WorldWideScience

Sample records for grass-infested plant communities

  1. Exotic plant infestation is associated with decreased modularity and increased numbers of connectors in mixed-grass prairie pollination networks

    Science.gov (United States)

    Larson, Diane L.; Rabie, Paul A.; Droege, Sam; Larson, Jennifer L.; Haar, Milton

    2016-01-01

    The majority of pollinating insects are generalists whose lifetimes overlap flowering periods of many potentially suitable plant species. Such generality is instrumental in allowing exotic plant species to invade pollination networks. The particulars of how existing networks change in response to an invasive plant over the course of its phenology are not well characterized, but may shed light on the probability of long-term effects on plant-pollinator interactions and the stability of network structure. Here we describe changes in network topology and modular structure of infested and non-infested networks during the flowering season of the generalist non-native flowering plant, Cirsium arvense in mixed-grass prairie at Badlands National Park, South Dakota, USA. Objectives were to compare network-level effects of infestation as they propagate over the season in infested and non-infested (with respect to C. arvense) networks. We characterized plant-pollinator networks on 5 non-infested and 7 infested 1-ha plots during 4 sample periods that collectively covered the length of C. arvense flowering period. Two other abundantly-flowering invasive plants were present during this time: Melilotus officinalis had highly variable floral abundance in both C. arvense-infested and non-infested plots andConvolvulus arvensis, which occurred almost exclusively in infested plots and peaked early in the season. Modularity, including roles of individual species, and network topology were assessed for each sample period as well as in pooled infested and non-infested networks. Differences in modularity and network metrics between infested and non-infested networks were limited to the third and fourth sample periods, during flower senescence of C. arvenseand the other invasive species; generality of pollinators rose concurrently, suggesting rewiring of the network and a lag effect of earlier floral abundance. Modularity was lower and number of connectors higher in infested

  2. Plant Community Diversity After Herbicide Control of Spotted Knapweed

    OpenAIRE

    United States Department of Agriculture, Forest Service

    1992-01-01

    Herbicides were applied to four west-central Montana sites with light to moderate spotted knapweed (Centaurea maculosa Lam.) infestations. Althought knapweed suppression was high, 2 years after the spraying the communities were not converted to grass monocultures. No large declines in plant diversity were caused by the herbicides, and small depressions were probably transitory. By the third year, diversity had increased.

  3. Identification of brome grass infestations in southwest Oklahoma using multi-temporal Landsat imagery

    Science.gov (United States)

    Yan, D.; de Beurs, K.

    2013-12-01

    The extensive infestation of brome grasses (Cheatgrass, Rye brome and Japanese brome) in southwest Oklahoma imposes negative impacts on local economy and ecosystem in terms of decreasing crop and forage production and increasing fire risk. Previously proposed methodologies on brome grass detection are found ill-suitable for southwest Oklahoma as a result of similar responses of background vegetation to inter-annual variability of rainfall. In this study, we aim to identify brome grass infestations by detecting senescent brome grasses using the 2011 Cultivated Land Cover Data Sets and the difference Normalized Difference Infrared Index (NDII) derived from multi-temporal Landsat imagery. Landsat imageries acquired on May 18th and June 10th 2013 by Operational Land Imager and Enhanced Thematic Mapper plus were used. The imagery acquisition dates correspond to the peak growth and senescent time of brome grasses, respectively. The difference NDII was calculated by subtracting the NDII image acquired in May from the June NDII image. Our hypotheses is that senescent brome grasses and crop/pasture fields harvested between the two image acquisition dates can be distinguished from background land cover classes because of their increases in NDII due to decreased water absorption by senescent vegetation in the shortwave infrared region. The Cultivated Land Cover Data Sets were used to further separate senescent brome grass patches from newly harvested crop/pasture fields. Ground truth data collected during field trips in June, July and August of 2013 were used to validate the detection results.

  4. Plant litter effects on soil nutrient availability and vegetation dynamics: changes that occur when annual grasses invade shrub-steppe communities

    Science.gov (United States)

    Sheel Bansal; Roger L. Sheley; Bob Blank; Edward A. Vasquez

    2014-01-01

    Changes in the quantity and quality of plant litter occur in many ecosystems as they are invaded by exotic species, which impact soil nutrient cycling and plant community composition. Such changes in sagebrush-steppe communities are occurring with invasion of annual grasses (AG) into a perennial grass (PG) dominated system. We conducted a 5-year litter manipulation...

  5. Influence of grass pellet production on pyrrolizidine alkaloids occurring in Senecio aquaticus-infested grassland.

    Science.gov (United States)

    Gottschalk, Christoph; Ostertag, Johannes; Meyer, Karsten; Gehring, Klaus; Thyssen, Stefan; Gareis, Manfred

    2018-04-01

    1,2-Dehydro-pyrrolizidine alkaloids (PA) and their N-oxides (PANO) exhibit acute and chronic toxic effects on the liver and other organs and therefore are a hazard for animal and human health. In certain regions of Germany, an increasing spread of Senecio spp. (ragwort) on grassland and farmland areas has been observed during the last years leading to a PA/PANO-contamination of feed and food of animal and plant origin. This project was carried out to elucidate whether the process of grass pellet production applying hot air drying influences the content of PA and PANO. Samples of hay (n = 22) and grass pellets (n = 28) originated from naturally infested grassland (around 10% and 30% dominance of Senecio aquaticus) and from a trial plot with around 50% dominance. Grass pellets were prepared from grass originating from exactly the same plots as the hay samples. The samples were analysed by liquid chromatography-tandem mass spectrometry for PA/PANO typically produced by this weed. The results of the study revealed that PA/PANO levels (predominantly sum of senecionine, seneciphylline, erucifoline and their N-oxides) in hay ranged between 2.1 and 12.6 mg kg -1 dry matter in samples with 10% and 30% dominance of S. aquaticus, respectively. Samples from the trial plot (50% dominance) had levels of up to 52.9 mg kg -1 . Notably, the hot air drying process during the production of grass pellets did not lead to a reduction of PA/PANO levels. Instead, the levels in grass pellets with 10% and 30% S. aquaticus ranged from 3.1 to 55.1 mg kg -1 . Grass pellets from the trial plot contained up to 96.8 mg kg -1 . In conclusion, hot air drying and grass pellet production did not affect PA/PANO contents in plant material and therefore, heat-dried products cannot be regarded as safe in view of the toxic potential of 1,2-dehydro-pyrrolizidine alkaloids.

  6. Weed communities of rain-fed lowland rice vary with infestation by Rhamphicarpa fistulosa

    Science.gov (United States)

    Houngbédji, Tossimidé; Dessaint, Fabrice; Nicolardot, Bernard; Shykoff, Jacqui A.; Gibot-Leclerc, Stéphanie

    2016-11-01

    The facultative hemiparasitic plant Rhamphicarpa fistulosa (Orobanchaceae) thrives in seasonally wet soils in sub-Saharan Africa, mainly in marginal lowland rice growing environments where weeds are already a major constraint for rice production. Because lowland rice production is increasing in tropical Africa, it is important to ascertain the influence of R. fistulosa on weed plant communities in these rice-growing habitats. We investigated weed plant community richness and composition at four different levels of R. fistulosa infestation across two years of surveys from lowland rice fields in northern Togo (West Africa). Despite a lack of significant differences in community richness among sites with different R. fistulosa infestation levels, there were significant differences in community composition, both when estimated from presence-absence data and from relative abundance data, after controlling statistically for geographic proximity among sites. Rhamphicarpa fistulosa infestation, therefore, may influence the competitive balance between rice and its weeds and shape weed community structure. However, experimental studies are required to elucidate the weed host range of R. fistulosa and the direct and indirect effects of this hemiparasite in rice fields in order to predict its net impact on rice and its weed species.

  7. Interspecific associations and community structure: A local survey and analysis in a grass community

    Directory of Open Access Journals (Sweden)

    WenJun Zhang

    2014-09-01

    Full Text Available Interspecific associations in the plant community may help to understand the self-organizing assembly and succession of the community. In present study, Pearson correlation, net correlation, Spearman rank correlation, and point correlation were used to detect the interspecific (inter-family associations of grass species (families using the sampling data collected in a grass community of Zhuhai, China. We found that most associations between grass species (families were positive associations. The competition/interference/niche separation between grass species (families was not significant. A lot of pairs of grass species and families with statistically significant interspecific (inter-family associations based on four correlation measures were discovered. Cluster trees for grass species/families were obtained by using cluster analysis. Relationship among positive/negative associations, interspecific relationship and community succession/stability/robustness was discussed. I held that species with significant positive or negative associations are generally keystone species in the community. Although both negative and positive associations occur in the community succession, the adaptation and selection will finally result in the successful coexistence of the species with significant positive associations in the climax community. As the advance of community succession, the significant positive associations increase and maximize in climax community, and the significant negative associations increase to a maximum and then decline into climax community. Dominance of significant positive associations in the climax community means the relative stablility and equilibrium of the community. No significant associations usually account for the majority of possible interspecific associations at each phase of community succession. They guarantee the robustness of community. They are candidates of keystone species. Lose of some existing keystone species might be

  8. Native Grass Community Management Plan for the Oak Ridge Reservation

    Energy Technology Data Exchange (ETDEWEB)

    Ryon, Michael G [ORNL; Parr, Patricia Dreyer [ORNL; Cohen, Kari [ORNL

    2007-06-01

    Land managers at the Department of Energy's Oak Ridge National Laboratory in East Tennessee are restoring native warm-season grasses and wildflowers to various sites across the Oak Ridge Reservation (ORR). Some of the numerous benefits to planting native grasses and forbs include improved habitat quality for wildlife, improved aesthetic values, lower long-term maintenance costs, and compliance with Executive Order 13112 (Clinton 1999). Challenges to restoring native plants on the ORR include the need to gain experience in establishing and maintaining these communities and the potentially greater up-front costs of getting native grasses established. The goals of the native grass program are generally outlined on a fiscal-year basis. An overview of some of the issues associated with the successful and cost-effective establishment and maintenance of native grass and wildflower stands on the ORR is presented in this report.

  9. Bacterial endophyte communities of three agricultural important grass species differ in their response towards management regimes

    Science.gov (United States)

    Wemheuer, Franziska; Kaiser, Kristin; Karlovsky, Petr; Daniel, Rolf; Vidal, Stefan; Wemheuer, Bernd

    2017-01-01

    Endophytic bacteria are critical for plant growth and health. However, compositional and functional responses of bacterial endophyte communities towards agricultural practices are still poorly understood. Hence, we analyzed the influence of fertilizer application and mowing frequency on bacterial endophytes in three agriculturally important grass species. For this purpose, we examined bacterial endophytic communities in aerial plant parts of Dactylis glomerata L., Festuca rubra L., and Lolium perenne L. by pyrotag sequencing of bacterial 16S rRNA genes over two consecutive years. Although management regimes influenced endophyte communities, observed responses were grass species-specific. This might be attributed to several bacteria specifically associated with a single grass species. We further predicted functional profiles from obtained 16S rRNA data. These profiles revealed that predicted abundances of genes involved in plant growth promotion or nitrogen metabolism differed between grass species and between management regimes. Moreover, structural and functional community patterns showed no correlation to each other indicating that plant species-specific selection of endophytes is driven by functional rather than phylogenetic traits. The unique combination of 16S rRNA data and functional profiles provided a holistic picture of compositional and functional responses of bacterial endophytes in agricultural relevant grass species towards management practices.

  10. Diversity of alkane hydroxylase genes on the rhizoplane of grasses planted in petroleum-contaminated soils

    OpenAIRE

    Tsuboi, Shun; Yamamura, Shigeki; Nakajima-Kambe, Toshiaki; Iwasaki, Kazuhiro

    2015-01-01

    The study investigated the diversity and genotypic features of alkane hydroxylase genes on rhizoplanes of grasses planted in artificial petroleum-contaminated soils to acquire new insights into the bacterial communities responsible for petroleum degradation in phytoremediation. Four types of grass (Cynodon dactylon, two phenotypes of Zoysia japonica, and Z. matrella) were used. The concentrations of total petroleum hydrocarbon effectively decreased in the grass-planted systems compared with t...

  11. Aboveground Whitefly Infestation-Mediated Reshaping of the Root Microbiota.

    Science.gov (United States)

    Kong, Hyun G; Kim, Byung K; Song, Geun C; Lee, Soohyun; Ryu, Choong-Min

    2016-01-01

    Plants respond to various types of herbivore and pathogen attack using well-developed defensive machinery designed for self-protection. Infestation from phloem-sucking insects such as whitefly and aphid on plant leaves was previously shown to influence both the saprophytic and pathogenic bacterial community in the plant rhizosphere. However, the modulation of the root microbial community by plants following insect infestation has been largely unexplored. Only limited studies of culture-dependent bacterial diversity caused by whitefly and aphid have been conducted. In this study, to obtain a complete picture of the belowground microbiome community, we performed high-speed and high-throughput next-generation sequencing. We sampled the rhizosphere soils of pepper seedlings at 0, 1, and 2 weeks after whitefly infestation versus the water control. We amplified a partial 16S ribosomal RNA gene (V1-V3 region) by polymerase chain reaction with specific primers. Our analysis revealed that whitefly infestation reshaped the overall microbiota structure compared to that of the control rhizosphere, even after 1 week of infestation. Examination of the relative abundance distributions of microbes demonstrated that whitefly infestation shifted the proteobacterial groups at week 2. Intriguingly, the population of Pseudomonadales of the class Gammaproteobacteria significantly increased after 2 weeks of whitefly infestation, and the fluorescent Pseudomonas spp. recruited to the rhizosphere were confirmed to exhibit insect-killing capacity. Additionally, three taxa, including Caulobacteraceae, Enterobacteriaceae, and Flavobacteriaceae, and three genera, including Achromobacter, Janthinobacterium, and Stenotrophomonas, were the most abundant bacterial groups in the whitefly infested plant rhizosphere. Our results indicate that whitefly infestation leads to the recruitment of specific groups of rhizosphere bacteria by the plant, which confer beneficial traits to the host plant. This

  12. Aboveground Whitefly Infestation-mediated Reshaping of the Root Microbiota

    Directory of Open Access Journals (Sweden)

    Hyun Gi Kong

    2016-09-01

    Full Text Available Plants respond to various types of herbivore and pathogen attack using well-developed defensive machinery designed for self-protection. The phloem-sucking insect infestation such as whitefly and aphid on plant leaves were previously shown to influence both the saprophytic and pathogenic bacterial community in the plant rhizosphere. However, the modulation of the root microbial community by plants following insect infestation has been largely unexplored. Only limited studies of culture-dependent bacterial diversity caused by whitefly and aphid have been conducted. In this study, to obtain a complete picture of the belowground microbiome community, we performed high-speed and high-throughput next-generation sequencing. We sampled the rhizosphere soils of pepper seedlings at 0, 1, and 2 weeks after whitefly infestation versus the water control. We amplified a partial 16S ribosomal RNA gene (V1–V3 region by polymerase chain reaction with specific primers. Our analysis revealed that whitefly infestation reshaped the overall microbiota structure compared to that of the control rhizosphere, even after 1 week of infestation. Examination of the relative abundance distributions of microbes demonstrated that whitefly infestation shifted the proteobacterial groups at week 2. Intriguingly, the population of Pseudomonadales of the class Gammaproteobacteria significantly increased after 2 weeks of whitefly infestation and confirmed the recruitment of fluorescent Pseudomonas spp. exhibiting the insect-killing capacity. Additionally, three taxa, including Caulobacteraceae, Enterobacteriaceae, and Flavobacteriaceae, and three genera, including Achromobacter, Janthinobacterium, and Stenotrophomonas, were the most abundant bacterial groups in the whitefly-infested plant rhizosphere. Our results indicate that whitefly infestation leads plant recruiting specific group of rhizosphere bacteria conferring beneficial traits for host plant. This study provides a new

  13. Arbuscular mycorrhizal assemblages in native plant roots change in the presence of invasive exotic grasses

    Science.gov (United States)

    Hawkes, C.V.; Belnap, J.; D'Antonio, C.; Firestone, M.K.

    2006-01-01

    Plant invasions have the potential to significantly alter soil microbial communities, given their often considerable aboveground effects. We examined how plant invasions altered the arbuscular mycorrhizal fungi of native plant roots in a grassland site in California and one in Utah. In the California site, we used experimentally created plant communities composed of exotic (Avena barbata, Bromus hordeaceus) and native (Nassella pulchra, Lupinus bicolor) monocultures and mixtures. In the Utah semi-arid grassland, we took advantage of invasion by Bromus tectorum into long-term plots dominated by either of two native grasses, Hilaria jamesii or Stipa hymenoides. Arbuscular mycorrhizal fungi colonizing roots were characterized with PCR amplification of the ITS region, cloning, and sequencing. We saw a significant effect of the presence of exotic grasses on the diversity of mycorrhizal fungi colonizing native plant roots. In the three native grasses, richness of mycorrhizal fungi decreased; in the native forb at the California site, the number of fungal RFLP patterns increased in the presence of exotics. The exotic grasses also caused the composition of the mycorrhizal community in native roots to shift dramatically both in California, with turnover of Glomus spp., and Utah, with replacement of Glomus spp. by apparently non-mycorrhizal fungi. Invading plants may be able to influence the network of mycorrhizal fungi in soil that is available to natives through either earlier root activity or differential carbon provision compared to natives. Alteration of the soil microbial community by plant invasion can provide a mechanism for both successful invasion and the resulting effects of invaders on the ecosystem. ?? Springer 2006.

  14. A Community-Based Surveillance on Determinants of Rodent Infestation

    Directory of Open Access Journals (Sweden)

    Hsiu-Hua Pai

    2003-01-01

    Full Text Available Rodent infestation is an important factor in the transmission of infectious diseases of public health importance. From October to November 1998, surveillance stations were established in 110 boroughs of Kaohsiung City in southern Taiwan. Boroughs were chosen by random sampling 10 boroughs from each of 11 districts (464 boroughs in the city. The extent of rodent infestation was determined by cage trapping. The possibility of applying a community-based control program was evaluated by investigating associated demographic and environmental factors as well as related knowledge, attitudes, and behaviors. A total of 90 rodents were trapped in 41% of the 110 boroughs. Using univariate analyses, 17 factors were significantly associated with rodent infestation. A lack of knowledge that rodent control relies on community cooperation was the most important factor among the seven variables associated with the extent of rodent infestation (OR 3.1 by logistic multiple regression. This revealed the importance of community cooperation in controlling rodent infestation. Moreover, improvement of environmental hygiene associated with garbage problems, such as cleanliness of storage rooms and closets, and the hygiene of empty space and resource recycling stations should not be ignored.

  15. Diversity and aggregation patterns of plant species in a grass community

    Directory of Open Access Journals (Sweden)

    Ran Li

    2014-09-01

    Full Text Available Both composition and aggregation patterns of species in a community are the outcome of community self-organizing. In this paper we conducted analysis on species diversity and aggregation patterns of plant species in a grass community, Zhuhai, China. According to the sampling survey, in total of 47 plant species, belonging to 16 families, were found. Compositae had 10 species (21.3%, seconded by Gramineae (9 species, 19.1%, Leguminosae (6 species, 12.8%, Cyperaceae (4 species, 8.5%, and Malvaceae (3 species, 6.4%. The results revealed that the means of aggregation indices Iδ, I and m*/m were 21.71, 15.71 and 19.89 respectively and thus individuals of most of plant species strongly followed aggregative distribution. Iwao analysis indicated that both individuals of all species and clumps of all individuals of all species followed aggregative distribution. Taylor's power law indicated that individuals of all species followed aggregative distribution and aggregation intensity strengthened as the increase of mean density. We held that the strong aggregation intensity of a species has been resulted from the strong adaptation ability to the environment, the strong interspecific competition ability and the earlier establishment of the species. Fitting goodness of the mean, I, Iδ, m*/m with probability distributions demonstrated that the mean (density, I, Iδ, and m*/m over all species followed Weibull distribution rather than normal distribution. Lophatherum gracile, Paederia scandens (Lour. Merr., Eleusine indica, and Alternanthera philoxeroides (Mart. Griseb. were mostly aggregative, and Oxalis sp., Eleocharis plantagineiformis, Vernonia cinerea (L. Less., and Sapium sebiferum (L. Roxb, were mostly uniform in the spatial distribution. Importance values (IV showed that Cynodon dactylon was the most important species, seconded by Desmodium triflorum (L. DC., Cajanus scarabaeoides (L. Benth., Paspalum scrobiculatum L., and Rhynchelytrum repens. Oxalis

  16. Evapotranspiration in three plant communities of a Rhigozum ...

    African Journals Online (AJOL)

    Evapotranspiration losses in three Rhigozum trichotomum plant communities namely, pure grass, pure R. trichotomum and a mixed stand of grass and R. trichotomum were determined during the 1985-86 growing season. Three hydrologically isolated plots in each community type were irrigated and changes in soil water ...

  17. Ecophysiological Responses of Invasive and Native Grass Communities with Simulated Warming

    Science.gov (United States)

    Quade, B.; Ravi, S.; Huxman, T. E.

    2010-12-01

    William Quade1, Sujith Ravi2, Ashley Weide2, Greg Barron-Gafford2, Katerina Dontsova2 and Travis E Huxman2 1Carthage College, WI 2 B2 Earthscience & UA Biosphere 2, University of Arizona, Tucson. Abstract Climate change, anthropogenic disturbances and lack of proper management practices have rendered many arid regions susceptible to invasions by exotic grasses with consequent ecohydrological, biogeochemical and socio economic implications. Thus, understanding the ecophysiological processes driving these large-scale vegetation shifts in drylands, in the context of rising temperatures and recurrent droughts is fundamental to global change research. Using the Biosphere 2 facility to maintain distinct temperature treatments of ambient and predicted warmer conditions (+ 4o C) inside, we compared the physiological (e.g. photosynthesis, stomatal conductance, biomass) responses of a native grass - Heteropogan contortus (Tanglehead) and an invasive grass - Pennisetum ciliare (Buffelgrass) growing in single and mixed communities. The results indicate that Buffelgrass can assimilate more CO2 per unit leaf area under current conditions, though warming seems to inhibit the performance when looking at biomass, photosynthesis and stomatal conductance. Under similar moisture regimes Buffelgrass performed better than Tangle head in mixed communities regardless of the temperature. Both grasses had decrease in stomatal conductance with warmer conditions, however the Buffel grass did not have the same decrease of conductance when planted in a mixed communities. Key words: Buffelgrass, Tanglehead, Biosphere 2, stomatal conductance, climate change

  18. Grass or fern competition reduce growth and survival of planted tree seedlings

    Science.gov (United States)

    Larry H. McCormick; Todd W. Bowersox

    1997-01-01

    Bareroot seedlings of northern red oak, white ash, yellow-poplar and white pine were planted into herbaceous communities at three forested sites in central Pennsylvania that were clearcut 0 to 1 year earlier. Seedlings were grown 4 years in the presence and absence of either an established grass or hay-scented fern community. Survival and height growth were measured...

  19. Reed canary grass observations of effects on crop stand and fibre quality caused by infestation of Epicalamus phalaridis

    Directory of Open Access Journals (Sweden)

    S. HELLQVIST

    2008-12-01

    Full Text Available A severe infestation of the gall midge Epicalamus phalaridis (Diptera: Cecidomyiidaeoccurred in a field of reed canary grass, Phalaris arundinacea in northern Sweden. The midge species has potential to become a serious pest on Phalaris grown for bioenergy or fibre production. Larvae of the midge feed beneath leaf sheaths and the crop lodges in late summer. Details are given on the biology of the midge. In the infested field, population densities of the midge were very high during three consecutive years. The crop was weakened and the occurrence of weeds increased. The dry matter yields declined markedly and were after three years of midge-attack about 50% of the average yield in the preceding years. The yield dropped comparatively more when the crop was harvested in the spring as opposed to harvest in late autumn and more at a nitrogen fertilisation at 100 kg compared to 200 kg N ha–1 per year. The effect of midge attack on fibre quality was studied. The fibre properties of midge-infested parts of internodes were poor, but as midge-damaged parts are brittle, they could probably be sorted out in a fractionation process. Undamaged parts of infested internodes had the same fibre properties as those from an uninfested crop.;

  20. Infestation of Raoiella indica Hirst (Trombidiformes: Tenuipalpidae) on Host Plants of High Socio-Economic Importance for Tropical America.

    Science.gov (United States)

    Otero-Colina, G; González-Gómez, R; Martínez-Bolaños, L; Otero-Prevost, L G; López-Buenfil, J A; Escobedo-Graciamedrano, R M

    2016-06-01

    The mite Raoiella indica Hirst was recently introduced into America, where it has shown amazing ability to disseminate and broaden its range of hosts. An experiment was conducted in Cancún, Mexico, to determine infestation levels of this mite on plants recorded as hosts: coconut palm (Cocos nucifera) of cultivars Pacific Tall and Malayan Dwarf, oil palm (Elaeis guineensis) hybrids Deli x Ghana and Deli x Nigeria, Dwarf Giant banana (Musa acuminata, AAA subgroup Cavendish), Horn plantain (M. acuminata x Musa balbisiana, AAB subgroup Plantain), lobster claw (Heliconia bihai), and red ginger (Alpinia purpurata). Nursery plants of these host species or cultivars were artificially infested with R. indica in February 2011. In the four replications of 10 plants, each plant was infested with 200 R. indica specimens, and the numbers of infesting mites were recorded for 6 months. A maximum of 18,000 specimens per plant were observed on coconut Pacific Tall and Malayan Dwarf, followed by lobster claw, with a maximum of 1000 specimens per plant. Infestations were minimal for the remaining plants. Mite numbers on all plants declined naturally during the rainy season. All plant materials sustained overlapping mite generations, indicating that they are true hosts. Complementarily, infestation level was determined in backyard bananas and plantains. Correlations of infestation with plant height, distance from coconuts, and exposure to direct sunlight were estimated. Both bananas and plantains were infested by R. indica even when situated far from infested coconut palms. A Spearman correlation was found between infestation and plant height, although it was significant only for Silk plantain.

  1. Prognoses of plant community changes in the territories not used for agriculture after the accident at the Chernobyl nuclear power plant

    International Nuclear Information System (INIS)

    Timofeev, S.F.; Podolyak, A.G.; Avseenko, S.V.; Sapegin, L.M.; Dayneko, N.M.

    1997-01-01

    Science-research in the zones of eviction in the Bragin district of the Gomel region confirms interdependence between development of plants' communities and such factors as type of soil, kind of agricultural field, the term of nonuse. The study of vegetation change on the former fields, represented by turf-podsol soil, indicates that plant community has by now been formed on it, in which out of 100% projection cover prevail Artemisia absinthium L., - 40%, Artemisia campestris L. -20%, Artemisia vulgaris L. -5%, Elytrigia repens (L.) Nevski - 30%. On lower lots, represented by turf-podsol swampy soil, prevail Elytrigia repens - 60%, Artemisia absinthium -20%, Erigeron canadensis - 10%. So, on the unused arable land the tendency to form communities of Elytrigia repens is observed. In 10-15 years there may be a community here, consisting of bunch-grasses an densely turfed grasses. On the haymaking and pasture meadows, sowing plants are replaced by rhizome bunch-grasses (Poa pratensis L.) rhizome (Elytrigia repens) and diverse grasses (Artemisia absinthium, Achillea millefolium, Erigeron canadensis and others). On sowing meadows, situated on peat-swamp soil, Urtica dioica L. took root. It formed powerful herbage with 80-90% projection cover, which prevents the renewing of grasses. Only after gradual decrease of Urtica dioica there will appear different grasses, as well as rhisome grasses. In future this land can be used for haymaking. It is impossible to use this kind of soil without herbicides in large quantity, which may create additional problems of ecological character

  2. Phytophagous insect fauna tracks host plant responses to exotic grass invasion.

    Science.gov (United States)

    Almeida-Neto, Mário; Prado, Paulo I; Lewinsohn, Thomas M

    2011-04-01

    The high dependence of herbivorous insects on their host plants implies that plant invaders can affect these insects directly, by not providing a suitable habitat, or indirectly, by altering host plant availability. In this study, we sampled Asteraceae flower heads in cerrado remnants with varying levels of exotic grass invasion to evaluate whether invasive grasses have a direct effect on herbivore richness independent of the current disturbance level and host plant richness. By classifying herbivores according to the degree of host plant specialization, we also investigated whether invasive grasses reduce the uniqueness of the herbivorous assemblages. Herbivorous insect richness showed a unimodal relationship with invasive grass cover that was significantly explained only by way of the variation in host plant richness. The same result was found for polyphagous and oligophagous insects, but monophages showed a significant negative response to the intensity of the grass invasion that was independent of host plant richness. Our findings lend support to the hypothesis that the aggregate effect of invasive plants on herbivores tends to mirror the effects of invasive plants on host plants. In addition, exotic plants affect specialist insects differently from generalist insects; thus exotic plants affect not only the size but also the structural profile of herbivorous insect assemblages.

  3. Infestation of the banana root borer among different banana plant genotypes

    Directory of Open Access Journals (Sweden)

    Fernando Teixeira de Oliveira

    Full Text Available ABSTRACT: In this study, we aimed to investigate Cosmopolites sordidus (Coleoptera: Dryophthoridae infestation among different banana genotypes in a commercial banana orchard over the course of 30 months. Banana root borer infestation was compared in 20 banana genotypes, including five varieties and 15 hybrids. Overall, we observed that 94.17% of pest infestation cases occurred in the cortex region, and only 5.83% occurred in the central cylinder. Genotypes least sensitive to infestation were the Prata Anã (AAB and Pacovan (AAB varieties, where no damage was recorded. Among the hybrid genotypes, PV 9401 and BRS Fhia 18 showed intermediate levels of sensitivity, while BRS Tropical hybrids (AAAB, PA 9401 (AAAB, BRS Vitoria (AAAB, YB 4203 (AAAB, and Bucaneiro (AAAA were the most sensitive to attack by banana root borer. This study demonstrated that the infestation of the banana root borer varies according banana plant genotype, and the utilization of less susceptible genotypes could reduce infestation rates of C. sordidus.

  4. Role of grass-legume communities in revegetation of a subalpine mine site in British Columbia

    Energy Technology Data Exchange (ETDEWEB)

    Yamanaka, K

    1982-01-01

    This study describes an investigation of the potential for pioneer grass-legume communities to stabilize and ameliorate geologically-fresh soil leading to the establishment of a self-sustaining, progressive plant succession on a surface-mined subalpine site. The study area is located 2000 m above sea level in the Canadian Rocky Mountains. Field studies revealed chronological trends in grass-legume communities at four sites revegetated during 1974-1978 including: species composition, legumes (Trifolium repens L., T. hybridum L. and Medicago sativa L.) performing increasingly poorly on the older sites; biomass changes, a shoot to root ratio (S/R) decreasing from 2.3 to 0.2 as the communities aged; and litter accumulation which continued even on the oldest site. Fertilizer (13-16-10) operationally applied at 150-391 kg/ha enhanced the growth of Dactylis gomerata L. and litter degradation, and acidified the soil. Nitrogen fertilization was also associated with two clear inverse relationships identified between D. glomerata and Festuca rubra L. biomass, and between soil pH and phosphorus levels. In greenhouse tests grasses were revealed to be more efficient soil nitrogen consumers than were legumes and nitrogen fixation decreased significantly (P < 0.01) and linearly with increasing grass seeding rates.

  5. Direct and indirect impacts of infestation of tomato plant by Myzus persicae (Hemiptera: Aphididae on Bemisia tabaci (Hemiptera: Aleyrodidae.

    Directory of Open Access Journals (Sweden)

    Xiao-Ling Tan

    Full Text Available The impacts of infestation by the green peach aphid (Myzus persicae on sweetpotato whitefly (Bemisia tabaci settling on tomato were determined in seven separate experiments with whole plants and with detached leaves through manipulation of four factors: durations of aphid infestation, density of aphids, intervals between aphid removal after different durations of infestation and the time of whitefly release, and leaf positions on the plants. The results demonstrated that B. tabaci preferred to settle on the plant leaves that had not been infested by aphids when they had a choice. The plant leaves on which aphids were still present (direct effect had fewer whiteflies than those previously infested by aphids (indirect effect. The whiteflies were able to settle on the plant which aphids had previously infested, and also could settle on leaves with aphids if no uninfested plants were available. Tests of direct factors revealed that duration of aphid infestation had a stronger effect on whitefly landing preference than aphid density; whitefly preference was the least when 20 aphids fed on the leaves for 72 h. Tests of indirect effects revealed that the major factor that affected whitefly preference for a host plant was the interval between the time of aphid removal after infestation and the time of whitefly release. The importance of the four factors that affected the induced plant defense against whiteflies can be arranged in the following order: time intervals between aphid removal and whitefly release > durations of aphid infestation > density of aphids > leaf positions on the plants. In conclusion, the density of aphid infestation and time for which they were feeding influenced the production of induced compounds by tomatoes, the whitefly responses to the plants, and reduced interspecific competition.

  6. Urban Rights-of-Way as Reservoirs for Tall-Grass Prairie Plants and Butterflies

    Science.gov (United States)

    Leston, Lionel; Koper, Nicola

    2016-03-01

    Urban rights-of-way may be potential reservoirs of tall-grass prairie plants and butterflies. To determine if this is true, in 2007-2008, we conducted vegetation surveys of species richness and cover, and butterfly surveys of species richness and abundance, along 52 transmission lines and four remnant prairies in Winnipeg, Manitoba. We detected many prairie plants and butterflies within transmission lines. Some unmowed and infrequently managed transmission lines had native plant species richness and total percent cover of native plants comparable to that of similar-sized remnant tall-grass prairies in the region. Although we did not find significant differences in overall native butterfly numbers or species richness between rights-of-way and remnant prairies, we found lower numbers of some prairie butterflies along frequently mowed rights-of-way than within remnant tall-grass prairies. We also observed higher butterfly species richness along sites with more native plant species. By reducing mowing and spraying and reintroducing tall-grass prairie plants, urban rights-of-way could serve as extensive reservoirs for tall-grass prairie plants and butterflies in urban landscapes. Eventually, managing urban rights-of-way as reservoirs for tall-grass prairie plants and animals could contribute to the restoration of tall-grass prairie in the North American Midwest.

  7. Urban Rights-of-Way as Reservoirs for Tall-Grass Prairie Plants and Butterflies.

    Science.gov (United States)

    Leston, Lionel; Koper, Nicola

    2016-03-01

    Urban rights-of-way may be potential reservoirs of tall-grass prairie plants and butterflies. To determine if this is true, in 2007-2008, we conducted vegetation surveys of species richness and cover, and butterfly surveys of species richness and abundance, along 52 transmission lines and four remnant prairies in Winnipeg, Manitoba. We detected many prairie plants and butterflies within transmission lines. Some unmowed and infrequently managed transmission lines had native plant species richness and total percent cover of native plants comparable to that of similar-sized remnant tall-grass prairies in the region. Although we did not find significant differences in overall native butterfly numbers or species richness between rights-of-way and remnant prairies, we found lower numbers of some prairie butterflies along frequently mowed rights-of-way than within remnant tall-grass prairies. We also observed higher butterfly species richness along sites with more native plant species. By reducing mowing and spraying and reintroducing tall-grass prairie plants, urban rights-of-way could serve as extensive reservoirs for tall-grass prairie plants and butterflies in urban landscapes. Eventually, managing urban rights-of-way as reservoirs for tall-grass prairie plants and animals could contribute to the restoration of tall-grass prairie in the North American Midwest.

  8. Interactive effects of plant-available soil silicon and herbivory on competition between two grass species

    Science.gov (United States)

    Garbuzov, Mihail; Reidinger, Stefan; Hartley, Susan E.

    2011-01-01

    Background and Aims The herbivore defence system of true grasses (Poaceae) is predominantly based on silicon that is taken up from the soil and deposited in the leaves in the form of abrasive phytoliths. Silicon uptake mechanisms can be both passive and active, with the latter suggesting that there is an energetic cost to silicon uptake. This study assessed the effects of plant-available soil silicon and herbivory on the competitive interactions between the grasses Poa annua, a species that has previously been reported to accumulate only small amounts of silicon, and Lolium perenne, a high silicon accumulator. Methods Plants were grown in mono- and mixed cultures under greenhouse conditions. Plant-available soil silicon levels were manipulated by adding silicon to the soil in the form of sodium silicate. Subsets of mixed culture pots were exposed to above-ground herbivory by desert locusts (Schistocerca gregaria). Key Results In the absence of herbivory, silicon addition increased biomass of P. annua but decreased biomass of L. perenne. Silicon addition increased foliar silicon concentrations of both grass species >4-fold. Under low soil-silicon availability the herbivores removed more leaf biomass from L. perenne than from P. annua, whereas under high silicon availability the reverse was true. Consequently, herbivory shifted the competitive balance between the two grass species, with the outcome depending on the availability of soil silicon. Conclusions It is concluded that a complex interplay between herbivore abundance, growth–defence trade-offs and the availability of soil silicon in the grasses' local environment affects the outcome of inter-specific competition, and so has the potential to impact on plant community structure. PMID:21868406

  9. Plant growth stage-specific injury and economic injury level for verde plant bug, Creontiades signatus (Hemiptera: Miridae), on cotton: effect of bloom period of infestation.

    Science.gov (United States)

    Brewer, Michael J; Anderson, Darwin J; Armstrong, J Scott

    2013-10-01

    Verde plant bugs, Creontiades signatus Distant (Hemiptera: Miridae), were released onto caged cotton, Cossypium hirsutum L., for a 1-wk period to characterize the effects of insect density and bloom period of infestation on cotton injury and yield in 2011 and 2012, Corpus Christi, TX. When plants were infested during early bloom (10-11 nodes above first white flower), a linear decline in fruit retention and boll load and a linear increase in boll injury were detected as verde plant bug infestation levels increased from an average of 0.5 to 4 bugs per plant. Lint and seed yield per plant showed a corresponding decline. Fruit retention, boll load, and yield were not affected on plants infested 1 wk later at peak bloom (8-9 nodes above first white flower), even though boll injury increased as infestation levels increased. Second-year testing verified boll injury but not yield loss, when infestations occurred at peak bloom. Incidence of cotton boll rot, known to be associated with verde plant bug feeding, was low to modest (verde plant bug were important contributors to yield decline, damage potential was greatest during the early bloom period of infestation, and a simple linear response best described the yield response-insect density relationship at early bloom. Confirmation that cotton after peak bloom was less prone to verde plant bug injury and an early bloom-specific economic injury level were key findings that can improve integrated pest management decision-making for dryland cotton, at least under low-rainfall growing conditions.

  10. Differentiation of plant age in grasses using remote sensing

    Science.gov (United States)

    Knox, Nichola M.; Skidmore, Andrew K.; van der Werff, Harald M. A.; Groen, Thomas A.; de Boer, Willem F.; Prins, Herbert H. T.; Kohi, Edward; Peel, Mike

    2013-10-01

    Phenological or plant age classification across a landscape allows for examination of micro-topographical effects on plant growth, improvement in the accuracy of species discrimination, and will improve our understanding of the spatial variation in plant growth. In this paper six vegetation indices used in phenological studies (including the newly proposed PhIX index) were analysed for their ability to statistically differentiate grasses of different ages in the sequence of their development. Spectra of grasses of different ages were collected from a greenhouse study. These were used to determine if NDVI, NDWI, CAI, EVI, EVI2 and the newly proposed PhIX index could sequentially discriminate grasses of different ages, and subsequently classify grasses into their respective age category. The PhIX index was defined as: (AVNIRn+log(ASWIR2n))/(AVNIRn-log(ASWIR2n)), where AVNIRn and ASWIR2n are the respective normalised areas under the continuum removed reflectance curve within the VNIR (500-800 nm) and SWIR2 (2000-2210 nm) regions. The PhIX index was found to produce the highest phenological classification accuracy (Overall Accuracy: 79%, and Kappa Accuracy: 75%) and similar to the NDVI, EVI and EVI2 indices it statistically sequentially separates out the developmental age classes. Discrimination between seedling and dormant age classes and the adult and flowering classes was problematic for most of the tested indices. Combining information from the visible near infrared (VNIR) and shortwave infrared region (SWIR) region into a single phenological index captures the phenological changes associated with plant pigments and the ligno-cellulose absorption feature, providing a robust method to discriminate the age classes of grasses. This work provides a valuable contribution into mapping spatial variation and monitoring plant growth across savanna and grassland ecosystems.

  11. Population and community ecology of the rare plant amsinckia grandiflora

    Energy Technology Data Exchange (ETDEWEB)

    Carlsen, T.M.

    1996-11-01

    Research was conducted between the fall of 1992 and the spring on the population and community ecology of the rare annual plant, Amsinckia glandiflora (Gray) Kleeb. ex Greene (Boraginaceae). The research goal was to investigate the causes of the species rarity, data useful to restorative efforts. The work focused on the examination of competitive suppression by exotic annual grasses; comparisons with common, weedy congener; and the role of litter cover and seed germination and seedling establishment. Annual exotic grasses reduced A. grandiflora reproductive output to a greater extent than did the native perennial bunch grass.

  12. Intercropping System for Protection the Potato Plant from Insect Infestation

    Directory of Open Access Journals (Sweden)

    Aziza Sharaby

    2015-06-01

    Full Text Available The use of intercropping system provides an option for insect control for organic farmers that are limited in their chemical use. Additionally, intercropping systems can be attractive to conventional growers as a cost-effective insect control solution. A study was carried out for two seasons 2011-2012 and 2012-2013 to evaluate the effect of intercropping of potato (Solanum tuberosum L. with onion (Allium cepa L. on whitefly (Bemicia tabasi Gennadius and aphids’ Myzus persicae Sulz. and Aphis gossypii Glover infestation in potato fields. Results indicated that intercropping significantly reduced potato plant infestation with whitefly by 42.7, 51.3% while it was 62.69% reduction with aphids during the two successive winter seasons than when potato plants were cultivated alone. Therefore, intercropping could be recommended as a protection method of reducing pest population in the fields.

  13. Attraction of Phytoseiulus persimilis (Acari: Phytoseiidae) towards volatiles from various Tetranychus urticae-infested plant species.

    Science.gov (United States)

    van den Boom, C E M; van Beek, T A; Dicke, M

    2002-12-01

    Plants infested with the spider mite Tetranychus urticae Koch, may indirectly defend themselves by releasing volatiles that attract the predatory mite Phytoseiulus persimilis Athias-Henriot. Several plants from different plant families that varied in the level of spider mite acceptance were tested in an olfactometer. The predatory mites were significantly attracted to the spider mite-infested leaves of all test plant species. No differences in attractiveness of the infested plant leaves were found for predatory mites reared on spider mites on the different test plants or on lima bean. Thus, experience with the spider mite-induced plant volatiles did not affect the predatory mites. Jasmonic acid was applied to ginkgo leaves to induce a mimic of a spider mite-induced volatile blend, because the spider mites did not survive when incubated on ginkgo. The volatile blend induced in ginkgo by jasmonic acid was slightly attractive to predatory mites. Plants with a high degree of direct defence were thought to invest less in indirect defence than plants with a low degree of direct defence. However, plants that had a strong direct defence such as ginkgo and sweet pepper, did emit induced volatiles that attracted the predatory mite. This indicates that a combination of direct and indirect defence is to some extent compatible in plant species.

  14. Plant Communities Suitable for Green Roofs in Arid Regions

    Directory of Open Access Journals (Sweden)

    Rachel Gioannini

    2018-05-01

    Full Text Available In extensive green roof settings, plant communities can be more robust than monocultures. In addition, native plants might be hardier and more ecologically sound choices than non-native plants in green roof systems. The objectives of this research were to (1 compare the performance of plant communities with that of monocultures and (2 compare the growth of natives to non-natives in a simulated green roof setting. We conducted a two-year experiment at an outdoor site in a desert environment using four plant morphological types (groundcover, forb, succulent and grass. Native plants selected were Chrysactinia mexicana, Melampodium leucanthum, Euphorbia antisyphilitica, and Nassella tenuissima, and non-natives were Delosperma nubigenum, Stachys byzantina, Sedum kamtschiaticum and Festuca glauca. Plants were assigned randomly to either monoculture or community and grown in 1 m × 1 m custom-built trays filled with 15 cm of a proprietary blend of 50/20/30 lightweight aggregate/sand/compost (by volume. Native forb, Melampodium, in community had greater coverage for four of the five measurements in the first year over native forb in monoculture and non-native forb regardless of setting. Native forb coverage was also greater than non-native forb for three of the four measurements in year 2, regardless of setting. Coverage of native grass was significantly greater than non-native grasses throughout the experiment. Coverage was also greater for eight of nine measurements for native succulent over non-natives succulent. However, non-native groundcover coverage was significantly greater than native groundcover for seven of nine measurements. On 1 November 2016, relative water content (RWC for succulents (p = 0.0424 was greatest for native Euphorbia in monoculture at 88%. Native Euphorbia also had greater RWC than non-native Sedum on 4 April 2017 (78% and 4 July 2017 (80%. However, non-native Sedum had greater root length (6548 cm, root dry weight (12.1 g

  15. Genetic compatibility determines endophyte-grass combinations.

    Directory of Open Access Journals (Sweden)

    Kari Saikkonen

    Full Text Available Even highly mutually beneficial microbial-plant interactions, such as mycorrhizal- and rhizobial-plant exchanges, involve selfishness, cheating and power-struggles between the partners, which depending on prevailing selective pressures, lead to a continuum of interactions from antagonistic to mutualistic. Using manipulated grass-endophyte combinations in a five year common garden experiment, we show that grass genotypes and genetic mismatches constrain genetic combinations between the vertically (via host seeds transmitted endophytes and the out-crossing host, thereby reducing infections in established grass populations. Infections were lost in both grass tillers and seedlings in F(1 and F(2 generations, respectively. Experimental plants were collected as seeds from two different environments, i.e., meadows and nearby riverbanks. Endophyte-related benefits to the host included an increased number of inflorescences, but only in meadow plants and not until the last growing season of the experiment. Our results illustrate the importance of genetic host specificity and trans-generational maternal effects on the genetic structure of a host population, which act as destabilizing forces in endophyte-grass symbioses. We propose that (1 genetic mismatches may act as a buffering mechanism against highly competitive endophyte-grass genotype combinations threatening the biodiversity of grassland communities and (2 these mismatches should be acknowledged, particularly in breeding programmes aimed at harnessing systemic and heritable endophytes to improve the agriculturally valuable characteristics of cultivars.

  16. Pre-infestation of Tomato Plants by Aphids Modulates Transmission-Acquisition Relationship among Whiteflies, Tomato Yellow Leaf Curl Virus (TYLCV and Plants

    Directory of Open Access Journals (Sweden)

    Xiao L. Tan

    2017-09-01

    Full Text Available Herbivory defense systems in plants are largely regulated by jasmonate-(JA and salicylate-(SA signaling pathways. Such defense mechanisms may impact insect feeding dynamic, may also affect the transmission-acquisition relationship among virus, plants and vectoring insects. In the context of the tomato – whitefly – Tomato Yellow Leaf Curl Virus (TYLCV biological model, we tested the impact of pre-infesting plants with a non-vector insect (aphid Myzus persicae on feeding dynamics of a vector insect (whitefly Bemisia tabaci as well as virus transmission-acquisition. We showed that an aphid herbivory period of 0–48 h led to a transient systemic increase of virus concentration in the host plant (root, stem, and leaf, with the same pattern observed in whiteflies feeding on aphid-infested plants. We used real-time quantitative PCR to study the expression of key genes of the SA- and JA-signaling pathways, as well as electrical penetration graph (EPG to characterize the impact of aphid pre-infestation on whitefly feeding during TYLCV transmission (whitefly to tomato and acquisition (tomato to whitefly. The impact of the duration of aphid pre-infestation (0, 24, or 48 h on phloem feeding by whitefly (E2 during the transmission phase was similar to that of global whitefly feeding behavior (E1, E2 and probing duration during the acquisition phase. In addition, we observed that a longer phase of aphid pre-infestation prior to virus transmission by whitefly led to the up-regulation and down-regulation of SA- and JA-signaling pathway genes, respectively. These results demonstrated a significant impact of aphid pre-infestation on the tomato – whitefly – TYLCV system. Transmission and acquisition of TYLCV was positively correlated with feeding activity of B. tabaci, and both were mediated by the SA- and JA-pathways. TYLCV concentration during the transmission phases was modulated by up- and down-regulation of SA- and JA-pathways, respectively. The two

  17. Plant assemblage composition and soil P concentration differentially affect communities of AM and total fungi in a semi-arid grassland.

    Science.gov (United States)

    Klabi, Rim; Bell, Terrence H; Hamel, Chantal; Iwaasa, Alan; Schellenberg, Mike; Raies, Aly; St-Arnaud, Marc

    2015-01-01

    Adding inorganic P- and N-fixing legumes to semi-arid grasslands can increase forage yield, but soil nutrient concentrations and plant cover may also interact to modify soil fungal populations, impacting short- and long-term forage production. We tested the effect of plant assemblage (seven native grasses, seven native grasses + the domesticated N-fixing legume Medicago sativa, seven native grasses + the native N-fixing legume Dalea purpurea or the introduced grass Bromus biebersteinii + M. sativa) and soil P concentration (addition of 0 or 200 P2O5 kg ha(-1) at sowing) on the diversity and community structure of arbuscular mycorrhizal (AM) fungi and total fungi over two consecutive years, using 454-pyrosequencing of 18S rDNA and ITS amplicons. Treatment effects were stronger in the wet year (2008) than the dry year (2009). The presence of an N-fixing legume with native grasses generally increased AM fungal diversity, while the interaction between soil P concentration and plant assemblage modified total fungal community structure in 2008. Excluding interannual variations, which are likely driven by moisture and plant productivity, AM fungal communities in semi-arid grasslands appear to be primarily affected by plant assemblage composition, while the composition of other fungi is more closely linked to soil P. © FEMS 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Swine wastewater treatment using vertical subsurface flow constructed wetland planted with Napier grass

    Directory of Open Access Journals (Sweden)

    Pantip Klomjek

    2016-09-01

    Full Text Available This research aims to investigate the pollutant removal efficiencies in swine wastewater using a vertical subsurface flow constructed wetland (VSF CW planted with two species of Napier grass. The grass productivities were also cultivated and compared in order to provide information for species selection. Twelve treatment units were set up with the VSF CWs planted with Giant Napier grass (Pennisetum purpureum cv. King grass and Dwarf Napier grass (Pennisetum purpureum cv. Mott. with 2 and 5 cm d−1 of hydraulic loading rates (HLR. Comparisons of removal efficiency and grass productivity were analyzed using Duncan's Multiple Range Test and t-test at the significant level 0.05. Both species of Napier grass performed more than 70% of removal efficiency of BOD and TKN. The VSF CW planted with Giant Napier grass at 5 cm d−1 HLR performed the highest BOD removal efficiency of 94 ± 1%, while the 2 cm d−1 HLR removed COD with efficiency of 64 ± 6%. The results also showed the effluent from all treatment units contained averages of BOD, COD, TSS, TKN and pH that followed Thailand's swine wastewater quality standard. Average fresh yields and dry yields were between 4.6 ± 0.4 to 15.2 ± 1.2 and 0.5 ± 0.1 to 2.2 ± 0.1 kg m−2, respectively. The dry yields obtained from four cutting cycles in five months of CW system operation were higher than the ones planted with a traditional method, but declined continuously after each cutting cycle. Both species of Napier grass indicated their suitability to be used in the VSF CW for swine wastewater treatment.

  19. Legacy effects of no-analogue disturbances alter plant community diversity and composition in semi-arid sagebrush steppe

    Science.gov (United States)

    Ripplinger, Julie; Franklin, Janet; Edwards, Thomas C.

    2015-01-01

    Questions(i) What role does the type of managed disturbance play in structuring sagebrush steppe plant communities? (ii) How does the composition of post-disturbance plant communities change with time since disturbance? (iii) Does plant community diversity change over time following managed disturbance?LocationField study within the sagebrush steppe ecosystem. Rich County, Utah, USA.MethodsWe developed a chronosequence spanning up to 50 yrs post-treatment to study sagebrush steppe vegetation dynamics. Direct ordination was used to examine plant community composition by managed disturbance type and time since disturbance, and factorial analysis of covariance was used to examine diversity dynamics following disturbance. Indicator species values were calculated in order to identify characteristic species for each disturbance type.ResultsPlant communities experienced a shift toward distinct community composition for each of the three managed disturbance types, and gave no indication of returning to untreated community composition or diversity. Small post-disturbance increases in the number of non-native grass species were observed in the treatments relative to reference, with native forb species making the largest contribution to altered composition. On fire- and chemically-treated sites the proportional native forb species richness increased over time since disturbance, while the proportional contribution of non-native forbs to total species richness decreased. For all three treatment types, native grasses contributed less on average to total richness than on reference sites, while non-native grasses made up a higher proportion of total richness.ConclusionsCommon shrubland management techniques have legacy effects on the composition and diversity of sagebrush steppe plant communities, and no-analogue disturbances, such as chemical or mechanical treatments, have more pronounced legacy effects than treatments similar to natural disturbance regimes (fire). This study

  20. Grasses as invasive plants in South Africa revisited: Patterns, pathways and management

    Directory of Open Access Journals (Sweden)

    Vernon Visser

    2017-03-01

    Full Text Available Background: In many countries around the world, the most damaging invasive plant species are grasses. However, the status of grass invasions in South Africa has not been documented recently. Objectives: To update Sue Milton’s 2004 review of grasses as invasive alien plants in South Africa, provide the first detailed species level inventory of alien grasses in South Africa and assess the invasion dynamics and management of the group. Method: We compiled the most comprehensive inventory of alien grasses in South Africa to date using recorded occurrences of alien grasses in the country from various literature and database sources. Using historical literature, we reviewed past efforts to introduce alien grasses into South Africa. We sourced information on the origins, uses, distributions and minimum residence times to investigate pathways and patterns of spatial extent. We identified alien grasses in South Africa that are having environmental and economic impacts and determined whether management options have been identified, and legislation created, for these species. Results: There are at least 256 alien grass species in the country, 37 of which have become invasive. Alien grass species richness increased most dramatically from the late 1800s to about 1940. Alien grass species that are not naturalised or invasive have much shorter residence times than those that have naturalised or become invasive. Most grasses were probably introduced for forage purposes, and a large number of alien grass species were trialled at pasture research stations. A large number of alien grass species in South Africa are of Eurasian origin, although more recent introductions include species from elsewhere in Africa and from Australasia. Alien grasses are most prevalent in the south-west of the country, and the Fynbos Biome has the most alien grasses and the most widespread species. We identified 11 species that have recorded environmental and economic impacts in the

  1. Aboveground insect infestation attenuates belowground Agrobacterium-mediated genetic transformation.

    Science.gov (United States)

    Song, Geun Cheol; Lee, Soohyun; Hong, Jaehwa; Choi, Hye Kyung; Hong, Gun Hyong; Bae, Dong-Won; Mysore, Kirankumar S; Park, Yong-Soon; Ryu, Choong-Min

    2015-07-01

    Agrobacterium tumefaciens causes crown gall disease. Although Agrobacterium can be popularly used for genetic engineering, the influence of aboveground insect infestation on Agrobacterium induced gall formation has not been investigated. Nicotiana benthamiana leaves were exposed to a sucking insect (whitefly) infestation and benzothiadiazole (BTH) for 7 d, and these exposed plants were inoculated with a tumorigenic Agrobacterium strain. We evaluated, both in planta and in vitro, how whitefly infestation affects crown gall disease. Whitefly-infested plants exhibited at least a two-fold reduction in gall formation on both stem and crown root. Silencing of isochorismate synthase 1 (ICS1), required for salicylic acid (SA) synthesis, compromised gall formation indicating an involvement of SA in whitefly-derived plant defence against Agrobacterium. Endogenous SA content was augmented in whitefly-infested plants upon Agrobacterium inoculation. In addition, SA concentration was three times higher in root exudates from whitefly-infested plants. As a consequence, Agrobacterium-mediated transformation of roots of whitefly-infested plants was clearly inhibited when compared to control plants. These results suggest that aboveground whitefly infestation elicits systemic defence responses throughout the plant. Our findings provide new insights into insect-mediated leaf-root intra-communication and a framework to understand interactions between three organisms: whitefly, N. benthamiana and Agrobacterium. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  2. Effects of field-grown genetically modified Zoysia grass on bacterial community structure.

    Science.gov (United States)

    Lee, Yong-Eok; Yang, Sang-Hwan; Bae, Tae-Woong; Kang, Hong-Gyu; Lim, Pyung-Ok; Lee, Hyo-Yeon

    2011-04-01

    Herbicide-tolerant Zoysia grass has been previously developed through Agrobacterium-mediated transformation. We investigated the effects of genetically modified (GM) Zoysia grass and the associated herbicide application on bacterial community structure by using culture-independent approaches. To assess the possible horizontal gene transfer (HGT) of transgenic DNA to soil microorganisms, total soil DNAs were amplified by PCR with two primer sets for the bar and hpt genes, which were introduced into the GM Zoysia grass by a callus-type transformation. The transgenic genes were not detected from the total genomic DNAs extracted from 1.5 g of each rhizosphere soils of GM and non-GM Zoysia grasses. The structures and diversities of the bacterial communities in rhizosphere soils of GM and non-GM Zoysia grasses were investigated by constructing 16S rDNA clone libraries. Classifier, provided in the RDP II, assigned 100 clones in the 16S rRNA gene sequences library into 11 bacterial phyla. The most abundant phyla in both clone libraries were Acidobacteria and Proteobacteria. The bacterial diversity of the GM clone library was lower than that of the non- GM library. The former contained four phyla, whereas the latter had seven phyla. Phylogenetic trees were constructed to confirm these results. Phylogenetic analyses of the two clone libraries revealed considerable difference from each other. The significance of difference between clone libraries was examined with LIBSHUFF statistics. LIBSHUFF analysis revealed that the two clone libraries differed significantly (P〈0.025), suggesting alterations in the composition of the microbial community associated with GM Zoysia grass.

  3. Infestation of Anthonomus grandis (Coleoptera: Curculionidae on re-sprout of cotton plants

    Directory of Open Access Journals (Sweden)

    José Fernando Jurca Grigolli

    2015-06-01

    Full Text Available The destruction of cotton crop residues at the end of the crop cycle is a key strategy for the phytosanitary crop management, since its off-season re-sprout can provide sites for feeding and oviposition of pests such as the boll weevil. This study aimed to evaluate the re-sprout capacity of cotton cultivars, as well as their infestation by Anthonomus grandis. A randomized blocks design, in a 3 x 2 factorial arrangement, with three cultivars (FM 910, DeltaOPAL and NuOPAL, two mowing heights (10 cm and 20 cm and four replications, was used. Weekly evaluations were carried out for measuring the percentage of plant re-sprout for both mowing heights, percentage of flower buds infested by the boll weevil and number of adults per re-sprout. Plants mowed at 10 cm presented a lower sprout capacity and consequently less flower buds, reducing the boll weevil population density in the area, while plants mowed at 20 cm showed high re-sprouts rates, seven days after mowing. The FM 910 cultivar had the highest number of re-sprout plants, while the DeltaOPAL cultivar showed the highest number of flower buds and adults per plant, as well as the highest percentage of buds damaged by the boll weevil.

  4. Does crotalaria (Crotalaria breviflora or pumpkin (Cucurbita moschata inter-row cultivation in restoration plantings control invasive grasses?

    Directory of Open Access Journals (Sweden)

    Ricardo Gomes César

    2013-08-01

    Full Text Available Alternative methods to control invasive fodder grasses are necessary to reduce the use of herbicides in forest restoration, which has been carried out primarily in riparian zones. We sought to investigate if inter-row cultivation of crotalaria (Crotalaria breviflora DC or pumpkin (Cucurbita moschata Duschene ex. Poir with native tree species is an efficient strategy to control invasive fodder grasses in restoration plantings. We tested five treatments in a randomized block design, namely (1 control of brachiaria grass (Urochloa decumbens (Stapf. Webster with glyphosate in the implementation and post-planting grass control of the reforestation, (2 and 3 glyphosate use in the implementation and inter-row sowing of crotalaria (2 or pumpkin (3, and control of brachiaria by mowing in the post-planting phase, (4 and 5 mowing in the implementation and inter-row sowing of crotalaria (4 or pumpkin (5, and control of brachiaria by mowing in the post-planting phase. Post-planting grass control was carried out four and nine months after tree seedling planting. Throughout 13 months, we evaluated the percentage of ground cover by brachiaria grass, pumpkin production, and native tree seedling mortality, height and crown cover. The exclusive use of glyphosate, without inter-row sowing of pumpkin or crotalaria showed the most favorable results for controlling brachiaria grass and, consequently, for tree seedling development. Hence, inter-row cultivation of green manure or short-lived crop species is not enough to control invasive grasses in restoration plantings, and complementary weeding is necessary to reduce the highly competitive potential of C4 grasses for supporting native species seedlings growth.

  5. Induction of direct and indirect plant responses by jasmonic acid, low spider mite densities, or a combination of jasmonic acid treatment and spider mite infestation.

    Science.gov (United States)

    Gols, Rieta; Roosjen, Mara; Dijkman, Herman; Dicke, Marcel

    2003-12-01

    Jasmonic acid (JA) and the octadecanoid pathway are involved in both induced direct and induced indirect plant responses. In this study, the herbivorous mite, Tetranychus urticae, and its predator, Phytoseiulus persimilis, were given a choice between Lima bean plants induced by JA or spider mites and uninduced control plants. Infestation densities resulting in the induction of predator attractants were much lower than thus far assumed, i.e., predatory mites were significantly attracted to plants that were infested for 2 days with only one or four spider mites per plant. Phytoseiulus persimilis showed a density-dependent response to volatiles from plants that were infested with different numbers of spider mites. Similarly, treating plants with increasing concentrations of JA also led to increased attraction of P. persimilis. Moreover, the duration of spider mite infestation was positively correlated with the proportion of predators that were attracted to mite-infested plants. A pretreatment of the plants with JA followed by a spider mite infestation enhanced the attraction of P. persimilis to plant volatiles compared to attraction to volatiles from plants that were only infested with spider mites and did not receive a pretreatment with JA. The herbivore, T. urticae preferred leaf tissue that previously had been infested with conspecifics to uninfested leaf tissue. In the case of choice tests with JA-induced and control leaf tissue, spider mites slightly preferred control leaf tissue. When spider mites were given a choice between leaf discs induced by JA and leaf discs damaged by spider mite feeding, they preferred the latter. The presence of herbivore induced chemicals and/or spider mite products enhanced settlement of the mites, whereas treatment with JA seemed to impede settlement.

  6. Comparative Proteomic Analysis of Susceptible and Resistant Rice Plants during Early Infestation by Small Brown Planthopper

    Directory of Open Access Journals (Sweden)

    Yan Dong

    2017-10-01

    Full Text Available The small brown planthopper (Laodelphax striatellus Fallén, Homoptera, Delphacidae-SBPH is one of the major destructive pests of rice (Oryza sativa L.. Understanding on how rice responds to SBPH infestation will contribute to developing strategies for SBPH control. However, the response of rice plant to SBPH is poorly understood. In this study, two contrasting rice genotypes, Pf9279-4 (SBPH-resistant and 02428 (SBPH-susceptible, were used for comparative analysis of protein profiles in the leaf sheath of rice plants in responses to SBPH infestation. One hundred and thirty-two protein spots that were differentially expressed between the resistant and susceptible rice lines were identified with significant intensity differences (≥2-fold, P < 0.05 at 0, 6, and 12 h after SBPH infestation. Protein expression profile analysis in the leaf sheath of SBPH-resistant and SBPH-susceptible rice lines after SBPH infestation showed that proteins induced by SBPH feeding were involved mainly in stress response, photosynthesis, protein metabolic process, carbohydrate metabolic process, energy metabolism, cell wall-related proteins, amino acid metabolism and transcriptional regulation. Gene expression analysis of 24 differentially expressed proteins (DEPs showed that more than 50% DEPs were positively correlated with their mRNA levels. Analysis of some physiological indexes mainly involved in the removal of oxygen reactive species showed that the levels of superoxide dismutase (SOD and glutathione (GSH were considerably higher in Pf9279-4 than 02428 during SBPH infestation. The catalase (CAT activity and hydroxyl radical inhibition were lower in Pf9279-4 than 02428. Analysis of enzyme activities indicates that Pf9279-4 rice plants defend against SBPH through the activation of the pathway of the salicylic acid (SA-dependent systemic acquired resistance. In conclusion, this study provides some insights into the molecular networks involved on cellular and

  7. Damage of Rhopalosiphum padi (L.) (Hemiptera: Aphididae) on wheat plants related to duration time and density of infestation

    International Nuclear Information System (INIS)

    Roza-Gomes, Margarida F.; Salvadori, Jose R.; Schons, Jurema

    2008-01-01

    Aphids are considered relevant pests on wheat either by direct damage through sap sucking or by indirect damage vectoring BYDV (Barley yellow dwarf virus). Rhopalosiphum padi L. has been observed infesting wheat fields with an increasing frequency. The knowledge and the available technology, besides being more related to other aphids species already recognized as pests, they are insufficient to control the specific c problem of R. padi. Thus, this work evaluated the effects of feeding duration and infestation densities of R. padi on seedlings of wheat cv. EMBRAPA 16. rain yield, yield components and the extent of symptoms were recorded. The experiment was carried out in the fi eld under a completely randomized split-plot experimental design with four replications. The main plot was feeding duration (two and seven days) and the sub-plots were infestation densities (zero, two and 10 aphids per plant). Independent on feeding duration, 10 aphids per plant resulted in significant yield losses, reduction of number of heads and tillers per plant. Canopy dry matter was also reduced. Infestations of two and 10 aphids per plant resulted in continuous yellowing of wheat plants from tillering to the end of flowering stage. When aphids fed for seven days on wheat, more yellowing symptoms were observed at the flower stage in comparison with two days feeding. (author)

  8. Strategic control of Rhipicephalus (Boophilus) microplus infestation on beef cattle grazed in Panicum maximum grasses in a subtropical semi-arid region of Argentina.

    Science.gov (United States)

    Morel, Nicolás; Signorini, Marcelo L; Mangold, Atilio J; Guglielmone, Alberto A; Nava, Santiago

    2017-09-01

    The aim of this work was to test the efficacy of strategic control methods of Rhipicephalus microplus infestation on beef cattle grazed in Panicum maximum grasses in northwestern Argentina. Also, an analysis to discern how the R. microplus population was distributed amongst cattle was also performed to determine if partial selective treatment or cull the small proportion of more heavily infested animals are feasible options to control this tick. The strategic scheme of treatments was designed to act on the small 1st generation of R. microplus in early spring and prevent in that way the appearance of the annual peak of abundance of R. microplus in summer and autumn. Animals of the group 1 were treated with ivermectin 3.15% on day 0 (25th September 2015), with fluazuron on day 32 (27th October 2015) and with fipronil on day 75 (9th December 2015). Animals of group 2 formed the control group. The overall effect of the treatments was positively significant. The number of ticks observed on the control group was significantly higher than the number of ticks observed on the treated group in all post-treatment counts (Pcattle in all counts was adjusted to the negative binomial distribution, but a temporal variation in the tick aggregation levels associated to changes in tick abundance was found. The higher the abundance of R. microplus, the lower the aggregation. It was found that the steers (15.8% of the total number of animals evaluated) belonging to the high infestation group accounted for 23.0% of the total ticks. The strategic control method evaluated during this study provides a remarkable overall effect against R. microplus because it significantly reduces the tick infestation on cattle with only three applications of acaricides in one-year period. The analyses of tick distribution amongst cattle suggest that partial selective treatment and culling do not represent feasible methods to control R. microplus infestation on cattle. Copyright © 2017 Elsevier B.V. All

  9. Rat infestation associated with environmental deficiencies in an urban slum community with high risk of leptospirosis transmission.

    Science.gov (United States)

    Santos, Norlan de Jesus; Sousa, Erica; Reis, Mitermayer G; Ko, Albert I; Costa, Federico

    2017-03-09

    We analyzed environmental factors that provide food, water and harborage to rodents and the risk of household rodent infestation in a slum community with a high risk of leptospirosis transmission. Detailed environmental surveys were performed in 221 households. Multivariate regression models evaluated the association between rodent infestation and socioeconomic status and environmental attributes obtained from Geographical Information System surveys. The general household infestation rate was 45.9%. Rattus norvegicus signs were the most prevalent, present in 74% of the infested households. The risk for rodent infestation was associated with environmental factors supporting harborage for rats, such as dilapidated fences/walls (OR: 8.95; 95%CI: 2.42-33.12) and households built on an earthen slope (OR: 4.68; 95%CI: 2.23-9.81). An increase of 1 meter from the nearest sewer was associated with a 3% (95%CI: 1%-5%) decrease in the risk of rodent infestation. A lack of sanitation where poor people live provides factors for rat infestation and could the target of educational interventions.

  10. Tackling Contentious Invasive Plant Species: A Case Study of Buffel Grass in Australia

    Science.gov (United States)

    Grice, Anthony C.; Friedel, Margaret H.; Marshall, Nadine A.; van Klinken, Rieks D.

    2012-02-01

    Introduced plants that have both production values and negative impacts can be contentious. Generally they are either treated as weeds and their use prohibited; or unfettered exploitation is permitted and land managers must individually contend with any negative effects. Buffel grass ( Cenchrus ciliaris) is contentious in Australia and there has been no attempt to broadly and systematically address the issues surrounding it. However, recent research indicates that there is some mutual acceptance by proponents and opponents of each others' perspectives and we contend that this provides the basis for a national approach. It would require thorough and on-going consultation with stakeholders and development of realistic goals that are applicable across a range of scales and responsive to regional differences in costs, benefits and socio-economic and biophysical circumstances. It would be necessary to clearly allocate responsibilities and ascertain the most appropriate balance between legislative and non-legislative mechanisms. A national approach could involve avoiding the introduction of additional genetic material, countering proliferation in regions where the species is sparse, preventing incursion into conservation reserves where it is absent, containing strategically located populations and managing communities to prevent or reduce dominance by buffel grass. This approach could be applied to other contentious plant species.

  11. Genome-Wide Analysis of Syntenic Gene Deletion in the Grasses

    Science.gov (United States)

    Schnable, James C.; Freeling, Michael; Lyons, Eric

    2012-01-01

    The grasses, Poaceae, are one of the largest and most successful angiosperm families. Like many radiations of flowering plants, the divergence of the major grass lineages was preceded by a whole-genome duplication (WGD), although these events are not rare for flowering plants. By combining identification of syntenic gene blocks with measures of gene pair divergence and different frequencies of ancient gene loss, we have separated the two subgenomes present in modern grasses. Reciprocal loss of duplicated genes or genomic regions has been hypothesized to reproductively isolate populations and, thus, speciation. However, in contrast to previous studies in yeast and teleost fishes, we found very little evidence of reciprocal loss of homeologous genes between the grasses, suggesting that post-WGD gene loss may not be the cause of the grass radiation. The sets of homeologous and orthologous genes and predicted locations of deleted genes identified in this study, as well as links to the CoGe comparative genomics web platform for analyzing pan-grass syntenic regions, are provided along with this paper as a resource for the grass genetics community. PMID:22275519

  12. Alien plant invasion in mixed-grass prairie: Effects of vegetation type and anthropogenic disturbance

    Science.gov (United States)

    Larson, D.L.; Anderson, P.J.; Newton, W.

    2001-01-01

    The ability of alien plant species to invade a region depends not only on attributes of the plant, but on characteristics of the habitat being invaded. Here, we examine characteristics that may influence the success of alien plant invasion in mixed-grass prairie at Theodore Roosevelt National Park, in western North Dakota, USA. The park consists of two geographically separate units with similar vegetation types and management history, which allowed us to examine the effects of native vegetation type, anthropogenic disturbance, and the separate park units on the invasion of native plant communities by alien plant species common to counties surrounding both park units. If matters of chance related to availability of propagules and transient establishment opportunities determine the success of invasion, park unit and anthropogenic disturbance should better explain the variation in alien plant frequency. If invasibility is more strongly related to biotic or physical characteristics of the native plant communities, models of alien plant occurrence should include vegetation type as an explanatory variable. We examined >1300 transects across all vegetation types in both units of the park. Akaike's Information Criterion (AIC) indicated that the fully parameterized model, including the interaction among vegetation type, disturbance, and park unit, best described the distribution of both total number of alien plants per transect and frequency of alien plants on transects where they occurred. Although all vegetation types were invaded by alien plants, mesic communities had both greater numbers and higher frequencies of alien plants than did drier communities. A strong element of stochasticity, reflected in differences in frequencies of individual species between the two park units, suggests that prediction of risk of invasion will always involve uncertainty. In addition, despite well-documented associations between anthropogenic disturbance and alien plant invasion, five of

  13. Soil-landform-plant communities relationships of a periglacial landscape at Potter Peninsula, Maritime Antarctica

    Science.gov (United States)

    Poelking, E. L.; Schaefer, C. E. R.; Fernandes Filho, E. I.; de Andrade, A. M.; Spielmann, A. A.

    2014-08-01

    Integrated studies on the interplay between soils, periglacial geomorphology and plant communities are crucial for the understanding of climate change effects on terrestrial ecosystems of Maritime Antarctica, one of the most sensitive areas to global warming. Knowledge on physical environmental factors that influence plant communities can greatly benefit studies on monitoring climate change in Maritime Antarctica, where new ice-free areas are being constantly exposed, allowing plant growth and organic carbon inputs. The relationship between topography, plant communities and soils was investigated in Potter Peninsula, King George Island, Maritime Antarctica. We mapped the occurrence and distribution of plant communities and identified soil-landform-vegetation relationships. The vegetation map was obtained by classification of a Quickbird image, coupled with detailed landform and characterization of 18 soil profiles. The sub-formations were identified and classified, and we also determined the total elemental composition of lichens, mosses and grasses. Plant communities at Potter Peninsula occupy 23% of the ice-free area, at different landscape positions, showing decreasing diversity and biomass from the coastal zone to inland areas where sub-desert conditions prevail. There is a clear dependency between landform and vegetated soils. Soils with greater moisture or poorly drained, and acid to neutral pH, are favourable for mosses subformations. Saline, organic-matter rich ornithogenic soils of former penguin rookeries have greater biomass and diversity, with mixed associations of mosses and grasses, while stable felseenmeers and flat rocky cryoplanation surfaces are the preferred sites for Usnea and Himantormia lugubris lichens, at the highest surface. Lichens subformations cover the largest vegetated area, showing varying associations with mosses.

  14. Interspecific nutrient transfer in a tallgrass prairie plant community

    International Nuclear Information System (INIS)

    Walter, L.E.F.; Hartnett, D.C.; Hetrick, B.A.D.; Schwab, A.P.

    1996-01-01

    Interplant nutrient transfer may be an important ecological process in grasslands, and may significantly influence plant neighborhood interactions. We investigated the potential for phosphorus transfer between the dominant grass Andropogon gerardii and several neighboring plant species in tallgrass prairie via a field 32PO4 labelling experiment. The mean amount of 32P received from donor shoots differed significantly among neighboring species and decreased with increasing distance from the donor. In general, forbs and cool-season C3 grasses received more labelled 32P than warm-season C4 grasses. Phosphorus transfer occurred over distances up to 0.5 m. The effects of species and distance on movement of phosphorus changed with increasing time after labelling. The relative mass of receiver and donor shoots did not affect amounts of 32P transfer. A benomyl fungicide treatment, applied to suppress mycorrhizal activity, likely did not affect existing vegetative hyphae and did not affect the amount of 32P transferred. These studies demonstrate that: (1) phosphorus is transferred among neighboring species in tallgrass prairie plant communities, (2) phosphorus may be transferred over significantly greater distances than reported in other grasslands, and (3) there is differential transfer among co-occurring species. Hypothesized mechanisms accounting for these patterns in tallgrass prairie include mycorrhizal hyphal interconnections and/or extensive and differential root and rhizosphere overlap among neighboring species

  15. Plant Communities Rather than Soil Properties Structure Arbuscular Mycorrhizal Fungal Communities along Primary Succession on a Mine Spoil

    Science.gov (United States)

    Krüger, Claudia; Kohout, Petr; Janoušková, Martina; Püschel, David; Frouz, Jan; Rydlová, Jana

    2017-01-01

    Arbuscular mycorrhizal fungal (AMF) community assembly during primary succession has so far received little attention. It remains therefore unclear, which of the factors, driving AMF community composition, are important during ecosystem development. We addressed this question on a large spoil heap, which provides a mosaic of sites in different successional stages under different managements. We selected 24 sites of c. 12, 20, 30, or 50 years in age, including sites with spontaneously developing vegetation and sites reclaimed by alder plantations. On each site, we sampled twice a year roots of the perennial rhizomatous grass Calamagrostis epigejos (Poaceae) to determine AMF root colonization and diversity (using 454-sequencing), determined the soil chemical properties and composition of plant communities. AMF taxa richness was unaffected by site age, but AMF composition variation increased along the chronosequences. AMF communities were unaffected by soil chemistry, but related to the composition of neighboring plant communities of the sampled C. epigejos plants. In contrast, the plant communities of the sites were more distinctively structured than the AMF communities along the four successional stages. We conclude that AMF and plant community successions respond to different factors. AMF communities seem to be influenced by biotic rather than by abiotic factors and to diverge with successional age. PMID:28473828

  16. Herbivory of an invasive slug is affected by earthworms and the composition of plant communities.

    Science.gov (United States)

    Zaller, Johann G; Parth, Myriam; Szunyogh, Ilona; Semmelrock, Ines; Sochurek, Susanne; Pinheiro, Marcia; Frank, Thomas; Drapela, Thomas

    2013-05-13

    Biodiversity loss and species invasions are among the most important human-induced global changes. Moreover, these two processes are interlinked as ecosystem invasibility is considered to increase with decreasing biodiversity. In temperate grasslands, earthworms serve as important ecosystem engineers making up the majority of soil faunal biomass. Herbivore behaviour has been shown to be affected by earthworms, however it is unclear whether these effects differ with the composition of plant communities. To test this we conducted a mesocosm experiment where we added earthworms (Annelida: Lumbricidae) to planted grassland communities with different plant species composition (3 vs. 12 plant spp.). Plant communities had equal plant densities and ratios of the functional groups grasses, non-leguminous forbs and legumes. Later, Arion vulgaris slugs (formerly known as A. lusitanicus; Gastropoda: Arionidae) were added and allowed to freely choose among the available plant species. This slug species is listed among the 100 worst alien species in Europe. We hypothesized that (i) the food choice of slugs would be altered by earthworms' specific effects on the growth and nutrient content of plant species, (ii) slug herbivory will be less affected by earthworms in plant communities containing more plant species than in those with fewer plant species because of a more readily utilization of plant resources making the impacts of earthworms less pronounced. Slug herbivory was significantly affected by both earthworms and plant species composition. Slugs damaged 60% less leaves when earthworms were present, regardless of the species composition of the plant communities. Percent leaf area consumed by slugs was 40% lower in communities containing 12 plant species; in communities containing only three species earthworms increased slug leaf area consumption. Grasses were generally avoided by slugs. Leaf length and number of tillers was increased in mesocosms containing more plant

  17. Interaction of historical and nonhistorical disturbances maintains native plant communities.

    Science.gov (United States)

    Davies, K W; Svejcar, T J; Bates, J D

    2009-09-01

    Historical disturbance regimes are often considered a critical element in maintaining native plant communities. However, the response of plant communities to disturbance may be fundamentally altered as a consequence of invasive plants, climate change, or prior disturbances. The appropriateness of historical disturbance patterns under modern conditions and the interactions among disturbances are issues that ecologists must address to protect and restore native plant communities. We evaluated the response of Artemisia tridentata ssp. wyomingensis (Beetle & A. Young) S.L. Welsh plant communities to their historical disturbance regime compared to other disturbance regimes. The historical disturbance regime of these plant communities was periodic fires with minimal grazing by large herbivores. We also investigated the influence of prior disturbance (grazing) on the response of these communities to subsequent disturbance (burning). Treatments were: (1) ungrazed (livestock grazing excluded since 1936) and unburned, (2) grazed and unburned, (3) ungrazed and burned (burned in 1993), and (4) grazed and burned. The ungrazed-burned treatment emulated the historical disturbance regime. Vegetation cover, density, and biomass production were measured the 12th, 13th, and 14th year post-burning. Prior to burning the presence of Bromus tectorum L., an exotic annual grass, was minimal (resilience to more severe disturbances. Modern deviations from historical conditions can alter ecosystem response to disturbances, thus restoring the historical disturbance regime may not be an appropriate strategy for all ecosystems.

