WorldWideScience

Sample records for grasp height effect

  1. Effect of pencil grasp on the speed and legibility of handwriting in children.

    Science.gov (United States)

    Schwellnus, Heidi; Carnahan, Heather; Kushki, Azadeh; Polatajko, Helene; Missiuna, Cheryl; Chau, Tom

    2012-01-01

    Pencil grasps other than the dynamic tripod may be functional for handwriting. This study examined the impact of grasp on handwriting speed and legibility. We videotaped 120 typically developing fourth-grade students while they performed a writing task. We categorized the grasps they used and evaluated their writing for speed and legibility using a handwriting assessment. Using linear regression analysis, we examined the relationship between grasp and handwriting. We documented six categories of pencil grasp: four mature grasp patterns, one immature grasp pattern, and one alternating grasp pattern. Multiple linear regression results revealed no significant effect for mature grasp on either legibility or speed. Pencil grasp patterns did not influence handwriting speed or legibility in this sample of typically developing children. This finding adds to the mounting body of evidence that alternative grasps may be acceptable for fast and legible handwriting. Copyright © 2012 by the American Occupational Therapy Association, Inc.

  2. Grasping the World: Object-Affordance Effect in Schizophrenia

    Directory of Open Access Journals (Sweden)

    Jessica Sevos

    2013-01-01

    Full Text Available For schizophrenic patients, the world can appear as deprived of practical meaning, which normally emerges from sensory-motor experiences. However, no research has yet studied the integration between perception and action in this population. In this study, we hypothesize that patients, after having controlled the integrity of their visuospatial integration, would nevertheless present deficit in sensory-motor simulation. In this view, we compare patients to control subjects using two stimulus-response compatibility (SRC tasks. Experiment 1 is performed to ensure that visuo-spatial integration is not impaired (Simon Effect. Experiment 2 replicates a study from Tucker and Ellis (1998 to explore the existence of sensory-motor compatibility between stimulus and response (Object Affordance. In control subjects, the SRC effect appears in both experiments. In schizophrenic patients, it appears only when stimuli and responses share the same spatial localization. This loss of automatic sensory-motor simulation could emerge from a lack of relation between the object and the subject’s environment.

  3. For your eyes only: Effect of confederate's eye level on reach-to-grasp action

    Directory of Open Access Journals (Sweden)

    Francois eQuesque

    2014-12-01

    Full Text Available Previous studies have shown that the spatio-temporal parameters of reach-to-grasp movement are influenced by the social context in which the motor action is performed. In particular, when interacting with a confederate, movements are slower, with longer initiation times and more ample trajectories, which has been interpreted as implicit communicative information emerging through voluntary movement to catch the partner’s attention and optimize cooperation (Quesque et al., 2013. Because gaze is a crucial component of social interactions, the present study evaluated the role of a confederate's eye level on the social modulation of trajectory curvature. An actor and a partner facing each other took part in a cooperative task consisting, for one of them, of grasping and moving a wooden dowel under time constraints. Before this Main action, the actor performed a Preparatory action, which consisted of placing the wooden dowel on a central marking. The partner's eye level was unnoticeably varied using an adjustable seat that matched or was higher than the actor’s seat. Our data confirmed the previous effects of social intention on motor responses. Furthermore, we observed an effect of the partner's eye level on the Preparatory action, leading the actors to exaggerate unconsciously the trajectory curvature in relation to their partner's eye level. No interaction was found between the actor's social intention and their partner's eye level. These results suggest that other bodies are implicitly taken into account when a reach-to-grasp movement is produced in a social context.

  4. Effects of grasp compatibility on long-term memory for objects.

    Science.gov (United States)

    Canits, Ivonne; Pecher, Diane; Zeelenberg, René

    2018-01-01

    Previous studies have shown action potentiation during conceptual processing of manipulable objects. In four experiments, we investigated whether these motor actions also play a role in long-term memory. Participants categorized objects that afforded either a power grasp or a precision grasp as natural or artifact by grasping cylinders with either a power grasp or a precision grasp. In all experiments, responses were faster when the affordance of the object was compatible with the type of grasp response. However, subsequent free recall and recognition memory tasks revealed no better memory for object pictures and object names for which the grasp affordance was compatible with the grasp response. The present results therefore do not support the hypothesis that motor actions play a role in long-term memory. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Global effects of income and income inequality on adult height and sexual dimorphism in height.

    Science.gov (United States)

    Bogin, Barry; Scheffler, Christiane; Hermanussen, Michael

    2017-03-01

    Average adult height of a population is considered a biomarker of the quality of the health environment and economic conditions. The causal relationships between height and income inequality are not well understood. We analyze data from 169 countries for national average heights of men and women and national-level economic factors to test two hypotheses: (1) income inequality has a greater association with average adult height than does absolute income; and (2) neither income nor income inequality has an effect on sexual dimorphism in height. Average height data come from the NCD-RisC health risk factor collaboration. Economic indicators are derived from the World Bank data archive and include gross domestic product (GDP), Gross National Income per capita adjusted for personal purchasing power (GNI_PPP), and income equality assessed by the Gini coefficient calculated by the Wagstaff method. Hypothesis 1 is supported. Greater income equality is most predictive of average height for both sexes. GNI_PPP explains a significant, but smaller, amount of the variation. National GDP has no association with height. Hypothesis 2 is rejected. With greater average adult height there is greater sexual dimorphism. Findings support a growing literature on the pernicious effects of inequality on growth in height and, by extension, on health. Gradients in height reflect gradients in social disadvantage. Inequality should be considered a pollutant that disempowers people from the resources needed for their own healthy growth and development and for the health and good growth of their children. © 2017 Wiley Periodicals, Inc.

  6. Cortical control of object-specific grasp relies on adjustments of both activity and effective connectivity

    DEFF Research Database (Denmark)

    Tia, Banty; Takemi, Mitsuaki; Kosugi, Akito

    2017-01-01

    The cortical mechanisms of grasping have been extensively studied in macaques and humans. Here, we investigated whether common marmosets could rely on similar mechanisms despite striking differences in manual dexterity. Two common marmosets were trained to grasp-and-pull three objects eliciting d...

  7. Effects of accuracy constraints on reach-to-grasp movements in cerebellar patients.

    Science.gov (United States)

    Rand, M K; Shimansky, Y; Stelmach, G E; Bracha, V; Bloedel, J R

    2000-11-01

    Reach-to-grasp movements of patients with pathology restricted to the cerebellum were compared with those of normal controls. Two types of paradigms with different accuracy constraints were used to examine whether cerebellar impairment disrupts the stereotypic relationship between arm transport and grip aperture and whether the variability of this relationship is altered when greater accuracy is required. The movements were made to either a vertical dowel or to a cross bar of a small cross. All subjects were asked to reach for either target at a fast but comfortable speed, grasp the object between the index finger and thumb, and lift it a short distance off the table. In terms of the relationship between arm transport and grip aperture, the control subjects showed a high consistency in grip aperture and wrist velocity profiles from trial to trial for movements to both the dowel and the cross. The relationship between the maximum velocity of the wrist and the time at which grip aperture was maximal during the reach was highly consistent throughout the experiment. In contrast, the time of maximum grip aperture and maximum wrist velocity of the cerebellar patients was quite variable from trial to trial, and the relationship of these measurements also varied considerably. These abnormalities were present regardless of the accuracy requirement. In addition, the cerebellar patients required a significantly longer time to grasp and lift the objects than the control subjects. Furthermore, the patients exhibited a greater grip aperture during reach than the controls. These data indicate that the cerebellum contributes substantially to the coordination of movements required to perform reach-to-grasp movements. Specifically, the cerebellum is critical for executing this behavior with a consistent, well-timed relationship between the transport and grasp components. This contribution is apparent even when accuracy demands are minimal.

  8. Active Grasp Synthesis for Grasping Unknown Objects

    NARCIS (Netherlands)

    Çall?, B.

    2015-01-01

    Manipulation is a key feature for robots which are designed to work in daily environments like homes, offices and streets. These robots do not often have manipulators that are specialized for specific tasks, but grippers that can grasp the target object. This makes grasping a crucial ability that

  9. Learning Grasp Affordance Densities

    DEFF Research Database (Denmark)

    Detry, Renaud; Kraft, Dirk; Kroemer, Oliver

    2011-01-01

    and relies on kernel density estimation to provide a continuous model. Grasp densities are learned and refined from exploration, by letting a robot “play” with an object in a sequence of graspand-drop actions: The robot uses visual cues to generate a set of grasp hypotheses; it then executes......We address the issue of learning and representing object grasp affordance models. We model grasp affordances with continuous probability density functions (grasp densities) which link object-relative grasp poses to their success probability. The underlying function representation is nonparametric...... these and records their outcomes. When a satisfactory number of grasp data is available, an importance-sampling algorithm turns these into a grasp density. We evaluate our method in a largely autonomous learning experiment run on three objects of distinct shapes. The experiment shows how learning increases success...

  10. Scale-Dependent Grasp

    OpenAIRE

    Kaneko, Makoto; Shirai, Tatsuya; Tsuji, Toshio

    2000-01-01

    This paper discusses the scale-dependent grasp.Suppose that a human approaches an object initially placed on atable and finally achieves an enveloping grasp. Under such initialand final conditions, he (or she) unconsciously changes the graspstrategy according to the size of objects, even though they havesimilar geometry. We call the grasp planning the scale-dependentgrasp. We find that grasp patterns are also changed according tothe surface friction and the geometry of cross section in additi...

  11. Effect of firing conditions & release height on terminal performance of submunitions and conditions for optimum height of release

    Directory of Open Access Journals (Sweden)

    L.K. Gite

    2017-06-01

    Full Text Available Submunitions should exhibit optimum terminal performance at target end when released from certain pre-determined height. Selection of an optimum height of release of the submunitions depends on the terminal parameters like forward throw, remaining velocity, impact angle and flight time. In this paper, the effects of initial firing conditions and height of release on terminal performance of submunitions discussed in detail. For different height of release, the relation between range and forward throw is also established & validated for a number of firing altitude and rocket configurations.

  12. Grasping in Robotics

    CERN Document Server

    2013-01-01

    Grasping in Robotics contains original contributions in the field of grasping in robotics with a broad multidisciplinary approach. This gives the possibility of addressing all the major issues related to robotized grasping, including milestones in grasping through the centuries, mechanical design issues, control issues, modelling achievements and issues, formulations and software for simulation purposes, sensors and vision integration, applications in industrial field and non-conventional applications (including service robotics and agriculture).   The contributors to this book are experts in their own diverse and wide ranging fields. This multidisciplinary approach can help make Grasping in Robotics of interest to a very wide audience. In particular, it can be a useful reference book for researchers, students and users in the wide field of grasping in robotics from many different disciplines including mechanical design, hardware design, control design, user interfaces, modelling, simulation, sensors and hum...

  13. GRASP: A multitasking tether

    Directory of Open Access Journals (Sweden)

    Catherine eRabouille

    2016-01-01

    Full Text Available Originally identified as Golgi stacking factors in vitro, the Golgi reassembly stacking protein (GRASP family has been shown to act as membrane tethers with multiple cellular roles. As an update to previous comprehensive reviews of the GRASP family (Vinke et al., 2011 (Giuliani et al., 2011;Jarvela and Linstedt, 2012, we outline here the latest findings concerning their diverse roles. New insights into the mechanics of GRASP-mediated tethering come from recent crystal structures. The models of how GRASP65 and GRASP55 tether membranes relate directly to their role in Golgi ribbon formation in mammalian cells and the unlinking of the ribbon at the onset of mitosis. However, it is also clear that GRASPs act outside the Golgi with roles at the ER and ER exit sites (ERES. Furthermore, the proteins of this family display other roles upon cellular stress, especially in mediating unconventional secretion of both transmembrane proteins (Golgi bypass and cytoplasmic proteins (through secretory autophagosomes.

  14. The Effects of Microgravity on Seated Height (Spinal Elongation)

    Science.gov (United States)

    Young, K. S.; Rajulu, S.

    2011-01-01

    ABSTRACT Many physiological factors, such as spinal elongation, fluid shifts, bone atrophy, and muscle loss, occur during an exposure to a microgravity environment. Spinal elongation is just one of the factors that can also affect the safety and performance of a crewmember while in space. Spinal elongation occurs due to the lack of gravity/compression on the spinal column. This allows for the straightening of the natural spinal curve. There is a possible fluid shift in the inter-vertebral disks that may also result in changes in height. This study aims at collecting the overall change in seated height for crewmembers exposed to a microgravity environment. During previous Programs, Apollo-Soyuz Test Project (ASTP) and Skylab, spinal elongation data was collected from a small number of subjects in a standing posture but were limited in scope. Data from these studies indicated a quick increase in stature during the first few days of weightlessness, after which stature growth reached a plateau resulting in up to a 3% increase of the original measurement [1-5]. However, this data was collected only for crewmembers in standing posture and not in a seated posture. Seated height may have a different effect than standing height due to a change in posture as well as due to a compounded effect of wearing restraints and a potential compression of the gluteal area. Seated height was deemed as a critical measurement in the design of the Constellation Program s (CxP) Crew Exploration Vehicle (CEV), called Orion which is now the point-of-departure vehicle for the Multi-Purpose Crew Vehicle (MPCV) Program; therefore a better understanding of the effects of microgravity on seated height is necessary. Potential changes in seated height that may not have impacted crew accommodation in previous Programs will have significant effects on crew accommodation due to the layout of seats in the Orion.. The current and existing configuration is such that the four crewmembers are stacked two by

  15. An electrophysiological study of the object-based correspondence effect: is the effect triggered by an intended grasping action?

    Science.gov (United States)

    Lien, Mei-Ching; Jardin, Elliott; Proctor, Robert W

    2013-11-01

    We examined Goslin, Dixon, Fischer, Cangelosi, and Ellis's (Psychological Science 23:152-157, 2012) claim that the object-based correspondence effect (i.e., faster keypress responses when the orientation of an object's graspable part corresponds with the response location than when it does not) is the result of object-based attention (vision-action binding). In Experiment 1, participants determined the category of a centrally located object (kitchen utensil vs. tool), as in Goslin et al.'s study. The handle orientation (left vs. right) did or did not correspond with the response location (left vs. right). We found no correspondence effect on the response times (RTs) for either category. The effect was also not evident in the P1 and N1 components of the event-related potentials, which are thought to reflect the allocation of early visual attention. This finding was replicated in Experiment 2 for centrally located objects, even when the object was presented 45 times (33 more times than in Exp. 1). Critically, the correspondence effects on RTs, P1s, and N1s emerged only when the object was presented peripherally, so that the object handle was clearly located to the left or right of fixation. Experiment 3 provided further evidence that the effect was observed only for the base-centered objects, in which the handle was clearly positioned to the left or right of center. These findings contradict those of Goslin et al. and provide no evidence that an intended grasping action modulates visual attention. Instead, the findings support the spatial-coding account of the object-based correspondence effect.

  16. Effect of Additional Structure on Effective Stack Height of Gas Dispersion in Atmosphere

    OpenAIRE

    Takenobu Michioka; Koichi Sada; Kazuki Okabayashi

    2016-01-01

    Wind-tunnel experiments were conducted to evaluate the effect of additional structure (building, sea wall and banking) on the effective stack height, which is usually used in safety analyses of nuclear power facilities in Japan. The effective stack heights were estimated with and without the additional structure in addition to the reactor building while varying several conditions such as the source height, the height of additional structure and the distance between the source position and the...

  17. Effect of Additional Structure on Effective Stack Height of Gas Dispersion in Atmosphere

    Directory of Open Access Journals (Sweden)

    Takenobu Michioka

    2016-03-01

    Full Text Available Wind-tunnel experiments were conducted to evaluate the effect of additional structure (building, sea wall and banking on the effective stack height, which is usually used in safety analyses of nuclear power facilities in Japan. The effective stack heights were estimated with and without the additional structure in addition to the reactor building while varying several conditions such as the source height, the height of additional structure and the distance between the source position and the additional structure. When the source height is equivalent to the reactor building height, the additional structure enhances both the vertical and horizontal gas dispersion widths and decreases the ground gas concentration, and it means that the additional structure does not decrease the effective stack height. When the source height is larger than the reactor height, the additional structures might affect the effective stack height. As the distance between the source and the additional structure decreases, or as the height of the additional structure increases, the structure has a larger effect on the effective stack height.

  18. The Effect of NPP's Stack Height to Radiation Dose

    International Nuclear Information System (INIS)

    Pandi, Liliana Yetta; Rohman, Budi

    2003-01-01

    The purpose of dose calculation for accidents is to analyze the capability of NPP to maintain the safety of public and workers in case an accident occurs on the Plant in a site. This paper calculates the Loss of Coolant Accident in PWR plant. The calculation results shows that no risks of serious radiation exposure are given to the neighboring public even if such a large accident occurred, and the effect of stack height can be predicted by analysis of the calculation results. The whole dose is calculated for some location (100 m, 300 m, 500 m, 700 m, 900 m, 1500 m, and 2000 m) with three difference stack height i.e. 0 m, 40 m and 100 m. The result of the whole dose calculation is under permitted criteria for whole dose : 0.25 Sv and thyroid dose : 3.0 Sv. The calculation of radiation dose in this paper use EEDCDQ code

  19. Visual Descriptor Learning for Predicting Grasping Affordances

    DEFF Research Database (Denmark)

    Thomsen, Mikkel Tang

    2016-01-01

    by the task of grasping unknown objects given visual sensor information. The contributions from this thesis stem from three works that all relate to the task of grasping unknown objects but with particular focus on the visual representation part of the problem. First an investigation of a visual feature space...... consisting of surface features was performed. Dimensions in the visual space were varied and the effects were evaluated with the task of grasping unknown object. The evaluation was performed using a novel probabilistic grasp prediction approach based on neighbourhood analysis. The resulting success......-rates for predicting grasps were between 75% and 90% depending on the object class. The investigations also provided insights into the importance of selecting a proper visual feature space when utilising it for predicting affordances. As a consequence of the gained insights, a semi-local surface feature, the Sliced...

  20. Refining Grasp Affordance Models by Experience

    DEFF Research Database (Denmark)

    Detry, Renaud; Kraft, Dirk; Buch, Anders Glent

    2010-01-01

    We present a method for learning object grasp affordance models in 3D from experience, and demonstrate its applicability through extensive testing and evaluation on a realistic and largely autonomous platform. Grasp affordance refers here to relative object-gripper configurations that yield stable...... with a visual model of the object they characterize. We explore a batch-oriented, experience-based learning paradigm where grasps sampled randomly from a density are performed, and an importance-sampling algorithm learns a refined density from the outcomes of these experiences. The first such learning cycle...... is bootstrapped with a grasp density formed from visual cues. We show that the robot effectively applies its experience by downweighting poor grasp solutions, which results in increased success rates at subsequent learning cycles. We also present success rates in a practical scenario where a robot needs...

  1. Grasp Densities for Grasp Refinement in Industrial Bin Picking

    DEFF Research Database (Denmark)

    Hupfauf, Benedikt; Hahn, Heiko; Bodenhagen, Leon

    in terms of object-relative gripper pose, can be learned from empirical experience, and allow the automatic choice of optimal grasps in a given scene context (object pose, workspace constraints, etc.). We will show grasp densities extracted from empirical data in a real industrial bin picking context...... generated in industrial bin-picking for grasp learning. This aim is achieved by using the novel concept of grasp densities (Detry et al., 2010). Grasp densities can describe the full variety of grasps that apply to specific objects using specific grippers. They represent the likelihood of grasp success...

  2. The Effect of Adolescent Experience on Labor Market Outcomes: The Case of Height.

    Science.gov (United States)

    Persico, Nicola; Postlewaite, Andrew; Silverman, Dan

    2004-01-01

    Taller workers receive a wage premium. Net of differences in family background, the disparity is similar in magnitude to the race and gender gaps. We exploit variation in an individual's height over time to explore how height affects wages. Controlling for teen height essentially eliminates the effect of adult height on wages for white men. The…

  3. Experiments in robotic sensorimotor control during grasp

    International Nuclear Information System (INIS)

    Stansfield, S.A.

    1993-01-01

    A series of experiments is presented, using a robot manipulator, which attempt to reproduce human sensorimotor control during grasping. The work utilizes a multifingered, dexterous robot hand equipped with a fingertip force sensor to explore dynamic grasp force adjustment during manipulation. The work is primarily concerned with the relationship between the weight of an object and the grasp force required to lift it. Too weak a grasp is unstable and the object will slip from the hand. Too strong a grasp may damage the object and/or the manipulator. An algorithm is presented which reproduces observed human behavior during grasp-and-lift tasks. The algorithm uses tactile information from the sensor to dynamically adjust the grasp force during lift. It is assumed that there is no a priori knowledge about the object to be manipulated. The effects of different arm/hand postures and object surfaces is explored. Finally, the use of sensory data to detect unexpected object motion and to signal transitions between manipulation phases--with the coincident triggering of new motor programs--is investigated

  4. Grasping Beer Mugs: On the Dynamics of Alignment Effects Induced by Handled Objects

    Science.gov (United States)

    Bub, Daniel N.; Masson, Michael E. J.

    2010-01-01

    We examined automatic spatial alignment effects evoked by handled objects. Using color as the relevant cue carried by an irrelevant handled object aligned or misaligned with the response hand, responses to color were faster when the handle aligned with the response hand. Alignment effects were observed only when the task was to make a reach and…

  5. Effective propulsion in swimming: grasping the hydrodynamics of hand and arm movements

    NARCIS (Netherlands)

    van Houwelingen, J.; Schreven, S.; Smeets, J.J.B.; Clercx, H.J.H.; Beek, P.J.

    2017-01-01

    A literature review is presented about the hydrodynamic effects of different hand and arm movements during swimming with the aim to identify lacunae in current methods and knowledge, and to distil practical guidelines for coaches and swimmers seeking to increase swimming speed. Experimental and

  6. Grasping the Dynamic Complexity of Team Learning: An Integrative Model for Effective Team Learning in Organisations

    Science.gov (United States)

    Decuyper, Stefan; Dochy, Filip; Van den Bossche, Piet

    2010-01-01

    In this article we present an integrative model of team learning. Literature shows that effective team learning requires the establishment of a dialogical space amongst team members, in which communicative behaviours such as "sharing", "co-construction" and "constructive conflict" are balanced. However, finding this balance is not enough.…

  7. Effect of cutting height and frequency on Leucaena leucocephala ...

    African Journals Online (AJOL)

    Leucaena leucocephala is a fast-growing tree that can provide both high quality forage and firewood. The objective of this trial was to determine the optimum height and frequency of cutting for both wood and forage production. Cutting heights at 0.3m, 0.6m and 1.0 m were superimposed on 3-month and 6-month cutting ...

  8. Effects of modified constraint-induced movement therapy on reach-to-grasp movements and functional performance after chronic stroke: a randomized controlled study.

    Science.gov (United States)

    Lin, K-C; Wu, C-Y; Wei, T-H; Lee, C-Y; Liu, J-S

    2007-12-01

    To evaluate changes in (1) motor control characteristics of the hemiparetic hand during the performance of a functional reach-to-grasp task and (2) functional performance of daily activities in patients with stroke treated with modified constraint-induced movement therapy. Two-group randomized controlled trial with pretreatment and posttreatment measures. Rehabilitation clinics. Thirty-two chronic stroke patients (21 men, 11 women; mean age=57.9 years, range=43-81 years) 13-26 months (mean 16.3 months) after onset of a first-ever cerebrovascular accident. Thirty-two patients were randomized to receive modified constraint-induced movement therapy (restraint of the unaffected limb combined with intensive training of the affected limb) or traditional rehabilitation for three weeks. Kinematic analysis was used to assess motor control characteristics as patients reached to grasp a beverage can. Functional outcomes were evaluated using the Motor Activity Log and Functional Independence Measure. There were moderate and significant effects of modified constraint-induced movement therapy on some aspects of motor control of reach-to-grasp and on functional ability. The modified constraint-induced movement therapy group preplanned reaching and grasping (P=0.018) more efficiently and depended more on the feedforward control of reaching (P=0.046) than did the traditional rehabilitation group. The modified constraint-induced movement therapy group also showed significantly improved functional performance on the Motor Activity Log (Pcontrol strategy during goal-directed reaching, a possible mechanism for the improved movement performance of stroke patients undergoing this therapy.

  9. An object-identity probability cueing paradigm during grasping observation: the facilitating effect is present only when the observed kinematics is suitable for the cued object.

    Science.gov (United States)

    Craighero, Laila; Mele, Sonia; Zorzi, Valentina

    2015-01-01

    Electrophysiological and psychophysical data indicate that grasping observation automatically orients attention toward the incoming interactions between the actor's hand and the object. The aim of the present study was to clarify if this effect facilitates the detection of a graspable object with the observed action as compared to an ungraspable one. We submitted participants to an object-identity probability cueing experiment in which the two possible targets were of the same dimensions but one of them presented sharp tips at one extreme while the other presented flat faces. At the beginning of each trial the most probable target was briefly shown. After a variable interval, at the same position, the same (75%) or a different target (25%) was presented. Participants had to press a key in response to target appearance. Superimposed to the video showing cue and target, an agent performing the reaching and grasping of the target was presented. The kinematics of the action was or was not suitable for grasping the cued target, according to the absence or presence of the sharp tips. Results showed that response was modulated by the probability of target identity but only when the observed kinematics was suitable to grasp the attended target. A further experiment clarified that response modulation was never present when the superimposed video always showed the agent at a rest position. These findings are discussed at the light of neurophysiological and psychophysical literature, considering the relationship between the motor system and the perception of objects and of others' actions. We conclude that the prediction of the mechanical events that arise from the interactions between the hand and the attended object is at the basis of the capability to select a graspable object in space.

  10. Effects of stand density on top height estimation for ponderosa pine

    Science.gov (United States)

    Martin Ritchie; Jianwei Zhang; Todd Hamilton

    2012-01-01

    Site index, estimated as a function of dominant-tree height and age, is often used as an expression of site quality. This expression is assumed to be effectively independent of stand density. Observation of dominant height at two different ponderosa pine levels-of-growing-stock studies revealed that top height stability with respect to stand density depends on the...

  11. Assessing Grasp Stability Based on Learning and Haptic Data

    DEFF Research Database (Denmark)

    Bekiroglu, Yasemin; Laaksonen, Janne; Jørgensen, Jimmy Alison

    2011-01-01

    a probabilistic learning framework to assess grasp stability and demonstrate that knowledge about grasp stability can be inferred using information from tactile sensors. Experiments on both simulated and real data are shown. The results indicate that the idea to exploit the learning approach is applicable...... data and machine-learning methods, including AdaBoost, support vector machines (SVMs), and hidden Markov models (HMMs). In particular, we study the effect of different sensory streams to grasp stability. This includes object information such as shape; grasp information such as approach vector; tactile...

  12. Effect of a perturbation-based balance training program on compensatory stepping and grasping reactions in older adults: a randomized controlled trial.

    Science.gov (United States)

    Mansfield, Avril; Peters, Amy L; Liu, Barbara A; Maki, Brian E

    2010-04-01

    Compensatory stepping and grasping reactions are prevalent responses to sudden loss of balance and play a critical role in preventing falls. The ability to execute these reactions effectively is impaired in older adults. The purpose of this study was to evaluate a perturbation-based balance training program designed to target specific age-related impairments in compensatory stepping and grasping balance recovery reactions. This was a double-blind randomized controlled trial. The study was conducted at research laboratories in a large urban hospital. Thirty community-dwelling older adults (aged 64-80 years) with a recent history of falls or self-reported instability participated in the study. Participants were randomly assigned to receive either a 6-week perturbation-based (motion platform) balance training program or a 6-week control program involving flexibility and relaxation training. Features of balance reactions targeted by the perturbation-based program were: (1) multi-step reactions, (2) extra lateral steps following anteroposterior perturbations, (3) foot collisions following lateral perturbations, and (4) time to complete grasping reactions. The reactions were evoked during testing by highly unpredictable surface translation and cable pull perturbations, both of which differed from the perturbations used during training. /b> Compared with the control program, the perturbation-based training led to greater reductions in frequency of multi-step reactions and foot collisions that were statistically significant for surface translations but not cable pulls. The perturbation group also showed significantly greater reduction in handrail contact time compared with the control group for cable pulls and a possible trend in this direction for surface translations. Further work is needed to determine whether a maintenance program is needed to retain the training benefits and to assess whether these benefits reduce fall risk in daily life. Perturbation-based training

  13. Grasping trajectories in a virtual environment adhere to Weber's law.

    Science.gov (United States)

    Ozana, Aviad; Berman, Sigal; Ganel, Tzvi

    2018-06-01

    Virtual-reality and telerobotic devices simulate local motor control of virtual objects within computerized environments. Here, we explored grasping kinematics within a virtual environment and tested whether, as in normal 3D grasping, trajectories in the virtual environment are performed analytically, violating Weber's law with respect to object's size. Participants were asked to grasp a series of 2D objects using a haptic system, which projected their movements to a virtual space presented on a computer screen. The apparatus also provided object-specific haptic information upon "touching" the edges of the virtual targets. The results showed that grasping movements performed within the virtual environment did not produce the typical analytical trajectory pattern obtained during 3D grasping. Unlike as in 3D grasping, grasping trajectories in the virtual environment adhered to Weber's law, which indicates relative resolution in size processing. In addition, the trajectory patterns differed from typical trajectories obtained during 3D grasping, with longer times to complete the movement, and with maximum grip apertures appearing relatively early in the movement. The results suggest that grasping movements within a virtual environment could differ from those performed in real space, and are subjected to irrelevant effects of perceptual information. Such atypical pattern of visuomotor control may be mediated by the lack of complete transparency between the interface and the virtual environment in terms of the provided visual and haptic feedback. Possible implications of the findings to movement control within robotic and virtual environments are further discussed.

  14. Hand Grasping Synergies As Biometrics.

    Science.gov (United States)

    Patel, Vrajeshri; Thukral, Poojita; Burns, Martin K; Florescu, Ionut; Chandramouli, Rajarathnam; Vinjamuri, Ramana

    2017-01-01

    Recently, the need for more secure identity verification systems has driven researchers to explore other sources of biometrics. This includes iris patterns, palm print, hand geometry, facial recognition, and movement patterns (hand motion, gait, and eye movements). Identity verification systems may benefit from the complexity of human movement that integrates multiple levels of control (neural, muscular, and kinematic). Using principal component analysis, we extracted spatiotemporal hand synergies (movement synergies) from an object grasping dataset to explore their use as a potential biometric. These movement synergies are in the form of joint angular velocity profiles of 10 joints. We explored the effect of joint type, digit, number of objects, and grasp type. In its best configuration, movement synergies achieved an equal error rate of 8.19%. While movement synergies can be integrated into an identity verification system with motion capture ability, we also explored a camera-ready version of hand synergies-postural synergies. In this proof of concept system, postural synergies performed well, but only when specific postures were chosen. Based on these results, hand synergies show promise as a potential biometric that can be combined with other hand-based biometrics for improved security.

  15. Hand Grasping Synergies As Biometrics

    Directory of Open Access Journals (Sweden)

    Ramana Vinjamuri

    2017-05-01

    Full Text Available Recently, the need for more secure identity verification systems has driven researchers to explore other sources of biometrics. This includes iris patterns, palm print, hand geometry, facial recognition, and movement patterns (hand motion, gait, and eye movements. Identity verification systems may benefit from the complexity of human movement that integrates multiple levels of control (neural, muscular, and kinematic. Using principal component analysis, we extracted spatiotemporal hand synergies (movement synergies from an object grasping dataset to explore their use as a potential biometric. These movement synergies are in the form of joint angular velocity profiles of 10 joints. We explored the effect of joint type, digit, number of objects, and grasp type. In its best configuration, movement synergies achieved an equal error rate of 8.19%. While movement synergies can be integrated into an identity verification system with motion capture ability, we also explored a camera-ready version of hand synergies—postural synergies. In this proof of concept system, postural synergies performed well, but only when specific postures were chosen. Based on these results, hand synergies show promise as a potential biometric that can be combined with other hand-based biometrics for improved security.

  16. Tactile feedback is an effective instrument for the training of grasping with a prosthesis at low- and medium-force levels.

    Science.gov (United States)

    De Nunzio, Alessandro Marco; Dosen, Strahinja; Lemling, Sabrina; Markovic, Marko; Schweisfurth, Meike Annika; Ge, Nan; Graimann, Bernhard; Falla, Deborah; Farina, Dario

    2017-08-01

    Grasping is a complex task routinely performed in an anticipatory (feedforward) manner, where sensory feedback is responsible for learning and updating the internal model of grasp dynamics. This study aims at evaluating whether providing a proportional tactile force feedback during the myoelectric control of a prosthesis facilitates learning a stable internal model of the prosthesis force control. Ten able-bodied subjects controlled a sensorized myoelectric prosthesis performing four blocks of consecutive grasps at three levels of target force (30, 50, and 70%), repeatedly closing the fully opened hand. In the first and third block, the subjects received tactile and visual feedback, respectively, while during the second and fourth block, the feedback was removed. The subjects also performed an additional block with no feedback 1 day after the training (Retest). The median and interquartile range of the generated forces was computed to assess the accuracy and precision of force control. The results demonstrated that the feedback was indeed an effective instrument for the training of prosthesis control. After the training, the subjects were still able to accurately generate the desired force for the low and medium target (30 and 50% of maximum force available in a prosthesis), despite the feedback being removed within the session and during the retest (low target force). However, the training was substantially less successful for high forces (70% of prosthesis maximum force), where subjects exhibited a substantial loss of accuracy as soon as the feedback was removed. The precision of control decreased with higher forces and it was consistent across conditions, determined by an intrinsic variability of repeated myoelectric grasping. This study demonstrated that the subject could rely on the tactile feedback to adjust the motor command to the prosthesis across trials. The subjects adjusted the mean level of muscle activation (accuracy), whereas the precision could not

  17. Effects of Wheelchair Seat-height Settings on Alternating Lower Limb Propulsion With Both Legs.

    Science.gov (United States)

    Murata, Tomoyuki; Asami, Toyoko; Matsuo, Kiyomi; Kubo, Atsuko; Okigawa, Etsumi

    2014-01-01

    This study investigated the effects of seat-height settings of wheelchairs with alternating propulsion with both legs. Seven healthy individuals with no orthopedic disease participated. Flexion angles at initial contact (FA-IC) of each joint, range of motion during propulsion period (ROM-PP), and ground reaction force (GRF) were measured using a three dimensional motion capture system and force plates, and compared with different seat-height settings. Statistically significant relationships were found between seat-height and speed, stride length, knee FA-IC, ankle FA-IC, hip ROM-PP, vertical ground reaction force (VGRF), and anterior posterior ground reaction force (APGRF). Speed, hip ROM-PP, VGRF and APGRF increased as the seat-height was lowered. This effect diminished when the seat-height was set below -40 mm. VGRF increased as the seat-height was lowered. The results suggest that the seat-height effect can be attributed to hip ROM-PP; therefore, optimal foot propulsion cannot be achieved when the seat height is set either too high or too low. Efficient foot propulsion of the wheelchair can be achieved by setting the seat height to lower leg length according to a combination of physical characteristics, such as the user's physical functions, leg muscles, and range of motion.

  18. Minimal Reducts with Grasp

    Directory of Open Access Journals (Sweden)

    Iris Iddaly Mendez Gurrola

    2011-03-01

    Full Text Available The proper detection of patient level of dementia is important to offer the suitable treatment. The diagnosis is based on certain criteria, reflected in the clinical examinations. From these examinations emerge the limitations and the degree in which each patient is in. In order to reduce the total of limitations to be evaluated, we used the rough set theory, this theory has been applied in areas of the artificial intelligence such as decision analysis, expert systems, knowledge discovery, classification with multiple attributes. In our case this theory is applied to find the minimal limitations set or reduct that generate the same classification that considering all the limitations, to fulfill this purpose we development an algorithm GRASP (Greedy Randomized Adaptive Search Procedure.

  19. Grasping completions: Towards a new paradigm

    NARCIS (Netherlands)

    Lommertzen, J.; Meulenbroek, R.G.J.; Lier, R.J. van

    2006-01-01

    We studied contextual effects of amodal completion in both a primed-matching task, and a grasping task in a within-subjects design with twenty-nine participants. Stimuli were partly occluded cylindrical objects that could have indentations (or protrusions) at regular intervals along the contour. The

  20. Continuum robots and underactuated grasping

    Directory of Open Access Journals (Sweden)

    N. Giri

    2011-02-01

    Full Text Available We discuss the capabilities of continuum (continuous backbone robot structures in the performance of under-actuated grasping. Continuum robots offer the potential of robust grasps over a wide variety of object classes, due to their ability to adapt their shape to interact with the environment via non-local continuum contact conditions. Furthermore, this capability can be achieved with simple, low degree of freedom hardware. However, there are practical issues which currently limit the application of continuum robots to grasping. We discuss these issues and illustrate via an experimental continuum grasping case study.

    This paper was presented at the IFToMM/ASME International Workshop on Underactuated Grasping (UG2010, 19 August 2010, Montréal, Canada.

  1. Passive Aerial Grasping of Ferrous Objects

    KAUST Repository

    Fiaz, Usman Amin

    2017-10-19

    Aerial transportation is probably the most efficient way to supply quick and effective aid especially in cases of emergency like search and rescue operations. Thus the ability to grasp and deliver objects is of vital importance in all sorts of unmanned and autonomous aerial operations. We detail a simple yet novel approach for aerial grasping of ferrous objects using a passive magnetic pickup and an impulse based drop mechanism. The design enables our gripper to grasp ferrous objects using single as well as multiple gripping pads, with visual as well as pickup and drop feedback. We describe the various components of the gripper with emphasis on its low mass and high lift capability since weight is a matter of high consideration in all aerial applications. In addition, we investigate and address the issues that may cause our design to fail. We demonstrate by experiments that the proposed design is robust and effective, based on its high payload capability, its sturdiness against possible slide during aggressive aerial maneuvers, and optimum performance of the drop mechanism for the designed range of payloads. We also show that the gripper is able to pick up and drop a single as well as multiple ferrous objects of different shapes, curvature, and inclination, which also involves picking up an object and then grasping the next, while keeping hold of the previous one.

  2. Passive Aerial Grasping of Ferrous Objects

    KAUST Repository

    Fiaz, Usman; Toumi, Noureddine; Shamma, Jeff S.

    2017-01-01

    Aerial transportation is probably the most efficient way to supply quick and effective aid especially in cases of emergency like search and rescue operations. Thus the ability to grasp and deliver objects is of vital importance in all sorts of unmanned and autonomous aerial operations. We detail a simple yet novel approach for aerial grasping of ferrous objects using a passive magnetic pickup and an impulse based drop mechanism. The design enables our gripper to grasp ferrous objects using single as well as multiple gripping pads, with visual as well as pickup and drop feedback. We describe the various components of the gripper with emphasis on its low mass and high lift capability since weight is a matter of high consideration in all aerial applications. In addition, we investigate and address the issues that may cause our design to fail. We demonstrate by experiments that the proposed design is robust and effective, based on its high payload capability, its sturdiness against possible slide during aggressive aerial maneuvers, and optimum performance of the drop mechanism for the designed range of payloads. We also show that the gripper is able to pick up and drop a single as well as multiple ferrous objects of different shapes, curvature, and inclination, which also involves picking up an object and then grasping the next, while keeping hold of the previous one.

  3. A novel gripper design for multi hand tools grasping under tight clearance constraints and external torque effect

    KAUST Repository

    Shaqura, Mohammad

    2017-08-29

    A robotic multi tool gripper design and implementation is presented in this paper. The proposed design targets applications where an actuation task is performed using a wide selection of standard hand tools. The manipulation motion is assumed to be rotational which requires a firm grip to account for external torque on the grasped tool. The setup is assumed to be a conventional workshop panel with hand tools being hanged close to each other, which constraints lateral clearance around the target, and near the wall of the panel, which constraints the depth clearance. Off the shelf grippers are mostly heavy and bulky which make them unsuitable for these requirements. Moreover, they are not optimized in terms of power consumption, simplicity and compactness. These generic grippers are mostly designed for pick and place tasks where no external torques other than those caused by the object weight affects the gripper. The design challenge involves building a gripper that is capable of operating in limited clearance space, firmly grip a variety of standard hand tools with different sizes and shapes. The proposed design is optimized for these objectives and offers a low cost and power consumption solution. The design has been validated in lab and outdoor experiments and has been deployed in real operating platform used in an international robotics competition.

  4. Influence of contact height on the performance of vertically aligned carbon nanotube field-effect transistors

    KAUST Repository

    Li, Jingqi; Cheng, Yingchun; Guo, Zaibing; Wang, Zhihong; Zhu, Zhiyong; Zhang, Qing; Chan-Park, Chanpark; Schwingenschlö gl, Udo; Zhang, Xixiang

    2013-01-01

    Vertically aligned carbon nanotube field-effect transistors (CNTFETs) have been experimentally demonstrated (J. Li et al., Carbon, 2012, 50, 4628-4632). The source and drain contact heights in vertical CNTFETs could be much higher than in flat CNTFETs if the fabrication process is not optimized. To understand the impact of contact height on transistor performance, we use a semi-classical method to calculate the characteristics of CNTFETs with different contact heights. The results show that the drain current decreases with increasing contact height and saturates at a value governed by the thickness of the oxide. The current reduction caused by the increased contact height becomes more significant when the gate oxide is thicker. The higher the drain voltage, the larger the current reduction. It becomes even worse when the band gap of the carbon nanotube is larger. The current can differ by a factor of more than five between the CNTEFTs with low and high contact heights when the oxide thickness is 50 nm. In addition, the influence of the contact height is limited by the channel length. The contact height plays a minor role when the channel length is less than 100 nm. © 2013 The Royal Society of Chemistry.

  5. The Effect of Height, Wing Length, and Wing Symmetry on Tabebuia rosea Seed Dispersal

    Directory of Open Access Journals (Sweden)

    Yasmeen Moussa

    2014-12-01

    Full Text Available The relationship between the vertical drop height and the horizontal distance traveled (dispersal ratio was investigated for a sample of fifty Tabebuia rosea seeds by dropping the seeds from five heights ranging from 1.00 to 2.00 meters. The dispersal ratio was found to be a constant 0.16 m/m for these heights. The effects of total seed length and asymmetry of seed wings on dispersal ratio were also measured using separate samples of fifty Tabebuia rosea seeds. It was found that neither seed length nor asymmetry had a significant effect on the dispersal ratio.

  6. Effects of Stimulants on Height and Weight: A Review of the Literature

    Science.gov (United States)

    Faraone, Stephen V.; Biederman, Joseph; Morley, Christopher P.; Spencer, Thomas J.

    2008-01-01

    The article reviews existing literature on the effects of stimulant medications on the growth of children with attention-deficit/hyperactivity disorder. It concludes that treatment with stimulants in childhood results in moderate growth deficit in height and weight.

  7. Effective pollutant emission heights for atmospheric transport modelling based on real-world information.

    Science.gov (United States)

    Pregger, Thomas; Friedrich, Rainer

    2009-02-01

    Emission data needed as input for the operation of atmospheric models should not only be spatially and temporally resolved. Another important feature is the effective emission height which significantly influences modelled concentration values. Unfortunately this information, which is especially relevant for large point sources, is usually not available and simple assumptions are often used in atmospheric models. As a contribution to improve knowledge on emission heights this paper provides typical default values for the driving parameters stack height and flue gas temperature, velocity and flow rate for different industrial sources. The results were derived from an analysis of the probably most comprehensive database of real-world stack information existing in Europe based on German industrial data. A bottom-up calculation of effective emission heights applying equations used for Gaussian dispersion models shows significant differences depending on source and air pollutant and compared to approaches currently used for atmospheric transport modelling.

  8. Effect of plyometric training on vertical jump height in high school basketball players: randomised control trial

    Directory of Open Access Journals (Sweden)

    Chhaya Verma, Lakshmi Subramanium, Vijaya Krishnan

    2015-01-01

    Full Text Available Background: Plyometric involve high intensity eccentric contraction immediately after a powerful concentric contraction. A vertical leap in basketball also involves rapid & repeated muscle contraction & stretching. Various methods have been used to improve the vertical leap in players, but only few studies mention about plyometrics. Aim: To determine the effect of Plyometric training on vertical jump height in high school basketball players & compare them with their untrained counterparts. Methods and Materials: 144 students were randomly selected & distributed in Group I (Pre-pubertal & Group II (Pubertal which was further divided into Group A (trained players & Group B (untrained students. A gender wise distribution followed this. Plyometric training of 6 weeks was conducted & the vertical jump height pre & post training were recorded & compared. Results: Vertical jump height improved significantly post Plyometric in Group Bcompared to Group A. Boys showed improvement in Group B, however girls were better in Group A. Correlation of BMI with vertical jump height was negative & significant in Group B. Conclusion: Plyometric training brought significant change in untrained students. Boys gained more jump height while girls showed significant increase in jump height during pubertal growth spurt. Also, increased BMI reduced jump height.

  9. Simulation of three-phase flow and lance height effect on the cavity shape

    Science.gov (United States)

    Dong, Kai; Zhu, Rong; Gao, Wei; Liu, Fu-hai

    2014-06-01

    A three-dimensional computational fluid dynamics (CFD) model was developed to simulate a 150-t top-blown converter. The effect of different lance heights on the cavity shape was investigated using the volume of fluid (VOF) method. Numerical simulation results can reflect the actual molten bath surface waves impinged by the supersonic oxygen jets. With increasing lance height, the cavity depth decreases, and the cavity area, varying like a parabola, increases and then decreases. The cavity area maximizes at the lance height of 1.3 m. Under the three different lance heights simulated in this study, all of the largest impact velocities at the molten bath surface are between 50 m/s and 100 m/s.

  10. Grasp force sensor for robotic hands

    Science.gov (United States)

    Scheinman, Victor D. (Inventor); Bejczy, Antal K. (Inventor); Primus, Howard C. (Inventor)

    1989-01-01

    A grasp force sensor for robotic hands is disclosed. A flexible block is located in the base of each claw through which the grasp force is exerted. The block yields minute parallelogram deflection when the claws are subjected to grasping forces. A parallelogram deflection closely resembles pure translational deflection, whereby the claws remain in substantial alignment with each other during grasping. Strain gauge transducers supply signals which provide precise knowledge of and control over grasp forces.

  11. Attention and reach-to-grasp movements in Parkinson's disease.

    Science.gov (United States)

    Lu, Cathy; Bharmal, Aamir; Kiss, Zelma H; Suchowersky, Oksana; Haffenden, Angela M

    2010-08-01

    The role of attention in grasping movements directed at common objects has not been examined in Parkinson's disease (PD), though these movements are critical to activities of daily living. Our primary objective was to determine whether patients with PD demonstrate automaticity in grasping movements directed toward common objects. Automaticity is assumed when tasks can be performed with little or no interference from concurrent tasks. Grasping performance in three patient groups (newly diagnosed, moderate, and advanced/surgically treated PD) on and off of their medication or deep brain stimulation was compared to performance in an age-matched control group. Automaticity was demonstrated by the absence of a decrement in grasping performance when attention was consumed by a concurrent spatial-visualization task. Only the control group and newly diagnosed PD group demonstrated automaticity in their grasping movements. The moderate and advanced PD groups did not demonstrate automaticity. Furthermore, the well-known effects of pharmacotherapy and surgical intervention on movement speed and muscle activation patterns did not appear to reduce the impact of attention-demanding tasks on grasping movements in those with moderate to advanced PD. By the moderate stage of PD, grasping is an attention-demanding process; this change is not ameliorated by dopaminergic or surgical treatments. These findings have important implications for activities of daily living, as devoting attention to the simplest of daily tasks would interfere with complex activities and potentially exacerbate fatigue.

  12. The effect of vowel height on Voice Onset Time in stop consonants in CV sequences in spontaneous Danish

    DEFF Research Database (Denmark)

    Mortensen, Johannes; Tøndering, John

    2013-01-01

    Voice onset time has been reported to vary with the height of vowels following the stop consonant. This paper investigates the effects of vowel height on VOT in Danish CV sequences with stop consonants in Danish spontaneous speech. A significant effect of vowel height on VOT was found...

  13. Clinical relevance of the effects of reach-to-grasp training using trunk restraint in individuals with hemiparesis poststroke: A systematic review.

    Science.gov (United States)

    Greisberger, Andrea; Aviv, Hanna; Garbade, Sven F; Diermayr, Gudrun

    2016-04-28

    To evaluate the evidence for, and clinical relevance of, immediate and long-term effects of trunk restraint during reach-to-grasp training poststroke on movement patterns and functional abilities within the framework of the International Classification of Functioning, Disability and Health. PubMed, Web of Science, CINAHL, Embase, PEDro, Cochrane Library (publication dates January 1985 to March 2015). Randomized controlled trials comparing training using trunk restraint with any other exercise training. Data were extracted by one researcher and checked by two other researchers. The Cochrane Collaboration's tool for assessing risk of bias and the Physiotherapy Evidence Database scale were used by two researchers to assess study quality and risk of bias. Eight studies met the inclusion criteria. Five studies found better recovery of movement patterns (trunk displacement, elbow extension, and/or shoulder flexion - body function/structure) at post-test in the experimental compared with the control groups. Functional abilities (activity/participation) improved more in the experimental groups in 3 studies at post-test. Long-term effects were found in one study after 4 weeks. Trunk restraint has immediate and some long-term effects in adults with chronic stroke. However, these effects are not consistently clinically relevant when referring to minimal detectable change or minimal clinically important difference values.

  14. Effect of pencil grasp on the speed and legibility of handwriting after a 10-minute copy task in Grade 4 children.

    Science.gov (United States)

    Schwellnus, Heidi; Carnahan, Heather; Kushki, Azadeh; Polatajko, Helene; Missiuna, Cheryl; Chau, Tom

    2012-06-01

    To investigate the impact of common pencil grasp patterns on the speed and legibility of handwriting after a 10-minute copy task, intended to induce muscle fatigue, in typically developing children and in those non-proficient in handwriting. A total of 120 Grade 4 students completed a standardised handwriting assessment before and after a 10-minute copy task. The students indicated the perceived difficulty of the handwriting task at baseline and after 10 minutes. The students also completed a self-report questionnaire regarding their handwriting proficiency upon completion. The majority of the students rated higher effort after the 10-minute copy task than at baseline (rank sum: P = 0.00001). The effort ratings were similar for the different grasp patterns (multiple linear regression: F = 0.37, P = 0.895). For both typically developing children and those with handwriting issues, the legibility of the writing samples decreased after the 10-minute copy task but the speed of writing increased. CONCLUSIONS AND SIGNIFICANCE OF THE STUDY: The quality of the handwriting decreased after the 10-minute copy task; however, there was no difference in the quality or speed scores among the different pencil grasps before and after the copy task. The dynamic tripod pencil grasp did not offer any advantage over the lateral tripod or the dynamic or lateral quadrupod pencil grasps in terms of quality of handwriting after a 10-minute copy task. These four pencil grasp patterns performed equivalently. Our findings question the practice of having students adopt the dynamic tripod pencil grasp. © 2012 The Authors Australian Occupational Therapy Journal © 2012 Occupational Therapy Australia.

  15. Grasp frequency and usage in daily household and machine shop tasks.

    Science.gov (United States)

    Bullock, Ian M; Zheng, Joshua Z; De La Rosa, Sara; Guertler, Charlotte; Dollar, Aaron M

    2013-01-01

    In this paper, we present results from a study of prehensile human hand use during the daily work activities of four subjects: two housekeepers and two machinists. Subjects wore a head-mounted camera that recorded their hand usage during their daily work activities in their typical place of work. For each subject, 7.45 hours of video was analyzed, recording the type of grasp being used and its duration. From this data, we extracted overall grasp frequency, duration distributions for each grasp, and common transitions between grasps. The results show that for 80 percent of the study duration the housekeepers used just five grasps and the machinists used 10. The grasping patterns for the different subjects were compared, and the overall top 10 grasps are discussed in detail. The results of this study not only lend insight into how people use their hands during daily tasks, but can also inform the design of effective robotic and prosthetic hands.

  16. Influence of non-spatial working memory demands on reach-grasp responses to loss of balance: Effects of age and fall risk.

    Science.gov (United States)

    Westlake, Kelly P; Johnson, Brian P; Creath, Robert A; Neff, Rachel M; Rogers, Mark W

    2016-03-01

    Reactive balance recovery strategies following an unexpected loss of balance are crucial to the prevention of falls, head trauma and other major injuries in older adults. While a longstanding focus has been on understanding lower limb recovery responses, the upper limbs also play a critical role. However, when a fall occurs, little is known about the role of memory and attention shifting on the reach to grasp recovery strategy and what factors determine the speed and precision of this response beyond simple reaction time. The objective of this study was to compare response time and accuracy of a stabilizing grasp following a balance perturbation in older adult fallers compared to non-fallers and younger adults while loading the processing demands of non-spatial, verbal working memory. Working memory was engaged with a progressively challenging verb-generation task that was interrupted by an unexpected sideways platform perturbation and a pre-instructed reach to grasp response. Results revealed that the older adults, particularly those at high fall risk, demonstrated significantly increased movement time to handrail contact and grasping errors during conditions in which non-spatial memory was actively engaged. These findings provide preliminary evidence of the cognitive deficit in attention shifting away from an ongoing working memory task that underlies delayed and inaccurate protective reach to grasp responses in older adult fallers. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. The effects of radiation therapy on height and spine MRI characteristics in children with neuroblastoma

    International Nuclear Information System (INIS)

    Yu, Jeong Il; Lim, Do Hoon; Jung, Sang Hoon; Sung, Ki Woong; Yoo, So-Young; Nam, Heerim

    2015-01-01

    Purpose: To investigate the effect of radiotherapy (RT) on height and spine using magnetic resonance imaging (MRI) analysis in children with neuroblastoma and to identify parameters related to patient height. Methods and materials: We performed a retrospective cohort study of neuroblastoma patients treated between January 1997 and December 2007. Twenty-seven children were enrolled. Whole spine MRI was completed and height percentiles were compared with national growth charts. Results: The median ages were 28, 43, and 126 months at diagnosis, RT, and analysis, respectively. All of the enrolled children received local RT, and 15 patients received total body irradiation (TBI). Median growth percentiles were 67.0, 54.0, and 4.9 at diagnosis, RT, and analysis, respectively. The number of irradiated vertebrae (P = 0.009) and having undergone TBI (P = 0.03) were significantly associated with shorter stature. Among the MRI parameters for irradiated vertebrae, signal intensity was higher (P = 0.05) and more heterogeneous (P = 0.02) in T1-weighted images and roundness was lower (P = 0.03) in T2-weighted images. Conclusions: Height of children with neuroblastoma was significantly affected by RT. The number of irradiated vertebrae and having undergone TBI were significantly associated with lower height. Irradiated spine showed changes in both signal and shape on MRI

  18. Grasp and index finger reach zone during one-handed smartphone rear interaction: effects of task type, phone width and hand length.

    Science.gov (United States)

    Lee, Songil; Kyung, Gyouhyung; Lee, Jungyong; Moon, Seung Ki; Park, Kyoung Jong

    2016-11-01

    Recently, some smartphones have introduced index finger interaction functions on the rear surface. The current study investigated the effects of task type, phone width, and hand length on grasp, index finger reach zone, discomfort, and muscle activation during such interaction. We considered five interaction tasks (neutral, comfortable, maximum, vertical, and horizontal strokes), two device widths (60 and 90 mm) and three hand lengths. Horizontal (vertical) strokes deviated from the horizontal axis in the range from -10.8° to -13.5° (81.6-88.4°). Maximum strokes appeared to be excessive as these caused 43.8% greater discomfort than did neutral strokes. The 90-mm width also appeared to be excessive as it resulted in 12.3% increased discomfort relative to the 60-mm width. The small-hand group reported 11.9-18.2% higher discomfort ratings, and the percent maximum voluntary exertion of their flexor digitorum superficialis muscle, pertaining to index finger flexion, was also 6.4% higher. These findings should be considered to make smartphone rear interaction more comfortable. Practitioner Summary: Among neutral, comfortable, maximum, horizontal, and vertical index finger strokes on smartphone rear surfaces, maximum vs. neutral strokes caused 43.8% greater discomfort. Horizontal (vertical) strokes deviated from the horizontal (vertical) axis. Discomfort increased by 12.3% with 90-mm- vs. 60-mm-wide devices. Rear interaction regions of five commercialised smartphones should be lowered 20 to 30 mm for more comfortable rear interaction.

  19. Main Effect QTL with Dominance Determines Heterosis for Dynamic Plant Height in Upland Cotton

    Directory of Open Access Journals (Sweden)

    Lianguang Shang

    2016-10-01

    Full Text Available Plant height, which shows dynamic development and heterosis, is a major trait affecting plant architecture and has an indirect influence on economic yield related to biological yield in cotton. In the present study, we carried out dynamic analysis for plant height and its heterosis by quantitative trait loci (QTL mapping at multiple developmental stages using two recombinant inbred lines (RILs and their backcross progeny. At the single-locus level, 47 QTL were identified at five developmental stages in two hybrids. In backcross populations, QTL identified at an early stage mainly showed partial effects and QTL detected at a later stage mostly displayed overdominance effects. At the two-locus level, we found that main effect QTL played a more important role than epistatic QTL in the expression of heterosis in backcross populations. Therefore, this study implies that the genetic basis of plant height heterosis shows dynamic character and main effect QTL with dominance determines heterosis for plant height in Upland cotton.

  20. Interacting effects of grass height and herbivores on the establishment of an encroaching savanna shrub

    NARCIS (Netherlands)

    Hagenah, N.; Munkert, H.; Gerhardt, K.; Olff, H.

    2009-01-01

    Shrub encroachment is a widely observed problem in Southern African savannas. Although the effects of herbivory and grass height on woody species recruitment have been studied individually, little information exists about how these factors interact. In this study seeds and seedlings of the

  1. The effect of pole's height on the output performance of solar power ...

    African Journals Online (AJOL)

    Solar energy is a renewable (non-conventional) source of energy supply that has been used as a reliable energy source in view of its economic importance and its wide range of applications. In this study the effect of pole's height on the output performance of solar power system has been investigated. A solar panel of 45 ...

  2. Effective height of the core of the Dalat Nuclear Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Huy, Ngo Quang [Centre for Nuclear Technique Application, Ho Chi Minh City (Viet Nam); Thong, Ha Van; Long, Vu Hai; Binh, Nguyen Duc; Tuan, Nguyen Minh; Vien, Luong Ba; Vinh, Le Vinh [Nuclear Research Inst., Da Lat (Viet Nam); Martin, D P; Yip, F G [High Institute of Nuclear Sciences and Technology (Cuba)

    1994-10-01

    Measurements of thermal neutron relative distributions in axial direction at different positions in the reactor core and for various control rod configurations have been carried out, and axial buckling and effective height of the core deduced. (author). 4 refs., 3 figs., 1 tab.

  3. Effect of the plate surface characteristics and gap height on yield stresses of a magnetorheological fluid

    International Nuclear Information System (INIS)

    Jonkkari, I; Syrjala, S; Kostamo, E; Kostamo, J; Pietola, M

    2012-01-01

    Effects of the plate material, surface roughness and measuring gap height on static and dynamic yield stresses of a magnetorheological (MR) fluid were investigated with a commercial plate–plate magnetorheometer. Magnetic and non-magnetic plates with smooth (Ra ∼ 0.3 μm) and rough (Ra ∼ 10 μm) surface finishes were used. It was shown by Hall probe measurements and finite element simulations that the use of magnetic plates or higher gap heights increases the level of magnetic flux density and changes the shape of the radial flux density profile. The yield stress increase caused by these factors was determined and subtracted from the measured values in order to examine only the effect of the wall characteristics or the gap height. Roughening of the surfaces offered a significant increase in the yield stresses for non-magnetic plates. With magnetic plates the yield stresses were higher to start with, but roughening did not increase them further. A significant part of the difference in measured stresses between rough non-magnetic and magnetic plates was caused by changes in magnetic flux density rather than by better contact of the particles to the plate surfaces. In a similar manner, an increase in gap height from 0.25 to 1.00 mm can lead to over 20% increase in measured stresses due to changes in the flux density profile. When these changes were compensated the dynamic yield stresses generally remained independent of the gap height, even in the cases where it was obvious that the wall slip was present. This suggests that with MR fluids the wall slip cannot be reliably detected by comparison of flow curves measured at different gap heights. (paper)

  4. EFFECTS OF ELECTROSTIMULATION AND PLYOMETRIC TRAINING PROGRAM COMBINATION ON JUMP HEIGHT IN TEENAGE ATHLETES

    Directory of Open Access Journals (Sweden)

    Emilio J. Martínez-López

    2012-12-01

    Full Text Available The purpose of this study was to examine the effects of eight- week (2 days/week training periods of plyometric exercises (PT and neuromuscular electrostimulation (EMS on jump height in young athletes. Squat jump (SJ, counter movement jump (CMJ and drop jump (DJ were performed to assess the effects of the training protocols 98 athletes (100 & 200m and 100m & 110m hurdles voluntarily took part in this study, 51 males (52% and 47 females (48%, 17.91 ± 1.42 years old, and 5.16 ± 2.56 years of training experience. The participants were randomly assigned to four different groups according to the frequency and the timing of the stimulation. Analysis of covariance was used to analyze the effects of every training program on jump height. Our findings suggest that compared to control (Plyometrics (PT only, the combination of 150Hz EMS + PT simultaneously combined in an 8 week (2days/week training program, we could observe significant jump height improvements in the different types of strength: explosive, explosive-elastic, and explosive-elastic-reactive. The combination of PT after < 85 Hz EMS did not show any jump height significant increase in sprinters. In conclusion, an eight week training program (with just two days per week of EMS combined with plyometric exercises has proven useful for the improvement of every kind of vertical jump ability required for sprint and hurdles disciplines in teenage athletes

  5. Exploring manual asymmetries during grasping: a dynamic causal modeling approach.

    Directory of Open Access Journals (Sweden)

    Chiara eBegliomini

    2015-02-01

    Full Text Available Recording of neural activity during grasping actions in macaques showed that grasp-related sensorimotor transformations are accomplished in a circuit constituted by the anterior part of the intraparietal sulcus (AIP, the ventral (F5 and the dorsal (F2 region of the premotor area. In humans, neuroimaging studies have revealed the existence of a similar circuit, involving the putative homolog of macaque areas AIP, F5 and F2. These studies have mainly considered grasping movements performed with the right dominant hand and only a few studies have measured brain activity associated with a movement performed with the left non-dominant hand. As a consequence of this gap, how the brain controls for grasping movement performed with the dominant and the non-dominant hand still represents an open question. A functional resonance imaging experiment (fMRI has been conducted, and effective connectivity (Dynamic Causal Modelling, DCM was used to assess how connectivity among grasping-related areas is modulated by hand (i.e., left and right during the execution of grasping movements towards a small object requiring precision grasping. Results underlined boosted inter-hemispheric couplings between dorsal premotor cortices during the execution of movements performed with the left rather than the right dominant hand. More specifically, they suggest that the dorsal premotor cortices may play a fundamental role in monitoring the configuration of fingers when grasping movements are performed by either the right and the left hand. This role becomes particularly evident when the hand less-skilled (i.e., the left hand to perform such action is utilized. The results are discussed in light of recent theories put forward to explain how parieto-frontal connectivity is modulated by the execution of prehensile movements.

  6. Effective pollutant emission heights for atmospheric transport modelling based on real-world information

    International Nuclear Information System (INIS)

    Pregger, Thomas; Friedrich, Rainer

    2009-01-01

    Emission data needed as input for the operation of atmospheric models should not only be spatially and temporally resolved. Another important feature is the effective emission height which significantly influences modelled concentration values. Unfortunately this information, which is especially relevant for large point sources, is usually not available and simple assumptions are often used in atmospheric models. As a contribution to improve knowledge on emission heights this paper provides typical default values for the driving parameters stack height and flue gas temperature, velocity and flow rate for different industrial sources. The results were derived from an analysis of the probably most comprehensive database of real-world stack information existing in Europe based on German industrial data. A bottom-up calculation of effective emission heights applying equations used for Gaussian dispersion models shows significant differences depending on source and air pollutant and compared to approaches currently used for atmospheric transport modelling. - The comprehensive analysis of real-world stack data provides detailed default parameter values for improving vertical emission distribution in atmospheric modelling

  7. Effect of inhomogeneous Schottky barrier height of SnO2 nanowires device

    Science.gov (United States)

    Amorim, Cleber A.; Bernardo, Eric P.; Leite, Edson R.; Chiquito, Adenilson J.

    2018-05-01

    The current–voltage (I–V) characteristics of metal–semiconductor junction (Au–Ni/SnO2/Au–Ni) Schottky barrier in SnO2 nanowires were investigated over a wide temperature range. By using the Schottky–Mott model, the zero bias barrier height Φ B was estimated from I–V characteristics, and it was found to increase with increasing temperature; on the other hand the ideality factor (n) was found to decrease with increasing temperature. The variation in the Schottky barrier and n was attributed to the spatial inhomogeneity of the Schottky barrier height. The experimental I–V characteristics exhibited a Gaussian distribution having mean barrier heights {\\overline{{{Φ }}}}B of 0.30 eV and standard deviation σ s of 60 meV. Additionally, the Richardson modified constant was obtained to be 70 A cm‑2 K‑2, leading to an effective mass of 0.58m 0. Consequently, the temperature dependence of I–V characteristics of the SnO2 nanowire devices can be successfully explained on the Schottky–Mott theory framework taking into account a Gaussian distribution of barrier heights.

  8. Do already grasped objects activate motor affordances?

    Science.gov (United States)

    Iani, Cristina; Ferraro, Luca; Maiorana, Natale Vincenzo; Gallese, Vittorio; Rubichi, Sandro

    2018-04-07

    This study investigated whether in a stimulus-response compatibility (SRC) task affordance effects in response to picture of graspable objects emerge when these objects appear as already grasped. It also assessed whether the observed effects could be explained as due to spatial compatibility between the most salient part in the object/display and the hand of response rather than to action potentiation. To this aim, we conducted three behavioural experiments in which participants were required to discriminate the vertical orientation (upright vs. inverted) of an object presented in the centre of the screen, while ignoring the right-left orientation of its handle. The object could be presented alone, as already grasped, as partially masked (Experiment 1) or with a human hand close to its graspable side (Experiment 2). In addition, to assess the role of perceptual salience, the object could be presented with a human hand or a non-biological (a geometrical shape) distractor located opposite to the object's graspable side. Results showed faster responses when the object's handle was located on the same side of the responding hand with a larger effect when upright objects were shown as already grasped (Experiment 1) or when a hand was displayed close to its handle (Experiment 2), and a smaller reversed effect when the hand or the geometrical shape was located opposite to the handled side (Experiment 3). We interpreted these findings as indicating that handle orientation effects emerging in SRC tasks may result from the interplay between motor affordance and spatial compatibility mechanisms.

  9. Energy costs of manual therapy: effects of plinth height and an assistive device.

    Science.gov (United States)

    O'Connell, D G; Holmes, C F; Santos, J L; Jordan, E; Acosta, F

    1994-01-01

    significantly greater during E than the SMTH condition. RPE for S was significantly greater than SMTH, E, or EMTH. It can be concluded that the MTH significantly reduced the physiologic cost of providing manual therapy at either standard or elevated plinth height. further studies on these types of assistive devices and the effects of health status of the therapist on the provision of manual therapy treatments at various plinth heights are needed.

  10. Effect of the Earth's inner structure on the gravity in definitions of height systems

    Science.gov (United States)

    Tenzer, Robert; Foroughi, Ismael; Pitoňák, Martin; Šprlák, Michal

    2017-04-01

    In context of the vertical datum unification, the geoid-to-quasi-geoid separation has been of significant interest in recent years, because most of existing local vertical datums are realized in the system of either normal or orthometric heights. Nevertheless, the normal-orthometric heights are still used in many other countries where the normal gravity values along leveling lines were adopted instead of the observed gravity. Whereas the conversion between the orthometric and normal heights is defined by means of the mean gravity disturbances (i.e. differences between the mean values of the actual and normal gravity) along the plumbline within the topography, differences between the normal and normal-orthometric heights can be described by means of the surface gravity disturbances. Since the normal gravity field does not reflect the topographic masses and actual mass density distribution inside the Earth, the definition of gravity represents a principal aspect for a realization of particular vertical datum. To address this issue in this study, we investigate effects of the Earth's inner density structure on the surface and mean gravity disturbances, and discuss their impact on the vertical datum realization. These two gravity field quantities are computed globally with a spectral resolution complete to a spherical harmonic degree 2160 using the global gravity, terrain, ice-thickness, inland bathymetry and crustal structure models. Our results reveal that both, the surface and mean gravity disturbances mostly comprise the gravitational signal of topography and masses distributed below the geoid surface. Moreover, in polar areas, a significant contribution comes from large glaciers. In contrast, the contributions of anomalous density distribution within the topography attributed to major lakes, sediments and bedrock density variations are much less pronounced. We also demonstrate that the mean gravity disturbances within the topography are significantly modified

  11. Serious complications in experiments in which UV doses are effected by using different lamp heights.

    Science.gov (United States)

    Flint, Stephan D; Ryel, Ronald J; Hudelson, Timothy J; Caldwell, Martyn M

    2009-10-06

    Many experiments examining plant responses to enhanced ultraviolet-B radiation (280-315nm) simply compare an enhanced UV-B treatment with ambient UV-B (or no UV-B radiation in most greenhouse and controlled-environment studies). Some more detailed experiments utilize multiple levels of UV-B radiation. A number of different techniques have been used to adjust the UV dose. One common technique is to place racks of fluorescent UV-emitting lamps at different heights above the plant canopy. However, the lamps and associated support structure cast shadows on the plant bed below. We calculated one example of the sequence of shade intervals for two common heights of lamp racks and show the patterns and duration of shade which the plants receive is distributed differently over the course of the day for different heights of the lamp racks. We also conducted a greenhouse experiment with plants (canola, sunflower and maize) grown under unenergized lamp racks suspended at the same two heights above the canopy. Growth characteristics differed in unpredictable ways between plants grown under the two heights of lamp racks. These differences could enhance or obscure potential UV-B effects. Also, differences in leaf mass per unit foliage area, which were observed in this experiment, could contribute to differences in plant UV-B sensitivity. We recommend the use of other techniques for achieving multiple doses of UV-B radiation. These range from simple and inexpensive approaches (e.g., wrapping individual fluorescent tubes in layers of a neutral-density filter such as cheese cloth) to more technical and expensive alternatives (e.g., electronically modulated lamp control systems). These choices should be determined according to the goals of the particular experiment.

