Analyzing locomotion synthesis with feature-based motion graphs.
Mahmudi, Mentar; Kallmann, Marcelo
2013-05-01
We propose feature-based motion graphs for realistic locomotion synthesis among obstacles. Among several advantages, feature-based motion graphs achieve improved results in search queries, eliminate the need of postprocessing for foot skating removal, and reduce the computational requirements in comparison to traditional motion graphs. Our contributions are threefold. First, we show that choosing transitions based on relevant features significantly reduces graph construction time and leads to improved search performances. Second, we employ a fast channel search method that confines the motion graph search to a free channel with guaranteed clearance among obstacles, achieving faster and improved results that avoid expensive collision checking. Lastly, we present a motion deformation model based on Inverse Kinematics applied over the transitions of a solution branch. Each transition is assigned a continuous deformation range that does not exceed the original transition cost threshold specified by the user for the graph construction. The obtained deformation improves the reachability of the feature-based motion graph and in turn also reduces the time spent during search. The results obtained by the proposed methods are evaluated and quantified, and they demonstrate significant improvements in comparison to traditional motion graph techniques.
Wang, Jim Jing-Yan
2014-09-20
Nonnegative matrix factorization (NMF), a popular part-based representation technique, does not capture the intrinsic local geometric structure of the data space. Graph regularized NMF (GNMF) was recently proposed to avoid this limitation by regularizing NMF with a nearest neighbor graph constructed from the input data set. However, GNMF has two main bottlenecks. First, using the original feature space directly to construct the graph is not necessarily optimal because of the noisy and irrelevant features and nonlinear distributions of data samples. Second, one possible way to handle the nonlinear distribution of data samples is by kernel embedding. However, it is often difficult to choose the most suitable kernel. To solve these bottlenecks, we propose two novel graph-regularized NMF methods, AGNMFFS and AGNMFMK, by introducing feature selection and multiple-kernel learning to the graph regularized NMF, respectively. Instead of using a fixed graph as in GNMF, the two proposed methods learn the nearest neighbor graph that is adaptive to the selected features and learned multiple kernels, respectively. For each method, we propose a unified objective function to conduct feature selection/multi-kernel learning, NMF and adaptive graph regularization simultaneously. We further develop two iterative algorithms to solve the two optimization problems. Experimental results on two challenging pattern classification tasks demonstrate that the proposed methods significantly outperform state-of-the-art data representation methods.
Wang, Jim Jing-Yan; Huang, Jianhua Z.; Sun, Yijun; Gao, Xin
2014-01-01
by regularizing NMF with a nearest neighbor graph constructed from the input data set. However, GNMF has two main bottlenecks. First, using the original feature space directly to construct the graph is not necessarily optimal because of the noisy and irrelevant
Adriaan R. Soetevent
2010-01-01
This paper extends Hotelling's model of price competition with quadratic transportation costs from a line to graphs. I propose an algorithm to calculate firm-level demand for any given graph, conditional on prices and firm locations. One feature of graph models of price competition is that spatial discontinuities in firm-level demand may occur. I show that the existence result of D'Aspremont et al. (1979) does not extend to simple star graphs. I conjecture that this non-existence result holds...
A graph-Laplacian-based feature extraction algorithm for neural spike sorting.
Ghanbari, Yasser; Spence, Larry; Papamichalis, Panos
2009-01-01
Analysis of extracellular neural spike recordings is highly dependent upon the accuracy of neural waveform classification, commonly referred to as spike sorting. Feature extraction is an important stage of this process because it can limit the quality of clustering which is performed in the feature space. This paper proposes a new feature extraction method (which we call Graph Laplacian Features, GLF) based on minimizing the graph Laplacian and maximizing the weighted variance. The algorithm is compared with Principal Components Analysis (PCA, the most commonly-used feature extraction method) using simulated neural data. The results show that the proposed algorithm produces more compact and well-separated clusters compared to PCA. As an added benefit, tentative cluster centers are output which can be used to initialize a subsequent clustering stage.
Specific features of the REDUCE system and calculation of QCD Feynman graphs
International Nuclear Information System (INIS)
Dulyan, L.S.
1990-01-01
The ways and methods used in calculation of one class of the QCD Feynman graphs with the help of the REDUCE system are described. It is shown how by introducing new constructions and operations the user could avoid difficulties connected with specific restrictions and features of the REDUCE system
Social Graph Community Differentiated by Node Features with Partly Missing Information
Directory of Open Access Journals (Sweden)
V. O. Chesnokov
2015-01-01
Full Text Available This paper proposes a new algorithm for community differentiation in social graphs, which uses information both on the graph structure and on the vertices. We consider user's ego-network i.e. his friends, with no himself, where each vertex has a set of features such as details on a workplace, institution, etc. The task is to determine missing or unspecified features of the vertices, based on their neighbors' features, and use these features to differentiate the communities in the social graph. Two vertices are believed to belong to the same community if they have a common feature. A hypothesis has been put forward that if most neighbors of a vertex have a common feature, there is a good probability that the vertex has this feature as well. The proposed algorithm is iterative and updates features of vertices, based on its neighbors, according to the hypothesis. Share of neighbors that form a majority is specified by the algorithm parameter. Complexity of single iteration depends linearly on the number of edges in the graph.To assess the quality of clustering three normalized metrics were used, namely: expected density, silhouette index, and Hubert's Gamma Statistic. The paper describes a method for test sampling of 2.000 graphs of the user's social network \\VKontakte". The API requests addressed \\VKontakte" and parsing HTML-pages of user's profiles and search results provided crawling. Information on user's group membership, secondary and higher education, and workplace was used as features. To store data the PostgreSQL DBMS was used, and the gexf format was used for data processing. For the test sample, metrics for several values of algorithm parameter were estimated: the value of index silhouettes was low (0.14-0.20, but within the normal range; the value of expected density was high, i.e. 1.17-1.52; the value of Hubert's gamma statistic was 0.94-0.95 that is close to the maximum. The number of vertices with no features was calculated before
Chiu, Stephanie J.; Toth, Cynthia A.; Bowes Rickman, Catherine; Izatt, Joseph A.; Farsiu, Sina
2012-01-01
This paper presents a generalized framework for segmenting closed-contour anatomical and pathological features using graph theory and dynamic programming (GTDP). More specifically, the GTDP method previously developed for quantifying retinal and corneal layer thicknesses is extended to segment objects such as cells and cysts. The presented technique relies on a transform that maps closed-contour features in the Cartesian domain into lines in the quasi-polar domain. The features of interest are then segmented as layers via GTDP. Application of this method to segment closed-contour features in several ophthalmic image types is shown. Quantitative validation experiments for retinal pigmented epithelium cell segmentation in confocal fluorescence microscopy images attests to the accuracy of the presented technique. PMID:22567602
Morisi, Rita; Manners, David Neil; Gnecco, Giorgio; Lanconelli, Nico; Testa, Claudia; Evangelisti, Stefania; Talozzi, Lia; Gramegna, Laura Ludovica; Bianchini, Claudio; Calandra-Buonaura, Giovanna; Sambati, Luisa; Giannini, Giulia; Cortelli, Pietro; Tonon, Caterina; Lodi, Raffaele
2018-02-01
In this study we attempt to automatically classify individual patients with different parkinsonian disorders, making use of pattern recognition techniques to distinguish among several forms of parkinsonisms (multi-class classification), based on a set of binary classifiers that discriminate each disorder from all others. We combine diffusion tensor imaging, proton spectroscopy and morphometric-volumetric data to obtain MR quantitative markers, which are provided to support vector machines with the aim of recognizing the different parkinsonian disorders. Feature selection is used to find the most important features for classification. We also exploit a graph-based technique on the set of quantitative markers to extract additional features from the dataset, and increase classification accuracy. When graph-based features are not used, the MR markers that are most frequently automatically extracted by the feature selection procedure reflect alterations in brain regions that are also usually considered to discriminate parkinsonisms in routine clinical practice. Graph-derived features typically increase the diagnostic accuracy, and reduce the number of features required. The results obtained in the work demonstrate that support vector machines applied to multimodal brain MR imaging and using graph-based features represent a novel and highly accurate approach to discriminate parkinsonisms, and a useful tool to assist the diagnosis. Copyright © 2017 Elsevier Ltd. All rights reserved.
Structural features and water holding capacities of pressed potato fibre polysaccharides
Ramasamy, U.; Kabel, M.A.; Schols, H.A.; Gruppen, H.
2013-01-01
Pressed potato fibre (PPF) has a high water holding capacity (WHC) affecting its processing as an animal feed. The aim of this study was to characterize cell wall polysaccharides (CWPs) in PPF and investigate their WHC. This was done via sequential extractions. Half of all CWPs were recovered in the
Bone marrow cavity segmentation using graph-cuts with wavelet-based texture feature.
Shigeta, Hironori; Mashita, Tomohiro; Kikuta, Junichi; Seno, Shigeto; Takemura, Haruo; Ishii, Masaru; Matsuda, Hideo
2017-10-01
Emerging bioimaging technologies enable us to capture various dynamic cellular activities [Formula: see text]. As large amounts of data are obtained these days and it is becoming unrealistic to manually process massive number of images, automatic analysis methods are required. One of the issues for automatic image segmentation is that image-taking conditions are variable. Thus, commonly, many manual inputs are required according to each image. In this paper, we propose a bone marrow cavity (BMC) segmentation method for bone images as BMC is considered to be related to the mechanism of bone remodeling, osteoporosis, and so on. To reduce manual inputs to segment BMC, we classified the texture pattern using wavelet transformation and support vector machine. We also integrated the result of texture pattern classification into the graph-cuts-based image segmentation method because texture analysis does not consider spatial continuity. Our method is applicable to a particular frame in an image sequence in which the condition of fluorescent material is variable. In the experiment, we evaluated our method with nine types of mother wavelets and several sets of scale parameters. The proposed method with graph-cuts and texture pattern classification performs well without manual inputs by a user.
Soetevent, A.R.
2010-01-01
This paper extends Hotelling's model of price competition with quadratic transportation costs from a line to graphs. I propose an algorithm to calculate firm-level demand for any given graph, conditional on prices and firm locations. One feature of graph models of price competition is that spatial
DEFF Research Database (Denmark)
Seiller, Thomas
2016-01-01
Interaction graphs were introduced as a general, uniform, construction of dynamic models of linear logic, encompassing all Geometry of Interaction (GoI) constructions introduced so far. This series of work was inspired from Girard's hyperfinite GoI, and develops a quantitative approach that should...... be understood as a dynamic version of weighted relational models. Until now, the interaction graphs framework has been shown to deal with exponentials for the constrained system ELL (Elementary Linear Logic) while keeping its quantitative aspect. Adapting older constructions by Girard, one can clearly define...... "full" exponentials, but at the cost of these quantitative features. We show here that allowing interpretations of proofs to use continuous (yet finite in a measure-theoretic sense) sets of states, as opposed to earlier Interaction Graphs constructions were these sets of states were discrete (and finite...
Pim Heijnen; Adriaan Soetevent
2014-01-01
This paper extends Hotelling's model of price competition with quadratic transportation costs from a line to graphs. We derive an algorithm to calculate firm-level demand for any given graph, conditional on prices and firm locations. These graph models of price competition may lead to spatial discontinuities in firm-level demand. We show that the existence result of D'Aspremont et al. (1979) does not extend to simple star graphs and conjecture that this non-existence result holds more general...
Endriss, U.; Grandi, U.
Graph aggregation is the process of computing a single output graph that constitutes a good compromise between several input graphs, each provided by a different source. One needs to perform graph aggregation in a wide variety of situations, e.g., when applying a voting rule (graphs as preference
Gelfand, I M; Shnol, E E
1969-01-01
The second in a series of systematic studies by a celebrated mathematician I. M. Gelfand and colleagues, this volume presents students with a well-illustrated sequence of problems and exercises designed to illuminate the properties of functions and graphs. Since readers do not have the benefit of a blackboard on which a teacher constructs a graph, the authors abandoned the customary use of diagrams in which only the final form of the graph appears; instead, the book's margins feature step-by-step diagrams for the complete construction of each graph. The first part of the book employs simple fu
Zhang, L.-C.; Patone, M.
2017-01-01
We synthesise the existing theory of graph sampling. We propose a formal definition of sampling in finite graphs, and provide a classification of potential graph parameters. We develop a general approach of Horvitz–Thompson estimation to T-stage snowball sampling, and present various reformulations of some common network sampling methods in the literature in terms of the outlined graph sampling theory.
Brouwer, A.E.; Haemers, W.H.; Brouwer, A.E.; Haemers, W.H.
2012-01-01
This chapter presents some simple results on graph spectra.We assume the reader is familiar with elementary linear algebra and graph theory. Throughout, J will denote the all-1 matrix, and 1 is the all-1 vector.
Cree, George S.; McNorgan, Chris; McRae, Ken
2006-01-01
The authors present data from 2 feature verification experiments designed to determine whether distinctive features have a privileged status in the computation of word meaning. They use an attractor-based connectionist model of semantic memory to derive predictions for the experiments. Contrary to central predictions of the conceptual structure…
Bollobas, Bela
2004-01-01
The ever-expanding field of extremal graph theory encompasses a diverse array of problem-solving methods, including applications to economics, computer science, and optimization theory. This volume, based on a series of lectures delivered to graduate students at the University of Cambridge, presents a concise yet comprehensive treatment of extremal graph theory.Unlike most graph theory treatises, this text features complete proofs for almost all of its results. Further insights into theory are provided by the numerous exercises of varying degrees of difficulty that accompany each chapter. A
Chriskos, Panteleimon; Frantzidis, Christos A; Gkivogkli, Polyxeni T; Bamidis, Panagiotis D; Kourtidou-Papadeli, Chrysoula
2018-01-01
Sleep staging, the process of assigning labels to epochs of sleep, depending on the stage of sleep they belong, is an arduous, time consuming and error prone process as the initial recordings are quite often polluted by noise from different sources. To properly analyze such data and extract clinical knowledge, noise components must be removed or alleviated. In this paper a pre-processing and subsequent sleep staging pipeline for the sleep analysis of electroencephalographic signals is described. Two novel methods of functional connectivity estimation (Synchronization Likelihood/SL and Relative Wavelet Entropy/RWE) are comparatively investigated for automatic sleep staging through manually pre-processed electroencephalographic recordings. A multi-step process that renders signals suitable for further analysis is initially described. Then, two methods that rely on extracting synchronization features from electroencephalographic recordings to achieve computerized sleep staging are proposed, based on bivariate features which provide a functional overview of the brain network, contrary to most proposed methods that rely on extracting univariate time and frequency features. Annotation of sleep epochs is achieved through the presented feature extraction methods by training classifiers, which are in turn able to accurately classify new epochs. Analysis of data from sleep experiments on a randomized, controlled bed-rest study, which was organized by the European Space Agency and was conducted in the "ENVIHAB" facility of the Institute of Aerospace Medicine at the German Aerospace Center (DLR) in Cologne, Germany attains high accuracy rates, over 90% based on ground truth that resulted from manual sleep staging by two experienced sleep experts. Therefore, it can be concluded that the above feature extraction methods are suitable for semi-automatic sleep staging.