  18. Forage yield and nutritive value of Tanzania grass under nitrogen supplies and plant densities

    Directory of Open Access Journals (Sweden)

    Fabrício Paiva de Freitas

    2012-04-01

    Full Text Available The objective of this experiment was to evaluate the nitrogen and plant density influence on the yield, forage dissection and nutritive value of Tanzania grass (Panicum maximum Jacq.. The design was of completely randomized blocks with three replications in a factorial arrangement with four nitrogen levels (0, 80, 160 or 320 kg/ha N and three plant densities (9, 25 or 49 plants/m². The plots were cut at 25 cm from soil level when the canopy reached 95% of light interception. The total dry matter forage yield and dry matter forage yield per harvest increased linearly with the nitrogen fertilization. The leaf and stem yield had the same response. The senesced forage yield was quadratically influenced by the nitrogen. The stems ratio in the morphologic composition was high in the high nitrogen levels and in the low plant densities. The leaf:stem ratio showed high values in this trial, but it was increased in plots without nitrogen and high plant density. The pre-grazing height was reduced with the increase in plant density. The nutritive value was favored by the nitrogen fertilization, which increased the crude protein level and reduced neutral detergent fiber and lignin. These factors increased the leaf and stem in vitro digestibility of organic matter. Nitrogen fertilization increases the forage yield of Tanzania grass under rotational grazing. After the establishment, plant density has little influence on the Tanzania grass yield and its forage dissection. The harvest with 95% light interception improves the structure and nutritive value of Tanzania grass pastures.

  19. Soil-landform-plant-community relationships of a periglacial landscape on Potter Peninsula, maritime Antarctica

    Science.gov (United States)

    Poelking, E. L.; Schaefer, C. E. R.; Fernandes Filho, E. I.; de Andrade, A. M.; Spielmann, A. A.

    2015-05-01

    Integrated studies on the interplay between soils, periglacial geomorphology and plant communities are crucial for the understanding of climate change effects on terrestrial ecosystems of maritime Antarctica, one of the most sensitive areas to global warming. Knowledge on physical environmental factors that influence plant communities can greatly benefit studies on the monitoring of climate change in maritime Antarctica, where new ice-free areas are being constantly exposed, allowing plant growth and organic carbon inputs. The relationship between topography, plant communities and soils was investigated on Potter Peninsula, King George Island, maritime Antarctica. We mapped the occurrence and distribution of plant communities and identified soil-landform-vegetation relationships. The vegetation map was obtained by classification of a QuickBird image, coupled with detailed landform and characterization of 18 soil profiles. The sub-formations were identified and classified, and we also determined the total elemental composition of lichens, mosses and grasses. Plant communities on Potter Peninsula occupy 23% of the ice-free area, at different landscape positions, showing decreasing diversity and biomass from the coastal zone to inland areas where sub-desert conditions prevail. There is a clear dependency between landform and vegetated soils. Soils that have greater moisture or are poorly drained, and with acid to neutral pH, are favourable for moss sub-formations. Saline, organic-matter-rich ornithogenic soils of former penguin rookeries have greater biomass and diversity, with mixed associations of mosses and grasses, while stable felsenmeers and flat rocky cryoplanation surfaces are the preferred sites for Usnea and Himantormia lugubris lichens at the highest surface. Lichens sub-formations cover the largest vegetated area, showing varying associations with mosses.

  20. Effect of silicon and acibenzolar-s-methyl on colored cotton plants infested or not with Aphis gossypii Glover (Hemiptera, Aphididae

    Directory of Open Access Journals (Sweden)

    Eliana Alcantra

    2011-06-01

    Full Text Available Effect of silicon and acibenzolar-s-methyl on colored cotton plants infested or not with Aphis gossypii Glover (Hemiptera, Aphididae. The aphid Aphis gossypii is an insect pest that causes damage mainly at the beginning of the cotton plant development. The effect of resistance inductors silicon and acibenzolar-s-methyl (ASM on the development of colored cotton plants were researched in the presence and absence of A. gossypii. Three colored cotton cultivars were sown in pots and individually infested with 25 apterous aphids, 13 days after the application of the inductors. Fifteen days after plant emergence, the silicon was applied at a dosage equivalent to 3 t/ha and acibenzolar-s-methyl in 0.2% solution of the product BION 500®. After 21 days of infestation the following parameters were evaluated: plant height, stem diameter, dry matter of aerial part and root, and total number of aphids replaced. It was verified that the plant height was reduced in the presence of aphids and all variables were negatively affected by the application of ASM. However, silicon did not affect plant development.

  1. Gene expression and plant hormone levels in two contrasting rice genotypes responding to brown planthopper infestation.

    Science.gov (United States)

    Li, Changyan; Luo, Chao; Zhou, Zaihui; Wang, Rui; Ling, Fei; Xiao, Langtao; Lin, Yongjun; Chen, Hao

    2017-02-28

    The brown planthopper (BPH; Nilaparvata lugens Stål) is a destructive piercing-sucking insect pest of rice. The plant hormones salicylic acid (SA) and jasmonic acid (JA) play important roles in plant-pest interactions. Many isolated rice genes that modulate BPH resistance are involved in the metabolism or signaling pathways of SA, JA and ethylene. 'Rathu Heenati' (RH) is a rice cultivar with a high-level, broad-spectrum resistance to all BPH biotypes. Here, RH was used as the research material, while a BPH-susceptible rice cultivar 'Taichung Native 1' (TN1) was the control. A cDNA microarray analysis illuminated the resistance response at the genome level of RH under BPH infestation. The levels of SA and JA in RH and TN1 seedlings after BPH infestation were also determined. The expression pattern clustering indicated that 1467 differential probe sets may be associated with constitutive resistance and 67 with the BPH infestation-responsive resistance of RH. A Venn diagram analysis revealed 192 RH-specific and BPH-inducible probe sets. Finally, 23 BPH resistance-related gene candidates were selected based on the expression pattern clustering and Venn diagram analysis. In RH, the SA content significantly increased and the JA content significantly decreased after BPH infestation, with the former occurring prior to the latter. In RH, the differential genes in the SA pathway were synthesis-related and were up-regulated after BPH infestation. The differential genes in the JA pathway were also up-regulated. They were jasmonate ZIM-domain transcription factors, which are important negative regulators of the JA pathway. Comparatively, genes involved in the ET pathway were less affected by a BPH infestation in RH. DNA sequence analysis revealed that most BPH infestation-inducible genes may be regulated by the genetic background in a trans-acting manner, instead of by their promoters. We profiled the analysis of the global gene expression in RH and TN1 under BPH infestation

  2. Detection of greenbug infestation on wheat using ground-based radiometry

    Science.gov (United States)

    Yang, Zhiming

    Scope of methods of study. The purpose of this greenhouse study was to characterize stress in wheat caused by greenbugs using ground-based radiometry. Experiments were conducted to (a) identify spectral bands and vegetation indices sensitive to greenbug infestation; (b) differentiate stress caused due to greenbugs from water stress; (c) examine the impacts of plant growth stage on detection of greenbug infestation; and (d) compare infestations due to greenbug and Russian wheat aphid. Wheat (variety-TAM 107) was planted (seed spacing 1 in. x 3 in.) in plastic flats with dimension 24 in. x 16 in. x 8.75 in. Fifteen days after sowing, wheat seedlings were infested with greenbugs (biotype-E). Nadir measurement of canopy reflectance started the day after infestation and lasted until most infested plants were dead. Using a 16-band Cropscan radiometer, spectral reflectance data were collected daily (between 13:00--14:00 hours) and 128 vegetation indices were derived in addition to greenbug counts per tiller. Using SAS PROC MIXED, sensitivity of band and vegetation indices was identified based on Threshold Day. Subsequent to Threshold Day there was a consistent significant spectral difference between control and infested plants. Sensitivity of band and vegetation indices was further examined using correlation and relative sensitivity analyses. Findings and conclusions. Results show that it is possible to detect greenbug-induced stress on wheat using hand-held radiometers, such as Cropscan. Band 694 nm and the ratio-based vegetation index (RVI) derived from the band 694 nm and 800 nm were identified as most sensitive to greenbug infestation. Landsat TM bands and their derived vegetation indices also show potential for detecting wheat stress caused by greenbug infestation. Also, RVIs particularly derived using spectral band 694 nm and 800 nm were found useful in differentiating greenbug infestation from water stress. Furthermore, vegetation indices such as Normalized total

  3. Comparison of intestinal bacterial communities in grass carp, Ctenopharyngodon idellus, from two different habitats

    Science.gov (United States)

    Ni, Jiajia; Yu, Yuhe; Zhang, Tanglin; Gao, Lei

    2012-09-01

    The intestinal bacteria of vertebrates form a close relationship with their host. External and internal conditions of the host, including its habitat, affect the intestinal bacterial community. Similarly, the intestinal bacterial community can, in turn, influence the host, particularly with respect to disease resistance. We compared the intestinal bacterial communities of grass carp that were collected from farm-ponds or a lake. We conducted denaturing gradient gel electrophoresis of amplified 16S rRNA genes, from which 66 different operational taxonomic units were identified. Using both the unweighted pair-group method with arithmetic means clustering and principal component analysis ordination, we found that the intestinal bacterial communities from the two groups of pond fish were clustered together and inset into the clusters of wild fish, except for DF-7, and there was no significant correlation between genetic diversity of grass carp and their intestinal bacterial communities (Mantel one-tailed test, R=0.157, P=0.175). Cetobacterium appeared more frequently in the intestine of grass carp collected from pond. A more thorough understanding of the role played by intestinal microbiota on fish health would be of considerable benefit to the aquaculture industry.

  4. Host Status of Five Weed Species and Their Effects on Pratylenchus zeae Infestation of Maize.

    Science.gov (United States)

    Jordaan, E M; De Waele, D

    1988-10-01

    The host suitability of five of the most common weed species occurring in maize (Zea mays L.) fields in South Africa to Pratylenchus zeae was tested. Based on the number of nematodes per root unit, mealie crotalaria (Crotalaria sphaerocarpa) was a good host; goose grass (Eleusine indica), common pigweed (Amaranthus hybridus), and thorn apple (Datura stramonium) were moderate hosts; and khaki weed (Tagetes minuta) was a poor host. Only the root residues of khaki weed suppressed the P. zeae infestation of subsequently grown maize. When goose grass, khaki weed, and mealie crotalaria were grown in association with maize in soil infested with P. zeae, goose grass and khaki weed severely suppressed maize root development; this resulted in a low number of nematodes per maize root system and a high number of nematodes per maize root unit. Mealie crotalaria did not restrict maize root growth and did not affect nematode densities per maize root system or maize root unit. Special attention should be given to the control of mealie crotalaria, which is a good host for P. zeae, and goose grass, which, in addition to its ability to compete with maize, is also a suitable host for P. zeae.

  5. Earthworms drive succession of both plant and Collembola communities in post-mining sites

    Science.gov (United States)

    Mudrák, Ondřej; Uteseny, Karoline; Frouz, Jan

    2016-04-01

    Previous field observations indicated that earthworms promote late-successional plant species and reduce collembolan numbers at post-mining sites in the Sokolov coal mining district (Czech Republic). Here, we established a laboratory pot experiment to test the effect of earthworms (Aporrectodea caliginosa Savigny and Lumbricus rubellus Hoffm.) and litter of low, medium, and high quality (the grass Calamagrostis epigejos, the willow Salix caprea, and the alder Alnus glutinosa, respectively) on late successional plants (grasses Arrhenatherum elatius and Agrostis capillaris, legumes Lotus corniculatus and Trifolium medium, and non-leguminous dicots Centaurea jacea and Plantago lanceolata) in spoil substrate originating from Sokolov post-mining sites and naturally inhabited by abundant numbers of Collembola. The earthworms increased plant biomass, especially that of the large-seeded A. elatius, but reduced the number of plant individuals, mainly that of the small-seeded A. capillaris and both legumes. Litter quality affected plant biomass, which was highest with S. caprea litter, but did not change the number of plant individuals. Litter quality did not modify the effect of earthworms on plants; the effect of litter quality and earthworms was only additive. Species composition of Collembola community was altered by litter quality, but earthworms reduced the number of individuals, increased the number of species, and increased species evenness consistently across the litter qualities. Because the results of this experiment were consistent with the field observations, we conclude that earthworms help drive succession of both plant and Collembola communities on post-mining sites.

  6. Morphogenesis of Tanzania guinea grass under nitrogen doses and plant densities

    Directory of Open Access Journals (Sweden)

    Thiago Gomes dos Santos Braz

    2011-07-01

    Full Text Available The objective of this work was to evaluate effects of nitrogen fertilization and plant density on morphogenesis of Tanzania guinea grass. It was used a random block design with 12 treatments and two replications in a 4 × 3 factorial arrangement, with four doses of nitrogen (N (without N application, 80, 160 or 320 kg/ha.year and three plant densities (9, 25 or 49 plants/m². Harvest was performed at 25 cm from the ground when the canopy intercepted 95% of the incident light. Rates of leaf appearance and pseudostem elongation were positively and linearly influenced by nitrogen, whereas phillochron and leaf life span were influenced linearly and negatively. Leaf elongation responded positively to two factors, whereas leaf senescence rate and number of live leaves were not influenced by the factors evaluated. Number of total, basal and aerial tillers were greater at the density of 9 plants/m² and at the nitrogen dose of 320 kg/ha.year. Nitrogen increases production of leaves and tillers in Tanzania guinea grass defoliated at 95% of light interception, but high density of plants reduces the number of tiller per bunch.

  7. Impacts of removing Chinese privet from riparian forests on plant communities and tree growth five years later

    Science.gov (United States)

    Jacob R. Hudson; James L. Hanula; Scott Horn

    2014-01-01

    An invasive shrub, Chinese privet (Ligustrum sinense Lour.), was removed from heavily infested riparian forests in the Georgia Piedmont in 2005 by mulching machine or chainsaw felling. Subsequent herbicide treatment eliminated almost all privet by 2007. Recovery of plant communities, return of Chinese privet, and canopy tree growth were measured on...

  8. Interactions of seedborne bacterial pathogens with host and non-host plants in relation to seed infestation and seedling transmission.

    Science.gov (United States)

    Dutta, Bhabesh; Gitaitis, Ronald; Smith, Samuel; Langston, David

    2014-01-01

    The ability of seed-borne bacterial pathogens (Acidovorax citrulli, Clavibacter michiganensis subsp. michiganensis, Pseudomonas syringae pv. tomato, Xanthomonas euvesicatoria, and Pseudomonas syringae pv. glycinea) to infest seeds of host and non-host plants (watermelon, tomato, pepper, and soybean) and subsequent pathogen transmission to seedlings was investigated. A non-pathogenic, pigmented strain of Serratia marcescens was also included to assess a null-interacting situation with the same plant species. Flowers of host and non-host plants were inoculated with 1 × 10(6) colony forming units (CFUs)/flower for each bacterial species and allowed to develop into fruits or umbels (in case of onion). Seeds harvested from each host/non-host bacterial species combination were assayed for respective bacteria by plating on semi-selective media. Additionally, seedlots for each host/non-host bacterial species combination were also assayed for pathogen transmission by seedling grow-out (SGO) assays under greenhouse conditions. The mean percentage of seedlots infested with compatible and incompatible pathogens was 31.7 and 30.9% (by plating), respectively and they were not significantly different (P = 0.67). The percentage of seedlots infested with null-interacting bacterial species was 16.8% (by plating) and it was significantly lower than the infested lots generated with compatible and incompatible bacterial pathogens (P = 0.03). None of the seedlots with incompatible/null-interacting bacteria developed symptoms on seedlings; however, when seedlings were assayed for epiphytic bacterial presence, 19.5 and 9.4% of the lots were positive, respectively. These results indicate that the seeds of non-host plants can become infested with incompatible and null-interacting bacterial species through flower colonization and they can be transmitted via epiphytic colonization of seedlings. In addition, it was also observed that flowers and seeds of non-host plants can be colonized by

  9. Interactions of seedborne bacterial pathogens with host and non-host plants in relation to seed infestation and seedling transmission.

    Directory of Open Access Journals (Sweden)

    Bhabesh Dutta

    Full Text Available The ability of seed-borne bacterial pathogens (Acidovorax citrulli, Clavibacter michiganensis subsp. michiganensis, Pseudomonas syringae pv. tomato, Xanthomonas euvesicatoria, and Pseudomonas syringae pv. glycinea to infest seeds of host and non-host plants (watermelon, tomato, pepper, and soybean and subsequent pathogen transmission to seedlings was investigated. A non-pathogenic, pigmented strain of Serratia marcescens was also included to assess a null-interacting situation with the same plant species. Flowers of host and non-host plants were inoculated with 1 × 10(6 colony forming units (CFUs/flower for each bacterial species and allowed to develop into fruits or umbels (in case of onion. Seeds harvested from each host/non-host bacterial species combination were assayed for respective bacteria by plating on semi-selective media. Additionally, seedlots for each host/non-host bacterial species combination were also assayed for pathogen transmission by seedling grow-out (SGO assays under greenhouse conditions. The mean percentage of seedlots infested with compatible and incompatible pathogens was 31.7 and 30.9% (by plating, respectively and they were not significantly different (P = 0.67. The percentage of seedlots infested with null-interacting bacterial species was 16.8% (by plating and it was significantly lower than the infested lots generated with compatible and incompatible bacterial pathogens (P = 0.03. None of the seedlots with incompatible/null-interacting bacteria developed symptoms on seedlings; however, when seedlings were assayed for epiphytic bacterial presence, 19.5 and 9.4% of the lots were positive, respectively. These results indicate that the seeds of non-host plants can become infested with incompatible and null-interacting bacterial species through flower colonization and they can be transmitted via epiphytic colonization of seedlings. In addition, it was also observed that flowers and seeds of non-host plants can be

  10. Infestation Level Influences Oviposition Site Selection in the Tomato Leafminer Tuta absoluta (Lepidoptera: Gelechiidae

    Directory of Open Access Journals (Sweden)

    Thomas Bawin

    2014-11-01

    Full Text Available The tomato leafminer, Tuta absoluta (Lepidoptera: Gelechiidae, is a devastating pest that develops principally on solanaceous plants throughout South and Central America and Europe. In this study, we tested the influence of three levels of T. absoluta infestations on the attraction and oviposition preference of adult T. absoluta. Three infestation levels (i.e., non-infested plants, plants infested with 10 T. absoluta larvae, and plants infested with 20 T. absoluta larvae were presented by pairs in a flying tunnel to groups of T. absoluta adults. We found no differences in terms of adult attraction for either level of infestations. However, female oviposition choice is influenced by larvae density on tomato plants. We discuss the underlying mechanisms and propose recommendations for further research.

  11. Analysis of two heterologous flowering genes in ¤Brachypodium distachyon¤ demonstrates its potential as a grass model plant

    DEFF Research Database (Denmark)

    Olsen, P.; Lenk, I.; Jensen, Christian S.

    2006-01-01

    Despite the great contribution of model organisms, such as Arabidopsis and rice to understand biological processes in plants, these models are less valuable for functional studies of particular genes from temperate grass crop species. Therefore a new model plant is required, displaying features...... including close phylogenetic relationship to the temperate grasses, vernalisation requirement, high transformation efficiency, small genome size and a rapid life cycle. These requirements are all fulfilled by the small annual grass Brachypodium distachyon. As a first step towards implementing this plant...

  12. Headwater fish population responses to planting grass filter strips adjacent to channelized agricultural headwater streams

    Science.gov (United States)

    Grass filter strips are a widely used conservation practice in the Midwestern United States for reducing nutrient, pesticide, and sediment inputs into agricultural streams. Only a limited amount of information is available on the ecological effects of planting grass filter strips adjacent to channe...

  13. Water and Nitrogen Limitations of Ecosystem Processes Across Three Dryland Plant Communities

    Science.gov (United States)

    Beltz, C.; Lauenroth, W. K.; Burke, I. C.

    2017-12-01

    The availability of water and nitrogen (N) play a major role in controlling the distribution of ecosystem types and the rates of ecosystem processes across the globe. Both these resources are being altered by human activity. Anthropogenic fixation of N has increased inputs into the biosphere from 0.5 kg N ha-1 yr-1 to upwards of 10 kg N ha-1 yr-1, while the amount and seasonality of precipitation are expected to continue to change. Within dryland environments, the relationships between increasingly available N and ecosystem processes are especially complex due to dryland's characteristic strong limitation by low and highly variable precipitation. Other experiments have shown that this interplay between N and water can cause temporally complex co-limitation and spatially complex responses with variable effects on ecosystems, such as those to net primary productivity, soil respiration, and plant community composition. Research spanning multiple dryland plant communities is critical for generalizing findings to the 40% of the Earth's terrestrial surface covered in dryland ecosystems. Given IPCC projections in which both N availability and precipitation are altered, examining their interactive effect across multiple plant communities is critical to increasing our understanding of the limitations to ecosystem process in drylands. We are studying a gradient of three plant communities representing a C4 grassland (shortgrass steppe), a C3/C4 grassland (mixed grass prairie), and a shrub-dominated ecosystem with C3 and C4 grasses (sagebrush steppe). We added two levels of N (10 kg N ha-1 and 100 kg N ha-1) and increased summer monthly precipitation by 20%. Sites responded differently to treatments, with the scale of effect varying by treatment. The high-level nitrogen increased soil N availability and soil respiration, while decreasing soil carbon in the labile pool in the upper soil layers. These results will allow for better understanding of increased N in combination with

  14. Understanding cross-communication between aboveground and belowground tissues via transcriptome analysis of a sucking insect whitefly-infested pepper plants.

    Science.gov (United States)

    Park, Yong-Soon; Ryu, Choong-Min

    2014-01-03

    Plants have developed defensive machinery to protect themselves against herbivore and pathogen attacks. We previously reported that aboveground whitefly (Bemisia tabaci Genn.) infestation elicited induced resistance in leaves and roots and influenced the modification of the rhizosphere microflora. In this study, to obtain molecular evidence supporting these plant fitness strategies against whitefly infestation, we performed a 300 K pepper microarray analysis using leaf and root tissues of pepper (Capsicum annuum L.) applied with whitefly, benzo-(1,2,3)-thiadiazole-7-carbothioic acid S-methyl ester (BTH), and the combination of BTH+whitefly. We defined differentially expressed genes (DEGs) as genes exhibiting more than 2-fold change (1.0 based on log2 values) in expression in leaves and roots in response to each treatment compared to the control. We identified a total of 16,188 DEGs in leaves and roots. Of these, 6685, 6752, and 4045 DEGs from leaf tissue and 6768, 7705, and 7667 DEGs from root tissue were identified in the BTH, BTH+whitefly, and whitefly treatment groups, respectively. The total number of DEGs was approximately two-times higher in roots than in whitefly-infested leaves subjected to whitefly infestation. Among DEGs, whitefly feeding induced salicylic acid and jasmonic acid/ethylene-dependent signaling pathways in leaves and roots. Several transporters and auxin-responsive genes were upregulated in roots, which can explain why biomass increase is facilitated. Using transcriptome analysis, our study provides new insights into the molecular basis of whitefly-mediated intercommunication between aboveground and belowground plant tissues and provides molecular evidence that may explain the alteration of rhizosphere microflora and root biomass by whitefly infestation. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Plant-beneficial elements status assessment in soil-plant system in the vicinity of a chemical industry complex: shedding light on forage grass safety issues.

    Science.gov (United States)

    Anjum, Naser A; Duarte, Armando C; Pereira, Eduarda; Ahmad, Iqbal

    2015-02-01

    Human health is closely linked with soils via plants, grazers, or plant-based products. This study estimated plant-beneficial elements (macronutrients: K, P; secondary macronutrients: Ca, Mg; micronutrients: Mo, Mn, Na, Ni, Se) in both soils and shoots of two forage grass species (Eriophorum angustifolium and Lolium perenne) prevalent in the vicinity of a chemical industry complex (Estarreja, Portugal). Both soils and plants from the chemical industrial areas exhibited differential concentrations of the studied elements. In soils, the role of contamination was evidenced as insignificant in context of its impact on all the tested macro and secondary macronutrients except P, and micronutrients such as Mo and Ni. In forage grass plant shoots, the role of contamination was evidenced as insignificant in relation to its impact on all the tested macro and secondary macronutrients except K. Between the two forage grass plants, high Se-harboring L. perenne cannot be recommended for its use as animal feed.

  16. Intake and transformation to a glycoside of (Z)-3-hexenol from infested neighbors reveals a mode of plant odor reception and defense

    Science.gov (United States)

    Sugimoto, Koichi; Matsui, Kenji; Iijima, Yoko; Akakabe, Yoshihiko; Muramoto, Shoko; Ozawa, Rika; Uefune, Masayoshi; Sasaki, Ryosuke; Alamgir, Kabir Md.; Akitake, Shota; Nobuke, Tatsunori; Galis, Ivan; Aoki, Koh; Shibata, Daisuke; Takabayashi, Junji

    2014-01-01

    Plants receive volatile compounds emitted by neighboring plants that are infested by herbivores, and consequently the receiver plants begin to defend against forthcoming herbivory. However, to date, how plants receive volatiles and, consequently, how they fortify their defenses, is largely unknown. In this study, we found that undamaged tomato plants exposed to volatiles emitted by conspecifics infested with common cutworms (exposed plants) became more defensive against the larvae than those exposed to volatiles from uninfested conspecifics (control plants) in a constant airflow system under laboratory conditions. Comprehensive metabolite analyses showed that only the amount of (Z)-3-hexenylvicianoside (HexVic) was higher in exposed than control plants. This compound negatively affected the performance of common cutworms when added to an artificial diet. The aglycon of HexVic, (Z)-3-hexenol, was obtained from neighboring infested plants via the air. The amount of jasmonates (JAs) was not higher in exposed plants, and HexVic biosynthesis was independent of JA signaling. The use of (Z)-3-hexenol from neighboring damaged conspecifics for HexVic biosynthesis in exposed plants was also observed in an experimental field, indicating that (Z)-3-hexenol intake occurred even under fluctuating environmental conditions. Specific use of airborne (Z)-3-hexenol to form HexVic in undamaged tomato plants reveals a previously unidentified mechanism of plant defense. PMID:24778218

  17. Pest Prevalence and Evaluation of Community-Wide Integrated Pest Management for Reducing Cockroach Infestations and Indoor Insecticide Residues.

    Science.gov (United States)

    Zha, Chen; Wang, Changlu; Buckley, Brian; Yang, Ill; Wang, Desen; Eiden, Amanda L; Cooper, Richard

    2018-04-02

    Pest infestations in residential buildings are common, but community-wide pest survey data are lacking. Frequent insecticide applications for controlling indoor pests leave insecticide residues and pose potential health risks to residents. In this study, a community-wide pest survey was carried out in a housing complex consisting of 258 units in 40 buildings in New Brunswick, New Jersey. It was immediately followed by implementation of an integrated pest management (IPM) program in all the cockroach-infested apartments and two bed bug apartments with the goal of eliminating pest infestations, reducing pyrethroid residues, and increasing resident satisfaction with pest control services. The IPM-treated apartments were revisited and treated biweekly or monthly for 7 mo. Initial inspection found the top three pests and their infestation rates to be as follows: German cockroaches (Blattella germanica L. [Blattodea: Blattellidae]), 28%; rodents, 11%; and bed bugs (Cimex lectularius L. [Hemiptera: Cimicidae]), 8%. Floor wipe samples were collected in the kitchens and bedrooms of 20 apartments for pyrethroid residue analysis before the IPM implementation; 17 of the 20 apartments were resampled again at 7 mo. The IPM program reduced cockroach counts per apartment by 88% at 7 wk after initial treatment. At 7 mo, 85% of the cockroach infestations found in the initial survey were eliminated. The average number of pyrethroids detected decreased significantly from 6 ± 1 (mean ± SEM) and 5 ± 1 to 2 ± 1 and 3 ± 1 in the kitchens and bedrooms, respectively. The average concentrations of targeted pyrethroids residue also decreased significantly in the kitchens and bedrooms.

  18. Integration of gamma radiation and plant powders to protect Peanut and Onion from infestation with the Almond Moth Ephestia Cautella (WALKER

    International Nuclear Information System (INIS)

    RIZK, S.A.; BOSHRA, S.A.; MIKHAIEL, A.A.

    2006-01-01

    The use of different plant powders of Ambrosia Maritiama, Origanum Vulgare, Glycyrrhiza Glabra, Matricaria Chamomilla and Nigella sativa for protection of peanuts (shelled or unshelled) and onion from infestation by the almond moth, Ephestia Cautella, showed that G. Glabra caused 100% larval mortality in case of shelled peanut at 0.25 g which leads to zero infestation while 100% larval mortality was occurred also when G.Glabra was used at concentration 1.0 gram in unshelled peanut. In onion, 100% mortality was occurred when powders of G.Glabra and M.Chamomilla were used at concentration 0.5 gram and A.Maritiama at concentration 1.0 gram. The use of different plant powders leads to reduction in percent pupation and percent emergence comparing with the control. Also, the number of eggs laid per female was decreased in females treated with plant powders compared to the control and the concentration 1 gram prevent egg hatching for all plant powders used in shelled or unshelled peanut and onion. The use of LC 3 0 of plant powders beside the doses 100 or 150 Gy of gamma radiation leads to increase in percent mortality and decrease in percent infestation as the dose increase. The use of G.Glabra beside 100 or 150 Gy caused 100% mortality and prevent peanut inside shells from infestation, but the plant powders of A.Maritiama, N.Sativa and M.Chamomilla leads to the same result but with the dose 150 Gy. The use of LC 3 0 of plant powders beside 150 Gy leads to decrease in number of eggs and prevent egg hatching in peanut and onion except when N.sativa and M.Chamomilla used with onion

  19. Soil-to-plant transfer factors for natural radionuclides in grass in the vicinity of a former uranium mine

    Energy Technology Data Exchange (ETDEWEB)

    Štrok, Marko, E-mail: Marko.Strok@ijs.si; Smodiš, Borut, E-mail: Borut.Smodis@ijs.si

    2013-08-15

    Highlights: • Soil and grass samples were collected from sites at the uranium mill tailings pile. • {sup 238}U, {sup 230}Th, {sup 226}Ra and {sup 210}Pb activity concentrations were determined. • Soil-to-plant transfer factors were determined and are comparable with literature. • Potential use of grass as a monitor of radionuclide migration was evaluated. • Grass has potential in predicting {sup 238}U and {sup 226}Ra migration. -- Abstract: The activity concentrations of {sup 238}U, {sup 230}Th, {sup 226}Ra and {sup 210}Pb were determined in soil and grass samples collected from sites at the uranium mill tailings waste pile, which lies near the former uranium mine at Žirovski vrh in Slovenia. Soil-to-plant transfer factors were determined and the potential use of grass as a monitor of radionuclide migration from the waste pile was evaluated. It was found that grass was not suitable for monitoring {sup 230}Th and {sup 210}Pb migration (no linear correlation between soil and grass activity concentrations) but has potential in predicting {sup 238}U and {sup 226}Ra migration (linear correlation between soil and grass activity concentrations). Soil-to-plant transfer factors for grass were in the range from 0.0014 to 0.015 kg/kg DM for {sup 238}U, 0.0039 to 0.012 kg/kg DM for {sup 230}Th, 0.035 to 0.46 kg/kg DM for {sup 226}Ra and 0.098 to 1.5 kg/kg DM for {sup 210}Pb.

  20. Ecophysiological responses of native and invasive grasses to simulated warming and drought

    Science.gov (United States)

    Ravi, S.; Law, D. J.; Wiede, A.; Barron-Gafford, G. A.; Breshears, D. D.; Dontsova, K.; Huxman, T. E.

    2011-12-01

    Climate models predict that many arid regions around the world - including the North American deserts - may become affected more frequently by recurrent droughts. At the same time, these regions are experiencing rapid vegetation transformations such as invasion by exotic grasses. Thus, understanding the ecophysiological processes accompanying exotic grass invasion in the context of rising temperatures and recurrent droughts is fundamental to global change research. Under ambient and warmer (+ 4° C) conditions inside the Biosphere 2 facility, we compared the ecophysiological responses (e.g. photosynthesis, stomatal conductance, pre-dawn leaf water potential, light & CO2 response functions, biomass) of a native grass - Heteropogan contortus (Tangle head) and an invasive grass - Pennisetum ciliare (Buffel grass) growing in single and mixed communities. Further, we monitored the physiological responses and mortality of these plant communities under moisture stress conditions, simulating a global change-type-drought. The results indicate that the predicted warming scenarios may enhance the invasibility of desert landscapes by exotic grasses. In this study, buffel grass assimilated more CO2 per unit leaf area and out-competed native grasses more efficiently in a warmer environment. However, scenarios involving a combination of drought and warming proved disastrous to both the native and invasive grasses, with drought-induced grass mortality occurring at much shorter time scales under warmer conditions.

  1. Effect of a Bacterial Grass Culture on the Plant Growth and Disease Control in Tomato

    Directory of Open Access Journals (Sweden)

    Yong Seong Lee

    2017-12-01

    Full Text Available This study aimed to investigate the plant growth-promoting and biocontrol potential of a grass culture with Paenibacillus ehimensis KWN8 on tomato. For this experiment, treatments of a chemical fertilizer (F, a bacterial grass culture (G, a 1/3 volume of G plus 2/3 F (GF, and F plus a synthetic fungicide (FSf were applied to tomato leaves and roots. The result showed that the severity of Alternariasolani and Botrytiscinerea symptoms were significantly reduced after the application of the bacterial grass culture (G and GF and FSf. In addition, root mortality in G and GF was lower compared to F. Tomato plants treated with G or GF had better vegetative growth and yield compared to F. Application of G affected the fungal and bacterial populations in the soil. In conclusion, treatment with a bacterial grass culture decreased disease severity and increased tomato growth parameters. However, there were no statistically significant correlations between disease occurrence and tomato yields. This experiment presents the possibility to manage diseases of tomato in an environmentally friendly manner and to also increase the yield of tomato by using a grass culture broth containing P. ehimensis KWN38.

  2. Phytosociology and plant community utilisation by vervet monkeys of the Blydeberg Conservancy, Limpopo Province

    Directory of Open Access Journals (Sweden)

    A.S. Barret

    2006-12-01

    Full Text Available The plant communities of the Blydeberg Conservancy were investigated as part of a research project on the foraging ecology of vervet monkeys Cercopithecus aethiops pygerythrus (senso lato in mixed lowveld bushveld and sour lowveld bushveld areas. To date there are no formal management plans for vervet monkeys. This is attributed to the limited knowledge of vervets and their utilisation of and impacts on ecosystems. From a TWINSPAN classification refined by Braun-Blanquet procedures, ten plant communities that can be placed into four major groups were identified. A classification and description of these communities, including a vegetation map are presented. Diagnostic species as well as prominent and less conspicuous species of tree, shrub, herb and grass strata are outlined. Of the ten available plant communities, the vervets utilised only six during the study period. There was an abundant supply of various food sources throughout the year, with movement patterns mostly coinciding with the fruiting times of several tree and other plant species.

  3. Climate change and the invasion of California by grasses

    DEFF Research Database (Denmark)

    Sandel, Brody Steven; Dangremond, Emily

    2012-01-01

    Over the next century, changes in the global climate are expected to have major consequences for plant communities, possibly including the exacerbation of species invasions. We evaluated this possibility in the grass flora of California, which is economically and ecologically important and heavily...... invaded. We used a novel, trait-based approach involving two components: identifying differences in trait composition between native and exotic components of the grass flora and evaluating contemporary trait–climate relationships across the state. The combination of trait–climate relationships and trait...

  4. Soil properties and olive cultivar determine the structure and diversity of plant-parasitic nematode communities infesting olive orchards soils in southern Spain.

    Science.gov (United States)

    Palomares-Rius, Juan E; Castillo, Pablo; Montes-Borrego, Miguel; Navas-Cortés, Juan A; Landa, Blanca B

    2015-01-01

    This work has studied for the first time the structure and diversity of plant-parasitic nematodes (PPNs) infesting olive orchard soils in a wide-region in Spain that included 92 locations. It aims at determining which agronomical or environmental factors associated to the olive orchards are the main drivers of the PPNs community structure and diversity. Classical morphological and morphometric identification methods were used to determine the frequency and densities of PPNs. Thirteen families, 34 genera and 77 species of PPNs were identified. The highest diversity was found in Helicotylenchus genus, with six species previously reported in Spain and with H. oleae being a first report. Neodolichorhynchus microphasmis and Diptenchus sp., Diphtherophora sp., and Discotylenchus sp., usually considered fungal feeders, were also reported for the first time associated to olive rhizosphere. PPNs abundance ranged from 66 to 16,288 individuals/500-cm3 of soil with Helicotylenchus digonicus being the most prevalent species, followed by Filenchus sp., Merlinius brevidens and Xiphinema pachtaicum. Nematode abundance and diversity indexes were influenced by olive cultivar, and orchard and soil management practices; while olive variety and soil texture were the main factors driving PPN community composition. Soil physicochemical properties and climatic characteristics most strongly associated to the PPN community composition included pH, sand content and exchangeable K, and maximum and minimum average temperature of the sampled locations. Our data suggests that there is a high diversity of PPNs associated to olive in Southern Spain that can exert different damage to olive roots depending on the olive variety and their abundance. Further analysis to determine the resistance levels of most common olive varieties to the prevalent PPNs in Spain will help to choose the most appropriate ones for the establishment of new plantations. This choice will take into consideration the specific

  5. Linking Microbial Community Structure and Function During the Acidified Anaerobic Digestion of Grass

    Directory of Open Access Journals (Sweden)

    Aoife Joyce

    2018-03-01

    Full Text Available Harvesting valuable bioproducts from various renewable feedstocks is necessary for the critical development of a sustainable bioeconomy. Anaerobic digestion is a well-established technology for the conversion of wastewater and solid feedstocks to energy with the additional potential for production of process intermediates of high market values (e.g., carboxylates. In recent years, first-generation biofuels typically derived from food crops have been widely utilized as a renewable source of energy. The environmental and socioeconomic limitations of such strategy, however, have led to the development of second-generation biofuels utilizing, amongst other feedstocks, lignocellulosic biomass. In this context, the anaerobic digestion of perennial grass holds great promise for the conversion of sustainable renewable feedstock to energy and other process intermediates. The advancement of this technology however, and its implementation for industrial applications, relies on a greater understanding of the microbiome underpinning the process. To this end, microbial communities recovered from replicated anaerobic bioreactors digesting grass were analyzed. The bioreactors leachates were not buffered and acidic pH (between 5.5 and 6.3 prevailed at the time of sampling as a result of microbial activities. Community composition and transcriptionally active taxa were examined using 16S rRNA sequencing and microbial functions were investigated using metaproteomics. Bioreactor fraction, i.e., grass or leachate, was found to be the main discriminator of community analysis across the three molecular level of investigation (DNA, RNA, and proteins. Six taxa, namely Bacteroidia, Betaproteobacteria, Clostridia, Gammaproteobacteria, Methanomicrobia, and Negativicutes accounted for the large majority of the three datasets. The initial stages of grass hydrolysis were carried out by Bacteroidia, Gammaproteobacteria, and Negativicutes in the grass biofilms, in addition to

  6. Linking Microbial Community Structure and Function During the Acidified Anaerobic Digestion of Grass.

    Science.gov (United States)

    Joyce, Aoife; Ijaz, Umer Z; Nzeteu, Corine; Vaughan, Aoife; Shirran, Sally L; Botting, Catherine H; Quince, Christopher; O'Flaherty, Vincent; Abram, Florence

    2018-01-01

    Harvesting valuable bioproducts from various renewable feedstocks is necessary for the critical development of a sustainable bioeconomy. Anaerobic digestion is a well-established technology for the conversion of wastewater and solid feedstocks to energy with the additional potential for production of process intermediates of high market values (e.g., carboxylates). In recent years, first-generation biofuels typically derived from food crops have been widely utilized as a renewable source of energy. The environmental and socioeconomic limitations of such strategy, however, have led to the development of second-generation biofuels utilizing, amongst other feedstocks, lignocellulosic biomass. In this context, the anaerobic digestion of perennial grass holds great promise for the conversion of sustainable renewable feedstock to energy and other process intermediates. The advancement of this technology however, and its implementation for industrial applications, relies on a greater understanding of the microbiome underpinning the process. To this end, microbial communities recovered from replicated anaerobic bioreactors digesting grass were analyzed. The bioreactors leachates were not buffered and acidic pH (between 5.5 and 6.3) prevailed at the time of sampling as a result of microbial activities. Community composition and transcriptionally active taxa were examined using 16S rRNA sequencing and microbial functions were investigated using metaproteomics. Bioreactor fraction, i.e., grass or leachate, was found to be the main discriminator of community analysis across the three molecular level of investigation (DNA, RNA, and proteins). Six taxa, namely Bacteroidia, Betaproteobacteria, Clostridia, Gammaproteobacteria, Methanomicrobia, and Negativicutes accounted for the large majority of the three datasets. The initial stages of grass hydrolysis were carried out by Bacteroidia, Gammaproteobacteria, and Negativicutes in the grass biofilms, in addition to Clostridia in the

  7. Effects of Climate and Ecosystem Disturbances on Biogeochemical Cycling in a Semi-Natural Terrestrial Ecosystem

    International Nuclear Information System (INIS)

    Beier, Claus; Schmidt, Inger Kappel; Kristensen, Hanne Lakkenborg

    2004-01-01

    The effects of increased temperature and potential ecosystem disturbances on biogeochemical cycling were investigated by manipulation of temperature in a mixed Calluna/grass heathland in Denmark. A reflective curtain covered the vegetation during the night to reduce the heat loss of IR radiation from the ecosystem to the atmosphere. This 'night time warming' was done for 3 years and warmed the air and soil by 1.1 deg. C. Warming was combined with ecosystem disturbances, including infestation by Calluna heather beetles (Lochmaea suturalis Thompson) causing complete defoliation of Calluna leaves during the summer 2000, and subsequent harvesting of all aboveground biomass during the autumn. Small increases in mineralisation rates were induced by warming and resulted in increased leaching of nitrogen from the organic soil layer. The increased nitrogen leaching from the organic soil layer was re-immobilised in the mineral soil layer as warming stimulated plant growth and thereby increased nitrogen immobilisation. Contradictory to the generally moderate effects of warming, the heather beetle infestation had very strong effects on mineralisation rates and the plant community. The grasses completely out-competed the Calluna plants which had not re-established two years after the infestation, probably due to combined effects of increased nutrient availability and the defoliation of Calluna. On the short term, ecosystem disturbances may have very strong effects on internal ecosystem processes and plant community structure compared to the more long-term effects of climate change

  8. Grass Plants Bind, Retain, Uptake, and Transport Infectious Prions

    Directory of Open Access Journals (Sweden)

    Sandra Pritzkow

    2015-05-01

    Full Text Available Prions are the protein-based infectious agents responsible for prion diseases. Environmental prion contamination has been implicated in disease transmission. Here, we analyzed the binding and retention of infectious prion protein (PrPSc to plants. Small quantities of PrPSc contained in diluted brain homogenate or in excretory materials (urine and feces can bind to wheat grass roots and leaves. Wild-type hamsters were efficiently infected by ingestion of prion-contaminated plants. The prion-plant interaction occurs with prions from diverse origins, including chronic wasting disease. Furthermore, leaves contaminated by spraying with a prion-containing preparation retained PrPSc for several weeks in the living plant. Finally, plants can uptake prions from contaminated soil and transport them to aerial parts of the plant (stem and leaves. These findings demonstrate that plants can efficiently bind infectious prions and act as carriers of infectivity, suggesting a possible role of environmental prion contamination in the horizontal transmission of the disease.

  9. Soil modification by invasive plants: Effects on native and invasive species of mixed-grass prairies

    Science.gov (United States)

    Jordan, N.R.; Larson, D.L.; Huerd, S.C.

    2008-01-01

    Invasive plants are capable of modifying attributes of soil to facilitate further invasion by conspecifics and other invasive species. We assessed this capability in three important plant invaders of grasslands in the Great Plains region of North America: leafy spurge (Euphorbia esula), smooth brome (Bromus inermis) and crested wheatgrass (Agropyron cristatum). In a glasshouse, these three invasives or a group of native species were grown separately through three cycles of growth and soil conditioning in both steam-pasteurized and non-pasteurized soils, after which we assessed seedling growth in these soils. Two of the three invasive species, Bromus and Agropyron, exhibited significant self-facilitation via soil modification. Bromus and Agropyron also had significant facilitative effects on other invasives via soil modification, while Euphorbia had significant antagonistic effects on the other invasives. Both Agropyron and Euphorbia consistently suppressed growth of two of three native forbs, while three native grasses were generally less affected. Almost all intra- and interspecific effects of invasive soil conditioning were dependent upon presence of soil biota from field sites where these species were successful invaders. Overall, these results suggest that that invasive modification of soil microbiota can facilitate plant invasion directly or via 'cross-facilitation' of other invasive species, and moreover has potential to impede restoration of native communities after removal of an invasive species. However, certain native species that are relatively insensitive to altered soil biota (as we observed in the case of the forb Linum lewisii and the native grasses), may be valuable as 'nurse'species in restoration efforts. ?? 2007 Springer Science+Business Media B.V.

  10. Community structure affects annual grass weed invasion during restoration of a shrub-steppe ecosystem

    Science.gov (United States)

    Phil S. Allen; Susan E. Meyer

    2014-01-01

    Ecological restoration of shrub-steppe communities in the western United States is often hampered by invasion of exotic annual grasses during the process. An important question is how to create restored communities that can better resist reinvasion by these weeds. One hypothesis is that communities comprised of species that are functionally similar to the invader will...

  11. Grass plants bind, retain, uptake, and transport infectious prions.

    Science.gov (United States)

    Pritzkow, Sandra; Morales, Rodrigo; Moda, Fabio; Khan, Uffaf; Telling, Glenn C; Hoover, Edward; Soto, Claudio

    2015-05-26

    Prions are the protein-based infectious agents responsible for prion diseases. Environmental prion contamination has been implicated in disease transmission. Here, we analyzed the binding and retention of infectious prion protein (PrP(Sc)) to plants. Small quantities of PrP(Sc) contained in diluted brain homogenate or in excretory materials (urine and feces) can bind to wheat grass roots and leaves. Wild-type hamsters were efficiently infected by ingestion of prion-contaminated plants. The prion-plant interaction occurs with prions from diverse origins, including chronic wasting disease. Furthermore, leaves contaminated by spraying with a prion-containing preparation retained PrP(Sc) for several weeks in the living plant. Finally, plants can uptake prions from contaminated soil and transport them to aerial parts of the plant (stem and leaves). These findings demonstrate that plants can efficiently bind infectious prions and act as carriers of infectivity, suggesting a possible role of environmental prion contamination in the horizontal transmission of the disease. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Identification of volatiles that are used in discrimination between plants infested with prey or nonprey herbivores by a predatory mite

    NARCIS (Netherlands)

    Boer, de J.G.; Posthumus, M.A.; Dicke, M.

    2004-01-01

    Carnivorous arthropods can use herbivore-induced plant volatiles to locate their herbivorous prey. In the field, carnivores are confronted with information from plants infested with herbivores that may differ in their suitability as prey. Discrimination by the predatory mite Phytoseiulus persimilis

  13. Pre-study - mobile briquetting plant for reed canary grass in inland Northern Sweden; Foerstudie - mobil briketteringsanlaeggning foer roerflen i norrlands inland

    Energy Technology Data Exchange (ETDEWEB)

    Paulrud, Susanne; Lundmark, Bo

    2009-07-01

    The aim of this preliminary study was to summarize existing information and to develop an outline plan for a mobile briquette plant based on the conditions and requirements of reed canary grass production on forestry land. The results of the study show that there is potential to build up small-scale briquette production from reed canary grass in the areas around Arvidsjaur, Lycksele and Malaa. Important conclusions from the study are that there are potential users for reed canary grass briquettes in all three areas studied, but that profitability for mobile briquette plants is dependent on the willingness of the users to pay well for the briquettes. These briquette plants would need a relatively high degree of automation for commercial operation to be profitable. The first plant should therefore be collocated with another business so that staff, machinery (e.g. loader) and storage space can be shared with other operations. One appropriate location would be to build up activities for a mobile reed canary grass briquette plant around Glommers Miljoeenergi's pellet plant in Glommerstraesk. Thus, the plant could be used as a demonstration mobile unit, with a stationary 'home production base'CO{sub 2} Glommerstraesk

  14. Application of Hyperspectal Techniques to Monitoring & Management of Invasive Plant Species Infestation

    Science.gov (United States)

    2008-01-09

    Scirpus olnei, S. robustus, Hibiscus palustris, Eryngium virginianum. 1. Common reed (Phragmites australis) - large cane or bamboo-like grass...Index 2 760 695 R R plant stress status Zarco-Tejada (1998) PI3, Pigment Index 3 690 440 R R vegetation health , based on chlorophyll fluorescence...ratios Lichtenthaler et al. (1996) PI4, Pigment Index 4 740 440 R R vegetation health , based on chlorophyll fluorescence ratios

  15. Alien plant invasion in mixed-grass prairie: effects of vegetation type, stochiasticity, and anthropogenic disturbance in two park units

    Science.gov (United States)

    Larson, Diane L.; Anderson, Patrick J.; Newton, Wesley E.

    2001-01-01

    The ability of alien plant species to invade a region depends not only on attributes of the plant, but on characteristics of the habitat being invaded. Here, we examine characteristics that may influence the success of alien plant invasion in mixed-grass prairie at Theodore Roosevelt National Park, in western North Dakota, USA. The park consists of two geographically separate units with similar vegetation types and management history, which allowed us to examine the effects of native vegetation type, anthropogenic disturbance, and the separate park units on the invasion of native plant communities by alien plant species common to counties surrounding both park units. If matters of chance related to availability of propagules and transient establishment opportunities determine the success of invasion, park unit and anthropogenic disturbance should better explain the variation in alien plant frequency. If invasibility is more strongly related to biotic or physical characteristics of the native plant communities, models of alien plant occurrence should include vegetation type as an explanatory variable. We examined >1300 transects across all vegetation types in both units of the park. Akaike's Information Criterion (AIC) indicated that the fully parameterized model, including the interaction among vegetation type, disturbance, and park unit, best described the distribution of both total number of alien plants per transect and frequency of alien plants on transects where they occurred. Although all vegetation types were invaded by alien plants, mesic communities had both greater numbers and higher frequencies of alien plants than did drier communities. A strong element of stochasticity, reflected in differences in frequencies of individual species between the two park units, suggests that prediction of risk of invasion will always involve uncertainty. In addition, despite well-documented associations between anthropogenic disturbance and alien plant invasion, five of

  16. Effects of Plant Functional Group Loss on Soil Microbial Community and Litter Decomposition in a Steppe Vegetation.

    Science.gov (United States)

    Xiao, Chunwang; Zhou, Yong; Su, Jiaqi; Yang, Fan

    2017-01-01

    Globally, many terrestrial ecosystems are experiencing a rapid loss of biodiversity. Continued improvements in our understanding of interrelationships between plant diversity and soil microbes are critical to address the concern over the consequences of the decline in biodiversity on ecosystem functioning and services. By removing forbs, or grasses, or, to an extreme scenario, both forbs and grasses in a steppe vegetation in Inner Mongolia, we studied how plant functional group (PFG) loss affects soil microbial community composition using phospholipid fatty acid analysis (PLFA) and litter decomposition using a litter-bag method. PFG loss significantly decreased above- and below-ground plant biomass, soil microbial biomass carbon (SMBC) and nitrogen (SMBN), but had no effect on the ratio of SMBC to SMBN. Although the ratio of fungal to bacterial PLFAs remained unaffected, PFG loss significantly reduced the amount of bacterial, fungal, and total PLFAs. PFG loss decreased litter monthly mass loss and decay constant, and such decrease was significant when both forbs and grasses were removed. Our results provide robust evidence that PFG loss in grassland ecosystem can lead to a rapid response of soil microbial activity which may affect litter decomposition and soil nutrient cycling, suggesting that the assessment of plant-microbe interactions in soils is an integral component of ecosystem response to biodiversity loss.

  17. Coal mining activities change plant community structure due to air pollution and soil degradation.

    Science.gov (United States)

    Pandey, Bhanu; Agrawal, Madhoolika; Singh, Siddharth

    2014-10-01

    The aim of this study was to investigate the effects of coal mining activities on the community structures of woody and herbaceous plants. The response of individual plants of community to defilement caused by coal mining was also assessed. Air monitoring, soil physico-chemical and phytosociological analyses were carried around Jharia coalfield (JCF) and Raniganj coalfield. The importance value index of sensitive species minified and those of tolerant species enhanced with increasing pollution load and altered soil quality around coal mining areas. Although the species richness of woody and herbaceous plants decreased with higher pollution load, a large number of species acclimatized to the stress caused by the coal mining activities. Woody plant community at JCF was more affected by coal mining than herbaceous community. Canonical correspondence analysis revealed that structure of herbaceous community was mainly driven by soil total organic carbon, soil nitrogen, whereas woody layer community was influenced by sulphur dioxide in ambient air, soil sulphate and soil phosphorus. The changes in species diversity observed at mining areas indicated an increase in the proportion of resistant herbs and grasses showing a tendency towards a definite selection strategy of ecosystem in response to air pollution and altered soil characteristics.

  18. Sonoran Desert ecosystem transformation by a C4 grass without the grass/fire cycle

    Science.gov (United States)

    Olsson, Aaryn D.; Betancourt, Julio; McClaran, Mitchel P.; Marsh, Stuart E.

    2012-01-01

    Aim Biological invasions facilitate ecosystem transformation by altering the structure and function, diversity, dominance and disturbance regimes. A classic case is the grass–fire cycle in which grass invasion increases the frequency, scale and/or intensity of wildfires and promotes the continued invasion of invasive grasses. Despite wide acceptance of the grass–fire cycle, questions linger about the relative roles that interspecific plant competition and fire play in ecosystem transformations. Location Sonoran Desert Arizona Upland of the Santa Catalina Mountains, Arizona, USA. Methods We measured species cover, density and saguaro (Carnegiea gigantea) size structure along gradients of Pennisetum ciliare invasion at 10 unburned/ungrazed P. ciliare patches. Regression models quantified differences in diversity, cover and density with respect to P. ciliare cover, and residence time and a Fisher's exact test detected demographic changes in saguaro populations. Because P. ciliare may have initially invaded locations that were both more invasible and less diverse, we ran analyses with and without the plots in which initial infestations were located. Results Richness and diversity decreased with P. ciliare cover as did cover and density of most dominant species. Richness and diversity declined with increasing time since invasion, suggesting an ongoing transformation. The proportion of old-to-young Carnegiea gigantea was significantly lower in plots with dominant P. ciliare cover. Main conclusions Rich desert scrub (15–25 species per plot) was transformed into depauperate grassland (2–5 species per plot) within 20 years following P. ciliare invasion without changes to the fire regime. While the onset of a grass–fire cycle may drive ecosystem change in the later stages and larger scales of grass invasions of arid lands, competition by P. ciliare can drive small-scale transformations earlier in the invasion. Linking competition-induced transformation rates with

  19. The conditions for use of reed canary grass briquettes and chopped reed canary grass in small heating plants; Foerutsaettningar foer anvaendning av roerflensbriketter och hackad roerflen i mindre vaermecentraler

    Energy Technology Data Exchange (ETDEWEB)

    Paulrud, Susanne; Davidsson, Kent; Holmgren, Magnus A. (Swedish National Testing and Research Inst., Boraas (Sweden)); Hedman, Henry; Oehman, Rikard; Leffler, Joel (ETC, Piteaa (Sweden))

    2010-09-15

    The aim of this study was to test fuel blends of briquettes and chopped reed canary grass in three existing heating plants (50 kW - 500 kW) and elucidate the requirements for good performance and low emissions. In addition, the study investigated production of reed canary grass briquettes using a Polish screw press developed for straw. Some tests with a bale shredder were also undertaken. The screw press technique is of interest for reed canary grass because it is a simple technique, easy to handle, developed for small scale production, and for straw. The test with reed canary grass in this study showed that the technique worked well but that further adjustments and a longer test period are needed in order to achieve higher bulk density and mechanical strength. The test with chopped reed canary grass shows that a system with a forage harvester is slightly more effective than baling and cutting in a bale shredder. The study concluded that few existing heating plants of size 50 kW-1 MW that currently use wood fuels will be able to use reed canary grass without adjustment, conversion or replacement of the combustion equipment. Reed canary grass has 15-20 times higher ash content than wood briquettes and 2-3 times higher ash content than forest residue; the combustion equipment must be able to handle these properties. The boiler must be equipped with a continuously operating ashing system and it must be possible to move the ash bed mechanically. There is a risk of high content of unburned matter if the residence time in the boiler is too short, due to the structure and low bulk density of the reed canary grass ash. Using a blend of wood briquettes and reed canary briquettes results in lower ash content, but also affects the ash chemistry and tends to lower the initial ash fusion temperature compared to using 100 % reed canary grass. Blending chopped reed canary grass and wood chips in an existing small scale heating plant also requires measures to achieve an even fuel

  20. CO2, Temperature, and Soil Moisture Interactions Affect NDVI and Reproductive Phenology in Old-Field Plant Communities

    Science.gov (United States)

    Engel, C.; Weltzin, J.; Norby, R.

    2004-12-01

    Plant community composition and ecosystem function may be altered by global atmospheric and climate change, including increased atmospheric [CO2], temperature, and varying precipitation regimes. We are conducting an experiment at Oak Ridge National Laboratory (ORNL) utilizing open-top chambers to administer experimental treatments of elevated CO2 (+300 ppm), warming (+ 3 degrees Celsius), and varying soil moisture availability to experimental plant communities constructed of seven common old-field species, including C3 and C4 grasses, forbs, and legumes. During 2004 we monitored plant community phenology (NDVI) and plant reproductive phenology. Early in the year, NDVI was greater in wet treatment plots, and was unaffected by main effects of temperature or CO2. This result suggests that early in the season warming is insufficient to affect early canopy development. Differences in soil moisture sustained throughout the winter and into early spring may constitute an important control on early canopy greenup. Elevated CO2 alleviated detrimental effects of warming on NDVI, but only early in the season. As ambient temperatures increased, elevated temperatures negatively impacted NDVI only in the dry plots. Wetter conditions ameliorate the effects of warming on canopy greenness during the warmer seasons of the year. Warming increased rates of bolting, number of inflorescences, and time to reproductive maturity for Andropogon virginicus (a C4 bunchgrass). Solidago Canadensis (a C3 late-season forb) also produced flowers earlier in elevated temperatures. Conversely, none of the C3 grasses and forbs that bolt or flower in late spring or early summer responded to temperature or CO2. Results indicate that warming and drought may impact plant community phenology, and plant species reproductive phenology. Clearly community phenology is driven by complex interactions among temperature, water, and CO2 that change throughout the season. Our data stresses the importance of

  1. Common mycelial networks impact competition in an invasive grass.

    Science.gov (United States)

    Workman, Rachael E; Cruzan, Mitchell B

    2016-06-01

    Mycorrhizal hyphal complexes can connect multiple host plants to form common mycelial networks (CMNs) that may affect plant competitive outcomes and community composition through differential resource allocation. The impacts of CMN interactions on invasive plants are not well understood and could be crucial to the understanding of invasive plant establishment and success. We grew the invasive grass Brachypodium sylvaticum in intra- and interspecific pairings with native grass Bromus vulgaris in a greenhouse and controlled for the effects of CMN and root interactions by manipulating the belowground separation between competitors. Comparison of plant growth in pots that allowed CMN interactions and excluded root competition and vice versa, or both, allowed us to delineate the effects of network formation and root competition on invasive plant establishment and performance. Brachypodium sylvaticum grown in pots allowing for only hyphal interactions, but no root competition, displayed superior growth compared with conspecifics in other treatments. Invasive performance was poorest when pairs were not separated by a barrier. Shoot nitrogen content in B. sylvaticum was higher in mycorrhizal plants only when connections were allowed between competitors. Our results indicate that the presence of CMN networks can have positive effects on B. sylvaticum establishment and nutrient status, which may affect plant competition and invasion success. © 2016 Botanical Society of America.

  2. Both heavy metal-amendment of soil and aphid-infestation increase Cd and Zn concentrations in phloem exudates of a metal-hyperaccumulating plant.

    Science.gov (United States)

    Stolpe, Clemens; Giehren, Franziska; Krämer, Ute; Müller, Caroline

    2017-07-01

    Plants that are able to hyperaccumulate heavy metals show increased concentrations of these metals in their leaf tissue. However, little is known about the concentrations of heavy metals and of organic defence metabolites in the phloem sap of these plants in response to either heavy metal-amendment of the soil or biotic challenges such as aphid-infestation. In this study, we investigated the effects of heavy metal-exposure and of aphid-infestation on phloem exudate composition of the metal hyperaccumulator species Arabidopsis halleri L. O'Kane & Al-Shehbaz (Brassicaceae). The concentrations of elements and of organic defence compounds, namely glucosinolates, were measured in phloem exudates of young and old (mature) leaves of plants challenged either by amendment of the soil with cadmium and zinc and/or by an infestation with the generalist aphid Myzus persicae. Metal-amendment of the soil led to increased concentrations of Cd and Zn, but also of two other elements and one indole glucosinolate, in phloem exudates. This enhanced defence in the phloem sap of heavy metal-hyperaccumulating plants can thus potentially act as effective protection against aphids, as predicted by the elemental defence hypothesis. Aphid-infestation also caused enhanced Cd and Zn concentrations in phloem exudates. This result provides first evidence that metal-hyperaccumulating plants can increase heavy metal concentrations tissue-specifically in response to an attack by phloem-sucking herbivores. Overall, the concentrations of most elements, including the heavy metals, and glucosinolates were higher in phloem exudates of young leaves than in those of old leaves. This defence distribution highlights that the optimal defence theory, which predicts more valuable tissue to be better defended, is applicable for both inorganic and organic defences. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Spreaders, igniters, and burning shrubs: plant flammability explains novel fire dynamics in grass-invaded deserts.

    Science.gov (United States)

    Fuentes-Ramirez, Andres; Veldman, Joseph W; Holzapfel, Claus; Moloney, Kirk A

    2016-10-01

    Novel fire regimes are an important cause and consequence of global environmental change that involve interactions among biotic, climatic, and human components of ecosystems. Plant flammability is key to these interactions, yet few studies directly measure flammability or consider how multiple species with different flammabilities interact to produce novel fire regimes. Deserts of the southwestern United States are an ideal system for exploring how novel fire regimes can emerge when fire-promoting species invade ecosystems comprised of species that did not evolve with fire. In these deserts, exotic annual grasses provide fuel continuity across landscapes that did not historically burn. These fires often ignite a keystone desert shrub, the fire-intolerant creosote bush, Larrea tridentata (DC.) Coville. Ignition of Larrea is likely catalyzed by fuels produced by native plants that grow beneath the shrubs. We hypothesize that invasive and native species exhibit distinct flammability characteristics that in combination determine spatial patterns of fire spread and intensity. We measured flammability metrics of Larrea, two invasive grasses, Schismus arabicus and Bromus madritensis, and two native plants, the sub-shrub Ambrosia dumosa and the annual herb Amsinckia menziesii. Results of laboratory experiments show that the grasses carry fire quickly (1.32 cm/s), but burn for short duration (0.5 min) at low temperatures. In contrast, native plants spread fire slowly (0.12 cm/s), but burn up to eight times longer (4 min) and produced hotter fires. Additional experiments on the ignition requirements of Larrea suggest that native plants burn with sufficient temperature and duration to ignite dead Larrea branches (time to ignition, 2 min; temperature at ignition 692°C). Once burning, these dead branches ignite living branches in the upper portions of the shrub. Our study provides support for a conceptual model in which exotic grasses are "spreaders" of fire and native

  4. Analysis of the soil food web structure under grass and grass clover

    NARCIS (Netherlands)

    Eekeren, van N.J.M.; Smeding, F.W.; Vries, de F.T.; Bloem, J.

    2006-01-01

    The below ground biodiversity of soil organisms plays an important role in the functioning of the the soil ecosystem, and consequently the above ground plant production. The objective of this study is to investigate the effect of grass or grass-clover in combination with fertilisation on the soil

  5. Plant Invasions Associated with Change in Root-Zone Microbial Community Structure and Diversity.

    Directory of Open Access Journals (Sweden)

    Richard R Rodrigues

    Full Text Available The importance of plant-microbe associations for the invasion of plant species have not been often tested under field conditions. The research sought to determine patterns of change in microbial communities associated with the establishment of invasive plants with different taxonomic and phenetic traits. Three independent locations in Virginia, USA were selected. One site was invaded by a grass (Microstegium vimineum, another by a shrub (Rhamnus davurica, and the third by a tree (Ailanthus altissima. The native vegetation from these sites was used as reference. 16S rRNA and ITS regions were sequenced to study root-zone bacterial and fungal communities, respectively, in invaded and non-invaded samples and analyzed using Quantitative Insights Into Microbial Ecology (QIIME. Though root-zone microbial community structure initially differed across locations, plant invasion shifted communities in similar ways. Indicator species analysis revealed that Operational Taxonomic Units (OTUs closely related to Proteobacteria, Acidobacteria, Actinobacteria, and Ascomycota increased in abundance due to plant invasions. The Hyphomonadaceae family in the Rhodobacterales order and ammonia-oxidizing Nitrospirae phylum showed greater relative abundance in the invaded root-zone soils. Hyphomicrobiaceae, another bacterial family within the phyla Proteobacteria increased as a result of plant invasion, but the effect associated most strongly with root-zones of M. vimineum and R. davurica. Functional analysis using Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt showed bacteria responsible for nitrogen cycling in soil increased in relative abundance in association with plant invasion. In agreement with phylogenetic and functional analyses, greater turnover of ammonium and nitrate was associated with plant invasion. Overall, bacterial and fungal communities changed congruently across plant invaders, and support the hypothesis that

  6. Assessing the phytoremediation potential of crop and grass plants for atrazine-spiked soils.

    Science.gov (United States)

    Sánchez, Virtudes; López-Bellido, Francisco Javier; Cañizares, Pablo; Rodríguez, Luis

    2017-10-01

    Pollution of soil and groundwater by atrazine has become an increasing environmental concern in the last decade. A phytoremediation test using plastic pots was conducted in order to assess the ability of several crops and grasses to remove atrazine from a soil of low permeability spiked with this herbicide. Four plant species were assessed for their ability to degrade or accumulate atrazine from soils: two grasses, i.e., ryegrass (Lolium perenne) and tall fescue (Festuca arundinacea), and two crops, i.e., barley (Hordeum vulgare) and maize (Zea mays). Three different doses of atrazine were used for the contamination of the pots: 2, 5 and 10 mg kg -1 . 16 days after spiking, the initial amount of atrazine was reduced by 88.6-99.6% in planted pots, while a decrease of only 63.1-78.2% was found for the unplanted pots, thus showing the contribution of plants to soil decontamination. All the plant species were capable of accumulating atrazine and its N-dealkylated metabolites, i.e., deethylatrazine and deisopropylatrazine, in their tissues. Some toxic responses, such as biomass decreases and/or chlorosis, were observed in plants to a greater or lesser extent for initial soil doses of atrazine above 2 mg kg -1 . Maize was the plant species with the highest ability to accumulate atrazine derivatives, reaching up to 38.4% of the initial atrazine added to the soil. Rhizosphere degradation/mineralization by microorganisms or plant enzymes, together with degradation inside the plants, have been proposed as the mechanisms that contributed to a higher extent than plant accumulation to explain the removal of atrazine from soils. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Atlantis Star – a new herbicide in cereals with efficacy against grasses and dicots

    Directory of Open Access Journals (Sweden)

    Kerlen, Dirk

    2016-02-01

    Full Text Available Atlantis Star (mesosulfuron-methyl; iodosulfuron-methyl-sodium; thiencarbazone-methyl; mefenpyr-diethyl is a new cereal herbicide to control blackgrass (Alopecurus myosuroides; sensitive and high infestation, brome grass (Bromus spec., ryegrass (Lolium spec., wild oat (Avena fatua, loose silky-bentgrass (Apera spica-venti L., annual meadow-grass (Poa annua L. and dicot weeds. Atlantis Star can be used in winter wheat, winter triticale, winter rye, winter durum wheat and spelt. The publication is based on efficacy trials from two years of spring application with Atlantis Star.

  8. Nutrient addition shifts plant community composition towards earlier flowering species in some prairie ecoregions in the U.S. Central Plains.

    Directory of Open Access Journals (Sweden)

    Lori Biederman

    Full Text Available The distribution of flowering across the growing season is governed by each species' evolutionary history and climatic variability. However, global change factors, such as eutrophication and invasion, can alter plant community composition and thus change the distribution of flowering across the growing season. We examined three ecoregions (tall-, mixed, and short-grass prairie across the U.S. Central Plains to determine how nutrient (nitrogen (N, phosphorus, and potassium (+micronutrient addition alters the temporal patterns of plant flowering traits. We calculated total community flowering potential (FP by distributing peak-season plant cover values across the growing season, allocating each species' cover to only those months in which it typically flowers. We also generated separate FP profiles for exotic and native species and functional group. We compared the ability of the added nutrients to shift the distribution of these FP profiles (total and sub-groups across the growing season. In all ecoregions, N increased the relative cover of both exotic species and C3 graminoids that flower in May through August. The cover of C4 graminoids decreased with added N, but the response varied by ecoregion and month. However, these functional changes only aggregated to shift the entire community's FP profile in the tall-grass prairie, where the relative cover of plants expected to flower in May and June increased and those that flower in September and October decreased with added N. The relatively low native cover in May and June may leave this ecoregion vulnerable to disturbance-induced invasion by exotic species that occupy this temporal niche. There was no change in the FP profile of the mixed and short-grass prairies with N addition as increased abundance of exotic species and C3 graminoids replaced other species that flower at the same time. In these communities a disturbance other than nutrient addition may be required to disrupt phenological

  9. Reclamation after oil and gas development does not speed up succession or plant community recovery in big sagebrush ecosystems in Wyoming

    Science.gov (United States)

    Rottler, Caitlin M.; Burke, Ingrid C.; Palmquist, Kyle A.; Bradford, John B.; Lauenroth, William K.

    2018-01-01

    Article for intended outlet: Restoration Ecology. Abstract: Reclamation is an application of treatment(s) following a disturbance to promote succession and accelerate the return of target conditions. Previous studies have framed reclamation in the context of succession by studying its effectiveness in re-establishing late-successional plant communities. Re-establishment of these plant communities is especially important and potentially challenging in regions such as drylands and shrub steppe ecosystems where succession proceeds slowly. Dryland shrub steppe ecosystems are frequently associated with areas rich in fossil-fuel energy sources, and as such the need for effective reclamation after disturbance from fossil-fuel-related energy development is great. Past research in this field has focused primarily on coal mines; few researchers have studied reclamation after oil and gas development. To address this research gap and to better understand the effect of reclamation on rates of succession in dryland shrub steppe ecosystems, we sampled oil and gas wellpads and adjacent undisturbed big sagebrush plant communities in Wyoming, USA and quantified the extent of recovery for major functional groups on reclaimed and unreclaimed (recovered via natural succession) wellpads relative to the undisturbed plant community. Reclamation increased the rate of recovery for all forb and grass species as a group and for perennial grasses, but did not affect other functional groups. Rather, analyses comparing recovery to environmental variables and time since wellpad abandonment showed that recovery of other groups were affected primarily by soil texture and time since wellpad abandonment. This is consistent with studies in other ecosystems where reclamation has been implemented, suggesting that reclamation may not help re-establish late-successional plant communities more quickly than they would re-establish naturally.

  10. Establishing native warm season grasses on Eastern Kentucky strip mines

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, T.G.; Larkin, J.L.; Arnett, M.B. [Univ. of Kentucky, Lexington, KY (United States). Dept. of Forestry

    1998-12-31

    The authors evaluated various methods of establishing native warm season grasses on two reclaimed Eastern Kentucky mines from 1994--1997. Most current reclamation practices incorporate the use of tall fescue (Festuca arundinacea) and other cool-season grasses/legumes that provide little wildlife habitats. The use of native warm season grasses will likely improve wildlife habitat on reclaimed strip mines. Objectives of this study were to compare the feasibility of establishing these grasses during fall, winter, or spring using a native rangeland seeder or hydroseeding; a fertilizer application at planting; or cold-moist stratification prior to hydroseeding. Vegetative cover, bare ground, species richness, and biomass samples were collected at the end of each growing season. Native warm season grass plantings had higher plant species richness compared to cool-season reclamation mixtures. There was no difference in establishment of native warm season grasses as a result of fertilization or seeding technique. Winter native warm season grass plantings were failures and cold-moist stratification did not increase plant establishment during any season. As a result of a drought during 1997, both cool-season and warm season plantings were failures. Cool-season reclamation mixtures had significantly more vegetative cover and biomass compared to native warm season grass mixtures and the native warm season grass plantings did not meet vegetative cover requirements for bond release. Forbs and legumes that established well included pale purple coneflower (Echinacea pallida), lance-leaf coreopsis (Coreopsis lanceolata), round-headed lespedeza (Lespedeza capitata), partridge pea (Cassia fasiculata), black-eyed susan (Rudbeckia hirta), butterfly milkweed (Asclepias tuberosa), and bergamot (Monarda fistulosa). Results from two demonstration plots next to research plots indicate it is possible to establish native warm season grasses on Eastern Kentucky strip mines for wildlife habitat.

  11. Establishing native warm season grasses on Eastern Kentucky strip mines

    International Nuclear Information System (INIS)

    Barnes, T.G.; Larkin, J.L.; Arnett, M.B.

    1998-01-01

    The authors evaluated various methods of establishing native warm season grasses on two reclaimed Eastern Kentucky mines from 1994--1997. Most current reclamation practices incorporate the use of tall fescue (Festuca arundinacea) and other cool-season grasses/legumes that provide little wildlife habitats. The use of native warm season grasses will likely improve wildlife habitat on reclaimed strip mines. Objectives of this study were to compare the feasibility of establishing these grasses during fall, winter, or spring using a native rangeland seeder or hydroseeding; a fertilizer application at planting; or cold-moist stratification prior to hydroseeding. Vegetative cover, bare ground, species richness, and biomass samples were collected at the end of each growing season. Native warm season grass plantings had higher plant species richness compared to cool-season reclamation mixtures. There was no difference in establishment of native warm season grasses as a result of fertilization or seeding technique. Winter native warm season grass plantings were failures and cold-moist stratification did not increase plant establishment during any season. As a result of a drought during 1997, both cool-season and warm season plantings were failures. Cool-season reclamation mixtures had significantly more vegetative cover and biomass compared to native warm season grass mixtures and the native warm season grass plantings did not meet vegetative cover requirements for bond release. Forbs and legumes that established well included pale purple coneflower (Echinacea pallida), lance-leaf coreopsis (Coreopsis lanceolata), round-headed lespedeza (Lespedeza capitata), partridge pea (Cassia fasiculata), black-eyed susan (Rudbeckia hirta), butterfly milkweed (Asclepias tuberosa), and bergamot (Monarda fistulosa). Results from two demonstration plots next to research plots indicate it is possible to establish native warm season grasses on Eastern Kentucky strip mines for wildlife habitat

  12. Evaluating grasses as a long-term energy resource

    Energy Technology Data Exchange (ETDEWEB)

    Christian, D.G.; Riche, A.B.

    2001-07-01

    The work reported here is part of an ongoing project that aims to evaluate the yields of three perennial rhizomatous grasses and determine their suitability as bio-energy crops. The work began in 1993, and the grasses have been monitored continuously since that time. This report covers the period 1999/2000, and includes: the performance of plots of the energy grasses Miscanthus grass, switchgrass and reed canary grass seven years after they were planted; assessment of the yield of 15 genotypes of Miscanthus planted in 1997; monitoring all the species throughout the growing period for the presence of pests, weeds and diseases; measurement of the amount of nitrate leached from below Miscanthus grass; investigating the occurrence of lodging in switchgrass. (Author)

  13. Long-term impacts of nitrogen deposition on coastal plant communities

    DEFF Research Database (Denmark)

    Pakeman, Robin J.; Brooker, Rob; Alexander, Jim

    2016-01-01

    , Fixed dune, Heath, Slack and Tall grass mire communities and despite falls in EIV-N for Improved grass, Strand and Wet grassland. The increase in EIV-N was highly correlated to the cumulative deposition between the surveys, and for sites in south-east Scotland, eutrophication impacts appear severe...

  14. Effect of Tylenchorhynchus robustoides on Growth of Buffalo Grass and Western Wheatgrass.

    Science.gov (United States)

    Smolik, J D

    1982-10-01

    Tylenchorhynchus robustoides reduced (P = 0.05) growth of Agropyron smithii (western wheatgrass) at soil temperatures of 20, 25, 30, and 35 C. Growth reduction increased with increasing soil temperatures. Highest populations of T. robustoides were recovered at 25 and 30 C. Clipping weights of Buchloe dactyloides (buffalo grass) were reduced at 25 and 30 C; however, root/crown weights were reduced at 15, 20, 30, and 35 C in nematode infested vs. noninfested soil. Reproduction of T. robustoides was greater at 25, 30, and 35 C than at 20 C on B. dactyloides. In a greenhouse study, T. robustoides reduced clipping and root/crown weights of both grasses 24-64%.

  15. Evaluation of Blue Gum Chalid Infestation Woodlots in Western Kenya

    International Nuclear Information System (INIS)

    Otuoma, J.; Muchiri, M.N

    2007-01-01

    Blue gum chalcid (BGC) Leptocybe invasa is a gall-forming wasp that belongs to the insect order Hymenoptera, family Eulophidae. It attacks a wide range of Eucalyptus species mostly between the seedling stage and five years of age. BGC causes damage to eucalyptus by forming bump-shaped galls on the leaf midribs, petioles and stems.Twisted and knobbed leaves manifest severe infestation. The aim of this study was to establish the spatial distribution of BGC and extent of host plant damage in Eucalyptus woodlots in Western Kenya. The study was carried out in six permanent sampling plots in Eucalyptus woodlots in Busia, Bungoma, Kakamega and Nyando. Trees were assessed for crown damage by estimating and classifying the density of galls on the leaves into four levels of infestation: low (greater than 50% of foliage canopy with galls and no twisted or knobbed leaves), moderate (greater than 50% of foliage with galls and less than 50% of the leaves twisted and knobbed), high (greater than 50% of the leaves twisted and knobbed, galls on the twigs and some twigs deformed and severe (greater than 50% of the twigs deformed and regeneration foliage observed). An evaluation of the pests' infestation and the extent of host plant damage indicated that, 4% of the trees and severe infestation; 5% high; 20% moderate and 70% low. Approximately 1% of trees died as a result of loss of foliage attributable to severe infestation. Other observations from the study were that the severity of BGC infestation tended to decline as trees grew older and BGC infestation retarded tree growth

  16. Weed infestation of onion in soil reduced cultivation system

    Directory of Open Access Journals (Sweden)

    Marzena Błażej-Woźniak

    2013-12-01

    Full Text Available Field experiment was conducted in the years 1998-2000 in GD Felin. The influence of no-tillage cultivation and conventional tillage with spring ploughing on weed infestation of onion was compared. In experiment four cover crop mulches (Sinapis alba L., Vicia sativa L., Phacelia tanacetifolia B., Avena sativa L. were applied. From annual weeds in weed infestation of onion in great number Matricaria chamomilla L., and Senecio vulgaris L. stepped out. and from perennial - Agropyron repens (L.P.B. Reduced soil cultivation system (no-tillage caused the significant growth of primary weed infestation of onion in comparison with conventional tillage. In all years of investigations the executed pre-sowing ploughing limited significantly the annual weeds' number in primary weed infestation. The applied mulches from cover plants limited in considerable degree the number of primary weed infestation. In all years of investigations the most weeds stepped out on control object. Among investigated cover crop mulches Vicia sativa L. and Avena sativa L. had a profitable effect on decrease of onion`s primary weed infestation. Soil cultivation system and cover crop mulches had no signi ficant residual influence on the secondary weed infestation of onion.

  17. Aboveground Whitefly Infestation Modulates Transcriptional Levels of Anthocyanin Biosynthesis and Jasmonic Acid Signaling-Related Genes and Augments the Cope with Drought Stress of Maize.

    Directory of Open Access Journals (Sweden)

    Yong-Soon Park

    Full Text Available Up to now, the potential underlying molecular mechanisms by which maize (Zea mays L. plants elicit defense responses by infestation with a phloem feeding insect whitefly [Bemisia tabaci (Genn.] have been barely elucidated against (abiotic stresses. To fill this gap of current knowledge maize plants were infested with whitefly and these plants were subsequently assessed the levels of water loss. To understand the mode of action, plant hormone contents and the stress-related mRNA expression were evaluated. Whitefly-infested maize plants did not display any significant phenotypic differences in above-ground tissues (infested site compared with controls. By contrast, root (systemic tissue biomass was increased by 2-fold by whitefly infestation. The levels of endogenous indole-3-acetic acid (IAA, jasmonic acid (JA, and hydrogen peroxide (H2O2 were significantly higher in whitefly-infested plants. The biosynthetic or signaling-related genes for JA and anthocyanins were highly up-regulated. Additionally, we found that healthier plants were obtained in whitefly-infested plants under drought conditions. The weight of whitefly-infested plants was approximately 20% higher than that of control plants at 14 d of drought treatment. The drought tolerance-related genes, ZmbZIP72, ZmSNAC1, and ZmABA1, were highly expressed in the whitefly-infected plants. Collectively, our results suggest that IAA/JA-derived maize physiological changes and correlation of H2O2 production and water loss are modulated by above-ground whitefly infestation in maize plants.