  12. Memory Mechanisms in Grasping

    Science.gov (United States)

    Hesse, Constanze; Franz, Volker H.

    2009-01-01

    The availability of visual information influences the execution of goal-directed movements. This is very prominent in memory conditions, where a delay is introduced between stimulus presentation and execution of the movement. The corresponding effects could be due to a decay of the visual information or to different processing mechanisms used for…

  13. Effect of plyometric training on vertical jump height in high school basketball players: randomised control trial

    OpenAIRE

    Chhaya Verma, Lakshmi Subramanium, Vijaya Krishnan

    2015-01-01

    Background: Plyometric involve high intensity eccentric contraction immediately after a powerful concentric contraction. A vertical leap in basketball also involves rapid & repeated muscle contraction & stretching. Various methods have been used to improve the vertical leap in players, but only few studies mention about plyometrics. Aim: To determine the effect of Plyometric training on vertical jump height in high school basketball players & compare them with their untrained counterparts. Me...

  14. General Rotorcraft Aeromechanical Stability Program (GRASP): Theory manual

    Science.gov (United States)

    Hodges, Dewey H.; Hopkins, A. Stewart; Kunz, Donald L.; Hinnant, Howard E.

    1990-01-01

    The general rotorcraft aeromechanical stability program (GRASP) was developed to calculate aeroelastic stability for rotorcraft in hovering flight, vertical flight, and ground contact conditions. GRASP is described in terms of its capabilities and its philosophy of modeling. The equations of motion that govern the physical system are described, as well as the analytical approximations used to derive them. The equations include the kinematical equation, the element equations, and the constraint equations. In addition, the solution procedures used by GRASP are described. GRASP is capable of treating the nonlinear static and linearized dynamic behavior of structures represented by arbitrary collections of rigid-body and beam elements. These elements may be connected in an arbitrary fashion, and are permitted to have large relative motions. The main limitation of this analysis is that periodic coefficient effects are not treated, restricting rotorcraft flight conditions to hover, axial flight, and ground contact. Instead of following the methods employed in other rotorcraft programs. GRASP is designed to be a hybrid of the finite-element method and the multibody methods used in spacecraft analysis. GRASP differs from traditional finite-element programs by allowing multiple levels of substructure in which the substructures can move and/or rotate relative to others with no small-angle approximations. This capability facilitates the modeling of rotorcraft structures, including the rotating/nonrotating interface and the details of the blade/root kinematics for various types. GRASP differs from traditional multibody programs by considering aeroelastic effects, including inflow dynamics (simple unsteady aerodynamics) and nonlinear aerodynamic coefficients.

  15. A method to estimate the height of temperature inversion layer and the effective mixing depht

    International Nuclear Information System (INIS)

    Nicolli, D.

    1978-05-01

    A review of the concept PBL or turbulent boundary layer is made as it is understood in meteorology. Some features of the PBL parameterization are also discussed, as well as the methods used to estimate the temperature inversion heights during morning and afternoon hours. The study bases on the assumption of the dry adiabatic lapse rate in the mixing layer that is, water vapor and airborne material are supposed to be homogeneously mixed below the inversion layer or in the effective mixing depth. The mean mixing heights over Rio de Janeiro area respectively about 500m and 1000m at morning and afternoon hours. For Sao Paulo these values are respectively 400m and 1300m at morning and afternoon hours [pt

  16. Effects of Sludge Compost on EC value of Saline Soil and Plant Height of Medicago

    Science.gov (United States)

    Sun, Chongyang; Zhao, Ke; Chen, Xing; Wang, Xiaohui

    2017-12-01

    In this study, the effects of sludge composting on the EC value of saline soil and the response to Medicago plant height were studied by planting Medicago with pots for 45 days in different proportions as sludge composting with saline soil. The results showed that the EC value of saline soil did not change obviously with the increase of fertilization ratio,which indicated that the EC value of saline soil was close to that of the original soil. The EC decreased by 31.45% at fertilization ratio of 40%. The height of Medicago reached the highest at 40% fertilization ratio, and that was close to 60% fertilization ratio, and the difference was significant with other treatments. By comprehensive analyse and compare,the optimum application rate of sludge compost was 40% under this test condition.

  17. THE EFFECTS OF HEIGHT AND DISTANCE ON THE FORCE PRODUCTION AND ACCELERATION IN MARTIAL ARTS STRIKES

    Directory of Open Access Journals (Sweden)

    Cynthia A. Bir

    2009-11-01

    Full Text Available Almost all cultures have roots in some sort of self defence system and yet there is relatively little research in this area, outside of a sports related environment. This project investigated different applications of strikes from Kung Fu practitioners that have not been addressed before in the literature. Punch and palm strikes were directly compared from different heights and distances, with the use of a load cell, accelerometers, and high speed video. The data indicated that the arm accelerations of both strikes were similar, although the force and resulting acceleration of the target were significantly greater for the palm strikes. Additionally, the relative height at which the strike was delivered was also investigated. The overall conclusion is that the palm strike is a more effective strike for transferring force to an object. It can also be concluded that an attack to the chest would be ideal for maximizing impact force and moving an opponent off balance

  18. Sex, Sport, IGF-1 and the Community Effect in Height Hypothesis

    Directory of Open Access Journals (Sweden)

    Barry Bogin

    2015-05-01

    Full Text Available We test the hypothesis that differences in social status between groups of people within a population may induce variation in insulin-like growth factor-1(IGF-1 levels and, by extension, growth in height. This is called the community effect in height hypothesis. The relationship between IGF-1, assessed via finger-prick dried blood spot, and elite level sport competition outcomes were analysed for a sample of 116 undergraduate men and women. There was a statistically significant difference between winners and losers of a competition. Winners, as a group, had higher average pre-game and post-game IGF-1 levels than losers. We proposed this type of difference as a proxy for social dominance. We found no evidence that winners increased in IGF-1 levels over losers or that members of the same team were more similar in IGF-1 levels than they were to players from other teams. These findings provide limited support toward the community effect in height hypothesis. The findings are discussed in relation to the action of the growth hormone/IGF-1 axis as a transducer of multiple bio-social influences into a coherent signal which allows the growing human to adjust and adapt to local ecological conditions.

  19. Effects of Different Cutting Height on Nutritional Quality of Whole Crop Barley Silage and Feed Value on Hanwoo Heifers.

    Science.gov (United States)

    Kim, Dong Hyeon; Amanullah, Sardar M; Lee, Hyuk Jun; Joo, Young Ho; Han, Ouk Kyu; Adesogan, Adegbola T; Kim, Sam Churl

    2016-09-01

    The present study evaluated the effects of different cutting height on nutritive value, fermentation quality, in vitro and in vivo digestibility of whole crop barley silage. Whole crop barley forage (Yuyeon hybrid) was harvested at height of 5, 10, and 15 cm from the ground level. Each cutting height was rolled to make round bale and ensiled for 100 days. After 100 days of ensiling, pH of silage was lower (pcutting height. The content of lactate and lactate to acetate ratio were increased (pcutting height, whereas the acetate content was higher (pcutting height. Aerobic stability was greater (pcutting height. Three total mixed rations (TMR) were formulated with silages from the three different cutting heights (TMR5, TMR10, and TMR15) incorporated as forage at 70:30 ratio with concentrate (dry matter [DM] basis). In vitro dry matter digestibility was higher (pcutting height. The digestibility of DM and neutral detergent fiber were highest (pcutting height, at least up to 10 to 15 cm, of whole crop barley forage at harvest (Yuyeon) may be beneficial for making silage for TMR formulation and increasing digestibility of DM and NDF.

  20. Brain Function Overlaps When People Observe Emblems, Speech, and Grasping

    Science.gov (United States)

    Andric, Michael; Solodkin, Ana; Buccino, Giovanni; Goldin-Meadow, Susan; Rizzolatti, Giacomo; Small, Steven L.

    2013-01-01

    A hand grasping a cup or gesturing ‘thumbs-up’, while both manual actions, have different purposes and effects. Grasping directly affects the cup, whereas gesturing ‘thumbs-up’ has an effect through an implied verbal (symbolic) meaning. Because grasping and emblematic gestures (‘emblems’) are both goal-oriented hand actions, we pursued the hypothesis that observing each should evoke similar activity in neural regions implicated in processing goal-oriented hand actions. However, because emblems express symbolic meaning, observing them should also evoke activity in regions implicated in interpreting meaning, which is most commonly expressed in language. Using fMRI to test this hypothesis, we had participants watch videos of an actor performing emblems, speaking utterances matched in meaning to the emblems, and grasping objects. Our results show that lateral temporal and inferior frontal regions respond to symbolic meaning, even when it is expressed by a single hand action. In particular, we found that left inferior frontal and right lateral temporal regions are strongly engaged when people observe either emblems or speech. In contrast, we also replicate and extend previous work that implicates parietal and premotor responses in observing goal-oriented hand actions. For hand actions, we found that bilateral parietal and premotor regions are strongly engaged when people observe either emblems or grasping. These findings thus characterize converging brain responses to shared features (e.g., symbolic or manual), despite their encoding and presentation in different stimulus modalities. PMID:23583968

  1. Brain function overlaps when people observe emblems, speech, and grasping.

    Science.gov (United States)

    Andric, Michael; Solodkin, Ana; Buccino, Giovanni; Goldin-Meadow, Susan; Rizzolatti, Giacomo; Small, Steven L

    2013-07-01

    A hand grasping a cup or gesturing "thumbs-up", while both manual actions, have different purposes and effects. Grasping directly affects the cup, whereas gesturing "thumbs-up" has an effect through an implied verbal (symbolic) meaning. Because grasping and emblematic gestures ("emblems") are both goal-oriented hand actions, we pursued the hypothesis that observing each should evoke similar activity in neural regions implicated in processing goal-oriented hand actions. However, because emblems express symbolic meaning, observing them should also evoke activity in regions implicated in interpreting meaning, which is most commonly expressed in language. Using fMRI to test this hypothesis, we had participants watch videos of an actor performing emblems, speaking utterances matched in meaning to the emblems, and grasping objects. Our results show that lateral temporal and inferior frontal regions respond to symbolic meaning, even when it is expressed by a single hand action. In particular, we found that left inferior frontal and right lateral temporal regions are strongly engaged when people observe either emblems or speech. In contrast, we also replicate and extend previous work that implicates parietal and premotor responses in observing goal-oriented hand actions. For hand actions, we found that bilateral parietal and premotor regions are strongly engaged when people observe either emblems or grasping. These findings thus characterize converging brain responses to shared features (e.g., symbolic or manual), despite their encoding and presentation in different stimulus modalities. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Effective method to control the levitation force and levitation height in a superconducting maglev system

    International Nuclear Information System (INIS)

    Yang Peng-Tao; Yang Wan-Min; Wang Miao; Li Jia-Wei; Guo Yu-Xia

    2015-01-01

    The influence of the width of the middle magnet in the permanent magnet guideways (PMGs) on the levitation force and the levitation height of single-domain yttrium barium copper oxide (YBCO) bulks has been investigated at 77 K under the zero field cooled (ZFC) state. It is found that the largest levitation force can be obtained in the system with the width of the middle magnet of the PMG equal to the size of the YBCO bulk when the gap between the YBCO bulk and PMG is small. Both larger levitation force and higher levitation height can be obtained in the system with the width of the middle magnet of the PMG larger than the size of the YBCO bulk. The stiffness of the levitation force between the PMG and the YBCO bulk is higher in the system with a smaller width of the middle magnet in the PMG. These results provide an effective way to control the levitation force and the levitation height for the superconducting maglev design and applications. (paper)

  3. Effects of cutting height and maturity on the nutritive value of corn silage for lactating cows.

    Science.gov (United States)

    Neylon, J M; Kung, L

    2003-06-01

    We studied the effect of increasing the cutting height of whole-plant corn at the time of harvest from 12.7 (NC) to 45.7 (HC) cm on yield and nutritive value of silage for dairy cows. Three leafy corn silage hybrids were harvested at NC and HC at about 34% dry matter (E) and 41% DM (L) and ensiled in laboratory silos. Increasing the height of cutting lowered yields of harvested DM/ha. In addition, the concentrations of DM and starch were higher but the concentrations of lactic acid, crude protein, neutral detergent fiber (NDF), and acid detergent fiber were lower in HC than in NC. The concentration of acid detergent lignin was also lower in HC, but only in corn harvested at E. In vitro digestion (30 h) of NDF was greater in HC (50.7%) than NC (48.3%). Calculated yield of milk per tonne of forage DM was greater for HC than for NC at E but not at L. In a lactation experiment, increasing the height of cutting of another leafy corn silage hybrid, TMF29400, in general also resulted in similar changes in nutrient composition as just described. When fed to lactating dairy cows, HC corn silage resulted in tendencies for greater NDF digestion in the total tract, higher milk production and improved feed efficiency, but there were no differences in 3.5% fat corrected milk between treatments. Results of this study suggest that increasing the cutting height of whole plant corn at harvest can improve the nutritive value of corn silage for lactating dairy cows.

  4. What a successful grasp tells about the success chances of grasps in its vicinity

    DEFF Research Database (Denmark)

    Bodenhagen, Leon; Detry, Renaud; Piater, Justus

    2011-01-01

    Infants gradually improve their grasping competences, both in terms of motor abilities as well as in terms of the internal shape grasp representations. Grasp densities provide a statistical model of such an internal learning process. In the concept of grasp densities, kernel density estimation...... probabilities representing grasp success in the neighborhood of a successful grasp. The anisotropy has been determined utilizing a simulation environment that allowed for evaluation of large scale experiments. The anisotropic kernel has been fitted to the conditional probabilities obtained from the experiments...

  5. Effects of plant phenology and vertical height on accuracy of radio-telemetry locations

    Science.gov (United States)

    Grovenburg, Troy W.; Jacques, Christopher N.; Klaver, Robert W.; DePerno, Christopher S.; Lehman, Chad P.; Brinkman, Todd J.; Robling, Kevin A.; Rupp, Susan P.; Jenks, Jonathan A.

    2013-01-01

    The use of very high frequency (VHF) radio-telemetry remains wide-spread in studies of wildlife ecology and management. However, few studies have evaluated the influence of vegetative obstruction on accuracy in differing habitats with varying transmitter types and heights. Using adult and fawn collars at varying heights above the ground (0, 33, 66 and 100 cm) to simulate activities (bedded, feeding and standing) and ages (neonate, juvenile and adult) of deer Odocoileus spp., we collected 5,767 bearings and estimated 1,424 locations (28-30 for each of 48 subsamples) in three habitat types (pasture, grassland and forest), during two stages of vegetative growth (spring and late summer). Bearing error was approximately twice as large at a distance of 900 m for fawn (9.9°) than for adult deer collars (4.9°). Of 12 models developed to explain the variation in location error, the analysis of covariance model (HT*D + C*D + HT*TBA + C*TBA) containing interactions of height of collar above ground (HT), collar type (C), vertical height of understory vegetation (D) and tree basal area (TBA) was the best model (wi = 0.92) and explained ∼ 71% of the variation in location error. Location error was greater for both collar types at 0 and 33 cm above the ground compared to 66 and 100 cm above the ground; however, location error was less for adult than fawn collars. Vegetation metrics influenced location error, which increased with greater vertical height of understory vegetation and tree basal area. Further, interaction of vegetation metrics and categorical variables indicated significant effects on location error. Our results indicate that researchers need to consider study objectives, life history of the study animal, signal strength of collar (collar type), distance from transmitter to receiver, topographical changes in elevation, habitat composition and season when designing telemetry protocols. Bearing distances in forested habitat should be decreased (approximately 23

  6. Effect of the ion bombardment on the apparent barrier height in GaAs Schottky junctions

    International Nuclear Information System (INIS)

    Horvath, Zs. J.

    1994-01-01

    The bombardment of the semiconductor with different particles often results in the change of the doping concentration at the semiconductor surface. In this paper the effects of this near-interface concentration change on the apparent and real Schottky barrier heights are discussed. Experimental results obtained in GaAs Schottky junctions prepared on ion-bombarded semiconductor surfaces are analysed, and it is shown that their electrical characteristics are strongly influenced by the near-interface concentration change due to the ion bombardment. (author). 36 refs., 2 figs

  7. Edge, height and visibility effects on nest predation by birds and mammals in the Brazilian cerrado

    Science.gov (United States)

    Dodonov, Pavel; Paneczko, Ingrid Toledo; Telles, Marina

    2017-08-01

    Edge influence is one of the main impacts in fragmented landscapes; yet, most of studies on edge influence have focused on high-contrast edges, and the impacts of low-contrast edges and narrow linear openings are less understood. Edge influence often affects bird nest predation, but these effects are not ubiquitous and may depend on characteristics such as nest height and visibility. We performed an experiment on nest predation in a migratory passerine, Elaenia chiriquensis (Lesser Elaenia; Passeriformes: Tyrannidae), in a savanna vegetation of the Brazilian Cerrado biome in South-Eastern Brazil. We used 89 real E. chiriquensis nests, collected during previous reproductive seasons, with two plasticine eggs in each, and randomly distributed them at two locations (edge - up to 20 m from a firebreak edge and interior - approx. 150-350 m from the edge) and two heights (low - 60-175 cm and high - 190-315 cm above ground). We also measured leaf and branch density around each nest. We performed this study on two 15-days campaigns, checking the nests every 2-3 days and removing those with predation marks. We sorted the predation marks into those made by birds, mammals, or unidentified predators, and used generalized linear models to assess the effects of location, height and leaf density on survival time and predator type. Only four nests had not been predated during the experiment; 55 nests were predated by birds, 7 by mammals, and 23 by unidentified predators. Low nests in the interior tended to have larger survival times whereas high nests at the edge tended to be more predated by birds and less predated by mammals. Thus, even a low-contrast (firebreak) edge may significantly increase nest predation, which is also affected by the nest's height, mainly due to predation by birds. These effects may be due to predator movement along the edge as well as to edge-related changes in vegetation structure. We suggest that higher-contrast edges which may also be used as movement

  8. Baseline distortion effect on gamma-ray pulse-height spectra in neutron capture experiments

    International Nuclear Information System (INIS)

    Laptev, A.; Harada, H.; Nakamura, S.; Hori, J.; Igashira, M.; Ohsaki, T.; Ohgama, K.

    2005-01-01

    A baseline distortion effect due to gamma-flash at neutron time-of-flight measurement using a pulse neutron source has been investigated. Pulses from C 6 D 6 detectors accumulated by flash-ADC were processed with both standard analog-to-digital converter (ADC) and flash-ADC operational modes. A correction factor of gamma-ray yields, due to baseline shift, was quantitatively obtained by comparing the pulse height spectra of the two data-taking modes. The magnitude of the correction factor depends on the time after gamma-flash and has complex time dependence with a changing sign

  9. A Biologically Inspired Learning to Grasp System

    Science.gov (United States)

    2001-10-25

    possible extensive discussions of data on the premotor cortex and monkey grasping circuit with Giacomo Rizzolatti , Vittorio Gallese, to whom we express...premotor specialisation for the different types of grasps that Rizzolatti group [3] has found be formed at this age yet. Infants will need to...our gratitude. REFERENCES [1] M. Jeannerod, M.A. Arbib, G. Rizzolatti , H. Sakata, “Grasping objects: the cortical mechanisms of visuomotor

  10. The Effect of Backward-Facing Step Height on Instability Growth and Breakdown in Swept Wing Boundary-Layer Transition

    Science.gov (United States)

    Eppink, Jenna L.; Wlezien, Richard W.; King, Rudolph A.; Choudhari, Meelan

    2015-01-01

    A low-speed experiment was performed on a swept at plate model with an imposed pressure gradient to determine the effect of a backward-facing step on transition in a stationary-cross flow dominated flow. Detailed hot-wire boundary-layer measurements were performed for three backward-facing step heights of approximately 36, 45, and 49% of the boundary-layer thickness at the step. These step heights correspond to a subcritical, nearly-critical, and critical case. Three leading-edge roughness configurations were tested to determine the effect of stationary-cross flow amplitude on transition. The step caused a local increase in amplitude of the stationary cross flow for the two larger step height cases, but farther downstream the amplitude decreased and remained below the baseline amplitude. The smallest step caused a slight local decrease in amplitude of the primary stationary cross flow mode, but the amplitude collapsed back to the baseline case far downstream of the step. The effect of the step on the amplitude of the primary cross flow mode increased with step height, however, the stationary cross flow amplitudes remained low and thus, stationary cross flow was not solely responsible for transition. Unsteady disturbances were present downstream of the step for all three step heights, and the amplitudes increased with increasing step height. The only exception is that the lower frequency (traveling crossflow-like) disturbance was not present in the lowest step height case. Positive and negative spikes in instantaneous velocity began to occur for the two larger step height cases and then grew in number and amplitude downstream of reattachment, eventually leading to transition. The number and amplitude of spikes varied depending on the step height and cross flow amplitude. Despite the low amplitude of the disturbances in the intermediate step height case, breakdown began to occur intermittently and the flow underwent a long transition region.

  11. Real-time vision, tactile cues, and visual form agnosia in pantomimed grasping: removing haptic feedback induces a switch from natural to pantomime-like grasps

    Directory of Open Access Journals (Sweden)

    Robert Leslie Whitwell

    2015-05-01

    Full Text Available Investigators study the kinematics of grasping movements (prehension under a variety of conditions to probe visuomotor function in normal and brain-damaged individuals. When patient DF, who suffers from visual form agnosia, performs natural grasps, her in-flight hand aperture is scaled to the widths of targets ('grip scaling' that she cannot discriminate amongst. In contrast, when DF's pantomime grasps are based on a memory of a previewed object, her grip scaling is very poor. Her failure on this task has been interpreted as additional support for the dissociation between the use of object vision for action and object vision for perception. Curiously, however, when DF directs her pantomimed grasps towards a displaced imagined copy of a visible object where her fingers make contact with the surface of the table, her grip scaling does not appear to be particularly poor. In the first of two experiments, we revisit this previous work and show that her grip scaling in this real-time pantomime grasping task does not differ from controls, suggesting that terminal tactile feedback from a proxy of the target can maintain DF's grip scaling. In a second experiment with healthy participants, we tested a recent variant of a grasping task in which no tactile feedback is available (i.e. no haptic feedback by comparing the kinematics of target-directed grasps with and without haptic feedback to those of real-time pantomime grasps without haptic feedback. Compared to natural grasps, removing haptic feedback increased RT, slowed the velocity of the reach, reduced grip aperture, sharpened the slopes relating grip aperture to target width, and reduced the final grip aperture. All of these effects were also observed in the pantomime grasping task. Taken together, these results provide compelling support for the view that removing haptic feedback induces a switch from real-time visual control to one that depends more on visual perception and cognitive supervision.

  12. Effective method to control the levitation force and levitation height in a superconducting maglev system

    Science.gov (United States)

    Yang, Peng-Tao; Yang, Wan-Min; Wang, Miao; Li, Jia-Wei; Guo, Yu-Xia

    2015-11-01

    The influence of the width of the middle magnet in the permanent magnet guideways (PMGs) on the levitation force and the levitation height of single-domain yttrium barium copper oxide (YBCO) bulks has been investigated at 77 K under the zero field cooled (ZFC) state. It is found that the largest levitation force can be obtained in the system with the width of the middle magnet of the PMG equal to the size of the YBCO bulk when the gap between the YBCO bulk and PMG is small. Both larger levitation force and higher levitation height can be obtained in the system with the width of the middle magnet of the PMG larger than the size of the YBCO bulk. The stiffness of the levitation force between the PMG and the YBCO bulk is higher in the system with a smaller width of the middle magnet in the PMG. These results provide an effective way to control the levitation force and the levitation height for the superconducting maglev design and applications. Project supported by the National Natural Science Foundation of China (Grant Nos. 51342001 and 50872079), the Key-grant Project of Chinese Ministry of Education (Grant No. 311033), the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20120202110003), the Innovation Team in Shaanxi Province, China (Grant No. 2014KTC-18), and the Fundamental Research Funds for the Central Universities, China (Grant Nos. GK201101001 and GK201305014), and the Outstanding Doctoral Thesis Foundation Project of Shaanxi Normal University, China (Grant Nos. X2011YB08 and X2012YB05).

  13. Acute effects of fine particulate air pollution on ST segment height: A longitudinal study

    Directory of Open Access Journals (Sweden)

    Wu Rongling

    2010-11-01

    Full Text Available Abstract Background The mechanisms for the relationship between particulate air pollution and cardiac disease are not fully understood. Air pollution-induced myocardial ischemia is one of the potentially important mechanisms. Methods We investigate the acute effects and the time course of fine particulate pollution (PM2.5 on myocardium ischemic injury as assessed by ST-segment height in a community-based sample of 106 healthy non-smokers. Twenty-four hour beat-to-beat electrocardiogram (ECG data were obtained using a high resolution 12-lead Holter ECG system. After visually identifying and removing all the artifacts and arrhythmic beats, we calculated beat-to-beat ST-height from ten leads (inferior leads II, III, and aVF; anterior leads V3 and V4; septal leads V1 and V2; lateral leads I, V5, and V6,. Individual-level 24-hour real-time PM2.5 concentration was obtained by a continuous personal PM2.5 monitor. We then calculated, on a 30-minute basis, the corresponding time-of-the-day specific average exposure to PM2.5 for each participant. Distributed lag models under a linear mixed-effects models framework were used to assess the regression coefficients between 30-minute PM2.5 and ST-height measures from each lead; i.e., one lag indicates a 30-minute separation between the exposure and outcome. Results The mean (SD age was 56 (7.6 years, with 41% male and 74% white. The mean (SD PM2.5 exposure was 14 (22 μg/m3. All inferior leads (II, III, and aVF and two out of three lateral leads (I and V6, showed a significant association between higher PM2.5 levels and higher ST-height. Most of the adverse effects occurred within two hours after PM2.5 exposure. The multivariable adjusted regression coefficients β (95% CI of the cumulative effect due to a 10 μg/m3 increase in Lag 0-4 PM2.5 on ST-I, II, III, aVF and ST-V6 were 0.29 (0.01-0.56 μV, 0.79 (0.20-1.39 μV, 0.52 (0.01-1.05 μV, 0.65 (0.11-1.19 μV, and 0.58 (0.07-1.09 μV, respectively, with all p

  14. Homogamy and imprinting-like effect on mate choice preference for body height in the current Japanese population.

    Science.gov (United States)

    Seki, Motohide; Ihara, Yasuo; Aoki, Kenichi

    2012-01-01

    Homogamy for body height has been repeatedly documented in Western societies. Nevertheless, the underlying mechanism is unclear and the reasons for its apparent absence in non-Western societies remain unexplained. This study investigates spousal correlation and mate preference for height in the Japanese population. This study analyses self-reported data on the height of individuals, their parents and their ideal marriage partners, collected by a series of questionnaires on university students. In contrast to a previous study, this study found a significant positive correlation between the heights of Japanese spouses, after controlling for age. It also found a positive correlation between the heights of subjects and of their ideal partners, suggesting that an individual's self-referent preference may contribute to the observed homogamy for height. However, a subject's preference is also influenced by the height of his/her opposite-sex--but not same-sex--parent, where this effect is more prominent in male subjects. This study shows that homogamy for body height is present in the current Japanese population and that it may in part result from an individual's preference. It also indicates a possible role of a sexual imprinting-like mechanism in human mate choice.

  15. Development of Reaching and Grasping Skills in Infants with Down Syndrome

    Science.gov (United States)

    de Campos, Ana Carolina; Rocha, Nelci Adriana Cicuto Ferreira; Savelsbergh, Geert J. P.

    2010-01-01

    Reaching and grasping skills have been described to emerge from a dynamic interaction between intrinsic and extrinsic factors. The aims of the study were to investigate the effect of such intrinsic factors as age and Down syndrome on the development of reaching and grasping skills and on overall gross motor skill, and to test the influence of the…

  16. Development of Reaching and Grasping skills in infants with Down syndrome

    NARCIS (Netherlands)

    de Campos, A.C.; Rocha, N.A.C.F.; Savelsbergh, G.J.P.

    2010-01-01

    Reaching and grasping skills have been described to emerge from a dynamic interaction between intrinsic and extrinsic factors. The aims of the study were to investigate the effect of such intrinsic factors as age and Down syndrome on the development of reaching and grasping skills and on overall

  17. TMS over the supramarginal gyrus delays selection of appropriate grasp orientation during reaching and grasping tools for use.

    Science.gov (United States)

    McDowell, Tomás; Holmes, Nicholas P; Sunderland, Alan; Schürmann, Martin

    2018-03-09

    Tool use, a ubiquitous part of human behaviour, requires manipulation control and knowledge of tool purpose. Neuroimaging and neuropsychological research posit that these two processes are supported by separate brain regions, ventral premotor and inferior parietal for manipulation control, and posterior middle temporal cortex for tool knowledge, lateralised to the left hemisphere. Action plans for tool use need to integrate these two separate processes, which is likely supported by the left supramarginal gyrus (SMG). However, whether this integration occurs during action execution is not known. To clarify the role of the SMG we conducted two experiments in which healthy participants reached to grasp everyday tools with the explicit instruction to use them directly following their grasp. To study the integration of manipulation control and tool knowledge within a narrow time window we mechanically perturbed the orientation of the tool to force participants to correct grasp orientation 'on-line' during the reaching movement. In experiment 1, twenty healthy participants reached with their left hand to grasp a tool. Double-pulse transcranial magnetic stimulation (TMS) was applied, in different blocks over left or right SMG at the onset of perturbation. Kinematic data revealed delayed and erroneous online correction after TMS over left and right SMG. In Experiment 2 twelve participants reached, in different blocks, with their left or right hand and TMS was applied over SMG ipsilateral to the reaching hand. A similar effect on correction was observed for ipsilateral stimulation when reaching with the left and right hands, and no effect of or interaction with hemisphere was observed. Our findings implicate a bilateral role of the SMG in correcting movements and selection of appropriate grasp orientation during reaching to grasp tools for use. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Effect of table top slope and height on body posture and muscular activity pattern.

    Science.gov (United States)

    Hassaïne, M; Hamaoui, A; Zanone, P-G

    2015-04-01

    The objective of this study was to assess the effect of table top slope and height on body posture and muscular activity pattern. Twelve asymptomatic participants performed a 5-min reading task while sitting, in six experimental conditions manipulating the table top slope (20° backward slope, no slope) and its height (low, medium, up). EMGs recordings were taken on 9 superficial muscles located at the trunk and shoulder level, and the angular positions of the head, trunk and pelvis were assessed using an inertial orientation system. Results revealed that the sloping table top was associated with a higher activity of deltoideus pars clavicularis (P<0.05) and a smaller flexion angle of the head (P<0.05). A tentative conclusion is that a sloping table top induces a more erect posture of the head and the neck, but entails an overload of the shoulder, which might be harmful on the long run. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  19. Abutment height influences the effect of platform switching on peri-implant marginal bone loss.

    Science.gov (United States)

    Galindo-Moreno, Pablo; León-Cano, Ana; Monje, Alberto; Ortega-Oller, Inmaculada; O'Valle, Francisco; Catena, Andrés

    2016-02-01

    The purpose was to radiographically analyze and compare the marginal bone loss (MBL) between implants with different mismatching distance and to study the influence of the prosthetic abutment height on the MBL in association with the related mismatching distances. This retrospective study included 108 patients in whom 228 implants were placed, 180 with diameter of 4.5 mm and 48 with diameter of 5 mm. All patients received OsseoSpeed™ implants with internal tapered conical connection (Denstply Implants). Different mismatching distances were obtained, given that all implants were loaded with the same uni-abutment type (Lilac; Denstply Implants). Data were gathered on age, gender, bone substratum, smoking habits, previous history of periodontitis, and prosthetic features. MBL was analyzed radiographically at 6 and 18 months post-loading. Mixed linear analysis of mesial and distal MBL values yielded significant effects of abutment, implant diameter, follow-up period, bone substratum, smoking, and abutment × time interaction. MBL was greater at 18 vs. 6 months, for short vs. long abutments, for grafted vs. pristine bone, for a heavier smoking habit, and for implants with a diameter of 5.0 vs. 4.5 mm. Greater mismatching does not minimize the MBL; abutment height, smoking habit, and bone substratum may play a role in the MBL over the short- and medium term. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. The ratio of effective building height to street width governs dispersion of local vehicle emissions

    Science.gov (United States)

    Schulte, Nico; Tan, Si; Venkatram, Akula

    2015-07-01

    Analysis of data collected in street canyons located in Hanover, Germany and Los Angeles, USA, suggests that street-level concentrations of vehicle-related pollutants can be estimated with a model that assumes that vertical turbulent transport of emissions dominates the governing processes. The dispersion model relates surface concentrations to traffic flow rate, the effective aspect ratio of the street, and roof level turbulence. The dispersion model indicates that magnification of concentrations relative to those in the absence of buildings is most sensitive to the aspect ratio of the street, which is the ratio of the effective height of the buildings on the street to the width of the street. This result can be useful in the design of transit oriented developments that increase building density to reduce emissions from transportation.

  1. Child health in Peru: importance of regional variation and community effects on children's height and weight.

    Science.gov (United States)

    Shin, Heeju

    2007-12-01

    In developing countries, height and weight are good indicators of children's health and nutritional status. Maternal education has been accepted as one of the most important influences on child health. Using the 2000 Demographic and Health Survey of Peru, however, I find that the effect of maternal education varies as a function of region. In the most prosperous urban region, maternal education is less important for child health than in poor rural areas, and a higher level of education has a greater effect in rural areas. Multilevel analysis shows that a significant part of the observed correlation between maternal education and child health is moderated by regional differences and community characteristics. The finding suggests that Peruvian public policy should emphasize resource redistribution as well as women's education, and that investment in maternal education should be considered within regional contexts to enhance child health in rural areas.

  2. Effect of weight, height and BMI on injury outcome in side impact crashes without airbag deployment.

    Science.gov (United States)

    Pal, Chinmoy; Tomosaburo, Okabe; Vimalathithan, K; Jeyabharath, M; Muthukumar, M; Satheesh, N; Narahari, S

    2014-11-01

    A comprehensive analysis is performed to evaluate the effect of weight, height and body mass index (BMI) of occupants on side impact injuries at different body regions. The accident dataset for this study is based on the National Automotive Sampling System-Crashworthiness Data System (NASS-CDS) for accident year 2000-08. The mean BMI values for driver and front passenger are estimated from all types of crashes using NASS database, which clearly indicates that mean BMI has been increasing over the years in the USA. To study the effect of BMI in side impact injuries, BMI was split into three groups namely (1) thin (BMI30). For more clear identification of the effect of BMI in side impact injuries, a minimum gap of three BMI is set in between each adjacent BMI groups. Car model years from MY1995-1999 to MY2000-2008 are chosen in order to identify the degree of influence of older and newer generation of cars in side impact injuries. Impact locations particularly side-front (F), side-center (P) and side-distributed (Y) are chosen for this analysis. Direction of force (DOF) considered for both near side and far side occupants are 8 o'clock, 9 o'clock, 10 o'clock and 2 o'clock, 3 o'clock and 4 o'clock respectively. Age <60 years is also one of the constraints imposed on data selection to minimize the effect of bone strength on the occurrence of occupant injuries. AIS2+ and AIS3+ injury risk in all body regions have been plotted for the selected three BMI groups of occupant, delta-V 0-60kmph, two sets (old and new) of car model years. The analysis is carried with three approaches: (a) injury risk percentage based on simple graphical method with respect to a single variable, (b) injury distribution method where the injuries are marked on the respective anatomical locations and (c) logistic regression, a statistical method, considers all the related variables together. Lower extremity injury risk appears to be high for thin BMI group. It is found that BMI does not have much

  3. Human Hand Motion Analysis and Synthesis of Optimal Power Grasps for a Robotic Hand

    Directory of Open Access Journals (Sweden)

    Francesca Cordella

    2014-03-01

    Full Text Available Biologically inspired robotic systems can find important applications in biomedical robotics, since studying and replicating human behaviour can provide new insights into motor recovery, functional substitution and human-robot interaction. The analysis of human hand motion is essential for collecting information about human hand movements useful for generalizing reaching and grasping actions on a robotic system. This paper focuses on the definition and extraction of quantitative indicators for describing optimal hand grasping postures and replicating them on an anthropomorphic robotic hand. A motion analysis has been carried out on six healthy human subjects performing a transverse volar grasp. The extracted indicators point to invariant grasping behaviours between the involved subjects, thus providing some constraints for identifying the optimal grasping configuration. Hence, an optimization algorithm based on the Nelder-Mead simplex method has been developed for determining the optimal grasp configuration of a robotic hand, grounded on the aforementioned constraints. It is characterized by a reduced computational cost. The grasp stability has been tested by introducing a quality index that satisfies the form-closure property. The grasping strategy has been validated by means of simulation tests and experimental trials on an arm-hand robotic system. The obtained results have shown the effectiveness of the extracted indicators to reduce the non-linear optimization problem complexity and lead to the synthesis of a grasping posture able to replicate the human behaviour while ensuring grasp stability. The experimental results have also highlighted the limitations of the adopted robotic platform (mainly due to the mechanical structure to achieve the optimal grasp configuration.

  4. Naturally together: pitch-height and brightness as coupled factors for eliciting the SMARC effect in non-musicians.

    Science.gov (United States)

    Pitteri, Marco; Marchetti, Mauro; Priftis, Konstantinos; Grassi, Massimo

    2017-01-01

    Pitch-height is often labeled spatially (i.e., low or high) as a function of the fundamental frequency of the tone. This correspondence is highlighted by the so-called Spatial-Musical Association of Response Codes (SMARC) effect. However, the literature suggests that the brightness of the tone's timbre might contribute to this spatial association. We investigated the SMARC effect in a group of non-musicians by disentangling the role of pitch-height and the role of tone-brightness. In three experimental conditions, participants were asked to judge whether the tone they were listening to was (or was not) modulated in amplitude (i.e., vibrato). Participants were required to make their response in both the horizontal and the vertical axes. In a first condition, tones varied coherently in pitch (i.e., manipulation of the tone's F0) and brightness (i.e., manipulation of the tone's spectral centroid); in a second condition, pitch-height varied whereas brightness was fixed; in a third condition, pitch-height was fixed whereas brightness varied. We found the SMARC effect only in the first condition and only in the vertical axis. In contrast, we did not observe the effect in any of the remaining conditions. The present results suggest that, in non-musicians, the SMARC effect is not due to the manipulation of the pitch-height alone, but arises because of a coherent change of pitch-height and brightness; this effect emerges along the vertical axis only.

  5. Grasping an object comfortably: orientation information is held in memory

    NARCIS (Netherlands)

    Roche, K; Verheij, R.; Voudouris, D.; Chainay, H.; Smeets, J.B.J.

    2015-01-01

    It has been shown that memorized information can influence real-time visuomotor control. For instance, a previously seen object (prime) influences grasping movements toward a target object. In this study, we examined how general the priming effect is: does it depend on the orientation of the target

  6. Effect of fiber post length and abutment height on fracture resistance of endodontically treated premolars prepared for zirconia crowns.

    Science.gov (United States)

    Lin, Jie; Matinlinna, Jukka Pekka; Shinya, Akikazu; Botelho, Michael George; Zheng, Zhiqiang

    2018-04-01

    The purpose of this study was to compare the fracture resistance, mode of fracture, and stress distribution of endodontically treated teeth prepared with three different fiber post lengths and two different abutment heights, using both experimental and finite element (FE) approaches. Forty-eight human maxillary premolars with two roots were selected and endodontically treated. The teeth were randomly distributed into six equally sized groups (n = 8) with different combinations of post lengths (7.5, 11, and 15 mm) and abutment heights (3 and 5 mm). All the teeth restored with glass fiber post (Rely X Fiber Post, 3M ESPE, USA) and a full zirconia crown. All the specimens were thermocycled and then loaded to failure at an oblique angle of 135°. Statistical analysis was performed for the effects of post length and abutment height on failure loads using ANOVA and Tukey's honestly significant difference test. In addition, corresponding FE models of a premolar restored with a glass fiber post were developed to examine mechanical responses. The factor of post length (P abutment height (P > 0.05) did not have a significant effect on failure load. The highest mean fracture resistance was recorded for the 15 mm post length and 5 mm abutment height test group, which was significantly more resistant to fracture than the 7.5 mm post and 5 mm abutment height group (P abutment heights.

  7. Adult height and risk of breast cancer: a possible effect of early nutrition

    OpenAIRE

    Nilsen, T I Lund; Vatten, L J

    2001-01-01

    The relationship of breast cancer to early reproductive development and height suggests that fetal and childhood nutrition may be important in its aetiology. Caloric restriction sufficient to reduce adult height may reduce breast cancer risk. During World War II (WWII) there was a marked reduction in average caloric intake in Norway that resulted in greater nutritional diversity. We hypothesized that a positive association between height and risk of breast cancer would be stronger among women...

  8. Grasp Algorithms For Optotactile Robotic Sample Acquisition, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Robotic sample acquisition is basically grasping. Multi-finger robot sample grasping devices are controlled to securely pick up samples. While optimal grasps for...

  9. The effect of vegetation height and biomass on the sediment budget of a European saltmarsh

    Science.gov (United States)

    Reef, Ruth; Schuerch, Mark; Christie, Elizabeth K.; Möller, Iris; Spencer, Tom

    2018-03-01

    Sediment retention in saltmarshes is often attributed to the presence of vegetation, which enhances accretion by slowing water flow, reduces erosion by attenuating wave energy and increases surface stability through the presence of organic matter. Saltmarsh vegetation morphology varies considerably on a range of spatial and temporal scales, but the effect of different above ground morphologies on sediment retention is not well characterised. Understanding the biophysical interaction between the canopy and sediment trapping in situ is important for improving numerical shoreline models. In a novel field flume study, we measured the effect of vegetation height and biomass on sediment trapping using a mass balance approach. Suspended sediment profilers were placed at both openings of a field flume built across-shore on the seaward boundary of an intertidal saltmarsh in the Dengie Peninsula, UK. Sequential removal of plant material from within the flume resulted in incremental loss of vegetation height and biomass. The difference between the concentration of suspended sediment measured at each profiler was used to determine the sediment budget within the flume. Deposition of material on the plant/soil surfaces within the flume occurred during flood tides, while ebb flow resulted in erosion (to a lesser degree) from the flume area, with a positive sediment budget of on average 6.5 g m-2 tide-1 with no significant relationship between sediment trapping efficiency and canopy morphology. Deposition (and erosion) rates were positively correlated to maximum inundation depth. Our results suggest that during periods of calm conditions, changes to canopy morphology do not result in significant changes in sediment budgets in marshes.

  10. Grip type and task goal modify reach-to-grasp performance in post-stroke hemiparesis.

    Science.gov (United States)

    Schaefer, Sydney Y; DeJong, Stacey L; Cherry, Kendra M; Lang, Catherine E

    2012-04-01

    This study investigated whether grip type and/or task goal influenced reaching and grasping performance in poststroke hemiparesis. Sixteen adults with poststroke hemiparesis and twelve healthy adults reached to and grasped a cylindrical object using one of two grip types (3-finger or palmar) to achieve one of two task goals (hold or lift). Performance of the stroke group was characteristic of hemiparetic limb movement during reach-to-grasp, with more curved handpaths and slower velocities compared with the control group. These effects were present regardless of grip type or task goal. Other measures of reaching (reach time and reach velocity at object contact) and grasping (peak thumb-index finger aperture during the reach and peak grip force during the grasp) were differentially affected by grip type, task goal, or both, despite the presence of hemiparesis, providing new evidence that changes in motor patterns after stroke may occur to compensate for stroke-related motor impairment.

  11. Virtual Control of Prosthetic Hand Based on Grasping Patterns and Estimated Force from Semg

    Directory of Open Access Journals (Sweden)

    Zhu Gao-Ke

    2016-01-01

    Full Text Available Myoelectric prosthetic hands aim to serve upper limb amputees. The myoelectric control of the hand grasp action is a kind of real-time or online method. Thus it is of great necessity to carry on a study of online prosthetic hand electrical control. In this paper, the strategy of simultaneous EMG decoding of grasping patterns and grasping force was realized by controlling a virtual multi-degree-freedom prosthetic hand and a real one-degree-freedom prosthetic hand simultaneously. The former realized the grasping patterns from the recognition of the sEMG pattern. The other implemented the grasping force from sEMG force decoding. The results show that the control method is effective and feasible.

  12. Spatial Heterogeneity of Climate Change Effects on Dominant Height of Larch Plantations in Northern and Northeastern China

    Directory of Open Access Journals (Sweden)

    Hao Zang

    2016-07-01

    Full Text Available Determining the response of dominant height growth to climate change is important for understanding adaption strategies. Based on 550 permanent plots from a national forest inventory and climate data across seven provinces and three climate zones, we developed a climate-sensitive dominant height growth model under a mixed-effects model framework. The mean temperature of the wettest quarter and precipitation of the wettest month were found to be statistically significant explanatory variables that markedly improved model performance. Generally, future climate change had a positive effect on stand dominant height in northern and northeastern China, but the effect showed high spatial variability linked to local climatic conditions. The range in dominant height difference between the current climate and three future BC-RCP scenarios would change from −0.61 m to 1.75 m (−6.9% to 13.5% during the period 2041–2060 and from −1.17 m to 3.28 m (−9.1% to 41.0% during the period 2061–2080 across provinces. The impacts of climate change on stand dominant height decreased as stand age increased. Forests in cold and warm temperate zones had a smaller decrease in dominant height, owing to climate change, compared with those in the mid temperate zone. Overall, future climate change could impact dominant height growth in northern and northeastern China. As spatial heterogeneity of climate change affects dominant height growth, locally specific mitigation measures should be considered in forest management.

  13. Effects of LiDAR point density, sampling size and height threshold on estimation accuracy of crop biophysical parameters.

    Science.gov (United States)

    Luo, Shezhou; Chen, Jing M; Wang, Cheng; Xi, Xiaohuan; Zeng, Hongcheng; Peng, Dailiang; Li, Dong

    2016-05-30

    Vegetation leaf area index (LAI), height, and aboveground biomass are key biophysical parameters. Corn is an important and globally distributed crop, and reliable estimations of these parameters are essential for corn yield forecasting, health monitoring and ecosystem modeling. Light Detection and Ranging (LiDAR) is considered an effective technology for estimating vegetation biophysical parameters. However, the estimation accuracies of these parameters are affected by multiple factors. In this study, we first estimated corn LAI, height and biomass (R2 = 0.80, 0.874 and 0.838, respectively) using the original LiDAR data (7.32 points/m2), and the results showed that LiDAR data could accurately estimate these biophysical parameters. Second, comprehensive research was conducted on the effects of LiDAR point density, sampling size and height threshold on the estimation accuracy of LAI, height and biomass. Our findings indicated that LiDAR point density had an important effect on the estimation accuracy for vegetation biophysical parameters, however, high point density did not always produce highly accurate estimates, and reduced point density could deliver reasonable estimation results. Furthermore, the results showed that sampling size and height threshold were additional key factors that affect the estimation accuracy of biophysical parameters. Therefore, the optimal sampling size and the height threshold should be determined to improve the estimation accuracy of biophysical parameters. Our results also implied that a higher LiDAR point density, larger sampling size and height threshold were required to obtain accurate corn LAI estimation when compared with height and biomass estimations. In general, our results provide valuable guidance for LiDAR data acquisition and estimation of vegetation biophysical parameters using LiDAR data.

  14. A curvilinear effect of height on reproductive success in human males

    NARCIS (Netherlands)

    Stulp, G.; Pollet, T.V.; Verhulst, S.; Buunk, A.P.

    2012-01-01

    Human male height is associated with mate choice and intra-sexual competition, and therefore potentially with reproductive success. A literature review (n = 18) on the relationship between male height and reproductive success revealed a variety of relationships ranging from negative to curvilinear

  15. A curvilinear effect of height on reproductive success in human males

    NARCIS (Netherlands)

    Stulp, Gert; Pollet, Thomas V.; Verhulst, Simon; Buunk, Abraham P.

    Human male height is associated with mate choice and intra-sexual competition, and therefore potentially with reproductive success. A literature review (n = 18) on the relationship between male height and reproductive success revealed a variety of relationships ranging from negative to curvilinear

  16. Interlimb Transfer of Grasp Orientation is Asymmetrical

    Directory of Open Access Journals (Sweden)

    Victor Frak

    2006-01-01

    Full Text Available One the most fundamental aspects of the human motor system is the hemispheric asymmetry seen in behavioral specialization. Hemispheric dominance can be inferred by a contralateral hand preference in grasping. Few studies have considered grasp orientation in the context of manual lateralization and none has looked at grasp orientation with natural prehension. Thirty right-handed adults performed precision grasps of a cylinder using the thumb and index fingers, and the opposition axis (OA was defined as the line connecting these two contact points on the cylinder. Subjects made ten consecutive grasps with one hand (primary hand movements followed by ten grasps with the other hand (trailing movements. Differences between primary and trailing grasps revealed that each hemisphere is capable of programming the orientation of the OA and that primary movements with the right hand significantly influenced OA orientation of the trailing left hand. These results extend the hemispheric dominance of the left hemisphere to the final positions of fingers during prehension.

  17. Corrections for the effects of significant wave height and attitude on Geosat radar altimeter measurements

    Science.gov (United States)

    Hayne, G. S.; Hancock, D. W., III

    1990-01-01

    Range estimates from a radar altimeter have biases which are a function of the significant wave height (SWH) and the satellite attitude angle (AA). Based on results of prelaunch Geosat modeling and simulation, a correction for SWH and AA was already applied to the sea-surface height estimates from Geosat's production data processing. By fitting a detailed model radar return waveform to Geosat waveform sampler data, it is possible to provide independent estimates of the height bias, the SWH, and the AA. The waveform fitting has been carried out for 10-sec averages of Geosat waveform sampler data over a wide range of SWH and AA values. The results confirm that Geosat sea-surface-height correction is good to well within the original dm-level specification, but that an additional height correction can be made at the level of several cm.

  18. The effects of frequency-encoding gradient upon detectability of the margins and height measurements of normal adult pituitary glands

    International Nuclear Information System (INIS)

    Taketomi, A.; Sato, N.; Aoki, J.; Endo, K.

    2004-01-01

    We investigated the effects of frequency-encoding gradient (FEG) upon detectability and height measurements of the normal adult pituitary gland. We obtained two sets of T1-weighted sagittal images of the pituitary gland from 70 adult subjects without known pituitary dysfunction using 1.5 tesla imagers; one with an inferior-superior FEG, and one with an anterior-posterior FEG. We classified the subjects into three types according to the distribution of fatty marrow in the clivus. Each set of images was assessed for pituitary height on midline sagittal images, and detectability of pituitary margins. Height measurements and detectability scores were evaluated for significant difference between the two FEGs. In subjects with fatty marrow in the clivus, there was significant difference between pituitary height measurements (P<0.005) and pituitary margin detectability (P<0.001). Care should be taken to image the pituitary gland using an anterior-posterior FEG. (orig.)

  19. The extended object-grasping network.

    Science.gov (United States)

    Gerbella, Marzio; Rozzi, Stefano; Rizzolatti, Giacomo

    2017-10-01

    Grasping is the most important skilled motor act of primates. It is based on a series of sensorimotor transformations through which the affordances of the objects to be grasped are transformed into appropriate hand movements. It is generally accepted that a circuit formed by inferior parietal areas AIP and PFG and ventral premotor area F5 represents the core circuit for sensorimotor transformations for grasping. However, selection and control of appropriate grip should also depend on higher-order information, such as the meaning of the object to be grasped, and the overarching goal of the action in which grasping is embedded. In this review, we describe recent findings showing that specific sectors of the ventrolateral prefrontal cortex are instrumental in controlling higher-order aspects of grasping. We show that these prefrontal sectors control the premotor cortex through two main gateways: the anterior subdivision of ventral area F5-sub-area F5a-, and the pre-supplementary area (area F6). We then review functional studies showing that both F5a and F6, besides being relay stations of prefrontal information, also play specific roles in grasping. Namely, sub-area F5a is involved in stereoscopic analysis of 3D objects, and in planning cue-dependent grasping activity. As for area F6, this area appears to play a crucial role in determining when to execute the motor program encoded in the parieto-premotor circuit. The recent discovery that area F6 contains a set of neurons encoding specific grip types suggests that this area, besides controlling "when to go", also may control the grip type, i.e., "how to go". We conclude by discussing clinical syndromes affecting grasping actions and their possible mechanisms.

  20. Optimal grasp planning for a dexterous robotic hand using the volume of a generalized force ellipsoid during accepted flattening

    Directory of Open Access Journals (Sweden)

    Peng Jia

    2017-01-01

    Full Text Available A grasp planning method based on the volume and flattening of a generalized force ellipsoid is proposed to improve the grasping ability of a dexterous robotic hand. First, according to the general solution of joint torques for a dexterous robotic hand, a grasping indicator for the dexterous hand—the maximum volume of a generalized external force ellipsoid and the minimum volume of a generalized contact internal force ellipsoid during accepted flattening—is proposed. Second, an optimal grasp planning method based on a task is established using the grasping indicator as an objective function. Finally, a simulation analysis and grasping experiment are performed. Results show that when the grasping experiment is conducted with the grasping configuration and positions of contact points optimized using the proposed grasping indicator, the root-mean-square values of the joint torques and contact internal forces of the dexterous hand are at a minimum. The effectiveness of the proposed grasping planning method is thus demonstrated.

  1. Can Pillow Height Effect the Body Pressure Distribution and Sleep Comfort: a Study of Quinquagenarian Women

    Science.gov (United States)

    Li, Xinzhu; Hu, Huimin; Liao, Su

    2018-03-01

    A proper sleeping pillow can relax the neck muscles during sleep, yet does not impose stress on the spine or other tissues. By analyzing the different body pressure and subjective comfort evaluation of quinquagenarian women with different pillow heights (3cm, 7cm, 11cm and 15cm), this paper found that as the pillow height increased, the neck contact pressure, contact area and force increased at the same time, as well as the peak force and peak contact pressure gradually shifted from the head to the hip area. It was shown that the pillow with a height of 7cm was the most comfortable for supine positions.

  2. Wuthering Heights

    NARCIS (Netherlands)

    Bronte, Emily

    2005-01-01

    Wuthering Heights tells the story of a romance between two youngsters: Catherine Earnshaw and an orphan boy, Heathcliff. After she rejects him for a boy from a better background he develops a lust for revenge that takes over his life. In attempting to win her back and destroy those he blames for his

  3. Effect of shoe heel height on vastus medialis and vastus lateralis electromyographic activity during sit to stand

    Directory of Open Access Journals (Sweden)

    Hodgson David

    2008-01-01

    Full Text Available Abstract Background It has been proposed that high-heeled shoes may contribute to the development and progression of knee pain. However, surprisingly little research has been carried out on how shoe heel height affects muscle activity around the knee joint. The purpose of this study was to investigate the effect of differing heel height on the electromyographic (EMG activity in vastus medialis (VM and vastus lateralis (VL during a sit to stand activity. This was an exploratory study to inform future research. Methods A repeated measures design was used. Twenty five healthy females carried out a standardised sit to stand activity under 4 conditions; barefoot, and with heel wedges of 1, 3, and 5 cm in height. EMG activity was recorded from VM and VL during the activity. Data were analysed using 1 × 4 repeated measures ANOVA. Results Average rectified EMG activity differed with heel height in both VM (F2.2, 51.7 = 5.24, p 3, 72 = 5.32, p 3, 72 = 0.61, p = 0.609. Conclusion We found that as heel height increased, there was an increase in EMG activity in both VM and VL, but no change in the relative EMG intensity of VM and VL as measured by the VM: VL ratio. This showed that no VM: VL imbalance was elicited. This study provides information that will inform future research on how heel height affects muscle activity around the knee joint.

  4. The effect of channel height on bubble nucleation in superhydrophobic microchannels due to subcritical heating

    Science.gov (United States)

    Cowley, Adam; Maynes, Daniel; Crockett, Julie; Iverson, Brian

    2017-11-01

    This work experimentally investigates the effects of heating on laminar flow in high aspect ratio superhydrophobic (SH) microchannels. When water that is saturated with dissolved air is used, the unwetted cavities of the SH surfaces act as nucleation sites and air effervesces out of solution onto the surfaces. The microchannels consist of a rib/cavity structured SH surface, that is heated, and a glass surface that is utilized for flow visualization. Two channel heights of nominally 183 and 366 μm are considered. The friction factor-Reynolds product (fRe) is obtained via pressure drop and volumetric flow rate measurements and the temperature profile along the channel is obtained via thermocouples embedded in an aluminum block below the SH surface. Five surface types/configurations are investigated: smooth hydrophilic, smooth hydrophobic, SH with ribs perpendicular to the flow, SH with ribs parallel to the flow, and SH with both ribs parallel to the flow and sparse ribs perpendicular to the flow. Depending on the surface type/configuration, large bubbles can form and adversely affect fRe and lead to higher temperatures along the channel. Once bubbles grow large enough, they are expelled from the channel. The channel size greatly effects the residence time of the bubbles and consequently fRe and the channel temperature. This research was supported by the National Science Foundation (NSF) (Grant No. CBET-1235881) and the Utah NASA Space Grant Consortium (NASA Grant NNX15A124H).

  5. Motivational state, reward value, and Pavlovian cues differentially affect skilled forelimb grasping in rats

    Science.gov (United States)

    de Clauser, Larissa; Kasper, Hansjörg; Schwab, Martin E.

    2016-01-01

    Motor skills represent high-precision movements performed at optimal speed and accuracy. Such motor skills are learned with practice over time. Besides practice, effects of motivation have also been shown to influence speed and accuracy of movements, suggesting that fast movements are performed to maximize gained reward over time as noted in previous studies. In rodents, skilled motor performance has been successfully modeled with the skilled grasping task, in which animals use their forepaw to grasp for sugar pellet rewards through a narrow window. Using sugar pellets, the skilled grasping task is inherently tied to motivation processes. In the present study, we performed three experiments modulating animals’ motivation during skilled grasping by changing the motivational state, presenting different reward value ratios, and displaying Pavlovian stimuli. We found in all three studies that motivation affected the speed of skilled grasping movements, with the strongest effects seen due to motivational state and reward value. Furthermore, accuracy of the movement, measured in success rate, showed a strong dependence on motivational state as well. Pavlovian cues had only minor effects on skilled grasping, but results indicate an inverse Pavlovian-instrumental transfer effect on movement speed. These findings have broad implications considering the increasing use of skilled grasping in studies of motor system structure, function, and recovery after injuries. PMID:27194796

  6. The effect of the height of the extraction solution zone on the effectiveness of phenol purification of oils

    Energy Technology Data Exchange (ETDEWEB)

    Shwetsov, A M; Petrov, V N; Plaksina, R V

    1982-01-01

    Studies are conducted in order to investigate the effect of the location of the interface level on the quality and output of a refinate (Rf) during phenol purification of oils in an industrial installation. During purification of deasphaltizate from a mixture of Romashkinsk and Tuymazinsk oils the height of the solution extraction (ER) zone was altered, while the solution extracted from the lower part of the column was sent to a tank settler for separating the second refinate phase (VRF) from it. In order to observe the position of the interface between the second refinate phase and the extraction solution, the tank was equipped with electrodes. It is shown that with an extraction solution zone height of 5.5 meters, intensive isolation of the second refinate phase in the tank is observed; here, the quality and output of the refinate are low. An increase in the extraction solution zone to 9.5 meters improves the quality of the refinate, but its output remains low. With an increase in the extraction solution zone height to 12.3 meters, the operation of the column is stabilized.

  7. The effect of different trap height on the diversity of sap beetle (Coleoptera: Nitidulidae)

    Science.gov (United States)

    Rahim, Nor Atikah Abdul; Yaakop, Salmah

    2018-04-01

    This paper aim to measure the diversity and abundance of sap beetles in oil palm plantation in Malaysia on different heights, 1.5m and 2.5m above ground. A total 0f 20 baited traps were set up in Felda Lui Muda, Negeri Sembilan and located along three transects. The sap beetles collected weekly for a month and identified until species level and the diversity indexes were measured using Evenness Index (E), Shannon-Wiener Index (H'), Simpson's Index (D') and Margalef's Index (R'). All the diversity indexes indicated that the diversity on the lower height above the ground is higher than the upper height The result also shows that there are significant difference (p<0.05) when tested with t-test between the numbers of individuals on the different trap height although the number of species shows different results.

  8. Message valence, familiarity, sex, and personality effects on the perceptual distortion of height.

    Science.gov (United States)

    Hensley, W E; Angoli, M

    1980-03-01

    The perceptual distortion of height was examined in a group of American male and female college student volunteers (n = 139). A message which announced either good or bad news was delivered by a familiar or unfamiliar person who was either male or female. After hearing the message, the students were asked to estimate the height of the communicator. Additionally, the variables of self-esteem and independence of judgment were measured. Results indicated that familiarity with the message source (p less than .0025) as well as sex of the communicator (p less than .024) were predictors of the perceptual distortion of height, but message valence was not. Neither self-esteem nor independence of judgment was functionally related to the proclivity to distort the heights of the communicators.

  9. The unfolding effects of transfer functions and processing of the pulse height distributions

    Directory of Open Access Journals (Sweden)

    Avdić Senada

    2010-01-01

    Full Text Available This paper deals with the improvements of the linear artificial neural network unfolding approach aimed at accurately determining the incident neutron spectrum. The effects of the transfer functions and pre-processing of the simulated pulse height distributions from liquid scintillation detectors on the artificial neural networks performance have been studied. A better energy resolution and higher reliability of the linear artificial neural network technique have been achieved after implementation of the results of this study. The optimized structure of the network was used to unfold both monoenergetic and continuous neutron energy spectra, such as the spectra of 252Cf and 241Am-Be sources, traditionally used in the nuclear safeguards experiments. We have demonstrated that the artificial neural network energy resolution of 0.1 MeV is comparable with the one obtained by the reference maximum likelihood expectation-maximization method which was implemented by using the one step late algorithm. Although the maximum likelihood algorithm provides the unfolded results of higher accuracy, especially for continuous neutron sources, the artificial neural network approach with the improved performances is more suitable for fast and robust determination of the neutron spectra with sufficient accuracy.

  10. Effect of structure height on the drag reduction performance using rotating disk apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Rashed, Musaab K; Salleh, Mohamad Amran Mohd; Ismail, M Halim Shah [Department of Chemical and Environmental Engineering, Faculty of Engineering, University Putra Malaysia (Malaysia); Abdulbari, Hayder A, E-mail: hayder.bari@gmail.com [Center of Excellence for Advanced Research in Fluid Flow, Universiti Malaysia Pahang (Malaysia)

    2017-02-15

    The drag reduction characteristics in a rotating disk apparatus were investigated by using structured disks with different riblet types and dimensions. Two disk types were fabricated with right angle triangular (RAT) grooves and space v-shape (SV) grooves, with six dimensions for each type. A high-accuracy rotating disk apparatus was fabricated and then used to investigate the turbulent drag reduction characterization of the disk in diesel fuel. In this work, the effects of several parameters are investigated; riblet types, riblet dimensions, and rotational disk speed (rpm) on the drag reduction performance. It was found that the surface structure of the disk reduced the drag, this was clearly seen from the comparison of torque values of smooth and structured disks. Drag reduction for structured disks was higher than that for smooth disks, and SV-grooves showed better drag reduction performance than RAT-grooves. In addition, it was observed that the drag reduction performance increased with decreasing groove height for both groove types. The maximum drag reduction achieved in this study was 37.368% for SV-groove at 1000 rpm, compared with 30% for RAT-groove, at the same rotational speed. (paper)

  11. The effect of assisted jumping on vertical jump height in high-performance volleyball players.

    Science.gov (United States)

    Sheppard, Jeremy M; Dingley, Andrew A; Janssen, Ina; Spratford, Wayne; Chapman, Dale W; Newton, Robert U

    2011-01-01

    Assisted jumping may be useful in training higher concentric movement speed in jumping, thereby potentially increasing the jumping abilities of athletes. The purpose of this study was to evaluate the effects of assisted jump training on counter-movement vertical jump (CMVJ) and spike jump (SPJ) ability in a group of elite male volleyball players. Seven junior national team volleyball players (18.0±1.0 yrs, 200.4±6.7 cm, and 84.0±7.2 kg) participated in this within-subjects cross-over counter-balanced training study. Assisted training involved 3 sessions per week of CMVJ training with 10 kg of assistance, applied through use of a bungee system, whilst normal jump training involved equated volume of unassisted counter-movement vertical jumps. Training periods were 5 weeks duration, with a 3-week wash-out separating them. Prior to and at the conclusion of each training period jump testing for CMVJ and SPJ height was conducted. Assisted jump training resulted in gains of 2.7±0.7 cm (pSports Medicine Australia. All rights reserved.

  12. Childhood height, adult height, and the risk of prostate cancer

    DEFF Research Database (Denmark)

    Bjerregaard, Lise Geisler; Aarestrup, Julie; Gamborg, Michael

    2016-01-01

    PURPOSE: We previously showed that childhood height is positively associated with prostate cancer risk. It is, however, unknown whether childhood height exerts its effects independently of or through adult height. We investigated whether and to what extent childhood height has a direct effect...... on the risk of prostate cancer apart from adult height. METHODS: We included 5,871 men with height measured at ages 7 and 13 years in the Copenhagen School Health Records Register who also had adult (50-65 years) height measured in the Danish Diet, Cancer and Health study. Prostate cancer status was obtained...... through linkage to the Danish Cancer Registry. Direct and total effects of childhood height on prostate cancer risk were estimated from Cox regressions. RESULTS: From 1996 to 2012, 429 prostate cancers occurred. Child and adult heights were positively and significantly associated with prostate cancer risk...

  13. Small-scale open ocean currents have large effects on wind wave heights

    Science.gov (United States)

    Ardhuin, Fabrice; Gille, Sarah T.; Menemenlis, Dimitris; Rocha, Cesar B.; Rascle, Nicolas; Chapron, Bertrand; Gula, Jonathan; Molemaker, Jeroen

    2017-06-01

    Tidal currents and large-scale oceanic currents are known to modify ocean wave properties, causing extreme sea states that are a hazard to navigation. Recent advances in the understanding and modeling capability of open ocean currents have revealed the ubiquitous presence of eddies, fronts, and filaments at scales 10-100 km. Based on realistic numerical models, we show that these structures can be the main source of variability in significant wave heights at scales less than 200 km, including important variations down to 10 km. Model results are consistent with wave height variations along satellite altimeter tracks, resolved at scales larger than 50 km. The spectrum of significant wave heights is found to be of the order of 70>>2/>(g2>>2>) times the current spectrum, where >> is the spatially averaged significant wave height, >> is the energy-averaged period, and g is the gravity acceleration. This variability induced by currents has been largely overlooked in spite of its relevance for extreme wave heights and remote sensing.Plain Language SummaryWe show that the variations in currents at scales 10 to 100 km are the main source of variations in wave heights at the same scales. Our work uses a combination of realistic numerical models for currents and waves and data from the Jason-3 and SARAL/AltiKa satellites. This finding will be of interest for the investigation of extreme wave heights, remote sensing, and air-sea interactions. As an immediate application, the present results will help constrain the error budget of the up-coming satellite missions, in particular the Surface Water and Ocean Topography (SWOT) mission, and decide how the data will have to be processed to arrive at accurate sea level and wave measurements. It will also help in the analysis of wave measurements by the CFOSAT satellite.

  14. Effect of application timing and grass height on the nitrogen fertilizer replacement value of cattle slurry applied with a trailing-shoe application system

    NARCIS (Netherlands)

    Lalor, S.T.J.; Schroder, J.J.; Lantinga, E.A.; Schulte, R.P.O.