Tailored Random Graph Ensembles
International Nuclear Information System (INIS)
Roberts, E S; Annibale, A; Coolen, A C C
2013-01-01
Tailored graph ensembles are a developing bridge between biological networks and statistical mechanics. The aim is to use this concept to generate a suite of rigorous tools that can be used to quantify and compare the topology of cellular signalling networks, such as protein-protein interaction networks and gene regulation networks. We calculate exact and explicit formulae for the leading orders in the system size of the Shannon entropies of random graph ensembles constrained with degree distribution and degree-degree correlation. We also construct an ergodic detailed balance Markov chain with non-trivial acceptance probabilities which converges to a strictly uniform measure and is based on edge swaps that conserve all degrees. The acceptance probabilities can be generalized to define Markov chains that target any alternative desired measure on the space of directed or undirected graphs, in order to generate graphs with more sophisticated topological features.
DEFF Research Database (Denmark)
Vestergaard, Preben Dahl; Hartnell, Bert L.
2006-01-01
There are many results dealing with the problem of decomposing a fixed graph into isomorphic subgraphs. There has also been work on characterizing graphs with the property that one can delete the edges of a number of edge disjoint copies of the subgraph and, regardless of how that is done, the gr...
Directory of Open Access Journals (Sweden)
Aparajita Nanda
2017-06-01
Full Text Available Human re-identification is an emerging research area in the field of visual surveillance. It refers to the task of associating the images of the persons captured by one camera (probe set with the images captured by another camera (gallery set at different locations in different time instances. The performance of these systems are often challenged by some factors—variation in articulated human pose and clothing, frequent occlusion with various objects, change in light illumination, and the cluttered background are to name a few. Besides, the ambiguity in recognition increases between individuals with similar appearance. In this paper, we present a novel framework for human re-identification that finds the correspondence image pair across non-overlapping camera views in the presence of the above challenging scenarios. The proposed framework handles the visual ambiguity having similar appearance by first segmenting the gallery instances into disjoint prototypes (groups, where each prototype represents the images with high commonality. Then, a weighing scheme is formulated that quantifies the selective and distinct information about the features concerning the level of contribution against each prototype. Finally, the prototype specific weights are utilized in the similarity measure and fused with the existing generic weighing to facilitates improvement in the re-identification. Exhaustive simulation on three benchmark datasets alongside the CMC (Cumulative Matching Characteristics plot enumerate the efficacy of our proposed framework over the counterparts.
Trudeau, Richard J
1994-01-01
Preface1. Pure Mathematics Introduction; Euclidean Geometry as Pure Mathematics; Games; Why Study Pure Mathematics?; What's Coming; Suggested Reading2. Graphs Introduction; Sets; Paradox; Graphs; Graph diagrams; Cautions; Common Graphs; Discovery; Complements and Subgraphs; Isomorphism; Recognizing Isomorphic Graphs; Semantics The Number of Graphs Having a Given nu; Exercises; Suggested Reading3. Planar Graphs Introduction; UG, K subscript 5, and the Jordan Curve Theorem; Are there More Nonplanar Graphs?; Expansions; Kuratowski's Theorem; Determining Whether a Graph is Planar or
Network reconstruction via graph blending
Estrada, Rolando
2016-05-01
Graphs estimated from empirical data are often noisy and incomplete due to the difficulty of faithfully observing all the components (nodes and edges) of the true graph. This problem is particularly acute for large networks where the number of components may far exceed available surveillance capabilities. Errors in the observed graph can render subsequent analyses invalid, so it is vital to develop robust methods that can minimize these observational errors. Errors in the observed graph may include missing and spurious components, as well fused (multiple nodes are merged into one) and split (a single node is misinterpreted as many) nodes. Traditional graph reconstruction methods are only able to identify missing or spurious components (primarily edges, and to a lesser degree nodes), so we developed a novel graph blending framework that allows us to cast the full estimation problem as a simple edge addition/deletion problem. Armed with this framework, we systematically investigate the viability of various topological graph features, such as the degree distribution or the clustering coefficients, and existing graph reconstruction methods for tackling the full estimation problem. Our experimental results suggest that incorporating any topological feature as a source of information actually hinders reconstruction accuracy. We provide a theoretical analysis of this phenomenon and suggest several avenues for improving this estimation problem.
Diestel, Reinhard
2017-01-01
This standard textbook of modern graph theory, now in its fifth edition, combines the authority of a classic with the engaging freshness of style that is the hallmark of active mathematics. It covers the core material of the subject with concise yet reliably complete proofs, while offering glimpses of more advanced methods in each field by one or two deeper results, again with proofs given in full detail. The book can be used as a reliable text for an introductory course, as a graduate text, and for self-study. From the reviews: “This outstanding book cannot be substituted with any other book on the present textbook market. It has every chance of becoming the standard textbook for graph theory.”Acta Scientiarum Mathematiciarum “Deep, clear, wonderful. This is a serious book about the heart of graph theory. It has depth and integrity. ”Persi Diaconis & Ron Graham, SIAM Review “The book has received a very enthusiastic reception, which it amply deserves. A masterly elucidation of modern graph theo...
RJSplot: Interactive Graphs with R.
Barrios, David; Prieto, Carlos
2018-03-01
Data visualization techniques provide new methods for the generation of interactive graphs. These graphs allow a better exploration and interpretation of data but their creation requires advanced knowledge of graphical libraries. Recent packages have enabled the integration of interactive graphs in R. However, R provides limited graphical packages that allow the generation of interactive graphs for computational biology applications. The present project has joined the analytical power of R with the interactive graphical features of JavaScript in a new R package (RJSplot). It enables the easy generation of interactive graphs in R, provides new visualization capabilities, and contributes to the advance of computational biology analytical methods. At present, 16 interactive graphics are available in RJSplot, such as the genome viewer, Manhattan plots, 3D plots, heatmaps, dendrograms, networks, and so on. The RJSplot package is freely available online at http://rjsplot.net. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Gould, Ronald
2012-01-01
This introduction to graph theory focuses on well-established topics, covering primary techniques and including both algorithmic and theoretical problems. The algorithms are presented with a minimum of advanced data structures and programming details. This thoroughly corrected 1988 edition provides insights to computer scientists as well as advanced undergraduates and graduate students of topology, algebra, and matrix theory. Fundamental concepts and notation and elementary properties and operations are the first subjects, followed by examinations of paths and searching, trees, and networks. S
Energy Technology Data Exchange (ETDEWEB)
Winlaw, Manda [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); De Sterck, Hans [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sanders, Geoffrey [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2015-10-26
In very simple terms a network can be de ned as a collection of points joined together by lines. Thus, networks can be used to represent connections between entities in a wide variety of elds including engi- neering, science, medicine, and sociology. Many large real-world networks share a surprising number of properties, leading to a strong interest in model development research and techniques for building synthetic networks have been developed, that capture these similarities and replicate real-world graphs. Modeling these real-world networks serves two purposes. First, building models that mimic the patterns and prop- erties of real networks helps to understand the implications of these patterns and helps determine which patterns are important. If we develop a generative process to synthesize real networks we can also examine which growth processes are plausible and which are not. Secondly, high-quality, large-scale network data is often not available, because of economic, legal, technological, or other obstacles [7]. Thus, there are many instances where the systems of interest cannot be represented by a single exemplar network. As one example, consider the eld of cybersecurity, where systems require testing across diverse threat scenarios and validation across diverse network structures. In these cases, where there is no single exemplar network, the systems must instead be modeled as a collection of networks in which the variation among them may be just as important as their common features. By developing processes to build synthetic models, so-called graph generators, we can build synthetic networks that capture both the essential features of a system and realistic variability. Then we can use such synthetic graphs to perform tasks such as simulations, analysis, and decision making. We can also use synthetic graphs to performance test graph analysis algorithms, including clustering algorithms and anomaly detection algorithms.
Chartrand, Gary; Zhang, Ping
2010-01-01
Gary Chartrand has influenced the world of Graph Theory for almost half a century. He has supervised more than a score of Ph.D. dissertations and written several books on the subject. The most widely known of these texts, Graphs and Digraphs, … has much to recommend it, with clear exposition, and numerous challenging examples [that] make it an ideal textbook for the advanced undergraduate or beginning graduate course. The authors have updated their notation to reflect the current practice in this still-growing area of study. By the authors' estimation, the 5th edition is approximately 50% longer than the 4th edition. … the legendary Frank Harary, author of the second graph theory text ever produced, is one of the figures profiled. His book was the standard in the discipline for several decades. Chartrand, Lesniak and Zhang have produced a worthy successor.-John T. Saccoman, MAA Reviews, June 2012 (This book is in the MAA's basic library list.)As with the earlier editions, the current text emphasizes clear...
Chromatic polynomials of random graphs
International Nuclear Information System (INIS)
Van Bussel, Frank; Fliegner, Denny; Timme, Marc; Ehrlich, Christoph; Stolzenberg, Sebastian
2010-01-01
Chromatic polynomials and related graph invariants are central objects in both graph theory and statistical physics. Computational difficulties, however, have so far restricted studies of such polynomials to graphs that were either very small, very sparse or highly structured. Recent algorithmic advances (Timme et al 2009 New J. Phys. 11 023001) now make it possible to compute chromatic polynomials for moderately sized graphs of arbitrary structure and number of edges. Here we present chromatic polynomials of ensembles of random graphs with up to 30 vertices, over the entire range of edge density. We specifically focus on the locations of the zeros of the polynomial in the complex plane. The results indicate that the chromatic zeros of random graphs have a very consistent layout. In particular, the crossing point, the point at which the chromatic zeros with non-zero imaginary part approach the real axis, scales linearly with the average degree over most of the density range. While the scaling laws obtained are purely empirical, if they continue to hold in general there are significant implications: the crossing points of chromatic zeros in the thermodynamic limit separate systems with zero ground state entropy from systems with positive ground state entropy, the latter an exception to the third law of thermodynamics.
Quantum walk on a chimera graph
Xu, Shu; Sun, Xiangxiang; Wu, Jizhou; Zhang, Wei-Wei; Arshed, Nigum; Sanders, Barry C.
2018-05-01
We analyse a continuous-time quantum walk on a chimera graph, which is a graph of choice for designing quantum annealers, and we discover beautiful quantum walk features such as localization that starkly distinguishes classical from quantum behaviour. Motivated by technological thrusts, we study continuous-time quantum walk on enhanced variants of the chimera graph and on diminished chimera graph with a random removal of vertices. We explain the quantum walk by constructing a generating set for a suitable subgroup of graph isomorphisms and corresponding symmetry operators that commute with the quantum walk Hamiltonian; the Hamiltonian and these symmetry operators provide a complete set of labels for the spectrum and the stationary states. Our quantum walk characterization of the chimera graph and its variants yields valuable insights into graphs used for designing quantum-annealers.
Determinantal spanning forests on planar graphs
Kenyon, Richard
2017-01-01
We generalize the uniform spanning tree to construct a family of determinantal measures on essential spanning forests on periodic planar graphs in which every component tree is bi-infinite. Like the uniform spanning tree, these measures arise naturally from the laplacian on the graph. More generally these results hold for the "massive" laplacian determinant which counts rooted spanning forests with weight $M$ per finite component. These measures typically have a form of conformal invariance, ...
Chartrand, Gary; Rosen, Kenneth H
2008-01-01
Beginning with the origin of the four color problem in 1852, the field of graph colorings has developed into one of the most popular areas of graph theory. Introducing graph theory with a coloring theme, Chromatic Graph Theory explores connections between major topics in graph theory and graph colorings as well as emerging topics. This self-contained book first presents various fundamentals of graph theory that lie outside of graph colorings, including basic terminology and results, trees and connectivity, Eulerian and Hamiltonian graphs, matchings and factorizations, and graph embeddings. The remainder of the text deals exclusively with graph colorings. It covers vertex colorings and bounds for the chromatic number, vertex colorings of graphs embedded on surfaces, and a variety of restricted vertex colorings. The authors also describe edge colorings, monochromatic and rainbow edge colorings, complete vertex colorings, several distinguishing vertex and edge colorings, and many distance-related vertex coloring...
Neuro-symbolic representation learning on biological knowledge graphs
AlShahrani, Mona; Khan, Mohammed Asif; Maddouri, Omar; Kinjo, Akira R; Queralt-Rosinach, Nú ria; Hoehndorf, Robert
2017-01-01
Biological data and knowledge bases increasingly rely on Semantic Web technologies and the use of knowledge graphs for data integration, retrieval and federated queries. In the past years, feature learning methods that are applicable to graph
Automorphism group of the modified bubble-sort graph
Ganesan, Ashwin
2014-01-01
The modified bubble-sort graph of dimension $n$ is the Cayley graph of $S_n$ generated by $n$ cyclically adjacent transpositions. In the present paper, it is shown that the automorphism group of the modified bubble sort graph of dimension $n$ is $S_n \\times D_{2n}$, for all $n \\ge 5$. Thus, a complete structural description of the automorphism group of the modified bubble-sort graph is obtained. A similar direct product decomposition is seen to hold for arbitrary normal Cayley graphs generate...
Text-Filled Stacked Area Graphs
DEFF Research Database (Denmark)
Kraus, Martin
2011-01-01
-filled stacked area graphs; i.e., graphs that feature stacked areas that are filled with small-typed text. Since these graphs allow for computing the text layout automatically, it is possible to include large amounts of textual detail with very little effort. We discuss the most important challenges and some...... solutions for the design of text-filled stacked area graphs with the help of an exemplary visualization of the genres, publication years, and titles of a database of several thousand PC games....
Graph visualization (Invited talk)
Wijk, van J.J.; Kreveld, van M.J.; Speckmann, B.
2012-01-01
Black and white node link diagrams are the classic method to depict graphs, but these often fall short to give insight in large graphs or when attributes of nodes and edges play an important role. Graph visualization aims obtaining insight in such graphs using interactive graphical representations.
