew S.; Seabloom, Eric W.; Bakker, Jonathan D.; Cadotte, Marc W; Chaneton, Enrique J; Chu, Chengjin; Hagenah, Nicole; Kirkman, Kevin; La Pierre, Kimberly J.; Moore, Joslin L.; Morgan, John W.; Prober, Suzanne M.; Risch, Anita C.; Schuetz, Martin; Stevens, Carly J.

    2017-01-01

    The paradigmatic hypothesis for the effect of fertilisation on plant diversity represents a one-dimensional trade-off for plants competing for below-ground nutrients (generically) and above-ground light: fertilisation reduces competition for nutrients while increasing biomass and thereby shifts

  8. Short-Term Effects of Changing Precipitation Patterns on Shrub-Steppe Grasslands: Seasonal Watering Is More Important than Frequency of Watering Events.

    Science.gov (United States)

    Densmore-McCulloch, Justine A; Thompson, Donald L; Fraser, Lauchlan H

    2016-01-01

    Climate change is expected to alter precipitation patterns. Droughts may become longer and more frequent, and the timing and intensity of precipitation may change. We tested how shifting precipitation patterns, both seasonally and by frequency of events, affects soil nitrogen availability, plant biomass and diversity in a shrub-steppe temperate grassland along a natural productivity gradient in Lac du Bois Grasslands Protected Area near Kamloops, British Columbia, Canada. We manipulated seasonal watering patterns by either exclusively watering in the spring or the fall. To simulate spring precipitation we restricted precipitation inputs in the fall, then added 50% more water than the long term average in the spring, and vice-versa for the fall precipitation treatment. Overall, the amount of precipitation remained roughly the same. We manipulated the frequency of rainfall events by either applying water weekly (frequent) or monthly (intensive). After 2 years, changes in the seasonality of watering had greater effects on plant biomass and diversity than changes in the frequency of watering. Fall watering reduced biomass and increased species diversity, while spring watering had little effect. The reduction in biomass in fall watered treatments was due to a decline in grasses, but not forbs. Plant available N, measured by Plant Root Simulator (PRS)-probes, increased from spring to summer to fall, and was higher in fall watered treatments compared to spring watered treatments when measured in the fall. The only effect observed due to frequency of watering events was greater extractable soil N in monthly applied treatments compared to weekly watering treatments. Understanding the effects of changing precipitation patterns on grasslands will allow improved grassland conservation and management in the face of global climatic change, and here we show that if precipitation is more abundant in the fall, compared to the spring, grassland primary productivity will likely be

  9. Mobilization of interactions between functional diversity of plant and soil organisms on nitrogen availability and use

    Science.gov (United States)

    Drut, Baptiste; Cassagne, Nathalie; Cannavacciuolo, Mario; Brauman, Alain; Le Floch, Gaëtan; Cobo, Jose; Fustec, Joëlle

    2017-04-01

    Keywords: legumes, earthworms, microorganisms, nitrogen, interactions Both aboveground and belowground biodiversity and their interactions can play an important role in crop productivity. Plant functional diversity, such as legume based intercrops have been shown to improve yields through plant complementarity for nitrogen use (Corre-Hellou et al., 2006). Moreover, plant species or plant genotype may influence the structure of soil microorganism communities through the composition of rhizodeposits in the rhizosphere (Dennis et al., 2010). Belowground diversity can also positively influence plant performance especially related to functional dissimilarity between soil organisms (Eisenhauer, 2012). Earthworms through their burrowing activity influence soil microbial decomposers and nutrient availability and have thus been reported to increase plant growth (Brown, 1995; Brown et al., 2004). We hypothesize that i) plant functional (genetic and/or specific) diversity associated to functional earthworms diversity are key drivers of interactions balance to improve crop performances and ii) the improvement of plant performances can be related to change in the structure of soil microorganism communities due to the diversity of rhizodeposits and the burrowing activity of earthworms. In a first mesocosm experiment, we investigated the effect of a gradient of plant diversity - one cultivar of wheat (Triticum aestivum L.), 3 different wheat cultivars, and 3 different cultivars intercropped with clover (Trifolium hybridum L.) - and the presence of one (endogeic) or two (endogeic and anecic) categories of earthworms on biomass and nitrogen accumulation of wheat. In a second mesocosm experiment, we investigated the influence of three species with different rhizodeposition - wheat, rapeseed (Brassica napus L. ) and faba bean (Vicia faba L.) in pure stand or intercropped - and the presence of endogeic earthworms on microbial activity and nitrogen availability. In the first experiment

  10. Genetic diversity and domestication origin of tea plant Camellia taliensis (Theaceae) as revealed by microsatellite markers.

    Science.gov (United States)

    Zhao, Dong-Wei; Yang, Jun-Bo; Yang, Shi-Xiong; Kato, Kenji; Luo, Jian-Ping

    2014-01-09

    Tea is one of the most popular beverages in the world. Many species in the Thea section of the Camellia genus can be processed for drinking and have been domesticated. However, few investigations have focused on the genetic consequence of domestication and geographic origin of landraces on tea plants using credible wild and planted populations of a single species. Here, C. taliensis provides us with a unique opportunity to explore these issues. Fourteen nuclear microsatellite loci were employed to determine the genetic diversity and domestication origin of C. taliensis, which were represented by 587 individuals from 25 wild, planted and recently domesticated populations. C. taliensis showed a moderate high level of overall genetic diversity. The greater reduction of genetic diversity and stronger genetic drift were detected in the wild group than in the recently domesticated group, indicating the loss of genetic diversity of wild populations due to overexploitation and habitat fragmentation. Instead of the endangered wild trees, recently domesticated individuals were used to compare with the planted trees for detecting the genetic consequence of domestication. A little and non-significant reduction in genetic diversity was found during domestication. The long life cycle, selection for leaf traits and gene flow between populations will delay the emergence of bottleneck in planted trees. Both phylogenetic and assignment analyses suggested that planted trees may have been domesticated from the adjacent central forest of western Yunnan and dispersed artificially to distant places. This study contributes to the knowledge about levels and distribution of genetic diversity of C. taliensis and provides new insights into genetic consequence of domestication and geographic origin of planted trees of this species. As an endemic tea source plant, wild, planted and recently domesticated C. taliensis trees should all be protected for their unique genetic characteristics, which

  11. Species Diversity Effects on Productivity, Persistence and Quality of Multispecies Swards in a Four-Year Experiment

    DEFF Research Database (Denmark)

    Jing, Jingying; Søegaard, Karen; Cong, Wen-Feng

    2017-01-01

    ), neutral detergent fiber (NDF) and crude protein (CP), and a lower concentration of ash than the 10-mix and 12-mix. Slurry application increased annual yield production by 10% and changed the botanical composition, increasing the proportion of grass and decreasing the proportion of legumes. Compared......Plant species diversity may benefit natural grassland productivity, but its effect in managed grassland systems is not well understood. A four-year multispecies grassland experiment was conducted to investigate the effect of species diversity±legumes and non-leguminous forbs±on productivity...... increased sward production and yield persistence under cutting regime. The 12-mix had the highest yield from the second year onwards and no statistically significant yield reduction over four years, while annual yields in the 3-mix and 10-mix decreased significantly with increasing grassland age. The higher...

  12. Evolutionary relationships and functional diversity of plant sulfate transporters.

    Science.gov (United States)

    Takahashi, Hideki; Buchner, Peter; Yoshimoto, Naoko; Hawkesford, Malcolm J; Shiu, Shin-Han

    2011-01-01

    Sulfate is an essential nutrient cycled in nature. Ion transporters that specifically facilitate the transport of sulfate across the membranes are found ubiquitously in living organisms. The phylogenetic analysis of known sulfate transporters and their homologous proteins from eukaryotic organisms indicate two evolutionarily distinct groups of sulfate transport systems. One major group named Tribe 1 represents yeast and fungal SUL, plant SULTR, and animal SLC26 families. The evolutionary origin of SULTR family members in land plants and green algae is suggested to be common with yeast and fungal SUL and animal anion exchangers (SLC26). The lineage of plant SULTR family is expanded into four subfamilies (SULTR1-SULTR4) in land plant species. By contrast, the putative SULTR homologs from Chlorophyte green algae are in two separate lineages; one with the subfamily of plant tonoplast-localized sulfate transporters (SULTR4), and the other diverged before the appearance of lineages for SUL, SULTR, and SLC26. There also was a group of yet undefined members of putative sulfate transporters in yeast and fungi divergent from these major lineages in Tribe 1. The other distinct group is Tribe 2, primarily composed of animal sodium-dependent sulfate/carboxylate transporters (SLC13) and plant tonoplast-localized dicarboxylate transporters (TDT). The putative sulfur-sensing protein (SAC1) and SAC1-like transporters (SLT) of Chlorophyte green algae, bryophyte, and lycophyte show low degrees of sequence similarities with SLC13 and TDT. However, the phylogenetic relationship between SAC1/SLT and the other two families, SLC13 and TDT in Tribe 2, is not clearly supported. In addition, the SAC1/SLT family is absent in the angiosperm species analyzed. The present study suggests distinct evolutionary trajectories of sulfate transport systems for land plants and green algae.

  13. Evolutionary relationships and functional diversity of plant sulfate transporters

    Directory of Open Access Journals (Sweden)

    Hideki eTakahashi

    2012-01-01

    Full Text Available Sulfate is an essential nutrient cycled in nature. Ion transporters that specifically facilitate the transport of sulfate across the membranes are found ubiquitously in living organisms. The phylogenetic analysis of known sulfate transporters and their homologous proteins from eukaryotic organisms indicate two evolutionarily distinct groups of sulfate transport systems. One major group named Tribe 1 represents yeast and fungal SUL, plant SULTR and animal SLC26 families. The evolutionary origin of SULTR family members in land plants and green algae is suggested to be common with yeast and fungal sulfate transporters (SUL and animal anion exchangers (SLC26. The lineage of plant SULTR family is expanded into four subfamilies (SULTR1 to SULTR4 in land plant species. By contrast, the putative SULTR homologues from Chlorophyte green algae are in two separate lineages; one with the subfamily of plant tonoplast-localized sulfate transporters (SULTR4, and the other diverged before the appearance of lineages for SUL, SULTR and SLC26. There also was a group of yet undefined members of putative sulfate transporters in yeast and fungi divergent from these major lineages in Tribe 1. The other distinct group is Tribe 2, primarily composed of animal sodium-dependent sulfate/carboxylate transporters (SLC13 and plant tonoplast-localized dicarboxylate transporters (TDT. The putative sulfur-sensing protein (SAC1 and SAC1-like transporters (SLT of Chlorophyte green algae, bryophyte and lycophyte show low degrees of sequence similarities with SLC13 and TDT. However, the phylogenetic relationship between SAC1/SLT and the other two families, SLC13 and TDT in Tribe 2, is not clearly supported. In addition, the SAC1/SLT family is completely absent in the angiosperm species analyzed. The present study suggests distinct evolutionary trajectories of sulfate transport systems for land plants and green algae.

  14. [Agrobacterium rubi strains from blueberry plants are highly diverse].

    Science.gov (United States)

    Abrahamovich, Eliana; López, Ana C; Alippi, Adriana M

    2014-01-01

    The diversity of a collection of Agrobacterium rubi strains isolated from blueberries from different regions of Argentina was studied by conventional microbiological tests and molecular techniques. Results from biochemical and physiological reactions, as well as from rep-PCR and RFLP analysis of PCR-amplified 23S rDNA showed high phenotypic and genotypic intraspecific variation. Copyright © 2014 Asociación Argentina de Microbiología. Publicado por Elsevier España. All rights reserved.

  15. Plant-associated microbiomes in arid lands: diversity, ecology and biotechnological potential

    KAUST Repository

    Soussi, Asma; Ferjani, Raoudha; Marasco, Ramona; Guesmi, Amel; Cherif, Hanene; Rolli, Eleonora; Mapelli, Francesca; Ouzari, Hadda Imene; Daffonchio, Daniele; Cherif, Ameur

    2015-01-01

    Selection and recruitment of the plant associated bacterial assemblages is mediated by the combination of the bio-pedo-agroclimatic conditions and the plant species or varieties. Diversity and functional redundancy of these associated PGPR makes them very active in supporting plant improvement, health and resistance to drought, salt and related stresses. Implementing proper biotechnological applications of the arid and desert-adapted PGPR constitute the challenge to be raised.

  16. Diversity of plant defense elicitor peptides within the Rosaceae.

    Science.gov (United States)

    Ruiz, Cristina; Nadal, Anna; Foix, Laura; Montesinos, Laura; Montesinos, Emilio; Pla, Maria

    2018-01-23

    Plant elicitor peptides (Peps) are endogenous molecules that induce and amplify the first line of inducible plant defense, known as pattern-triggered immunity, contributing to protect plants against attack by bacteria, fungi and herbivores. Pep topic application and transgenic expression have been found to enhance disease resistance in a small number of model plant-pathogen systems. The action of Peps relies on perception by specific receptors, so displaying a family-specific activity. Recently, the presence and activity of Peps within the Rosaceae has been demonstrated. Here we characterized the population of Pep sequences within the economically important plant family of Rosaceae, with special emphasis on the Amygdaleae and Pyreae tribes, which include the most relevant edible species such as apple, pear and peach, and numerous ornamental and wild species (e.g. photinia, firethorn and hawthorn). The systematic experimental search for Pep and the corresponding precursor PROPEP sequences within 36 Amygdaleae and Pyreae species, and 100 cultivars had a highly homogeneous pattern, with two tribe-specific Pep types per plant, i.e. Pep1 and Pep2 (Amygdaleae) or Pep3 and Pep4 (Pyreae). Pep2 and Pep3 are highly conserved, reaching identity percentages similar to those of genes used in plant phylogenetic analyses, while Pep1 and Pep4 are somewhat more variable, with similar values to the corresponding PROPEPs. In contrast to Pep3 and Pep4, Pep1 and Pep2 sequences of different species paralleled their phylogenetic relationships, and putative ancestor sequences were identified. The large amount of sequences allowed refining of a C-terminal consensus sequence that would support the protective activity of Pep1-4 in a Prunus spp. and Xanthomonas arboricola pv. pruni system. Moreover, tribe-specific consensus sequences were deduced at the center and C-terminal regions of Peps, which might explain the higher protection efficiencies described upon topic treatments with Peps from

  17. Commercial Plant Production and Consumption Still Follow the Latitudinal Gradient in Species Diversity despite Economic Globalization.