  18. The effect of glyphosate and nitrogen on plant communities and the soil fauna in terrestrial biotopes at field margins

    DEFF Research Database (Denmark)

    Damgaard, Christian; Strandberg, Beate; Dupont, Yoko

    were assessed at the ecosystem level by measuring biodiversity and functional traits. We have obtained an increased understanding of the causal relationship between plant communities and the soil fauna at the ecosystem level and increased knowledge on how and by what mechanisms important drivers...... that are known to affect plant communities may affect pollination and the soil fauna. The combined use of plant trait and soil fauna trait data in a full-factorial field experiment of glyphosate and nitrogen has never been explored before. The focus on plant and soil fauna traits rather than species enabled...... nitrogen, generally, resulted in increasing total plant cover and biomass, especially of fast-growing and competitive species as grasses and a few herbs such as Tanacetum vulgare. Using plant traits we found that increase in nitrogen promoted an increase in the average specific leaf area (SLA) and canopy...

  19. Potential of grasses and rhizosphere bacteria for bioremediation of diesel-contaminated soils

    Directory of Open Access Journals (Sweden)

    Melissa Paola Mezzari

    2011-12-01

    Full Text Available The techniques available for the remediation of environmental accidents involving petroleum hydrocarbons are generally high-cost solutions. A cheaper, practical and ecologically relevant alternative is the association of plants with microorganisms that contribute to the degradation and removal of hydrocarbons from the soil. The growth of three tropical grass species (Brachiaria brizantha, Brachiaria decumbens and Paspalum notatum and the survival of root-associated bacterial communities was evaluated at different diesel oil concentrations. Seeds of three grass species were germinated in greenhouse and at different doses of diesel (0, 2.5, 5 and 10 g kg-1 soil. Plants were grown for 10 weeks with periodic assessment of germination, growth (fresh and dry weight, height, and number of bacteria in the soil (pots with or without plants. Growth and biomass of B. decumbens and P. notatum declined significantly when planted in diesel-oil contaminated soils. The presence of diesel fuel did not affect the growth of B. brizantha, which was highly tolerant to this pollutant. Bacterial growth was significant (p < 0.05 and the increase was directly proportional to the diesel dose. Bacteria growth in diesel-contaminated soils was stimulated up to 5-fold by the presence of grasses, demonstrating the positive interactions between rhizosphere and hydrocarbon-degrading bacteria in the remediation of diesel-contaminated soils.

  20. High green fodder yielding new grass varieties

    OpenAIRE

    C. Babu, K. Iyanar and A. Kalamani

    2014-01-01

    Two high biomass yielding forage grass varieties one each in Cumbu Napier hybrid and Guinea grass have been evolved at the Department of Forage Crops, Centre for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore and identified for release at national (All India) level as Cumbu Napier hybrid grass CO (BN) 5 and Guinea grass CO (GG) 3 during 2012 and 2013 respectively. Cumbu Napier hybrid grass CO (BN) 5 secured first rank at all national level with reference to green ...

  1. Plant community responses to climate change

    Energy Technology Data Exchange (ETDEWEB)

    Kongstad, J.

    2012-07-01

    Climate change is expected to affect terrestrial ecosystems across the globe with increased atmospheric CO{sub 2} concentration, higher temperatures and changes in precipitation patterns. These environmental factors are drivers of many important ecosystem processes, and changes in ecosystem function are therefore expected in the future. The aim of this PhD-thesis was to examine the effects of climate change on aboveground plant growth, plant composition and plant phenology in Danish heathland ecosystems. Two sites were investigated in large-scale field experiments: 1) the CLIMAITE site, 'Brandbjerg' and 2) the INCREASE site at Mols. Field manipulations lasted years and included: Warming, summer drought and (CLIMAITE only) elevated CO{sub 2} concentrations. The treatments were applied individually and in all possible combinations. Further, at Brandbjerg, but outside the treatment plots, a study was performed on the effects nitrogen and phosphorus addition on phenology, chemistry and growth of the dominant grass Deschampsia flexuosa (Wavy Hairgrass). In general, the aboveground vegetation responded less than expected to changing climatic conditions; even though Calluna vulgaris (Heather) increased in biomass over the study period, the biomass was not affected by the manipulations, indicating that C. vulgaris, has a strong resistance to changes in climate. Also, the grass biomass (primarily D. flexuosa) was not affected and was relatively constant over the period. I argue that the resilience of D. flexuosa towards the climatic treatments came from the plants ability to let the tissue die back, and then quickly recover once conditions again became favourable. That gave the plant a high resilience to changes in climatic factors. Calluna vulgaris, on the other hand, showed a resistance to changes by constantly maintaining the growth during the whole season, probably because of its evergreen status. Together, the two different strategies made the heathland

  2. Feed intake, growth performance and digestibility in goats fed whole corn plant silage and Napier grass

    Directory of Open Access Journals (Sweden)

    Khaing, K.T.

    2015-06-01

    Full Text Available Shortage and inconsistent quality of forage in developing countries are the major constraints to the development of ruminant sector. To overcome these problems, feeding of ruminants with conserved forages is an important feeding strategy to ensure the success of ruminant production in the third world countries. The use of whole corn plant as silage has drawn many attention due to high protein efficiency, relatively high digestible energy and total digestible nutrients. Thus, the objective of this study was to determine feed intake, growth performance and nutrients digestibility in goats fed different inclusion level of whole corn plant silage to Napier grass based diets. Fifteen male Boer cross goats around six months old and approximately 18.54 ? 1.83 kg of body weight were used as experimental animals. The goats were assigned into five treatment groups consisted of different proportions of Napier grass (G and whole plant corn silage (CS ?T1:100/0 G/CS; T2:75/25 G/CS; T3:50/50 G/CS; T4:25/75 G/CS and T5:0/100 G/CS. The increase of corn silage to Napier grass proportion demonstrates increase in dry matter intake and growth performance in the goats. The highest nutrient digestibility was observed in T5:0/100 G/CS and T3:50/50 G/CS. It can be concluded that high proportion of corn silage to grass diets had resulted in increases in feed intake and growth performance of goats. Feeding the animals with T5 and T3 resulted in high nutrient utilization compared to other treatments. However, the highest growth performance was observed in animals that were fed with T5 diets.

  3. Grassland Arthropods Are Controlled by Direct and Indirect Interactions with Cattle but Are Largely Unaffected by Plant Provenance.

    Science.gov (United States)

    Farrell, Kelly Anne; Harpole, W Stanley; Stein, Claudia; Suding, Katharine N; Borer, Elizabeth T

    2015-01-01

    Cattle grazing and invasion by non-native plant species are globally-ubiquitous changes occurring to plant communities that are likely to reverberate through whole food webs. We used a manipulative field experiment to quantify how arthropod community structure differed in native and non-native California grassland communities in the presence and absence of grazing. The arthropod community was strongly affected by cattle grazing: the biovolume of herbivorous arthropods was 79% higher in grazed than ungrazed plots, whereas the biovolume of predatory arthropods was 13% higher in ungrazed plots. In plots where non-native grasses were grazed, arthropod biovolume increased, possibly in response to increased plant productivity or increased nutritional quality of rapidly-growing annual plants. Grazing may thus affect plant biomass both through the direct removal of biomass, and through arthropod-mediated impacts. We also expected the arthropod community to differ between native and non-native plant communities; surprisingly, arthropod richness and diversity did not vary consistently between these grass community types, although arthropod abundance was slightly higher in plots with native and ungrazed grasses. These results suggest that whereas cattle grazing affects the arthropod community via direct and indirect pathways, arthropod community changes commonly associated with non-native plant invasions may not be due to the identity or dominance of the invasive species in those systems, but to accompanying changes in plant traits or functional group composition, not seen in this experiment because of the similarity of the plant communities.

  4. Grassland Arthropods Are Controlled by Direct and Indirect Interactions with Cattle but Are Largely Unaffected by Plant Provenance.

    Directory of Open Access Journals (Sweden)

    Kelly Anne Farrell

    Full Text Available Cattle grazing and invasion by non-native plant species are globally-ubiquitous changes occurring to plant communities that are likely to reverberate through whole food webs. We used a manipulative field experiment to quantify how arthropod community structure differed in native and non-native California grassland communities in the presence and absence of grazing. The arthropod community was strongly affected by cattle grazing: the biovolume of herbivorous arthropods was 79% higher in grazed than ungrazed plots, whereas the biovolume of predatory arthropods was 13% higher in ungrazed plots. In plots where non-native grasses were grazed, arthropod biovolume increased, possibly in response to increased plant productivity or increased nutritional quality of rapidly-growing annual plants. Grazing may thus affect plant biomass both through the direct removal of biomass, and through arthropod-mediated impacts. We also expected the arthropod community to differ between native and non-native plant communities; surprisingly, arthropod richness and diversity did not vary consistently between these grass community types, although arthropod abundance was slightly higher in plots with native and ungrazed grasses. These results suggest that whereas cattle grazing affects the arthropod community via direct and indirect pathways, arthropod community changes commonly associated with non-native plant invasions may not be due to the identity or dominance of the invasive species in those systems, but to accompanying changes in plant traits or functional group composition, not seen in this experiment because of the similarity of the plant communities.

  5. Plant responses to multiple herbivory

    NARCIS (Netherlands)

    Li, Yehua

    2016-01-01

    This thesis explores whether aphid-infestation interferes with the plant response to chewing herbivores and whether this impacts performance and behaviour of individual chewing insect herbivores and their natural enemies, as well as the entire insect community. I investigated this using three

  6. The physical environment and major plant communities of the Karoo National Park, South Africa

    Directory of Open Access Journals (Sweden)

    Francine Rubin

    1996-08-01

    Full Text Available The major plant communities of the Karoo National Park are described using the methods of the Zurich-Montpellier school of phytosociology, to assist with the formulation of a management strategy for the park. The vegetation physiognomy consists of Montane Karoo grassy shrublands. Karoo grassy dwarf shrublands. Karoo succulent dwarf shrublands and riparian thicket. Steep elevation and precipitation gradients within the study area have a direct impact on gradients in the vegetation. High elevation (1 800 m, and relatively high rainfall (406 mm montane grasslands occupy communities dominated by grasses (Merxmuellera disticha, Themeda triandra and woody species (Diospyros austro-africana, Elytropappus rhinocerotis, Euryops annae, Passerina montana. The increasing aridity away from the escarpment edge in a northerly direction is steep, and Montane Karoo dwarf shrublands replace these mesic communities. Species such as Eriocephalus ericoides, Rosenia oppositifolia and Pteronia tricephala dominate. At lower elevation (800 m the precipitation is very low (175 mm and uncertain (coefficient of variation of 78 . The substrata influence the vegetation, with the sandy substrata of the drainage lines supporting more woody taxa (Acacia karroo, Lycium cinereum and grasses (Hyparrhenia hirta, Stipagrostis namaquensis, Cenchrus ciliaris. Moving away from the mesic environment of the riparian zone, rapid desiccation occurs and the most xeric communities are encountered, dominated by Stipagrostis obtusa, S. ciliata and Pent-da incana. This document provides descriptions of the general communities and their associated landscape, lithology and soils.

  7. Impact of the Spittlebug Mahanarva spectabilis on Signal Grass

    Directory of Open Access Journals (Sweden)

    Tiago Teixeira Resende

    2012-01-01

    Full Text Available The aim of this study was to determine the damage in Brachiaria ruziziensis (Germain & Edvard according to the density of and exposure time to adults of Mahanarva spectabilis (Distant, 1909 (Hemiptera:Cercopidae. Each plant was kept with 0, 12, 18, or 24 adults of M. spectabilis for five or ten days. Then, the insects were removed from the plant, and the following parameters were evaluated: content and loss of chlorophyll, visual damage score, shoot dry mass, and the capability for regrowth. In fact, plants exposed to the highest level of infestation for 10 days showed an 80.97% loss of chlorophyll, which is 25% higher than that shown by the plants exposed for five days. The damage score also increased with infestation levels. In the levels of 12 and 18 adults per plant, the damage score increased with increasing time of exposure. The dry mass content was higher in plants exposed to 24 insects for 10 days, suggesting that the attack of spittlebugs caused premature drying of the plant. These effects caused significant reduction in the number of tillers of infested plants. Our results indicate that exposure to adults of M. spectabilis causes significant damage and affects the development and persistence of B. ruziziensis plants.

  8. The effects of black-tailed prairie dogs on plant communities within a complex urban landscape: an ecological surprise?

    Science.gov (United States)

    Beals, Stower C; Hartley, Laurel M; Prevéy, Janet S; Seastedt, Timothy R

    2014-05-01

    Historically, prairie dogs (Cynomys spp.) have been considered essential keystone species of western United States grassland ecosystems because they provide unique services and increase vegetation community richness, evenness, and diversity. However, the effects of black-tailed prairie dogs (Cynomys ludovicianus) on lands adjacent to or surrounded by urban areas may not result in the same ecosystem benefits historically associated with their presence. An urban landscape presents prairie dogs with movement challenges unparalleled in natural landscapes, as well as suites of nonnative plant species that are more common in disturbed areas. This study examined a complex ecosystem where vegetation communities are being influenced by directional environmental change, and quantified the synergistic effects resulting from the protective management of a native keystone species. The data set for this analysis was comprised of 71 paired (occupied by prairie dogs vs. unoccupied) vegetation surveys and 156 additional unpaired surveys collected from around the city of Boulder, Colorado, USA for 14 yr. Linear mixed models were used to compare data from transects occupied and unoccupied by prairie dogs, as well as to evaluate the effect of prairie dog occupation duration. In the absence of prairie dogs, vegetation in this region exhibited declines in native grasses, no changes in introduced grasses, and increases in native and nonnative forbs and bare soil over the study interval. In the presence of prairie dogs, these observed directional changes were nearly all amplified at rates four to 10 times greater than when prairie dogs were absent. Areas in Boulder occupied by prairie dogs also had significantly lower richness, evenness, and diversity of plant species, compared to unoccupied areas. Analysis of plant functional groups revealed the significant reduction of perennial native grasses, as well as a significantly higher cover of introduced forbs in occupied areas. Prairie dogs

  9. Genome-Wide Characterization of Major Intrinsic Proteins in Four Grass Plants and Their Non-Aqua Transport Selectivity Profiles with Comparative Perspective.

    Directory of Open Access Journals (Sweden)

    Abul Kalam Azad

    Full Text Available Major intrinsic proteins (MIPs, commonly known as aquaporins, transport not only water in plants but also other substrates of physiological significance and heavy metals. In most of the higher plants, MIPs are divided into five subfamilies (PIPs, TIPs, NIPs, SIPs and XIPs. Herein, we identified 68, 42, 38 and 28 full-length MIPs, respectively in the genomes of four monocot grass plants, specifically Panicum virgatum, Setaria italica, Sorghum bicolor and Brachypodium distachyon. Phylogenetic analysis showed that the grass plants had only four MIP subfamilies including PIPs, TIPs, NIPs and SIPs without XIPs. Based on structural analysis of the homology models and comparing the primary selectivity-related motifs [two NPA regions, aromatic/arginine (ar/R selectivity filter and Froger's positions (FPs] of all plant MIPs that have been experimentally proven to transport non-aqua substrates, we predicted the transport profiles of all MIPs in the four grass plants and also in eight other plants. Groups of MIP subfamilies based on ar/R selectivity filter and FPs were linked to the non-aqua transport profiles. We further deciphered the substrate selectivity profiles of the MIPs in the four grass plants and compared them with their counterparts in rice, maize, soybean, poplar, cotton, Arabidopsis thaliana, Physcomitrella patens and Selaginella moellendorffii. In addition to two NPA regions, ar/R filter and FPs, certain residues, especially in loops B and C, contribute to the functional distinctiveness of MIP groups. Expression analysis of transcripts in different organs indicated that non-aqua transport was related to expression of MIPs since most of the unexpressed MIPs were not predicted to facilitate the transport of non-aqua molecules. Among all MIPs in every plant, TIP (BdTIP1;1, SiTIP1;2, SbTIP2;1 and PvTIP1;2 had the overall highest mean expression. Our study generates significant information for understanding the diversity, evolution, non

  10. Infestation of Phaseolus Vulgaris (L) by the beanfly Ophiomyia Spp. (Diptera: Agromyzidae) and Its Management by Cultural Practices

    International Nuclear Information System (INIS)

    Kayitare, Joseph Sibomana

    1993-04-01

    Cultural practices as management strategy for bean fly control were examined over four cropping seasons in 1991 and 1992 under farmer’s developed field conditions at Oyugis, in Homa Bay District of Western Kenya. In many parts of East and Central Africa, the bean fly is a major constraint to the production of the bean crop (Phaseolus vulgaris), its incidence causes yield losses averaging 47-87%, Control methods used against the pest are mostly insecticides based. Cultural control as a pest management strategy is a less considered area of research which needs to be studied, since it is the first line of defence against pest populations and results in little or no added cost. For this reason studies on five cultural practices (soil fertility, inter cropping, weeding regimes, plant spacing and planting time) on bean fly infestation were undertaken as possible control methods, Increase in nitrogen levels increased bean fly infestation by 12-66%. Phosphorus served as catalyst for nitrogen assimilation. The fertilized plants were more succulent, tender and had more nutrients and therefore offered better conditions for bean fly penetration into bean stems, fecundity and development. However, the infested plants in fertilized soils were able to compensate for the damage caused to them and grew quickly to pass the critical stages. Thus the bean fly infestation had little effect on grain yield. The effect of bean fly infestation on yield when no nitrogen and phosphorus were applied, was a 48% reduction in yield, Therefore, the use of nitrogen and phosphorus fertilizers reduced the effect of bean fly damage and increased grain yield. Inter cropping increased bean fly infestation compared to pure stands of beans. The micro climatic conditions (light intensity, temperature and relative humidity) created by inter cropping of beans with maize increased bean fly infestation compared to that in the bean mono crop. Weeding regimes had no effect on bean fly infestation, however

  11. DEPENDENCE OF GRASS COVER TAXONOMIC AND ECOLOGICAL STRUCTURE ON THE ANTHROPOGENIC IMPACT IN FOREST ECOSYSTEMS

    Directory of Open Access Journals (Sweden)

    N. V. Miroshnik

    2016-01-01

    Full Text Available Pine forests Chigirinsky Bor grow on fresh sod-podzolic soils formed on ancient alluvial deposits. Pine forests are characterized by stringent moisture regimes and constantly suffer from lack of productive moisture in soil.  Industrial development of Cherkasy in 60th years of ХХ century leaded air pollution and emissions of SO2, NOx, NH3, and dust. This contributed to significant negative influence on the surrounding forest ecosystems from enterprises of  Cherkassy industrial agglomeration. The grass cover in pine stands of Chigirinsky Bor transforms into xerophytic grasses and ruderal communities under the impact of negative biotic and abiotic factors. They are namely the anthropogenic violation of forest conditions, stands decline, recreational and industrial tree crowns understocking, xerophytic and heliophytic transformations of forest conditions. All the above mentioned caused strong ruderal and adventive transformation of grass cover. We registered the changes in nitrophilous plant spread regards the Cherkasy industrial agglomeration approaching which emits toxic with nitrogen-containing gases. Adventive and other non-forest species displace ferns and mosses, the ratio of ecomorfs is also changes due to increase of the quantity and development activation of annuals, xerophytic, ruderal, and nitrofil plants. The Asteraceae/Brassicaceae 3:1 ratio indicates significant anthropogenic violations in the region. We fixed the xerophytic, ruderal, and adventive transformation of grass cover in forest ecosystems. It is also founded the tendency of expanding the fraction of mesophilic plant species due to alterations in water regime (creation of Kremenchug reservoir and draining of floodplain Tyasmyn. When approaching the Cherkasy industrial agglomeration the grass cover degradation is clearly observed on the environmental profile. All this causes the forest ecosystem degradation and gradual loss of forest vegetation typical characteristics. We

  12. Preliminary studies on allelopatic effect of some woody plants on seed germination of rye-grass and tall fescue.

    Science.gov (United States)

    Arouiee, H; Nazdar, T; Mousavi, A

    2010-11-01

    In order to investigation of allelopathic effects of some ornamental trees on seed germination of rye-grass (Lolium prenne) and tall fescue (Festuca arundinaceae), this experiment was conducted in a randomized complete block design with 3 replicates at the laboratory of Horticultural Sciences Department of Ferdowsi University of Mashhad, during 2008. In this research, we studied the effect of aqueous and hydro-alcoholic extracts of Afghanistan pine (Pinus eldarica), arizona cypress (Cupressus arizonica), black locust (Robinia psedue acacia) and box elder (Acer negundo) leaves that prepared in 1:5 ratio on seed germination percent and rate for two grasses. The results showed that all extracts decreased statistically seed germination in compared to control treatment. The highest germination percentage and germination rate of tested grass detected in control treatment. Hydro-alcoholic extracts of all woody plants (15, 30%) were completely inhibited seed germination of rye-grass and tall fescue. Also aqueous extract of arizona cypress was completely inhibited seed germination of tall fescue and had more inhibitory activity than other aqueous extracts on rye-grass. Between aqueous extracts, the highest and lowest seed germination of rye-grass was found in Afghanistan pine and arizona cypress, respectively.

  13. SEASONALITY OF ANNUAL PLANT ESTABLISHMENT INFLUENCES THE INTERACTIONBETWEEN THE NON-NATIVE ANNUAL GRASS BROMUS MADRITENSIS SSP. RUBENS AND MOJAVE DESERT PERENNIALS

    Energy Technology Data Exchange (ETDEWEB)

    L A. DEFALCO; G. C. FERNANDEZ; R. S. NOWAK

    2004-01-01

    Competition between native and non-native species can change the composition and structure of plant communities, but in deserts the timing of non-native plant establishment can modulate their impacts to native species. In a field experiment, we varied densities of the non-native annual grass Bromus madritensis ssp. rubens around individuals of three native perennials--Larrea iridentata, Achnatherum hymenoides, and Pleuraphis rigida--in either winter or spring. Additional plots were prepared for the Same perennial species and seasons, but with a mixture of native annual species. Relative growth rates of perennial shoots (RGRs) declined with increasing Bromus biomass when Bromus that was established in winter had 2-3 mo of growth and high water use before perennial growth began. However, this high water use did not significantly reduce water potentials for the perennials, suggesting Bromus that established earlier depleted other soil resources, such as N, otherwise used by perennial plants. Spring-established Bromus had low biomass even at higher densities and did not effectively reduce RGRs, resulting in an overall lower impact to perennials than when Bromus was established in winter. Similarly, growth and reproduction of perennials with mixed annuals as neighbors did not differ from those with Bromus neighbors of equivalent biomass, but densities of these annuals did not support the high biomass necessary to reduce perennial growth. Thus, impacts of native Mojave Desert annuals to perennials are expected to be lower than those of Bromus because seed dormancy and narrow requirements for seedling survivorship produce densities and biomass lower than those achieved by Bromus. In comparing the effects of Bromus among perennial species, the impact of increased Bromus biomass on RGR was lower for Larrea than for the two perennial grasses, probably because Lurrea maintains low growth rates throughout the year, even after Bromus has completed its life cycle. This contrasts

  14. Infestation of Pseudopiazurus papayanus (Marshall) (Coleoptera: Curculionidae) on Carica spp. and Vasconcella spp. genotypes

    International Nuclear Information System (INIS)

    Fancelli, Marilene; Sanches, Nilton F.; Dantas, Jorge L.L.; Caldas, Ranulfo C.; Morales, Cinara F.G.

    2008-01-01

    The papaya borer weevil, Pseudopiazurus papayanus (Marshall), is generally considered a secondary pest, but it has been reported in high infestations in Northeast Brazil. This work aimed at evaluating the occurrence of P. papayanus and reporting its infestation level in papaya genotypes kept at the germplasm bank of EMBRAPA Cassava and Tropical Fruits (Cruz das Almas, Bahia, Brazil). The number of larvae, pupae and adults found in each plant of 65 Carica spp. genotypes and of three Vasconcella spp. genotypes was registered in three to five plants of each genotype, by cutting the exsudating trunks lengthwise. Papaya borer weevil was found in C. papaya and V. cauliflora but not in those of V. quercifolia. Among the evaluated genotypes, 52.4% of those belonging to the Solo group were infested, against 25.0% of the Formosa group. Larval infestation was the best criterion for sorting out genotypes concerning this insect infestation. This is also the first occurrence of the papaya borer weevil . (author)

  15. Loss of native herbaceous species due to woody plant encroachment facilitates the establishment of an invasive grass.

    Science.gov (United States)

    Alofs, Karen M; Fowler, Norma L

    2013-03-01

    Although negative relationships between diversity (frequently measured as species richness) and invasibility at neighborhood or community scales have often been reported, realistic natural diversity gradients have rarely been studied at this scale. We recreated a naturally occurring gradient in species richness to test the effects of species richness on community invasibility. In central Texas savannas, as the proportion of woody plants increases (a process known as woody plant encroachment), herbaceous habitat is both lost and fragmented, and native herbaceous species richness declines. We examined the effects of these species losses on invasibility in situ by removing species that occur less frequently in herbaceous patches as woody plant encroachment advances. This realistic species removal was accompanied by a parallel and equivalent removal of biomass with no changes in species richness. Over two springs, the nonnative bunchgrass Bothriochloa ischaemum germinated significantly more often in the biomass-removal treatment than in unmanipulated control plots, suggesting an effect of native plant density independent of diversity. Additionally, significantly more germination occurred in the species-removal treatment than in the biomass-removal treatment. Changes in species richness had a stronger effect on B. ischaemum germination than changes in plant density, demonstrating that niche-related processes contributed more to biotic resistance in this system than did species-neutral competitive interactions. Similar treatment effects were found on transplant growth. Thus we show that woody plant encroachment indirectly facilitates the establishment of an invasive grass by reducing native diversity. Although we found a negative relationship between species richness and invasibility at the scale of plots with similar composition and environmental conditions, we found a positive relationship between species richness and invasibility at larger scales. This apparent

  16. EFFECT OF MULCH AND MIXED CROPPING GRASS - LEGUME AT SALINE SOIL ON GROWTH, FORAGE YIELD AND NUTRITIONAL QUALITY OF GUINEA GRASS

    Directory of Open Access Journals (Sweden)

    F. Kusmiyati

    2014-10-01

    Full Text Available The research was conducted to evaluate the effect of mulch and mixed cropping grass – legume atsaline soil on growth, forage yield and nutritional quality of guinea grass. Saline soil used in thisresearch was classified into strongly saline soil with low soil fertility. The research was arrranged inrandomized complete block design with 3 blocks. The treatments were : M1 = guinea grassmonoculture, without mulch; M2 = guinea grass monoculture, 3 ton/ha mulch; M3 = guinea grassmonoculture, 6 ton/ha mulch, M4 = mixed cropping grass with Sesbania grandiflora, without mulch;M5 = mixed cropping grass with Sesbania grandiflora, 3 ton/ha mulch; M6 = mixed cropping grass withSesbania grandiflora, 6 ton/ha mulch. Data were analyzed using analysis of variance, then followed byDuncan's Multiple Range Test. The highest soil moisture content was achieved at mixed cropping grasslegumewith 6 ton/ha of mulch. The effect of mulch at saline soil significantly increased plant growth,forage yield and nutritional quality of guinea grass. Application of 3 ton/ha mulch increased plantgrowth, forage yield and nutritional quality of guinea grass. Plant growth, forage yield and nutritionalquality of guinea grass were not affected by monoculture or mixed cropping with Sesbania at saline soil.

  17. [The structure of micromycete communities and their synecologic interactions with basidiomycetes during decomposition of plant debris].

    Science.gov (United States)

    Terekhova, V A; Semenova, T A

    2005-01-01

    We investigated the interactions between micromycetes and basidiomycete mycelium on plant substrates in the course of their 3-year incubation in the litter of ecologically intact spruce forests of the Central State Biosphere Forest Sanctuary (Nelidovo District, Tver oblast). Only 40-60% of the micromycetes were involved in direct antagonistic interactions with basidiomycetous fungi. In terms of the ratio between physiologically active strains and those which did not interact with basidiomycete mycelium, we revealed differences in the structure of micromycete communities developing on various types of substrates (xylem, bark, sphagnum, leaves, needles, litter, and cotton grass). The micromycetes tested belonged to 49 species. At the end of the observation period, the fraction of microscopic fungi that actively influenced basidiomycete mycelium was four times lower in the inactive litter fraction (lignin-containing xylem debris) than in the active fraction (grass substrates). The mechanisms of indirect regulation of the structure and functions of micromycete communities are discussed, which may be based on the accumulation of phenolic compounds in the medium and changes in the enzyme activities of basidiomycete mycelium.

  18. Host preference of the hemiparasite Struthanthus flexicaulis (Loranthaceae in ironstone outcrop plant communities, southeast Brazil

    Directory of Open Access Journals (Sweden)

    Fabiana Alves Mourão

    2016-03-01

    Full Text Available Struthanthus flexicaulis is a hemiparasite abundant in ironstone outcrops in southeast Brazil. We evaluated its host preference among species of the plant community, taking into account the abundance and foliage cover of the hosts. The importance of each species in the community and the mortality caused by the parasite were assessed based on a quantitative survey in 10 strips measuring 1m x 50m. The 10,290 individuals belonged to 42 species. Only 15 had a relative abundance in the plant community greater than 1%, of which 12 showed vestiges of parasitism. More than 80% of deaths in the community were associated with parasitism. Non-infected individuals had significantly less mortality rates (7% than those infected (83% (²= 1102.4, df = 1, p < 0.001. The observed infestation was different from the expected both regarding relative host abundance (²= 714.2, df = 11, p<0.001 and foliage cover (²= 209.2, df = 11, p<0.001. Struthanthus flexicaulis preferredMimosa calodendron, a legume attractive to avian seed dispersers. The interaction is maintained and intensified not only by the birds, who deposit innumerous seeds on the hosts branches, but also very likely by the ability of M. calodendron to fix nitrogen, thereby enhancing the mistletoe's development.

  19. Infection Courts in Watermelon Plants Leading to Seed Infestation by Fusarium oxysporum f. sp. niveum.

    Science.gov (United States)

    Petkar, Aparna; Ji, Pingsheng

    2017-07-01

    Fusarium wilt incited by Fusarium oxysporum f. sp. niveum is a seed-transmitted disease that causes significant yield loss in watermelon production. The pathogen may infect watermelon seeds latently, which can be an important inoculum source and contribute to severe disease outbreak. However, information regarding infection courts of F. oxysporum f. sp. niveum leading to infestation of watermelon seeds is limited. To determine how seeds in watermelon fruit can be infested by F. oxysporum f. sp. niveum during the watermelon growing season, greenhouse and field experiments were conducted in 2014 and 2015 where watermelon flowers and immature fruit were inoculated with F. oxysporum f. sp. niveum. Seeds were extracted from mature watermelon fruit, and infestation of watermelon seeds was determined by isolation of F. oxysporum f. sp. niveum and further confirmed by real-time polymerase chain reaction (PCR) analysis. Inoculation of the pericarp of immature fruit resulted in 17.8 to 54.4% of infested seeds under field conditions and 0.6 to 12.8% of infested seeds under greenhouse conditions when seeds were not surface disinfested prior to isolation. Seed infestation was also detected in 0 to 4.5% of the seeds when seeds were surface disinfested prior to isolation. Inoculation of pistil resulted in 0 to 7.2% and 0 to 18.3% of infested seeds under greenhouse and field conditions when seeds were surface disinfested or not disinfested before isolation, respectively. Inoculation of peduncle resulted in 0.6 to 6.1% and 0 to 10.0% of infested seeds in the greenhouse and field experiments when seeds were surface disinfested or not disinfested before isolation, respectively. Seed infestation was also detected in all the experiments using real-time PCR assay when pericarp or pistil was inoculated, and in three of four experiments when peduncle was inoculated, regardless of whether seeds were surface disinfested or not disinfested. Pericarp and peduncle of immature watermelon fruit

  20. Reed canary grass tried as a fuel in commercial district heating plants in Denmark; Provfoerbraenning av energigraeset roerflen vid tvaa kommersiella halmeldade anlaeggningar i Danmark

    Energy Technology Data Exchange (ETDEWEB)

    Burvall, J [Sveriges Lantbruksuniversitet, Enheten foer Biomassa, Biobraenslen och Fibergroedor, Umeaa (Sweden)

    1992-03-01

    In two different types of district heating combustion plants in Denmark, normally using straw as fuel, the energy grass Reed canary grass (summer harvested) has been tested as a new fuel. The combustion plant in Ringsted burns the fuel as whole bales with the so called `cigar method`. In Nykoebing the fuel is burned on a rust as unpacked bales using a straw divider to divide the bales. The heating effect of the combustion plants is 4.5 MW and 4.0 MW, respectively. For both plants, there was no handling or technical problem observed in the test with Reed canary grass compared to straw. The analysis of the emission to air shows high average values for CO- and NO{sub x} during the test period which is unacceptable according to Swedish limit values for emissions. For combustion plants with a heating effect over 10 MW, the limit values for NO{sub x} is 100-200 mg/MJ. For smaller plants there are no limits values today but in the future demands for limitation of NO{sub x} emission may come. For both plants, the O{sub 2}-content in fumes varied a lot, with a high mean value, about 10%. The content of chlorine in straw and energy grass can reach high levels. Most of the chlorine binds up in the ash (KCl), and therefore the emission of HCl are low. The emission to air of SO{sub x}, which is 100 mg/MJ, is below the limit value for smaller plants. The variation of moisture and the low density are the properties of grass and straw that mainly causes problems in the combustion and gives high emission levels. Today it seems to be necessary to press the material into fuel briquetts or fuel pellets to get a better combustion, that can meet environmental demands. (7 figs., 17 tabs.).

  1. Reed canary grass tried as a fuel in commercial district heating plants in Denmark. Provfoerbraenning av energigraeset roerflen vid tvaa kommersiella halmeldade anlaeggningar i Danmark

    Energy Technology Data Exchange (ETDEWEB)

    Burvall, J [Sveriges Lantbruksuniversitet, Enheten foer Biomassa, Biobraenslen och Fibergroedor, Umeaa (Sweden)

    1992-03-01

    In two different types of district heating combustion plants in Denmark, normally using straw as fuel, the energy grass Reed canary grass (summer harvested) has been tested as a new fuel. The combustion plant in Ringsted burns the fuel as whole bales with the so called 'cigar method'. In Nykoebing the fuel is burned on a rust as unpacked bales using a straw divider to divide the bales. The heating effect of the combustion plants is 4.5 MW and 4.0 MW, respectively. For both plants, there was no handling or technical problem observed in the test with Reed canary grass compared to straw. The analysis of the emission to air shows high average values for CO- and NO[sub x] during the test period which is unacceptable according to Swedish limit values for emissions. For combustion plants with a heating effect over 10 MW, the limit values for NO[sub x] is 100-200 mg/MJ. For smaller plants there are no limits values today but in the future demands for limitation of NO[sub x] emission may come. For both plants, the O[sub 2]-content in fumes varied a lot, with a high mean value, about 10%. The content of chlorine in straw and energy grass can reach high levels. Most of the chlorine binds up in the ash (KCl), and therefore the emission of HCl are low. The emission to air of SO[sub x], which is 100 mg/MJ, is below the limit value for smaller plants. The variation of moisture and the low density are the properties of grass and straw that mainly causes problems in the combustion and gives high emission levels. Today it seems to be necessary to press the material into fuel briquetts or fuel pellets to get a better combustion, that can meet environmental demands. (7 figs., 17 tabs.).

  2. Linking phenology and biomass productivity in South Dakota mixed-grass prairie

    Science.gov (United States)

    Rigge, Matthew; Smart, Alexander; Wylie, Bruce; Gilmanov, Tagir; Johnson, Patricia

    2013-01-01

    Assessing the health of rangeland ecosystems based solely on annual biomass production does not fully describe plant community condition; the phenology of production can provide inferences on species composition, successional stage, and grazing impacts. We evaluate the productivity and phenology of western South Dakota mixed-grass prairie using 2000 to 2008 Moderate Resolution Imaging Spectrometer (MODIS) normalized difference vegetation index (NDVI) satellite imagery at 250 m spatial resolution. Growing season NDVI images were integrated weekly to produce time-integrated NDVI (TIN), a proxy of total annual biomass production, and integrated seasonally to represent annual production by cool (C3) and warm (C4) season species. Additionally, a variety of phenological indicators including cool season percentage of TIN were derived from the seasonal profiles of NDVI. Cool season percentage and TIN were combined to generate vegetation classes, which served as proxies of plant community condition. TIN decreased with precipitation from east to west across the study area. Alternatively, cool season percentage increased from east to west, following patterns related to the reliability (interannual coefficient of variation [CV]) and quantity of mid-summer precipitation. Cool season TIN averaged 76.8% of total. Seasonal accumulation of TIN corresponded closely (R2 > 0.90) to that of gross photosynthesis data from a carbon flux tower. Field-collected biomass and community composition data were strongly related to the TIN and cool season percentage products. The patterns of vegetation classes were responsive to topographic, edaphic, and land management influences on plant communities. Accurate maps of biomass production, cool/warm season composition, and vegetation classes can improve the efficiency of land management by adjusting stocking rates and season of use to maximize rangeland productivity and achieve conservation objectives. Further, our results clarify the spatial and

  3. Performance of Vetiver Grass (Vetiveria zizanioides for Phytoremediation of Contaminated Water

    Directory of Open Access Journals (Sweden)

    Syed Hasan Sharifah Nur Munirah

    2017-01-01

    Full Text Available In tolerance towards metal uptake, there is a need to evaluate the performance of vetiver grass for metal removal to reduce water impurity. This study was aimed to evaluate contaminant removal by vetiver grass at varying root length and plant density and determine the metal uptake in vetiver plant biomass. Pollutant uptake of vetiver grass was conducted in laboratory experiment and heavy metal analysis was done using acid digestion and Atomic Absorption Spectrometry. Findings indicated that the removal of heavy metal was decreased in seven days of the experiment where iron shows the highest percentage (96%; 0.42 ppm of removal due to iron is highly required for growth of vetiver grass. Removal rate of heavy metals in water by vetiver grass is ranked in the order of Fe>Zn>Pb>Mn>Cu. Results also demonstrated greater removal of heavy metals (Cu, Fe, Mn, Pb, Zn at greater root length and higher density of vetiver grass because it increased the surface area for metal absorption by plant root into vetiver plant from contaminated water. However, findings indicated that accumulation of heavy metals in plant biomass was higher in vetiver shoot than in root due to metal translocation from root to the shoot. Therefore, the findings have shown effective performance of vetiver grass for metal removal in the phytoremediation of contaminated water.

  4. Rhizosphere bacterial communities of dominant steppe plants shift in response to a gradient of simulated nitrogen deposition

    Directory of Open Access Journals (Sweden)

    An eYang

    2015-08-01

    Full Text Available We evaluated effects of 9-year simulation of simulated nitrogen (N deposition on microbial composition and diversity in the rhizosphere of two dominant temperate grassland species: grass Stipa krylovii and forb Artemisia frigida. Microbiomes in S. krylovii and A.frigida rhizosphere differed, but changed consistently along the N gradient. These changes were correlated to N-induced shifts to plant community. Hence, as plant biomass changed, so did bacterial rhizosphere communities, a result consistent with the role that N fertilizer has been shown to play in altering plant-microbial mutualisms. A total of 23 bacterial phyla were detected in the two rhizospheric soils by pyrosequencing, with Proteobacteria, Acidobacteria and Bacteroidetes dominating the sequences of all samples. Bacterioidetes and Proteobacteria tended to increase, while Acidobacteria declined with increase in N addition rates. TM7 increased >5-fold in the high N addition rates, especially in S. krylovii rhizosphere. Nitrogen addition also decreased diversity of OTUs (operational taxonomic units, Shannon and Chao1 indices of rhizospheric microbes regardless of plant species. These results suggest that there were both similar but also specific changes in microbial communities of temperate steppes due to N deposition.

  5. The influence of intercrop plants and the date of their ploughing-in on weed infestation of root chicory (Cichorium intybus L. var. sativum (Bisch. Janch.

    Directory of Open Access Journals (Sweden)

    Marzena Błażewicz-Woźniak

    2012-12-01

    Full Text Available The field experiment was carried out in 2006-2008 in the Felin Experimental Farm (University of Life Sciences in Lublin on podzolic soil developed from dusty medium loam. Root chicory (Cichorium intybus L. var. sativum (Bisch. Janch. cv. Polanowicka was involved in the experiment. The experimental factors were 3 species of intercrop plants: common vetch (Vicia sativa, phacelia (Phacelia tanacetifolia, oat (Avena sativa and 2 dates of ploughing-in: pre-winter and spring. In total, 26 taxons characteristic for vegetable plantations were identified in chicory weed infestation. Monocarpic species dominated, among which Senecio vulgaris, Chenopodium album, Lamium amplexicaule, Galinsoga ciliata, and Capsella bursa-pastoris were predominant. The date of ploughing-in did not significantly affect the status and size of weed infestation of chicory plots. Short-lived species occurred after pre-winter ploughing-in, while perennial - after spring ploughing-in. The application of intercrops significantly reduced chicory weed infestation as compared to the cultivation with no intercrop. The ploughing-in of Avena sativa biomass appeared to be the most efficient. The intercrop plants reduced the occurrence of Senecio vulgaris and Capsella bursa-pastoris which were the most numerous in the treatment without intercrops. Biomass of Vicia sativa favored the growth of Chenopodium album and Lamium amplexicaule. The secondary weed infestation did not depend on agrotechnical factors applied during the experiment.

  6. Rehabilitation experiment by phytoremediation using lawn grass

    International Nuclear Information System (INIS)

    2012-08-01

    Measures against environmental contamination by radioactive materials originated from the Fukushima Nuclear Accident (May, 2011), are being conducted in Fukushima and surrounding prefectures. Regarding to the measures, a phytoremediation experiment with several types of lawn grasses in a field scale have been carried out. Lawn grasses are generally characterized by shallow rhizosphere, high density and root mat formation. Decontamination effectiveness of radioactive cesium by plant uptake and by sod removing was investigated. As a result, the range of decontamination factors by plant uptake was below than 1% because of low transfer rate form soil to plant. On the other hand, maximum decontamination factor by sod removing reached about 100%. Decontamination activities with various methods will be implemented according to the national decontamination policy and related plans in each municipality. The phytoremediation method with lawn grass would be applicable in limited circumstances. (author)

  7. Responses of three grass species to creosote during phytoremediation

    International Nuclear Information System (INIS)

    Huang Xiaodong; El-Alawi, Yousef; Penrose, Donna M.; Glick, Bernard R.; Greenberg, Bruce M.

    2004-01-01

    Phytoremediation of creosote-contaminated soil was monitored in the presence of Tall fescue, Kentucky blue grass, or Wild rye. For all three grass species, plant growth promoting rhizobacteria (PGPR) were evaluated for plant growth promotion and protection of plants from contaminant toxicity. A number of parameters were monitored including plant tissue water content, root growth, plant chlorophyll content and the chlorophyll a/b ratio. The observed physiological data indicate that some plants mitigated the toxic effects of contaminants. In addition, in agreement with our previous experiments reported in the accompanying paper (Huang, X.-D., El-Alawi, Y., Penrose, D.M., Glick, B.R., Greenberg, B.M., 2004. A multi-process phytoremediation system for removal of polycyclic aromatic hydrocarbons from contaminated soil. Environ. Poll. doi: 10.1016/j.envpol.2003.09.031), PGPR were able to greatly enhance phytoremediation. PGPR accelerated plant growth, especially roots, in heavily contaminated soils, diminishing the toxic effects of contaminants to plants. Thus, the increased root biomass in PGPR-treated plants led to more effective remediation. - Plant growth promoting rhizobacteria enhanced growth and remediation of three grass species

  8. Brassinosteroid Mediated Cell Wall Remodeling in Grasses under Abiotic Stress

    Directory of Open Access Journals (Sweden)

    Xiaolan Rao

    2017-05-01

    Full Text Available Unlike animals, plants, being sessile, cannot escape from exposure to severe abiotic stresses such as extreme temperature and water deficit. The dynamic structure of plant cell wall enables them to undergo compensatory changes, as well as maintain physical strength, with changing environments. Plant hormones known as brassinosteroids (BRs play a key role in determining cell wall expansion during stress responses. Cell wall deposition differs between grasses (Poaceae and dicots. Grass species include many important food, fiber, and biofuel crops. In this article, we focus on recent advances in BR-regulated cell wall biosynthesis and remodeling in response to stresses, comparing our understanding of the mechanisms in grass species with those in the more studied dicots. A more comprehensive understanding of BR-mediated changes in cell wall integrity in grass species will benefit the development of genetic tools to improve crop productivity, fiber quality and plant biomass recalcitrance.

  9. Spatial and temporal distribution of house infestation by Triatoma infestans in the Toro Toro municipality, Potosi, Bolivia.

    Science.gov (United States)

    Espinoza Echeverria, Jorge; Rodriguez, Antonio Nogales; Cortez, Mirko Rojas; Diotaiuti, Liléia Gonçalves; Gorla, David E

    2017-02-02

    Triatoma infestans is the main vector of Trypanosoma cruzi in Bolivia. The species is present both in domestic and peridomestic structures of rural areas, and in wild ecotopes of the Andean valleys and the Great Chaco. The identification of areas persistently showing low and high house infestation by the vector is important for the management of vector control programs. This study aimed at analyzing the temporal and spatial distribution of house infestation by T. infestans in the Toro Toro municipality (Potosi, Bolivia) between 2009 and 2014, and its association with environmental variables. House infestation and T. infestans density were calculated from entomological surveys of houses in the study area, using a fixed-time effort sampling technique. The spatial heterogeneity of house infestation was evaluated using the SatScan statistic. Association between house infestation with Bioclim variables (Worldclim database) and altitude was analyzed using a generalized linear model (GLM) with a logit link. Model selection was based on the Akaike information criteria after eliminating collinearity between variables using the variable inflation factor. The final model was used to create a probability map of house infestation for the Toro Toro municipality. A total of 73 communities and 16,489 house evaluation events were analyzed. Presence of T. infestans was recorded on 480 house evaluation events, giving an overall annual infestation of 2.9% during the studied period (range 1.5-5.4% in 2009 and 2012). Vector density remained at about 1.25 insects/ house. Infestation was highly aggregated in five clusters, including 11 communities. Relative risk of infestation within these clusters was 1.7-3.9 times the value for the regional average. Four environmental variables were identified as good descriptors of house infestation, explaining 57% of house infestation variability. The model allowed the estimation of a house infestation surface for the Toro Toro municipality. This

  10. Weather and plant age affect the levels of steroidal saponin and Pithomyces chartarum spores in Brachiaria grass

    Science.gov (United States)

    Brachiaria species are cultivated worldwide in tropical and subtropical climates as the main forage source for ruminants. Numerous tropical and warm-season grasses cause hepatogenous photosensitization, among them several species of Brachiaria. Steroidal saponins present in these plants may be respo...

  11. Infestation of froghopper nymphs changes the amounts of total phenolics in sugarcane

    Directory of Open Access Journals (Sweden)

    Silva Rafael José Navas da

    2005-01-01

    Full Text Available The increased rate of sugarcane harvest without previous burn has provided a very favorable environment to the froghopper Mahanarva fimbriolata (Stal, 1854, with high moisture and low temperature variation. Few works have studied the response of sugarcane to this pest, so little is known about resistant cultivars. Plant phenolics are widely studied compounds because of their known antiherbivore effect. This research aims to determine if the attack of M. fimbriolata nymphs stimulates the accumulation of total phenolics in sugarcane. The experiment was carried out in greenhouse and arranged in completely randomized design, in a 3 X 2 X 4 factorial with three replications. Second instar nymphs of M. fimbriolata were infested at the following rates: control, 2-4 and 4-8 nymphs per pot (first-second infestations, respectively. Pots were covered with nylon net and monitored daily to isolate the effect of leaf sucking adults. Leaf and root samples were collected and kept frozen in liquid nitrogen until analyses. Infested plants showed higher levels of phenolics in both root and leaf tissues. In roots, the cultivar SP80-1816 accumulated more phenolic compounds in response to the infestation of M. fimbriolata. On the other hand, higher levels were found in leaves and roots of control plants of SP86-42, which might be an indication of a non-preference mechanism. The increase of total phenolics in sugarcane infested with root-sucking froghopper nymphs does not seem to be useful to detect the resistance to this pest.

  12. Effect of Tylenchorhynchus robustoides on Growth of Buffalo Grass and Western Wheatgrass

    OpenAIRE

    Smolik, J. D.

    1982-01-01

    Tylenchorhynchus robustoides reduced (P = 0.05) growth of Agropyron smithii (western wheatgrass) at soil temperatures of 20, 25, 30, and 35 C. Growth reduction increased with increasing soil temperatures. Highest populations of T. robustoides were recovered at 25 and 30 C. Clipping weights of Buchloe dactyloides (buffalo grass) were reduced at 25 and 30 C; however, root/crown weights were reduced at 15, 20, 30, and 35 C in nematode infested vs. noninfested soil. Reproduction of T. robustoides...

  13. Analysis of Fusarium causing dermal toxicosis in marram grass planters

    NARCIS (Netherlands)

    Snijders, CHA; Samson, RA; Hoekstra, ES; Ouellet, T; Miller, JD; deRooijvanderGoes, PCEM; Baar, AJM; Dubois, AEJ; Kauffman, HF

    1996-01-01

    In the European coastal dunes, marram grass (Ammophila arenaria) is planted in order to control sand erosion. In the years 1986 to 1991, workers on the Wadden islands in the Netherlands planting marram grass showed lesions of skin and mucous membranes, suggesting a toxic reaction. Fusarium culmorum

  14. Associations of Pseudomonas species and forage grasses enhance degradation of chlorinated benzoic acids in soil

    Energy Technology Data Exchange (ETDEWEB)

    Siciliano, S. D.

    1998-12-01

    Using chlorinated benzoic acid (CBA) as a model compound, this study attempted to show that microorganisms and plants can be used as bioremediation agents to clean up contaminated soil sites in a cost effective and environmentally friendly manner. CBA was used because it is present in soils contaminated with polychlorinated biphenyls (PCBs), or chlorinated pesticides. Sixteen forage grasses were screened in combination with 12 bacterial inoculants for their ability to promote the degradation of CBA in soil. Five associations of plants and bacteria were found to degrade CBA to a greater extent than plants without bacterial inoculants. Bacterial inoculants were shown to stimulate CBA degradation by altering the microbial community present on the root surface and thereby increasing the ability of this community to degrade CBA.

  15. Transplanting native dominant plants to facilitate community development in restored coastal plain wetlands.

    Energy Technology Data Exchange (ETDEWEB)

    De Steven, Diane; Sharitz, Rebecca R.

    2007-12-01

    Abstract: Drained depressional wetlands are typically restored by plugging ditches or breaking drainage tiles to allow recovery of natural ponding regimes, while relying on passive recolonization from seed banks and dispersal to establish emergent vegetation. However, in restored depressions of the southeastern United States Coastal Plain, certain characteristic rhizomatous graminoid species may not recolonize because they are dispersal-limited and uncommon or absent in the seed banks of disturbed sites. We tested whether selectively planting such wetland dominants could facilitate restoration by accelerating vegetative cover development and suppressing non-wetland species. In an operational-scale project in a South Carolina forested landscape, drained depressional wetlands were restored in early 2001 by completely removing woody vegetation and plugging surface ditches. After forest removal, tillers of two rhizomatous wetland grasses (Panicum hemitomon, Leersia hexandra) were transplanted into singlespecies blocks in 12 restored depressions that otherwise were revegetating passively. Presence and cover of all plant species appearing in planted plots and unplanted control plots were recorded annually. We analyzed vegetation composition after two and four years, during a severe drought (2002) and after hydrologic recovery (2004). Most grass plantings established successfully, attaining 15%–85% cover in two years. Planted plots had fewer total species and fewer wetland species compared to control plots, but differences were small. Planted plots achieved greater total vegetative cover during the drought and greater combined cover of wetland species in both years. By 2004, planted grasses appeared to reduce cover of non-wetland species in some cases, but wetter hydrologic conditions contributed more strongly to suppression of non-wetland species. Because these two grasses typically form a dominant cover matrix in herbaceous depressions, our results indicated that

  16. Breeding for Grass Seed Yield

    DEFF Research Database (Denmark)

    Boelt, Birte; Studer, Bruno

    2010-01-01

    Seed yield is a trait of major interest for many fodder and amenity grass species and has received increasing attention since seed multiplication is economically relevant for novel grass cultivars to compete in the commercial market. Although seed yield is a complex trait and affected...... by agricultural practices as well as environmental factors, traits related to seed production reveal considerable genetic variation, prerequisite for improvement by direct or indirect selection. This chapter first reports on the biological and physiological basics of the grass reproduction system, then highlights...... important aspects and components affecting the seed yield potential and the agronomic and environmental aspects affecting the utilization and realization of the seed yield potential. Finally, it discusses the potential of plant breeding to sustainably improve total seed yield in fodder and amenity grasses....

  17. Controlling grass weeds on hard surfaces

    DEFF Research Database (Denmark)

    Rask, Anne Merete; Kristoffersen, Palle; Andreasen, Christian

    2012-01-01

    An experiment was conducted on a specially designed hard surface to study the impact of time interval between flaming treatments on the regrowth and flower production of two grass weeds. The goal of this experiment was to optimize the control of annual bluegrass and perennial ryegrass, both species...... that are very difficult to control without herbicides. Aboveground biomass from 72 plants per treatment was harvested and dry weights were recorded at regular intervals to investigate how the plants responded to flaming. Regrowth of the grasses was measured by harvesting aboveground biomass 2 wk after......, as they did not increase the reduction of aboveground biomass compared with the 7-d treatment interval. Knowledge on the regrowth of grass weeds after flaming treatments provided by this study can help improve recommendations given to road keepers and park managers for management on these weeds. Nomenclature...

  18. Plant-plant competition outcomes are modulated by plant effects on the soil bacterial community.

    Science.gov (United States)

    Hortal, S; Lozano, Y M; Bastida, F; Armas, C; Moreno, J L; Garcia, C; Pugnaire, F I

    2017-12-19

    Competition is a key process that determines plant community structure and dynamics, often mediated by nutrients and water availability. However, the role of soil microorganisms on plant competition, and the links between above- and belowground processes, are not well understood. Here we show that the effects of interspecific plant competition on plant performance are mediated by feedbacks between plants and soil bacterial communities. Each plant species selects a singular community of soil microorganisms in its rhizosphere with a specific species composition, abundance and activity. When two plant species interact, the resulting soil bacterial community matches that of the most competitive plant species, suggesting strong competitive interactions between soil bacterial communities as well. We propose a novel mechanism by which changes in belowground bacterial communities promoted by the most competitive plant species influence plant performance and competition outcome. These findings emphasise the strong links between plant and soil communities, paving the way to a better understanding of plant community dynamics and the effects of soil bacterial communities on ecosystem functioning and services.

  19. The effect of nitrogen availability and water conditions on competition between a facultative CAM plant and an invasive grass.

    Science.gov (United States)

    Yu, Kailiang; D'Odorico, Paolo; Carr, David E; Personius, Ashden; Collins, Scott L

    2017-10-01

    Plants with crassulacean acid metabolism (CAM) are increasing their abundance in drylands worldwide. The drivers and mechanisms underlying the increased dominance of CAM plants and CAM expression (i.e., nocturnal carboxylation) in facultative CAM plants, however, remain poorly understood. We investigated how nutrient and water availability affected competition between Mesembryanthemum crystallinum (a model facultative CAM species) and the invasive C 3 grass Bromus mollis that co-occur in California's coastal grasslands. Specifically we investigated the extent to which water stress, nutrients, and competition affect nocturnal carboxylation in M. crystallinum . High nutrient and low water conditions favored M. crystallinum over B. mollis , in contrast to high water conditions. While low water conditions induced nocturnal carboxylation in 9-week-old individuals of M. crystallinum , in these low water treatments, a 66% reduction in nutrient applied over the entire experiment did not further enhance nocturnal carboxylation. In high water conditions M. crystallinum both alone and in association with B. mollis did not perform nocturnal carboxylation, regardless of the nutrient levels. Thus, nocturnal carboxylation in M. crystallinum was restricted by strong competition with B. mollis in high water conditions. This study provides empirical evidence of the competitive advantage of facultative CAM plants over grasses in drought conditions and of the restricted ability of M. crystallinum to use their photosynthetic plasticity (i.e., ability to switch to CAM behavior) to compete with grasses in well-watered conditions. We suggest that a high drought tolerance could explain the increased dominance of facultative CAM plants in a future environment with increased drought and nitrogen deposition, while the potential of facultative CAM plants such as M. crystallinum to expand to wet environments is expected to be limited.

  20. Distribution and infestation levels of Crypticerya multicicatrices Kondo and Unruh (Hemiptera: Monophlebidae on San Andrés island

    Directory of Open Access Journals (Sweden)

    Takumasa Kondo Kondo

    2014-01-01

    Full Text Available The fluted scale Crypticerya multicicatrices (Hemiptera: Monophlebidae is an invasive insect that became a major pest on the island of San Andrés. To generate control strategies for this insect, its distribution and infestation levels on palm species, fruit trees, leguminous trees and other plant species were determined during January 14–18, 2013. A total of 96 points were sampled in order to determine the distribution of the insect on the island. During the study, the fluted scale was found distributed throughout the island of San Andrés, including Haynes Cay and Johnny Cay. The palms were the plants with the highest levels of infestation, 70.8% had some degree of infestation (37.5% high infestation levels; followed by fruit trees which had 65.6% with some degree of infestation (30.2% high infestation levels; followed by leguminous trees which had 59.6% with some degree of infestation (13.5% high infestation levels and finally “other hosts” which had 51.1% with some level of infestation (11.5% high infestation levels. This study is the first detailed mapping of C. multicicatrices on the island of San Andrés which will become the basis for future work on the population dynamics of the fluted scale and its distribution on the island.

  1. Plant diversity and plant identity influence Fusarium communities in soil.

    Science.gov (United States)

    LeBlanc, Nicholas; Kinkel, Linda; Kistler, H Corby

    2017-01-01

    Fusarium communities play important functional roles in soil and in plants as pathogens, endophytes, and saprotrophs. This study tests how rhizosphere Fusarium communities may vary with plant species, changes in the diversity of the surrounding plant community, and soil physiochemical characteristics. Fusarium communities in soil associated with the roots of two perennial prairie plant species maintained as monocultures or growing within polyculture plant communities were characterized using targeted metagenomics. Amplicon libraries targeting the RPB2 locus were generated from rhizosphere soil DNAs and sequenced using pyrosequencing. Sequences were clustered into operational taxonomic units (OTUs) and assigned a taxonomy using the Evolutionary Placement Algorithm. Fusarium community composition was differentiated between monoculture and polyculture plant communities, and by plant species in monoculture, but not in polyculture. Taxonomic classification of the Fusarium OTUs showed a predominance of F. tricinctum and F. oxysporum as well of the presence of a clade previously only found in the Southern Hemisphere. Total Fusarium richness was not affected by changes in plant community richness or correlated with soil physiochemical characteristics. However, OTU richness within two predominant phylogenetic lineages within the genus was positively or negatively correlated with soil physiochemical characteristics among samples within each lineage. This work shows that plant species, plant community richness, and soil physiochemical characteristics may all influence the composition and richness of Fusarium communities in soil.

  2. Pyrenean meadows in Natura 2000 network: grass production and plant biodiversity conservation

    Energy Technology Data Exchange (ETDEWEB)

    Reine, R.; Barrantes, O.; Chocarro, C.; Juarez, A.; Broca, A.; Maestro, M.; Ferrer, C.

    2014-06-01

    In semi-natural mountain meadows, yield and forage quality must be reconciled with plant biodiversity conservation. This study was performed to analyze the relationships between these three parameters. To quantify plant biodiversity and pastoral value (PV), phyto sociological inventories were performed in 104 semi-natural meadows in the Central Spanish Pyrenees included in the Natura 2000 network. Forage yields were calculated and forage samples were analyzed for relative feed value (RFV). We identified two main types of meadows: (i) those that had more intensive management, relatively close to farm buildings, with little or no slope, dominated by grasses, with low plant biodiversity, high PV and yield, but low forage quality and (ii) those that had less intensive management, distant from farm buildings, on slopes, richer in other forbs, with high plant biodiversity and forage quality, but low PV and yield. Conservation policies should emphasize less intensive management practices to maintain plant diversity in the semi-natural meadows in the Pyrenees. The widespread view that other forbs have low nutritional value should be revised in future research. These species often are undervalued by the PV method, because their nutritional quality, digestibility and intake are poorly understood. (Author)

  3. Diversity and Efficiency of Rhizobia Communities from Iron Mining Areas Using Cowpea as a Trap Plant

    Directory of Open Access Journals (Sweden)

    Jordana Luísa de Castro

    2017-08-01

    Full Text Available ABSTRACT Mining is an important economic activity. However, its impact on environment must be accessed, mainly on relevant processes for their sustainability. The objective of this study was to evaluate the diversity and efficiency of symbiotic nitrogen fixing bacterial communities in soils under different types of vegetation in the Quadrilátero Ferrífero: ironstone outcrops, Atlantic Forest, neotropical savanna, and a rehabilitated area revegetated with grass. Suspensions of soil samples collected under each type of vegetation were made in a saline solution to capture rhizobia communities that were then inoculated on cowpea [Vigna unguiculata (L. Walp.], which was used as a trap plant. The symbiotic efficiency of the communities was evaluated in a greenhouse experiment and the data obtained were correlated to the chemical and physical properties of the soils under each type of vegetation. At the end of the experiment, the bacteria present in the nodules were isolated to evaluate their diversity. The highest numbers of nodules occurred in the treatment inoculated with soil samples from rehabilitated area revegetated with grass and neotropical savanna vegetation, and the lowest numbers were observed in the treatment inoculated with soil samples from ironstone outcrops and Atlantic Forest. In relation to root dry matter, the treatment inoculated with soil samples from Neotropical savanah was superior to those inoculated with soil samples from the other areas; already, in relation to the shoot dry matter, no significant difference among the treatments was observed. The soil properties with the greatest influence on the microbial communities were Al3+ content, considered as high in the Atlantic Forest and neotropical savanna vegetation, as intermediate in the iron outcrops, and as very low in the rehabilitated area revegetated with grass; organic matter, considered as very high in the ironstone outcrops and neotropical savanna, as high in the

  4. MACRO NUTRIENTS UPTAKE OF FORAGE GRASSES AT DIFFERENT SALINITY STRESSES

    Directory of Open Access Journals (Sweden)

    F. Kusmiyati

    2014-10-01

    Full Text Available The high concentration of sodium chloride (NaCl in saline soils has negative effects on the growth ofmost plants. The experiment was designed to evaluate macro nutrient uptake (Nitrogen, Phosphorus andPotassium of forage grasses at different NaCl concentrations in growth media. The experiment wasconducted in a greenhouse at Forage Crops Laboratory of Animal Agriculture Faculty, Diponegoro University.Split plot design was used to arrange the experiment. The main plot was forage grasses (Elephant grass(Pennisetum purpureum and King grass (Pennisetum hybrida. The sub plot was NaCl concentrationin growth media (0, 150, and 300 mM. The nitrogen (N, phosphorus (P and potassium (K uptake in shootand root of plant were measured. The result indicated increasing NaCl concentration in growth mediasignificantly decreased the N, P and K uptake in root and shoot of the elephant grass and king grass. Thepercentage reduction percentage of N, P and K uptake at 150 mM and 300 mM were high in elephant grassand king grass. It can be concluded that based on nitrogen, phosphorus and potassium uptake, elephantgrass and king grass are not tolerant to strong and very strong saline soil.

  5. The effect of environmental change on vascular plant and cryptogam communities from the Falkland Islands and the Maritime Antarctic

    Directory of Open Access Journals (Sweden)

    Convey Peter

    2007-12-01

    Full Text Available Abstract Background Antarctic terrestrial vegetation is subject to one of the most extreme climates on Earth. Currently, parts of Antarctica are one of the fastest warming regions on the planet. During 3 growing seasons, we investigated the effect of experimental warming on the diversity and abundance of coastal plant communities in the Maritime Antarctic region (cryptogams only and the Falkland Islands (vascular plants only. We compared communities from the Falkland Islands (51°S, mean annual temperature 7.9°C, with those of Signy Island (60°S, -2.1°C and Anchorage Island (67°S, -2.6°C, and experimental temperature manipulations at each of the three islands using Open Top Chambers (OTCs. Results Despite the strong difference in plant growth form dominance between the Falkland Islands and the Maritime Antarctic, communities across the gradient did not differ in total diversity and species number. During the summer months, the experimental temperature increase at 5 cm height in the vegetation was similar between the locations (0.7°C across the study. In general, the response to this experimental warming was low. Total lichen cover showed a non-significant decreasing trend at Signy Island (p Conclusion These results suggest that small temperature increases may rapidly lead to decreased soil moisture, resulting in more stressful conditions for plants. The more open plant communities (grass and lichen appeared more negatively affected by such changes than dense communities (dwarf shrub and moss.

  6. Aggressiveness of loose kernel smut isolate from Johnson grass on sorghum line BTx643

    Science.gov (United States)

    An isolate of loose kernel smut obtained from Johnson grass was inoculated unto six BTx643 sorghum plants in the greenhouse to determine its aggressiveness. All the BTx643 sorghum plants inoculated with the Johnson grass isolate were infected. Mean size of the teliospores from the Johnson grass, i...

  7. Effects of soil substrate quality, microbial diversity and community composition on the plant community during primary succession

    Czech Academy of Sciences Publication Activity Database

    Frouz, Jan; Toyota, Ayu; Mudrák, Ondřej; Jílková, Veronika; Filipová, A.; Cajthaml, T.

    2016-01-01

    Roč. 99, August (2016), s. 75-84 ISSN 0038-0717 R&D Projects: GA ČR(CZ) GA15-11635S Institutional support: RVO:60077344 ; RVO:67985939 Keywords : AMF * forbs * grass * plant- soil (below-ground) interactions * plant- soil feedback Subject RIV: EH - Ecology, Behaviour Impact factor: 4.857, year: 2016

  8. Effects of volatiles from Maruca vitrata larvae and caterpillar-infested flowers of their host plant Vigna unguiculata on the foraging behavior of the parasitoid Apanteles taragamae.

    Science.gov (United States)

    Dannon, Elie A; Tamò, Manuele; Van Huis, Arnold; Dicke, Marcel

    2010-10-01

    The parasitoid wasp Apanteles taragamae is a promising candidate for the biological control of the legume pod borer Maruca vitrata, which recently has been introduced into Benin. The effects of volatiles from cowpea and peabush flowers and Maruca vitrata larvae on host selection behavior of the parasitoid Apanteles taragamae were investigated under laboratory conditions by using a Y-tube olfactometer. Naïve and oviposition-experienced female wasps were given a choice between several odor sources that included (1) uninfested, (2) Maruca vitrata-infested, and (3) mechanically damaged cowpea flowers, as well as (4) stem portions of peabush plants carrying leaves and flowers, (5) healthy M. vitrata larvae, and moribund (6), and live (7) virus-infected M. vitrata larvae. Responses of naïve and oviposition-experienced female wasps did not differ for any of the odor source combinations. Wasps were significantly attracted to floral volatiles produced by cowpea flowers that had been infested with M. vitrata larvae and from which the larvae had been removed. Apanteles taragamae females also were attracted to Maruca vitrata-infested flowers after removal of both the larvae and their feces. Female wasps discriminated between volatiles from previously infested flowers and mechanically damaged flowers. Uninfested cowpea flowers attracted only oviposition-experienced wasps that had received a rewarding experience (i.e. the parasitization of two M. vitrata larvae feeding on cowpea flowers) before the olfactometer test. Wasps also were attracted to uninfested leaves and flowers of peabush. Moreover, they were also attracted to healthy and live virus-infected M. vitrata larvae, but not when the latter were moribund. Our data show that, similarly to what has been extensively been reported for foliar volatiles, flowers of plants also emit parasitoid-attracting volatiles in response to being infested with an herbivore.

  9. leech infestation

    African Journals Online (AJOL)

    GB

    2013-03-01

    Mar 1, 2013 ... fish, amphibians, and mammals. Infestation occurs by drinking infested water from quiet streams, pools and springs. They attach to their hosts ... trauma, foreign body ingestion, throat pain, fever, dysphagia and drug intake. He has no malena, haematuria, epistaxis or ecchymotic spots on the body. He had ...

  10. Damage of Rhopalosiphum padi (L.) (Hemiptera: Aphididae) on wheat plants related to duration time and density of infestation; Danos de Rhopalosiphum padi (L.) (Hemiptera: Aphididae) no trigo em funcao da duracao e da densidade de infestacao

    Energy Technology Data Exchange (ETDEWEB)

    Roza-Gomes, Margarida F. [Rua Pedro Roso, 42, Nonoai, RS, (Brazil)]. E-mail: margafrg@brturbo.com.br; Salvadori, Jose R. [Embrapa Trigo, Passo Fundo, RS (Brazil)]. E-mail: jrsalva@cnpt.embrapa.b; Schons, Jurema [Universidade de Passo Fundo, RS (Brazil). Fac. de Agronomia e Medicina Veterinaria]. E-mail: schons@upf.br

    2008-09-15

    Aphids are considered relevant pests on wheat either by direct damage through sap sucking or by indirect damage vectoring BYDV (Barley yellow dwarf virus). Rhopalosiphum padi L. has been observed infesting wheat fields with an increasing frequency. The knowledge and the available technology, besides being more related to other aphids species already recognized as pests, they are insufficient to control the specific c problem of R. padi. Thus, this work evaluated the effects of feeding duration and infestation densities of R. padi on seedlings of wheat cv. EMBRAPA 16. rain yield, yield components and the extent of symptoms were recorded. The experiment was carried out in the fi eld under a completely randomized split-plot experimental design with four replications. The main plot was feeding duration (two and seven days) and the sub-plots were infestation densities (zero, two and 10 aphids per plant). Independent on feeding duration, 10 aphids per plant resulted in significant yield losses, reduction of number of heads and tillers per plant. Canopy dry matter was also reduced. Infestations of two and 10 aphids per plant resulted in continuous yellowing of wheat plants from tillering to the end of flowering stage. When aphids fed for seven days on wheat, more yellowing symptoms were observed at the flower stage in comparison with two days feeding. (author)

  11. Intercropping of corn, brachiaria grass and leguminous plants: productivity, quality and composition of silages

    Directory of Open Access Journals (Sweden)

    Patrícia Monteiro Costa

    2012-10-01

    Full Text Available The present study was carried out with the objective to evaluate the productive and qualitative characteristics of forages produced in systems of intercropping of corn, brachiaria grass and different leguminous plants. Productivity, bromatological composition and the fermentative profile of the silages from the following treatments were evaluated: corn in exclusive cultivation (CEC; intercropping of corn with brachiaria grass (CB; intercropping of corn, brachiaria grass and Calopogonium mucunoides (CBCal; intercropping of corn, brachiaria grass and Macrotyloma axillare (CBMac; and intercropping of corn, brachiaria grass and Stylozanthes capitata (CBSty. The experimental design utilized was completely randomized. For each type of cultivation, five plots or replications of three linear meters were harvested, and the material was separated. The variables assessed were: dry matter productivity per area; dry matter productivity of corn per area; crude protein production per area and productivity of total digestible nutrients per area. The material originated from the cultures was ensiled, with dry matter between 28 and 32%. After, the material was placed and compacted appropriately in bucket silos. A sample was collected from each replication for determination of the contents of DM, crude protein (CP, ether extract (EE, lignin, neutral and acid detergent fibers (NDF and ADF and TDN. A fraction of the sample of silages from each treatment was compressed for extraction of the juice and determination of the silage quality. There was difference between the forms of cultivation for the dry matter production per hectare. The CEC with production of 11920.1 kg DM/ha did not differ from CB (8997.41 kg DM/ha or CBCal (10452.10 kg DM/ha; however, it was superior to CBMac (8429.75 kg DM/ha and to CBSty (8164.83 kg DM/ha. The contents of DM, CP, NDF, ADF, lignin and TDN did not differ between the silages from the different treatments. All the silages presented

  12. Plant community structure in an oligohaline tidal marsh

    Science.gov (United States)

    Brewer, J.S.; Grace, J.B.

    1990-01-01

    An oligohaline tidal marsh on the northern shore of Lake Pontchartrain, LA was characterized with respect to the distributions and abundances of plant species over spatial and temporal gradients using Detrended Correspondence Analysis (DCA). In addition, the species distributions were correlated to several physical environmental factors using Detrended Canonical Correspondence Analysis (DCCA). The distributions of species were best correlated with distance from Lake Pontchartrain, and to a lesser extent with elevation and substrate organic matter. They were least correlated with mean soil salinity (referred to here as background salinity). Of the three mid-seasonal dominant species, the perennial grass, Spartina patens, is the most salt tolerant and was found closest to the lake. Further inland the dominant perennial was Sagittaria lancifolia, which has a salt tolerance less than that of Spartina patens. The perennial sedge, Cladium jamaicense, which is the least salt tolerant of the three, was dominant furthest inland. Background salinity levels were generally low (interactions likely also play a role in structuring the plant community. The distributions of several annuals depended on the size and life history of the mid-seasonal dominant perennials. Most of the annuals frequently co-occurred with Sagittaria lancifolia, which was the shortest in stature and had the least persistent canopy of the three mid-seasonal dominant perennials.

  13. A study on Maruca vitrata infestation of Yard-long beans (Vigna unguiculata subspecies sesquipedalis

    Directory of Open Access Journals (Sweden)

    R.C. Jayasinghe

    2015-09-01

    Full Text Available Globally, Maruca vitrata (Geyer is a serious yield constraint on food legumes including Yard-long bean (Vigna unguiculata subspecies sesquipedalis. However, there is a dearth of information on its damage potential, distribution and population dynamics in Yard-long beans. In the present study, the level of M. vitrata larval infestation on flowers and pods of Yard-long beans in Sri Lanka was determined with respect to three consecutive cropping seasons, Yala, Off and Maha. Results indicated that larval infestation and abundance varied with developmental stage of flowers and pods, cropping season and their combined interactive effects. Flowers of Yard-long beans were more prone to M. vitrata larval attack compared to pods. Abundance and level of infestation of M. vitrata varied with plant parts, having a ranking of flower buds (highest > open flowers > mature pods > immature pods (lowest. Peak infestation was observed six and eight weeks after planting on flowers and pods, respectively. Among the three cropping seasons, M. vitrata infestation was found to be higher during Maha and Off seasons compared to Yala. The findings of this study contribute to the identified knowledge gap regarding the field biology of an acknowledged important pest, M. vitrata, in a previously understudied crop in Sri Lanka.

  14. Status of exotic grasses and grass-like vegetation and potential impacts on wildlife in New England

    Science.gov (United States)

    DeStefano, Stephen

    2013-01-01

    The Northeastern section of the United States, known as New England, has seen vast changes in land cover and human population over the past 3 centuries. Much of the region is forested; grasslands and other open-land cover types are less common, but provide habitat for many species that are currently declining in abundance and distribution. New England also consists of some of the most densely populated and developed states in the country. The origin, distribution, and spread of exotic species are highly correlated with human development. As such, exotics are common throughout much of New England, including several species of graminoids (grasses and grass-like plants such as sedges and rushes). Several of the more invasive grass species can form expansive dense mats that exclude native plants, alter ecosystem structure and functions, and are perceived to provide little-to-no value as wildlife food or cover. Although little research has been conducted on direct impacts of exotic graminoids on wildlife populations in New England, several studies on the common reed (Phragmites australis) in salt marshes have shown this species to have variable effects as cover for birds and other wildlife, depending on the distribution of the plant (e.g., patches and borders of reeds are used more by wildlife than expansive densely growing stands). Direct impacts of other grasses on wildlife populations are largely unknown. However, many of the invasive graminoid species that are present in New England have the capability of outcompeting native plants and thereby potentially affecting associated fauna. Preservation, protection, and restoration of grassland and open-land cover types are complex but necessary challenges in the region to maintain biological and genetic diversity of grassland, wetland, and other open-land obligate species.

  15. Pyrenean meadows in Natura 2000 network: grass production and plant biodiversity conservation

    Directory of Open Access Journals (Sweden)

    Ramón Reiné

    2014-02-01

    Full Text Available In semi-natural mountain meadows, yield and forage quality must be reconciled with plant biodiversity conservation. This study was performed to analyze the relationships between these three parameters. To quantify plant biodiversity and pastoral value (PV, phytosociological inventories were performed in 104 semi-natural meadows in the Central Spanish Pyrenees included in the Natura 2000 network. Forage yields were calculated and forage samples were analyzed for relative feed value (RFV. We identified two main types of meadows: (i those that had “more intensive management,” relatively close to farm buildings, with little or no slope, dominated by grasses, with low plant biodiversity, high PV and yield, but low forage quality and (ii those that had “less intensive management,” distant from farm buildings, on slopes, richer in “other forbs”, with high plant biodiversity and forage quality, but low PV and yield. Conservation policies should emphasize less intensive management practices to maintain plant diversity in the semi-natural meadows in the Pyrenees. The widespread view that “other forbs” have low nutritional value should be revised in future research. These species often are undervalued by the PV method, because their nutritional quality, digestibility and intake are poorly understood.

  16. Natural Plant Oils and Terpenes as Protector for the Potato Tubers against Phthorimaea operculella Infestation by Different Application Methods

    Directory of Open Access Journals (Sweden)

    Aziza Sharaby

    2014-06-01

    Full Text Available For protecting potato tubers from the potato tuber moth (PTM infestation during storage, different concentrations of ten natural plant oils and three commercial monoterpnes were tested, some as fumigants or dusts against adults or dusts against neonate larvae, while others as sprays on the gunny sacks in which potato tubers were stored. Tuber damage indices as well as persistence indices for tested materials were assessed. Vapors of Cymbopogon citratus, Myristica fragrans (nutmag, Mentha citrata and a-Ionone (monoterpene caused a highly significant reductions in the life span of exposed moths as well as in new adult offsprings. Other tested oils as Cinnamonium zeylanicum, Myristica. fragrans (Mace and Pelargonium graveolens caused a insignificant effect. There was no significant effect of the tested vapors on egg hatchability, except in case of oils of C. citratus, M. fragrans (nutmag and M. tragrans(Mace oil which caused high reduction in egg hatchability. According to the values of damage indices, the most effective oil vapors were arranged ascendingly as follows: Myristica (nutmag < Cymbopogon < Mentha < a - Ionone. Dusting potato tubers with 1% conc., (mixed with talcum powder of Myristica, Mentha, Cymbopogons oils and a-Ionone (monoterpene caused high reduction in egg deposition, adult emergence as well as percentage of penetrated larvae of PTM. According to their damage indices, Cymbopogon and ά-Ionone were the most protective oils, followed by Myristica and Mentha. Spraying gunnysacks with 1% conc., of the aforementioned natural oils separately elicited high reduction in PTM progeny; while their combinations did not elicit any significant synergistic effect. According to their tuber damage indices, it was found that Cymbopogon oil alone or mixed with Myristica oil showed the best protective effect, followed by Myristica oil alone and Mentha oil mixed with Cymbopogon oil. Assessment of the persistence index of various tested materials

  17. Accelerated development in Johnsongrass seedlings (Sorghum halepense) suppresses the growth of native grasses through size-asymmetric competition.

    Science.gov (United States)

    Schwinning, Susanne; Meckel, Heather; Reichmann, Lara G; Polley, H Wayne; Fay, Philip A

    2017-01-01

    Invasive plant species often dominate native species in competition, augmenting other potential advantages such as release from natural enemies. Resource pre-emption may be a particularly important mechanism for establishing dominance over competitors of the same functional type. We hypothesized that competitive success of an exotic grass against native grasses is mediated by establishing an early size advantage. We tested this prediction among four perennial C4 warm-season grasses: the exotic weed Johnsongrass (Sorghum halepense), big bluestem (Andropogon gerardii), little bluestem (Schizachyrium scoparius) and switchgrass (Panicum virgatum). We predicted that a) the competitive effect of Johnsongrass on target species would be proportional to their initial biomass difference, b) competitive effect and response would be negatively correlated and c) soil fertility would have little effect on competitive relationships. In a greenhouse, plants of the four species were grown from seed either alone or with one Johnsongrass neighbor at two fertilizer levels and periodically harvested. The first two hypotheses were supported: The seedling biomass of single plants at first harvest (50 days after seeding) ranked the same way as the competitive effect of Johnsongrass on target species: Johnsongrass critical mechanism by which exotic invasive species displace functionally similar native species and alter the functional dynamics of native communities.