On revealing graph cycles via boundary measurements
International Nuclear Information System (INIS)
Belishev, M I; Wada, N
2009-01-01
This paper deals with boundary value inverse problems on a metric graph, the structure of the graph being assumed unknown. The question under consideration is how to detect from the dynamical and/or spectral inverse data whether the graph contains cycles (is not a tree). For any graph Ω, the dynamical as well as spectral boundary inverse data determine the so-called wave diameter d w : H -1 (Ω) → R defined on functionals supported in the graph. The known fact is that if Ω is a tree then d w ≥ 0 holds and, in this case, the inverse data determine Ω up to isometry. A graph Ω is said to be coordinate if the functions {dist Ω (., γ)} γin∂Ω constitute a coordinate system on Ω. For such graphs, we propose a procedure, which reveals the presence/absence of cycles. The hypothesis is that Ω contains cycles if and only if d w takes negative values. We do not justify this hypothesis in the general case but reduce it to a certain special class of graphs (suns)
Gourville, John T
2005-06-01
CEO Peter Walsh faces a classic innovator's dilemma. His company, Crescordia, produces high-quality metal plates, pins, and screws that orthopedic surgeons use to repair broken bones. In fact, because the company has for decades refused to compromise on quality, there are orthopedic surgeons who use nothing but Crescordia hardware. And now these customers have begun to clamor for the next generation technology: resorbable hardware. Resorbables offer clear advantages over the traditional hardware. Like dissolving sutures, resorbable plates and screws are made of biodegradable polymers. They hold up long enough to support a healing bone, then gradually and harmlessly disintegrate in the patient's body. Surgeons are especially looking forward to using resorbables on children, so kids won't have to undergo a second operation to remove the old hardware after their bones heal, a common procedure in pediatrics. The new products, however, are not yet reliable; they fail about 8% of the time, sometimes disintegrating before the bone completely heals and sometimes not ever fully disintegrating. That's why Crescordia, mindful of its hard-earned reputation, has delayed launching a line using the new technology. But time is running out. A few competitors have begun to sell resorbables despite their imperfections, and these companies are picking up market share. Should Crescordia join the fray and risk tarnishing its brand? Or should the company sit tight until it can offer a perfect product? Commenting on this fictional case study are Robert A. Lutz, vice chairman of product development at General Motors; Clayton M. Christensen, the Robert and Jane Cizik Professor of Business Administration at Harvard Business School; Jason Wittes, a senior equity analyst covering medical supplies and devices at Leerink Swann; and Nick Galakatos, a general partner of MPM Capital.
Pragmatic Graph Rewriting Modifications
Rodgers, Peter; Vidal, Natalia
1999-01-01
We present new pragmatic constructs for easing programming in visual graph rewriting programming languages. The first is a modification to the rewriting process for nodes the host graph, where nodes specified as 'Once Only' in the LHS of a rewrite match at most once with a corresponding node in the host graph. This reduces the previously common use of tags to indicate the progress of matching in the graph. The second modification controls the application of LHS graphs, where those specified a...
Kansas Data Access and Support Center — Digital line graph (DLG) data are digital representations of cartographic information. DLG's of map features are converted to digital form from maps and related...
Digital Line Graphs (DLG) 100K
Kansas Data Access and Support Center — Digital line graph (DLG) data are digital representations of cartographic information. DLG's of map features are converted to digital form from maps and related...
Bapat, Ravindra B
2014-01-01
This new edition illustrates the power of linear algebra in the study of graphs. The emphasis on matrix techniques is greater than in other texts on algebraic graph theory. Important matrices associated with graphs (for example, incidence, adjacency and Laplacian matrices) are treated in detail. Presenting a useful overview of selected topics in algebraic graph theory, early chapters of the text focus on regular graphs, algebraic connectivity, the distance matrix of a tree, and its generalized version for arbitrary graphs, known as the resistance matrix. Coverage of later topics include Laplacian eigenvalues of threshold graphs, the positive definite completion problem and matrix games based on a graph. Such an extensive coverage of the subject area provides a welcome prompt for further exploration. The inclusion of exercises enables practical learning throughout the book. In the new edition, a new chapter is added on the line graph of a tree, while some results in Chapter 6 on Perron-Frobenius theory are reo...
Adaptive Graph Convolutional Neural Networks
Li, Ruoyu; Wang, Sheng; Zhu, Feiyun; Huang, Junzhou
2018-01-01
Graph Convolutional Neural Networks (Graph CNNs) are generalizations of classical CNNs to handle graph data such as molecular data, point could and social networks. Current filters in graph CNNs are built for fixed and shared graph structure. However, for most real data, the graph structures varies in both size and connectivity. The paper proposes a generalized and flexible graph CNN taking data of arbitrary graph structure as input. In that way a task-driven adaptive graph is learned for eac...
Destroying longest cycles in graphs and digraphs
DEFF Research Database (Denmark)
Van Aardt, Susan A.; Burger, Alewyn P.; Dunbar, Jean E.
2015-01-01
In 1978, C. Thomassen proved that in any graph one can destroy all the longest cycles by deleting at most one third of the vertices. We show that for graphs with circumference k≤8 it suffices to remove at most 1/k of the vertices. The Petersen graph demonstrates that this result cannot be extended...... to include k=9 but we show that in every graph with circumference nine we can destroy all 9-cycles by removing 1/5 of the vertices. We consider the analogous problem for digraphs and show that for digraphs with circumference k=2,3, it suffices to remove 1/k of the vertices. However this does not hold for k≥4....
Hierarchical organisation of causal graphs
International Nuclear Information System (INIS)
Dziopa, P.
1993-01-01
This paper deals with the design of a supervision system using a hierarchy of models formed by graphs, in which the variables are the nodes and the causal relations between the variables of the arcs. To obtain a representation of the variables evolutions which contains only the relevant features of their real evolutions, the causal relations are completed with qualitative transfer functions (QTFs) which produce roughly the behaviour of the classical transfer functions. Major improvements have been made in the building of the hierarchical organization. First, the basic variables of the uppermost level and the causal relations between them are chosen. The next graph is built by adding intermediary variables to the upper graph. When the undermost graph has been built, the transfer functions parameters corresponding to its causal relations are identified. The second task consists in the upwelling of the information from the undermost graph to the uppermost one. A fusion procedure of the causal relations has been designed to compute the QFTs relevant for each level. This procedure aims to reduce the number of parameters needed to represent an evolution at a high level of abstraction. These techniques have been applied to the hierarchical modelling of nuclear process. (authors). 8 refs., 12 figs
Directory of Open Access Journals (Sweden)
C. Dalfo
2015-10-01
Full Text Available We study a family of graphs related to the $n$-cube. The middle cube graph of parameter k is the subgraph of $Q_{2k-1}$ induced by the set of vertices whose binary representation has either $k-1$ or $k$ number of ones. The middle cube graphs can be obtained from the well-known odd graphs by doubling their vertex set. Here we study some of the properties of the middle cube graphs in the light of the theory of distance-regular graphs. In particular, we completely determine their spectra (eigenvalues and their multiplicities, and associated eigenvectors.
Decomposing a graph into bistars
DEFF Research Database (Denmark)
Thomassen, Carsten
2013-01-01
Bárat and the present author conjectured that, for each tree T, there exists a natural number kT such that the following holds: If G is a kT-edge-connected graph such that |E(T)| divides |E(G)|, then G has a T-decomposition, that is, a decomposition of the edge set into trees each of which...... is isomorphic to T. The conjecture has been verified for infinitely many paths and for each star. In this paper we verify the conjecture for an infinite family of trees that are neither paths nor stars, namely all the bistars S(k,k+1)....
DEFF Research Database (Denmark)
Kiciman, Emre; Counts, Scott; Gamon, Michael
2014-01-01
, time and other confounding factors, few of the studies that attempt to extract information from social media actually condition on such factors due to the difficulty in extracting these factors from naturalistic data and the added complexity of including them in analyses. In this paper, we present......Much research has focused on studying complex phenomena through their reflection in social media, from drawing neighborhood boundaries to inferring relationships between medicines and diseases. While it is generally recognized in the social sciences that such studies should be conditioned on gender...... a simple framework for specifying and implementing common social media analyses that makes it trivial to inspect and condition on contextual information. Our data model—discussion graphs—captures both the structural features of relationships inferred from social media as well as the context...
Graphing Inequalities, Connecting Meaning
Switzer, J. Matt
2014-01-01
Students often have difficulty with graphing inequalities (see Filloy, Rojano, and Rubio 2002; Drijvers 2002), and J. Matt Switzer's students were no exception. Although students can produce graphs for simple inequalities, they often struggle when the format of the inequality is unfamiliar. Even when producing a correct graph of an…
Directory of Open Access Journals (Sweden)
Amine Labriji
2017-07-01
Full Text Available The topic of identifying the similarity of graphs was considered as highly recommended research field in the Web semantic, artificial intelligence, the shape recognition and information research. One of the fundamental problems of graph databases is finding similar graphs to a graph query. Existing approaches dealing with this problem are usually based on the nodes and arcs of the two graphs, regardless of parental semantic links. For instance, a common connection is not identified as being part of the similarity of two graphs in cases like two graphs without common concepts, the measure of similarity based on the union of two graphs, or the one based on the notion of maximum common sub-graph (SCM, or the distance of edition of graphs. This leads to an inadequate situation in the context of information research. To overcome this problem, we suggest a new measure of similarity between graphs, based on the similarity measure of Wu and Palmer. We have shown that this new measure satisfies the properties of a measure of similarities and we applied this new measure on examples. The results show that our measure provides a run time with a gain of time compared to existing approaches. In addition, we compared the relevance of the similarity values obtained, it appears that this new graphs measure is advantageous and offers a contribution to solving the problem mentioned above.
van Dam, Edwin R.; Koolen, Jack H.; Tanaka, Hajime
2016-01-01
This is a survey of distance-regular graphs. We present an introduction to distance-regular graphs for the reader who is unfamiliar with the subject, and then give an overview of some developments in the area of distance-regular graphs since the monograph 'BCN'[Brouwer, A.E., Cohen, A.M., Neumaier,
Fuzzy Graph Language Recognizability
Kalampakas , Antonios; Spartalis , Stefanos; Iliadis , Lazaros
2012-01-01
Part 5: Fuzzy Logic; International audience; Fuzzy graph language recognizability is introduced along the lines of the established theory of syntactic graph language recognizability by virtue of the algebraic structure of magmoids. The main closure properties of the corresponding class are investigated and several interesting examples of fuzzy graph languages are examined.
Brouwer, A.E.; Haemers, W.H.
2012-01-01
This book gives an elementary treatment of the basic material about graph spectra, both for ordinary, and Laplace and Seidel spectra. The text progresses systematically, by covering standard topics before presenting some new material on trees, strongly regular graphs, two-graphs, association
Pristine transfinite graphs and permissive electrical networks
Zemanian, Armen H
2001-01-01
A transfinite graph or electrical network of the first rank is obtained conceptually by connecting conventionally infinite graphs and networks together at their infinite extremities. This process can be repeated to obtain a hierarchy of transfiniteness whose ranks increase through the countable ordinals. This idea, which is of recent origin, has enriched the theories of graphs and networks with radically new constructs and research problems. The book provides a more accessible introduction to the subject that, though sacrificing some generality, captures the essential ideas of transfiniteness for graphs and networks. Thus, for example, some results concerning discrete potentials and random walks on transfinite networks can now be presented more concisely. Conversely, the simplifications enable the development of many new results that were previously unavailable. Topics and features: *A simplified exposition provides an introduction to transfiniteness for graphs and networks.*Various results for conventional g...
A model of language inflection graphs
Fukś, Henryk; Farzad, Babak; Cao, Yi
2014-01-01
Inflection graphs are highly complex networks representing relationships between inflectional forms of words in human languages. For so-called synthetic languages, such as Latin or Polish, they have particularly interesting structure due to the abundance of inflectional forms. We construct the simplest form of inflection graphs, namely a bipartite graph in which one group of vertices corresponds to dictionary headwords and the other group to inflected forms encountered in a given text. We, then, study projection of this graph on the set of headwords. The projection decomposes into a large number of connected components, to be called word groups. Distribution of sizes of word group exhibits some remarkable properties, resembling cluster distribution in a lattice percolation near the critical point. We propose a simple model which produces graphs of this type, reproducing the desired component distribution and other topological features.
Hell, Pavol
2004-01-01
This is a book about graph homomorphisms. Graph theory is now an established discipline but the study of graph homomorphisms has only recently begun to gain wide acceptance and interest. The subject gives a useful perspective in areas such as graph reconstruction, products, fractional and circular colourings, and has applications in complexity theory, artificial intelligence, telecommunication, and, most recently, statistical physics.Based on the authors' lecture notes for graduate courses, this book can be used as a textbook for a second course in graph theory at 4th year or master's level an
Simplicial complexes of graphs
Jonsson, Jakob
2008-01-01
A graph complex is a finite family of graphs closed under deletion of edges. Graph complexes show up naturally in many different areas of mathematics, including commutative algebra, geometry, and knot theory. Identifying each graph with its edge set, one may view a graph complex as a simplicial complex and hence interpret it as a geometric object. This volume examines topological properties of graph complexes, focusing on homotopy type and homology. Many of the proofs are based on Robin Forman's discrete version of Morse theory. As a byproduct, this volume also provides a loosely defined toolbox for attacking problems in topological combinatorics via discrete Morse theory. In terms of simplicity and power, arguably the most efficient tool is Forman's divide and conquer approach via decision trees; it is successfully applied to a large number of graph and digraph complexes.
Introduction to quantum graphs
Berkolaiko, Gregory
2012-01-01
A "quantum graph" is a graph considered as a one-dimensional complex and equipped with a differential operator ("Hamiltonian"). Quantum graphs arise naturally as simplified models in mathematics, physics, chemistry, and engineering when one considers propagation of waves of various nature through a quasi-one-dimensional (e.g., "meso-" or "nano-scale") system that looks like a thin neighborhood of a graph. Works that currently would be classified as discussing quantum graphs have been appearing since at least the 1930s, and since then, quantum graphs techniques have been applied successfully in various areas of mathematical physics, mathematics in general and its applications. One can mention, for instance, dynamical systems theory, control theory, quantum chaos, Anderson localization, microelectronics, photonic crystals, physical chemistry, nano-sciences, superconductivity theory, etc. Quantum graphs present many non-trivial mathematical challenges, which makes them dear to a mathematician's heart. Work on qu...
Electric Holding Company Areas
Department of Homeland Security — Holding companies are electric power utilities that have a holding company structure. This vector polygon layer represents the area served by electric power holding...
Graphing trillions of triangles.
Burkhardt, Paul
2017-07-01
The increasing size of Big Data is often heralded but how data are transformed and represented is also profoundly important to knowledge discovery, and this is exemplified in Big Graph analytics. Much attention has been placed on the scale of the input graph but the product of a graph algorithm can be many times larger than the input. This is true for many graph problems, such as listing all triangles in a graph. Enabling scalable graph exploration for Big Graphs requires new approaches to algorithms, architectures, and visual analytics. A brief tutorial is given to aid the argument for thoughtful representation of data in the context of graph analysis. Then a new algebraic method to reduce the arithmetic operations in counting and listing triangles in graphs is introduced. Additionally, a scalable triangle listing algorithm in the MapReduce model will be presented followed by a description of the experiments with that algorithm that led to the current largest and fastest triangle listing benchmarks to date. Finally, a method for identifying triangles in new visual graph exploration technologies is proposed.