    Science.gov (United States)

    Nelson, Erik J; Helmus, Matthew R; Cavender-Bares, Jeannine; Polasky, Stephen; Lasky, Jesse R; Zanne, Amy E; Pearse, William D; Kraft, Nathan J B; Miteva, Daniela A; Fagan, William F

    2016-01-01

    Increasing trade between countries and gains in income have given consumers around the world access to a richer and more diverse set of commercial plant products (i.e., foods and fibers produced by farmers). According to the economic theory of comparative advantage, countries open to trade will be able to consume more-in terms of volume and diversity-if they concentrate production on commodities that they can most cost-effectively produce, while importing goods that are expensive to produce, relative to other countries. Here, we perform a global analysis of traded commercial plant products and find little evidence that increasing globalization has incentivized agricultural specialization. Instead, a country's plant production and consumption patterns are still largely determined by local evolutionary legacies of plant diversification. Because tropical countries harbor a greater diversity of lineages across the tree of life than temperate countries, tropical countries produce and consume a greater diversity of plant products than do temperate countries. In contrast, the richer and more economically advanced temperate countries have the capacity to produce and consume more plant species than the generally poorer tropical countries, yet this collection of plant species is drawn from fewer branches on the tree of life. Why have countries not increasingly specialized in plant production despite the theoretical financial incentive to do so? Potential explanations include the persistence of domestic agricultural subsidies that distort production decisions, cultural preferences for diverse local food production, and that diverse food production protects rural households in developing countries from food price shocks. Less specialized production patterns will make crop systems more resilient to zonal climatic and social perturbations, but this may come at the expense of global crop production efficiency, an important step in making the transition to a hotter and more

  18. Commercial Plant Production and Consumption Still Follow the Latitudinal Gradient in Species Diversity despite Economic Globalization.

    Directory of Open Access Journals (Sweden)

    Erik J Nelson

    Full Text Available Increasing trade between countries and gains in income have given consumers around the world access to a richer and more diverse set of commercial plant products (i.e., foods and fibers produced by farmers. According to the economic theory of comparative advantage, countries open to trade will be able to consume more-in terms of volume and diversity-if they concentrate production on commodities that they can most cost-effectively produce, while importing goods that are expensive to produce, relative to other countries. Here, we perform a global analysis of traded commercial plant products and find little evidence that increasing globalization has incentivized agricultural specialization. Instead, a country's plant production and consumption patterns are still largely determined by local evolutionary legacies of plant diversification. Because tropical countries harbor a greater diversity of lineages across the tree of life than temperate countries, tropical countries produce and consume a greater diversity of plant products than do temperate countries. In contrast, the richer and more economically advanced temperate countries have the capacity to produce and consume more plant species than the generally poorer tropical countries, yet this collection of plant species is drawn from fewer branches on the tree of life. Why have countries not increasingly specialized in plant production despite the theoretical financial incentive to do so? Potential explanations include the persistence of domestic agricultural subsidies that distort production decisions, cultural preferences for diverse local food production, and that diverse food production protects rural households in developing countries from food price shocks. Less specialized production patterns will make crop systems more resilient to zonal climatic and social perturbations, but this may come at the expense of global crop production efficiency, an important step in making the transition to a

  19. Comparative assessment of plant diversity and utilization patterns of ...

    African Journals Online (AJOL)

    Home gardens are small land units or acreage of land for food production, usually within the homestead in traditional communities worldwide. These gardens are important component of subsistence living, sometimes a cash resource and repository sites for uncommon and common plant species of mixed life cycles.

  20. Diversity and Plant Growth Promoting Properties of Rhizobacteria ...

    African Journals Online (AJOL)

    characteristics of plant growth promoting rhizobacteria (PGPR) and hence selected for further study. The sixty ... tolerance to a wide range of pH by most of the isolates. The 66 isolates ... chemicals and change in traditional cultivation practices ...

  1. Radiocesium fallout in the grasslands on Sakhalin, Kunashir and Shikotan Islands due to Fukushima accident: the radioactive contamination of soil and plants in 2011

    International Nuclear Information System (INIS)

    Ramzaev, V.; Barkovsky, A.; Goncharova, Yu.; Gromov, A.; Kaduka, M.; Romanovich, I.

    2013-01-01

    The accident at the Fukushima Dai-ichi Nuclear Power Plant has resulted in radioactive contamination of environmental media and food in the Far East of Russia, particularly in the Sakhalin Region. To obtain the knowledge about the 134 Cs and 137 Cs spatial distribution in the Sakhalin Region, soil samples were collected at 31 representative grassland sites on Sakhalin, Kunashir and Shikotan islands (43.80°–46.40° N and 142.73°–146.84° E) in the middle of May and around the end of September to early October 2011. In the autumn, vegetation samples (mixed grass/forb crop and bamboo, Sasa sp.) were collected together with soil samples. Maximum measured activity concentrations (on dry weight) of 134 Cs and 137 Cs in soil were 30 Bq kg −1 and 210 Bq kg −1 , respectively. Within soil profile, 134 Cs activity concentrations declined rapidly with depth. Although for both sampling occasions (in the spring and autumn) the radionuclide was completely retained in the upper 3–4 cm of soil, a deeper penetration of the contaminant into the ground was observed in the autumn. In contrast with 134 Cs, activity concentrations of 137 Cs demonstrated a broad range of the vertical distribution in soil; at most sites, the radionuclide was found down to a depth of 20 cm. This resulted from interfering the aged pre-accidental 137 Cs and the new Fukushima-borne 137 Cs. To calculate contribution of these sources to the inventory of 137 Cs, the 134 Cs: 137 Cs activity ratio of 1:1 in Fukushima fallout (the reference date 15 March 2011) was used. The maximum deposition density of Fukushima-derived 137 Cs was found on Shikotan and Kunashir Islands with average density of 0.124 ± 0.018 kBq m −2 and 0.086 ± 0.026 kBq m −2 , respectively. Sakhalin Island was less contaminated by Fukushima-derived 137 Cs of 0.021 ± 0.018 kBq m −2 . For the south of Sakhalin Island, the reference inventory of pre-Fukushima 137 Cs was calculated as 1.93 ± 0.25 kBq m −2 (reference date 15

  2. Genotypic and phenotypic diversity in populations of plant-probiotic Pseudomonas spp. colonizing roots

    Science.gov (United States)

    Picard, Christine; Bosco, Marco

    2008-01-01

    Several soil microorganisms colonizing roots are known to naturally promote the health of plants by controlling a range of plant pathogens, including bacteria, fungi, and nematodes. The use of theses antagonistic microorganisms, recently named plant-probiotics, to control plant-pathogenic fungi is receiving increasing attention, as they may represent a sustainable alternative to chemical pesticides. Many years of research on plant-probiotic microorganisms (PPM) have indicated that fluorescent pseudomonads producing antimicrobial compounds are largely involved in the suppression of the most widespread soilborne pathogens. Phenotype and genotype analysis of plant-probiotic fluorescent pseudomonads (PFP) have shown considerable genetic variation among these types of strains. Such variability plays an important role in the rhizosphere competence and the biocontrol ability of PFP strains. Understanding the mechanisms by which genotypic and phenotypic diversity occurs in natural populations of PFP could be exploited to choose those agricultural practices which best exploit the indigenous PFP populations, or to isolate new plant-probiotic strains for using them as inoculants. A number of different methods have been used to study diversity within PFP populations. Because different resolutions of the existing microbial diversity can be revealed depending on the approach used, this review first describes the most important methods used for the assessment of fluorescent Pseudomonas diversity. Then, we focus on recent data relating how differences in genotypic and phenotypic diversity within PFP communities can be attributed to geographic location, climate, soil type, soil management regime, and interactions with other soil microorganisms and host plants. It becomes evident that plant-related parameters exert the strongest influence on the genotypic and phenotypic variations in PFP populations.

  3. The local knowledge of medicinal plants trader and diversity of medicinal plants in the Kabanjahe traditional market, North Sumatra, Indonesia.

    Science.gov (United States)

    Silalahi, Marina; Nisyawati; Walujo, Eko Baroto; Supriatna, Jatna; Mangunwardoyo, Wibowo

    2015-12-04

    Market is the main place for transactions of medicinal plants and traditional ingredients by local community in the Karo regency, North Sumatra, Indonesia. This is the first study to document the local knowledge of traders on and the diversity of the medicinal plants. The investigation was carried out in the Kabanjahe traditional market, in the Karo regency. The research goal was to reveal the local knowledge, diversity and utilization of medicinal plants, which have been traded in the Kabanjahe traditional market, as a basis for conservation efforts. The study was conducted through ethnobotanical approach using market surveys. All traders of medicinal plants were surveyed applying in-depth interviews and participative observations. Data were analyzed qualitatively using descriptive statistics. The diversity of medicinal plants was expressed in term of the Shannon-Wiener diversity index (H'), whereas the similarity among traders was indicated by Jaccard index (Ji). Traders of medicinal plants stored the simplicia of medicinal plants in chest of drawers, plastic baskets, plastic bags, and in the air by suspending them from the the stall ceilings. We recorded 344 species, 217 genera and 90 families of medicinal plants. Those that were sold mostly belong to Zingeberaceae (20 species), Poaceae (19 species), and Asclepiadaceae (17 species), and the species received high consumers demand, mostly belong to Zingiberaceae, Rutaceae, and Asclepidiaceae. Asclepidiaceae was used to treat diseases like cancer and heart problems. The Shannon-Wiener diversity index of medicinal plants at the Kabanjahe traditional market was high (H'= 5.637). The high Jaccard similarity index (Ji>0.56) suggested that the traders were trading similar species of medicinal plants. Kabanjahe traditional market is the center for the sale of of medicinal plants as traditional ingredients. Several species are well known for their pharmacological properties but others, [such as: Dischidia imbricata (Blume

  4. Effects of diversity and identity of the neighbouring plant community on the abundance of arthropods on individual ragwort (Jacobaea vulgaris) plants

    NARCIS (Netherlands)

    Kostenko, O.; Grootemaat, Saskia S.; Van der Putten, W.H.; Bezemer, T.M.

    2012-01-01

    The diversity of plant community can greatly affect the abundance and diversity of arthropods associated to that community, but can also influence the composition or abundance of arthropods on individual plants growing in that community. We sampled arthropods and recorded plant size of individual

  5. Species discovery and diversity in Lobocriconema (Criconematidae: Nematoda) and related plant-parasitic nematodes from North American ecoregions.

    Science.gov (United States)

    Powers, T O; Bernard, E C; Harris, T; Higgins, R; Olson, M; Olson, S; Lodema, M; Matczyszyn, J; Mullin, P; Sutton, L; Powers, K S

    2016-03-03

    There are many nematode species that, following formal description, are seldom mentioned again in the scientific literature. Lobocriconema thornei and L. incrassatum are two such species, described from North American forests, respectively 37 and 49 years ago. In the course of a 3-year nematode biodiversity survey of North American ecoregions, specimens resembling Lobocriconema species appeared in soil samples from both grassland and forested sites. Using a combination of molecular and morphological analyses, together with a set of species delimitation approaches, we have expanded the known range of these species, added to the species descriptions, and discovered a related group of species that form a monophyletic group with the two described species. In this study, 148 specimens potentially belonging to the genus Lobocriconema were isolated from soil, individually measured, digitally imaged, and DNA barcoded using a 721 bp region of cytochrome oxidase subunit 1 (COI). One-third of the specimens were also analyzed using amplified DNA from the 3' region of the small subunit ribosomal RNA gene (18SrDNA) and the adjacent first internal transcribed spacer (ITS1). Eighteen mitochondrial haplotype groups, falling into four major clades, were identified by well-supported nodes in Bayesian and maximum likelihood trees and recognized as distinct lineages by species delimitation metrics. Discriminant function analysis of a set of morphological characters indicated that the major clades in the dataset possessed a strong morphological signal that decreased in comparisons of haplotype groups within clades. Evidence of biogeographic and phylogeographic patterns was apparent in the dataset. COI haplotype diversity was high in the southern Appalachian Mountains and Gulf Coast states and lessened in northern temperate forests. Lobocriconema distribution suggests the existence of phylogeographic patterns associated with recolonization of formerly glaciated regions by eastern

  6. The influence of canopy-layer composition on understory plant diversity in southern temperate forests

    Directory of Open Access Journals (Sweden)

    Luciana Mestre

    2017-05-01

    Full Text Available Background Understory plants represents the largest component of biodiversity in most forest ecosystems and plays a key role in forest functioning. Despite their importance, the influence of overstory-layer composition on understory plant diversity is relatively poorly understood within deciduous-evergreen broadleaved mixed forests. The aim of this work was to evaluate how tree overstory-layer composition influences on understory-layer diversity in three forest types (monospecific deciduous Nothofagus pumilio (Np, monospecific evergreen Nothofagus betuloides (Nb, and mixed N. pumilio-N. betuloides (M forests, comparing also between two geographical locations (coast and mountain to estimate differences at landscape level. Results We recorded 46 plant species: 4 ferns, 12 monocots, and 30 dicots. Canopy-layer composition influences the herb-layer structure and diversity in two different ways: while mixed forests have greater similarity to evergreen forests in the understory structural features, deciduous and mixed were similar in terms of the specific composition of plant assemblage. Deciduous pure stands were the most diverse, meanwhile evergreen stands were least diverse. Lack of exclusive species of mixed forest could represent a transition where evergreen and deciduous communities meet and integrate. Moreover, landscape has a major influence on the structure, diversity and richness of understory vegetation of pure and mixed forests likely associated to the magnitude and frequency of natural disturbances, where mountain forest not only had highest herb-layer diversity but also more exclusive species. Conclusions Our study suggests that mixed Nothofagus forest supports coexistence of both pure deciduous and pure evergreen understory plant species and different assemblages in coastal and mountain sites. Maintaining the mixture of canopy patch types within mixed stands will be important for conserving the natural patterns of understory plant

  7. Assessment of plant species diversity based on hyperspectral indices at a fine scale.

    Science.gov (United States)

    Peng, Yu; Fan, Min; Song, Jingyi; Cui, Tiantian; Li, Rui

    2018-03-19

    Fast and nondestructive approaches of measuring plant species diversity have been a subject of excessive scientific curiosity and disquiet to environmentalists and field ecologists worldwide. In this study, we measured the hyperspectral reflectances and plant species diversity indices at a fine scale (0.8 meter) in central Hunshandak Sandland of Inner Mongolia, China. The first-order derivative value (FD) at each waveband and 37 hyperspectral indices were used to assess plant species diversity. Results demonstrated that the stepwise linear regression of FD can accurately estimate the Simpson (R 2  = 0.83), Pielou (R 2  = 0.87) and Shannon-Wiener index (R 2  = 0.88). Stepwise linear regression of FD (R 2  = 0.81, R 2  = 0.82) and spectral vegetation indices (R 2  = 0.51, R 2  = 0.58) significantly predicted the Margalef and Gleason index. It was proposed that the Simpson, Pielou and Shannon-Wiener indices, which are widely used as plant species diversity indicators, can be precisely estimated through hyperspectral indices at a fine scale. This research promotes the development of methods for assessment of plant diversity using hyperspectral data.