    2014-01-01

    This study investigated the effect of using a trailing-shoe system to apply cattle slurry, under different conditions of grass height (low [LG]: freshly cut sward [4–5 cm height] vs. high [HG]: application delayed by 7–19 d and applied to taller grass sward [4–11 cm] height) and month of application

  15. Bone indicators of grasping hands in lizards

    Directory of Open Access Journals (Sweden)

    Gabriela Fontanarrosa

    2016-05-01

    Full Text Available Grasping is one of a few adaptive mechanisms that, in conjunction with clinging, hooking, arm swinging, adhering, and flying, allowed for incursion into the arboreal eco-space. Little research has been done that addresses grasping as an enhanced manual ability in non-mammalian tetrapods, with the exception of studies comparing the anatomy of muscle and tendon structure. Previous studies showed that grasping abilities allow exploitation for narrow branch habitats and that this adaptation has clear osteological consequences. The objective of this work is to ascertain the existence of morphometric descriptors in the hand skeleton of lizards related to grasping functionality. A morphological matrix was constructed using 51 morphometric variables in 278 specimens, from 24 genera and 13 families of Squamata. To reduce the dimensions of the dataset and to organize the original variables into a simpler system, three PCAs (Principal Component Analyses were performed using the subsets of (1 carpal variables, (2 metacarpal variables, and (3 phalanges variables. The variables that demonstrated the most significant contributions to the construction of the PCA synthetic variables were then used in subsequent analyses. To explore which morphological variables better explain the variations in the functional setting, we ran Generalized Linear Models for the three different sets. This method allows us to model the morphology that enables a particular functional trait. Grasping was considered the only response variable, taking the value of 0 or 1, while the original variables retained by the PCAs were considered predictor variables. Our analyses yielded six variables associated with grasping abilities: two belong to the carpal bones, two belong to the metacarpals and two belong to the phalanges. Grasping in lizards can be performed with hands exhibiting at least two different independently originated combinations of bones. The first is a combination of a highly

  16. Fuzzy Logic Controller Design for A Robot Grasping System with Different Membership Functions

    International Nuclear Information System (INIS)

    Ahmad, Hamzah; Razali, Saifudin; Mohamed, Mohd Rusllim

    2013-01-01

    This paper investigates the effects of the membership function to the object grasping for a three fingered gripper system. The performance of three famously used membership functions is compared to identify their behavior in lifting a defined object shape. MATLAB Simulink and SimMechanics toolboxes are used to examine the performance. Our preliminary results proposed that the Gaussian membership function surpassed the two other membership functions; triangular and trapezoid memberships especially in the context of firmer grasping and less time consumption during operations. Therefore, Gaussian membership function could be the best solution when time consumption and firmer grasp are considered

  17. The effects of temperature on Schottky diode barrier height and evidence of multiple barrier

    International Nuclear Information System (INIS)

    Rabah, K.V.O.

    1994-07-01

    Experimental study of Capacitance-Voltage-Temperature (C-V-T) plots, Current-Voltage-Temperature (I-V-T) characteristics have been undertaken in order to determine the height of the Schottky barrier. The results of the barrier height obtained by the above two methods were found to differ as well as vary with temperature change. In view of this discrepancy in barrier height values, two further experiments were performed: one on activation energy (I-T) plots and the other on pulsed (I-V-T) characteristics, and the results were found to show a similar trend. The Schottky diode studied was a 30CP040. (author). 23 refs, 9 figs, 3 tabs

  18. The Effect of Arch Height and Material Hardness of Personalized Insole on Correction and Tissues of Flatfoot

    Directory of Open Access Journals (Sweden)

    Shonglun Su

    2017-01-01

    Full Text Available Flat foot is one of the common deformities in the youth population, seriously affecting the weight supporting and daily exercising. However, there is lacking of quantitative data relative to material selection and shape design of the personalized orthopedic insole. This study was to evaluate the biomechanical effects of material hardness and support height of personalized orthopedic insole on foot tissues, by in vivo experiment and finite element modeling. The correction of arch height increased with material hardness and support height. The peak plantar pressure increased with the material hardness, and these values by wearing insoles of 40° were apparently higher than the bare feet condition. Harder insole material results in higher stress in the joint and ligament stress than softer material. In the calcaneocuboid joint, the stress increased with the arch height of insoles. The material hardness did not apparently affect the stress in the ankle joints, but the support heights of insole did. In general, insole material and support design are positively affecting the correction of orthopedic insole, but negatively resulting in unreasonable stress on the stress in the joint and ligaments. There should be an integration of improving correction and reducing stress in foot tissues.

  19. The effect of step height on the performance of three-dimensional ac electro-osmotic microfluidic pumps.

    Science.gov (United States)

    Urbanski, John Paul; Levitan, Jeremy A; Burch, Damian N; Thorsen, Todd; Bazant, Martin Z

    2007-05-15

    Recent numerical and experimental studies have investigated the increase in efficiency of microfluidic ac electro-osmotic pumps by introducing nonplanar geometries with raised steps on the electrodes. In this study, we analyze the effect of the step height on ac electro-osmotic pump performance. AC electro-osmotic pumps with three-dimensional electroplated steps are fabricated on glass substrates and pumping velocities of low ionic strength electrolyte solutions are measured systematically using a custom microfluidic device. Numerical simulations predict an improvement in pump performance with increasing step height, at a given frequency and voltage, up to an optimal step height, which qualitatively matches the trend observed in experiment. For a broad range of step heights near the optimum, the observed flow is much faster than with existing planar pumps (at the same voltage and minimum feature size) and in the theoretically predicted direction of the "fluid conveyor belt" mechanism. For small step heights, the experiments also exhibit significant flow reversal at the optimal frequency, which cannot be explained by the theory, although the simulations predict weak flow reversal at higher frequencies due to incomplete charging. These results provide insight to an important parameter for the design of nonplanar electro-osmotic pumps and clues to improve the fundamental theory of ACEO.

  20. Effect of cutting height and time on seed yield and seed quality of Stylosanthes guianensis CIAT 184

    OpenAIRE

    Pimpaporn Pholsen; Chureerat Satjipanon; Krailas Kiyothong

    2002-01-01

    The objectives of this experiment were to study the effect of cutting height and time on seed yield and seed quality of Stylosanthes guianensis CIAT 184 in Korat soil series at Khon Kaen Animal Nutrition Research Center, during April 2000 - May 2001. The experimental design was 2 × 4 factorial in randomized complete block design with 4 replications. The treatment consisted of 2 factors: - 1) Two levels of cutting height viz. 20 and 30 cm above ground; 2) Four periods of cutting time viz. at 6...

  1. Effect of oxandrolone therapy on adult height in Turner syndrome patients treated with growth hormone: a meta-analysis.

    Science.gov (United States)

    Sheanon, Nicole M; Backeljauw, Philippe F

    2015-01-01

    Turner syndrome is a chromosomal abnormality in which there is complete or partial absence of the X chromosome. Turner syndrome effects 1 in every 2000 live births. Short stature is a cardinal feature of Turner Syndrome and the standard treatment is recombinant human growth hormone. When growth hormone is started at an early age a normal adult height can be achieved. With delayed diagnosis young women with Turner Syndrome may not reach a normal height. Adjuvant therapy with oxandrolone is used but there is no consensus on the optimal timing of treatment, the duration of treatment and the long term adverse effects of treatment. The objective of this review and meta-analysis is to examine the effect of oxandrolone on adult height in growth hormone treated Turner syndrome patients. Eligible trials were identified by a literature search using the terms: Turner syndrome, oxandrolone. The search was limited to English language randomized-controlled trials after 1980. Twenty-six articles were reviewed and four were included in the meta-analysis. A random effects model was used to calculate an effect size and confidence interval. The pooled effect size of 2.0759 (95 % CI 0.0988 to 4.0529) indicates that oxandrolone has a positive effect on adult height in Turner syndrome when combined with growth hormone therapy. In conclusion, the addition of oxandrolone to growth hormone therapy for treatment of short stature in Turner syndrome improves adult height. Further studies are warranted to investigate if there is a subset of Turner syndrome patients that would benefit most from growth hormone plus oxandrolone therapy, and to determine the optimal timing and duration of such therapy.

  2. Effect of barrier height on friction behavior of the semiconductors silicon and gallium arsenide in contact with pure metals

    Science.gov (United States)

    Mishina, H.; Buckley, D. H.

    1984-01-01

    Friction experiments were conducted for the semiconductors silicon and gallium arsenide in contact with pure metals. Polycrystalline titanium, tantalum, nickel, palladium, and platinum were made to contact a single crystal silicon (111) surface. Indium, nickel, copper, and silver were made to contact a single crystal gallium arsenide (100) surface. Sliding was conducted both in room air and in a vacuum of 10 to the minus 9th power torr. The friction of semiconductors in contact with metals depended on a Schottky barrier height formed at the metal semiconductor interface. Metals with a higher barrier height on semiconductors gave lower friction. The effect of the barrier height on friction behavior for argon sputtered cleaned surfaces in vacuum was more specific than that for the surfaces containing films in room air. With a silicon surface sliding on titanium, many silicon particles back transferred. In contrast, a large quantity of indium transferred to the gallium arsenide surface.

  3. Effect of dissolved hydrogen on Schottky barrier height of Fe-Cr alloy heterojunction

    Science.gov (United States)

    Berahim, A. N.; Zaharudin, M. Z.; Ani, M. H.; Arifin, S. K.

    2018-01-01

    The presence of water vapour at high temperature oxidation has certain effects on ferritic alloy in comparison to dry environment. It is hypothesized that at high temperature; water vapour provides hydrogen, which will dissolve into ferritic alloy substrate and altering their electronic state at the metal-oxide interface. This work aimed to clarify the change in electronic state of metal-oxide heterojunction with the presence of hydrogen/water vapour. In this study, the Schottky Barrier (SB) was created by sputtering Cr2O3 onto prepared samples by using RF Magnetron sputtering machine. The existence of Fe/Cr2O3 junction was characterized by using XRD. The surfaces were observed by using Optical Microscope (OM) and Scanning Electron Microscope (SEM). The samples were then exposed in dry and humid condition at temperature of 473 K and 1073 K. In dry condition, 100% Ar is flown inside the furnace, while in wet condition mixture of 95% Ar and 5% H was used. I-V measurement of the junction was done to determine the Schottky Barrier Height(SBH) of the samples in the corresponding ambient. The results show that in Fe/Cr2O3 junction, with presence of hydrogen at temperature 473 K; the SBH was reduced by the scale factor of 1.054 and at 1073 K in wet ambient by factor of 1.068. Meanwhile, in Fe-Cr/Cr2O3 junction with presence of hydrogen, the value of SBH was increased by scale factor of 1.068 at temperature 473 K while at 1073 K, the SBH also increased by factor of 1.009.

  4. Effects of airway surface liquid height on the kinetics of extracellular nucleotides in airway epithelia.

    Science.gov (United States)

    Amarante, Tauanne D; da Silva, Jafferson K L; Garcia, Guilherme J M

    2014-12-21

    Experimental techniques aimed at measuring the concentration of signaling molecules in the airway surface liquid (ASL) often require an unrealistically large ASL volume to facilitate sampling. This experimental limitation, prompted by the difficulty of pipetting liquid from a very shallow layer (~15 μm), leads to dilution and the under-prediction of physiologic concentrations of signaling molecules that are vital to the regulation of mucociliary clearance. Here, we use a computational model to describe the effect of liquid height on the kinetics of extracellular nucleotides in the airway surface liquid coating respiratory epithelia. The model consists of a reaction-diffusion equation with boundary conditions that represent the enzymatic reactions occurring on the epithelial surface. The simulations reproduce successfully the kinetics of extracellular ATP following hypotonic challenge for ASL volumes ranging from 25 μl to 500 μl in a 12-mm diameter cell culture. The model reveals that [ATP] and [ADO] reach 1200 nM and 2200 nM at the epithelial surface, respectively, while their volumetric averages remain less than 200 nM at all times in experiments with a large ASL volume (500 μl). These findings imply that activation of P2Y2 and A2B receptors is robust after hypotonic challenge, in contrast to what could be concluded based on experimental measurements of volumetric concentrations in large ASL volumes. Finally, given the central role that ATP and ADO play in regulating mucociliary clearance, we investigated which enzymes, when inhibited, provide the greatest increase in ATP and ADO concentrations. Our findings suggest that inhibition of NTPDase1/highTNAP would cause the greatest increase in [ATP] after hypotonic challenge, while inhibition of the transporter CNT3 would provide the greatest increase in [ADO]. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Effects of pillar height and junction depth on the performance of radially doped silicon pillar arrays for solar energy applications

    NARCIS (Netherlands)

    Elbersen, R.; Vijselaar, Wouter Jan, Cornelis; Tiggelaar, Roald M.; Gardeniers, Johannes G.E.; Huskens, Jurriaan

    2016-01-01

    The effects of pillar height and junction depth on solar cell characteristics are investigated to provide design rules for arrays of such pillars in solar energy applications. Radially doped silicon pillar arrays are fabricated by deep reactive ion etching of silicon substrates followed by the

  6. The effect of step stool use and provider height on CPR quality during pediatric cardiac arrest: A simulation-based multicentre study.

    Science.gov (United States)

    Cheng, Adam; Lin, Yiqun; Nadkarni, Vinay; Wan, Brandi; Duff, Jonathan; Brown, Linda; Bhanji, Farhan; Kessler, David; Tofil, Nancy; Hecker, Kent; Hunt, Elizabeth A

    2018-01-01

    We aimed to explore whether a) step stool use is associated with improved cardiopulmonary resuscitation (CPR) quality; b) provider adjusted height is associated with improved CPR quality; and if associations exist, c) determine whether just-in-time (JIT) CPR training and/or CPR visual feedback attenuates the effect of height and/or step stool use on CPR quality. We analysed data from a trial of simulated cardiac arrests with three study arms: No intervention; CPR visual feedback; and JIT CPR training. Step stool use was voluntary. We explored the association between 1) step stool use and CPR quality, and 2) provider adjusted height and CPR quality. Adjusted height was defined as provider height + 23 cm (if step stool was used). Below-average height participants were ≤ gender-specific average height; the remainder were above average height. We assessed for interaction between study arm and both adjusted height and step stool use. One hundred twenty-four subjects participated; 1,230 30-second epochs of CPR were analysed. Step stool use was associated with improved compression depth in below-average (female, p=0.007; male, pstep stool use (pStep stool use is associated with improved compression depth regardless of height. Increased provider height is associated with improved compression depth, with visual feedback attenuating the effects of height and step stool use.

  7. Direct and carryover effect of post-grazing sward height on total lactation dairy cow performance.

    Science.gov (United States)

    Ganche, E; Delaby, L; O'Donovan, M; Boland, T M; Kennedy, E

    2013-08-01

    Grazing pastures to low post-grazing sward heights (PGSH) is a strategy to maximise the quantity of grazed grass in the diet of dairy cows within temperate grass-based systems. Within Irish spring-calving systems, it was hypothesised that grazing swards to very low PGSH would increase herbage availability during early lactation but would reduce dairy cow performance, the effect of which would persist in subsequent lactation performance when compared with cows grazing to a higher PGSH. Seventy-two Holstein-Friesian dairy cows (mean calving date, 12 February) were randomly assigned post-calving across two PGSH treatments (n = 36): 2.7 cm (severe; S1) and 3.5 cm (moderate; M1), which were applied from 10 February to 18 April (period 1; P1). This was followed by a carryover period (period 2; P2) during which cows were randomly reassigned within their P1 treatment across two further PGSH (n = 18): 3.5 cm (severe, SS and MS) and 4.5 cm (moderate, SM and MM) until 30 October. Decreasing PGSH from 3.5 to 2.7 cm significantly decreased milk (-2.3 kg/cow per day), protein (-95 g/day), fat (-143 g/day) and lactose (-109 g/day) yields, milk protein (-1.2 g/kg) and fat (-2.2 g/kg) concentrations and grass dry matter intake (GDMI; -1.7 kg dry matter/cow per day). The severe PGSH was associated with a lower bodyweight (BW) at the end of P1. There was no carryover effect of P1 PGSH on subsequent milk or milk solids yields in P2, but PGSH had a significant carryover effect on milk fat and lactose concentrations. Animals severely restricted at pasture in early spring had a higher BW and slightly higher body condition score in later lactation when compared with M1 animals. During P2, increasing PGSH from 3.5 to 4.5 cm increased milk and milk solids yield as a result of greater GDMI and resulted in higher mean BW and end BW. This study indicates that following a 10-week period of feed restriction, subsequent dairy cow cumulative milk production is unaffected. However, the substantial

  8. Effect of infusion bottle height on lens power after lens refilling with and without a plug

    NARCIS (Netherlands)

    Koopmans, SA; Terwee, T; Haitjema, HJ; Kooijman, AC; Barkhof, J

    2003-01-01

    Purpose: To evaluate the influence of intraoperative infusion bottle height on the power of refilled pig lenses. Setting: Research Laboratory, Pharmacia Intraocular Lens Manufacturing Plant, Groningen, The Netherlands. Methods: This study comprised 2 groups of pig eyes. In 1 group, the lens was

  9. Premolar Axial Wall Height Effect on CAD/CAM Crown Retention

    Science.gov (United States)

    2016-05-24

    OC axial wall height was required in a study that involved zirconia copings cemented on stainless steel dies. The results of this study reinforced...surface area was determined using a digital measuring microscope (Hirox). Scanned preparations (CEREC) were fitted with e.max CAD crowns and cemented ...Figure 14. RelyX Unicem Cementation

  10. Effect of Riffle Height and Spacing of a Sluice Board on Placer Gold ...

    African Journals Online (AJOL)

    Michael

    2017-06-01

    Jun 1, 2017 ... turbulence formed in the flow because the angular speeds of the whirl flow .... (6). Where the liquid gets in contact with the surface of the sluice board, the height of fluid, h = 0, and v = 0. ..... American Society for Quality (ASQ).

  11. Effects of Pentacam on the posterior corneal surface height changes after LASEK and LASIK operation

    Directory of Open Access Journals (Sweden)

    Qing-Song Zhang

    2014-05-01

    Full Text Available AIM: To explore the application of Pentacam excimer laser epithelial keratomileusis(LASEKand excimer laser in situ keratomileusis(LASIKafter the changes of posterior corneal surface height.METHODS: Retrospective analysis of clinical data of 100 patients with myopia by using LASEK and LASIK for the treatment of the 50 patients(100 eyesin our hospital from January 2013 to June 2013, surface height changes after preoperative and postoperative 3 months were compared by measuring Pentacam corneal analysis system.RESULTS: Three months after operation, the LASEK posterior corneal surface height was 7.4±5.0mm, significantly higher than 5.6±3.4mm before operation, LASIK posterior corneal surface height was 7.5±5.1mm, significantly higher than 5.5±3.5mm before operation, the differences were statistically significant(PP>0.05.CONCLUSION: LASEK and LASIK on corneal posterior surface forward, LASIK is slightly obvious in early period.

  12. Derivation of an effective height for scintillometers: La Poza Experiment in Northwest Mexico

    NARCIS (Netherlands)

    Hartogensis, O.K.; Watts, C.J.; Rodriguez, J.C.; Bruin, de H.A.R.

    2003-01-01

    The large-aperture scintillometer (LAS) is by now a generally accepted device for routinely obtaining the area-averaged sensible heat flux, H, on a scale of up to 10 km. It is an optical instrument that consists of a transmitter and receiver. In practice, the LAS beam height often varies along the

  13. Effect of habitat and foraging height on bat activity in the coastal plain of South Carolina.

    Energy Technology Data Exchange (ETDEWEB)

    Menzel, Jennifer, M.; Menzel, Michael A.; Kilgo, John C.; Ford, W. Mark; Edwards, John W.; McCracken, Gary F.

    2005-07-01

    A comparison of bat activity levels in the Coastal Plain of South Carolina among 5 habitat types: forested riparian areas, clearcuts, young pine plantations, mature pine plantations and pine savannas, using time expansion radio-microphones and integrated detectors to simultaneously monitor bat activity at three heights in each habitat type.

  14. An Aircraft Service Staff Rostering using a Hybrid GRASP Algorithm

    Directory of Open Access Journals (Sweden)

    W.H. Ip

    2009-10-01

    Full Text Available The aircraft ground service company is responsible for carrying out the regular tasks to aircraft maintenace between their arrival at and departure from the airport. This paper presents the application of a hybrid approach based upon greedy randomized adaptive search procedure (GRASP for rostering technical staff such that they are assigned predefined shift patterns. The rostering of staff is posed as an optimization problem with an aim of minimizing the violations of hard and soft constraints. The proposed algorithm iteratively constructs a set of solutions by GRASP. Furthermore, with multi-agent techniques, we efficiently identify an optimal roster with minimal constraint violations and fair to employees. Experimental results are included to demonstrate the effectiveness of the proposed algorithm.

  15. Neighbor and Height Effects on Crown Properties Associated with the Uniform-Stress Principle of Stem Formation

    Directory of Open Access Journals (Sweden)

    Thomas J. Dean

    2018-06-01

    Full Text Available According to the uniform-stress principle of stem formation, the amount of leaf area a tree carries and the leverage it exerts on the stem determine the stem dimensions. Within an even-aged monoculture, the leaf area per tree and the leverage placed on the stem are functions of tree density and tree height. The uniform-stress principle presents the means to translate density effects on crown characteristics into stem dimensions and total standing volume. This approach is truly a top-down method of simulating growth tree and stand growth because leaf area and other crown properties must be determined before stem size and taper can be calculated. Each crown property influences either the sail area or the leverage placed on the stem, but the degree to which a specific crown property affects these parameters changes with stand density and height. Leverage is the more complicated of the two variables, being a function of the height to the base of the live crown and the vertical distribution of leaf area. The purpose of this brief review is to summarize the effects of stand density on the height to the base of the live tree and the vertical distribution of leaf area and the various ways these variables have been quantified.

  16. An expert system for automated robotic grasping

    International Nuclear Information System (INIS)

    Stansfield, S.A.

    1990-01-01

    Many US Department of Energy sites and facilities will be environmentally remediated during the next several decades. A number of the restoration activities (e.g., decontamination and decommissioning of inactive nuclear facilities) can only be carried out by remote means and will be manipulation-intensive tasks. Experience has shown that manipulation tasks are especially slow and fatiguing for the human operator of a remote manipulator. In this paper, the authors present a rule-based expert system for automated, dextrous robotic grasping. This system interprets the features of an object to generate hand shaping and wrist orientation for a robot hand and arm. The system can be used in several different ways to lessen the demands on the human operator of a remote manipulation system - either as a fully autonomous grasping system or one that generates grasping options for a human operator and then automatically carries out the selected option

  17. Human Grasp Assist Device With Exoskeleton

    Science.gov (United States)

    Bergelin, Bryan J (Inventor); Ihrke, Chris A. (Inventor); Davis, Donald R. (Inventor); Linn, Douglas Martin (Inventor); Bridgwater, Lyndon B. J. (Inventor)

    2014-01-01

    A grasp assist system includes a glove, actuator assembly, and controller. The glove includes a digit, i.e., a finger or thumb, and a force sensor. The sensor measures a grasping force applied to an object by an operator wearing the glove. Phalange rings are positioned with respect to the digit. A flexible tendon is connected at one end to one of the rings and is routed through the remaining rings. An exoskeleton positioned with respect to the digit includes hinged interconnecting members each connected to a corresponding ring, and/or a single piece of slotted material. The actuator assembly is connected to another end of the tendon. The controller calculates a tensile force in response to the measured grasping force, and commands the tensile force from the actuator assembly to thereby pull on the tendon. The exoskeleton offloads some of the tensile force from the operator's finger to the glove.

  18. Wheelchair Mobility Performance enhancement by Changing Wheelchair Properties; What is the Effect of Grip, Seat Height and Mass?

    Science.gov (United States)

    van der Slikke, Rienk M A; de Witte, Annemarie M H; Berger, Monique A M; Bregman, Daan J J; Veeger, Dirk Jan H E J

    2018-02-12

    The purpose of this study was to provide insight in the effect of wheelchair settings on wheelchair mobility performance. Twenty elite wheelchair basketball athletes of low (n=10) and high classification (n=10), were tested in a wheelchair basketball directed field test. Athletes performed the test in their own wheelchair, which was modified for five additional conditions regarding seat height (high - low), mass (central - distributed) and grip. The previously developed, inertial sensor based wheelchair mobility performance monitor 1 was used to extract wheelchair kinematics in all conditions. Adding mass showed most effect on wheelchair mobility performance, with a reduced average acceleration across all activities. Once distributed, additional mass also reduced maximal rotational speed and rotational acceleration. Elevating seat height had effect on several performance aspects in sprinting and turning, whereas lowering seat height influenced performance minimally. Increased rim grip did not alter performance. No differences in response were evident between low and high classified athletes. The wheelchair mobility performance monitor showed sensitive to detect performance differences due to the small changes in wheelchair configuration made. Distributed additional mass had the most effect on wheelchair mobility performance, whereas additional grip had the least effect of conditions tested. Performance effects appear similar for both low and high classified athletes. Athletes, coaches and wheelchair experts are provided with insight in the performance effect of key wheelchair settings, and they are offered a proven sensitive method to apply in sports practice, in their search for the best wheelchair-athlete combination.

  19. Effect of concentration of the height of a transfer unit in a liquid/liquid solvent-extraction system

    International Nuclear Information System (INIS)

    Chamberlain, D.B.

    1981-05-01

    Pulsed, sieve-plate extraction columns were used to examine the effect of solute concentration on extraction efficiency. Cerium was extracted from an aqueous coprocessing solution, simulating reprocessing wastes produced at the Idaho Chemical Processing Plant. The organic extractant used in this process was dihexyl-N, N-diethylcarbamylmethylene phosphonate. Subsequently, cerium was stripped from the organic phase with 0.05 M nitric acid. The Heights of a Transfer Unit were calculated from the extraction and stripping column operating data. Both interstage and overall transfer units were calculated. Nine extraction and nine stripping tests were performed. Three extraction feed concentrations, each repeated at three different pulse frequencies were used to study the affect of concentration on height of a transfer unit. The stripping column was operated simultaneously with the extraction column. Both columns were operated at pulse amplitudes of 2.5 cm. Data based upon the overall extraction column showed a slight decrease in the height of a transfer unit as the solute concentration decreased. Based upon the overall stripping column data, a decrease in solute concentration resulted in a very slight increase in the height of a transfer unit. However, interstage transfer unit calculations for both columns indicated solute concentration had no significant effect on the height of a transfer unit. Based on the experimental tests, it was concluded that solute concentration caused only slight changes in extraction efficiency for the concentration range studied. Other factors such as pulse frequency, aqueous/organic flow ratio, and possibly the dispersed phase bubble size had a much greater effect on the extraction efficiency for the system studied

  20. Getting the right grasp on executive function

    Directory of Open Access Journals (Sweden)

    Claudia L R Gonzalez

    2014-04-01

    Full Text Available Executive Function (EF refers to important socio-emotional and cognitive skills that are known to be highly correlated with both academic and life success. EF is a blanket term that is considered to include self-regulation, working memory, and planning. Recent studies have shown a relationship between EF and motor control. The emergence of motor control coincides with that of EF, hence understanding the relationship between these two domains could have significant implications for early detection and remediation of later EF deficits. The purpose of the current study was to investigate this relationship in young children. This study incorporated the Behavioural Rating Inventory of Executive Function (BRIEF and two motor assessments with a focus on precision grasping to test this hypothesis. The BRIEF is comprised of two indices of EF: 1 the Behavioral Regulation Index (BRI containing three subscales: Inhibit, Shift, and Emotional Control; 2 the Metacognition Index (MI containing five subscales: Initiate, Working Memory, Plan/Organize, Organization of Materials, and Monitor. A global executive composite (GEC is derived from the two indices. In this study, right-handed children aged 5-6 and 9-10 were asked to: grasp-to-construct (Lego® models; and grasp-to-place (wooden blocks, while their parents completed the BRIEF questionnaire. Analysis of results indicated significant correlations between the strength of right hand preference for grasping and numerous elements of the BRIEF including the BRI, MI, and GEC. Specifically, the more the right hand was used for grasping the better the EF ratings. In addition, patterns of space-use correlated with the GEC in several subscales of the BRIEF. Finally and remarkably, the results also showed a reciprocal relationship between hand and space use for grasping and EF. These findings are discussed with respect to: 1 the developmental overlap of motor and executive functions; 2 detection of EF deficits through

  1. From robot to human grasping simulation

    CERN Document Server

    León, Beatriz; Sancho-Bru, Joaquin

    2013-01-01

    The human hand and its dexterity in grasping and manipulating objects are some of the hallmarks of the human species. For years, anatomic and biomechanical studies have deepened the understanding of the human hand’s functioning and, in parallel, the robotics community has been working on the design of robotic hands capable of manipulating objects with a performance similar to that of the human hand. However, although many researchers have partially studied various aspects, to date there has been no comprehensive characterization of the human hand’s function for grasping and manipulation of

  2. The effect of height, weight and head circumference on gross motor development in achondroplasia.

    Science.gov (United States)

    Ireland, Penelope Jane; Ware, Robert S; Donaghey, Samantha; McGill, James; Zankl, Andreas; Pacey, Verity; Ault, Jenny; Savarirayan, Ravi; Sillence, David; Thompson, Elizabeth; Townshend, Sharron; Johnston, Leanne M

    2013-02-01

    This study aimed to investigate whether height, weight, head circumference and/or relationships between these factors are associated with gross motor milestone acquisition in children with achondroplasia. Population-based data regarding timing of major gross motor milestones up to 5 years were correlated with height, weight and head circumference at birth and 12 months in 48 children with achondroplasia born in Australia and New Zealand between 2000 and 2009. Although as a group children with achondroplasia showed delayed gross motor skill acquisition, within group differences in height, weight or head circumference did not appear to influence timing of gross motor skills before 5 years. The exception was lie to sit transitioning, which appears likely to occur earlier if the child is taller and heavier at 12 months, and later if the child has significant head-to-body disproportion. This is the first study to investigate the relationship between common musculoskeletal impairments associated with achondroplasia and timing of gross motor achievement. Identification of the musculoskeletal factors that exacerbate delays in transitioning from lying to sitting will assist clinicians to provide more proactive assessment, advice and intervention regarding motor skill acquisition for this population. © 2013 The Authors. Journal of Paediatrics and Child Health © 2013 Paediatrics and Child Health Division (Royal Australasian College of Physicians).

  3. Concordant preferences for actual height and facial cues to height

    OpenAIRE

    Re, Daniel Edward; Perrett, David I.

    2012-01-01

    Physical height has a well-documented effect on human mate preferences. In general, both sexes prefer opposite-sex romantic relationships in which the man is taller than the woman, while individual preferences for height are affected by a person’s own height. Research in human mate choice has demonstrated that attraction to facial characteristics, such as facial adiposity, may reflect references for body characteristics. Here, we tested preferences for facial cues to height. In general, incre...

  4. Econometric analysis of the changing effects in wind strength and significant wave height on the probability of casualty in shipping.

    Science.gov (United States)

    Knapp, Sabine; Kumar, Shashi; Sakurada, Yuri; Shen, Jiajun

    2011-05-01

    This study uses econometric models to measure the effect of significant wave height and wind strength on the probability of casualty and tests whether these effects changed. While both effects are in particular relevant for stability and strength calculations of vessels, it is also helpful for the development of ship construction standards in general to counteract increased risk resulting from changing oceanographic conditions. The authors analyzed a unique dataset of 3.2 million observations from 20,729 individual vessels in the North Atlantic and Arctic regions gathered during the period 1979-2007. The results show that although there is a seasonal pattern in the probability of casualty especially during the winter months, the effect of wind strength and significant wave height do not follow the same seasonal pattern. Additionally, over time, significant wave height shows an increasing effect in January, March, May and October while wind strength shows a decreasing effect, especially in January, March and May. The models can be used to simulate relationships and help understand the relationships. This is of particular interest to naval architects and ship designers as well as multilateral agencies such as the International Maritime Organization (IMO) that establish global standards in ship design and construction. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Acute effects of unilateral whole body vibration training on single leg vertical jump height and symmetry in healthy men.

    Science.gov (United States)

    Shin, Seungho; Lee, Kyeongjin; Song, Changho

    2015-12-01

    [Purpose] The aim of the present study was to investigate the acute effects of unilateral whole body vibration training on height and symmetry of the single leg vertical jump in healthy men. [Subjects] Thirty males with no history of lower limb dysfunction participated in this study. [Methods] The participants were randomly allocated to one of three groups: the unilateral vibratory stimulation group (n=10), bilateral vibratory stimulation group (n=10), and, no vibratory stimulation group (n=10). The subjects in the unilateral and bilateral stimulation groups participated in one session of whole body vibration training at 26 Hz for 3 min. The no vibratory stimulation group subjects underwent the same training for 3 min without whole body vibration. All participants performed the single leg vertical jump for each lower limb, to account for the strong and weak sides. The single leg vertical jump height and symmetry were measured before and after the intervention. [Results] The single leg vertical jump height of the weak lower limb significantly improved in the unilateral vibratory stimulation group, but not in the other groups. The single leg vertical jump height of the strong lower limb significantly improved in the bilateral vibratory stimulation group, but not in the other groups. The single leg vertical jump symmetry significantly improved in the unilateral vibratory stimulation group, but not in the other groups. [Conclusion] Therefore, the present study found that the effects of whole body vibration training were different depending on the type of application. To improve the single leg vertical jump height in the weak lower limbs as well as limb symmetry, unilateral vibratory stimulation might be more desirable.

  6. Inhomogeneous barrier height effect on the current–voltage characteristics of an Au/n-InP Schottky diode

    International Nuclear Information System (INIS)

    Zeghdar, Kamal; Dehimi, Lakhdar; Saadoune, Achour; Sengouga, Nouredine

    2015-01-01

    We report the current–voltage (I–V) characteristics of the Schottky diode (Au/n-InP) as a function of temperature. The SILVACO-TCAD numerical simulator is used to calculate the I–V characteristic in the temperature range of 280–400 K. This is to study the effect of temperature on the I–V curves and assess the main parameters that characterize the Schottky diode such as the ideality factor, the height of the barrier and the series resistance. The I–V characteristics are analyzed on the basis of standard thermionic emission (TE) theory and the inhomogeneous barrier heights (BHs) assuming a Gaussian distribution. It is shown that the ideality factor decreases while the barrier height increases with increasing temperature, on the basis of TE theory. Furthermore, the homogeneous BH value of approximately 0.524 eV for the device has been obtained from the linear relationship between the temperature-dependent experimentally effective BHs and ideality factors. The modified Richardson plot, according to the inhomogeneity of the BHs, has a good linearity over the temperature range. The evaluated Richardson constant A * was 10.32 A·cm −2 ·K −2 , which is close to the theoretical value of 9.4 A·cm −2 ·K −2 for n-InP. The temperature dependence of the I–V characteristics of the Au/n-InP Schottky diode have been successfully explained on the basis of the thermionic emission (TE) mechanism with a Gaussian distribution of the Schottky barrier heights (SBHs). Simulated I–V characteristics are in good agreement with the measurements [Korucu D, Mammadov T S. J Optoelectronics Advanced Materials, 2012, 14: 41]. The barrier height obtained using Gaussian Schottky barrier distribution is 0.52 eV, which is about half the band gap of InP. (paper)

  7. Inhomogeneous barrier height effect on the current-voltage characteristics of an Au/n-InP Schottky diode

    Science.gov (United States)

    Zeghdar, Kamal; Dehimi, Lakhdar; Saadoune, Achour; Sengouga, Nouredine

    2015-12-01

    We report the current-voltage (I-V) characteristics of the Schottky diode (Au/n-InP) as a function of temperature. The SILVACO-TCAD numerical simulator is used to calculate the I-V characteristic in the temperature range of 280-400 K. This is to study the effect of temperature on the I-V curves and assess the main parameters that characterize the Schottky diode such as the ideality factor, the height of the barrier and the series resistance. The I-V characteristics are analyzed on the basis of standard thermionic emission (TE) theory and the inhomogeneous barrier heights (BHs) assuming a Gaussian distribution. It is shown that the ideality factor decreases while the barrier height increases with increasing temperature, on the basis of TE theory. Furthermore, the homogeneous BH value of approximately 0.524 eV for the device has been obtained from the linear relationship between the temperature-dependent experimentally effective BHs and ideality factors. The modified Richardson plot, according to the inhomogeneity of the BHs, has a good linearity over the temperature range. The evaluated Richardson constant A* was 10.32 A·cm-2·K-2, which is close to the theoretical value of 9.4 A·cm-2·K-2 for n-InP. The temperature dependence of the I-V characteristics of the Au/n-InP Schottky diode have been successfully explained on the basis of the thermionic emission (TE) mechanism with a Gaussian distribution of the Schottky barrier heights (SBHs). Simulated I-V characteristics are in good agreement with the measurements [Korucu D, Mammadov T S. J Optoelectronics Advanced Materials, 2012, 14: 41]. The barrier height obtained using Gaussian Schottky barrier distribution is 0.52 eV, which is about half the band gap of InP.

  8. Modelling the shape hierarchy for visually guided grasping

    Directory of Open Access Journals (Sweden)

    Omid eRezai

    2014-10-01

    Full Text Available The monkey anterior intraparietal area (AIP encodes visual information about three-dimensional object shape that is used to shape the hand for grasping. We modelled shape tuning in visual AIP neurons and its relationship with curvature and gradient information from the caudal intraparietal area (CIP. The main goal was to gain insight into the kinds of shape parameterizations that can account for AIP tuning and that are consistent with both the inputs to AIP and the role of AIP in grasping. We first experimented with superquadric shape parameters. We considered superquadrics because they occupy a role in robotics that is similar to AIP, in that superquadric fits are derived from visual input and used for grasp planning. We also experimented with an alternative shape parameterization that was based on an Isomap dimension reduction of spatial derivatives of depth (i.e. distance from the observer to the object surface. We considered an Isomap-based model because its parameters lacked discontinuities between similar shapes. When we matched the dimension of the Isomap to the number of superquadric parameters, the superquadric model fit the AIP data somewhat more closely. However, higher-dimensional Isomaps provided excellent fits. Also, we found that the Isomap parameters could be approximated much more accurately than superquadric parameters by feedforward neural networks with CIP-like inputs. We conclude that Isomaps, or perhaps alternative dimension reductions of visual inputs to AIP, provide a promising model of AIP electrophysiology data. However (in contrast with superquadrics further work is needed to test whether such shape parameterizations actually provide an effective basis for grasp control.

  9. Effect of coppicing height on the regeneration and productivity of certain firewood shrubs in alkaline soils of north Indian plains

    Energy Technology Data Exchange (ETDEWEB)

    Misra, P.N.; Tewari, S.K.; Singh, Dheer; Katiyar, R.S. [National Botanical Research Inst., Lucknow (India)

    1995-12-31

    Four shrubs, viz. Hibiscus tiliaceus, Leucaena leucocephala, Vitex negundo and Sesbania sesban, were evaluated for their performance as firewood crops in coppiced stands of varying cutting heights (15, 30 and 45 cm) in repeated annual harvests (4) on alkaline soils of the North Indian plains. The dry wood yield of Leucaena and Sesbania ranged between 22.9-42.6 and 9.9-18.0 tonnes ha{sup -1} year{sup -1}, respectively. Leucaena showed progressive increases in yield from coppiced stumps up to the 4th harvest while Sesbania showed a reduction after the third harvest mainly due to the high degeneration (60%) of coppiced stumps. Degeneration was low (< 10%) in Leucaena and Vitex. The coppicing heights generally did not show any significant effect on the growth and productivity. The number of coppice shoots per stump increased with stump height and production of coppice shoots was maximum in Vitex and minimum in Leucaena. The average diameter of coppice shoots tended to decrease with increasing coppicing height of the stumps. (author)

  10. The effect of crate height on the behavior of female turkeys during commercial pre-slaughter transportation.

    Science.gov (United States)

    Di Martino, Guido; Capello, Katia; Stefani, Anna Lisa; Tripepi, Luca; Garbo, Angelica; Speri, Marina; Trolese, Matteo; Brichese, Michele; Marangon, Stefano; Bonfanti, Lebana

    2017-10-01

    Limited information is available on suitable height of transport crates for turkeys. We compared behaviors and physiological indicators of four groups of 10 female turkeys each confined in either conventional (38.5 cm height) or experimental (77 cm height) crates during six commercial pre-slaughter transportations for 86 km (76 ± 4 min) along two tracts with one-lane streets, crossroads, bends, roundabouts (S1 and S2) and a highway tract (H) between S1 and S2. Only 36% of birds in the higher crates maintained a standing position. In conventional versus experimental crates, the frequency of rising attempts was five/bird/hour versus less than one/bird/hour, while wing flapping was seven/bird/hour versus 20/bird/hour, and balance loss was one versus four/bird/hour. The behaviors of both groups differed significantly according to the route tract, with a lower frequency of stress-related behaviors at H. No scratches, fractures or hematomas were detected in any birds after transportation. Crate height had no significant effect on hemato-biochemical markers. These results suggest that crates enabling a standing position may increase potentially dangerous behaviors. Moreover, busy and curvy routes should be avoided, as they may contribute to increasing the frequency of stress-related behaviors. © 2017 Japanese Society of Animal Science.

  11. Electrical characteristics of schottky barriers on 4H-SiC: The effects of barrier height nonuniformity

    Science.gov (United States)

    Skromme, B. J.; Luckowski, E.; Moore, K.; Bhatnagar, M.; Weitzel, C. E.; Gehoski, T.; Ganser, D.

    2000-03-01

    Electrical properties, including current-voltage (I-V) and capacitance-voltage (C-V) characteristics, have been measured on a large number of Ti, Ni, and Pt-based Schottky barrier diodes on 4H-SiC epilayers. Various nonideal behaviors are frequently observed, including ideality factors greater than one, anomalously low I-V barrier heights, and excess leakage currents at low forward bias and in reverse bias. The nonidealities are highly nonuniform across individual wafers and from wafer to wafer. We find a pronounced linear correlation between I-V barrier height and ideality factor for each metal, while C-V barrier heights remain constant. Electron beam induced current (EBIC) imaging strongly suggests that the nonidealities result from localized low barrier height patches. These patches are related to discrete crystal defects, which become visible as recombination centers in the EBIC images. Alternative explanations involving generation-recombination current, uniform interfacial layers, and effects related to the periphery are ruled out.

  12. Parentally-adjusted deficit of height as a prognostic factor of the effectiveness of growth hormone (GH) therapy in children with GH deficiency.

    Science.gov (United States)

    Hilczer, Maciej; Smyczyńska, Joanna; Lewiński, Andrzej

    2006-01-01

    Parental height is the most important identifiable factor influencing final height (FH) of children with growth hormone (GH) deficiency (GHD), treated with GH. Assessment of FH of patients with GHD--classified into familial short stature (FSS) and non-familial short stature (non-FSS) according to parentally adjusted deficit of height. The analysis comprised 101 patients (76 boys) with childhood-onset GHD. Final height was compared with patients' height before GH therapy, predicted adult height (PAH) and target height (TH). Both GH peak in stimulating tests and height standard deviation score (SDS) before the therapy were significantly lower in non-FSS than in FSS. Target height was significantly lower in FSS than in non-FSS. Parentally-adjusted deficit of height was significantly more profound in non-FSS than in FSS. The prognosis of adult height was very similar in both groups of patients, being significantly worse in non-FSS than in FSS while corrected by TH. The absolute FH was similar in FSS and non-FSS, being, however, significantly lower in non-FSS than in FSS while corrected by TH. Improvement of height was significantly better in non-FSS than in FSS. In both groups, FH SDS was significantly better than height SDS before the therapy (H0SDS). In FSS group, PAH was similar to TH, moreover, FH corresponded to both PAH and TH. In non-FSS group FH was significantly higher than PAH, but both FH and PAH were significantly lower than TH. 1) Growth hormone therapy was more effective in the patients with non-FSS than in those with FSS. 2) Parentally-adjusted deficit of height is an important prognostic factor of GH therapy effectiveness.

  13. Effect of Chlorocholine Chloride (CCC on the Plants’ Height and Inulin Content in Jerusalem Artichoke (Helianthus tuberosus L.

    Directory of Open Access Journals (Sweden)

    Mikołaj Wawrzyniak

    2016-11-01

    Full Text Available Jerusalem artichoke (Helianthus tuberosus L. is herbaceous perennial plant rich in inulin and useful source of biomass. Due to its low agricultural requirements and high adaptability, it can provide very high biomass yields even on low quality sites. The plant is used in food industry, bio-fuel production, forage, pharmacy and nutrition. Its tubers accumulate approx. 10-20% of inulin in fresh weight. Currently, the use of the Helianthius tuberosus L. as a potential dietary strategy in patients affected by type 2 Diabetes is challenge. Moreover, deep understanding of the relationship between diet and composition of gut microbiota can bring the new insight in the treatment of inflammatory dependent diseases. The aim of this study was to examine an effect of plant growth retardant Chlorocholine Chloride (CCC on the plants’ height of H. tuberosus and inulin content in the tubers. We examined in the field a procedure for its shoots reduction. Material for the experiment were bought in a Polish commercial company and 528 tubers were planted in field in the middle of April 2014. Then, half of them were sprayed with 0.75% retardant of CCC . Furthermore, every week for 12 following weeks, the plants’ heights were measured. After the vegetation was over, 6 tubers for each treatment were dug out and chemically analyzed for inulin content using High Pressure Size Exclusion Chromatography. After first week of CCC use, 16% decrease of the heights plants was observed. Height of plants sprayed with CCC were significantly different comparing to Control. Weekly growth was significantly  slower in plants sprayed with CCC on first three weeks after applying retardant. Differences in plants height sustain to the end of measurements. Used retardant and its concentration did not affect the inulin content of the tubers.

  14. Effect of print layer height and printer type on the accuracy of 3-dimensional printed orthodontic models.

    Science.gov (United States)

    Favero, Christian S; English, Jeryl D; Cozad, Benjamin E; Wirthlin, John O; Short, Megan M; Kasper, F Kurtis

    2017-10-01

    Three-dimensional (3D) printing technologies enable production of orthodontic models from digital files; yet a range of variables associated with the process could impact the accuracy and clinical utility of the models. The objective of this study was to investigate the effect of print layer height on the accuracy of orthodontic models printed 3 dimensionally using a stereolithography format printer and to compare the accuracy of orthodontic models fabricated with several commercially available 3D printers. Thirty-six identical models were produced with a stereolithography-based 3D printer using 3 layer heights (n = 12 per group): 25, 50, and 100 μm. Forty-eight additional models were printed using 4 commercially available 3D printers (n = 12 per group). Each printed model was digitally scanned and compared with the input file via superimposition analysis using a best-fit algorithm to assess accuracy. Statistically significant differences were found in the average overall deviations of models printed at each layer height, with the 25-μm and 100-μm layer height groups having the greatest and least deviations, respectively. Statistically significant differences were also found in the average overall deviations of models produced using the various 3D printer models, but all values fell within clinically acceptable limits. The print layer height and printer model can affect the accuracy of a 3D printed orthodontic model, but the impact should be considered with respect to the clinical tolerances associated with the envisioned application. Copyright © 2017 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  15. Validation Study for an Atmospheric Dispersion Model, Using Effective Source Heights Determined from Wind Tunnel Experiments in Nuclear Safety Analysis

    Directory of Open Access Journals (Sweden)

    Masamichi Oura

    2018-03-01

    Full Text Available For more than fifty years, atmospheric dispersion predictions based on the joint use of a Gaussian plume model and wind tunnel experiments have been applied in both Japan and the U.K. for the evaluation of public radiation exposure in nuclear safety analysis. The effective source height used in the Gaussian model is determined from ground-level concentration data obtained by a wind tunnel experiment using a scaled terrain and site model. In the present paper, the concentrations calculated by this method are compared with data observed over complex terrain in the field, under a number of meteorological conditions. Good agreement was confirmed in near-neutral and unstable stabilities. However, it was found to be necessary to reduce the effective source height by 50% in order to achieve a conservative estimation of the field observations in a stable atmosphere.

  16. Grasp Representations Depend on Knowledge and Attention

    Science.gov (United States)

    Chua, Kao-Wei; Bub, Daniel N.; Masson, Michael E. J.; Gauthier, Isabel

    2018-01-01

    Seeing pictures of objects activates the motor cortex and can have an influence on subsequent grasping actions. However, the exact nature of the motor representations evoked by these pictures is unclear. For example, action plans engaged by pictures could be most affected by direct visual input and computed online based on object shape.…

  17. How to grasp a ripe tomato

    NARCIS (Netherlands)

    Verhagen, L.

    2012-01-01

    Fortunately, we don’t have to think about this when we are standing in the supermarket after a busy day. We adjust our grip without effort, making sure we don’t squish an overripe tomato, while we firmly grasp a hard green one. This is actually a complex task in which humans are surprisingly

  18. Effects of Enzyme Treated Palm Kernel Expeller on Metabolizable Energy, Growth Performance, Villus Height and Digesta Viscosity in Broiler Chickens

    Directory of Open Access Journals (Sweden)

    P. Saenphoom

    2013-04-01

    Full Text Available This study examined whether pre-treating palm kernel expeller (PKE with exogenous enzyme would degrade its fiber content; thus improving its metabolizable energy (ME, growth performance, villus height and digesta viscosity in broiler chickens fed diets containing PKE. Our results showed that enzyme treatment decreased (p0.05 among treatment groups in the finisher period, ADG of chickens in the control (PKE-free diet was higher (p0.05 FCR. The intestinal villus height and crypt depth (duodenum, jejunum and ileum were not different (p>0.05 among treatments except for duodenal crypt depth. The villus height and crypt depth of birds in enzyme treated PKE diets were higher (p0.05 among treatments. Results of this study suggest that exogenous enzyme is effective in hydrolyzing the fiber (hemicellulose and cellulose component and improved the ME values of PKE, however, the above positive effects were not reflected in the growth performance in broiler chickens fed the enzyme treated PKE compared to those received raw PKE. The results suggest that PKE can be included up to 5% in the grower diet and 20% in the finisher diet without any significant negative effect on FCR in broiler chickens.

  19. Effect of cutting intervals and heights in forage productivity of Moringa oleifera.

    Directory of Open Access Journals (Sweden)

    Ramos-Trejo O.

    2015-07-01

    Full Text Available The use of Moringa oleifera as fodder is due to its good nutritional characteristics and high yield of fresh biomass. Eastern Yucatan, Mexico has favorable soil and climatic conditions for its establishment. The aim of this work was to estimate forage productivity of Moringa oleifera in two cutting intervals and three different heights. The experiment was conducted at the Experimental Site of Tizimín fron the National Institute of Forest, Agricultural and lLvestock Researches (INIFAP. The experimental units were placed in a completely randomized design with a 2 x 3 factorial arrangement and four replications. Forage yield was quantified and foliage samples were taken for DM content. Significant differences (p0.05 were found. In conclusion, during the evaluation of Moringa oleifera, it was found that the best performance in this work is obtained when the cuts on the soles are made every 60 days at a height of 40 cm (1.9119 t ha-1 cut-1; however, more agronomic studies of this plant are recommended in the eastern Yucatan, such as: planting density, arrangement, partnerships with other shrub species in the region, rain and dry periods, in order to have a viable and profitable option forage productivity of this plant.

  20. Grasping Unknown Objects in an Early Cognitive Vision System

    DEFF Research Database (Denmark)

    Popovic, Mila

    2011-01-01

    Grasping of unknown objects presents an important and challenging part of robot manipulation. The growing area of service robotics depends upon the ability of robots to autonomously grasp and manipulate a wide range of objects in everyday environments. Simple, non task-specific grasps of unknown ...... and comparing vision-based grasping methods, and the creation of algorithms for bootstrapping a process of acquiring world understanding for artificial cognitive agents....... presents a system for robotic grasping of unknown objects us- ing stereo vision. Grasps are defined based on contour and surface information provided by the Early Cognitive Vision System, that organizes visual informa- tion into a biologically motivated hierarchical representation. The contributions...... of the thesis are: the extension of the Early Cognitive Vision representation with a new type of feature hierarchy in the texture domain, the definition and evaluation of contour based grasping methods, the definition and evaluation of surface based grasping methods, the definition of a benchmark for testing...

  1. Design and fabrication of robotic gripper for grasping in minimizing contact force

    Science.gov (United States)

    Heidari, Hamidreza; Pouria, Milad Jafary; Sharifi, Shahriar; Karami, Mahmoudreza

    2018-03-01

    This paper presents a new method to improve the kinematics of robot gripper for grasping in unstructured environments, such as space operations. The robot gripper is inspired from the human hand and kept the hand design close to the structure of human fingers to provide successful grasping capabilities. The main goal is to improve kinematic structure of gripper to increase the grasping capability of large objects, decrease the contact forces and makes a successful grasp of various objects in unstructured environments. This research will describe the development of a self-adaptive and reconfigurable robotic hand for space operations through mechanical compliance which is versatile, robust and easy to control. Our model contains two fingers, two-link and three-link, with combining a kinematic model of thumb index. Moreover, some experimental tests are performed to examine the effectiveness of the hand-made in real, unstructured tasks. The results represent that the successful grasp range is improved about 30% and the contact forces is reduced approximately 10% for a wide range of target object size. According to the obtained results, the proposed approach provides an accommodative kinematic model which makes the better grasping capability by fingers geometries for a robot gripper.

  2. Functional classification of grasp strategies used by hemiplegic patients.

    Directory of Open Access Journals (Sweden)

    Alicia García Álvarez

    Full Text Available This study aimed to identify and qualify grasp-types used by patients with stroke and determine the clinical parameters that could explain the use of each grasp. Thirty-eight patients with chronic stroke-related hemiparesis and a range of motor and functional capacities (17 females and 21 males, aged 25-78, and 10 healthy subjects were included. Four objects were used (tissue packet, teaspoon, bottle and tennis ball. Participants were instructed to "grasp the object as if you are going to use it". Three trials were video-recorded for each object. A total of 456 grasps were analysed and rated using a custom-designed Functional Grasp Scale. Eight grasp-types were identified from the analysis: healthy subjects used Multi-pulpar, Pluri-digital, Lateral-pinch and Palmar grasps (Standard Grasps. Patients used the same grasps with in addition Digito-palmar, Raking, Ulnar and Interdigital grasps (Alternative Grasps. Only patients with a moderate or relatively good functional ability used Standard grasps. The correlation and regression analyses showed this was conditioned by sufficient finger and elbow extensor strength (Pluri-digital grasp; thumb extensor and wrist flexor strength (Lateral pinch or in forearm supinator strength (Palmar grasp. By contrast, the patients who had severe impairment used Alternative grasps that did not involve the thumb. These strategies likely compensate specific impairments. Regression and correlation analyses suggested that weakness had a greater influence over grasp strategy than spasticity. This would imply that treatment should focus on improving hand strength and control although reducing spasticity may be useful in some cases.

  3. Effect of Premolar Axial Wall Height on Computer-Aided Design/Computer-Assisted Manufacture Crown Retention.

    Science.gov (United States)

    Martin, Curt; Harris, Ashley; DuVall, Nicholas; Wajdowicz, Michael; Roberts, Howard Wayne

    2018-03-28

    To evaluate the effect of premolar axial wall height on the retention of adhesive, full-coverage, computer-aided design/computer-assisted manufacture (CAD/CAM) restorations. A total of 48 premolar teeth randomized into four groups (n = 12 per group) received all-ceramic CAD/CAM restorations with axial wall heights (AWH) of 3, 2, 1, and 0 mm and 16-degree total occlusal convergence (TOC). Specimens were restored with lithium disilicate material and cemented with self-adhesive resin cement. Specimens were loaded to failure after 24 hours. The 3- and 2-mm AWH specimens demonstrated significantly greater failure load. Failure analysis suggests a 2-mm minimum AWH for premolars with a TOC of 16 degrees. Adhesive technology may compensate for compromised AWH.

  4. Predicting wind shear effects: A study of Minnesota wind data collected at heights up to 70 meters

    Energy Technology Data Exchange (ETDEWEB)

    Artig, R. [Minnesota Dept. of Public Service, St. Paul, MN (United States)

    1997-12-31

    The Minnesota Department of Public Service (DPS) collects wind data at carefully selected sites around the state and analyzes the data to determine Minnesota`s wind power potential. DPS recently installed advanced new monitoring equipment at these sites and began to collect wind data at 30, 50, and 70 meters above ground level, with two anemometers at each level. Previously, the Department had not collected data at heights above ground level higher than 30 meters. DPS also, with the U.S. Department of Energy (DOE), installed four sophisticated monitoring sites as part of a Tall Tower Wind Shear Study that is assessing the effects of wind shear on wind power potential. At these sites, wind data are being collected at the 10, 30, 40, 50, 60, and 70 meter heights. This paper presents the preliminary results of the analysis of wind data from all sites. These preliminary results indicate that the traditional 1/7 power law does not effectively predict wind shear in Minnesota, and the result is an underestimation of Minnesota`s wind power potential at higher heights. Using a power factor of 1/5 or 1/4 may be more accurate and provide sound justification for installing wind turbines on taller towers in Minnesota.

  5. Effects of saddle height on economy and anaerobic power in well-trained cyclists.

    Science.gov (United States)

    Peveler, Willard W; Green, James M

    2011-03-01

    In cycling, saddle height adjustment is critical for optimal performance and injury prevention. A 25-35° knee angle is recommended for injury prevention, whereas 109% of inseam, measured from floor to ischium, is recommended for optimal performance. Previous research has demonstrated that these 2 methods produce significantly different saddle heights and may influence cycling performance. This study compared performance between these 2 methods for determining saddle height. Subjects consisted of 11 well-trained (VO2max = 61.55 ± 4.72 ml·kg·min) male cyclists. Subjects completed a total of 8 performance trials consisting of a graded maximal protocol, three 15-minute economy trials, and 4 anaerobic power trials. Dependent measures for economy (VO2, heart rate, and rating of perceived exertion) and anaerobic power (peak power and mean power) were compared using repeated measures analysis of variance (α = 0.05). VO2 was significantly lower (reflecting greater economy) at a 25° knee angle (44.77 ± 6.40 ml·kg·min) in comparison to a 35° knee angle (45.22 ± 6.79 ml·kg·min) and 109% of inseam (45.98 ± 5.33 ml·kg·min). Peak power at a 25° knee angle (1,041.55 ± 168.72 W) was significantly higher in relation to 109% of inseam (1,002.05 ± 147.65 W). Mean power at a 25° knee angle (672.37 ± 90.21 W) was significantly higher in relation to a 35° knee angle (654.71 ± 80.67 W). Mean power was significantly higher at 109% of inseam (662.86 ± 79.72 W) in relation to a 35° knee angle (654.71 ± 80.67 W). Use of 109% of inseam fell outside the recommended 25-35° range 73% of the time. Use of 25° knee angle appears to provide optimal performance while keeping knee angle within the recommended range for injury prevention.

  6. Comparison of the effectiveness of analytical wake models for wind farm with constant and variable hub heights

    International Nuclear Information System (INIS)

    Wang, Longyan; Tan, Andy C.C.; Cholette, Michael; Gu, Yuantong

    2016-01-01

    Highlights: • The effectiveness of three analytical wake models is studied. • The results of the analytical wake models are compared with the CFD simulations. • The results of CFD simulation are verified by comparison to the offshore wind farm observation data. • The onshore wind farm with both constant and different hub height turbines are analyzed. • PARK model is able to predict the total wind farm power production well with tuned surface roughness value. - Abstract: Extensive power losses of wind farm have been witnessed due to the wake interactions between wind turbines. By applying analytical wake models which describe the wind speed deficits in the wake quantitatively, the power losses can be regained to a large extent through wind farm layout optimization, and this has been extensively reported in literature. Nevertheless, the effectiveness of the analytical wake models in predicting the wind farm power production have rarely been studied and compared for wind farm with both constant and variable wind turbine hub heights. In this study, the effectiveness of three different analytical wake models (PARK model, Larsen model and B-P model) is thoroughly compared over a wide range of wake properties. After the validation with the observation data from offshore wind farm, CFD simulations are used to verify the effectiveness of the analytical wake models for an onshore wind farm. The results show that when using the PARK model the surface roughness value (z 0 ) must be carefully tuned to achieve good performance in predicting the wind farm power production. For the other two analytical wake models, their effectiveness varies depending on the situation of wind farm (offshore or onshore) and the wind turbine hub heights (constant or variable). It was found that the results of B-P model agree well with the CFD simulations for offshore wind farm, but not for the onshore wind farm. The Larsen model is more accurate for the wind farm with variable wind turbine

  7. On transferability and contexts when using simulated grasp databases

    DEFF Research Database (Denmark)

    Jørgensen, Jimmy Alison; Ellekilde, Lars-Peter; Kraft, Dirk

    2015-01-01

    It has become a common practice to use simulation to generate large databases of good grasps for grasp planning in robotics research. However, the existence of a generic simulation context that enables the generation of high quality grasps that can be used in several different contexts such as bi...

  8. Biomechanical effect of interspinous process distraction height after lumbar fixation surgery: An in vitro model.

    Science.gov (United States)

    Fu, Lin; Ma, Jianxiong; Lu, Bin; Jia, Haobo; Zhao, Jie; Kuang, Mingjie; Feng, Rui; Xu, Liyan; Bai, Haohao; Sun, Lei; Wang, Ying; Ma, Xinlong

    2017-07-01

    Pedicle screw fixation may induce abnormal activity at adjacent segment and accelerate the degeneration of lumbar vertebrae. Dynamic stabilizers could provide an intermediate solution between conservative treatment and fusion surgery. Lumbar vertebral segment cephalad to instrumented fixation was the most common localization of adjacent segment degeneration. The aim of this study is to explore the use of interspinous process devices in the lumbar vertebral segment cephalad to fixation segment in changing the mechanical distribution and limiting abnormal activity of the spine. Eight specimens were tested in the following groups: intact group, instability group (bilateral facetectomy at L3-L4), fixation group (bilateral facetectomy and pedicle screw fixation at L3-L4), and hybrid fixation group (fixation at L3-L4 and simulating interspinous device implantation of 6, 8, 10, 12, 14, 16, and 18 mm at L2-L3). Range of motion, motion of vertebral body, and strain distribution change were recorded. The range of motion in extension with 16- and 18-mm hybrid constructs was significantly lower than intact, instability, and fixation groups. In flexion and lateral bending, the strain values of L4 inferior articular process with 18-mm hybrid construct have a significant difference compared with other groups. In axial rotation, under the condition of a contralateral state, the strain values of L2 superior articular process with 18-mm hybrid construct have a significant difference compared with intact and fixation groups. The strain value of the L4 inferior articular process had negative correlation with height distraction in three dimensions, except extension. A negative correlation between the strain value of the L2 superior articular process and distraction height was found in contralateral bending and contralateral axial rotation. Interspinous process devices above the fixation segment can change the mechanical distribution of the spine and limit activity in some of the

  9. The validity of self-reported vs. measured body weight and height and the effect of self-perception.

    Science.gov (United States)

    Gokler, Mehmet Enes; Bugrul, Necati; Sarı, Ahu Ozturk; Metintas, Selma

    2018-01-01

    The objective was to assess the validity of self-reported body weight and height and the possible influence of self-perception of body mass index (BMI) status on the actual BMI during the adolescent period. This cross sectional study was conducted on 3918 high school students. Accurate BMI perception occurred when the student's self-perception of their BMI status did not differ from their actual BMI based on measured height and weight. Agreement between the measured and self-reported body height and weight and BMI values was determined using the Bland-Altman metod. To determine the effects of "a good level of agreement", hierarchical logistic regression models were used. Among male students who reported their BMI in the normal region, 2.8% were measured as overweight while 0.6% of them were measured as obese. For females in the same group, these percentages were 1.3% and 0.4% respectively. Among male students who perceived their BMI in the normal region, 8.5% were measured as overweight while 0.4% of them were measured as obese. For females these percentages were 25.6% and 1.8% respectively. According to logistic regression analysis, residence and accurate BMI perception were significantly associated with "good agreement" ( p ≤ 0.001). The results of this study demonstrated that in determining obesity and overweight statuses, non-accurate weight perception is a potential risk for students.

  10. Automatic Grasp Generation and Improvement for Industrial Bin-Picking

    DEFF Research Database (Denmark)

    Kraft, Dirk; Ellekilde, Lars-Peter; Rytz, Jimmy Alison

    2014-01-01

    and achieve comparable results and that our learning approach can improve system performance significantly. Automatic bin-picking is an important industrial process that can lead to significant savings and potentially keep production in countries with high labour cost rather than outsourcing it. The presented......This paper presents work on automatic grasp generation and grasp learning for reducing the manual setup time and increase grasp success rates within bin-picking applications. We propose an approach that is able to generate good grasps automatically using a dynamic grasp simulator, a newly developed...

  11. Robust Robot Grasp Detection in Multimodal Fusion

    Directory of Open Access Journals (Sweden)

    Zhang Qiang

    2017-01-01

    Full Text Available Accurate robot grasp detection for model free objects plays an important role in robotics. With the development of RGB-D sensors, object perception technology has made great progress. Reach feature expression by the colour and the depth data is a critical problem that needs to be addressed in order to accomplish the grasping task. To solve the problem of data fusion, this paper proposes a convolutional neural networks (CNN based approach combined with regression and classification. In the CNN model, the colour and the depth modal data are deeply fused together to achieve accurate feature expression. Additionally, Welsch function is introduced into the approach to enhance robustness of the training process. Experiment results demonstrates the superiority of the proposed method.

  12. Stereo vision based automated grasp planning

    International Nuclear Information System (INIS)

    Wilhelmsen, K.; Huber, L.; Silva, D.; Grasz, E.; Cadapan, L.

    1995-02-01

    The Department of Energy has a need for treating existing nuclear waste. Hazardous waste stored in old warehouses needs to be sorted and treated to meet environmental regulations. Lawrence Livermore National Laboratory is currently experimenting with automated manipulations of unknown objects for sorting, treating, and detailed inspection. To accomplish these tasks, three existing technologies were expanded to meet the increasing requirements. First, a binocular vision range sensor was combined with a surface modeling system to make virtual images of unknown objects. Then, using the surface model information, stable grasp of the unknown shaped objects were planned algorithmically utilizing a limited set of robotic grippers. This paper is an expansion of previous work and will discuss the grasp planning algorithm

  13. Effect of Human Model Height and Sex on Induced Current Dosimetry in Household Induction Heater Users

    Science.gov (United States)

    Tarao, Hiroo; Hayashi, Noriyuki; Isaka, Katsuo

    Induced currents in the high-resolution, anatomical human models are numerically calculated by the impedance method. The human models are supposed to be exposed to highly inhomogeneous 20.9 kHz magnetic fields from a household induction heater (IH). In the case of the adult models, the currents ranging from 5 to 19 mA/m2 are induced for between the shoulder and lower abdomen. Meanwhile, in the case of the child models, the currents ranging from 5 to 21 mA/m2 are induced for between the head and abdomen. In particular, the induced currents near the brain tissue are almost the same as those near the abdomen. When the induced currents in the central nervous system tissues are considered, the induced currents in the child model are 2.1 to 6.9 times as large as those in the adult model under the same B-field exposure environment. These results suggest the importance of further investigation intended for a pregnant female who uses the IH as well as for a child (or the IH users of small standing height).

  14. Grasp cueing and joint attention.

    Science.gov (United States)

    Tschentscher, Nadja; Fischer, Martin H

    2008-10-01

    We studied how two different hand posture cues affect joint attention in normal observers. Visual targets appeared over lateralized objects, with different delays after centrally presented hand postures. Attention was cued by either hand direction or the congruency between hand aperture and object size. Participants pressed a button when they detected a target. Direction cues alone facilitated target detection following short delays but aperture cues alone were ineffective. In contrast, when hand postures combined direction and aperture cues, aperture congruency effects without directional congruency effects emerged and persisted, but only for power grips. These results suggest that parallel parameter specification makes joint attention mechanisms exquisitely sensitive to the timing and content of contextual cues.

  15. Fast grasping of unknown objects using principal component analysis

    Science.gov (United States)

    Lei, Qujiang; Chen, Guangming; Wisse, Martijn

    2017-09-01

    Fast grasping of unknown objects has crucial impact on the efficiency of robot manipulation especially subjected to unfamiliar environments. In order to accelerate grasping speed of unknown objects, principal component analysis is utilized to direct the grasping process. In particular, a single-view partial point cloud is constructed and grasp candidates are allocated along the principal axis. Force balance optimization is employed to analyze possible graspable areas. The obtained graspable area with the minimal resultant force is the best zone for the final grasping execution. It is shown that an unknown object can be more quickly grasped provided that the component analysis principle axis is determined using single-view partial point cloud. To cope with the grasp uncertainty, robot motion is assisted to obtain a new viewpoint. Virtual exploration and experimental tests are carried out to verify this fast gasping algorithm. Both simulation and experimental tests demonstrated excellent performances based on the results of grasping a series of unknown objects. To minimize the grasping uncertainty, the merits of the robot hardware with two 3D cameras can be utilized to suffice the partial point cloud. As a result of utilizing the robot hardware, the grasping reliance is highly enhanced. Therefore, this research demonstrates practical significance for increasing grasping speed and thus increasing robot efficiency under unpredictable environments.

  16. The magic grasp: motor expertise in deception.

    Directory of Open Access Journals (Sweden)

    Cristiana Cavina-Pratesi

    2011-02-01

    Full Text Available Most of us are poor at faking actions. Kinematic studies have shown that when pretending to pick up imagined objects (pantomimed actions, we move and shape our hands quite differently from when grasping real ones. These differences between real and pantomimed actions have been linked to separate brain pathways specialized for different kinds of visuomotor guidance. Yet professional magicians regularly use pantomimed actions to deceive audiences.In this study, we tested whether, despite their skill, magicians might still show kinematic differences between grasping actions made toward real versus imagined objects. We found that their pantomimed actions in fact closely resembled real grasps when the object was visible (but displaced (Experiment 1, but failed to do so when the object was absent (Experiment 2.We suggest that although the occipito-parietal visuomotor system in the dorsal stream is designed to guide goal-directed actions, prolonged practice may enable it to calibrate actions based on visual inputs displaced from the action.

  17. Evaluation of Human Prehension Using Grasp Quality Measures

    Directory of Open Access Journals (Sweden)

    Beatriz León

    2012-10-01

    Full Text Available One of the main features of the human hand is its grasping ability. Robot grasping has been studied for years and different quality measures have been proposed to evaluate the stability and manipulability of grasps. Although the human hand is obviously more complex than robot hands, the methods used in robotics might be adopted to study the human grasp. The purpose of this work is to propose a set of measures that allow the evaluation of different aspects of the human grasp. The most common robotic grasp quality measures have been adapted to the evaluation of the human hand and a new quality measure – the fatigue index – is proposed in order to incorporate the biomechanical aspect into the evaluation. The minimum set of indices that allows the evaluation of the different aspects of the grasp is obtained from the analysis of a human prehension experiment.