  18. Barrier island community change: What controls it?

    Science.gov (United States)

    Dows, B.; Young, D.; Zinnert, J.

    2014-12-01

    Conversion from grassland to woody dominated communities has been observed globally. In recent decades, this pattern has been observed in coastal communities along the mid-Atlantic U.S. In coastal environments, a suite of biotic and abiotic factors interact as filters to determine plant community structure and distribution. Microclimatic conditions: soil and air temperature, soil moisture and salinity, and light attenuation under grass cover were measured across a grassland-woody encroachment gradient on a Virginia barrier island; to identify the primary factors that mediate this change. Woody establishment was associated with moderately dense (2200 shoots/m2) grass cover, but reduced at high (> 6200 shoots/ m2) and low (Moderately dense grass cover reduced light attenuation (82.50 % reduction) to sufficiently reduce soil temperature thereby limiting soil moisture evaporation. However, high grass density reduced light attenuation (98.7 % reduction) enough to inhibit establishment of woody species; whereas low grass density attenuated much less light (48.7 % reduction) which allowed for greater soil moisture evaporation. Soil salinity was dynamic as rainfall, tidal inundation, and sea spray produce spatiotemporal variation throughout the barrier island landscape. The importance of light and temperature were compounded as they also indirectly affect soil salinity via their affects on soil moisture. Determining how these biotic and abiotic factors relate to sea level rise and climate change will improve understanding coastal community response as global changes proceed. Understanding how community shifts affect ecosystem function and their potential to affect adjacent systems will also improve predictive ability of coastal ecosystem responses.

  19. Tree-grass interactions on an East African savanna : the effects of facilitation, competition, and hydraulic lift

    NARCIS (Netherlands)

    Ludwig, F.

    2001-01-01

    Keywords: Rangelands, Semi-arid areas, stable isotopes, Acacia, C 4- grasses, plant nutrients, soil nutrients, soil water, plant water relations

    Savanna trees can either increase or decrease the productivity of understorey grasses. Trees reduce grass

  20. Infestation of Broad Bean (Vicia faba) by the Green Stink Bug (Nezara viridula) Decreases Shoot Abscisic Acid Contents under Well-Watered and Drought Conditions.

    Science.gov (United States)

    Ederli, Luisa; Brunetti, Cecilia; Centritto, Mauro; Colazza, Stefano; Frati, Francesca; Loreto, Francesco; Marino, Giovanni; Salerno, Gianandrea; Pasqualini, Stefania

    2017-01-01

    The response of broad bean ( Vicia faba ) plants to water stress alone and in combination with green stink bug ( Nezara viridula ) infestation was investigated through measurement of: (1) leaf gas exchange; (2) plant hormone titres of abscisic acid (ABA) and its metabolites, and of salicylic acid (SA); and (3) hydrogen peroxide (H 2 O 2 ) content. Furthermore, we evaluated the effects of experimentally water-stressed broad-bean plants on N. viridula performance in terms of adult host-plant preference, and nymph growth and survival. Water stress significantly reduced both photosynthesis ( A ) and stomatal conductance ( g s ), while infestation by the green stink bug had no effects on photosynthesis but significantly altered partitioning of ABA between roots and shoots. Leaf ABA was decreased and root ABA increased as a result of herbivore attack, under both well-watered and water-deprived conditions. Water stress significantly impacted on SA content in leaves, but not on H 2 O 2 . However, infestation of N. viridula greatly increased both SA and H 2 O 2 contents in leaves and roots, which suggests that endogenous SA and H 2 O 2 have roles in plant responses to herbivore infestation. No significant differences were seen for green stink bug choice between well-watered and water-stressed plants. However, for green stink bug nymphs, plant water stress promoted significantly lower weight increases and significantly higher mortality, which indicates that highly water-stressed host plants are less suitable for N. viridula infestation. In conclusion two important findings emerged: (i) association of water stress with herbivore infestation largely changes plant response in terms of phytohormone contents; but (ii) water stress does not affect the preference of the infesting insects, although their performance was impaired.

  1. Herbicide spring treatments for the control of brome grasses (Bromus spp. in winter cereals

    Directory of Open Access Journals (Sweden)

    Gehring, Klaus

    2014-02-01

    Full Text Available The efficacy of different ALS-inhibiting herbicides for the control of brome species (Bromus spp. was tested in three field trials in the year 2010 – 2012 in the region of North-West-Bavaria Franken. As a result of the trials the standard herbicide Attribut (Propoxycarbazone was confirmed for the control of brome. In case of infestation with brome and black grass the herbicide Broadway (Pyroxsulam offers a certain control of both problematic grass weeds. This illustrates the high dependency of sufficient brome control in winter cereals on the effectiveness of specific ALS-Inhibitor herbicides. Because of the high risk of herbicide resistance to ACCaseand ALS-inhibiting herbicides in brome, integrated weed management is essential for the sustainable control of brome in winter cereals, respectively winter wheat.

  2. Effects of allelopathic chemicals extracted from various plant leaves on weed control and wheat crop productivity

    International Nuclear Information System (INIS)

    Khan, E.A.; Khakwani, A.A.; Ghazanfarullah, A.

    2015-01-01

    A study on allelopathic effect of leaf water extracts of Eucalyptus, Acacia, Sorghum, Shishum, Sunflower, Poplar, Tobacco and Congress grass on weeds control and growth of wheat cv. Hashim-8 was conducted at Faculty of Agriculture, Gomal University, Dera Ismail Khan during 2012-2013. The findings of this study revealed that allelopathic chemicals in leaf water extracts of these plants significantly suppressed weeds growth by reducing weed density, fresh and dry weed biomass, and encouraged wheat yield and yield components such as days to 50% heading, plant height, tillers m-2, grain spike-1, 1000-gain weight, biological and grain yield. Even though minimum fresh and dry weed biomass and highest wheat grain yield and yield related components were observed in twice hand weeding treatment which is economically less feasible on large scale. However, our findings showed an alternative allelopathic technique to minimize weed infestation and boost wheat growth and yield using natural plant material. On the basis of present results, it is recommended that leaf water extracts of Sorghum, Sunflower and Congress grass can be applied twice (30 and 60 DAS) during the growing season to control weeds and to enhance wheat grain yield. (author)

  3. Detrimental and neutral effects of a wild grass-fungal endophyte symbiotum on insect preference and performance.

    Science.gov (United States)

    Clement, Stephen L; Hu, Jinguo; Stewart, Alan V; Wang, Bingrui; Elberson, Leslie R

    2011-01-01

    Seed-borne Epichloë/Neotyphodium Glenn, Bacon, Hanlin (Ascomycota: Hypocreales: Clavicipitaceae) fungal endophytes in temperate grasses can provide protection against insect attack with the degree of host resistance related to the grass-endophyte symbiotum and the insect species involved in an interaction. Few experimental studies with wild grass-endophyte symbiota, compared to endophyte-infected agricultural grasses, have tested for anti-insect benefits, let alone for resistance against more than one insect species. This study quantified the preference and performance of the bird cherry oat-aphid, Rhopalosiphum padi (L.) (Hemiptera: Aphididae) and the cereal leaf beetle, Oulema melanopus (L.) (Coleoptera: Chrysomelidae), two important pests of forage and cereal grasses, on Neotyphodium-infected (E+) and uninfected (E-) plants of the wild grass Alpine timothy, Phleum alpinum L. (Poales: Poaceae). The experiments tested for both constitutive and wound-induced resistance in E+ plants to characterize possible plasticity of defense responses by a wild E+ grass. The aphid, R. padi preferred E- over E+ test plants in choice experiments and E+ undamaged test plants constitutively expressed antibiosis resistance to this aphid by suppressing population growth. Prior damage of E+ test plants did not induce higher levels of resistance to R. padi. By contrast, the beetle, O. melanopus showed no preference for E+ or E- test plants and endophyte infection did not adversely affect the survival and development of larvae. These results extend the phenomenon of variable effects of E+ wild grasses on the preference and performance of phytophagous insects. The wild grass- Neotyphodium symbiotum in this study broadens the number of wild E+ grasses available for expanded explorations into the effects of endophyte metabolites on insect herbivory.

  4. Diet Switching by Mammalian Herbivores in Response to Exotic Grass Invasion.

    Directory of Open Access Journals (Sweden)

    Carolina Bremm

    Full Text Available Invasion by exotic grasses is a severe threat to the integrity of grassland ecosystems all over the world. Because grasslands are typically grazed by livestock and wildlife, the invasion is a community process modulated by herbivory. We hypothesized that the invasion of native South American grasslands by Eragrostis plana Nees, an exotic tussock-forming grass from Africa, could be deterred by grazing if grazers switched dietary preferences and included the invasive grass as a large proportion of their diets. Bos taurus (heifers and Ovis aries (ewes grazed plots with varying degrees of invasion by E. plana in a replicated manipulative experiment. Animal positions and species grazed were observed every minute in 45-min grazing session. Proportion of bites and steps in and out of E. plana tussocks were measured and used to calculate several indices of selectivity. Both heifers and ewes exhibited increasing probability of grazing E. plana as the proportion of area covered by tussocks increased, but they behaved differently. In agreement with expectations based on the allometry of dietary preferences and morphology, ewes consumed a low proportion of E. plana, except in areas that had more than 90% E. plana cover. Heifers consumed proportionally more E. plana than ewes. Contrary to our hypothesis, herbivores did not exhibit dietary switching towards the invasive grass. Moreover, they exhibited avoidance of the invasive grass and preference for short-statured native species, both of which should tend to enhance invasion. Unless invasive plants are highly palatable to livestock, the effect of grazing to deter the invasion is limited, due to the inherent avoidance of the invasive grass by the main grazers in the ecosystem, particularly sheep.

  5. Omnivore-herbivore interactions: thrips and whiteflies compete via the shared host plant.

    Science.gov (United States)

    Pappas, Maria L; Tavlaki, Georgia; Triantafyllou, Anneta; Broufas, George

    2018-03-05

    Phytophagy is a common feature among pure herbivorous insects and omnivores that utilise both plant and prey as food resources; nevertheless, experimental evidence for factors affecting their interactions is restricted to intraguild predation and predator-mediated competition. We herein focused on plant-mediated effects that could result from plant defence activation or quality alteration and compared the performance of an omnivore, the western flower thrips Frankliniella occidentalis, and a pure herbivore, the greenhouse whitefly Trialeurodes vaporariorum, on cucumber plants previously infested with either species. Furthermore, we recorded their behavioural responses when given a choice among infested and clean plants. Whiteflies laid less eggs on plants previously exposed to thrips but more on whitefly-infested plants. Thrips survival was negatively affected on whitefly-infested than on thrips-infested or clean plants. Notably, whiteflies developed significantly faster on plants infested with conspecifics. In accordance, whiteflies avoided thrips-infested plants and preferred whitefly-infested over clean plants. Thrips showed no preference for either infested or clean plants. Our study is a first report on the role of plant-mediated effects in shaping omnivore-herbivore interactions. Considering the factors driving such interactions we will likely better understand the ecology of the more complex relationships among plants and pest organisms.

  6. High exposure to Tunga penetrans (Linnaeus, 1758 correlates with intensity of infestation

    Directory of Open Access Journals (Sweden)

    Hermann Feldmeier

    2006-02-01

    Full Text Available Tungiasis is a parasitic skin disease widespread in resource-poor urban and rural communities in Brazil. Inhabitants of an urban slum in Northeast Brazil were examined for the presence of tungiasis lesions and followed-up twice a week for a period of three weeks. Each time the number, stages, and topographic localization of lesions were recorded on a documentation sheet. The infestation rate (number of newly embedded sand fleas per individual and day remained stable during the observation period. The infestation rate was significantly related to the intensity of infestation (total number of lesions present (rho = 0.70, p < 0.0001 and the proportion of viable lesions (rho = 0.28, p < 0.0001. The results indicate that in an endemic area the infestation intensity and the proportion of viable lesions can be used as a proxy to assess the exposure of individuals at risk for tungiasis. Persistently high infestation rates during the transmission season favour the use of prevention measures against invading sand fleas (such as a repellent rather than a drug to kill already embedded parasites.

  7. 'Bio-energy Schaffhausen': biogas, proteins and fibres, all three from grass

    International Nuclear Information System (INIS)

    Widmer, F.; Mueller, P.H.

    2002-01-01

    Bioenergie Schaffhausen Ltd., Switzerland, has commissioned the first industrial bio-refinery for processing grass. This unique grass refinery process provides a new industrial utilisation of grass. The products are green power and technical fibres for heat and sound insulation. The green electricity and green gas are made and sold by Etawatt Ltd. and Schaffhausen City Works, the green heat is used internally as process heat. All plant components are utilised for generation of value-added products, which makes the plant economically profitable even at a relatively small scale. The fully continuous and automated plant includes raw material reception, pre-treatment, fractionation, separation, and drying of fibres; separation of protein; juice treatment and conversion to biogas in a so-called UASB reactor; gas cleaning and conversion to electricity and process heat in a combined heat and power plant. The design capacity of the plant is 20,000 t fresh grass or 5,000 t dry substance input per year in two shifts. The plant supplier is '2B Biorefineries' (www.2bio.ch). The start up was in October 2001. Over 500 tons of grass have been processed. The grass refinery has produced so far 78,000 m 3 biogas, 150,000 kWh green electricity and 250,000 kWh green heat. Further, 80 tons of insulation fibres have been produced and sold in the market under the brand name '2B Gratec'. Over 30 buildings have been insulated. The washer and drier have not reached production capacity. The drying is a critical process for fibre quality. The drier is being modified and a new washer is being installed. It is planned to run at design capacity from May 2003. (author)

  8. Agricultural field reclamation utilizing native grass crop production

    Science.gov (United States)

    J. Cure

    2013-01-01

    Developing a method of agricultural field reclamation to native grasses in the Lower San Pedro Watershed could prove to be a valuable tool for educational and practical purposes. Agricultural field reclamation utilizing native grass crop production will address water table depletion, soil degradation and the economic viability of the communities within the watershed....

  9. Importance of husk covering on field infestation of maize by ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-10-20

    Oct 20, 2008 ... An experiment was conducted to determine the importance of husk covering on field infestation of maize by the maize ... high yielding plants with no consideration for resistance ..... provided financial support for the study.

  10. Phytomass of plant communities at the dumps of opencast coal mines in the south of Central Siberia

    Directory of Open Access Journals (Sweden)

    O. V. Trefilova

    2016-12-01

    Full Text Available The paper presents the evaluation of the stock and structure of plant communities formed in the dumps of the Borodino brown coal pit (the eastern part of the Kansk-Achinskcoal basin. A comparison of different age dumps reclaimed with top soil (TS, planned dumps and slopes. The observations cover the period from 2007 to 2009 and 2013. Almost immediately after its creation, on the surface dumps with TS a solid grassy vegetation formed, which was characterized by high productivity. Over the next two decades, a biomass reserve decreased more than 2 times. The major portion of the biomass of 7 and 31–year–old community is concentrated in the 0–10 cm layer. The plant communities amount to the original level of stocks and the structure of the biomass of both aboveground and underground are as no earlier than in 25–30 years. Forest plantations making to force the accumulation of biomass of young biogeocenosis formed on poor substrate (litostratah. The stock biomass of pine man–made stands on 30 % less than in the grass lands to growing on the dumps with TS. Slopes of reclaimed dumps were slowly overgrown and emerging communities were characterized by a low cover and productivity. The major portion of biomass was located above ground. Significant seasonal variations in quantities of above–ground phytomass of plant communities of old dumps, indicating their«immaturity»in spite of thethirty years of the formation of vegetation.

  11. Effect of an Invasive Grass on Ambient Rates of Decomposition and Microbial Community Structure: A Search for Causality

    Science.gov (United States)

    In sutu decomposition of above and below ground plant biomass of the native grass species Andropogon glmoeratus (Walt.) B.S.P and exotic Imperata cylindrica (L.) Beauv. (cogongrass) was investigated using litter bags over the course of a 12 month period. The above and below ground biomass of the inv...

  12. Occurrence of proscopiidae in Eucalyptus spp.: analysis of the infestations and spatial distribution

    Directory of Open Access Journals (Sweden)

    Alexandre dos Santos

    2014-12-01

    Full Text Available The objective of this research was to report the occurrence of proscopiidae and to quantify its infestation and spatial distribution in one experimental plantation of eucalypt clones. The study was conducted in an experimental field with eucalypt hybrids of Eucalyptus urophylla x Eucalyptus grandis (clones GG100, Eucalyptus urophylla x Eucalyptus grandis (H13 and of Eucalyptus urophylla x Eucalyptus camaldulensis (VM01. The plantation was established in three continuous blocks with 512 plants with 3 m x 2 m, in Cáceres municipality, Mato Grosso State, Brazil. Infestation of proscopiidae insects was detected two months after planting . The insects were collected for identification. The attacked trees were geo-referenced and the injuries were quantified. The spatial pattern of proscopiidae he attack was determinated using the location information of the damaged plants, which have been submitted to a quadrats analyses using Morisita and binomial dispersion indexes. All the collected insects have been identified as Tetanorhynchus smithi Rehn, 1904 (Orthoptera, Proscopiidae. The infestation differed significantly among the three eucalypts clones and aggregated spatial pattern of attack was observed. This is the first report of this species of proscopiidae in eucalyptus in Mato Grosso State.

  13. Grass leaves as potential hominin dietary resources.

    Science.gov (United States)

    Paine, Oliver C C; Koppa, Abigale; Henry, Amanda G; Leichliter, Jennifer N; Codron, Daryl; Codron, Jacqueline; Lambert, Joanna E; Sponheimer, Matt

    2018-04-01

    Discussions about early hominin diets have generally excluded grass leaves as a staple food resource, despite their ubiquity in most early hominin habitats. In particular, stable carbon isotope studies have shown a prevalent C 4 component in the diets of most taxa, and grass leaves are the single most abundant C 4 resource in African savannas. Grass leaves are typically portrayed as having little nutritional value (e.g., low in protein and high in fiber) for hominins lacking specialized digestive systems. It has also been argued that they present mechanical challenges (i.e., high toughness) for hominins with bunodont dentition. Here, we compare the nutritional and mechanical properties of grass leaves with the plants growing alongside them in African savanna habitats. We also compare grass leaves to the leaves consumed by other hominoids and demonstrate that many, though by no means all, compare favorably with the nutritional and mechanical properties of known primate foods. Our data reveal that grass leaves exhibit tremendous variation and suggest that future reconstructions of hominin dietary ecology take a more nuanced approach when considering grass leaves as a potential hominin dietary resource. Copyright © 2017. Published by Elsevier Ltd.

  14. Accumulation of 137Cs and 90Sr from contaminated soil by three grass species inoculated with mycorrhizal fungi

    International Nuclear Information System (INIS)

    Entry, J.A.; Watrud, L.S.; Reeves, M.

    1999-01-01

    The use of plants to accumulate low level radioactive waste from soil, followed by incineration of plant material to concentrate radionuclides may prove to be a viable and economical method of remediating contaminated areas. We tested the influence of arbuscular mycorrhizae on 137 Cs and 90 Sr uptake by bahia grass (Paspalum notatum), johnson grass (Sorghum halpense) and switchgrass (Panicum virginatum) for the effectiveness on three different contaminated soil types. Exposure to 137 Cs or 90 Sr over the course of the experiment did not affect above ground biomass of the three grasses. The above ground biomass of bahia, johnson and switchgrass plants accumulated from 26.3 to 71.7% of the total amount of the 137 Cs and from 23.8 to 88.7% of the total amount of the 90 Sr added to the soil after three harvests. In each of the three grass species tested, plants inoculated with Glomus mosseae or Glomus intraradices had greater aboveground plant biomass, higher concentrations of 137 Cs or 90 Sr in plant tissue, % accumulation of 137 Cs or 90 Sr from soil and plant bioconcentration ratios at each harvest than those that did not receive mycorrhizal inoculation. Johnson grass had greater aboveground plant biomass, greater accumulation of 137 Cs or 90 Sr from soil and plant higher bioconcentration ratios with arbuscular mycorrhizal fungi than bahia grass and switchgrass. The greatest accumulation of 137 Cs and 90 Sr was observed in johnson grass inoculated with G. mosseae. Grasses can grow in wide geographical ranges that include a broad variety of edaphic conditions. The highly efficient removal of these radionuclides by these grass species after inoculation with arbuscular mycorrhizae supports the concept that remediation of radionuclide contaminated soils using mycorrhizal plants may present a viable strategy to remediate and reclaim sites contaminated with radionuclides

  15. Response of itchgrass and johnson grass to asulam/dalapon combinations

    International Nuclear Information System (INIS)

    Hook, B.J.

    1986-01-01

    Activities of asumlam [methyl[(4-aminophenyl)sulfonyl]carbamate], dalapon (2,2-dichloropropionic acid) and asulam/dalapon combinations on itchgrass (Rottboellia exaltata L.f.) and johnson grass [Sorghum halepense (L.) Pers.] were examined. When metabolism of 14 C-asulam was monitored, seven days after application, 97-100% of recovered 14 C co-chromatographed with 14 C-asulam. Itchgrass exhibited rapid uptake of 14 C-asulam within 8 hr after application. Asumlam concentrations remained constant in the plant between 8 and 72 hr. Johnson grass plants showed a differential response to asulam and asulam/dalapon treatments. Asulam-treated johnson grass absorbed 26-34% 14 C within 2 hr with no future significant increase in absorption in absorption through 72 hr. Treatment of johnson grass with asulam/dalapon enhanced 14 C absorption with time. At 24 and 72 hr 14 C levels were double that absorbed from treatment of asulam alone. Movement of 14 C-asulam in the apoplast and symplast of both itchgrass and johnson grass was noted. The highest radiolabel accumulated in the lower leaves of itchgrass and remained in the treated leaf of johnson grass

  16. Nitrogen limitation, 15N tracer retention, and growth response in intact and Bromus tectorum-invaded Artemisia tridentata ssp. wyomingensis communities

    Science.gov (United States)

    Witwicki, Dana L.; Doescher, Paul S.; Pyke, David A.; DeCrappeo, Nicole M.; Perakis, Steven S.

    2012-01-01

    Annual grass invasion into shrub-dominated ecosystems is associated with changes in nutrient cycling that may alter nitrogen (N) limitation and retention. Carbon (C) applications that reduce plant-available N have been suggested to give native perennial vegetation a competitive advantage over exotic annual grasses, but plant community and N retention responses to C addition remain poorly understood in these ecosystems. The main objectives of this study were to (1) evaluate the degree of N limitation of plant biomass in intact versus B. tectorum-invaded sagebrush communities, (2) determine if plant N limitation patterns are reflected in the strength of tracer 15N retention over two growing seasons, and (3) assess if the strength of plant N limitation predicts the efficacy of carbon additions intended to reduce soil N availability and plant growth. Labile C additions reduced biomass of exotic annual species; however, growth of native A. tridentata shrubs also declined. Exotic annual and native perennial plant communities had divergent responses to added N, with B. tectorum displaying greater ability to use added N to rapidly increase aboveground biomass, and native perennials increasing their tissue N concentration but showing little growth response. Few differences in N pools between the annual and native communities were detected. In contrast to expectations, however, more 15N was retained over two growing seasons in the invaded annual grass than in the native shrub community. Our data suggest that N cycling in converted exotic annual grasslands of the northern Intermountain West, USA, may retain N more strongly than previously thought.

  17. Mountain Plant Community Sentinels: AWOL

    Science.gov (United States)

    Malanson, G. P.

    2017-12-01

    Mountain plant communities are thought to be sensitive to climate change. Because climatic gradients are steep on mountain slopes, the spatial response of plant communities to climate change should be compressed and easier to detect. These expectations have led to identifying mountain plant communities as sentinels for climate change. This idea has, however, been criticized. Two critiques, for alpine treeline and alpine tundra, are rehearsed and supplemented. The critique of alpine treeline as sentinel is bolstered with new model results on the confounding role of dispersal mechanisms and sensitivity to climatic volatility. In alpine tundra, for which background turnover rates have yet to be established, community composition may reflect environmental gradients only for extremes where effects of climate are most indirect. Both plant communities, while primarily determined by energy at broad scales, may respond to water as a proximate driver at local scales. These plant communities may not be in equilibrium with climate, and differently scaled time lags may mean that ongoing vegetation change may not signal ongoing climate change (or lack thereof). In both cases a double-whammy is created by scale dependence for time lags and for drivers leading to confusion, but these cases present opportunities for insights into basic ecology.

  18. Grasses for energy production: hydrological guidelines

    Energy Technology Data Exchange (ETDEWEB)

    Hall, R.L.

    2003-07-01

    This report provides hydrological guidelines for growers, land and water resource managers, environmental groups and other parties interested in utilising grasses for energy production. The aim of the report is to help interested parties decide if a location is suitable for planting energy grasses by considering whether potential hydrological impacts will have an adverse effect on crop productivity and yield. The guidelines consider: the water use of energy grasses compared with other crops; the factors governing water use; the water requirements for a productive crop; and the likely impacts on the availability and quantity of water. The report points out that there are still gaps in our knowledge of the processes controlling the water use and growth of energy grasses and notes that, in some situations, there will be considerable uncertainty in predictions of water use and the magnitude of the associated hydrological impacts.

  19. Comparing soil organic carbon dynamics in perennial grasses and shrubs in a saline-alkaline arid region, northwestern China.

    Science.gov (United States)

    Zhou, Yong; Pei, Zhiqin; Su, Jiaqi; Zhang, Jingli; Zheng, Yuanrun; Ni, Jian; Xiao, Chunwang; Wang, Renzhong

    2012-01-01

    Although semi-arid and arid regions account for about 40% of terrestrial surface of the Earth and contain approximately 10% of the global soil organic carbon stock, our understanding of soil organic carbon dynamics in these regions is limited. A field experiment was conducted to compare soil organic carbon dynamics between a perennial grass community dominated by Cleistogenes squarrosa and an adjacent shrub community co-dominated by Reaumuria soongorica and Haloxylon ammodendron, two typical plant life forms in arid ecosystems of saline-alkaline arid regions in northwestern China during the growing season 2010. We found that both fine root biomass and necromass in two life forms varied greatly during the growing season. Annual fine root production in the perennial grasses was 45.6% significantly higher than in the shrubs, and fine root turnover rates were 2.52 and 2.17 yr(-1) for the perennial grasses and the shrubs, respectively. Floor mass was significantly higher in the perennial grasses than in the shrubs due to the decomposition rate of leaf litter in the perennial grasses was 61.8% lower than in the shrubs even though no significance was detected in litterfall production. Soil microbial biomass and activity demonstrated a strong seasonal variation with larger values in May and September and minimum values in the dry month of July. Observed higher soil organic carbon stocks in the perennial grasses (1.32 Kg C m(-2)) than in the shrubs (1.12 Kg C m(-2)) might be attributed to both greater inputs of poor quality litter that is relatively resistant to decay and the lower ability of microorganism to decompose these organic matter. Our results suggest that the perennial grasses might accumulate more soil organic carbon with time than the shrubs because of larger amounts of inputs from litter and slower return of carbon through decomposition.

  20. On the number of genes controlling the grass stage in longleaf pine

    Science.gov (United States)

    C. Dana Nelson; C. Weng; Thomas L. Kubisiak; M. Stine; C.L. Brown

    2003-01-01

    The grass stage is an inherent and distinctive developmental trait of longleaf pine (Pinus palustris), in which height growth in the first few years after germination is suppressed. In operational forestry practice the grass stage extends for nvo to several years and often plays a role in planting failures and decisions to plant alternative species....

  1. Competition for phosphorus: differential uptake from dual-isotope-labeled soil interspaces between shrub and grass

    International Nuclear Information System (INIS)

    Caldwell, M.M.; Eissenstat, D.M.; Richards, J.H.; Allen, M.F.

    1985-01-01

    Two species of Agropyron grass differed strikingly in their capacity to compete for phosphate in soil interspaces shared with a common competitor, the sagebrush Artemisia tridentata. Of the total phosphorus-32 and -33 absorbed by Artemisia, 86% was from the interspace shared with Agropyron spicatum and only 14% from that shared with Agropyron desertorum. Actively absorbing mycorrhizal roots of Agropyron and Artemisia were present in both interspaces, where competition for the labeled phosphate occurred. The results have important implications about the way in which plants compete for resources below ground in both natural plant communities and agricultural intercropping systems

  2. Tree-grass interactions in savannas

    CSIR Research Space (South Africa)

    Scholes, RJ

    1997-01-01

    Full Text Available Savannas occur where trees and grasses interact to create a biome that is neither grassland nor forest. Woody and gramineous plants interact by many mechanisms, some negative (competition) and some positive (facilitation). The strength and sign...

  3. Analysis of Some Heavy Metals in Grass ( Paspalum Orbiculare ...

    African Journals Online (AJOL)

    The increased deposition of trace metals from vehicle exhausts on plants has raised concerns about the risks of the quality of food consumed by humans since the heavy metals emitted through the exhaust by vehicles can enter food chain through deposition on grass grazed by animals. Grass (Paspalum Orbiculare) and ...

  4. Parasite infestation increases on coral reefs without cleaner fish

    Science.gov (United States)

    Grutter, A. S.; De Brauwer, M.; Bshary, R.; Cheney, K. L.; Cribb, T. H.; Madin, E. M. P.; McClure, E. C.; Meekan, M. G.; Sun, D.; Warner, R. R.; Werminghausen, J.; Sikkel, P. C.

    2018-03-01

    Mutualisms are pivotal in shaping ecological communities. Iconic images of cleaner fish entering the mouths of predatory fish clients to remove ectoparasites epitomize their mutual benefit. Experimental manipulations of cleaner wrasse reveal declines in fish size and growth, and population abundance and diversity of client fishes in the absence of cleaner wrasse. Fishes grow more slowly and are less abundant and diverse on reefs without cleaner wrasse, both for larger species that are regularly cleaned and have high ectoparasite loads ("attractive species"), and for those smaller species that are rarely cleaned and are rarely infested with parasites ("unattractive species"). We therefore considered whether these previously observed declines in individual and population parameters on reefs without cleaners were related to increased ectoparasite infestation using an attractive species ( Hemigymnus melapterus, Labridae) and an unattractive species ( Pomacentrus amboinensis, Pomacentridae). Traps with these fish as a form of bait were deployed to sample blood-sucking gnathiid ectoparasites (Gnathiidae: Isopoda) on reefs from which cleaners ( Labroides dimidiatus, Labridae) have been removed for 13 yr. Cleaner fish could not enter traps to access the clients/hosts, but gnathiids could enter the traps to infest hosts; thus, this method sampled the indirect effect of cleaners on gnathiid infestation of fish. Infestation was higher on reefs without cleaners than on those with them. The effect was only detected during the daytime when cleaners are active and only on the attractive species ( H. melapterus). Thus, cleaner presence indirectly reduced fish exposure to parasites in a species that is highly susceptible to parasites, but not in one that is rarely infested with parasites. This suggests that cleaner presence indirectly reduces exposure of a common fish species to harmful parasites, which may explain some observed benefits in fishes at this location.

  5. Succession Stages of Tundra Plant Communities Following Wildfire Disturbance in Arctic Alaska

    Science.gov (United States)

    Breen, A. L.; Hollingsworth, T. N.; Mack, M. C.; Jones, B. M.

    2015-12-01

    Rapid climate change is affecting climate-sensitive disturbance regimes throughout the world. In particular, the impacts of climate change on Arctic disturbance regimes are poorly understood because landscape-scale disturbances are infrequent or occur in remote localities. Wildfire in Arctic Alaska is presently limited by ignition source and favorable burn weather. With rapid climate change, a lengthening growing season, and subsequent increase in plant biomass and productivity, wildfire frequency and annual area burned in tundra ecosystems is expected to increase over the next century. Yet, post-fire tundra vegetation succession is inadequately characterized except at a few point locations. We identify succession stages of tussock tundra communities following wildfire using a chronosequence of 65 relevés in 10 tundra fire scars (1971-2011) and nearby unburned tundra from sites on the Seward Peninsula and northern foothills of the Brooks Range. We used the Braun-Blanquét approach to classify plant communities, and applied nonmetric multidimentional scaling (NMDS) to identify ecological gradients underlying community differentiation. The ordination revealed a clear differentiation between unburned and burned tundra communities. Ecological gradients, reflected by ordination axes, correspond to fire history (e.g., time since last fire, number of times burned, burn severity) and a complex productivity gradient. Post-fire species richness is less than unburned tundra; primarily reflected as a decrease in lichen species and turnover of bryophyte species immediately post-fire. Species richness of grasses increases post-fire and is greatest in communities that burned more than once in the past 30 years. Shrub cover and total aboveground biomass are greatest in repeat burn sites. We review and discuss our results focusing on the implications of a changing tundra fire regime, its effect on vegetation succession trajectories, and subsequent rates of carbon sequestration and

  6. Fast Detection of Striped Stem-Borer (Chilo suppressalis Walker Infested Rice Seedling Based on Visible/Near-Infrared Hyperspectral Imaging System

    Directory of Open Access Journals (Sweden)

    Yangyang Fan

    2017-10-01

    Full Text Available Striped stem-borer (SSB infestation is one of the most serious sources of damage to rice growth. A rapid and non-destructive method of early SSB detection is essential for rice-growth protection. In this study, hyperspectral imaging combined with chemometrics was used to detect early SSB infestation in rice and identify the degree of infestation (DI. Visible/near-infrared hyperspectral images (in the spectral range of 380 nm to 1030 nm were taken of the healthy rice plants and infested rice plants by SSB for 2, 4, 6, 8 and 10 days. A total of 17 characteristic wavelengths were selected from the spectral data extracted from the hyperspectral images by the successive projection algorithm (SPA. Principal component analysis (PCA was applied to the hyperspectral images, and 16 textural features based on the gray-level co-occurrence matrix (GLCM were extracted from the first two principal component (PC images. A back-propagation neural network (BPNN was used to establish infestation degree evaluation models based on full spectra, characteristic wavelengths, textural features and features fusion, respectively. BPNN models based on a fusion of characteristic wavelengths and textural features achieved the best performance, with classification accuracy of calibration and prediction sets over 95%. The accuracy of each infestation degree was satisfactory, and the accuracy of rice samples infested for 2 days was slightly low. In all, this study indicated the feasibility of hyperspectral imaging techniques to detect early SSB infestation and identify degrees of infestation.

  7. Development and Genetic Control of Plant Architecture and Biomass in the Panicoid Grass, Setaria.

    Directory of Open Access Journals (Sweden)

    Margarita Mauro-Herrera

    Full Text Available The architecture of a plant affects its ability to compete for light and to respond to environmental stresses, thus affecting overall fitness and productivity. Two components of architecture, branching and height, were studied in 182 F7 recombinant inbred lines (RILs at the vegetative, flowering and mature developmental stages in the panicoid C4 model grass system, Setaria. The RIL population was derived from a cross between domesticated S. italica (foxtail millet and its wild relative S. viridis (green foxtail. In both field and greenhouse trials the wild parent was taller initially, started branching earlier, and flowered earlier, while the domesticated parent was shorter initially, but flowered later, producing a robust tall plant architecture with more nodes and leaves on the main culm and few or no branches. Biomass was highly correlated with height of the plant and number of nodes on the main culm, and generally showed a negative relationship with branch number. However, several of the RILs with the highest biomass in both trials were significantly more branched than the domesticated parent of the cross. Quantitative trait loci (QTL analyses indicate that both height and branching are controlled by multiple genetic regions, often with QTL for both traits colocalizing in the same genomic regions. Genomic positions of several QTL colocalize with QTL in syntenic regions in other species and contain genes known to control branching and height in sorghum, maize, and switchgrass. Included in these is the ortholog of the rice SD-1 semi-dwarfing gene, which underlies one of the major Setaria height QTL. Understanding the relationships between height and branching patterns in Setaria, and their genetic control, is an important step to gaining a comprehensive knowledge of the development and genetic regulation of panicoid grass architecture.

  8. Development and Genetic Control of Plant Architecture and Biomass in the Panicoid Grass, Setaria.

    Science.gov (United States)

    Mauro-Herrera, Margarita; Doust, Andrew N

    2016-01-01

    The architecture of a plant affects its ability to compete for light and to respond to environmental stresses, thus affecting overall fitness and productivity. Two components of architecture, branching and height, were studied in 182 F7 recombinant inbred lines (RILs) at the vegetative, flowering and mature developmental stages in the panicoid C4 model grass system, Setaria. The RIL population was derived from a cross between domesticated S. italica (foxtail millet) and its wild relative S. viridis (green foxtail). In both field and greenhouse trials the wild parent was taller initially, started branching earlier, and flowered earlier, while the domesticated parent was shorter initially, but flowered later, producing a robust tall plant architecture with more nodes and leaves on the main culm and few or no branches. Biomass was highly correlated with height of the plant and number of nodes on the main culm, and generally showed a negative relationship with branch number. However, several of the RILs with the highest biomass in both trials were significantly more branched than the domesticated parent of the cross. Quantitative trait loci (QTL) analyses indicate that both height and branching are controlled by multiple genetic regions, often with QTL for both traits colocalizing in the same genomic regions. Genomic positions of several QTL colocalize with QTL in syntenic regions in other species and contain genes known to control branching and height in sorghum, maize, and switchgrass. Included in these is the ortholog of the rice SD-1 semi-dwarfing gene, which underlies one of the major Setaria height QTL. Understanding the relationships between height and branching patterns in Setaria, and their genetic control, is an important step to gaining a comprehensive knowledge of the development and genetic regulation of panicoid grass architecture.

  9. Changes in the free amino acid composition of Capsicum annuum (pepper) leaves in response to Myzus persicae (green peach aphid) infestation. A comparison with water stress.

    Science.gov (United States)

    Florencio-Ortiz, Victoria; Sellés-Marchart, Susana; Zubcoff-Vallejo, José; Jander, Georg; Casas, José L

    2018-01-01

    Amino acids play a central role in aphid-plant interactions. They are essential components of plant primary metabolism, function as precursors for the synthesis of defense-related specialized metabolites, and are major growth-limiting nutrients for aphids. To quantify changes in the free amino acid content of pepper (Capsicum annuum L.) leaves in response to green peach aphid (Myzus persicae Sulzer) feeding, plants were infested with a low (20 aphids/plant) or a high (200 aphids/plant) aphid density in time-course experiments ranging from 3 hours to 7 days. A parallel experiment was conducted with pepper plants that had been subjected to water stress. Factor Analysis of Mixed Data revealed a significant interaction of time x density in the free amino acid response of aphid-infested leaves. At low aphid density, M. persicae did not trigger a strong response in pepper leaves. Conversely, at high density, a large increase in total free amino acid content was observed and specific amino acids peaked at different times post-infestation. Comparing aphid-infested with water-stressed plants, most of the observed differences were quantitative. In particular, proline and hydroxyproline accumulated dramatically in response to water stress, but not in response to aphid infestation. Some additional differences and commonalities between the two stress treatments are discussed.

  10. Hazardous impact and translocation of vanadium (V) species from soil to different vegetables and grasses grown in the vicinity of thermal power plant

    International Nuclear Information System (INIS)

    Khan, Sumaira; Kazi, Tasneem Gul; Kolachi, Nida Fatima; Baig, Jameel Ahmed; Afridi, Hassan Imran; Shah, Abdul Qadir; Kumar, Sham; Shah, Faheem

    2011-01-01

    The distribution of vanadium (V) species in soil (test soil), vegetables and grasses, collected from the vicinity of a thermal power plant has been studied. For comparison purpose soil (control soil), same vegetable and grass samples were collected from agricultural land devoid of any industrial area. A simple and efficient ultrasonic assisted extraction method has been developed for the extraction of V 5+ species from soil, vegetable and grass samples using Na 2 CO 3 in the range of 0.1-0.5 mol/L. For comparison purpose same sub samples were also extracted by conventional heating method. The total and V species were determined by electrothermal atomic absorption spectrometry using different modifiers. The validity of V 5+ and V 4+ determination had been confirmed by the spike recovery and total amount of V by the analysis of CRM 1570 (spinach leave) and sub samples of agricultural soil. The concentration of total V was found in the range of 90-215 and 11.4-42.3 μg/g in test and control soil samples, respectively. The contents of V 5+ and total V in vegetables and grasses grown around the thermal power plant were found in the range of 2.9-5.25 and 8.74-14.9 μg/g, respectively, which were significantly higher than those values obtained from vegetables and fodders grown in non exposed agricultural site (P 5+ and V 4+ species was not significantly different from total concentration of V in same sub samples of vegetable, grass and soil of both origins, at 95% level of confidence.

  11. Inverse gradients in leaf wax δD and δ13C values along grass blades of Miscanthus sinensis: implications for leaf wax reproduction and plant physiology.

    Science.gov (United States)

    Gao, Li; Huang, Yongsong

    2013-06-01

    Compound specific hydrogen and carbon isotopic ratios of higher plant leaf waxes have been extensively used in paleoclimate and paleoenvironmental reconstructions. However, studies so far have focused on the comparison of leaf wax isotopic differences in bulk leaf samples between different plant species. We sampled three different varieties of tall grasses (Miscanthus sinensis) in six segments from base to tip and determined hydrogen and carbon isotopic ratios of leaf waxes, as well as hydrogen and oxygen isotopic ratios of leaf water samples. We found an increasing, base-to-tip hydrogen isotopic gradient along the grass blades that can probably be attributed to active leaf wax regeneration over the growth season. Carbon isotopic ratios, on the other hand, show opposite trends to hydrogen isotopic ratios along the grass blades, which may reflect different photosynthetic efficiencies at different blade locales.

  12. Potential of Electric Power Production from Microbial Fuel Cell (MFC) in Evapotranspiration Reactor for Leachate Treatment Using Alocasia macrorrhiza Plant and Eleusine indica Grass

    Science.gov (United States)

    Zaman, Badrus; Wardhana, Irawan Wisnu

    2018-02-01

    Microbial fuel cell is one of attractive electric power generator from nature bacterial activity. While, Evapotranspiration is one of the waste water treatment system which developed to eliminate biological weakness that utilize the natural evaporation process and bacterial activity on plant roots and plant media. This study aims to determine the potential of electrical energy from leachate treatment using evapotranspiration reactor. The study was conducted using local plant, namely Alocasia macrorrhiza and local grass, namely Eleusine Indica. The system was using horizontal MFC by placing the cathodes and anodes at different chamber (i.e. in the leachate reactor and reactor with plant media). Carbon plates was used for chatode-anodes material with size of 40 cm x 10 cm x1 cm. Electrical power production was measure by a digital multimeter for 30 days reactor operation. The result shows electric power production was fluctuated during reactor operation from all reactors. The electric power generated from each reactor was fluctuated, but from the reactor using Alocasia macrorrhiza plant reach to 70 μwatt average. From the reactor using Eleusine Indica grass was reached 60 μwatt average. Electric power production fluctuation is related to the bacterial growth pattern in the soil media and on the plant roots which undergo the adaptation process until the middle of the operational period and then in stable growth condition until the end of the reactor operation. The results indicate that the evapotranspiration reactor using Alocasia macrorrhiza plant was 60-95% higher electric power potential than using Eleusine Indica grass in short-term (30-day) operation. Although, MFC system in evapotranspiration reactor system was one of potential system for renewable electric power generation.

  13. Status and use of important native grasses adapted to sagebrush communities

    Science.gov (United States)

    Thomas A. Jones; Steven R. Larson

    2005-01-01

    Due to the emphasis on restoration, native cool-season grass species are increasing in importance in the commercial seed trade in the Western U.S. Cultivated seed production of these native grasses has often been hampered by seed dormancy, seed shattering, and pernicious awns that are advantageous outside of cultivation. Relatively low seed yields and poor seedling...

  14. Grazing exclusion, substrate type, and drought frequency affect plant community structure in rangelands of the arid unpredictable Arabian Deserts

    Science.gov (United States)

    El-Keblawy, Ali; El-Sheikh, Mohamed

    2017-04-01

    Grazing and drought can adversely affect the ecology and management of rangeland ecosystems. Several management actions have been applied to restore species diversity and community structure in degraded rangelands of the unpredictable arid environment. Protection from grazing is considered as a proper approach for restoration of degraded rangelands, but this depends on substrate type and sometime is hindered with water deficiency (drought). In this study, the effect of protection from grazing animals on species diversity and plant community structure was assessed after a dry and wet periods in both sandy and gravelly substrates in the Dubai Desert Conservation reserve (DDCR), United Arab Emirates. Two sites were selected during November 2012 on the two substrate types (fixed sandy flat and gravel plain) in the arid DDCR. An enclosure was established in each site. Plant community attributes (plant cover, density, frequency, species composition, and diversity indices) were assessed in a number of permanent plots laid inside and outside each enclosure during November 2012, April 2014 and April 2016. The results showed that protection improved clay content, but decreased the organic matters. Interestingly, the protection reduced the concentrations of most estimated nutrients, which could be attributed to the high turnover rate of nutrients associated grazing and low decomposition of accumulated dry plants of non-protected sites. Protection significantly increased all plant community attributes, but the only significant effect was for plant density. Plant density was almost twice greater inside than outside the enclosures. During the dry period, protection resulted in significantly greater deterioration in cover, density and all diversity indices in gravel, compared to sandy sites. Most of the grasses and shrubby plants had died in the gravel plains. However, plant community of the gravel plains was significantly restored after receiving considerable rainfalls. The

  15. Seeding method influences warm-season grass abundance and distribution but not local diversity in grassland restoration

    Science.gov (United States)

    Yurkonis, Kathryn A.; Wilsey, Brian J.; Moloney, Kirk A.; Drobney, Pauline; Larson, Diane L.

    2010-01-01

    Ecological theory predicts that the arrangement of seedlings in newly restored communities may influence future species diversity and composition. We test the prediction that smaller distances between neighboring seeds in drill seeded grassland plantings would result in lower species diversity, greater weed abundance, and larger conspecific patch sizes than otherwise similar broadcast seeded plantings. A diverse grassland seed mix was either drill seeded, which places seeds in equally spaced rows, or broadcast seeded, which spreads seeds across the ground surface, into 24 plots in each of three sites in 2005. In summer 2007, we measured species abundance in a 1 m2 quadrat in each plot and mapped common species within the quadrat by recording the most abundant species in each of 64 cells. Quadrat-scale diversity and weed abundance were similar between drilled and broadcast plots, suggesting that processes that limited establishment and controlled invasion were not affected by such fine-scale seed distribution. However, native warm-season (C4) grasses were more abundant and occurred in less compact patches in drilled plots. This difference in C4 grass abundance and distribution may result from increased germination or vegetative propagation of C4 grasses in drilled plots. Our findings suggest that local plant density may control fine-scale heterogeneity and species composition in restored grasslands, processes that need to be further investigated to determine whether seed distributions can be manipulated to increase diversity in restored grasslands.

  16. Thermally treated grass fibers as colonizable substrate for beneficial bacterial inoculum

    NARCIS (Netherlands)

    Trifonova, R.D.; Postma, J.; Ketelaars, J.J.M.H.; Elsas, van J.D.

    2008-01-01

    This study investigates how thermally treated (i.e., torrefied) grass, a new prospective ingredient of potting soils, is colonized by microorganisms. Torrefied grass fibers (TGF) represent a specific colonizable niche, which is potentially useful to establish a beneficial microbial community that

  17. Plant community resistance to invasion by Bromus species – the roles of community attributes, Bromus Interactions with plant communities, and Bromus traits

    Science.gov (United States)

    Chambers, Jeanne; Germino, Matthew; Belnap, Jayne; Brown, Cynthia; Schupp, Eugene W.; St. Clair, Samuel B

    2016-01-01

    The factors that determine plant community resistance to exotic annual Bromus species (Bromushereafter) are diverse and context specific. They are influenced by the environmental characteristics and attributes of the community, the traits of Bromus species, and the direct and indirect interactions of Bromus with the plant community. Environmental factors, in particular ambient and soil temperatures, have significant effects on the ability of Bromus to establish and spread. Seasonality of precipitation relative to temperature influences plant community resistance toBromus through effects on soil water storage, timing of water and nutrient availability, and dominant plant life forms. Differences among plant communities in how well soil resource use by the plant community matches resource supply rates can influence the magnitude of resource fluctuations due to either climate or disturbance and thus the opportunities for invasion. The spatial and temporal patterns of resource availability and acquisition of growth resources by Bromus versus native species strongly influence resistance to invasion. Traits of Bromus that confer a “priority advantage” for resource use in many communities include early-season germination and high growth and reproductive rates. Resistance to Bromus can be overwhelmed by high propagule supply, low innate seed dormancy, and large, if short-lived, seed banks. Biological crusts can inhibit germination and establishment of invasive annual plants, including several annual Bromus species, but are effective only in the absence of disturbance. Herbivores can have negative direct effects on Bromus, but positive indirect effects through decreases in competitors. Management strategies can be improved through increased understanding of community resistance to exotic annual Bromus species.

  18. Examination of the pest status of corn-infesting Ulidiidae (Diptera).

    Science.gov (United States)

    Goyal, Gaurav; Nuessly, Gregg S; Seal, Dakshina R; Steck, Gary J; Capinera, John L; Meagher, Robert L

    2012-10-01

    Larvae of 11 species of picture-winged flies (Diptera: Ulididae) are known to feed on corn plants (Zea mays L.) in the western hemisphere. Larvae emerge from eggs deposited in leaf axils and corn silk to feed mostly within ears, but the primary versus secondary nature (i.e., pest status) of their infestation is not known for all of these species. Choice and no-choice tests by using a split-plot design were conducted in greenhouse and field trials to determine the pest status on sweet corn of three of these species found in Florida: Chaetopsis massyla (Walker), Euxesta eluta Loew, and E. stigmatias Loew. The main treatments (uninfested ears and ears experimentally infested with either Spodoptera frugiperda [Lepidoptera: Noctuidae] or E. eluta larvae) were applied at first silk. The subtreatments (C. massyla, E. eluta, or E. stigmatias adults caged on ears) were applied 7 d later and maintained for 10 d. All three fly species were reared from uninfested and experimentally infested ears in both choice and no-choice tests in greenhouse and field trials confirming both primary and secondary modes of ear infestation. More flies of all three species emerged from ears that were preinfested with S. frugiperda compared with uninfested ears suggesting either preference for or greater survival within ears previously infested by S. frugiperda. Fewer E. eluta and E. stigmatias emerged from ears preinfested with E. eluta in no-choice field tests, suggesting that previous infestation by this fly may negatively affect oviposition or that older fly larvae affect survival of neonate larvae. All three species studied here should be considered primary pests that can render unprotected sweet corn ears unmarketable.

  19. Grass-Shrub Associations over a Precipitation Gradient and Their Implications for Restoration in the Great Basin, USA.

    Directory of Open Access Journals (Sweden)

    Maike F Holthuijzen

    Full Text Available As environmental stress increases positive (facilitative plant interactions often predominate. Plant-plant associations (or lack thereof can indicate whether certain plant species favor particular types of microsites (e.g., shrub canopies or plant-free interspaces and can provide valuable insights into whether "nurse plants" will contribute to seeding or planting success during ecological restoration. It can be difficult, however, to anticipate how relationships between nurse plants and plants used for restoration may change over large-ranging, regional stress gradients. We investigated associations between the shrub, Wyoming big sagebrush (Artemisia tridentata ssp. wyomingensis, and three common native grasses (Poa secunda, Elymus elymoides, and Pseudoroegneria spicata, representing short-, medium-, and deep-rooted growth forms, respectively, across an annual rainfall gradient (220-350 mm in the Great Basin, USA. We hypothesized that positive shrub-grass relationships would become more frequent at lower rainfall levels, as indicated by greater cover of grasses in shrub canopies than vegetation-free interspaces. We sampled aerial cover, density, height, basal width, grazing status, and reproductive status of perennial grasses in canopies and interspaces of 25-33 sagebrush individuals at 32 sites along a rainfall gradient. We found that aerial cover of the shallow rooted grass, P. secunda, was higher in sagebrush canopy than interspace microsites at lower levels of rainfall. Cover and density of the medium-rooted grass, E. elymoides were higher in sagebrush canopies than interspaces at all but the highest rainfall levels. Neither annual rainfall nor sagebrush canopy microsite significantly affected P. spicata cover. E. elymoides and P. spicata plants were taller, narrower, and less likely to be grazed in shrub canopy microsites than interspaces. Our results suggest that exploring sagebrush canopy microsites for restoration of native perennial

  20. Molecular features of grass allergens and development of biotechnological approaches for allergy prevention.

    Science.gov (United States)

    Devis, Deborah L; Davies, Janet M; Zhang, Dabing

    2017-09-01

    Allergic diseases are characterized by elevated allergen-specific IgE and excessive inflammatory cell responses. Among the reported plant allergens, grass pollen and grain allergens, derived from agriculturally important members of the Poaceae family such as rice, wheat and barley, are the most dominant and difficult to prevent. Although many allergen homologs have been predicted from species such as wheat and timothy grass, fundamental aspects such as the evolution and function of plant pollen allergens remain largely unclear. With the development of genetic engineering and genomics, more primary sequences, functions and structures of plant allergens have been uncovered, and molecular component-based allergen-specific immunotherapies are being developed. In this review, we aim to provide an update on (i) the distribution and importance of pollen and grain allergens of the Poaceae family, (ii) the origin and evolution, and functional aspects of plant pollen allergens, (iii) developments of allergen-specific immunotherapy for pollen allergy using biotechnology and (iv) development of less allergenic plants using gene engineering techniques. We also discuss future trends in revealing fundamental aspects of grass pollen allergens and possible biotechnological approaches to reduce the amount of pollen allergens in grasses. Copyright © 2017. Published by Elsevier Inc.

  1. Antimicrobial Activity of Plant Extracts from Aloe Vera, Citrus Hystrix, Sabah Snake Grass and Zingiber Officinale against Pyricularia Oryzae that causes Rice Blast Disease in Paddy Plants

    Science.gov (United States)

    Uda, M. N. A.; Harzana Shaari, N.; Shamiera. Said, N.; Hulwani Ibrahim, Nur; Akhir, Maisara A. M.; Khairul Rabani Hashim, Mohd; Salimi, M. N.; Nuradibah, M. A.; Hashim, Uda; Gopinath, Subash C. B.

    2018-03-01

    Rice blast disease, caused by the fungus known as Pyricularia oryzae, has become an important and serious disease of rice worldwide. Around 50% of production may be lost in a field moderately affected by infection and each year the fungus destroys rice, which is enough to feed an estimated 60 million people. Therefore, use of herbal plants offer an alternative for the management of plant diseases. Herbal plant like Aloe vera, Citrus hystrix, Sabah snake grass and Zingiber officinale extracts can be used for controlling disease of rice blast. In this study, these four herbal plants were used for evaluating antimicrobial activity against rice plant fungus Pyricularia oryzae, which causes rice blast disease.

  2. The uptake of uranium from soil to vetiver grass (vetiver zizanioides (L.) nash)

    International Nuclear Information System (INIS)

    Luu Viet Hung; Bui Duy Cam; Dang Duc Nhan

    2012-01-01

    Uranium uptake of vetiver grass (Vetiveria zizanioides (L.) Nash) from Eutric Fluvisols (AK), Albic Acrisols (LP), Dystric Fluvisols (TT) and Ferralic Acrisols (TC) in northern Vietnam is assessed. The soils were mixed with aqueous solution of uranyl nitrate to make soils be contaminated with uranium at 0, 50, 100, 250 mg per kg before planting the grass. The efficiency of uranium uptake by the grass was assessed based on the soil-to-plant transfer factor (TF U , kg kg -1 ). It was found that the TF U values are dependent upon the soil properties. CEC facilitates the uptake and the increase soil pH could reduce the uptake and translocation of uranium in the plant. Organic matter content as well as ferrous and potassium inhibit the uranium uptake of the grass. It was revealed that the lower fertile soil the higher uranium uptake. The grass could tolerate to the high extent (up to 77%) of uranium in soils and could survive and grow well without fertilization. The translocation of uranium in root for all the soil types studies almost higher than that in its shoot. It seem that vetiver grass potentially be use for the purpose of phytoremediation of soils contaminated with uranium. (author)

  3. Expression profiling of selected glutathione transferase genes in Zea mays (L.) seedlings infested with cereal aphids.

    Science.gov (United States)

    Sytykiewicz, Hubert; Chrzanowski, Grzegorz; Czerniewicz, Paweł; Sprawka, Iwona; Łukasik, Iwona; Goławska, Sylwia; Sempruch, Cezary

    2014-01-01

    The purpose of this report was to evaluate the expression patterns of selected glutathione transferase genes (gst1, gst18, gst23 and gst24) in the tissues of two maize (Zea mays L.) varieties (relatively resistant Ambrozja and susceptible Tasty Sweet) that were colonized with oligophagous bird cherry-oat aphid (Rhopalosiphum padi L.) or monophagous grain aphid (Sitobion avenae L.). Simultaneously, insect-triggered generation of superoxide anion radicals (O2•-) in infested Z. mays plants was monitored. Quantified parameters were measured at 1, 2, 4, 8, 24, 48 and 72 h post-initial aphid infestation (hpi) in relation to the non-infested control seedlings. Significant increases in gst transcript amounts were recorded in aphid-stressed plants in comparison to the control seedlings. Maximal enhancement in the expression of the gst genes in aphid-attacked maize plants was found at 8 hpi (gst23) or 24 hpi (gst1, gst18 and gst24) compared to the control. Investigated Z. mays cultivars formed excessive superoxide anion radicals in response to insect treatments, and the highest overproduction of O2•- was noted 4 or 8 h after infestation, depending on the aphid treatment and maize genotype. Importantly, the Ambrozja variety could be characterized as having more profound increments in the levels of gst transcript abundance and O2•- generation in comparison with the Tasty Sweet genotype.

  4. Homogenous stands of a wetland grass harbour diverse consortia of arbuscular mycorrhizal fungi.

    Science.gov (United States)

    Wirsel, Stefan G R

    2004-05-01

    A molecular approach was applied to investigate the colonisation of arbuscular mycorrhizal fungi (AMF) on the wetland grass Phragmites australis. A PCR assay targeting the traditional families of the Glomeromycota yielded products that were used to construct libraries of 18S rDNA. Five hundred and forty six clones were typed by restriction analysis and 76 representatives were sequenced. The majority corresponded to a wide range of taxa within Glomus group A, a few belonged to the "Diversisporaceae" and none to the genera Scutellospora or Acaulospora. Among these sequences, some were very similar to those reported earlier, e.g. Glomus mosseae and G. fasciculatum, other pointed to various new taxa. Although this wetland habitat harboured just one single plant species, phylogenetic analysis exhibited 21 AMF phylotypes, which is in the same range as reported for other natural ecosystems composed of more diverse host communities. Diversity indices supported the perception that the AMF mycoflora associated with this natural grass "monoculture" is not depauperate as it had been described for grasses of crop monocultures. Soil conditions determined the mycorrhizal state of the host, since AMF were not detected at the lakeward front of the reed belt, which is permanently waterlogged.

  5. Feasibility of Invasive Grass Detection in a Desertscrub Community Using Hyperspectral Field Measurements and Landsat TM Imagery

    Directory of Open Access Journals (Sweden)

    Stuart E. Marsh

    2011-10-01

    Full Text Available Invasive species’ phenologies often contrast with those of native species, representing opportunities for detection of invasive species with multi-temporal remote sensing. Detection is especially critical for ecosystem-transforming species that facilitate changes in disturbance regimes. The African C4 grass, Pennisetum ciliare, is transforming ecosystems on three continents and a number of neotropical islands by introducing a grass-fire cycle. However, previous attempts at discriminating P. ciliare in North America using multi-spectral imagery have been unsuccessful. In this paper, we integrate field measurements of hyperspectral plant species signatures and canopy cover with multi-temporal spectral analysis to identify opportunities for detection using moderate-resolution multi-spectral imagery. By applying these results to Landsat TM imagery, we show that multi-spectral discrimination of P. ciliare in heterogeneous mixed desert scrub is feasible, but only at high abundance levels that may have limited value to land managers seeking to control invasion. Much higher discriminability is possible with hyperspectral shortwave infrared imagery because of differences in non-photosynthetic vegetation in uninvaded and invaded landscapes during dormant seasons but these spectra are unavailable in multispectral sensors. Therefore, we recommend hyperspectral imagery for distinguishing invasive grass-dominated landscapes from uninvaded desert scrub.

  6. Estimation of grass to cow's milk transfer coefficients for emergency situations

    International Nuclear Information System (INIS)

    Ujwal, P.; Karunakara, N.; Yashodhara, I.; Rao, Chetan; Kumara, Sudeep; Dileep, B.N.; Ravi, P.M.

    2012-01-01

    Several studies have been reported on soil to grass equilibrium transfer factors and grass to cow's milk transfer coefficients for 137 Cs for the environs of different nuclear power plants of both India and other parts of the world. In such studies, the activity concentration of 137 Cs is measured in grass collected from different places. Cow's milk samples are collected from nearby localities or from milk dairies and analyzed for 137 Cs and the grass to cow's milk transfer coefficient is estimated. In situation where 137 Cs is not present in measurable activity concentrations, its stable counterpart (Cs) is measured for the estimation of transfer coefficients. These transfer coefficient values are generally used in theoretical models to estimate the dose to the population for hypothetical situation of emergency. It should be noted that the transfer coefficients obtained for equilibrium conditions may not be totally applicable for emergency situation. However, studies aimed at evaluating transfer coefficients for emergency situations are sparse because nuclear power plants do not release 137 Cs during normal operating situations and therefore simulating situation of emergency release is not possible. Hence, the only method to estimate the grass to milk transfer coefficient for emergency situation is to spike the grass with small quantity of stable Cs. This paper reports the results of grass to milk transfer coefficients for stable isotope of Cesium (Cs) for emergency situation

  7. Potential of Electric Power Production from Microbial Fuel Cell (MFC in Evapotranspiration Reactor for Leachate Treatment Using Alocasia macrorrhiza Plant and Eleusine indica Grass

    Directory of Open Access Journals (Sweden)

    Zaman Badrus

    2018-01-01

    Full Text Available Microbial fuel cell is one of attractive electric power generator from nature bacterial activity. While, Evapotranspiration is one of the waste water treatment system which developed to eliminate biological weakness that utilize the natural evaporation process and bacterial activity on plant roots and plant media. This study aims to determine the potential of electrical energy from leachate treatment using evapotranspiration reactor. The study was conducted using local plant, namely Alocasia macrorrhiza and local grass, namely Eleusine Indica. The system was using horizontal MFC by placing the cathodes and anodes at different chamber (i.e. in the leachate reactor and reactor with plant media. Carbon plates was used for chatode-anodes material with size of 40 cm x 10 cm x1 cm. Electrical power production was measure by a digital multimeter for 30 days reactor operation. The result shows electric power production was fluctuated during reactor operation from all reactors. The electric power generated from each reactor was fluctuated, but from the reactor using Alocasia macrorrhiza plant reach to 70 μwatt average. From the reactor using Eleusine Indica grass was reached 60 μwatt average. Electric power production fluctuation is related to the bacterial growth pattern in the soil media and on the plant roots which undergo the adaptation process until the middle of the operational period and then in stable growth condition until the end of the reactor operation. The results indicate that the evapotranspiration reactor using Alocasia macrorrhiza plant was 60-95% higher electric power potential than using Eleusine Indica grass in short-term (30-day operation. Although, MFC system in evapotranspiration reactor system was one of potential system for renewable electric power generation.

  8. 1-14 Effect of Plant Spacing and Weeding Frequency on Weed ...

    African Journals Online (AJOL)

    user

    2College of Agriculture and Environmental Sciences, Haramaya University, ... pod, hundred seed weight, grain yield, aboveground dry biomass, and ... an infestation by weeds and the performance of crop ... frequencies affect weed management in common bean .... including broad-leaved, sedge and grass weeds (Table.

  9. Accelerated development in Johnsongrass seedlings (Sorghum halepense suppresses the growth of native grasses through size-asymmetric competition.

    Directory of Open Access Journals (Sweden)

    Susanne Schwinning

    Full Text Available Invasive plant species often dominate native species in competition, augmenting other potential advantages such as release from natural enemies. Resource pre-emption may be a particularly important mechanism for establishing dominance over competitors of the same functional type. We hypothesized that competitive success of an exotic grass against native grasses is mediated by establishing an early size advantage. We tested this prediction among four perennial C4 warm-season grasses: the exotic weed Johnsongrass (Sorghum halepense, big bluestem (Andropogon gerardii, little bluestem (Schizachyrium scoparius and switchgrass (Panicum virgatum. We predicted that a the competitive effect of Johnsongrass on target species would be proportional to their initial biomass difference, b competitive effect and response would be negatively correlated and c soil fertility would have little effect on competitive relationships. In a greenhouse, plants of the four species were grown from seed either alone or with one Johnsongrass neighbor at two fertilizer levels and periodically harvested. The first two hypotheses were supported: The seedling biomass of single plants at first harvest (50 days after seeding ranked the same way as the competitive effect of Johnsongrass on target species: Johnsongrass < big bluestem < little bluestem/switchgrass, while Johnsongrass responded more strongly to competition from Johnsongrass than from native species. At final harvest, native plants growing with Johnsongrass attained between 2-5% of their single-plant non-root biomass, while Johnsongrass growing with native species attained 89% of single-plant non-root biomass. Fertilization enhanced Johnsongrass' competitive effects on native species, but added little to the already severe competitive suppression. Accelerated early growth of Johnsongrass seedlings relative to native seedlings appeared to enable subsequent resource pre-emption. Size-asymmetric competition and resource

  10. [Infestation by triatomines in rural settlement and resettlement areas the Region of Pontal do Paranapanema, State of São Paulo].

    Science.gov (United States)

    da Silva, Rubens Antonio; Sampaio, Susy Mary Perpétuo; Koyanagui, Paulo Hiroshi; Poloni, Marisa; de Carvalho, Maria Esther; Rodrigues, Vera Lúcia Cortiço Corrêa

    2007-01-01

    This study had the aim of assessing the characteristics of triatomine infestation in human dwellings in rural settlement and resettlement areas with regard to the time when infestation began. We analyzed data relating to 48 triatomine surveys carried out in 105 settlement areas and six resettlement areas in the region of Pontal do Paranapanema between January 1984 and June 2005. Among the 16 surveys in settlement areas, seven (43.8%) had positive findings, all of them in communities established eight or more years previously. Among the 32 surveys in resettlement areas, 23 (71.9%) had positive findings, all of them in communities established for periods shorter than eight years. Since the inhabitants of such communities frequently move, the need for constant vigilance to detect any cases of infestation by vector triatomines in new settlements cannot be overemphasized.

  11. Primary sand-dune plant community and soil properties during the west-coast India monsoon

    Directory of Open Access Journals (Sweden)

    Willis A.

    2016-06-01

    Full Text Available A seven-station interrupted belt transect was established that followed a previously observed plant zonation pattern across an aggrading primary coastal dune system in the dry tropical region of west-coast India. The dominant weather pattern is monsoon from June to November, followed by hot and dry winter months when rainfall is scarce. Physical and chemical soil characteristics in each of the stations were analysed on five separate occasions, the first before the onset of monsoon, three during and the last post-monsoon. The plant community pattern was confirmed by quadrat survey. A pH gradient decreased with distance from the shoreline. Nutrient concentrations were deficient, increasing only in small amounts until the furthest station inland. At that location, there was a distinct and abrupt pedological transition zone from psammite to humic soils. There was a significant increase over previous stations in mean organic matter, ammonium nitrate and soil-water retention, although the increase in real terms was small. ANOVA showed significant variation in electrical conductivity, phosphorus, calcium, magnesium and sodium concentrations over time. There was no relationship between soil chemistry characteristics and plant community structure over the transect. Ipomoea pes-caprae and Spinifex littoreus were restricted to the foredunes, the leguminous forb Alysicarpus vaginalis and Perotis indica to the two stations furthest from the strand. Ischaemum indicum, a C4 perennial grass species adopting an ephemeral strategy was, in contrast, ubiquitous to all stations.

  12. Whiteflies interfere with indirect plant defense against spider mites in Lima bean

    Science.gov (United States)

    Zhang, Peng-Jun; Zheng, Si-Jun; van Loon, Joop J. A.; Boland, Wilhelm; David, Anja; Mumm, Roland; Dicke, Marcel

    2009-01-01

    Plants under herbivore attack are able to initiate indirect defense by synthesizing and releasing complex blends of volatiles that attract natural enemies of the herbivore. However, little is known about how plants respond to infestation by multiple herbivores, particularly if these belong to different feeding guilds. Here, we report the interference by a phloem-feeding insect, the whitefly Bemisia tabaci, with indirect plant defenses induced by spider mites (Tetranychus urticae) in Lima bean (Phaseolus lunatus) plants. Additional whitefly infestation of spider-mite infested plants resulted in a reduced attraction of predatory mites (Phytoseiulus persimilis) compared to attraction to plants infested by spider mites only. This interference is shown to result from the reduction in (E)-β-ocimene emission from plants infested by both spider mites and whiteflies. When using exogenous salicylic acid (SA) application to mimic B. tabaci infestation, we observed similar results in behavioral and chemical analyses. Phytohormone and gene-expression analyses revealed that B. tabaci infestation, as well as SA application, inhibited spider mite-induced jasmonic acid (JA) production and reduced the expression of two JA-regulated genes, one of which encodes for the P. lunatus enzyme β-ocimene synthase that catalyzes the synthesis of (E)-β-ocimene. Remarkably, B. tabaci infestation concurrently inhibited SA production induced by spider mites. We therefore conclude that in dual-infested Lima bean plants the suppression of the JA signaling pathway by whitefly feeding is not due to enhanced SA levels. PMID:19965373

  13. Differential responses of soil bacteria, fungi, archaea and protists to plant species richness and plant functional group identity.

    Science.gov (United States)

    Dassen, Sigrid; Cortois, Roeland; Martens, Henk; de Hollander, Mattias; Kowalchuk, George A; van der Putten, Wim H; De Deyn, Gerlinde B

    2017-08-01

    Plants are known to influence belowground microbial community structure along their roots, but the impacts of plant species richness and plant functional group (FG) identity on microbial communities in the bulk soil are still not well understood. Here, we used 454-pyrosequencing to analyse the soil microbial community composition in a long-term biodiversity experiment at Jena, Germany. We examined responses of bacteria, fungi, archaea, and protists to plant species richness (communities varying from 1 to 60 sown species) and plant FG identity (grasses, legumes, small herbs, tall herbs) in bulk soil. We hypothesized that plant species richness and FG identity would alter microbial community composition and have a positive impact on microbial species richness. Plant species richness had a marginal positive effect on the richness of fungi, but we observed no such effect on bacteria, archaea and protists. Plant species richness also did not have a large impact on microbial community composition. Rather, abiotic soil properties partially explained the community composition of bacteria, fungi, arbuscular mycorrhizal fungi (AMF), archaea and protists. Plant FG richness did not impact microbial community composition; however, plant FG identity was more effective. Bacterial richness was highest in legume plots and lowest in small herb plots, and AMF and archaeal community composition in legume plant communities was distinct from that in communities composed of other plant FGs. We conclude that soil microbial community composition in bulk soil is influenced more by changes in plant FG composition and abiotic soil properties, than by changes in plant species richness per se. © 2017 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.

  14. Overexpression of Nictaba-Like Lectin Genes from Glycine max Confers Tolerance towards Pseudomonas syringae Infection, Aphid Infestation and Salt Stress in Transgenic Arabidopsis Plants

    Directory of Open Access Journals (Sweden)

    Sofie Van Holle

    2016-10-01

    Full Text Available Plants have evolved a sophisticated immune system that allows them to recognize invading pathogens by specialized receptors. Carbohydrate-binding proteins or lectins are part of this immune system and especially the lectins that reside in the nucleocytoplasmic compartment are known to be implicated in biotic and abiotic stress responses. The class of Nictaba-like lectins (NLL groups all proteins with homology to the tobacco (Nicotiana tabacum lectin, known as a stress-inducible lectin. Here we focus on two Nictaba homologs from soybean (Glycine max, referred to as GmNLL1 and GmNLL2. Confocal laser scanning microscopy of fusion constructs with the green fluorescent protein either transiently expressed in Nicotiana benthamiana leaves or stably transformed in tobacco BY-2 suspension cells revealed a nucleocytoplasmic localization for the GmNLLs under study. RT-qPCR analysis of the transcript levels for the Nictaba-like lectins in soybean demonstrated that the genes are expressed in several tissues throughout the development of the plant. Furthermore, it was shown that salt treatment, Phytophthora sojae infection and Aphis glycines infestation trigger the expression of particular NLL genes. Stress experiments with Arabidopsis lines overexpressing the NLLs from soybean yielded an enhanced tolerance of the plant towards bacterial infection (Pseudomonas syringae, insect infestation (Myzus persicae and salinity. Our data showed a better performance of the transgenic lines compared to wild type plants, indicating that the NLLs from soybean are implicated in the stress response. These data can help to further elucidate the physiological importance of the Nictaba-like lectins from soybean, which can ultimately lead to the design of crop plants with a better tolerance to changing environmental conditions.

  15. Acetogenic and Sulfate-Reducing Bacteria Inhabiting the Rhizoplane and Deep Cortex Cells of the Sea Grass Halodule wrightii†

    Science.gov (United States)

    Küsel, Kirsten; Pinkart, Holly C.; Drake, Harold L.; Devereux, Richard

    1999-01-01

    Recent declines in sea grass distribution underscore the importance of understanding microbial community structure-function relationships in sea grass rhizospheres that might affect the viability of these plants. Phospholipid fatty acid analyses showed that sulfate-reducing bacteria and clostridia were enriched in sediments colonized by the sea grasses Halodule wrightii and Thalassia testudinum compared to an adjacent unvegetated sediment. Most-probable-number analyses found that in contrast to butyrate-producing clostridia, acetogens and acetate-utilizing sulfate reducers were enriched by an order of magnitude in rhizosphere sediments. Although sea grass roots are oxygenated in the daytime, colorimetric root incubation studies demonstrated that acetogenic O-demethylation and sulfidogenic iron precipitation activities were tightly associated with washed, sediment-free H. wrightii roots. This suggests that the associated anaerobes are able to tolerate exposure to oxygen. To localize and quantify the anaerobic microbial colonization, root thin sections were hybridized with newly developed 33P-labeled probes that targeted (i) low-G+C-content gram-positive bacteria, (ii) cluster I species of clostridia, (iii) species of Acetobacterium, and (iv) species of Desulfovibrio. Microautoradiography revealed intercellular colonization of the roots by Acetobacterium and Desulfovibrio species. Acetogenic bacteria occurred mostly in the rhizoplane and outermost cortex cell layers, and high numbers of sulfate reducers were detected on all epidermal cells and inward, colonizing some 60% of the deepest cortex cells. Approximately 30% of epidermal cells were colonized by bacteria that hybridized with an archaeal probe, strongly suggesting the presence of methanogens. Obligate anaerobes within the roots might contribute to the vitality of sea grasses and other aquatic plants and to the biogeochemistry of the surrounding sediment. PMID:10543830

  16. Long-term hydrologic effects on marsh plant community structure in the southern Everglades

    Science.gov (United States)

    Busch, David E.; Loftus, W.F.; Bass, O.L.

    1998-01-01

    Although large-scale transformation of Everglades landscapes has occurred during the past century, the patterns of association among hydrologic factors and southern Everglades freshwater marsh vegetation have not been well-defined. We used a 10-year data base on the aquatic biota of Shark Slough to classify vegetation and describe plant community change in intermediate- to long-hydroperiod Everglades marshes. Study area marsh vegetation was quantitatively grouped into associations dominated by 1) Cladium jamaicense, 2) a group of emergents including Eleocharis cellulosa, Sagittaria lancifolia, and Rhyncospora tracyi, 3) taxa associated with algal mats (Utricularia spp. and Bacopa caroliniana), and 4) the grasses Panicum hemitomon and Paspalidium geminatum. During the decade evaluated, the range of water depths that characterized our study sites approached both extremes depicted in the 40-year hydrologic record for the region. Water depths were near the long-term average during the mid-1980s, declined sharply during a late 1980s drought, and underwent a prolonged increase from 1991 through 1995. Overall macrophyte cover varied inversely with water depth, while the response of periphyton was more complex. An ordination analysis, based on plant species abundance, revealed that study area vegetation structure was associated with hydrologic patterns. Marsh plant community structure showed evidence of cyclic interannual variation corresponding to hydrologic change over the decade evaluated. Lower water depths, the occurrence of marl substrates, and high periphyton cover were correlated. These factors contributed to reduced macrophyte cover in portions of the study area from which water had been diverted.

  17. Utilization of Toxic Activities of Some Plant Oils for Increasing The Protection of Induced Tolerance Percentage With Gamma Rays to The Infestation by Sitophilus oryzae (L.)and Rhyzopertha dominica (F.) in two Wheat Irradiated Populations

    International Nuclear Information System (INIS)

    Darwish, A.A.A.; EI-Lakwah, F.A.M.; Ragab, A.I.; Boshra, S.A.; Mehany, A.L.

    2014-01-01

    In this study, the grains of PG 400 were treated with different concentrations of essential oils for Clove flowering buds, Dill seeds, Pinus syluestris and Lemon grass. However grains of PS 400 were only treated with different concentrations of Annis seeds. The obtained result showed that adults mortality percentage increased by increasing concentration and exposure time of the tested insects. After 14 days from the initial treatment, mortalities were between 83.3-100, 86.7-100, 82.3-100, 71-100 and 74.3-100 % at all tested concentrations with Clove flowering buds, Dill seeds, Pinus syluestris, Lemon grass and Annis seeds, respectively. However ,reduction in the progeny of S. oryzae was between 57.23-100,57.25-100,59.55-100,56.85-100 and 52.51-100% for Clove flowering buds, Dill seeds, Pinus syluestris, Lemon grass and Annis seeds, respectively However for R. dominica ,the adults mortality after 14 days of initial treatment ranged from 36.7-100, 60-100, 82.3-100, 55.7-100 and 61-100 % the various concentrations of Clove flowering buds, Dill seeds, Pinus syluestris, Lemion grass and Annis, respectively. While their ,reduction in the progeny ranged from 42,24-100,53.16-100,48.38-100,63.89-100 and 55.18-100% at various concentrations of Clove flowering buds, Dill seeds, Pinus syluestris, Lemon grass and Annis, respectively. The obtained results showed that high concentration of different essential oils caused about 100% mortality and progeny reduction ,but the low concentration caused about 70% mortality and progeny reduction .This study suggesting that the low oil concentration could be used to increase the protection for irradiated tolerant populations PG 400 and PS 400 from the infestation with S. oryzae and R. dominica as a complementary tool for pest control .