  8. Modeling impacts of climate change and grazing effects on plant biomass and soil organic carbon in the Qinghai-Tibetan grasslands

    Science.gov (United States)

    Zhang, Wenjuan; Zhang, Feng; Qi, Jiaguo; Hou, Fujiang

    2017-12-01

    The Qinghai Province supports over 40 % of the human population of the Qinghai-Tibetan Plateau (QTP) but occupies about 29 % of its land area, and thus it plays an important role in the plateau. The dominant land cover is grassland, which has been severely degraded over the last decade due to a combination of increased human activities and climate change. Numerous studies indicate that the plateau is sensitive to recent global climate change, but the drivers and consequences of grassland ecosystem change are controversial, especially the effects of climate change and grazing patterns on the grassland biomass and soil organic carbon (SOC) storage in this region. In this study, we used the DeNitrification-DeComposition (DNDC) model and two climate change scenarios (representative concentration pathways: RCP4.5 and RCP8.5) to understand how the grassland biomass and SOC pools might respond to different grazing intensities under future climate change scenarios. More than 1400 grassland biomass sampling points and 46 SOC points were used to validate the simulated results. The simulated above-ground biomass and SOC concentrations were in good agreement with the measured data (R2 0.71 and 0.73 for above-ground biomass and SOC, respectively). The results showed that climate change may be the major factor that leads to fluctuations in the grassland biomass and SOC, and it explained 26.4 and 47.7 % of biomass and SOC variation, respectively. Meanwhile, the grazing intensity explained 6.4 and 2.3 % variation in biomass and SOC, respectively. The project average biomass and SOC between 2015 and 2044 was significantly smaller than past 30 years (1985-2014), and it was 191.17 g C m-2, 63.44 g C kg-1 and 183.62 g C m-2, 63.37 g C kg-1 for biomass and SOC under RCP4.5 and RCP8.5, respectively. The RCP8.5 showed the more negative effect on the biomass and SOC compared with RCP4.5. Grazing intensity had a negative relationship with biomass and positive relationship with SOC

  9. Diverse roles of ERECTA family genes in plant development.

    Science.gov (United States)

    Shpak, Elena D

    2013-12-01

    Multiple receptor-like kinases (RLKs) enable intercellular communication that coordinates growth and development of plant tissues. ERECTA family receptors (ERfs) are an ancient family of leucine-rich repeat RLKs that in Arabidopsis consists of three genes: ERECTA, ERL1, and ERL2. ERfs sense secreted cysteine-rich peptides from the EPF/EPFL family and transmit the signal through a MAP kinase cascade. This review discusses the functions of ERfs in stomata development, in regulation of longitudinal growth of aboveground organs, during reproductive development, and in the shoot apical meristem. In addition the role of ERECTA in plant responses to biotic and abiotic factors is examined. Elena D. Shpak (Corresponding author). © 2013 Institute of Botany, Chinese Academy of Sciences.

  10. Density and success of bird nests relative to grazing on western Montana grasslands

    Science.gov (United States)

    Fondell, Thomas F.; Ball, I.J.

    2004-01-01

    Grassland birds are declining at a faster rate than any other group of North American bird species. Livestock grazing is the primary economic use of grasslands in the western United States, but the effects of this use on distribution and productivity of grassland birds are unclear. We examined nest density and success of ground-nesting birds on grazed and ungrazed grasslands in western Montana. In comparison to grazed plots, ungrazed plots had reduced forb cover, increased litter cover, increased litter depth, and increased visual obstruction readings (VOR) of vegetation. Nest density among 10 of 11 common bird species was most strongly correlated with VOR of plots, and greatest nest density for each species occurred where mean VOR of the plot was similar to mean VOR at nests. Additionally, all bird species were relatively consistent in their choice of VOR at nests despite substantial differences in VOR among plots. We suggest that birds selected plots based in part on availability of suitable nest sites and that variation in nest density relative to grazing reflected the effect of grazing on availability of nest sites. Nest success was similar between grazed plots and ungrazed plots for two species but was lower for nests on grazed plots than on ungrazed plots for two other species because of increased rates of predation, trampling, or parasitism by brown-headed cowbirds (Molothrus ater). Other species nested almost exclusively on ungrazed plots (six species) or grazed plots (one species), precluding evaluation of the effects of grazing on nest success. We demonstrate that each species in a diverse suite of ground-nesting birds preferentially used certain habitats for nesting and that grazing altered availability of preferred nesting habitats through changes in vegetation structure and plant species composition. We also show that grazing directly or indirectly predisposed some bird species to increased nesting mortality. Management alternatives that avoid

  11. The potential of plant viruses to promote genotypic diversity via genotype x environment interactions

    DEFF Research Database (Denmark)

    van Mölken, Tamara; Stuefer, Josef F.

    2011-01-01

    † Background and Aims Genotype by environment (G × E) interactions are important for the long-term persistence of plant species in heterogeneous environments. It has often been suggested that disease is a key factor for the maintenance of genotypic diversity in plant populations. However, empirical...... and the G × E interactions were examined with respect to genotypespecific plant responses to WClMV infection. Thus, the environment is defined as the presence or absence of the virus. † Key Results WClMV had a negative effect on plant performance as shown by a decrease in biomass and number of ramets...... evidence for this contention is scarce. Here virus infection is proposed as a possible candidate for maintaining genotypic diversity in their host plants. † Methods The effects of White clover mosaic virus (WClMV) on the performance and development of different Trifolium repens genotypes were analysed...

  12. The effects of plant diversity on nitrous oxide emissions in hydroponic microcosms

    Science.gov (United States)

    Sun, Hongying; Zhang, Chongbang; Song, Changchun; Chang, Scott X.; Gu, Baojing; Chen, Zhengxin; Peng, Changhui; Chang, Jie; Ge, Ying

    2013-10-01

    Previous studies have shown that plant diversity can improve the wastewater purification efficiency of constructed wetlands (CWs), but its effect on the nitrous oxide (N2O) emission in CWs has been unknown. To investigate the effect of plant diversity on the N2O emission, we established four plant species richness levels (each level containing 1, 2, 3 and 4 species, respectively) by using 96 hydroponic microcosms. Results showed that plant species richness enhanced the N2O emission, ranging from 27.1 to 115.4 μg N2O m-2 d-1, and improved nitrate removal (P 0.05), but improved nitrogen removal (P < 0.001). Hence, our study highlights the importance of both plant species richness and species identity in mediating the N2O emission and nitrogen removal in CWs.

  13. Diversity

    Science.gov (United States)

    Portraits In Courage Vol. VIII Portraits In Courage Vol. IX Portraits In Courage Vol. X AF Sites Social -Wide Initiative to Promote Diversity and Inclusion in the Federal Workforce Executive Order 13548 : Virtual Diversity Conference Air Force Diversity & Inclusion Air Force Diversity Graphic There is no

  14. Decoupling factors affecting plant diversity and cover on extensive green roofs.

    Science.gov (United States)

    MacIvor, J Scott; Margolis, Liat; Puncher, Curtis L; Carver Matthews, Benjamin J

    2013-11-30

    Supplemental irrigation systems are often specified on green roofs to ensure plant cover and growth, both important components of green roof performance and aesthetics. Properties of the growing media environment too can alter the assemblage of plant species able to thrive. In this study we determine how plant cover, above ground biomass and species diversity are influenced by irrigation and growing media. Grass and forb vegetative cover and biomass were significantly greater in organic based growing media but there was no effect of supplemental irrigation, with two warm season grasses dominating in those treatments receiving no supplemental irrigation. On the other hand, plant diversity declined without irrigation in organic media, and having no irrigation in inorganic growing media resulted in almost a complete loss of cover. Sedum biomass was less in inorganic growing media treatments and species dominance shifted when growing media organic content increased. Our results demonstrate that supplemental irrigation is required to maintain plant diversity on an extensive green roof, but not necessarily plant cover or biomass. These results provide evidence that planting extensive green roofs with a mix of plant species can ensure the survival of some species; maintaining cover and biomass when supplemental irrigation is turned off to conserve water, or during extreme drought. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  15. [Diversity and distribution of the threatened medicinal vascular plants in Lancang].

    Science.gov (United States)

    Chi, Xiu-Lian; Yuan, Yi-Kai; Fang, Bo; Zhang, Xiao-Bo; Yang, Han-Yu; Zhao, Zhi-Ping; Li, Guo; Fu, Kai-Cong; Guo, Lan-Ping; Huang, Lu-Qi

    2017-11-01

    The rich diversity in medicinal plants provides an important material basic for the development of Traditional Chinese medicine in China. It is important to explore the present situation of medicinal plants within special regions in order to provide scientific instructions for their sustainable protection and exploitation and utilization. In this study, we carried out the field survey according to the guideline of national survey of Chinese material medica resources and the guideline of plant species diversity survey and estimation at county level with the line transect method. With the field surveyed data, we explored the diversity and distribution of the threatened medicinal vascular plants in Lancang. We found that there were 33 species of the threatened medicinal vascular plants in this county. These species were from 23 genera and 17 families, and were composed of one critical endangered, 10 endangered and 22 vulnerable species. They were widely distributed across the whole county and were most concentrated in the town of Nuozhadu, Fazhanhe, Nuofu and Zhutang, which were located in the southeastern, southwestern and western of Lancang, respectively. We also found that the plant species richness followed a unimodal pattern along elevation. In addition, we found that the areas of Nuozhadu Nature Reserve in Lancang only covered six threatened medicinal vascular plants, while most of the regions with high species richness were not well protected. Therefore, we proposed to make more efforts to improve the protection measurements in order to better protect and utilize the medicinal plants in Lancang. Copyright© by the Chinese Pharmaceutical Association.

  16. Carbon storage potential by four macrophytes as affected by planting diversity in a created wetland.

    Science.gov (United States)

    Means, Mary M; Ahn, Changwoo; Korol, Alicia R; Williams, Lisa D

    2016-01-01

    Wetland creation has become a commonplace method for mitigating the loss of natural wetlands. Often mitigation projects fail to restore ecosystem services of the impacted natural wetlands. One of the key ecosystem services of newly created wetlands is carbon accumulation/sequestration, but little is known about how planting diversity (PD) affects the ability of herbaceous wetland plants to store carbon in newly created wetlands. Most mitigation projects involve a planting regime, but PD, which may be critical in establishing biologically diverse and ecologically functioning wetlands, is seldom required. Using a set of 34 mesocosms (∼1 m(2) each), we investigated the effects of planting diversity on carbon storage potential of four native wetland plant species that are commonly planted in created mitigation wetlands in Virginia - Carex vulpinoidea, Eleocharis obtusa, Juncus effusus, and Mimulus ringens. The plants were grown under the four distinctive PD treatments [i.e., monoculture (PD 1) through four different species mixture (PD 4)]. Plant biomass was harvested after two growing seasons and analyzed for tissue carbon content. Competition values (CV) were calculated to understand how the PD treatment affected the competitive ability of plants relative to their biomass production and thus carbon storage potentials. Aboveground biomass ranged from 988 g/m(2) - 1515 g/m(2), being greatest in monocultures, but only when compared to the most diverse mixture (p = 0.021). However, carbon storage potential estimates per mesocosm ranged between 344 g C/m(2) in the most diverse mesocosms (PD 4) to 610 g C/m(2) in monoculture ones with no significant difference (p = 0.089). CV of E. obtusa and C. vulpinoidea showed a declining trend when grown in the most diverse mixtures but J. effusus and M. ringens displayed no difference across the PD gradient (p = 0.910). In monocultures, both M. ringens, and J. effusus appeared to store carbon as biomass more

  17. Evolutionary history determines how plant productivity responds to phylogenetic diversity and species richness

    Directory of Open Access Journals (Sweden)

    Mark A. Genung

    2014-03-01

    Full Text Available The relationship between biodiversity and ecosystem function has received a great deal of attention in ecological research and recent results, from re-analyses, suggest that ecosystem function improves with increases in phylogenetic diversity. However, many of these results have been generalized across a range of different species and clades, and plants with different evolutionary histories could display different relationships between biodiversity and ecosystem function. To experimentally test this hypothesis, we manipulated species richness and phylogenetic diversity using 26 species from two subgenera of the genus Eucalyptus (subgenus Eucalyptus and subgenus Symphyomyrtus. We found that plant biomass (a measurement of ecosystem function sometimes, but not always, responded to increases in species richness and phylogenetic diversity. Specifically, Symphyomyrtus plants showed a positive response while no comparable effect was observed for Eucalyptus plants, showing that responses to biodiversity can vary across different phylogenetic groups. Our results show that the impacts of evolutionary history may complicate the relationship between the diversity of plant communities and plant biomass.

  18. Acacia sieberiana Effects on Soil Properties and Plant Diversity in Songa Pastures, Rwanda

    Directory of Open Access Journals (Sweden)

    C. P. Mugunga

    2013-01-01

    Full Text Available Effects of A. sieberiana trees on soil properties and plant diversity were investigated in Songa pastures, Rwanda. Tree characteristics and crown architecture of A. sieberiana were studied. Soil properties were assessed and plants were identified under and away from tree crowns. Counts of individual plants/species were done only under tree crowns. Nitrogen, P, and K were analysed in the soil, grass, and A. sieberiana leaves. Plant diversity was determined using Simpson's diversity index. Data were subjected to ANOVA. Soil organic carbon (SOC, cation exchange capacity (CEC, Ca2+, N and pH, and plant diversity were higher in soils under tree canopies than in open areas. Tree leaves were significantly richer in N and poorer in P and K as compared to grasses. Tree crowns grew wider and horizontal and developed intertwined secondary branching, reducing light intensity to as low as 38% under tree canopies compared to the open pasture. At 3 trees/ha stocking, A. sieberiana trees shaded 0.18 ha and herbaceous plants and grasses unpalatable to livestock dominated under tree canopies. A tradeoff of A. sieberiana tree value versus the loss of palatable grass due to tree presence needs to be assessed to decide whether the trees should be included in pastures and if yes, the apporpriate stocking identified.

  19. Response of pest control by generalist predators to local-scale plant diversity: a meta-analysis.

    Science.gov (United States)

    Dassou, Anicet Gbèblonoudo; Tixier, Philippe

    2016-02-01

    Disentangling the effects of plant diversity on the control of herbivores is important for understanding agricultural sustainability. Recent studies have investigated the relationships between plant diversity and arthropod communities at the landscape scale, but few have done so at the local scale. We conducted a meta-analysis of 32 papers containing 175 independent measures of the relationship between plant diversity and arthropod communities. We found that generalist predators had a strong positive response to plant diversity, that is, their abundance increased as plant diversity increased. Herbivores, in contrast, had an overall weak and negative response to plant diversity. However, specialist and generalist herbivores differed in their response to plant diversity, that is, the response was negative for specialists and not significant for generalists. While the effects of scale remain unclear, the response to plant diversity tended to increase for specialist herbivores, but decrease for generalist herbivores as the scale increased. There was no clear effect of scale on the response of generalist predators to plant diversity. Our results suggest that the response of herbivores to plant diversity at the local scale is a balance between habitat and trophic effects that vary according to arthropod specialization and habitat type. Synthesis and applications. Positive effects of plant diversity on generalist predators confirm that, at the local scale, plant diversification of agroecosystems is a credible and promising option for increasing pest regulation. Results from our meta-analysis suggest that natural control in plant-diversified systems is more likely to occur for specialist than for generalist herbivores. In terms of pest management, our results indicate that small-scale plant diversification (via the planting of cover crops or intercrops and reduced weed management) is likely to increase the control of specialist herbivores by generalist predators.