Chartrand, Gary
1984-01-01
Graph theory is used today in the physical sciences, social sciences, computer science, and other areas. Introductory Graph Theory presents a nontechnical introduction to this exciting field in a clear, lively, and informative style. Author Gary Chartrand covers the important elementary topics of graph theory and its applications. In addition, he presents a large variety of proofs designed to strengthen mathematical techniques and offers challenging opportunities to have fun with mathematics. Ten major topics - profusely illustrated - include: Mathematical Models, Elementary Concepts of Grap
Directory of Open Access Journals (Sweden)
Aleks Kissinger
2014-03-01
Full Text Available String diagrams are a powerful tool for reasoning about physical processes, logic circuits, tensor networks, and many other compositional structures. Dixon, Duncan and Kissinger introduced string graphs, which are a combinatoric representations of string diagrams, amenable to automated reasoning about diagrammatic theories via graph rewrite systems. In this extended abstract, we show how the power of such rewrite systems can be greatly extended by introducing pattern graphs, which provide a means of expressing infinite families of rewrite rules where certain marked subgraphs, called !-boxes ("bang boxes", on both sides of a rule can be copied any number of times or removed. After reviewing the string graph formalism, we show how string graphs can be extended to pattern graphs and how pattern graphs and pattern rewrite rules can be instantiated to concrete string graphs and rewrite rules. We then provide examples demonstrating the expressive power of pattern graphs and how they can be applied to study interacting algebraic structures that are central to categorical quantum mechanics.
Creating more effective graphs
Robbins, Naomi B
2012-01-01
A succinct and highly readable guide to creating effective graphs The right graph can be a powerful tool for communicating information, improving a presentation, or conveying your point in print. If your professional endeavors call for you to present data graphically, here's a book that can help you do it more effectively. Creating More Effective Graphs gives you the basic knowledge and techniques required to choose and create appropriate graphs for a broad range of applications. Using real-world examples everyone can relate to, the author draws on her years of experience in gr
Energy Technology Data Exchange (ETDEWEB)
Lothian, Joshua [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Powers, Sarah S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sullivan, Blair D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Baker, Matthew B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Schrock, Jonathan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Poole, Stephen W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
2013-10-01
The benchmarking effort within the Extreme Scale Systems Center at Oak Ridge National Laboratory seeks to provide High Performance Computing benchmarks and test suites of interest to the DoD sponsor. The work described in this report is a part of the effort focusing on graph generation. A previously developed benchmark, SystemBurn, allowed the emulation of different application behavior profiles within a single framework. To complement this effort, similar capabilities are desired for graph-centric problems. This report examines existing synthetic graph generator implementations in preparation for further study on the properties of their generated synthetic graphs.
DEFF Research Database (Denmark)
Mansutti, Alessio; Miculan, Marino; Peressotti, Marco
2017-01-01
We introduce loose graph simulations (LGS), a new notion about labelled graphs which subsumes in an intuitive and natural way subgraph isomorphism (SGI), regular language pattern matching (RLPM) and graph simulation (GS). Being a unification of all these notions, LGS allows us to express directly...... also problems which are “mixed” instances of previous ones, and hence which would not fit easily in any of them. After the definition and some examples, we show that the problem of finding loose graph simulations is NP-complete, we provide formal translation of SGI, RLPM, and GS into LGSs, and we give...
Directory of Open Access Journals (Sweden)
Alberto Apostolico
2009-08-01
Full Text Available The Web Graph is a large-scale graph that does not fit in main memory, so that lossless compression methods have been proposed for it. This paper introduces a compression scheme that combines efficient storage with fast retrieval for the information in a node. The scheme exploits the properties of the Web Graph without assuming an ordering of the URLs, so that it may be applied to more general graphs. Tests on some datasets of use achieve space savings of about 10% over existing methods.
Graph Theory. 1. Fragmentation of Structural Graphs
Directory of Open Access Journals (Sweden)
Lorentz JÄNTSCHI
2002-12-01
Full Text Available The investigation of structural graphs has many fields of applications in engineering, especially in applied sciences like as applied chemistry and physics, computer sciences and automation, electronics and telecommunication. The main subject of the paper is to express fragmentation criteria in graph using a new method of investigation: terminal paths. Using terminal paths are defined most of the fragmentation criteria that are in use in molecular topology, but the fields of applications are more generally than that, as I mentioned before. Graphical examples of fragmentation are given for every fragmentation criteria. Note that all fragmentation is made with a computer program that implements a routine for every criterion.[1] A web routine for tracing all terminal paths in graph can be found at the address: http://vl.academicdirect.ro/molecular_topology/tpaths/ [1] M. V. Diudea, I. Gutman, L. Jäntschi, Molecular Topology, Nova Science, Commack, New York, 2001, 2002.
A graph rewriting programming language for graph drawing
Rodgers, Peter
1998-01-01
This paper describes Grrr, a prototype visual graph drawing tool. Previously there were no visual languages for programming graph drawing algorithms despite the inherently visual nature of the process. The languages which gave a diagrammatic view of graphs were not computationally complete and so could not be used to implement complex graph drawing algorithms. Hence current graph drawing tools are all text based. Recent developments in graph rewriting systems have produced computationally com...
de Mol, M.J.; Rensink, Arend; Hunt, James J.
This paper introduces an approach for adding graph transformation-based functionality to existing JAVA programs. The approach relies on a set of annotations to identify the intended graph structure, as well as on user methods to manipulate that structure, within the user’s own JAVA class
Cohen, A.M.; Beineke, L.W.; Wilson, R.J.; Cameron, P.J.
2004-01-01
In this chapter we investigate the classification of distance-transitive graphs: these are graphs whose automorphism groups are transitive on each of the sets of pairs of vertices at distance i, for i = 0, 1,.... We provide an introduction into the field. By use of the classification of finite
Joyner, W David
2017-01-01
This textbook acts as a pathway to higher mathematics by seeking and illuminating the connections between graph theory and diverse fields of mathematics, such as calculus on manifolds, group theory, algebraic curves, Fourier analysis, cryptography and other areas of combinatorics. An overview of graph theory definitions and polynomial invariants for graphs prepares the reader for the subsequent dive into the applications of graph theory. To pique the reader’s interest in areas of possible exploration, recent results in mathematics appear throughout the book, accompanied with examples of related graphs, how they arise, and what their valuable uses are. The consequences of graph theory covered by the authors are complicated and far-reaching, so topics are always exhibited in a user-friendly manner with copious graphs, exercises, and Sage code for the computation of equations. Samples of the book’s source code can be found at github.com/springer-math/adventures-in-graph-theory. The text is geared towards ad...
Perepelitsa, VA; Sergienko, [No Value; Kochkarov, AM
1999-01-01
Definitions of prefractal and fractal graphs are introduced, and they are used to formulate mathematical models in different fields of knowledge. The topicality of fractal-graph recognition from the point of view, of fundamental improvement in the efficiency of the solution of algorithmic problems
DEFF Research Database (Denmark)
Husfeldt, Thore
2015-01-01
This chapter presents an introduction to graph colouring algorithms. The focus is on vertex-colouring algorithms that work for general classes of graphs with worst-case performance guarantees in a sequential model of computation. The presentation aims to demonstrate the breadth of available...
Packing Degenerate Graphs Greedily
Czech Academy of Sciences Publication Activity Database
Allen, P.; Böttcher, J.; Hladký, J.; Piguet, Diana
2017-01-01
Roč. 61, August (2017), s. 45-51 ISSN 1571-0653 R&D Projects: GA ČR GJ16-07822Y Institutional support: RVO:67985807 Keywords : tree packing conjecture * graph packing * graph processes Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics
Equivalence of massive propagator distance and mathematical distance on graphs
International Nuclear Information System (INIS)
Filk, T.
1992-01-01
It is shown in this paper that the assignment of distance according to the massive propagator method and according to the mathematical definition (length of minimal path) on arbitrary graphs with a bound on the degree leads to equivalent large scale properties of the graph. Especially, the internal scaling dimension is the same for both definitions. This result holds for any fixed, non-vanishing mass, so that a really inequivalent definition of distance requires the limit m → 0
Particle transport in breathing quantum graph
International Nuclear Information System (INIS)
Matrasulov, D.U.; Yusupov, J.R.; Sabirov, K.K.; Sobirov, Z.A.
2012-01-01
Full text: Particle transport in nanoscale networks and discrete structures is of fundamental and practical importance. Usually such systems are modeled by so-called quantum graphs, the systems attracting much attention in physics and mathematics during past two decades [1-5]. During last two decades quantum graphs found numerous applications in modeling different discrete structures and networks in nanoscale and mesoscopic physics (e.g., see reviews [1-3]). Despite considerable progress made in the study of particle dynamics most of the problems deal with unperturbed case and the case of time-dependent perturbation has not yet be explored. In this work we treat particle dynamics for quantum star graph with time-dependent bonds. In particular, we consider harmonically breathing quantum star graphs, the cases of monotonically contracting and expanding graphs. The latter can be solved exactly analytically. Edge boundaries are considered to be time-dependent, while branching point is assumed to be fixed. Quantum dynamics of a particle in such graphs is studied by solving Schrodinger equation with time-dependent boundary conditions given on a star graph. Time-dependence of the average kinetic energy is analyzed. Space-time evolution of the Gaussian wave packet is treated for harmonically breathing star graph. It is found that for certain frequencies energy is a periodic function of time, while for others it can be non-monotonically growing function of time. Such a feature can be caused by possible synchronization of the particles motion and the motions of the moving edges of graph bonds. (authors) References: [1] Tsampikos Kottos and Uzy Smilansky, Ann. Phys., 76, 274 (1999). [2] Sven Gnutzmann and Uzy Smilansky, Adv. Phys. 55, 527 (2006). [3] S. GnutzmannJ.P. Keating, F. Piotet, Ann. Phys., 325, 2595 (2010). [4] P.Exner, P.Seba, P.Stovicek, J. Phys. A: Math. Gen. 21, 4009 (1988). [5] J. Boman, P. Kurasov, Adv. Appl. Math., 35, 58 (2005)
Generalized connectivity of graphs
Li, Xueliang
2016-01-01
Noteworthy results, proof techniques, open problems and conjectures in generalized (edge-) connectivity are discussed in this book. Both theoretical and practical analyses for generalized (edge-) connectivity of graphs are provided. Topics covered in this book include: generalized (edge-) connectivity of graph classes, algorithms, computational complexity, sharp bounds, Nordhaus-Gaddum-type results, maximum generalized local connectivity, extremal problems, random graphs, multigraphs, relations with the Steiner tree packing problem and generalizations of connectivity. This book enables graduate students to understand and master a segment of graph theory and combinatorial optimization. Researchers in graph theory, combinatorics, combinatorial optimization, probability, computer science, discrete algorithms, complexity analysis, network design, and the information transferring models will find this book useful in their studies.
Autoregressive Moving Average Graph Filtering
Isufi, Elvin; Loukas, Andreas; Simonetto, Andrea; Leus, Geert
2016-01-01
One of the cornerstones of the field of signal processing on graphs are graph filters, direct analogues of classical filters, but intended for signals defined on graphs. This work brings forth new insights on the distributed graph filtering problem. We design a family of autoregressive moving average (ARMA) recursions, which (i) are able to approximate any desired graph frequency response, and (ii) give exact solutions for tasks such as graph signal denoising and interpolation. The design phi...
A local search for a graph clustering problem
Navrotskaya, Anna; Il'ev, Victor
2016-10-01
In the clustering problems one has to partition a given set of objects (a data set) into some subsets (called clusters) taking into consideration only similarity of the objects. One of most visual formalizations of clustering is graph clustering, that is grouping the vertices of a graph into clusters taking into consideration the edge structure of the graph whose vertices are objects and edges represent similarities between the objects. In the graph k-clustering problem the number of clusters does not exceed k and the goal is to minimize the number of edges between clusters and the number of missing edges within clusters. This problem is NP-hard for any k ≥ 2. We propose a polynomial time (2k-1)-approximation algorithm for graph k-clustering. Then we apply a local search procedure to the feasible solution found by this algorithm and hold experimental research of obtained heuristics.
Subgraph detection using graph signals
Chepuri, Sundeep Prabhakar
2017-03-06
In this paper we develop statistical detection theory for graph signals. In particular, given two graphs, namely, a background graph that represents an usual activity and an alternative graph that represents some unusual activity, we are interested in answering the following question: To which of the two graphs does the observed graph signal fit the best? To begin with, we assume both the graphs are known, and derive an optimal Neyman-Pearson detector. Next, we derive a suboptimal detector for the case when the alternative graph is not known. The developed theory is illustrated with numerical experiments.
Subgraph detection using graph signals
Chepuri, Sundeep Prabhakar; Leus, Geert
2017-01-01
In this paper we develop statistical detection theory for graph signals. In particular, given two graphs, namely, a background graph that represents an usual activity and an alternative graph that represents some unusual activity, we are interested in answering the following question: To which of the two graphs does the observed graph signal fit the best? To begin with, we assume both the graphs are known, and derive an optimal Neyman-Pearson detector. Next, we derive a suboptimal detector for the case when the alternative graph is not known. The developed theory is illustrated with numerical experiments.
Directory of Open Access Journals (Sweden)
Haynes Teresa W.
2014-08-01
Full Text Available A path π = (v1, v2, . . . , vk+1 in a graph G = (V,E is a downhill path if for every i, 1 ≤ i ≤ k, deg(vi ≥ deg(vi+1, where deg(vi denotes the degree of vertex vi ∈ V. The downhill domination number equals the minimum cardinality of a set S ⊆ V having the property that every vertex v ∈ V lies on a downhill path originating from some vertex in S. We investigate downhill domination numbers of graphs and give upper bounds. In particular, we show that the downhill domination number of a graph is at most half its order, and that the downhill domination number of a tree is at most one third its order. We characterize the graphs obtaining each of these bounds
Alspach, BR
1985-01-01
This volume deals with a variety of problems involving cycles in graphs and circuits in digraphs. Leading researchers in this area present here 3 survey papers and 42 papers containing new results. There is also a collection of unsolved problems.
Wilson, Robin J
1985-01-01
Graph Theory has recently emerged as a subject in its own right, as well as being an important mathematical tool in such diverse subjects as operational research, chemistry, sociology and genetics. This book provides a comprehensive introduction to the subject.
Hyperbolicity in median graphs
Indian Academy of Sciences (India)
mic problems in hyperbolic spaces and hyperbolic graphs have been .... that in general the main obstacle is that we do not know the location of ...... [25] Jonckheere E and Lohsoonthorn P, A hyperbolic geometry approach to multipath routing,.