  18. Concatenation of observed grasp phases with observer's distal movements: a behavioural and TMS study.

    Directory of Open Access Journals (Sweden)

    Elisa De Stefani

    Full Text Available The present study aimed at determining how actions executed by two conspecifics can be coordinated with each other, or more specifically, how the observation of different phases of a reaching-grasping action is temporary related to the execution of a movement of the observer. Participants observed postures of initial finger opening, maximal finger aperture, and final finger closing of grasp after observation of an initial hand posture. Then, they opened or closed their right thumb and index finger (experiments 1, 2 and 3. Response times decreased, whereas acceleration and velocity of actual finger movements increased when observing the two late phases of grasp. In addition, the results ruled out the possibility that this effect was due to salience of the visual stimulus when the hand was close to the target and confirmed an effect of even hand postures in addition to hand apparent motion due to the succession of initial hand posture and grasp phase. In experiments 4 and 5, the observation of grasp phases modulated even foot movements and pronunciation of syllables. Finally, in experiment 6, transcranial magnetic stimulation applied to primary motor cortex 300 ms post-stimulus induced an increase in hand motor evoked potentials of opponens pollicis muscle when observing the two late phases of grasp. These data suggest that the observation of grasp phases induced simulation which was stronger during observation of finger closing. This produced shorter response times, greater acceleration and velocity of the successive movement. In general, our data suggest best concatenation between two movements (one observed and the other executed when the observed (and simulated movement was to be accomplished. The mechanism joining the observation of a conspecific's action with our own movement may be precursor of social functions. It may be at the basis for interactions between conspecifics, and related to communication between individuals.

  19. Concatenation of observed grasp phases with observer's distal movements: a behavioural and TMS study.

    Science.gov (United States)

    De Stefani, Elisa; Innocenti, Alessandro; De Marco, Doriana; Gentilucci, Maurizio

    2013-01-01

    The present study aimed at determining how actions executed by two conspecifics can be coordinated with each other, or more specifically, how the observation of different phases of a reaching-grasping action is temporary related to the execution of a movement of the observer. Participants observed postures of initial finger opening, maximal finger aperture, and final finger closing of grasp after observation of an initial hand posture. Then, they opened or closed their right thumb and index finger (experiments 1, 2 and 3). Response times decreased, whereas acceleration and velocity of actual finger movements increased when observing the two late phases of grasp. In addition, the results ruled out the possibility that this effect was due to salience of the visual stimulus when the hand was close to the target and confirmed an effect of even hand postures in addition to hand apparent motion due to the succession of initial hand posture and grasp phase. In experiments 4 and 5, the observation of grasp phases modulated even foot movements and pronunciation of syllables. Finally, in experiment 6, transcranial magnetic stimulation applied to primary motor cortex 300 ms post-stimulus induced an increase in hand motor evoked potentials of opponens pollicis muscle when observing the two late phases of grasp. These data suggest that the observation of grasp phases induced simulation which was stronger during observation of finger closing. This produced shorter response times, greater acceleration and velocity of the successive movement. In general, our data suggest best concatenation between two movements (one observed and the other executed) when the observed (and simulated) movement was to be accomplished. The mechanism joining the observation of a conspecific's action with our own movement may be precursor of social functions. It may be at the basis for interactions between conspecifics, and related to communication between individuals.

  20. Concatenation of Observed Grasp Phases with Observer’s Distal Movements: A Behavioural and TMS Study

    Science.gov (United States)

    De Stefani, Elisa; Innocenti, Alessandro; De Marco, Doriana; Gentilucci, Maurizio

    2013-01-01

    The present study aimed at determining how actions executed by two conspecifics can be coordinated with each other, or more specifically, how the observation of different phases of a reaching-grasping action is temporary related to the execution of a movement of the observer. Participants observed postures of initial finger opening, maximal finger aperture, and final finger closing of grasp after observation of an initial hand posture. Then, they opened or closed their right thumb and index finger (experiments 1, 2 and 3). Response times decreased, whereas acceleration and velocity of actual finger movements increased when observing the two late phases of grasp. In addition, the results ruled out the possibility that this effect was due to salience of the visual stimulus when the hand was close to the target and confirmed an effect of even hand postures in addition to hand apparent motion due to the succession of initial hand posture and grasp phase. In experiments 4 and 5, the observation of grasp phases modulated even foot movements and pronunciation of syllables. Finally, in experiment 6, transcranial magnetic stimulation applied to primary motor cortex 300 ms post-stimulus induced an increase in hand motor evoked potentials of opponens pollicis muscle when observing the two late phases of grasp. These data suggest that the observation of grasp phases induced simulation which was stronger during observation of finger closing. This produced shorter response times, greater acceleration and velocity of the successive movement. In general, our data suggest best concatenation between two movements (one observed and the other executed) when the observed (and simulated) movement was to be accomplished. The mechanism joining the observation of a conspecific’s action with our own movement may be precursor of social functions. It may be at the basis for interactions between conspecifics, and related to communication between individuals. PMID:24278395

  1. Identifying relevant feature-action associations for grasping unmodelled objects

    DEFF Research Database (Denmark)

    Thomsen, Mikkel Tang; Kraft, Dirk; Krüger, Norbert

    2015-01-01

    content. The method is provided with a large and structured set of visual features, motivated by the visual hierarchy in primates and finds relevant feature action associations automatically. We apply our method in a simulated environment on three different object sets for the case of grasp affordance...... learning. For box objects, we achieve a 0.90 success probability, 0.80 for round objects and up to 0.75 for open objects, when presented with novel objects. In this work, we in particular demonstrate the effect of choosing appropriate feature representations. We demonstrate a significant performance...

  2. Aircraft Route Recovery Based on An Improved GRASP Method

    Directory of Open Access Journals (Sweden)

    Yang He

    2017-01-01

    Full Text Available Aircrafts maintenance, temporary airport closures are common factors that disrupt normal flight schedule. The aircraft route recovery aims to recover original schedules by some strategies, including flights swaps, and cancellations, which is a NP-hard problem. This paper proposes an improved heuristic procedure based on Greedy Random Adaptive Search Procedure (GRASP to solve this problem. The effectiveness and high global optimization capability of the heuristic is illustrated through experiments based on large-scale problems. Compared to the original one, it is shown that the improved procedure can find feasible flight recovered schedules with lower cost in a short time.

  3. Effect of slope height and horizontal forces on the bearing capacity of strip footings near slopes in cohesionless soil

    DEFF Research Database (Denmark)

    Krabbenhøft, Sven; Damkilde, Lars; Krabbenhøft, Kristian

    2016-01-01

    , and in such cases the bearing capacity of the footing cannot be found using the existing methods. The present work comprises finite element based upper- and lower-bound calculations, using the geotechnical software OptumG2 to investigate the effect of the slope height and horizontal forces on the total bearing...... capacity, both without and with using superposition as presupposed in the traditional bearing capacity equation. The results for friction angles 30, 35 and 40 degrees, slope inclinations 1:2, 1:3 and 1:4, for selfweight and surcharge are given as charts showing the slope inclination factors suitable...

  4. Effects of explosively venting aerosol-sized particles through earth-containment systems on the cloud-stabilization height

    International Nuclear Information System (INIS)

    Dyckes, G.W.

    1980-07-01

    A method of approximating the cloud stabilization height for aerosol-sized particles vented explosively through earth containment systems is presented. The calculated values for stabilization heights are in fair agreement with those obtained experimentally

  5. On the height variation of the E-region cowling conductivity – effect of charged dust particles

    Directory of Open Access Journals (Sweden)

    P. Muralikrishna

    2006-11-01

    Full Text Available Height profiles of the Cowling conductivity in the electrojet region, estimated using the atmospheric parameters given by the existing models like CIRA or MSIS and measured electron density profiles, consistently show the heights of the electrojet current intensity peak to be more than 3 km below those estimated from in-situ measurements using magnetometers on board sounding rockets. Kulkarni and Muralikrishna (2005 attempted to explain this to be due to the effect of neutral dust particles. They reported that neutral dust particles, when they exist in sufficient numbers, can modify the collision parameters, especially in the lower E-region, where dust particles of meteoric origin are known to exist in large numbers, and thereby can modify the Cowling conductivity profile in the electrojet region. This work is extended here to include the effect of charged dust particles. Dust particles can become charged negatively by the attachment of ambient free electrons, and can thus reduce the number density of free electrons especially below the electrojet peak. This can alter the vertical profile of the east-west Hall current driven by the vertical Hall polarization field, thereby causing a net reduction in the electrojet current. Such a decrease in the electrojet current may be observed on the ground magnetograms. This mechanism, as proposed here, can operate only during periods of strong meteor shower activity, when the dust particle density at the assumed deposit height of 103 km can reach extreme values (for example, 5×104 cm−3 of 1-µm diameter dust particles. Such a dense dust layer may even cause a reversal in the normally upward vertical Hall polarization field, within the dust layer, causing a reversal of the electrojet currents below the current peak.

  6. Investigation of Focusing Effect according to the Cooling Condition and Height of the Metallic layer in a Severe Accident

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Je-Young; Chung, Bum-Jin [Kyung Hee University, Yongin (Korea, Republic of)

    2015-05-15

    The Fukushima nuclear power plant accident has led to renewed research interests in severe accidents of nuclear power plants. In-Vessel Retention (IVR) of core melt is one of key severe accident management strategies adopted in nuclear power plant design. The metallic layer is heated from below by the radioactive decay heat generated at the oxide pool, and is cooled from above and side walls. During the IVR process, reactor vessel may be cooled externally (ERVC) and the heat fluxes to the side wall increase with larger temperature difference than above. This {sup F}ocusing effect{sup i}s varied by cooling condition of upper boundary and height of the metallic layer. A sulfuric acid–copper sulfate (H{sub 2}SO{sub 4} - CuSO{sub 4}) electroplating system was adopted as the mass transfer system. Numerical analysis using the commercial CFD program FLUENT 6.3 were carried out with the same material properties and cooling conditions to examine the variation of the cell. The experimental and numerical studies were performed to investigate the focusing effect according to cooling condition of upper boundary and the height in metallic layer. The height of the side wall was varied for three different cooling conditions: top only, side only, and both top and side. Mass transfer experiments, based on the analogy concept, were carried out in order to achieve high Rayleigh number. The experimental results agreed well with the Rayleigh-Benard convection correlations of Dropkin and Somerscales and Globe and Dropkin. The heat transfer on side wall cooling condition without top cooling is highest and was enhanced by decreasing the aspect ratio. The numerical results agreed well with the experimental results. Each cell pattern (cell size, cell direction, central location of cell) differed in the cooling condition. Therefore, it is difficult to predict the internal flow due to complexity of cell formation behavior.

  7. Comparable effects of 1800- and 2400-rad (18- and 24-Gy) cranial irradiation on height and weight in children treated for acute lymphocytic leukemia

    International Nuclear Information System (INIS)

    Starceski, P.J.; Lee, P.A.; Blatt, J.; Finegold, D.; Brown, D.

    1987-01-01

    To examine the effects of low-dose cranial irradiation on growth and to determine if one can predict patients in whom growth will be most affected, we studied 47 children with acute lymphocytic leukemia who had been treated with 2400 rad (24 Gy), 1800 rad (18 Gy), or no whole-brain irradiation. Serial measurements of height, weight, and weight for height were obtained by retrospective chart review. The effects of 1800 rad (18 Gy) and 2400 rad (24 Gy) treatment were indistinguishable. Height percentiles among irradiated patients decreased by a mean of 12% six months after diagnosis, and growth generally did not catch up. Moreover, although 33 irradiated patients maintained heights within the normal range, In 11 patients (33%) a dramatic falloff occurred such that by three years following diagnosis their height for age was more than 30 percentiles below the original value. These patients were all identifiable at six months since their height percentiles had already decreased by more than 15%. Although weight percentiles did not change following irradiation, the weight-for-height ratio increased and patients were relatively stockier three years after therapy than they had been at diagnosis. In patients who had received chemotherapy alone, the weight-for-height ratio also increased, but this appeared to be due to a disproportionate increase in weight. Longer follow-up and evaluation of larger cohorts of patients treated with 1800 rad (18 Gy) will be needed to confirm these results

  8. New Heights with High-Altitude Balloon Launches for Effective Student Learning and Environmental Awareness

    Science.gov (United States)

    Voss, H. D.; Dailey, J. F.; Takehara, D.; Krueger, J. M.

    2009-12-01

    global warming, and the excitement of taking measurements in a much uncharted region of our atmosphere. Teaching the scientific method or learning cycle (theory, research, instrumentation, operations, data analysis, and presentation) is a significant pedagogical building block that stimulates and retains students and prepares them well for graduate school and professional careers. Students obtain a personal ownership of their education when they engage in state-of-the-art balloon launch capability into the "unknown" with real-time data (50 Kb) with command interaction. The scientific method comes alive with creativity, problem solving, fun, and multidisciplinary hands-on team work. More students in basic science (and liberal arts) and public have an awareness of the environment, atmosphere, space, and heavens by direct probing and remote sensing from "New Heights" (over 98% of atmosphere at 30 km altitude).

  9. A world within our grasp

    International Nuclear Information System (INIS)

    Elbaradei, M.

    2006-01-01

    cases, they may be tempted to seek their own weapons of mass destruction, like others who have preceded them. On the issue of non-proliferation, Dr. ElBaradei proposed a series of steps to be taken to address it. First, keep nuclear and radiological material out of the hands of extremist groups. In 2001, the IAEA together with the international community launched a worldwide campaign to enhance the security of such material. Protecting nuclear facilities. Securing powerful radioactive sources. Training law enforcement officials. Monitoring border crossings. In four years, we have completed perhaps 50 per cent of the work. But this is not fast enough, because we are in a race against time. Second, tighten control over the operations for producing the nuclear material that could be used in weapons. Under the current system, any country has the right to master these operations for civilian uses. But in doing so, it also masters the most difficult steps in making a nuclear bomb. To overcome this, I am hoping that we can make these operations multinational - so that no one country can have exclusive control over any such operation. My plan is to begin by setting up a reserve fuel bank, under IAEA control, so that every country will be assured that it will get the fuel needed for its bona fide peaceful nuclear activities. This assurance of supply will remove the incentive - and the justification - for each country to develop its own fuel cycle. We should then be able to agree on a moratorium on new national facilities, and to begin work on multinational arrangements for enrichment, fuel production, waste disposal and reprocessing. We must also strengthen the verification system. IAEA inspections are the heart and soul of the nuclear non-proliferation regime. To be effective, it is essential that we are provided with the necessary authority, information, advanced technology, and resources. And our inspections must be backed by the UN Security Council, to be called on in cases

  10. Effects of balance ability and handgrip height on kinematics of the gait, torso, and pelvis in elderly women using a four-wheeled walker.

    Science.gov (United States)

    Choi, Hyuk-Jae; Ko, Chang-Yong; Kang, Sungjae; Ryu, Jeicheong; Mun, Museong; Jeon, Hye-Seon

    2015-02-01

    Numerous elderly individuals use the four-wheeled walker (FWW) as a gait-assistive device. The walker's handgrip height is important for correct use. However, few clinical studies have investigated the biomechanical effects of the FWW's handgrip height on balance. Therefore, the present study assessed kinematic features of the gait, torso and pelvis during use of the FWW at two levels of handgrip height (48% vs 55% of the subject's height) while assessing balance in older adults. A total of 20 older adults were allocated into two groups according to the Berg Balance Scale (BBS): good balance (GB; BBS≥46) versus poor balance (PB; BBS<45). Participants walked with the FWW at 48% or 55% handgrip height for 10 m. Our study showed that the double-support period and stance phase significantly increased at 55% handgrip height, but the swing phase significantly decreased in the GB group. In the PB group, velocity and stride length significantly increased at 55% handgrip height. Tilt angle of the torso in the GB group was significantly lower at 55% than at 48% handgrip height, but no differences were observed in the PB group. In the pelvis, initial contact and toe-off angles of tilt were lower in the GB group at 55% handgrip height, but no differences were observed in the PB group. These results showed that kinematic features of the gait, torso, and pelvis in older adults using the FWW might be dependent on the handgrip height of the FWW and the patient's balance. Additionally, greater than 48% of the body height might be appropriate for older adults with poor balance. © 2014 Japan Geriatrics Society.

  11. The Effects of Administrated Sildenafil Citrate on Uterine Luminal Epithelium Height Associated with Ovarian Angiogenesis: An Experimental Animal Study

    Directory of Open Access Journals (Sweden)

    Mohammad Hosein Golkar

    2017-01-01

    Full Text Available Background: Ovarian angiogenesis (OA remains in lifetime and normal ovarian function depends to this continual remodeling of a complex vascular system. Endometrial thickness (ET is one of the strongest predictors of successful implantation and pregnancy. Appropriate OA effects on ET by facilitating of ovarian hormone delivery. Materials and Methods: Thirty adult female mice and twenty adult male mice were purchased. The female mice were divided into three groups: (1 control group without any intervention (n = 10, (2 gonadotropin group: receiving human menopausal gonadotropin (HMG and human chorionic gonadotropin (n = 10, and (3 gonadotropin and sildenafil citrate (SC group: receiving HMG and SC administration (n = 10. After mating, animals were deeply anesthetized, and the ovary and uterus was rapidly removed for histology and immunohistochemistry process. Results: Four days after ovarian induction, all three layers of the uterus with specified thickness can be clearly seen. The heights of endometrial epithelial cells in gonadotropin group were not significantly different than those in control group. In gonadotropin and SC group, heights of the cells were significantly (P 0.05 each. Our results of immunohistochemistry survey for ovarian CD31 demonstrated that administrated SC increased OA but not significantly (P > 0.05 each. Conclusion: It may finally conclude that administration of SC does not cause notable alterations in OA and ET; although for realistic decision about the SC effects on aforementioned parameters, more molecular investigations and longer drug consumption period are necessary.

  12. Interactive effect of genetic susceptibility with height, body mass index, and hormone replacement therapy on the risk of breast cancer

    Directory of Open Access Journals (Sweden)

    Harlid Sophia

    2012-06-01

    Full Text Available Abstract Background Breast cancer today has many established risk factors, both genetic and environmental, but these risk factors by themselves explain only part of the total cancer incidence. We have investigated potential interactions between certain known genetic and phenotypic risk factors, specifically nine single nucleotide polymorphisms (SNPs and height, body mass index (BMI and hormone replacement therapy (HRT. Methods We analyzed samples from three different study populations: two prospectively followed Swedish cohorts and one Icelandic case–control study. Totally 2884 invasive breast cancer cases and 4508 controls were analysed in the study. Genotypes were determined using Mass spectrometry-Maldi-TOF and phenotypic variables were derived from measurements and/or questionnaires. Odds Ratios and 95% confidence intervals were calculated using unconditional logistic regression with the inclusion of an interaction term in the logistic regression model. Results One SNP (rs851987 in ESR1 tended to interact with height, with an increasingly protective effect of the major allele in taller women (p = 0.007 and rs13281615 (on 8q24 tended to confer risk only in non users of HRT (p-for interaction = 0.03. There were no significant interactions after correction for multiple testing. Conclusions We conclude that much larger sample sets would be necessary to demonstrate interactions between low-risk genetic polymorphisms and the phenotypic variables height, BMI and HRT on the risk for breast cancer. However the present hypothesis-generating study has identified tendencies that would be of interest to evaluate for gene-environment interactions in independent materials.

  13. Effect of abutment height on interproximal implant bone level in the early healing: A randomized clinical trial.

    Science.gov (United States)

    Blanco, Juan; Pico, Alexandre; Caneiro, Leticia; Nóvoa, Lourdes; Batalla, Pilar; Martín-Lancharro, Pablo

    2018-01-01

    The aim of this randomized clinical trial was to compare the effect on the interproximal implant bone loss (IBL) of two different heights (1 and 3 mm) of definitive abutments placed at bone level implants with a platform switched design. Twenty-two patients received forty-four implants (6.5-10 mm length and 3.5-4 mm diameter) to replace at least two adjacent missing teeth, one bridge set to each patient-two implants per bridge. Patients were randomly allocated, and two different abutment heights, 1 and 3 mm using only one abutment height per bridge, were used. Clinical and radiological measurements were performed at 3 and 6 months after surgery. Interproximal bone level changes were compared between treatment groups. The association between IBL and categorical variables (history of periodontitis, smoking, implant location, implant diameter, implant length, insertion torque, width of keratinized mucosa, bone density, gingival biotype and antagonist) was also performed. At 3 months, implants with a 1-mm abutment had significantly greater IBL (0.83 ± 0.19 mm) compared to implants with a 3-mm abutment (0.14 ± 0.08 mm). At 6 months, a greater IBL was observed at implants with 1-mm abutments compared to implants with 3-mm abutments (0.91 ± 0.19 vs. 0.11 ± 0.09 mm). The analysis of the relation between patient characteristics and clinical variables with IBL revealed no significant differences at any moment except for smoking. Abutment height is an important factor to maintain interproximal implant bone level in early healing. Short abutments led to a greater interproximal bone loss in comparison with long abutments after 6 months. Other variables except smoking showed no relation with interproximal bone loss in early healing. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Assessing the effect of drought severity on height-for-age z-score in Kenyan children: a secondary analysis

    Directory of Open Access Journals (Sweden)

    Kate Lillepold, BScH

    2018-05-01

    Full Text Available Background: Globally, droughts are occurring more regularly and are having negative effects on population health, particularly in countries such as Kenya, where agriculture is a primary driver of the economy and a source of subsistence for many communities. Children are particularly susceptible to weather-related shocks. Previous research has shown an association between drought and cross-sectional indicators of malnutrition, such as stunting. In this study, we explored various longitudinal and spatial analysis approaches to evaluating the effect of drought on height-for-age z-scores (HAZ over time and space among young children in Kenya. Methods: Using anthropometric data from three georeferenced Kenyan Demographic and Health Surveys (KDHS and the self-calibrated Palmer Drought Severity Index, we developed multivariate linear regression and spatial lag and error models (with Moran's I calculations to investigate the association between drought severity and HAZ in children aged 0–5 years. Initial covariates included age of the child, sex, maternal age, height and education, wealth index, urban or rural location, and size at birth. We then did multilevel and geographically weighted regression modelling using frequentist or Bayesian methods and with inclusion of household-level covariates, such as livelihood zones. To assess the effect of changes in drought severity on child HAZ over time, KDHS data from 2003, 2008–09, and 2014 were analysed with spatiotemporal modelling. Findings: Preliminary results from the multivariate linear model showed a negative, non-significant association between drought severity and HAZ among Kenyan children in 2014 (β=0·033, p=0·101; however, there was a significant interaction between drought severity and age (β=–0·002, p<0·0007. The spatial lag model gave similar results. Other variables associated with HAZ included wealth index, age, sex, maternal education, and maternal height. Global Moran's I

  15. The effect of ratio between rigid plant height and water depth on the manning’s coefficient in open channel

    Science.gov (United States)

    Rizalihadi, M.; Ziana; Shaskia, Nina; Asharly, H.

    2018-05-01

    One of the important factors in channel dimension is the Manning’s coefficient ( n ). This coefficient is influenced not only by the channel roughness but also by the presence of plants in the channel. The aim of the study is to see the effect of the ratio between the height of the rigid plant and water depth on the Manning’s coefficient (n) in open channel. The study was conducted in open channel with 15.5 m long, 0.5 m wide and 1.0 m high, in which at the center of the channel is planted with the rigid plants with a density of 42 plants/m2. The flow was run with a discharge of 0.013 m3/s at 6 ratios of Hplants/Hwater, namely: 0; 0.2; 0.6; 0.8; 1,0 and 1,2, to obtain the velocity and water profiles. Then the value of n is analyzed using Manning’s equation. The results showed that the mean velocity becomes decrease 17.81-34.01% as increase the ratio of Hplants/Hwater. This results in increasing n value to become 1.22-1.52 times compared to the unplanted channel ( no =0.038). So, it can be concluded that the ratio between the rigid plant’s height and water depth in the open channel can affect the value of Manning coefficient.

  16. Numerical study of the structure of thermal plume in a vertical channel: Effect of the height of canal

    Directory of Open Access Journals (Sweden)

    Jouini Belgacem

    2016-01-01

    Full Text Available In this paper we propose to study numerically, by means of a software Named Calculation FDS, a thermal plume evolve from a source at the entrance to of a vertical channel. In the literature, there are researchers who interested in the interaction of plume with his the confinement medium. These studies are based on the determination of the global structure of plume confined. They found that this plume consists of three distinct zones. A first zone near source (instability zone followed by a second zone, such as the development of plume, and a third zone which is the zone of turbulence, Comparing the overall structure of the plume confined to that of the free plume, we can identify the presence of a third zone (zone of instability. The aim is firstly to determine the height of the instability zone located above of source, and secondly, to make a spectral study frequencies exhaust. Thus, effects of the geometrical parameters on frequencies of these escapements and the height an instability zone. The final aim is to establish correlations between the dimensionless numbers of Strouhal and Grashof.

  17. Grip type and task goal modify reach-to-grasp performance in post-stroke hemiparesis

    Science.gov (United States)

    Schaefer, Sydney Y.; DeJong, Stacey L.; Cherry, Kendra M.; Lang, Catherine E.

    2011-01-01

    This study investigated whether grip type and/or task goal influenced reaching and grasping performance in post-stroke hemiparesis. Sixteen adults with post-stroke hemiparesis and twelve healthy adults reached to and grasped a cylindrical object using one of two grip types (3-finger or palmar) to achieve one of two task goals (hold or lift). Performance of the stroke group was characteristic of hemiparetic limb movement during reach-to-grasp, with more curved handpaths and slower velocities compared to the control group. These effects were present regardless of grip type or task goal. Other measures of reaching (reach time and reach velocity at object contact) and grasping (peak thumb-index finger aperture during the reach and peak grip force during the grasp) were differentially affected by grip type, task goal, or both, despite the presence of hemiparesis, providing new evidence that changes in motor patterns after stroke may occur to compensate for stroke-related motor impairment. PMID:22357103

  18. Viewing geometry determines the contribution of binocular vision to the online control of grasping.

    Science.gov (United States)

    Keefe, Bruce D; Watt, Simon J

    2017-12-01

    Binocular vision is often assumed to make a specific, critical contribution to online visual control of grasping by providing precise information about the separation between digits and object. This account overlooks the 'viewing geometry' typically encountered in grasping, however. Separation of hand and object is rarely aligned precisely with the line of sight (the visual depth dimension), and analysis of the raw signals suggests that, for most other viewing angles, binocular feedback is less precise than monocular feedback. Thus, online grasp control relying selectively on binocular feedback would not be robust to natural changes in viewing geometry. Alternatively, sensory integration theory suggests that different signals contribute according to their relative precision, in which case the role of binocular feedback should depend on viewing geometry, rather than being 'hard-wired'. We manipulated viewing geometry, and assessed the role of binocular feedback by measuring the effects on grasping of occluding one eye at movement onset. Loss of binocular feedback resulted in a significantly less extended final slow-movement phase when hand and object were separated primarily in the frontoparallel plane (where binocular information is relatively imprecise), compared to when they were separated primarily along the line of sight (where binocular information is relatively precise). Consistent with sensory integration theory, this suggests the role of binocular (and monocular) vision in online grasp control is not a fixed, 'architectural' property of the visuo-motor system, but arises instead from the interaction of viewer and situation, allowing robust online control across natural variations in viewing geometry.

  19. Teaching grasping points using natural movements

    OpenAIRE

    Isleyici, Yalim

    2014-01-01

    Research about tasks that robotic maids should be able to perform is an emerging research area such as cooking and cleaning. Among them, manipulation of clothes is one of the hardest tasks due to the fact that textile is highly deformable and it is hard to model a good grasping point on them. In literature there are certain algorithms depending on 3D information of the cloth but most of them are not robust. Among them, Fast Integral Normal 3D (FINDDD) descriptors is a promising way for ...

  20. Optimization by GRASP greedy randomized adaptive search procedures

    CERN Document Server

    Resende, Mauricio G C

    2016-01-01

    This is the first book to cover GRASP (Greedy Randomized Adaptive Search Procedures), a metaheuristic that has enjoyed wide success in practice with a broad range of applications to real-world combinatorial optimization problems. The state-of-the-art coverage and carefully crafted pedagogical style lends this book highly accessible as an introductory text not only to GRASP, but also to combinatorial optimization, greedy algorithms, local search, and path-relinking, as well as to heuristics and metaheuristics, in general. The focus is on algorithmic and computational aspects of applied optimization with GRASP with emphasis given to the end-user, providing sufficient information on the broad spectrum of advances in applied optimization with GRASP. For the more advanced reader, chapters on hybridization with path-relinking and parallel and continuous GRASP present these topics in a clear and concise fashion. Additionally, the book offers a very complete annotated bibliography of GRASP and combinatorial optimizat...

  1. Effects of Balance Training on Postural Sway, Leg Extensor Strength, and Jumping Height in Adolescents

    Science.gov (United States)

    Granacher, Urs; Gollhofer, Albert; Kriemler, Susi

    2010-01-01

    Deficits in strength of the lower extremities and postural control have been associated with a high risk of sustaining sport-related injuries. Such injuries often occur during physical education (PE) classes and mostly affect the lower extremities. Thus, the objectives of this study were to investigate the effects of balance training on postural…

  2. Comparison of grasping movements made by healthy subjects in a 3-dimensional immersive virtual versus physical environment.

    Science.gov (United States)

    Magdalon, Eliane C; Michaelsen, Stella M; Quevedo, Antonio A; Levin, Mindy F

    2011-09-01

    Virtual reality (VR) technology is being used with increasing frequency as a training medium for motor rehabilitation. However, before addressing training effectiveness in virtual environments (VEs), it is necessary to identify if movements made in such environments are kinematically similar to those made in physical environments (PEs) and the effect of provision of haptic feedback on these movement patterns. These questions are important since reach-to-grasp movements may be inaccurate when visual or haptic feedback is altered or absent. Our goal was to compare kinematics of reaching and grasping movements to three objects performed in an immersive three-dimensional (3D) VE with haptic feedback (cyberglove/grasp system) viewed through a head-mounted display to those made in an equivalent physical environment (PE). We also compared movements in PE made with and without wearing the cyberglove/grasp haptic feedback system. Ten healthy subjects (8 women, 62.1±8.8years) reached and grasped objects requiring 3 different grasp types (can, diameter 65.6mm, cylindrical grasp; screwdriver, diameter 31.6mm, power grasp; pen, diameter 7.5mm, precision grasp) in PE and visually similar virtual objects in VE. Temporal and spatial arm and trunk kinematics were analyzed. Movements were slower and grip apertures were wider when wearing the glove in both the PE and the VE compared to movements made in the PE without the glove. When wearing the glove, subjects used similar reaching trajectories in both environments, preserved the coordination between reaching and grasping and scaled grip aperture to object size for the larger object (cylindrical grasp). However, in VE compared to PE, movements were slower and had longer deceleration times, elbow extension was greater when reaching to the smallest object and apertures were wider for the power and precision grip tasks. Overall, the differences in spatial and temporal kinematics of movements between environments were greater than

  3. Robotic Hand with Flexible Fingers for Grasping Cylindrical Objects

    OpenAIRE

    柴田, 瑞穂

    2015-01-01

    In this manuscript, a robotic hand for grasping a cylindrical object is proposed. This robotic hand has flexible fingers that can hold a cylindrical object during moving. We introduce a grasping strategy for a cylindrical object in terms of state transition graph. In this strategy the robotic hand picks up the cylindrical object utilizing a suction device before the hand grasp the object. We also design the flexible fingers; then, we investigate the validity of this robotic hand via several e...

  4. Electromyographic Grasp Recognition for a Five Fingered Robotic Hand

    Directory of Open Access Journals (Sweden)

    Nayan M. Kakoty

    2012-09-01

    Full Text Available This paper presents classification of grasp types based on surface electromyographic signals. Classification is through radial basis function kernel support vector machine using sum of wavelet decomposition coefficients of the EMG signals. In a study involving six subjects, we achieved an average recognition rate of 86%. The electromyographic grasp recognition together with a 8-bit microcontroller has been employed to control a fivefingered robotic hand to emulate six grasp types used during 70% daily living activities.

  5. Intrinsic Hand Muscle Activation for Grasp and Horizontal Transport

    OpenAIRE

    Winges, Sara A.; Kundu, Bornali; Soechting, John F.; Flanders, Martha

    2007-01-01

    During object manipulation, the hand and arm muscles produce internal forces on the object (grasping forces) and forces that result in external translation or rotation of the object in space (transport forces). The present study tested whether the intrinsic hand muscles are actively involved in transport as well as grasping. Intrinsic hand muscle activity increased with increasing demands for grasp stability, but also showed the timing and directional tuning patterns appropriate for actively ...

  6. Mississippi River and sea surface height effects on oil slick migration.

    Directory of Open Access Journals (Sweden)

    Frederico Falcini

    Full Text Available Millions of barrels of oil escaped into the Gulf of Mexico (GoM after the 20 April, 2010 explosion of Deepwater Horizon (DH. Ocean circulation models were used to forecast oil slick migration in the GoM, however such models do not explicitly treat the effects of secondary eddy-slopes or Mississippi River (MR hydrodynamics. Here we report oil front migration that appears to be driven by sea surface level (SSL slopes, and identify a previously unreported effect of the MR plume: under conditions of relatively high river discharge and weak winds, a freshwater mound can form around the MR Delta. We performed temporal oil slick position and altimeter analysis, employing both interpolated altimetry data and along-track measurements for coastal applications. The observed freshwater mound appears to have pushed the DH oil slick seaward from the Delta coastline. We provide a physical mechanism for this novel effect of the MR, using a two-layer pressure-driven flow model. Results show how SSL variations can drive a cross-slope migration of surface oil slicks that may reach velocities of order km/day, and confirm a lag time of order 5-10 days between mound formation and slick migration, as observed form the satellite analysis. Incorporating these effects into more complex ocean models will improve forecasts of slick migration for future spills. More generally, large SSL variations at the MR mouth may also affect the dispersal of freshwater, nutrients and sediment associated with the MR plume.

  7. Barrier widths, barrier heights, and the origins of anomalous kinetic H/D isotope effects

    International Nuclear Information System (INIS)

    Wolfe, S.; Hoz, Shmaryahu; Kim, Chankyung; Yang, Kiyull

    1990-01-01

    Proton transfer between MeO - and HOMe has been studied using ab initio molecular orbital theory. At the highest level employed (MP2/6-31+G(d)//6-31G(d)+ZPE), -ΔH 298 and -ΔG 298 for the formation of the ion-molecule complex MeO - hor-ellipsis HOMe from the separated reactants are 26.3 and 15.2 kcal/mol, respectively. At the 6-31G(d)//6-31G(d) level of theory, the (MeO-H-OMe) - transition structure is 2.19 kcal/mol higher in energy than the ion-molecule complex (ΔE double-dagger = 2.19), but this barrier disappears when zero-point energies are taken into account. The performance of AM1 on this system is quantitatively different (-ΔH 298 = 13.3; -ΔG 298 = 6.9; ΔE double-dagger = 4.91; k H /k D = 5.13, increasing to 5.79 when quantum mechanical tunneling is invoked) but appears to be acceptable for the research envisaged in the title. The effect of an enforced separation of the heavy atoms upon proton transfer barriers and isotope effects (which simulates steric effects) has been studied briefly at the 6-31G(d) level and in some detail using AM1

  8. Degradation of male and female rufous-and-white wren songs in a tropical forest: effects of sex, perch height, and habitat

    DEFF Research Database (Denmark)

    Barker, Nicole K.S.; Dabelsteen, Torben; Mennill, Daniel J.

    2009-01-01

    We performed a song transmission experiment to investigate the effects of distance, song post height, receiver perch height, signaller sex, and microhabitat on song degradation in rufous-and-white wrens (Thryothorus rufalbus), a neotropical duetting songbird. We quantified the effects of these fa......We performed a song transmission experiment to investigate the effects of distance, song post height, receiver perch height, signaller sex, and microhabitat on song degradation in rufous-and-white wrens (Thryothorus rufalbus), a neotropical duetting songbird. We quantified the effects...... of these factors on excess attenuation, signal-to-noise ratio, tail-to-signal ratio, and blur ratio of male and female songs. As expected, song degradation increased with distance between signaller and receiver. Songs transmitted best when emitted from moderate heights (5-7 m), although this pattern varied....... Rufous-and-white wren songs appeared more attenuated in open field than forest habitats, but microhabitat conditions within the forests exerted a strong influence on song degradation. These findings match previous studies showing an effect of distance, song post height, and habitat, but contrast...

  9. Learning Grasp Strategies Composed of Contact Relative Motions

    Science.gov (United States)

    Platt, Robert, Jr.

    2007-01-01

    Of central importance to grasp synthesis algorithms are the assumptions made about the object to be grasped and the sensory information that is available. Many approaches avoid the issue of sensing entirely by assuming that complete information is available. In contrast, this paper proposes an approach to grasp synthesis expressed in terms of units of control that simultaneously change the contact configuration and sense information about the object and the relative manipulator-object pose. These units of control, known as contact relative motions (CRMs), allow the grasp synthesis problem to be recast as an optimal control problem where the goal is to find a strategy for executing CRMs that leads to a grasp in the shortest number of steps. An experiment is described that uses Robonaut, the NASA-JSC space humanoid, to show that CRMs are a viable means of synthesizing grasps. However, because of the limited amount of information that a single CRM can sense, the optimal control problem may be partially observable. This paper proposes expressing the problem as a k-order Markov Decision Process (MDP) and solving it using Reinforcement Learning. This approach is tested in a simulation of a two-contact manipulator that learns to grasp an object. Grasp strategies learned in simulation are tested on the physical Robonaut platform and found to lead to grasp configurations consistently.

  10. A General Contact Force Analysis of an Under-Actuated Finger in Robot Hand Grasping

    Directory of Open Access Journals (Sweden)

    Xuan Vinh Ha

    2016-02-01

    Full Text Available This paper develops a mathematical analysis of contact forces for the under-actuated finger in a general under-actuated robotic hand during grasping. The concept of under-actuation in robotic grasping with fewer actuators than degrees of freedom (DOF, through the use of springs and mechanical limits, allows the hand to adjust itself to an irregularly shaped object without complex control strategies and sensors. Here the main concern is the contact forces, which are important elements in grasping tasks, based on the proposed mathematical analysis of their distributions of the n-DOF under-actuated finger. The simulation results, along with the 3-DOF finger from the ADAMS model, show the effectiveness of the mathematical analysis method, while comparing them with the measured results. The system can find magnitudes of the contact forces at the contact positions between the phalanges and the object.

  11. Impaired anticipatory control of grasp during obstacle crossing in Parkinson's disease.

    Science.gov (United States)

    McIsaac, Tara L; Diermayr, Gudrun; Albert, Frederic

    2012-05-16

    During self-paced walking, people with Parkinson's disease maintain anticipatory control during object grasping. However, common functional tasks often include carrying an object while changing step patterns mid-path and maneuvering over obstacles, increasing task complexity and attentional demands. Thus, the present study investigated the effect of Parkinson's disease on the modulation of grasping force changes as a function of gait-related inertial forces. Subjects with Parkinson's disease maintained the ability to scale and to couple over time their grip and inertial forces while walking at irregular step lengths, but were unable to maintain the temporal coupling of grasping forces compared to controls during obstacle crossing. We suggest that this deterioration in anticipatory control is associated with the increased demands of task complexity and attention during obstacle crossing. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  12. A circular feature-based pose measurement method for metal part grasping

    International Nuclear Information System (INIS)

    Wu, Chenrui; He, Zaixing; Zhang, Shuyou; Zhao, Xinyue

    2017-01-01

    The grasping of circular metal parts such as bearings and flanges is a common task in industry. Limited by low texture and repeated features, the point-feature-based method is not applicable in pose measurement of these parts. In this paper, we propose a novel pose measurement method for grasping circular metal parts. This method is based on cone degradation and involves a monocular camera. To achieve higher measurement accuracy, a position-based visual servoing method is presented to continuously control an eye-in-hand, six-degrees-of-freedom robot arm to grasp the part. The uncertainty of the part’s coordinate frame during the control process is solved by defining a fixed virtual coordinate frame. Experimental results are provided to illustrate the effectiveness of the proposed method and the factors that affect measurement accuracy are analyzed. (paper)

  13. [Effects of Reactive Jump Training in Handball Players Regarding Jump Height and Power Development in the Triceps Surae Muscle].

    Science.gov (United States)

    Rensing, N; Westermann, A; Möller, D; von Piekartz, H

    2015-12-01

    Studies have shown changes in the technical and physical demands in modern handball. The game has increased considerably in speed, power and dynamics. Jump training has, therefore, become ever more important in the training of the athletes. These developments contribute to the fact that handball is now one of the most injury-prone types of sport, with the lower extremities being most frequently affected. Reactive jump training is not only used in training by now, but also increasingly in injury prevention. The aim of this study was to investigate the effectiveness of reactive jump training with handball players. 21 regional league handball players were randomly divided into an intervention group (n = 12) and a control group (n = 9). The intervention group completed a six-week reactive jump training programme while the control group went through a non-specific training programme. Jump height (squat and counter movement jump), isokinetic and isometric maximum power as well as muscle activity served as measuring parameters. A comparison of the intervention and control groups revealed that the reactive jump training led to significant improvements in jump height. The isometric and isokinetic maximum power measurements and the electromyographic activities of the triceps surae muscle demonstrated an improvement in the values within the intervention group. However, this improvement was not significant compared with the control group. Likewise both jumps correlated with the muscle activity of the soleus muscle as shown by electromyography. A moderate correlation was noticed between the isokinetic maximum power measurement and the electromyographic activity of the soleus and gastrocnemius medialis muscles. Furthermore, the correlations of the isometric and isokinetic maximum power meas-urements resulted in a strong correlation coefficient. This study revealed a significant increase in jump height after reactive jump training. There was no significant difference in

  14. Experimental analysis of the Schottky barrier height of metal contacts in black phosphorus field-effect transistors

    Science.gov (United States)

    Chang, Hsun-Ming; Fan, Kai-Lin; Charnas, Adam; Ye, Peide D.; Lin, Yu-Ming; Wu, Chih-I.; Wu, Chao-Hsin

    2018-04-01

    Compared to graphene and MoS2, studies on metal contacts to black phosphorus (BP) transistors are still immature. In this work, we present the experimental analysis of titanium contacts on BP based upon the theory of thermionic emssion. The Schottky barrier height (SBH) is extracted by thermionic emission methods to analyze the properties of Ti-BP contact. To examine the results, the band gap of BP is extracted followed by theoretical band alignment by Schottky-Mott rule. However, an underestimated SBH is found due to the hysteresis in electrical results. Hence, a modified SBH extraction for contact resistance that avoids the effects of hysteresis is proposed and demonstrated, showing a more accurate SBH that agrees well with theoretical value and results of transmission electron microscopy and energy-dispersive x-ray spectroscopy.

  15. Height-adjusted percentiles evaluated central obesity in children and adolescents more effectively than just waist circumference.

    Science.gov (United States)

    Hosseini, Mostafa; Kelishadi, Roya; Yousefifard, Mahmoud; Qorbani, Mostafa; Bazargani, Behnaz; Heshmat, Ramin; Motlagh, Mohammad Esmail; Mirminachi, Babak; Ataei, Neamatollah

    2017-01-01

    We compared the prevalence of obesity based on both waist circumference for height and body mass index (BMI) in Iranian children and adolescents. Data on 13 120 children with a mean age of 12.45 ± 3.36 years (50.8% male) from the fourth Childhood and Adolescence Surveillance and Prevention of Adult Non-communicable Disease study were included. Measured waist circumference values were modelled according to age, gender and height percentiles. The prevalence of obesity was estimated using the 90th percentiles for both unadjusted and height-adjusted waist circumferences and compared with the World Health Organization BMI cut-offs. They were analysed further for short, average and tall children. Waist circumference values increased steadily with age. For short and average height children, the prevalence of obesity was higher when height-adjusted waist circumference was used. For taller children, the prevalence of obesity using height-adjusted waist circumference and BMI was similar, but lower than the prevalence based on measurements unadjusted for height. Height-adjusted waist circumference and BMI identified different children as having obesity, with overlaps of 69.47% for boys and 68.42% for girls. Just using waist circumference underestimated obesity in some Iranian children and measurements should be adjusted for height. ©2016 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.

  16. Explicit knowledge about the availability of visual feedback affects grasping with the left but not the right hand.

    Science.gov (United States)

    Tang, Rixin; Whitwell, Robert L; Goodale, Melvyn A

    2014-01-01

    Previous research (Whitwell et al. in Exp Brain Res 188:603-611, 2008; Whitwell and Goodale in Exp Brain Res 194:619-629, 2009) has shown that trial history, but not anticipatory knowledge about the presence or absence of visual feedback on an upcoming trial, plays a vital role in determining how that feedback is exploited when grasping with the right hand. Nothing is known about how the non-dominant left hand behaves under the same feedback regimens. In present study, therefore, we compared peak grip aperture (PGA) for left- and right-hand grasps executed with and without visual feedback (i.e., closed- vs. open-loop conditions) in right-handed individuals under three different trial schedules: the feedback conditions were blocked separately, they were randomly interleaved, or they were alternated. When feedback conditions were blocked, the PGA was much larger for open-loop trials as compared to closed-loop trials, although this difference was more pronounced for right-hand grasps than left-hand grasps. Like Whitwell et al., we found that mixing open- and closed-loop trials together, compared to blocking them separately, homogenized the PGA for open- and closed-loop grasping in the right hand (i.e., the PGAs became smaller on open-loop trials and larger on closed-loop trials). In addition, the PGAs for right-hand grasps were entirely determined by trial history and not by knowledge of whether or not visual feedback would be available on an upcoming trial. In contrast to grasps made with the right hand, grasps made by the left hand were affected both by trial history and by anticipatory knowledge of the upcoming visual feedback condition. But these effects were observed only on closed-loop trials, i.e., the PGAs of grasps made with the left hand on closed-loop trials were smaller when participants could anticipate the availability of feedback on an upcoming trial (alternating trials) than when they could not (randomized trials). In contrast, grasps made with the

  17. Infant manual performance during reaching and grasping for objects moving in depth.

    Science.gov (United States)

    Domellöf, Erik; Barbu-Roth, Marianne; Rönnqvist, Louise; Jacquet, Anne-Yvonne; Fagard, Jacqueline

    2015-01-01

    Few studies have investigated manual performance in infants when reaching and grasping for objects moving in directions other than across the fronto-parallel plane. The present preliminary study explored object-oriented behavioral strategies and side preference in 8- and 10-month-old infants during reaching and grasping for objects approaching in depth from three positions (midline, and 27° diagonally from the left and right). Effects of task constraint by using objects of three different types and two sizes were further examined for behavioral strategies and hand opening prior to grasping. Additionally, assessments of hand preference by a dedicated handedness test were performed. Regardless of object starting position, the 8-month-old infants predominantly displayed right-handed reaches for objects approaching in depth. In contrast, the older infants showed more varied strategies and performed more ipsilateral reaches in correspondence with the side of the approaching object. Conversely, 10-month-old infants were more successful than the younger infants in grasping the objects, independent of object starting position. The findings regarding infant hand use strategies when reaching and grasping for objects moving in depth are similar to those from earlier studies using objects moving along a horizontal path. Still, initiation times of reaching onset were generally long in the present study, indicating that the object motion paths seemingly affected how the infants perceived the intrinsic properties and spatial locations of the objects, possibly with an effect on motor planning. Findings are further discussed in relation to future investigations of infant reaching and grasping for objects approaching in depth.

  18. Infant manual performance during reaching and grasping for objects moving in depth

    Directory of Open Access Journals (Sweden)

    Erik eDomellöf

    2015-08-01

    Full Text Available Few studies have observed investigated manual asymmetries performance in infants when reaching and grasping for objects moving in directions other than across the fronto-parallel plane. The present preliminary study explored manual object-oriented behavioral strategies and hand side preference in 8- and 10-month-old infants during reaching and grasping for objects approaching in depth from three positions (midline, and 27° diagonally from the left, and right, midline. Effects of task constraint by using objects of three different types and two sizes were further examined for behavioral strategies and . The study also involved measurements of hand position opening prior to grasping., and Additionally, assessments of general hand preference by a dedicated handedness test were performed. Regardless of object starting position, the 8-month-old infants predominantly displayed right-handed reaches for objects approaching in depth. In contrast, the older infants showed more varied strategies and performed more ipsilateral reaches in correspondence with the side of the approaching object. Conversely, 10-month-old infants were more successful than the younger infants in grasping the objects, independent of object starting position. The findings support the possibility of a shared underlying mechanism regarding for infant hand use strategies when reaching and grasping for horizontally objects moving in depth are similar to those from earlier studies using objects moving along a horizontal pathand vertically moving objects. Still, initiation times of reaching onset were generally long in the present study, indicating that the object motion paths seemingly affected how the infants perceived the intrinsic properties and spatial locations of the objects, possibly with an effect on motor planning. Findings are further discussed in relation to future investigations of infant reaching and grasping for objects approaching in depth.

  19. Climatic conditions and child height: Sex-specific vulnerability and the protective effects of sanitation and food markets in Nepal.

    Science.gov (United States)

    Mulmi, Prajula; Block, Steven A; Shively, Gerald E; Masters, William A

    2016-12-01

    Environmental conditions in early life are known to have impacts on later health outcomes, but causal mechanisms and potential remedies have been difficult to discern. This paper uses the Nepal Demographic and Health Surveys of 2006 and 2011, combined with earlier NASA satellite observations of variation in the Normalized Difference Vegetation Index (NDVI) at each child's location and time of birth to identify the trimesters of gestation and periods of infancy when climate variation is linked to attained height later in life. We find significant differences by sex: males are most affected by conditions in their second trimester of gestation, and females in the first three months after birth. Each 100-point difference in NDVI at those times is associated with a difference in height-for-age z-score (HAZ) measured at age 12-59 months of 0.088 for boys and 0.054 for girls, an effect size similar to that of moving within the distribution of household wealth by close to one quintile for boys and one decile for girls. The entire seasonal change in NDVI from peak to trough is approximately 200-300 points during the 2000-2011 study period, implying a seasonal effect on HAZ similar to one to three quintiles of household wealth. This effect is observed only in households without toilets; in households with toilets, there is no seasonal fluctuation, implying protection against climatic conditions that facilitate disease transmission. We also use data from the Nepal Living Standards Surveys on district-level agricultural production and marketing, and find a climate effect on child growth only in districts where households' food consumption derives primarily from their own production. Robustness tests find no evidence of selection effects, and placebo regression results reveal no significant artefactual correlations. The timing and sex-specificity of climatic effects are consistent with previous studies, while the protective effects of household sanitation and food markets are

  20. Grasping without sight: insights from the congenitally blind.

    Directory of Open Access Journals (Sweden)

    Kayla D Stone

    Full Text Available We reach for and grasp different sized objects numerous times per day. Most of these movements are visually-guided, but some are guided by the sense of touch (i.e. haptically-guided, such as reaching for your keys in a bag, or for an object in a dark room. A marked right-hand preference has been reported during visually-guided grasping, particularly for small objects. However, little is known about hand preference for haptically-guided grasping. Recently, a study has shown a reduction in right-hand use in blindfolded individuals, and an absence of hand preference if grasping was preceded by a short haptic experience. These results suggest that vision plays a major role in hand preference for grasping. If this were the case, then one might expect congenitally blind (CB individuals, who have never had a visual experience, to exhibit no hand preference. Two novel findings emerge from the current study: first, the results showed that contrary to our expectation, CB individuals used their right hand during haptically-guided grasping to the same extent as visually-unimpaired (VU individuals did during visually-guided grasping. And second, object size affected hand use in an opposite manner for haptically- versus visually-guided grasping. Big objects were more often picked up with the right hand during haptically-guided, but less often during visually-guided grasping. This result highlights the different demands that object features pose on the two sensory systems. Overall the results demonstrate that hand preference for grasping is independent of visual experience, and they suggest a left-hemisphere specialization for the control of grasping that goes beyond sensory modality.

  1. Method of Grasping Control by Computing Internal and External Impedances for Two Robot Fingers, and Its Application to Admittance Control of a Robot Hand-Arm System

    Directory of Open Access Journals (Sweden)

    Jian Huang

    2015-08-01

    Full Text Available Impedance control is an important technology used in the grasping control of a robot hand. Numerous studies related to grasping algorithms have been reported in recent years, with the contact force between robot fingers and the object to be grasped being primarily discussed in most cases. Generally, a coupling effect occurs between the internal loop of the grasping operation and the external loop of the interaction with the environment when a multi-fingered robot hand is used to complete a contact task. Therefore, a robot hand cannot hold an object using a large external force to complete a wide range of tasks by applying the conventional method. In this paper, the coupling of the internal/external forces occurring in grasping operations using multiple fingers is analysed. Then, improved impedance control based on the previous method is proposed as an effective tool to solve the problem of grasping failure caused by single-finger contact. Furthermore, a method for applying the improved grasping algorithm to the admittance control of a robot hand-arm system is also proposed. The proposed method divides the impedance effect into the grasping control of the hand and the cooperative control of the arm, so that expanding the task space and increasing the flexibility of impedance adjustment can be achieved. Experiments were conducted to demonstrate the effectiveness of the proposed method.

  2. Effect of push handle height on net moments and forces on the musculoskeletal system during standardized wheelchair pushing tasks

    NARCIS (Netherlands)

    Van Der Woude, L H; Van Koningsbruggen, C M; Kroes, A L; Kingma, I

    1995-01-01

    The aim of this investigation was to analyze the external forces and biomechanical loading on the musculoskeletal system during wheelchair pushing, in relation to different push handle heights. In addition, recommendations for wheelchair pushing in accordance with push handle height are made. Eight

  3. Meteor head echo altitude distributions and the height cutoff effect studied with the EISCAT HPLA UHF and VHF radars

    Directory of Open Access Journals (Sweden)

    A. Westman

    2004-04-01

    Full Text Available Meteor head echo altitude distributions have been derived from data collected with the EISCAT VHF (224MHz and UHF (930MHz high-power, large-aperture (HPLA radars. At the high-altitude end, the distributions cut off abruptly in a manner reminiscent of the trail echo height ceiling effect observed with classical meteor radars. The target dimensions are shown to be much smaller than both the VHF and the UHF probing wavelengths, but the cutoff heights for the two systems are still clearly different, the VHF cutoff being located several km above the UHF one. A single-collision meteor-atmosphere interaction model is used to demonstrate that meteors in the (1.3–7.2µg mass range will ionise such that critical electron density at 224MHz is first reached at or around the VHF cutoff altitude and critical density at 930MHz will be reached at the UHF cutoff altitude. The observed seasonal variation in the cutoff altitudes is shown to be a function of the seasonal variation of atmospheric density with altitude. Assuming that the electron density required for detection is in the order of the critical density, the abrupt altitude cutoffs can be explained as a consequence of the micrometeoroid joint size-speed distribution dropping off so fast at the large-mass, high-velocity end that above a certain altitude the number of detectable events becomes vanishingly small. Conversely, meteors at the low-mass end of the distribution will be gradually retarded such that the ionisation they generate never reaches critical density. These particles will remain unobservable.Key words. Radio science (instruments and techniques – Interplatery physics (interplanetary dust – General or miscellaneous (new fields

  4. The effect of fiber dowel heights in resin composite cores on restoration failures of endodontically treated teeth.

    Science.gov (United States)

    Mekayarajjananonth, Trakol; Chitcharus, Nattinee; Winkler, Sheldon; Bogert, Meredith C

    2009-01-01

    In vitro and in vivo testing suggest that fiber posts may reduce the incidence of root fractures of endodontically treated teeth. The purpose of this in vitro study was to compare the effect of fiber post height in resin composite cores on the fracture resistance of endodontically treated teeth. Forty maxillary central incisors were randomly divided into 2 control groups (Groups 1 and 2) of 5 teeth each, and 3 experimental groups (Groups 3, 4, and 5) of 10 teeth each. The teeth in Group 1 had their opening restored with composite resin, the teeth in Group 2 were restored with quartz fiber posts without resin composite cores, and the teeth in Groups 3, 4, and 5 were restored with quartz fiber posts of 2, 4, and 6 mm high, respectively, in 6-mm resin composite cores. Ceramic crowns were fabricated for the specimens. Specimens were positioned in a mounting device and aligned at a 130-degree angle to the long axis of each tooth. A universal testing machine was used to apply constant load at a crosshead speed of 0.5 mm/min until failure occurred. The highest fracture load and mode of failure of each specimen was recorded. The highest fracture resistance force was observed in Group 2 (290.38 +/- 48.45 N) and decreased, respectively, in Group 1 (238.98 +/-26.26 N), Group 5 (228.35 +/-58.79 N), Group 4 (221.43 +/-38.74 N), and Group 3 (199.05 +/-58.00 N). According to one-way analysis of variance (ANOVA) and Duncan's test (P teeth should be restored with the longest possible post height while preserving maximum tooth structure.

  5. The influence of grasping habits and object orientation on motor planning in children and adults.

    Science.gov (United States)

    Jovanovic, Bianca; Schwarzer, Gudrun

    2017-12-01

    We investigated the influence of habitual grasp strategies and object orientation on motor planning in 3-year-olds and 4- to 5-year-old children and adults. Participants were required to rotate different vertically oriented objects around 180°. Usually, adults perform this task by grasping objects with an awkward grip (thumb and index finger pointing downward) at the beginning of the movement, in order to finish it with a comfortable hand position. This pattern corresponds to the well-known end-state comfort effect (ESC) in grasp planning. The presented objects were associated with different habitual grasp orientations that either corresponded with the grasp direction required to reach end-state comfort (downward) or implied a contrary grasp orientation (upward). Additionally, they were presented either in their usual, canonical orientation (e.g., shovel with the blade oriented downward versus cup with its opening oriented upward) or upside down. As dependent variable we analyzed the number of grips conforming to the end-state comfort principle (ESC score) realized in each object type and orientation condition. The number of grips conforming to ESC strongly increased with age. In addition, the extent to which end-state comfort was considered was influenced by the actual orientation of the objects' functional parts. Thus, in all age-groups the ESC score was highest when the functional parts of the objects were oriented downward (shovel presented canonically with blade pointing downward, cup presented upside down) and corresponded to the hand orientation needed to realize ESC. © 2017 Wiley Periodicals, Inc.

  6. Fear of heights and visual height intolerance.

    Science.gov (United States)

    Brandt, Thomas; Huppert, Doreen

    2014-02-01

    The aim of this review is, first, to cover the different aspects of visual height intolerance such as historical descriptions, definition of terms, phenomenology of the condition, neurophysiological control of gaze, stance and locomotion, and therapy, and, second, to identify warranted epidemiological and experimental studies. Vivid descriptions of fear of heights can be found in ancient texts from the Greek, Roman, and Chinese classics. The life-time prevalence of visual height intolerance is as high as 28% in the general population, and about 50% of those who are susceptible report an impact on quality of life. When exposed to heights, visual exploration by eye and head movements is restricted, and the velocity of locomotion is reduced. Therapy for fear of heights is dominated by the behavioral techniques applied during real or virtual reality exposure. Their efficacy might be facilitated by the administration of D-cycloserine or glucocorticoids. Visual height intolerance has a considerable impact on daily life and interpersonal interactions. It is much more frequent than fear of heights, which is defined as an environmental subtype of a specific phobia. There is certainly a continuum stretching from acrophobia to a less-pronounced visual height intolerance, to which the categorical distinction of a specific phobia does not apply.

  7. Shaping of Reach-to-Grasp Kinematics by Intentions

    DEFF Research Database (Denmark)

    Egmose, Ida; Køppe, Simo

    2017-01-01

    is primarily associated with transporting the hand to the object (i.e., extrinsic object properties), the decelerating part of the reach is used as a preparation for object manipulation (i.e., prepare the grasp or the subsequent action), and the grasp is associated with manipulating the object's intrinsic...

  8. Differences in fixations between grasping and viewing objects

    NARCIS (Netherlands)

    Brouwer, A.M.; Franz, V.H.; Gegenfurtner, K.R.

    2009-01-01

    Where exactly do people look when they grasp an object? An object is usually contacted at two locations, whereas the gaze can only be at one location at the time. We investigated participants' fixation locations when they grasp objects with the contact positions of both index finger and thumb being

  9. Linguistic approach to object recognition by grasping

    Energy Technology Data Exchange (ETDEWEB)

    Marik, V

    1982-01-01

    A method for recognizing both the three-dimensional object shapes and their sizes by grasping them with an antropomorphic five-finger artificial hand is described. The hand is equipped with position sensing elements in the joints of the fingers and with a tactile transducer net on the palm surface. The linguistic method uses formal grammars and languages for the pattern description. The recognition is hierarchically arranged, every level being different from the others by a formal language which has been used. On every level the pattern description is generated and verified from the symmetrical and semantical points of view. The results of the implementation of the recognition of cones, pyramides, spheres, prisms and cylinders are presented and discussed. 8 references.

  10. Grasp Learning by Means of Developing Sensorimotor Schemas and Generic World Knowledge

    DEFF Research Database (Denmark)

    Krüger, Norbert; Popovic, Mila; Bodenhagen, Leon

    2011-01-01

    We present a cognitive system in which grasping competences are coded by means of a formalisation of sensory motor schemas in terms of so called ‘object action complexes’ (OACs). OACs define the knowledge of the system via the effects and precondition of certain behavioural patterns, and also code...

  11. Grasping the other's attention: The role of animacy in action cueing of joint attention

    NARCIS (Netherlands)

    Lindemann, O.; Nuku, P.; Rüschemeyer, S.A.; Bekkering, H.

    2011-01-01

    The current experiment investigates the role of animacy on grasp-cueing effects as investigated in joint attention research. In a simple detection task participants responded to the colour change of one of two objects of identical size. Before the target onset, we presented a cueing stimulus

  12. Visuomotor Resolution in Telerobotic Grasping with Transmission Delays

    Directory of Open Access Journals (Sweden)

    Omri Afgin

    2017-10-01

    Full Text Available Weber’s law is among the basic psychophysical laws of human perception. It determines that human sensitivity to change along a physical dimension, the just noticeable difference (JND, is linearly related to stimulus intensity. Conversely, in direct (natural, visually guided grasping, Weber’s law is violated and the JND does not depend on stimulus intensity. The current work examines adherence to Weber’s law in telerobotic grasping. In direct grasping, perception and action are synchronized during task performance. Conversely, in telerobotic control, there is an inherent spatial and temporal separation between perception and action. The understanding of perception–action association in such conditions may facilitate development of objective measures for telerobotic systems and contribute to improved interface design. Moreover, telerobotic systems offer a unique platform for examining underlying causes for the violation of Weber’s law during direct grasping. We examined whether, like direct grasping, telerobotic grasping with transmission delays violates Weber’s law. To this end, we examined perceptual assessment, grasp control, and grasp demonstration, using a telerobotic system with time delays in two spatial orientations: alongside and facing the robot. The examination framework was adapted to telerobotics from the framework used for examining Weber’s law in direct grasping. The variability of final grip apertures (FGAs in perceptual assessment increased with object size in adherence with Weber’s law. Similarly, the variability of maximal grip apertures in grasp demonstration approached significance in adherence with Weber’s law. In grasp control, the variability of maximal grip apertures did not increase with object size, which seems to violate Weber’s law. However, unlike in direct grasping, motion trajectories were prolonged and fragmented, and included an atypical waiting period prior to finger closure. Therefore, in

  13. Effects of pushing height on trunk posture and trunk muscle activity when a cart suddenly starts or stops moving.

    Science.gov (United States)

    Lee, Yun-Ju; Hoozemans, Marco J M; van Dieën, Jaap H

    2012-01-01

    Unexpected sudden (un)loading of the trunk may induce inadequate responses of trunk muscles and uncontrolled trunk motion. These unexpected perturbations may occur in pushing tasks, when the cart suddenly starts moving (unloading) or is blocked by an obstacle (loading). In pushing, handle height affects the user's working posture, which may influence trunk muscle activity and trunk movement in response to the perturbation. Eleven healthy male subjects pushed a 200 kg cart with handles at shoulder and hip height in a start condition (sudden release of brakes) and a stop condition (bumping into an obstacle). Before the perturbation, the baseline of the trunk inclination, internal moment and trunk extensor muscle activity were significantly higher when pushing at hip height than at shoulder height. After the perturbation, the changes in trunk inclination and internal moment were significantly larger when pushing at shoulder height than at hip height in both conditions. The opposite directions of changes in trunk inclination and internal moment suggest that the unexpected perturbations caused uncontrolled trunk motion. Pushing at shoulder height may impose a high risk of low-back injury due to the low trunk stiffness and large involuntary trunk motion occurring after carts suddenly move or stop.

  14. Model-based automatic generation of grasping regions

    Science.gov (United States)

    Bloss, David A.

    1993-01-01

    The problem of automatically generating stable regions for a robotic end effector on a target object, given a model of the end effector and the object is discussed. In order to generate grasping regions, an initial valid grasp transformation from the end effector to the object is obtained based on form closure requirements, and appropriate rotational and translational symmetries are associated with that transformation in order to construct a valid, continuous grasping region. The main result of this algorithm is a list of specific, valid grasp transformations of the end effector to the target object, and the appropriate combinations of translational and rotational symmetries associated with each specific transformation in order to produce a continuous grasp region.

  15. Fast Grasp Contact Computation for a Serial Robot

    Science.gov (United States)

    Shi, Jianying (Inventor); Hargrave, Brian (Inventor); Diftler, Myron A. (Inventor)

    2015-01-01

    A system includes a controller and a serial robot having links that are interconnected by a joint, wherein the robot can grasp a three-dimensional (3D) object in response to a commanded grasp pose. The controller receives input information, including the commanded grasp pose, a first set of information describing the kinematics of the robot, and a second set of information describing the position of the object to be grasped. The controller also calculates, in a two-dimensional (2D) plane, a set of contact points between the serial robot and a surface of the 3D object needed for the serial robot to achieve the commanded grasp pose. A required joint angle is then calculated in the 2D plane between the pair of links using the set of contact points. A control action is then executed with respect to the motion of the serial robot using the required joint angle.

  16. Grasp Assist Device with Automatic Mode Control Logic

    Science.gov (United States)

    Davis, Donald R. (Inventor); Ihrke, Chris A. (Inventor); Laske, Evan (Inventor)

    2018-01-01

    A system includes a glove, sensors, actuator assemblies, and controller. The sensors include load sensors which measure an actual grasping force and attitude sensors which determine a glove attitude. The actuator assembly provides a grasp assist force to the glove. Respective locations of work cells in the work environment and permitted work tasks for each work cell are programmed into the controller. The controller detects the glove location and attitude. A work task is selected by the controller for the location. The controller calculates a required grasp assist force using measured actual grasping forces from the load sensors. The required grasp assist force is applied via the glove using the actuator assembly to thereby assist the operator in performing the identified work task.

  17. Collision-Avoidance Characteristics of Grasping. Early Signs in Hand and Arm Kinematics

    NARCIS (Netherlands)

    Lommertzen, J.; Costa e Silva, E.; Meulenbroek, R.G.J.

    2009-01-01

    Grasping an object successfully implies avoiding colliding into it before the hand is closed around the object. The present study focuses on prehension kinematics that typically reflect collision-avoidance characteristics of grasping movements. Twelve participants repeatedly grasped

  18. Managing distributed dynamic systems with spatial grasp technology

    CERN Document Server

    Sapaty, Peter Simon

    2017-01-01

    The book describes a novel ideology and supporting information technology for integral management of both civil and defence-orientated large, distributed dynamic systems. The approach is based on a high-level Spatial Grasp Language, SGL, expressing solutions in physical, virtual, executive and combined environments in the form of active self-evolving and self-propagating patterns spatially matching the systems to be created, modified and controlled. The communicating interpreters of SGL can be installed in key system points, which may be in large numbers (up to millions and billions) and represent equipped humans, robots, laptops, smartphones, smart sensors, etc. Operating under gestalt-inspired scenarios in SGL initially injected from any points, these systems can be effectively converted into goal-driven spatial machines (rather than computers as dealing with physical matter too) capable of responding to numerous challenges caused by growing world dynamics in the 21st century. Including numerous practical e...

  19. Information about the weight of grasped objects from vision and internal models interacts within the primary motor cortex.

    Science.gov (United States)

    Loh, Morrison N; Kirsch, Louise; Rothwell, John C; Lemon, Roger N; Davare, Marco

    2010-05-19

    When grasping and lifting different objects, visual cues and previously acquired knowledge enable us to prepare the upcoming grasp by scaling the fingertip forces according to the actual weight of the object. However, when no visual information is available, the weight of the object has to be predicted based on information learned from previous grasps. Here, we investigated how changes in corticospinal excitability (CSE) and grip force scaling depend on the presence of visual cues and the weight of previously lifted objects. CSE was assessed by delivering transcranial magnetic stimulation (TMS) at different times before grasp of the object. In conditions in which visual information was not provided, the size of motor evoked potentials (MEP) was larger when the object lifted was preceded by a heavy relative to a light object. Interestingly, the previous lift also affected MEP amplitude when visual cues about object weight were available but only in the period immediately after object presentation (50 ms); this effect had already declined for TMS delivered 150 ms after presentation. In a second experiment, we demonstrated that these CSE changes are used by the motor system to scale grip force. This suggests that the corticospinal system stores a "sensorimotor memory" of the grasp of different objects and relies on this memory when no visual cues are present. Moreover, visual information about weight interacts with this stored representation and allows the corticospinal system to switch rapidly to a different model of predictive grasp control.