  20. A checklist of the plants of the forests and grasslands in the Weza district, southern KwaZulu-Natal and a review of their status in the Red Data List

    Directory of Open Access Journals (Sweden)

    Graham R.H. Grieve

    2015-09-01

    Full Text Available Eastern mistbelt forests are naturally fragmented forests with grassland which occur from the Eastern Cape to KwaZulu-Natal, South Africa. These were heavily logged by colonial settlers and continue to be harvested despite being protected. Consequently we documented a checklist of the plants of the forests and grasslands in the Weza district (3029DA WEZA, southern KwaZulu-Natal, including Ngeli Forest and nearby indigenous forest patches to highlight their biodiversity status and need for conservation. We also reviewed their status in the Red Data List. Of the 1554 records included in this summary of plant species for the Weza district, there were 6 lichens (0.4%, 46 bryophytes (3.0%, 58 pteridophytes (3.7%, 6 gymnosperms (0.4% and the remaining 1424 species angiosperms (92.5%. Of the angiosperms, 27.3% were monocotyledons and 72.7% were dicotyledons. The most species-rich family was Asteraceae (239 species followed by Fabaceae (115 species, Liliaceae (used for purposes of comparison against older studies – 89 species, Orchidaceae (89 species, Iridaceae (59 species, Poaceae (58 species, Asclepidaceae (again used for purposes of comparison against older studies – 57 species, Scrophulariaceae (42 species, Euphorbiaceae (32 species, Lamiaceae (32 species and Rubiaceae (27 species. These 10 families each comprised more than 2% of the species in the list. Together they contributed 55% of the angiosperm species and 34.1% of the angiosperm genera. The biodiversity and conservation value of the study area are conserved pockets of eastern mistbelt forest, Drakensberg foothill moist grassland and mistbelt grassland. More than 4% of the species are under some degree of threat, as was evidenced by the number of species regarded as endangered (5, vulnerable (18, near threatened (10, critically rare (1, rare (20 or declining (11 amongst the 1554 species covered in the list. Conservation implications: In terms of taxa under some degree of threat, number of

  1. Diversity, expansion, and evolutionary novelty of plant DNA-binding transcription factor families.

    Science.gov (United States)

    Lehti-Shiu, Melissa D; Panchy, Nicholas; Wang, Peipei; Uygun, Sahra; Shiu, Shin-Han

    2017-01-01

    Plant transcription factors (TFs) that interact with specific sequences via DNA-binding domains are crucial for regulating transcriptional initiation and are fundamental to plant development and environmental response. In addition, expansion of TF families has allowed functional divergence of duplicate copies, which has contributed to novel, and in some cases adaptive, traits in plants. Thus, TFs are central to the generation of the diverse plant species that we see today. Major plant agronomic traits, including those relevant to domestication, have also frequently arisen through changes in TF coding sequence or expression patterns. Here our goal is to provide an overview of plant TF evolution by first comparing the diversity of DNA-binding domains and the sizes of these domain families in plants and other eukaryotes. Because TFs are among the most highly expanded gene families in plants, the birth and death process of TFs as well as the mechanisms contributing to their retention are discussed. We also provide recent examples of how TFs have contributed to novel traits that are important in plant evolution and in agriculture.This article is part of a Special Issue entitled: Plant Gene Regulatory Mechanisms and Networks, edited by Dr. Erich Grotewold and Dr. Nathan Springer. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Commercial Plant Production and Consumption Still Follow the Latitudinal Gradient in Species Diversity despite Economic Globalization

    Science.gov (United States)

    Nelson, Erik J.; Helmus, Matthew R.; Cavender-Bares, Jeannine; Polasky, Stephen; Lasky, Jesse R.; Zanne, Amy E.; Pearse, William D.; Kraft, Nathan J. B.; Miteva, Daniela A.; Fagan, William F.

    2016-01-01

    Increasing trade between countries and gains in income have given consumers around the world access to a richer and more diverse set of commercial plant products (i.e., foods and fibers produced by farmers). According to the economic theory of comparative advantage, countries open to trade will be able to consume more–in terms of volume and diversity–if they concentrate production on commodities that they can most cost-effectively produce, while importing goods that are expensive to produce, relative to other countries. Here, we perform a global analysis of traded commercial plant products and find little evidence that increasing globalization has incentivized agricultural specialization. Instead, a country’s plant production and consumption patterns are still largely determined by local evolutionary legacies of plant diversification. Because tropical countries harbor a greater diversity of lineages across the tree of life than temperate countries, tropical countries produce and consume a greater diversity of plant products than do temperate countries. In contrast, the richer and more economically advanced temperate countries have the capacity to produce and consume more plant species than the generally poorer tropical countries, yet this collection of plant species is drawn from fewer branches on the tree of life. Why have countries not increasingly specialized in plant production despite the theoretical financial incentive to do so? Potential explanations include the persistence of domestic agricultural subsidies that distort production decisions, cultural preferences for diverse local food production, and that diverse food production protects rural households in developing countries from food price shocks. Less specialized production patterns will make crop systems more resilient to zonal climatic and social perturbations, but this may come at the expense of global crop production efficiency, an important step in making the transition to a hotter and more

  3. Biogeographical diversity of plant associated microbes in arcto-alpine plants

    NARCIS (Netherlands)

    Kumar, Manoj Gopala Krishnan

    2016-01-01

    Terrestrial plants and microbes have co-evolved since the emergence of the former on Earth. Associations with microorganisms can be either beneficial or detrimental for plants. Microbes can be found in the soil surrounding the plant roots, but also in all plant tissues, including seeds. In

  4. Draft Genome Sequence of Bacillus velezensis 3A-25B, a Strain with Biocontrol Activity against Fungal and Oomycete Root Plant Phytopathogens, Isolated from Grassland Soil.

    Science.gov (United States)

    Martínez-Raudales, Inés; De La Cruz-Rodríguez, Yumiko; Vega-Arreguín, Julio; Alvarado-Gutiérrez, Alejandro; Fraire-Mayorga, Atzin; Alvarado-Rodríguez, Miguel; Balderas-Hernández, Victor; Gómez-Soto, José Manuel; Fraire-Velázquez, Saúl

    2017-09-28

    Here, we present the draft genome of Bacillus velezensis 3A-25B, which totaled 4.01 Mb with 36 contigs, 3,948 genes, and a GC content of 46.34%. This strain, which demonstrates biocontrol activity against root rot causal phytopathogens in horticultural crops and friendly interactions in roots of pepper plantlets, was obtained from grassland soil in Zacatecas Province, Mexico. Copyright © 2017 Martínez-Raudales et al.

  5. Ex situ conservation of plant diversity in the world's botanic gardens.

    Science.gov (United States)

    Mounce, Ross; Smith, Paul; Brockington, Samuel

    2017-10-01

    Botanic gardens conserve plant diversity ex situ and can prevent extinction through integrated conservation action. Here we quantify how that diversity is conserved in ex situ collections across the world's botanic gardens. We reveal that botanic gardens manage at least 105,634 species, equating to 30% of all plant species diversity, and conserve over 41% of known threatened species. However, we also reveal that botanic gardens are disproportionately temperate, with 93% of species held in the Northern Hemisphere. Consequently, an estimated 76% of species absent from living collections are tropical in origin. Furthermore, phylogenetic bias ensures that over 50% of vascular genera, but barely 5% of non-vascular genera, are conserved ex situ. While botanic gardens are discernibly responding to the threat of species extinction, just 10% of network capacity is devoted to threatened species. We conclude that botanic gardens play a fundamental role in plant conservation, but identify actions to enhance future conservation of biodiversity.

  6. The influence of boundary features on grassland-edge communities of Alta Murgia

    OpenAIRE

    Cassano, Stefania; Alignier, Audrey; Forte, Luigi; Labadessa, Rocco; Mairota, Paola

    2016-01-01

    Many studies suggest the importance of boundary features on plant community dynamics. Our aim was to investigate the influence of boundary features on edge plant assemblages in semi-natural dry grasslands. For this purpose we selected 16 grassland edges in the central portion of the Natura 2000 site Murgia Alta, in southeastern Italy. These sites were selected according to a combination of boundary features, i.e. the adjoining land use type (road or cereal crop), slope (grassland tilted towar...

  7. Prescribed burning supports grassland biodiversity - A multi-species study

    Science.gov (United States)

    Valkó, Orsolya; Deák, Balázs; Magura, Tibor; Török, Péter; Kelemen, András; Tóth, Katalin; Horváth, Roland; Nagy, Dávid; Debnár, Zsuzsanna; Zsigrai, György; Kapocsi, István; Tóthmérész, Béla

    2017-04-01

    During ancient times, fire was an important factor shaping European landscapes. Nowadays, prescribed burning can be one of the most effective conservation tools for the management of open landscapes, controlling dominant species, reducing accumulated litter or decreasing wildfire risk. In a prescribed burning experiment, we studied the effects of fire on dry alkaline grasslands. We tested whether autumn prescribed burning can be an alternative conservation measure in these grasslands. We selected six sites in Hungary: in three sites, prescribed burning was applied in November 2011, while three sites remained unburnt. We studied the effects of fire on soil characteristics, plant biomass and on the vegetation and arthropod assemblages (isopods, spiders, ground beetles and rove beetles). Soluble salt content increased significantly in the burnt sites, but soil pH, organic matter, potassium and phosphorous did not change. We found that prescribed fire had several positive effects from the nature conservation viewpoint. Diversity and the number of flowering shoots were higher, and the cover of the dominant grass was lower in the burnt sites. Graminoid biomass was lower, while total, green and forb biomass were higher in the burnt plots compared to the control ones. Our findings suggest that prescribed burning fire did not harm arthropods; species-level analyses showed that out of the most abundant invertebrate species, the abundance of ten was not affected, one decreased and one increased after burning. Our findings highlight that mosaic prescribed fire is a viable management tool in open landscapes, because it supports plant diversity and does not threaten arthropods.

  8. Melatonin in Plants - Diversity of Levels and Multiplicity of Functions.

    Science.gov (United States)

    Hardeland, Rüdiger

    2016-01-01

    Melatonin has been detected in numerous plant species. A particularly surprising finding concerns the highly divergent levels of melatonin that vary between species, organs and environmental conditions, from a few pg/g to over 20 μg/g, reportedly up to 200 μg/g. Highest values have been determined in oily seeds and in plant organs exposed to high UV radiation. The divergency of melatonin concentrations is discussed under various functional aspects and focused on several open questions. This comprises differences in precursor availability, catabolism, the relative contribution of isoenzymes of the melatonin biosynthetic pathway, and differences in rate limitation by either serotonin N-acetyltransferase or N-acetylserotonin O-methyltransferase. Other differences are related to the remarkable pleiotropy of melatonin, which exhibits properties as a growth regulator and morphogenetic factor, actually debated in terms of auxin-like effects, and as a signaling molecule that modulates pathways of ethylene, abscisic, jasmonic and salicylic acids and is involved in stress tolerance, pathogen defense and delay of senescence. In the context of high light/UV intensities, elevated melatonin levels exceed those required for signaling via stress-related phytohormones and may comprise direct antioxidant and photoprotectant properties, perhaps with a contribution of its oxidatively formed metabolites, such as N (1)-acetyl-N (2)-formyl-5-methoxykynuramine and its secondary products. High melatonin levels in seeds may also serve antioxidative protection and have been shown to promote seed viability and germination capacity.

  9. Grazing intensity on the plant diversity of alpine meadow in the eastern Tibetan plateau

    Directory of Open Access Journals (Sweden)

    Wu Ning

    2004-04-01

    Full Text Available Because ofthe remoteness and harsh conditions of the high-altitude rangelands on the eastern Tibetan Plateau, the relationship between yak grazing and plant diversity has not been so clear although livestock increase was thought as the main issue leading to the degradation of rangeland. In the debate of rangeland degradation, biodiversity loss has been assumed as one of the indicators in the last two decades. In this paper authors measured the effects of different grazing intensities on the plant diversity and the structure of Kobresia pygmaea community in the case-study area, northwestern Sichuan. The results indicated that plant diversity of alpine meadow has different changing trends respectively with the change of grazing intensity and seasons. In June the highest plant diversity occurred in the intensively grazed (HG plots, but in July and September species biodiversity index of slightly grazed (LG plots is higher than other experimental treatments. In August the intermediate grazed (IG plots has the highest biodiversity index. Moreover, it was found that intensively grazing always leads to the increase of plant density, but meanwhile the decrease of community height, coverage and biomass. Over-grazing can change the community structure and lead to the succession from Kobresia pygmaea dominated community to Poa pratensis dominated. Analyzing results comprehensively, it can be suggested that the relationship between grazing intensity and plant diversity is not linear, i.e. diversity index is not as good as other characteristics of community structure to evaluate rangeland degradation on the high altitude situation. The change of biodiversity is so complicated that it can not be explained with the simple corresponding causality.

  10. Genotyping-By-Sequencing for Plant Genetic Diversity Analysis: A Lab Guide for SNP Genotyping

    Directory of Open Access Journals (Sweden)

    Gregory W. Peterson

    2014-10-01

    Full Text Available Genotyping-by-sequencing (GBS has recently emerged as a promising genomic approach for exploring plant genetic diversity on a genome-wide scale. However, many uncertainties and challenges remain in the application of GBS, particularly in non-model species. Here, we present a GBS protocol we developed and use for plant genetic diversity analysis. It uses two restriction enzymes to reduce genome complexity, applies Illumina multiplexing indexes for barcoding and has a custom bioinformatics pipeline for genotyping. This genetic diversity-focused GBS (gd-GBS protocol can serve as an easy-to-follow lab guide to assist a researcher through every step of a GBS application with five main components: sample preparation, library assembly, sequencing, SNP calling and diversity analysis. Specifically, in this presentation, we provide a brief overview of the GBS approach, describe the gd-GBS procedures, illustrate it with an application to analyze genetic diversity in 20 flax (Linum usitatissimum L. accessions and discuss related issues in GBS application. Following these lab bench procedures and using the custom bioinformatics pipeline, one could generate genome-wide SNP genotype data for a conventional genetic diversity analysis of a non-model plant species.

  11. Assessing the Effects of Grassland Management on Forage Production and Environmental Quality to Identify Paths to Ecological Intensification in Mountain Grasslands.