On some interconnections between combinatorial optimization and extremal graph theory
Directory of Open Access Journals (Sweden)
Cvetković Dragoš M.
2004-01-01
Full Text Available The uniting feature of combinatorial optimization and extremal graph theory is that in both areas one should find extrema of a function defined in most cases on a finite set. While in combinatorial optimization the point is in developing efficient algorithms and heuristics for solving specified types of problems, the extremal graph theory deals with finding bounds for various graph invariants under some constraints and with constructing extremal graphs. We analyze by examples some interconnections and interactions of the two theories and propose some conclusions.
Uniform Single Valued Neutrosophic Graphs
Directory of Open Access Journals (Sweden)
S. Broumi
2017-09-01
Full Text Available In this paper, we propose a new concept named the uniform single valued neutrosophic graph. An illustrative example and some properties are examined. Next, we develop an algorithmic approach for computing the complement of the single valued neutrosophic graph. A numerical example is demonstrated for computing the complement of single valued neutrosophic graphs and uniform single valued neutrosophic graph.
Collective Rationality in Graph Aggregation
Endriss, U.; Grandi, U.; Schaub, T.; Friedrich, G.; O'Sullivan, B.
2014-01-01
Suppose a number of agents each provide us with a directed graph over a common set of vertices. Graph aggregation is the problem of computing a single “collective” graph that best represents the information inherent in this profile of individual graphs. We consider this aggregation problem from the
International Nuclear Information System (INIS)
Barra, F.; Gaspard, P.
2001-01-01
We consider the classical evolution of a particle on a graph by using a time-continuous Frobenius-Perron operator that generalizes previous propositions. In this way, the relaxation rates as well as the chaotic properties can be defined for the time-continuous classical dynamics on graphs. These properties are given as the zeros of some periodic-orbit zeta functions. We consider in detail the case of infinite periodic graphs where the particle undergoes a diffusion process. The infinite spatial extension is taken into account by Fourier transforms that decompose the observables and probability densities into sectors corresponding to different values of the wave number. The hydrodynamic modes of diffusion are studied by an eigenvalue problem of a Frobenius-Perron operator corresponding to a given sector. The diffusion coefficient is obtained from the hydrodynamic modes of diffusion and has the Green-Kubo form. Moreover, we study finite but large open graphs that converge to the infinite periodic graph when their size goes to infinity. The lifetime of the particle on the open graph is shown to correspond to the lifetime of a system that undergoes a diffusion process before it escapes
Bollobás, Béla
1998-01-01
The time has now come when graph theory should be part of the education of every serious student of mathematics and computer science, both for its own sake and to enhance the appreciation of mathematics as a whole. This book is an in-depth account of graph theory, written with such a student in mind; it reflects the current state of the subject and emphasizes connections with other branches of pure mathematics. The volume grew out of the author's earlier book, Graph Theory -- An Introductory Course, but its length is well over twice that of its predecessor, allowing it to reveal many exciting new developments in the subject. Recognizing that graph theory is one of several courses competing for the attention of a student, the book contains extensive descriptive passages designed to convey the flavor of the subject and to arouse interest. In addition to a modern treatment of the classical areas of graph theory such as coloring, matching, extremal theory, and algebraic graph theory, the book presents a detailed ...
Provably Correct Control-Flow Graphs from Java Programs with Exceptions
Amighi, A.; de Carvalho Gomes, Pedro; Huisman, Marieke
2011-01-01
We present an algorithm to extract flow graphs from Java bytecode, focusing on exceptional control flows. We prove its correctness, meaning that the behaviour of the extracted control-flow graph is an over-approximation of the behaviour of the original program. Thus any safety property that holds
The number of colorings of planar graphs with no separating triangles
DEFF Research Database (Denmark)
Thomassen, Carsten
2017-01-01
A classical result of Birkhoff and Lewis implies that every planar graph with . n vertices has at least . 152n-1 distinct 5-vertex-colorings. Equality holds for planar triangulations with . n-4 separating triangles. We show that, if a planar graph has no separating triangle, then it has at least ...
Proxy Graph: Visual Quality Metrics of Big Graph Sampling.
Nguyen, Quan Hoang; Hong, Seok-Hee; Eades, Peter; Meidiana, Amyra
2017-06-01
Data sampling has been extensively studied for large scale graph mining. Many analyses and tasks become more efficient when performed on graph samples of much smaller size. The use of proxy objects is common in software engineering for analysis and interaction with heavy objects or systems. In this paper, we coin the term 'proxy graph' and empirically investigate how well a proxy graph visualization can represent a big graph. Our investigation focuses on proxy graphs obtained by sampling; this is one of the most common proxy approaches. Despite the plethora of data sampling studies, this is the first evaluation of sampling in the context of graph visualization. For an objective evaluation, we propose a new family of quality metrics for visual quality of proxy graphs. Our experiments cover popular sampling techniques. Our experimental results lead to guidelines for using sampling-based proxy graphs in visualization.
Graph mining for next generation sequencing: leveraging the assembly graph for biological insights.
Warnke-Sommer, Julia; Ali, Hesham
2016-05-06
The assembly of Next Generation Sequencing (NGS) reads remains a challenging task. This is especially true for the assembly of metagenomics data that originate from environmental samples potentially containing hundreds to thousands of unique species. The principle objective of current assembly tools is to assemble NGS reads into contiguous stretches of sequence called contigs while maximizing for both accuracy and contig length. The end goal of this process is to produce longer contigs with the major focus being on assembly only. Sequence read assembly is an aggregative process, during which read overlap relationship information is lost as reads are merged into longer sequences or contigs. The assembly graph is information rich and capable of capturing the genomic architecture of an input read data set. We have developed a novel hybrid graph in which nodes represent sequence regions at different levels of granularity. This model, utilized in the assembly and analysis pipeline Focus, presents a concise yet feature rich view of a given input data set, allowing for the extraction of biologically relevant graph structures for graph mining purposes. Focus was used to create hybrid graphs to model metagenomics data sets obtained from the gut microbiomes of five individuals with Crohn's disease and eight healthy individuals. Repetitive and mobile genetic elements are found to be associated with hybrid graph structure. Using graph mining techniques, a comparative study of the Crohn's disease and healthy data sets was conducted with focus on antibiotics resistance genes associated with transposase genes. Results demonstrated significant differences in the phylogenetic distribution of categories of antibiotics resistance genes in the healthy and diseased patients. Focus was also evaluated as a pure assembly tool and produced excellent results when compared against the Meta-velvet, Omega, and UD-IDBA assemblers. Mining the hybrid graph can reveal biological phenomena captured
Efficient Graph Computation for Node2Vec
Zhou, Dongyan; Niu, Songjie; Chen, Shimin
2018-01-01
Node2Vec is a state-of-the-art general-purpose feature learning method for network analysis. However, current solutions cannot run Node2Vec on large-scale graphs with billions of vertices and edges, which are common in real-world applications. The existing distributed Node2Vec on Spark incurs significant space and time overhead. It runs out of memory even for mid-sized graphs with millions of vertices. Moreover, it considers at most 30 edges for every vertex in generating random walks, causin...
On some covering graphs of a graph
Directory of Open Access Journals (Sweden)
Shariefuddin Pirzada
2016-10-01
Full Text Available For a graph $G$ with vertex set $V(G=\\{v_1, v_2, \\dots, v_n\\}$, let $S$ be the covering set of $G$ having the maximum degree over all the minimum covering sets of $G$. Let $N_S[v]=\\{u\\in S : uv \\in E(G \\}\\cup \\{v\\}$ be the closed neighbourhood of the vertex $v$ with respect to $S.$ We define a square matrix $A_S(G= (a_{ij},$ by $a_{ij}=1,$ if $\\left |N_S[v_i]\\cap N_S[v_j] \\right| \\geq 1, i\
Analysis and enumeration algorithms for biological graphs
Marino, Andrea
2015-01-01
In this work we plan to revise the main techniques for enumeration algorithms and to show four examples of enumeration algorithms that can be applied to efficiently deal with some biological problems modelled by using biological networks: enumerating central and peripheral nodes of a network, enumerating stories, enumerating paths or cycles, and enumerating bubbles. Notice that the corresponding computational problems we define are of more general interest and our results hold in the case of arbitrary graphs. Enumerating all the most and less central vertices in a network according to their eccentricity is an example of an enumeration problem whose solutions are polynomial and can be listed in polynomial time, very often in linear or almost linear time in practice. Enumerating stories, i.e. all maximal directed acyclic subgraphs of a graph G whose sources and targets belong to a predefined subset of the vertices, is on the other hand an example of an enumeration problem with an exponential number of solutions...
Fundamentals of algebraic graph transformation
Ehrig, Hartmut; Prange, Ulrike; Taentzer, Gabriele
2006-01-01
Graphs are widely used to represent structural information in the form of objects and connections between them. Graph transformation is the rule-based manipulation of graphs, an increasingly important concept in computer science and related fields. This is the first textbook treatment of the algebraic approach to graph transformation, based on algebraic structures and category theory. Part I is an introduction to the classical case of graph and typed graph transformation. In Part II basic and advanced results are first shown for an abstract form of replacement systems, so-called adhesive high-level replacement systems based on category theory, and are then instantiated to several forms of graph and Petri net transformation systems. Part III develops typed attributed graph transformation, a technique of key relevance in the modeling of visual languages and in model transformation. Part IV contains a practical case study on model transformation and a presentation of the AGG (attributed graph grammar) tool envir...
The STAPL Parallel Graph Library
Harshvardhan,
2013-01-01
This paper describes the stapl Parallel Graph Library, a high-level framework that abstracts the user from data-distribution and parallelism details and allows them to concentrate on parallel graph algorithm development. It includes a customizable distributed graph container and a collection of commonly used parallel graph algorithms. The library introduces pGraph pViews that separate algorithm design from the container implementation. It supports three graph processing algorithmic paradigms, level-synchronous, asynchronous and coarse-grained, and provides common graph algorithms based on them. Experimental results demonstrate improved scalability in performance and data size over existing graph libraries on more than 16,000 cores and on internet-scale graphs containing over 16 billion vertices and 250 billion edges. © Springer-Verlag Berlin Heidelberg 2013.
A graph algebra for scalable visual analytics.
Shaverdian, Anna A; Zhou, Hao; Michailidis, George; Jagadish, Hosagrahar V
2012-01-01
Visual analytics (VA), which combines analytical techniques with advanced visualization features, is fast becoming a standard tool for extracting information from graph data. Researchers have developed many tools for this purpose, suggesting a need for formal methods to guide these tools' creation. Increased data demands on computing requires redesigning VA tools to consider performance and reliability in the context of analysis of exascale datasets. Furthermore, visual analysts need a way to document their analyses for reuse and results justification. A VA graph framework encapsulated in a graph algebra helps address these needs. Its atomic operators include selection and aggregation. The framework employs a visual operator and supports dynamic attributes of data to enable scalable visual exploration of data.
Directory of Open Access Journals (Sweden)
Unil Yun
2016-05-01
Full Text Available Frequent graph mining has been proposed to find interesting patterns (i.e., frequent sub-graphs from databases composed of graph transaction data, which can effectively express complex and large data in the real world. In addition, various applications for graph mining have been suggested. Traditional graph pattern mining methods use a single minimum support threshold factor in order to check whether or not mined patterns are interesting. However, it is not a sufficient factor that can consider valuable characteristics of graphs such as graph sizes and features of graph elements. That is, previous methods cannot consider such important characteristics in their mining operations since they only use a fixed minimum support threshold in the mining process. For this reason, in this paper, we propose a novel graph mining algorithm that can consider various multiple, minimum support constraints according to the types of graph elements and changeable minimum support conditions, depending on lengths of graph patterns. In addition, the proposed algorithm performs in mining operations more efficiently because it can minimize duplicated operations and computational overheads by considering symmetry features of graphs. Experimental results provided in this paper demonstrate that the proposed algorithm outperforms previous mining approaches in terms of pattern generation, runtime and memory usage.
White, AT
1985-01-01
The field of topological graph theory has expanded greatly in the ten years since the first edition of this book appeared. The original nine chapters of this classic work have therefore been revised and updated. Six new chapters have been added, dealing with: voltage graphs, non-orientable imbeddings, block designs associated with graph imbeddings, hypergraph imbeddings, map automorphism groups and change ringing.Thirty-two new problems have been added to this new edition, so that there are now 181 in all; 22 of these have been designated as ``difficult'''' and 9 as ``unsolved''''. Three of the four unsolved problems from the first edition have been solved in the ten years between editions; they are now marked as ``difficult''''.
Ribes, Luis
2017-01-01
This book offers a detailed introduction to graph theoretic methods in profinite groups and applications to abstract groups. It is the first to provide a comprehensive treatment of the subject. The author begins by carefully developing relevant notions in topology, profinite groups and homology, including free products of profinite groups, cohomological methods in profinite groups, and fixed points of automorphisms of free pro-p groups. The final part of the book is dedicated to applications of the profinite theory to abstract groups, with sections on finitely generated subgroups of free groups, separability conditions in free and amalgamated products, and algorithms in free groups and finite monoids. Profinite Graphs and Groups will appeal to students and researchers interested in profinite groups, geometric group theory, graphs and connections with the theory of formal languages. A complete reference on the subject, the book includes historical and bibliographical notes as well as a discussion of open quest...
Subdominant pseudoultrametric on graphs
Energy Technology Data Exchange (ETDEWEB)
Dovgoshei, A A; Petrov, E A [Institute of Applied Mathematics and Mechanics, National Academy of Sciences of Ukraine, Donetsk (Ukraine)
2013-08-31
Let (G,w) be a weighted graph. We find necessary and sufficient conditions under which the weight w:E(G)→R{sup +} can be extended to a pseudoultrametric on V(G), and establish a criterion for the uniqueness of such an extension. We demonstrate that (G,w) is a complete k-partite graph, for k≥2, if and only if for any weight that can be extended to a pseudoultrametric, among all such extensions one can find the least pseudoultrametric consistent with w. We give a structural characterization of graphs for which the subdominant pseudoultrametric is an ultrametric for any strictly positive weight that can be extended to a pseudoultrametric. Bibliography: 14 titles.
Quantitative graph theory mathematical foundations and applications
Dehmer, Matthias
2014-01-01
The first book devoted exclusively to quantitative graph theory, Quantitative Graph Theory: Mathematical Foundations and Applications presents and demonstrates existing and novel methods for analyzing graphs quantitatively. Incorporating interdisciplinary knowledge from graph theory, information theory, measurement theory, and statistical techniques, this book covers a wide range of quantitative-graph theoretical concepts and methods, including those pertaining to real and random graphs such as:Comparative approaches (graph similarity or distance)Graph measures to characterize graphs quantitat
Towards Scalable Graph Computation on Mobile Devices.