  18. A review on moringa tree and vetiver grass - Potential biorefinery feedstocks.

    Science.gov (United States)

    Raman, Jegannathan Kenthorai; Alves, Catarina M; Gnansounou, Edgard

    2018-02-01

    Plants and derivatives have been explored for unlimited purposes by mankind, from crop cultivation for providing food and animal feed, to the use for cosmetics, therapeutics and energy. Moringa tree and vetiver grass features, capabilities and applications were explored through a literature review. The suitability of these plants for the bioenergy industry products is evidenced, namely for bioethanol, biogas and biodiesel, given the lignocellulosic biomass content of these plants and characteristics of moringa seed oil. In addition, moringa leaves and pods are an important source for food and animal feed industries due to their high nutrient value. Thus, the co-cultivation of moringa and vetiver could provide energy and food security, and contribute to more sustainable agricultural practices and for the development of rural areas. Policymakers, institutions and scientific community must engage to promote the cultivation of multipurpose crops to cope with energy and food industries competition for biomass. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Expression Profiling of Selected Glutathione Transferase Genes in Zea mays (L.) Seedlings Infested with Cereal Aphids

    Science.gov (United States)

    Sytykiewicz, Hubert; Chrzanowski, Grzegorz; Czerniewicz, Paweł; Sprawka, Iwona; Łukasik, Iwona; Goławska, Sylwia; Sempruch, Cezary

    2014-01-01

    The purpose of this report was to evaluate the expression patterns of selected glutathione transferase genes (gst1, gst18, gst23 and gst24) in the tissues of two maize (Zea mays L.) varieties (relatively resistant Ambrozja and susceptible Tasty Sweet) that were colonized with oligophagous bird cherry-oat aphid (Rhopalosiphum padi L.) or monophagous grain aphid (Sitobion avenae L.). Simultaneously, insect-triggered generation of superoxide anion radicals (O2 •−) in infested Z. mays plants was monitored. Quantified parameters were measured at 1, 2, 4, 8, 24, 48 and 72 h post-initial aphid infestation (hpi) in relation to the non-infested control seedlings. Significant increases in gst transcript amounts were recorded in aphid-stressed plants in comparison to the control seedlings. Maximal enhancement in the expression of the gst genes in aphid-attacked maize plants was found at 8 hpi (gst23) or 24 hpi (gst1, gst18 and gst24) compared to the control. Investigated Z. mays cultivars formed excessive superoxide anion radicals in response to insect treatments, and the highest overproduction of O2 •− was noted 4 or 8 h after infestation, depending on the aphid treatment and maize genotype. Importantly, the Ambrozja variety could be characterized as having more profound increments in the levels of gst transcript abundance and O2 •− generation in comparison with the Tasty Sweet genotype. PMID:25365518

  20. Nutritional composition and in vitro digestibility of grass and legume winter (cover) crops.

    Science.gov (United States)

    Brown, A N; Ferreira, G; Teets, C L; Thomason, W E; Teutsch, C D

    2018-03-01

    In dairy farming systems, growing winter crops for forage is frequently limited to annual grasses grown in monoculture. The objectives of this study were to determine how cropping grasses alone or in mixtures with legumes affects the yield, nutritional composition, and in vitro digestibility of fresh and ensiled winter crops and the yield, nutritional composition, and in vitro digestibility of the subsequent summer crops. Experimental plots were planted with 15 different winter crops at 3 locations in Virginia. At each site, 4 plots of each treatment were planted in a randomized complete block design. The 15 treatments included 5 winter annual grasses [barley (BA), ryegrass (RG), rye (RY), triticale (TR), and wheat (WT)] in monoculture [i.e., no legumes (NO)] or with 1 of 2 winter annual legumes [crimson clover (CC) and hairy vetch (HV)]. After harvesting the winter crops, corn and forage sorghum were planted within the same plots perpendicular to the winter crop plantings. The nutritional composition and the in vitro digestibility of winter and summer crops were determined for fresh and ensiled samples. Growing grasses in mixtures with CC increased forage dry matter (DM) yield (2.84 Mg/ha), but the yield of mixtures with HV (2.47 Mg/ha) was similar to that of grasses grown in monoculture (2.40 Mg/ha). Growing grasses in mixtures with legumes increased the crude protein concentration of the fresh forage from 13.0% to 15.5% for CC and to 17.3% for HV. For neutral detergent fiber (NDF) concentrations, the interaction between grasses and legumes was significant for both fresh and ensiled forages. Growing BA, RY, and TR in mixtures with legumes decreased NDF concentrations, whereas growing RG and WT with legumes did not affect the NDF concentrations of either the fresh or the ensiled forages. Growing grasses in mixtures with legumes decreased the concentration of sugars of fresh forages relative to grasses grown in monoculture. Primarily, this decrease can be

  1. Immunochemical Analysis of Paxilline and Ergot Alkaloid Mycotoxins in Grass Seeds and Plants.

    Science.gov (United States)

    Bauer, Julia I; Gross, Madeleine; Cramer, Benedikt; Humpf, Hans-Ulrich; Hamscher, Gerd; Usleber, Ewald

    2018-01-10

    Limited availability of toxin standards for lolitrem B and ergovaline impedes routine control of grasses for endophyte toxins. This study aimed at assessing the applicability of an enzyme immunoassay (EIA) for the indole-diterpene mycotoxin paxilline, in combination with a generic EIA for ergot alkaloids, as alternative parameters for screening purposes. Analysis of grass seeds and model pastures of four different grass species showed that both EIAs yielded highly positive results for paxilline and ergot alkaloids in perennial ryegrass seeds. Furthermore, evidence for natural occurrence of paxilline in grass in Germany was obtained. High performance liquid chromatography-tandem mass spectrometry analysis qualitatively confirmed the paxilline EIA results but showed that paxilline analogues 1'-O-acetylpaxilline and 13-desoxypaxilline were the predominant compounds in seeds and grass. In the absence of easily accessible reference standards for specific analysis of some major endophyte toxins, analysis of paxilline and ergot alkaloids by EIA may be suitable substitute parameters. The major advantage of this approach is its ease of use and speed, providing an analytical tool which could enhance routine screening for endophyte toxins in pasture.

  2. Hazardous impact and translocation of vanadium (V) species from soil to different vegetables and grasses grown in the vicinity of thermal power plant

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Sumaira, E-mail: skhanzai@gmail.com [Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080 (Pakistan); Kazi, Tasneem Gul, E-mail: tgkazi@yahoo.com [Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080 (Pakistan); Kolachi, Nida Fatima, E-mail: nidafatima6@gmail.com [Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080 (Pakistan); Baig, Jameel Ahmed, E-mail: jab_mughal@yahoo.com [Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080 (Pakistan); Afridi, Hassan Imran, E-mail: hassanimranafridi@yahoo.com [Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080 (Pakistan); Shah, Abdul Qadir, E-mail: aqshah07@yahoo.com [Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080 (Pakistan); Kumar, Sham; Shah, Faheem [Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080 (Pakistan)

    2011-06-15

    The distribution of vanadium (V) species in soil (test soil), vegetables and grasses, collected from the vicinity of a thermal power plant has been studied. For comparison purpose soil (control soil), same vegetable and grass samples were collected from agricultural land devoid of any industrial area. A simple and efficient ultrasonic assisted extraction method has been developed for the extraction of V{sup 5+} species from soil, vegetable and grass samples using Na{sub 2}CO{sub 3} in the range of 0.1-0.5 mol/L. For comparison purpose same sub samples were also extracted by conventional heating method. The total and V species were determined by electrothermal atomic absorption spectrometry using different modifiers. The validity of V{sup 5+} and V{sup 4+} determination had been confirmed by the spike recovery and total amount of V by the analysis of CRM 1570 (spinach leave) and sub samples of agricultural soil. The concentration of total V was found in the range of 90-215 and 11.4-42.3 {mu}g/g in test and control soil samples, respectively. The contents of V{sup 5+} and total V in vegetables and grasses grown around the thermal power plant were found in the range of 2.9-5.25 and 8.74-14.9 {mu}g/g, respectively, which were significantly higher than those values obtained from vegetables and fodders grown in non exposed agricultural site (P < 0.01). Statistical evaluations indicate that the sum of concentrations of V{sup 5+} and V{sup 4+} species was not significantly different from total concentration of V in same sub samples of vegetable, grass and soil of both origins, at 95% level of confidence.

  3. Current Models for Transcriptional Regulation of Secondary Cell Wall Biosynthesis in Grasses

    Directory of Open Access Journals (Sweden)

    Xiaolan Rao

    2018-04-01

    Full Text Available Secondary cell walls mediate many crucial biological processes in plants including mechanical support, water and nutrient transport and stress management. They also provide an abundant resource of renewable feed, fiber, and fuel. The grass family contains the most important food, forage, and biofuel crops. Understanding the regulatory mechanism of secondary wall formation in grasses is necessary for exploiting these plants for agriculture and industry. Previous research has established a detailed model of the secondary wall regulatory network in the dicot model species Arabidopsis thaliana. Grasses, branching off from the dicot ancestor 140–150 million years ago, display distinct cell wall morphology and composition, suggesting potential for a different secondary wall regulation program from that established for dicots. Recently, combined application of molecular, genetic and bioinformatics approaches have revealed more transcription factors involved in secondary cell wall biosynthesis in grasses. Compared with the dicots, grasses exhibit a relatively conserved but nevertheless divergent transcriptional regulatory program to activate their secondary cell wall development and to coordinate secondary wall biosynthesis with other physiological processes.

  4. Community-level plant-soil feedbacks explain landscape distribution of native and non-native plants.

    Science.gov (United States)

    Kulmatiski, Andrew

    2018-02-01

    Plant-soil feedbacks (PSFs) have gained attention for their potential role in explaining plant growth and invasion. While promising, most PSF research has measured plant monoculture growth on different soils in short-term, greenhouse experiments. Here, five soil types were conditioned by growing one native species, three non-native species, or a mixed plant community in different plots in a common-garden experiment. After 4 years, plants were removed and one native and one non-native plant community were planted into replicate plots of each soil type. After three additional years, the percentage cover of each of the three target species in each community was measured. These data were used to parameterize a plant community growth model. Model predictions were compared to native and non-native abundance on the landscape. Native community cover was lowest on soil conditioned by the dominant non-native, Centaurea diffusa , and non-native community cover was lowest on soil cultivated by the dominant native, Pseudoroegneria spicata . Consistent with plant growth on the landscape, the plant growth model predicted that the positive PSFs observed in the common-garden experiment would result in two distinct communities on the landscape: a native plant community on native soils and a non-native plant community on non-native soils. In contrast, when PSF effects were removed, the model predicted that non-native plants would dominate all soils, which was not consistent with plant growth on the landscape. Results provide an example where PSF effects were large enough to change the rank-order abundance of native and non-native plant communities and to explain plant distributions on the landscape. The positive PSFs that contributed to this effect reflected the ability of the two dominant plant species to suppress each other's growth. Results suggest that plant dominance, at least in this system, reflects the ability of a species to suppress the growth of dominant competitors

  5. KINSHIP ANALYSIS OF GRASS JELLY IN REGENCY OF GIANYAR, TABANAN AND BADUNG BASED ON MORPHOLOGICAL AND ANATOMICAL CHARACTERISTIC

    Directory of Open Access Journals (Sweden)

    Eka Budi Mursa fitri

    2016-12-01

    Full Text Available Grass jelly is one of the plants that has considerable potential as medicine and drinks. This study was conducted to determine how kinship plant species Grass jelly from three districts. The Exploration of Grass jelly plants conducted in Gianyar, Tabanan and Badung, Bali province. Making preparations in the Structures Laboratory of Plant Development (SPT Faculty Udayana University and the Center of Veterinary (BBVet. This research was carried out from September 2015-January 2016. This research method using the technique of embedding and fresh slices, FAA fixative (formaldehyde: glacial acetic acid: alcohol 70% = 1: 1: 9, 1% safranin staining in 70% alcohol. For the analysis of kinship qualitative and quantitative data were suspended leaf anatomical characters to create table Taxonomy Operation Unit (OTU. The results are used OTU table into mini-tab program version 14.The result showed that four species of grass jelly plants are Cyclea barbata, Stephania japonica, Stephania capitata and Cocculus orbiculatus. Leaf form is like shields and ellipse. Kinship four types of plant grass jelly from three districts are very much based on morphological and anatomical characters (level 15.64% similarity.

  6. Ancient ecology of 15-million-year-old browsing mammals within C3 plant communities from Panama.

    Science.gov (United States)

    MacFadden, Bruce J; Higgins, Pennilyn

    2004-06-01

    Middle Miocene mammals are known from approximately 15 million-year-old sediments exposed along the Panama Canal of Central America, a region that otherwise has an exceedingly poor terrestrial fossil record. These land mammals, which represent a part of the ancient terrestrial herbivore community, include an oreodont Merycochoerus matthewi, small camel-like protoceratid artiodactyl Paratoceras wardi, two horses Anchitherium clarencei and Archaeohippus sp., and two rhinos Menoceras barbouri and Floridaceras whitei. Bulk and serial carbon and oxygen isotope analyses of the tooth enamel carbonate allow reconstruction of the ancient climate and ecology of these fossil mammals. Ancient Panama had an equable climate with seasonal temperature and rainfall fluctuations less than those seen today. The middle Miocene terrestrial community consisted predominantly, or exclusively, of C3 plants, i.e., there is no evidence for C4 grasses. Statistically different mean carbon isotope values for the mammalian herbivores indicate niche partitioning of the C3 plant food resources. The range of individual carbon isotope analyses, i.e., delta13C from -15.9 to -10.1 per thousand, indicates herbivores feeding on diverse plants from different habitats with extrapolated delta13C values of -29.9 to -24.2 per thousand, possibly ranging from dense forest to more open country woodland. The ecological niches of individual mammalian herbivore species were differentiated either by diet or body size.

  7. Investigations on the biology, epidemiology, pathology, and control of Tunga penetrans in Brazil: VII. The importance of animal reservoirs for human infestation.

    Science.gov (United States)

    Pilger, Daniel; Schwalfenberg, Stefan; Heukelbach, Jörg; Witt, Lars; Mehlhorn, Heinz; Mencke, Norbert; Khakban, Adak; Feldmeier, Hermann

    2008-04-01

    In Brazil tungiasis is endemic in many resource-poor communities, where various domestic and sylvatic animals act as reservoirs for this zoonosis. To determine the role of animal reservoirs in human tungiasis, a cross-sectional study was performed in a traditional fishing community in northeast Brazil. The human and the animal populations were examined for the presence of embedded sand fleas and the prevalence and the intensity of infestation were correlated. The overall prevalence of tungiasis in humans was 39% (95% CI 34-43%). Of six mammal species present in the village, only cats and dogs were found infested. The prevalence in these animals was 59% (95% CI 50-68%). In households, where infested pet animals were present, a higher percentage of household members had tungiasis (42% [95% CI 30-53%] versus 27% [20-33%], p=0.02), and the intensity of the infestation was higher (six lesions versus two lesions, p=0.01). The intensity of infestation in animals correlated with the intensity of infestation in humans (rho=0.3, p=0.02). Living in a household with an infested dog or cat led to a 1.6-fold (95% CI 1.1-2.3, p=0.015) increase in the odds for the presence of tungiasis in household members in the bivariate analysis and remained a significant risk factor in the multivariate regression analysis. The study shows that in this impoverished community tungiasis is highly prevalent in humans and domestic animals. In particular, it underlines the importance to include animals in control operation aiming at the reduction of disease occurrence in the human population.

  8. Plant community resistance to invasion by Bromus species: The roles of community attributes, Bromus interactions with plant communities, and Bromus traits [Chapter 10

    Science.gov (United States)

    Jeanne C. Chambers; Matthew J. Germino; Jayne Belnap; Cynthia S. Brown; Eugene W. Schupp; Samuel B. St. Clair

    2016-01-01

    The factors that determine plant community resistance to exotic annual Bromus species (Bromus hereafter) are diverse and context specific. They are influenced by the environmental characteristics and attributes of the community, the traits of Bromus species, and the direct and indirect interactions of Bromus with the plant community. Environmental factors, in...

  9. The effects of energy grass plantations on biodiversity. 2nd annual report

    Energy Technology Data Exchange (ETDEWEB)

    Semere, T.; Slater, F.

    2004-07-01

    This report, which covers the year 2003 growing season, is the second annual report about a project to investigate the ecological impact on biodiversity of plantations of biomass grass crops grown in Hertfordshire in the UK. Wildlife monitoring was carried out at five field sites growing the perennial rhizomatous grass crops Miscanthus, reed canary grass and switch grass. The report covers the findings from wildlife surveys for the 2003 season, the final results from the invertebrate identification from the 2002 season, data entry from the 2002 and 2003 seasons, and the continued invertebrate identification during the 2003 season. Butterfly assessments and an evaluation of crop characteristics such as plant height, plant/stem density and biomass yield were also performed. Results are presented with respect to crop field characteristics, pests and diseases, ground flora, ground beetles, birds, small mammals, butterflies and epigeal invertebrates. Plans for the next growing season are outlined.

  10. Grass survey of the Itremo Massif records endemic central highland ...

    African Journals Online (AJOL)

    Grasses are members of the plant family Poaceae, and are primar- ily known for their ... Madagascar Conservation & Development is the journal of. Indian Ocean .... cording to the classification by Kellogg (2015). With 64 ..... Flowering plants.

  11. Evaluating poverty grass (Danthonia spicata) for golf courses in the Midwest

    Science.gov (United States)

    Nadia E. Navarrete-Tindall; J.W. Van Sambeek

    2010-01-01

    Poverty grass (Danthonia spicata (L.) P. beauv. Ex Roem & Schult. ) results presented here are part of ongoing studies to evaluate its adaptation for golf courses as part of low maintenance natural communities at Lincoln University of Missouri. Because its natural adaptation to shade and poor soils, poverty grass could be established in golf...

  12. No positive feedback between fire and a nonnative perennial grass

    Science.gov (United States)

    Erika L. Geiger; Guy R. McPherson

    2005-01-01

    Semi-desert grasslands flank the “Sky Island” mountains in southern Arizona and Northern Mexico. Many of these grasslands are dominated by nonnative grasses, which potentially alter native biotic communities. One specific concern is the potential for a predicted feedback between nonnative grasses and fire. In a large-scale experiment in southern Arizona we investigated...

  13. Floristic and vegetation structure of a grassland plant community on shallow basalt in southern Brazil

    Directory of Open Access Journals (Sweden)

    Marcelo Fett Pinto

    2013-03-01

    Full Text Available Few studies have adequately described the floristic and structural features of natural grasslands associated with shallow basalt soils in southern Brazil. This study was carried out on natural grazing land used for livestock production in the municipality of Santana do Livramento, in the Campanha region of the state of Rio Grande do Sul, Brazil. The aim of the study was to describe the floristic and structural diversity of the area. The floristic list obtained comprises 229 plant taxa from 40 botanical families, with a predominance of the families Poaceae (62, Asteraceae (28, Fabaceae (16 and Cyperaceae (12. The estimated diversity and evenness in the community were 3.00 and 0.874, respectively. Bare soil and rock outcrops accounted for 19.3% of the area, resulting in limited forage availability. Multivariate analysis revealed two well-defined groups among the sampling units. One group showed a high degree of internal aggregation, associated with deep soils, and was characterized by the presence of tussocks, whereas the other was less aggregate and was characterized by prostrate species growing on shallow soil. Ordination analysis indicated a gradient of moisture and of soil depth in the study area, resulting in different vegetation patterns. These patterns were analogous to the vegetation physiognomies described for Uruguayan grasslands. Overall, the grassland community studied is similar to others found throughout southern Brazil, although it harbors more winter forage species. In addition, the rare grass Paspalum indecorum Mez is locally dominant in some patches, behaving similarly to P. notatum Fl., a widespread grass that dominates extensive grassland areas in southern Brazil.

  14. Influence of household rat infestation on leptospira transmission in the urban slum environment.

    Science.gov (United States)

    Costa, Federico; Ribeiro, Guilherme S; Felzemburgh, Ridalva D M; Santos, Norlan; Reis, Renato Barbosa; Santos, Andreia C; Fraga, Deborah Bittencourt Mothe; Araujo, Wildo N; Santana, Carlos; Childs, James E; Reis, Mitermayer G; Ko, Albert I

    2014-12-01

    The Norway rat (Rattus norvegicus) is the principal reservoir for leptospirosis in many urban settings. Few studies have identified markers for rat infestation in slum environments while none have evaluated the association between household rat infestation and Leptospira infection in humans or the use of infestation markers as a predictive model to stratify risk for leptospirosis. We enrolled a cohort of 2,003 urban slum residents from Salvador, Brazil in 2004, and followed the cohort during four annual serosurveys to identify serologic evidence for Leptospira infection. In 2007, we performed rodent infestation and environmental surveys of 80 case households, in which resided at least one individual with Leptospira infection, and 109 control households. In the case-control study, signs of rodent infestation were identified in 78% and 42% of the households, respectively. Regression modeling identified the presence of R. norvegicus feces (OR, 4.95; 95% CI, 2.13-11.47), rodent burrows (2.80; 1.06-7.36), access to water (2.79; 1.28-6.09), and un-plastered walls (2.71; 1.21-6.04) as independent risk factors associated with Leptospira infection in a household. We developed a predictive model for infection, based on assigning scores to each of the rodent infestation risk factors. Receiver operating characteristic curve analysis found that the prediction score produced a good/excellent fit based on an area under the curve of 0.78 (0.71-0.84). Our study found that a high proportion of slum households were infested with R. norvegicus and that rat infestation was significantly associated with the risk of Leptospira infection, indicating that high level transmission occurs among slum households. We developed an easily applicable prediction score based on rat infestation markers, which identified households with highest infection risk. The use of the prediction score in community-based screening may therefore be an effective risk stratification strategy for targeting control

  15. New Approaches to Ecologically Based, Designed Urban Plant Communities in Britain: Do These Have Any Relevance in the United States?

    Directory of Open Access Journals (Sweden)

    James Hitchmough

    2008-01-01

    Full Text Available This paper discusses the reasoning behind the development of a new approach to designed urban planting with grasses, forbs and geophytes that has been undertaken at the University of Sheffield over the past 15 years. The resulting plant communities are the result of applying contemporary ecological science to planting design, to maximize their sustainability while at the same time meeting the aesthetic and functional needs of the users of urban public landscapes. The geographical origin of the plants used in these communities varies according to the physical, ecological, and cultural context in which they are to be used. In some cases species are entirely native, in others entirely non-native. In many cases, a mixture of both is used. In discussing the rationale for the development of this approach in the United Kingdom context, the paper raises important issues about increasing the capacity of urban landscapes to support a greater diversity of native animals and to engage ordinary citizens in these activities at a time of dramatic climatic and social change. The approach we outline addresses some of these issues in the United Kingdom context, but it is uncertain whether there is merit in these approaches in the context of American towns and cities.

  16. Changes in semi-arid plant species associations along a livestock grazing gradient.

    Directory of Open Access Journals (Sweden)

    Hugo Saiz

    Full Text Available In semi-arid ecosystems, vegetation is heterogeneously distributed, with plant species often associating in patches. These associations between species are not constant, but depend on the particular response of each species to environmental factors. Here, we investigated how plant species associations change in response to livestock grazing in a semi-arid ecosystem, Cabo de Gata-Níjar Natural Park in South East Spain. We established linear point-intercept transects at four sites with different grazing intensity, and recorded all species at each point. We investigated plant associations by comparing the number of times that each pair of species occurred at the same spatial point (co-occurrences, with the expected number of times based on species abundances. We also assessed associations for each shrub and grass species by considering all their pairs of associations and for the whole plant community by considering all pairs of associations on each site. At all sites, the plant community had a negative pattern of association, with fewer co-occurrences than expected. Negative association in the plant community increased at maximum grazing intensity. Most species associated as expected, particularly grass species, and positive associations were most important at intermediate grazing intensities. No species changed its type of association along the grazing gradient. We conclude that in the present plant community, grazing-resistant species compete among themselves and segregate in space. Some shrub species act as refuges for grazing-sensitive species that benefit from being spatially associated with shrub species, particularly at intermediate grazing intensities where positive associations were highest. At high grazing intensity, these shrubs can no longer persist and positive associations decrease due to the disappearance of refuges. Spatial associations between plant species and their response to grazing help identify the factors that organize

  17. Grass-roots approach: developing qualified nuclear personnel

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    Nuclear power plants experiencing personnel recruitment problems are trying a grass-roots approach to increase the manpower pool. The Philadelphia Electric Co. and the Toledo Edison Co. are working with local educational institutions to offer nuclear-technology training specific to the needs of nuclear plants. The utilities' investment covers much of the cost of instruction as well as continued training for employees

  18. Do Aphids Alter Leaf Surface Temperature Patterns During Early Infestation?

    Directory of Open Access Journals (Sweden)

    Thomas Cahon

    2018-03-01

    Full Text Available Arthropods at the surface of plants live in particular microclimatic conditions that can differ from atmospheric conditions. The temperature of plant leaves can deviate from air temperature, and leaf temperature influences the eco-physiology of small insects. The activity of insects feeding on leaf tissues, may, however, induce changes in leaf surface temperatures, but this effect was only rarely demonstrated. Using thermography analysis of leaf surfaces under controlled environmental conditions, we quantified the impact of presence of apple green aphids on the temperature distribution of apple leaves during early infestation. Aphids induced a slight change in leaf surface temperature patterns after only three days of infestation, mostly due to the effect of aphids on the maximal temperature that can be found at the leaf surface. Aphids may induce stomatal closure, leading to a lower transpiration rate. This effect was local since aphids modified the configuration of the temperature distribution over leaf surfaces. Aphids were positioned at temperatures near the maximal leaf surface temperatures, thus potentially experiencing the thermal changes. The feedback effect of feeding activity by insects on their host plant can be important and should be quantified to better predict the response of phytophagous insects to environmental changes.

  19. Recovery of 15N-urea in soil-plant system of tanzania grass pasture

    International Nuclear Information System (INIS)

    Martha Junior, Geraldo Bueno; Vilela, Lourival; Corsi, Moacyr; Trivelin, Paulo Cesar Ocheuze

    2009-01-01

    The economic attractiveness and negative environmental impact of nitrogen (N) fertilization in pastures depend on the N use efficiency in the soil-plant system. However, the recovery of urea- 15 N by Panicum maximum cv. Tanzania pastures, one of the most widely used forage species in intensified pastoral systems, is still unknown. This experiment was conducted in a randomized complete block design with four treatments (0, 40, 80 and 120 kg ha-1 of N-urea) and three replications, to determine the recovery of 15 N urea by Tanzania grass. Forage production, total N content and N yield were not affected by fertilization (p > 0.05), reflecting the high losses of applied N under the experimental conditions. The recovery of 15 N urea (% of applied N) in forage and roots was not affected by fertilization levels (p > 0.05), but decreased exponentially in the soil and soil-plant system (p 15 N (kg ha -1 ) in forage and roots (15 to 30 cm) increased with increasing urea doses (p < 0.05). (author)

  20. Exploring the invasion of rangelands by Acacia mearnsii (black ...

    African Journals Online (AJOL)

    Reducing A. mearnsii canopy could promote grass production while encouraging carbon sequestration. Given the high AGB and clearing costs, it may be prudent to adopt the 'novel ecosystems' approach in managing infested landscapes. Keywords: grassland, invasive plants, landscape ecology, rangeland condition ...

  1. The Evaluation of Alkali Grass (Puccinellia ciliata Bor Populations in Aydin Province of Turkey

    Directory of Open Access Journals (Sweden)

    İlkay Yavaş

    2017-08-01

    Full Text Available Alkali grass grows in waterlogged, saline and alaline soils. The main problem in these soils is minerals at toxic level. The toxic ions are chloride, sodium and boron. A number of techniques have been investigated for removing toxic metals from the soil. Today, the cost-effective and environmentally technique is phytoremediation, using hyperaccumulator plants. Alkali grass (Puccinellia ciliata Bor is suggested as a hyperaccumulator plant by the combination of more favourable characteristics with salt and waterlogging tolerance, high biomass value and convincing nutritive value for adverse environmental conditions. For this reason, we collected alkali grass and soil samples from five different locations in Aydın-Muğla highway, Turanlar and Sınırteke villages in Germencik-Aydın. In the soil analysis, we observed that K accumulation varies between root, shoot and panicle at least whereas Na and B shows more variation on whole plant portions among locations. Intense aerenchyma development on the root tips of Puccinellia plant was observed and it is determined as radial lysogenic aerenchyma formation. Average plant height and dry matter values were between 47.2-74.4 cm and 15.61-80.85 g/plant according to locations. The highest plant height value was obtained from the first location whereas the highest dry matter yield was detected in the fifth location. In conclusion, plants from fifth location can be regarded as fodder plants in these areas. Our results indicated that alkali grass can be effective for phytoextraction of sodium and boron from contaminated sites.

  2. Is Reduction in Yield Potential of Some Brassicaceous Species Due to Aphid Infestation Associated with the Changes in Stomatal Factors of Photosynthesis

    International Nuclear Information System (INIS)

    Razaq, M.; Farooq, M.; Abbas, G.; Rehman, H. M.; Iqbal, M.

    2016-01-01

    Aphids cause heavy yield losses to Brassicaceous species by affecting various physiological and biochemical processes including photosynthesis. In the present study, seasonal activity of aphid population and its impact on some brassicaceous species was assessed. Three brassicaceous species (Brassica campestris, Brassica carinata, Eruca sativa) were grown in field following standard agricultural practices. Plants of control plots retained aphid free by insecticide spray, whereas treatment plots were freely allowed for aphid infestation. There was also intermediate treatment of partial aphid infestation where insecticidal spray was applied two times. Peak populations of both aphid species were observed in the 2nd week of March during which plant photosynthetic attributes were recorded. At the time of maturity, yield attributes were also recorded. From the results, it is obvious that application of insecticide significantly reduced the aphid populations on the three brassicaceous species and enhanced the crop yield. Yield losses due to aphid infestation were maximal in Brassica campestris followed by B. carinata whereas it was minimal in Eruca sativa. Yield losses in Brassica campestris and B. carinata were due to reduction in number of pods per plant, number of seeds per pod and size of seeds, whereas yield losses due to aphid infestation in Eruca sativa was mainly attributed to reduction in number of pods per plant. Although insecticidal spray reduced the aphid population and increased growth and productivity of all brassicaceous species, it did not change photosynthetic capacity of all plants except in Eruca sativa. Moreover, growth and yield reduction was not associated with stomatal factors of photosynthesis. Chlorophyll contents measured as SPAD values were reduced due to aphid infestation which is positively associated with yield reduction. Insecticidal spray increased chlorophyll contents in these three brassicaceous species by reducing aphid population

  3. Pesticide-contaminated feeds in integrated grass carp aquaculture: toxicology and bioaccumulation.

    Science.gov (United States)

    Pucher, J; Gut, T; Mayrhofer, R; El-Matbouli, M; Viet, P H; Ngoc, N T; Lamers, M; Streck, T; Focken, U

    2014-02-19

    Effects of dissolved pesticides on fish are widely described, but little is known about effects of pesticide-contaminated feeds taken up orally by fish. In integrated farms, pesticides used on crops may affect grass carp that feed on plants from these fields. In northern Vietnam, grass carp suffer seasonal mass mortalities which may be caused by pesticide-contaminated plants. To test effects of pesticide-contaminated feeds on health and bioaccumulation in grass carp, a net-cage trial was conducted with 5 differently contaminated grasses. Grass was spiked with 2 levels of trichlorfon/fenitrothion and fenobucarb. Unspiked grass was used as a control. Fish were fed at a daily rate of 20% of body mass for 10 d. The concentrations of fenitrothion and fenobucarb in pond water increased over time. Effects on fish mortality were not found. Fenobucarb in feed showed the strongest effects on fish by lowering feed uptake, deforming the liver, increasing blood glucose and reducing cholinesterase activity in blood serum, depending on feed uptake. Fenobucarb showed increased levels in flesh in all treatments, suggesting bio-concentration. Trichlorfon and fenitrothion did not significantly affect feed uptake but showed concentration-dependent reduction of cholinesterase activity and liver changes. Fenitrothion showed bioaccumulation in flesh which was dependant on feed uptake, whereas trichlorfon was only detected in very low concentrations in all treatments. Pesticide levels were all detected below the maximum residue levels in food. The pesticide-contaminated feeds tested did not cause mortality in grass carp but were associated with negative physiological responses and may increase susceptibility to diseases.

  4. Uptake of Radium by Grass and Shrubs Grown on Mineral Heaps: A Preliminary Study

    International Nuclear Information System (INIS)

    Laili, Z.; Omar, M.; Yusof, M.A. Wahab; Ibrahim, M.Z.

    2015-01-01

    A preliminary study of the uptake of 226 Ra and 228 Ra by grass and shrubs grown on mineral heaps was carried out. Activity concentrations of 226 Ra and 228 Ra in grass and shrubs were measured using gamma spectrometry. The result showed that grass and shrubs grown on mineral heaps contained elevated levels of radium compared to grass and shrubs grown on normal soils. Thus, these plants might be used for phytoremediation of radium contaminated soil. (author)

  5. Effects of root herbivory by nematodes on the performance and preference of a leaf-infesting generalist aphid depend on nitrate fertilization.

    Science.gov (United States)

    Kutyniok, Magdalene; Persicke, Marcus; Müller, Caroline

    2014-02-01

    The performance and behavior of herbivores is strongly affected by the quality of their host plants, which is determined by various environmental conditions. We investigated the performance and preference of the polyphagous shoot-infesting aphid Myzus persicae on the host-plant Arabidopsis thaliana in a two-factorial design in which nitrate fertilization was varied by 33 %, and the root-infesting cyst-nematode Heterodera schachtii was present or absent. Aphid performance was influenced by these abiotic and biotic factors in an interactive way. Nematode presence decreased aphid performance when nitrate levels were low, whereas nematode infestation did not influence aphid performance under higher nitrate fertilization. Aphids followed the "mother knows best" principle when given a choice, settling preferentially on those plants on which they performed best. Hence, they preferred nematode-free over nematode-infested plants in the low fertilization treatment but host choice was not affected by nematodes under higher nitrate fertilization. The amino acid composition of the phloem exudates was significantly influenced by fertilization but also by the interaction of the two treatments. Various glucosinolates in the leaves, which provide an estimate of phloem glucosinolates, were not affected by the individual treatments but by the combination of fertilization and herbivory. These changes in primary and secondary metabolites may be decisive for the herbivore responses. Our data demonstrate that abiotic and biotic factors can interactively affect herbivores, adding a layer of complexity to plant-mediated herbivore interactions.

  6. Temporal and spatial variation in alkaloid levels in Achnatherum robustum, a native grass infected with the endophyte Neotyphodium.

    Science.gov (United States)

    Faeth, Stanley H; Gardner, Dale R; Hayes, Cinnamon J; Jani, Andrea; Wittlinger, Sally K; Jones, Thomas A

    2006-02-01

    The native North American perennial grass Achnatherum robustum (Vasey) Barkworth [= Stipa robusta (Vasey) Scribn.] or sleepygrass is toxic and narcotic to livestock. The causative agents are alkaloidal mycotoxins produced from infections by a systemic and asexual Neotyphodium endophyte. Recent studies suggest that toxicity is limited across the range of sleepygrass in the Southwest USA. We sampled 17 populations of sleepygrass with varying distance from one focal population known for its high toxicity levels near Cloudcroft, NM, USA. For some, we sampled individual plants twice within the same growing season and over successive years (2001-2004). We also determined infection levels in each population. In general, all populations were highly infected, but infection levels were more variable near the focal population. Only infected plants within populations near the Cloudcroft area produced alkaloids. The ergot alkaloid, ergonovine, comprised the bulk of the alkaloids, with lesser amounts of lysergic and isolysergic acid amides and ergonovinine alkaloids. Levels of all alkaloids were positively correlated among individual plants within and between growing seasons. Infected plants that produced no alkaloids in 1 yr did not produce any alkaloids within the same growing season or in other years. Levels of alkaloids in sleepygrass populations declined with distance from the Cloudcroft population, although infection levels increased. Infected plants in populations in northern New Mexico and southern Colorado produced no alkaloids at all despite 100% infectivity. Our results suggest that only specific Neotyphodium haplotypes or specific Neotyphodium-grass combinations produce ergot alkaloids in sleepygrass. The Neotyphodium haplotype or host-endophyte combination that produces toxic levels of alkaloids appears restricted to one locality across the range of sleepygrass. Because of the wide variation in alkaloid levels among populations, interactions between the endophyte

  7. Internal iron biomineralization in Imperata cylindrica, a perennial grass: chemical composition, speciation and plant localization.

    Science.gov (United States)

    Rodríguez, N; Menéndez, N; Tornero, J; Amils, R; de la Fuente, V

    2005-03-01

    * The analysis of metal distribution in Imperata cylindrica, a perennial grass isolated from the banks of Tinto River (Iberian Pyritic Belt), an extreme acidic environment with high content in metals, has shown a remarkable accumulation of iron. This property has been used to study iron speciation and its distribution among different tissues and structures of the plant. * Mossbauer (MS) and X-ray diffraction (XRD) were used to determine the iron species, scanning electron microscopy (SEM) to locate iron biominerals among plant tissue structures, and energy-dispersive X-ray microanalysis (EDAX), X-ray fluorescence (TXRF) and inductively coupled plasma emission spectroscopy (ICP-MS) to confirm their elemental composition. * The MS spectral analysis indicated that iron accumulated in this plant mainly as jarosite and ferritin. The presence of jarosite was confirmed by XRD and the distribution of both minerals in structures of different tissues was ascertained by SEM-EDAX analysis. * The convergent results obtained by complementary techniques suggest a complex iron management system in I. cylindrica, probably as a consequence of the environmental conditions of its habitat.

  8. Wide Ranging Insect Infestation of the Pioneer Mangrove Sonneratia alba by Two Insect Species along the Kenyan Coast.

    Directory of Open Access Journals (Sweden)

    Elisha Mrabu Jenoh

    address the recent increased levels of infestation in Kenyan mangroves; apart from the ecological interest such plant-herbivore relations bring in this ecosystem.

  9. Interaction between Vetiver Grass Roots and Completely Decomposed Volcanic Tuff under Rainfall Infiltration Conditions

    Directory of Open Access Journals (Sweden)

    Ling Xu

    2018-01-01

    Full Text Available The important role of vetiver grass roots in preventing water erosion and mass movement has been well recognized, though the detailed influence of the grass roots on soil has not been addressed. Through planting vetiver grass at the Kadoorie Farm in Hong Kong and leaving it to grow without artificial maintenance, the paper studies the influence of vetiver grass roots on soil properties and slope stability. Under the natural conditions of Hong Kong, growth of the vetiver grass roots can reach 1.1 m depth after one and a half year from planting. The percentage of grain size which is less than 0.075 mm in rooted soil is more than that of the nonrooted soil. Vetiver grass roots can reduce soil erosion by locking the finer grain. The rooted soil of high finer grain content has a relatively small permeability. As a result, the increase in water content is therefore smaller than that of nonrooted soil in the same rainfall conditions. Shear box test reveals that the vetiver grass roots significantly increased the peak cohesion of the soil from 9.3 kPa to 18.9 kPa. The combined effects of grass roots on hydrological responses and shearing strength significantly stabilize the slope in local rainfall condition.

  10. Phytostabilisation potential of lemon grass (Cymbopogon flexuosus (Nees ex Stend) Wats) on iron ore tailings.

    Science.gov (United States)

    Mohanty, M; Dhal, N K; Patra, P; Das, B; Reddy, P S R

    2012-01-01

    The present pot culture study was carried out for the potential phytostabilisation of iron ore tailings using lemon grass (Cymbopogon flexuosus) a drought tolerant, perennial, aromatic grass. Experiments have been conducted by varying the composition of garden soil (control) with iron ore tailings. The various parameters, viz. growth of plants, number of tillers, biomass and oil content of lemon grass are evaluated. The studies have indicated that growth parameters of lemon grass in 1:1 composition of garden soil and iron ore tailings are significantly more (-5% increase) compared to plants grown in control soil. However, the oil content of lemon grass in both the cases more or less remained same. The results also infer that at higher proportion of tailings the yield of biomass decreases. The studies indicate that lemongrass with its fibrous root system is proved to be an efficient soil binder by preventing soil erosion.

  11. Inoculation of plant growth promoting rhizobia in Sudan grass (Sorghum × sudanense (Piper Stapf cv. Sudanense and millet (Pennisetum glaucum (L. R.Br. cv. BRS1501

    Directory of Open Access Journals (Sweden)

    Rafael Goulart Machado

    2018-01-01

    Full Text Available Rhizobia are able to increase yield of non-leguminous species through production of phyto-stimulating substances. This study aimed to evaluate the inoculation effect of rhizobia UFRGS Lc348 and VP16 on millet and Sudan grass yield and germination, and verify the enrichment effect of culture medium with tryptophan, which leads on the rhizobium/plant interaction. Experiments in vitro and greenhouse conditions were conducted. In millet, the inoculation with VP16 grown in culture medium with or without tryptophan induces greater length of hypocotyl and epicotyl under in vitro conditions. UFRGS Lc348 treatment induces longer hypocotyls of millet under in vitro conditions. No effects were observed with the millet inoculation in greenhouse. In Sudan grass, inoculation with VP16 enriched with tryptophan increased dry matter in shoots of adult plants. In millet seedlings had achieved an increasing in elongation in vitro conditions, which could represent an adaptive advantage in the search for water and nutrients in the rhizospheric environment during the initial growth of millet. Similarly, if verified in field conditions, Sudan grass had achieved an increasing in greenhouse conditions with the inoculation of tryptophan-enriched VP16, which could be correlated with a significant gain in crop yield. Therefore, these relationships between tryptophan-enriched VP16 and Sudan grass should be verified in subsequent studies under field conditions.

  12. Residual insecticides, inert dusts and botanicals for the protection of durable stored products against pest infestation in developing countries

    Directory of Open Access Journals (Sweden)

    Obeng-Ofori, D.

    2010-09-01

    Full Text Available Insect pests associated with durable grains and processed food cause considerable quantitative and qualitative losses throughout the world. Insect infestation can occur just prior to harvest, during storage in traditional storage structures, cribs, metal or concrete bins, and in warehouses, food handling facilities, retail grocery stores as well as in-transit. Many tools are available for managing insects associated with grains and processed food. Although pest management strategies are changing to meet consumer’s demand for food free of insecticide residues, address concerns about safety of insecticides to humans, delay insecticide resistance development in insects and comply with stricter insecticide regulations, the use of synthetic residual insecticides will continue to be a major component of stored-product pest management programmes. Selective use of residual insecticides requires a through understanding and evaluation of risks, costs and benefits. The use of plant and inert materials may be a safe, cost-effective and environmentally friendly method of grain preservation against pest infestation among low-resource poor farmers who store small amounts of grains. There is a dearth of information on the use of plant materials by rural farmers in Africa for stored-product protection. The most promising candidate plant materials for future utilization as grain protectants are Azadirachta, Acorus, Chenopodium, Eucalyptus, Mentha, Ocimum, Piper and Tetradenia together with vegetable oils from various sources. Neem is the only plant from which several commercial products have been developed worldwide. However, unlike synthetic insecticides these alternatives often do not provide effective or rapid suppression of pest populations and may not be effective against all species of pests. These alternatives are also more expensive than synthetic insecticides, and have not been tested extensively under field conditions in the tropics. This paper

  13. Molecular Physiology of Root System Architecture in Model Grasses

    Science.gov (United States)

    Hixson, K.; Ahkami, A. H.; Anderton, C.; Veličković, D.; Myers, G. L.; Chrisler, W.; Lindenmaier, R.; Fang, Y.; Yabusaki, S.; Rosnow, J. J.; Farris, Y.; Khan, N. E.; Bernstein, H. C.; Jansson, C.

    2017-12-01

    Unraveling the molecular and physiological mechanisms involved in responses of Root System Architecture (RSA) to abiotic stresses and shifts in microbiome structure is critical to understand and engineer plant-microbe-soil interactions in the rhizosphere. In this study, accessions of Brachypodium distachyon Bd21 (C3 model grass) and Setaria viridis A10.1 (C4 model grass) were grown in phytotron chambers under current and elevated CO2 levels. Detailed growth stage-based phenotypic analysis revealed different above- and below-ground morphological and physiological responses in C3 and C4 grasses to enhanced CO2 levels. Based on our preliminary results and by screening values of total biomass, water use efficiency, root to shoot ratio, RSA parameters and net assimilation rates, we postulated a three-phase physiological mechanism, i.e. RootPlus, BiomassPlus and YieldPlus phases, for grass growth under elevated CO2 conditions. Moreover, this comprehensive set of morphological and process-based observations are currently in use to develop, test, and calibrate biophysical whole-plant models and in particular to simulate leaf-level photosynthesis at various developmental stages of C3 and C4 using the model BioCro. To further link the observed phenotypic traits at the organismal level to tissue and molecular levels, and to spatially resolve the origin and fate of key metabolites involved in primary carbohydrate metabolism in different root sections, we complement root phenotypic observations with spatial metabolomics data using mass spectrometry imaging (MSI) methods. Focusing on plant-microbe interactions in the rhizosphere, six bacterial strains with plant growth promoting features are currently in use in both gel-based and soil systems to screen root growth and development in Brachypodium. Using confocal microscopy, GFP-tagged bacterial systems are utilized to study the initiation of different root types of RSA, including primary root (PR), coleoptile node axile root (CNR

  14. Detecting bacterial endophytes in tropical grasses of the Brachiaria ...

    African Journals Online (AJOL)

    Plant-growth-promoting (PGP) bacteria include a diverse group of soil bacteria thought to stimulate plant growth by various mechanisms. Brachiaria forage grasses, of African origin, are perennials that often grow under low-input conditions and are likely to harbour unique populations of PGP bacteria. Three bacterial strains ...

  15. resistance of napier grass clones to napier grass stunt disease

    African Journals Online (AJOL)

    ACSS

    Napier grass (Pennisetum purpureum Schumach) is the major livestock fodder under intensive and semi-intensive systems in East Africa. However, the productivity of the grass is constrained by Napier grass Stunt Disease. (NSD). The purpose of this study was to identify Napier grass clones with resistance to NSD.

  16. Resistance of Napier grass clones to Napier grass Stunt Disease ...

    African Journals Online (AJOL)

    Napier grass (Pennisetum purpureum Schumach) is the major livestock fodder under intensive and semi-intensive systems in East Africa. However, the productivity of the grass is constrained by Napier grass Stunt Disease (NSD). The purpose of this study was to identify Napier grass clones with resistance to NSD.

  17. State of weed infestation and features of sugar beet protection in Belarus

    Directory of Open Access Journals (Sweden)

    Soroka Sergey Vladimirovich

    2006-01-01

    Full Text Available The changes of phytosanitary situation recently taking place in sugar beet crops in the Republic of Belarus are shown. It is noticed that in the crop agrocoenosises there is a high infestation level caused by Japanese barnyard millet (Echinochloa crus-galli (L Pal. Beauv, field sowthistle (Sonchus arvensis L, chickweed (Stellaria media (L Vill, quick grass (Agropyron repens (L Pal Beauv, matricary (Matricaria perforate Merat, creeping thistle (Circium arvense (L scop, marsh woundwort (Stachus palustris L wild buckwheat (Polygonum convolvulus L, bristle stem hemp nettle (Galeopsis tetrahit L, common horsetail (Equisetum arvense L, field forget-me-not (Myosotis arvensis (L Hill, shepherd's purse (Capsella bursa-pastoris (L Med etc. Due to non-observance of preventive and separate agrotechnical techniques especially in spring-summer period, such weeds as bedstraw (Galium aparine L, white campion (Melandrium album (Mill Garcke, green amaranthus (Amaranthus retroflexus L started to appear in the crops. To protect sugar beet effectively, two variants of herbicides application are proposed. The first one - a combined, one stipulating soil action herbicides application before planting or before sugar beet seedlings emergence and on seedlings - to carry out two treatment by post-emergence preparations. The second variant, a split post- -emergence herbicide application (two-three times spraying on growing weeds at small application rates. In the next 5-6 years, a combined method will be of a primary importance in the conditions of the Republic.

  18. Potential of Cogon Grass as an Oil Sorbent

    OpenAIRE

    Wiloso, Edi Iswanto; Barlianti, Vera; Anggraini, Irni Fitria; Hendarsyah, Hendris

    2012-01-01

    Experiments on the potential of Cogon grass (lmperata cylindrica), a weed harmful to other plants, for use as a low-cost and biodegradable oil sorbent were carried out under various spill conditions. Flowers of Cogon grass adsorbed much larger amount of high-viscosity lubricating oil (57.9 g-oil/g-sorbent) than that adsorbed by Peat Sorb (7.7 g-oil/g-sorbent), a commercial oilsorbent based on peat. However, the flowers adsorbed only 27.9 g of low-viscosity crude oillgsorbent. In an oil-water ...

  19. Stable Isotope Mapping of Alaskan Grasses and Marijuana

    Science.gov (United States)

    Booth, A. L.; Wooller, M. J.

    2008-12-01

    The spatial variation of isotope signatures in organic material is a useful forensic tool, particularly when applied to the task of tracking the production and distribution of plant-derived illicit drugs. In order to identify the likely grow-locations of drugs such as marijuana from unknown locations (i.e., confiscated during trafficking), base isotope maps are needed that include measurements of plants from known grow-locations. This task is logistically challenging in remote, large regions such as Alaska. We are therefore investigating the potential of supplementing our base (marijuana) isotope maps with data derived from other plants from known locations and with greater spatial coverage in Alaska. These currently include >150 samples of modern C3 grasses (Poaceae) as well as marijuana samples (n = 18) from known grow-locations across the state. We conducted oxygen, carbon and nitrogen stable isotope analyses of marijuana and grasses (Poaceae). Poaceae samples were obtained from the University of Alaska Fairbanks (UAF) Museum of the North herbarium collection, originally collected by field botanists from around Alaska. Results indicate that the oxygen isotopic composition of these grasses range from 10‰ to 30‰, and broadly mirror the spatial pattern of water isotopes in Alaska. Our marijuana samples were confiscated around the state of Alaska and supplied to us by the UAF Police Department. δ13C, δ15N and δ18O values exhibit geographic patterns similar to the modern grasses, but carbon and nitrogen isotopes of some marijuana plants appear to be influenced by additional factors related to indoor growing conditions (supplementary CO2 sources and the application of organic fertilizer). As well as providing a potential forensic resource, our Poaceae isotope maps could serve additional value by providing resources for studying ecosystem nutrient cycling, for tracing natural ecological processes (i.e., animal migration and food web dynamics) and providing

  20. Modelling the transfer of 14C from the atmosphere to grass: A case study in a grass field near AREVA-NC La Hague

    International Nuclear Information System (INIS)

    Aulagnier, C.; Le Dizès, S.; Maro, D.; Hébert, D.; Lardy, R.; Martin, R.; Gonze, M.-A.

    2012-01-01

    Radioactive 14 C is formed as a by-product of nuclear power generation and from operation of nuclear fuel reprocessing plants like AREVA-NC La Hague (North France), which releases about 15 TBq per year of 14 C into the atmosphere. Since the autumn of 2006, 14 C activity concentrations in samples from the terrestrial environment (air, grass and soil) have been monitored monthly on grassland 2 km downwind of the reprocessing plant. The monitoring data provides an opportunity to validate radioecology models used to assess 14 C transfer to grassland ecosystems. This article compares and discusses the ability of two different models to reproduce the observed temporal variability in grass 14 C activity in the vicinity of AREVA-NC La Hague. These two models are the TOCATTA model which is specifically designed for modelling transfer of 14 C and tritium in the terrestrial environment, and PaSim, a pasture model for simulating grassland carbon and nitrogen cycling. Both TOCATTA and PaSim tend to under-estimate the magnitude of observed peaks in grass 14 C activity, although they reproduce the general trends. PaSim simulates 14 C activities in substrate and structural pools of the plant. We define a mean turn-over time for 14 C within the plant, which is based on both experimental data and the frequency of cuts. An adapted PaSim result is presented using the 15 and 20 day moving average results for the 14 C activity in the substrate pool, which shows a good match to the observations. This model reduces the Root Mean Square Error (RMSE) by nearly 40% in comparison to TOCATTA. - Highlights: ► We model 14 C transfer from the atmosphere to grass near AREVA-NC reprocessing plant. ► Both models considered under-estimate the observed variability and highest peaks. ► A model based solely on the sap 14 C activity and mean turn-over time is considered. ► It performs well and could be applied to case studies around nuclear facilities.

  1. Enhanced precipitation variability decreases grass- and increases shrub-productivity

    Science.gov (United States)

    Gherardi, Laureano A.; Sala, Osvaldo E.

    2015-01-01

    Although projections of precipitation change indicate increases in variability, most studies of impacts of climate change on ecosystems focused on effects of changes in amount of precipitation, overlooking precipitation variability effects, especially at the interannual scale. Here, we present results from a 6-y field experiment, where we applied sequences of wet and dry years, increasing interannual precipitation coefficient of variation while maintaining a precipitation amount constant. Increased precipitation variability significantly reduced ecosystem primary production. Dominant plant-functional types showed opposite responses: perennial-grass productivity decreased by 81%, whereas shrub productivity increased by 67%. This pattern was explained by different nonlinear responses to precipitation. Grass productivity presented a saturating response to precipitation where dry years had a larger negative effect than the positive effects of wet years. In contrast, shrubs showed an increasing response to precipitation that resulted in an increase in average productivity with increasing precipitation variability. In addition, the effects of precipitation variation increased through time. We argue that the differential responses of grasses and shrubs to precipitation variability and the amplification of this phenomenon through time result from contrasting root distributions of grasses and shrubs and competitive interactions among plant types, confirmed by structural equation analysis. Under drought conditions, grasses reduce their abundance and their ability to absorb water that then is transferred to deep soil layers that are exclusively explored by shrubs. Our work addresses an understudied dimension of climate change that might lead to widespread shrub encroachment reducing the provisioning of ecosystem services to society. PMID:26417095

  2. Comparing herbaceous plant communities in active and passive riparian restoration.

    Directory of Open Access Journals (Sweden)

    Elise S Gornish

    Full Text Available Understanding the efficacy of passive (reduction or cessation of environmental stress and active (typically involving planting or seeding restoration strategies is important for the design of successful revegetation of degraded riparian habitat, but studies explicitly comparing restoration outcomes are uncommon. We sampled the understory herbaceous plant community of 103 riparian sites varying in age since restoration (0 to 39 years and revegetation technique (active, passive, or none to compare the utility of different approaches on restoration success across sites. We found that landform type, percent shade, and summer flow helped explain differences in the understory functional community across all sites. In passively restored sites, grass and forb cover and richness were inversely related to site age, but in actively restored sites forb cover and richness were inversely related to site age. Native cover and richness were lower with passive restoration compared to active restoration. Invasive species cover and richness were not significantly different across sites. Although some of our results suggest that active restoration would best enhance native species in degraded riparian areas, this work also highlights some of the context-dependency that has been found to mediate restoration outcomes. For example, since the effects of passive restoration can be quite rapid, this approach might be more useful than active restoration in situations where rapid dominance of pioneer species is required to arrest major soil loss through erosion. As a result, we caution against labeling one restoration technique as better than another. Managers should identify ideal restoration outcomes in the context of historic and current site characteristics (as well as a range of acceptable alternative states and choose restoration approaches that best facilitate the achievement of revegetation goals.

  3. Engaging plant anatomy and local knowledge on the buriti palm ( Mauritia flexuosa L.f.: Arecaceae): the microscopic world meets the golden grass artisan's perspective

    Science.gov (United States)

    Viana, Rebeca V. R.; Scatena, Vera L.; Eichemberg, Mayra T.; Sano, Paulo T.

    2018-03-01

    Considering that both Western Science and Local Knowledge Systems share a common ground—observations of the natural world—the dialogue between them should not only be possible, but fruitful. Local communities whose livelihoods depend on traditional uses of the local biodiversity not only develop knowledge about nature, making several uses of such knowledge, but, with that process, several inquiries about nature can be raised. Here we present our experience with the engagement of Western Science with golden grass artisan's knowledge about the buriti palm ( M. flexuosa). We applied 25 semi-directive interviews, combined with field diary and participative observation, in two quilombola communities from Jalapão region (Central-Brazil). One of the inquiries that emerged from the artisan's perspectives was about the differences between male and female buriti palms' fiber. We then engaged both local and scientific perspectives regarding this issue using plant anatomy as a dialogue instrument. Here we describe this experience and resort to Paulo Freire's ideas on dialogue to argue that, to integrate Western Science and Local Knowledge Systems in a collaborative and contextualized perspective, the research should be faced as a mutual learning practice.

  4. Modelling asymmetric growth in crowded plant communities

    DEFF Research Database (Denmark)

    Damgaard, Christian

    2010-01-01

    A class of models that may be used to quantify the effect of size-asymmetric competition in crowded plant communities by estimating a community specific degree of size-asymmetric growth for each species in the community is suggested. The model consists of two parts: an individual size......-asymmetric growth part, where growth is assumed to be proportional to a power function of the size of the individual, and a term that reduces the relative growth rate as a decreasing function of the individual plant size and the competitive interactions from other plants in the neighbourhood....

  5. Ozone sensitivity of plants in natural communities

    Energy Technology Data Exchange (ETDEWEB)

    Treshow, M; Stewart, D

    1973-07-01

    Field fumigation studies conducted in grassland, oak, aspen, and conifer, communities established the injury threshold of prevalent plant species to ozone. Several important species, including Bromus tectorum, Quercus gambelii, and Populus tremuloides, were injured by a single 2-hours exposure to 15 pphM ozone. Over half the perennial forbs and woody species studied were visibly injured at concentrations of 30 pphM ozone or less. It is postulated that lower concentrations at prolonged or repeated exposures to ozone may impair growth and affect community vigor and stability. Continued exposure of natural plant communities to ozone is expected to initiate major shifts in the plant composition of communities. 10 references, 4 figures, 1 table.

  6. Distribution, Diversity, and Long-Term Retention of Grass Short Interspersed Nuclear Elements (SINEs).

    Science.gov (United States)

    Mao, Hongliang; Wang, Hao

    2017-08-01

    Instances of highly conserved plant short interspersed nuclear element (SINE) families and their enrichment near genes have been well documented, but little is known about the general patterns of such conservation and enrichment and underlying mechanisms. Here, we perform a comprehensive investigation of the structure, distribution, and evolution of SINEs in the grass family by analyzing 14 grass and 5 other flowering plant genomes using comparative genomics methods. We identify 61 SINE families composed of 29,572 copies, in which 46 families are first described. We find that comparing with other grass TEs, grass SINEs show much higher level of conservation in terms of genomic retention: The origin of at least 26% families can be traced to early grass diversification and these families are among most abundant SINE families in 86% species. We find that these families show much higher level of enrichment near protein coding genes than families of relatively recent origin (51%:28%), and that 40% of all grass SINEs are near gene and the percentage is higher than other types of grass TEs. The pattern of enrichment suggests that differential removal of SINE copies in gene-poor regions plays an important role in shaping the genomic distribution of these elements. We also identify a sequence motif located at 3' SINE end which is shared in 17 families. In short, this study provides insights into structure and evolution of SINEs in the grass family. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  7. Lignin and etherified ferulates impact digestibility and structural composition of three temperate perennial grasses

    Science.gov (United States)

    Breeding grasses for increased digestibility increases their value and profitability in ruminant livestock production systems. Digestibility can be improved in grasses by either increasing the concentration of soluble and readily fermentable carbohydrates or by altering the plant cell wall to create...

  8. Colonization of torrefied grass fibers by plant-beneficial microorganisms

    NARCIS (Netherlands)

    Trifonova, R.; Babini, V.; Postma, J.; Ketelaars, J.J.M.H.; van Elsas, J.D.

    This study aimed to assess the colonization of thermally treated (i.e. torrefied) grass fibers (TGFs), a new prospective ingredient of potting soil. Eleven bacterial strains and one fungus, Coniochaeta ligniaria F/TGF15, all isolated from TGF or its extract after inoculation with a soil microbial

  9. Colonization of torrefied grass fibers by plant beneficial microorganisms

    NARCIS (Netherlands)

    Trifonova, R.D.; Babini, V.; Postma, J.; Ketelaars, J.J.M.H.; Elsas, van J.D.

    2009-01-01

    This study aimed to assess the colonization of thermally treated (i.e. torrefied) grass fibers (TGFs), a new prospective ingredient of potting soil. Eleven bacterial strains and one fungus, Coniochaeta ligniaria F/TGF15, all isolated from TGF or its extract after inoculation with a soil microbial

  10. Scatter hoarding of seeds confers survival advantages and disadvantages to large-seeded tropical plants at different life stages.

    Directory of Open Access Journals (Sweden)

    Erin K Kuprewicz

    Full Text Available Scatter hoarding of seeds by animals contributes significantly to forest-level processes, including plant recruitment and forest community composition. However, the potential positive and negative effects of caching on seed survival, germination success, and seedling survival have rarely been assessed through experimental studies. Here, I tested the hypothesis that seed burial mimicking caches made by scatter hoarding Central American agoutis (Dasyprocta punctate enhances seed survival, germination, and growth by protecting seeds from seed predators and providing favorable microhabitats for germination. In a series of experiments, I used simulated agouti seed caches to assess how hoarding affects seed predation by ground-dwelling invertebrates and vertebrates for four plant species. I tracked germination and seedling growth of intact and beetle-infested seeds and, using exclosures, monitored the effects of mammals on seedling survival through time. All experiments were conducted over three years in a lowland wet forest in Costa Rica. The majority of hoarded palm seeds escaped predation by both invertebrates and vertebrates while exposed seeds suffered high levels of infestation and removal. Hoarding had no effect on infestation rates of D. panamensis, but burial negatively affected germination success by preventing endocarp dehiscence. Non-infested palm seeds had higher germination success and produced larger seedlings than infested seeds. Seedlings of A. alatum and I. deltoidea suffered high mortality by seed-eating mammals. Hoarding protected most seeds from predators and enhanced germination success (except for D. panamensis and seedling growth, although mammals killed many seedlings of two plant species; all seedling deaths were due to seed removal from the plant base. Using experimental caches, this study shows that scatter hoarding is beneficial to most seeds and may positively affect plant propagation in tropical forests, although

  11. Nitrogen washing from C3 and C4 cover grasses residues by rain

    Directory of Open Access Journals (Sweden)

    Ciro Antonio Rosolem

    2010-12-01

    Full Text Available Crop species with the C4 photosynthetic pathway are more efficient in assimilating N than C3 plants, which results in different N amounts prone to be washed from its straw by rain water. Such differences may affect N recycling in agricultural systems where these species are grown as cover crops. In this experiment, phytomass production and N leaching from the straw of grasses with different photosynthetic pathways were studied in response to N application. Pearl millet (Pennisetum glaucum and congo grass (Brachiaria ruziziensis with the C4 photosynthetic pathway, and black oat (Avena Strigosa and triticale (X Triticosecale, with the C3 photosynthetic pathway, were grown for 47 days. After determining dry matter yields and N and C contents, a 30 mm rainfall was simulated over 8 t ha-1 of dry matter of each plant residue and the leached amounts of ammonium and nitrate were determined. C4 grasses responded to higher fertilizer rates, whereas N contents in plant tissue were lower. The amount of N leached from C4 grass residues was lower, probably because the C/N ratio is higher and N is more tightly bound to organic compounds. When planning a crop rotation system it is important to take into account the difference in N release of different plant residues which may affect N nutrition of the subsequent crop.

  12. DAMAGE RESEARCH WITH P. PENETRANS IN ASPARAGUS PLANTS.

    Science.gov (United States)

    Hoek, J; Molendijk, L P G

    2014-01-01

    During cultivation of asparagus plants growth can be inhibited and yield can be reduced by plant-parasitic nematodes. Plant raising companies assume that the root lesion nematode (Pratylenchus penetrans) can cause severe yield loss in asparagus plants. However quantitative information about yield reduction in relation to the degree of infestation of this nematode species in the field is lacking. Research was done in The Netherlands by Applied Plant Research (part of Wageningen University and Research Centre) to determine the maximum degree of yield loss of asparagus plants at high infestation levels of P. penetrans and to establish the height of the tolerance limit for this nematode species. Also was investigated whether a field application of a granular nematicide could prevent or reduce yield loss caused by P. penetrans. Research was done in the field at sandy soils at the PPO location near Vredepeel in The Netherlands over a period of two years. In the first year the most suitable field was selected and on this field different infestation levels of P. penetrans were created. In the second year asparagus was cultivated and plant yield (number and quality of deliverable plants and financial yield) was calculated. At high infestation levels of Pratylenchus penetrans maximum yield loss was 12% (which can mean a financial loss of 7.000 C per ha). Yield started to decrease at very low infestation levels of P. penetrans and no statistical reliable tolerance limit could be calculated. Field application of 40 kg per ha of Vydate 10 G just before sowing of asparagus, could almost completely prevent yield loss caused by P. penetrans. After harvest infestation levels of P. penetrans were much lower than could be expected if asparagus was a non-host for this nematode species. In this paper therefore it is suggested that asparagus plants are (actively) controlling P. penetrans.

  13. Enhanced salt stress tolerance of rice plants expressing a vacuolar H+-ATPase subunit c1 (SaVHAc1) gene from the halophyte grass Spartina alterniflora Löisel

    Science.gov (United States)

    The physiological role of a vacuolar ATPase subunit c1 (SaVHAc1) from a halophyte grass Spartina alterniflora was studied through its expression in rice. The SaVHAc1– expressing plants showed enhanced tolerance to salt stress than the wild-type plants, mainly through adjustments in early stage and p...

  14. MBS Native Plant Communities

    Data.gov (United States)

    Minnesota Department of Natural Resources — This data layer contains results of the Minnesota County Biological Survey (MCBS). It includes polygons representing the highest quality native plant communities...

  15. Parasites in the fossil record: a Cretaceous fauna with isopod-infested decapod crustaceans, infestation patterns through time, and a new ichnotaxon.

    Directory of Open Access Journals (Sweden)

    Adiël A Klompmaker

    Full Text Available Parasites are common in modern ecosystems and are also known from the fossil record. One of the best preserved and easily recognisable examples of parasitism in the fossil record concerns isopod-induced swellings in the branchial chamber of marine decapod crustaceans. However, very limited quantitative data on the variability of infestation percentages at the species, genus, and family levels are available. Here we provide this type of data for a mid-Cretaceous (upper Lower Cretaceous, upper Albian reef setting at Koskobilo, northern Spain, on the basis of 874 specimens of anomurans and brachyurans. Thirty-seven specimens (4.2%, arranged in ten species, are infested. Anomurans are more heavily infested than brachyurans, variability can be high within genera, and a relationship may exist between the number of specimens and infestation percentage per taxon, possibly suggesting host-specificity. We have also investigated quantitative patterns of infestation through geological time based on 88 infested species (25 anomurans, 55 brachyurans, seven lobsters, and one shrimp, to show that the highest number of infested species can be found in the Late Jurassic, also when corrected for the unequal duration of epochs. The same Late Jurassic peak is observed for the percentage of infested decapod species per epoch. This acme is caused entirely by infested anomurans and brachyurans. Biases (taphonomic and otherwise and causes of variability with regard to the Koskobilo assemblage and infestation patterns through time are discussed. Finally, a new ichnogenus and -species, Kanthyloma crusta, are erected to accommodate such swellings or embedment structures (bioclaustrations.

  16. Effects of Ginkgo biloba constituents on fruit-infesting behavior of codling moth (Cydia pomonella) in apples.

    Science.gov (United States)

    Pszczolkowski, Maciej A; Durden, Kevin; Sellars, Samantha; Cowell, Brian; Brown, John J

    2011-10-26

    Codling moth, Cydia pomonella (L.), is a cosmopolitan pest of apple, potentially causing severe damage to the fruit. Currently used methods of combating this insect do not warrant full success or are harmful to the environment. The use of plant-derived semiochemicals for manipulation with fruit-infesting behavior is one of the new avenues for controlling this pest. Here, we explore the potential of Ginkgo biloba and its synthetic metabolites for preventing apple feeding and infestation by neonate larvae of C. pomonella. Experiments with crude extracts indicated that deterrent constituents of ginkgo are present among alkylphenols, terpene trilactones, and flavonol glycosides. Further experiments with ginkgo synthetic metabolites of medical importance, ginkgolic acids, kaempferol, quercetin, isorhamnetin, ginkgolides, and bilobalide, indicated that three out of these chemicals have feeding deterrent properties. Ginkgolic acid 15:0 prevented fruit infestation at concentrations as low as 1 mg/mL, bilobalide had deterrent effects at 0.1 mg/mL and higher concentrations, and ginkgolide B at 10 mg/mL. On the other hand, kaempferol and quercetin promoted fruit infestation by codling moth neonates. Ginkgolic acids 13:0, 15:1, and 17:1, isorhamnetin, and ginkgolides A and C had no effects on fruit infestation-related behavior. Our research is the first report showing that ginkgo constituents influence fruit infestation behavior and have potential applications in fruit protection.

  17. An ultrasonic system for weed detection in cereal crops.

    Science.gov (United States)

    Andújar, Dionisio; Weis, Martin; Gerhards, Roland

    2012-12-13

    Site-specific weed management requires sensing of the actual weed infestation levels in agricultural fields to adapt the management accordingly. However, sophisticated sensor systems are not yet in wider practical use, since they are not easily available for the farmers and their handling as well as the management practice requires additional efforts. A new sensor-based weed detection method is presented in this paper and its applicability to cereal crops is evaluated. An ultrasonic distance sensor for the determination of plant heights was used for weed detection. It was hypothesised that the weed infested zones have a higher amount of biomass than non-infested areas and that this can be determined by plant height measurements. Ultrasonic distance measurements were taken in a winter wheat field infested by grass weeds and broad-leaved weeds. A total of 80 and 40 circular-shaped samples of different weed densities and compositions were assessed at two different dates. The sensor was pointed directly to the ground for height determination. In the following, weeds were counted and then removed from the sample locations. Grass weeds and broad-leaved weeds were separately removed. Differences between weed infested and weed-free measurements were determined. Dry-matter of weeds and crop was assessed and evaluated together with the sensor measurements. RGB images were taken prior and after weed removal to determine the coverage percentages of weeds and crop per sampling point. Image processing steps included EGI (excess green index) computation and thresholding to separate plants and background. The relationship between ultrasonic readings and the corresponding coverage of the crop and weeds were assessed using multiple regression analysis. Results revealed a height difference between infested and non-infested sample locations. Density and biomass of weeds present in the sample influenced the ultrasonic readings. The possibilities of weed group discrimination were

  18. Phylogenetic analysis of the expansion of the MATH-BTB gene family in the grasses.

    Science.gov (United States)

    Juranić, Martina; Dresselhaus, Thomas

    2014-01-01

    MATH-BTB proteins are known to act as substrate-specific adaptors of cullin3 (CUL3)-based ubiquitin E3 ligases to target protein for ubiquitination. In a previous study we reported the presence of 31 MATH-BTB genes in the maize genome and determined the regulatory role of the MATH-BTB protein MAB1 during meiosis to mitosis transition. In contrast to maize, there are only 6 homologous genes in the model plant Arabidopsis, while this family has largely expanded in grasses. Here, we report a phylogenetic analysis of the MATH-BTB gene family in 9 land plant species including various mosses, eudicots, and grasses. We extend a previous classification of the plant MATH-BTB family and additionally arrange the expanded group into 5 grass-specific clades. Synteny studies indicate that expansion occurred to a large extent due to local gene duplications. Expression studies of 3 closely related MATH-BTB genes in maize (MAB1-3) indicate highly specific expression pattern. In summary, this work provides a solid base for further studies comparing genetic and functional information of the MATH-BTB family especially in the grasses.

  19. Investigating C4 Grass Contributions to N-alkane Based Paleoclimate Reconstructions

    Science.gov (United States)

    Doman, C. E.; Enders, S. K.; Chadwick, O.; Freeman, K. H.

    2014-12-01

    Plant wax n-alkanes are long-chain, saturated hydrocarbons contained within the protective waxy cuticle on leaves. These lipids are pervasive and persistent in soils and sediments and thus are ideal biomarkers of ancient terrestrial organic matter. In ecosystems dominated by C3 plants, the relationship between the carbon isotopic value of whole leaves and lipids is fairly well documented, but this relationship has not been fully investigated for plants that use C4 photosynthesis. In both cases, it is unclear if the isotopic relationships are sensitive to environmental conditions, or reflect inherited characteristics. This study used a natural climate gradient on the Kohala peninsula of Hawaii to investigate relationships between climate and the δ13C and δ2H values of n-alkanes in C3 and C4 plants. δ13C of C3 leaves and lipids decreased 5 ‰ from the driest to the wettest sites, consistent with published data. Carbon isotope values of C4 plants showed no relationship to moisture up to 1000 mm mean annual precipitation (MAP). Above this threshold, δ 13C values were around 10‰ more depleted, likely due to a combination of canopy effects and C4 grasses growing in an uncharacteristically wet and cold environment. In C3 plants, the fractionation between leaf and lipid carbon isotopes did not vary with MAP, which allows estimations of δ13C leaf to be made from alkanes preserved in ancient sediments. Along this transect, C3 plants produce around twice the quantity of n-alkanes as C4 grasses. C4 grasses produce longer carbon chains. As a result, n-alkanes in the geologic record will be biased towards C3 plants, but the presence of alkanes C33 and C35 indicate the contributions of C4 grasses. In both C3 and C4 plants, average chain length increased with mean annual precipitation, but the taxonomic differences in chain length were greater than environmental differences. Hydrogen isotopes of n-alkanes show no trends with MAP, but do show clear differences between plant

  20. Soybean Aphid Infestation Induces Changes in Fatty Acid Metabolism in Soybean.

    Directory of Open Access Journals (Sweden)

    Charles Kanobe

    Full Text Available The soybean aphid (Aphis glycines Matsumura is one of the most important insect pests of soybeans in the North-central region of the US. It has been hypothesized that aphids avoid effective defenses by inhibition of jasmonate-regulated plant responses. Given the role fatty acids play in jasmonate-induced plant defenses, we analyzed the fatty acid profile of soybean leaves and seeds from aphid-infested plants. Aphid infestation reduced levels of polyunsaturated fatty acids in leaves with a concomitant increase in palmitic acid. In seeds, a reduction in polyunsaturated fatty acids was associated with an increase in stearic acid and oleic acid. Soybean plants challenged with the brown stem rot fungus or with soybean cyst nematodes did not present changes in fatty acid levels in leaves or seeds, indicating that the changes induced by aphids are not a general response to pests. One of the polyunsaturated fatty acids, linolenic acid, is the precursor of jasmonate; thus, these changes in fatty acid metabolism may be examples of "metabolic hijacking" by the aphid to avoid the induction of effective defenses. Based on the changes in fatty acid levels observed in seeds and leaves, we hypothesize that aphids potentially induce interference in the fatty acid desaturation pathway, likely reducing FAD2 and FAD6 activity that leads to a reduction in polyunsaturated fatty acids. Our data support the idea that aphids block jasmonate-dependent defenses by reduction of the hormone precursor.

  1. Association between khat chewing and intestinal parasitic infestations: a community based, cross-sectional study done in Jimma Town, Southwest Ethiopia.

    Science.gov (United States)

    Mossie, Andualem; Kebedez, Seleshi; Gobena, Teshome

    2013-07-01

    Khat (Catha edulis Forsk), is the psychostimulant herb cultivated in East Africa. Khat chewing could have health damaging effect. The aim of the present study was to determine the association between khat chewing and intestinal parasitic infestation. A cross sectional study was conducted in Jimma Town in July 2010. Structured questionnaire was administered to 991 individuals selected by a systematic sampling method. Stool samples were collected for the diagnosis of intestinal parasitic infestation. Data analysis was done using SPSS Version 16.0 for Windows. Among 991 respondents, 638 (64.4%) were females, 502 (50.7%) were Oromos, 486 (49%) were Orthodox and 475 (47.9%) of them were in the age group of 18-24 years old. The current prevalence of khat chewing was found to be 52.7%. The prevalence of single to multiple parasitic infestations was 33.4%. Negative association (p = 0.000) was recorded between the habit of khat chewing and intestinal parasitosis. Non-chewers were more affected than chewers. Higher proportion of non chewers was infested with parasites than chewers, suggesting that khat chewing might have a protective role against parasitic infestation. Further investigation on the effect of khat extract in in vitro and in vivo is recommended to disclose detail mechanisms.

  2. [Mechanisms of grass in slope erosion control in Loess sandy soil region of Northwest China].

    Science.gov (United States)

    Zhao, Chun-Hong; Gao, Jian-En; Xu, Zhen

    2013-01-01

    By adopting the method of simulated precipitation and from the viewpoint of slope hydrodynamics, in combining with the analysis of soil resistance to erosion, a quantitative study was made on the mechanisms of grass in controlling the slope erosion in the cross area of wind-water erosion in Loess Plateau of Northwest China under different combinations of rainfall intensity and slope gradient, aimed to provide basis to reveal the mechanisms of vegetation in controlling soil erosion and to select appropriate vegetation for the soil and water conservation in Loess Plateau. The grass Astragalus adsurgens with the coverage about 40% could effectively control the slope erosion. This grass had an efficiency of more than 70% in reducing sediment, and the grass root had a greater effect than grass canopy. On bare slope and on the slopes with the grass plant or only the grass root playing effect, there existed a functional relation between the flow velocity on the slopes and the rainfall intensity and slope gradient (V = DJ(0.33 i 0.5), where V is flow velocity, D is the comprehensive coefficient which varies with different underlying surfaces, i is rainfall intensity, and J is slope gradient). Both the grass root and the grass canopy could markedly decrease the flow velocity on the slopes, and increase the slope resistance, but the effect of grass root in decreasing flow velocity was greater while the effect in increasing resistance was smaller than that of grass canopy. The effect of grass root in increasing slope resistance was mainly achieved by increasing the sediment grain resistance, while the effect of canopy was mainly achieved by increasing the slope form resistance and wave resistance. The evaluation of the soil resistance to erosion by using a conceptual model of sediment generation by overland flow indicated that the critical shear stress value of bare slope and of the slopes with the grass plant or only the grass root playing effect was 0.533, 1.672 and 0

  3. Conservation and restoration of indigenous plants to improve community livelihoods: the Useful Plants Project

    Science.gov (United States)

    Ulian, Tiziana; Sacandé, Moctar; Mattana, Efisio

    2014-05-01

    Kew's Millennium Seed Bank partnership (MSBP) is one of the largest ex situ plant conservation initiatives, which is focused on saving plants in and from regions most at risk, particularly in drylands. Seeds are collected and stored in seed banks in the country of origin and duplicated in the Millennium Seed Bank in the UK. The MSBP also strengthens the capacity of local communities to successfully conserve and sustainably use indigenous plants, which are important for their wellbeing. Since 2007, high quality seed collections and research information have been gathered on ca. 700 useful indigenous plant species that were selected by communities in Botswana, Kenya, Mali, Mexico and South Africa through Project MGU - The Useful Plants Project. These communities range from various farmer's groups and organisations to traditional healers, organic cotton/crop producers and primary schools. The information on seed conservation and plant propagation was used to train communities and to propagate ca. 200 species that were then planted in local gardens, and as species reintroduced for reforestation programmes and enriching village forests. Experimental plots have also been established to further investigate the field performance (plant survival and growth rate) of indigenous species, using low cost procedures. In addition, the activities support revenue generation for local communities directly through the sustainable use of plant products or indirectly through wider environmental and cultural services. This project has confirmed the potential of biodiversity conservation to improve food security and human health, enhance community livelihoods and strengthen the resilience of land and people to the changing climate. This approach of using indigenous species and having local communities play a central role from the selection of species to their planting and establishment, supported by complementary research, may represent a model for other regions of the world, where

  4. variability of volatile organic compounds emitted by seedlings of ...

    African Journals Online (AJOL)

    Prof. Adipala Ekwamu

    1Department of Crop Production, Soil and Environmental Management, Bowen University, P.M.B. 284, ... pathogen of native African grasses. .... infestation de la cicadelle étaient classes comme suit par ordre descendant: ... a farmer's entire crop can be wiped out by Maize ... Seeds were pre-germinated and then planted.

  5. Usability value and heavy metals accumulation in forage grasses grown on power station ash deposit

    Directory of Open Access Journals (Sweden)

    Simić Aleksandar S.

    2015-01-01

    Full Text Available The study of five forage grasses (Lolium multiflorum, Festuca rubra, Festuca arundinacea, Arrhenatherum elatius and Dactylis glomerata was conducted on an uncontaminated cultivated land, of leached chernozem type, and on “Nikola Tesla A” (TENT A thermal power station ash deposit. The concentrations of: As, Pb, Cd, Zn, Ni, Fe i Cu in grasses grown on two media were compared. Grass samples have been collected in tillering stage, when they were in full development. During the vegetative period three replications cut was conducted at about 3-5 cm height, imitating mowing and grazing. The concentrations of As and Ni were elevated in media samples collected from TENT A ash deposit, while the level of all studied elements in soil samples collected from cultivated land were within allowed limits. The variance of certain elements amounts in plant material collected from TENT A ash deposit was less homogeneous; the concentrations of As, Fe and Ni were higher in grasses collected from ash deposit, but Pb and Cu concentrations were higher in grasses grown on cultivated land. The concentrations of Zn were approximately the same in plants collected from the sites, whereas Cd concentrations were slightly increased in grasses grown on ash deposit. In general, it can be concluded from the results of this study that the concentrations of heavy metals in plants collected from both sites do not exceed maximal tolerant levels for fodder. The use of grasses grown on ash deposit for forage production should be taken with reserve. [Projekat Ministarstva nauke Republike Srbije, br. TR 31016: Unapređenje tehnologije gajenja krmnih biljaka na oranicama i travnjacima

  6. Patterns of gall infestation in Heteropterys byrsonimifolia A. Juss. in a forest-savannah ecotone

    Directory of Open Access Journals (Sweden)

    Marcela de Castro Nunes Santos Terra

    Full Text Available ABSTRACT Galls are the result of a specific interaction between an inducer and a host plant. The species Heteropterys byrsonimifolia A. Juss. occurs in abundance in semideciduous seasonal forest ecotones and adjacent open formations. In the ecological reserve Quedas do Rio Bonito, located in the state of Minas Gerais, Brazil, this species is affected by a single gall morphotype. The present study aimed to evaluate whether the structural complexity of the host (test of the structural complexity hypothesis and the distance between hosts (test of the resource concentration hypothesis affect gall density in H. byrsonimifolia and to characterize the spatial distribution of the infestation. The results corroborate the two hypotheses tested, suggesting a metapopulation pattern of gall infestation in H. byrsonimifolia. Gallers were more successful in abrupt forest-savannah transition environments, which may be associated with greater stress-induced host vulnerability that plants usually experience in ecotones.