    Science.gov (United States)

    Loucougaray, Grégory; Dobremez, Laurent; Gos, Pierre; Pauthenet, Yves; Nettier, Baptiste; Lavorel, Sandra

    2015-11-01

    Ecological intensification in grasslands can be regarded as a process for increasing forage production while maintaining high levels of ecosystem functions and biodiversity. In the mountain Vercors massif, where dairy cattle farming is the main component of agriculture, how to achieve forage autonomy at farm level while sustaining environmental quality for tourism and local dairy products has recently stimulated local debate. As specific management is one of the main drivers of ecosystem functioning, we assessed the response of forage production and environmental quality at grassland scale across a wide range of management practices. We aimed to determine which components of management can be harnessed to better match forage production and environmental quality. We sampled the vegetation of 51 grasslands stratified across 13 grassland types. We assessed each grassland for agronomic and environmental properties, measuring forage production, forage quality, and indices based on the abundance of particular plant species such as timing flexibility, apiarian potential, and aromatic plants. Our results revealed an expected trade-off between forage production and environmental quality, notably by stressing the contrasts between sown and permanent grasslands. However, strong within-type variability in both production and environmental quality as well as in flexibility of timing of use suggests possible ways to improve this trade-off at grassland and farm scales. As achieving forage autonomy relies on increasing both forage production and grassland resilience, our results highlight the critical role of the ratio between sown and permanent grasslands as a major path for ecological intensification in mountain grasslands.

  12. Using dark diversity and plant characteristics to guide conservation and restoration

    DEFF Research Database (Denmark)

    Moeslund, Jesper Erenskjold; Brunbjerg, Ane Kirstine; Clausen, Kevin

    2017-01-01

    more often than others, although this is important knowledge for restoration and conservation actions. 2. We applied the concept to a massive national (Danish) plant diversity data base, containing 236 923 records from 15 160 surveys involving 564 species. This enabled the first geographically...... comprehensive (43 000 km2) assessment of dark diversity, at a spatial resolution relevant for conservation and restoration planning (78 m2) across multiple terrestrial habitats, thereby maximising the practical applications of this concept. The probability for a given plant species to belong to the dark...

  13. Insects on plants: Diversity of herbivore assemblages revisited

    Czech Academy of Sciences Publication Activity Database

    Lewinsohn, T. M.; Novotný, Vojtěch; Basset, Y.

    2005-01-01

    Roč. 36, - (2005), s. 597-620 ISSN 1543-592X R&D Projects: GA ČR(CZ) GA206/04/0725; GA ČR(CZ) GD206/03/H034; GA AV ČR(CZ) IAA6007106; GA MŠk(CZ) ME 646 Grant - others:Fundacao de Amaparo a Pesquisa do Estado de Sao Paulo(BR) Biota/Fapesp 98/05085-2; Conselho Nacional de Densenvolvimento Cientifico e Tecnologico-Brasil(BR) 306049/2004-0; U. S. National Science Foundation(US) DEB-02-11591; Darwin Initiative fior the Survival of Species(GB) 162/10/030 Institutional research plan: CEZ:AV0Z5007907 Keywords : herbivory * insect-plant interactions * tropical insects Subject RIV: EH - Ecology, Behaviour Impact factor: 10.104, year: 2005

  14. Advanced technologies for plant cell wall evolution and diversity

    DEFF Research Database (Denmark)

    Fangel, Jonatan Ulrik

    Plant cell walls consist of polysaccharides, glycoproteins and phenolic polymers interlinked together in a highly complex network. The detailed analysis of cell walls is challenging because of their inherent complexity and heterogeneity. Also, complex carbohydrates, unlike proteins and nucleotides...... cannot really be synthesised or sequenced. The work described in this thesis is focused to a large extent on the development of a microarray-based high-throughput method for cell wall analysis known as Comprehensive microarray polymer profiling or CoMPP. The procedure uses highly specific molecular...... probes (monoclonal antibodies mAbs and carbohydrate binding modules, CBMs) to rapidly profile polysaccharides across a sample set. During my PhD I have further developed the CoMPP technique and used it for cell wall analysis within the context of a variety of applied and fundamental projects. The data...

  15. Galling Insects of the Brazilian Páramos: Species Richness and Composition Along High-Altitude Grasslands.

    Science.gov (United States)

    Coelho, Marcel S; Carneiro, Marco Antônio Alves; Branco, Cristina A; Borges, Rafael Augusto Xavier; Fernandes, G Wilson

    2017-12-08

    In this work, we investigated the factors that determine the distribution of galling insects in high-altitude grasslands, locally called 'campos de altitude' of Mantiqueira Range and tested whether 1) richness of galling insects decreases with altitude, 2) galling insect richness increases with plant richness, 3) variation in galling insect diversity is predominantly a consequence of its β component, and 4) turnover is the main mechanism driving the beta diversity of both galling insects and plants. Galling insect richness did not exhibit a negative relationship with altitude, but it did increase with plant richness. The additive partition of regional richness (γ) into its local and beta components showed that local diversity (α) of galling insects and plants was relatively low in relation to regional diversity; the β component incorporated most of the regional diversity. This pattern was also found in the multiscale analysis of the additive partition for galling insects and plants. The beta diversity of galling insects and plants was driven predominantly by the process of turnover and minimally by nesting. The results reported here point out that the spatial distribution of galling insects is best explained by historical factors, such as the distribution of genera and species of key host plants, as well as their relation to habitat, than ecological effects such as hygrothermal stress - here represented by altitude. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Diversity dynamics of silurian-early carboniferous land plants in South china.

    Directory of Open Access Journals (Sweden)

    Conghui Xiong

    Full Text Available New megafossil and microfossil data indicate four episodes in the diversification of Silurian-Early Carboniferous land plants of South China, a relatively continuous regional record. Plant diversity increased throughout, but the rising curve was punctuated by three major falls. There were peaks of origination in the Ludlow-Pragian, Givetian, late Famennian and Visean and peaks of extinction in the Pragian-Emsian, Givetian and early Tournaisian. Speciation and extinction rates were highest in the Lochkovian-Pragian and became progressively lower in subsequent stages. High correlation coefficients indicate that these events are associated with the availability of land habitat contingent on eustatic variations and increasing numbers of cosmopolitan genera. Meanwhile, proportions of endemic genera declined gradually. Due to less endemism and more migrations, both speciation and species extinction rates reduced. The changes of diversity and the timing of the three extinctions of land plants in South China are similar to those known already from Laurussia. However, the largest events in the Lochkovian-Pragian and subsequent smaller ones have not been seen in the global pattern of plant evolution. These land plant events do not correspond well temporally with those affecting land vertebrates or marine invertebrates. In South China, the diversity curve of land plants is generally opposite to that of marine faunas, showing a strong effect of eustatic variations. The increasing diversity of both land vertebrates and plants was punctuated above the Devonian-Carboniferous boundary, known as Romer's Gap, implying common underlying constraints on macroevolution of land animals and plants.

  17. Species diversity of vascular plants in Si Phang-nga National Park, Phangnga Province

    Directory of Open Access Journals (Sweden)

    Leeratiwong, C.

    2005-07-01

    Full Text Available A survey of the vascular plants in Si Phang-nga National Park, Phangnga Province, was conducted from September 2002 to August 2003. Five hundred and forty three species of 287 genera and 111 families were collected. The most diverse family was Rubiaceae, 53 species. Four species of these collected plants are endemic to Thailand, Argostemma lobulatum, Aristolochia helix, Crinum thaianum and Mallotus hymenophyllus and three species, Hedyotis hedyotidea, Lipocarpha microcephala and Pterolobium intergum are newly recorded for southern Thailand.

  18. Diversity of alkane hydroxylase genes on the rhizoplane of grasses planted in petroleum-contaminated soils

    OpenAIRE

    Tsuboi, Shun; Yamamura, Shigeki; Nakajima-Kambe, Toshiaki; Iwasaki, Kazuhiro

    2015-01-01

    The study investigated the diversity and genotypic features of alkane hydroxylase genes on rhizoplanes of grasses planted in artificial petroleum-contaminated soils to acquire new insights into the bacterial communities responsible for petroleum degradation in phytoremediation. Four types of grass (Cynodon dactylon, two phenotypes of Zoysia japonica, and Z. matrella) were used. The concentrations of total petroleum hydrocarbon effectively decreased in the grass-planted systems compared with t...

  19. Plant diversity increases spatio?temporal niche complementarity in plant?pollinator interactions

    OpenAIRE

    Venjakob, Christine; Klein, Alexandra?Maria; Ebeling, Anne; Tscharntke, Teja; Scherber, Christoph

    2016-01-01

    Ongoing biodiversity decline impairs ecosystem processes, including pollination. Flower visitation, an important indicator of pollination services, is influenced by plant species richness. However, the spatio-temporal responses of different pollinator groups to plant species richness have not yet been analyzed experimentally. Here, we used an experimental plant species richness gradient to analyze plant-pollinator interactions with an unprecedented spatio-temporal resolution. We observed four...

  20. Functional diversity supports the physiological tolerance hypothesis for plant species richness along climatic gradients

    Science.gov (United States)

    Spasojevic, Marko J.; Grace, James B.; Harrison, Susan; Damschen, Ellen Ingman

    2013-01-01

    1. The physiological tolerance hypothesis proposes that plant species richness is highest in warm and/or wet climates because a wider range of functional strategies can persist under such conditions. Functional diversity metrics, combined with statistical modeling, offer new ways to test whether diversity-environment relationships are consistent with this hypothesis. 2. In a classic study by R. H. Whittaker (1960), herb species richness declined from mesic (cool, moist, northerly) slopes to xeric (hot, dry, southerly) slopes. Building on this dataset, we measured four plant functional traits (plant height, specific leaf area, leaf water content and foliar C:N) and used them to calculate three functional diversity metrics (functional richness, evenness, and dispersion). We then used a structural equation model to ask if ‘functional diversity’ (modeled as the joint responses of richness, evenness, and dispersion) could explain the observed relationship of topographic climate gradients to species richness. We then repeated our model examining the functional diversity of each of the four traits individually. 3. Consistent with the physiological tolerance hypothesis, we found that functional diversity was higher in more favorable climatic conditions (mesic slopes), and that multivariate functional diversity mediated the relationship of the topographic climate gradient to plant species richness. We found similar patterns for models focusing on individual trait functional diversity of leaf water content and foliar C:N. 4. Synthesis. Our results provide trait-based support for the physiological tolerance hypothesis, suggesting that benign climates support more species because they allow for a wider range of functional strategies.

  1. Patterns of plant species diversity during succession under different disturbance regimes.

    Science.gov (United States)

    Denslow, Julie Sloan

    1980-07-01

    I suggest that between-community variations in diversity patterns during succession in plant communities are due to the effects of selection on life history strategies under different disturbance regimes. Natural disturbances to plant communities are simultaneously a source of mortality for some individuals and a source of establishment sites for others. The plant community consists of a mosaic of disturbance patches (gaps) of different environmental conditions. The composition of the mosaic is described by the size-frequency distribution of the gaps and is dependent on the rates and scales of disturbance. The life-history strategies of plant species dependent on some form of disturbance for establishment of propagules should reflect this size-frequency distribution of disturbance patches. An extension of island biogeographic theory to encompass relative habitat area predicts that a community should be most rich in species adapted to growth and establishment in the spatially most common patch types. Changes in species diversity during succession following large scale disturbance reflect the prevalent life history patterns under historically common disturbance regimes. Communities in which the greatest patch area is in large-scale clearings (e.g. following fire) are most diverse in species establishing seedlings in xeric, high light conditions. Species diversity decreases during succession. Communities in which such large patches are rare are characterized by a large number of species that reach the canopy through small gaps and realtively few which regenerate in the large clearings. Diversity increases during succession following a large scale disturbance.Evidence from communities characterized by different disturbance regimes is summarized from the literature. This hypothesis provides an evolutionary mechanism with which to examine the changes in plant community structure during succession. Diversity peaks occurring at "intermediate levels" of disturbance as

  2. Plant diversity and conservation status of Himalayan Region Poonch Valley Azad Kashmir (Pakistan).

    Science.gov (United States)

    Khan, Muhammad Azam; Khan, Mir Ajab; Hussain, Mazhar; Mujtaba, Ghulam

    2014-09-01

    The plant diversity of Himalayan region has been reduced to greater extent due to environmental degradation and human exploitation. Anthropogenic disturbance was the major factor responsible for fragmentation of forest vegetation into small patches. Little research has been conducted in the Himalayan region of Poonch Valley of North eastern Pakistan with reference to plants biodiversity and its conservation. The present research was carried out to provide a checklist of vegetation for biodiversity conservation. A total of 430 vascular and 5 nonvascular plant species with 5 species of Bryophytes (5 families), 13 species of Pteridophytes (6 families), 4 species of Gymnosperms (1 family) and 413 species of angiosperms (95 families) were enumerated from the Poonch valley Azad Kashmir. The genera were classified into three categories according to the number of species. 25 plant communities with phytosociological parameters and diversity indices were reported. Present study revealed that there were 145 threatened, 30 endangered, 68 vulnerable and 47 rare species. It is recorded that extensive grazing, uprooting of plants and soil slope erosion intensify the environmental problems. Since there is maximum exploitation of vegetation, the valley showed a decline in plant diversity. The study was also indicated that the main threats to the biodiversity are expansion of settlement and army installations in the forest area of the valley. For sustainable use In-situ and Ex-situ conservation, controlled harvesting and afforestation may be the solution. Moreover, forest area should be declared prohibited for settlements and army installations.

  3. Organic, integrated and conventional management in apple orchards: effect on plant species composition, richness and diversity

    Directory of Open Access Journals (Sweden)

    Zdeňka Lososová

    2011-01-01

    Full Text Available The study was conducted to assess the effect of conventional, integrated and organic management on differences in plant species composition, richness and diversity. The plants were studied in triads of orchards situated in three regions of the Czech Republic. Data about species occurrences were collected on 15 permanent plots in the tree rows and 15 plots between tree rows in each of the apple orchards during 2009. A total of 201 vascular plant species (127 native species, 65 archaeophytes, and 9 neophytes were found. Management type and also different regional conditions had a significant effect on plant species composition and on diversity parameters of orchard spontaneous vegetation. Species richness and species pool was significantly higher in the organic orchards than in the differently managed orchards. Management type had significant effect on proportions of archaeophytes, and also neophytes in apple orchards. The results showed that a change from conventional to integrated and organic management in apple orchards lead to higher plant species diversity and to changes in plant species composition.