Chen, Yiqi; Lin, Zhiyuan; Pienta, Robert; Kahng, Minsuk; Chau, Duen Horng
2014-10-01
Mobile devices have become increasingly central to our everyday activities, due to their portability, multi-touch capabilities, and ever-improving computational power. Such attractive features have spurred research interest in leveraging mobile devices for computation. We explore a novel approach that aims to use a single mobile device to perform scalable graph computation on large graphs that do not fit in the device's limited main memory, opening up the possibility of performing on-device analysis of large datasets, without relying on the cloud. Based on the familiar memory mapping capability provided by today's mobile operating systems, our approach to scale up computation is powerful and intentionally kept simple to maximize its applicability across the iOS and Android platforms. Our experiments demonstrate that an iPad mini can perform fast computation on large real graphs with as many as 272 million edges (Google+ social graph), at a speed that is only a few times slower than a 13″ Macbook Pro. Through creating a real world iOS app with this technique, we demonstrate the strong potential application for scalable graph computation on a single mobile device using our approach.
Towards Scalable Graph Computation on Mobile Devices
Chen, Yiqi; Lin, Zhiyuan; Pienta, Robert; Kahng, Minsuk; Chau, Duen Horng
2015-01-01
Mobile devices have become increasingly central to our everyday activities, due to their portability, multi-touch capabilities, and ever-improving computational power. Such attractive features have spurred research interest in leveraging mobile devices for computation. We explore a novel approach that aims to use a single mobile device to perform scalable graph computation on large graphs that do not fit in the device's limited main memory, opening up the possibility of performing on-device analysis of large datasets, without relying on the cloud. Based on the familiar memory mapping capability provided by today's mobile operating systems, our approach to scale up computation is powerful and intentionally kept simple to maximize its applicability across the iOS and Android platforms. Our experiments demonstrate that an iPad mini can perform fast computation on large real graphs with as many as 272 million edges (Google+ social graph), at a speed that is only a few times slower than a 13″ Macbook Pro. Through creating a real world iOS app with this technique, we demonstrate the strong potential application for scalable graph computation on a single mobile device using our approach. PMID:25859564
Cheung, King Sing
2014-01-01
Petri nets are a formal and theoretically rich model for the modelling and analysis of systems. A subclass of Petri nets, augmented marked graphs possess a structure that is especially desirable for the modelling and analysis of systems with concurrent processes and shared resources.This monograph consists of three parts: Part I provides the conceptual background for readers who have no prior knowledge on Petri nets; Part II elaborates the theory of augmented marked graphs; finally, Part III discusses the application to system integration. The book is suitable as a first self-contained volume
Dayal, Amit; Brock, David
2018-01-01
Prashant Chandrasekar, a lead developer for the Social Interactome project, has tasked the team with creating a graph representation of the data collected from the social networks involved in that project. The data is currently stored in a MySQL database. The client requested that the graph database be Cayley, but after a literature review, Neo4j was chosen. The reasons for this shift will be explained in the design section. Secondarily, the team was tasked with coming up with three scena...
Stevanovic, Dragan
2015-01-01
Spectral Radius of Graphs provides a thorough overview of important results on the spectral radius of adjacency matrix of graphs that have appeared in the literature in the preceding ten years, most of them with proofs, and including some previously unpublished results of the author. The primer begins with a brief classical review, in order to provide the reader with a foundation for the subsequent chapters. Topics covered include spectral decomposition, the Perron-Frobenius theorem, the Rayleigh quotient, the Weyl inequalities, and the Interlacing theorem. From this introduction, the
Graph embedding with rich information through heterogeneous graph
Sun, Guolei
2017-01-01
Graph embedding, aiming to learn low-dimensional representations for nodes in graphs, has attracted increasing attention due to its critical application including node classification, link prediction and clustering in social network analysis. Most
Using Graph and Vertex Entropy to Compare Empirical Graphs with Theoretical Graph Models
Directory of Open Access Journals (Sweden)
Tomasz Kajdanowicz
2016-09-01
Full Text Available Over the years, several theoretical graph generation models have been proposed. Among the most prominent are: the Erdős–Renyi random graph model, Watts–Strogatz small world model, Albert–Barabási preferential attachment model, Price citation model, and many more. Often, researchers working with real-world data are interested in understanding the generative phenomena underlying their empirical graphs. They want to know which of the theoretical graph generation models would most probably generate a particular empirical graph. In other words, they expect some similarity assessment between the empirical graph and graphs artificially created from theoretical graph generation models. Usually, in order to assess the similarity of two graphs, centrality measure distributions are compared. For a theoretical graph model this means comparing the empirical graph to a single realization of a theoretical graph model, where the realization is generated from the given model using an arbitrary set of parameters. The similarity between centrality measure distributions can be measured using standard statistical tests, e.g., the Kolmogorov–Smirnov test of distances between cumulative distributions. However, this approach is both error-prone and leads to incorrect conclusions, as we show in our experiments. Therefore, we propose a new method for graph comparison and type classification by comparing the entropies of centrality measure distributions (degree centrality, betweenness centrality, closeness centrality. We demonstrate that our approach can help assign the empirical graph to the most similar theoretical model using a simple unsupervised learning method.
Handbook of graph grammars and computing by graph transformation
Engels, G; Kreowski, H J; Rozenberg, G
1999-01-01
Graph grammars originated in the late 60s, motivated by considerations about pattern recognition and compiler construction. Since then, the list of areas which have interacted with the development of graph grammars has grown quite impressively. Besides the aforementioned areas, it includes software specification and development, VLSI layout schemes, database design, modeling of concurrent systems, massively parallel computer architectures, logic programming, computer animation, developmental biology, music composition, visual languages, and many others.The area of graph grammars and graph tran
Topics in graph theory graphs and their Cartesian product
Imrich, Wilfried; Rall, Douglas F
2008-01-01
From specialists in the field, you will learn about interesting connections and recent developments in the field of graph theory by looking in particular at Cartesian products-arguably the most important of the four standard graph products. Many new results in this area appear for the first time in print in this book. Written in an accessible way, this book can be used for personal study in advanced applications of graph theory or for an advanced graph theory course.
Probability on graphs random processes on graphs and lattices
Grimmett, Geoffrey
2018-01-01
This introduction to some of the principal models in the theory of disordered systems leads the reader through the basics, to the very edge of contemporary research, with the minimum of technical fuss. Topics covered include random walk, percolation, self-avoiding walk, interacting particle systems, uniform spanning tree, random graphs, as well as the Ising, Potts, and random-cluster models for ferromagnetism, and the Lorentz model for motion in a random medium. This new edition features accounts of major recent progress, including the exact value of the connective constant of the hexagonal lattice, and the critical point of the random-cluster model on the square lattice. The choice of topics is strongly motivated by modern applications, and focuses on areas that merit further research. Accessible to a wide audience of mathematicians and physicists, this book can be used as a graduate course text. Each chapter ends with a range of exercises.
Bisseling, R.H.; Byrka, J.; Cerav-Erbas, S.; Gvozdenovic, N.; Lorenz, M.; Pendavingh, R.A.; Reeves, C.; Röger, M.; Verhoeven, A.; Berg, van den J.B.; Bhulai, S.; Hulshof, J.; Koole, G.; Quant, C.; Williams, J.F.
2006-01-01
Splitting a large software system into smaller and more manageable units has become an important problem for many organizations. The basic structure of a software system is given by a directed graph with vertices representing the programs of the system and arcs representing calls from one program to
Coloring geographical threshold graphs
Energy Technology Data Exchange (ETDEWEB)
Bradonjic, Milan [Los Alamos National Laboratory; Percus, Allon [Los Alamos National Laboratory; Muller, Tobias [EINDHOVEN UNIV. OF TECH
2008-01-01
We propose a coloring algorithm for sparse random graphs generated by the geographical threshold graph (GTG) model, a generalization of random geometric graphs (RGG). In a GTG, nodes are distributed in a Euclidean space, and edges are assigned according to a threshold function involving the distance between nodes as well as randomly chosen node weights. The motivation for analyzing this model is that many real networks (e.g., wireless networks, the Internet, etc.) need to be studied by using a 'richer' stochastic model (which in this case includes both a distance between nodes and weights on the nodes). Here, we analyze the GTG coloring algorithm together with the graph's clique number, showing formally that in spite of the differences in structure between GTG and RGG, the asymptotic behavior of the chromatic number is identical: {chi}1n 1n n / 1n n (1 + {omicron}(1)). Finally, we consider the leading corrections to this expression, again using the coloring algorithm and clique number to provide bounds on the chromatic number. We show that the gap between the lower and upper bound is within C 1n n / (1n 1n n){sup 2}, and specify the constant C.
Budhiraja, A.S.; Mukherjee, D.; Wu, R.
2017-01-01
We consider a variation of the supermarket model in which the servers can communicate with their neighbors and where the neighborhood relationships are described in terms of a suitable graph. Tasks with unit-exponential service time distributions arrive at each vertex as independent Poisson
DEFF Research Database (Denmark)
Kucharik, Marcel; Hofacker, Ivo; Stadler, Peter
2014-01-01
of the folding free energy landscape, however, can provide the relevant information. Results We introduce the basin hopping graph (BHG) as a novel coarse-grained model of folding landscapes. Each vertex of the BHG is a local minimum, which represents the corresponding basin in the landscape. Its edges connect...
The STAPL Parallel Graph Library
Harshvardhan,; Fidel, Adam; Amato, Nancy M.; Rauchwerger, Lawrence
2013-01-01
This paper describes the stapl Parallel Graph Library, a high-level framework that abstracts the user from data-distribution and parallelism details and allows them to concentrate on parallel graph algorithm development. It includes a customizable
The EPA is providing notice of an Administrative Penalty Assessment in the form of an Expedited Storm Water Settlement Agreement against Rock Equity Holdings, LLC, for alleged violations at The Cove at Kettlestone/98th Street Reconstruction located at 3015
... reviewed: October 2016 More on this topic for: Parents Is It Normal for Children to Hold Their Breath? Taming Tempers Disciplining Your Child Disciplining Your Toddler Temper Tantrums Separation Anxiety View more About Us Contact Us Partners ...
Groupies in multitype random graphs
Shang, Yilun
2016-01-01
A groupie in a graph is a vertex whose degree is not less than the average degree of its neighbors. Under some mild conditions, we show that the proportion of groupies is very close to 1/2 in multitype random graphs (such as stochastic block models), which include Erd?s-R?nyi random graphs, random bipartite, and multipartite graphs as special examples. Numerical examples are provided to illustrate the theoretical results.
Groupies in multitype random graphs.
Shang, Yilun
2016-01-01
A groupie in a graph is a vertex whose degree is not less than the average degree of its neighbors. Under some mild conditions, we show that the proportion of groupies is very close to 1/2 in multitype random graphs (such as stochastic block models), which include Erdős-Rényi random graphs, random bipartite, and multipartite graphs as special examples. Numerical examples are provided to illustrate the theoretical results.
Temporal Representation in Semantic Graphs
Energy Technology Data Exchange (ETDEWEB)
Levandoski, J J; Abdulla, G M
2007-08-07
A wide range of knowledge discovery and analysis applications, ranging from business to biological, make use of semantic graphs when modeling relationships and concepts. Most of the semantic graphs used in these applications are assumed to be static pieces of information, meaning temporal evolution of concepts and relationships are not taken into account. Guided by the need for more advanced semantic graph queries involving temporal concepts, this paper surveys the existing work involving temporal representations in semantic graphs.
Quantum walks on quotient graphs
International Nuclear Information System (INIS)
Krovi, Hari; Brun, Todd A.
2007-01-01
A discrete-time quantum walk on a graph Γ is the repeated application of a unitary evolution operator to a Hilbert space corresponding to the graph. If this unitary evolution operator has an associated group of symmetries, then for certain initial states the walk will be confined to a subspace of the original Hilbert space. Symmetries of the original graph, given by its automorphism group, can be inherited by the evolution operator. We show that a quantum walk confined to the subspace corresponding to this symmetry group can be seen as a different quantum walk on a smaller quotient graph. We give an explicit construction of the quotient graph for any subgroup H of the automorphism group and illustrate it with examples. The automorphisms of the quotient graph which are inherited from the original graph are the original automorphism group modulo the subgroup H used to construct it. The quotient graph is constructed by removing the symmetries of the subgroup H from the original graph. We then analyze the behavior of hitting times on quotient graphs. Hitting time is the average time it takes a walk to reach a given final vertex from a given initial vertex. It has been shown in earlier work [Phys. Rev. A 74, 042334 (2006)] that the hitting time for certain initial states of a quantum walks can be infinite, in contrast to classical random walks. We give a condition which determines whether the quotient graph has infinite hitting times given that they exist in the original graph. We apply this condition for the examples discussed and determine which quotient graphs have infinite hitting times. All known examples of quantum walks with hitting times which are short compared to classical random walks correspond to systems with quotient graphs much smaller than the original graph; we conjecture that the existence of a small quotient graph with finite hitting times is necessary for a walk to exhibit a quantum speedup
A generalization of total graphs
Indian Academy of Sciences (India)
M Afkhami
2018-04-12
Apr 12, 2018 ... product of any lower triangular matrix with the transpose of any element of U belongs to U. The ... total graph of R, which is denoted by T( (R)), is a simple graph with all elements of R as vertices, and ...... [9] Badawi A, On dot-product graph of a commutative ring, Communications in Algebra 43 (2015). 43–50.
Graph transformation tool contest 2008
Rensink, Arend; van Gorp, Pieter
This special section is the outcome of the graph transformation tool contest organised during the Graph-Based Tools (GraBaTs) 2008 workshop, which took place as a satellite event of the International Conference on Graph Transformation (ICGT) 2008. The contest involved two parts: three “off-line case
On dominator colorings in graphs
Indian Academy of Sciences (India)
colors required for a dominator coloring of G is called the dominator .... Theorem 1.3 shows that the complete graph Kn is the only connected graph of order n ... Conversely, if a graph G satisfies condition (i) or (ii), it is easy to see that χd(G) =.
Xuan, Junyu; Lu, Jie; Zhang, Guangquan; Luo, Xiangfeng
2015-12-01
Graph mining has been a popular research area because of its numerous application scenarios. Many unstructured and structured data can be represented as graphs, such as, documents, chemical molecular structures, and images. However, an issue in relation to current research on graphs is that they cannot adequately discover the topics hidden in graph-structured data which can be beneficial for both the unsupervised learning and supervised learning of the graphs. Although topic models have proved to be very successful in discovering latent topics, the standard topic models cannot be directly applied to graph-structured data due to the "bag-of-word" assumption. In this paper, an innovative graph topic model (GTM) is proposed to address this issue, which uses Bernoulli distributions to model the edges between nodes in a graph. It can, therefore, make the edges in a graph contribute to latent topic discovery and further improve the accuracy of the supervised and unsupervised learning of graphs. The experimental results on two different types of graph datasets show that the proposed GTM outperforms the latent Dirichlet allocation on classification by using the unveiled topics of these two models to represent graphs.