  7. Practices to manage chestnut orchards infested by the Chinese gall wasp

    Directory of Open Access Journals (Sweden)

    Turchetti T

    2012-10-01

    Full Text Available The rapid spread of the Chinese gall wasp (Dryocosmus kuriphilus Yasumatsu in Italian chestnut growing areas is causing new criticisms. In this context, in addition to a clear plant suffering due to the wasp infestation, the dangerous recurrence of chestnut blight and the sudden spread of Gnomoniopsis sp., a coloniser of galls but also the etiological agent of nut brown rot, must be considered. Therefore, it is very important to increase the plants’ vigour and prevent their decline. Preliminary experiments were carried out in different Italian regions between 2010 and 2011. Organic plant fertilizers were applied to plants showing middle or high defoliation levels caused by the wasp attacks. The observations carried out during the growing season indicate a good vegetative restart in the treated plants compared to the untreated controls, in all the situations and independently of the fertilizers applied. Most of the treated plants (between the 75% and the 100% showed an evident improvement in the canopy vegetation, while the untreated controls were always classified in the worse classes of crown condition. These preliminary results highlight the efficacy of this kind of treatments for infested chestnut stands. This strategy, which is based on the preliminary evaluation of the plant vigour (following the proposed scale of attack severity and lack of foliage, consists in a manuring treatment at vegetative restart, which can be repeated in the following years in dependence on the results obtained. Moreover, pruning may be suggested only to manage the development of plants showing a definite recovery. The gall wasp pullulation requires new management strategies aimed at preserving the chestnut orchards, in order to avoid the chestnut cultivation to be marginalized or abandoned.

  8. Native plant recovery in study plots after fennel (Foeniculum vulgare) control on Santa Cruz Island

    Science.gov (United States)

    Power, Paula; Stanley, Thomas R.; Cowan, Clark; Robertson, James R.

    2014-01-01

    Santa Cruz Island is the largest of the California Channel Islands and supports a diverse and unique flora which includes 9 federally listed species. Sheep, cattle, and pigs, introduced to the island in the mid-1800s, disturbed the soil, browsed native vegetation, and facilitated the spread of exotic invasive plants. Recent removal of introduced herbivores on the island led to the release of invasive fennel (Foeniculum vulgare), which expanded to become the dominant vegetation in some areas and has impeded the recovery of some native plant communities. In 2007, Channel Islands National Park initiated a program to control fennel using triclopyr on the eastern 10% of the island. We established replicate paired plots (seeded and nonseeded) at Scorpion Anchorage and Smugglers Cove, where notably dense fennel infestations (>10% cover) occurred, to evaluate the effectiveness of native seed augmentation following fennel removal. Five years after fennel removal, vegetative cover increased as litter and bare ground cover decreased significantly (P species increased at Scorpion Anchorage in both seeded and nonseeded plots. At Smugglers Cove, exotic cover decreased significantly (P = 0.0001) as native cover comprised of Eriogonum arborescensand Leptosyne gigantea increased significantly (P < 0.0001) in seeded plots only. Nonseeded plots at Smugglers Cove were dominated by exotic annual grasses, primarily Avena barbata. The data indicate that seeding with appropriate native seed is a critical step in restoration following fennel control in areas where the native seed bank is depauperate.

  9. Subsurface earthworm casts can be important soil microsites specifically influencing the growth of grassland plants.

    Science.gov (United States)

    Zaller, Johann G; Wechselberger, Katharina F; Gorfer, Markus; Hann, Patrick; Frank, Thomas; Wanek, Wolfgang; Drapela, Thomas

    Earthworms (Annelida: Oligochaeta) deposit several tons per hectare of casts enriched in nutrients and/or arbuscular mycorrhizal fungi (AMF) and create a spatial and temporal soil heterogeneity that can play a role in structuring plant communities. However, while we begin to understand the role of surface casts, it is still unclear to what extent plants utilize subsurface casts. We conducted a greenhouse experiment using large mesocosms (volume 45 l) to test whether (1) soil microsites consisting of earthworm casts with or without AMF (four Glomus taxa) affect the biomass production of 11 grassland plant species comprising the three functional groups grasses, forbs, and legumes, (2) different ecological groups of earthworms (soil dwellers- Aporrectodea caliginosa vs. vertical burrowers- Lumbricus terrestris ) alter potential influences of soil microsites (i.e., four earthworms × two subsurface microsites × two AMF treatments). Soil microsites were artificially inserted in a 25-cm depth, and afterwards, plant species were sown in a regular pattern; the experiment ran for 6 months. Our results show that minute amounts of subsurface casts (0.89 g kg -1 soil) decreased the shoot and root production of forbs and legumes, but not that of grasses. The presence of earthworms reduced root biomass of grasses only. Our data also suggest that subsurface casts provide microsites from which root AMF colonization can start. Ecological groups of earthworms did not differ in their effects on plant production or AMF distribution. Taken together, these findings suggest that subsurface earthworm casts might play a role in structuring plant communities by specifically affecting the growth of certain functional groups of plants.

  10. Extending juvenility in grasses

    Energy Technology Data Exchange (ETDEWEB)

    Kaeppler, Shawn; de Leon Gatti, Natalia; Foerster, Jillian

    2017-04-11

    The present invention relates to compositions and methods for modulating the juvenile to adult developmental growth transition in plants, such as grasses (e.g. maize). In particular, the invention provides methods for enhancing agronomic properties in plants by modulating expression of GRMZM2G362718, GRMZM2G096016, or homologs thereof. Modulation of expression of one or more additional genes which affect juvenile to adult developmental growth transition such as Glossy15 or Cg1, in conjunction with such modulation of expression is also contemplated. Nucleic acid constructs for down-regulation of GRMZM2G362718 and/or GRMZM2G096016 are also contemplated, as are transgenic plants and products produced there from, that demonstrate altered, such as extended juvenile growth, and display associated phenotypes such as enhanced yield, improved digestibility, and increased disease resistance. Plants described herein may be used, for example, as improved forage or feed crops or in biofuel production.

  11. Delusional infestation.

    Science.gov (United States)

    Freudenmann, Roland W; Lepping, Peter

    2009-10-01

    This papers aims at familiarizing psychiatric and nonpsychiatric readers with delusional infestation (DI), also known as delusional parasitosis. It is characterized by the fixed belief of being infested with pathogens against all medical evidence. DI is no single disorder but can occur as a delusional disorder of the somatic type (primary DI) or secondary to numerous other conditions. A set of minimal diagnostic criteria and a classification are provided. Patients with DI pose a truly interdisciplinary problem to the medical system. They avoid psychiatrists and consult dermatologists, microbiologists, or general practitioners but often lose faith in professional medicine. Epidemiology and history suggest that the imaginary pathogens change constantly, while the delusional theme "infestation" is stable and ubiquitous. Patients with self-diagnosed "Morgellons disease" can be seen as a variation of this delusional theme. For clinicians, clinical pathways for efficient diagnostics and etiology-specific treatment are provided. Specialized outpatient clinics in dermatology with a liaison psychiatrist are theoretically best placed to provide care. The most intricate problem is to engage patients in psychiatric therapy. In primary DI, antipsychotics are the treatment of choice, according to limited but sufficient evidence. Pimozide is no longer the treatment of choice for reasons of drug safety. Future research should focus on pathophysiology and the neural basis of DI, as well as on conclusive clinical trials, which are widely lacking. Innovative approaches will be needed, since otherwise patients are unlikely to adhere to any study protocol.

  12. Genetic resources of perennial forage grasses in Serbia: Current state, broadening and evaluation

    Directory of Open Access Journals (Sweden)

    Sokolović Dejan

    2017-01-01

    Full Text Available Due to historical background of vegetation development, geographical position, climate and relief, Serbia represents one of the 158 world biodiversity centres, based upon the number of plant species and territory size (biodiversity index 0.72. Large areas in Serbia are under natural grasslands and pastures, composed of forage grass species, and important as source of natural plant genetic diversity and germplasm for breeding. These eco-systems represent basic prerequisites for sustainable forage production, but very low potential of them is utilized and genetic resources are not protected. Family Poaceae is present in Serbia flora with 70 genera and among them from the aspect of forage production and quality, the most important are perennial Festuca, Lolium, Dactylis, Phleum, Bromus, Arrhenatherum, Poa and Agrostis species. Most of these grasses have been bred in Serbia and lot of cultivars were released. These cultivars contain autochthonous Serbian material and represent great and important resource of genetic variability. Therefore, collecting of new samples which are acclimatised to local eco-geographical conditions and including them in plant ex situ gene bank is of exceptional importance for further utilization in different plant breeding programmes as well as genetic resources protection. These autochthonous populations have natural variability and very often have satisfactory yielding performance in comparison with introduced cultivars, which referred them for direct phenotypic selection for cultivars release. Broadening of forage grasses genotypes collection is permanent objective of Serbian scientists. Collected accessions are being characterized and evaluated for important phenological, morphological and agronomical traits. In this paper genetic resources of forage grass species, their diversity and potentials, state of the grasses gene banks, as well as possibility for breeding of new cultivars has been analysed.

  13. Systems Level Engineering of Plant Cell Wall Biosynthesis to Improve Biofuel Feedstock Quality

    Energy Technology Data Exchange (ETDEWEB)

    Hazen, Samuel

    2013-09-27

    Our new regulatory model of cell wall biosynthesis proposes original network architecture with several newly incorporated components. The mapped set of protein-DNA interactions will serve as a foundation for 1) understanding the regulation of a complex and integral plant component and 2) the manipulation of crop species for biofuel and biotechnology purposes. This study revealed interesting and novel aspects of grass growth and development and further enforce the importance of a grass model system. By functionally characterizing a suite of genes, we have begun to improve the sparse model for transcription regulation of biomass accumulation in grasses. In the process, we have advanced methodology and brachy molecular genetic tools that will serve as valuable community resource.

  14. Study of Feasibility Integrated Agroindustry Development Unit Black Grass Jelly Powder (Mesona palustris in Province of East Java

    Directory of Open Access Journals (Sweden)

    Irvan Adhin Cholilie

    2017-01-01

    Full Text Available Potential of black grass jelly plant in Indonesia is very prospective. These plants grow in areas such as Malang East Java, Pacitan, Magetan and Ponorogo. In 2010 the production of dried black grass jelly of 568 tons with a total productivity of 8.6 tons / year.  Location selection of the plant with a score weighting method produces the highest value of 4,16 for the city of Surabaya, so the establishment of the plant will be held in Surabaya. Therefore, it is necessary the application of a suitable drying models for this factory that is tunnel dryer based on the results of research and with the highest value is 4,281. To ensure the availability of black grass jelly dried leaves as raw materials of black grass jelly powder it is necessary to establish a partnership between farmers and companies. The partnership pattern that works best for black grass jelly powder factory is a partnership “inti plasma”. It is based on research with the results of the assessment and weighting by using pairwise comparison and rating scale, the value of the highest weight in the “inti plasma” partnership with a value of 4,893. By implementing this partnership will allow the factory to obtain raw materials easily and is more economical and can always be available throughout the year for partnering with farmers.    Keywords: black grass jelly powder, drying method, financial feasibility analysis, partnership patterns

  15. Host status of false brome grass to the leaf rust fungus Puccinia brachypodii and the stripe rust fungus P. Striiformis

    NARCIS (Netherlands)

    Barbieri, M.; Marcel, T.C.; Niks, R.E.

    2011-01-01

    Purple false brome grass (Brachypodium distachyon) has recently emerged as a model system for temperate grasses and is also a potential model plant to investigate plant interactions with economically important pathogens such as rust fungi. We determined the host status of five Brachypodium species

  16. Short Communication: Autelogical studies on grass species in ...

    African Journals Online (AJOL)

    A literature survey of autecological studies on southern African grass species was undertaken. Results revealed that there is a comparative lack of autecological versus community studies. Where autecological studies have been conducted, most of the attention was focused on 'pasture' or 'desirable' species with ...

  17. Development of herbicide resistance in black-grass (Alopecurus myosuroides in Bavaria

    Directory of Open Access Journals (Sweden)

    Gehring, Klaus

    2016-02-01

    Full Text Available Black-grass (Alopecurus myosuroides is one of the most important grass weeds in Bavaria. Chemical weed control with high efficacy is very important in crops like winter cereals, oilseed rape and maize. Crop rotations with more winter cereals, reduced soil cultivation and e.g. contract harvesting enhanced distribution of blackgrass in arable farming regions. Effects of herbicide resistance were observed since the last 20 years. The blackgrass herbicide resistance is well observed by the official plant protection service of Bavaria. A wide experience of resistance tests shows the development of resistant black-grass and provides an opportunity for future prospects in resistance dynamics.

  18. Responses to invasion and invader removal differ between native and exotic plant groups in a coastal dune.

    Science.gov (United States)

    Magnoli, Susan M; Kleinhesselink, Andrew R; Cushman, J Hall

    2013-12-01

    The spread of exotic, invasive species is a global phenomenon that is recognized as a major source of environmental change. Although many studies have addressed the effects of exotic plants on the communities they invade, few have quantified the effects of invader removal on plant communities, or considered the degree to which different plant groups vary in response to invasion and invader removal. We evaluated the effects of an exotic succulent, iceplant (Carpobrotus edulis), on a coastal dune plant community in northern California, as well as the community responses to its removal. To assess possible mechanisms by which iceplant affects other plants, we also evaluated its above- and belowground influences on the germination and growth of a dominant exotic annual grass, Bromus diandrus. We found that iceplant invasion was associated with reduced native plant cover as well as increased cover and density of some exotic plants-especially exotic annual grasses. However, iceplant removal did not necessarily lead to a reversal of these effects: removal increased the cover and density of both native and exotic species. We also found that B. diandrus grown in iceplant patches, or in soil where iceplant had been removed, had poorer germination and growth than B. diandrus grown in soil not influenced by iceplant. This suggests that the influence of iceplant on this dune plant community occurs, at least in part, due to belowground effects, and that these effects remain after iceplant has been removed. Our study demonstrates the importance of considering how exotic invasive plants affect not only native species, but also co-occurring exotic taxa. It also shows that combining observational studies with removal experiments can lead to important insights into the influence of invaders and the mechanisms of their effects.

  19. Downy brome control and impacts on perennial grass abundance: a systematic review spanning 64 years

    Science.gov (United States)

    Given the high cost of restoration and the underlying assumption that reducing annual grass abundance is a necessary precursor to rangeland restoration in the Intermountain West, USA, we sought to identify limitations and strengths of annual grass and woody plant reduction methods and refine future ...

  20. Community leaders' perspectives on socio-economic impacts of power-plant development

    International Nuclear Information System (INIS)

    Hastings, M.; Cawley, M.E.

    1981-01-01

    The primary focus of this research effort was to identify and measure the socioeconomic impacts of power plant development on non-metropolitan host communities. A mail survey, distributed to community leaders in 100 power plant communities east of the Mississippi River, was utilized to gather information from 713 respondents. Community leaders were questioned as to the plant's impact on (a) community groups, (b) aspects of community life, (c) overall community acceptance and (d) attitudes toward power plant development. Overall, the trends and patterns of plant impact on the host communities were found to be largely positive. Specifically, local employment opportunities were generally enhanced with the advent of the power plant. Directly related to power plant development was the overall improvement of the local economic situation. Off-shoots from such in the economic area included related general improvements in the community quality of life. While the vast majority of community leaders responded with positive comments on power plant presence, adverse impacts were also mentioned. Negative comments focused on environmental problems, deterioration of roads and traffic conditions, and the possibility of nuclear accidents. Despite these negative impacts, almost two-thirds of the community leaders would definitely support the reconstruction of the same energy facility. Power plant development, therefore, is generally perceived as both a positive and beneficial asset for the host area. (author)

  1. Biodiversity of Soil Microbial Communities Following Woody Plant Invasion of Grassland: An Assessment Using Molecular Methods

    Science.gov (United States)

    Kantola, I. B.; Gentry, T. J.; Filley, T. R.; Boutton, T. W.

    2012-12-01

    Woody plants have encroached into grasslands, savannas, and other grass-dominated ecosystems throughout the world during the last century. This dramatic vegetation change is likely driven by livestock grazing, altered fire frequencies, elevated atmospheric CO2 concentrations, and/or changes in atmospheric deposition patterns. Woody invasion often results in significant changes in ecosystem function, including alterations in above- and belowground primary productivity, soil C, N, and P storage and turnover, and the size and activity of the soil microbial biomass pool. The purpose of this study was to examine the relationships and interactions between plant communities and soil microbial communities in the Rio Grande Plains region of southern Texas where grasslands have been largely replaced by woodlands. Research was conducted along a successional chronosequence representing the stages of woody plant encroachment from open grassland to closed-canopy woodland. To characterize soil microbial community composition, soil samples (0-7.5 cm) were collected in remnant grasslands (representing time 0) and near the centers of woody plant clusters, groves, and drainage woodlands ranging in age from 10 to 130 yrs. Ages of woody plant stands were determined by dendrochronology. Community DNA was extracted from each soil sample with a MoBio PowerMax Soil DNA isolation kit. The DNA concentrations were quantified on a NanoDrop ND-1000 spectrophotometer and diluted to a standard concentration. Pyrosequencing was performed by the Research and Testing Laboratory (Lubbock, TX) according to Roche 454 Titanium chemistry protocols. Samples were amplified with primers 27F and 519R for bacteria, and primers ITS1F and ITS4 for fungi. Sequences were aligned using BioEdit and the RDP Pipeline and analyzed in MOTHUR. Non-metric multidimensional scaling of the operational taxonomic units identified by pyrosequencing revealed that both bacterial and fungal community composition were

  2. Factors affecting palatability of four submerged macrophytes for grass carp Ctenopharyngodon idella.

    Science.gov (United States)

    Sun, Jian; Wang, Long; Ma, Lin; Min, Fenli; Huang, Tao; Zhang, Yi; Wu, Zhenbin; He, Feng

    2017-12-01

    Grass carp can weaken the growth and reproductive capacity of submerged macrophytes by consuming valuable tissues, but factors affecting palatability of submerged macrophytes for grass carp rarely are considered. In this study, relative consumption rate of grass carp with regard to submerged macrophytes was in the following order: Hydrilla verticillata > Vallisneria natans > Ceratophyllum demersum > Myriophyllum spicatum. Firmness of macrophytes was in the following order: M. spicatum > C. demersum > H. verticillata = V. natans, whereas shear force was M. spicatum > C. demersum > H. verticillata > V. natans. After crude extracts of M. spicatum were combined with H. verticillata, grass carp fed on fewer macrophyte pellets that contained more plant secondary metabolites (PSMs). This indicated that structure and PSMs affected palatability of macrophytes.PSMs do not contribute to reduction in palatability through inhibition of intestinal proteinases activity, but they can cause a decrease in the abundance of Exiguobacterium, Acinetobacter-yielding proteases, lipases, and cellulose activity, which in turn can weaken the metabolic capacity of grass carp and adversely affect their growth. Thus, the disadvantages to the growth and development of grass carp caused by PSMs may drive grass carp to feed on palatable submerged macrophytes with lower PSMs.

  3. Changes in rainfall amount and frequency do not affect the outcome of the interaction between the shrub Retama sphaerocarpa and its neighbouring grasses in two semiarid communities.

    Science.gov (United States)

    Soliveres, Santiago; García-Palacios, Pablo; Maestre, Fernando T; Escudero, Adrián; Valladares, Fernando

    2013-04-01

    We evaluated the net outcome of the interaction between the shrub Retama sphaerocarpa , our target plant, and different herbaceous neighbours in response to changes in the magnitude and frequency of rainfall events during three years. The experiment was conducted in natural and anthropogenic grasslands dominated by a perennial stress-tolerator and ruderal annual species, respectively. In spite of the neutral or positive effects of neighbours on water availability, neighbouring plants reduced the performance of Retama juveniles, suggesting competition for resources other than water. The negative effects of grasses on the photochemical efficiency of Retama juveniles decreased with higher water availabilities or heavier irrigation pulses, depending on the grassland studied; however, these effects did not extent to the survival and growth of Retama juveniles. Our findings show the prevalence of competitive interactions among the studied plants, regardless of the water availability and its temporal pattern. These results suggest that positive interactions may not prevail under harsher conditions when shade-intolerant species are involved. This study could be used to further refine our predictions of how plant-plant interactions will respond to changes in rainfall, either natural or increased by the ongoing climatic change, in ecosystems where grass-shrubs interactions are prevalent.

  4. Changes in rainfall amount and frequency do not affect the outcome of the interaction between the shrub Retama sphaerocarpa and its neighbouring grasses in two semiarid communities

    Science.gov (United States)

    Soliveres, Santiago; García-Palacios, Pablo; Maestre, Fernando T.; Escudero, Adrián; Valladares, Fernando

    2015-01-01

    We evaluated the net outcome of the interaction between the shrub Retama sphaerocarpa, our target plant, and different herbaceous neighbours in response to changes in the magnitude and frequency of rainfall events during three years. The experiment was conducted in natural and anthropogenic grasslands dominated by a perennial stress-tolerator and ruderal annual species, respectively. In spite of the neutral or positive effects of neighbours on water availability, neighbouring plants reduced the performance of Retama juveniles, suggesting competition for resources other than water. The negative effects of grasses on the photochemical efficiency of Retama juveniles decreased with higher water availabilities or heavier irrigation pulses, depending on the grassland studied; however, these effects did not extent to the survival and growth of Retama juveniles. Our findings show the prevalence of competitive interactions among the studied plants, regardless of the water availability and its temporal pattern. These results suggest that positive interactions may not prevail under harsher conditions when shade-intolerant species are involved. This study could be used to further refine our predictions of how plant-plant interactions will respond to changes in rainfall, either natural or increased by the ongoing climatic change, in ecosystems where grass-shrubs interactions are prevalent. PMID:25914429

  5. Management techniques for the control of Melinis minutiflora P. Beauv. (molasses grass: ten years of research on an invasive grass species in the Brazilian Cerrado

    Directory of Open Access Journals (Sweden)

    Carlos Romero Martins

    2017-09-01

    Full Text Available ABSTRACT The invasion of exotic species is considered to be a major threat to the preservation of biodiversity. In the Parque Nacional de Brasília (National Park of Brasília, the invasive Melinis minutiflora (molasses grass occupies more than 10 % of the area of the park. The present, long-term, study compared two treatments of exposure to molasses grass: 1 fire and 2 integrated management (fire + herbicide sprays + manual removal. The aerial biomass of molasses grass in the experimental area initially represented ca. 55 % of the total aerial biomass, a percentage that apparently did not influence native plant species richness at this site. Fire alone was not sufficient to control molasses grass, which attained its pre-treatment biomass values after two years. Integrated management reduced, and maintained, biomass to less than 1 % of its original value after ten years, and maintained this level throughout the study, demonstrating that it is a promising strategy for the recovery of areas invaded by molasses grass in the Cerrado. However, because of the recolonization by molasses grass, long-term monitoring efforts are targeting outbreaks, which would require immediate intervention in order to maintain the native biological diversity of the region.

  6. Plant diversity surpasses plant functional groups and plant productivity as driver of soil biota in the long term.

    Directory of Open Access Journals (Sweden)

    Nico Eisenhauer

    2011-01-01

    Full Text Available One of the most significant consequences of contemporary global change is the rapid decline of biodiversity in many ecosystems. Knowledge of the consequences of biodiversity loss in terrestrial ecosystems is largely restricted to single ecosystem functions. Impacts of key plant functional groups on soil biota are considered to be more important than those of plant diversity; however, current knowledge mainly relies on short-term experiments.We studied changes in the impacts of plant diversity and presence of key functional groups on soil biota by investigating the performance of soil microorganisms and soil fauna two, four and six years after the establishment of model grasslands. The results indicate that temporal changes of plant community effects depend on the trophic affiliation of soil animals: plant diversity effects on decomposers only occurred after six years, changed little in herbivores, but occurred in predators after two years. The results suggest that plant diversity, in terms of species and functional group richness, is the most important plant community property affecting soil biota, exceeding the relevance of plant above- and belowground productivity and the presence of key plant functional groups, i.e. grasses and legumes, with the relevance of the latter decreasing in time.Plant diversity effects on biota are not only due to the presence of key plant functional groups or plant productivity highlighting the importance of diverse and high-quality plant derived resources, and supporting the validity of the singular hypothesis for soil biota. Our results demonstrate that in the long term plant diversity essentially drives the performance of soil biota questioning the paradigm that belowground communities are not affected by plant diversity and reinforcing the importance of biodiversity for ecosystem functioning.

  7. Induced mutations in highly heterozygous vegetatively propagated grasses

    International Nuclear Information System (INIS)

    Powell, J.B.

    1976-01-01

    Experience with mutation induction of turf and forage grasses indicates that much progress can be achieved by this method. More than 300 mutations have been produced in our laboratory in the cultivars Tifgreen and Tifdwarf bermudagrass (Cynodon sp.). In the Tifway and Tifcote bermudagrasses we have demonstrated similar mutation responses. The first three clones are triploids and Tifcote is a probable tetraploid. No seeds are set on these clones. Two clones of bermudagrass, Coastal and Coastcross-1, occupy millions of hectares in the USA. Both are mutable and are known to be hybrids with 36 chromosomes. Biotypes of dallisgrass (Paspalum dilatatum Poir.) exist with 40 and 50 chromosomes and reproduce as sexual and obligate apomictic forms. Gamma-ray and thermal-neutron treatment of seed of these biotypes produced mutants that maintained the maternal characteristics in subsequent generations. Bahiagrass (Paspalum notatum Fluegge) also has sexual and apomictic biotypes. Some success was indicated for increased seed set by mutagen treatment. Kentucky bluegrass (Poa pratensis L.) is a facultative apomict with varying numbers of chromosomes in different cultivars. Gamma-ray mutagen treatment of rhizomes produced numerous mutations for plant type and disease reaction. Most mutations perpetuate themselves through the seed. The characteristic in common with all these grasses is their heterozygosity, which is maintained by the vegetative propagation or apomictic mode of reproduction. The experience in using ionizing radiation to induce heritable changes in these vegetatively propagated grasses is one of considerable success. Mutation rates in some of these irradiated grasses exceeded 65% and aberrant plants with characteristics previously never observed were found. Numerous hemizygous and heterozygous loci seem to be a sensitive target for mutagens. (author)

  8. Soil ecosystem functioning under climate change: plant species and community effects

    Energy Technology Data Exchange (ETDEWEB)

    Kardol, Paul [ORNL; Cregger, Melissa [ORNL; Campany, Courtney E [ORNL; Classen, Aimee T [ORNL

    2010-01-01

    Feedbacks of terrestrial ecosystems to climate change depend on soil ecosystem dynamics. Soil ecosystems can directly and indirectly respond to climate change. For example, warming directly alters microbial communities by increasing their activity. Climate change may also alter plant community composition, thus indirectly altering the microbial communities that feed on their inputs. To better understand how climate change may directly and indirectly alter soil ecosystem functioning, we investigated old-field plant community and soil ecosystem responses to single and combined effects of elevated [CO2], warming, and water availability. Specifically, we collected soils at the plot level (plant community soils), and beneath dominant plant species (plant-specific soils). We used microbial enzyme activities and soil nematodes as indicators for soil ecosystem functioning. Our study resulted in two main findings: 1) Overall, while there were some interactions, water, relative to increases in [CO2] and warming, had the largest impact on plant community composition, soil enzyme activities, and soil nematodes. Multiple climate change factors can interact to shape ecosystems, but in this case, those interactions were largely driven by changes in water availability. 2) Indirect effects of climate change, via changes in plant communities, had a significant impact on soil ecosystem functioning and this impact was not obvious when looking at plant community soils. Climate change effects on enzyme activities and soil nematode abundance and community structure strongly differed between plant community soils and plant-specific soils, but also within plant-specific soils. In sum, these results indicate that accurate assessments of climate change impacts on soil ecosystem functioning require incorporating the concurrent changes in plant function and plant community composition. Climate change-induced shifts in plant community composition will likely modify or counteract the direct

  9. Plant interactions with multiple insect herbivores: from community to genes

    NARCIS (Netherlands)

    Stam, J.M.; Kroes, A.; Li, Y.; Gols, R.; Loon, van J.J.A.; Poelman, E.H.; Dicke, M.

    2014-01-01

    Every plant is a member of a complex insect community that consists of tens to hundreds of species that belong to different trophic levels. The dynamics of this community are critically influenced by the plant, which mediates interactions between community members that can occur on the plant

  10. Gene Expression Profiling of Grass Carp (Ctenopharyngodon idellus and Crisp Grass Carp

    Directory of Open Access Journals (Sweden)

    Ermeng Yu

    2014-01-01

    Full Text Available Grass carp (Ctenopharyngodon idellus is one of the most important freshwater fish that is native to China, and crisp grass carp is a kind of high value-added fishes which have higher muscle firmness. To investigate biological functions and possible signal transduction pathways that address muscle firmness increase of crisp grass carp, microarray analysis of 14,900 transcripts was performed. Compared with grass carp, 127 genes were upregulated and 114 genes were downregulated in crisp grass carp. Gene ontology (GO analysis revealed 30 GOs of differentially expressed genes in crisp grass carp. And strong correlation with muscle firmness increase of crisp grass carp was found for these genes from differentiation of muscle fibers and deposition of ECM, and also glycolysis/gluconeogenesis pathway and calcium metabolism may contribute to muscle firmness increase. In addition, a number of genes with unknown functions may be related to muscle firmness, and these genes are still further explored. Overall, these results had been demonstrated to play important roles in clarifying the molecular mechanism of muscle firmness increase in crisp grass carp.

  11. Invasive species in the flora of the Starobilsk grass-meadow steppe (Ukraine

    Directory of Open Access Journals (Sweden)

    Kucher Oksana O.

    2015-06-01

    Full Text Available The results of an investigation of the invasive species in the flora of the Starobilsk grass-meadow steppe are presented. Check-list of alien plant has over 386 species of vascular plants of which 28 species are invasive. We have identified 6 transformer species from the invasive plants. We aggregate data on the entry, distribution history, ecology, occurrence in different plant communities, degree of their naturalization and the habitats where they occur. The leading families of invasive species are: Asteraceae. The basis for this group is presented by origin from the North America and the Mediterranean. With respect to the time of immigration, most of them are kenophytes. By the method of introduction, ksenophytes are dominated; according to the degree of naturalization epoecophytes and agriophytes dominate in this group. With regard to the characteristics of life forms, half of invasive species are terophytes. The vast majority of plants are heliophytes and xeromesophytes. Most species are found in biotopes group I: Cultivated agricultural biotopes; least of all species found in biotopes group F: Biotopes dominated by chamephytes and nanophanerophytes. Only 3 species found in biotopes group F: Biotopes dominated by chamephytesand nanophanerophytes. The maps of distribution of 28 invasive species are provided. Most of the species marked dispersed in more than 30 squares.

  12. A novel method to characterize silica bodies in grasses.

    Science.gov (United States)

    Dabney, Clemon; Ostergaard, Jason; Watkins, Eric; Chen, Changbin

    2016-01-01

    The deposition of silicon into epidermal cells of grass species is thought to be an important mechanism that plants use as a defense against pests and environmental stresses. There are a number of techniques available to study the size, density and distribution pattern of silica bodies in grass leaves. However, none of those techniques can provide a high-throughput analysis, especially for a great number of samples. We developed a method utilizing the autofluorescence of silica bodies to investigate their size and distribution, along with the number of carbon inclusions within the silica bodies of perennial grass species Koeleria macrantha. Fluorescence images were analyzed by image software Adobe Photoshop CS5 or ImageJ that remarkably facilitated the quantification of silica bodies in the dry ash. We observed three types of silica bodies or silica body related mineral structures. Silica bodies were detected on both abaxial and adaxial epidermis of K. macrantha leaves, although their sizes, density, and distribution patterns were different. No auto-fluorescence was detected from carbon inclusions. The combination of fluorescence microscopy and image processing software displayed efficient utilization in the identification and quantification of silica bodies in K. macrantha leaf tissues, which should applicable to biological, ecological and geological studies of grasses including forage, turf grasses and cereal crops.

  13. Genetic engineering of grass cell wall polysaccharides for biorefining.

    Science.gov (United States)

    Bhatia, Rakesh; Gallagher, Joe A; Gomez, Leonardo D; Bosch, Maurice

    2017-09-01

    Grasses represent an abundant and widespread source of lignocellulosic biomass, which has yet to fulfil its potential as a feedstock for biorefining into renewable and sustainable biofuels and commodity chemicals. The inherent recalcitrance of lignocellulosic materials to deconstruction is the most crucial limitation for the commercial viability and economic feasibility of biomass biorefining. Over the last decade, the targeted genetic engineering of grasses has become more proficient, enabling rational approaches to modify lignocellulose with the aim of making it more amenable to bioconversion. In this review, we provide an overview of transgenic strategies and targets to tailor grass cell wall polysaccharides for biorefining applications. The bioengineering efforts and opportunities summarized here rely primarily on (A) reprogramming gene regulatory networks responsible for the biosynthesis of lignocellulose, (B) remodelling the chemical structure and substitution patterns of cell wall polysaccharides and (C) expressing lignocellulose degrading and/or modifying enzymes in planta. It is anticipated that outputs from the rational engineering of grass cell wall polysaccharides by such strategies could help in realizing an economically sustainable, grass-derived lignocellulose processing industry. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  14. Herbivory and dominance shifts among exotic and congeneric native plant species during plant community establishment

    DEFF Research Database (Denmark)

    Engelkes, Tim; Meisner, Annelein; Morriën, Elly

    2016-01-01

    in a riparian ecosystem during early establishment of invaded communities. We planted ten plant communities each consisting of three individuals of each of six exotic plant species as well as six phylogenetically related natives. Exotic plant species were selected based on a rapid recent increase in regional...... abundance, the presence of a congeneric native species, and their co-occurrence in the riparian ecosystem. All plant communities were covered by tents with insect mesh. Five tents were open on the leeward side to allow herbivory. The other five tents were completely closed in order to exclude insects...... and vertebrates. Herbivory reduced aboveground biomass by half and influenced which of the plant species dominated the establishing communities. Exposure to herbivory did not reduce the total biomass of natives more than that of exotics, so aboveground herbivory did not selectively enhance exotics during...

  15. Summer water use by California coastal prairie grasses: fog, drought, and community composition.

    Science.gov (United States)

    Corbin, Jeffrey D; Thomsen, Meredith A; Dawson, Todd E; D'Antonio, Carla M

    2005-10-01

    Plants in the Mediterranean climate region of California typically experience summer drought conditions, but correlations between zones of frequent coastal fog inundation and certain species' distributions suggest that water inputs from fog may influence species composition in coastal habitats. We sampled the stable H and O isotope ratios of water in non-photosynthetic plant tissue from a variety of perennial grass species and soil in four sites in northern California in order to determine the proportion of water deriving from winter rains and fog during the summer. The relationship between H and O stable isotopes from our sample sites fell to the right of the local meteoric water line (LMWL) during the summer drought, providing evidence that evaporation of water from the soil had taken place prior to the uptake of water by vegetation. We developed a novel method to infer the isotope values of water before it was subjected to evaporation in which we used experimental data to calculate the slope of the deltaH versus deltaO line versus the LMWL. After accounting for evaporation, we then used a two-source mixing model to evaluate plant usage of fog water. The model indicated that 28-66% of the water taken up by plants via roots during the summer drought came from fog rather than residual soil water from winter rain. Fog use decreased as distance from the coast increased, and there were significant differences among species in the use of fog. Rather than consistent differences in fog use by species whose distributions are limited to the coast versus those with broader distributions, species responded individualistically to summer fog. We conclude that fogwater inputs can mitigate the summer drought in coastal California for many species, likely giving an advantage to species that can use it over species that cannot.

  16. Role of Blossoms in Watermelon Seed Infestation by Acidovorax avenae subsp. citrulli.

    Science.gov (United States)

    Walcott, R R; Gitaitis, R D; Castro, A C

    2003-05-01

    ABSTRACT The role of watermelon blossom inoculation in seed infestation by Acidovorax avenae subsp. citrulli was investigated. Approximately 98% (84/87) of fruit developed from blossoms inoculated with 1 x 10(7) or 1 x 10(9) CFU of A. avenae subsp. citrulli per blossom were asymptomatic. Using immunomagnetic separation and the polymerase chain reaction, A. avenae subsp. citrulli was detected in 44% of the seed lots assayed, despite the lack of fruit symptoms. Furthermore, viable colonies were recovered from 31% of the seed lots. Of these lots, 27% also yielded seedlings expressing bacterial fruit blotch symptoms when planted under conditions of 30 degrees C and 90% relative humidity. A. avenae subsp. citrulli was detected and recovered from the pulp of 33 and 19%, respectively, of symptomless fruit whose blossoms were inoculated with A. avenae subsp. citrulli. The ability to penetrate watermelon flowers was not unique to A. avenae subsp. citrulli, because blossoms inoculated with Pantoea ananatis also resulted in infested seed and pulp. The data indicate that watermelon blossoms are a potential site of ingress for fruit and seed infestation by A. avenae subsp. citrulli.

  17. Evaluation of yield quality and weed infestation of common valerian (Valeriana officinalis L. in dependence on weed control method and forecrop.

    Directory of Open Access Journals (Sweden)

    Cezary Kwiatkowski

    2012-12-01

    Full Text Available A field experiment involving the cultivation of common valerian was conducted on loess soil in Abramów (Lublin region in the period 2007-2009. Qualitative parameters of herbal raw material obtained from this plant as well as in-crop weed infestation were evaluated depending on the protection method and forecrop. Hand-weeded plots, in which a hand hoe was used, were the control. In the other treatments, weeds were controlled using various herbicides and a mechanical implement (brush weeder. Potato and winter wheat + field pea cover crop were the forecrops for common valerian crops. A hypothesis was made that the use of a brush weeder and herbicides not registered for application in valerian crops would have a positive effect on this plant's productivity and weed infestation in its crops. It was also assumed that the introduction of a cover crop would allow the elimination of differences in the forecrop value of the crop stands in question. The best quantitative and qualitative parameters of common valerian raw material as well as the largest reduction of incrop weed infestation were recorded after the application of the herbicides which were not type approved. The use of the brush weeder in the interrows also had a beneficial effect on productivity of the plant in question, but secondary weed infestation at the end of the growing season of common valerian turned out to be its disadvantage. Traditional crop protection methods used in common valerian crops were less effective in weed infestation reduction and they resulted in lower plant productivity and raw material quality. Potato proved to be a better forecrop for common valerian than winter wheat + field pea; however, this positive effect was not confirmed statistically. The following annual weeds: Chenopodium album, Galinsoga parviflora, Stellaria media, were predominant in the common valerian crop. Traditional weed control methods resulted in the dominance of some dicotyledonous weeds, such

  18. Mineralogical composition changes of postagrogenic soils under different plant communities.

    Science.gov (United States)

    Churilin, Nikita; Chizhikova, Natalia; Varlamov, Evgheni; Churilina, Alexandra

    2017-04-01

    Plant communities play the leading role in transformation of soil. The need of studying former arable lands increases due to large number of abandoned lands in Russia. It is necessary to study mineralogical composition of soils involved into natural processes to understand the trends of their development after agricultural activities in the past. The aim of the study is to identify changes in mineralogical composition of soils under the influence of different plant communities. Soils were sampled in the south of Arkhangelsk region, Ustyansky district, near Akichkin Pochinok village. Soils are formed on clay moraine of Moscow glaciation. Soil profiles were dug on interfluve. We selected 4 plant communities on different stages of succession: upland meadow with domination of sod grasses (Phleum pratense, Agrostis tenuis), 16-year-old birch forest where dominants are herbaceous plants such as Poa sp., Chamerion angustiflium, Agrostis tenuis, 16-year-old spruce forest with no herbaceous vegetation and 70-year-old bilberry spruce forest with domination of Vaccinium myrtillus and Vaccinium vitis-idaea. To separate soil fractions mineral content. We noticed a clear differentiation of studied soils both in the content of fraction and composition of minerals. Mineralogical composition and major mineral phases correlation of profiles under 70 years and 16 years of spruce forests are different. Mineralogical content in upper part of profile under the young spruce is more differentiated than in old spruce forest: the amount of quartz and kaolinite increases in upper horizon, although in this case the overall pattern of profile formation of clay material during podzolization remains unchanged. There is more substantial desilting under the birch forest, compared with profile under the spruce of same age within top 50 cm. Under the meadow vegetation we've discovered differentiation in mineral composition. Upper horizons contain smectite phase and differ from the underlying

  19. Effects of rye grass coverage on soil loss from loess slopes

    Directory of Open Access Journals (Sweden)

    Yuequn Dong

    2015-09-01

    Full Text Available Vegetative coverage is commonly used to reduce urban slope soil erosion. Laboratory experimental study on soil erosion under grass covered slopes is conventionally time and space consuming. In this study, a new method is suggested to study the influences of vegetation coverage on soil erosion from a sloped loess surface under three slope gradients of 5°, 15°, and 25°; four rye grass coverages of 0%, 25%, 50%, and 75%; and three rainfall intensities of 60, 90, and 120 mm/h with a silt-loamy loess soil. Rye grasses were planted in the field with the studied soil before being transplanted into a laboratory flume. Grass was allowed to resume growth for a period before the rain simulation experiment. Results showed that the grass cover reduced soil erosion by 63.90% to 92.75% and sediment transport rate by 80.59% to 96.17% under different slope gradients and rainfall intensities. The sediment concentration/sediment transport rate from bare slope was significantly higher than from a grass-covered slope. The sediment concentration/transport rate from grass-covered slopes decreased linearly with grass coverage and increased with rainfall intensity. The sediment concentration/transport rate from the bare slope increased as a power function of slope and reached the maximum value at the gradient of about 25°, whereas that from grass-covered slope increased linearly and at much lower levels. The results of this study can be used to estimate the effect of vegetation on soil erosion from loess slopes.

  20. Fluorine emissions of industrial origin. Effect of fluorine on plants and animals

    Energy Technology Data Exchange (ETDEWEB)

    Cristiani, H

    1927-05-01

    Shrinkage and drooping of cress plants and grass, and lesions in dandelion leaves, caused by a 1-hr exposure to fluorine vapors in a test chamber are described. In the vicinity of an aluminum plant, where the electrolyte bath is composed of cryolite, a sodium aluminum fluoride, vegetables and the leaves of fruit trees show signs of burning and great damage can be observed on forest trees. Animals are affected by fluoride through their fodder. Guinea pigs fed plant food exposed to hydrofluoric acid gases develop fluorosis, but with very small concentrations, death may occur only after a year or more. Cows afflicted with this disease due to fodder harvested in fluorine-infested areas show initial symptoms of lameness of one or more legs, stamping by the animal, resting on one leg and then the other, inability to rise, and spontaneous sprains and bone fractures occurring in the stable. After several months, the animal gradually grows thin with a dry, hard hide and eventually dies. Experiments with corpses of animals who died of fluorosis have shown that their bones are more brittle than those of normal healthy animals.

  1. FmMDb: a versatile database of foxtail millet markers for millets and bioenergy grasses research.

    Directory of Open Access Journals (Sweden)

    Venkata Suresh B

    Full Text Available The prominent attributes of foxtail millet (Setaria italica L. including its small genome size, short life cycle, inbreeding nature, and phylogenetic proximity to various biofuel crops have made this crop an excellent model system to investigate various aspects of architectural, evolutionary and physiological significances in Panicoid bioenergy grasses. After release of its whole genome sequence, large-scale genomic resources in terms of molecular markers were generated for the improvement of both foxtail millet and its related species. Hence it is now essential to congregate, curate and make available these genomic resources for the benefit of researchers and breeders working towards crop improvement. In view of this, we have constructed the Foxtail millet Marker Database (FmMDb; http://www.nipgr.res.in/foxtail.html, a comprehensive online database for information retrieval, visualization and management of large-scale marker datasets with unrestricted public access. FmMDb is the first database which provides complete marker information to the plant science community attempting to produce elite cultivars of millet and bioenergy grass species, thus addressing global food insecurity.

  2. Distribution and infestation rate of cyst nematodes (Tylenchida: Heteroderidae) in cabbage growing areas in Samsun

    Science.gov (United States)

    Information concerning the occurrence and distribution of cyst nematodes (Heterodera spp.) in Samsun, Turkey is needed to assess their potential to cause economic damage on many crop plants. Surveys on the distribution and infestation rates of cyst nematodes in cabbage fields in Samsun were conducte...

  3. On the brink of change: plant responses to climate on the Colorado Plateau

    Science.gov (United States)

    Munson, Seth M.; Belnap, Jayne; Schelz, Charles D.; Moran, Mary; Carolin, Tara W.

    2011-01-01

    The intensification of aridity due to anthropogenic climate change in the southwestern U.S. is likely to have a large impact on the growth and survival of plant species that may already be vulnerable to water stress. To make accurate predictions of plant responses to climate change, it is essential to determine the long-term dynamics of plant species associated with past climate conditions. Here we show how the plant species and functional types across a wide range of environmental conditions in Colorado Plateau national parks have changed with climate variability over the last twenty years. During this time, regional mean annual temperature increased by 0.18°C per year from 1989–1995, 0.06°C per year from 1995–2003, declined by 0.14°C from 2003–2008, and there was high interannual variability in precipitation. Non-metric multidimensional scaling of plant species at long-term monitoring sites indicated five distinct plant communities. In many of the communities, canopy cover of perennial plants was sensitive to mean annual temperature occurring in the previous year, whereas canopy cover of annual plants responded to cool season precipitation. In the perennial grasslands, there was an overall decline of C3 perennial grasses, no change of C4 perennial grasses, and an increase of shrubs with increasing temperature. In the shrublands, shrubs generally showed no change or slightly increased with increasing temperature. However, certain shrub species declined where soil and physical characteristics of a site limited water availability. In the higher elevation woodlands, Juniperus osteosperma and shrub canopy cover increased with increasing temperature, while Pinus edulis at the highest elevation sites was unresponsive to interannual temperature variability. These results from well-protected national parks highlight the importance of temperature to plant responses in a water-limited region and suggest that projected increases in aridity are likely to promote

  4. Soil amendment effects on the exotic annual grass Bromus tectorum L. and facilitation of its growth by the native perennial grass Hilaria jamesii (Torr.) Benth

    Science.gov (United States)

    Belnap, J.; Sherrod, S.K.

    2009-01-01

    Greenhouse experiments were undertaken to identify soil factors that curtail growth of the exotic annual grass Bromus tectorum L. (cheatgrass) without significantly inhibiting growth of native perennial grasses (here represented by Hilaria jamesii [Torr.] Benth). We grew B. tectorum and H. jamesii alone (monoculture pots) and together (combination pots) in soil treatments that manipulated levels of soil phosphorus, potassium, and sodium. Hilaria jamesii showed no decline when its aboveground biomass in any of the applied treatments was compared to the control in either the monoculture or combination pots. Monoculture pots of B. tectorum showed a decline in aboveground biomass with the addition of Na2HPO4 and K2HPO4. Interestingly, in pots where H. jamesii was present, the negative effect of these treatments was ameliorated. Whereas the presence of B. tectorum generally decreased the aboveground biomass of H. jamesii (comparing aboveground biomass in monoculture versus combination pots), the presence of H. jamesii resulted in an enhancement of B. tectorum aboveground biomass by up to 900%. We hypothesize that B. tectorum was able to obtain resources from H. jamesii, an action that benefited B. tectorum while generally harming H. jamesii. Possible ways resources may be gained by B. tectorum from native perennial grasses include (1) B. tectorum is protected from salt stress by native plants or associated soil biota; (2) when B. tectorum is grown with H. jamesii, the native soil biota is altered in a way that favors B. tectorum growth, including B. tectorum tapping into the mycorrhizal network of native plants and obtaining resources from them; (3) B. tectorum can take advantage of root exudates from native plants, including water and nutrients released by natives via hydraulic redistribution; and (4) B. tectorum is able to utilize some combination of the above mechanisms. In summary, land managers may find adding soil treatments can temporarily suppress B. tectorum

  5. Mistletoe (Viscum album) infestation in the Scots pine stimulates drought-dependent oxidative damage in summer.

    Science.gov (United States)

    Mutlu, Salih; Ilhan, Veli; Turkoglu, Halil Ibrahim

    2016-04-01

    This study sought to contribute to the understanding of the detrimental effect of the mistletoe (Viscum albumL.), a hemiparasitic plant, on the mortality of the Scots pine (Pinus sylvestrisL.). Fieldwork was conducted in the town of Kelkit (Gumushane province, Turkey) from April to October in 2013. Pine needles of similar ages were removed from the branches of mistletoe-infested and noninfested Scots pine plants, then transported to the laboratory and used as research materials. The effects of the mistletoe on the Scots pine during infestation were evaluated by determining the levels of water, electrolyte leakage (EL), malondialdehyde (MDA, being a product of lipid peroxidation) and reactive oxygen species (ROS) such as superoxide anion (O2 (-•)), hydrogen peroxide (H2O2) and hydroxyl radical ((•)OH). In addition, the activities of antioxidative enzymes such as superoxide dismutase (SOD), catalase (CAT) and peroxidase (POX) were measured in the same samples. The highest level of drought stress was found in summer (especially in August) as a result of the lowest water content in the soil and the highest average temperature occurring in these months. The drought stress induced by mistletoe infestation caused a regular decrease in water content, while it increased the levels of EL, MDA and ROS (H2O2, O2 (-•)and(•)OH). The infestation also stimulated the activities of CAT and POX, with the exception of SOD. On the other hand, in August, when the drought conditions were the harshest, the levels of EL and MDA, which are two of the most important indicator parameters for oxidative stress, as well as the levels of H2O2and(•)OH, which are two of the ROS leading to oxidative stress, reached the highest values in both infested and noninfested needles, whereas the O2 (-•)level decreased. For the same period and needles, CAT activity increased, while SOD activity decreased. Peroxidase activity, however, did not exhibit a significant change. Our findings indicate

  6. Plant community analysis and ecology of afromontane and ...

    African Journals Online (AJOL)

    The plant communities of the forests of southwestern Ethiopia were described based on floristic analysis of the data collected between February 1995 and May 1996. Floristic analysis is based on the cover-abundance values of both woody and herbaceous species. Plant community-environment relationship was assessed ...

  7. Native arbuscular mycorrhizal symbiosis alters foliar bacterial community composition.

    Science.gov (United States)

    Poosakkannu, Anbu; Nissinen, Riitta; Kytöviita, Minna-Maarit

    2017-11-01

    The effects of arbuscular mycorrhizal (AM) fungi on plant-associated microbes are poorly known. We tested the hypothesis that colonization by an AM fungus affects microbial species richness and microbial community composition of host plant tissues. We grew the grass, Deschampsia flexuosa in a greenhouse with or without the native AM fungus, Claroideoglomus etunicatum. We divided clonally produced tillers into two parts: one inoculated with AM fungus spores and one without AM fungus inoculation (non-mycorrhizal, NM). We characterized bacterial (16S rRNA gene) and fungal communities (internal transcribed spacer region) in surface-sterilized leaf and root plant compartments. AM fungus inoculation did not affect microbial species richness or diversity indices in leaves or roots, but the AM fungus inoculation significantly affected bacterial community composition in leaves. A total of three OTUs in leaves belonging to the phylum Firmicutes positively responded to the presence of the AM fungus in roots. Another six OTUs belonging to the Proteobacteria (Alpha, Beta, and Gamma) and Bacteroidetes were significantly more abundant in NM plants when compared to AM fungus-inoculated plants. Further, there was a significant correlation between plant dry weight and leaf microbial community compositional shift. Also, there was a significant correlation between leaf bacterial community compositional shift and foliar nitrogen content changes due to AM fungus inoculation. The results suggest that AM fungus colonization in roots has a profound effect on plant physiology that is reflected in leaf bacterial community composition.

  8. Effects of herbivory by Diaprepes abbreviatus (Coleoptera: Curculionidae) larvae on four woody ornamental plant species.

    Science.gov (United States)

    Martin, Cliff G; Mannion, Catharine; Schaffer, Bruce

    2009-06-01

    The hypothesis that herbivory by Diaprepes root weevil larvae reduces leaf gas exchange and biomass was tested on buttonwood (Conocarpus erectus L.), Surinam cherry (Eugenia uniflora L.), mahogany (Swietenia mahagoni Jacq.), and pond apple (Annona glabra L). For Surinam cherry, net CO2 assimilation, transpiration, and stomatal conductance, but not internal CO2 concentration (collectively referred to as leaf gas exchange values), were 7-32% higher in noninfested than infested plants. For buttonwood, all four gas exchange values were 10-54% higher for noninfested than infested plants 3 h after infestation with large, seventh-instar larvae. However, by 4 wk after this infestation, net CO2 assimilation, transpiration, and stomatal conductance, but not internal CO2 concentration, were 11-37% higher for infested than for noninfested plants. For mahogany and pond apple, there were few or no significant differences in leaf gas exchange values between infested and noninfested plants. For all species, mean shoot and root fresh and dry weights were higher for noninfested than infested plants, with the differences most significant for buttonwood (37-85% higher), followed by Surinam cherry (37-143% higher), mahogany (49-84% higher), and pond apple (24-46% higher), which had no significant differences. There were significant differences among plant species in mean head capsule widths, thus larval instars, of larvae recovered from soil with the largest larvae from Surinam cherry (2.59 +/- 0.19 mm) and the smallest from mahogany (2.29 +/- 0.06 mm). Based on differences in leaf gas exchange and plant biomass between infested and noninfested plants of the four species tested, buttonwood and Surinam cherry are the most vulnerable to feeding by Diaprepes larvae followed by mahogany then pond apple.

  9. Plant traits determine the phylogenetic structure of arbuscular mycorrhizal fungal communities.

    Science.gov (United States)

    López-García, Álvaro; Varela-Cervero, Sara; Vasar, Martti; Öpik, Maarja; Barea, José M; Azcón-Aguilar, Concepción

    2017-12-01

    Functional diversity in ecosystems has traditionally been studied using aboveground plant traits. Despite the known effect of plant traits on the microbial community composition, their effects on the microbial functional diversity are only starting to be assessed. In this study, the phylogenetic structure of arbuscular mycorrhizal (AM) fungal communities associated with plant species differing in life cycle and growth form, that is, plant life forms, was determined to unravel the effect of plant traits on the functional diversity of this fungal group. The results of the 454 pyrosequencing showed that the AM fungal community composition differed across plant life forms and this effect was dependent on the soil collection date. Plants with ruderal characteristics tended to associate with phylogenetically clustered AM fungal communities. By contrast, plants with resource-conservative traits associated with phylogenetically overdispersed AM fungal communities. Additionally, the soil collected in different seasons yielded AM fungal communities with different phylogenetic dispersion. In summary, we found that the phylogenetic structure, and hence the functional diversity, of AM fungal communities is dependent on plant traits. This finding adds value to the use of plant traits for the evaluation of belowground ecosystem diversity, functions and processes. © 2017 John Wiley & Sons Ltd.

  10. Investigating Effects of Invasive Species on Plant Community Structure

    Science.gov (United States)

    Franklin, Wilfred

    2008-01-01

    In this article, the author presents a field study project that explores factors influencing forest community structure and lifts the veil off of "plant blindness." This ecological study consists of three laboratories: (1) preliminary field trip to the study site; (2) plant survey; and (3) analyzing plant community structure with descriptive…

  11. Treatment with grass allergen peptides improves symptoms of grass pollen-induced allergic rhinoconjunctivitis.

    Science.gov (United States)

    Ellis, Anne K; Frankish, Charles W; O'Hehir, Robyn E; Armstrong, Kristen; Steacy, Lisa; Larché, Mark; Hafner, Roderick P

    2017-08-01

    Synthetic peptide immunoregulatory epitopes are a new class of immunotherapy to treat allergic rhinoconjunctivitis (ARC). Grass allergen peptides, comprising 7 synthetic T-cell epitopes derived from Cyn d 1, Lol p 5, Dac g 5, Hol l 5, and Phl p 5, is investigated for treatment of grass pollen-induced ARC. We sought to evaluate the efficacy, safety, and tolerability of intradermally administered grass allergen peptides. A multicenter, randomized, double-blind, placebo-controlled study evaluated 3 regimens of grass allergen peptides versus placebo in patients with grass pollen-induced allergy (18-65 years). After a 4-day baseline challenge to rye grass in the environmental exposure unit (EEU), subjects were randomized to receive grass allergen peptides at 6 nmol at 2-week intervals for a total of 8 doses (8x6Q2W), grass allergen peptides at 12 nmol at 4-week intervals for a total of 4 doses (4x12Q4W), or grass allergen peptides at 12 nmol at 2-week intervals for a total of 8 doses (8x12Q2W) or placebo and treated before the grass pollen season. The primary efficacy end point was change from baseline in total rhinoconjunctivitis symptom score across days 2 to 4 of a 4-day posttreatment challenge (PTC) in the EEU after the grass pollen season. Secondary efficacy end points and safety were also assessed. Two hundred eighty-two subjects were randomized. Significantly greater improvement (reduction of total rhinoconjunctivitis symptom score from baseline to PTC) occurred across days 2 to 4 with grass allergen peptide 8x6Q2W versus placebo (-5.4 vs -3.8, respectively; P = .0346). Greater improvement at PTC also occurred for grass allergen peptide 8x6Q2W versus placebo (P = .0403) in patients with more symptomatic ARC. No safety signals were detected. Grass allergen peptide 8x6Q2W significantly improved ARC symptoms after rye grass allergen challenge in an EEU with an acceptable safety profile. Copyright © 2017 American Academy of Allergy, Asthma & Immunology

  12. Rehabilitating downy brome (Bromus tectorum)-invaded scrublands using imazapic and seeding with native shrubs

    Science.gov (United States)

    Suzanne M. Owen; Carolyn Hull Sieg; Catherine A. Gehring

    2011-01-01

    Rehabilitation of downy brome-infested shrublands is challenging once this invasive grass dominates native communities. The effectiveness of imazapic herbicide in reducing downy brome cover has been variable, and there is uncertainty about the impacts of imazapic on native species. We used a before-after-control-impact (BACI) field experiment and greenhouse studies to...

  13. Native plant community response to alien plant invasion and removal

    Directory of Open Access Journals (Sweden)

    Jara ANDREU

    2011-01-01

    Full Text Available Given the potential ecological impacts of invasive species, removal of alien plants has become an important management challenge and a high priority for environmental managers. To consider that a removal effort has been successful requires both, the effective elimination of alien plants and the restoration of the native plant community back to its historical composition and function. We present a conceptual framework based on observational and experimental data that compares invaded, non-invaded and removal sites to quantify invaders’ impacts and native plant recover after their removal. We also conduct a meta-analysis to quantitatively evaluate the impacts of plant invaders and the consequences of their removal on the native plant community, across a variety of ecosystems around the world. Our results that invasion by alien plants is responsible for a local decline in native species richness and abundance. Our analysis also provides evidence that after removal, the native vegetation has the potential to recover to a pre-invasion target state. Our review reveal that observational and experimental approaches are rarely used in concert, and that reference sites are scarcely employed to assess native species recovery after removal. However, we believe that comparing invaded, non-invaded and removal sites offer the opportunity to obtain scientific information with relevance for management.

  14. Optimal prescribed burn frequency to manage foundation California perennial grass species and enhance native flora

    Science.gov (United States)

    Grasslands can be diverse assemblages of grasses and forbs but not much is known how perennial grass species management affects native plant diversity except for in a few instances. We studied the use of late spring prescribed burns over a span of eleven years on experimental plots in which the pere...

  15. Measuring competition in plant communities where it is difficult to distinguish individual plants

    DEFF Research Database (Denmark)

    Damgaard, Christian

    2011-01-01

    A novel method for measuring plant-plant interactions in undisturbed semi-natural and natural plant communities where it is difficult to distinguish individual plants is discussed. It is assumed that the ecological success of the different plant species in the plant community may be adequately...... measured by plant cover and vertical density (a measure that is correlated to the 3-dimensional space occupancy and biomass). Both plant cover and vertical density are measured in a standard pin-point analysis in the beginning and at the end of the growing season. In the outlined competition model....... The method allows direct measurements of the competitive effects of neighbouringzplants on plant performance and the estimation of parameters that describe the ecological processes of plantplant interactions during the growing season as well as the process of survival and recruitment between growing seasons...

  16. Genetic diversity within a dominant plant outweighs plant species diversity in structuring an arthropod community.

    Science.gov (United States)

    Crawford, Kerri M; Rudgers, Jennifer A

    2013-05-01

    Plant biodiversity is being lost at a rapid rate. This has spurred much interest in elucidating the consequences of this loss for higher trophic levels. Experimental tests have shown that both plant species diversity and genetic diversity within a plant species can influence arthropod community structure. However, the majority of these studies have been conducted in separate systems, so their relative importance is currently unresolved. Furthermore, potential interactions between the two levels of diversity, which likely occur in natural systems, have not been investigated. To clarify these issues, we conducted three experiments in a freshwater sand dune ecosystem. We (1) independently manipulated plant species diversity, (2) independently manipulated genetic diversity within the dominant plant species, Ammophila breviligulata, and (3) jointly manipulated genetic diversity within the dominant plant and species diversity. We found that genetic diversity within the dominant plant species, Ammophila breviligulata, more strongly influenced arthropod communities than plant species diversity, but this effect was dependent on the presence of other species. In species mixtures, A. breviligulata genetic diversity altered overall arthropod community composition, and arthropod richness and abundance peaked at the highest level of genetic diversity. Positive nonadditive effects of diversity were detected, suggesting that arthropods respond to emergent properties of diverse plant communities. However, in the independent manipulations where A. breviligulata was alone, effects of genetic diversity were weaker, with only arthropod richness responding. In contrast, plant species diversity only influenced arthropods when A. breviligulata was absent, and then only influenced herbivore abundance. In addition to showing that genetic diversity within a dominant plant species can have large effects on arthropod community composition, these results suggest that understanding how species

  17. The ability to manipulate plant glucosinolates and nutrients explains the better performance of Bemisia tabaci Middle East-Asia Minor 1 than Mediterranean on cabbage plants.

    Science.gov (United States)

    Cui, Hongying; Guo, Litao; Wang, Shaoli; Xie, Wen; Jiao, Xiaoguo; Wu, Qingjun; Zhang, Youjun

    2017-08-01

    The performance of herbivorous insects is greatly affected by host chemical defenses and nutritional quality. Some herbivores have developed the ability to manipulate plant defenses via signaling pathways. It is currently unclear, however, whether a herbivore can benefit by simultaneously reducing plant defenses and enhancing plant nutritional quality. Here, we show that the better performance of the whitefly Bemisia tabaci Middle East-Asia Minor 1 (MEAM1; formerly the "B" biotype) than Mediterranean (MED; formerly the "Q" biotype) on cabbage is associated with a suppression of glucosinolate (GS) content and an increase in amino acid supply in MEAM1-infested cabbage compared with MED-infested cabbage. MEAM1 had higher survival, higher fecundity, higher intrinsic rate of increase ( r m ), a longer life span, and a shorter developmental time than MED on cabbage plants. Amino acid content was higher in cabbage infested with MEAM1 than MED. Although infestation by either biotype decreased the levels of total GS, aliphatic GS, glucoiberin, sinigrin, glucobrassicin, and 4OH-glucobrassicin, and the expression of related genes in cabbage, MED infestation increased the levels of 4ME-glucobrassicin, neoglucobrassicin, progoitrin, and glucoraphanin. The GS content and expression of GS-related genes were higher in cabbage infested with MED than with MEAM1. Our results suggest that MEAM1 performs better than MED on cabbage by manipulating host defenses and nutritional quality.

  18. Plant Community and Nitrogen Deposition as Drivers of Alpha and Beta Diversities of Prokaryotes in Reconstructed Oil Sand Soils and Natural Boreal Forest Soils

    Science.gov (United States)

    Prescott, Cindy E.; Renaut, Sébastien; Terrat, Yves; Grayston, Sue J.

    2017-01-01

    ABSTRACT The Athabasca oil sand deposit is one of the largest single oil deposits in the world. Following surface mining, companies are required to restore soil-like profiles that can support the previous land capabilities. The objective of this study was to assess whether the soil prokaryotic alpha diversity (α-diversity) and β-diversity in oil sand soils reconstructed 20 to 30 years previously and planted to one of three vegetation types (coniferous or deciduous trees and grassland) were similar to those found in natural boreal forest soils subject to wildfire disturbance. Prokaryotic α-diversity and β-diversity were assessed using massively parallel sequencing of 16S rRNA genes. The β-diversity, but not the α-diversity, differed between reconstructed and natural soils. Bacteria associated with an oligotrophic lifestyle were more abundant in natural forest soils, whereas bacteria associated with a copiotrophic lifestyle were more abundant in reconstructed soils. Ammonia-oxidizing archaea were most abundant in reconstructed soils planted with grasses. Plant species were the main factor influencing α-diversity in natural and in reconstructed soils. Nitrogen deposition, pH, and plant species were the main factors influencing the β-diversity of the prokaryotic communities in natural and reconstructed soils. The results highlight the importance of nitrogen deposition and aboveground-belowground relationships in shaping soil microbial communities in natural and reconstructed soils. IMPORTANCE Covering over 800 km2, land disturbed by the exploitation of the oil sands in Canada has to be restored. Here, we take advantage of the proximity between these reconstructed ecosystems and the boreal forest surrounding the oil sand mining area to study soil microbial community structure and processes in both natural and nonnatural environments. By identifying key characteristics shaping the structure of soil microbial communities, this study improved our understanding of

  19. Monogenean infestations and mortality in wild and cultured Red Sea fishes

    Science.gov (United States)

    Paperna, I.; Diamant, A.; Overstreet, R. M.

    1984-03-01

    Hyperinfection by the gill-infesting monogenean Allobivagina sp. (Microcotylea) caused mass mortalities in juveniles of Siganus luridus cultured in seawater earthen ponds and holding tanks in Eilat (Gulf of Aqaba, Red Sea). Other species of Siganus and adults of S. luridus cultured in the same systems acquired a low intensity of infestation. Most hyperinfected fish were emaciated and anaemic with hematocrit values below 10 %. Skin and mouth infestations by the monogenean Benedenia monticelli (Capsaloidea) caused mass mortalities in grey mullets (Mugilidae). These mortalities occurred in large individuals in wild populations of Liza carinata from lagoonal habitats in the Gulf of Suez and in most species of grey mullets cultured in Eilat. The intensity of infestation correlated positively with severity of infestation, and the common sites of infestation corresponded with areas of severe pathological alterations. Spontaneous recovery followed the climax of an epizootic, both for infested S. luridus and infested grey mullets. Decline in infestation coincided with remission of the pathological signs.

  20. Caracterización de la comunidad vegetal en una asociación de gramíneas mejoradas y Leucaena leucocephala cv.: Cunningham Characterization of the plant community in an association of improved grasses and Leucaena leucocephala cv.: Cunningham

    Directory of Open Access Journals (Sweden)

    Tania Sánchez

    2007-11-01

    Full Text Available En una vaquería de la Empresa Genética de Matanzas se realizó un estudio durante cinco años, con el objetivo de caracterizar el comportamiento de la comunidad vegetal en una asociación de gramíneas mejoradas y Leucaena leucocephala cv. Cunningham en condiciones comerciales. Se determinó la composición botánica del pastizal, la densidad de arbóreas, la disponibilidad de materia seca y los contenidos de MS, PB, Ca y P de las especies presentes en el sistema. La composición botánica del pastizal se caracterizó por un porcentaje de pastos mejorados superior al 50%, con predominio de Cynodon nlemfuensis cv. Jamaicano y Panicum maximum cv. Likoni; mientras que la leucaena mantuvo la densidad de plantas, como una adaptación a las condiciones del sistema. La disponibilidad de materia seca total fue superior a las 3 t/ha/rotación durante la etapa experimental. Se concluye que en la asociación de gramíneas mejoradas y L. leucocephala cv. Cunningham se presentó una alta disponibilidad de materia seca y persistencia del pastizal durante los cinco años del estudio, con valores de PB en las gramíneas mejoradas de 9,6-9,8% y en la leucaena de 25%, sin la aplicación de riego ni fertilizantes químicos, lo cual permitió atenuar las diferencias entre los períodos lluvioso y poco lluvioso.In a dairy of the Genetic Enterprise of Matanzas, a work was carried out for five years, with the objective of characterizing the performance of the plant community in an association of improved grasses and Leucaena leucocephala cv Cunningham under commercial conditions. The botanical composition of the pastureland, tree density, dry matter availability and DM, CP, Ca and P contents of the species present in the system were determined. The botanical composition of the pastureland was characterized by a percentage of improved pastures higher than 50%, with predominance of Cynodon nlemfuensis cv. Jamaicano and Panicum maximum cv. Likoni; while leucaena

  1. Influence of root-knot nematode infestation on antioxidant enzymes, chlorophyll content and growth in Pogostemon cablin (Blanco) Benth.

    Science.gov (United States)

    Bhau, B S; Borah, Bitupon; Ahmed, Reshma; Phukon, P; Gogoi, Barbi; Sarmah, D K; Lal, M; Wann, S B

    2016-04-01

    Plants adapt themselves to overcome adverse environmental conditions, and this involves a plethora of concurrent cellular activities. Physiological experiments or metabolic profiling can quantify this response. Among several diseases of Pogostemon cablin (Blanco) Benth. (Patchouli), root-knot nematode infection caused by Meloidogyne incognita (Kofoid and White) Chitwood causes severe damage to the plant and hence, the oil production. In the present study, we identified M. incognita morphologically and at molecular level using sequenced characterized amplified region marker (SCAR). M. incognita was artificially inoculated at different levels of second stage juveniles (J₂) to examine the effect on Patchouli plant growth parameters. Peroxidase and polyphenol oxidase enzyme activity and changes in the total phenol and chlorophyll contents in M. incognita was also evaluated in response to infection. The results have demonstrated that nematode infestation leads to increased peroxidase activities in the leaves of the patchouli plants and thereby, increase in phenolic content as a means of defence against nematode infestation. Chlorophyll content was also found decreased but no changes in polyphenol oxidase enzyme activity.

  2. Effect of Vetiver Grass on Reduction of Soil Salinity and Some Minerals

    OpenAIRE

    Masoud Noshadi; Hosein Valizadeh

    2017-01-01

    Introduction: Soil salinity is one of the major limitations of agriculture in the warm and dry regions. Soil sodification also damages soil structure and reduce soil permeability. Therefore, control of soil salinity and sodium is very important. Vetiver grass has unique characteristics that can be useful in phytoremediation. Materials and Methods: This research was conducted to investigate the effects of irrigation with different salinities on vetiver grass and the effects of this plant o...

  3. Site and plant species are important determinants of the Methylobacterium community composition in the plant phyllosphere.

    Science.gov (United States)

    Knief, Claudia; Ramette, Alban; Frances, Lisa; Alonso-Blanco, Carlos; Vorholt, Julia A

    2010-06-01

    The plant phyllosphere constitutes a habitat for numerous microorganisms; among them are members of the genus Methylobacterium. Owing to the ubiquitous occurrence of methylobacteria on plant leaves, they represent a suitable target for studying plant colonization patterns. The influence of the factor site, host plant species, time and the presence of other phyllosphere bacteria on Methylobacterium community composition and population size were evaluated in this study. Leaf samples were collected from Arabidopsis thaliana or Medicago truncatula plants and from the surrounding plant species at several sites. The abundance of cultivable Methylobacterium clearly correlated with the abundance of other phyllosphere bacteria, suggesting that methylobacteria constitute a considerable and rather stable fraction of the phyllosphere microbiota under varying environmental conditions. Automated ribosomal intergenic spacer analysis (ARISA) was applied to characterize the Methylobacterium community composition and showed the presence of similar communities on A. thaliana plants at most sites in 2 consecutive years of sampling. A substantial part of the observed variation in the community composition was explained by site and plant species, especially in the case of the plants collected at the Arabidopsis sites (50%). The dominating ARISA peaks that were detected on A. thaliana plants were found on other plant species grown at the same site, whereas some different peaks were detected on A. thaliana plants from other sites. This indicates that site-specific factors had a stronger impact on the Methylobacterium community composition than did plant-specific factors and that the Methylobacterium-plant association is not highly host plant species specific.

  4. The role of plant mycorrhizal type and status in modulating the relationship between plant and arbuscular mycorrhizal fungal communities.

    Science.gov (United States)

    Neuenkamp, Lena; Moora, Mari; Öpik, Maarja; Davison, John; Gerz, Maret; Männistö, Minna; Jairus, Teele; Vasar, Martti; Zobel, Martin

    2018-01-25

    Interactions between communities of plants and arbuscular mycorrhizal (AM) fungi shape fundamental ecosystem properties. Experimental evidence suggests that compositional changes in plant and AM fungal communities should be correlated, but empirical data from natural ecosystems are scarce. We investigated the dynamics of covariation between plant and AM fungal communities during three stages of grassland succession, and the biotic and abiotic factors shaping these dynamics. Plant communities were characterised using vegetation surveys. AM fungal communities were characterised by 454-sequencing of the small subunit rRNA gene and identification against the AM fungal reference database MaarjAM. AM fungal abundance was estimated using neutral-lipid fatty acids (NLFAs). Multivariate correlation analysis (Procrustes) revealed a significant relationship between plant and AM fungal community composition. The strength of plant-AM fungal correlation weakened during succession following cessation of grassland management, reflecting changes in the proportion of plants exhibiting different AM status. Plant-AM fungal correlation was strong when the abundance of obligate AM plants was high, and declined as the proportion of facultative AM plants increased. We conclude that the extent to which plants rely on AM symbiosis can determine how tightly communities of plants and AM fungi are interlinked, regulating community assembly of both symbiotic partners. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  5. Succession and Fermentation Products of Grass Carp (Ctenopharyngodon idellus Hindgut Microbiota in Response to an Extreme Dietary Shift

    Directory of Open Access Journals (Sweden)

    Yao Tong Hao

    2017-08-01

    Full Text Available Dietary intake affects the structure and function of microbes in host intestine. However, the succession of gut microbiota in response to changes in macronutrient levels during a long period of time remains insufficiently studied. Here, we determined the succession and metabolic products of intestinal microbiota in grass carp (Ctenopharyngodon idellus undergoing an abrupt and extreme diet change, from fish meal to Sudan grass (Sorghum sudanense. Grass carp hindgut microbiota responded rapidly to the diet shift, reaching a new equilibrium approximately within 11 days. In comparison to animal-diet samples, Bacteroides, Lachnospiraceae and Erysipelotrichaceae increased significantly while Cetobacterium decreased significantly in plant-diet samples. Cetobacterium was negatively correlated with Bacteroides, Lachnospiraceae and Erysipelotrichaceae, while Bacteroides was positively correlated with Lachnospiraceae. Predicted glycoside hydrolase and polysaccharide lyase genes in Bacteroides and Lachnospiraceae from the Carbohydrate-Active enZymes (CAZy database might be involved in degradation of the plant cell wall polysaccharides. However, none of these enzymes was detected in the grass carp genome searched against dbCAN database. Additionally, a significant decrease of short chain fatty acids levels in plant-based samples was observed. Generally, our results suggest a rapid adaption of grass carp intestinal microbiota to dietary shift, and that microbiota are likely to play an indispensable role in nutrient turnover and fermentation.

  6. Standardization of a rearing procedure of Tetranychus urticae Koch (Acari: Tetranychidae) on bean (Phaseolus vulgaris): plant age and harvest time

    International Nuclear Information System (INIS)

    Bustos, Alexander; Cantor, Fernando; Cure, Jose R; Rodriguez, Daniel

    2009-01-01

    A rearing technique was standardized to produce Tetranychus urticae Koch on Phaseolus vulgaris (ICA Cerinza variety) as a prey of the predatory mite Phytoseiulus persimilis Athias-Henriot. Two assays were conducted to assess the following variables: the most suitable plant age for mite infestation, and the best time to harvest the mites and re infest the plants. In the first experiment, four, five, six, and seven-week-old plants of P. vulgaris were infested with six T. urticae per foliole. The lower plant stratum exhibited the largest number of mites regardless of plant age. However, four-week old plants had the larger average number of individuals. In the second experiment four-week-old plants were infested with 0.5 female mite/cm 2 of leaf. The number of individuals per instar of T. urticae was recorded weekly. The highest mite production occurred between four and five weeks after infestation, indicating this to be the most suitable for mite harvesting and for plant reinfestation. (author)

  7. Bed Bug Infestations and Control Practices in China: Implications for Fighting the Global Bed Bug Resurgence

    Directory of Open Access Journals (Sweden)

    Changlu Wang

    2011-04-01

    Full Text Available The bed bug resurgence in North America, Europe, and Australia has elicited interest in investigating the causes of the widespread and increasing infestations and in developing more effective control strategies. In order to extend global perspectives on bed bug management, we reviewed bed bug literature in China by searching five Chinese language electronic databases. We also conducted telephone interviews of 68 pest control firms in two cities during March 2011. In addition, we conducted telephone interviews to 68 pest control companies within two cities in March 2011. Two species of bed bugs (Cimex lectularius L. and Cimex hemipterus (F. are known to occur in China. These were common urban pests before the early1980s. Nationwide “Four-Pest Elimination” campaigns (bed bugs being one of the targeted pests were implemented in China from 1960 to the early 1980s. These campaigns succeeded in the elimination of bed bug infestations in most communities. Commonly used bed bug control methods included applications of hot water, sealing of bed bug harborages, physical removal, and applications of residual insecticides (mainly organophosphate sprays or dusts. Although international and domestic travel has increased rapidly in China over the past decade (2000–2010, there have only been sporadic new infestations reported in recent years. During 1999–2009, all documented bed bug infestations were found in group living facilities (military dormitories, worker dormitories, and prisons, hotels, or trains. One city (Shenzhen city near Hong Kong experienced significantly higher number of bed bug infestations. This city is characterized by a high concentration of migratory factory workers. Current bed bug control practices include educating residents, washing, reducing clutter, putting items under the hot sun in summer, and applying insecticides (pyrethroids or organophosphates. There have not been any studies or reports on bed bug insecticide

  8. High uptake of 2,4,6-trinitrotoluene by vetiver grass - Potential for phytoremediation?

    International Nuclear Information System (INIS)

    Makris, Konstantinos C.; Shakya, Kabindra M.; Datta, Rupali; Sarkar, Dibyendu; Pachanoor, Devanand

    2007-01-01

    2,4,6-Trinitrotoluene (TNT) is a potent mutagen, and a Group C human carcinogen that has been widely used to produce munitions and explosives. Vast areas that have been previously used as ranges, munition burning, and open detonation sites are heavily contaminated with TNT. Conventional remediation activities in such sites are expensive and damaging to the ecosystem. Phytoremediation offers a cost-effective, environment-friendly solution, utilizing plants to extract TNT from contaminated soil. We investigated the potential use of vetiver grass (Vetiveria zizanioides) to effectively remove TNT from contaminated solutions. Vetiver grass plants were grown in hydroponic systems containing 40 mg TNT L -1 for 8 d. Aqueous concentrations of TNT reached the method detection limit (∼1 μg L -1 ) within the 8-d period, demonstrating high affinity of vetiver for TNT, without any visible toxic effects. Results from this preliminary hydroponic study are encouraging, but in need of verification using TNT-contaminated soils. - Vetiver grass demonstrates ability to absorb TNT in aqueous media

  9. Persistence of Overseeded Cool-Season Grasses in Bermudagrass Turf

    Directory of Open Access Journals (Sweden)

    Thomas Serensits

    2011-01-01

    Full Text Available Cool-season grass species are commonly overseeded into bermudagrass turf for winter color. When the overseeded grass persists beyond the spring; however, it becomes a weed. The ability of perennial ryegrass, Italian (annual ryegrass, intermediate ryegrass, and hybrid bluegrass to persist in bermudagrass one year after seeding was determined. Perennial ryegrass, intermediate ryegrass, and Italian ryegrass produced acceptable ground cover in the spring after fall seeding. Hybrid bluegrass did not establish well, resulting in unacceptable cover. Perennial ryegrass generally persisted the most one year after seeding, either because of summer survival of plants or because of new germination the following fall. Plant counts one year after seeding were greater in the higher seeding rate treatment compared to the lower seeding treatment rate of perennial ryegrass, suggesting new germination had occurred. Plant counts one year after seeding plots with intermediate ryegrass or Italian ryegrass were attributed primarily to latent germination and not summer survival. Applications of foramsulfuron generally did not prevent overseeded species stand one year after seeding, supporting the conclusion of new germination. Although quality is less with intermediate ryegrass compared to perennial ryegrass, it transitions out easier than perennial ryegrass, resulting in fewer surviving plants one year later.