  20. Information about the weight of grasped objects from vision and from internal models interacts within the primary motor cortex

    Science.gov (United States)

    Loh, Morrison N; Kirsch, Louise; Rothwell, John C; Lemon, Roger N; Davare, Marco

    2010-01-01

    When grasping and lifting different objects, visual cues and previously acquired knowledge enable us to prepare the upcoming grasp by scaling the fingertip forces according to the actual weight of the object. However, when no visual information is available, the object’s weight has to be predicted based on information learned from previous grasps. Here, we investigated changes in corticospinal excitability (CSE) and grip force scaling depending on the presence of visual cues and the weight of previously lifted objects. CSE was assessed by delivering transcranial magnetic stimulation (TMS) at different times before grasp of the object. In conditions where visual information was not provided, the size of motor evoked potentials (MEP) was larger when the object lifted was preceded by a heavy relative to a light object. Interestingly, the previous lift also affected MEP amplitude when visual cues about object weight were available, but only in the period immediately after (50 ms) object presentation; this effect had already declined for TMS delivered 150 ms after presentation. In a second experiment, we demonstrated that these CSE changes are used by the motor system to scale grip force. This suggests that the corticospinal system stores a ‘sensorimotor memory’ of the grasp of different objects and relies on this memory when no visual cues are present. Moreover, visual information about weight interacts with this stored representation and allows the corticospinal system to switch rapidly to a different model of predictive grasp control. PMID:20484640

  1. Effect of bottle height and aspiration rate on postocclusion surge in Infiniti and Millennium peristaltic phacoemulsification machines.

    Science.gov (United States)

    Ward, Matthew S; Georgescu, Dan; Olson, Randall J

    2008-08-01

    To assess how flow and bottle height affect postocclusion surge in the Infiniti (Alcon, Inc.) and Millennium (Bausch & Lomb) peristaltic machines. John A. Moran Eye Center Clinical Laboratories, University of Utah, Salt Lake City, Utah. Postocclusion anterior chamber depth changes were measured in human eye-bank eyes using A-scan. Surge was simulated by clamping the aspiration tubing and releasing it at maximum vacuum. In both machines, surge was measured (1) with aspiration held constant at 12 mL/min and bottle heights at 60, 120, and 180 cm and (2) with bottle height held constant at 60 cm and aspiration rates at 12, 24, and 36 mL/min. Surge decreased approximately 40% with each 60 cm increase in bottle height in the Infiniti. It was constant at all bottle heights in the Millennium. At 12 and 24 mL/min aspiration rates, surge in the Millennium was less than half that in the Infiniti (PInfiniti system and was relatively constant with increasing bottle height in the Millennium system. The Millennium may offer a more stable phacoemulsification platform with respect to surge at a higher aspiration rate.

  2. Increases of Chamber Height and Base Diameter Have Contrasting Effects on Grazing Rate of Two Cladoceran Species: Implications for Microcosm Studies

    Science.gov (United States)

    Pan, Ying; Zhang, Yunshu; Peng, Yan; Zhao, Qinghua; Sun, Shucun

    2015-01-01

    Aquatic microcosm studies often increase either chamber height or base diameter (to increase water volume) to test spatial ecology theories such as “scale” effects on ecological processes, but it is unclear whether the increase of chamber height or base diameter have the same effect on the processes, i.e., whether the effect of the shape of three-dimensional spaces is significant. We orthogonally manipulated chamber height and base diameter and determined swimming activity, average swimming velocity and grazing rates of the cladocerans Daphnia magna and Moina micrura (on two algae Scenedesmus quadricauda and Chlorella vulgaris; leading to four aquatic algae-cladoceran systems in total) under different microcosm conditions. Across all the four aquatic systems, increasing chamber height at a given base diameter significantly decreased the duration and velocity of horizontal swimming, and it tended to increase the duration but decrease the velocity of vertical swimming. These collectively led to decreases in both average swimming velocity and grazing rate of the cladocerans in the tall chambers (at a given base diameter), in accordance with the positive relationship between average swimming velocity and grazing rate. In contrast, an increase of base diameter at a given chamber height showed contrasting effects on the above parameters. Consistently, at a given chamber volume increasing ratio of chamber height to base diameter decreased the average swimming velocity and grazing rate across all the aquatic systems. In general, increasing chamber depth and base diameter may exert contrasting effects on zooplankton behavior and thus phytoplankton-zooplankton interactions. We suggest that spatial shape plays an important role in determining ecological process and thus should be considered in a theoretical framework of spatial ecology and also the physical setting of aquatic microcosm experiments. PMID:26273836

  3. Robot Grasp Learning by Demonstration without Predefined Rules

    Directory of Open Access Journals (Sweden)

    César Fernández

    2011-12-01

    Full Text Available A learning-based approach to autonomous robot grasping is presented. Pattern recognition techniques are used to measure the similarity between a set of previously stored example grasps and all the possible candidate grasps for a new object. Two sets of features are defined in order to characterize grasps: point attributes describe the surroundings of a contact point; point-set attributes describe the relationship between the set of n contact points (assuming an n-fingered robot gripper is used. In the experiments performed, the nearest neighbour classifier outperforms other approaches like multilayer perceptrons, radial basis functions or decision trees, in terms of classification accuracy, while computational load is not excessive for a real time application (a grasp is fully synthesized in 0.2 seconds. The results obtained on a synthetic database show that the proposed system is able to imitate the grasping behaviour of the user (e.g. the system learns to grasp a mug by its handle. All the code has been made available for testing purposes.

  4. Effect of fast neutrons and gamma rays treatments on heading date, plant height and tiller number in wheat

    International Nuclear Information System (INIS)

    Arain, M.A.

    1978-01-01

    Homogeneous seeds of six varieties of bread wheat, Triticum aestivum L. (2n = 6x = 42) were treated with fast neutrons and gamma rays. The irradiated seeds along with respective controls were grown in field plots during 1973-74 and heating date, plant height and tiller number studied. Varieties used in the present study varied significantly (P >=0.01) for all the characters. Treatment mean squares were highly significant for plant height and tillers per plant; whereas, the varieties x treatments interaction mean squares were significant only for plant height (P >= 0.05). Irradiated treatments exhibited significant reductions in plant height and tiller number than respective controls. However, heading was delayed among the irradiated material when compared with respective controls. Reduction in plant height was more pronounced after the treatments of gamma rays than the fast neutrons. The maximum and minimum shifts in mean values of these characters were observed in 20 kR (gamma rays) and Nf 300 RADS (fast neutrons) treatments, respectively. (author)

  5. Fall from heights: does height really matter?

    Science.gov (United States)

    Alizo, G; Sciarretta, J D; Gibson, S; Muertos, K; Romano, A; Davis, J; Pepe, A

    2018-06-01

    Fall from heights is high energy injuries and constitutes a fraction of all fall-related trauma evaluations while bearing an increase in morbidity and mortality. We hypothesize that despite advancements in trauma care, the overall survivability has not improved in this subset of trauma patients. All adult trauma patients treated after sustaining a fall from heights during a 40-month period were retrospectively reviewed. Admission demographics, clinical data, fall height (ft), injury patterns, ISS, GCS, length of stay, and mortality were reviewed. 116 patients sustained a fall from heights, 90.4% accidental. A mean age of 37± 14.7 years, 86% male, and a fall height of 19 ± 10 ft were encountered. Admission GCS was 13 ± 2 with ISS 10 ± 11. Overall LOS was 6.6 ± 14.9 days and an ICU LOS of 2.8 ± 8.9 days. Falls ≥ 25 ft.(16%) had lower GCS 10.4 ± 5.8, increased ISS 22.6 ± 13.8, a fall height 37.9 ± 13.1 ft and associated increased mortality (p < 0.001). Mortality was 5.2%, a mean distance fallen of 39 ± 22 ft. and an ISS of 31.5 ±16.5. Brain injury was the leading cause of death, 50% with open skull fractures. Level of height fallen is a good predictor of overall outcome and survival. Despite advances in trauma care, death rates remain unchanged. Safety awareness and injury prevention programs are needed to reduce the risk of high-level falls.

  6. Grasping devices and methods in automated production processes

    DEFF Research Database (Denmark)

    Fantoni, Gualtiero; Santochi, Marco; Dini, Gino

    2014-01-01

    assembly to disassembly, from aerospace to food industry, from textile to logistics) are discussed. Finally, the most recent research is reviewed in order to introduce the new trends in grasping. They provide an outlook on the future of both grippers and robotic hands in automated production processes. (C......In automated production processes grasping devices and methods play a crucial role in the handling of many parts, components and products. This keynote paper starts with a classification of grasping phases, describes how different principles are adopted at different scales in different applications...

  7. Modeling and Simulation of Grasping of Deformable Objects

    DEFF Research Database (Denmark)

    Fugl, Andreas Rune

    Automated robot solutions have for decades been increasing productivity around the world. They are attractive for being fast, accurate and able to work in dangerous and repetitive environments. In traditional applications the grasped object is kinematically attached to the Tool Center Point....... The purpose of this thesis is to address the modeling and simulation of deformable objects, as applied to robotic grasping and manipulation. The main contributions of this work are: An evaluation of 3D linear elasticity used for robot grasping as implemented by a Finite Difference Method supporting regular...

  8. Learning Objects and Grasp Affordances through Autonomous Exploration

    DEFF Research Database (Denmark)

    Kraft, Dirk; Detry, Renaud; Pugeault, Nicolas

    2009-01-01

    We describe a system for autonomous learning of visual object representations and their grasp affordances on a robot-vision system. It segments objects by grasping and moving 3D scene features, and creates probabilistic visual representations for object detection, recognition and pose estimation...... image sequences as well as (3) a number of built-in behavioral modules on the one hand, and autonomous exploration on the other hand, the system is able to generate object and grasping knowledge through interaction with its environment....

  9. Deficits of reach-to-grasp coordination following stroke: Comparison of instructed and natural movements.

    Science.gov (United States)

    Baak, Benjamin; Bock, Otmar; Dovern, Anna; Saliger, Jochen; Karbe, Hans; Weiss, Peter H

    2015-10-01

    The present work evaluates whether stroke-induced deficits of reach-to-grasp movements, established by typical laboratory paradigms, transfer unconditionally to more natural situations. Sixteen patients with a stroke to the motor-dominant left hemisphere and 16 age- and gender-matched healthy control subjects executed grasping movements with their left (ipsilesional, non-dominant) hand. All movements started in the same position, were aimed at the same object positioned in the same location, and were followed by forward displacement of that object along the same path. Twenty movements were performed as a repetitive, externally triggered task executed for their own sake (context L, as in typical laboratory tasks). Twenty movements were performed as part of a self-initiated action sequence aimed at winning a reward (context E, similar to many everyday situations). The kinematics and dynamics of the transport, grasp and manipulation component of each reach-to-grasp movement were quantified by 41 parameters. Analyses of variance yielded a significant effect of Context for 29 parameters, a significant effect of Group for 9 parameters (mostly related to the coupling of hand transport and grip aperture), and a significant interaction for 5 parameters (all related to the coupling of hand transport and grip aperture). The interaction reflected the fact that stroke patients' movement parameters were more abnormal in context E than in context L. Our data indicate that unilateral stroke degrades the grasp-transport coupling, and that stroke-related motor deficits may be more pronounced in a natural than in a laboratory context. Thus, for stroke patients, assessments and rehabilitation regimes should mainly use activities that are as natural as possible. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. The topside ionospheric effective scale heights (HT) derived with ROCSAT-1 and ground-based Ionosonde observations at equatorial and mid-latitude stations

    Science.gov (United States)

    Ram Sudarsanam, Tulasi; Su, Shin-Yi; Liu, C. H.; Reinisch, Bodo

    In this study, we propose the assimilation of topside in situ electron density data from ROCSAT-1 satellite along with the ionosonde measurements for accurate determination of topside iono-spheric effective scale heights (HT) using -Chapman function. The reconstructed topside elec-tron density profiles using these scale heights exhibit an excellent similitude with Jicamarca Incoherent Scatter Radar (ISR) profiles, and are much better representations than the existing methods of Reinisch-Huang method and/or the empirical IRI-2007 model. The main advan-tage with this method is that it allows the precise determination of the effective scale height (HT) and the topside electron density profiles at a dense network of ionosonde/digisonde sta-tions where no ISR facilities are available. The demonstration of the method is applied by investigating the diurnal, seasonal and solar activity variations of HT over the dip-equatorial station Jicamarca and the mid-latitude station Grahamstown. The diurnal variation of scale heights over Jicamarca consistently exhibits a morning time descent followed by a minimum around 0700-0800 LT and a pronounced maximum at noon during all the seasons of both high and moderate solar activity periods. Further, the scale heights exhibit a secondary maximum during the post-sunset hours of equinoctial and summer months, whereas the post-sunset peak is absent during the winter months. These typical features are further investigated using the topside ion properties obtained by ROCSAT-1 as well as SAMI2 model simulations. The re-sults consistently indicate that the diurnal variation of the effective scale height (HT) does not closely follow the plasma temperature variation and at equatorial latitudes is largely controlled by the vertical ExB drift.

  11. The effects of extraction of pulpally involved primary teeth on weight, height and BMI in underweight Filipino children: a cluster randomized clinical trial

    NARCIS (Netherlands)

    Monse, B.; Duijster, D.; Sheiham, A.; Grijalva-Eternod, C.S.; van Palenstein Helderman, W.H.; Hobdell, M.H.

    2012-01-01

    Background: Severe dental caries and the treatment thereof are reported to affect growth and well-being of young children. The objective of this study was to assess the effects of extraction of severely decayed pulpally involved primary teeth on weight and height in underweight preschool Filipino

  12. Modelling primate control of grasping for robotics applications

    CSIR Research Space (South Africa)

    Kleinhans, A

    2014-09-01

    Full Text Available The neural circuits that control grasping and perform related visual processing have been studied extensively in Macaque monkeys. We are developing a computational model of this system, in order to better understand its function, and to explore...

  13. The contributions of vision and haptics to reaching and grasping

    Directory of Open Access Journals (Sweden)

    Kayla Dawn Stone

    2015-09-01

    Full Text Available This review aims to provide a comprehensive outlook on the sensory (visual and haptic contributions to reaching and grasping. The focus is on studies in developing children, normal and neuropsychological populations, and in sensory-deprived individuals. Studies have suggested a right-hand/left-hemisphere specialization for visually-guided grasping and a left-hand/right-hemisphere specialization for haptically-guided object recognition. This poses the interesting possibility that when vision is not available and grasping relies heavily on the haptic system, there is an advantage to use the left hand. We review the evidence for this possibility and dissect the unique contributions of the visual and haptic systems to grasping. We ultimately discuss how the integration of these two sensory modalities shape hand preference.

  14. Effect of submarine canyons on tsunami heights, currents and run-up off the southeast coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    JayaKumar, S.; ManiMurali, R.; Baldock, T.E.

    Tsunami numerical model studies are mostly focused on inundation and run-up onto the coast. Fewer studies have been aimed at investigating role of submarine canyons on the tsunami heights, currents and run-up. The influence of submarine canyons...

  15. Modelling the effect of suspended load transport and tidal asymmetry on the equilibrium tidal sand wave height

    NARCIS (Netherlands)

    van Gerwen, W.; Borsje, Bastiaan Wijnand; Damveld, Johan Hendrik; Hulscher, Suzanne J.M.H.

    2018-01-01

    Tidal sand waves are rhythmic bed forms found in shallow sandy coastal seas, reaching heights up to ten meters and migration rates of several meters per year. Because of their dynamic behaviour, unravelling the physical processes behind the growth of these bed forms is of particular interest to

  16. Decoding natural reach-and-grasp actions from human EEG

    Science.gov (United States)

    Schwarz, Andreas; Ofner, Patrick; Pereira, Joana; Ioana Sburlea, Andreea; Müller-Putz, Gernot R.

    2018-02-01

    Objective. Despite the high number of degrees of freedom of the human hand, most actions of daily life can be executed incorporating only palmar, pincer and lateral grasp. In this study we attempt to discriminate these three different executed reach-and-grasp actions utilizing their EEG neural correlates. Approach. In a cue-guided experiment, 15 healthy individuals were asked to perform these actions using daily life objects. We recorded 72 trials for each reach-and-grasp condition and from a no-movement condition. Main results. Using low-frequency time domain features from 0.3 to 3 Hz, we achieved binary classification accuracies of 72.4%, STD  ±  5.8% between grasp types, for grasps versus no-movement condition peak performances of 93.5%, STD  ±  4.6% could be reached. In an offline multiclass classification scenario which incorporated not only all reach-and-grasp actions but also the no-movement condition, the highest performance could be reached using a window of 1000 ms for feature extraction. Classification performance peaked at 65.9%, STD  ±  8.1%. Underlying neural correlates of the reach-and-grasp actions, investigated over the primary motor cortex, showed significant differences starting from approximately 800 ms to 1200 ms after the movement onset which is also the same time frame where classification performance reached its maximum. Significance. We could show that it is possible to discriminate three executed reach-and-grasp actions prominent in people’s everyday use from non-invasive EEG. Underlying neural correlates showed significant differences between all tested conditions. These findings will eventually contribute to our attempt of controlling a neuroprosthesis in a natural and intuitive way, which could ultimately benefit motor impaired end users in their daily life actions.

  17. An Intelligent Inference System for Robot Hand Optimal Grasp Preshaping

    Directory of Open Access Journals (Sweden)

    Cabbar Veysel Baysal

    2010-11-01

    Full Text Available This paper presents a novel Intelligent Inference System (IIS for the determination of an optimum preshape for multifingered robot hand grasping, given object under a manipulation task. The IIS is formed as hybrid agent architecture, by the synthesis of object properties, manipulation task characteristics, grasp space partitioning, lowlevel kinematical analysis, evaluation of contact wrench patterns via fuzzy approximate reasoning and ANN structure for incremental learning. The IIS is implemented in software with a robot hand simulation.

  18. Force Myography for Monitoring Grasping in Individuals with Stroke with Mild to Moderate Upper-Extremity Impairments: A Preliminary Investigation in a Controlled Environment

    Directory of Open Access Journals (Sweden)

    Gautam P. Sadarangani

    2017-07-01

    Full Text Available There is increasing research interest in technologies that can detect grasping, to encourage functional use of the hand as part of daily living, and thus promote upper-extremity motor recovery in individuals with stroke. Force myography (FMG has been shown to be effective for providing biofeedback to improve fine motor function in structured rehabilitation settings, involving isolated repetitions of a single grasp type, elicited at a predictable time, without upper-extremity movements. The use of FMG, with machine learning techniques, to detect and distinguish between grasping and no grasping, continues to be an active area of research, in healthy individuals. The feasibility of classifying FMG for grasp detection in populations with upper-extremity impairments, in the presence of upper-extremity movements, as would be expected in daily living, has yet to be established. We explore the feasibility of FMG for this application by establishing and comparing (1 FMG-based grasp detection accuracy and (2 the amount of training data necessary for accurate grasp classification, in individuals with stroke and healthy individuals. FMG data were collected using a flexible forearm band, embedded with six force-sensitive resistors (FSRs. Eight participants with stroke, with mild to moderate upper-extremity impairments, and eight healthy participants performed 20 repetitions of three tasks that involved reaching, grasping, and moving an object in different planes of movement. A validation sensor was placed on the object to label data as corresponding to a grasp or no grasp. Grasp detection performance was evaluated using linear and non-linear classifiers. The effect of training set size on classification accuracy was also determined. FMG-based grasp detection demonstrated high accuracy of 92.2% (σ = 3.5% for participants with stroke and 96.0% (σ = 1.6% for healthy volunteers using a support vector machine (SVM. The use of a training set that was 50

  19. Performance of a data-driven technique to changes in wave height and its effect on beach response

    Directory of Open Access Journals (Sweden)

    Jose M. Horrillo-Caraballo

    2016-01-01

    Full Text Available In this study the medium-term response of beach profiles was investigated at two sites: a gently sloping sandy beach and a steeper mixed sand and gravel beach. The former is the Duck site in North Carolina, on the east coast of the USA, which is exposed to Atlantic Ocean swells and storm waves, and the latter is the Milford-on-Sea site at Christchurch Bay, on the south coast of England, which is partially sheltered from Atlantic swells but has a directionally bimodal wave exposure. The data sets comprise detailed bathymetric surveys of beach profiles covering a period of more than 25 years for the Duck site and over 18 years for the Milford-on-Sea site. The structure of the data sets and the data-driven methods are described. Canonical correlation analysis (CCA was used to find linkages between the wave characteristics and beach profiles. The sensitivity of the linkages was investigated by deploying a wave height threshold to filter out the smaller waves incrementally. The results of the analysis indicate that, for the gently sloping sandy beach, waves of all heights are important to the morphological response. For the mixed sand and gravel beach, filtering the smaller waves improves the statistical fit and it suggests that low-height waves do not play a primary role in the medium-term morphological response, which is primarily driven by the intermittent larger storm waves.

  20. Performance of a data-driven technique applied to changes in wave height and its effect on beach response

    Directory of Open Access Journals (Sweden)

    José M. Horrillo-Caraballo

    2016-01-01

    Full Text Available In this study the medium-term response of beach profiles was investigated at two sites: a gently sloping sandy beach and a steeper mixed sand and gravel beach. The former is the Duck site in North Carolina, on the east coast of the USA, which is exposed to Atlantic Ocean swells and storm waves, and the latter is the Milford-on-Sea site at Christchurch Bay, on the south coast of England, which is partially sheltered from Atlantic swells but has a directionally bimodal wave exposure. The data sets comprise detailed bathymetric surveys of beach profiles covering a period of more than 25 years for the Duck site and over 18 years for the Milford-on-Sea site. The structure of the data sets and the data-driven methods are described. Canonical correlation analysis (CCA was used to find linkages between the wave characteristics and beach profiles. The sensitivity of the linkages was investigated by deploying a wave height threshold to filter out the smaller waves incrementally. The results of the analysis indicate that, for the gently sloping sandy beach, waves of all heights are important to the morphological response. For the mixed sand and gravel beach, filtering the smaller waves improves the statistical fit and it suggests that low-height waves do not play a primary role in the medium-term morphological response, which is primarily driven by the intermittent larger storm waves.

  1. Final height in survivors of childhood cancer compared with Height Standard Deviation Scores at diagnosis.

    Science.gov (United States)

    Knijnenburg, S L; Raemaekers, S; van den Berg, H; van Dijk, I W E M; Lieverst, J A; van der Pal, H J; Jaspers, M W M; Caron, H N; Kremer, L C; van Santen, H M

    2013-04-01

    Our study aimed to evaluate final height in a cohort of Dutch childhood cancer survivors (CCS) and assess possible determinants of final height, including height at diagnosis. We calculated standard deviation scores (SDS) for height at initial cancer diagnosis and height in adulthood in a cohort of 573 CCS. Multivariable regression analyses were carried out to estimate the influence of different determinants on height SDS at follow-up. Overall, survivors had a normal height SDS at cancer diagnosis. However, at follow-up in adulthood, 8.9% had a height ≤-2 SDS. Height SDS at diagnosis was an important determinant for adult height SDS. Children treated with (higher doses of) radiotherapy showed significantly reduced final height SDS. Survivors treated with total body irradiation (TBI) and craniospinal radiation had the greatest loss in height (-1.56 and -1.37 SDS, respectively). Younger age at diagnosis contributed negatively to final height. Height at diagnosis was an important determinant for height SDS at follow-up. Survivors treated with TBI, cranial and craniospinal irradiation should be monitored periodically for adequate linear growth, to enable treatment on time if necessary. For correct interpretation of treatment-related late effects studies in CCS, pre-treatment data should always be included.

  2. Development of a non-invasive, multifunctional grasp neuroprosthesis and its evaluation in an individual with a high spinal cord injury.

    Science.gov (United States)

    Rupp, Rüdiger; Kreilinger, Alex; Rohm, Martin; Kaiser, Vera; Müller-Putz, Gernot R

    2012-01-01

    Over the last decade the improvement of a missing hand function by application of neuroprostheses in particular the implantable Freehand system has been successfully shown in high spinal cord injured individuals. The clinically proven advantages of the Freehand system is its ease of use, the reproducible generation of two distinct functional grasp patterns and an analog control scheme based on movements of the contralateral shoulder. However, after the Freehand system is not commercially available for more than ten years, alternative grasp neuroprosthesis with a comparable functionality are still missing. Therefore, the aim of this study was to develop a non-invasive neuroprosthesis and to show that a degree of functional restoration can be provided to end users comparable to implanted devices. By introduction of an easy to handle forearm electrode sleeve the reproducible generation of two grasp patterns has been achieved. Generated grasp forces of the palmar grasp are in the range of the implanted system. Though pinch force of the lateral grasp is significantly lower, it can effectively used by a tetraplegic subject to perform functional tasks. The non-invasive grasp neuroprosthesis developed in this work may serve as an easy to apply and inexpensive way to restore a missing hand and finger function at any time after spinal cord injury.

  3. Injury-reduction effectiveness of prescribing running shoes on the basis of foot arch height: summary of military investigations.

    Science.gov (United States)

    Knapik, Joseph J; Trone, Daniel W; Tchandja, Juste; Jones, Bruce H

    2014-10-01

    Secondary analysis of 3 randomized controlled trials. Objective Analysis of studies that examined whether prescribing running shoes on the basis of foot arch height influenced injury risk during military basic training. Prior to 2007, running magazines and running-shoe companies suggested that imprints of the bottom of the feet (plantar shape) could be used as an indication of foot arch height and that this could be used to select individually appropriate types of running shoes. Similar studies were conducted in US Army (2168 men, 951 women), Air Force (1955 men, 718 women), and Marine Corps (840 men, 571 women) basic training. After foot examinations, recruits were randomized to either an experimental or a control group. Recruits in the experimental group selected or were assigned motion-control, stability, or cushioned shoes to match their plantar shape, which represented a low, medium, or high foot arch, respectively. The control group received a stability shoe regardless of plantar shape. Injuries during basic training were assessed from outpatient medical records. Meta-analyses that pooled results of the 3 investigations showed little difference between the experimental and control groups in the injury rate (injuries per 1000 person-days) for either men (summary rate ratio = 0.97; 95% confidence interval [CI]: 0.88, 1.06) or women (summary rate ratio = 0.97; 95% CI: 0.85, 1.08). When injury rates for specific types of running shoes were compared, there were no differences. Selecting running shoes based on arch height had little influence on injury risk in military basic training. Prevention, level 1b.

  4. Toward autonomous avian-inspired grasping for micro aerial vehicles

    International Nuclear Information System (INIS)

    Thomas, Justin; Loianno, Giuseppe; Polin, Joseph; Kumar, Vijay; Sreenath, Koushil

    2014-01-01

    Micro aerial vehicles, particularly quadrotors, have been used in a wide range of applications. However, the literature on aerial manipulation and grasping is limited and the work is based on quasi-static models. In this paper, we draw inspiration from agile, fast-moving birds such as raptors, that are able to capture moving prey on the ground or in water, and develop similar capabilities for quadrotors. We address dynamic grasping, an approach to prehensile grasping in which the dynamics of the robot and its gripper are significant and must be explicitly modeled and controlled for successful execution. Dynamic grasping is relevant for fast pick-and-place operations, transportation and delivery of objects, and placing or retrieving sensors. We show how this capability can be realized (a) using a motion capture system and (b) without external sensors relying only on onboard sensors. In both cases we describe the dynamic model, and trajectory planning and control algorithms. In particular, we present a methodology for flying and grasping a cylindrical object using feedback from a monocular camera and an inertial measurement unit onboard the aerial robot. This is accomplished by mapping the dynamics of the quadrotor to a level virtual image plane, which in turn enables dynamically-feasible trajectory planning for image features in the image space, and a vision-based controller with guaranteed convergence properties. We also present experimental results obtained with a quadrotor equipped with an articulated gripper to illustrate both approaches. (papers)

  5. Toward autonomous avian-inspired grasping for micro aerial vehicles.

    Science.gov (United States)

    Thomas, Justin; Loianno, Giuseppe; Polin, Joseph; Sreenath, Koushil; Kumar, Vijay

    2014-06-01

    Micro aerial vehicles, particularly quadrotors, have been used in a wide range of applications. However, the literature on aerial manipulation and grasping is limited and the work is based on quasi-static models. In this paper, we draw inspiration from agile, fast-moving birds such as raptors, that are able to capture moving prey on the ground or in water, and develop similar capabilities for quadrotors. We address dynamic grasping, an approach to prehensile grasping in which the dynamics of the robot and its gripper are significant and must be explicitly modeled and controlled for successful execution. Dynamic grasping is relevant for fast pick-and-place operations, transportation and delivery of objects, and placing or retrieving sensors. We show how this capability can be realized (a) using a motion capture system and (b) without external sensors relying only on onboard sensors. In both cases we describe the dynamic model, and trajectory planning and control algorithms. In particular, we present a methodology for flying and grasping a cylindrical object using feedback from a monocular camera and an inertial measurement unit onboard the aerial robot. This is accomplished by mapping the dynamics of the quadrotor to a level virtual image plane, which in turn enables dynamically-feasible trajectory planning for image features in the image space, and a vision-based controller with guaranteed convergence properties. We also present experimental results obtained with a quadrotor equipped with an articulated gripper to illustrate both approaches.

  6. Kinematic characteristics of tenodesis grasp in C6 quadriplegia.

    Science.gov (United States)

    Mateo, S; Revol, P; Fourtassi, M; Rossetti, Y; Collet, C; Rode, G

    2013-02-01

    Descriptive control case study. To analyze the kinematics of tenodesis grasp in participants with C6 quadriplegia and healthy control participants in a pointing task and two daily life tasks involving a whole hand grip (apple) or a lateral grip (floppy disk). France. Four complete participants with C6 quadriplegia were age matched with four healthy control participants. All participants were right-handed. The measured kinematic parameters were the movement time (MT), the peak velocity (PV), the time of PV (TPV) and the wrist angle in the sagittal plane at movement onset, at the TPV and at the movement end point. The participants with C6 quadriplegia had significantly longer MTs in both prehension tasks. No significant differences in TPV were found between the two groups. Unlike control participants, for both prehension tasks the wrist of participants with C6 quadriplegia was in a neutral position at movement onset, in flexion at the TPV, and in extension at the movement end point. Two main kinematic parameters characterize tenodesis grasp movements in C6 quadriplegics: wrist flexion during reaching and wrist extension during the grasping phase, and increased MT reflecting the time required to adjust the wrist's position to achieve the tenodesis grasp. These characteristics were observed for two different grips (whole hand and lateral grip). These results suggest sequential planning of reaching and tenodesis grasp, and should be taken into account for prehension rehabilitation in patients with quadriplegia.

  7. Grasp movement decoding from premotor and parietal cortex.

    Science.gov (United States)

    Townsend, Benjamin R; Subasi, Erk; Scherberger, Hansjörg

    2011-10-05

    Despite recent advances in harnessing cortical motor-related activity to control computer cursors and robotic devices, the ability to decode and execute different grasping patterns remains a major obstacle. Here we demonstrate a simple Bayesian decoder for real-time classification of grip type and wrist orientation in macaque monkeys that uses higher-order planning signals from anterior intraparietal cortex (AIP) and ventral premotor cortex (area F5). Real-time decoding was based on multiunit signals, which had similar tuning properties to cells in previous single-unit recording studies. Maximum decoding accuracy for two grasp types (power and precision grip) and five wrist orientations was 63% (chance level, 10%). Analysis of decoder performance showed that grip type decoding was highly accurate (90.6%), with most errors occurring during orientation classification. In a subsequent off-line analysis, we found small but significant performance improvements (mean, 6.25 percentage points) when using an optimized spike-sorting method (superparamagnetic clustering). Furthermore, we observed significant differences in the contributions of F5 and AIP for grasp decoding, with F5 being better suited for classification of the grip type and AIP contributing more toward decoding of object orientation. However, optimum decoding performance was maximal when using neural activity simultaneously from both areas. Overall, these results highlight quantitative differences in the functional representation of grasp movements in AIP and F5 and represent a first step toward using these signals for developing functional neural interfaces for hand grasping.

  8. Extensive experimental investigation of the effect of drainage height and solvent type on the stabilized drainage rate in vapour extraction (VAPEX) process

    OpenAIRE

    Mehdi Mohammadpoor; Farshid Torabi

    2015-01-01

    The low cost of the injected solvent, which can be also recovered and recycled, and the applicability of VAPEX technique in thin reservoirs are among the main advantages of VAPEX process compared to thermal heavy oil recovery techniques. In this research, an extensive experimental investigation is carried out to first evaluate the technical feasibility of utilization of various solvents for VAPEX process. Then the effect of drainage height on the stabilized drainage rate in VAPEX process was ...

  9. Grasp it loudly! Supporting actions with semantically congruent spoken action words.

    Directory of Open Access Journals (Sweden)

    Raphaël Fargier

    Full Text Available Evidence for cross-talk between motor and language brain structures has accumulated over the past several years. However, while a significant amount of research has focused on the interaction between language perception and action, little attention has been paid to the potential impact of language production on overt motor behaviour. The aim of the present study was to test whether verbalizing during a grasp-to-displace action would affect motor behaviour and, if so, whether this effect would depend on the semantic content of the pronounced word (Experiment I. Furthermore, we sought to test the stability of such effects in a different group of participants and investigate at which stage of the motor act language intervenes (Experiment II. For this, participants were asked to reach, grasp and displace an object while overtly pronouncing verbal descriptions of the action ("grasp" and "put down" or unrelated words (e.g. "butterfly" and "pigeon". Fine-grained analyses of several kinematic parameters such as velocity peaks revealed that when participants produced action-related words their movements became faster compared to conditions in which they did not verbalize or in which they produced words that were not related to the action. These effects likely result from the functional interaction between semantic retrieval of the words and the planning and programming of the action. Therefore, links between (action language and motor structures are significant to the point that language can refine overt motor behaviour.

  10. Effect of sleep deprivation on the epithelial height of the prostatic acini in rats and the protective effects of omega 3 fatty acids

    International Nuclear Information System (INIS)

    Mahmood, N.; Butt, S.A.; Hamid, S.

    2017-01-01

    Objective: To study the protective role of omega 3 fatty acids (omg 3 FAs) on the histomorphological changes in the height of the prostatic epithelium in rats induced by sleep deprivation. Study Design: Lab based randomized control trial. Place and Duration of Study: The study was conducted at Anatomy Department, Army Medical College, Rawalpindi, in collaboration with National Institute of Health (NIH), Rawalpindi for duration of one year, from Nov 2014 to Nov 2015. Material and Methods: Thirty male Sprague Dawley rats, 3-4 months of age with average weights of 200-300 grams (gm) were divided in three groups each having 10 rats. Group A served as control with standard lab diet and regular sleep -wake cycle. Group B was subjected to sleep deprivation of 16 hours followed by a sleep window of 8 hrs daily for 2 months and group C was administrated with omg 3 fatty acids (FAs) and was sleep deprived as group B for 2 months. At the end of the experimental period rats were anesthetized and their blood sample was drawn for hormonal assay. They were dissected and the prostate gland was removed and fixed in 10 percent formalin. Five micrometer (mu m) sections were obtained after tissue processing and stained with haematoxylin and eosin (H and E) for histological study. Results: Microscopic examination revealed that the epithelium of glandular acini was columnar in group A. Marked decrease in the height of cells was observed in group B whereas the epithelium was nearly cuboidal in group C. Conclusion: It was concluded that sleep deprivation had deleterious effects on the epithelium of the prostatic acini and that Omega 3 fatty acids had a protective effect on the epithelium of the prostatic acini. (author)

  11. Immediate movement history influences reach-to-grasp action selection in children and adults.

    Science.gov (United States)

    Kent, Samuel W; Wilson, Andrew D; Plumb, Mandy S; Williams, Justin H G; Mon-Williams, Mark

    2009-01-01

    Action selection is subject to many biases. Immediate movement history is one such bias seen in young infants. Is this bias strong enough to affect adult behavior? Adult participants reached and grasped a cylinder positioned to require either pronation or supination of the hand. Successive cylinder positions changed either randomly or systematically between trials. Random positioning led to optimized economy of movement. In contrast, systematic changes in position biased action selection toward previously selected actions at the expense of movement economy. Thus, one switches to a new movement only when the savings outweigh the costs of the switch. Immediate movement history had an even larger influence on children aged 7-15 years. This suggests that switching costs are greater in children, which is consistent with their reduced grasping experience. The presence of this effect in adults suggests that immediate movement history exerts a more widespread and pervasive influence on patterns of action selection than researchers had previously recognized.

  12. Measurement of the heat transfer coefficient in the dimpled channel: effects of dimple arrangement and channel height

    International Nuclear Information System (INIS)

    Shin, So Min; Lee, Ki Seon; Park, Seoung Duck; Kwak, Jae Su

    2009-01-01

    Heat transfer coefficients were measured in a channel with one side dimpled surface. The sphere type dimples were fabricated, and the diameter (D) and the depth of dimple was 16 mm and 4 mm, respectively. Two channel heights of about 0.6D and 1.2D, two dimple configurations were tested. The Reynolds number based on the channel hydraulic diameter was varied from 30000 to 50000. The improved hue detection based transient liquid crystal technique was used in the heat transfer measurement. Heat transfer measurement results showed that high heat transfer was induced downstream of the dimples due to flow reattachment. Due to the flow recirculation on the upstream side in the dimple, the heat transfer coefficient was very low. As the Reynolds increased, the overall heat transfer coefficients also increased. With the same dimple arrangement, the heat transfer coefficients and the thermal performance factors were higher for the lower channel height. As the distance between the dimples became smaller, the overall heat transfer coefficient and the thermal performance factors increased

  13. Mena–GRASP65 interaction couples actin polymerization to Golgi ribbon linking

    Science.gov (United States)

    Tang, Danming; Zhang, Xiaoyan; Huang, Shijiao; Yuan, Hebao; Li, Jie; Wang, Yanzhuang

    2016-01-01

    In mammalian cells, the Golgi reassembly stacking protein 65 (GRASP65) has been implicated in both Golgi stacking and ribbon linking by forming trans-oligomers through the N-terminal GRASP domain. Because the GRASP domain is globular and relatively small, but the gaps between stacks are large and heterogeneous, it remains puzzling how GRASP65 physically links Golgi stacks into a ribbon. To explore the possibility that other proteins may help GRASP65 in ribbon linking, we used biochemical methods and identified the actin elongation factor Mena as a novel GRASP65-binding protein. Mena is recruited onto the Golgi membranes through interaction with GRASP65. Depleting Mena or disrupting actin polymerization resulted in Golgi fragmentation. In cells, Mena and actin were required for Golgi ribbon formation after nocodazole washout; in vitro, Mena and microfilaments enhanced GRASP65 oligomerization and Golgi membrane fusion. Thus Mena interacts with GRASP65 to promote local actin polymerization, which facilitates Golgi ribbon linking. PMID:26538023

  14. Application of a sensor fusion algorithm for improving grasping stability

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Hyeon; Yoon, Hyun Suck; Moon, Hyung Pil; Choi, Hyouk Ryeol; Koo Ja Choon [Sungkyunkwan University, Suwon (Korea, Republic of)

    2015-07-15

    A robot hand normally employees various sensors that are packaged in small form factor, perform with delicately accurate, and cost mostly very expensive. Grasping operation of the hand relies especially on accuracy of those sensors. Even with a set of advanced sensory systems embedded in a robot hand, securing a stable grasping is still challenging task. The present work makes an attempt to improve force sensor accuracy by applying sensor fusion method. An optimal weight value sensor fusion method formulated with Kalman filters is presented and tested in the work. Using a set of inexpensive sensors, the work achieves a reliable force sensing and applies the enhanced sensor stability to an object pinch grasping.

  15. Application of a sensor fusion algorithm for improving grasping stability

    International Nuclear Information System (INIS)

    Kim, Jae Hyeon; Yoon, Hyun Suck; Moon, Hyung Pil; Choi, Hyouk Ryeol; Koo Ja Choon

    2015-01-01

    A robot hand normally employees various sensors that are packaged in small form factor, perform with delicately accurate, and cost mostly very expensive. Grasping operation of the hand relies especially on accuracy of those sensors. Even with a set of advanced sensory systems embedded in a robot hand, securing a stable grasping is still challenging task. The present work makes an attempt to improve force sensor accuracy by applying sensor fusion method. An optimal weight value sensor fusion method formulated with Kalman filters is presented and tested in the work. Using a set of inexpensive sensors, the work achieves a reliable force sensing and applies the enhanced sensor stability to an object pinch grasping.

  16. Finite-size effects in the short-time height distribution of the Kardar-Parisi-Zhang equation

    Science.gov (United States)

    Smith, Naftali R.; Meerson, Baruch; Sasorov, Pavel

    2018-02-01

    We use the optimal fluctuation method to evaluate the short-time probability distribution P(H, L, t) of height at a single point, H=h(x=0, t) , of the evolving Kardar-Parisi-Zhang (KPZ) interface h(x, t) on a ring of length 2L. The process starts from a flat interface. At short times typical (small) height fluctuations are unaffected by the KPZ nonlinearity and belong to the Edwards-Wilkinson universality class. The nonlinearity, however, strongly affects the (asymmetric) tails of P(H) . At large L/\\sqrt{t} the faster-decaying tail has a double structure: it is L-independent, -\\lnP˜≤ft\\vert H\\right\\vert 5/2/t1/2 , at intermediately large \\vert H\\vert , and L-dependent, -\\lnP˜ ≤ft\\vert H\\right\\vert 2L/t , at very large \\vert H\\vert . The transition between these two regimes is sharp and, in the large L/\\sqrt{t} limit, behaves as a fractional-order phase transition. The transition point H=Hc+ depends on L/\\sqrt{t} . At small L/\\sqrt{t} , the double structure of the faster tail disappears, and only the very large-H tail, -\\lnP˜ ≤ft\\vert H\\right\\vert 2L/t , is observed. The slower-decaying tail does not show any L-dependence at large L/\\sqrt{t} , where it coincides with the slower tail of the GOE Tracy-Widom distribution. At small L/\\sqrt{t} this tail also has a double structure. The transition between the two regimes occurs at a value of height H=Hc- which depends on L/\\sqrt{t} . At L/\\sqrt{t} \\to 0 the transition behaves as a mean-field-like second-order phase transition. At \\vert H\\vert c-\\vert the slower tail behaves as -\\lnP˜ ≤ft\\vert H\\right\\vert 2L/t , whereas at \\vert H\\vert >\\vert H_c-\\vert it coincides with the slower tail of the GOE Tracy-Widom distribution.

  17. Grasping convergent evolution in syngnathids: a unique tale of tails

    Science.gov (United States)

    Neutens, C; Adriaens, D; Christiaens, J; De Kegel, B; Dierick, M; Boistel, R; Van Hoorebeke, L

    2014-01-01

    Seahorses and pipehorses both possess a prehensile tail, a unique characteristic among teleost fishes, allowing them to grasp and hold onto substrates such as sea grasses. Although studies have focused on tail grasping, the pattern of evolutionary transformations that made this possible is poorly understood. Recent phylogenetic studies show that the prehensile tail evolved independently in different syngnathid lineages, including seahorses, Haliichthys taeniophorus and several types of so-called pipehorses. This study explores the pattern that characterizes this convergent evolution towards a prehensile tail, by comparing the caudal musculoskeletal organization, as well as passive bending capacities in pipefish (representing the ancestral state), pipehorse, seahorse and H. taeniophorus. To study the complex musculoskeletal morphology, histological sectioning, μCT-scanning and phase contrast synchrotron scanning were combined with virtual 3D-reconstructions. Results suggest that the independent evolution towards tail grasping in syngnathids reflects at least two quite different strategies in which the ancestral condition of a heavy plated and rigid system became modified into a highly flexible one. Intermediate skeletal morphologies (between the ancestral condition and seahorses) could be found in the pygmy pipehorses and H. taeniophorus, which are phylogenetically closely affiliated with seahorses. This study suggests that the characteristic parallel myoseptal organization as already described in seahorse (compared with a conical organization in pipefish and pipehorse) may not be a necessity for grasping, but represents an apomorphy for seahorses, as this pattern is not found in other syngnathid species possessing a prehensile tail. One could suggest that the functionality of grasping evolved before the specialized, parallel myoseptal organization seen in seahorses. However, as the grasping system in pipehorses is a totally different one, this cannot be

  18. Ground Robotic Hand Applications for the Space Program study (GRASP)

    Science.gov (United States)

    Grissom, William A.; Rafla, Nader I. (Editor)

    1992-01-01

    This document reports on a NASA-STDP effort to address research interests of the NASA Kennedy Space Center (KSC) through a study entitled, Ground Robotic-Hand Applications for the Space Program (GRASP). The primary objective of the GRASP study was to identify beneficial applications of specialized end-effectors and robotic hand devices for automating any ground operations which are performed at the Kennedy Space Center. Thus, operations for expendable vehicles, the Space Shuttle and its components, and all payloads were included in the study. Typical benefits of automating operations, or augmenting human operators performing physical tasks, include: reduced costs; enhanced safety and reliability; and reduced processing turnaround time.

  19. Software engineering capability for Ada (GRASP/Ada Tool)

    Science.gov (United States)

    Cross, James H., II

    1995-01-01

    The GRASP/Ada project (Graphical Representations of Algorithms, Structures, and Processes for Ada) has successfully created and prototyped a new algorithmic level graphical representation for Ada software, the Control Structure Diagram (CSD). The primary impetus for creation of the CSD was to improve the comprehension efficiency of Ada software and, as a result, improve reliability and reduce costs. The emphasis has been on the automatic generation of the CSD from Ada PDL or source code to support reverse engineering and maintenance. The CSD has the potential to replace traditional prettyprinted Ada Source code. A new Motif compliant graphical user interface has been developed for the GRASP/Ada prototype.

  20. The GRASP project - a multidisciplinary study of hydrology and biogeochemistry in a periglacial catchment area

    Science.gov (United States)

    Johansson, Emma; Lindborg, Tobias

    2017-04-01

    The Arctic region is sensitive to global warming, and permafrost thaw and release of old carbon are examples of processes that may have a positive feedback effect to the global climate system. Quantification and assumptions on future change are often based on model predictions. Such models require cross-disciplinary data of high quality that often is lacking. Biogeochemical processes in the landscape are highly influenced by the hydrology, which in turn is intimately related to permafrost processes. Thus, a multidisciplinary approach is needed when collecting data and setting up field experiments aiming at increase the understanding of these processes. Here we summarize and present data collected in the GRASP, Greenland Analogue Surface Project. GRASP is a catchment-scale field study of the periglacial area in the Kangerlussuaq region, West Greenland, focusing on hydrological and biogeochemical processes in the landscape. The site investigations were initiated in 2010 and have since then resulted in three separate data sets published in ESSD (Earth system and Science Data) each one focusing on i) meteorological data and hydrology, ii) biogeochemistry and iii) geometries of sediments and the active layer. The three data-sets, which are freely available via the PANGAEA data base, enable conceptual and coupled numerical modeling of hydrological and biogeochemical processes. An important strength with the GRASP data is that all data is collected within the same, relatively small, catchment area. This implies that measurements are more easily linked to the right source area or process. Despite the small catchment area it includes the major units of the periglacial hydrological system; a lake, a talik, a supra- and subpermafrost aquifer and, consequently, biogeochemical processes in each of these units may be studied. The new data from GRASP is both used with the aim to increase the knowledge of present day periglacial hydrology and biogeochemistry but also in order to

  1. Left neglected, but only in far space: Spatial biases in healthy participants revealed in a visually-guided grasping task

    Directory of Open Access Journals (Sweden)

    Natalie ede Bruin

    2014-01-01

    Full Text Available Hemispatial neglect is a common outcome of stroke that is characterised by the inability to orient towards, and attend to stimuli in contralesional space. It is established that hemispatial neglect has a perceptual component, however, the presence and severity of motor impairments is controversial. Establishing the nature of space use and spatial biases during visually-guided actions amongst healthy individuals is critical to understanding the presence of visuomotor deficits in patients with neglect. Accordingly, three experiments were conducted to investigate the effect of object spatial location on patterns of grasping. Experiment 1 required right-handed participants to reach and grasp for blocks in order to construct 3D models. The blocks were scattered on a tabletop divided into equal size quadrants: left near, left far, right near, and right far. Identical sets of building blocks were available in each quadrant. Space use was dynamic, with participants initially grasping blocks from right near space and tending to ‘neglect’ left far space until the final stages of the task. Experiment 2 repeated the protocol with left-handed participants. Remarkably, left-handed participants displayed a similar pattern of space use to right-handed participants. In Experiment 3 eye movements were examined to investigate whether ‘neglect’ for grasping in left far reachable space had its origins in attentional biases. It was found that patterns of eye movements mirrored patterns of reach-to-grasp movements. We conclude that there are spatial biases during visually-guided grasping, specifically, a tendency to neglect left far reachable space, and that this ‘neglect’ is attentional in origin. The results raise the possibility that visuomotor impairments reported among patients with right hemisphere lesions when working in contralesional space may result in part from this inherent tendency to ‘neglect’ left far space irrespective of the presence

  2. Temporary Nerve Block at Selected Digits Revealed Hand Motor Deficits in Grasping Tasks

    Directory of Open Access Journals (Sweden)

    Aude Carteron

    2016-11-01

    Full Text Available Peripheral sensory feedback plays a crucial role in ensuring correct motor execution throughout hand grasp control. Previous studies utilized local anesthesia to deprive somatosensory feedback in the digits or hand, observations included sensorimotor deficits at both corticospinal and peripheral levels. However, the questions of how the disturbed and intact sensory input integrate and interact with each other to assist the motor program execution, and whether the motor coordination based on motor output variability between affected and non-affected elements (e.g., digits becomes interfered by the local sensory deficiency, have not been answered. The current study aims to investigate the effect of peripheral deafferentation through digital nerve blocks at selective digits on motor performance and motor coordination in grasp control. Our results suggested that the absence of somatosensory information induced motor deficits in hand grasp control, as evidenced by reduced maximal force production ability in both local and non-local digits, impairment of force and moment control during object lift and hold, and attenuated motor synergies in stabilizing task performance variables, namely the tangential force and moment of force. These findings implied that individual sensory input is shared across all the digits and the disturbed signal from local sensory channel(s has a more comprehensive impact on the process of the motor output execution in the sensorimotor integration process. Additionally, a feedback control mechanism with a sensation-based component resides in the formation process for the motor covariation structure.

  3. Effect of Aspect Ratio, Channel Orientation, Rib Pitch-to-Height Ratio, and Number of Ribbed Walls on Pressure Drop Characteristics in a Rotating Channel with Detached Ribs

    Directory of Open Access Journals (Sweden)

    K. Arun

    2007-01-01

    Full Text Available The present work involves experimental investigation of the effects of aspect ratio, channel orientation angle, rib pitch-to-height ratio (P/e, and number of ribbed walls on friction factor in orthogonally rotating channel with detached ribs. The ribs are separated from the base wall to provide a small region of flow between the base wall and the ribs. Experiments have been conducted at Reynolds number ranging from 10000–17000 with rotation numbers varying from 0–0.38. Pitch-to-rib height ratios (P/e of 5 and 10 at constant rib height-to-hydraulic diameter ratio (e/D of 0.1 and a clearance ratio (C/e of 0.38 are considered. The rib angle of attack with respect to mainstream flow is 90∘. The channel orientation at which the ribbed wall becomes trailing surface (pressure side on which the Coriolis force acts is considered as the 0∘ orientation angle. For one-wall ribbed case, channel is oriented from 0∘ to 180∘ about its axis in steps of 30∘ to change the orientation angle. For two-wall ribbed case, the orientation angle is changed from 0∘ to 90∘ in steps of 30∘. Friction factors for the detached ribbed channels are compared with the corresponding attached ribbed channel. It is found that in one-wall detached ribbed channel, increase in the friction factor ratio with the orientation angle is lower for rectangular channel compared to that of square channel for both the pitch-to-rib height ratios of 5 and 10 at a given Reynolds number and rotation number. Friction factor ratios of two-wall detached ribbed rectangular channel are comparable with corresponding two-wall detached ribbed square channel both under stationary and rotating conditions.

  4. Effects of Boundary Layer Height on the Model of Ground-Level PM2.5 Concentrations from AOD: Comparison of Stable and Convective Boundary Layer Heights from Different Methods

    Directory of Open Access Journals (Sweden)

    Zengliang Zang

    2017-06-01

    Full Text Available The aerosol optical depth (AOD from satellites or ground-based sun photometer spectral observations has been widely used to estimate ground-level PM2.5 concentrations by regression methods. The boundary layer height (BLH is a popular factor in the regression model of AOD and PM2.5, but its effect is often uncertain. This may result from the structures between the stable and convective BLHs and from the calculation methods of the BLH. In this study, the boundary layer is divided into two types of stable and convective boundary layer, and the BLH is calculated using different methods from radiosonde data and National Centers for Environmental Prediction (NCEP reanalysis data for the station in Beijing, China during 2014–2015. The BLH values from these methods show significant differences for both the stable and convective boundary layer. Then, these BLHs were introduced into the regression model of AOD-PM2.5 to seek the respective optimal BLH for the two types of boundary layer. It was found that the optimal BLH for the stable boundary layer is determined using the method of surface-based inversion, and the optimal BLH for the convective layer is determined using the method of elevated inversion. Finally, the optimal BLH and other meteorological parameters were combined to predict the PM2.5 concentrations using the stepwise regression method. The results indicate that for the stable boundary layer, the optimal stepwise regression model includes the factors of surface relative humidity, BLH, and surface temperature. These three factors can significantly enhance the prediction accuracy of ground-level PM2.5 concentrations, with an increase of determination coefficient from 0.50 to 0.68. For the convective boundary layer, however, the optimal stepwise regression model includes the factors of BLH and surface wind speed. These two factors improve the determination coefficient, with a relatively low increase from 0.65 to 0.70. It is found that the

  5. Development of prosthesis grasp control systems on a robotic testbed

    NARCIS (Netherlands)

    Peerdeman, B.; Fabrizi, Ugo; Palli, Gianluca; Melchiorri, Claudio; Stramigioli, Stefano; Misra, Sarthak

    2012-01-01

    Modern myoelectric hand prostheses continue to increase in functionality, while their control is constrained by the limits of myoelectric input. This paper covers the development and testing of grasp control systems for multifunctional myoelectric prosthetic hands. The functionality of modern hand

  6. Hand Preference for Precision Grasping Predicts Language Lateralization

    Science.gov (United States)

    Gonzalez, Claudia L. R.; Goodale, Melvyn A.

    2009-01-01

    We investigated whether or not there is a relationship between hand preference for grasping and hemispheric dominance for language--and how each of these is related to other traditional measures of handedness. To do this we asked right- and left-handed participants to put together two different sets of 3D puzzles made out of big or very small…

  7. Grasping with mechanical intelligence. M.S. Thesis

    Science.gov (United States)

    Ulrich, Nathan Thatcher

    1988-01-01

    Many robotic hands have been designed and a number have been built. Because of the difficulty of controlling and using complex hands, which usually have nine or more degrees of freedom, the simple one- or two-degree-of-freedom gripper is still the most common robotic end effector. A new category of device is presented: a medium-complexity end effector. With three to five degrees of freedom, such a tool is much easier to control and use, as well as more economical, compact and lightweight than complex hands. In order to increase the versatility, it was necessary to identify grasping primitives and to implement them in the mechanism. In addition, power and enveloping grasps are stressed over fingertip and precision grasps. The design is based upon analysis of object apprehension types, requisite characteristics for active sensing, and a determination of necessary environmental interactions. Contained are the general concepts necessary to the design of a medium-complexity end effector, an analysis of typical performance, and a computer simulation of a grasp planning algorithm specific to this type of mechanism. Finally, some details concerning the UPenn Hand-a tool designed for the research laboratory-are presented.

  8. Improvement and Neuroplasticity after Combined Rehabilitation to Forced Grasping

    Directory of Open Access Journals (Sweden)

    Michiko Arima

    2017-01-01

    Full Text Available The grasp reflex is a distressing symptom but the need to treat or suppress it has rarely been discussed in the literature. We report the case of a 17-year-old man who had suffered cerebral infarction of the right putamen and temporal lobe 10 years previously. Forced grasping of the hemiparetic left upper limb was improved after a unique combined treatment. Botulinum toxin type A (BTX-A was first injected into the left biceps, wrist flexor muscles, and finger flexor muscles. Forced grasping was reduced along with spasticity of the upper limb. In addition, repetitive facilitative exercise and object-related training were performed under low-amplitude continuous neuromuscular electrical stimulation. Since this 2-week treatment improved upper limb function, we compared brain activities, as measured by near-infrared spectroscopy during finger pinching, before and after the combined treatment. Brain activities in the ipsilesional sensorimotor cortex (SMC and medial frontal cortex (MFC during pinching under electrical stimulation after treatment were greater than those before. The results suggest that training under electrical stimulation after BTX-A treatment may modulate the activities of the ipsilesional SMC and MFC and lead to functional improvement of the affected upper limb with forced grasping.

  9. Modeling the shape hierarchy for visually guided grasping

    CSIR Research Space (South Africa)

    Rezai, O

    2014-10-01

    Full Text Available The monkey anterior intraparietal area (AIP) encodes visual information about three-dimensional object shape that is used to shape the hand for grasping. We modeled shape tuning in visual AIP neurons and its relationship with curvature and gradient...

  10. Task Requirements Influence Sensory Integration during Grasping in Humans

    Science.gov (United States)

    Safstrom, Daniel; Edin, Benoni B.

    2004-01-01

    The sensorimotor transformations necessary for generating appropriate motor commands depend on both current and previously acquired sensory information. To investigate the relative impact (or weighting) of visual and haptic information about object size during grasping movements, we let normal subjects perform a task in which, unbeknownst to the…

  11. Saccadic updating of object orientation for grasping movements

    NARCIS (Netherlands)

    Selen, L.P.J.; Medendorp, W.P.

    2011-01-01

    Reach and grasp movements are a fundamental part of our daily interactions with the environment. This spatially-guided behavior is often directed to memorized objects because of intervening eye movements that caused them to disappear from sight. How does the brain store and maintain the spatial

  12. Development of Object and Grasping Knowledge by Robot Exploration

    DEFF Research Database (Denmark)

    Kraft, Dirk; Detry, Renaud; Pugeault, Nicolas

    2010-01-01

    We describe a bootstrapping cognitive robot system that—mainly based on pure exploration—acquires rich object representations and associated object-specific grasp affordances. Such bootstrapping becomes possible by combining innate competences and behaviours by which the system gradually enriches...

  13. The Sliced Pineapple Grid Feature for Predicting Grasping Affordances

    DEFF Research Database (Denmark)

    Thomsen, Mikkel Tang; Kraft, Dirk; Krüger, Norbert

    2017-01-01

    The problem of grasping unknown objects utilising vision is addressed in this work by introducing a novel feature, the Sliced Pineapple Grid Feature (SPGF). The SPGF encode semi-local surfaces and allows for distinguishing structures such as “walls”,“edges” and “rims”. These structures are shown...

  14. Vision-based autonomous grasping of unknown piled objects

    International Nuclear Information System (INIS)

    Johnson, R.K.

    1994-01-01

    Computer vision techniques have been used to develop a vision-based grasping capability for autonomously picking and placing unknown piled objects. This work is currently being applied to the problem of hazardous waste sorting in support of the Department of Energy's Mixed Waste Operations Program

  15. An electromyographic analysis of two handwriting grasp patterns.

    Science.gov (United States)

    de Almeida, Pedro Henrique Tavares Queiroz; da Cruz, Daniel Marinho Cezar; Magna, Luis Alberto; Ferrigno, Iracema Serrat Vergotti

    2013-08-01

    Handwriting is a fundamental skill needed for the development of daily-life activities during lifetime and can be performed using different forms to hold the writing object. In this study, we monitored the sEMG activity of trapezius, biceps brachii, extensor carpi radialis brevis and flexor digitorum superficialis during a handwriting task with two groups of subjects using different grasp patterns. Twenty-four university students (thirteen males and eleven females; mean age of 22.04±2.8years) were included in this study. We randomly invited 12 subjects that used the Dynamic Tripod grasp and 12 subjects that used the Static Tripod grasp. The static tripod group showed statistically significant changes in the sEMG activity of trapezium and biceps brachii muscles during handwriting when compared to dynamic tripod group's subjects. No significant differences were found in extensor carpi radialis brevis and flexor digitorum superficialis activities among the two groups. The findings in this study suggest an increased activity of proximal muscles among subjects using a transitional grasp, indicating potential higher energy expenditure and muscular harm with the maintenance of this motor pattern in handwriting tasks, especially during the progression in academic life. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Effect of Channel Orientation and Rib Pitch-to-Height Ratio on Pressure Drop in a Rotating Square Channel with Ribs on Two Opposite Surfaces

    Directory of Open Access Journals (Sweden)

    Prabhu S. V.

    2005-01-01

    Full Text Available The effect of channel orientation and rib pitch-to-height ratio on the pressure drop distribution in a rib-roughened channel is an important issue in turbine blade cooling. The present investigation is a study of the overall pressure drop distribution in a square cross-sectioned channel, with rib turbulators, rotating about an axis normal to the free stream. The ribs are configured in a symmetric arrangement on two opposite surfaces with a rib angle of 90 ∘ to the mainstream flow. The study has been conducted for three Reynolds numbers, namely, 13 000, 17 000, and 22 000 with the rotation number varying from 0– 0.38 . Experiments have been carried out for various rib pitch-to-height ratios ( P/e with a constant rib height-to-hydraulic diameter ratio ( e/D of 0.1 . The test section in which the ribs are placed on the leading and trailing surfaces is considered as the base case ( orientation angle= 0 ∘ , Coriolis force vector normal to the ribbed surfaces. The channel is turned about its axis in steps of 15 ∘ to vary the orientation angle from 0 ∘ to 90 ∘ . The overall pressure drop does not change considerably under conditions of rotation for the base case. However, for the other cases tested, it is observed that the overall pressure drop increases with an increase in the rotation number for a given orientation angle and also increases with an increase in the orientation angle for a given rotation number. This change is attributed to the variation in the separation zone downstream of the ribs due to the presence of the Coriolis force—local pressure drop data is presented which supports this idea. At an orientation angle of 90 ∘ (ribs on the top and bottom surfaces, Coriolis force vector normal to the smooth surfaces, the overall pressure drop is observed to be maximum during rotation. The overall pressure drop for a case with a rib pitch-to-height ratio of 5 on both surfaces is found to be the highest

  17. Bimanual reach to grasp movements after cervical spinal cord injury.

    Directory of Open Access Journals (Sweden)

    Laura Britten

    Full Text Available Injury to the cervical spinal cord results in bilateral deficits in arm/hand function reducing functional independence and quality of life. To date little research has been undertaken to investigate control strategies of arm/hand movements following cervical spinal cord injury (cSCI. This study aimed to investigate unimanual and bimanual coordination in patients with acute cSCI using 3D kinematic analysis as they performed naturalistic reach to grasp actions with one hand, or with both hands together (symmetrical task, and compare this to the movement patterns of uninjured younger and older adults. Eighteen adults with a cSCI (mean 61.61 years with lesions at C4-C8, with an American Spinal Injury Association (ASIA grade B to D and 16 uninjured younger adults (mean 23.68 years and sixteen uninjured older adults (mean 70.92 years were recruited. Participants with a cSCI produced reach-to-grasp actions which took longer, were slower, and had longer deceleration phases than uninjured participants. These differences were exacerbated during bimanual reach-to-grasp tasks. Maximal grasp aperture was no different between groups, but reached earlier by people with cSCI. Participants with a cSCI were less synchronous than younger and older adults but all groups used the deceleration phase for error correction to end the movement in a synchronous fashion. Overall, this study suggests that after cSCI a level of bimanual coordination is retained. While there seems to be a greater reliance on feedback to produce both the reach to grasp, we observed minimal disruption of the more impaired limb on the less impaired limb. This suggests that bimanual movements should be integrated into therapy.

  18. Sequential phosphorylation of GRASP65 during mitotic Golgi disassembly

    Directory of Open Access Journals (Sweden)

    Danming Tang

    2012-09-01

    GRASP65 phosphorylation during mitosis and dephosphorylation after mitosis are required for Golgi disassembly and reassembly during the cell cycle. At least eight phosphorylation sites on GRASP65 have been identified, but whether they are modified in a coordinated fashion during mitosis is so far unknown. In this study, we raised phospho-specific antibodies that recognize phosphorylated T220/T224, S277 and S376 residues of GRASP65, respectively. Biochemical analysis showed that cdc2 phosphorylates all three sites, while plk1 enhances the phosphorylation. Microscopic studies using these antibodies for double and triple labeling demonstrate sequential phosphorylation and dephosphorylation during the cell cycle. S277 and S376 are phosphorylated from late G2 phase through metaphase until telophase when the new Golgi is reassembled. T220/224 is not modified until prophase, but is highly modified from prometaphase to anaphase. In metaphase, phospho-T220/224 signal localizes on both Golgi haze and mitotic Golgi clusters that represent dispersed Golgi vesicles and Golgi remnants, respectively, while phospho-S277 and S376 labeling is more concentrated on mitotic Golgi clusters. Expression of a phosphorylation-resistant GRASP65 mutant T220A/T224A inhibited mitotic Golgi fragmentation to a much larger extent than the expression of the S277A and S376A mutants. In cytokinesis, T220/224 dephosphorylation occurs prior to that of S277, but after S376. This study provides evidence that GRASP65 is sequentially phosphorylated and dephosphorylated during mitosis at different sites to orchestrate Golgi disassembly and reassembly during cell division, with phosphorylation of the T220/224 site being most critical in the process.

  19. Barrier height and interface effect of Pt-n-GaN and Pd-n-GaN Schottky diodes

    International Nuclear Information System (INIS)

    Khan, M.R.H.; Saha, S.L.; Sawaki, N.

    1999-01-01

    Schottky barriers on n-type GaN films by Pt and Pd are fabricated and characterized. A thin Pt or Pd layer is deposited on n-GaN layers to form Schottky contacts in a vacuum below 1x10/sup -6/ Torr. The area of all diodes is 3.46 x 10-4 cm/sup 2/. Several samples of Pt-n GaN and Pd-n GaN were studied. The ideality factor of Pt-n-GaN diode is 1.26 and of Pd-n-GaN is 1.17. The breakdown voltage of Pt-n-GaN and Pd-n-GaN diodes is 21 V and 26 V respectively. In both the cases the leakage current varies between 1x10-9 A and 5x 10-9 A. The Schottky barrier heights (phi/sub B/ ) of Pt-GaN diode is been determined to be 1.02 eV by current voltage (I-V) and 1.07 eV by capacitance (C-V) measurements Also, phi/sub B/ of Pd-GaN diode is determined to be 0.91 eV by I-V and 0.98 eV, by C-V measurements. The departure of the values of the ideality factor is considered to be due to spatial inhomogeneities at the meal semiconductor interface. The difference in the values of phi/sub B/ determined by I-V and C-V measurements is attributed to the deformation of the spatial barrier distribution. (author)

  20. Resolving conflicts in task demands during balance recovery: does holding an object inhibit compensatory grasping?

    Science.gov (United States)

    Bateni, Hamid; Zecevic, Aleksandra; McIlroy, William E; Maki, Brian E

    2004-07-01

    The ability to reach and "grasp" (grip or touch) structures for support in reaction to instability is an important element of the postural repertoire. It is unclear, however, how the central nervous system (CNS) resolves the potential conflict between holding an object and the need to release the held object and grasp alternative support, particularly if the held object is perceived to be relevant to the task of stabilizing the body, e.g. an assistive device. This study examined whether compensatory grasping is inhibited when holding an object, and whether the influence differs when holding an assistive device (cane) versus a task-irrelevant object (top handle portion of a cane). We also investigated the influence of preloading the assistive device, to determine whether conflicting demands for arm-muscle activation (requiring disengagement of ongoing agonist or antagonist activity) would influence the inhibition of compensatory grasping. Unpredictable forward and backward platform translations were used to evoke the balancing reactions in 16 healthy young adults. A handrail was mounted to the right and foot motion was constrained by barriers, with the intent that successful balance recovery would (in large-perturbation trials) require subjects to release the held object and contact the rail with the right hand. Results showed that grasping reactions were commonly used to recover equilibrium when the hand was free (rail contact in 71% of large-perturbation trials). However, holding either the cane or canetop had a potent modulating effect: although early biceps activation was almost never inhibited completely (significant activity within 200 ms in 98% of trials), the average activation amplitude was attenuated by 30-64% and the average frequency of handrail contact was reduced by a factor of two or more. This reduced use of the rail occurred even though the consequence often involved falling against a safety harness or barriers. Handrail contact occurred least

  1. ESTIMATION OF GRASPING TORQUE USING ROBUST REACTION TORQUE OBSERVER FOR ROBOTIC FORCEPS

    OpenAIRE

    塚本, 祐介

    2015-01-01

    Abstract— In this paper, the estimation of the grasping torque of robotic forceps without the use of a force/torque sensor is discussed. To estimate the grasping torque when the robotic forceps driven by a rotary motor with a reduction gear grasps an object, a novel robust reaction torque observer is proposed. In the case where a conventional reaction force/torque observer is applied, the estimated torque includes not only the grasping torque, namely the reaction torque, but also t...