Algorithms for Planar Graphs and Graphs in Metric Spaces
DEFF Research Database (Denmark)
Wulff-Nilsen, Christian
structural properties that can be exploited. For instance, a road network or a wire layout on a microchip is typically (near-)planar and distances in the network are often defined w.r.t. the Euclidean or the rectilinear metric. Specialized algorithms that take advantage of such properties are often orders...... of magnitude faster than the corresponding algorithms for general graphs. The first and main part of this thesis focuses on the development of efficient planar graph algorithms. The most important contributions include a faster single-source shortest path algorithm, a distance oracle with subquadratic...... for geometric graphs and graphs embedded in metric spaces. Roughly speaking, the stretch factor is a real value expressing how well a (geo-)metric graph approximates the underlying complete graph w.r.t. distances. We give improved algorithms for computing the stretch factor of a given graph and for augmenting...
Harary, Frank
2015-01-01
Presented in 1962-63 by experts at University College, London, these lectures offer a variety of perspectives on graph theory. Although the opening chapters form a coherent body of graph theoretic concepts, this volume is not a text on the subject but rather an introduction to the extensive literature of graph theory. The seminar's topics are geared toward advanced undergraduate students of mathematics.Lectures by this volume's editor, Frank Harary, include ""Some Theorems and Concepts of Graph Theory,"" ""Topological Concepts in Graph Theory,"" ""Graphical Reconstruction,"" and other introduc
Spectral fluctuations of quantum graphs
International Nuclear Information System (INIS)
Pluhař, Z.; Weidenmüller, H. A.
2014-01-01
We prove the Bohigas-Giannoni-Schmit conjecture in its most general form for completely connected simple graphs with incommensurate bond lengths. We show that for graphs that are classically mixing (i.e., graphs for which the spectrum of the classical Perron-Frobenius operator possesses a finite gap), the generating functions for all (P,Q) correlation functions for both closed and open graphs coincide (in the limit of infinite graph size) with the corresponding expressions of random-matrix theory, both for orthogonal and for unitary symmetry
Dynamic Representations of Sparse Graphs
DEFF Research Database (Denmark)
Brodal, Gerth Stølting; Fagerberg, Rolf
1999-01-01
We present a linear space data structure for maintaining graphs with bounded arboricity—a large class of sparse graphs containing e.g. planar graphs and graphs of bounded treewidth—under edge insertions, edge deletions, and adjacency queries. The data structure supports adjacency queries in worst...... case O(c) time, and edge insertions and edge deletions in amortized O(1) and O(c+log n) time, respectively, where n is the number of nodes in the graph, and c is the bound on the arboricity....
Domination criticality in product graphs
Directory of Open Access Journals (Sweden)
M.R. Chithra
2015-07-01
Full Text Available A connected dominating set is an important notion and has many applications in routing and management of networks. Graph products have turned out to be a good model of interconnection networks. This motivated us to study the Cartesian product of graphs G with connected domination number, γc(G=2,3 and characterize such graphs. Also, we characterize the k−γ-vertex (edge critical graphs and k−γc-vertex (edge critical graphs for k=2,3 where γ denotes the domination number of G. We also discuss the vertex criticality in grids.
Graph Creation, Visualisation and Transformation
Directory of Open Access Journals (Sweden)
Maribel Fernández
2010-03-01
Full Text Available We describe a tool to create, edit, visualise and compute with interaction nets - a form of graph rewriting systems. The editor, called GraphPaper, allows users to create and edit graphs and their transformation rules using an intuitive user interface. The editor uses the functionalities of the TULIP system, which gives us access to a wealth of visualisation algorithms. Interaction nets are not only a formalism for the specification of graphs, but also a rewrite-based computation model. We discuss graph rewriting strategies and a language to express them in order to perform strategic interaction net rewriting.
Study of Chromatic parameters of Line, Total, Middle graphs and Graph operators of Bipartite graph
Nagarathinam, R.; Parvathi, N.
2018-04-01
Chromatic parameters have been explored on the basis of graph coloring process in which a couple of adjacent nodes receives different colors. But the Grundy and b-coloring executes maximum colors under certain restrictions. In this paper, Chromatic, b-chromatic and Grundy number of some graph operators of bipartite graph has been investigat
Interactive exploration of large-scale time-varying data using dynamic tracking graphs
Widanagamaachchi, W.
2012-10-01
Exploring and analyzing the temporal evolution of features in large-scale time-varying datasets is a common problem in many areas of science and engineering. One natural representation of such data is tracking graphs, i.e., constrained graph layouts that use one spatial dimension to indicate time and show the "tracks" of each feature as it evolves, merges or disappears. However, for practical data sets creating the corresponding optimal graph layouts that minimize the number of intersections can take hours to compute with existing techniques. Furthermore, the resulting graphs are often unmanageably large and complex even with an ideal layout. Finally, due to the cost of the layout, changing the feature definition, e.g. by changing an iso-value, or analyzing properly adjusted sub-graphs is infeasible. To address these challenges, this paper presents a new framework that couples hierarchical feature definitions with progressive graph layout algorithms to provide an interactive exploration of dynamically constructed tracking graphs. Our system enables users to change feature definitions on-the-fly and filter features using arbitrary attributes while providing an interactive view of the resulting tracking graphs. Furthermore, the graph display is integrated into a linked view system that provides a traditional 3D view of the current set of features and allows a cross-linked selection to enable a fully flexible spatio-temporal exploration of data. We demonstrate the utility of our approach with several large-scale scientific simulations from combustion science. © 2012 IEEE.
Graph Sampling for Covariance Estimation
Chepuri, Sundeep Prabhakar
2017-04-25
In this paper the focus is on subsampling as well as reconstructing the second-order statistics of signals residing on nodes of arbitrary undirected graphs. Second-order stationary graph signals may be obtained by graph filtering zero-mean white noise and they admit a well-defined power spectrum whose shape is determined by the frequency response of the graph filter. Estimating the graph power spectrum forms an important component of stationary graph signal processing and related inference tasks such as Wiener prediction or inpainting on graphs. The central result of this paper is that by sampling a significantly smaller subset of vertices and using simple least squares, we can reconstruct the second-order statistics of the graph signal from the subsampled observations, and more importantly, without any spectral priors. To this end, both a nonparametric approach as well as parametric approaches including moving average and autoregressive models for the graph power spectrum are considered. The results specialize for undirected circulant graphs in that the graph nodes leading to the best compression rates are given by the so-called minimal sparse rulers. A near-optimal greedy algorithm is developed to design the subsampling scheme for the non-parametric and the moving average models, whereas a particular subsampling scheme that allows linear estimation for the autoregressive model is proposed. Numerical experiments on synthetic as well as real datasets related to climatology and processing handwritten digits are provided to demonstrate the developed theory.
Hendrix, William; Jenkins, John; Padmanabhan, Kanchana; Chakraborty, Arpan
2014-01-01
Practical Graph Mining with R presents a "do-it-yourself" approach to extracting interesting patterns from graph data. It covers many basic and advanced techniques for the identification of anomalous or frequently recurring patterns in a graph, the discovery of groups or clusters of nodes that share common patterns of attributes and relationships, the extraction of patterns that distinguish one category of graphs from another, and the use of those patterns to predict the category of new graphs. Hands-On Application of Graph Data Mining Each chapter in the book focuses on a graph mining task, such as link analysis, cluster analysis, and classification. Through applications using real data sets, the book demonstrates how computational techniques can help solve real-world problems. The applications covered include network intrusion detection, tumor cell diagnostics, face recognition, predictive toxicology, mining metabolic and protein-protein interaction networks, and community detection in social networks. De...
Canonical Labelling of Site Graphs
Directory of Open Access Journals (Sweden)
Nicolas Oury
2013-06-01
Full Text Available We investigate algorithms for canonical labelling of site graphs, i.e. graphs in which edges bind vertices on sites with locally unique names. We first show that the problem of canonical labelling of site graphs reduces to the problem of canonical labelling of graphs with edge colourings. We then present two canonical labelling algorithms based on edge enumeration, and a third based on an extension of Hopcroft's partition refinement algorithm. All run in quadratic worst case time individually. However, one of the edge enumeration algorithms runs in sub-quadratic time for graphs with "many" automorphisms, and the partition refinement algorithm runs in sub-quadratic time for graphs with "few" bisimulation equivalences. This suite of algorithms was chosen based on the expectation that graphs fall in one of those two categories. If that is the case, a combined algorithm runs in sub-quadratic worst case time. Whether this expectation is reasonable remains an interesting open problem.
Learning heat diffusion graphs
Thanou, Dorina; Dong, Xiaowen; Kressner, Daniel; Frossard, Pascal
2016-01-01
Effective information analysis generally boils down to properly identifying the structure or geometry of the data, which is often represented by a graph. In some applications, this structure may be partly determined by design constraints or pre-determined sensing arrangements, like in road transportation networks for example. In general though, the data structure is not readily available and becomes pretty difficult to define. In particular, the global smoothness assumptions, that most of the...
Syed, M. Qasim; Lovatt, Ian
2014-01-01
This paper is an addition to the series of papers on the exponential function begun by Albert Bartlett. In particular, we ask how the graph of the exponential function y = e[superscript -t/t] would appear if y were plotted versus ln t rather than the normal practice of plotting ln y versus t. In answering this question, we find a new way to…
Understanding Charts and Graphs.
1987-07-28
Farenheit degrees, which have no Onaturalo zero ); finally, ratio scales have numbers that are ordered so that the magnitudes of differences are important and...system. They have to do with the very nature of how marks serve as meaningful symbols. In the ideal case, a chart or graph will be absolutely unambiguous...and these laws comprise this principle (see Stevens, 1974). Absolute discriminability: A minimal magnitude of a mark is necessary for it to be detected
International Nuclear Information System (INIS)
Cunningham, R.C.
1978-01-01
A tube holding rig is described for the lateral support of tubes arranged in tight parcels in a heat exchanger. This tube holding rig includes not less than two tube supporting assemblies, with a space between them, located crosswise with respect to the tubes, each supporting assembly comprising a first set of parallel components in contact with the tubes, whilst a second set of components is also in contact with the tubes. These two sets of parts together define apertures through which the tubes pass [fr
Some results on square-free colorings of graphs
DEFF Research Database (Denmark)
Barat, Janos
2004-01-01
on the vertices or edges of a path. Conversely one can form sequences from a vertex or edge coloring of a graph in different ways. Thus there are several possibilities to generalize the square-free concept to graphs. Following Alon, Grytczuk, Haluszczak, Riordan and Bresar, Klavzar we study several so called...... square-free graph parameters, and answer some questions they posed. The main result is that the class of k-trees has bounded square-free vertex coloring parameter. Thus we can color the vertices of a k-tree using O(c^k) colors if c>6 such that the color sequence on any path is square......-free. It is conjectured that a similar phenomenon holds for planar graphs, so a finite number of colors are enough. We support this conjecture by showing that this number is at most 12 for outerplanar graphs. On the other hand we prove that some outerplanar graphs require at least 7 colors. Using this latter we construct...
Graphs cospectral with a friendship graph or its complement
Directory of Open Access Journals (Sweden)
Alireza Abdollahi
2013-12-01
Full Text Available Let $n$ be any positive integer and let $F_n$ be the friendship (or Dutch windmill graph with $2n+1$ vertices and $3n$ edges. Here we study graphs with the same adjacency spectrum as the $F_n$. Two graphs are called cospectral if the eigenvalues multiset of their adjacency matrices are the same. Let $G$ be a graph cospectral with $F_n$. Here we prove that if $G$ has no cycle of length $4$ or $5$, then $Gcong F_n$. Moreover if $G$ is connected and planar then $Gcong F_n$.All but one of connected components of $G$ are isomorphic to $K_2$.The complement $overline{F_n}$ of the friendship graph is determined by its adjacency eigenvalues, that is, if $overline{F_n}$ is cospectral with a graph $H$, then $Hcong overline{F_n}$.
Decomposing Oriented Graphs into Six Locally Irregular Oriented Graphs
DEFF Research Database (Denmark)
Bensmail, Julien; Renault, Gabriel
2016-01-01
An undirected graph G is locally irregular if every two of its adjacent vertices have distinct degrees. We say that G is decomposable into k locally irregular graphs if there exists a partition E1∪E2∪⋯∪Ek of the edge set E(G) such that each Ei induces a locally irregular graph. It was recently co...
X-Graphs: Language and Algorithms for Heterogeneous Graph Streams
2017-09-01
are widely used by academia and industry. 15. SUBJECT TERMS Data Analytics, Graph Analytics, High-Performance Computing 16. SECURITY CLASSIFICATION...form the core of the DeepDive Knowledge Construction System. 2 INTRODUCTION The goal of the X-Graphs project was to develop computational techniques...memory multicore machine. Ringo is based on Snap.py and SNAP, and uses Python . Ringo now allows the integration of Delite DSL Framework Graph
Neuro-symbolic representation learning on biological knowledge graphs.
Alshahrani, Mona; Khan, Mohammad Asif; Maddouri, Omar; Kinjo, Akira R; Queralt-Rosinach, Núria; Hoehndorf, Robert
2017-09-01
Biological data and knowledge bases increasingly rely on Semantic Web technologies and the use of knowledge graphs for data integration, retrieval and federated queries. In the past years, feature learning methods that are applicable to graph-structured data are becoming available, but have not yet widely been applied and evaluated on structured biological knowledge. Results: We develop a novel method for feature learning on biological knowledge graphs. Our method combines symbolic methods, in particular knowledge representation using symbolic logic and automated reasoning, with neural networks to generate embeddings of nodes that encode for related information within knowledge graphs. Through the use of symbolic logic, these embeddings contain both explicit and implicit information. We apply these embeddings to the prediction of edges in the knowledge graph representing problems of function prediction, finding candidate genes of diseases, protein-protein interactions, or drug target relations, and demonstrate performance that matches and sometimes outperforms traditional approaches based on manually crafted features. Our method can be applied to any biological knowledge graph, and will thereby open up the increasing amount of Semantic Web based knowledge bases in biology to use in machine learning and data analytics. https://github.com/bio-ontology-research-group/walking-rdf-and-owl. robert.hoehndorf@kaust.edu.sa. Supplementary data are available at Bioinformatics online. © The Author(s) 2017. Published by Oxford University Press.