  10. Methyl salicylate, a soybean aphid-induced plant volatile attractive to the predator Coccinella septempunctata.

    Science.gov (United States)

    Zhu, Junwei; Park, Kye-Chung

    2005-08-01

    Induced volatiles provide a signal to foraging predatory insects about the location of their prey. In Iowa, early in the growing season of soybean, Glycine max, many predacious seven-spotted lady beetles, Coccinella septempunctata, were observed on plants with heavy infestations of soybean aphid, Aphis glycines. We studied whether the attraction of this beetle is caused by the release of specific volatile compounds of soybean plants infested by aphids. Volatile compounds emitted by soybean plants infested by aphids were compared with those of undamaged, uninfested, and artificially damaged plants. Gas chromatography-mass spectrometry analyses revealed consistent differences in the profiles of volatile compounds between aphid-infested soybean plants and undamaged ones. Significantly more methyl salicylate was released from infested plants at both the V1 and V2 plant growth stages. However, release patterns of two other induced plant volatiles, (D)-limonene and (E,E)-alpha-farnesene, differed between the two plant growth stages. Gas chromatographic-electroantennographic detection of volatile extracts from infested soybean plants showed that methyl salicylate elicited significant electrophysiological responses in C. septempunctata. In field tests, traps baited with methyl salicylate were highly attractive to adult C. septempunctata, whereas 2-phenylethanol was most attractive to the lacewing Chrysoperla carnea and syrphid flies. Another common lady beetle, the multicolored Asian lady beetle, Harmonia axyridis, showed no preference for the compounds. These results indicate that C. septempunctata may use methyl salicylate as the olfactory cue for prey location. We also tested the attractiveness of some selected soybean volatiles to alate soybean aphids in the field, and results showed that traps baited with benzaldehyde caught significantly higher numbers of aphids.

  11. Costs of elephant grass gasification for rural electric power generation; Custos da gaseificacao de graminea para eletrificacao rural

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, Marcelo Cortes; Sanchez, Caio Glauco; Angulo, Mario Barriga [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia Mecanica. Dept. de Engenharia Termica e de Fluidos

    2000-07-01

    Biomass gasification is an sustainable option for energy supply, which presents low pollutants emission rate and allows - through the global cycle of growing and consumption of feedstock (vegetables), a balance between consumption and production of carbonic gas, preventing an increase of the carbonic gas levels in the atmosphere. Fluidized bed gasification is a means to increase the energetic use of biomass. A gasifier was built with internal diameter of 400 mm and total height of 4600 mm . The equipment was tested for gasification of elephant-grass (Pennisetum purpureum) at a 100 kg/h rate. It was evaluated an adequate diesel-electric-generator to work at hybrid regime, using 70% biomass gas and 30% diesel. With the equipment's construction costs, could be made a first economic feasibility assessment on the pilot-plant to produce electricity by grass gasification (elephant-grass) at rural communities. The annual cost of the investment was estimated. The cost of electricity was calculated as a function of the capital cost and the diesel price. The methods and equations for economic assessment are presented. This study found values between 0,16 and 0,23 R$/kWh for the produced electricity, what points towards the feasibility of this project. (author)

  12. Invasion of non-native grasses causes a drop in soil carbon storage in California grasslands

    Energy Technology Data Exchange (ETDEWEB)

    Koteen, Laura E; Harte, John [Energy and Resources Group, 310 Barrows Hall, University of California, Berkeley, CA 94720 (United States); Baldocchi, Dennis D, E-mail: lkoteen@berkeley.edu [Department of Environmental Science, Policy and Management, 137 Mulford Hall, University of California, Berkeley, CA 94720 (United States)

    2011-10-15

    Vegetation change can affect the magnitude and direction of global climate change via its effect on carbon cycling among plants, the soil and the atmosphere. The invasion of non-native plants is a major cause of land cover change, of biodiversity loss, and of other changes in ecosystem structure and function. In California, annual grasses from Mediterranean Europe have nearly displaced native perennial grasses across the coastal hillsides and terraces of the state. Our study examines the impact of this invasion on carbon cycling and storage at two sites in northern coastal California. The results suggest that annual grass invasion has caused an average drop in soil carbon storage of 40 Mg/ha in the top half meter of soil, although additional mechanisms may also contribute to soil carbon losses. We attribute the reduction in soil carbon storage to low rates of net primary production in non-native annuals relative to perennial grasses, a shift in rooting depth and water use to primarily shallow sources, and soil respiratory losses in non-native grass soils that exceed production rates. These results indicate that even seemingly subtle land cover changes can significantly impact ecosystem functions in general, and carbon storage in particular.

  13. Invasion of non-native grasses causes a drop in soil carbon storage in California grasslands

    International Nuclear Information System (INIS)

    Koteen, Laura E; Harte, John; Baldocchi, Dennis D

    2011-01-01

    Vegetation change can affect the magnitude and direction of global climate change via its effect on carbon cycling among plants, the soil and the atmosphere. The invasion of non-native plants is a major cause of land cover change, of biodiversity loss, and of other changes in ecosystem structure and function. In California, annual grasses from Mediterranean Europe have nearly displaced native perennial grasses across the coastal hillsides and terraces of the state. Our study examines the impact of this invasion on carbon cycling and storage at two sites in northern coastal California. The results suggest that annual grass invasion has caused an average drop in soil carbon storage of 40 Mg/ha in the top half meter of soil, although additional mechanisms may also contribute to soil carbon losses. We attribute the reduction in soil carbon storage to low rates of net primary production in non-native annuals relative to perennial grasses, a shift in rooting depth and water use to primarily shallow sources, and soil respiratory losses in non-native grass soils that exceed production rates. These results indicate that even seemingly subtle land cover changes can significantly impact ecosystem functions in general, and carbon storage in particular.

  14. Invasion of non-native grasses causes a drop in soil carbon storage in California grasslands

    Science.gov (United States)

    Koteen, Laura E.; Baldocchi, Dennis D.; Harte, John

    2011-10-01

    Vegetation change can affect the magnitude and direction of global climate change via its effect on carbon cycling among plants, the soil and the atmosphere. The invasion of non-native plants is a major cause of land cover change, of biodiversity loss, and of other changes in ecosystem structure and function. In California, annual grasses from Mediterranean Europe have nearly displaced native perennial grasses across the coastal hillsides and terraces of the state. Our study examines the impact of this invasion on carbon cycling and storage at two sites in northern coastal California. The results suggest that annual grass invasion has caused an average drop in soil carbon storage of 40 Mg/ha in the top half meter of soil, although additional mechanisms may also contribute to soil carbon losses. We attribute the reduction in soil carbon storage to low rates of net primary production in non-native annuals relative to perennial grasses, a shift in rooting depth and water use to primarily shallow sources, and soil respiratory losses in non-native grass soils that exceed production rates. These results indicate that even seemingly subtle land cover changes can significantly impact ecosystem functions in general, and carbon storage in particular.

  15. Does plant uptake or low soil mineral-N production limit mineral-N losses to surface waters and groundwater from soils under grass in summer?

    International Nuclear Information System (INIS)

    Bhatti, Ambreen; McClean, Colin J.; Cresser, Malcolm S.

    2013-01-01

    Summer minima and autumn/winter maxima in nitrate concentrations in rivers are reputedly due to high plant uptake of nitrate from soils in summer. A novel alternative hypothesis is tested here for soils under grass. By summer, residual readily mineralizable plant litter from the previous autumn/winter is negligible and fresh litter input low. Consequently little mineral-N is produced in the soil. Water-soluble and KCl-extractable mineral N in fresh soils and soils incubated outdoors for 7 days have been monitored over 12 months for soil transects at two permanent grassland sites near York, UK, using 6 replicates throughout. Vegetation-free soil is shown to produce very limited mineral-N in summer, despite the warm, moist conditions. Litter accumulates in autumn/winter and initially its high C:N ratio favours N accumulation in the soil. It is also shown that mineral-N generated monthly in situ in soil substantially exceeds the monthly mineral-N inputs via wet deposition at the sites. -- Highlights: •Soil mineral-N has been measured over a year at two grassland sites in the UK. •Rates of mineral-N production have also been measured in vegetation-free soils. •In summer, though soils were warm and moist, rate of mineral-N production was low. •The effect is attributed to low litter inputs in summer when grass is growing well. •Low mineral-N production in summer must be limiting N losses to fresh waters. -- Low mineral-N production in soils under grass limits summer N losses to surface- and ground-waters

  16. Flea (Pulex simulans) infestation in captive giant anteaters (Myrmecophaga tridactyla).

    Science.gov (United States)

    Mutlow, Adrian G; Dryden, Michael W; Payne, Patricia A

    2006-09-01

    A pair of captive adult giant anteaters (Myrmecophaga tridactyla) presented heavily infested with a flea species (Pulex simulans) commonly found on Virginia opossums (Didelphis virginiana) and raccoons (Procyon lotor) in the central United States. In this case, the flea was demonstrated to have completed its entire life cycle with the anteaters as the host. A single treatment of topical imidacloprid, coupled with removal and replacement of infested bedding, was rapidly effective at controlling the infestation and no adverse effects of the drug were noted. Control of the anteater infestation also removed the flea infestation of aardvarks in the same building.

  17. THE EUROPEAN POSITION OF DUTCH PLANT COMMUNITIES

    Directory of Open Access Journals (Sweden)

    J.A.M. JANSSEN

    2007-04-01

    Full Text Available In this paper it is analyzed for which plant communities (alliances the Netherlands has an international responsibility. Data has been brought together on the range and distribution of alliances in Europe, the area of plant communities in the Netherlands and surrounding countries and the occurrence of endemic associations in the Netherlands. The analysis resulted in a list of 34 out of 93 alliances in the Netherlands which are important from an international point of view.

  18. Phytoseiulus persimilis response to herbivore-induced plant volatiles as a function of mite-days.

    Science.gov (United States)

    Nachappa, Punya; Margolies, David C; Nechols, James R; Loughin, Thomas

    2006-01-01

    The predatory mite, Phytoseiulus persimilis (Acari: Phytoseiidae), uses plant volatiles (i.e., airborne chemicals) triggered by feeding of their herbivorous prey, Tetranychus urticae (Acari: Tetranychidae), to help locate prey patches. The olfactory response of P. persimilis to prey-infested plants varies in direct relation to the population growth pattern of T. urticae on the plant; P. persimilis responds to plants until the spider mite population feeding on a plant collapses, after which infested plants do not attract predators. It has been suggested that this represents an early enemy-free period for T. urticae before the next generation of females is produced. We hypothesize that the mechanism behind the diminished response of predators is due to extensive leaf damage caused by T. urticae feeding, which reduces the production of volatiles irrespective of the collapse of T. urticae population on the plant. To test this hypothesis we investigated how the response of P. persimilis to prey-infested plants is affected by: 1) initial density of T. urticae, 2) duration of infestation, and 3) corresponding leaf damage due to T. urticae feeding. Specifically, we assessed the response of P. persimilis to plants infested with two T. urticae densities (20 or 40 per plant) after 2, 4, 6, 8, 10, 12 or 14 days. We also measured leaf damage on these plants. We found that predator response to T. urticae-infested plants can be quantified as a function of mite-days, which is a cumulative measure of the standing adult female mite population sampled and summed over time. That is, response to volatiles increased with increasing numbers of T. urticae per plant or with the length of time plant was infested by T. urticae, at least as long at the leaves were green. Predatory mites were significantly attracted to plants that were infested for 2 days with only 20 spider mites. This suggests that the enemy-free period might only provide a limited window of opportunity for T. urticae

  19. Comparative study of the growth and carbon sequestration potential of Bermuda grass in industrial and urban areas

    Directory of Open Access Journals (Sweden)

    Usman Ali

    2018-06-01

    Full Text Available Climate change is a global phenomenon occurring throughout the world. Greenhouse gases (GHGs especially carbon dioxide (CO2 considered to be the major culprit to bring these changes. So, carbon (C sequestration by any mean could be useful to reduce the CO2 level in atmosphere. Turf grasses have the ability to sequester C and minimize the effects of GHGs on the environment. In order to study that how turf grasses can help in C sequestration, Bermuda grass (Cynodon dactylon was grown both at industrial and urban location and its effect on C storage were assessed by soil and plant analysis. Dry deposition of ammonium and nitrate was maximum at both locations through the year. However wet deposition was highest during the months of high rainfall. It was examined through soil analysis that soil organic matter, soil C and nitrogen in both locations increased after second mowing of grass. However, soil pH 6.68 in urban and 7.00 in industrial area and EC 1.86 dS/m in urban and 1.90 dS/m in industrial area decreased as the grass growth continue. Soil fresh weight (27.6 g in urban and (27.28 g industrial area also decreased after first and second mowing of grass. The C levels in plant dry biomass also increased which showed improved ability of plant to uptake C from the soil and store it. Similarly, chlorophyll contents were more in industrial area compared to urban area indicates the positive impact of high C concentration. Whereas stomatal conductance was reduced in high C environment to slow down respiration process. Hence, from present study it can be concluded that the Bermuda grass could be grown in areas with high C concentration in atmosphere for sequestrating C in soil.

  20. Spatio-temporal distribution of the infestations of ...

    African Journals Online (AJOL)

    Spatial distribution of the infestations revealed experimental plots having recorded between 0 and 8 ... Infestations were also independent of abiotic factors (rainfall, temperature and ... chemical fight, by terrestrial way, air or systemic, ... the implementation of efficient fight plan strategy. ..... Influence of abiotic factors on the.

  1. Comparison of arsenic uptake ability of barnyard grass and rice species for arsenic phytoremediation.

    Science.gov (United States)

    Sultana, Razia; Kobayashi, Katsuichiro; Kim, Ki-Hyun

    2015-01-01

    In this research, the relative performance in arsenic (As) remediation was evaluated among some barnyard grass and rice species under hydroponic conditions. To this end, four barnyard grass varieties and two rice species were selected and tested for their remediation potential of arsenic. The plants were grown for 2 weeks in As-rich solutions up to 10 mg As L(-1) to measure their tolerance to As and their uptake capabilities. Among the varieties of plants tested in all treatment types, BR-29 rice absorbed the highest amount of As in the root, while Nipponbare translocated the maximum amount of As in the shoot. Himetainubie barnyard grass produced the highest biomass, irrespective of the quantity of As in the solution. In all As-treated solutions, the maximum uptake of As was found in BR-29 followed by Choto shama and Himetainubie. In contrast, while the bioaccumulation factor was found to be the highest in Nipponbare followed by BR-29 and Himetainubie. The results suggest that both Choto shama and Himetainubie barnyard grass varieties should exhibit a great potential for As removal, while BR-29 and Nipponbare rice species are the best option for arsenic phytoremediation.

  2. Influences of Plant Species, Season and Location on Leaf Endophytic Bacterial Communities of Non-Cultivated Plants.

    Science.gov (United States)

    Ding, Tao; Melcher, Ulrich

    2016-01-01

    Bacteria are known to be associated endophytically with plants. Research on endophytic bacteria has identified their importance in food safety, agricultural production and phytoremediation. However, the diversity of endophytic bacterial communities and the forces that shape their compositions in non-cultivated plants are largely uncharacterized. In this study, we explored the diversity, community structure, and dynamics of endophytic bacteria in different plant species in the Tallgrass Prairie Preserve of northern Oklahoma, USA. High throughput sequencing of amplified segments of bacterial rDNA from 81 samples collected at four sampling times from five plant species at four locations identified 335 distinct OTUs at 97% sequence similarity, representing 16 phyla. Proteobacteria was the dominant phylum in the communities, followed by the phyla Bacteriodetes and Actinobacteria. Bacteria from four classes of Proteobacteria were detected with Alphaproteobacteria as the dominant class. Analysis of molecular variance revealed that host plant species and collecting date had significant influences on the compositions of the leaf endophytic bacterial communities. The proportion of Alphaproteobacteria was much higher in the communities from Asclepias viridis than from other plant species and differed from month to month. The most dominant bacterial groups identified in LDA Effect Size analysis showed host-specific patterns, indicating mutual selection between host plants and endophytic bacteria and that leaf endophytic bacterial compositions were dynamic, varying with the host plant's growing season in three distinct patterns. In summary, next generation sequencing has revealed variations in the taxonomic compositions of leaf endophytic bacterial communities dependent primarily on the nature of the plant host species.

  3. Influences of Plant Species, Season and Location on Leaf Endophytic Bacterial Communities of Non-Cultivated Plants.

    Directory of Open Access Journals (Sweden)

    Tao Ding

    Full Text Available Bacteria are known to be associated endophytically with plants. Research on endophytic bacteria has identified their importance in food safety, agricultural production and phytoremediation. However, the diversity of endophytic bacterial communities and the forces that shape their compositions in non-cultivated plants are largely uncharacterized. In this study, we explored the diversity, community structure, and dynamics of endophytic bacteria in different plant species in the Tallgrass Prairie Preserve of northern Oklahoma, USA. High throughput sequencing of amplified segments of bacterial rDNA from 81 samples collected at four sampling times from five plant species at four locations identified 335 distinct OTUs at 97% sequence similarity, representing 16 phyla. Proteobacteria was the dominant phylum in the communities, followed by the phyla Bacteriodetes and Actinobacteria. Bacteria from four classes of Proteobacteria were detected with Alphaproteobacteria as the dominant class. Analysis of molecular variance revealed that host plant species and collecting date had significant influences on the compositions of the leaf endophytic bacterial communities. The proportion of Alphaproteobacteria was much higher in the communities from Asclepias viridis than from other plant species and differed from month to month. The most dominant bacterial groups identified in LDA Effect Size analysis showed host-specific patterns, indicating mutual selection between host plants and endophytic bacteria and that leaf endophytic bacterial compositions were dynamic, varying with the host plant's growing season in three distinct patterns. In summary, next generation sequencing has revealed variations in the taxonomic compositions of leaf endophytic bacterial communities dependent primarily on the nature of the plant host species.

  4. Ancient plant remains with special reference to buckthorn, Frangula alnus Mill., pyrenes from Dascyleum, Balıkesir, NW Turkey

    Directory of Open Access Journals (Sweden)

    Emel Oybak Dönmez

    2016-12-01

    Full Text Available Carbonized plant remains recovered from the ancient city Dascyleum (Daskyleion in the province of Balıkesir in northwestern Turkey provide an outline of several phases of plant use in archaic, Hellenistic, and medieval times. At the study site, various crop plant remains of Near Eastern agriculture, including cereals (barley, Hordeum vulgare L. and bread/durum/rivet wheat, Triticum aestivum L. / T. durum Desf. / T. turgidum L. and pulses [bitter vetch, Vicia ervilia (L. Willd.; grass pea, Lathyrus sativus L. / L. cicera L.; fava bean, V. faba L.; and chickpea, Cicer arietinum L.] were found. Drupaceous fruits and pyrenes of buckthorn (Frangula alnus Mill. were also found, probably representing dyes and/or medicines used by the inhabitants of the mound. Archaeometrical analyses of the ancient buckthorn pyrenes by high performance liquid chromatography with photodiode array detector (HPLC-PDA provide chemical evidence for traces of ancient mordants remaining until the present day. Some of the pulse seed remains retrieved from the medieval layers at the study site were found to have been infested by bruchid beetles (Bruchidae.

  5. Tracking dynamics of plant biomass composting by changes in substrate structure, microbial community, and enzyme activity

    Science.gov (United States)

    2012-01-01

    Background Understanding the dynamics of the microbial communities that, along with their secreted enzymes, are involved in the natural process of biomass composting may hold the key to breaking the major bottleneck in biomass-to-biofuels conversion technology, which is the still-costly deconstruction of polymeric biomass carbohydrates to fermentable sugars. However, the complexity of both the structure of plant biomass and its counterpart microbial degradation communities makes it difficult to investigate the composting process. Results In this study, a composter was set up with a mix of yellow poplar (Liriodendron tulipifera) wood-chips and mown lawn grass clippings (85:15 in dry-weight) and used as a model system. The microbial rDNA abundance data obtained from analyzing weekly-withdrawn composted samples suggested population-shifts from bacteria-dominated to fungus-dominated communities. Further analyses by an array of optical microscopic, transcriptional and enzyme-activity techniques yielded correlated results, suggesting that such population shifts occurred along with early removal of hemicellulose followed by attack on the consequently uncovered cellulose as the composting progressed. Conclusion The observed shifts in dominance by representative microbial groups, along with the observed different patterns in the gene expression and enzymatic activities between cellulases, hemicellulases, and ligninases during the composting process, provide new perspectives for biomass-derived biotechnology such as consolidated bioprocessing (CBP) and solid-state fermentation for the production of cellulolytic enzymes and biofuels. PMID:22490508

  6. Nutrient dynamics and plant assemblages of Macrotermes falciger mounds in a savanna ecosystem

    Science.gov (United States)

    Muvengwi, Justice; Ndagurwa, Hilton G. T.; Nyenda, Tatenda; Mbiba, Monicah

    2016-10-01

    Termites through mound construction and foraging activities contribute significantly to carbon and nutrient fluxes in nutrient-poor savannas. Despite this recognition, studies on the influence of termite mounds on carbon and nitrogen dynamics in sub-tropical savannas are limited. In this regard, we examined soil nutrient concentrations, organic carbon and nitrogen mineralization in incubation experiments in mounds of Macrotermes falciger and surrounding soils of sub-tropical savanna, northeast Zimbabwe. We also addressed whether termite mounds altered the plant community and if effects were similar across functional groups i.e. grasses, forbs or woody plants. Mound soils had significantly higher silt and clay content, pH and concentrations of calcium (Ca), magnesium (Mg), potassium (K), organic carbon (C), ammonium (NH4+) and nitrate (NO3-) than surrounding soils, with marginal differences in phosphorus (P) and sodium (Na) between mounds and matrix soils. Nutrient enrichment increased by a factor ranging from 1.5 for C, 4.9 for Mg up to 10.3 for Ca. Although C mineralization, nitrification and nitrification fraction were similar between mounds and matrix soils, nitrogen mineralization was elevated on mounds relative to surrounding matrix soils. As a result, termite mounds supported unique plant communities rich and abundant in woody species but less diverse in grasses and forbs than the surrounding savanna matrix in response to mound-induced shifts in soil parameters specifically increased clay content, drainage and water availability, nutrient status and base cation (mainly Ca, Mg and Na) concentration. In conclusion, by altering soil properties such as texture, moisture content and nutrient status, termite mounds can alter the structure and composition of sub-tropical savanna plant communities, and these results are consistent with findings in other savanna systems suggesting that increase in soil clay content, nutrient status and associated changes in the plant

  7. Positive interactions between large herbivores and grasshoppers, and their consequences for grassland plant diversity.

    Science.gov (United States)

    Zhong, Zhiwei; Wang, Deli; Zhu, Hui; Wang, Ling; Feng, Chao; Wang, Zhongnan

    2014-04-01

    Although the influence of positive interactions on plant and sessile communities has been well documented, surprisingly little is known about their role in structuring terrestrial animal communities. We evaluated beneficial interactions between two distantly related herbivore taxa, large vertebrate grazers (sheep) and smaller insect grazers (grasshoppers), using a set of field experiments in eastern Eurasian steppe of China. Grazing by large herbivores caused significantly higher grasshopper density, and this pattern persisted until the end of the experiment. Grasshoppers, in turn, increased the foraging time of larger herbivores, but such response occurred only during the peak of growing season (August). These reciprocal interactions were driven by differential herbivore foraging preferences for plant resources; namely, large herbivores preferred Artemisia forbs, whereas grasshoppers preferred Leymus grass. The enhancement of grasshopper density in areas grazed by large herbivores likely resulted from the selective consumption of Artemisia forbs by vertebrate grazers, which may potentially improve the host finding of grasshoppers. Likewise, grasshoppers appeared to benefit large herbivores by decreasing the cover and density of the dominant grass Leymus chinensis, which hampers large herbivores' access to palatable forbs. Moreover, we found that large herbivores grazing alone may significantly decrease plant diversity, yet grasshoppers appeared to mediate such negative effects when they grazed with large herbivores. Our results suggest that the positive, reciprocal interactions in terrestrial herbivore communities may be more prevalent and complex than previously thought.

  8. A novel soil manganese mechanism drives plant species loss with increased nitrogen deposition in a temperate steppe.

    Science.gov (United States)

    Tian, Qiuying; Liu, Nana; Bai, Wenming; Li, Linghao; Chen, Jiquan; Reich, Peter B; Yu, Qiang; Guo, Dali; Smith, Melinda D; Knapp, Alan K; Cheng, Weixin; Lu, Peng; Gao, Yan; Yang, An; Wang, Tianzuo; Li, Xin; Wang, Zhengwen; Ma, Yibing; Han, Xingguo; Zhang, Wen-Hao

    2016-01-01

    Loss of plant diversity with increased anthropogenic nitrogen (N) deposition in grasslands has occurred globally. In most cases, competitive exclusion driven by preemption of light or space is invoked as a key mechanism. Here, we provide evidence from a 9-yr N-addition experiment for an alternative mechanism: differential sensitivity of forbs and grasses to increased soil manganese (Mn) levels. In Inner Mongolia steppes, increasing the N supply shifted plant community composition from grass-forb codominance (primarily Stipa krylovii and Artemisia frigida, respectively) to exclusive dominance by grass, with associated declines in overall species richness. Reduced abundance of forbs was linked to soil acidification that increased mobilization of soil Mn, with a 10-fold greater accumulation of Mn in forbs than in grasses. The enhanced accumulation of Mn in forbs was correlated with reduced photosynthetic rates and growth, and is consistent with the loss of forb species. Differential accumulation of Mn between forbs and grasses can be linked to fundamental differences between dicots and monocots in the biochemical pathways regulating metal transport. These findings provide a mechanistic explanation for N-induced species loss in temperate grasslands by linking metal mobilization in soil to differential metal acquisition and impacts on key functional groups in these ecosystems.

  9. Long term effects of ash fertilization of reed canary grass; Laangtidseffekter av askgoedsling vid roerflensodling

    Energy Technology Data Exchange (ETDEWEB)

    Palmborg, Cecilia; Lindvall, Eva

    2011-03-15

    Reed canary grass (RCG) is a bio-energy crop with large potential. It is a 1.5 . 2.5 m tall grass that is harvested in spring when it is grown as a fuel. At spring harvest it yields 3 . 10 ton field dried material per ha and year. One disadvantage when reed canary grass is used as a fuel is the high ash content, 5-10 %. This means that large quantities of ash have to be deposited which is expensive, about 1000 SEK/ton. However, since reed canary grass ash contains reasonable amounts of plant nutrients like phosphorous (P), potassium (K) and magnesium (Mg) it could be recycled as fertilizer in agriculture. The ash can be used without any pretreatment since, in agriculture, plant availability is desirable. The aim of this project, was to evaluate a field experiment, where ash was used as a fertilizer in reed canary grass. The experiment was established at the SLU research station in Umea, Sweden in the spring 2002. Three different fertilizer treatments were applied: Treatment A was fertilized with an ash produced by combustion of RCG together with municipal wastes (paper, plastic, leather), treatment B, an ash from combustion of RCG, and for treatment C commercial fertilizers were used. In total, 100 kg ha-1 of nitrogen (N), 15 kg ha-1 of phosphorous (P) and 80 kg ha-1 of potassium (K), were applied each year in all treatments. The amount of ash in treatment A and B was calculated from the chemical analysis of the ashes to be equal to the required amount of P, while K and N were supplied also by commercial fertilizers. [Table 1. Composition of the ashes] Literature study: There is a lack of knowledge about fertilization with reed canary grass ash, since few experiments have been conducted. The composition of reed canary grass is dependent of harvest date and the soil substrate. The amount of ash and the amount of harmful substances such as potassium and chloride generally decreases over winter, giving an increased fuel quality from spring harvest compared to autumn

  10. Designing hybrid grass genomes to control runoff generation

    Science.gov (United States)

    MacLeod, C.; Binley, A.; Humphreys, M.; King, I. P.; O'Donovan, S.; Papadopoulos, A.; Turner, L. B.; Watts, C.; Whalley, W. R.; Haygarth, P.

    2010-12-01

    Sustainable management of water in landscapes requires balancing demands of agricultural production whilst moderating downstream effects like flooding. Pasture comprises 69% of global agricultural areas and is essential for producing food and fibre alongside environmental goods and services. Thus there is a need to breed forage grasses that deliver multiple benefits through increased levels of productivity whilst moderating fluxes of water. Here we show that a novel grass hybrid that combines the entire genomes of perennial ryegrass (Lolium perenne - the grass of choice for Europe’s forage agriculture) and meadow fescue (Festuca pratensis) has a significant role in flood prevention. Field plot experiments established differences in runoff generation with the hybrid cultivar reducing runoff by 50% compared to perennial ryegrass cultivar, and by 35% compared to a meadow fescue cultivar (34 events over two years, replicated randomized-block design, statistically significant differences). This important research outcome was the result of a project that combined plant genetics, soil physics and plot scale hydrology to identify novel grass genotypes that can reduce runoff from grassland systems. Through a coordinated series of experiments examining effects from the gene to plot scale, we have identified that the rapid growth and then turnover of roots in the L. perenne x F. pratensis hybrid is likely to be a key mechanism in reducing runoff generation. More broadly this is an exciting first step to realizing the potential to design grass genomes to achieve both food production, and to deliver flood control, a key ecosystem service.

  11. Plant succession and approaches to community restoration

    Science.gov (United States)

    Bruce A. Roundy

    2005-01-01

    The processes of vegetation change over time, or plant succession, are also the processes involved in plant community restoration. Restoration efforts attempt to use designed disturbance, seedbed preparation and sowing methods, and selection of adapted and compatible native plant materials to enhance ecological function. The large scale of wildfires and weed invasion...

  12. Tillering dynamics of Tanzania guinea grass under nitrogen levels and plant densities - doi: 10.4025/actascianimsci.v34i4.13382

    Directory of Open Access Journals (Sweden)

    Manoel Eduardo Rozalino Santos

    2012-10-01

    Full Text Available This study evaluated the influence of nitrogen levels (N and plant density (D on the tillering dynamics of Tanzania guinea grass (Panicum maximum Jacq.. Treatments were arranged in a completely randomized block design with 12 treatments and two replicates in a factorial scheme (4 × 3 with four levels of N (0, 80, 160 or 320 kg ha-1 N and three plant densities (9, 25, and 49 plant m-². Higher number of tillers was observed in the treatment with 9 plants m-² and under higher levels of N, especially in the second and third generations. Still, the N influenced quadratically the appearance rate of basal and total tillers, which were also affected by plant density and interaction N × D. However, the appearance rate of aerial tiller was not influenced by factors evaluated. The mortality rate of total tiller was influenced quadratically by the nitrogen levels and plant densities. The mortality rate of basal tiller responded quadratically to plant density, whereas the mortality rate of aerial tiller increased linearly with fertilization. Pastures with low or intermediate densities fertilized with nitrogen, presented a more intense pattern of tiller renewal.

  13. Seagrass community dynamics in a subtropical estuarine lagoon

    Energy Technology Data Exchange (ETDEWEB)

    Thorhaug, A.; Roessler, M.A.

    1977-11-01

    The temporal and spatial distributions of major plant and animal species were investigated for 4 years in south Biscayne Bay including Card Sound, Florida, a subtropical estuarine lagoon. This was part of a larger study including chemical, physical and geological investigations. The major species of plants were Thalassia testudinum Banks ex Konig, turtle grass, Laurencia poitei (Lamour.) Howe, a red macroalga and the green algae Penicillus capitatus Lamarck and Halimeda incrassata (Ellis) Lamour. Standing crop and production of plant material taken bi-weekly is given in detail for 16 stations in Card Sound for the 4-year period and for eight stations in Biscayne Bay for a 1-year period. The major animal species were not equally distributed; in the near-shore Thalassia community, species of Pagurus, Neopanope, Hippolyte, Cerithium, Bulla, Prunum and Modulus were dominant. In mid-bay, where patchy Thalassia plus green algae occurred, Thor and Chondrilla were the dominant animals. Near the fringing islands, where tidal flow caused more oceanic conditions, the community was dominated by sponges, urchins and corals. This highlights the structural differences in what is now termed the ''Thalassia community.'' Comparisons with other known Thalassia communities are made.

  14. The impact of stubble crop on spring barley weed infestation

    Directory of Open Access Journals (Sweden)

    Eleonora Wrzesińska

    2016-09-01

    Full Text Available The condition and degree of weed infestation were determined in a spring barely crop grown in a short-term monoculture after mulching the soil with plants grown as a stubble crop (the control treatment without cover crop – lacy phacelia, white mustard, sunflower. The field experiment was carried out in 2010–2013 on good rye soil complex using a split-block design in four replications. The obtained results (the mean from all years of the experiment showed that the stubble crop, especially sunflower, reduced the diversity of weed species without causing at the same time changes in weed species dominance. In all the control treatments of the experiment, Chenopodium album and Fallopia convolvulus were the dominant species. The degree of spring barley weed infestation depended on the species grown in the cover crop. White mustard and lacy phacelia slightly increased the number of weeds but their fresh matter significantly increased. However, the sunflower cover crop significantly increased the number of weeds without any substantial differentiation of their fresh mass.

  15. The study of desiccation-tolerance in drying leaves of the desiccation-tolerant grass Sporobolus elongatus and the desiccation-sensitive grass Sporobolus pyramidalis.

    Science.gov (United States)

    Ghasempour, Hamid Reza; Kianian, Jahanbakheshe

    2007-03-01

    Hydrated leaves of the resurrection grass Sporobolus elongatus are not desiccation tolerant (DT), but moderate to severe drought stress can induce their DT with the leaves remain attach to drying intact plants. In vivo protein synthesis was studied with SDS-page of extracts of leaves of intact drying plants of S. elongatus (a desiccation-Tolerant grass (DT)) and S. pyramidalis (a desiccation-sensitive species (DS)). Free proline increased in drying leaves. Soluble sugar contents also increased with drying but were less than fully hydrated leaves at 8% RWC. Total protein also showed an increase with an exception at 8% RWC which showed a decrease. SDS-page of extracts of drying leaves of both DT and DS plants were studied as relative water contents (RWC) decreased. In first phase, DT species at 58% RWC (80-51% RWC range), two proteins increased in contents. In the second phase, at 8% (35-4% RWC range) two new bands increased and two bands decreased. In leaves of DS species some bands decreased as drying progressed. Also, as drying advanced free proline increased in DT species. Total protein increased as drying increased but at 8% RWC decreased. All data of results are consistent with current views about studied factors and their roles during drying and induction of desiccation tolerance in DT plants.

  16. Transgenerational soil-mediated differences between plants experienced or naïve to a grass invasion.

    Science.gov (United States)

    Deck, Anna; Muir, Adrianna; Strauss, Sharon

    2013-10-01

    Invasive species may undergo rapid change as they invade. Native species persisting in invaded areas may also experience rapid change over this short timescale relative to native populations in uninvaded areas. We investigated the response of the native Achillea millefolium to soil from Holcus lanatus-invaded and uninvaded areas, and we sought to determine whether differential responses between A. millefolium from invaded (invader experienced) and uninvaded (invader naïve) areas were mediated by soil community changes. Plants grown from seed from experienced and naïve areas responded differently to invaded and uninvaded soil with respect to germination time, biomass, and height. Overall, experienced plants grew faster and taller than their naïve counterparts. Naïve native plants showed negative feedbacks with their home soil and positive feedbacks with invaded soil; experienced plants were less responsive to soil differences. Our results suggest that native plants naïve to invasion may be more sensitive to soil communities than experienced plants, consistent with recent studies. While differences between naïve and experienced plants are transgenerational, our design cannot differentiate between differences that are genetically based, plastic, or both. Regardless, our results highlight the importance of seed source and population history in restoration, emphasizing the restoration potential of experienced seed sources.

  17. Post-harvest treatments in smooth-stalked meadow grass (Poa pratensis L.) - effect on carbohydrates and tiller development

    DEFF Research Database (Denmark)

    Boelt, Birte

    2007-01-01

    Temperate grass species require a period of short days/low temperature to respond to flower induction stimuli. The same environmental conditions stimulate the increase in carbohydrate concentration in aboveground biomass and the accumulation of reserve carbohydrates in the basal plant parts....... The present investigation was initiated to investigate the effect of post-harvest treatments on dry matter production in autumn, carbohydrate content, the number of reproductive tillers and seed yield in a turf-type cultivar ‘Conni' of smooth-stalked meadow grass. The results show that post-harvest treatments...... harvest and all residues removed. The results from plant samples in autumn indicate that decreasing aboveground biomass production leads to a higher carbohydrate concentration which may stimulate the reproductive development in smooth-stalked meadow grass....

  18. Remnant Trees in Enrichment Planted Gaps in Quintana Roo, Mexico: Reasons for Retention and Effects on Seedlings

    Directory of Open Access Journals (Sweden)

    Angélica Navarro-Martínez

    2017-07-01

    Full Text Available Natural forest management in the tropics is often impeded by scarcity of advanced regeneration of commercial species. To supplement natural regeneration in a forest managed by a community in the Selva Maya of Mexico, nursery-grown Swietenia macrophylla seedlings were planted in multiple-tree felling gaps, known as bosquetes. Remnant trees are often left standing in gaps for cultural and economic reasons or due to their official protected status. We focus on these purposefully retained trees and their impacts on planted seedlings. Sampled bosquetes were 400–1800 m2, of which remnant trees covered a mean of 29%. Seedling height growth rates over the first 18 months after out-planting more than doubled with increased canopy openness from 0.09 m year−1 under medium cover to 0.22 m year−1 in full sun. Liana infestations and shoot tip damage were most frequent on seedlings in the open, but, contrary to our expectations, height growth rates were 0.14 m year−1 faster for liana-infested seedlings than non-infested and did not differ between damaged and undamaged seedlings. Apparently the more rapid height growth of well-illuminated seedlings more than compensated for the effects of lianas or shoot tip damage. Despite the abundance of remnant trees and their negative effects on seedling growth, enrichment planting in bosquetes has potential for community-based natural forest management in the tropics in supplementing natural regeneration of commercial species. One obvious recommendation is to leave fewer remnant trees, especially those of commercial species that are non-merchantable due to stem defects and trees retained for no apparent reason, which together constituted half of the remnant crown cover in the sampled bosquetes. Finally, given the rapid growth of lianas and understory palms in large canopy gaps, at least the most vigorous of the planted seedlings should be tended for at least two years.

  19. The energy balance of utilising meadow grass in Danish biogas production

    DEFF Research Database (Denmark)

    Meyer, Ane Katharina Paarup; Raju, Chitra Sangaraju; Kucheryavskiy, Sergey V.

    2015-01-01

    of meadow areas, different relevant geo-datasets, spatial analyses, and various statistical analyses. The results show that values for the energy return on energy invested (EROEI) ranging from 1.7 to 3.3 can be obtained when utilising meadow grasses in local biogas production. The total national net energy......This paper presents a study of the energy balance of utilising nature conservation biomass from meadow habitats in Danish biogas production. Utilisation of nature conservation grass in biogas production in Denmark represents an interesting perspective for enhancing nature conservation of the open...... grassland habitats, while introducing an alternative to the use of intensively cultivated energy crops as co-substrates in manure based biogas plants. The energy balance of utilising nature conservation grass was investigated by using: data collected from previous investigations on the productivity...

  20. Patterns of infestation by chigger mites in four diurnal lizard species from a Restinga habitat (Jurubatiba) of southeastern Brazil.

    Science.gov (United States)

    Cunha-Barros, M; Van Sluys, M; Vrcibradic, D; Galdino, C A; Hatano, F H; Rocha, C F

    2003-08-01

    We studied the parasitism by larvae of the chigger mite Eutrombicula alfreddugesi on the lizard community of Restinga de Jurubatiba, Rio de Janeiro State, Southeastern Brazil. We investigated the patterns of infestation (prevalence and intensity) of chigger mites in four sympatric lizards: Tropidurus torquatus, Mabuya agilis, M. macrorhyncha and Cnemidophorus littoralis. All lizards collected were checked for the presence of mites, which were counted under stereomicroscope. We tested the relationship between intensity of infestation and lizard body size for each species using regression analysis. The prevalences and mean intensities (+ one standard deviation) of infestation on each host species were, respectively: 100%; 86.4 + 94.6 in T. torquatus (n = 62); 100%; 20.9 + 9.3 in M. agilis (n = 7); 100%; 11.1 + 13.1 in M. macrorhyncha (n = 12); and 95.2%; 19.1 + 16.8 in C. littoralis (n = 21). Only for C. littoralis did body size significantly affect the intensity of infestation (r = 0.27, p = 0.02). For all lizard species, the body parts where chiggers occurred with the highest intensity were those of skin folds and joint regions.

  1. Integration of Gamma Irradiation and Some Botanical oils To Protect Cowpea And Chickpea Seeds From Infestation With The Bruchid Beetle Callosobruchus Maculatus

    International Nuclear Information System (INIS)

    Hassan, R.S.; Mikhaiel, A.A.; Sileem, Th.M.

    2013-01-01

    The lethal effect of gamma radiation doses of 0.75 or 1.0 kGy on the adults Callosobruchus maculates reared on cowpeas and chickpeas were slow during the first and third days post-treatments. By increasing the dose to 1.5 kGy, the values of the percent mortality of adults in both seeds 24 h posttreatment were 53 and 40%, respectively. On the other hand, the dose 2 kGy caused sooner mortality for adults post-treatment for cowpeas. Different concentrations from eight plant oils; lemon grass, pinus sylvestris, parsley, fennel, geranium, peppermint, petitgrain and sweet basil, were used for protection of cowpea and chickpea seeds from infestation by Callosobruchus maculates. The results showed that sweet basil and geranium caused 89 and 79 % larval mortality, respectively, in case of cowpeas at concentration 0.5 % with exposure period of 48 hour while 71.0 and 63.33% adult mortality was occurred at the same concentration of both oils in chickpeas. The latent effects of tested plant oils on adult stage when beetles of C. maculatus were fed on seeds treated with the lowest two concentrations (0.0312, 0.0625%) of tested oils, the number of eggs laid per female was decreased in female exposed to all tested oils especially in case of cowpea treated with sweet basil and lemongrass. Most of the tested oils caused high reduction in larval penetration in both types of seeds. The adult weight was non significantly reduced at all treatments. The use of different plant oils leads to reduction in the progeny comparing to the control and sweet basil or geranium was found to be highly effective in decreasing the percentage of emergence (30 and 40% , respectively). No harmful effect was observed on germination of plant oils treated cowpea and chickpea seeds with concentration 2%.

  2. Effects of urban grass coverage on rainfall-induced runoff in Xi'an loess region in China

    Directory of Open Access Journals (Sweden)

    Jing Li

    2017-10-01

    Full Text Available In this study, laboratory rainfall simulation experiments were conducted to investigate the regulatory effects of grass coverage on rainfall-runoff processes. A total of 80 grass blocks planted with well-grown manilagrass, together with their root systems, were sampled from an eastern suburban area of Xi'an City in the northwest arid area of China and sent to a laboratory for rainfall simulation experiments. The runoff and infiltration processes of a slope with different grass coverage ratios and vegetation patterns were analyzed. The results show that the runoff coefficient decreases with the increase of the grass coverage ratio, and the influence of grass coverage on the reduction of runoff shows a high degree of spatial variation. At a constant grass coverage ratio, as the area of grass coverage moves downward, the runoff coefficient, total runoff, and flood peak discharge gradually decrease, and the flood peak occurs later. With the increase of the grass coverage ratio, the flood peak discharge gradually decreases, and the flood peak occurs later as well. In conclusion, a high grass coverage ratio with the area of grass coverage located at the lower part of the slope will lead to satisfactory regulatory effects on rainfall-induced runoff.

  3. Embracing community ecology in plant microbiome research

    NARCIS (Netherlands)

    Dini-Andreote, F.; Raaijmakers, J.M.

    2018-01-01

    Community assembly is mediated by selection, dispersal, drift, and speciation. Environmental selection is mostly used to date to explain patterns in plant microbiome assembly, whereas the influence of the other processes remains largely elusive. Recent studies highlight that adopting community

  4. Does hair coat length affect flea infestation in naturally infested dogs?

    Science.gov (United States)

    Silva, Guilherme Araujo Collares da; Lins, Luciana Araujo; Irala, Márcio Josué Costa; Cárcamo, Marcial Corrêa; Ribeiro, Paulo Bretanha

    2016-01-01

    The Siphonaptera are parasitic insects of endothermic animals and Ctenocephalides felis and Pulex irritans are important parasites of dogs. This study evaluated the effect of hair coat length and time of year on the population size of C. felis and P. irritans in naturally infested dogs. Fleas were collected from 14 dogs on a monthly basis for a year (February 2015 to January 2016) at a rural property in Bagé, Rio Grande do Sul, Brazil. The dogs were divided into two groups based on hair coat length: short coat (coat length coat (coat length > 5.0 cm, n= 7). In total, 2057 fleas were collected, 1541 of which were C. felis (74.91%) and 516 were P. irritans (25.08%). The number of C. felis and P. irritans individuals was significantly affected by hair coat length and time of year. The variation in flea numbers over the study months was higher in long-coated than in short-coated dogs for the two flea species and flea numbers increased with increasing mean monthly temperatures. The results provide a better understanding of behavioral aspects of flea communities in dogs and may help develop control strategies targeting these parasites.

  5. Contrasting patterns of groundwater evapotranspiration in grass and tree dominated riparian zones of a temperate agricultural catchment

    Science.gov (United States)

    Satchithanantham, Sanjayan; Wilson, Henry F.; Glenn, Aaron J.

    2017-06-01

    Consumptive use of shallow groundwater by phreatophytic vegetation is a significant part of the water budget in many regions, particularly in riparian areas. The influence of vegetation type on groundwater level fluctuations and evapotranspiration has rarely been quantified for contrasting plant communities concurrently although it has implications for downstream water yield and quality. Hourly groundwater evapotranspiration (ETG) rates were estimated for grass and tree riparian vegetation in southwestern Manitoba, Canada using two modified White methods. Groundwater table depth was monitored in four 21 m transects of five 3 m deep monitoring wells in the riparian zone of a stream reach including tree (Acer negundo; boxelder) and grass (Bromus inermis; smooth brome) dominated segments. The average depths to the groundwater table from the surface were 1.4 m and 1 m for the tree and grass segments, respectively, over the two-year study. During rain free periods of the growing season ETG was estimated for a total of 70 days in 2014 and 79 days in 2015 when diurnal fluctuations were present in groundwater level. Diurnal groundwater level fluctuations were observed during dry periods under both segments, however, ETG was significantly higher (p < 0.001) under trees compared to grass cover in 2014 (a wet year with 72% higher than normal growing season precipitation) and 2015 (a drier year with 15% higher than normal growing season precipitation). The two methods used to estimate ETG produced similar daily and seasonal values for the two segments. In 2014, total ETG was approximately 50% (148 mm) and 100% (282-285 mm) of reference evapotranspiration (ETref, 281 mm) for the grass and tree segments, respectively. In 2015, total ETG was approximately 40% (106-127 mm) and 120% (369-374 mm) of ETref (307 mm) for the grass and tree segments, respectively. Results from the study show the tree dominated portions of the stream reach consumed approximately 2.4 ML ha-1 yr-1 more

  6. Effect of Trinexapac-Ethyl and Traffic Stress on Physiological and Morphological Characteristics of Wheat Grass(Agropyron desertorum

    Directory of Open Access Journals (Sweden)

    M. H. Sheikh Mohamadi

    2015-06-01

    Full Text Available In order to evaluate the effect of trinexapac ethyl concentrations (0, 250 and 500 g/h and traffic stress (traffic and non traffic treatments on wheat grass physiological and morphological traits, an experiment was conducted on research farm of Isfahan University of Technology in 2011 - 2012 as factorial in completely randomized designs with three replications. The studied traits involved plant height and plant density, shoot dry weight and fresh weights, tillering, chlorophyll level, roots and shoot dissolved carbohydrates. Results showed that Trinexapac ethyl reduced plant height, fresh weight and dry weight of cut parts significantly. Application of 250 and 500 g/h Trinexapac ethyl decreased plant height by 21.23 percent and 31.85 percent respectively. Application of Trinexapac ethyl improved plant height, tillering and chlorophyll level. In contrast, chlorophyll level was decreased substantially under traffic treatment and this treatment did not affect wheat grass density and tillering significantly. Under 500 g/h Trinexapac ethyl treatment, tillering was increased by 36 percent compared with under control condition one. Results showed that Trinexapac ethyl application and traffic increased dissolved carbohydrates of root and shoot significantly. As a result, it was found that wheat grass is a traffic resistant plant and it seems that the use of Trinexapac ethyl increases plant resistance to traffic stress

  7. Reversing land degradation through grasses: a systematic meta-analysis in the Indian tropics

    Science.gov (United States)

    Mandal, Debashis; Srivastava, Pankaj; Giri, Nishita; Kaushal, Rajesh; Cerda, Artemi; Meherul Alam, Nurnabi

    2017-02-01

    Although intensive agriculture is necessary to sustain the world's growing population, accelerated soil erosion contributes to a decrease in the environmental health of ecosystems at local, regional and global scales. Reversing the process of land degradation using vegetative measures is of utmost importance in such ecosystems. The present study critically analyzes the effect of grasses in reversing the process of land degradation using a systematic review. The collected information was segregated under three different land use and land management situations. Meta-analysis was applied to test the hypothesis that the use of grasses reduces runoff and soil erosion. The effect of grasses was deduced for grass strip and in combination with physical structures. Similarly, the effects of grasses were analyzed in degraded pasture lands. The overall result of the meta-analysis showed that infiltration capacity increased approximately 2-fold after planting grasses across the slopes in agricultural fields. Grazing land management through a cut-and-carry system increased conservation efficiencies by 42 and 63 % with respect to reduction in runoff and erosion, respectively. Considering the comprehensive performance index (CPI), it has been observed that hybrid Napier (Pennisetum purpureum) and sambuta (Saccharum munja) grass seem to posses the most desirable attributes as an effective grass barrier for the western Himalayas and Eastern Ghats, while natural grass (Dichanthium annulatum) and broom grass (Thysanolaena maxima) are found to be most promising grass species for the Konkan region of the Western Ghats and the northeastern Himalayan region, respectively. In addition to these benefits, it was also observed that soil carbon loss can be reduced by 83 % with the use of grasses. Overall, efficacy for erosion control of various grasses was more than 60 %; hence, their selection should be based on the production potential of these grasses under given edaphic and agro

  8. Growth analysis of cotton crops infested with spider mites. I. Light interception and radiation-use efficiency

    International Nuclear Information System (INIS)

    Sadras, V.O.; Wilson, L.J.

    1997-01-01

    Two-spotted spider mites (Tetranychus urticae Koch) are important pests of cotton (Gossypium hirsutum L.). The effects of mites on cotton photosynthesis have been investigated at the leaf and cytological level but not at the canopy level. Our objective was to quantify the effects of timing and intensity of infestation by mites on cotton radiation-use efficiency (RUE). Leaf area, light interception, RUE, canopy temperature, and leaf nitrogen concentration (LNC) were assessed during two growing seasons in crops artificially infested with mites between 59 and 127 d after sowing. Normal and okra-leaf cultivars were compared. A mite index (MI = natural log of the area under the curve of mite number vs thermal time) was used to quantify the cumulative effects of mites on RUE, LNC, and canopy temperature. Crop growth reduction due to mites was greater in early- than in late-infested crops Growth reduction was primarily due to reductions in RUE, but in the more severe treatments accelerated leaf senescence and, hence. reduced light interception also contributed to reductions in crop growth. At a given date, infested okra-leaf crops usually had greater RUE than their normal-leaf counterparts. Both plant types, however. responded similarly to a given level of mite infestation. The ability of the okra-leaf cultivar to maintain greater RUE levels can be attributed. therefore, to its relative inhospitality for the development of mite colonies rather than to an intrinsically greater capacity to maintain photosynthesis under mite damage. Canopy temperature, LNC, and RUE showed a similar, biphasic pattern of response to Ml. In the first phase, response variables were almost unaffected by mites. In the second phase, there was a marked decline in RUE and LNC and a marked increase in canopy temperature with increasing MI. These results suggest (i) some degree of compensatory photosynthesis at low to moderate levels of mite infestation, and (ii) reductions in RUE of mite-infested

  9. Bottom-up and top-down effects on plant communities

    DEFF Research Database (Denmark)

    Souza, Lara; Zelikova, Tamara Jane; Sanders, Nate

    2016-01-01

    -down) and soil nitrogen (bottom-up) were manipulated over six years in an existing old-field community. We tracked plant α and β diversity - within plot richness and among plot biodiversity- and aboveground net primary productivity (ANPP) over the course of the experiment. We found that bottom-up factors...... affected ANPP while top-down factors influenced plant community structure. Across years, while N reduction lowered ANPP by 10%, N reduction did not alter ANPP relative to control plots. Further, N reduction lowered ANPP by 20% relative to N addition plots. On the other hand, the reduction of insect...... community composition via shifts in plant dominance....

  10. Ticks infesting bats (Mammalia: Chiroptera) in the Brazilian Pantanal.

    Science.gov (United States)

    Muñoz-Leal, Sebastián; Eriksson, Alan; Santos, Carolina Ferreira; Fischer, Erich; de Almeida, Juliana Cardoso; Luz, Hermes R; Labruna, Marcelo B

    2016-05-01

    Ticks associated with bats have been poorly documented in the Neotropical Zoogeographical Region. In this study, a total of 1028 bats were sampled for tick infestations in the southern portion of the Brazilian Pantanal. A total of 368 ticks, morphologically identified as Ornithodoros hasei (n = 364) and O. mimon (n = 4), were collected from the following bat species: Artibeus planirostris, Platyrrhinus lineatus, Phyllostomus hastatus, Mimon crenulatum and Noctilio albiventris. Morphological identification of O. hasei was confirmed by molecular analysis. Regarding the most abundant bat species, only 40 (6.2%) out of 650 A. planirostris were infested by O. hasei, with a mean intensity of 7.2 ticks per infested bat, or a mean abundance of 0.44 ticks per sampled bat. Noteworthy, one single P. hastatus was infested by 55 O. hasei larvae, in contrast to the 2.5-7.2 range of mean intensity values for the whole study. As a complement to the present study, a total of 8 museum bat specimens (6 Noctilio albiventris and 2 N. leporinus), collected in the northern region of Pantanal, were examined for tick infestations. These bats contained 176 ticks, which were all morphologically identified as O. hasei larvae. Mean intensity of infestation was 22, with a range of 1-46 ticks per infested bat. Our results suggest that A. planirostris might play an important role in the natural life cycle of O. hasei in the Pantanal.

  11. Exserohilum rostratum: characterization of a cross-kingdom pathogen of plants and humans.

    Directory of Open Access Journals (Sweden)

    Kalpana Sharma

    Full Text Available Pathogen host shifts represent a major source of new infectious diseases. There are several examples of cross-genus host jumps that have caused catastrophic epidemics in animal and plant species worldwide. Cross-kingdom jumps are rare, and are often associated with nosocomial infections. Here we provide an example of human-mediated cross-kingdom jumping of Exserohilum rostratum isolated from a patient who had received a corticosteroid injection and died of fungal meningitis in a Florida hospital in 2012. The clinical isolate of E. rostratum was compared with two plant pathogenic isolates of E. rostratum and an isolate of the closely related genus Bipolaris in terms of morphology, phylogeny, and pathogenicity on one C3 grass, Gulf annual rye grass (Lolium multiflorum, and two C4 grasses, Japanese stilt grass (Microstegium vimineum and bahia grass (Paspalum notatum. Colony growth and color, as well as conidia shape and size were the same for the clinical and plant isolates of E. rostratum, while these characteristics differed slightly for the Bipolaris sp. isolate. The plant pathogenic and clinical isolates of E. rostratum were indistinguishable based on morphology and ITS and 28S rDNA sequence analysis. The clinical isolate was as pathogenic to all grass species tested as the plant pathogenic strains that were originally isolated from plant hosts. The clinical isolate induced more severe symptoms on stilt grass than on rye grass, while this was the reverse for the plant isolates of E. rostratum. The phylogenetic similarity between the clinical and plant-associated E. rostratum isolates and the ability of the clinical isolate to infect plants suggests that a plant pathogenic strain of E. rostratum contaminated the corticosteroid injection fluid and was able to cause systemic disease in the affected patient. This is the first proof that a clinical isolate of E. rostratum is also an effective plant pathogen.

  12. Uptake of 2,4,6-Trinitrotoluene (TNT) by Vetiver grass (Vetiviera ziznoides L.) -- Preliminary results from a hydroponic study

    Science.gov (United States)

    Shakya, K. M.; Sarkar, D.; Datta, R.; Makris, K.; Pachanoor, D.

    2006-05-01

    2,4,6-Trinitrotoluene(TNT) is a potent mutagen and a Group C human carcinogen that has been widely used to produce munitions and explosives. As a result, vast areas that have been previously used as military ranges, munition burning and open detonation sites have been heavily contaminated with TNT. Conventional remedial activities in such contaminated sites commonly rely on methods such as incineration, land filling and soil composting. Phytoremediation offers a cost-effective solution, utilizing plants to phytoextract TNT from the contaminated soil. We propose the use of vetiver grass (Vetiveria zizanoides) to remove TNT from such contaminated soils. Vetiver is a fast-growing and adaptive grass, enabling its use in TNT-contaminated sites in a wide variety of soil types and climate. We also hypothesized that TNT removal by vetiver grass will be enhanced by utilizing a chaotropic agent (urea) to alter rhizosphere/root hair chemical environment. The objectives of this preliminary hydroponic study were: i) to investigate the effectiveness of vetiver grass in removing TNT from solution, and ii) to evaluate the use of a common agrochemical (urea) in enhancing TNT removal by vetiver grass. Vetiver plants were grown in a hydroponic system with five different TNT concentrations (0, 5, 10, 25, and 50 mg TNT L-1) and three urea concentrations (0, 0.01 and 0.1%). A plant density of 10 g L-1 and three replicate vessels per treatment were used. Aliquots were collected at several time intervals up to 192 hour, and were analyzed for TNT with HPLC. Results showed that vetiver was able to remove TNT from hydroponic solutions. The overall magnitude and kinetics of TNT removal by vetiver grass was enhanced in the presence of urea. TNT removal kinetics depended on TNT and urea initial concentrations, suggestive of second-order kinetic reactions. Preliminary results are encouraging, but in need for verification using more detailed studies involving TNT-contaminated soils. Ongoing

  13. Nuclear power plant and the host community

    Energy Technology Data Exchange (ETDEWEB)

    Olsson, G

    1978-10-27

    A councillor from a small Swedish community (Kaevlinge) in the vicinity of the Barsebaeck nuclear power plant describes the effects which the plant has had on neighbouring communities. The effect on the labour market has been small at Kaevlinge, both during routine operation and construction phases. This is however, a fairly densely populated area with a population of half a million in a radius of 30 km. The situation is different at Oskarshamn or Oesthammar. Neither has there been any special economic benefit, due to Swedish taxation laws. There has been little local anxiety due to the proximity of the nuclear power plant. Certain local planning problems have been caused by restricted zones and power cables. Cooperation between the local authorities and the utility has been good.

  14. Cucumber Plants Baited with Methyl Salicylate Accelerates Scymnus (Pullus) sodalis (Coleoptera: Coccinellidae) Visiting to Reduce Cotton Aphid (Hemiptera: Aphididae) Infestation.

    Science.gov (United States)

    Dong, Y J; Hwang, S Y

    2017-10-01

    The cotton aphid, Aphis gossypii (Glover) (Hemiptera: Aphididae), is a major pest of many crops worldwide and a major cucumber plant pest in Taiwan. Because cotton aphids rapidly develop insecticide resistance and because of the insecticide residue problem, a safe and sustainable method is required to replace conventional chemical control methods. Methyl salicylate (MeSA), a herbivore-induced plant volatile, has been shown to affect aphids' behavior and attract the natural enemies of aphids for reducing their population. Therefore, this study examined the direct effects of MeSA on cotton aphids' settling preference, population development, and attractiveness to natural enemies. The efficiency of using MeSA and the commercial insecticide pymetrozine for reducing the cotton aphid population in laboratory and outdoor cucumber plant pot was also examined. The results showed no difference in winged aphids' settling preference and population development between the MeSA and blank treatments. Cucumber plants infested with cotton aphids and baited with 0.1% or 10% MeSA contained significantly higher numbers of the natural enemy of cotton aphids, namely Scymnus (Pullus) sodalis (Weise) (Coleoptera: Coccinellidae), and MeSA-treated cucumber plants contained a lower number of aphids. Significantly lower cotton aphid numbers were found on cucumber plants within a 10-m range of MeSA application. In addition, fruit yield showed no difference between the MeSA and pymetrozine treatments. According to our findings, 0.1% MeSA application can replace insecticides as a cotton aphid control tool. However, large-scale experiments are necessary to confirm its efficiency and related conservation biological control strategies before further use. © The Author 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Fasciola hepatica infestation as a very rare cause of extrahepatic cholestasis

    Institute of Scientific and Technical Information of China (English)

    Ahmet Dobrucali; Rafet Yigitbasi; Yusuf Erzin; Oguzhan Sunamak; Erdal Polat; Hakan Yakar

    2004-01-01

    Fasciola hepatica, an endemic parasite in Turkey, is still a very rare cause of cholestasis worldwide. Through ingestion of contaminated water plants like watercress, humans can become the definitive host of this parasite. Cholestatic symptoms may be sudden but in some cases they may be preceeded by a long period of fever, eosinophilia and vague gastrointestinal symptoms. We report a woman with cholangitis symptoms of sudden onset which was proved to be due to Fasciola hepatica infestation by an endoscopic retrograde cholangiography.

  16. Plant community mediation of ecosystem responses to global change factors

    Science.gov (United States)

    Churchill, A. C.

    2017-12-01

    Human alteration of the numerous environmental drivers affecting ecosystem processes is unprecedented in the last century, including changes in climate regimes and rapid increases in the availability of biologically active nitrogen (N). Plant communities may offer stabilizing or amplifying feedbacks mediating potential ecosystem responses to these alterations, and my research seeks to examine the conditions associated with when plant feedbacks are important for ecosystem change. My dissertation research focused on the unintended consequences of N deposition into natural landscapes, including alpine ecosystems which are particularly susceptible to adverse environmental impacts. In particular, I examined alpine plant and soil responses to N deposition 1) across multiple spatial scales throughout the Southern Rocky Mountains, 2) among diverse plant communities associated with unique environmental conditions common in the alpine of this region, and 3) among ecosystem pools of N contributing to stabilization of N inputs within those communities. I found that communities responded to inputs of N differently, often associated with traits of dominant plant species but these responses were intimately linked with the abiotic conditions of each independent community. Even so, statistical models predicting metrics of N processing in the alpine were improved by encompassing both abiotic and biotic components of the main community types.

  17. Dominance hierarchies, diversity and species richness of vascular plants in an alpine meadow: contrasting short and medium term responses to simulated global change

    Directory of Open Access Journals (Sweden)

    Juha M. Alatalo

    2014-05-01

    Full Text Available We studied the impact of simulated global change on a high alpine meadow plant community. Specifically, we examined whether short-term (5 years responses are good predictors for medium-term (7 years changes in the system by applying a factorial warming and nutrient manipulation to 20 plots in Latnjajaure, subarctic Sweden. Seven years of experimental warming and nutrient enhancement caused dramatic shifts in dominance hierarchies in response to the nutrient and the combined warming and nutrient enhancement treatments. Dominance hierarchies in the meadow moved from a community being dominated by cushion plants, deciduous, and evergreen shrubs to a community being dominated by grasses, sedges, and forbs. Short-term responses were shown to be inconsistent in their ability to predict medium-term responses for most functional groups, however, grasses showed a consistent and very substantial increase in response to nutrient addition over the seven years. The non-linear responses over time point out the importance of longer-term studies with repeated measurements to be able to better predict future changes. Forecasted changes to temperature and nutrient availability have implications for trophic interactions, and may ultimately influence the access to and palatability of the forage for grazers. Depending on what anthropogenic change will be most pronounced in the future (increase in nutrient deposits, warming, or a combination of them both, different shifts in community dominance hierarchies may occur. Generally, this study supports the productivity–diversity relationship found across arctic habitats, with community diversity peaking in mid-productivity systems and degrading as nutrient availability increases further. This is likely due the increasing competition in plant–plant interactions and the shifting dominance structure with grasses taking over the experimental plots, suggesting that global change could have high costs to biodiversity in the

  18. SQ grass sublingual allergy immunotherapy tablet for disease-modifying treatment of grass pollen allergic rhinoconjunctivitis

    DEFF Research Database (Denmark)

    Dahl, Ronald; Roberts, Graham; de Blic, Jacques

    2016-01-01

    BACKGROUND: Allergy immunotherapy is a treatment option for allergic rhinoconjunctivitis (ARC). It is unique compared with pharmacotherapy in that it modifies the immunologic pathways that elicit an allergic response. The SQ Timothy grass sublingual immunotherapy (SLIT) tablet is approved in North...... America and throughout Europe for the treatment of adults and children (≥5 years old) with grass pollen-induced ARC. OBJECTIVE: The clinical evidence for the use of SQ grass SLIT-tablet as a disease-modifying treatment for grass pollen ARC is discussed in this review. METHODS: The review included...... the suitability of SQ grass SLIT-tablet for patients with clinically relevant symptoms to multiple Pooideae grass species, single-season efficacy, safety, adherence, coseasonal initiation, and cost-effectiveness. The data from the long-term SQ grass SLIT-tablet clinical trial that evaluated a clinical effect 2...

  19. Transgenic Expression of a Functional Fragment of Harpin Protein Hpa1 in Wheat Represses English Grain Aphid Infestation

    Institute of Scientific and Technical Information of China (English)

    XU Man-yu; ZHOU Ting; ZHAO Yan-ying; LI Jia-bao; XU Heng; DONG Han-song; ZHANG Chun-ling

    2014-01-01

    The harpin protein Hpa1 produced by the rice bacterial blight pathogen promotes plant growth and induces plant resistance to pathogens and insect pests. The region of 10-42 residues (Hpa110-42) in the Hpa1 sequence is critical as the isolated Hpa110-42 fragment is 1.3-7.5-fold more effective than the full length in inducing plant growth and resistance. Here we report that transgenic expression of Hpa110-42 in wheat induces resistance to English grain aphid, a dominant species of wheat aphids. Hpa110-42-induced resistance is effective to inhibit the aphid behavior in plant preference at the initial colonization stage and repress aphid performances in the reproduction, nymph growth, and instar development on transgenic plants. The resistance characters are correlated with enhanced expression of defense-regulatory genes (EIN2, PP2-A, and GSL10) and consistent with induced expression of defense response genes (Hel, PDF1.2, PR-1b, and PR-2b). As a result, aphid infestations are alleviated in transgenic plants. The level of Hpa110-42-induced resistance in regard to repression of aphid infestations is equivalent to the effect of chemical control provided by an insecticide. These results suggested that the defensive role of Hpa110-42 can be integrated into breeding germplasm of the agriculturally signiifcant crop with a great potential of the agricultural application.

  20. Ecological review of black-grass (Alopecurus myosuroides Huds. propagation abilities in relationship with herbicide resistance

    Directory of Open Access Journals (Sweden)

    Maréchal, PY.

    2012-01-01

    Full Text Available Alopecurus myosuroides Huds. (black-grass has always been a major concern for cereal growers, and the development of herbicide resistance does not improve the situation. This review article summarizes the different traits involved in the dispersal pattern of herbicide resistant black-grass individuals within a susceptible field population. Therefore, the whole life cycle of black-grass is depicted from the seed to the seed. From the early vegetative development to the seed falling, every stage is described, taking into account how herbicide resistance can influence or exert a different impact compared to susceptible plants.

  1. Pretreatment of grass waste using combined ionizing radiation-acid treatment for enhancing fermentative hydrogen production.

    Science.gov (United States)

    Yang, Guang; Wang, Jianlong

    2018-05-01

    In this study, the combined ionizing radiation-acid pretreatment process was firstly applied to enhance hydrogen fermentation of grass waste. Results showed that the combined pretreatment synergistically enhanced hydrogen fermentation of grass waste. The SCOD and soluble polysaccharide contents of grass waste increased by 1.6 and 2.91 times after the combined pretreatment, respectively. SEM observation and crystallinity test showed the combined pretreatment effectively disrupted the grass structure. Owing to the more favorable substrate conditions, the hydrogen yield achieved 68 mL/g-dry grass added after the combined pretreatment, which was 161.5%, 112.5% and 28.3% higher than those from raw, ionizing radiation pretreated and acid pretreated grass waste, respectively. The VS removal also increased from 13.9% to 25.6% by the combined pretreatment. Microbial community analysis showed that the abundance of dominant hydrogen producing genus Clostridium sensu stricto 1 increased from 37.9% to 69.4% after the combined pretreatment, which contributed to more efficient hydrogen fermentation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. A new species of Callispa Baly (Coleoptera, Chrysomelidae, Cassidinae, Callispini) infesting coconut palm ( Cocos nucifera L.) in India

    Science.gov (United States)

    Shameem, K. M.; Prathapan, K. D.

    2013-01-01

    Abstract Callispa keram sp. n. infesting coconut palm (Cocos nucifera L.) in Kerala, India is described and illustrated. Livistona chinensis R.Br. and Syagrus romanzoffiana (Cham.) Glassman are reported as additional host plants. PMID:23653522

  3. Strongyloides stercoralis infestation in HIV seropositive patients in ...

    African Journals Online (AJOL)

    Background: A contemporary surge in diarrhoeal illnesses due to parasitic infestations is believed to be a synergy between endemicity and HIV seropositivity. Aim: To determine the prevalence of Strongyloides stercoralis infestation among HIV seropositive patients at the University of Port Harcourt Teaching Hospital.

  4. Response of native insect communities to invasive plants.

    Science.gov (United States)

    Bezemer, T Martijn; Harvey, Jeffrey A; Cronin, James T

    2014-01-01

    Invasive plants can disrupt a range of trophic interactions in native communities. As a novel resource they can affect the performance of native insect herbivores and their natural enemies such as parasitoids and predators, and this can lead to host shifts of these herbivores and natural enemies. Through the release of volatile compounds, and by changing the chemical complexity of the habitat, invasive plants can also affect the behavior of native insects such as herbivores, parasitoids, and pollinators. Studies that compare insects on related native and invasive plants in invaded habitats show that the abundance of insect herbivores is often lower on invasive plants, but that damage levels are similar. The impact of invasive plants on the population dynamics of resident insect species has been rarely examined, but invasive plants can influence the spatial and temporal dynamics of native insect (meta)populations and communities, ultimately leading to changes at the landscape level.

  5. Comparative genomics analysis of rice and pineapple contributes to understand the chromosome number reduction and genomic changes in grasses

    Directory of Open Access Journals (Sweden)

    Jinpeng Wang

    2016-10-01

    Full Text Available Rice is one of the most researched model plant, and has a genome structure most resembling that of the grass common ancestor after a grass common tetraploidization ~100 million years ago. There has been a standing controversy whether there had been 5 or 7 basic chromosomes, before the tetraploidization, which were tackled but could not be well solved for the lacking of a sequenced and assembled outgroup plant to have a conservative genome structure. Recently, the availability of pineapple genome, which has not been subjected to the grass-common tetraploidization, provides a precious opportunity to solve the above controversy and to research into genome changes of rice and other grasses. Here, we performed a comparative genomics analysis of pineapple and rice, and found solid evidence that grass-common ancestor had 2n =2x =14 basic chromosomes before the tetraploidization and duplicated to 2n = 4x = 28 after the event. Moreover, we proposed that enormous gene missing from duplicated regions in rice should be explained by an allotetraploid produced by prominently divergent parental lines, rather than gene losses after their divergence. This means that genome fractionation might have occurred before the formation of the allotetraploid grass ancestor.

  6. Green grasses as light harvesters in dye sensitized solar cells

    Science.gov (United States)

    Shanmugam, Vinoth; Manoharan, Subbaiah; Sharafali, A.; Anandan, Sambandam; Murugan, Ramaswamy

    2015-01-01

    Chlorophylls, the major pigments presented in plants are responsible for the process of photosynthesis. The working principle of dye sensitized solar cell (DSSC) is analogous to natural photosynthesis in light-harvesting and charge separation. In a similar way, natural dyes extracted from three types of grasses viz. Hierochloe Odorata (HO), Torulinium Odoratum (TO) and Dactyloctenium Aegyptium (DA) were used as light harvesters in dye sensitized solar cells (DSSCs). The UV-Vis absorption spectroscopy, Fourier transform infrared (FT-IR), and liquid chromatography-mass spectrometry (LC-MS) were used to characterize the dyes. The electron transport mechanism and internal resistance of the DSSCs were investigated by the electrochemical impedance spectroscopy (EIS). The performance of the cells fabricated with the grass extract shows comparable efficiencies with the reported natural dyes. Among the three types of grasses, the DSSC fabricated with the dye extracted from Hierochloe Odorata (HO) exhibited the maximum efficiency. LC-MS investigations indicated that the dominant pigment present in HO dye was pheophytin a (Pheo a).

  7. Descriptions of the immature stages and new host plant records of Notozulia entreriana (Berg) (Hemiptera: Cercopidae) pests of grasses in subtropical areas of the Americas.

    Science.gov (United States)

    Foieri, Alvaro; Lenicov, Ana M Marino De Remes; Virla, Eduardo G

    2016-04-11

    Notozulia entreriana (Berg) (Hemiptera: Cercopidae) is one of the most common spittlebugs inhabiting the subtropical region of the America, inflicting important economic damage to grass crops. The immature stages are described and illustrated; the main characteristics that distinguish instars are the body size, color, number of flagellomeres, and number of tibial and metatarsomere spines. A key for identification of nymphs is provided as a tool to develop field studies.  Nine host plants, all belonging to Poaceae, are recorded as breeding and feeding host plants from different localities in northern Argentina.

  8. Community attitudes toward nuclear plants

    International Nuclear Information System (INIS)

    Peelle, E.

    1982-01-01

    Among the many effects of the accident at Three Mile Island are impacts upon other communities that currently host nuclear-power reactors. Because studies on communities' reactions not immediately available, this chapter reviews existing studies and speculates about possible effects. The patterns and variations in impacts on and responses of nuclear host communities have been the subject of studies at Oak Ridge National Laboratory (Oak Ridge, Tennessee) since 1972. This essay presents results from four post-licensing studies of host communities - Plymouth, Massachusetts, and Waterford, Connecticut (PL-1), and Brunswick, North Carolina, and Appling-Toombs counties, Georgia (PL-2) - along with case study and attitude survey information from two additional communities in which reactors are under construction: Hartsville, Tennessee, and Cherokee County, South Carolina. Differences and similarities between the sites have been assessed in terms of differences in input and social structure; factors affecting the generally favorable attitudes toward local nuclear plants are discussed

  9. GUI development for GRASS GIS

    Directory of Open Access Journals (Sweden)

    Martin Landa

    2007-12-01

    Full Text Available This article discusses GUI development for GRASS GIS. Sophisticated native GUI for GRASS is one of the key points (besides the new 2D/3D raster library, vector architecture improvements, etc. for the future development of GRASS. In 2006 the GRASS development team decided to start working on the new generation of GUI instead of improving the current GUI based on Tcl/Tk.

  10. Influence of simultaneous infestations of Prostephanus truncatus ...

    African Journals Online (AJOL)

    The specific objective was to determine the number of the insect pests at F1 and F2 and the grain weight losses caused by the simultaneous pests\\' infestations of shelled maize in the search for a control strategy. The results showed a change in adult insect numbers from F1 to F2. During single infestation the change in P.

  11. Effects of salicylic acid elicitor against aphids on wheat and detection of infestation using infrared thermal imaging technique in Ismailia, Egypt

    Directory of Open Access Journals (Sweden)

    Mahmoud Farag Mahmoud

    2015-04-01

    Full Text Available Wheat (Triticum sativum L. is one of the most important cereal crops in Egypt. Insect pests, such as aphids, are major threats in terms of yield reduction. Induced resistance in wheat using salicylic acid as a foliar application was tested on the farm of the Faculty of Agriculture, Suez Canal University during 2012/2013 and 2013/2014 seasons. Three wheat cultivars, Gemeza 9, Sakha 93 and Giza 168, were sprayed three times with two concentrations of salicylic acid (SA, 200 mg/l and 100 mg/l, after early detection of aphid infestation by infrared thermal imaging. The infrared thermal imaging technique is based on significant differences in surface temperature between infested and healthy leaves. Imaging data are digital, and a computer program can be used to detect infestation rapidly. The results showed that aphid infestation raised the temperature of infested leaves, compared to healthy leaves. The range temperature difference between maximum and minimum temperatures (At was 1.1 ºC in healthy leaves and 3.9 ºC in infected leaves. The results of SA application showed significant differences in the mean number of aphids and in reduction of infestation among treatments and cultivars. The higher of the two SA rates (200 mg/l gave higher efficacy in the three cultivars than the lower rate (100 mg/l over the five weeks of trial. The highest efficacy against aphids was reached one week after application (86.28% for Giza, 85.89% for Gemesa and 70.54% for Sakha. Moreover, SA treatment enhanced the wheat yield of all three cultivars, compared with control plants. The three cultivars (Giza, Gemesa and Sakha produced higher yields than the control when sprayed with 200 mg/l SA. Their grain yield was 2,491.5, 2,455.0, and 2,327.25 kg/feddan (1 fed = 0.42 ha, respectively. In conclusion, infrared thermal imaging can be employed in identification of infected leaves. Also, the application of SA on wheat induced plant resistance to aphids.

  12. A genomic approach to elucidating grass flower development

    Directory of Open Access Journals (Sweden)

    Dornelas Marcelo C.

    2001-01-01

    Full Text Available In sugarcane (Saccharum sp as with other species of grass, at a certain moment of its life cycle the vegetative meristem is converted into an inflorescence meristem which has at least two distinct inflorescence branching steps before the spikelet meristem terminates in the production of a flower (floret. In model dicotyledonous species such successive conversions of meristem identities and the concentric arrangement of floral organs in specific whorls have both been shown to be genetically controlled. Using data from the Sugarcane Expressed Sequence Tag (EST Project (SUCEST database, we have identified all sugarcane proteins and genes putatively involved in reproductive meristem and flower development. Sequence comparisons of known flower-related genes have uncovered conserved evolutionary pathways of flower development and flower pattern formation between dicotyledons and monocotyledons, such as some grass species. We have paid special attention to the analysis of the MADS-box multigene family of transcription factors that together with the APETALA2 (AP2 family are the key elements of the transcriptional networks controlling plant reproductive development. Considerations on the evolutionary developmental genetics of grass flowers and their relation to the ABC homeotic gene activity model of flower development are also presented.

  13. some nutritional aspects of haemonchosis in experimentally infested ...

    African Journals Online (AJOL)

    nutritional aberration has been described as anorexia in both pure (Evans, Blunt & Southcott, 1963) and mixed infestations where Haemonchus contortus was prominent. (Clark, Ortlepp, Bosman, Laurence, Groenewald & Quin,. 1951; Shumard et al. 1957). Further observations on nutritional aspects of a pure infestation of ...

  14. Intestinal Worm Infestation and Anaemia in Pregnant Women

    Directory of Open Access Journals (Sweden)

    Krishna Bahadur Raut

    2016-03-01

    Conclusions: Aanaemia is prevalent in pregnant women of PHCRC, chapagaun and there was a significant correlation between anaemia and worm infestation. However, the relation among the haemoglobin level, iron, folic acid and albendazole was not significant. Keywords: anaemia; infestation; pregnant women; worm. | PubMed

  15. Adaptation of a decreaser and an increaser grass species to ...

    African Journals Online (AJOL)

    Grasses have developed through natural selection to deter, escape and tolerate herbivory, and to escape and tolerate fire. In the semi-arid grassveld of the Eastern Cape, the species Themeda triandra and Sporobolus fimbriatus have been classified as Decreaser and Increaser II plants respectively. Both species have ...

  16. Plant Community and Nitrogen Deposition as Drivers of Alpha and Beta Diversities of Prokaryotes in Reconstructed Oil Sand Soils and Natural Boreal Forest Soils.