  2. Lucas Heights technology park

    International Nuclear Information System (INIS)

    1987-01-01

    The proposed Lucas Heights Technology Park will pound together the applied research programs of Government, tertiary and industry sectors, aiming to foster technology transfer particularly to the high-technology manufacturing industry. A description of the site is given along with an outline of the envisaged development, existing facilities and expertise. ills

  3. A numerical study on the effects of wave-current-surge interactions on the height and propagation of sea surface waves in Charleston Harbor during Hurricane Hugo 1989

    Science.gov (United States)

    Liu, Huiqing; Xie, Lian

    2009-06-01

    The effects of wave-current interactions on ocean surface waves induced by Hurricane Hugo in and around the Charleston Harbor and its adjacent coastal waters are examined by using a three-dimensional (3D) wave-current coupled modeling system. The 3D storm surge modeling component of the coupled system is based on the Princeton Ocean Model (POM), the wave modeling component is based on the third generation wave model, Simulating WAves Nearshore (SWAN), and the inundation model is adopted from [Xie, L., Pietrafesa, L. J., Peng, M., 2004. Incorporation of a mass-conserving inundation scheme into a three-dimensional storm surge model. J. Coastal Res., 20, 1209-1223]. The results indicate that the change of water level associated with the storm surge is the primary cause for wave height changes due to wave-surge interaction. Meanwhile, waves propagating on top of surge cause a feedback effect on the surge height by modulating the surface wind stress and bottom stress. This effect is significant in shallow coastal waters, but relatively small in offshore deep waters. The influence of wave-current interaction on wave propagation is relatively insignificant, since waves generally propagate in the direction of the surface currents driven by winds. Wave-current interactions also affect the surface waves as a result of inundation and drying induced by the storm. Waves break as waters retreat in regions of drying, whereas waves are generated in flooded regions where no waves would have occurred without the flood water.

  4. Shoe collar height effect on athletic performance, ankle joint kinematics and kinetics during unanticipated maximum-effort side-cutting performance.

    Science.gov (United States)

    Lam, Gilbert Wing Kai; Park, Eun Jung; Lee, Ki-Kwang; Cheung, Jason Tak-Man

    2015-01-01

    Side-step cutting manoeuvres comprise the coordination between planting and non-planting legs. Increased shoe collar height is expected to influence ankle biomechanics of both legs and possibly respective cutting performance. This study examined the shoe collar height effect on kinematics and kinetics of planting and non-planting legs during an unanticipated side-step cutting. Fifteen university basketball players performed maximum-effort side-step cutting to the left 45° direction or a straight ahead run in response to a random light signal. Seven successful cutting trials were collected for each condition. Athletic performance, ground reaction force, ankle kinematics and kinetics of both legs were analysed using paired t-tests. Results indicated that high-collar shoes resulted in less ankle inversion and external rotation during initial contact for the planting leg. The high-collar shoes also exhibited a smaller ankle range of motion in the sagittal and transverse planes for both legs, respectively. However, no collar effect was found for ankle moments and performance indicators including cutting performance time, ground contact time, propulsion ground reaction forces and impulses. These findings indicated that high-collar shoes altered ankle positioning and restricted ankle joint freedom movements in both legs, while no negative effect was found for athletic cutting performance.

  5. Posture of the arm when grasping spheres to place them elsewhere

    NARCIS (Netherlands)

    Schot, W.D.; Brenner, E.; Smeets, J.B.J.

    2010-01-01

    Despite the infinitely many ways to grasp a spherical object, regularities have been observed in the posture of the arm and the grasp orientation. In the present study, we set out to determine the factors that predict the grasp orientation and the final joint angles of reach-tograsp movements.

  6. Compound effects of inhaling pure oxygen and lifting height on ear baric function in a hypobaric chamber

    Directory of Open Access Journals (Sweden)

    Dong-qing WEN

    2017-02-01

    24h after the tests, the increase of individual frequency pure-tone threshold was significantly higher in pure oxygen group than in air group (P<0.05. Conclusion Breathing pure oxygen and lifting height could increase the screening degree of ear baric function test in hypobaric chamber, and have greater influence on degree of tympanic congestion, acoustic immittance and pure-tone auditory threshold in 24 hours. DOI: 10.11855/j.issn.0577-7402.2017.01.14

  7. Effect of ski geometry and standing height on kinetic energy: equipment designed to reduce risk of severe traumatic injuries in alpine downhill ski racing

    Science.gov (United States)

    Gilgien, Matthias; Spörri, Jörg; Kröll, Josef; Müller, Erich

    2016-01-01

    Background Injuries in downhill (DH) are often related to high speed and, therefore, to high energy and forces which are involved in injury situations. Yet to date, no study has investigated the effect of ski geometry and standing height on kinetic energy (EKIN) in DH. This knowledge would be essential to define appropriate equipment rules that have the potential to protect the athletes’ health. Methods During a field experiment on an official World Cup DH course, 2 recently retired world class skiers skied on 5 different pairs of skis varying in width, length and standing height. Course characteristics, terrain and the skiers’ centre of mass position were captured by a differential Global Navigational Satellite System-based methodology. EKIN, speed, ski–snow friction force (FF), ground reaction force (FGRF) and ski–snow friction coefficient (CoeffF) were calculated and analysed in dependency of the used skis. Results In the steep terrain, longer skis with reduced width and standing height significantly decreased average EKIN by ∼3%. Locally, even larger reductions of EKIN were observed (up to 7%). These local decreases in EKIN were mainly explainable by higher FF. Moreover, CoeffF differences seem of greater importance for explaining local FF differences than the differences in FGRF. Conclusions Knowing that increased speed and EKIN likely lead to increased forces in fall/crash situations, the observed equipment-induced reduction in EKIN can be considered a reasonable measure to improve athlete safety, even though the achieved preventative gains are rather small and limited to steep terrain. PMID:26702013

  8. Effect of ski geometry and standing height on kinetic energy: equipment designed to reduce risk of severe traumatic injuries in alpine downhill ski racing.

    Science.gov (United States)

    Gilgien, Matthias; Spörri, Jörg; Kröll, Josef; Müller, Erich

    2016-01-01

    Injuries in downhill (DH) are often related to high speed and, therefore, to high energy and forces which are involved in injury situations. Yet to date, no study has investigated the effect of ski geometry and standing height on kinetic energy (EKIN) in DH. This knowledge would be essential to define appropriate equipment rules that have the potential to protect the athletes' health. During a field experiment on an official World Cup DH course, 2 recently retired world class skiers skied on 5 different pairs of skis varying in width, length and standing height. Course characteristics, terrain and the skiers' centre of mass position were captured by a differential Global Navigational Satellite System-based methodology. EKIN, speed, ski-snow friction force (FF), ground reaction force (FGRF) and ski-snow friction coefficient (CoeffF) were calculated and analysed in dependency of the used skis. In the steep terrain, longer skis with reduced width and standing height significantly decreased average EKIN by ∼ 3%. Locally, even larger reductions of EKIN were observed (up to 7%). These local decreases in EKIN were mainly explainable by higher FF. Moreover, CoeffF differences seem of greater importance for explaining local FF differences than the differences in FGRF. Knowing that increased speed and EKIN likely lead to increased forces in fall/crash situations, the observed equipment-induced reduction in EKIN can be considered a reasonable measure to improve athlete safety, even though the achieved preventative gains are rather small and limited to steep terrain. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  9. Heritability of adult body height

    DEFF Research Database (Denmark)

    Silventoinen, Karri; Sammalisto, Sampo; Perola, Markus

    2003-01-01

    /unique environment (AE) model. Among women the heritability estimates were generally lower than among men with greater variation between countries, ranging from 0.68 to 0.84 when an additive genes/shared environment/unique environment (ACE) model was used. In four populations where an AE model fit equally well...... countries; body height was least in Italy (177 cm in men and 163 cm in women) and greatest in the Netherlands (184 cm and 171 cm, respectively). In men there was no corresponding variation in heritability of body height, heritability estimates ranging from 0.87 to 0.93 in populations under an additive genes...... or better, heritability ranged from 0.89 to 0.93. This difference between the sexes was mainly due to the effect of the shared environmental component of variance, which appears to be more important among women than among men in our study populations. Our results indicate that, in general, there are only...

  10. APTCARE - Lucas Heights

    International Nuclear Information System (INIS)

    1986-05-01

    This plan details command co-ordination and support responses of Commonwealth and State Authorities in the event of an accident with offsite consequences at the Lucas Heights Research Laboratories. The plan has been prepared by the AAEC Local Liaison Working Party, comprising representatives of the Australian Atomic Energy Commission, NSW Police Department, NSW Board of Fire Commissioners, NSW State Emergency Services and Civil Defence Organisation, NSW Department of Health, NSW Department of Environment and Planning and Sutherland Shire Council

  11. The effect of low birth weight on height, weight and behavioral outcomes in the medium-run

    DEFF Research Database (Denmark)

    Datta Gupta, Nabanita; Deding, Mette; Lausten, Mette

    2013-01-01

    as physical growth at ages 6 months, 3½, 7½ and 11 years using data from the Danish Longitudinal Survey of Children. Observing the same children at different points in time enabled us to chart the evolution of anthropometric and behavioral deficits among children born with low birth weight and helped......A number of studies have documented negative long term effects of low birth weight. Yet, not much is known about the dynamics of the process leading to adverse health and educational outcomes in the long run. While previous studies focusing mainly on LBW effects on physical growth and cognitive...... outcomes have found effects of the same size at both school age and young adulthood, others have found a diminishing negative effect over time. The purpose of this paper was to bring new evidence to this issue by analyzing the medium run effects of low birth weight on child behavioral outcomes as well...

  12. Grounded Object and Grasp Representations in a Cognitive Architecture

    DEFF Research Database (Denmark)

    Kraft, Dirk

    developed. This work presents a system that is able to learn autonomously about objects and applicable grasps in an unknown environment through exploratory manipulation and to then use this grounded knowledge in a planning setup to address complex tasks. A set of different subsystems is needed to achieve....... The topics are ordered so that we proceed from the more general integration works towards the works describing the individual components. The first chapter gives an overview over the system that is able to learn a grounded visual object representation and a grounded grasp representation. In the following...... part, we describe how this grounding procedures can be embedded in a three cognitive level architecture. Our initial work to use a tactile sensor to enrichen the object representations as well as allow for more complex actions is presented here as well. Since our system is concerned with learning about...

  13. Extensive experimental investigation of the effect of drainage height and solvent type on the stabilized drainage rate in vapour extraction (VAPEX process

    Directory of Open Access Journals (Sweden)

    Mehdi Mohammadpoor

    2015-09-01

    Full Text Available The low cost of the injected solvent, which can be also recovered and recycled, and the applicability of VAPEX technique in thin reservoirs are among the main advantages of VAPEX process compared to thermal heavy oil recovery techniques. In this research, an extensive experimental investigation is carried out to first evaluate the technical feasibility of utilization of various solvents for VAPEX process. Then the effect of drainage height on the stabilized drainage rate in VAPEX process was studied by conducting series of experiments in two large-scale 2D VAPEX models of 24.5 cm and 47.5 cm heights. Both models were packed with low permeability Ottawa sand (#530 and saturated with a heavy oil sample from Saskatchewan heavy oil reservoirs with viscosity of 5650 mPa s. Propane, butane, methane, carbon dioxide, propane/carbon dioxide (70%/30% and propane/methane (70%/30% were considered as respective solvents for the experiments, and a total of twelve VAPEX tests were carried out. Moreover, separate experiments were carried out at the end of each VAPEX experiment to measure the asphaltene precipitation at various locations of the VAPEX models. It was found that injecting propane would result in the highest drainage rate and oil recovery factor. Further analysis of results showed stabilized drainage rate significantly increased in the larger physical model.

  14. The Synthesis of Force Closure Grasps in the Plane.

    Science.gov (United States)

    1985-09-01

    TASK U Artificial Inteligence Laboratory AREA A WORK UN IT "NMUIERS ~( 545 Technology Square Cambridge, MA 02139 SI. CONTROLLING OFICE NAME ANO... ARTIFICIAL INThLLIX’ ENCE LABORATORY A. 1. Memo 861 September, 1985 The Synthesis of Force-Closure Grasps In the Plane DTIC ’VeL% ,#ECTE 1 VnDcNguyenU Abstract... Artificial In- telligenmcc Liabomatory of thle Massachuset Is hInsttute of Teclhnolog3 . Support for the Lahoratot * s Artificial Intelligence research is

  15. An Aircraft Service Staff Rostering using a Hybrid GRASP Algorithm

    OpenAIRE

    Cho, Vincent; Wu, Gene Pak Kit; Ip, W.H.

    2009-01-01

    The aircraft ground service company is responsible for carrying out the regular tasks to aircraft maintenace between their arrival at and departure from the airport. This paper presents the application of a hybrid approach based upon greedy randomized adaptive search procedure (GRASP) for rostering technical staff such that they are assigned predefined shift patterns. The rostering of staff is posed as an optimization problem with an aim of minimizing the violations of hard and soft constrain...

  16. Modeling task-specific neuronal ensembles improves decoding of grasp

    Science.gov (United States)

    Smith, Ryan J.; Soares, Alcimar B.; Rouse, Adam G.; Schieber, Marc H.; Thakor, Nitish V.

    2018-06-01

    Objective. Dexterous movement involves the activation and coordination of networks of neuronal populations across multiple cortical regions. Attempts to model firing of individual neurons commonly treat the firing rate as directly modulating with motor behavior. However, motor behavior may additionally be associated with modulations in the activity and functional connectivity of neurons in a broader ensemble. Accounting for variations in neural ensemble connectivity may provide additional information about the behavior being performed. Approach. In this study, we examined neural ensemble activity in primary motor cortex (M1) and premotor cortex (PM) of two male rhesus monkeys during performance of a center-out reach, grasp and manipulate task. We constructed point process encoding models of neuronal firing that incorporated task-specific variations in the baseline firing rate as well as variations in functional connectivity with the neural ensemble. Models were evaluated both in terms of their encoding capabilities and their ability to properly classify the grasp being performed. Main results. Task-specific ensemble models correctly predicted the performed grasp with over 95% accuracy and were shown to outperform models of neuronal activity that assume only a variable baseline firing rate. Task-specific ensemble models exhibited superior decoding performance in 82% of units in both monkeys (p  <  0.01). Inclusion of ensemble activity also broadly improved the ability of models to describe observed spiking. Encoding performance of task-specific ensemble models, measured by spike timing predictability, improved upon baseline models in 62% of units. Significance. These results suggest that additional discriminative information about motor behavior found in the variations in functional connectivity of neuronal ensembles located in motor-related cortical regions is relevant to decode complex tasks such as grasping objects, and may serve the basis for more

  17. Accuracy of recumbent height measurement.

    Science.gov (United States)

    Gray, D S; Crider, J B; Kelley, C; Dickinson, L C

    1985-01-01

    Since many patients requiring specialized nutritional support are bedridden, measurement of height for purposes of nutritional assessment or prescription must often be done with the patient in bed. This study examined the accuracy of measuring body height in bed in the supine position. Two measurements were performed on 108 ambulatory inpatients: (1) standing height using a standard height-weight scale, and (2) bed height using a flexible tape. Patients were divided into four groups based on which of two researchers performed each of the two measurements. Each patient was also weighed and self-reported height, weight, sex, and age were recorded. Bed height was significantly longer than standing height by 3.68 cm, but the two measurements were equally precise. It was believed, however, that this 2% difference was probably not clinically significant in most circumstances. Bed height correlated highly with standing height (r = 0.95), and the regression equation was standing height = 13.82 +/- 0.09 bed height. Patients overestimated their heights. Heights recorded by nurses were more accurate when patients were measured than when asked about their heights, but the patients were more often asked than measured.

  18. Linear and nonlinear subspace analysis of hand movements during grasping.

    Science.gov (United States)

    Cui, Phil Hengjun; Visell, Yon

    2014-01-01

    This study investigated nonlinear patterns of coordination, or synergies, underlying whole-hand grasping kinematics. Prior research has shed considerable light on roles played by such coordinated degrees-of-freedom (DOF), illuminating how motor control is facilitated by structural and functional specializations in the brain, peripheral nervous system, and musculoskeletal system. However, existing analyses suppose that the patterns of coordination can be captured by means of linear analyses, as linear combinations of nominally independent DOF. In contrast, hand kinematics is itself highly nonlinear in nature. To address this discrepancy, we sought to to determine whether nonlinear synergies might serve to more accurately and efficiently explain human grasping kinematics than is possible with linear analyses. We analyzed motion capture data acquired from the hands of individuals as they grasped an array of common objects, using four of the most widely used linear and nonlinear dimensionality reduction algorithms. We compared the results using a recently developed algorithm-agnostic quality measure, which enabled us to assess the quality of the dimensional reductions that resulted by assessing the extent to which local neighborhood information in the data was preserved. Although qualitative inspection of this data suggested that nonlinear correlations between kinematic variables were present, we found that linear modeling, in the form of Principle Components Analysis, could perform better than any of the nonlinear techniques we applied.

  19. Are we real when we fake? Attunement to object weight in natural and pantomimed grasping movements

    Directory of Open Access Journals (Sweden)

    Caterina Ansuini

    2016-09-01

    Full Text Available Behavioural and neuropsychological studies suggest that real actions and pantomimed actions tap, at least in part, different neural systems. Inspired by studies showing weight-attunement in real grasps, here we asked whether (and to what extent kinematics of pantomimed reach-to-grasp movement can reveal the weight of the pretended target. To address this question, we instructed participants (n =15 either to grasp or pretend to grasp towards two differently weighted objects, i.e., a light object and heavy object. Using linear discriminant analysis, we then proceeded to classify the weight of the target – either real or pretended – on the basis of the recorded movement patterns. Classification analysis revealed that pantomimed reach-to-grasp movements retained information about object weight, although to a lesser extent than real grasp movements. These results are discussed in relation to the mechanisms underlying the control of real and pantomimed grasping movements.

  20. Writing forces associated with four pencil grasp patterns in grade 4 children.

    Science.gov (United States)

    Schwellnus, Heidi; Carnahan, Heather; Kushki, Azadeh; Polatajko, Helene; Missiuna, Cheryl; Chau, Tom

    2013-01-01

    OBJECTIVE. We investigated differences in handwriting kinetics, speed, and legibility among four pencil grasps after a 10-min copy task. METHOD. Seventy-four Grade 4 students completed a handwriting assessment before and after a copy task. Grip and axial forces were measured with an instrumented stylus and force-sensitive tablet. We used multiple linear regression to analyze the relationship between grasp pattern and grip and axial forces. RESULTS. We found no kinetic differences among grasps, whether considered individually or grouped by the number of fingers on the barrel. However, when grasps were grouped according to the thumb position, the adducted grasps exhibited higher mean grip and axial forces. CONCLUSION. Grip forces were generally similar across the different grasps. Kinetic differences resulting from thumb position seemed to have no bearing on speed and legibility. Interventions for handwriting difficulties should focus more on speed and letter formation than on grasp pattern. Copyright © 2013 by the American Occupational Therapy Association, Inc.

  1. Final height and intrauterine growth retardation.

    Science.gov (United States)

    Tauber, Maïthé

    2017-06-01

    Approximately 10% of small for gestational age (SGA) children maintain a small body size throughout childhood and often into adult life with a decreased pubertal spurt. Growth hormone (GH) therapy increases short-term growth in a dose-dependent manner and adult height had now been well documented. Shorter children might benefit from a higher dose at start (50μg/kg/day). The response to GH treatment was similar for both preterm and term short SGA groups and the effect of GH treatment on adult height showed a wide variation in growth response. As a whole, mean adult height is higher than -2 SDS in 60% of patients and 70% reached an adult height in their target height with better results with higher doses and combined GnRH analog therapy in those who were short at onset of puberty. Copyright © 2017. Published by Elsevier Masson SAS.

  2. GRASPING THE NATURE OF POTENTIALLY HAZARDOUS ASTEROIDS

    Energy Technology Data Exchange (ETDEWEB)

    Perna, D.; Barucci, M. A.; Fornasier, S.; Deshapriya, J. D. P. [LESIA—Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ. Paris 06, Univ. Paris Diderot, Sorbonne Paris Cité, 5 place Jules Janssen, F-92195 Meudon (France); Dotto, E.; Ieva, S.; Epifani, E. Mazzotta [INAF—Osservatorio Astronomico di Roma, Via Frascati 33, I-00040 Monte Porzio Catone (Roma) (Italy); Bernardi, F. [SpaceDyS, via Mario Giuntini 63, I-56023 Cascina (Pisa) (Italy); Luise, F. De [INAF—Osservatorio Astronomico di Teramo, via Mentore Maggini snd, I-64100 Teramo (Italy); Perozzi, E. [Deimos Space, Strada Buchesti 75-77, Bucharest (Romania); Rossi, A. [IFAC—CNR, via Madonna del Piano 10, I-50019 Sesto Fiorentino (Firenze) (Italy); Micheli, M., E-mail: davide.perna@obspm.fr [ESA—NEOCC, ESRIN, via Galileo Galilei 64, I-00044 Frascati (Rome) (Italy)

    2016-01-15

    Through their delivery of water and organics, near-Earth objects (NEOs) played an important role in the emergence of life on our planet.  However, they also pose a hazard to the Earth, as asteroid impacts could significantly affect our civilization. Potentially hazardous asteroids (PHAs) are those that, in principle, could possibly impact the Earth within the next century, producing major damage. About 1600 PHAs are currently known, from an estimated population of 4700 ± 1450. However, a comprehensive characterization of the PHA physical properties is still missing. Here we present spectroscopic observations of 14 PHAs, which we have used to derive their taxonomy, meteorite analogs, and mineralogy. Combining our results with the literature, we investigated how PHAs are distributed as a function of their dynamical and physical properties. In general, the “carbonaceous” PHAs seem to be particularly threatening, because of their high porosity (limiting the effectiveness of the main deflection techniques that could be used in space) and low inclination and minimum orbit intersection distance (MOID) with the Earth (favoring more frequent close approaches). V-type PHAs also present low MOID values, which can produce frequent close approaches (as confirmed by the recent discovery of a limited space weathering on their surfaces). We also identified those specific objects that deserve particular attention because of their extreme rotational properties, internal strength, or possible cometary nature. For PHAs and NEOs in general, we identified a possible anti-correlation between the elongation and the rotational period, in the range of P{sub rot} ≈ 5–80 hr. This would be compatible with the behavior of gravity-dominated aggregates in rotational equilibrium. For periods ≳80–90 hr, such a trend stops, possibly under the influence of the YORP effect and collisions. However, the statistics is very low, and further observational and theoretical work is required

  3. A fingertip force prediction model for grasp patterns characterised from the chaotic behaviour of EEG.

    Science.gov (United States)

    Roy, Rinku; Sikdar, Debdeep; Mahadevappa, Manjunatha; Kumar, C S

    2018-05-19

    A stable grasp is attained through appropriate hand preshaping and precise fingertip forces. Here, we have proposed a method to decode grasp patterns from motor imagery and subsequent fingertip force estimation model with a slippage avoidance strategy. We have developed a feature-based classification of electroencephalography (EEG) associated with imagination of the grasping postures. Chaotic behaviour of EEG for different grasping patterns has been utilised to capture the dynamics of associated motor activities. We have computed correlation dimension (CD) as the feature and classified with "one against one" multiclass support vector machine (SVM) to discriminate between different grasping patterns. The result of the analysis showed varying classification accuracies at different subband levels. Broad categories of grasping patterns, namely, power grasp and precision grasp, were classified at a 96.0% accuracy rate in the alpha subband. Furthermore, power grasp subtypes were classified with an accuracy of 97.2% in the upper beta subband, whereas precision grasp subtypes showed relatively lower 75.0% accuracy in the alpha subband. Following assessment of fingertip force distributions while grasping, a nonlinear autoregressive (NAR) model with proper prediction of fingertip forces was proposed for each grasp pattern. A slippage detection strategy has been incorporated with automatic recalibration of the regripping force. Intention of each grasp pattern associated with corresponding fingertip force model was virtualised in this work. This integrated system can be utilised as the control strategy for prosthetic hand in the future. The model to virtualise motor imagery based fingertip force prediction with inherent slippage correction for different grasp types ᅟ.

  4. Memory for target height is scaled to observer height.

    Science.gov (United States)

    Twedt, Elyssa; Crawford, L Elizabeth; Proffitt, Dennis R

    2012-04-01

    According to the embodied approach to visual perception, individuals scale the environment to their bodies. This approach highlights the central role of the body for immediate, situated action. The present experiments addressed whether body scaling--specifically, eye-height scaling--occurs in memory when action is not immediate. Participants viewed standard targets that were either the same height as, taller than, or shorter than themselves. Participants then viewed a comparison target and judged whether the comparison was taller or shorter than the standard target. Participants were most accurate when the standard target height matched their own heights, taking into account postural changes. Participants were biased to underestimate standard target height, in general, and to push standard target height away from their own heights. These results are consistent with the literature on eye-height scaling in visual perception and suggest that body scaling is not only a useful metric for perception and action, but is also preserved in memory.

  5. Effect of field cooling heights on the levitation force of pure and starch/polystyrene/MWCNT added bulk MgB{sub 2} superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Tripathi, D.; Dey, T.K., E-mail: tapasdey@hijli.iitkgp.ernet.in

    2014-12-15

    Highlights: • Levitation force between PM and starch/PS/MWCNT added MgB{sub 2} are studied in FC mode. • MgB{sub 2} added with 1 wt.% PS gives best result. • Levitation forces do not display hysteresis during ascending and descending mode. • Exponential variation in Max. Levitation (F{sub MLF}) and attractive forces (F{sub MAF}). • The gap between PM and SC for F{sub MAF} and F{sub 0AF} varies linearly with FC height. - Abstract: A series of MgB{sub 2} pellets with and without addition of carbon from different sources (viz. starch, polystyrene and carbon nanotubes) have been synthesized by solid state reaction under argon atmosphere. XRD analysis indicates a decrease in lattice parameters of MgB{sub 2} with addition of starch, polystyrene (PS) and MWCNT and confirms substitution of carbon in boron sites. The presence of nanosized carbon inclusions between the grain boundaries in the present set of samples is evident in TEM photographs. Resistivity data confirms a decrease in superconducting transition temperature (T{sub c0}) for MgB{sub 2} doped with starch/PS/MWCNT. The effect of different field cooling heights (H{sub IFC}) at 20 K on maximum levitation force (F{sub MLF}) and maximum attractive force (F{sub MAF}) of pure MgB{sub 2} and MgB{sub 2} doped with starch/PS/MWCNT have been investigated. Except for MWCNT, doping of starch and PS in MgB{sub 2} is found to improve F{sub MLF} and F{sub MAF} and the best result is obtained for MgB{sub 2} doped with 1 wt.% PS. Levitation force measured as a function of decreasing initial field cooling height indicates exponential dependence of both maximum levitation force (F{sub MLF}) and maximum attractive force (F{sub MAF}). However, the gap distance between PM and the sample (H{sub 0AF} and H{sub MAF}) corresponding to maximum attractive force (F{sub MAF}) and zero attractive force (F{sub 0AF}) varies linearly and their difference remains constant. This constancy in (H{sub MAF} − H{sub 0AF}) is understood in

  6. Decoding Grasping Movements from the Parieto-Frontal Reaching Circuit in the Nonhuman Primate.

    Science.gov (United States)

    Nelissen, Koen; Fiave, Prosper Agbesi; Vanduffel, Wim

    2018-04-01

    Prehension movements typically include a reaching phase, guiding the hand toward the object, and a grip phase, shaping the hand around it. The dominant view posits that these components rely upon largely independent parieto-frontal circuits: a dorso-medial circuit involved in reaching and a dorso-lateral circuit involved in grasping. However, mounting evidence suggests a more complex arrangement, with dorso-medial areas contributing to both reaching and grasping. To investigate the role of the dorso-medial reaching circuit in grasping, we trained monkeys to reach-and-grasp different objects in the dark and determined if hand configurations could be decoded from functional magnetic resonance imaging (MRI) responses obtained from the reaching and grasping circuits. Indicative of their established role in grasping, object-specific grasp decoding was found in anterior intraparietal (AIP) area, inferior parietal lobule area PFG and ventral premotor region F5 of the lateral grasping circuit, and primary motor cortex. Importantly, the medial reaching circuit also conveyed robust grasp-specific information, as evidenced by significant decoding in parietal reach regions (particular V6A) and dorsal premotor region F2. These data support the proposed role of dorso-medial "reach" regions in controlling aspects of grasping and demonstrate the value of complementing univariate with more sensitive multivariate analyses of functional MRI (fMRI) data in uncovering information coding in the brain.

  7. Force coordination in static manipulation tasks performed using standard and non-standard grasping techniques.

    Science.gov (United States)

    de Freitas, Paulo B; Jaric, Slobodan

    2009-04-01

    We evaluated coordination of the hand grip force (GF; normal component of the force acting at the hand-object contact area) and load force (LF; the tangential component) in a variety of grasping techniques and two LF directions. Thirteen participants exerted a continuous sinusoidal LF pattern against externally fixed handles applying both standard (i.e., using either the tips of the digits or the palms; the precision and palm grasps, respectively) and non-standard grasping techniques (using wrists and the dorsal finger areas; the wrist and fist grasp). We hypothesized (1) that the non-standard grasping techniques would provide deteriorated indices of force coordination when compared with the standard ones, and (2) that the nervous system would be able to adjust GF to the differences in friction coefficients of various skin areas used for grasping. However, most of the indices of force coordination remained similar across the tested grasping techniques, while the GF adjustments for the differences in friction coefficients (highest in the palm and the lowest in the fist and wrist grasp) provided inconclusive results. As hypothesized, GF relative to the skin friction was lowest in the precision grasp, but highest in the palm grasp. Therefore, we conclude that (1) the elaborate coordination of GF and LF consistently seen across the standard grasping techniques could be generalized to the non-standard ones, while (2) the ability to adjust GF using the same grasping technique to the differences in friction of various objects cannot be fully generalized to the GF adjustment when different grasps (i.e., hand segments) are used to manipulate the same object. Due to the importance of the studied phenomena for understanding both the functional and neural control aspects of manipulation, future studies should extend the current research to the transient and dynamic tasks, as well as to the general role of friction in our mechanical interactions with the environment.

  8. Visual Field Preferences of Object Analysis for Grasping with One Hand

    Directory of Open Access Journals (Sweden)

    Ada eLe

    2014-10-01

    Full Text Available When we grasp an object using one hand, the opposite hemisphere predominantly guides the motor control of grasp movements (Davare et al. 2007; Rice et al. 2007. However, it is unclear whether visual object analysis for grasp control relies more on inputs (a from the contralateral than the ipsilateral visual field, (b from one dominant visual field regardless of the grasping hand, or (c from both visual fields equally. For bimanual grasping of a single object we have recently demonstrated a visual field preference for the left visual field (Le and Niemeier 2013a, 2013b, consistent with a general right-hemisphere dominance for sensorimotor control of bimanual grasps (Le et al., 2013. But visual field differences have never been tested for unimanual grasping. Therefore, here we asked right-handed participants to fixate to the left or right of an object and then grasp the object either with their right or left hand using a precision grip. We found that participants grasping with their right hand performed better with objects in the right visual field: maximum grip apertures (MGAs were more closely matched to the object width and were smaller than for objects in the left visual field. In contrast, when people grasped with their left hand, preferences switched to the left visual field. What is more, MGA scaling showed greater visual field differences compared to right-hand grasping. Our data suggest that, visual object analysis for unimanual grasping shows a preference for visual information from the ipsilateral visual field, and that the left hemisphere is better equipped to control grasps in both visual fields.

  9. Gaze strategies during visually-guided versus memory-guided grasping.

    Science.gov (United States)

    Prime, Steven L; Marotta, Jonathan J

    2013-03-01

    Vision plays a crucial role in guiding motor actions. But sometimes we cannot use vision and must rely on our memory to guide action-e.g. remembering where we placed our eyeglasses on the bedside table when reaching for them with the lights off. Recent studies show subjects look towards the index finger grasp position during visually-guided precision grasping. But, where do people look during memory-guided grasping? Here, we explored the gaze behaviour of subjects as they grasped a centrally placed symmetrical block under open- and closed-loop conditions. In Experiment 1, subjects performed grasps in either a visually-guided task or memory-guided task. The results show that during visually-guided grasping, gaze was first directed towards the index finger's grasp point on the block, suggesting gaze targets future grasp points during the planning of the grasp. Gaze during memory-guided grasping was aimed closer to the blocks' centre of mass from block presentation to the completion of the grasp. In Experiment 2, subjects performed an 'immediate grasping' task in which vision of the block was removed immediately at the onset of the reach. Similar to the visually-guided results from Experiment 1, gaze was primarily directed towards the index finger location. These results support the 2-stream theory of vision in that motor planning with visual feedback at the onset of the movement is driven primarily by real-time visuomotor computations of the dorsal stream, whereas grasping remembered objects without visual feedback is driven primarily by the perceptual memory representations mediated by the ventral stream.

  10. Anticipatory modulation of digit placement for grasp control is affected by Parkinson's disease.

    Directory of Open Access Journals (Sweden)

    Jamie R Lukos

    2010-02-01

    Full Text Available Successful object manipulation relies on the ability to form and retrieve sensorimotor memories of digit forces and positions used in previous object lifts. Past studies of patients affected by Parkinson's disease (PD have revealed that the basal ganglia play a crucial role in the acquisition and/or retrieval of sensorimotor memories for grasp control. Whereas it is known that PD impairs anticipatory control of digit forces during grasp, learning deficits associated with the planning of digit placement have yet to be explored. This question is motivated by recent work in healthy subjects revealing that anticipatory control of digit placement plays a crucial role for successful manipulation.We asked ten PD patients off medication and ten age-matched controls to reach, grasp and lift an object whose center of mass (CM was on the left, right or center. The only task requirement was to minimize object roll during lift. The CM remained the same across consecutive trials (blocked condition or was altered from trial to trial (random condition. We hypothesized that impairment of the basal ganglia-thalamo-cortical circuits in PD patients would reduce their ability to anticipate digit placement appropriate to the CM location. Consequently, we predicted that PD patients would exhibit similar digit placement in the blocked vs. random conditions and produce larger peak object rolls than that of control subjects. In the blocked condition, PD patients exhibited significantly weaker modulation of fingertip contact points to CM location and larger object roll than controls (p<0.05 and p<0.01, respectively. Nevertheless, both controls and PD patients minimized object roll more in the blocked than in the random condition (p<0.01.Our findings indicate that, even though PD patients may have a residual ability of anticipatory control of digit contact points and forces, they fail to implement a motor plan with the same degree of effectiveness as controls. We conclude

  11. Effects of C5/C6 Intervertebral Space Distraction Height on Pressure on the Adjacent Intervertebral Disks and Articular Processes and Cervical Vertebrae Range of Motion.

    Science.gov (United States)

    Lu, Tingsheng; Luo, Chunshan; Ouyang, Beiping; Chen, Qiling; Deng, Zhongliang

    2018-04-25

    BACKGROUND This study aimed to investigate the association between range of motion of the cervical vertebrae and various C5/C6 intervertebral space distraction heights. MATERIAL AND METHODS The cervical vertebrae from 6 fresh adult human cadavers were used to prepare the models. Changes in C4/C5 and C6/C7 intervertebral disk pressures, articular process pressure, and range of motion of the cervical vertebrae before and after the distraction of the C5/C6 intervertebral space at benchmark heights of 100%, 120%, 140%, and 160% were tested under different exercise loads. RESULTS The pressure on the adjacent intervertebral disks was highest with the standing upright position before distraction, varied with different positions of the specimens and distraction heights after distraction, and was closest to that before distraction at a distraction height of 120% (Particular processes was highest with left and right rotations before distraction, varied with different positions of the specimens and distraction heights after distraction, and was lowest under the same exercise load with different positions at a distraction height of 120% (Pdistraction and at a distraction height of 120% after distraction, respectively (Particular processes and range of motion of the cervical vertebrae and is therefore an appropriate intervertebral space distraction height.

  12. Sexual Orientation, Objective Height, and Self-Reported Height.

    Science.gov (United States)

    Skorska, Malvina N; Bogaert, Anthony F

    2017-01-01

    Studies that have used mostly self-reported height have found that androphilic men and women are shorter than gynephilic men and women, respectively. This study examined whether an objective height difference exists or whether a psychosocial account (e.g., distortion of self-reports) may explain these putative height differences. A total of 863 participants, recruited at a Canadian university, the surrounding region, and through lesbian, gay, bisexual, and transgender (LGBT) events across Canada, self-reported their height and had their height measured. Androphilic men were shorter, on average, than gynephilic men. There was no objective height difference between gynephilic, ambiphilic, and androphilic women. Self-reported height, statistically controlling for objective height, was not related to sexual orientation. These findings are the first to show an objective height difference between androphilic and gynephilic men. Also, the findings suggest that previous studies using self-reported height found part of a true objective height difference between androphilic and gynephilic men. These findings have implications for existing biological theories of men's sexual orientation development.

  13. SEOM's Sentinel-3/OLCI' project CAWA: advanced GRASP aerosol retrieval

    Science.gov (United States)

    Dubovik, Oleg; litvinov, Pavel; Huang, Xin; Aspetsberger, Michael; Fuertes, David; Brockmann, Carsten; Fischer, Jürgen; Bojkov, Bojan

    2016-04-01

    The CAWA "Advanced Clouds, Aerosols and WAter vapour products for Sentinel-3/OLCI" ESA-SEOM project aims on the development of advanced atmospheric retrieval algorithms for the Sentinel-3/OLCI mission, and is prepared using Envisat/MERIS and Aqua/MODIS datasets. This presentation discusses mainly CAWA aerosol product developments and results. CAWA aerosol retrieval uses recently developed GRASP algorithm (Generalized Retrieval of Aerosol and Surface Properties) algorithm described by Dubovik et al. (2014). GRASP derives extended set of atmospheric parameters using multi-pixel concept - a simultaneous fitting of a large group of pixels under additional a priori constraints limiting the time variability of surface properties and spatial variability of aerosol properties. Over land GRASP simultaneously retrieves properties of both aerosol and underlying surface even over bright surfaces. GRAPS doesn't use traditional look-up-tables and performs retrieval as search in continuous space of solution. All radiative transfer calculations are performed as part of the retrieval. The results of comprehensive sensitivity tests, as well as results obtained from real Envisat/MERIS data will be presented. The tests analyze various aspects of aerosol and surface reflectance retrieval accuracy. In addition, the possibilities of retrieval improvement by means of implementing synergetic inversion of a combination of OLCI data with observations by SLSTR are explored. Both the results of numerical tests, as well as the results of processing several years of Envisat/MERIS data illustrate demonstrate reliable retrieval of AOD (Aerosol Optical Depth) and surface BRDF. Observed retrieval issues and advancements will be discussed. For example, for some situations we illustrate possibilities of retrieving aerosol absorption - property that hardly accessible from satellite observations with no multi-angular and polarimetric capabilities.

  14. Electrotactile EMG feedback improves the control of prosthesis grasping force

    Science.gov (United States)

    Schweisfurth, Meike A.; Markovic, Marko; Dosen, Strahinja; Teich, Florian; Graimann, Bernhard; Farina, Dario

    2016-10-01

    Objective. A drawback of active prostheses is that they detach the subject from the produced forces, thereby preventing direct mechanical feedback. This can be compensated by providing somatosensory feedback to the user through mechanical or electrical stimulation, which in turn may improve the utility, sense of embodiment, and thereby increase the acceptance rate. Approach. In this study, we compared a novel approach to closing the loop, namely EMG feedback (emgFB), to classic force feedback (forceFB), using electrotactile interface in a realistic task setup. Eleven intact-bodied subjects and one transradial amputee performed a routine grasping task while receiving emgFB or forceFB. The two feedback types were delivered through the same electrotactile interface, using a mixed spatial/frequency coding to transmit 8 discrete levels of the feedback variable. In emgFB, the stimulation transmitted the amplitude of the processed myoelectric signal generated by the subject (prosthesis input), and in forceFB the generated grasping force (prosthesis output). The task comprised 150 trials of routine grasping at six forces, randomly presented in blocks of five trials (same force). Interquartile range and changes in the absolute error (AE) distribution (magnitude and dispersion) with respect to the target level were used to assess precision and overall performance, respectively. Main results. Relative to forceFB, emgFB significantly improved the precision of myoelectric commands (min/max of the significant levels) for 23%/36% as well as the precision of force control for 12%/32%, in intact-bodied subjects. Also, the magnitude and dispersion of the AE distribution were reduced. The results were similar in the amputee, showing considerable improvements. Significance. Using emgFB, the subjects therefore decreased the uncertainty of the forward pathway. Since there is a correspondence between the EMG and force, where the former anticipates the latter, the emgFB allowed for

  15. BMI calculation in older people: The effect of using direct and surrogate measures of height in a community-based setting.

    Science.gov (United States)

    Butler, Rose; McClinchy, Jane; Morreale-Parker, Claudia; Marsh, Wendy; Rennie, Kirsten L

    2017-12-01

    There is currently no consensus on which measure of height should be used in older people's body mass index (BMI) calculation. Most estimates of nutritional status include a measurement of body weight and height which should be reliable and accurate, however at present several different methods are used interchangeably. BMI, a key marker in malnutrition assessment, does not reflect age-related changes in height or changes in body composition such as loss of muscle mass or presence of oedema. The aim of this pilot study was to assess how the use of direct and surrogate measures of height impacts on BMI calculation in people aged ≥75 years. A cross-sectional study of 64 free-living older people (75-96 yrs) quantified height by two direct measurements, current height (H C ), and self-report (H R ) and surrogate equations using knee height (H K ) and ulna length (H U ). BMI calculated from current height measurement (BMI C ) was compared with BMI calculated using self-reported height (BMI R ) and height estimated from surrogate equations for knee height (BMI K ) and ulna length (BMI U ). Median difference of BMI C -BMI R was 2.31 kg/m 2 . BMI K gave the closest correlation to BMI C . The percentage of study participants identified at increased risk of under-nutrition (BMI BMI; from 5% (BMI C ), 7.8% (BMI K ), 12.5% (BMI U ), to 14% (BMI R ) respectively. The results of this pilot study in a relatively healthy sample of older people suggest that interchangeable use of current and reported height in people ≥75 years can introduce substantial significant systematic error. This discrepancy could impact nutritional assessment of older people in poor health and lead to misclassification during nutritional screening if other visual and clinical clues are not taken into account. This could result in long-term clinical and cost implications if individuals who need nutrition support are not correctly identified. A consensus is required on which method should be used to

  16. Effects on muscle strength, maximal jump height, flexibility and postural sway after soccer and Zumba exercise among female hospital employees: a 9-month randomised controlled trial.

    Science.gov (United States)

    Barene, Svein; Holtermann, Andreas; Oseland, Harald; Brekke, Ole-Lars; Krustrup, Peter

    2016-10-01

    This 9-month randomised controlled workplace physical activity trial investigated the effects of soccer and Zumba exercise, respectively, on muscle strength, maximal jump height, sit-and-reach flexibility and postural sway among female workers. A total of 107 female hospital employees aged 25-63 were cluster-randomised to a soccer group, a Zumba group or a control group. Training was conducted outside working hours as two to three 1-h weekly sessions the first 3 months and once a week the last 6 months. Tests were conducted at baseline, after 3 and 9 months. The soccer group improved maximal neck extension strength both after 3 (1.2 kg; P flexibility. The present study indicates that workplace-initiated soccer and Zumba exercise may be beneficial for improvement of the neck and trunk strength, which may have preventive effects with regard to future perceived muscle pain in the respective body regions. Furthermore, the Zumba group revealed positive effects on lower limb lean mass and postural sway compared to the control group.

  17. Sri Lanka, Colored Height

    Science.gov (United States)

    2005-01-01

    The topography of the island nation of Sri Lanka is well shown in this color-coded shaded relief map generated with digital elevation data from the Shuttle Radar Topography Mission (SRTM). Two visualization methods were combined to produce the image: shading and color coding of topographic height. The shade image was derived by computing topographic slope in the northwest-southeast direction, so that northwest slopes appear bright and southeast slopes appear dark. Color coding is directly related to topographic height, with green at the lower elevations, rising through yellow and tan, to white at the highest elevations. For this special view heights below 10 meters (33 feet) above sea level have been colored red. These low coastal elevations extend 5 to 10 km (3.1 to 6.2 mi) inland on Sri Lanka and are especially vulnerable to flooding associated with storm surges, rising sea level, or, as in the aftermath of the earthquake of December 26, 2004, tsunami. These so-called tidal waves have occurred numerous times in history and can be especially destructive, but with the advent of the near-global SRTM elevation data planners can better predict which areas are in the most danger and help develop mitigation plans in the event of particular flood events. Sri Lanka is shaped like a giant teardrop falling from the southern tip of the vast Indian subcontinent. It is separated from India by the 50km (31mi) wide Palk Strait, although there is a series of stepping-stone coral islets known as Adam's Bridge that almost form a land bridge between the two countries. The island is just 350km (217mi) long and only 180km (112mi) wide at its broadest, and is about the same size as Ireland, West Virginia or Tasmania. The southern half of the island is dominated by beautiful and rugged hill country, and includes Mt Pidurutalagala, the islandaE(TM)s highest point at 2524 meters (8281 ft). The entire northern half comprises a large plain extending from the edge of the hill country to the

  18. Effect of growth hormone treatment on the adult height of children with chronic renal failure. German Study Group for Growth Hormone Treatment in Chronic Renal Failure.

    Science.gov (United States)

    Haffner, D; Schaefer, F; Nissel, R; Wühl, E; Tönshoff, B; Mehls, O

    2000-09-28

    Growth hormone treatment stimulates growth in short children with chronic renal failure. However, the extent to which this therapy increases final adult height is not known. We followed 38 initially prepubertal children with chronic renal failure treated with growth hormone for a mean of 5.3 years until they reached their final adult height. The mean (+/-SD) age at the start of treatment was 10.4+/-2.2 years, the mean bone age was 7.1+/-2.3 years, and the mean height was 3.1+/-1.2 SD below normal. Fifty matched children with chronic renal failure who were not treated with growth hormone served as controls. The children treated with growth hormone had sustained catch-up growth, whereas the control children had progressive growth failure. The mean final height of the growth hormone-treated children was 165 cm for boys and 156 cm for girls. The mean final adult height of the growth hormone-treated children was 1.6+/-1.2 SD below normal, which was 1.4 SD above their standardized height at base line (Pgrowth hormone-treated children, treatment was not associated with a shortening of the pubertal growth spurt. The total height gain was positively associated with the initial target-height deficit and the duration of growth hormone therapy and was negatively associated with the percentage of the observation period spent receiving dialysis treatment. Long-term growth hormone treatment of children with chronic renal failure induces persistent catch-up growth, and the majority of patients achieve normal adult height.

  19. Distinct neural patterns enable grasp types decoding in monkey dorsal premotor cortex

    Science.gov (United States)

    Hao, Yaoyao; Zhang, Qiaosheng; Controzzi, Marco; Cipriani, Christian; Li, Yue; Li, Juncheng; Zhang, Shaomin; Wang, Yiwen; Chen, Weidong; Chiara Carrozza, Maria; Zheng, Xiaoxiang

    2014-12-01

    Objective. Recent studies have shown that dorsal premotor cortex (PMd), a cortical area in the dorsomedial grasp pathway, is involved in grasp movements. However, the neural ensemble firing property of PMd during grasp movements and the extent to which it can be used for grasp decoding are still unclear. Approach. To address these issues, we used multielectrode arrays to record both spike and local field potential (LFP) signals in PMd in macaque monkeys performing reaching and grasping of one of four differently shaped objects. Main results. Single and population neuronal activity showed distinct patterns during execution of different grip types. Cluster analysis of neural ensemble signals indicated that the grasp related patterns emerged soon (200-300 ms) after the go cue signal, and faded away during the hold period. The timing and duration of the patterns varied depending on the behaviors of individual monkey. Application of support vector machine model to stable activity patterns revealed classification accuracies of 94% and 89% for each of the two monkeys, indicating a robust, decodable grasp pattern encoded in the PMd. Grasp decoding using LFPs, especially the high-frequency bands, also produced high decoding accuracies. Significance. This study is the first to specify the neuronal population encoding of grasp during the time course of grasp. We demonstrate high grasp decoding performance in PMd. These findings, combined with previous evidence for reach related modulation studies, suggest that PMd may play an important role in generation and maintenance of grasp action and may be a suitable locus for brain-machine interface applications.

  20. Detumbling control for kinematically redundant space manipulator post-grasping a rotational satellite

    Science.gov (United States)

    Wang, Mingming; Luo, Jianjun; Yuan, Jianping; Walter, Ulrich

    2017-12-01

    The objective of this paper is to establish a detumbling strategy and a coordination control scheme for a kinematically redundant space manipulator post-grasping a rotational satellite. First, the dynamics of the kinematically redundant space robot after grasping the target is presented, which lays the foundation for the coordination controller design. Subsequently, optimal detumbling and motion planning strategy for the post-capture phase is proposed based on the quartic Bézier curves and adaptive differential evolution (DE) algorithm subject to the specific constraints. Both detumbling time and control torques are taken into account for the generation of the optimal detumbling strategy. Furthermore, a coordination control scheme is presented to track the designed reference path while regulating the attitude of the chaser to a desired value, which successfully dumps the initial angular velocity of the rotational satellite and controls the base attitude synchronously. Simulation results are presented for detumbling a target with rotational motion using a 7 degree-of-freedom (DOF) redundant space manipulator, which demonstrates the effectiveness of the proposed method.

  1. Selective interference of grasp and space representations with number magnitude and serial order processing.

    Science.gov (United States)

    van Dijck, Jean-Philippe; Fias, Wim; Andres, Michael

    2015-10-01

    It has been proposed that the metrics of space, time and other magnitudes relevant for action are coupled through a generalized magnitude system that also contribute to number representation. Several studies capitalized on stimulus-response compatibility effects to show that numbers map onto left-right representations and grasp representations as a function of their magnitude. However, the tasks typically used do not allow disentangling magnitude from serial order processing. Here, we devised a working memory (WM) task where participants had to remember random sequences of numbers and perform a precision/whole-hand grip (Experiment 1) or a uni-manual left/right button press (Experiment 2) in response to numbers presented during the retention interval. This task does allow differentiating the interference of number magnitude and serial order with each set of responses. Experiment 1 showed that precision grips were initiated faster than whole-hand grips in response to small numbers, irrespective of their serial position in WM. In contrast, Experiment 2 revealed an advantage of right over left button presses as serial position increased, without any influence of number magnitude. These findings demonstrate that grasping and left-right movements overlap with distinct dimensions of number processing. These findings are discussed in the light of different theories explaining the interactions between numbers, space and action.

  2. A multi-pad electrode based functional electrical stimulation system for restoration of grasp

    Directory of Open Access Journals (Sweden)

    Malešević Nebojša M

    2012-09-01

    Full Text Available Abstract Background Functional electrical stimulation (FES applied via transcutaneous electrodes is a common rehabilitation technique for assisting grasp in patients with central nervous system lesions. To improve the stimulation effectiveness of conventional FES, we introduce multi-pad electrodes and a new stimulation paradigm. Methods The new FES system comprises an electrode composed of small pads that can be activated individually. This electrode allows the targeting of motoneurons that activate synergistic muscles and produce a functional movement. The new stimulation paradigm allows asynchronous activation of motoneurons and provides controlled spatial distribution of the electrical charge that is delivered to the motoneurons. We developed an automated technique for the determination of the preferred electrode based on a cost function that considers the required movement of the fingers and the stabilization of the wrist joint. The data used within the cost function come from a sensorized garment that is easy to implement and does not require calibration. The design of the system also includes the possibility for fine-tuning and adaptation with a manually controllable interface. Results The device was tested on three stroke patients. The results show that the multi-pad electrodes provide the desired level of selectivity and can be used for generating a functional grasp. The results also show that the procedure, when performed on a specific user, results in the preferred electrode configuration characteristics for that patient. The findings from this study are of importance for the application of transcutaneous stimulation in the clinical and home environments.

  3. Haptically guided grasping. FMRI shows right-hemisphere parietal stimulus encoding, and bilateral dorso-ventral parietal gradients of object- and action-related processing during grasp execution

    Directory of Open Access Journals (Sweden)

    Mattia eMarangon

    2016-01-01

    Full Text Available The neural bases of haptically-guided grasp planning and execution are largely unknown, especially for stimuli having no visual representations. Therefore, we used functional magnetic resonance imaging (fMRI to monitor brain activity during haptic exploration of novel 3D complex objects, subsequent grasp planning, and the execution of the pre-planned grasps. Haptic object exploration, involving extraction of shape, orientation and length of the to-be-grasped targets, was associated with the fronto-parietal, temporo-occipital, and insular cortex activity. Yet, only the anterior divisions of the posterior parietal cortex (PPC of the right hemisphere were significantly more engaged in exploration of complex objects (vs. simple control disks. None of these regions were re-recruited during the planning phase. Even more surprisingly, the left-hemisphere intraparietal, temporal, and occipital areas that were significantly invoked for grasp planning did not show sensitivity to object features. Finally, grasp execution, involving the re-recruitment of the critical right-hemisphere PPC clusters, was also significantly associated with two kinds of bilateral parieto-frontal processes. The first represents transformations of grasp-relevant target features and is linked to the dorso-dorsal (lateral and medial parieto-frontal networks. The second monitors grasp kinematics and belongs to the ventro-dorsal networks. Indeed, signal modulations associated with these distinct functions follow dorso-ventral gradients, with left aIPS showing significant sensitivity to both target features and the characteristics of the required grasp. Thus, our results from the haptic domain are consistent with the notion that the parietal processing for action guidance reflects primarily transformations from object-related to effector-related coding, and these mechanisms are rather independent of sensory input modality.

  4. Mena-GRASP65 interaction couples actin polymerization to Golgi ribbon linking.

    Science.gov (United States)

    Tang, Danming; Zhang, Xiaoyan; Huang, Shijiao; Yuan, Hebao; Li, Jie; Wang, Yanzhuang

    2016-01-01

    In mammalian cells, the Golgi reassembly stacking protein 65 (GRASP65) has been implicated in both Golgi stacking and ribbon linking by forming trans-oligomers through the N-terminal GRASP domain. Because the GRASP domain is globular and relatively small, but the gaps between stacks are large and heterogeneous, it remains puzzling how GRASP65 physically links Golgi stacks into a ribbon. To explore the possibility that other proteins may help GRASP65 in ribbon linking, we used biochemical methods and identified the actin elongation factor Mena as a novel GRASP65-binding protein. Mena is recruited onto the Golgi membranes through interaction with GRASP65. Depleting Mena or disrupting actin polymerization resulted in Golgi fragmentation. In cells, Mena and actin were required for Golgi ribbon formation after nocodazole washout; in vitro, Mena and microfilaments enhanced GRASP65 oligomerization and Golgi membrane fusion. Thus Mena interacts with GRASP65 to promote local actin polymerization, which facilitates Golgi ribbon linking. © 2016 Tang et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  5. Virtual grasping: closed-loop force control using electrotactile feedback.

    Science.gov (United States)

    Jorgovanovic, Nikola; Dosen, Strahinja; Djozic, Damir J; Krajoski, Goran; Farina, Dario

    2014-01-01

    Closing the control loop by providing somatosensory feedback to the user of a prosthesis is a well-known, long standing challenge in the field of prosthetics. Various approaches have been investigated for feedback restoration, ranging from direct neural stimulation to noninvasive sensory substitution methods. Although there are many studies presenting closed-loop systems, only a few of them objectively evaluated the closed-loop performance, mostly using vibrotactile stimulation. Importantly, the conclusions about the utility of the feedback were partly contradictory. The goal of the current study was to systematically investigate the capability of human subjects to control grasping force in closed loop using electrotactile feedback. We have developed a realistic experimental setup for virtual grasping, which operated in real time, included a set of real life objects, as well as a graphical and dynamical model of the prosthesis. We have used the setup to test 10 healthy, able bodied subjects to investigate the role of training, feedback and feedforward control, robustness of the closed loop, and the ability of the human subjects to generalize the control to previously "unseen" objects. Overall, the outcomes of this study are very optimistic with regard to the benefits of feedback and reveal various, practically relevant, aspects of closed-loop control.

  6. Locomotion and Grasping impairment in preschoolers with autism spectrum disorder

    Directory of Open Access Journals (Sweden)

    Francesca Fulceri

    2015-08-01

    Full Text Available Objective: To investigate expressiveness of motor impairment in autism spectrum disorder (ASD and its correlation with developmental and clinical features of ASD. Method: Thirty-five male preschoolers with ASD completed the Peabody Developmental Motor Scales-2 (PDMS-2; Folio and Fewell, 2000 and underwent a multidisciplinary assessment including medical examination, standardized assessment of cognitive abilities, administration of Autism_Diagnostic_Observation_Schedule (ADOS and a parent interview about adaptive skills. Results: Results revealed a substantial impairment in locomotion and grasping skills. Both fine and gross motor skills were significantly correlated with non verbal IQ and adaptive behaviours (p<0.01 but not with chronological age or ADOS scores. Children with weaker motor skills have greater cognitive and adaptive behaviours deficits. Conclusions: Motor development in ASD can be detected at preschool age and locomotion and grasping skills are substantially the most impaired area. These findings support the need to assess motor skills in preschoolers with ASD in addition to other developmental skill areas. Along with the increasingly acknowledged importance of motor skills for subsequent social, cognitive, and communicative development our findings support the need to consider motor intervention as a key area in therapeutic program to improve outcome in preschoolers with ASD.

  7. Virtual Grasping: Closed-Loop Force Control Using Electrotactile Feedback

    Directory of Open Access Journals (Sweden)

    Nikola Jorgovanovic

    2014-01-01

    Full Text Available Closing the control loop by providing somatosensory feedback to the user of a prosthesis is a well-known, long standing challenge in the field of prosthetics. Various approaches have been investigated for feedback restoration, ranging from direct neural stimulation to noninvasive sensory substitution methods. Although there are many studies presenting closed-loop systems, only a few of them objectively evaluated the closed-loop performance, mostly using vibrotactile stimulation. Importantly, the conclusions about the utility of the feedback were partly contradictory. The goal of the current study was to systematically investigate the capability of human subjects to control grasping force in closed loop using electrotactile feedback. We have developed a realistic experimental setup for virtual grasping, which operated in real time, included a set of real life objects, as well as a graphical and dynamical model of the prosthesis. We have used the setup to test 10 healthy, able bodied subjects to investigate the role of training, feedback and feedforward control, robustness of the closed loop, and the ability of the human subjects to generalize the control to previously “unseen” objects. Overall, the outcomes of this study are very optimistic with regard to the benefits of feedback and reveal various, practically relevant, aspects of closed-loop control.

  8. Height premium for job performance.

    Science.gov (United States)

    Kim, Tae Hyun; Han, Euna

    2017-08-01

    This study assessed the relationship of height with wages, using the 1998 and 2012 Korean Labor and Income Panel Study data. The key independent variable was height measured in centimeters, which was included as a series of dummy indicators of height per 5cm span (wages to assess the heterogeneity in the height-wage relationship, across the conditional distribution of monthly wages. We found a non-linear relationship of height with monthly wages. For men, the magnitude of the height wage premium was overall larger at the upper quantile of the conditional distribution of log monthly wages than at the median to low quantile, particularly in professional and semi-professional occupations. The height-wage premium was also larger at the 90th quantile for self-employed women and salaried men. Our findings add a global dimension to the existing evidence on height-wage premium, demonstrating non-linearity in the association between height and wages and heterogeneous changes in the dispersion and direction of the association between height and wages, by wage level. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. The effects of over sea height of locality on some chemical, health, microbiological, physical and technological parameters of cow milk and sensorical properties of cheeses

    Directory of Open Access Journals (Sweden)

    Oto Hanuš

    2005-01-01

    Full Text Available In general, the over sea height is cumulative factor, which can influence significantly the farm conditions. This effect consists of temperature (mean year temperature, rain (sum of rainfulls, sunshine (total period of sunshine and so on, in terms of climate, which can influence the dairy cow keeping directly and indirectly. Direct effects can influence the welfare of dairy cows in terms of hot stress for example, which could decrease a mastitis resistance of cows or their milk yield in simply way. Indirect effects can influence the dairy cows and their milk production (milk yield and milk composition and quality by typical kinds of forages and preserved rough fodders, by their botany composition and nutritional quality. In general it is possible to say, that increasing over sea height decreases economical efficiency of dairying. On the other hand the higher over sea height is sometimes linked with pastoral system of dairy cow rearing and nourishment and more often with possibility to ecological and biodynamical agriculture application. In the fact, the mountain and submountain localities are named as less favourable areas (LFAs in terms of agriculture efficiency and sustainability under the Czech Republic conditions. Despite of above mentioned facts, the pastoral system of dairying plays very important role for tourism development in different countries such as Alpine or Scandinavien countries, Ireland, The Netherlands or in particular in New Zealand.It could be very good to know the incidentaly possible impacts of over sea height of dairy cow rearing localities on milk quality, composition and its technological properties because of discussions about incidental dairy subsidies. Of course, in some countries including the Czech Republic, the governmental production subsidies or governmental environmental subsidies are partly linked with over sea height of localities of dairy farms, according to different calculation formulas as well

  10. Assessment of forearm and plantar foot load in the elderly using a four-wheeled walker with armrest and the effect of armrest height.

    Science.gov (United States)

    Ko, Chang-Yong; Kim, Sol-Bi; Choi, Hyuk-Jae; Chang, Yunhee; Kang, Sungjae; Heo, Yoon; Ryu, Jeicheong; Kim, Gyoosuk; Mun, Museong

    2014-01-01

    Patients with hand and/or wrist pathology are recommended to have a four-wheeled walker with an arm rest (FWW-AR) rather than a standard walker or a standard four-wheeled walker (FWW). However, only a few quantitative studies have been performed to compare upper and lower extremity weight bearing. The aim of this study was to evaluate forearm and foot weight bearing using a FWW-AR and the effect of the armrest height. Eleven elderly women (mean age 80.1±5.3 years; mean height 148.5±4.0 cm; mean weight 51.2±9.0 kg) were enrolled. The subjects walked with an FWW-AR, with the elbow in either 90 degree (D90) or 130 degree (D130) flexion, for a distance of 10 m. Surface electromyographic signals were recorded for the upper, middle, and lower trapezius, anterior deltoid, and erector spinae muscles; walking velocity was measured with the subjects weight bearing on their feet and forearms while walking. Simultaneously, the maximum plantar and forearm loads during walking with an FWW-AR were measured. The normalized foot plantar loads were lower at D90 than at D130, while the normalized forearm load was higher at D90 than at D130 (all P<0.05; left foot, 7.9±0.1 N/kg versus 8.8±0.1 N/kg; right foot, 8.6±0.2 N/kg versus. 9.6±0.1 N/kg; left forearm, 1.8±0.5 N/kg versus 0.8±0.2 N/kg; and right forearm, 2.0±0.5 N/kg versus 1.0±0.2 N/kg, respectively). The surface electromyographic activity of the muscles involved in shoulder elevation and the walking velocity were both lower with the elbow at D90 than at D130 (all P<0.05; left upper trapezius, 98.7%±19.5% versus 132.6%±16.9%; right upper trapezius, 83.4%±10.6% versus 108.1%±10.5%; left anterior deltoid, 94.1%±12.8% versus 158.6%±40.4%; right anterior deltoid, 99.1%±15.0% versus 151.9%±19.4%; and velocity, 0.6±0.1 m/sec versus 0.7±0.1 m/sec, respectively). Weight bearing on the lower extremities is significantly reduced when the upper extremities are supported during walking with an FWW-AR. Furthermore, the

  11. Effects of Strength Training Combined with Specific Plyometric exercises on body composition, vertical jump height and lower limb strength development in elite male handball players: a case study

    Directory of Open Access Journals (Sweden)

    Carvalho Alberto

    2014-07-01

    Full Text Available The purpose of the present study was to identify the effects of a strength training program combined with specific plyometric exercises on body composition, vertical jump (VJ height and strength development of lower limbs in elite male handball players. A 12-week program with combined strength and specific plyometric exercises was carried out for 7 weeks. Twelve elite male handball players (age: 21.6 ± 1.73 competing in the Portuguese Major League participated in the study. Besides the anthropometric measurements, several standardized jump tests were applied to assess VJ performance together with the strength development of the lower limbs in an isokinetic setting. No significant changes were found in body circumferences and diameters. Body fat content and fat mass decreased by 16.4 and 15.7% respectively, while lean body mass increased by 2.1%. Despite small significance, there was in fact an increase in squat jump (SJ, counter movement jump (CMJ and 40 consecutive jumps after the training period (6.1, 3.8 and 6.8%, respectively. After the applied protocol, peak torque increased in lower limb extension and flexion in the majority of the movements assessed at 90°s-1. Consequently, it is possible to conclude that combining general strength-training with plyometric exercises can not only increase lower limb strength and improve VJ performance but also reduce body fat content.

  12. Effects of Strength Training Combined with Specific Plyometric exercises on body composition, vertical jump height and lower limb strength development in elite male handball players: a case study.

    Science.gov (United States)

    Carvalho, Alberto; Mourão, Paulo; Abade, Eduardo

    2014-06-28

    The purpose of the present study was to identify the effects of a strength training program combined with specific plyometric exercises on body composition, vertical jump (VJ) height and strength development of lower limbs in elite male handball players. A 12-week program with combined strength and specific plyometric exercises was carried out for 7 weeks. Twelve elite male handball players (age: 21.6 ± 1.73) competing in the Portuguese Major League participated in the study. Besides the anthropometric measurements, several standardized jump tests were applied to assess VJ performance together with the strength development of the lower limbs in an isokinetic setting. No significant changes were found in body circumferences and diameters. Body fat content and fat mass decreased by 16.4 and 15.7% respectively, while lean body mass increased by 2.1%. Despite small significance, there was in fact an increase in squat jump (SJ), counter movement jump (CMJ) and 40 consecutive jumps after the training period (6.1, 3.8 and 6.8%, respectively). After the applied protocol, peak torque increased in lower limb extension and flexion in the majority of the movements assessed at 90ºs-1. Consequently, it is possible to conclude that combining general strength-training with plyometric exercises can not only increase lower limb strength and improve VJ performance but also reduce body fat content.

  13. Study on the natural air cooling design of electronic equipment casings: Effects of the height and size of outlet vent on the flow resistances

    International Nuclear Information System (INIS)

    Ishizuka, M; Hatakeyama, T; Kibushi, R; Inoue, M

    2012-01-01

    This paper describes the effects of the outlet vent size and the distance between the outlet vent location and the power heater position on the flow resistance in natural-air-cooled electronic equipment casings. An experiment was carried out using a simple model casing simulated for the practical natural-air-cooled casing which is composed of 4 side walls, a top plate and bottom plate which has an inlet opening. A power heater to served as a power dissipation unit was placed at its open bottom. An outlet opening was set on one of the side walls. The opening area, the height of the outlet and the heater location were varied. The experimental results were analyzed using the flow resistance coefficient K which was related to the distance between the outlet vent and the power heater position and the heat removal from the outlet vent, and K values were plotted against a pair of Reynolds numbers Re and the outlet vent porosity β which is defined as the ratio of outlet vent open area to the top surface area of the casing.

  14. Evidence of inbreeding depression on human height.

    Directory of Open Access Journals (Sweden)

    Ruth McQuillan

    Full Text Available Stature is a classical and highly heritable complex trait, with 80%-90% of variation explained by genetic factors. In recent years, genome-wide association studies (GWAS have successfully identified many common additive variants influencing human height; however, little attention has been given to the potential role of recessive genetic effects. Here, we investigated genome-wide recessive effects by an analysis of inbreeding depression on adult height in over 35,000 people from 21 different population samples. We found a highly significant inverse association between height and genome-wide homozygosity, equivalent to a height reduction of up to 3 cm in the offspring of first cousins compared with the offspring of unrelated individuals, an effect which remained after controlling for the effects of socio-economic status, an important confounder (χ(2 = 83.89, df = 1; p = 5.2 × 10(-20. There was, however, a high degree of heterogeneity among populations: whereas the direction of the effect was consistent across most population samples, the effect size differed significantly among populations. It is likely that this reflects true biological heterogeneity: whether or not an effect can be observed will depend on both the variance in homozygosity in the population and the chance inheritance of individual recessive genotypes. These results predict that multiple, rare, recessive variants influence human height. Although this exploratory work focuses on height alone, the methodology developed is generally applicable to heritable quantitative traits (QT, paving the way for an investigation into inbreeding effects, and therefore genetic architecture, on a range of QT of biomedical importance.

  15. More practical critical height sampling.

    Science.gov (United States)

    Thomas B. Lynch; Jeffrey H. Gove

    2015-01-01

    Critical Height Sampling (CHS) (Kitamura 1964) can be used to predict cubic volumes per acre without using volume tables or equations. The critical height is defined as the height at which the tree stem appears to be in borderline condition using the point-sampling angle gauge (e.g. prism). An estimate of cubic volume per acre can be obtained from multiplication of the...

  16. Height-Deterministic Pushdown Automata

    DEFF Research Database (Denmark)

    Nowotka, Dirk; Srba, Jiri

    2007-01-01

    We define the notion of height-deterministic pushdown automata, a model where for any given input string the stack heights during any (nondeterministic) computation on the input are a priori fixed. Different subclasses of height-deterministic pushdown automata, strictly containing the class...... of regular languages and still closed under boolean language operations, are considered. Several of such language classes have been described in the literature. Here, we suggest a natural and intuitive model that subsumes all the formalisms proposed so far by employing height-deterministic pushdown automata...