  4. Rapid response of arbuscular mycorrhizal fungal communities to short-term fertilization in an alpine grassland on the Qinghai-Tibet Plateau

    Directory of Open Access Journals (Sweden)

    Xingjia Xiang

    2016-07-01

    Full Text Available Background: The Qinghai-Tibet Plateau (QTP is home to the vast grassland in China. The QTP grassland ecosystem has been seriously degraded by human land use practices and climate change. Fertilization is used in this region to increase vegetation yields for grazers. The impact of long-term fertilization on plant and microbial communities has been studied extensively. However, the influence of short-term fertilization on arbuscular mycorrhizal fungal (AMF communities in the QTP is largely unknown, despite their important functional role in grassland ecosystems. Methods: We investigated AMF community responses to three years of N and/or P addition at an experimental field site on the QTP, using the Illumina MiSeq platform (PE 300. Results: Fertilization resulted in a dramatic shift in AMF community composition and NP addition significantly increased AMF species richness and phylogenetic diversity. Aboveground biomass, available phosphorus, and NO3− were significantly correlated with changes in AMF community structure. Changes in these factors were driven by fertilization treatments. Thus, fertilization had a large impact on AMF communities, mediated by changes in aboveground productivity and soil chemistry. Discussion: Prior work has shown how plants often lower their reliance on AMF symbioses following fertilization, leading to decrease AMF abundance and diversity. However, our study reports a rise in AMF diversity with fertilization treatment. Because AMF can provide stress tolerance to their hosts, we suggest that extreme weather on the QTP may help drive a positive relationship between fertilizer amendment and AMF diversity.

  5. Highly Diverse Endophytic and Soil Fusarium oxysporum Populations Associated with Field-Grown Tomato Plants

    Science.gov (United States)

    Demers, Jill E.; Gugino, Beth K.

    2014-01-01

    The diversity and genetic differentiation of populations of Fusarium oxysporum associated with tomato fields, both endophytes obtained from tomato plants and isolates obtained from soil surrounding the sampled plants, were investigated. A total of 609 isolates of F. oxysporum were obtained, 295 isolates from a total of 32 asymptomatic tomato plants in two fields and 314 isolates from eight soil cores sampled from the area surrounding the plants. Included in this total were 112 isolates from the stems of all 32 plants, a niche that has not been previously included in F. oxysporum population genetics studies. Isolates were characterized using the DNA sequence of the translation elongation factor 1α gene. A diverse population of 26 sequence types was found, although two sequence types represented nearly two-thirds of the isolates studied. The sequence types were placed in different phylogenetic clades within F. oxysporum, and endophytic isolates were not monophyletic. Multiple sequence types were found in all plants, with an average of 4.2 per plant. The population compositions differed between the two fields but not between soil samples within each field. A certain degree of differentiation was observed between populations associated with different tomato cultivars, suggesting that the host genotype may affect the composition of plant-associated F. oxysporum populations. No clear patterns of genetic differentiation were observed between endophyte populations and soil populations, suggesting a lack of specialization of endophytic isolates. PMID:25304514

  6. Why we shouldn't underestimate the impact of plant functional diversity

    Science.gov (United States)

    Groner, V.; Raddatz, T.; Reick, C. H.; Claussen, M.

    2017-12-01

    We present a series of coupled land-atmosphere simulations with different combinations of plant functional types (PFTs) from mid-Holocene to preindustrial to show how plant functional diversity affects simulated climate-vegetation interaction under changing environmental conditions in subtropical Africa. Scientists nowadays agree that the establishment of the ``green'' Sahara was triggered by external changes in the Earth's orbit and amplified by internal feedback mechanisms. The timing and abruptness of the transition to the ``desert'' state are in turn still under debate. While some previous studies indicated an abrupt collapse of vegetation implying a strong climate-vegetation feedback, others suggested a gradual vegetation decline thereby questioning the existence of a strong climate-vegetation feedback. However, none of these studies explicitly accounted for the role of plant diversity. We show that the introduction or removal of a single PFT can bring about significant impacts on the simulated climate-vegetation system response to changing orbital forcing. While simulations with the standard set of PFTs show a gradual decrease of precipitation and vegetation cover over time, the reduction of plant functional diversity can cause either an abrupt decline of both variables or an even slower response to the external forcing. PFT composition seems to be the decisive factor for the system response to external forcing, and an increase in plant functional diversity does not necessarily increase the stability of the climate-vegetation system. From this we conclude that accounting for plant functional diversity in future studies - not only on palaeo climates - could significantly improve the understanding of climate-vegetation interaction in semi-arid regions, the predictability of the vegetation response to changing climate, and respectively, of the resulting feedback on precipitation.

  7. Soil respiration and organic carbon dynamics with grassland conversions to woodlands in temperate china.

    Directory of Open Access Journals (Sweden)

    Wei Wang

    Full Text Available Soils are the largest terrestrial carbon store and soil respiration is the second-largest flux in ecosystem carbon cycling. Across China's temperate region, climatic changes and human activities have frequently caused the transformation of grasslands to woodlands. However, the effect of this transition on soil respiration and soil organic carbon (SOC dynamics remains uncertain in this area. In this study, we measured in situ soil respiration and SOC storage over a two-year period (Jan. 2007-Dec. 2008 from five characteristic vegetation types in a forest-steppe ecotone of temperate China, including grassland (GR, shrubland (SH, as well as in evergreen coniferous (EC, deciduous coniferous (DC and deciduous broadleaved forest (DB, to evaluate the changes of soil respiration and SOC storage with grassland conversions to diverse types of woodlands. Annual soil respiration increased by 3%, 6%, 14%, and 22% after the conversion from GR to EC, SH, DC, and DB, respectively. The variation in soil respiration among different vegetation types could be well explained by SOC and soil total nitrogen content. Despite higher soil respiration in woodlands, SOC storage and residence time increased in the upper 20 cm of soil. Our results suggest that the differences in soil environmental conditions, especially soil substrate availability, influenced the level of annual soil respiration produced by different vegetation types. Moreover, shifts from grassland to woody plant dominance resulted in increased SOC storage. Given the widespread increase in woody plant abundance caused by climate change and large-scale afforestation programs, the soils are expected to accumulate and store increased amounts of organic carbon in temperate areas of China.

  8. Spatial and seasonal diversity of wild food plants in home gardens of Northeast Thailand

    NARCIS (Netherlands)

    Cruz Garcia, G.S.; Struik, P.C.

    2015-01-01

    Wild food plants (WFPs) are major components of tropical home gardens, constituting an important resource for poor farmers. The spatial and seasonal diversity of WFPs was analyzed across multi-species spatial configurations occurring within home gardens in a rice farming village in northeast

  9. Phylogenetic diversity of macromycetes and woody plants along an elevational gradient in Eastern Mexico

    Science.gov (United States)

    Marko Gomez-Hernandez; Guadalupe Williams-Linera; D. Jean Lodge; Roger Guevara; Eduardo Ruiz-Sanchez; Etelvina Gandara

    2016-01-01

    Phylogenetic information provides insight into the ecological and evolutionary processes that organize species assemblages. We compared patterns of phylogenetic diversity among macromycete and woody plant communities along a steep elevational gradient in eastern Mexico to better understand the evolutionary processes that structure their communities. Macrofungi and...

  10. Challenges in estimating past plant diversity from fossil pollen data: statistical assessment, problems, and possible solutions.

    NARCIS (Netherlands)

    Weng, C.; Hooghiemstra, H.; Duivenvoorden, J.F.

    2006-01-01

    Fossil pollen data from sediment cores may be used as a measure for past plant diversity. According to the theory of probability, palynological richness is positively related to the pollen count. In a low pollen count, only common taxa are detected, whereas rare taxa are only detected by chance. The

  11. Understory plant diversity in riparian alder-conifer stands after logging in southeast Alaska.

    Science.gov (United States)

    Robert L. Deal

    1997-01-01

    Stand structure, tree height growth, and understory plant diversity were assessed in five mixed alder-conifer stands after logging in southeast Alaska. Tree species composition ranged from 7- to 91-percent alder, and basal area ranged from 30 to 55 m2/ha. The alder exhibited rapid early height growth, but recent growth has slowed considerably. Some conifers have...

  12. PATTERNS OF ALLOZYME DIVERSITY IN THE THREATENED PLANT ERIGERON PARISHII (ASTERACEAE). (R826102)

    Science.gov (United States)

    Thirty-one occurrences of Erigeron parishii, a narrowly endemic plant threatened by mining, were sampled for allozyme diversity. This taxon held considerable genetic variation at the [4 allozyme loci surveyed. Species (e.g., alleles per locus [A] = 4.3 and proportion of polymorph...

  13. Diversity and incidence of plant-parasitic nematodes in Belgian turf grass

    NARCIS (Netherlands)

    Vandenbossche, B.; Viaene, N.; Sutter, de N.; Maes, M.; Karssen, G.; Bert, W.

    2011-01-01

    Eleven golf courses and eight football pitches, located in Belgium, were surveyed for plant-parasitic nematodes. This revealed a remarkably high diversity: 52 different species/taxa were identified morphologically, belonging to 23 genera and nine families. Among the most prevalent nematodes on both

  14. Uses and conservation of plant diversity in Ben En National Park, Vietnam

    NARCIS (Netherlands)

    Hoang, Van Sam

    2009-01-01

    Ben En National Park is one of the 30 National Parks in Vietnam. In this study its botanical wealth has been comprehensively inventoried as well as the very important roles that plants play in the daily life and economy of the people inhabiting the Park. Floristic diversity - In our survey 1389

  15. Large-scale patterns of plant diversity and conservation priorities in South East Asia

    NARCIS (Netherlands)

    Marsh, S.T.; Brummitt, N.A.; Kok, de R.P.J.; Utteridge, T.M.A.

    2009-01-01

    In the absence of a complete floristic inventory, conservation priorities within South East Asia must often be based on incomplete knowledge or a rough approximation of diversity such as habitat cover. To help overcome this, a database containing distribution data for all 3 523 known flowering plant

  16. Woody plant diversity in sacred forests and fallows in Chiang Mai, Thailand

    DEFF Research Database (Denmark)

    Junsongduang, A.; Balslev, Henrik; Jampeetong, Arunothai

    2014-01-01

    All woody plant and seedling diversity was compared in a Karen and a Lawa hill-tribe village in northern Thailand in four different habitats: sacred forests and fallow fields of three ages derived from rotational shifting cultivation (young fallows, 1–2 years old; medium-age fallow, 3-4 years old...

  17. Historical agriculture alters the effects of fire on understory plant beta diversity

    Science.gov (United States)

    W. Brett Mattingly; John L. Orrock; Cathy D. Collins; Lars A. Brudvig; Ellen I. Damschen; Joseph W. Veldman; Joan L. Walker

    2015-01-01

    Land-use legacies are known to shape the diversity and distribution of plant communities, but we lack an understanding of whether historical land use influences community responses to contemporary disturbances. Because human-modified landscapes often bear a history of multiple land-use activities, this contingency can challenge our understanding of land-use impacts on...

  18. No consistent effect of plant species richness on resistance to simulated climate change for above- or below-ground processes in managed grasslands.

    Science.gov (United States)

    Dormann, Carsten F; von Riedmatten, Lars; Scherer-Lorenzen, Michael

    2017-06-17

    Species richness affects processes and functions in many ecosystems. Since management of temperate grasslands is directly affecting species composition and richness, it can indirectly govern how systems respond to fluctuations in environmental conditions. Our aim in this study was to investigate whether species richness in managed grasslands can buffer the effects of drought and warming manipulations and hence increase the resistance to climate change. We established 45 plots in three regions across Germany, each with three different management regimes (pasture, meadow and mown pasture). We manipulated spring warming using open-top chambers and summer drought using rain-out shelters for 4 weeks. Measurements of species richness, above- and below-ground biomass and soil carbon and nitrogen concentrations showed significant but inconsistent differences among regions, managements and manipulations. We detected a three-way interaction between species richness, management and region, indicating that our study design was sensitive enough to detect even intricate effects. We could not detect a pervasive effect of species richness on biomass differences between treatments and controls, indicating that a combination of spring warming and summer drought effects on grassland systems are not consistently moderated by species richness. We attribute this to the relatively high number of species even at low richness levels, which already provides the complementarity required for positive biodiversity-ecosystem functioning relationships. A review of the literature also indicates that climate manipulations largely fail to show richness-buffering, while natural experiments do, suggesting that such manipulations are milder than reality or incur treatment artefacts.

  19. Criteria of diversity evaluation for intelligent diagnosis of nuclear power plants

    International Nuclear Information System (INIS)

    Washio, Takashi; Sakuma, Masatake; Furukawa, Hiroshi; Kitamura, Masaharu.

    1995-01-01

    One of important problems of a current operation support system for a nuclear power plant is that the credibility of its resultant suggestions is not always high sufficiently. The authors have proposed an efficient remedy called 'Diversity Criteria' for this issue in the previous works. It employs a variety of information resources and reasoning mechanisms for the system to enhance its entire credibility. Within this framework, a complementary combination of the resources and mechanisms is desired. The work presented here proposes systematic and quantitative measures determining the appropriate combinations. First, concrete and systematic guidelines are proposed for the detailed criteria of 'Information Diversity' and 'Methodology Diversity'. Next, two concepts of 'Orthogonality of Identified Result' and 'Orthogonality of Utilized Symptom' are presented together with their quantitative measures. These guidelines and measures have been applied to an example of failure diagnosis of a nuclear power plant, and their efficiency has been clearly confirmed. (author)

  20. Forest structure and plant diversity in maritime pine (Pinus pinaster Ait.) stands in central Spain

    Energy Technology Data Exchange (ETDEWEB)

    Osorio, L. F.; Bravo, F.; Zaldivar, P.; Pando, V.

    2009-07-01

    The relationship between forest structure and plant diversity in Mediterranean Maritime pine stands (Pinus pinaster Ait.) in the Iberian Range (Spain) was studied. Forty eight stands were sampled. In each, a circular plot (15 m radius) and a transect (25*1 m{sup 2}) were established to estimate stand variables and record presence and abundance of vascular species respectively. Canonical correlation analysis (CCA), simple correlations and multiple stepwise linear regressions were used to explore the relationship between plant diversity and forest structure. Correlation between diversity measurements and stand variables is very weak, but significant correlations were found when evaluating each set of variables separately. Presence and cover of some species (for instance, Veronica arvensis L. or Micropyrum tenellum (L.) Link) is correlated with stand variables; however, determination coefficients found in step-by-step regression are not significant. (Author) 34 refs.

  1. Above- and below-ground effects of plant diversity depend on species origin

    DEFF Research Database (Denmark)

    Kuebbing, Sara E.; Classen, Aimee Taylor; Sanders, Nate

    2015-01-01

    -interaction models to describe how species' interactions influenced diversity-productivity relationships. Communities with more species had higher total biomass than did monoculture communities, but native and nonnative communities diverged in root : shoot ratios and the mechanism responsible for increased......Although many plant communities are invaded by multiple nonnative species, we have limited information on how a species' origin affects ecosystem function. We tested how differences in species richness and origin affect productivity and seedling establishment. We created phylogenetically paired...... native and nonnative plant communities in a glasshouse experiment to test diversity-productivity relationships and responsible mechanisms (i.e. selection or complementarity effects). Additionally, we tested how productivity and associated mechanisms influenced seedling establishment. We used diversity...