    Science.gov (United States)

    Masse, Jacynthe; Prescott, Cindy E; Renaut, Sébastien; Terrat, Yves; Grayston, Sue J

    2017-05-01

    The Athabasca oil sand deposit is one of the largest single oil deposits in the world. Following surface mining, companies are required to restore soil-like profiles that can support the previous land capabilities. The objective of this study was to assess whether the soil prokaryotic alpha diversity (α-diversity) and β-diversity in oil sand soils reconstructed 20 to 30 years previously and planted to one of three vegetation types (coniferous or deciduous trees and grassland) were similar to those found in natural boreal forest soils subject to wildfire disturbance. Prokaryotic α-diversity and β-diversity were assessed using massively parallel sequencing of 16S rRNA genes. The β-diversity, but not the α-diversity, differed between reconstructed and natural soils. Bacteria associated with an oligotrophic lifestyle were more abundant in natural forest soils, whereas bacteria associated with a copiotrophic lifestyle were more abundant in reconstructed soils. Ammonia-oxidizing archaea were most abundant in reconstructed soils planted with grasses. Plant species were the main factor influencing α-diversity in natural and in reconstructed soils. Nitrogen deposition, pH, and plant species were the main factors influencing the β-diversity of the prokaryotic communities in natural and reconstructed soils. The results highlight the importance of nitrogen deposition and aboveground-belowground relationships in shaping soil microbial communities in natural and reconstructed soils. IMPORTANCE Covering over 800 km 2 , land disturbed by the exploitation of the oil sands in Canada has to be restored. Here, we take advantage of the proximity between these reconstructed ecosystems and the boreal forest surrounding the oil sand mining area to study soil microbial community structure and processes in both natural and nonnatural environments. By identifying key characteristics shaping the structure of soil microbial communities, this study improved our understanding of how

  17. Tracking dynamics of plant biomass composting by changes in substrate structure, microbial community, and enzyme activity

    Directory of Open Access Journals (Sweden)

    Wei Hui

    2012-04-01

    Full Text Available Abstract Background Understanding the dynamics of the microbial communities that, along with their secreted enzymes, are involved in the natural process of biomass composting may hold the key to breaking the major bottleneck in biomass-to-biofuels conversion technology, which is the still-costly deconstruction of polymeric biomass carbohydrates to fermentable sugars. However, the complexity of both the structure of plant biomass and its counterpart microbial degradation communities makes it difficult to investigate the composting process. Results In this study, a composter was set up with a mix of yellow poplar (Liriodendron tulipifera wood-chips and mown lawn grass clippings (85:15 in dry-weight and used as a model system. The microbial rDNA abundance data obtained from analyzing weekly-withdrawn composted samples suggested population-shifts from bacteria-dominated to fungus-dominated communities. Further analyses by an array of optical microscopic, transcriptional and enzyme-activity techniques yielded correlated results, suggesting that such population shifts occurred along with early removal of hemicellulose followed by attack on the consequently uncovered cellulose as the composting progressed. Conclusion The observed shifts in dominance by representative microbial groups, along with the observed different patterns in the gene expression and enzymatic activities between cellulases, hemicellulases, and ligninases during the composting process, provide new perspectives for biomass-derived biotechnology such as consolidated bioprocessing (CBP and solid-state fermentation for the production of cellulolytic enzymes and biofuels.

  18. Community composition and activity of anaerobic ammonium oxidation bacteria in the rhizosphere of salt-marsh grass Spartina alterniflora.

    Science.gov (United States)

    Zheng, Yanling; Hou, Lijun; Liu, Min; Yin, Guoyu; Gao, Juan; Jiang, Xiaofen; Lin, Xianbiao; Li, Xiaofei; Yu, Chendi; Wang, Rong

    2016-09-01

    Anaerobic ammonium oxidation (anammox) as an important nitrogen removal pathway has been investigated in intertidal marshes. However, the rhizosphere-driven anammox process in these ecosystems is largely overlooked so far. In this study, the community dynamics and activities of anammox bacteria in the rhizosphere and non-rhizosphere sediments of salt-marsh grass Spartina alterniflora (a widely distributed plant in estuaries and intertidal ecosystems) were investigated using clone library analysis, quantitative PCR assay, and isotope-tracing technique. Phylogenetic analysis showed that anammox bacterial diversity was higher in the non-rhizosphere sediments (Scalindua and Kuenenia) compared with the rhizosphere zone (only Scalindua genus). Higher abundance of anammox bacteria was detected in the rhizosphere (6.46 × 10(6)-1.56 × 10(7) copies g(-1)), which was about 1.5-fold higher in comparison with that in the non-rhizosphere zone (4.22 × 10(6)-1.12 × 10(7) copies g(-1)). Nitrogen isotope-tracing experiments indicated that the anammox process in the rhizosphere contributed to 12-14 % N2 generation with rates of 0.43-1.58 nmol N g(-1) h(-1), while anammox activity in the non-rhizosphere zone contributed to only 4-7 % N2 production with significantly lower activities (0.28-0.83 nmol N g(-1) h(-1)). Overall, we propose that the rhizosphere microenvironment in intertidal marshes might provide a favorable niche for anammox bacteria and thus plays an important role in nitrogen cycling.

  19. The use of Skylab data to study the early detection of insect infestations and density and distribution of host plants

    Science.gov (United States)

    Hart, W. G.; Ingle, S. J.; Davis, M. R.

    1975-01-01

    The detection of insect infestations and the density and distribution of host plants were studied using Skylab data, aerial photography and ground truth simultaneously. Additional ground truth and aerial photography were acquired between Skylab passes. Three test areas were selected: area 1, of high density citrus, was located northwest of Mission, Texas; area 2, 20 miles north of Weslaco, Texas, irrigated pastures and brush-covered land; area 3 covered the entire Lower Rio Grande Valley and adjacent areas of Mexico. A color composite picture of S-190A data showed patterns of vegetation on both sides of the Rio Grande River clearly delineating the possible avenues of entry of pest insects from Mexico into the United States or from the United States into Mexico. Vegetation that could be identified with conventional color and color IR film included: citrus, brush, sugarcane, alfalfa, irrigated and unimproved pastures.

  20. Patterns of infestation by chigger mites in four diurnal lizard species from a restinga habitat (Jurubatiba of Southeastern Brazil

    Directory of Open Access Journals (Sweden)

    M. Cunha-Barros

    Full Text Available We studied the parasitism by larvae of the chigger mite Eutrombicula alfreddugesi on the lizard community of Restinga de Jurubatiba, Rio de Janeiro State, Southeastern Brazil. We investigated the patterns of infestation (prevalence and intensity of chigger mites in four sympatric lizards: Tropidurus torquatus, Mabuya agilis, M. macrorhyncha and Cnemidophorus littoralis. All lizards collected were checked for the presence of mites, which were counted under stereomicroscope. We tested the relationship between intensity of infestation and lizard body size for each species using regression analysis. The prevalences and mean intensities (+ one standard deviation of infestation on each host species were, respectively: 100%; 86.4 + 94.6 in T. torquatus (n = 62; 100%; 20.9 + 9.3 in M. agilis (n = 7; 100%; 11.1 + 13.1 in M. macrorhyncha (n = 12; and 95.2%; 19.1 + 16.8 in C. littoralis (n = 21. Only for C. littoralis did body size significantly affect the intensity of infestation (r = 0.27, p = 0.02. For all lizard species, the body parts where chiggers occurred with the highest intensity were those of skin folds and joint regions.

  1. Petroleum Contamination and Plant Identity Influence Soil and Root Microbial Communities While AMF Spores Retrieved from the Same Plants Possess Markedly Different Communities.

    Science.gov (United States)

    Iffis, Bachir; St-Arnaud, Marc; Hijri, Mohamed

    2017-01-01

    Phytoremediation is a promising in situ green technology based on the use of plants to cleanup soils from organic and inorganic pollutants. Microbes, particularly bacteria and fungi, that closely interact with plant roots play key roles in phytoremediation processes. In polluted soils, the root-associated microbes contribute to alleviation of plant stress, improve nutrient uptake and may either degrade or sequester a large range of soil pollutants. Therefore, improving the efficiency of phytoremediation requires a thorough knowledge of the microbial diversity living in the rhizosphere and in close association with plant roots in both the surface and the endosphere. This study aims to assess fungal ITS and bacterial 16S rRNA gene diversity using high-throughput sequencing in rhizospheric soils and roots of three plant species ( Solidago canadensis, Populus balsamifera , and Lycopus europaeus ) growing spontaneously in three petroleum hydrocarbon polluted sedimentation basins. Microbial community structures of rhizospheric soils and roots were compared with those of microbes associated with arbuscular mycorrhizal fungal (AMF) spores to determine the links between the root and rhizosphere communities and those associated with AMF. Our results showed a difference in OTU richness and community structure composition between soils and roots for both bacteria and fungi. We found that petroleum hydrocarbon pollutant (PHP) concentrations have a significant effect on fungal and bacterial community structures in both soils and roots, whereas plant species identity showed a significant effect only on the roots for bacteria and fungi. Our results also showed that the community composition of bacteria and fungi in soil and roots varied from those associated with AMF spores harvested from the same plants. This let us to speculate that in petroleum hydrocarbon contaminated soils, AMF may release chemical compounds by which they recruit beneficial microbes to tolerate or degrade the

  2. Petroleum Contamination and Plant Identity Influence Soil and Root Microbial Communities While AMF Spores Retrieved from the Same Plants Possess Markedly Different Communities

    Directory of Open Access Journals (Sweden)

    Bachir Iffis

    2017-08-01

    Full Text Available Phytoremediation is a promising in situ green technology based on the use of plants to cleanup soils from organic and inorganic pollutants. Microbes, particularly bacteria and fungi, that closely interact with plant roots play key roles in phytoremediation processes. In polluted soils, the root-associated microbes contribute to alleviation of plant stress, improve nutrient uptake and may either degrade or sequester a large range of soil pollutants. Therefore, improving the efficiency of phytoremediation requires a thorough knowledge of the microbial diversity living in the rhizosphere and in close association with plant roots in both the surface and the endosphere. This study aims to assess fungal ITS and bacterial 16S rRNA gene diversity using high-throughput sequencing in rhizospheric soils and roots of three plant species (Solidago canadensis, Populus balsamifera, and Lycopus europaeus growing spontaneously in three petroleum hydrocarbon polluted sedimentation basins. Microbial community structures of rhizospheric soils and roots were compared with those of microbes associated with arbuscular mycorrhizal fungal (AMF spores to determine the links between the root and rhizosphere communities and those associated with AMF. Our results showed a difference in OTU richness and community structure composition between soils and roots for both bacteria and fungi. We found that petroleum hydrocarbon pollutant (PHP concentrations have a significant effect on fungal and bacterial community structures in both soils and roots, whereas plant species identity showed a significant effect only on the roots for bacteria and fungi. Our results also showed that the community composition of bacteria and fungi in soil and roots varied from those associated with AMF spores harvested from the same plants. This let us to speculate that in petroleum hydrocarbon contaminated soils, AMF may release chemical compounds by which they recruit beneficial microbes to tolerate

  3. Petroleum Contamination and Plant Identity Influence Soil and Root Microbial Communities While AMF Spores Retrieved from the Same Plants Possess Markedly Different Communities

    Science.gov (United States)

    Iffis, Bachir; St-Arnaud, Marc; Hijri, Mohamed

    2017-01-01

    Phytoremediation is a promising in situ green technology based on the use of plants to cleanup soils from organic and inorganic pollutants. Microbes, particularly bacteria and fungi, that closely interact with plant roots play key roles in phytoremediation processes. In polluted soils, the root-associated microbes contribute to alleviation of plant stress, improve nutrient uptake and may either degrade or sequester a large range of soil pollutants. Therefore, improving the efficiency of phytoremediation requires a thorough knowledge of the microbial diversity living in the rhizosphere and in close association with plant roots in both the surface and the endosphere. This study aims to assess fungal ITS and bacterial 16S rRNA gene diversity using high-throughput sequencing in rhizospheric soils and roots of three plant species (Solidago canadensis, Populus balsamifera, and Lycopus europaeus) growing spontaneously in three petroleum hydrocarbon polluted sedimentation basins. Microbial community structures of rhizospheric soils and roots were compared with those of microbes associated with arbuscular mycorrhizal fungal (AMF) spores to determine the links between the root and rhizosphere communities and those associated with AMF. Our results showed a difference in OTU richness and community structure composition between soils and roots for both bacteria and fungi. We found that petroleum hydrocarbon pollutant (PHP) concentrations have a significant effect on fungal and bacterial community structures in both soils and roots, whereas plant species identity showed a significant effect only on the roots for bacteria and fungi. Our results also showed that the community composition of bacteria and fungi in soil and roots varied from those associated with AMF spores harvested from the same plants. This let us to speculate that in petroleum hydrocarbon contaminated soils, AMF may release chemical compounds by which they recruit beneficial microbes to tolerate or degrade the

  4. Prevalence of bovine trypanosomosis and assessment of trypanocidal drug resistance in tsetse infested and non-tsetse infested areas of Northwest Ethiopia

    Directory of Open Access Journals (Sweden)

    Shimelis Dagnachew

    2017-05-01

    Full Text Available The Northwestern region of Ethiopia is affected by both tsetse and non-tsetse transmitted trypanosomosis with a significant impact on livestock productivity. The control of trypanosomosis in Ethiopia relies on either curative or prophylactic treatment of animals with diminazene aceturate (DA or isometamidium chloride (ISM. In the present work; questionnaire survey, cross-sectional and experimental studies were carried out to; a assess the utilization of trypanocidal drugs; b determine the prevalence of bovine trypanosomosis and; c assess the drug resistant problems respectively in Tsetse and non-tsetse infested areas on NW Ethiopia. A total of 100 respondents were included for the survey and the questionnaires focused on the drug utilization practices for the control of Trypanosomosis. Blood from cattle 640 (324 cattle tested in 2011, 316 cattle tested in 2012 and 795 (390 cattle tested in 2011, 405 cattle tested in 2012 were examined from tsetse infested and non-tsetse infested areas respectively using the buffy coat technique and thin blood smear for the detection of trypanosomes and measurement of packed cell volume (PCV. For the assessment of trypanocidal drug resistance three isolates, one from tsetse (TT and two from non-tsetse (NT areas were used on thirty six trypanosome naïve calves. The experimental animals were divided randomly into six groups of six animals (TT-ETBS2-DA, TT-ETBS2-ISM, NT-ETBD2-DA, NT-ETBD2-ISM, NT-ETBD3-DA and NT-ETBD3-ISM, which were infected with T. vivax isolated from a tsetse-infested or non-tsetse infested area with 2 × 106 trypanosomes from donor animals, and in each case treated with higher dose of DA or ISM. The results of the questionnaire survey showed trypanosomosis was a significant animal health constraint for 84% and 100% of the farmers questioned in non-tsetse and tsetse infested areas of Northwest Ethiopia respectively. Responses on trypanocidal drug utilization practices indicated that risk

  5. Evaluating plant-soil feedback together with competition in a serpentine grassland.

    Science.gov (United States)

    Casper, Brenda B; Castelli, Jeffrey P

    2007-05-01

    Plants can alter biotic and abiotic soil characteristics in ways that feedback to change the performance of that same plant species relative to co-occurring plants. Most evidence for this plant-soil feedback comes from greenhouse studies of potted plants, and consequently, little is known about the importance of feedback in relation to other biological processes known to structure plant communities, such as plant-plant competition. In a field experiment with three C4 grasses, negative feedback was expressed through reduced survival and shoot biomass when seedlings were planted within existing clumps of conspecifics compared with clumps of heterospecifics. However, the combined effects of feedback and competition were species-specific. Only Andropogon gerardii exhibited feedback when competition with the clumps was allowed. For Sorghastrum nutans, strong interspecific competition eliminated the feedback expressed in the absence of competition, and Schizachyrium scoparium showed no feedback at all. That arbuscular mycorrhizal (AM) fungi may play a role in the feedback was indicated by higher AM root colonization with conspecific plant neighbours. We suggest that feedback and competition should not be viewed as entirely separate processes and that their importance in structuring plant communities cannot be judged in isolation from each other.

  6. Genome sequence analysis of the model grass Brachypodium distachyon: insights into grass genome evolution

    Energy Technology Data Exchange (ETDEWEB)

    Schulman, Al

    2009-08-09

    Three subfamilies of grasses, the Erhardtoideae (rice), the Panicoideae (maize, sorghum, sugar cane and millet), and the Pooideae (wheat, barley and cool season forage grasses) provide the basis of human nutrition and are poised to become major sources of renewable energy. Here we describe the complete genome sequence of the wild grass Brachypodium distachyon (Brachypodium), the first member of the Pooideae subfamily to be completely sequenced. Comparison of the Brachypodium, rice and sorghum genomes reveals a precise sequence- based history of genome evolution across a broad diversity of the grass family and identifies nested insertions of whole chromosomes into centromeric regions as a predominant mechanism driving chromosome evolution in the grasses. The relatively compact genome of Brachypodium is maintained by a balance of retroelement replication and loss. The complete genome sequence of Brachypodium, coupled to its exceptional promise as a model system for grass research, will support the development of new energy and food crops

  7. Below-ground plant parts emit herbivore-induced volatiles: olfactory responses of a predatory mite to tulip bulbs infested by rust mites.

    Science.gov (United States)

    Aratchige, N S; Lesna, I; Sabelis, M W

    2004-01-01

    Although odour-mediated interactions among plants, spider mites and predatory mites have been extensively studied above-ground, belowground studies are in their infancy. In this paper, we investigate whether feeding by rust mites (Aceria tulipae) cause tulip bulbs to produce odours that attract predatory mites (Neoseiulus cucumeris). Since our aim was to demonstrate such odours and not their relevance under soil conditions, the experiments were carried out using a classic Y-tube olfactometer in which the predators moved on a Y-shaped wire in open air. We found that food-deprived female predators can discriminate between odours from infested bulbs and odours from uninfested bulbs or artificially wounded bulbs. No significant difference in attractiveness to predators was found between clean bulbs and bulbs either wounded 30 min or 3 h before the experiment. These results indicate that it may not be simply the wounding of the bulbs, but rather the feeding by rust mites, which causes the bulb to release odours that attract N. cucumeris. Since bulbs are belowground plant structures, the olfactometer results demonstrate the potential for odour-mediated interactions in the soil. However, their importance in the actual soil medium remains to be demonstrated.

  8. Designing Resilient and Productive Grasses with Plasticity to Extreme Weather Events

    Science.gov (United States)

    Loka, D.; Humphreys, M.; Gwyn Jones, D.; Scullion, J.; Doonan, J.; Gasior, D.; Harper, J.; Farrell, M.; Kingston-Smith, A.; Dodd, R.; Chadwick, D.; Hill, P.; Robinson, D.; Jones, D.

    2016-12-01

    Grasslands occupy more than 70% of the world's agricultural land and are major providers of healthy feed for livestock and for ecosystem services. Global warming is projected to increase the intensity and frequency of extreme weather events such as drought and flooding and will reduce persistency of currently productive but stress sensitive forage grass varieties, thereby challenging global food security and compromising on their existing ecosystem functionality. New perennial grass varieties, tolerant to the onsets of more than one abiotic stresses, are required in order to achieve sustainable grassland production and function over years under adverse environmental conditions. Identifying and selecting reliable morphological and physiological traits associated with increased resistance to multiple stress conditions is a prerequisite to ensure future grasslands resilience. The objectives of our study were to select from diverse and novel Festulolium (ryegrass spp. x fescue spp. hybrids) grass populations capable of providing optimal combinations of good forage production together with resilience to multiple stresses and to monitor morphological and physiological responses under multiple stress conditions. The grasses were: Festulolium variety Prior (L. perenne x F. pratensis), shown to alter soil structure and hydrology to mitigate run-off and flooding; two advanced breeding populations of diploid L. perenne with genes for drought tolerance derived from the Mediterranean fescue species F. arundinacea and F. glaucescens; two tetraploid hybrid populations involving L. perenne in combination with F. glaucescens and F. mairei (from North Africa), respectively. As controls, Festulolium variety AberNiche and L. perenne variety AberWolf varieties, were used. Treatments consisted of: A) Control; plants maintained at optimum conditions, B) Flood; plants were flooded for 6 weeks followed by a 4-week recovery, C) Drought; plants received limited quantity of water for 12 weeks

  9. Determination of region-specific data of yield and quality of alternatives to silage maize in fodder crops – field trails with forage gras and clover grass mixtures, Sorghum as well as whole plant silage of grain

    Directory of Open Access Journals (Sweden)

    Wosnitza, Andrea

    2014-02-01

    Full Text Available This project should generate current regional results over a period of three years about the parameter yield and quality of alternative fodder crops to maize; this includes grass and clover grass mixtures, silage maize, varieties of Sorghum/millets and whole plant silages of wheat, rye and triticale. The tested silage maize showed the highest and most reliable average dry matter yield with 23 tons per hectare, with a very low variance. The Sorghum and millet varieties had dry matter yields of 3 to 5 tons per hectare below the silage maize yield but with individual values fluctuating in a broad range within years and locations. With values far below 28% the dry matter contents were not suitable for ensiling. The grass and clover grass mixtures are good, stable and established alternatives to maize for silage. They achieved high yields comparable with these of Sorghum but stable and with a highly suitable dry matter content for ensiling. The yield of the whole plant silages was up to 22% lower compared with maize. So none of the alternative crops can compete with the high level yield of silage maize in its favoured region, therefore would be a combination of two crops recommended. But some individual locally adapted mixtures or varieties of the alternative crops reached nearly 80% of the maize yield. Silage maize showed the highest level of the net energy content for lactation (NEL, followed by the values of the fodder crops and the whole plant silages. The Sorghum varieties showed the lowest NEL value of all tested cultures. The highest crude protein showed the fodder crops contents. Silage maize, Sorghum and the whole plant silages had values lying nearly around the 50% mark of the fodder crops.

  10. Effect of grazing system and the grass species on the pasture infestation and on the nematode gastrointestinal parasitism in beef cattle Efeito de sistema de pastejo e de espécies forrageiras na contaminação da pastagem e no parasitismo por nematóides gastrintestinais em bovinos de corte

    Directory of Open Access Journals (Sweden)

    Ivo Bianchin

    2007-12-01

    Full Text Available During two years, the infestation of infecting larvae on grazing grass and the level of gastrointestinal nematodes in beef cattle, in the region of the Brazilian Cerrado, were monitored. In the first study, parasitological variables were investigated on pasture of Panicum maximum cv Mombaça, under continuous or rotational grazing, with four (36 resting days and 12 occupation days and ten paddocks (36 resting days and 4 occupation days. In the second study, these variables were evaluated with different forage species (Panicum maximum cv Mombaça, Braquiaria brizantha cv Marandu and Cynodon spp. (Tifton 85, under rotational grazing on eight paddocks (28 resting days and 4 occupation days. In the first study, and only in the first year, the infestation of pasture with infecting larvae was lower (P<0.05 in the rotation system with ten divisions. For the remaining observations of both studies, there were no significant effects of grazing systems and grass species on the fecal egg count and the number of infecting larvae in the pasture. These results indicated that, in the conditions the studies were carried out, the pasture resting for 36 days was insufficient to decrease the EPF and the infestation of pasture.Durante dois anos, acompanhou-se a infestação das pastagens por larvas infectantes e o nível de parasitismo por nematódeos gastrintestinais em bovinos de corte, na região do Cerrado. No primeiro estudo as variáveis parasitológicas foram acompanhadas em pastagens de Panicum maximum cv Mombaça, submetidas ao pastejo continuo e ao rotacionado, com 4 (36 dias de descanso e 12 dias de ocupação e 10 piquetes (36 dias de descanso e 4 dias de ocupação. No segundo estudo, essas variáveis foram avaliadas com diferentes espécies forrageiras (Panicum maximum cv Mombaça, Braquiaria brizantha cv Marandu e Cynodon spp (Tifton 85, sob pastejo rotacionado em 8 piquetes (28 dias de descanso e 4 dias de ocupação. No primeiro estudo, e apenas no

  11. Arbuscular mycorrhizal association enhances drought tolerance potential of promising bioenergy grass (Saccharum arundinaceum retz.).

    Science.gov (United States)

    Mirshad, P P; Puthur, Jos T

    2016-07-01

    The influence of arbuscular mycorrhizal fungi (AMF) (Glomus spp.) on some physiological and biochemical characteristics of bioenergy grass Saccharum arundinaceum subjected to drought stress was studied. The symbiotic association of Glomus spp. was established with S. arundinaceum, a potential bioenergy grass as evident from the increase in percentage of root infection and distribution frequency of vesicles when compared with non-arbuscular mycorrhizal plants. AMF-treated plants exhibited an enhanced accumulation of osmolytes such as sugars and proline and also increased protein content under drought. AMF association significantly increased the accumulation of non-enzymatic antioxidants like phenols, ascorbate and glutathione as well as enhanced the activities of antioxidant enzymes such as SOD (superoxide dismutase), APX (ascorbate peroxidase) and GPX (guaiacol peroxidase) resulting in reduced lipid peroxidation in S. arundinaceum. AMF symbiosis also ameliorated the drought-induced reduction of total chlorophyll content and activities of photosystem I and II. The maximum quantum efficiency of PS II (F v/F m) and potential photochemical efficiency (F v/F o) were higher in AMF plants as compared to non-AMF plants under drought stress. These results indicate that AMF association alleviate drought stress in S. arundinaceum by the accumulation of osmolytes and non-enzymatic antioxidants and enhanced activities of antioxidant enzymes, and hence, the photosynthetic efficiency is improved resulting in increased biomass production. AMF association with energy grasses also improves the acclimatization of S. arundinaceum for growing in marginal lands of drought-affected soils.

  12. Seed bank characteristics of Dutch plant communities

    NARCIS (Netherlands)

    Bekker, RM; Schaminee, JHJ; Bakker, JP; Thompson, K

    With the recent appearances of a new and well-documented classification of the Dutch plant communities (Schaminee et al 1995a,b; 1996) and a database on the seed longevity of plant species of North West Europe (Thompson ct al. 1997a) it was possible to investigate patterns of seed longevity in Dutch

  13. Genetics-based interactions among plants, pathogens, and herbivores define arthropod community structure.

    Science.gov (United States)

    Busby, Posy E; Lamit, Louis J; Keith, Arthur R; Newcombe, George; Gehring, Catherine A; Whitham, Thomas G; Dirzo, Rodolfo

    2015-07-01

    Plant resistance to pathogens or insect herbivores is common, but its potential for indirectly influencing plant-associated communities is poorly known. Here, we test whether pathogens' indirect effects on arthropod communities and herbivory depend on plant resistance to pathogens and/or herbivores, and address the overarching interacting foundation species hypothesis that genetics-based interactions among a few highly interactive species can structure a much larger community. In a manipulative field experiment using replicated genotypes of two Populus species and their interspecific hybrids, we found that genetic variation in plant resistance to both pathogens and insect herbivores modulated the strength of pathogens' indirect effects on arthropod communities and insect herbivory. First, due in part to the pathogens' differential impacts on leaf biomass among the two Populus species and the hybrids, the pathogen most strongly impacted arthropod community composition, richness, and abundance on the pathogen-susceptible tree species. Second, we found similar patterns comparing pathogen-susceptible and pathogen-resistant genotypes within species. Third, within a plant species, pathogens caused a fivefold greater reduction in herbivory on insect-herbivore-susceptible plant genotypes than on herbivore-resistant genotypes, demonstrating that the pathogen-herbivore interaction is genotype dependent. We conclude that interactions among plants, pathogens, and herbivores can structure multitrophic communities, supporting the interacting foundation species hypothesis. Because these interactions are genetically based, evolutionary changes in genetic resistance could result in ecological changes in associated communities, which may in turn feed back to affect plant fitness.

  14. “Effect of giant rat's tail grass ( Sporobolus pyramidalis p.beauv ) on ...

    African Journals Online (AJOL)

    Effect of giant rat's tail grass ( Sporobolus pyramidalis p.beauv ) on Total Petroleum ... the use of plants, have been adopted for the remediation of the affected soils. ... Residual TPH and heavy metals (chromium, Cr and lead, Pb) were ...

  15. Spatial patterns of grasses and shrubs in an arid grassland environment

    Science.gov (United States)

    In the Chihuahuan Desert of Mexico and New Mexico, shrub invasion is a common problem, and once-abundant grassland ecosystems are being replaced by shrub-dominated habitat. The spatial arrangement of grasses and shrubs in these arid grasslands can provide better insight into community dynamics and c...

  16. EFFECTS OF INSECT PEST INFESTATION ON THE CAFFEINE ...

    African Journals Online (AJOL)

    The caffeine content of nuts of Cola nitida and C. acuminata infested by insect pests in four major geographical zones of Nigeria have been determined and compared with the uninfested ones using high-performance liquid chromatography (HPLC). The findings showed that the infestation has no significant effect on the ...

  17. Litter Accumulation and Nutrient Content of Roadside Plant Communities in Sichuan Basin, China.

    Science.gov (United States)

    He, Huiqin; Monaco, Thomas

    2017-08-30

    It is widely recognized that feedbacks exist between plant litter and plant community species composition, but this relationship is difficult to interpret over heterogeneous conditions typical of modified environments such as roadways. Given the need to expedite natural recovery of disturbed areas through restoration interventions, we characterized litter accumulation and nutrient content (i.e., organic carbon, total N, and P) and quantified their association with key plant species. Plant species cover and litter characteristics were sampled at 18 successional forest plant communities along major roadways in Sichuan Basin, western China. Variation in litter across communities was assessed with principal component analysis (PCA) and species with the highest correlation to PCA axes were determined with Pearson's r coefficients. Plant communities with the longest time since road construction (i.e., 70 years) were distinctly different in litter total N and organic carbon compared to plant communities with a shorter disturbance history. We encountered 59 plant species across sampling plots, but only four rare species (i.e., frequency plant litter across heavily disturbed landscapes and how litter characteristics and rare plant species are correlated.

  18. Nematodes enhance plant growth and nutrient uptake under C and N-rich conditions

    Science.gov (United States)

    Gebremikael, Mesfin T.; Steel, Hanne; Buchan, David; Bert, Wim; de Neve, Stefaan

    2016-09-01

    The role of soil fauna in crucial ecosystem services such as nutrient cycling remains poorly quantified, mainly because of the overly reductionistic approach adopted in most experimental studies. Given that increasing nitrogen inputs in various ecosystems influence the structure and functioning of soil microbes and the activity of fauna, we aimed to quantify the role of the entire soil nematode community in nutrient mineralization in an experimental set-up emulating nutrient-rich field conditions and accounting for crucial interactions amongst the soil microbial communities and plants. To this end, we reconstructed a complex soil foodweb in mesocosms that comprised largely undisturbed native microflora and the entire nematode community added into defaunated soil, planted with Lolium perenne as a model plant, and amended with fresh grass-clover residues. We determined N and P availability and plant uptake, plant biomass and abundance and structure of the microbial and nematode communities during a three-month incubation. The presence of nematodes significantly increased plant biomass production (+9%), net N (+25%) and net P (+23%) availability compared to their absence, demonstrating that nematodes link below- and above-ground processes, primarily through increasing nutrient availability. The experimental set-up presented allows to realistically quantify the crucial ecosystem services provided by the soil biota.

  19. A molecular identification system for grasses: a novel technology for forensic botany.

    Science.gov (United States)

    Ward, J; Peakall, R; Gilmore, S R; Robertson, J

    2005-09-10

    Our present inability to rapidly, accurately and cost-effectively identify trace botanical evidence remains the major impediment to the routine application of forensic botany. Grasses are amongst the most likely plant species encountered as forensic trace evidence and have the potential to provide links between crime scenes and individuals or other vital crime scene information. We are designing a molecular DNA-based identification system for grasses consisting of several PCR assays that, like a traditional morphological taxonomic key, provide criteria that progressively identify an unknown grass sample to a given taxonomic rank. In a prior study of DNA sequences across 20 phylogenetically representative grass species, we identified a series of potentially informative indels in the grass mitochondrial genome. In this study we designed and tested five PCR assays spanning these indels and assessed the feasibility of these assays to aid identification of unknown grass samples. We confirmed that for our control set of 20 samples, on which the design of the PCR assays was based, the five primer combinations produced the expected results. Using these PCR assays in a 'blind test', we were able to identify 25 unknown grass samples with some restrictions. Species belonging to genera represented in our control set were all correctly identified to genus with one exception. Similarly, genera belonging to tribes in the control set were correctly identified to the tribal level. Finally, for those samples for which neither the tribal or genus specific PCR assays were designed, we could confidently exclude these samples from belonging to certain tribes and genera. The results confirmed the utility of the PCR assays and the feasibility of developing a robust full-scale usable grass identification system for forensic purposes.

  20. Mesoherbivores affect grasshopper communities in a megaherbivore-dominated South African savannah.

    Science.gov (United States)

    van der Plas, Fons; Olff, Han

    2014-06-01

    African savannahs are among the few places on earth where diverse communities of mega- and meso-sized ungulate grazers dominate ecosystem functioning. Less conspicuous, but even more diverse, are the communities of herbivorous insects such as grasshoppers, which share the same food. Various studies investigated the community assembly of these groups separately, but it is poorly known how ungulate communities shape grasshopper communities. Here, we investigated how ungulate species of different body size alter grasshopper communities in a South African savannah. White rhino is the most abundant vertebrate herbivore in our study site. Other common mesoherbivores include buffalo, zebra and impala. We hypothesized that white rhinos would have greater impact than mesoherbivores on grasshopper communities. Using 10-year-old exclosures, at eight sites we compared the effects of ungulates on grasshopper communities in three nested treatments: (i) unfenced plots ('control plots') with all vertebrate herbivores present, (ii) plots with a low cable fence, excluding white rhino ('megaherbivore exclosures'), and (iii) plots with tall fences, excluding all herbivores larger than rodents ('complete ungulate exclosures'). In each plot, we collected data of vegetation structure, grass and grasshopper community composition. Complete ungulate exclosures contained 30% taller vegetation than megaherbivore exclosures and they were dominated by different grass and grasshopper species. Grasshoppers in complete ungulate exclosures were on average 3.5 mm longer than grasshoppers in megaherbivore exclosures, possibly due to changes in plant communities or vegetation structure. We conclude that surprisingly, in this megaherbivore hotspot, mesoherbivores, instead of megaherbivores, most strongly affect grasshopper communities.

  1. Assessing plant community composition fails to capture impacts of white-tailed deer on native and invasive plant species.

    Science.gov (United States)

    Nuzzo, Victoria; Dávalos, Andrea; Blossey, Bernd

    2017-07-01

    Excessive herbivory can have transformative effects on forest understory vegetation, converting diverse communities into depauperate ones, often with increased abundance of non-native plants. White-tailed deer are a problematic herbivore throughout much of eastern North America and alter forest understory community structure. Reducing (by culling) or eliminating (by fencing) deer herbivory is expected to return understory vegetation to a previously diverse condition. We examined this assumption from 1992 to 2006 at Fermilab (Batavia, IL) where a cull reduced white-tailed deer ( Odocoileus virginianus ) abundance in 1998/1999 by 90 % from 24.6 to 2.5/km 2 , and at West Point, NY, where we assessed interactive effects of deer, earthworms, and invasive plants using 30 × 30 m paired fenced and open plots in 12 different forests from 2009 to 2012. We recorded not only plant community responses (species presence and cover) within 1 m 2 quadrats, but also responses of select individual species (growth, reproduction). At Fermilab, introduced Alliaria petiolata abundance initially increased as deer density increased, but then declined after deer reduction. The understory community responded to the deer cull by increased cover, species richness and height, and community composition changed but was dominated by early successional native forbs. At West Point plant community composition was affected by introduced earthworm density but not deer exclusion. Native plant cover increased and non-native plant cover decreased in fenced plots, thus keeping overall plant cover similar. At both sites native forb cover increased in response to deer reduction, but the anticipated response of understory vegetation failed to materialize at the community level. Deer-favoured forbs ( Eurybia divaricata , Maianthemum racemosum , Polygonatum pubescens and Trillium recurvatum ) grew taller and flowering probability increased in the absence of deer. Plant community monitoring fails to capture

  2. Invertebrate populations in miscanthus (Miscanthusxgiganteus) and reed canary-grass (Phalaris arundinacea) fields

    Energy Technology Data Exchange (ETDEWEB)

    Semere, T.; Slater, F.M. [Llysdinam Field Centre, School of Biosciences, Cardiff University, Newbridge-on-Wye, Llandrindod Wells, Powys, LD1 6NB (United Kingdom)

    2007-01-15

    Monitoring of invertebrates at four field sites in Herefordshire, England, growing miscanthus and reed canary-grass was carried out in 2002, 2003 and 2004 to investigate the ecological impact of these crops on ground beetles, butterflies and arboreal invertebrates. Ground beetles were sampled by pitfall trapping; and arboreal invertebrates by sweep netting and stem beating. The Centre for Ecology and Hydrology's Butterflies Monitoring Scheme methodology was used to record butterflies. The effects of the biomass crops on invertebrates were indirect, through the use of weeds as food resources and habitat. The greater diversity of weed flora within miscanthus fields than within reed canary-grass fields had a greater positive effect on invertebrates. Ground beetles, butterflies and arboreal invertebrates were more abundant and diverse in the most floristically diverse miscanthus fields. The difference in crop architecture and development between miscanthus and reed canary-grass was reflected in their differences in crop height and ground cover early on in the season. However, most of the difference in arthropod abundance between the two crops was attributed to the difference in the agronomic practice of growing the crops such as plant density, and the effect of this on weed growth. Since perennial rhizomatous grasses require a single initial planting and related tillage, and also no major chemical inputs; and because the crops are harvested in the spring and the land is not disturbed by cultivation every year, the fields were used as over-wintering sites for invertebrates suggesting immediate benefits to biodiversity. (author)

  3. EFFECT OF FLY ASHES AND SEWAGE SLUDGE ON Fe, Mn, Al, Si AND Co UPTAKE BY GRASS MIXTURE

    Directory of Open Access Journals (Sweden)

    Jacek Antonkiewicz

    2014-07-01

    Full Text Available Application of sewage sludge for environmental management of fly ashes landfill site affects chemical composition of plants. The aim of the present investigations was learning the effect of growing doses of municipal sewage sludge on the yield and uptake of Fe, Mn, Al, Si and Co by grass mixture used for environmental management of fly ashes landfill. The experimental design comprised of 5 objects differing by a dose of municipal sewage sludge supplied per 1 hectare: I. control, II. 25 t d.m., III. 50 t d.m., IV. 75 t d.m. and V. 100 t d.m. Application of sewage sludge resulted in the increase in yield. The content of analyzed elements in the grass mixture depended significantly on sewage sludge dose. Increasing doses of sewage sludge caused marked increase in Mn and Co contents, while they decreased Fe, Al and Si contents in the grass mixture. It was found that growing doses of sewage sludge caused an improvement of Fe to Mn ratio value in the grass mixture. Assessing the element content in the grass mixture in the view of forage value, it was found that Fe and Mn content did not meet the optimal value. Si content in plants was below the optimal value.

  4. Dichotomy in the NRT gene families of dicots and grass species.

    Directory of Open Access Journals (Sweden)

    Darren Plett

    Full Text Available A large proportion of the nitrate (NO(3(- acquired by plants from soil is actively transported via members of the NRT families of NO(3(- transporters. In Arabidopsis, the NRT1 family has eight functionally characterised members and predominantly comprises low-affinity transporters; the NRT2 family contains seven members which appear to be high-affinity transporters; and there are two NRT3 (NAR2 family members which are known to participate in high-affinity transport. A modified reciprocal best hit (RBH approach was used to identify putative orthologues of the Arabidopsis NRT genes in the four fully sequenced grass genomes (maize, rice, sorghum, Brachypodium. We also included the poplar genome in our analysis to establish whether differences between Arabidopsis and the grasses may be generally applicable to monocots and dicots. Our analysis reveals fundamental differences between Arabidopsis and the grass species in the gene number and family structure of all three families of NRT transporters. All grass species possessed additional NRT1.1 orthologues and appear to lack NRT1.6/NRT1.7 orthologues. There is significant separation in the NRT2 phylogenetic tree between NRT2 genes from dicots and grass species. This indicates that determination of function of NRT2 genes in grass species will not be possible in cereals based simply on sequence homology to functionally characterised Arabidopsis NRT2 genes and that proper functional analysis will be required. Arabidopsis has a unique NRT3.2 gene which may be a fusion of the NRT3.1 and NRT3.2 genes present in all other species examined here. This work provides a framework for future analysis of NO(3(- transporters and NO(3(- transport in grass crop species.

  5. Genetic modification of wetland grasses for phytoremediation

    Energy Technology Data Exchange (ETDEWEB)

    Czako, M.; Liang Dali; Marton, L. [Dept. of Biological Sciences, Univ. of South Carolina, Columbia, SC (United States); Feng Xianzhong; He Yuke [National Lab. of Plant Molecular Genetics, Shanghai Inst. of Plant Physiology, Chinese Academy of Sciences, Shanghai, SH (China)

    2005-04-01

    Wetland grasses and grass-like monocots are very important natural remediators of pollutants. Their genetic improvement is an important task because introduction of key transgenes can dramatically improve their remediation potential. Tissue culture is prerequisite for genetic manipulation, and methods are reported here for in vitro culture and micropropagation of a number of wetland plants of various ecological requirements such as salt marsh, brackish water, riverbanks, and various zones of lakes and ponds, and bogs. The monocots represent numerous genera in various families such as Poaceae, Cyperaceae, Juncaceae, and Typhaceae. The reported species are in various stages of micropropagation and Arundo donax is scaled for mass propagation for selecting elite lines for pytoremediation. Transfer of key genes for mercury phytoremediation into the salt marsh cordgrass (Spartina alterniflora) is also reported here. All but one transgenic lines contained both the organomercurial lyase (merB) and mercuric reductase (merA) sequences showing that co-introduction into Spartina of two genes from separate Agrobacterium strains is possible. (orig.)

  6. Economic Injury Level of the Neotropical Brown Stink Bug Euschistus heros (F.) on Cotton Plants.

    Science.gov (United States)

    Soria, M F; Degrande, P E; Panizzi, A R; Toews, M D

    2017-06-01

    In Brazil, the Neotropical brown stink bug, Euschistus heros (F.) (Hemiptera: Pentatomidae), commonly disperses from soybeans to cotton fields. The establishment of an economic treatment threshold for this pest on cotton crops is required. Infestation levels of adults of E. heros were evaluated on cotton plants at preflowering, early flowering, boll filling, and full maturity by assessing external and internal symptoms of injury on bolls, seed cotton/lint production, and fiber quality parameters. A completely randomized experiment was designed to infest cotton plants in a greenhouse with 0, 2, 4, 6, and 8 bugs/plant, except at the full-maturity stage in which only infestation with 8 bugs/plant and uninfested plants were evaluated. Results indicated that the preflowering, early-flowering, and full-maturity stages were not affected by E. heros. A linear regression model showed a significant increase in the number of internal punctures and warts in the boll-filling stage as the population of bugs increased. The average number of loci with mottled immature fibers was significantly higher at 4, 6, and 8 bugs compared with uninfested plants with data following a quadratic regression model. The seed and lint cotton was reduced by 18 and 25% at the maximum level of infestation (ca. 8 bugs/plant) in the boll-filling stage. The micronaire and yellowing indexes were, respectively, reduced and increased with the increase of the infestation levels. The economic injury level of E. heros on cotton plants at the boll-filling stage was determined as 0.5 adult/plant. Based on that, a treatment threshold of 0.1 adult/plant can be recommended to avoid economic losses.

  7. Soil microbial species loss affects plant biomass and survival of an introduced bacterial strain, but not inducible plant defences.

    Science.gov (United States)

    Kurm, Viola; van der Putten, Wim H; Pineda, Ana; Hol, W H Gera

    2018-02-12

    Plant growth-promoting rhizobacteria (PGPR) strains can influence plant-insect interactions. However, little is known about the effect of changes in the soil bacterial community in general and especially the loss of rare soil microbes on these interactions. Here, the influence of rare soil microbe reduction on induced systemic resistance (ISR) in a wild ecotype of Arabidopsis thaliana against the aphid Myzus persicae was investigated. To create a gradient of microbial abundances, soil was inoculated with a serial dilution of a microbial community and responses of Arabidopsis plants that originated from the same site as the soil microbes were tested. Plant biomass, transcription of genes involved in plant defences, and insect performance were measured. In addition, the effects of the PGPR strain Pseudomonas fluorescens SS101 on plant and insect performance were tested under the influence of the various soil dilution treatments. Plant biomass showed a hump-shaped relationship with soil microbial community dilution, independent of aphid or Pseudomonas treatments. Both aphid infestation and inoculation with Pseudomonas reduced plant biomass, and led to downregulation of PR1 (salicylic acid-responsive gene) and CYP79B3 (involved in synthesis of glucosinolates). Aphid performance and gene transcription were unaffected by soil dilution. Neither the loss of rare microbial species, as caused by soil dilution, nor Pseudomonas affect the resistance of A. thaliana against M. persicae. However, both Pseudomonas survival and plant biomass respond to rare species loss. Thus, loss of rare soil microbial species can have a significant impact on both above- and below-ground organisms. © The Author(s) 2018. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Arbuscular common mycorrhizal networks mediate intra- and interspecific interactions of two prairie grasses.

    Science.gov (United States)

    Weremijewicz, Joanna; da Silveira Lobo O'Reilly Sternberg, Leonel; Janos, David P

    2018-01-01

    Arbuscular mycorrhizal fungi form extensive common mycorrhizal networks (CMNs) that may interconnect neighboring root systems of the same or different plant species, thereby potentially influencing the distribution of limiting mineral nutrients among plants. We examined how CMNs affected intra- and interspecific interactions within and between populations of Andropogon gerardii, a highly mycorrhiza dependent, dominant prairie grass and Elymus canadensis, a moderately dependent, subordinate prairie species. We grew A. gerardii and E. canadensis alone and intermixed in microcosms, with individual root systems isolated, but either interconnected by CMNs or with CMNs severed weekly. CMNs, which provided access to a large soil volume, improved survival of both A. gerardii and E. canadensis, but intensified intraspecific competition for A. gerardii. When mixed with E. canadensis, A. gerardii overyielded aboveground biomass in the presence of intact CMNs but not when CMNs were severed, suggesting that A. gerardii with intact CMNs most benefitted from weaker interspecific than intraspecific interactions across CMNs. CMNs improved manganese uptake by both species, with the largest plants receiving the most manganese. Enhanced growth in consequence of improved mineral nutrition led to large E. canadensis in intact CMNs experiencing water-stress, as indicated by 13 C isotope abundance. Our findings suggest that in prairie plant communities, CMNs may influence mineral nutrient distribution, water relations, within-species size hierarchies, and between-species interactions.

  9. Primary and secondary metabolites production in signal grass around the year under nitrogen fertilizer

    OpenAIRE

    Syeda Maryam Hussain

    2016-01-01

    Plants produce a number of substances and products and primary and secondary metabolites (SM) are amongst them with many benefits but limitation as well. Usually, the fodder are not considered toxic to animals or as a source having higher SM. The Brachiaria decumbens has a considerable nutritional value, but it is considered as a toxic grass for causing photosensitization in animals, if the grass is not harvested for more than 30 days or solely. The absence of detailed information in the lite...

  10. Plants of the fynbos biome harbour host species-specific bacterial communities.

    Science.gov (United States)

    Miyambo, Tsakani; Makhalanyane, Thulani P; Cowan, Don A; Valverde, Angel

    2016-08-01

    The fynbos biome in South Africa is globally recognised as a plant biodiversity hotspot. However, very little is known about the bacterial communities associated with fynbos plants, despite interactions between primary producers and bacteria having an impact on the physiology of both partners and shaping ecosystem diversity. This study reports on the structure, phylogenetic composition and potential roles of the endophytic bacterial communities located in the stems of three fynbos plants (Erepsia anceps, Phaenocoma prolifera and Leucadendron laureolum). Using Illumina MiSeq 16S rRNA sequencing we found that different subpopulations of Deinococcus-Thermus, Alphaproteobacteria, Acidobacteria and Firmicutes dominated the endophytic bacterial communities. Alphaproteobacteria and Actinobacteria were prevalent in P. prolifera, whereas Deinococcus-Thermus dominated in L. laureolum, revealing species-specific host-bacteria associations. Although a high degree of variability in the endophytic bacterial communities within hosts was observed, we also detected a core microbiome across the stems of the three plant species, which accounted for 72% of the sequences. Altogether, it seems that both deterministic and stochastic processes shaped microbial communities. Endophytic bacterial communities harboured putative plant growth-promoting bacteria, thus having the potential to influence host health and growth. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. 25 CFR 140.26 - Infectious plants.

    Science.gov (United States)

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Infectious plants. 140.26 Section 140.26 Indians BUREAU... Infectious plants. Traders shall not introduce into, sell, or spread within Indian reservations any plant, plant product, seed, or any type of vegetation, which is infested, or infected or which might act as a...

  12. Negative Plant-Soil Feedback and Positive Species Interaction in a Herbaceous Plant Community

    NARCIS (Netherlands)

    Bonanomi, G.; Rietkerk, M.; Dekker, S.C.; Mazzoleni, S.

    2005-01-01

    Increasing evidence shows that facilitative interaction and negative plant¿soil feedback are driving factors of plant population dynamics and community processes. We studied the intensity and the relative impact of negative feedback on clonal growth and seed germination of Scirpus holoschoenus, a

  13. Data from: Compatible and incompatible pathogen-plant interactions differentially affect plant volatile emissions and the attraction of parasitoid wasps

    NARCIS (Netherlands)

    Ponzio, C.A.M.; Weldegergis, B.T.; Dicke, M.; Gols, R.

    2016-01-01

    The three data sheets show the data for the three types of comparisons that were made: (1) wasp choice when offered acaterpillar infested plant and a caterpillar + pathogen infected plant (2) wasp choice when offered a healthy plant against a singleattacker infected/infected plant and (3) wasp

  14. Essential oils of indigenous plants protect livestock from infestations of Rhipicephalus appendiculatus and other tick species in herds grazing in natural pastures in western Kenya

    NARCIS (Netherlands)

    Wanzala, Wycliffe; Hassanali, Ahmed; Mukabana, Wolfgang Richard; Takken, Willem

    2018-01-01

    The effects of formulated essential oils of Tagetes minuta and Tithonia diversifolia on Rhipicephalus appendiculatus infesting livestock were evaluated in semi-field experiments. Forty-five zebu cattle naturally infested with ticks were randomly selected from 15 herds, three animals from each. Of

  15. Plant community variability on a small area in southeastern Montana

    Science.gov (United States)

    James G. MacCracken; Daniel W. Uresk; Richard M. Hansen

    1984-01-01

    Plant communities are inherently variable due to a number of environmental and biological forces. Canopy cover and aboveground biomass were determined for understory vegetation in plant communities of a prairie grassland-forest ecotone in southeastern Montana. Vegetation units were described using polar ordination and stepwise discriminant analysis. Nine of a total of...

  16. Phenology largely explains taller grass at successful nests in greater sage-grouse.

    Science.gov (United States)

    Smith, Joseph T; Tack, Jason D; Doherty, Kevin E; Allred, Brady W; Maestas, Jeremy D; Berkeley, Lorelle I; Dettenmaier, Seth J; Messmer, Terry A; Naugle, David E

    2018-01-01

    Much interest lies in the identification of manageable habitat variables that affect key vital rates for species of concern. For ground-nesting birds, vegetation surrounding the nest may play an important role in mediating nest success by providing concealment from predators. Height of grasses surrounding the nest is thought to be a driver of nest survival in greater sage-grouse ( Centrocercus urophasianus ; sage-grouse), a species that has experienced widespread population declines throughout their range. However, a growing body of the literature has found that widely used field methods can produce misleading inference on the relationship between grass height and nest success. Specifically, it has been demonstrated that measuring concealment following nest fate (failure or hatch) introduces a temporal bias whereby successful nests are measured later in the season, on average, than failed nests. This sampling bias can produce inference suggesting a positive effect of grass height on nest survival, though the relationship arises due to the confounding effect of plant phenology, not an effect on predation risk. To test the generality of this finding for sage-grouse, we reanalyzed existing datasets comprising >800 sage-grouse nests from three independent studies across the range where there was a positive relationship found between grass height and nest survival, including two using methods now known to be biased. Correcting for phenology produced equivocal relationships between grass height and sage-grouse nest survival. Viewed in total, evidence for a ubiquitous biological effect of grass height on sage-grouse nest success across time and space is lacking. In light of these findings, a reevaluation of land management guidelines emphasizing specific grass height targets to promote nest success may be merited.

  17. Green grasses as light harvesters in dye sensitized solar cells.

    Science.gov (United States)

    Shanmugam, Vinoth; Manoharan, Subbaiah; Sharafali, A; Anandan, Sambandam; Murugan, Ramaswamy

    2015-01-25

    Chlorophylls, the major pigments presented in plants are responsible for the process of photosynthesis. The working principle of dye sensitized solar cell (DSSC) is analogous to natural photosynthesis in light-harvesting and charge separation. In a similar way, natural dyes extracted from three types of grasses viz. Hierochloe Odorata (HO), Torulinium Odoratum (TO) and Dactyloctenium Aegyptium (DA) were used as light harvesters in dye sensitized solar cells (DSSCs). The UV-Vis absorption spectroscopy, Fourier transform infrared (FT-IR), and liquid chromatography-mass spectrometry (LC-MS) were used to characterize the dyes. The electron transport mechanism and internal resistance of the DSSCs were investigated by the electrochemical impedance spectroscopy (EIS). The performance of the cells fabricated with the grass extract shows comparable efficiencies with the reported natural dyes. Among the three types of grasses, the DSSC fabricated with the dye extracted from Hierochloe Odorata (HO) exhibited the maximum efficiency. LC-MS investigations indicated that the dominant pigment present in HO dye was pheophytin a (Pheo a). Copyright © 2014 Elsevier B.V. All rights reserved.

  18. N resource of grasses and N2-fixation of alfalfa in mono-culture and mixture

    International Nuclear Information System (INIS)

    Zhu Shuxiu

    1992-01-01

    The N behavior in alfalfa and gramineous forage grasses, tall fescue, siberian wild rye, wheat grass and awnless brome were studied in potting and pasture experiments in 1986-1988 by using 15 N isotope dilution technique. Comparison was made between the mixed culture and mono-culture. The % Ndff and %Ndfs of grasses were decreased by 14.19% and 20.76% respectively, while %Ndfa of alfalfa was increased by 20.22% in mixed culture as compared with mono-culture. The 15 N and soil N uptake data revealed that this enhancement was largely due to a lower competitive ability for soil N by alfalfa than by grass in mixed stands, causing the alfalfa to depend more on atmospheric N 2 fixation. 20.62%of N of grasses in mixed culture was from the N 2 -fixation by alfalfa, causing N level in root-sphere of alfalfa decreasing, which was considered to be one of the reasons that %Ndfa increased in mixed culture. N transfer may be carried out by the decomposition of roots and nodules of alfalfa plants

  19. Different clinical allergological features of Taenia solium infestation.

    Science.gov (United States)

    Minciullo, Paola Lucia; Cascio, Antonio; Isola, Stefania; Gangemi, Sebastiano

    2016-01-01

    The tapeworm Taenia ( T. ) solium can be responsible for two different conditions: taeniasis and cysticercosis. Helminth infections in human host cause an immune response associated with elevated levels of IgE, tissue eosinophilia and mastocytosis, and with the presence of CD4+ T cells that preferentially produce IL-4, IL-5, and IL-13. Individuals exposed to helminth infections may have allergic inflammatory responses to parasites and parasite antigens. PubMed search of human cases of allergic reactions occurring during T. solium infestation was performed combining the terms (allergy, urticaria, angioedema, asthma, anaphylaxis) with T. solium . A study was considered eligible for inclusion in the review if it reported data on patients with T. solium infestation who had signs or symptoms of allergy. In literature we found six articles reporting the association between an allergic reaction and T. solium infestation: two cases of urticaria, two cases of relapsing angioedema, one case of asthma and two cases of anaphylaxis. Despite the large diffusion of T. solium infestation, we found only a few cases of concomitant allergic reaction and the presence of Taenia in the host. The association between T. solium infestation and allergic manifestations has never been clearly demonstrated, and in absence of a well-documented causality the hypotheses are merely speculative. Therefore, the association between Taenia infection and allergy needs to be thoroughly studied to better clarify if this association may really exist and which is the pathogenetic mechanism supported.

  20. Rural and school community in appreciating knowledge on medical plants

    Directory of Open Access Journals (Sweden)

    Marcílio Souza Carneiro

    2016-05-01

    Isolated communities in the urban environment still use medicinal plants, but such knowledge is not always passed on to new generations. In this scenario, we propose a study with students, teachers, and community residents from Córrego da Ema, Amontada, Ceará, Brazil, aiming to know the wisdom of medicinal plants in a small rural community in the Brazilian semi-arid region. We interviewed the medicinal plant connoisseurs, named as local experts, by using the “snow ball” method. We applied questionnaires to investigate Elementary School students’ knowledge on medicinal plants (pre-tour. These actions provided a basis for planning guided-tours, activities aimed at 51 students, which we carried out along with the 10 experts and 2 local school teachers, whose results (post-tour were assessed by using the same pre-tour questionnaire. Most local experts were women (80%, their families had many people and low education level, factors that contribute to using medicinal plants. Experts cited 35 medicinal plant species. Students cited 24 pre-tour plant species and 28 post-tour plant species. Students increased their knowledge, as there was also a post-tour increase in therapeutic indications and preparation methods, as mentioned. The school played an important role in appreciating this intangible heritage, because it enabled actions involving formal and informal education.

  1. Effects of diversity and identity of the neighbouring plant community on the abundance of arthropods on individual ragwort (Jacobaea vulgaris) plants

    NARCIS (Netherlands)

    Kostenko, O.; Grootemaat, Saskia S.; Van der Putten, W.H.; Bezemer, T.M.

    2012-01-01

    The diversity of plant community can greatly affect the abundance and diversity of arthropods associated to that community, but can also influence the composition or abundance of arthropods on individual plants growing in that community. We sampled arthropods and recorded plant size of individual

  2. A comparative study on infestation of three varieties of maize ( Zea ...

    African Journals Online (AJOL)

    A study was carried out to study the infestation of three maize varieties (Maize suwan I–Y, Maize T2 USR – White single cross and Maize suwan 123) by Sitophilus zeamais Motsch. Infestation was assessed by counting the numbers of alive and dead adults and the number of infested and uninfested seeds. It was found out ...

  3. Production of tropical forage grasses under different shading levels

    Directory of Open Access Journals (Sweden)

    Francisco Eduardo Torres

    2017-12-01

    Full Text Available This study aimed to evaluate the forage production of three tropical forage grasses under different shading levels. The experiment was conducted in a greenhouse at Universidade Estadual de Mato Grosso do Sul, University Unit of Aquidauana (UEMS/UUA, in a soil classified as Ultisol sandy loam texture. The treatments consisted of three grasses species combinations (B. brizantha cv. Marandu, B. decumbens cv. Basilisck and Panicum maximum cv. Tanzania, submitted to four shading levels (0, 30, 50 and 75%, arranged in a completely randomized blocks design in a factorial 3 x 4, with eight replications. After harvest, the plants were separated into shoot and roots for determination of shoot fresh mass (SFM, shoot dry mass (SDM and roots dry mass production. After analysis of variance, the qualitative factor was subjected to comparison of averages by Tukey’s test, and the quantitative factor to analysis of polynomial regression, being interactions appropriately unfolded. It was verified that B. decumbens, by its linearly increasing production of forage and less decrease of root formation, is the most recommended for shading conditions compared to grasses Tanzania and Marandu.

  4. Effects of molasses grass, Melinis minutiflora volatiles on the foraging behavior of the cereal stemborer parasitoid, Cotesia sesamiae

    NARCIS (Netherlands)

    Gohole, L.S.; Overholt, W.A.; Khan, Z.R.; Pickett, J.A.; Vet, L.E.M.

    2003-01-01

    Olfactory responses of the cereal stemborer parasitoid Cotesia sesamiae to volatiles emitted by gramineous host and nonhost plants of the stemborers were studied in a Y-tube olfactometer. The host plants were maize (Zea mays) and sorghum (Sorghum bicolor), while the nonhost plant was molasses grass

  5. Effects of molasses grass, Melinis minutiflora volatiles on the foraging behavior of the cereal stemborer parasitoid, Cotesia sesamiae

    NARCIS (Netherlands)

    Gohole, L.S.; Overholt, W.A.; Khan, Z.U.; Pickett, J.A.; Vet, L.E.M.

    2003-01-01

    Olfactory responses of the cereal stemborer parasitoid Cotesia sesamiae to volatiles emitted by gramineous host and nonhost plants of the stemborers were studied in a Y-tube olfactometer. The host plants were maize (Zea mays) and sorghum ( Sorghum bicolor), while the nonhost plant was molasses grass

  6. Comparison between Urea and Goat Manure as Sources of Nitrogen for Napier Grass Grown on Terraced Hill

    Directory of Open Access Journals (Sweden)

    Rahman, M.M.

    2016-12-01

    Full Text Available Effects of two nitrogen (N sources on dry matter (DM yield and nutritive value of Napier grass were evaluated. The nitrogen (N fertiliser (at rate of 300 kg N ha?1 year?1 was applied by dividing the terraces of a hill under two treatments: T1 (urea and T2 (goat manure. There were three replicates of each treatment arranged within three blocks in a completely randomised design. Grass was cut at about 60?day interval. In the first to fourth harvests, grass receiving manure had higher plant height than those with urea application. Grass receiving manure had higher DM yield than urea in almost all of the cuttings. In the fourth harvest, grass receiving urea contained higher DM and organic matter (OM than manure. Similar result was found for fifth harvest where urea gave higher crude protein (CP than manure. Irrespective of harvesting frequencies, average DM, OM, CP and neutral detergent fibre contents were not significantly different between grasses fertilised with manure and urea. In conclusion, manure is recommended for economical cultivation of Napier grass on terrace of hill.

  7. Systems study of fuels from grains and grasses. Phase I. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Benson, W.; Allen, A.; Athey, R.; McElroy, A.; Davis, M.; Bennett, M.

    1978-02-24

    The program reported on herein consists of a first phase analysis of the potential for significant and economically viable contributions to U.S. energy needs from grasses and grains by the photosynthetic production of biomass. The study does not include other cultivated crops such as sugar cane, sugar beets, cotton, tobacco, vegetables, fruits, etc. The scope of the study encompasses grain crop residues, whole plant biomass from grain crops and nongrain crops on cropland, and whole plant biomass from grasses on pasture, rangeland, and federal range. The basic approach to the study involves first an assessment of current total biomass generation from the various grasses and grains on cropland, pasture, range, and federal range, and aggregating the production by combinations of crop residues and whole plant biomass; second, evaluation of possibilities for introduction of new crops and expanding production to marginal or presently idle land; third, development of proposed reasonable scenarios for actually harvesting biomass from selected combinations of crop residues, forages and hays, and new crops from land now in production, plus additional marginal or underutilized land brought into production; and finally, assessment on national and regional or local scales of the production that might be affected by reasonable scenarios. This latter effort includes analysis of tentative possibilities for reallocating priorities and needs with regard to production of grain for export or for livestock production. The overall program includes a case study analysis of production economics for a representative farm of about 1,000 acres (405 ha) located in Iowa.

  8. 238U, and its decay products, in grasses from an abandoned uranium mine

    Science.gov (United States)

    Childs, Edgar; Maskall, John; Millward, Geoffrey

    2016-04-01

    Bioaccumulation of radioactive contaminants by plants is of concern particularly where the sward is an essential part of the diet of ruminants. The abandoned South Terras uranium mine, south west England, had primary deposits of uraninite (UO2) and pitchblende (U3O8), which contained up to 30% uranium. When the mine was active uranium and radium were extracted but following closure it was abandoned without remediation. Waste rock and gangue, consisting of inefficiently processed minerals, were spread around the site, including a field where ruminants are grazed. Here we report the activity concentrations of 238U, 235U 214,210Pb, and the concentrations of selected metals in the soils, roots and leaves of grasses taken from the contaminated field. Soil samples were collected at the surface, and at 30 cm depth, using an auger along a 10-point transect in the field from the foot of a waste heap. Whole, individual grass plants were removed with a spade, ensuring that their roots were intact. The soils and roots and grass leaves were freeze-dried. Activity concentrations of the radionuclides were determined by gamma spectroscopy, following 30 days incubation for development of secular equilibrium. Dried soils, roots and grasses were also digested in aqua regia and the concentrations of elements determined by ICP techniques. Maximum activity concentrations of 238U, 235U, 214Pb and 210Pb surface soils were 63,300, 4,510, 23,300 and 49,400 Bq kg-1, respectively. The mean 238U:235U ratio was 11.8 ± 1.8, an order of magnitude lower than the natural value of 138, indicating disequilibrium within the decay chain due to mineral processing. Radionuclides in the roots had 5 times lower concentration and only grass leaves in the vicinity of the waste heap had measureable values. The mean soil to root transfer factor for 238U was 36%, the mean root to leaf was 3% and overall only 0.7% of 238U was transferred from the soil to the leaves. The roots contained 0.8% iron, possibly as

  9. Grass-cellulose as energy source for biological sulphate removal from acid mine effluents

    CSIR Research Space (South Africa)

    Greben, HA

    2008-11-01

    Full Text Available The biological sulphate removal technology requires carbon and energy sources to reduce sulphate to sulphide. Plant biomass, e.g. grass, is a sustainable source of energy when cellulose is utilised during anaerobic degradation, producing volatile...

  10. [Effect of ground mulch managements on soil bacterial community structure and diversity in the non-irrigated apple orchard in Weibei Loess Plateau].

    Science.gov (United States)

    Chen, Yuexing; Wen, Xiaoxia; Sun, Yulin; Zhang, Junli; Lin, Xiaoli; Liao, Yuncheng

    2015-07-04

    We studied the changes in soil bacterial communities induced by ground mulch managements at different apple growth periods. We adopted the denaturing gradient gel electrophoresis (DGGE) with PCR-amplified 16S rRNA fragments to determine soil bacterial community structure and diversity. Soil bacterial community structure with different ground mulch managements were significantly different. Both the mulch management strategies and apple growth periods affected the predominant groups and their abundance in soil bacterial communities. Grass mulch and cornstalk mulch treatments had higher bacterial diversity and richness than the control at young fruit period and fruit expanding period, whereas film mulch treatment had no significant difference compared with the control. During mature period, bacterial diversity in the control reached its maximum, which may be ascribed to the rapid growth and reproduction of the r-selection bacteria. The clustering and detrended correspondence analysis revealed that differences in soil bacterial communities were closely correlated to apple growth periods and ground mulch managements. Soil samples from the grass mulch and cornstalk mulch treatments clustered together while those mulched with plastic film treatment were similar to the control. The most abundant phylum in soil bacterial community was Proteobacteria followed by Bacteroidetes. Some other phyla were also detected, such as Acidobacteria, Firmicutes, Actinobacteria and Chloroflexi. Mulching with plant (Grass/Cornstalk) had great effects on soil bacterial community structure and enhanced the diversity while film mulch management had no significant effects.

  11. The relative importance of different grass components in controlling runoff and erosion on a hillslope under simulated rainfall

    Science.gov (United States)

    Li, Changjia; Pan, Chengzhong

    2018-03-01

    The effects of vegetation cover on overland flow and erosion processes on hillslopes vary with vegetation type and spatial distribution and the different vegetation components, including the above- and below-ground biomass. However, few attempts have been made to quantify how these factors affect erosion processes. Field experimental plots (5 m × 2 m) with a slope of approximately 25° were constructed and simulated rainfall (60 mm hr-1) (Rainfall) and simulated rainfall combined with upslope overland flow (20 L min-1) (Rainfall + Flow) were applied. Three grass species were planted, specifically Astragalus adsurgens (A. adsurgens), Medicago sativa (M. sativa) and Cosmos bipinnatus (C. bipinnatus). To isolate and quantify the relative contributions of the above-ground grass parts (stems, litter cover and leaves) and the roots to reducing surface runoff and erosion, each of the three grass species was subjected to three treatments: intact grass control (IG), no litter or leaves (only the grass stems and roots were reserved) (NLL), and only roots remaining (OR). The results showed that planting grass significantly reduced overland flow rate and velocity and sediment yield, and the mean reductions were 21.8%, 29.1% and 67.1%, respectively. M. sativa performed the best in controlling water and soil losses due to its thick canopy and dense, fine roots. Grasses reduced soil erosion mainly during the early stage of overland flow generation. The above-ground grass parts primarily contributed to reducing overland flow rate and velocity, with mean relative contributions of 64% and 86%, respectively. The roots played a predominant role in reducing soil erosion, with mean contribution of 84%. Due to the impact of upslope inflow, overland flow rate and velocity and sediment yield increased under the Rainfall + Flow conditions. The results suggest that grass species on downslope parts of semi-arid hillslopes performed better in reducing water and soil losses. This study is

  12. Recursion to food plants by free-ranging Bornean elephant.

    Science.gov (United States)

    English, Megan; Gillespie, Graeme; Goossens, Benoit; Ismail, Sulaiman; Ancrenaz, Marc; Linklater, Wayne

    2015-01-01

    Plant recovery rates after herbivory are thought to be a key factor driving recursion by herbivores to sites and plants to optimise resource-use but have not been investigated as an explanation for recursion in large herbivores. We investigated the relationship between plant recovery and recursion by elephants (Elephas maximus borneensis) in the Lower Kinabatangan Wildlife Sanctuary, Sabah. We identified 182 recently eaten food plants, from 30 species, along 14 × 50 m transects and measured their recovery growth each month over nine months or until they were re-browsed by elephants. The monthly growth in leaf and branch or shoot length for each plant was used to calculate the time required (months) for each species to recover to its pre-eaten length. Elephant returned to all but two transects with 10 eaten plants, a further 26 plants died leaving 146 plants that could be re-eaten. Recursion occurred to 58% of all plants and 12 of the 30 species. Seventy-seven percent of the re-eaten plants were grasses. Recovery times to all plants varied from two to twenty months depending on the species. Recursion to all grasses coincided with plant recovery whereas recursion to most browsed plants occurred four to twelve months before they had recovered to their previous length. The small sample size of many browsed plants that received recursion and uneven plant species distribution across transects limits our ability to generalise for most browsed species but a prominent pattern in plant-scale recursion did emerge. Plant recovery time was a good predictor of time to recursion but varied as a function of growth form (grass, ginger, palm, liana and woody) and differences between sites. Time to plant recursion coincided with plant recovery time for the elephant's preferred food, grasses, and perhaps also gingers, but not the other browsed species. Elephants are bulk feeders so it is likely that they time their returns to bulk feed on these grass species when quantities have

  13. Microbial Community Activity And Plant Biomass Are Insensitive To Passive Warming In A Semiarid Ecosystem

    Science.gov (United States)

    Espinosa, N. J.; Fehmi, J. S.; Rasmussen, C.; Gallery, R. E.

    2017-12-01

    Soil microorganisms drive biogeochemical and nutrient cycling through the production of extracellular enzymes that facilitate organic matter decomposition and the flux of large amounts of carbon dioxide to the atmosphere. Although dryland ecosystems occupy over 40% of land cover and are projected to expand due to climate change, much of our current understanding of these processes comes from mesic temperate ecosystems. Understanding the responses of these globally predominant dryland ecosystems is therefore important yet complicated by co-occurring environmental changes. For example, the widespread and pervasive transition from grass to woody dominated landscapes is changing the hydrology, fire regimes, and carbon storage potential of semiarid ecosystems. In this study, we used a novel passive method of warming to conduct a warming experiment with added plant debris as either woodchip or biochar, to simulate different long-term carbon additions that accompany woody plant encroachment in semiarid ecosystems. The response of heterotrophic respiration, plant biomass, and microbial activity was monitored bi-annually. We hypothesized that the temperature manipulations would have direct and indirect effects on microbial activity. Warmer soils directly reduce the activity of soil extracellular enzymes through denaturation and dehydration of soil pores and indirectly through reducing microbe-available substrates and plant inputs. Overall, reduction in extracellular enzyme activity may reduce decomposition of coarse woody debris and potentially enhance soil carbon storage in semiarid ecosystems. For all seven hydrolytic enzymes examined as well as heterotrophic respiration, there was no consistent or significant response to experimental warming, regardless of seasonal climatic and soil moisture variation. The enzyme results observed here are consistent with the few other experimental results for warming in semiarid ecosystems and indicate that the controls over soil

  14. Population structure and growth of polydorid polychaetes that infest ...

    African Journals Online (AJOL)

    Polydorid polychaetes can infest cultured abalone thereby reducing productivity. In order to effectively control these pests, their reproductive biology must be understood. The population dynamics and reproduction of polydorids infesting abalone Haliotis midae from two farms in South Africa is described using a ...

  15. Predispersal infestation of Vochysia haenkeana seeds by Lius conicus

    Directory of Open Access Journals (Sweden)

    Samara Letícia Oliveira Lourenço

    Full Text Available ABSTRACT: The deficient development of fertile seeds of native forest plant species in Brazil limits the reproduction of these plants in various conditions. Among the limiting biotic factors in quality and quantity of the forest seeds, borer insects are quite prominent, before and after their dispersion. This study reports for the first time a host of the buprestid beetle Lius conicus (Gory & Laporte, 1840. The larval development of L. conicus takes place in the seed capsules of Vochysia haenkeana Mart. (Vochysiaceae, a typical tree species in the Brazilian cerrado biome. In two regions of the cerrado in Goiás State, Brazil, almost ripe fruits of V. haenkeana were collected directly from the plants. After natural drying, and fruit and seed processing in laboratory, damage caused by the L. conicus larvae was quantified and qualified. Bigger fruits were preferred as hosts. Fruits developing on the eastern side of the plant were most frequently occupied by L. conicus. Seed lots of bigger fruits showed damage up to 37.5% from the infestation by L. conicus larvae. There was only one larva per fruit, which damaged all the seeds of the capsule (three or four and generally consumed around 26% of the seed dry mass.

  16. Study of the organic -15N mineralization in an Oxisol and its absorption by a grass (Melinis minutiflora Beauv.)

    International Nuclear Information System (INIS)

    Urquiaga C, S.; Libardi, P.L.; Reichardt, K.; Padovese, P.P.; Moraes, S.O.; Victoria, R.L.

    1982-01-01

    Mineralization of organic-N to soil samples of an Oxisol as 15 N-labeled bean straw, with and without N from fertilizer (urea) was studied, as well as the effect of expanded vermiculite in the production and absorption of the mineralized-N by a grass. The experiment was conducted in plastic pots. The fertilizer urea (46,64%N) utilized was labelled (5,2% of 15 N) atoms). All experimental pots received 150 ppm of P and K as simple superphosphate (18% P 2 O 5 ) and 26% CaO) and potassium sulphate (60% K 2 O), respectively. The grass was planted by putting 8 small pieces by pot. The aerial part was harvested at 30 days intervals. Grass production was a function of the N available and bean straw behaved as an important N source for the plants; at 30 days (first sampling) the production N extraction and efficiency of utilization of the organic N were at their maximum, decreasing (p=0,01) at each following harvest; after the first sampling the mineralization rate of organic N was very low, decreasing significantly the grass production; N fertilizer favoured significantly the mineralization and the efficiency of utilization of the organic-N applied; vermiculite did not affect either production or the N extraction by the grass; in the soil mineral-N, after the culture, the percentage of N from labelled sources was two times that of the total-N and lower than in the plant in the final harvest. (Author) [pt

  17. The herbivore-induced plant volatile methyl salicylate negatively affects attraction of the parasitoid Diadegma semiclausum.

    Science.gov (United States)

    Snoeren, Tjeerd A L; Mumm, Roland; Poelman, Erik H; Yang, Yue; Pichersky, Eran; Dicke, Marcel

    2010-05-01

    The indirect defense mechanisms of plants comprise the production of herbivore-induced plant volatiles that can attract natural enemies of plant attackers. One of the often emitted compounds after herbivory is methyl salicylate (MeSA). Here, we studied the importance of this caterpillar-induced compound in the attraction of the parasitoid wasp Diadegma semiclausum by using a mutant Arabidopsis line. Pieris rapae infested AtBSMT1-KO mutant Arabidopsis plants, compromised in the biosynthesis of MeSA, were more attractive to parasitoids than infested wild-type plants. This suggests that the presence of MeSA has negative effects on parasitoid host-finding behavior when exposed to wild-type production of herbivore-induced Arabidopsis volatiles. Furthermore, in line with this, we recorded a positive correlation between MeSA dose and repellence of D. semiclausum when supplementing the headspace of caterpillar-infested AtBSMT1-KO plants with synthetic MeSA.

  18. Responses of C4 grasses to atmospheric CO2 enrichment : I. Effect of irradiance.

    Science.gov (United States)

    Sionit, Nasser; Patterson, David T

    1984-12-01

    The growth and photosynethetic responses to atmospheric CO 2 enrichment of 4 species of C 4 grasses grown at two levels of irradiance were studied. We sought to determine whether CO 2 enrichment would yield proportionally greater growth enhancement in the C 4 grasses when they were grown at low irradiance than when grown at high irradiance. The species studied were Echinochloa crusgalli, Digitaria sanguinalis, Eleusine indica, and Setaria faberi. Plants were grown in controlled environment chambers at 350, 675 and 1,000 μl 1 -1 CO 2 and 1,000 or 150 μmol m -2 s -1 photosynthetic photon flux density (PPFD). An increase in CO 2 concentration and PPFD significantly affected net photosynthesis and total biomass production of all plants. Plants grown at low PPFD had significantly lower rates of photosynthesis, produced less biomass, and had reduced responses to increases in CO 2 . Plants grown in CO 2 -enriched atmosphere had lower photosynthetic capacity relative to the low CO 2 grown plants when exposed to lower CO 2 concentration at the time of measurement, but had greater rate of photosynthesis when exposed to increasing PPFD. The light level under which the plants were growing did not influence the CO 2 compensation point for photosynthesis.

  19. A non-flowering green panic grass (Panicum maximum var. trichoglume) obtained through gamma irradiation

    International Nuclear Information System (INIS)

    Shivashankar, G.; Mahishi, D.M.; Kulkarni, R.S.

    1988-01-01

    Full text: Suppression of flowering has many advantages in a forage crop. Such genotypes are not only expected to give more yield but also to be more nutritious. Non-flowering plants also remain fresh and green for a longer period in the field compared to the flowering types. Green panic (Panicum maximum var. trichoglume) is a high yielding, nutritious, fast growing and drought tolerant grass that has a potential to grow even under partial shade conditions. However, the major drawback of this grass is that it flowers early and profusely, with the result that most of the nutrients are diverted towards panicle formation. With an objective to suppress the panicle initiation a mutation breeding programme was taken up. Seeds of green panic grass were subjected to gamma ray treatment with doses of 40, 50 and 60 krad. From the large spectrum of variation observed for flowering habit quite a few non-flowering plants were isolated and of these the one from 40 krad treatment was prominent. This non-flowering plant yielded more green foliage than the flowering type and recorded an increase to the extend of 10.5% and 22.5% in monthly and bi-monthly harvests respectively. The increase in green foliage yield was directly attributable to an increase in the number of tillers and concomitant reduction in culm weight. Unlike in the flowering types the mutant had more accumulation of dry matter in the leaves rather than the stem. Further nutritional analysis of leaves showed that the non-flowering plant is superior with 6.04% crude protein which represents 100% increase over that of flowering type. The calcium content (0.5%) was also double and the moisture content (11.70%) was higher in the non-flowering plant. The crude fibre content was reduced by 2%. Inhibition of flowering is a common feature in mutagen treated material, but it is seldom inherited. In sugarcane non-arrowing mutants have been induced with advantage to increase the sugar content (Walker and Sisodia, 1969). The

  20. Analysis of the Heterogeneity of Weed Infestation in Cereal Stands

    Directory of Open Access Journals (Sweden)

    Jan Winkler

    2015-01-01

    Full Text Available The aim of this study was to evaluate the heterogeneity of the incidence of individual weed species on a selected experimental field. This field was situated in the cadastre of the village Žabčice (South Moravian Region, Czech Republic. To evaluate the intensity of weed infestation, a field experiment was established. In 2011, altogether 33 weed species were identified in a stand of spring barley. In the next year, the total number of weeds in a stand of winter wheat was 22. Basing on results of the evaluation of infestation heterogeneity it was possible to detect the following trends: The first one concerned the incidence of significantly dominant species Chenopodium album and Veronica hederifolia in stands of spring barley and winter wheat, respectively. The second one expressed the incidence of the so-called sub-dominant species. Regarding the character of the incidence of these weed species it would be suitable to kill them by means of a targeted application of herbicides. Finally, the third trend concerned the incidence of that group of weeds that occurred in the major part of the experimental plot but in low numbers only. The abundance of these species was minimal and the total number of weed plants did not exceed the limit of 100 specimens. This group of weeds involved also those species that were markedly more frequent on plots situated closer to the margin of the experimental field. The targeted application of herbicides can be performed on plots with a lower level of weed infestation; another possibility, however, seems to be a targeted intervention that helps to control the incidence of a certain weed species and/or that is performed along the margin of the field where the different weed species are more frequent.