  17. Unified height systems after GOCE

    Science.gov (United States)

    Rummel, Reiner; Gruber, Thomas; Sideris, Michael; Rangelova, Elena; Woodworth, Phil; Hughes, Chris; Ihde, Johannes; Liebsch, Gunter; Rülke, Axel; Gerlach, Christian; Haagmans, Roger

    2015-04-01

    The objectives of global height unification are twofold, (1) the realization of accurate geopotential numbers C together with their standard deviation σ(C) at a selected set of stations (datum points of national height systems, geodetic fundamental stations (IERS), primary tide gauges (PSMSL) and primary reference clocks (IERS)) and (2) the determination of height off-sets between all existing regional/national height systems and one global height reference. In the future the primary method of height determination will be GPS-levelling with very stringent requirements concerning the consistency of the positioning and the gravity potential difference part. Consistency is required in terms of the applied standards (ITRF, zero tide system, geodetic reference system). Geopotential differences will be based on a next generation geopotential model combining GOCE and GRACE and a best possible collection of global terrestrial and altimetric gravity and topographic data. Ultimately, the envisaged accuracy of height unification is about 10 cm2/s2 (or 1cm). At the moment, in well surveyed regions, an accuracy of about 40 to 60 cm2/s2 (or 4 to 6cm) is attainable. Objective One can be realized by straight forward computation of geopotential numbers C, i.e. geopotential differences relative to an adopted height reference. No adjustment is required for this. Objective Two, the unification of existing height systems is achieved by employing a least-squares adjustment based on the GBVP-approach. In order to attain a non-singular solution, this requires for each included datum zone at least one geo-referenced station per zone, i.e. its ellipsoidal height h and, in addition, the corresponding physical height H (geopotential number, normal height, orthometric height, etc.). Changes in geopotential numbers of consecutive realizations reflect (1) temporal changes of station heights, (2) improvements or changes of the applied geopotential (or geoid) model and (3) improvements of the

  18. GRASP/Ada 95: Reverse Engineering Tools for Ada

    Science.gov (United States)

    Cross, James H., II

    1996-01-01

    The GRASP/Ada project (Graphical Representations of Algorithms, Structures, and Processes for Ada) has successfully created and prototyped an algorithmic level graphical representation for Ada software, the Control Structure Diagram (CSD), and a new visualization for a fine-grained complexity metric called the Complexity Profile Graph (CPG). By synchronizing the CSD and the CPG, the CSD view of control structure, nesting, and source code is directly linked to the corresponding visualization of statement level complexity in the CPG. GRASP has been integrated with GNAT, the GNU Ada 95 Translator to provide a comprehensive graphical user interface and development environment for Ada 95. The user may view, edit, print, and compile source code as a CSD with no discernible addition to storage or computational overhead. The primary impetus for creation of the CSD was to improve the comprehension efficiency of Ada software and, as a result, improve reliability and reduce costs. The emphasis has been on the automatic generation of the CSD from Ada 95 source code to support reverse engineering and maintenance. The CSD has the potential to replace traditional prettyprinted Ada source code. The current update has focused on the design and implementation of a new Motif compliant user interface, and a new CSD generator consisting of a tagger and renderer. The Complexity Profile Graph (CPG) is based on a set of functions that describes the context, content, and the scaling for complexity on a statement by statement basis. When combined graphicafly, the result is a composite profile of complexity for the program unit. Ongoing research includes the development and refinement of the associated functions, and the development of the CPG generator prototype. The current Version 5.0 prototype provides the capability for the user to generate CSDs and CPGs from Ada 95 source code in a reverse engineering as well as forward engineering mode with a level of flexibility suitable for

  19. Update of GRASP/Ada reverse engineering tools for Ada

    Science.gov (United States)

    Cross, James H., II

    1993-01-01

    The GRASP/Ada project (Graphical Representations of Algorithms, Structures, and Processes for Ada) successfully created and prototyped a new algorithmic level graphical representation for Ada software, the Control Structure Diagram (CSD). The primary impetus for creation of the CSD was to improve the comprehension efficiency of Ada software and, as a result, improve reliability and reduce costs. The emphasis was on the automatic generation of the CSD from Ada PDL or source code to support reverse engineering and maintenance. The CSD has the potential to replace traditional pretty printed Ada source code. In Phase 1 of the GRASP/Ada project, the CSD graphical constructs were created and applied manually to several small Ada programs. A prototype CSD generator (Version 1) was designed and implemented using FLEX and BISON running under VMS on a VAX 11-780. In Phase 2, the prototype was improved and ported to the Sun 4 platform under UNIX. A user interface was designed and partially implemented using the HP widget toolkit and the X Windows System. In Phase 3, the user interface was extensively reworked using the Athena widget toolkit and X Windows. The prototype was applied successfully to numerous Ada programs ranging in size from several hundred to several thousand lines of source code. Following Phase 3,e two update phases were completed. Update'92 focused on the initial analysis of evaluation data collected from software engineering students at Auburn University and the addition of significant enhancements to the user interface. Update'93 (the current update) focused on the statistical analysis of the data collected in the previous update and preparation of Version 3.4 of the prototype for limited distribution to facilitate further evaluation. The current prototype provides the capability for the user to generate CSD's from Ada PDL or source code in a reverse engineering as well as forward engineering mode with a level of flexibility suitable for practical

  20. Reach-to-grasp movement as a minimization process.

    Science.gov (United States)

    Yang, Fang; Feldman, Anatol G

    2010-02-01

    It is known that hand transport and grasping are functionally different but spatially coordinated components of reach-to-grasp (RTG) movements. As an extension of this notion, we suggested that body segments involved in RTG movements are controlled as a coherent ensemble by a global minimization process associated with the necessity for the hand to reach the motor goal. Different RTG components emerge following this process without pre-programming. Specifically, the minimization process may result from the tendency of neuromuscular elements to diminish the spatial gap between the actual arm-hand configuration and its virtual (referent) configuration specified by the brain. The referent configuration is specified depending on the object shape, localization, and orientation. Since the minimization process is gradual, it can be interrupted and resumed following mechanical perturbations, at any phase during RTG movements, including hand closure. To test this prediction of the minimization hypothesis, we asked subjects to reach and grasp a cube placed within the reach of the arm. Vision was prevented during movement until the hand returned to its initial position. As predicted, by arresting wrist motion at different points of hand transport in randomly selected trials, it was possible to halt changes in hand aperture at any phase, not only during hand opening but also during hand closure. Aperture changes resumed soon after the wrist was released. Another test of the minimization hypothesis was made in RTG movements to an object placed beyond the reach of the arm. It has previously been shown (Rossi et al. in J Physiol 538:659-671, 2002) that in such movements, the trunk motion begins to contribute to hand transport only after a critical phase when the shifts in the referent arm configuration have finished (at about the time when hand velocity is maximal). The minimization rule suggests that when the virtual contribution of the arm to hand transport is completed

  1. Agreement between measured height, and height predicted from ...

    African Journals Online (AJOL)

    lower limb measurements, such as knee height, as well as upper limb measures ... had with bone injuries/fractures affecting height or ulna length; and n = 1 had a ... and heels, buttocks and upper back in contact with the vertical surface of the .... found striking similarity in linear growth of infants to five-year- olds among all ...

  2. Investigation of Simultaneous Effects of Aerosol Properties and Aerosol Peak Height on the Air Mass Factors for Space-Borne NO2 Retrievals

    Directory of Open Access Journals (Sweden)

    Hyunkee Hong

    2017-02-01

    Full Text Available We investigate the simultaneous effects of aerosol peak height (APH, aerosol properties, measurement geometry, and other factors on the air mass factor for NO2 retrieval at sites with high NO2 concentration. A comparison of the effects of high and low surface reflectance reveals that NO2 air mass factor (AMF values over a snowy surface (surface reflectance 0.8 are generally higher than those over a deciduous forest surface (surface reflectance 0.05. Under high aerosol optical depth (AOD conditions, the aerosol shielding effect over a high-albedo surface is revealed to reduce the path-length of light at the surface, whereas high single scattering albedo (SSA conditions (e.g., SSA = 0.95 lead to an increase in the aerosol albedo effect, which results in an increased AMF over areas with low surface reflectance. We also conducted an in-depth study of the APH effect on AMF. For an AOD of 0.1 and half width (HW of 5 km, NO2 AMF decreases by 29% from 1.36 to 0.96 as APH changes from 0 to 2 km. In the case of high-AOD conditions (0.9 and HW of 5 km, the NO2 AMF decreases by 240% from 1.85 to 0.54 as APH changes from 0 to 2 km. The AMF variation due to error in the model input parameters (e.g., AOD, SSA, aerosol shape, and APH is also examined. When APH is 0 km with an AOD of 0.4, SSA of 0.88, and surface reflectance of 0.05, a 30% error in AOD induces an AMF error of between 4.85% and −3.67%, an SSA error of 0.04 leads to NO2 VCD errors of between 4.46% and −4.77%, and a 30% error in AOD induces an AMF error of between −9.53% and 8.35% with an APH of 3 km. In addition to AOD and SSA, APH is an important factor in calculating AMF, due to the 2 km error in APH under high-SZA conditions, which leads to an NO2 VCD error of over 60%. Aerosol shape is also found to have a measureable effect on AMF under high-AOD and small relative azimuth angle (RAA conditions. The diurnal effect of the NO2 profile is also examined and discussed.

  3. The Effects of a Maximal Power Training Cycle on the Strength, Maximum Power, Vertical Jump Height and Acceleration of High-Level 400-Meter Hurdlers

    Science.gov (United States)

    Balsalobre-Fernández, Carlos; Tejero-González, Carlos Mª; del Campo-Vecino, Juan; Alonso-Curiel, Dionisio

    2013-01-01

    The aim of this study was to determine the effects of a power training cycle on maximum strength, maximum power, vertical jump height and acceleration in seven high-level 400-meter hurdlers subjected to a specific training program twice a week for 10 weeks. Each training session consisted of five sets of eight jump-squats with the load at which each athlete produced his maximum power. The repetition maximum in the half squat position (RM), maximum power in the jump-squat (W), a squat jump (SJ), countermovement jump (CSJ), and a 30-meter sprint from a standing position were measured before and after the training program using an accelerometer, an infra-red platform and photo-cells. The results indicated the following statistically significant improvements: a 7.9% increase in RM (Z=−2.03, p=0.021, δc=0.39), a 2.3% improvement in SJ (Z=−1.69, p=0.045, δc=0.29), a 1.43% decrease in the 30-meter sprint (Z=−1.70, p=0.044, δc=0.12), and, where maximum power was produced, a change in the RM percentage from 56 to 62% (Z=−1.75, p=0.039, δc=0.54). As such, it can be concluded that strength training with a maximum power load is an effective means of increasing strength and acceleration in high-level hurdlers. PMID:23717361

  4. Responses of mirror neurons in area F5 to hand and tool grasping observation

    Science.gov (United States)

    Rochat, Magali J.; Caruana, Fausto; Jezzini, Ahmad; Escola, Ludovic; Intskirveli, Irakli; Grammont, Franck; Gallese, Vittorio; Rizzolatti, Giacomo

    2010-01-01

    Mirror neurons are a distinct class of neurons that discharge both during the execution of a motor act and during observation of the same or similar motor act performed by another individual. However, the extent to which mirror neurons coding a motor act with a specific goal (e.g., grasping) might also respond to the observation of a motor act having the same goal, but achieved with artificial effectors, is not yet established. In the present study, we addressed this issue by recording mirror neurons from the ventral premotor cortex (area F5) of two monkeys trained to grasp objects with pliers. Neuron activity was recorded during the observation and execution of grasping performed with the hand, with pliers and during observation of an experimenter spearing food with a stick. The results showed that virtually all neurons responding to the observation of hand grasping also responded to the observation of grasping with pliers and, many of them to the observation of spearing with a stick. However, the intensity and pattern of the response differed among conditions. Hand grasping observation determined the earliest and the strongest discharge, while pliers grasping and spearing observation triggered weaker responses at longer latencies. We conclude that F5 grasping mirror neurons respond to the observation of a family of stimuli leading to the same goal. However, the response pattern depends upon the similarity between the observed motor act and the one executed by the hand, the natural motor template. PMID:20577726

  5. Short-Term Plasticity of the Visuomotor Map during Grasping Movements in Humans

    Science.gov (United States)

    Safstrom, Daniel; Edin, Benoni B.

    2005-01-01

    During visually guided grasping movements, visual information is transformed into motor commands. This transformation is known as the "visuomotor map." To investigate limitations in the short-term plasticity of the visuomotor map in normal humans, we studied the maximum grip aperture (MGA) during the reaching phase while subjects grasped objects…

  6. Software for relativistic atomic structure theory: The grasp project at oxford

    International Nuclear Information System (INIS)

    Parpia, F.A.; Grant, I.P.

    1991-01-01

    GRASP is an acronym for General-purpose Relativistic Atomic Structure Program. The objective of the GRASP project at Oxford is to produce user-friendly state-of-the-art multiconfiguration Dirac-Fock (MCDF) software packages for rleativistic atomic structure theory

  7. GRASP55 Senses Glucose Deprivation through O-GlcNAcylation to Promote Autophagosome-Lysosome Fusion.

    Science.gov (United States)

    Zhang, Xiaoyan; Wang, Leibin; Lak, Behnam; Li, Jie; Jokitalo, Eija; Wang, Yanzhuang

    2018-04-23

    The Golgi apparatus is the central hub for protein trafficking and glycosylation in the secretory pathway. However, how the Golgi responds to glucose deprivation is so far unknown. Here, we report that GRASP55, the Golgi stacking protein located in medial- and trans-Golgi cisternae, is O-GlcNAcylated by the O-GlcNAc transferase OGT under growth conditions. Glucose deprivation reduces GRASP55 O-GlcNAcylation. De-O-GlcNAcylated GRASP55 forms puncta outside of the Golgi area, which co-localize with autophagosomes and late endosomes/lysosomes. GRASP55 depletion reduces autophagic flux and results in autophagosome accumulation, while expression of an O-GlcNAcylation-deficient mutant of GRASP55 accelerates autophagic flux. Biochemically, GRASP55 interacts with LC3-II on the autophagosomes and LAMP2 on late endosomes/lysosomes and functions as a bridge between LC3-II and LAMP2 for autophagosome and lysosome fusion; this function is negatively regulated by GRASP55 O-GlcNAcylation. Therefore, GRASP55 senses glucose levels through O-GlcNAcylation and acts as a tether to facilitate autophagosome maturation. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. A GRASP algorithm for the container stowage slot planning problem

    DEFF Research Database (Denmark)

    Parreno, Francisco; Pacino, Dario; Alvarez-Valdes, Ramon

    2016-01-01

    in clusters along the vessel. For each of those clusters a specific position for each container must be found. Compared to previous studies, we have introduced two new features: the explicit handling of rolled out containers and the inclusion of separations rules for dangerous cargo. We present a novel......This work presents a generalization of the Slot Planning Problem which raises when the liner shipping industry needs to plan the placement of containers within a vessel (stowage planning). State-of-the-art stowage planning relies on a heuristic decomposition where containers are first distributed...... integer programming formulation and a Greedy Randomized Adaptive Search Procedure (GRASP) to solve the problem. The approach is able to find high-quality solution within 1 s. We also provide comparison with the state-of-the-art on an existing and a new set of benchmark instances. (C) 2016 Elsevier Ltd...

  9. Grasp Assist Device with Shared Tendon Actuator Assembly

    Science.gov (United States)

    Ihrke, Chris A. (Inventor); Bergelin, Bryan J. (Inventor); Bridgwater, Lyndon (Inventor)

    2015-01-01

    A grasp assist device includes a glove with first and second tendon-driven fingers, a tendon, and a sleeve with a shared tendon actuator assembly. Tendon ends are connected to the respective first and second fingers. The actuator assembly includes a drive assembly having a drive axis and a tendon hook. The tendon hook, which defines an arcuate surface slot, is linearly translatable along the drive axis via the drive assembly, e.g., a servo motor thereof. The flexible tendon is routed through the surface slot such that the surface slot divides the flexible tendon into two portions each terminating in a respective one of the first and second ends. The drive assembly may include a ball screw and nut. An end cap of the actuator assembly may define two channels through which the respective tendon portions pass. The servo motor may be positioned off-axis with respect to the drive axis.

  10. Influence of water vapour on the height distribution of positive ions, effective recombination coefficient and ionisation balance in the quiet lower ionosphere

    Directory of Open Access Journals (Sweden)

    V. Barabash

    2014-03-01

    vapour concentration upper limit at altitudes between 75 and 87 km, beyond which the water vapour concentration ceases to influence the numerical densities of Cl2+ and Cl1+, the effective recombination coefficient and the electron number density in the summer ionosphere. This water vapour concentration limit corresponds to values found in the H2O-1 profile that was observed in the summer mesosphere by the Upper Atmosphere Research Satellite (UARS. The electron density modelled using the H2O-1 profile agreed well with the electron density measured in the summer ionosphere when the measured profiles did not have sharp gradients. For sharp gradients in electron and positive ion number densities, a water profile that can reproduce the characteristic behaviour of the ionospheric parameters should have an inhomogeneous height distribution of water vapour.

  11. Effects of short-term two weeks low intensity plyometrics combined with dynamic stretching training in improving vertical jump height and agility on trained basketball players.

    Science.gov (United States)

    Ramachandran, Selvam; Pradhan, Binita

    2014-01-01

    Sport specific training in basketball players should focus on vertical jump height and agility in consistent with demands of the sport. Since plyometrics training improves vertical jump height and agility, it can be useful training strategy to improve the performance of basketball players. A convenience sample of thirty professional basketball players were recruited. Following pre-intervention assessment, interventions using plyometrics training and dynamic stretching protocol was administered on the basketball players. The outcome measures were assessed before the intervention and at the end of first and second week. Statistically significant improvements in vertical jump height (31.68 ± 11.64 to 37.57 ± 16.74; P basketball players.

  12. Height and Tilt Geometric Texture

    DEFF Research Database (Denmark)

    Andersen, Vedrana; Desbrun, Mathieu; Bærentzen, Jakob Andreas

    2009-01-01

    compromise between functionality and simplicity: it can efficiently handle and process geometric texture too complex to be represented as a height field, without having recourse to full blown mesh editing algorithms. The height-and-tilt representation proposed here is fully intrinsic to the mesh, making...

  13. Fluctuations in Schottky barrier heights

    International Nuclear Information System (INIS)

    Mahan, G.D.

    1984-01-01

    A double Schottky barrier is often formed at the grain boundary in polycrystalline semiconductors. The barrier height is shown to fluctuate in value due to the random nature of the impurity positions. The magnitude of the fluctuations is 0.1 eV, and the fluctuations cause the barrier height measured by capacitance to differ from the one measured by electrical conductivity

  14. A Grasp-Pose Generation Method Based on Gaussian Mixture Models

    Directory of Open Access Journals (Sweden)

    Wenjia Wu

    2015-11-01

    Full Text Available A Gaussian Mixture Model (GMM-based grasp-pose generation method is proposed in this paper. Through offline training, the GMM is set up and used to depict the distribution of the robot's reachable orientations. By dividing the robot's workspace into small 3D voxels and training the GMM for each voxel, a look-up table covering all the workspace is built with the x, y and z positions as the index and the GMM as the entry. Through the definition of Task Space Regions (TSR, an object's feasible grasp poses are expressed as a continuous region. With the GMM, grasp poses can be preferentially sampled from regions with high reachability probabilities in the online grasp-planning stage. The GMM can also be used as a preliminary judgement of a grasp pose's reachability. Experiments on both a simulated and a real robot show the superiority of our method over the existing method.

  15. GRASP with path-relinking for the selective pickup and delivery problem

    DEFF Research Database (Denmark)

    Ho, Sin C.; Szeto, W. Y.

    2016-01-01

    Bike sharing systems are very popular nowadays. One of the characteristics is that bikes are picked up from some surplus bike stations and transported to all deficit bike stations by a repositioning vehicle with limited capacity to satisfy the demand of deficit bike stations. Motivated by this real...... world bicycle repositioning problem, we study the selective pickup and delivery problem, where demand at every delivery node has to be satisfied by the supply collected from a subset of pickup nodes. The objective is to minimize the total travel cost incurred from visiting the nodes. We present a GRASP...... with path-relinking for solving the described problem. Experimental results show that this simple heuristic improves the existing results in the literature with an average improvement of 5.72% using small computing times. The proposed heuristic can contribute to the development of effective and efficient...

  16. The effect of female height on reproductive success is negative in Western populations, but more variable in non-Western populations

    NARCIS (Netherlands)

    Stulp, G.; Verhulst, S.; Pollet, T.V.; Buunk, A.P.

    2012-01-01

    Objective: In this article we examine the association between female height and reproductive success in a US sample and present a review of previous studies on this association. We also outline possible biological explanations for our findings. Methods: We used data from a long-term study of 5,326

  17. Indoor spray measurement of spray drift potential using a spray drift test bench : effect of drift-reducing nozzle types, spray boom height, nozzle spacing and forward speed

    NARCIS (Netherlands)

    Moreno Ruiz, J.R.

    2014-01-01

    In a series of indoor experiments spray drift potential was assessed when spraying over a spray drift testbench with two different driving speeds, 2m/s and 4m/s, two different spray boom heights, 30 cm and 50 cm, and two different nozzle spacing, 25 cm and 50 cm, for six different nozzle types. The

  18. Probing the reaching-grasping network in humans through multivoxel pattern decoding.

    Science.gov (United States)

    Di Bono, Maria Grazia; Begliomini, Chiara; Castiello, Umberto; Zorzi, Marco

    2015-11-01

    The quest for a putative human homolog of the reaching-grasping network identified in monkeys has been the focus of many neuropsychological and neuroimaging studies in recent years. These studies have shown that the network underlying reaching-only and reach-to-grasp movements includes the superior parieto-occipital cortex (SPOC), the anterior part of the human intraparietal sulcus (hAIP), the ventral and the dorsal portion of the premotor cortex, and the primary motor cortex (M1). Recent evidence for a wider frontoparietal network coding for different aspects of reaching-only and reach-to-grasp actions calls for a more fine-grained assessment of the reaching-grasping network in humans by exploiting pattern decoding methods (multivoxel pattern analysis--MVPA). Here, we used MPVA on functional magnetic resonance imaging (fMRI) data to assess whether regions of the frontoparietal network discriminate between reaching-only and reach-to-grasp actions, natural and constrained grasping, different grasp types, and object sizes. Participants were required to perform either reaching-only movements or two reach-to-grasp types (precision or whole hand grasp) upon spherical objects of different sizes. Multivoxel pattern analysis highlighted that, independently from the object size, all the selected regions of both hemispheres contribute in coding for grasp type, with the exception of SPOC and the right hAIP. Consistent with recent neurophysiological findings on monkeys, there was no evidence for a clear-cut distinction between a dorsomedial and a dorsolateral pathway that would be specialized for reaching-only and reach-to-grasp actions, respectively. Nevertheless, the comparison of decoding accuracy across brain areas highlighted their different contributions to reaching-only and grasping actions. Altogether, our findings enrich the current knowledge regarding the functional role of key brain areas involved in the cortical control of reaching-only and reach-to-grasp actions

  19. Effectiveness of couch height-based patient set-up and an off-line correction protocol in prostate cancer radiotherapy

    International Nuclear Information System (INIS)

    Lin, Emile N.J.Th. van; Nijenhuis, Edwin; Huizenga, Henk; Vight, Lisette van der; Visser, Andries

    2001-01-01

    Purpose: To investigate set-up improvement caused by applying a couch height-based patient set-up method in combination with a technologist-driven off-line correction protocol in nonimmobilized radiotherapy of prostate patients. Methods and Materials: A three-dimensional shrinking action level correction protocol is applied in two consecutive patient cohorts with different set-up methods: the traditional 'laser set-up' group (n=43) and the 'couch height set-up' group (n=112). For all directions, left-right, ventro-dorsal, and cranio-caudal, random and systematic set-up deviations were measured. Results: The couch height set-up method improves the patient positioning compared to the laser set-up method. Without application of the correction protocol, both systematic and random errors reduced to 2.2-2.4 mm (1 SD) and 1.7-2.2 mm (1 SD), respectively. By using the correction protocol, systematic errors reduced further to 1.3-1.6 mm (1 SD). One-dimensional deviations were within 5 mm for >90% of the measured fractions. The required number of corrections per patient in the off-line correction protocol was reduced significantly during the course of treatment from 1.1 to 0.6 by the couch height set-up method. The treatment time was not prolonged by application of the correction protocol. Conclusions: The couch height set-up method improves the set-up significantly, especially in the ventro-dorsal direction. Combination of this set-up method with an off-line correction strategy, executed by technologists, reduces the number of set-up corrections required

  20. Sprayable microencapsulated sex pheromone formulations for mating disruption of four tortricid species: effects of application height, rate, frequency, and sticker adjuvant.

    Science.gov (United States)

    Stelinski, L L; McGhee, P; Haas, M; Il'ichev, A L; Gut, L J

    2007-08-01

    Several application parameters of microencapsulated (MEC) sex pheromone formulations were manipulated to determine their impact on efficacy of disruption for codling moth, Cydia pomonella (L.); oriental fruit moth, Grapholita molesta (Busck); obliquebanded leafroller, Choristoneura rosaceana (Harris); and redbanded leafroller, Argyrotaenia velutinana (Walker). Depending on the experiment, the formulations evaluated were those formerly manufactured by 3M Canada (London, ON, Canada) or those that are currently available from Suterra LLC (Bend, OR). The efficacy of MEC formulations applied by air-blast sprayer evenly throughout the entire canopy of 2-3-m-tall apple (Malus spp.) trees was equivalent to treatments in which targeted applications of MECs were made to the lower or upper 1.5 m of the canopy (at equivalent overall rates) for oriental fruit moth and both leafroller species. The realized distribution of deposited microcapsules within the tree canopy corresponded well with the intended heights of application within the canopy. The additional coapplication of the pine resin sticker Nu-Film 17 increased efficacy but not longevity of MEC formulations for oriental fruit moth; this adjuvant had no added effects for codling moth or leafroller formulations. Increasing the rate of active ingredient (AI) per hectare by 20-30-fold (range 2.5-75.0 g/ha) did not improve the disruption efficacy of MECs for codling moth or either leafroller species when both low and high rates were applied at equivalent frequencies per season. A low-rate, high-frequency (nine applications per season) application protocol was compared with a standard protocol in which two to three applications were made per season, once before each moth generation for each species. The low-rate, high-frequency protocol resulted in equivalent or better disruption efficacy for each moth species, despite using two-fold less total AI per hectare per season with the former treatment. The low-rate, frequent

  1. Grasping an augmented object to analyse manipulative force control.

    Science.gov (United States)

    Kawai, Satoru; Summers, Valerie A; Mackenzie, Christine L; Ivens, Chris J; Yamamoto, Takashi

    2002-12-15

    Augmented reality allows changes to be made to the visual perception of object size even while the tangible components remain completely unaltered. It was, therefore, utilized in a study whose results are being reported here to provide the proper environment required to thoroughly observe the exact effect that visual change to object size had on programming fingertip forces when objects were lifted with a precision grip. Twenty-one participants performed repeated lifts of an identical grip apparatus to a height of 20 mm, maintained each lift for 8 seconds, and then replaced the grip apparatus on the table. While all other factors of the grip apparatus remained unchanged, visual appearance was altered graphically in a 3-D augmented environment. The grip apparatus measured grip and load forces independently. Grip and load forces demonstrated significant rates of increase as well as peak forces as the size of graphical images increased; an aspect that occurred in spite of the fact that extraneous haptic information remained constant throughout the trials. By indicating a human tendency to rely - even unconsciously - on visual input to program the forces in the initial lifting phase, this finding provides further confirmation of previous research findings obtained in the physical environment; including the possibility of extraneous haptic effects (Gordon et al. 1991a, Mon-Williams and Murray 2000, Kawai et al. 2000). The present results also suggest that existing knowledge concerning human manipulation tasks in the physical world may be applied to an augmented environment where the physical objects are enhanced by computer generated visual components.

  2. Classification of Anticipatory Signals for Grasp and Release from Surface Electromyography

    Science.gov (United States)

    Siu, Ho Chit; Shah, Julie A.; Stirling, Leia A.

    2016-01-01

    Surface electromyography (sEMG) is a technique for recording natural muscle activation signals, which can serve as control inputs for exoskeletons and prosthetic devices. Previous experiments have incorporated these signals using both classical and pattern-recognition control methods in order to actuate such devices. We used the results of an experiment incorporating grasp and release actions with object contact to develop an intent-recognition system based on Gaussian mixture models (GMM) and continuous-emission hidden Markov models (HMM) of sEMG data. We tested this system with data collected from 16 individuals using a forearm band with distributed sEMG sensors. The data contain trials with shifted band alignments to assess robustness to sensor placement. This study evaluated and found that pattern-recognition-based methods could classify transient anticipatory sEMG signals in the presence of shifted sensor placement and object contact. With the best-performing classifier, the effect of label lengths in the training data was also examined. A mean classification accuracy of 75.96% was achieved through a unigram HMM method with five mixture components. Classification accuracy on different sub-movements was found to be limited by the length of the shortest sub-movement, which means that shorter sub-movements within dynamic sequences require larger training sets to be classified correctly. This classification of user intent is a potential control mechanism for a dynamic grasping task involving user contact with external objects and noise. Further work is required to test its performance as part of an exoskeleton controller, which involves contact with actuated external surfaces. PMID:27792155

  3. Grasps Recognition and Evaluation of Stroke Patients for Supporting Rehabilitation Therapy

    Directory of Open Access Journals (Sweden)

    Beatriz Leon

    2014-01-01

    Full Text Available Stroke survivors often suffer impairments on their wrist and hand. Robot-mediated rehabilitation techniques have been proposed as a way to enhance conventional therapy, based on intensive repeated movements. Amongst the set of activities of daily living, grasping is one of the most recurrent. Our aim is to incorporate the detection of grasps in the machine-mediated rehabilitation framework so that they can be incorporated into interactive therapeutic games. In this study, we developed and tested a method based on support vector machines for recognizing various grasp postures wearing a passive exoskeleton for hand and wrist rehabilitation after stroke. The experiment was conducted with ten healthy subjects and eight stroke patients performing the grasping gestures. The method was tested in terms of accuracy and robustness with respect to intersubjects’ variability and differences between different grasps. Our results show reliable recognition while also indicating that the recognition accuracy can be used to assess the patients’ ability to consistently repeat the gestures. Additionally, a grasp quality measure was proposed to measure the capabilities of the stroke patients to perform grasp postures in a similar way than healthy people. These two measures can be potentially used as complementary measures to other upper limb motion tests.

  4. Grasping Force Control for a Robotic Hand by Slip Detection Using Developed Micro Laser Doppler Velocimeter

    Directory of Open Access Journals (Sweden)

    Nobutomo Morita

    2018-01-01

    Full Text Available The purpose of this paper is to show the feasibility of grasping force control by feeding back signals of the developed micro-laser Doppler velocimeter (μ-LDV and by discriminating whether a grasped object is slipping or not. LDV is well known as a high response surface velocity sensor which can measure various surfaces—such as metal, paper, film, and so on—thus suggesting the potential application of LDV as a slip sensor for grasping various objects. However, the use of LDV as a slip sensor has not yet been reported because the size of LDVs is too large to be installed on a robotic fingertip. We have solved the size problem and enabled the performance of a feasibility test with a few-millimeter-scale LDV referred to as micro-LDV (μ-LDV by modifying the design which was adopted from MEMS (microelectromechanical systems fabrication process. In this paper, by applying our developed μ-LDV as a slip sensor, we have successfully demonstrated grasping force control with three target objects—aluminum block, wood block, and white acrylic block—considering that various objects made of these materials can be found in homes and factories, without grasping force feedback. We provide proofs that LDV is a new promising candidate slip sensor for grasping force control to execute target grasping.

  5. Grasping Force Control for a Robotic Hand by Slip Detection Using Developed Micro Laser Doppler Velocimeter.

    Science.gov (United States)

    Morita, Nobutomo; Nogami, Hirofumi; Higurashi, Eiji; Sawada, Renshi

    2018-01-23

    The purpose of this paper is to show the feasibility of grasping force control by feeding back signals of the developed micro-laser Doppler velocimeter (μ-LDV) and by discriminating whether a grasped object is slipping or not. LDV is well known as a high response surface velocity sensor which can measure various surfaces-such as metal, paper, film, and so on-thus suggesting the potential application of LDV as a slip sensor for grasping various objects. However, the use of LDV as a slip sensor has not yet been reported because the size of LDVs is too large to be installed on a robotic fingertip. We have solved the size problem and enabled the performance of a feasibility test with a few-millimeter-scale LDV referred to as micro-LDV (μ-LDV) by modifying the design which was adopted from MEMS (microelectromechanical systems) fabrication process. In this paper, by applying our developed μ-LDV as a slip sensor, we have successfully demonstrated grasping force control with three target objects-aluminum block, wood block, and white acrylic block-considering that various objects made of these materials can be found in homes and factories, without grasping force feedback. We provide proofs that LDV is a new promising candidate slip sensor for grasping force control to execute target grasping.

  6. A novel algorithm for fast grasping of unknown objects using C-shape configuration

    Science.gov (United States)

    Lei, Qujiang; Chen, Guangming; Meijer, Jonathan; Wisse, Martijn

    2018-02-01

    Increasing grasping efficiency is very important for the robots to grasp unknown objects especially subjected to unfamiliar environments. To achieve this, a new algorithm is proposed based on the C-shape configuration. Specifically, the geometric model of the used under-actuated gripper is approximated as a C-shape. To obtain an appropriate graspable position, this C-shape configuration is applied to fit geometric model of an unknown object. The geometric model of unknown object is constructed by using a single-view partial point cloud. To examine the algorithm using simulations, a comparison of the commonly used motion planners is made. The motion planner with the highest number of solved runs, lowest computing time and the shortest path length is chosen to execute grasps found by this grasping algorithm. The simulation results demonstrate that excellent grasping efficiency is achieved by adopting our algorithm. To validate this algorithm, experiment tests are carried out using a UR5 robot arm and an under-actuated gripper. The experimental results show that steady grasping actions are obtained. Hence, this research provides a novel algorithm for fast grasping of unknown objects.

  7. Monocular-Based 6-Degree of Freedom Pose Estimation Technology for Robotic Intelligent Grasping Systems

    Directory of Open Access Journals (Sweden)

    Tao Liu

    2017-02-01

    Full Text Available Industrial robots are expected to undertake ever more advanced tasks in the modern manufacturing industry, such as intelligent grasping, in which robots should be capable of recognizing the position and orientation of a part before grasping it. In this paper, a monocular-based 6-degree of freedom (DOF pose estimation technology to enable robots to grasp large-size parts at informal poses is proposed. A camera was mounted on the robot end-flange and oriented to measure several featured points on the part before the robot moved to grasp it. In order to estimate the part pose, a nonlinear optimization model based on the camera object space collinearity error in different poses is established, and the initial iteration value is estimated with the differential transformation. Measuring poses of the camera are optimized based on uncertainty analysis. Also, the principle of the robotic intelligent grasping system was developed, with which the robot could adjust its pose to grasp the part. In experimental tests, the part poses estimated with the method described in this paper were compared with those produced by a laser tracker, and results show the RMS angle and position error are about 0.0228° and 0.4603 mm. Robotic intelligent grasping tests were also successfully performed in the experiments.

  8. Mexico Geoid Heights (MEXICO97)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This 2' geoid height grid for Mexico, and North-Central America, is the MEXICO97 geoid model. The computation used about one million terrestrial and marine gravity...

  9. Alaska Geoid Heights (GEOID96)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This 2' x 4' geoid height grid for Alaska is distributed as a GEOID96 model. The computation used 1.1 million terrestrial and marine gravity data held in the...

  10. The modulation of the motor resonance triggered by reach-to-grasp movements: No role of human physical similarity as conveyed by age.

    Science.gov (United States)

    Marino, Barbara F M; Ricciardelli, Paola

    2017-07-01

    The activation of the mirror-neuron circuit during the observation of motor acts is thought to be the basis of human capacity to read the intentions behind the behavior of others. Growing empirical evidence shows a different activation of the mirror-neuron resonance mechanism depending on how much the observer and the observed agent share their motor repertoires. Here, the possible modulatory effect of physical similarity between the observer and the agent was investigated in three studies. We used a visuo-motor priming task in which participants were asked to categorize manipulable and non-manipulable objects into natural or man-made kinds after having watched precision and power reach-to-grasp movements. Physical similarity was manipulated by presenting reach-to-grasp movements performed by the hands of actors of three different age ranges that are adults of the same age as the participants, children, and elderly. Faster responses were observed in trials where power grip movements were performed by the adults and precision grip movements were performed by the elderly (Main Study). This finding is not in keeping with the idea that physical similarity shapes the mirror-neuron resonance. Instead, it suggests an effect of the kinematic organization of the reach-to-grasp movements, which systematically changed with the actor age as revealed by a kinematic analysis. The differential effect played by adult and elderly actor primes was lost when static grasping hands (Control Study 1) and reach-to-grasp movements with uniform kinematic profiles (Control Study 2) were used. Therefore, we found preliminary evidence that mirror-neuron resonance is not shaped by physical similarity but by the kinematics of the observed action. This finding is novel as it suggests that human ability to read the intentions behind the behavior of others may benefit from a mere visual processing of spatiotemporal patterns.

  11. Pre-test analysis of a LBLOCA using the design data of the ATLAS facility, a reduced-height integral effect test loop for PWRs

    International Nuclear Information System (INIS)

    Hyun-Sik Park; Ki-Yong Choi; Dong-Jin Euh; Tae-Soon Kwon; Won-Pil Baek

    2005-01-01

    Full text of publication follows: The simulation capability of the KAERI integral effect test facility, ATLAS (Advanced Thermalhydraulic Test Loop for Accident Simulation), has been assessed for a large-break loss-of-coolant accident (LBLOCA) transient. The ATLAS facility is a 1/2 height-scaled, 1/144 area-scaled (1/288 in volume scale), and full-pressure test loop based on the design features of the APR1400, an evolutionary pressurized water reactor that has been developed by Korean industry. The APR1400 has four mechanically separated hydraulic trains for the emergency core cooling system (ECCS) with direct vessel injection (DVI). The APR1400 design features have brought about several new safety issues related to the LBLOCA including the steam-water interaction, ECC bypass, and boiling in the reactor vessel downcomer. The ATLAS facility will be used to investigate the multiple responses between the systems or between the components during various anticipated transients. The ATLAS facility has been designed according to a scaling method that is mainly based on the model suggested by Ishii and Kataoka. The ATLAS facility is being evaluated against the prototype plant APR1400 with the same control logics and accident scenarios using the best-estimated code, MARS. This paper briefly introduces the basic design features of the ATLAS facility and presents the results of pre-test analysis for a postulated LBLOCA of a cold leg. The LBLOCA analyses has been conducted to assess the validity of the applied scaling law and the similarity between the ATLAS facility and the APR1400. As the core simulator of the ATLAS facility has the 10% capability of the scaled full power, the blowdown phase can not be simulated, and the starting point of the accident scenario is around the end of blowdown. So it is an important problem to find the correct initial conditions. For the analyzed LBLOCA scenario, the ATLAS facility showed very similar thermal-hydraulic characteristics to the APR

  12. Emergent coordination underlying learning to reach to grasp with a brain-machine interface.

    Science.gov (United States)

    Vaidya, Mukta; Balasubramanian, Karthikeyan; Southerland, Joshua; Badreldin, Islam; Eleryan, Ahmed; Shattuck, Kelsey; Gururangan, Suchin; Slutzky, Marc; Osborne, Leslie; Fagg, Andrew; Oweiss, Karim; Hatsopoulos, Nicholas G

    2018-04-01

    The development of coordinated reach-to-grasp movement has been well studied in infants and children. However, the role of motor cortex during this development is unclear because it is difficult to study in humans. We took the approach of using a brain-machine interface (BMI) paradigm in rhesus macaques with prior therapeutic amputations to examine the emergence of novel, coordinated reach to grasp. Previous research has shown that after amputation, the cortical area previously involved in the control of the lost limb undergoes reorganization, but prior BMI work has largely relied on finding neurons that already encode specific movement-related information. In this study, we taught macaques to cortically control a robotic arm and hand through operant conditioning, using neurons that were not explicitly reach or grasp related. Over the course of training, stereotypical patterns emerged and stabilized in the cross-covariance between the reaching and grasping velocity profiles, between pairs of neurons involved in controlling reach and grasp, and to a comparable, but lesser, extent between other stable neurons in the network. In fact, we found evidence of this structured coordination between pairs composed of all combinations of neurons decoding reach or grasp and other stable neurons in the network. The degree of and participation in coordination was highly correlated across all pair types. Our approach provides a unique model for studying the development of novel, coordinated reach-to-grasp movement at the behavioral and cortical levels. NEW & NOTEWORTHY Given that motor cortex undergoes reorganization after amputation, our work focuses on training nonhuman primates with chronic amputations to use neurons that are not reach or grasp related to control a robotic arm to reach to grasp through the use of operant conditioning, mimicking early development. We studied the development of a novel, coordinated behavior at the behavioral and cortical level, and the neural

  13. A novel device for grasping assessment during functional tasks: preliminary results

    Directory of Open Access Journals (Sweden)

    Ana Carolinne Portela Rocha

    2016-02-01

    Full Text Available This paper presents a methodology and first results obtained in a study with a novel device that allows the analysis of grasping quality. Such a device is able to acquire motion information of upper limbs allowing kinetic of manipulation analysis as well. A pilot experiment was carried out with six groups of typically developing children aged between 5 and 10 years old, with 7-8 children in each one. The device, designed to emulate a glass, has an optical system composed by one digital camera and a special convex mirror that together allow image acquisition of grasping hand posture when it is grasped and manipulated. It also carries an Inertial Measurement Unit (IMU that captures motion data as acceleration, orientation, and angular velocities. The novel instrumented object is used in our approach to evaluate functional tasks performance in quantitative terms. During tests each child was invited to grasp the cylindrical part of the device that was placed on the top of a table, simulating the task of drinking a glass of water. In the sequence the child was oriented to transport the device back to the starting position and release it. The task was repeated 3 times for each child. A grasping hand posture evaluation is presented as an example to evaluate grasping quality. Additionally, motion patterns obtained with the triasl performed with the different groups are presented and discussed. This device is attractive due to its portable characteristics, the small size and its ability to evaluate grasping form. The results may be also useful to analyze the evolution of the rehabilitation process through reach-to-grasping movement and the grasping images analysis.

  14. Effect of graphene tunnel barrier on Schottky barrier height of Heusler alloy Co2MnSi/graphene/n-Ge junction

    International Nuclear Information System (INIS)

    Li Gui-fang; Hu Jing; Lv Hui; Cui Zhijun; Hou Xiaowei; Liu Shibin; Du Yongqian

    2016-01-01

    We demonstrate that the insertion of a graphene tunnel barrier between Heusler alloy Co 2 MnSi and the germanium (Ge) channel modulates the Schottky barrier height and the resistance–area product of the spin diode. We confirm that the Fermi level is depinned and a reduction in the electron Schottky barrier height (SBH) occurs following the insertion of the graphene layer between Co 2 MnSi and Ge. The electron SBH is modulated in the 0.34 eV–0.61 eV range. Furthermore, the transport mechanism changes from rectifying to symmetric tunneling following the insertion. This behavior provides a pathway for highly efficient spin injection from a Heusler alloy into a Ge channel with high electron and hole mobility. (paper)

  15. Effect of graphene tunnel barrier on Schottky barrier height of Heusler alloy Co2MnSi/graphene/n-Ge junction

    Science.gov (United States)

    Gui-fang, Li; Jing, Hu; Hui, Lv; Zhijun, Cui; Xiaowei, Hou; Shibin, Liu; Yongqian, Du

    2016-02-01

    We demonstrate that the insertion of a graphene tunnel barrier between Heusler alloy Co2MnSi and the germanium (Ge) channel modulates the Schottky barrier height and the resistance-area product of the spin diode. We confirm that the Fermi level is depinned and a reduction in the electron Schottky barrier height (SBH) occurs following the insertion of the graphene layer between Co2MnSi and Ge. The electron SBH is modulated in the 0.34 eV-0.61 eV range. Furthermore, the transport mechanism changes from rectifying to symmetric tunneling following the insertion. This behavior provides a pathway for highly efficient spin injection from a Heusler alloy into a Ge channel with high electron and hole mobility. Project supported by the National Natural Science Foundation of China (Grant No. 61504107) and the Fundamental Research Funds for the Central Universities, China (Grant Nos. 3102014JCQ01059 and 3102015ZY043).

  16. VisGraB: A Benchmark for Vision-Based Grasping. Paladyn Journal of Behavioral Robotics

    DEFF Research Database (Denmark)

    Kootstra, Gert; Popovic, Mila; Jørgensen, Jimmy Alison

    2012-01-01

    that a large number of grasps can be executed and evaluated while dealing with dynamics and the noise and uncertainty present in the real world images. VisGraB enables a fair comparison among different grasping methods. The user furthermore does not need to deal with robot hardware, focusing on the vision......We present a database and a software tool, VisGraB, for benchmarking of methods for vision-based grasping of unknown objects with no prior object knowledge. The benchmark is a combined real-world and simulated experimental setup. Stereo images of real scenes containing several objects in different...

  17. Learning to Grasp Unknown Objects Based on 3D Edge Information

    DEFF Research Database (Denmark)

    Bodenhagen, Leon; Kraft, Dirk; Popovic, Mila

    2010-01-01

    In this work we refine an initial grasping behavior based on 3D edge information by learning. Based on a set of autonomously generated evaluated grasps and relations between the semi-global 3D edges, a prediction function is learned that computes a likelihood for the success of a grasp using either...... an offline or an online learning scheme. Both methods are implemented using a hybrid artificial neural network containing standard nodes with a sigmoid activation function and nodes with a radial basis function. We show that a significant performance improvement can be achieved....

  18. Statistical Identification of Composed Visual Features Indicating High Likelihood of Grasp Success

    DEFF Research Database (Denmark)

    Thomsen, Mikkel Tang; Bodenhagen, Leon; Krüger, Norbert

    2013-01-01

    configurations of three 3D surface features that predict grasping actions with a high success probability. The strategy is based on first computing spatial relations between visual entities and secondly, exploring the cross-space of these relational feature space and grasping actions. The data foundation...... for identifying such indicative feature constellations is generated in a simulated environment wherein visual features are extracted and a large amount of grasping actions are evaluated through dynamic simulation. Based on the identified feature constellations, we validate by applying the acquired knowledge...

  19. Numerical Analysis on Effects of Positioning and Height of the Contoured Endwall on the Three-Dimensional Flow in an Annular Turbine Nozzle Guide Vane Cascade

    International Nuclear Information System (INIS)

    Lee, Wu Sang; Kim, Dae Hyun; Min, Jae Hong; Chung Jin Taek

    2007-01-01

    Endwall losses contribute significantly to the overall losses in modern turbomachinery, especially when aerodynamic airfoil load and pressure ratio are increased. Hence, reducing the extend and intensity of the secondary flow structures helps to enhance overall efficiency. From the large range of viable approaches, a promising combination positioning and height of endwall contouring was chosen. The objective of this study is to document the three-dimensional flow in a turbine cascade in terms of streamwise vorticity, total pressure loss distribution and static pressure distribution on the endwall and blade surface and to propose an appropriate positioning and height of the endwall contouring which show best secondary, overall loss reduction among the simulated endwall. The flow through the gas turbine were numerically analyzed using three dimensional Navier-Stroke equations with a commercial CFD code ANSYS CFX-10. The result shows that the overall loss is reduced near the flat endwall rather than contoured endwall, and the case of contoured endwall installed at 30% from leading edge with height of 25% for span showed best performance

  20. Effect of the structured packing height on efficiency of freons mixture separation in a large-scale model of distillation column

    Directory of Open Access Journals (Sweden)

    Pavlenko Aleksandr

    2017-01-01

    Full Text Available Results of experimental studies of heat-and-mass transfer and hydrodynamic processes at distillation on a regular packing are presented. The mixture of freons R114–R21 at the pressure of 0.3 MPa was used as a working mixture. The mixture was separated on the Mellapak 350Y structured packing with the diameter of 0.9 m under the conditions of complete reflux (L/V = 1 at different packing heights. A specially designed liquid distributor with a possibility to change the density and pattern of drip points was used to irrigate the packing. The experimental data on the efficiency of mixture separation (height of transfer unit HTU and distribution of the local flow rate density over the column cross-section were compared. It is shown that an increase in the height of the structured packing from 2.1 m to 4.0 m leads to a significant decrease in the efficiency of mixture separation in the distillation column.

  1. Effect of pruning height on the architecture of plants of camu camu (Myrciaria dubia HBK Mc Vaugh in the experimental station of IIAP, Ucayali, Peru.

    Directory of Open Access Journals (Sweden)

    Carlos Abanto

    2011-06-01

    Full Text Available In order to evaluate the response camu camu’s plants in plantations initial undergoing training pruning, an experiment was installed in EE - IIAP-Ucayali, under a design randomized complete block, with 3 replications, making use of 20 plants per experimental unit. The pruning treatments were performing at different heights from the base of the stem, it was considered T0 [witness without pruning], T1 [pruning to 10 cm from the base], T2 [pruning to 20 cm from the base] and T3 [pruning to 40 cm from the base] in plants of known provenance. The investigation was directed to evaluate the number of shoots, shoot growth, plant height, basal diameter, crown diameter and number of branches. After of 9 months of evaluation was found significant differences between the variables except in top diameter. In the variable Height, treatment T0 [witness without pruning] outstanding because they were not pruned, among the remaining treatments has similarly behaved, surpassing the control treatment by 267 %. In addition to this, the basal diameter was found that T1 [pruning to 10 cm from the base] has a better performed with an average value of 1.96 cm compared with the control (1.7cm. The pruning had a positive influence in the number of branches, with an average of 13.4 branches compared with T0 that get 3.1 branches on average, its shows that the pruning can increased up the production of branches to 432.3%.

  2. Adult height, dietary patterns, and healthy aging.

    Science.gov (United States)

    Ma, Wenjie; Hagan, Kaitlin A; Heianza, Yoriko; Sun, Qi; Rimm, Eric B; Qi, Lu

    2017-08-01

    Background: Adult height has shown directionally diverse associations with several age-related disorders, including cardiovascular disease, cancer, decline in cognitive function, and mortality. Objective: We investigated the associations of adult height with healthy aging measured by a full spectrum of health outcomes, including incidence of chronic diseases, memory, physical functioning, and mental health, among populations who have survived to older age, and whether lifestyle factors modified such relations. Design: We included 52,135 women (mean age: 44.2 y) from the Nurses' Health Study without chronic diseases in 1980 and whose health status was available in 2012. Healthy aging was defined as being free of 11 major chronic diseases and having no reported impairment of subjective memory, physical impairment, or mental health limitations. Results: Of all eligible study participants, 6877 (13.2%) were classified as healthy agers. After adjustment for demographic and lifestyle factors, we observed an 8% (95% CI: 6%, 11%) decrease in the odds of healthy aging per SD (0.062 m) increase in height. Compared with the lowest category of height (≤1.57 m), the OR of achieving healthy aging in the highest category (≥1.70 m) was 0.80 (95% CI: 0.73, 0.87; P -trend healthy aging ( P -interaction = 0.005), and among the individual dietary factors characterizing the prudent dietary pattern, fruit and vegetable intake showed the strongest effect modification ( P -interaction = 0.01). The association of greater height with reduced odds of healthy aging appeared to be more evident among women with higher adherence to the prudent dietary pattern rich in vegetable and fruit intake. Conclusions: Greater height was associated with a modest decrease in the likelihood of healthy aging. A prudent diet rich in fruit and vegetables might modify the relation. © 2017 American Society for Nutrition.

  3. Falls from height: A retrospective analysis.

    Science.gov (United States)

    Turgut, Kasim; Sarihan, Mehmet Ediz; Colak, Cemil; Güven, Taner; Gür, Ali; Gürbüz, Sükrü

    2018-01-01

    Emergency services manage trauma patients frequently and falls from height comprise the main cause of emergency service admissions. In this study, we aimed to analyse the demographic characteristics of falls from height and their relationship to the mortality. A total of 460 patients, who admitted to the Emergency Department of Inonu University between November 2011 and November 2014 with a history of fall from height, were examined retrospectively. Demographic parameters, fall characteristics and their effect to mortality were evaluated statistically. The study comprised of 292 (63.5%) men and 168 (36.5%) women patients. The mean age of all patients was 27±24.99 years. Twenty-six (5.6%) patients died and the majority of them were in ≥62 years old group. The highest percentage of falls was at 0-5 years age group (28.3%). People fell mainly from 1.1-4 metres(m) level (46.1%). The causes of falls were ordered as unintentional (92.2%), workplace (8.1%) and suicidal (1.7%). Skin and soft tissue injuries (37.4%) were the main traumatic lesions. Age, fall height, fall place, lineer skull fracture, subarachnoidal hemorrhage, cervical fracture, thoracic vertebra fracture and trauma scores had statistically significant effect on mortality. The casualties died because of subarachnoid hemorrhage mostly.

  4. Closed-loop control of grasping with a myoelectric hand prosthesis: which are the relevant feedback variables for force control?

    Science.gov (United States)

    Ninu, Andrei; Dosen, Strahinja; Muceli, Silvia; Rattay, Frank; Dietl, Hans; Farina, Dario

    2014-09-01

    In closed-loop control of grasping by hand prostheses, the feedback information sent to the user is usually the actual controlled variable, i.e., the grasp force. Although this choice is intuitive and logical, the force production is only the last step in the process of grasping. Therefore, this study evaluated the performance in controlling grasp strength using a hand prosthesis operated through a complete grasping sequence while varying the feedback variables (e.g., closing velocity, grasping force), which were provided to the user visually or through vibrotactile stimulation. The experiments were conducted on 13 volunteers who controlled the Otto Bock Sensor Hand Speed prosthesis. Results showed that vibrotactile patterns were able to replace the visual feedback. Interestingly, the experiments demonstrated that direct force feedback was not essential for the control of grasping force. The subjects were indeed able to control the grip strength, predictively, by estimating the grasping force from the prosthesis velocity of closing. Therefore, grasping without explicit force feedback is not completely blind, contrary to what is usually assumed. In our study we analyzed grasping with a specific prosthetic device, but the outcomes are also applicable for other devices, with one or more degrees-of-freedom. The necessary condition is that the electromyography (EMG) signal directly and proportionally controls the velocity/grasp force of the hand, which is a common approach among EMG controlled prosthetic devices. The results provide important indications on the design of closed-loop EMG controlled prosthetic systems.

  5. Effect of maternal height on caesarean section and neonatal mortality rates in sub-Saharan Africa: An analysis of 34 national datasets.

    Science.gov (United States)

    Arendt, Esther; Singh, Neha S; Campbell, Oona M R

    2018-01-01

    The lifecycle perspective reminds us that the roots of adult ill-health may start in-utero or in early childhood. Nutritional and infectious disease insults in early life, the critical first 1000 days, are associated with stunting in childhood, and subsequent short adult stature. There is limited or no opportunity for stunted children above 2 years of age to experience catch-up growth. Some previous research has shown short maternal height to lead to adverse birth outcomes. In this paper, we document the association between maternal height and caesarean section, and between maternal height and neonatal mortality in 34 sub-Saharan African countries. We also explore the appropriate height cut-offs to use. Our paper contributes arguments to support a focus on preventing non-communicable risk factors, namely early childhood under-nutrition, as part of the fight to reduce caesarean section rates and other adverse maternal and newborn health outcomes, particularly neonatal mortality. We focus on the Sub-Saharan Africa region because it carries the highest burden of maternal and neonatal ill-health. We used the most recent Demographic and Health Survey for 34 sub-Saharan African countries. The distribution of heights of women who had given birth in the 5 years before the survey was explored. We adopted the following cut-offs: Very Short (birth, residence, maternal BMI, maternal education, wealth index quintile, previous caesarean section, multiple birth, birth order and country of survey. We also look at its contribution to neonatal mortality adjusting for age at index birth, residence, maternal BMI, maternal education, wealth index quintile, multiple birth, birth order and country of survey. There was a gradual increase in the rate of caesarean section with decreasing maternal height. Compared to women of Average height (155.0-159.9cm), taller women were protected. The adjusted odds ratio (aOR) for Tall women was 0.67 (95% CI:0.52-0.87) and for Average-tall women was 0

  6. Effect of maternal height on caesarean section and neonatal mortality rates in sub-Saharan Africa: An analysis of 34 national datasets.

    Directory of Open Access Journals (Sweden)

    Esther Arendt

    Full Text Available The lifecycle perspective reminds us that the roots of adult ill-health may start in-utero or in early childhood. Nutritional and infectious disease insults in early life, the critical first 1000 days, are associated with stunting in childhood, and subsequent short adult stature. There is limited or no opportunity for stunted children above 2 years of age to experience catch-up growth. Some previous research has shown short maternal height to lead to adverse birth outcomes. In this paper, we document the association between maternal height and caesarean section, and between maternal height and neonatal mortality in 34 sub-Saharan African countries. We also explore the appropriate height cut-offs to use. Our paper contributes arguments to support a focus on preventing non-communicable risk factors, namely early childhood under-nutrition, as part of the fight to reduce caesarean section rates and other adverse maternal and newborn health outcomes, particularly neonatal mortality. We focus on the Sub-Saharan Africa region because it carries the highest burden of maternal and neonatal ill-health.We used the most recent Demographic and Health Survey for 34 sub-Saharan African countries. The distribution of heights of women who had given birth in the 5 years before the survey was explored. We adopted the following cut-offs: Very Short (<145.0cm, Short (145.0-149.9cm, Short-average (150.0-154.9cm, Average (155.0-159.9cm, Average-tall (160.0-169.9cm and Tall (≥170.0cm. Multivariate logistic regression was used to assess the contribution of maternal stature to the odds ratio of caesarean section delivery, adjusting for other exposures, such as age at index birth, residence, maternal BMI, maternal education, wealth index quintile, previous caesarean section, multiple birth, birth order and country of survey. We also look at its contribution to neonatal mortality adjusting for age at index birth, residence, maternal BMI, maternal education, wealth index

  7. Encounter Probability of Significant Wave Height

    DEFF Research Database (Denmark)

    Liu, Z.; Burcharth, H. F.

    The determination of the design wave height (often given as the significant wave height) is usually based on statistical analysis of long-term extreme wave height measurement or hindcast. The result of such extreme wave height analysis is often given as the design wave height corresponding to a c...

  8. Passive reach and grasp with functional electrical stimulation and robotic arm support

    NARCIS (Netherlands)

    Westerveld, Ard J.; Schouten, Alfred C.; Veltink, Peter H.; van der Kooij, Herman

    2014-01-01

    Rehabilitation of arm and hand function is crucial to increase functional independence of stroke subjects. Here, we investigate the technical feasibility of an integrated training system combining robotics and functional electrical stimulation (FES) to support reach and grasp during functional

  9. Manipulation of Unknown Objects to Improve the Grasp Quality Using Tactile Information.

    Science.gov (United States)

    Montaño, Andrés; Suárez, Raúl

    2018-05-03

    This work presents a novel and simple approach in the area of manipulation of unknown objects considering both geometric and mechanical constraints of the robotic hand. Starting with an initial blind grasp, our method improves the grasp quality through manipulation considering the three common goals of the manipulation process: improving the hand configuration, the grasp quality and the object positioning, and, at the same time, prevents the object from falling. Tactile feedback is used to obtain local information of the contacts between the fingertips and the object, and no additional exteroceptive feedback sources are considered in the approach. The main novelty of this work lies in the fact that the grasp optimization is performed on-line as a reactive procedure using the tactile and kinematic information obtained during the manipulation. Experimental results are shown to illustrate the efficiency of the approach.

  10. A Strategy for Grasping unknown Objects based on Co-Planarity and Colour Information

    DEFF Research Database (Denmark)

    Popovic, Mila; Kraft, Dirk; Bodenhagen, Leon

    2010-01-01

    with a reasonable success rate in rather complex environments (i.e., cluttered scenes with multiple objects). Moreover, we have embedded the algorithm within a cognitive system that allows for autonomous exploration and learning in different contexts. First, the system is able to perform long action sequences which......, although the grasping attempts not being always successful, can recover from mistakes and more importantly, is able to evaluate the success of the grasps autonomously by haptic feedback (i.e., by a force torque sensor at the wrist and proprioceptive information about the distance of the gripper after...... a gasping attempt). Such labelled data is then used for improving the initially hard-wired algorithm by learning. Moreover, the grasping behaviour has been used in a cognitive system to trigger higher level processes such as object learning and learning of object specific grasping....

  11. The visual neuroscience of robotic grasping achieving sensorimotor skills through dorsal-ventral stream integration

    CERN Document Server

    Chinellato, Eris

    2016-01-01

    This book presents interdisciplinary research that pursues the mutual enrichment of neuroscience and robotics. Building on experimental work, and on the wealth of literature regarding the two cortical pathways of visual processing - the dorsal and ventral streams - we define and implement, computationally and on a real robot, a functional model of the brain areas involved in vision-based grasping actions. Grasping in robotics is largely an unsolved problem, and we show how the bio-inspired approach is successful in dealing with some fundamental issues of the task. Our robotic system can safely perform grasping actions on different unmodeled objects, denoting especially reliable visual and visuomotor skills. The computational model and the robotic experiments help in validating theories on the mechanisms employed by the brain areas more directly involved in grasping actions. This book offers new insights and research hypotheses regarding such mechanisms, especially for what concerns the interaction between the...

  12. An on-line BCI for control of hand grasp sequence and holding using adaptive probabilistic neural network.

    Science.gov (United States)

    Hazrati, Mehrnaz Kh; Erfanian, Abbas

    2008-01-01

    This paper presents a new EEG-based Brain-Computer Interface (BCI) for on-line controlling the sequence of hand grasping and holding in a virtual reality environment. The goal of this research is to develop an interaction technique that will allow the BCI to be effective in real-world scenarios for hand grasp control. Moreover, for consistency of man-machine interface, it is desirable the intended movement to be what the subject imagines. For this purpose, we developed an on-line BCI which was based on the classification of EEG associated with imagination of the movement of hand grasping and resting state. A classifier based on probabilistic neural network (PNN) was introduced for classifying the EEG. The PNN is a feedforward neural network that realizes the Bayes decision discriminant function by estimating probability density function using mixtures of Gaussian kernels. Two types of classification schemes were considered here for on-line hand control: adaptive and static. In contrast to static classification, the adaptive classifier was continuously updated on-line during recording. The experimental evaluation on six subjects on different days demonstrated that by using the static scheme, a classification accuracy as high as the rate obtained by the adaptive scheme can be achieved. At the best case, an average classification accuracy of 93.0% and 85.8% was obtained using adaptive and static scheme, respectively. The results obtained from more than 1500 trials on six subjects showed that interactive virtual reality environment can be used as an effective tool for subject training in BCI.

  13. EFECTO DE LA ALTURA DEL MANGUITO EN UNIONES SOLDADAS EN CAÑERÍAS DE COBRE BUSHING HEIGHT EFFECT IN SOLDERED COPPER PIPE JOINTS

    Directory of Open Access Journals (Sweden)

    Víctor Carmona

    2006-12-01

    Full Text Available Se perforó un tubo de cobre de 28,6 mm de diámetro, por el proceso de taladrado por fluencia térmica (TFT. Se prepararon manguitos de diferentes alturas, haciendo un preperforado con brocas convencionales HSS de diferentes diámetros. Se seleccionaron manguitos de dos alturas diferentes. Se determinó la circularidad de la perforación. Se soldó un tubo cobre de ø 12,7 mm en forma perpendicular a un tubo de cobre de ø 28,6 mm y se determinó la resistencia a la tracción de la unión soldada, para lo cual se diseñó un dispositivo mecánico que fue adaptado en la máquina universal de ensayos. Se hicieron ensayos de microdureza y metalografía de la unión. Se concluyó que el manguito de menor altura es suficiente para que la unión alcance la máxima resistencia.Copper tubes were drilled with thermal flow drilling. Conventional HSS drills diameters were used to make pre drilling holes. Different height bushings were made. Two of the bushing heights were selected. The bushing circularity was measured. A ø 12,7 mm tube was welded perpendicularly on a ø 28,6 mm tube. A especial support device was designed and it was adapted to the Universal Test Machine, to determine the tensile stress of the brazing joint. The micro hardness and metallographic test were made in the brazing zone. As a conclusion the lower height bushing is enough to reach the maximum resistance.

  14. Height and Breast Cancer Risk

    DEFF Research Database (Denmark)

    Zhang, Ben; Shu, Xiao-Ou; Delahanty, Ryan J

    2015-01-01

    BACKGROUND: Epidemiological studies have linked adult height with breast cancer risk in women. However, the magnitude of the association, particularly by subtypes of breast cancer, has not been established. Furthermore, the mechanisms of the association remain unclear. METHODS: We performed a meta......-analysis to investigate associations between height and breast cancer risk using data from 159 prospective cohorts totaling 5216302 women, including 113178 events. In a consortium with individual-level data from 46325 case patients and 42482 control patients, we conducted a Mendelian randomization analysis using...... a genetic score that comprised 168 height-associated variants as an instrument. This association was further evaluated in a second consortium using summary statistics data from 16003 case patients and 41335 control patients. RESULTS: The pooled relative risk of breast cancer was 1.17 (95% confidence...

  15. Optimizing height presentation for aircraft cockpit displays

    Science.gov (United States)

    Jordan, Chris S.; Croft, D.; Selcon, Stephen J.; Markin, H.; Jackson, M.

    1997-02-01

    This paper describes an experiment conducted to investigate the type of display symbology that most effectively conveys height information to users of head-down plan-view radar displays. The experiment also investigated the use of multiple information sources (redundancy) in the design of such displays. Subjects were presented with eight different height display formats. These formats were constructed from a control, and/or one, two, or three sources of redundant information. The three formats were letter coding, analogue scaling, and toggling (spatially switching the position of the height information from above to below the aircraft symbol). Subjects were required to indicate altitude awareness via a four-key, forced-choice keyboard response. Error scores and response times were taken as performance measures. There were three main findings. First, there was a significant performance advantage when the altitude information was presented above and below the symbol to aid the representation of height information. Second, the analogue scale, a line whose length indicated altitude, proved significantly detrimental to performance. Finally, no relationship was found between the number of redundant information sources employed and performance. The implications for future aircraft and displays are discussed in relation to current aircraft tactical displays and in the context of perceptual psychological theory.

  16. Grasp planning for a reconfigurable parallel robot with an underactuated arm structure

    Directory of Open Access Journals (Sweden)

    M. Riedel

    2010-12-01

    Full Text Available In this paper, a novel approach of grasp planning is applied to find out the appropriate grasp points for a reconfigurable parallel robot called PARAGRIP (Parallel Gripping. This new handling system is able to manipulate objects in the six-dimensional Cartesian space by several robotic arms using only six actuated joints. After grasping, the contact elements at the end of the underactuated arm mechanisms are connected to the object which forms a closed loop mechanism similar to the architecture of parallel manipulators. As the mounting and grasp points of the arms can easily be changed, the manipulator can be reconfigured to match the user's preferences and needs. This paper raises the question, how and where these grasp points are to be placed on the object to perform well for a certain manipulation task.

    This paper was presented at the IFToMM/ASME International Workshop on Underactuated Grasping (UG2010, 19 August 2010, Montréal, Canada.

  17. Preschool children adapt grasping movements to upcoming object manipulations: Evidence from a dial rotation task.

    Science.gov (United States)

    Herbort, Oliver; Büschelberger, Juliane; Janczyk, Markus

    2018-03-01

    In adults, the motor plans for object-directed grasping movements reflects the anticipated requirements of intended future object manipulations. This prospective mode of planning has been termed second-order planning. Surprisingly, second-order planning is thought to be fully developed only by 10 years of age, when children master seemingly more complex motor skills. In this study, we tested the hypothesis that already 5- and 6-year-old children consistently use second-order planning but that this ability does not become apparent in tasks that are traditionally used to probe it. We asked 5- and 6-year-olds and adults to grasp and rotate a circular dial in a clockwise or counterclockwise direction. Although children's grasp selections were less consistent on an intra- and inter-individual level than adults' grasp selections, all children adjusted their grasps to the upcoming dial rotations. By contrast, in an also administered bar rotation task, only a subset of children adjusted their grasps to different bar rotations, thereby replicating previous results. The results indicate that 5- and 6-year-olds consistently use second-order planning in a dial rotation task, although this ability does not become apparent in bar rotation tasks. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Dependence of behavioral performance on material category in an object grasping task with monkeys.

    Science.gov (United States)

    Yokoi, Isao; Tachibana, Atsumichi; Minamimoto, Takafumi; Goda, Naokazu; Komatsu, Hidehiko

    2018-05-02

    Material perception is an essential part of our cognitive function that enables us to properly interact with our complex daily environment. One important aspect of material perception is its multimodal nature. When we see an object, we generally recognize its haptic properties as well as its visual properties. Consequently, one must examine behavior using real objects that are perceived both visually and haptically to fully understand the characteristics of material perception. As a first step, we examined whether there is any difference in the behavioral responses to different materials in monkeys trained to perform an object grasping task in which they saw and grasped rod-shaped real objects made of various materials. We found that the monkeys' behavior in the grasping task, measured based on the success rate and the pulling force, differed depending on the material category. Monkeys easily and correctly grasped objects of some materials, such as metal and glass, but failed to grasp objects of other materials. In particular, monkeys avoided grasping fur-covered objects. The differences in the behavioral responses to the material categories cannot be explained solely based on the degree of familiarity with the different materials. These results shed light on the organization of multimodal representation of materials, where their biological significance is an important factor. In addition, a monkey that avoided touching real fur-covered objects readily touched images of the same objects presented on a CRT display. This suggests employing real objects is important when studying behaviors related to material perception.

  19. Human grasping database for activities of daily living with depth, color and kinematic data streams.

    Science.gov (United States)

    Saudabayev, Artur; Rysbek, Zhanibek; Khassenova, Raykhan; Varol, Huseyin Atakan

    2018-05-29

    This paper presents a grasping database collected from multiple human subjects for activities of daily living in unstructured environments. The main strength of this database is the use of three different sensing modalities: color images from a head-mounted action camera, distance data from a depth sensor on the dominant arm and upper body kinematic data acquired from an inertial motion capture suit. 3826 grasps were identified in the data collected during 9-hours of experiments. The grasps were grouped according to a hierarchical taxonomy into 35 different grasp types. The database contains information related to each grasp and associated sensor data acquired from the three sensor modalities. We also provide our data annotation software written in Matlab as an open-source tool. The size of the database is 172 GB. We believe this database can be used as a stepping stone to develop big data and machine learning techniques for grasping and manipulation with potential applications in rehabilitation robotics and intelligent automation.