  2. Size, age and composition: characteristics of plant taxa as diversity predictors of gall-midges (Diptera: Cecidomyiidae

    Directory of Open Access Journals (Sweden)

    Walter S Araújo

    2011-12-01

    Full Text Available Many hypotheses have been proposed to explain the diversity of gall-midge insects (Diptera: Cecidomyiidae, some of them taking into account plant diversity. This study aims to test the importance of size, age and composition of host plant taxa in the diversity of Cecidomyiidae. For this we used inventories data on the diversity of galling and host plants in Brazil. We found that Asterales, Myrtales and Malpighiales, were the most important orders, with 34, 33 and 25, gall morphotypes, respectively. The most representative host families were Asteraceae (34 morphotypes, Myrtaceae (23 and Fabaceae (22. In general, the order size and the plant family were good predictors of the galling diversity, but not the taxon age. The most diverse host genera for gall-midges were Mikania, Eugenia and Styrax, with 15, 13 and nine galler species, respectively. The size of plant genera showed no significant relationship with the richness of Cecidomyiidae, contrary to the prediction of the plant taxon size hypothesis. The plant genera with the greatest diversity of galling insects are not necessarily those with the greatest number of species. These results indicate that some plant taxa have a high intrinsic richness of galling insects, suggesting that the plant species composition may be equally or more important for the diversity of gall-midges than the size or age of the host taxon. Rev. Biol. Trop. 59 (4: 1599- 1607. Epub 2011 December 01.

  3. A comparative study of AMF diversity in annual and perennial plant species from semiarid gypsum soils.

    Science.gov (United States)

    Alguacil, M. M.; Torrecillas, E.; Roldán, A.; Díaz, G.; Torres, P.

    2012-04-01

    The arbuscular mycorrhizal fungi (AMF) communities composition regulate plant interactions and determine the structure of plant communities. In this study we analysed the diversity of AMF in the roots of two perennial gypsophyte plant species, Herniaria fruticosa and Senecio auricula, and an annual herbaceous species, Bromus rubens, growing in a gypsum soil from a semiarid area. The objective was to determine whether perennial and annual host plants support different AMF communities in their roots and whether there are AMF species that might be indicators of specific functional plant roles in these ecosystems. The roots were analysed by nested PCR, cloning, sequencing of the ribosomal DNA small subunit region and phylogenetic analysis. Twenty AMF sequence types, belonging to the Glomus group A, Glomus group B, Diversisporaceae, Acaulosporaceae, Archaeosporaceae and Paraglomeraceae, were identified. Both gypsophyte perennial species had differing compositions of the AMF community and higher diversity when compared with the annual species, showing preferential selection by specific AMF sequences types. B. rubens did not show host specificity, sharing the full composition of its AMF community with both perennial plant species. Seasonal variations in the competitiveness of AM fungi could explain the observed differences in AMF community composition, but this is still a working hypothesis that requires the analysis of further data obtained from a higher number of both annual and perennial plant species in order to be fully tested.

  4. Changes in agricultural management drive the diversity of Burkholderia species isolated from soil on PLAT medium

    NARCIS (Netherlands)

    Salles, JF; Samyn, E; Vandamme, P; van Veen, JA; van Elsas, JD

    In order to assess the diversity of culturable Burkholderia populations in rhizosphere and bulk soil and to evaluate how different agricultural management regimes and land use history affect this diversity, four treatments were evaluated: permanent grassland; grassland converted into maize

  5. Changes in agricultural management drive the diversity of Burkholderia species isolated from soil on PCAT medium

    NARCIS (Netherlands)

    Salles, J.F.; Samyn, E.; Vandamme, P.A.; Veen, van J.A.; Elsas, van J.D.

    2006-01-01

    In order to assess the diversity of culturable Burkholderia populations in rhizosphere and bulk soil and to evaluate how different agricultural management regimes and land use history affect this diversity, four treatments were evaluated: permanent grassland; grassland converted into maize

  6. Diversity distribution patterns of Chinese endemic seed plant species and their implications for conservation planning

    Science.gov (United States)

    Huang, Jihong; Huang, Jianhua; Lu, Xinghui; Ma, Keping

    2016-01-01

    Endemism is an important concept in biogeography and biodiversity conservation. China is one of the richest countries in biodiversity, with very high levels of plant endemism. In this study, we analysed the distribution patterns of diversity, the degree of differentiation, and the endemicity of Chinese endemic seed plants using the floristic unit as a basic spatial analysis unit and 11 indices. The analysis was based on distribution data of 24,951 native seed plant species (excluding subspecies and varieties) and 12,980 Chinese endemic seed plant species, which were sourced from both specimen records and published references. The distribution patterns of Chinese endemic flora were generally consistent but disproportionate across China for diversity, degree of differentiation and endemicity. The South Hengduan Mountains Subregion had the highest values for all indices. At the regional level, both the Hengduan Mountains and the Central China regions were highest in diversity and degrees of differentiation. However, both the rate of local endemic to native species and the rate of local to Chinese endemic species were highest in the Taiwan Region and the South Taiwan Region. The Hengduan Mountains Region and the Central China Region are two key conservation priority areas for Chinese endemic seed plants. PMID:27658845

  7. Patterns of genetic diversity in three plant lineages endemic to the Cape Verde Islands.

    Science.gov (United States)

    Romeiras, Maria M; Monteiro, Filipa; Duarte, M Cristina; Schaefer, Hanno; Carine, Mark

    2015-05-15

    Conservation of plant diversity on islands relies on a good knowledge of the taxonomy, distribution and genetic diversity of species. In recent decades, a combination of morphology- and DNA-based approaches has become the standard for investigating island plant lineages and this has led, in some cases, to the discovery of previously overlooked diversity, including 'cryptic species'. The flora of the Cape Verde archipelago in the North Atlantic is currently thought to comprise ∼740 vascular plant species, 92 of them endemics. Despite the fact that it is considered relatively well known, there has been a 12 % increase in the number of endemics in the last two decades. Relatively few of the Cape Verde plant lineages have been included in genetic studies so far and little is known about the patterns of diversification in the archipelago. Here we present an updated list for the endemic Cape Verde flora and analyse diversity patterns for three endemic plant lineages (Cynanchum, Globularia and Umbilicus) based on one nuclear (ITS) and four plastid DNA regions. In all three lineages, we find genetic variation. In Cynanchum, we find two distinct haplotypes with no clear geographical pattern, possibly reflecting different ploidy levels. In Globularia and Umbilicus, differentiation is evident between populations from northern and southern islands. Isolation and drift resulting from the small and fragmented distributions, coupled with the significant distances separating the northern and southern islands, could explain this pattern. Overall, our study suggests that the diversity in the endemic vascular flora of Cape Verde is higher than previously thought and further work is necessary to characterize the flora. Published by Oxford University Press on behalf of the Annals of Botany Company.

  8. Can phylogeny predict chemical diversity and potential medicinal activity of plants? A case study of Amaryllidaceae

    DEFF Research Database (Denmark)

    Rønsted, Nina; Symonds, Matthew R. E.; Birkholm, Trine

    2012-01-01

    a predictive approach enabling more efficient selection of plants for the development of traditional medicine and lead discovery. However, this relationship has rarely been rigorously tested and the potential predictive power is consequently unknown. Results: We produced a phylogenetic hypothesis......Background: During evolution, plants and other organisms have developed a diversity of chemical defences, leading to the evolution of various groups of specialized metabolites selected for their endogenous biological function. A correlation between phylogeny and biosynthetic pathways could offer...... for the medicinally important plant subfamily Amaryllidoideae (Amaryllidaceae) based on parsimony and Bayesian analysis of nuclear, plastid, and mitochondrial DNA sequences of over 100 species. We tested if alkaloid diversity and activity in bioassays related to the central nervous system are significantly correlated...

  9. Plant diversity in a changing world: Status, trends, and conservation needs

    Directory of Open Access Journals (Sweden)

    Richard T. Corlett

    2016-02-01

    Full Text Available The conservation of plants has not generated the sense of urgency—or the funding—that drives the conservation of animals, although plants are far more important for us. There are an estimated 500,000 species of land plants (angiosperms, gymnosperms, ferns, lycophytes, and bryophytes, with diversity strongly concentrated in the humid tropics. Many species are still unknown to science. Perhaps a third of all land plants are at risk of extinction, including many that are undescribed, or are described but otherwise data deficient. There have been few known global extinctions so far, but many additional species have not been recorded recently and may be extinct. Although only a minority of plant species have a specific human use, many more play important roles in natural ecosystems and the services they provide, and rare species are more likely to have unusual traits that could be useful in the future. The major threats to plant diversity include habitat loss, fragmentation, and degradation, overexploitation, invasive species, pollution, and anthropogenic climate change. Conservation of plant diversity is a massive task if viewed globally, but the combination of a well-designed and well-managed protected area system and ex situ gap-filling and back-up should work anywhere. The most urgent needs are for the completion of the global botanical inventory and an assessment of the conservation status of the 94% of plant species not yet evaluated, so that both in and ex situ conservation can be targeted efficiently. Globally, the biggest conservation gap is in the hyperdiverse lowland tropics and this is where attention needs to be focused.

  10. Soil fungal abundance and diversity: another victim of the invasive plant Centaurea maculosa.

    Science.gov (United States)

    Broz, Amanda K; Manter, Daniel K; Vivanco, Jorge M

    2007-12-01

    Interactions between plants and soil microbes are important determinants of both above- and belowground community composition, and ultimately ecosystem function. As exotic plants continue to invade and modify native plant communities, there has been increasing interest in determining the influence of exotic invasives on native soil microbial communities. Here, using highly sensitive molecular techniques, we examine fungal abundance and diversity in the soil surrounding a particularly aggressive invasive plant species in North America, Centaurea maculosa Lam. In mixed stands, we show that this invasive weed can alter the native fungal community composition within its own rhizosphere and that of neighboring native plants. At higher densities, the effect of C. maculosa on native soil fungal communities was even greater. Our results demonstrate that this invasive weed can have significant effects not only on visible aboveground biodiversity but also on the native soil microbial community that extends beyond its rhizosphere.

  11. Receding Water Line and Interspecific Competition Determines Plant Community Composition and Diversity in Wetlands in Beijing

    Science.gov (United States)

    Wang, Zhengjun; Gong, Huili; Zhang, Jing

    2015-01-01

    Climate and human-induced wetland degradation has accelerated in recent years, not only resulting in reduced ecosystem services but also greatly affecting the composition and diversity of wetland plant communities. To date, the knowledge of the differences in community parameters and their successional trends in degraded wetlands remains scarce. Here based on remote sensing images, geographic information system technology, and statistical methods, we produced a successional gradient map of the Yeyahu Wetland Nature Reserve in Beijing, which has experienced a steady decline in water level in recent decades. In addition, we analyzed community composition and diversity along with each identified gradient. The results showed that community diversity decreases while dominance increases with the progress of succession, with the highest diversity occurring during the early stage of succession. Moreover, the community demonstrates greater similarity among subareas during later successional stages, and the similarity coefficients calculated from the important value (IV) of each species are more accurate. Correlation analysis showed that the impact of soil factors on diversity was not significant at a subarea scale, although these nutrients showed an increasing trend with the community succession. Furthermore, the IVs of the dominant species had a particularly significant impact on diversity, showing a significantly negative correlation with diversity indices and a significantly positive correlation with dominance indices. Further analysis showed that the retreat of water level resulted from sustained drought and local human activities was a major extrinsic driving force resulting in observed differences in the community successional stages, which resulted in differences in community composition and diversity. On the other hand, interspecific competition was the main intrinsic mechanism, which significantly influenced the IVs of the dominant species and community diversity

  12. Plant species identity and diversity effects on different trophic levels of nematodes in the soil food web

    NARCIS (Netherlands)

    De Deyn, G.B.; Raaijmakers, C.E.; Van Ruijven, J.; Berendse, F.; Van der Putten, W.H.

    2004-01-01

    Previous studies on biodiversity and soil food web composition have mentioned plant species identity, as well as plant species diversity as the main factors affecting the abundance and diversity of soil organisms. However, most studies have been carried out under limitations of time, space, or

  13. Dry coniferous forest restoration and understory plant diversity: The importance of community heterogeneity and the scale of observation

    Science.gov (United States)

    Erich Kyle Dodson; David W. Peterson

    2010-01-01

    Maintaining understory plant species diversity is an important management goal as forest restoration and fuel reduction treatments are applied extensively to dry coniferous forests of western North America. However, understory diversity is a function of both local species richness (number of species in a sample unit) and community heterogeneity (beta diversity) at...

  14. The Genetic Diversity of Endophytic and Phyllosphere Bacteria from Several Indonesian Herbal Plants

    Directory of Open Access Journals (Sweden)

    Devi Rachelia

    2012-04-01

    Full Text Available Herbal plants have been believed by Indonesians to be an alternative medicine to treat illnesses. The bioactivecompounds in the plant can be derived from secondary metabolites or from endophytic and phyllosphere bacteria whichcoexist within medicinal plants. A total of 18 endophytic bacteria and 32 phyllosphere bacteria were isolated from theherbal plants of Citrus sp., Pluchea indica, Curcuma longa, Nothopanax scuttelarium, Piper crocatum, andAndrographis paniculata. About 72% of endophytic bacteria isolates have proteolytic activity and about 11% havelipolytic activity. On the other hand, about 59% of phyllosphere bacteria isolates have proteolytic activity and about19% have lipolytic activity. Phylogenetic diversity analysis was conducted by using the amplified ribosomal DNArestriction analysis (ARDRA method and the sequence of 16S rDNA was digested with endonuclease restrictionenzymes: MspI, RsaI, and Sau961. The diversity of endophytic and phyllosphere bacterium from the samples of herbalplants was high. Bacteria isolated from the same herbal plant does not always have a close genetic relationship exceptfor the bacteria isolated from the P. indica plant which showed a close genetic relationship with each other.

  15. Diversity of Medicinal Plants among Different Forest-use Types of the Pakistani Himalaya.

    Science.gov (United States)

    Adnan, Muhammad; Hölscher, Dirk

    2012-12-01

    Diversity of Medicinal Plants among Different Forest-use Types of the Pakistani Himalaya Medicinal plants collected in Himalayan forests play a vital role in the livelihoods of regional rural societies and are also increasingly recognized at the international level. However, these forests are being heavily transformed by logging. Here we ask how forest transformation influences the diversity and composition of medicinal plants in northwestern Pakistan, where we studied old-growth forests, forests degraded by logging, and regrowth forests. First, an approximate map indicating these forest types was established and then 15 study plots per forest type were randomly selected. We found a total of 59 medicinal plant species consisting of herbs and ferns, most of which occurred in the old-growth forest. Species number was lowest in forest degraded by logging and intermediate in regrowth forest. The most valuable economic species, including six Himalayan endemics, occurred almost exclusively in old-growth forest. Species composition and abundance of forest degraded by logging differed markedly from that of old-growth forest, while regrowth forest was more similar to old-growth forest. The density of medicinal plants positively correlated with tree canopy cover in old-growth forest and negatively in degraded forest, which indicates that species adapted to open conditions dominate in logged forest. Thus, old-growth forests are important as refuge for vulnerable endemics. Forest degraded by logging has the lowest diversity of relatively common medicinal plants. Forest regrowth may foster the reappearance of certain medicinal species valuable to local livelihoods and as such promote acceptance of forest expansion and medicinal plants conservation in the region. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s12231-012-9213-4) contains supplementary material, which is available to authorized users.