  20. Functional morphology of the hallucal metatarsal with implications for inferring grasping ability in extinct primates.

    Science.gov (United States)

    Goodenberger, Katherine E; Boyer, Doug M; Orr, Caley M; Jacobs, Rachel L; Femiani, John C; Patel, Biren A

    2015-03-01

    Primate evolutionary morphologists have argued that selection for life in a fine branch niche resulted in grasping specializations that are reflected in the hallucal metatarsal (Mt1) morphology of extant "prosimians", while a transition to use of relatively larger, horizontal substrates explains the apparent loss of such characters in anthropoids. Accordingly, these morphological characters-Mt1 torsion, peroneal process length and thickness, and physiological abduction angle-have been used to reconstruct grasping ability and locomotor mode in the earliest fossil primates. Although these characters are prominently featured in debates on the origin and subsequent radiation of Primates, questions remain about their functional significance. This study examines the relationship between these morphological characters of the Mt1 and a novel metric of pedal grasping ability for a large number of extant taxa in a phylogenetic framework. Results indicate greater Mt1 torsion in taxa that engage in hallucal grasping and in those that utilize relatively small substrates more frequently. This study provides evidence that Carpolestes simpsoni has a torsion value more similar to grasping primates than to any scandentian. The results also show that taxa that habitually grasp vertical substrates are distinguished from other taxa in having relatively longer peroneal processes. Furthermore, a longer peroneal process is also correlated with calcaneal elongation, a metric previously found to reflect leaping proclivity. A more refined understanding of the functional associations between Mt1 morphology and behavior in extant primates enhances the potential for using these morphological characters to comprehend primate (locomotor) evolution. © 2014 Wiley Periodicals, Inc.

  1. New version: GRASP2K relativistic atomic structure package

    Science.gov (United States)

    Jönsson, P.; Gaigalas, G.; Bieroń, J.; Fischer, C. Froese; Grant, I. P.

    2013-09-01

    A revised version of GRASP2K [P. Jönsson, X. He, C. Froese Fischer, I.P. Grant, Comput. Phys. Commun. 177 (2007) 597] is presented. It supports earlier non-block and block versions of codes as well as a new block version in which the njgraf library module [A. Bar-Shalom, M. Klapisch, Comput. Phys. Commun. 50 (1988) 375] has been replaced by the librang angular package developed by Gaigalas based on the theory of [G. Gaigalas, Z.B. Rudzikas, C. Froese Fischer, J. Phys. B: At. Mol. Phys. 30 (1997) 3747, G. Gaigalas, S. Fritzsche, I.P. Grant, Comput. Phys. Commun. 139 (2001) 263]. Tests have shown that errors encountered by njgraf do not occur with the new angular package. The three versions are denoted v1, v2, and v3, respectively. In addition, in v3, the coefficients of fractional parentage have been extended to j=9/2, making calculations feasible for the lanthanides and actinides. Changes in v2 include minor improvements. For example, the new version of rci2 may be used to compute quantum electrodynamic (QED) corrections only from selected orbitals. In v3, a new program, jj2lsj, reports the percentage composition of the wave function in LSJ and the program rlevels has been modified to report the configuration state function (CSF) with the largest coefficient of an LSJ expansion. The bioscl2 and bioscl3 application programs have been modified to produce a file of transition data with one record for each transition in the same format as in ATSP2K [C. Froese Fischer, G. Tachiev, G. Gaigalas, M.R. Godefroid, Comput. Phys. Commun. 176 (2007) 559], which identifies each atomic state by the total energy and a label for the CSF with the largest expansion coefficient in LSJ intermediate coupling. All versions of the codes have been adapted for 64-bit computer architecture. Program SummaryProgram title: GRASP2K, version 1_1 Catalogue identifier: ADZL_v1_1 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/ADZL_v1_1.html Program obtainable from: CPC Program Library

  2. The effect of silage cutting height on the nutritive value of a normal corn silage hybrid compared with brown midrib corn silage fed to lactating cows.

    Science.gov (United States)

    Kung, L; Moulder, B M; Mulrooney, C M; Teller, R S; Schmidt, R J

    2008-04-01

    A brown midrib (BMR) hybrid and a silage-specific non-BMR (7511FQ) hybrid were harvested at a normal cut height leaving 10 to 15 cm of stalk in the field. The non-BMR hybrid was also cut at a greater height leaving 45 to 50 cm of stalk. Cutting high increased the concentrations of dry matter (+4%), crude protein (+5%), net energy for lactation (+3%), and starch (+7%), but decreased the concentrations of acid detergent fiber (-9%), neutral detergent fiber (-8%), and acid detergent lignin (-13%) for 7511FQ. As expected, the BMR corn silage was 30% lower in lignin concentration than 7511FQ. After 30 h of in vitro ruminal fermentation, the digestibility of neutral detergent fiber for normal cut 7511FQ, the same hybrid cut high, and the normal cut BMR hybrid were 51.7, 51.4, and 63.5%, respectively. Twenty-seven multiparous lactating cows were fed a total mixed ration composed of the respective silages (45% of dry matter) with alfalfa haylage (5%), alfalfa hay (5%), and concentrate (45%) (to make the TMR isocaloric and isonitrogenous) in a study with a 3 x 3 Latin square design with 21-d periods. Milk production was greater for cows fed the BMR hybrid (48.8 kg/d) compared with those fed the normal cut 7511FQ (46.8 kg/d) or cut high (47.7 kg/d). Dry matter intake was not affected by treatment. Feed efficiency for cows fed the BMR silage (1.83) was greater than for those fed high-cut 7511FQ (1.75), but was not different from cows fed the normal cut 7511FQ (1.77). Cows fed the BMR silage had milk with greater concentrations of lactose but lower milk urea nitrogen than cows on other treatments. Harvesting a silage-specific, non-BMR corn hybrid at a high harvest height improved its nutritive content, but the improvement in feeding value was not equivalent to that found when cows were fed BMR corn silage.

  3. Effect of implant position, angulation, and attachment height on peri-implant bone stress associated with mandibular two-implant overdentures: a finite element analysis.

    Science.gov (United States)

    Hong, Hae Ryong; Pae, Ahran; Kim, Yooseok; Paek, Janghyun; Kim, Hyeong-Seob; Kwon, Kung-Rock

    2012-01-01

    The aim of this study was to analyze and compare the level and distribution of peri-implant bone stresses associated with mandibular two-implant overdentures with different implant positions. Mathematical models of mandibles and overdentures were designed using finite element analysis software. Two intraosseous implants and ball attachment systems were placed in the interforaminal region. The overdenture, which was supported by the two implants, was designed to withstand bilateral and unilateral vertical masticatory loads (total 100 N). In all, eight types of models, which differed according to assigned implant positions, height of attachments, and angulation, were tested: MI (model with implants positioned in the lateral incisor sites), MC (implants in canine sites), MP (implants in premolar sites), MI-Hi (greater height of attachments), MC-M (canine implants placed with mesial inclination), MC-D (canine implants placed with distal inclination), MC-B (canine implants placed with buccal inclination), and MC-L (canine implants placed with lingual inclination). Peri-implant bone stress levels associated with overdentures retained by lateral incisor implants resulted in the lowest stress levels and the highest efficiency in distributing peri-implant stress. MI-Hi showed increased stress levels and decreased efficiency in stress distribution. As the implants were inclined, stress levels increased and the efficiency of stress distribution decreased. Among the inclined models, MC-B showed the lowest stress level and best efficiency in stress distribution. The lowest stress and the best stability of implants in mandibular two-implant overdentures were obtained when implants were inserted in lateral incisor areas with shorter attachments and were placed parallel to the long axes of the teeth.

  4. Effects of soil type and light on height growth, biomass partitioning, and nitrogen dynamics on 22 species of tropical dry forest tree seedlings: Comparisons between legumes and nonlegumes.

    Science.gov (United States)

    Smith-Martin, Christina M; Gei, Maria G; Bergstrom, Ellie; Becklund, Kristen K; Becknell, Justin M; Waring, Bonnie G; Werden, Leland K; Powers, Jennifer S

    2017-03-01

    The seedling stage is particularly vulnerable to resource limitation, with potential consequences for community composition. We investigated how light and soil variation affected early growth, biomass partitioning, morphology, and physiology of 22 tree species common in tropical dry forest, including eight legumes. Our hypothesis was that legume seedlings are better at taking advantage of increased resource availability, which contributes to their successful regeneration in tropical dry forests. We grew seedlings in a full-factorial design under two light levels in two soil types that differed in nutrient concentrations and soil moisture. We measured height biweekly and, at final harvest, biomass partitioning, internode segments, leaf carbon, nitrogen, δ 13 C, and δ 15 N. Legumes initially grew taller and maintained that height advantage over time under all experimental conditions. Legumes also had the highest final total biomass and water-use efficiency in the high-light and high-resource soil. For nitrogen-fixing legumes, the amount of nitrogen derived from fixation was highest in the richer soil. Although seed mass tended to be larger in legumes, seed size alone did not account for all the differences between legumes and nonlegumes. Both belowground and aboveground resources were limiting to early seedling growth and function. Legumes may have a different regeneration niche, in that they germinate rapidly and grow taller than other species immediately after germination, maximizing their performance when light and belowground resources are readily available, and potentially permitting them to take advantage of high light, nutrient, and water availability at the beginning of the wet season. © 2017 Botanical Society of America.

  5. How Weight Affects the Perceived Spacing between the Thumb and Fingers during Grasping.

    Directory of Open Access Journals (Sweden)

    Annie A Butler

    Full Text Available We know much about mechanisms determining the perceived size and weight of lifted objects, but little about how these properties of size and weight affect the body representation (e.g. grasp aperture of the hand. Without vision, subjects (n = 16 estimated spacing between fingers and thumb (perceived grasp aperture while lifting canisters of the same width (6.6cm but varied weights (300, 600, 900, and 1200 g. Lifts were performed by movement of either the wrist, elbow or shoulder to examine whether lifting with different muscle groups affects the judgement of grasp aperture. Results for perceived grasp aperture were compared with changes in perceived weight of objects of different sizes (5.2, 6.6, and 10 cm but the same weight (600 g. When canisters of the same width but different weights were lifted, perceived grasp aperture decreased 4.8% [2.2 ‒ 7.4] (mean [95% CI]; P < 0.001 from the lightest to the heaviest canister, no matter how they were lifted. For objects of the same weight but different widths, perceived weight decreased 42.3% [38.2 ‒ 46.4] from narrowest to widest (P < 0.001, as expected from the size-weight illusion. Thus, despite a highly distorted perception of the weight of objects based on their size, we conclude that proprioceptive afferents maintain a reasonably stable perception of the aperture of the grasping hand over a wide range of object weights. Given the small magnitude of this 'weight-grasp aperture' illusion, we propose the brain has access to a relatively stable 'perceptual ruler' to aid the manipulation of different objects.

  6. Patterns of muscle activity underlying object-specific grasp by the macaque monkey.

    Science.gov (United States)

    Brochier, T; Spinks, R L; Umilta, M A; Lemon, R N

    2004-09-01

    During object grasp, a coordinated activation of distal muscles is required to shape the hand in relation to the physical properties of the object. Despite the fundamental importance of the grasping action, little is known of the muscular activation patterns that allow objects of different sizes and shapes to be grasped. In a study of two adult macaque monkeys, we investigated whether we could distinguish between EMG activation patterns associated with grasp of 12 differently shaped objects, chosen to evoke a wide range of grasping postures. Each object was mounted on a horizontal shuttle held by a weak spring (load force 1-2 N). Objects were located in separate sectors of a "carousel," and inter-trial rotation of the carousel allowed sequential presentation of the objects in pseudorandom order. EMG activity from 10 to 12 digit, hand, and arm muscles was recorded using chronically implanted electrodes. We show that the grasp of different objects was characterized by complex but distinctive patterns of EMG activation. Cluster analysis shows that these object-related EMG patterns were specific and consistent enough to identify the object unequivocally from the EMG recordings alone. EMG-based object identification required a minimum of six EMGs from simultaneously recorded muscles. EMG patterns were consistent across recording sessions in a given monkey but showed some differences between animals. These results identify the specific patterns of activity required to achieve distinct hand postures for grasping, and they open the way to our understanding of how these patterns are generated by the central motor network.

  7. Efeito agudo do calçado de diferentes alturas sobre o comportamento angular do tornozelo Acute effect of shoes with different heights on the ankle angular behavior

    Directory of Open Access Journals (Sweden)

    Mirieli Denardi Limana

    2012-09-01

    Full Text Available Estudos descrevem que o uso de salto alto exige do corpo uma série de ajustes compensatórios, a fim de manter os seus movimentos e equilíbrio próximos à normalidade. No andar, a interferência do salto alto sobre o pé e sobre a articulação do tornozelo parece desencadear uma postura diferente da posição anatômica. O presente estudo teve como objetivos comparar a cinemática sagital do tornozelo em diferentes calçados e verificar a existência de um limite de altura de salto que possa levar a articulação do tornozelo a adaptações durante o andar. Esta pesquisa, caracterizada como experimental, foi constituída por uma análise cinemática bidimensional do tornozelo no plano sagital. A amostra foi composta por dez universitárias, com média de idade de 19,2 (±1,8 anos, que caminharam sobre uma esteira utilizando um tênis e três sandálias do tipo tamanco, com saltos de 3, 7 e 10 cm. Para cada ciclo de passada, foram identificados picos de movimento do tornozelo referentes à dorsiflexão e à flexão plantar. Os resultados mostraram que na flexão plantar, com o aumento da altura do salto, há uma tendência de acentuação do pico angular do tornozelo. Concluiu-se que saltos acima de 3 cm de altura induzem a articulação do tornozelo a realizar uma flexão plantar sustentada, mudando as características da marcha na fase de apoio e de balanço. Tais evidências sugerem alturas de saltos menores de 3 cm como limites de segurança para manutenção do padrão normal da marcha em mulheres jovens.Studies have described that using high heels requires a series of compensatory adjustments of the body to keep its movements and balance close to normality. When walking, the interference of high heels on the foot and on the ankle joint seems to initiate a different posture from the anatomical position. The present study aimed at comparing the sagittal kinematics of the ankle in different shoes and at verifying the existence of a height

  8. Measuring perceived ceiling height in a visual comparison task.

    Science.gov (United States)

    von Castell, Christoph; Hecht, Heiko; Oberfeld, Daniel

    2017-03-01

    When judging interior space, a dark ceiling is judged to be lower than a light ceiling. The method of metric judgments (e.g., on a centimetre scale) that has typically been used in such tasks may reflect a genuine perceptual effect or it may reflect a cognitively mediated impression. We employed a height-matching method in which perceived ceiling height had to be matched with an adjustable pillar, thus obtaining psychometric functions that allowed for an estimation of the point of subjective equality (PSE) and the difference limen (DL). The height-matching method developed in this paper allows for a direct visual match and does not require metric judgment. It has the added advantage of providing superior precision. Experiment 1 used ceiling heights between 2.90 m and 3.00 m. The PSE proved sensitive to slight changes in perceived ceiling height. The DL was about 3% of the physical ceiling height. Experiment 2 found similar results for lower (2.30 m to 2.50 m) and higher (3.30 m to 3.50 m) ceilings. In Experiment 3, we additionally varied ceiling lightness (light grey vs. dark grey). The height matches showed that the light ceiling appeared significantly higher than the darker ceiling. We therefore attribute the influence of ceiling lightness on perceived ceiling height to a direct perceptual rather than a cognitive effect.

  9. 17 Years of Cloud Heights from Terra, and Beyond

    Science.gov (United States)

    Davies, R.

    2017-12-01

    The effective cloud height, H, is the integral of observed cloud-top heights, weighted by their frequency of occurrence. Here we look at changes in the effective cloud height, H', as measured by the Multiangle Imaging Spectroradiometer (MISR) on the first Earth Observing System platform, Terra. Terra was launched in December 1999, and now has over 17 years of consistently measured climate records. Globally, HG' has an important influence on Earth's climate, whereas regionally, HR' is a useful measure of low frequency changes in circulation patterns. MISR has a sampling error in the annual mean HG' of ≈11 m, allowing fairly small interannual variations to be detected. This paper extends the previous 15-year summary that showed significant differences in the long term mean hemispheric cloud height changes. Also of interest are the correlations in tropical cloud height changes and related teleconnections. The largest ephemeral values in the annual HR' [over 1.5 km] are noted over the Central Pacific and the Maritime Continent. These changes are strongly anticorrelated with each other, being directly related to changes in ENSO. They are also correlated with the largest ephemeral changes in HG'. Around the equator, we find at least four distinct centres of similar fluctuations in cloud height. This paper examines the relative time dependence of these regional height changes, separately for La Niña and El Niño events, and stresses the value of extending the time series of uniformly measured cloud heights from space beyond EOS-Terra.

  10. Control of aperture closure initiation during reach-to-grasp movements under manipulations of visual feedback and trunk involvement in Parkinson's disease.

    Science.gov (United States)

    Rand, Miya Kato; Lemay, Martin; Squire, Linda M; Shimansky, Yury P; Stelmach, George E

    2010-03-01

    The present project was aimed at investigating how two distinct and important difficulties (coordination difficulty and pronounced dependency on visual feedback) in Parkinson's disease (PD) affect each other for the coordination between hand transport toward an object and the initiation of finger closure during reach-to-grasp movement. Subjects with PD and age-matched healthy subjects made reach-to-grasp movements to a dowel under conditions in which the target object and/or the hand were either visible or not visible. The involvement of the trunk in task performance was manipulated by positioning the target object within or beyond the participant's outstretched arm to evaluate the effects of increasing the complexity of intersegmental coordination under different conditions related to the availability of visual feedback in subjects with PD. General kinematic characteristics of the reach-to-grasp movements of the subjects with PD were altered substantially by the removal of target object visibility. Compared with the controls, the subjects with PD considerably lengthened transport time, especially during the aperture closure period, and decreased peak velocity of wrist and trunk movement without target object visibility. Most of these differences were accentuated when the trunk was involved. In contrast, these kinematic parameters did not change depending on the visibility of the hand for both groups. The transport-aperture coordination was assessed in terms of the control law according to which the initiation of aperture closure during the reach occurred when the hand distance-to-target crossed a hand-target distance threshold for grasp initiation that is a function of peak aperture, hand velocity and acceleration, trunk velocity and acceleration, and trunk-target distance at the time of aperture closure initiation. When the hand or the target object was not visible, both groups increased the hand-target distance threshold for grasp initiation compared to its

  11. Cooperation of electrically stimulated muscle and pneumatic muscle to realize RUPERT bi-directional motion for grasping.

    Science.gov (United States)

    Xikai Tu; Jiping He; Yue Wen; Jian Huang; Xinhan Huang; Hailong Huang; Meng Guo; Yong Yuan

    2014-01-01

    Robot-assisted rehabilitation is an active area of research to meet the demand of repetitive therapy in stroke rehabilitation. Robotic upper-extremity repetitive trainer (RUPERT) with its unidirectional pneumatic muscle actuation (PMA) can be used by most stroke patients that have difficulty moving in one direction because of a weak agonist or hyperactive antagonist. In this research, to broaden the usage of RUPERT, we not only add grasping functionality to the rehabilitation robot with the help of surface Functional Electrical Stimulation (FES) but also realize the robot joint bi-directional motion by using a PMA in cooperation with surface FES evoked paralyzed muscle force. This integrative rehabilitation strategy is explored for training patients to practice coordinated reaching and grasping functions. The effectiveness of this FES electrically evoked bio-actuator way is verified through a method that separates the mixed electromyogram (MEMG) into the electrically evoked electromyogram (EEMG) and voluntary electromyogram (VEMG). This is a promising approach to alleviate the size and mechanical complexity of the robot, thereby the cost of the joint bi-directional actuator rehabilitation robot by means of their own characteristics of stroke subjects.

  12. Continuous grasp algorithm applied to economic dispatch problem of thermal units

    Energy Technology Data Exchange (ETDEWEB)

    Vianna Neto, Julio Xavier [Pontifical Catholic University of Parana - PUCPR, Curitiba, PR (Brazil). Undergraduate Program at Mechatronics Engineering; Bernert, Diego Luis de Andrade; Coelho, Leandro dos Santos [Pontifical Catholic University of Parana - PUCPR, Curitiba, PR (Brazil). Industrial and Systems Engineering Graduate Program, LAS/PPGEPS], e-mail: leandro.coelho@pucpr.br

    2010-07-01

    The economic dispatch problem (EDP) is one of the fundamental issues in power systems to obtain benefits with the stability, reliability and security. Its objective is to allocate the power demand among committed generators in the most economical manner, while all physical and operational constraints are satisfied. The cost of power generation, particularly in fossil fuel plants, is very high and economic dispatch helps in saving a significant amount of revenue. Recently, as an alternative to the conventional mathematical approaches, modern heuristic optimization techniques such as simulated annealing, evolutionary algorithms, neural networks, ant colony, and tabu search have been given much attention by many researchers due to their ability to find an almost global optimal solution in EDPs. On other hand, continuous GRASP (C-GRASP) is a stochastic local search meta-heuristic for finding cost-efficient solutions to continuous global optimization problems subject to box constraints. Like a greedy randomized adaptive search procedure (GRASP), a C-GRASP is a multi-start procedure where a starting solution for local improvement is constructed in a greedy randomized fashion. The C-GRASP algorithm is validated for a test system consisting of fifteen units, test system that takes into account spinning reserve and prohibited operating zones constrains. (author)

  13. Effects of air-sea interaction on extended-range prediction of geopotential height at 500 hPa over the northern extratropical region

    Science.gov (United States)

    Wang, Xujia; Zheng, Zhihai; Feng, Guolin

    2018-04-01

    The contribution of air-sea interaction on the extended-range prediction of geopotential height at 500 hPa in the northern extratropical region has been analyzed with a coupled model form Beijing Climate Center and its atmospheric components. Under the assumption of the perfect model, the extended-range prediction skill was evaluated by anomaly correlation coefficient (ACC), root mean square error (RMSE), and signal-to-noise ratio (SNR). The coupled model has a better prediction skill than its atmospheric model, especially, the air-sea interaction in July made a greater contribution for the improvement of prediction skill than other months. The prediction skill of the extratropical region in the coupled model reaches 16-18 days in all months, while the atmospheric model reaches 10-11 days in January, April, and July and only 7-8 days in October, indicating that the air-sea interaction can extend the prediction skill of the atmospheric model by about 1 week. The errors of both the coupled model and the atmospheric model reach saturation in about 20 days, suggesting that the predictable range is less than 3 weeks.

  14. On the Extreme Wave Height Analysis

    DEFF Research Database (Denmark)

    Burcharth, H. F.; Liu, Zhou

    1994-01-01

    The determination of the design wave height is usually based on the statistical analysis of long-term extreme wave height measurements. After an introduction to the procedure of the extreme wave height analysis, the paper presents new development concerning various aspects of the extreme wave...... height analysis. Finally, the paper gives a practical example based on a data set of the hindcasted wave heights for a deep water location in the Mediterranean Sea....

  15. Gravity and Height Variations at Medicina, Italy

    Science.gov (United States)

    Bruni, Sara; Zerbini, Susanna; Errico, Maddalena; Santi, Efisio; Wziontek, Hartmut

    2017-04-01

    Since 1996, at the Medicina station, height and gravity variations are monitored continuously by means of GPS, VLBI and superconducting gravimeter (SG) data. Additionally, absolute gravity observations are performed twice a year and environmental parameters, among others water table levels, are regularly acquired. Levelling between the different monuments at the site area is also carried out repeatedly to constrain local ties in the vertical position. Two GPS systems are located very close to each other, and both are in close proximity to the VLBI antenna. Twenty years of data are now available, which allow investigating both long- and short-period height and gravity signals together with their relevant correlations. Natural land subsidence, which is well known to occur in the area, is a major component of the observed long-term behavior; however, non-linear long-period signatures are also present in the time series. On a shorter time scale, fingerprints of the water table seasonal oscillations can be recognized in the data. The Medicina site is characterized by clayey soil subjected to consolidation effects when the water table lowers during summer periods. The pillar on which the SG is installed is especially affected because of its shallow foundation, causing height decreases in the order of 2.5-3 cm for water table lowering of 2 m. This study presents a comparative analysis of the different data sets with the aim of separating mass and deformation contributions in the SG gravity record.

  16. Seamless Control of Multi-Fingered Robot Hands Based on Grasp Polyhedrons

    Science.gov (United States)

    Nagase, Kenji; Shirai, Satoshi; Hayashi, Tsuyoshi

    This paper is concerned with a new feedback control design methodology for multi-fingered robot hands applicable to multiple contact situations. As a first step, we especially consider the situations where all the fingers are in contact or not in contact with an object, considering the tasks of catching and releasing the object preceding to or followed by grasping/manipulating the object. Main features of the proposed method are: (1) the direction of the fingertip motion in the non-contact situation is selected to be directly linked to the direction of the object motion and the internal force in the contact situation; (2) by introducing a unified system description for multiple contact situations, a linearizing compensator applicable to multiple contact situations is designed. The controller can handle the tasks with the multiple contact situations by choosing appropriate desired trajectories for the linearizing compensator without switching control architecture. In addition, owing to the selection of the motion in the non-contact situation, all the fingers can approach to the object synchronously along the directions of the object motion and the internal force in the contact situation. A numerical example is shown to prove effectiveness of the proposed method.

  17. Noninvasive Electroencephalogram Based Control of a Robotic Arm for Reach and Grasp Tasks

    Science.gov (United States)

    Meng, Jianjun; Zhang, Shuying; Bekyo, Angeliki; Olsoe, Jaron; Baxter, Bryan; He, Bin

    2016-01-01

    Brain-computer interface (BCI) technologies aim to provide a bridge between the human brain and external devices. Prior research using non-invasive BCI to control virtual objects, such as computer cursors and virtual helicopters, and real-world objects, such as wheelchairs and quadcopters, has demonstrated the promise of BCI technologies. However, controlling a robotic arm to complete reach-and-grasp tasks efficiently using non-invasive BCI has yet to be shown. In this study, we found that a group of 13 human subjects could willingly modulate brain activity to control a robotic arm with high accuracy for performing tasks requiring multiple degrees of freedom by combination of two sequential low dimensional controls. Subjects were able to effectively control reaching of the robotic arm through modulation of their brain rhythms within the span of only a few training sessions and maintained the ability to control the robotic arm over multiple months. Our results demonstrate the viability of human operation of prosthetic limbs using non-invasive BCI technology. PMID:27966546

  18. Height, selected genetic markers and prostate cancer risk

    DEFF Research Database (Denmark)

    Lophatananon, Artitaya; Stewart-Brown, Sarah; Kote-Jarai, Zsofia

    2017-01-01

    Background:Evidence on height and prostate cancer risk is mixed, however, recent studies with large data sets support a possible role for its association with the risk of aggressive prostate cancer.Methods:We analysed data from the PRACTICAL consortium consisting of 6207 prostate cancer cases...... and 6016 controls and a subset of high grade cases (2480 cases). We explored height, polymorphisms in genes related to growth processes as main effects and their possible interactions.Results:The results suggest that height is associated with high-grade prostate cancer risk. Men with height >180 cm...... are at a 22% increased risk as compared to men with height prostate cancer risk. The aggregate scores of the selected variants identified a significantly increased risk of overall prostate cancer...

  19. Grasping and manipulation of deformable objects based on internal force requirements

    Directory of Open Access Journals (Sweden)

    Sohil Garg

    2008-11-01

    Full Text Available In this paper an analysis of grasping and manipulation of deformable objects by a three finger robot hand has been carried out. It is proved that the required fingertip grasping forces and velocities vary with change in object size due to deformation. The variation of the internal force with the change in fingertip and object contact angle has been investigated in detail. From the results it is concluded that it is very difficult to manipulate an object if the finger contact angle is not between 30 o and 70 o, as the internal forces or velocities become very large outside this range. Hence even if the object is inside the work volume of the three fingers it would still not be possible to manipulate it. A simple control model is proposed which can control the grasping and manipulation of a deformable object. Experimental results are also presented to prove the proposed method.

  20. GRASP2: visualization, surface properties, and electrostatics of macromolecular structures and sequences.

    Science.gov (United States)

    Petrey, Donald; Honig, Barry

    2003-01-01

    The widespread use of the original version of GRASP revealed the importance of the visualization of physicochemical and structural properties on the molecular surface. This chapter describes a new version of GRASP that contains many new capabilities. In terms of analysis tools, the most notable new features are sequence and structure analysis and alignment tools and the graphical integration of sequence and structural information. Not all the new GRASP2 could be described here and more capabilities are continually being added. An on-line manual, details on obtaining the software, and technical notes about the program and the Troll software library can be found at the Honig laboratory Web site (http://trantor.bioc.columbia.edu).

  1. From a meso- to micro-scale connectome: Array Tomography and mGRASP

    Directory of Open Access Journals (Sweden)

    Jinhyun eKim

    2015-06-01

    Full Text Available Mapping mammalian synaptic connectivity has long been an important goal of neuroscience because knowing how neurons and brain areas are connected underpins an understanding of brain function. Meeting this goal requires advanced techniques with single synapse resolution and large-scale capacity, especially at multiple scales tethering the meso- and micro-scale connectome. Among several advanced LM-based connectome technologies, Array Tomography (AT and mammalian GFP-Reconstitution Across Synaptic Partners (mGRASP can provide relatively high-throughput mapping synaptic connectivity at multiple scales. AT- and mGRASP-assisted circuit mapping (ATing and mGRASPing, combined with techniques such as retrograde virus, brain clearing techniques, and activity indicators will help unlock the secrets of complex neural circuits. Here, we discuss these useful new tools to enable mapping of brain circuits at multiple scales, some functional implications of spatial synaptic distribution, and future challenges and directions of these endeavors.

  2. Neurons in Primary Motor Cortex Encode Hand Orientation in a Reach-to-Grasp Task.

    Science.gov (United States)

    Ma, Chaolin; Ma, Xuan; Fan, Jing; He, Jiping

    2017-08-01

    It is disputed whether those neurons in the primary motor cortex (M1) that encode hand orientation constitute an independent channel for orientation control in reach-to-grasp behaviors. Here, we trained two monkeys to reach forward and grasp objects positioned in the frontal plane at different orientation angles, and simultaneously recorded the activity of M1 neurons. Among the 2235 neurons recorded in M1, we found that 18.7% had a high correlation exclusively with hand orientation, 15.9% with movement direction, and 29.5% with both movement direction and hand orientation. The distributions of neurons encoding hand orientation and those encoding movement direction were not uniform but coexisted in the same region. The trajectory of hand rotation was reproduced by the firing patterns of the orientation-related neurons independent of the hand reaching direction. These results suggest that hand orientation is an independent component for the control of reaching and grasping activity.

  3. Research on Visual Servo Grasping of Household Objects for Nonholonomic Mobile Manipulator

    Directory of Open Access Journals (Sweden)

    Huangsheng Xie

    2014-01-01

    Full Text Available This paper focuses on the problem of visual servo grasping of household objects for nonholonomic mobile manipulator. Firstly, a new kind of artificial object mark based on QR (Quick Response Code is designed, which can be affixed to the surface of household objects. Secondly, after summarizing the vision-based autonomous mobile manipulation system as a generalized manipulator, the generalized manipulator’s kinematic model is established, the analytical inverse kinematic solutions of the generalized manipulator are acquired, and a novel active vision based camera calibration method is proposed to determine the hand-eye relationship. Finally, a visual servo switching control law is designed to control the service robot to finish object grasping operation. Experimental results show that QR Code-based artificial object mark can overcome the difficulties brought by household objects’ variety and operation complexity, and the proposed visual servo scheme makes it possible for service robot to grasp and deliver objects efficiently.

  4. Evaluation of the Correlation of Ramus Height, Gonial Angle, and ...

    African Journals Online (AJOL)

    molar infraocclusion, ramus height, and vertical face type.[1]. Deep bite has been found to ... different facial forms. Subjects and Methods: A total of 51 subjects in all facial form ... to improve the effectiveness of any prosthesis and maintain the.

  5. Encounter Probability of Individual Wave Height

    DEFF Research Database (Denmark)

    Liu, Z.; Burcharth, H. F.

    1998-01-01

    wave height corresponding to a certain exceedence probability within a structure lifetime (encounter probability), based on the statistical analysis of long-term extreme significant wave height. Then the design individual wave height is calculated as the expected maximum individual wave height...... associated with the design significant wave height, with the assumption that the individual wave heights follow the Rayleigh distribution. However, the exceedence probability of such a design individual wave height within the structure lifetime is unknown. The paper presents a method for the determination...... of the design individual wave height corresponding to an exceedence probability within the structure lifetime, given the long-term extreme significant wave height. The method can also be applied for estimation of the number of relatively large waves for fatigue analysis of constructions....

  6. Bio-inspired grasp control in a robotic hand with massive sensorial input.

    Science.gov (United States)

    Ascari, Luca; Bertocchi, Ulisse; Corradi, Paolo; Laschi, Cecilia; Dario, Paolo

    2009-02-01

    The capability of grasping and lifting an object in a suitable, stable and controlled way is an outstanding feature for a robot, and thus far, one of the major problems to be solved in robotics. No robotic tools able to perform an advanced control of the grasp as, for instance, the human hand does, have been demonstrated to date. Due to its capital importance in science and in many applications, namely from biomedics to manufacturing, the issue has been matter of deep scientific investigations in both the field of neurophysiology and robotics. While the former is contributing with a profound understanding of the dynamics of real-time control of the slippage and grasp force in the human hand, the latter tries more and more to reproduce, or take inspiration by, the nature's approach, by means of hardware and software technology. On this regard, one of the major constraints robotics has to overcome is the real-time processing of a large amounts of data generated by the tactile sensors while grasping, which poses serious problems to the available computational power. In this paper a bio-inspired approach to tactile data processing has been followed in order to design and test a hardware-software robotic architecture that works on the parallel processing of a large amount of tactile sensing signals. The working principle of the architecture bases on the cellular nonlinear/neural network (CNN) paradigm, while using both hand shape and spatial-temporal features obtained from an array of microfabricated force sensors, in order to control the sensory-motor coordination of the robotic system. Prototypical grasping tasks were selected to measure the system performances applied to a computer-interfaced robotic hand. Successful grasps of several objects, completely unknown to the robot, e.g. soft and deformable objects like plastic bottles, soft balls, and Japanese tofu, have been demonstrated.

  7. Final height in survivors of childhood cancer compared with Height Standard Deviation Scores at diagnosis

    NARCIS (Netherlands)

    Knijnenburg, S. L.; Raemaekers, S.; van den Berg, H.; van Dijk, I. W. E. M.; Lieverst, J. A.; van der Pal, H. J.; Jaspers, M. W. M.; Caron, H. N.; Kremer, L. C.; van Santen, H. M.

    2013-01-01

    Our study aimed to evaluate final height in a cohort of Dutch childhood cancer survivors (CCS) and assess possible determinants of final height, including height at diagnosis. We calculated standard deviation scores (SDS) for height at initial cancer diagnosis and height in adulthood in a cohort of

  8. Multisession, noninvasive closed-loop neuroprosthetic control of grasping by upper limb amputees.

    Science.gov (United States)

    Agashe, H A; Paek, A Y; Contreras-Vidal, J L

    2016-01-01

    Upper limb amputation results in a severe reduction in the quality of life of affected individuals due to their inability to easily perform activities of daily living. Brain-machine interfaces (BMIs) that translate grasping intent from the brain's neural activity into prosthetic control may increase the level of natural control currently available in myoelectric prostheses. Current BMI techniques demonstrate accurate arm position and single degree-of-freedom grasp control but are invasive and require daily recalibration. In this study we tested if transradial amputees (A1 and A2) could control grasp preshaping in a prosthetic device using a noninvasive electroencephalography (EEG)-based closed-loop BMI system. Participants attempted to grasp presented objects by controlling two grasping synergies, in 12 sessions performed over 5 weeks. Prior to closed-loop control, the first six sessions included a decoder calibration phase using action observation by the participants; thereafter, the decoder was fixed to examine neuroprosthetic performance in the absence of decoder recalibration. Ability of participants to control the prosthetic was measured by the success rate of grasping; ie, the percentage of trials within a session in which presented objects were successfully grasped. Participant A1 maintained a steady success rate (63±3%) across sessions (significantly above chance [41±5%] for 11 sessions). Participant A2, who was under the influence of pharmacological treatment for depression, hormone imbalance, pain management (for phantom pain as well as shoulder joint inflammation), and drug dependence, achieved a success rate of 32±2% across sessions (significantly above chance [27±5%] in only two sessions). EEG signal quality was stable across sessions, but the decoders created during the first six sessions showed variation, indicating EEG features relevant to decoding at a smaller timescale (100ms) may not be stable. Overall, our results show that (a) an EEG

  9. Tactile Gloves for Autonomous Grasping With the NASA/DARPA Robonaut

    Science.gov (United States)

    Martin, T. B.; Ambrose, R. O.; Diftler, M. A.; Platt, R., Jr.; Butzer, M. J.

    2004-01-01

    Tactile data from rugged gloves are providing the foundation for developing autonomous grasping skills for the NASA/DARPA Robonaut, a dexterous humanoid robot. These custom gloves compliment the human like dexterity available in the Robonaut hands. Multiple versions of the gloves are discussed, showing a progression in using advanced materials and construction techniques to enhance sensitivity and overall sensor coverage. The force data provided by the gloves can be used to improve dexterous, tool and power grasping primitives. Experiments with the latest gloves focus on the use of tools, specifically a power drill used to approximate an astronaut's torque tool.

  10. The continuous end-state comfort effect: weighted integration of multiple biases.

    Science.gov (United States)

    Herbort, Oliver; Butz, Martin V

    2012-05-01

    The grasp orientation when grasping an object is frequently aligned in anticipation of the intended rotation of the object (end-state comfort effect). We analyzed grasp orientation selection in a continuous task to determine the mechanisms underlying the end-state comfort effect. Participants had to grasp a box by a circular handle-which allowed for arbitrary grasp orientations-and then had to rotate the box by various angles. Experiments 1 and 2 revealed both that the rotation's direction considerably determined grasp orientations and that end-postures varied considerably. Experiments 3 and 4 further showed that visual stimuli and initial arm postures biased grasp orientations if the intended rotation could be easily achieved. The data show that end-state comfort but also other factors determine grasp orientation selection. A simple mechanism that integrates multiple weighted biases can account for the data.

  11. The Observation of Manual Grasp Actions Affects the Control of Speech: A Combined Behavioral and Transcranial Magnetic Stimulation Study

    Science.gov (United States)

    Gentilucci, Maurizio; Campione, Giovanna Cristina; Volta, Riccardo Dalla; Bernardis, Paolo

    2009-01-01

    Does the mirror system affect the control of speech? This issue was addressed in behavioral and Transcranial Magnetic Stimulation (TMS) experiments. In behavioral experiment 1, participants pronounced the syllable /da/ while observing (1) a hand grasping large and small objects with power and precision grasps, respectively, (2) a foot interacting…

  12. Maternal Height and Child Growth Patterns

    OpenAIRE

    Addo, O. Yaw; Stein, Aryeh D.; Fall, Caroline H.; Gigante, Denise P.; Guntupalli, Aravinda M.; Horta, Bernardo L.; Kuzawa, Christopher W.; Lee, Nanette; Norris, Shane A.; Prabhakaran, Poornima; Richter, Linda M.; Sachdev, Harshpal S.; Martorell, Reynaldo

    2013-01-01

    OBJECTIVE:\\ud To examine associations between maternal height and child growth during 4 developmental periods: intrauterine, birth to age 2 years, age 2 years to mid-childhood (MC), and MC to adulthood.\\ud \\ud STUDY DESIGN:\\ud Pooled analysis of maternal height and offspring growth using 7630 mother-child pairs from 5 birth cohorts (Brazil, Guatemala, India, the Philippines, and South Africa). We used conditional height measures that control for collinearity in height across periods. We estim...

  13. The taking of Lucas Heights

    International Nuclear Information System (INIS)

    Sandilands, B.

    1993-01-01

    Plans for a new research reactor at Lucas Heights have sparked a 'civil war' in New South Wales. The author considers the arguments. The leading antagonists are the local government body - The Sutherland Shire Council, Greenpeace, and the Sutherland Shire Environment Centre. Many of the economic benefits claimed for the existing and proposed replacement reactor have been tagged with question marks. However, ANSTO is confident of refuting claims that the money could be better spent on alternative methods of producing medical isotopes and neutron streams for industry or research, such as particle accelerators. If ANSTO's critics have their way, non-reactor-dependent work like the laser enrichment project could continue without the alleged hazards of sustained nuclear fission. If ANSTO wins the day, a far more efficient reactor will be built which is capable of keeping pace with the emerging nuclear industries of Asia. ills

  14. Wind‐gust parametrizations at heights relevant for wind energy: a study based on mast observations

    DEFF Research Database (Denmark)

    Suomi, I.; Vihma, T.; Gryning, Sven-Erik

    2013-01-01

    Wind gusts are traditionally observed and reported at the reference height of 10 m and most gust parametrization methods have been developed only for this height. In many practical applications, e.g. in wind energy, the relevant heights are, however, up to a few hundred metres. In this study, mean...... speed, which is parametrized on the basis of the surface friction velocity, the Obukhov length and height and the boundary‐layer height. The new gust parametrization method outperformed the two older methods: the effects of surface roughness, stability and the height above the surface were well...

  15. Genetically Determined Height and Coronary Artery Disease

    NARCIS (Netherlands)

    Nelson, Christopher P.; Hamby, Stephen E.; Saleheen, Danish; Hopewell, Jenna C.; Zeng, Lingyao; Assimes, Themistocles L.; Kanoni, Stavroula; Willenborg, Christina; Burgess, Stephen; Amouyel, Phillipe; Anand, Sonia; Blankenberg, Stefan; Boehm, Bernhard O.; Clarke, Robert J.; Collins, Rory; Dedoussis, George; Farrall, Martin; Franks, Paul W.; Groop, Leif; Hall, Alistair S.; Hamsten, Anders; Hengstenberg, Christian; Hovingh, G. Kees; Ingelsson, Erik; Kathiresan, Sekar; Kee, Frank; König, Inke R.; Kooner, Jaspal; Lehtimäki, Terho; März, Winifred; McPherson, Ruth; Metspalu, Andres; Nieminen, Markku S.; O'Donnell, Christopher J.; Palmer, Colin N. A.; Peters, Annette; Perola, Markus; Reilly, Muredach P.; Ripatti, Samuli; Roberts, Robert; Salomaa, Veikko; Shah, Svati H.; Schreiber, Stefan; Siegbahn, Agneta; Thorsteinsdottir, Unnur; Veronesi, Giovani; Wareham, Nicholas; Willer, Cristen J.; Zalloua, Pierre A.; Erdmann, Jeanette

    2015-01-01

    BACKGROUND The nature and underlying mechanisms of an inverse association between adult height and the risk of coronary artery disease (CAD) are unclear. METHODS We used a genetic approach to investigate the association between height and CAD, using 180 height-associated genetic variants. We tested

  16. Classification of right-hand grasp movement based on EMOTIV Epoc+

    Science.gov (United States)

    Tobing, T. A. M. L.; Prawito, Wijaya, S. K.

    2017-07-01

    Combinations of BCT elements for right-hand grasp movement have been obtained, providing the average value of their classification accuracy. The aim of this study is to find a suitable combination for best classification accuracy of right-hand grasp movement based on EEG headset, EMOTIV Epoc+. There are three movement classifications: grasping hand, relax, and opening hand. These classifications take advantage of Event-Related Desynchronization (ERD) phenomenon that makes it possible to differ relaxation, imagery, and movement state from each other. The combinations of elements are the usage of Independent Component Analysis (ICA), spectrum analysis by Fast Fourier Transform (FFT), maximum mu and beta power with their frequency as features, and also classifier Probabilistic Neural Network (PNN) and Radial Basis Function (RBF). The average values of classification accuracy are ± 83% for training and ± 57% for testing. To have a better understanding of the signal quality recorded by EMOTIV Epoc+, the result of classification accuracy of left or right-hand grasping movement EEG signal (provided by Physionet) also be given, i.e.± 85% for training and ± 70% for testing. The comparison of accuracy value from each combination, experiment condition, and external EEG data are provided for the purpose of value analysis of classification accuracy.

  17. Dynamic optimal grasping of a circular object with gravity using robotic soft-fingertips

    Directory of Open Access Journals (Sweden)

    García-Rodríguez Rodolfo

    2016-06-01

    Full Text Available Object manipulation usually requires dexterity, encoded as the ability to roll, which is very difficult to achieve with robotic hands based on point contact models (subject to holonomic constraints. As an alternative for dexterous manipulation, deformable contact with hemispherical shape fingertips has been proposed to yield naturally a rolling constraint. It entails dexterity at the expense of dealing with normal and tangential forces, as well as more elaborated models and control schemes. Furthermore, the essential feature of the quality of grasp can be addressed with this type of robot hands, but it has been overlooked for deformable contact. In this paper, a passivity-based controller that considers an optimal grasping measure is proposed for robotic hands with hemispherical deformable fingertips, to manipulate circular dynamic objects. Optimal grasping that minimizes the contact wrenches is achieved through fingertip rolling until normal forces pass through the center of mass of the object, aligning the relative angle between these normal forces. The case of a circular object is developed in detail, though our proposal can be extended to objects with an arbitrary shape that admit a local decomposition by a circular curvature. Simulation and experimental results show convergence under various conditions, wherein rolling and tangent forces become instrumental to achieve such a quality of grasp.

  18. Electrotactile feedback improves performance and facilitates learning in the routine grasping task

    Directory of Open Access Journals (Sweden)

    Milica Isaković

    2016-06-01

    Full Text Available Aim of this study was to investigate the feasibility of electrotactile feedback in closed loop training of force control during the routine grasping task. The feedback was provided using an array electrode and a simple six-level spatial coding, and the experiment was conducted in three amputee subjects. The psychometric tests confirmed that the subjects could perceive and interpret the electrotactile feedback with a high success rate. The subjects performed the routine grasping task comprising 4 blocks of 60 grasping trials. In each trial, the subjects employed feedforward control to close the hand and produce the desired grasping force (four levels. First (baseline and the last (validation session were performed in open loop, while the second and the third session (training included electrotactile feedback. The obtained results confirmed that using the feedback improved the accuracy and precision of the force control. In addition, the subjects performed significantly better in the validation vs. baseline session, therefore suggesting that electrotactile feedback can be used for learning and training of myoelectric control.

  19. Electrotactile Feedback Improves Performance and Facilitates Learning in the Routine Grasping Task.

    Science.gov (United States)

    Isaković, Milica; Belić, Minja; Štrbac, Matija; Popović, Igor; Došen, Strahinja; Farina, Dario; Keller, Thierry

    2016-06-13

    Aim of this study was to investigate the feasibility of electrotactile feedback in closed loop training of force control during the routine grasping task. The feedback was provided using an array electrode and a simple six-level spatial coding, and the experiment was conducted in three amputee subjects. The psychometric tests confirmed that the subjects could perceive and interpret the electrotactile feedback with a high success rate. The subjects performed the routine grasping task comprising 4 blocks of 60 grasping trials. In each trial, the subjects employed feedforward control to close the hand and produce the desired grasping force (four levels). First (baseline) and the last (validation) session were performed in open loop, while the second and the third session (training) included electrotactile feedback. The obtained results confirmed that using the feedback improved the accuracy and precision of the force control. In addition, the subjects performed significantly better in the validation vs. baseline session, therefore suggesting that electrotactile feedback can be used for learning and training of myoelectric control.

  20. Prosthetic hand sensor placement: Analysis of touch perception during the grasp

    Directory of Open Access Journals (Sweden)

    Mirković Bojana

    2014-01-01

    Full Text Available Humans rely on their hands to perform everyday tasks. The hand is used as a tool, but also as the interface to “sense” the world. Current prosthetic hands are based on sophisticated multi-fingered structures, and include many sensors which counterpart natural proprioceptors and exteroceptors. The sensory information is used for control, but not sent to the user of the hand (amputee. Grasping without sensing is not good enough. This research is part of the development of the sensing interface for amputees, specifically addressing the analysis of human perception while grasping. The goal is to determine the small number of preferred positions of sensors on the prosthetic hand. This task has previously been approached by trying to replicate a natural sensory system characteristic for healthy humans, resulting in a multitude of redundant sensors and basic inability to make the patient aware of the sensor readings on the subconscious level. We based our artificial perception system on the reported sensations of humans when grasping various objects without seeing the objects (obstructed visual feedback. Subjects, with no known sensory deficits, were asked to report on the touch sensation while grasping. The analysis included objects of various sizes, weights, textures and temperatures. Based on this data we formed a map of the preferred positions for the sensors that is appropriate for five finger human-like robotic hand. The final map was intentionally minimized in size (number of sensors.

  1. Single-Grasp Object Classification and Feature Extraction with Simple Robot Hands and Tactile Sensors.

    Science.gov (United States)

    Spiers, Adam J; Liarokapis, Minas V; Calli, Berk; Dollar, Aaron M

    2016-01-01

    Classical robotic approaches to tactile object identification often involve rigid mechanical grippers, dense sensor arrays, and exploratory procedures (EPs). Though EPs are a natural method for humans to acquire object information, evidence also exists for meaningful tactile property inference from brief, non-exploratory motions (a 'haptic glance'). In this work, we implement tactile object identification and feature extraction techniques on data acquired during a single, unplanned grasp with a simple, underactuated robot hand equipped with inexpensive barometric pressure sensors. Our methodology utilizes two cooperating schemes based on an advanced machine learning technique (random forests) and parametric methods that estimate object properties. The available data is limited to actuator positions (one per two link finger) and force sensors values (eight per finger). The schemes are able to work both independently and collaboratively, depending on the task scenario. When collaborating, the results of each method contribute to the other, improving the overall result in a synergistic fashion. Unlike prior work, the proposed approach does not require object exploration, re-grasping, grasp-release, or force modulation and works for arbitrary object start positions and orientations. Due to these factors, the technique may be integrated into practical robotic grasping scenarios without adding time or manipulation overheads.

  2. Utilization of old vibro-acoustic measuring equipment to grasp basic concepts of vibration measurements

    DEFF Research Database (Denmark)

    Darula, Radoslav

    2013-01-01

    The aim of the paper is to show that even old vibro-acoustic (analog) equipment can be used as a very suitable teaching equipment to grasp basic principles of measurements in an era, when measurement equipments are more-or-less treated as ‘black-boxes’, i.e. the user cannot see directly how...

  3. Microsoft kinect-based artificial perception system for control of functional electrical stimulation assisted grasping.

    Science.gov (United States)

    Strbac, Matija; Kočović, Slobodan; Marković, Marko; Popović, Dejan B

    2014-01-01

    We present a computer vision algorithm that incorporates a heuristic model which mimics a biological control system for the estimation of control signals used in functional electrical stimulation (FES) assisted grasping. The developed processing software acquires the data from Microsoft Kinect camera and implements real-time hand tracking and object analysis. This information can be used to identify temporal synchrony and spatial synergies modalities for FES control. Therefore, the algorithm acts as artificial perception which mimics human visual perception by identifying the position and shape of the object with respect to the position of the hand in real time during the planning phase of the grasp. This artificial perception used within the heuristically developed model allows selection of the appropriate grasp and prehension. The experiments demonstrate that correct grasp modality was selected in more than 90% of tested scenarios/objects. The system is portable, and the components are low in cost and robust; hence, it can be used for the FES in clinical or even home environment. The main application of the system is envisioned for functional electrical therapy, that is, intensive exercise assisted with FES.

  4. TRANSGENIC STRATEGY FOR IDENTIFYING SYNAPTIC CONNECTIONS IN MICE BY FLUORESCENCE COMPLEMENTATION (GRASP

    Directory of Open Access Journals (Sweden)

    Masahito eYamagata

    2012-02-01

    Full Text Available In the "GFP reconstitution across synaptic partners" (GRASP method, non-fluorescent fragments of GFP are expressed in two different neurons; the fragments self-assemble at synapses between the two to form a fluorophore. GRASP has proven useful for light microscopic identification of synapses in two invertebrate species, Caenorhabditis elegans and Drosophila melanogaster, but has not yet been applied to vertebrates. Here, we describe GRASP constructs that function in mammalian cells and implement a transgenic strategy in which a Cre-dependent gene switch leads to expression of the two fragments in mutually exclusive neuronal subsets in mice. Using a transgenic line that expresses Cre selectively in rod photoreceptors, we demonstrate labeling of synapses in the outer plexiform layer of the retina. Labeling is specific, in that synapses made by rods remain labeled for at least 6 months whereas nearby synapses made by intercalated cone photoreceptors on many of the same interneurons remain unlabeled. We also generated antisera that label reconstituted GFP but neither fragment in order to amplify the GRASP signal and thereby increase the sensitivity of the method.

  5. A Sense of Touch in Laparoscopy : Using Augmented Haptic Feedback to Improve Grasp Control

    NARCIS (Netherlands)

    Westebring-van der Putten, E.P.

    2011-01-01

    Laparoscopy is Minimally Invasive Surgery (MIS) that is conducted in the belly alcove and which enables instruments, which enter the body through small incisions, to manipulate tissue. The possible complications arising during laparoscopic surgery are partly caused by improper grasp control on the

  6. Testing of Visual Field with Virtual Reality Goggles in Manual and Visual Grasp Modes

    Directory of Open Access Journals (Sweden)

    Dariusz Wroblewski

    2014-01-01

    Full Text Available Automated perimetry is used for the assessment of visual function in a variety of ophthalmic and neurologic diseases. We report development and clinical testing of a compact, head-mounted, and eye-tracking perimeter (VirtualEye that provides a more comfortable test environment than the standard instrumentation. VirtualEye performs the equivalent of a full threshold 24-2 visual field in two modes: (1 manual, with patient response registered with a mouse click, and (2 visual grasp, where the eye tracker senses change in gaze direction as evidence of target acquisition. 59 patients successfully completed the test in manual mode and 40 in visual grasp mode, with 59 undergoing the standard Humphrey field analyzer (HFA testing. Large visual field defects were reliably detected by VirtualEye. Point-by-point comparison between the results obtained with the different modalities indicates: (1 minimal systematic differences between measurements taken in visual grasp and manual modes, (2 the average standard deviation of the difference distributions of about 5 dB, and (3 a systematic shift (of 4–6 dB to lower sensitivities for VirtualEye device, observed mostly in high dB range. The usability survey suggested patients’ acceptance of the head-mounted device. The study appears to validate the concepts of a head-mounted perimeter and the visual grasp mode.

  7. Testing of visual field with virtual reality goggles in manual and visual grasp modes.

    Science.gov (United States)

    Wroblewski, Dariusz; Francis, Brian A; Sadun, Alfredo; Vakili, Ghazal; Chopra, Vikas

    2014-01-01

    Automated perimetry is used for the assessment of visual function in a variety of ophthalmic and neurologic diseases. We report development and clinical testing of a compact, head-mounted, and eye-tracking perimeter (VirtualEye) that provides a more comfortable test environment than the standard instrumentation. VirtualEye performs the equivalent of a full threshold 24-2 visual field in two modes: (1) manual, with patient response registered with a mouse click, and (2) visual grasp, where the eye tracker senses change in gaze direction as evidence of target acquisition. 59 patients successfully completed the test in manual mode and 40 in visual grasp mode, with 59 undergoing the standard Humphrey field analyzer (HFA) testing. Large visual field defects were reliably detected by VirtualEye. Point-by-point comparison between the results obtained with the different modalities indicates: (1) minimal systematic differences between measurements taken in visual grasp and manual modes, (2) the average standard deviation of the difference distributions of about 5 dB, and (3) a systematic shift (of 4-6 dB) to lower sensitivities for VirtualEye device, observed mostly in high dB range. The usability survey suggested patients' acceptance of the head-mounted device. The study appears to validate the concepts of a head-mounted perimeter and the visual grasp mode.

  8. How Do Object Size and Rigidity Affect Reaching and Grasping in Infants with Down Syndrome?

    Science.gov (United States)

    de Campos, Ana Carolina; Francisco, Kelly Regina; Savelsbergh, Geert J. P.; Rocha, Nelci Adriana Cicuto Ferreira

    2011-01-01

    Reaching and grasping skills have been described to emerge from a dynamic interaction between intrinsic and extrinsic factors. The purpose of the present study was to investigate the interaction between such an intrinsic factor, Down syndrome, and extrinsic factors, such as different object properties. Seven infants with Down syndrome and seven…

  9. Temporal-spatial parameters of the upper limb during a Reach & Grasp Cycle for children.

    Science.gov (United States)

    Butler, Erin E; Ladd, Amy L; Lamont, Lauren E; Rose, Jessica

    2010-07-01

    The objective of this study was to characterize normal temporal-spatial patterns during the Reach & Grasp Cycle and to identify upper limb motor deficits in children with cerebral palsy (CP). The Reach & Grasp Cycle encompasses six sequential tasks: reach, grasp cylinder, transport to self (T(1)), transport back to table (T(2)), release cylinder, and return to initial position. Three-dimensional motion data were recorded from 25 typically developing children (11 males, 14 females; ages 5-18 years) and 12 children with hemiplegic CP (2 males, 10 females; ages 5-17 years). Within-day and between-day coefficients of variation for the control group ranged from 0 to 0.19, indicating good repeatability of all parameters. The mean duration of the Cycle for children with CP was nearly twice as long as controls, 9.5±4.3s versus 5.1±1.2s (U=37.0, P=.002), partly due to prolonged grasp and release durations. Peak hand velocity occurred at approximately 40% of each phase and was greater during the transport (T(1), T(2)) than non-transport phases (reach, return) in controls (PGrasp Cycle (rho=.957, PGrasp Cycle for quantitative evaluation of upper limb motor deficits. Copyright © 2010 Elsevier B.V. All rights reserved.

  10. The Grasp of Physics Concepts of Motion: Identifying Particular Patterns in Students' Thinking

    Science.gov (United States)

    Obaidat, Ihab; Malkawi, Ehab

    2009-01-01

    We have investigated the grasp of some of the basic concepts of motion by students taking the introductory physics course in Mechanics at United Arab Emirates University (UAEU). We have developed a short research-based multiple-choice test where we were able to extract some information about the state of knowledge of the students. In general, the…

  11. Exploration of Hand Grasp Patterns Elicitable Through Non-Invasive Proximal Nerve Stimulation.

    Science.gov (United States)

    Shin, Henry; Watkins, Zach; Hu, Xiaogang

    2017-11-29

    Various neurological conditions, such as stroke or spinal cord injury, result in an impaired control of the hand. One method of restoring this impairment is through functional electrical stimulation (FES). However, traditional FES techniques often lead to quick fatigue and unnatural ballistic movements. In this study, we sought to explore the capabilities of a non-invasive proximal nerve stimulation technique in eliciting various hand grasp patterns. The ulnar and median nerves proximal to the elbow joint were activated transcutanously using a programmable stimulator, and the resultant finger flexion joint angles were recorded using a motion capture system. The individual finger motions averaged across the three joints were analyzed using a cluster analysis, in order to classify the different hand grasp patterns. With low current intensity (grasp patterns including single finger movement and coordinated multi-finger movements. This study provides initial evidence on the feasibility of a proximal nerve stimulation technique in controlling a variety of finger movements and grasp patterns. Our approach could also be developed into a rehabilitative/assistive tool that can result in flexible movements of the fingers.

  12. Characteristics of grasping movements in a laboratory and in an everyday-like context.

    Science.gov (United States)

    Bock, Otmar; Züll, Anne

    2013-02-01

    To understand the principles of motor control, it is useful to know whether movements with the same physical constraints can be governed by different rules depending on the behavioral context. We therefore have recently introduced a paradigm in which subjects grasp from the same starting position to the same final object, once as a typical laboratory task and once as part of everyday-like behavior. In the laboratory context, grasping was repetitive, externally triggered and purposeless; in the everyday-like context, it was embedded in a complex activity, intentionally initiated, and served a purpose. Here we present a comprehensive analysis of data from that paradigm. Among 38 response parameters that reflected hand transport, grip shaping and object manipulation, 20 differed significantly between groups. Factor analysis further reduced them to four orthogonal factors: response speed, finger-object contact, response variability, and hand path curvature. This shows, for the first time, that behavioral context influences the execution of grasping movements in four independent ways, possibly reflecting four distinct functional modules in the motor system. This fits well with the view - derived from neurological data - that grasping is controlled by a set of interconnected brain areas which are differentially recruited to achieve different behavioral goals. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Playing With Nonverbal Communication: Using Grasp and Facial Direction to Create Adaptive Interaction in a Game

    DEFF Research Database (Denmark)

    Mortensen, Ditte Hvas; Bærentsen, Klaus B.

    2014-01-01

    . The results indicate that participants grasp a remote control according to the intended use and turn their face towards the object with which they intend to interact. The amount of time during which the participants turned their faces towards the object was influenced by the available visual information...

  14. Capacity of small groups of muscles to accomplish precision grasping tasks.

    Science.gov (United States)

    Towles, Joseph D; Valero-Cuevas, Francisco J; Hentz, Vincent R

    2013-01-01

    An understanding of the capacity or ability of various muscle groups to generate endpoint forces that enable grasping tasks could provide a stronger biomechanical basis for the design of reconstructive surgery or rehabilitation for the treatment of the paralyzed or paretic hand. We quantified two-dimensional endpoint force distributions for every combination of the muscles of the index finger, in cadaveric specimens, to understand the capability of muscle groups to produce endpoint forces that accomplish three common types of grasps-tripod, tip and lateral pinch-characterized by a representative level of Coulomb friction. We found that muscle groups of 4 or fewer muscles were capable of generating endpoint forces that enabled performance of each of the grasping tasks examined. We also found that flexor muscles were crucial to accomplish tripod pinch; intrinsic muscles, tip pinch; and the dorsal interosseus muscle, lateral pinch. The results of this study provide a basis for decision making in the design of reconstructive surgeries and rehabilitation approaches that attempt to restore the ability to perform grasping tasks with small groups of muscles.

  15. Grasp: Tracing, visualizing and measuring the behavior of real-time systems

    NARCIS (Netherlands)

    Holenderski, M.J.; Heuvel, van den M.M.H.P.; Bril, R.J.; Lukkien, J.J.; Lipari, G.; Cucinotta, T.

    2010-01-01

    Understanding and validating the timing behavior of real-time systems is not trivial. Many real-time operating systems and their development environments do not provide tracing support, and provide only limited visualization, measurements and analysis tools. This paper presents Grasp, a tool for

  16. The GRASP 3: Graphical Reliability Analysis Simulation Program. Version 3: A users' manual and modelling guide

    Science.gov (United States)

    Phillips, D. T.; Manseur, B.; Foster, J. W.

    1982-01-01

    Alternate definitions of system failure create complex analysis for which analytic solutions are available only for simple, special cases. The GRASP methodology is a computer simulation approach for solving all classes of problems in which both failure and repair events are modeled according to the probability laws of the individual components of the system.

  17. In defense of the classical height system

    Science.gov (United States)

    Foroughi, Ismael; Vaníček, Petr; Sheng, Michael; Kingdon, Robert William; Santos, Marcelo C.

    2017-11-01

    In many European countries, normal heights referred to the quasi-geoid as introduced by Molodenskij in the mid-20th century are preferred to the classical height system that consists of orthometric heights and the geoid as a reference surface for these heights. The rationale for this choice is supposed to be that in the classical height system, neither the geoid, nor the orthometric height can be ever known with centimetre level accuracy because one would need to know the topographical mass density to a level that can never be achieved. The aim of this paper is to question the validity of this rationale. The common way of assessing the congruency of a local geoid model and the orthometric heights is to compare the geoid heights with the difference between orthometric heights provided by leveling and geodetic heights provided by GNSS. On the other hand, testing the congruency of a quasi-geoidal model with normal height a similar procedure is used, except that instead of orthometric heights, normal heights are employed. For the area of Auvergne, France, which is now a more or less standard choice for precise geoid or quasi-geoid testing, only the normal heights are supplied by the Institute Geographic National, the provider of the data. This is clearly the consequence of the European preference for the Molodenskij system. The quality of the height system is to be judged by the congruency of the difference of the geoid/quasi-geoid heights subtracted from the geodetic heights and orthometric/normal heights. To assess the congruency of the classical height system, the Helmert approximation of orthometric heights is typically used as the transformation between normal and Helmert's heights is easily done. However, the evaluation of the differences between Helmert's and the rigorous orthometric heights is somewhat more involved as will be seen from the review in this paper. For the area of interest, the differences between normal and Helmert's heights at the control

  18. Pantomime-grasping: Advance knowledge of haptic feedback availability supports an absolute visuo-haptic calibration

    Directory of Open Access Journals (Sweden)

    Shirin eDavarpanah Jazi

    2016-05-01

    Full Text Available An emerging issue in movement neurosciences is whether haptic feedback influences the nature of the information supporting a simulated grasping response (i.e., pantomime-grasping. In particular, recent work by our group contrasted pantomime-grasping responses performed with (i.e., PH+ trials and without (i.e., PH- trials terminal haptic feedback in separate blocks of trials. Results showed that PH- trials were mediated via relative visual information. In contrast, PH+ trials showed evidence of an absolute visuo-haptic calibration – a finding attributed to an error signal derived from a comparison between expected and actual haptic feedback (i.e., an internal forward model. The present study examined whether advanced knowledge of haptic feedback availability influences the aforementioned calibration process. To that end, PH- and PH+ trials were completed in separate blocks (i.e., the feedback schedule used in our group’s previous study and a block wherein PH- and PH+ trials were randomly interleaved on a trial-by-trial basis (i.e., random feedback schedule. In other words, the random feedback schedule precluded participants from predicting whether haptic feedback would be available at the movement goal location. We computed just-noticeable-difference (JND values to determine whether responses adhered to, or violated, the relative psychophysical principles of Weber’s law. Results for the blocked feedback schedule replicated our group’s previous work, whereas in the random feedback schedule PH- and PH+ trials were supported via relative visual information. Accordingly, we propose that a priori knowledge of haptic feedback is necessary to support an absolute visuo-haptic calibration. Moreover, our results demonstrate that the presence and expectancy of haptic feedback is an important consideration in contrasting the behavioral and neural properties of natural and stimulated (i.e., pantomime-grasping grasping.

  19. Differences between kinematic synergies and muscle synergies during two-digit grasping

    Directory of Open Access Journals (Sweden)

    Michele eTagliabue

    2015-03-01

    Full Text Available The large number of mechanical degrees of freedom of the hand is not fully exploited during actual movements such as grasping. Usually, angular movements in various joints tend to be coupled, and EMG activities in different hand muscles tend to be correlated. The occurrence of covariation in the former was termed kinematic synergies, in the latter muscle synergies. This study addresses two questions: (i Whether kinematic and muscle synergies can simultaneously accommodate for kinematic and kinetic constraints. (ii If so, whether there is an interrelation between kinematic and muscle synergies. We used a reach-grasp-and-pull paradigm and recorded the hand kinematics as well as 8 surface EMGs. Subjects had to either perform a precision grip or side grip and had to modify their grip force in order to displace an object against a low or high load. The analysis was subdivided into three epochs: reach, grasp-and-pull, and static hold. Principal component analysis (PCA, temporal or static was performed separately for all three epochs, in the kinematic and in the EMG domain. PCA revealed that (i Kinematic- and muscle-synergies can simultaneously accommodate kinematic (grip type and kinetic task constraints (load condition. (ii Upcoming grip and load conditions of the grasp are represented in kinematic- and muscle-synergies already during reach. Phase plane plots of the principal muscle-synergy against the principal kinematic synergy revealed (iii that the muscle-synergy is linked (correlated, and in phase advance to the kinematic synergy during reach and during grasp-and-pull. Furthermore (iv, pair-wise correlations of EMGs during hold suggest that muscle-synergies are (in part implemented by coactivation of muscles through common input. Together, these results suggest that kinematic synergies have (at least in part their origin not just in muscular activation, but in synergiestic muscle activation. In short: kinematic synergies may result from muscle

  20. Volitional and automatic control of the hand when reaching to grasp objects.

    Science.gov (United States)

    Chen, Zhongting; Saunders, Jeffrey Allen

    2018-02-26

    When picking up an object, we tend to grasp at contact points that allow a stable grip. Recent studies have demonstrated that appropriate grasp points can be selected during an ongoing movement in response to unexpected perturbations of the target object. In this study, we tested whether such online grip adjustments are automatic responses or can be controlled volitionally. Subjects performed virtual grasping movements toward target 2D shapes that sometimes changed shape or orientation during movement. Unlike in previous studies, the conditions and task requirements discouraged any online adjustments toward the perturbed shapes. In Experiment 1, target shapes were perturbed briefly (200 ms) during movement before reverting to the original shape, and subjects were instructed to ignore the transient perturbations. Despite subjects' intentions, we observed online adjustments of grip orientation that were toward the expected grip axis of the briefly presented shape. In Experiment 2, we added a stop-signal to the grasping task, with target perturbation as the stop cue. We again observed unnecessary online adjustments toward the grip axis of the perturbed shape, with similar latency. Furthermore, the grip adjustments continued after the forward motion of the hand had stopped, indicating that the automatic response to the perturbed target shape co-occurred with the volitional response to the perturbation onset. Our results provide evidence that automatic control mechanisms are used to guide the fingers to appropriate grasp points and suggest that these mechanisms are distinct from those involved with volitional control. (PsycINFO Database Record (c) 2018 APA, all rights reserved).