  16. Predicting Vascular Plant Diversity in Anthropogenic Peatlands: Comparison of Modeling Methods with Free Satellite Data

    Directory of Open Access Journals (Sweden)

    Ivan Castillo-Riffart

    2017-07-01

    Full Text Available Peatlands are ecosystems of great relevance, because they have an important number of ecological functions that provide many services to mankind. However, studies focusing on plant diversity, addressed from the remote sensing perspective, are still scarce in these environments. In the present study, predictions of vascular plant richness and diversity were performed in three anthropogenic peatlands on Chiloé Island, Chile, using free satellite data from the sensors OLI, ASTER, and MSI. Also, we compared the suitability of these sensors using two modeling methods: random forest (RF and the generalized linear model (GLM. As predictors for the empirical models, we used the spectral bands, vegetation indices and textural metrics. Variable importance was estimated using recursive feature elimination (RFE. Fourteen out of the 17 predictors chosen by RFE were textural metrics, demonstrating the importance of the spatial context to predict species richness and diversity. Non-significant differences were found between the algorithms; however, the GLM models often showed slightly better results than the RF. Predictions obtained by the different satellite sensors did not show significant differences; nevertheless, the best models were obtained with ASTER (richness: R2 = 0.62 and %RMSE = 17.2, diversity: R2 = 0.71 and %RMSE = 20.2, obtained with RF and GLM respectively, followed by OLI and MSI. Diversity obtained higher accuracies than richness; nonetheless, accurate predictions were achieved for both, demonstrating the potential of free satellite data for the prediction of relevant community characteristics in anthropogenic peatland ecosystems.

  17. Plant and bird diversity in natural forests and in native and exotic plantations in NW Portugal

    Science.gov (United States)

    Proença, Vânia M.; Pereira, Henrique M.; Guilherme, João; Vicente, Luís

    2010-03-01

    Forest ecosystems have been subjected to continuous dynamics between deforestation and forestation. Assessing the effects of these processes on biodiversity could be essential for conservation planning. We analyzed patterns of species richness, diversity and evenness of plants and birds in patches of natural forest of Quercus spp. and in stands of native Pinus pinaster and exotic Eucalyptus globulus in NW Portugal. We analyzed data of forest and non-forest species separately, at the intra-patch, patch and inter-patch scales. Forest plant richness, diversity and evenness were higher in oak forest than in pine and eucalypt plantations. In total, 52 species of forest plants were observed in oak forest, 33 in pine plantation and 28 in eucalypt plantation. Some forest species, such as Euphorbia dulcis, Omphalodes nitida and Eryngium juresianum, were exclusively or mostly observed in oak forest. Forest bird richness and diversity were higher in both oak and pine forests than in eucalypt forest; evenness did not differ among forests. In total, 16 species of forest birds were observed in oak forest, 18 in pine forest and 11 in eucalypt forest. Species such as Certhia brachydactyla, Sitta europaea and Dendrocopos major were common in oak and/or pine patches but were absent from eucalypt stands. Species-area relationships of forest plants and forest birds in oak patches had consistently a higher slope, at both the intra and inter-patch scales, than species-area relationships of forest species in plantations and non-forest species in oak forest. These findings demonstrate the importance of oak forest for the conservation of forest species diversity, pointing the need to conserve large areas of oak forest due to the apparent vulnerability of forest species to area loss. Additionally, diversity patterns in pine forest were intermediate between oak forest and eucalypt forest, suggesting that forest species patterns may be affected by forest naturalness.

  18. Should Exotic Eucalyptus be Planted in Subtropical China: Insights from Understory Plant Diversity in Two Contrasting Eucalyptus Chronosequences.

    Science.gov (United States)

    Wu, Jianping; Fan, Houbao; Liu, Wenfei; Huang, Guomin; Tang, Jianfu; Zeng, Ruijin; Huang, Jing; Liu, Zhanfeng

    2015-11-01

    Although Eucalyptus is widely planted in South China, whose effects on native biodiversity are unclear. The objective of this study was to quantify the richness and composition of understory plants in two contrasting Eucalyptus chronosequences in South China. One was in Zhangzhou City with plantation age of 2, 4, and 6 years after clear-cutting Chinese fir forests, while the other was in Heshan City with plantation age of 2, 3, and 24 years that reforested on barren lands. Results showed that the richness of understory plants and functional groups was not significantly altered in the Zhangzhou chronosequence, while increased in the 24-year-old plantations, with a significantly larger proportion of woody plants than the younger plantations for the Heshan chronosequence. Moreover, a higher richness of woody plants accompanied by a lower richness of herbaceous species was detected in the Zhangzhou chronosequence compared with the Heshan one. To balance the need for pulp production and plant diversity conservation, we suggest that intercropping approaches between exotic Eucalyptus plantations and native forests should be considered in the fast rotation Eucalyptus plantations. However, Eucalyptus plantations may be used as pioneer species to sustain ecosystem functioning for the degraded lands.

  19. Seed plant features, distribution patterns, diversity hotspots, and conservation gaps in Xinjiang, China

    Directory of Open Access Journals (Sweden)

    Jihong Huang

    2018-06-01

    Full Text Available The flora in Xinjiang is unique. Decisions about biodiversity conservation and management based on seed plant diversity hotspots and conservation gaps in Xinjiang are essential to maintain this unique flora. Based on a species distribution dataset of seed plants, we measured seed plant diversity using species richness and phylogenetic diversity indices. Five percent of Xinjiang’s total land area with the highest biodiversity was used to identify hotspots for each index. In total, eight hotspots were identified. Most hotspots were located in mountainous areas, mainly in the Tianshan Mountains and Altai Mountains. Furthermore, we detected conservation gaps for Xinjiang’s seed flora hotspots by overlaying nature reserve maps on to maps of identified hotspots and we designated priority conservation gaps for hotspots by overlaying global biodiversity hotspot maps on to hotspot conservation gaps maps. Most of Xinjiang’s seed plant hotspots are poorly protected; only 10.45% of these hotspots were covered by nature reserves. We suggest that it is essential to promote network function of nature reserves within these hotspots in Xinjiang to conserve this unique flora.

  20. Effects of human proximity and nomadic grazing on the diversity of medicinal plants in temperate hindukush

    International Nuclear Information System (INIS)

    Adnan, M.; Tariq, A.

    2015-01-01

    Over exploitation and overgrazing are considered major factors for decreasing plant species diversity. However, we do need some more exploration on the types of anthropogenic disturbances responsible for variation in species decline among different regions. Therefore, the current study was conducted in a temperate Hindukush region of Pakistan with the aim to assess human settlements pressure on the diversity of medicinal plants. Field data was collected from 15 plots, of which 5 plots each were randomly selected at three distant locations in derived woodland forest. Near to community plots were heavily disturbed due to natives proximity, 2 kilometer away plots from the native community were moderately disturbed, while 4 kilometer away plots were under the disturbance regime from temporary settlers (Nomads). We have found all 10 studied medicinal plant species at 2 Km distance followed by 8 species found at 4 km distance. Economically important species such as Bergenia ciliata, Paeonia emodi, Podophyllum emodi, Valeriana jatamansi and Viola canescens were completely absent near village. Similarly, density (8.72 n m-2) and species richness (8.2 n 40 m-2) were found significantly highest at 2 km distance than other locations. Detrended Correspondence Analysis (DCA) showed that among forest stand structural variables, slope was the influencing variable related to the density of only Bergenia ciliata. In conclusions, moderate disturbance is associated to increase in the diversity of medicinal plants, while high anthropogenic pressures the otherwise. Hence, effective management strategies may be adopted to conserve such precious eroding flora. (author)

  1. Is plant biodiversity driven by decomposition processes? An emerging new theory on plant diversity

    NARCIS (Netherlands)

    Mazzoleni, S.; Bonanomi, G.; Giannino, F.; Rietkerk, M.G.; Dekker, S.C.; Zucconi, F.

    2007-01-01

    Diversity of forest trees ranges from monospecific stands to the astonishing richness of tierra firma tropical forests. Such patterns are observed along gradients of latitude, altitude, soil fertility and rainfall. So far, the proposed coexisting mechanisms do not provide a comprehensive and

  2. Biogeographical Interpretation of Elevational Patterns of Genus Diversity of Seed Plants in Nepal.

    Science.gov (United States)

    Li, Miao; Feng, Jianmeng

    2015-01-01

    This study tests if the biogeographical affinities of genera are relevant for explaining elevational plant diversity patterns in Nepal. We used simultaneous autoregressive (SAR) models to investigate the explanatory power of several predictors in explaining the diversity-elevation relationships shown in genera with different biogeographical affinities. Delta akaike information criterion (ΔAIC) was used for multi-model inferences and selections. Our results showed that both the total and tropical genus diversity peaked below the mid-point of the elevational gradient, whereas that of temperate genera had a nearly symmetrical, unimodal relationship with elevation. The proportion of temperate genera increased markedly with elevation, while that of tropical genera declined. Compared to tropical genera, temperate genera had wider elevational ranges and were observed at higher elevations. Water-related variables, rather than mid-domain effects (MDE), were the most significant predictors of elevational patterns of tropical genus diversity. The temperate genus diversity was influenced by energy availability, but only in quadratic terms of the models. Though climatic factors and mid-domain effects jointly explained most of the variation in the diversity of temperate genera with elevation, the former played stronger roles. Total genus diversity was most strongly influenced by climate and the floristic overlap of tropical and temperate floras, while the influences of mid-domain effects were relatively weak. The influences of water-related and energy-related variables may vary with biogeographical affinities. The elevational patterns may be most closely related to climatic factors, while MDE may somewhat modify the patterns. Caution is needed when investigating the causal factors underlying diversity patterns for large taxonomic groups composed of taxa of different biogeographical affinities. Right-skewed diversity-elevation patterns may be produced by the differential

  3. Plant diversity and regeneration in a disturbed isolated dry Afromontane forest in northern Ethiopia

    DEFF Research Database (Denmark)

    Aynekulu, Ermias; Aerts, Raf; Denich, Manfred

    2016-01-01

    We studied the diversity, community composition and natural regeneration of woody species in an isolated but relatively large (> 1,000 ha) dry Afromontane forest in northern Ethiopia to assess its importance for regional forest biodiversity conservation. The principal human-induced disturbance...... in biodiversity through local extinction of indigenous tree species. Despite the problems associated with conserving plant species diversity in small and isolated populations, this relic forest is of particular importance for regional conservation of forest biodiversity, as species with high conservation value...

  4. [Species, functional, structural diversity of typical plant communities and their responses to environmental factors in Miao Archipelago, China.

    Science.gov (United States)

    Zheng, Li Ting; Su, Tian; Liu, Xiang Yu; Yin, Fang; Guo, Chao; Tuo, Bin; Yan, En Rong

    2018-02-01

    Island vegetation plays an important role in biodiversity research across the world. The study of plant diversity in island is helpful for understanding the mechanism of plant diversity maintenance under land-sea interaction. Here, four typical plant communities (Quercus acutissima community, Robinia pseudoacacia community, Pinus thunbergii community and Vitex negundo community) in Miao Archipelago were selected to examine the species, functional and structural diversities and their responses to environmental factors at the community scale by using species diversity indices, functional diversity indices, as well as structural diversity indices. The results showed that the species richness and Rao index of P. thunbergii community was higher than that of Q. acutissima community and R. pseudoacacia community, but the structural diversity was lower. The species diversity and structural diversity of V. Negundo shrub were lower than that of forest community, but the functional diversity was higher than some forest communities. The relationship between the diversity of typical plant communities in island area illustrated a significant positive correlation between species richness with Rao index and tree height diversity, however the correlation with functional evenness was significantly negative. The structural diversity and functional evenness were determined by slope with negative and positive relationships, respectively. Functional heterogeneity, functional divergence and species diversity were affected largely by soil physical and chemical properties, displaying the positive relationship with soil bulk density and soil total carbon content, and a negative relationship with soil water content. In conclusion, diversity pattern of plant community in Miao Archipelago reflected not only the characteristics in mainland vegetation but also the special nature of the sea island.

  5. Ecology and Conservation of Steppes and Semi-Natural Grasslands

    Directory of Open Access Journals (Sweden)

    Valkó Orsolya

    2016-12-01

    Full Text Available Palaearctic grasslands encompass a diverse variety of habitats, many of high nature value and vulnerability. The main challenges are climate-change, land-use change, agricultural intensification and abandonment. Many measures are in place to address these challenges, through restoration and appropriate management, though more work is necessary. We present eight studies from China/Germany, Greece, Kazakhstan, Russia and Ukraine. The papers cover a wide range of grassland and steppe habitats and cover vegetation ecology, syntaxonomy and zoology. We also conducted a systematic search on steppe and grassland diversity. The greatest number of studies was from China, followed by Germany and England. We conclude that the amount of research being carried out on Eurasian grasslands is inadequate considering their high levels of biodiversity and vulnerability. We hope to encourage readers to address current major challenges, such as how to manage grasslands for the benefit of diverse taxa, to ensure that conservation initiatives concentrate on sites where there is good potential for success and for the generation of realistic and viable conservation strategies.

  6. Studies on ethno medicinal plant diversity in an urban area – a case study

    Directory of Open Access Journals (Sweden)

    Sudipta Biswas

    2016-08-01

    Full Text Available The present study deals with the Ethno-medicinal plants used by the local communities in Santragachhi area, under Howrah Municipal Corporation, ward no. 38, District Howrah, West Bengal, India. An ethno medicinal survey was carried out the use of medicinal plants in Santragachi region. The information was gathered from the local community people using an integrated approach botanical collections, group discussion and interview with questionnaire during 2012-2013. Among 50 informants interviewed, 10 were tribal practitioners. A total of 53 genera and 33 families are documented. In most of case, fresh parts of the plants were used for the preparation of medicine. The results further revealed that the natives of this area are not very much practiced in using the medicinal plants in the treatment of human illness. The study area is delimited by number of wetlands and the people collect the aquatic plants by their habitual knowledge as food resources. But due to expansion of city area, road construction causes loss of plant diversity and random exploitation of natural resources many valuable medicinal