Neuro-symbolic representation learning on biological knowledge graphs
Alshahrani, Mona
2017-04-21
Biological data and knowledge bases increasingly rely on Semantic Web technologies and the use of knowledge graphs for data integration, retrieval and federated queries. In the past years, feature learning methods that are applicable to graph-structured data are becoming available, but have not yet widely been applied and evaluated on structured biological knowledge.We develop a novel method for feature learning on biological knowledge graphs. Our method combines symbolic methods, in particular knowledge representation using symbolic logic and automated reasoning, with neural networks to generate embeddings of nodes that encode for related information within knowledge graphs. Through the use of symbolic logic, these embeddings contain both explicit and implicit information. We apply these embeddings to the prediction of edges in the knowledge graph representing problems of function prediction, finding candidate genes of diseases, protein-protein interactions, or drug target relations, and demonstrate performance that matches and sometimes outperforms traditional approaches based on manually crafted features. Our method can be applied to any biological knowledge graph, and will thereby open up the increasing amount of SemanticWeb based knowledge bases in biology to use in machine learning and data analytics.https://github.com/bio-ontology-research-group/walking-rdf-and-owl.robert.hoehndorf@kaust.edu.sa.Supplementary data are available at Bioinformatics online.
Endomorphisms of graph algebras
DEFF Research Database (Denmark)
Conti, Roberto; Hong, Jeong Hee; Szymanski, Wojciech
2012-01-01
We initiate a systematic investigation of endomorphisms of graph C*-algebras C*(E), extending several known results on endomorphisms of the Cuntz algebras O_n. Most but not all of this study is focused on endomorphisms which permute the vertex projections and globally preserve the diagonal MASA D...... that the restriction to the diagonal MASA of an automorphism which globally preserves both D_E and the core AF-subalgebra eventually commutes with the corresponding one-sided shift. Secondly, we exhibit several properties of proper endomorphisms, investigate invertibility of localized endomorphisms both on C...
Yap, Hian-Poh
1996-01-01
This book provides an up-to-date and rapid introduction to an important and currently active topic in graph theory. The author leads the reader to the forefront of research in this area. Complete and easily readable proofs of all the main theorems, together with numerous examples, exercises and open problems are given. The book is suitable for use as a textbook or as seminar material for advanced undergraduate and graduate students. The references are comprehensive and so it will also be useful for researchers as a handbook.
Graph Algorithm Animation with Grrr
Rodgers, Peter; Vidal, Natalia
2000-01-01
We discuss geometric positioning, highlighting of visited nodes and user defined highlighting that form the algorithm animation facilities in the Grrr graph rewriting programming language. The main purpose of animation was initially for the debugging and profiling of Grrr code, but recently it has been extended for the purpose of teaching algorithms to undergraduate students. The animation is restricted to graph based algorithms such as graph drawing, list manipulation or more traditional gra...
Optimization Problems on Threshold Graphs
Directory of Open Access Journals (Sweden)
Elena Nechita
2010-06-01
Full Text Available During the last three decades, different types of decompositions have been processed in the field of graph theory. Among these we mention: decompositions based on the additivity of some characteristics of the graph, decompositions where the adjacency law between the subsets of the partition is known, decompositions where the subgraph induced by every subset of the partition must have predeterminate properties, as well as combinations of such decompositions. In this paper we characterize threshold graphs using the weakly decomposition, determine: density and stability number, Wiener index and Wiener polynomial for threshold graphs.
Eulerian Graphs and Related Topics
Fleischner, Herbert
1990-01-01
The two volumes comprising Part 1 of this work embrace the theme of Eulerian trails and covering walks. They should appeal both to researchers and students, as they contain enough material for an undergraduate or graduate graph theory course which emphasizes Eulerian graphs, and thus can be read by any mathematician not yet familiar with graph theory. But they are also of interest to researchers in graph theory because they contain many recent results, some of which are only partial solutions to more general problems. A number of conjectures have been included as well. Various problems (such a
Fitz-Clarke, John R
2018-03-25
Breath-hold diving is practiced by recreational divers, seafood divers, military divers, and competitive athletes. It involves highly integrated physiology and extreme responses. This article reviews human breath-hold diving physiology beginning with an historical overview followed by a summary of foundational research and a survey of some contemporary issues. Immersion and cardiovascular adjustments promote a blood shift into the heart and chest vasculature. Autonomic responses include diving bradycardia, peripheral vasoconstriction, and splenic contraction, which help conserve oxygen. Competitive divers use a technique of lung hyperinflation that raises initial volume and airway pressure to facilitate longer apnea times and greater depths. Gas compression at depth leads to sequential alveolar collapse. Airway pressure decreases with depth and becomes negative relative to ambient due to limited chest compliance at low lung volumes, raising the risk of pulmonary injury called "squeeze," characterized by postdive coughing, wheezing, and hemoptysis. Hypoxia and hypercapnia influence the terminal breakpoint beyond which voluntary apnea cannot be sustained. Ascent blackout due to hypoxia is a danger during long breath-holds, and has become common amongst high-level competitors who can suppress their urge to breathe. Decompression sickness due to nitrogen accumulation causing bubble formation can occur after multiple repetitive dives, or after single deep dives during depth record attempts. Humans experience responses similar to those seen in diving mammals, but to a lesser degree. The deepest sled-assisted breath-hold dive was to 214 m. Factors that might determine ultimate human depth capabilities are discussed. © 2018 American Physiological Society. Compr Physiol 8:585-630, 2018. Copyright © 2018 American Physiological Society. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Maunz, Peter Lukas Wilhelm [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sterk, Jonathan David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lobser, Daniel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Parekh, Ojas D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ryan-Anderson, Ciaran [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2016-01-01
In recent years, advanced network analytics have become increasingly important to na- tional security with applications ranging from cyber security to detection and disruption of ter- rorist networks. While classical computing solutions have received considerable investment, the development of quantum algorithms to address problems, such as data mining of attributed relational graphs, is a largely unexplored space. Recent theoretical work has shown that quan- tum algorithms for graph analysis can be more efficient than their classical counterparts. Here, we have implemented a trapped-ion-based two-qubit quantum information proces- sor to address these goals. Building on Sandia's microfabricated silicon surface ion traps, we have designed, realized and characterized a quantum information processor using the hyperfine qubits encoded in two 171 Yb + ions. We have implemented single qubit gates using resonant microwave radiation and have employed Gate set tomography (GST) to characterize the quan- tum process. For the first time, we were able to prove that the quantum process surpasses the fault tolerance thresholds of some quantum codes by demonstrating a diamond norm distance of less than 1 . 9 x 10 [?] 4 . We used Raman transitions in order to manipulate the trapped ions' motion and realize two-qubit gates. We characterized the implemented motion sensitive and insensitive single qubit processes and achieved a maximal process infidelity of 6 . 5 x 10 [?] 5 . We implemented the two-qubit gate proposed by Molmer and Sorensen and achieved a fidelity of more than 97 . 7%.
Asymptote Misconception on Graphing Functions: Does Graphing Software Resolve It?
Directory of Open Access Journals (Sweden)
Mehmet Fatih Öçal
2017-01-01
Full Text Available Graphing function is an important issue in mathematics education due to its use in various areas of mathematics and its potential roles for students to enhance learning mathematics. The use of some graphing software assists students’ learning during graphing functions. However, the display of graphs of functions that students sketched by hand may be relatively different when compared to the correct forms sketched using graphing software. The possible misleading effects of this situation brought a discussion of a misconception (asymptote misconception on graphing functions. The purpose of this study is two- fold. First of all, this study investigated whether using graphing software (GeoGebra in this case helps students to determine and resolve this misconception in calculus classrooms. Second, the reasons for this misconception are sought. The multiple case study was utilized in this study. University students in two calculus classrooms who received instructions with (35 students or without GeoGebra assisted instructions (32 students were compared according to whether they fell into this misconception on graphing basic functions (1/x, lnx, ex. In addition, students were interviewed to reveal the reasons behind this misconception. Data were analyzed by means of descriptive and content analysis methods. The findings indicated that those who received GeoGebra assisted instruction were better in resolving it. In addition, the reasons behind this misconception were found to be teacher-based, exam-based and some other factors.
Dynamic MLD analysis with flow graphs
International Nuclear Information System (INIS)
Jenab, K.; Sarfaraz, A.; Dhillon, B.S.; Seyed Hosseini, S.M.
2012-01-01
Master Logic Diagram (MLD) depicts the interrelationships among the independent functions and dependent support functions. Using MLD, the manner in which all functions, sub-functions interact to achieve the overall system objective can be investigated. This paper reports a probabilistic model to analyze an MLD by translating the interrelationships to a graph model. The proposed model uses the flow-graph concept and Moment Generating Function (MGF) to analyze the dependency matrix representing the MLD with embedded self-healing function/sub-functions. The functions/sub-functions are featured by failure detection and recovery mechanisms. The newly developed model provides the probability of the system failure, and system mean and standard deviation time to failure in the MLD. An illustrative example is demonstrated to present the application of the model.
ON BIPOLAR SINGLE VALUED NEUTROSOPHIC GRAPHS
Said Broumi; Mohamed Talea; Assia Bakali; Florentin Smarandache
2016-01-01
In this article, we combine the concept of bipolar neutrosophic set and graph theory. We introduce the notions of bipolar single valued neutrosophic graphs, strong bipolar single valued neutrosophic graphs, complete bipolar single valued neutrosophic graphs, regular bipolar single valued neutrosophic graphs and investigate some of their related properties.
Text categorization of biomedical data sets using graph kernels and a controlled vocabulary.
Bleik, Said; Mishra, Meenakshi; Huan, Jun; Song, Min
2013-01-01
Recently, graph representations of text have been showing improved performance over conventional bag-of-words representations in text categorization applications. In this paper, we present a graph-based representation for biomedical articles and use graph kernels to classify those articles into high-level categories. In our representation, common biomedical concepts and semantic relationships are identified with the help of an existing ontology and are used to build a rich graph structure that provides a consistent feature set and preserves additional semantic information that could improve a classifier's performance. We attempt to classify the graphs using both a set-based graph kernel that is capable of dealing with the disconnected nature of the graphs and a simple linear kernel. Finally, we report the results comparing the classification performance of the kernel classifiers to common text-based classifiers.
Graph Theory. 2. Vertex Descriptors and Graph Coloring
Directory of Open Access Journals (Sweden)
Lorentz JÄNTSCHI
2002-12-01
Full Text Available This original work presents the construction of a set of ten sequence matrices and their applications for ordering vertices in graphs. For every sequence matrix three ordering criteria are applied: lexicographic ordering, based on strings of numbers, corresponding to every vertex, extracted as rows from sequence matrices; ordering by the sum of path lengths from a given vertex; and ordering by the sum of paths, starting from a given vertex. We also examine a graph that has different orderings for the above criteria. We then proceed to demonstrate that every criterion induced its own partition of graph vertex. We propose the following theoretical result: both LAVS and LVDS criteria generate identical partitioning of vertices in any graph. Finally, a coloring of graph vertices according to introduced ordering criteria was proposed.
On an edge partition and root graphs of some classes of line graphs
Directory of Open Access Journals (Sweden)
K Pravas
2017-04-01
Full Text Available The Gallai and the anti-Gallai graphs of a graph $G$ are complementary pairs of spanning subgraphs of the line graph of $G$. In this paper we find some structural relations between these graph classes by finding a partition of the edge set of the line graph of a graph $G$ into the edge sets of the Gallai and anti-Gallai graphs of $G$. Based on this, an optimal algorithm to find the root graph of a line graph is obtained. Moreover, root graphs of diameter-maximal, distance-hereditary, Ptolemaic and chordal graphs are also discussed.
The planar cubic Cayley graphs
Georgakopoulos, Agelos
2018-01-01
The author obtains a complete description of the planar cubic Cayley graphs, providing an explicit presentation and embedding for each of them. This turns out to be a rich class, comprising several infinite families. He obtains counterexamples to conjectures of Mohar, Bonnington and Watkins. The author's analysis makes the involved graphs accessible to computation, corroborating a conjecture of Droms.
Groupies in random bipartite graphs
Yilun Shang
2010-01-01
A vertex $v$ of a graph $G$ is called a groupie if its degree is notless than the average of the degrees of its neighbors. In thispaper we study the influence of bipartition $(B_1,B_2)$ on groupiesin random bipartite graphs $G(B_1,B_2,p)$ with both fixed $p$ and$p$ tending to zero.
Nested Dynamic Condition Response Graphs
DEFF Research Database (Denmark)
Hildebrandt, Thomas; Mukkamala, Raghava Rao; Slaats, Tijs
2012-01-01
We present an extension of the recently introduced declarative process model Dynamic Condition Response Graphs ( DCR Graphs) to allow nested subgraphs and a new milestone relation between events. The extension was developed during a case study carried out jointly with our industrial partner...
Bell inequalities for graph states
International Nuclear Information System (INIS)
Toth, G.; Hyllus, P.; Briegel, H.J.; Guehne, O.
2005-01-01
Full text: In the last years graph states have attracted an increasing interest in the field of quantum information theory. Graph states form a family of multi-qubit states which comprises many popular states such as the GHZ states and the cluster states. They also play an important role in applications. For instance, measurement based quantum computation uses graph states as resources. From a theoretical point of view, it is remarkable that graph states allow for a simple description in terms of stabilizing operators. In this contribution, we investigate the non-local properties of graph states. We derive a family of Bell inequalities which require three measurement settings for each party and are maximally violated by graph states. In turn, any graph state violates at least one of the inequalities. We show that for certain types of graph states the violation of these inequalities increases exponentially with the number of qubits. We also discuss connections to other entanglement properties such as the positively of the partial transpose or the geometric measure of entanglement. (author)
Graph Sampling for Covariance Estimation
Chepuri, Sundeep Prabhakar; Leus, Geert
2017-01-01
specialize for undirected circulant graphs in that the graph nodes leading to the best compression rates are given by the so-called minimal sparse rulers. A near-optimal greedy algorithm is developed to design the subsampling scheme for the non
A cluster algorithm for graphs
S. van Dongen
2000-01-01
textabstractA cluster algorithm for graphs called the emph{Markov Cluster algorithm (MCL~algorithm) is introduced. The algorithm provides basically an interface to an algebraic process defined on stochastic matrices, called the MCL~process. The graphs may be both weighted (with nonnegative weight)
Planar graphs theory and algorithms
Nishizeki, T
1988-01-01
Collected in this volume are most of the important theorems and algorithms currently known for planar graphs, together with constructive proofs for the theorems. Many of the algorithms are written in Pidgin PASCAL, and are the best-known ones; the complexities are linear or 0(nlogn). The first two chapters provide the foundations of graph theoretic notions and algorithmic techniques. The remaining chapters discuss the topics of planarity testing, embedding, drawing, vertex- or edge-coloring, maximum independence set, subgraph listing, planar separator theorem, Hamiltonian cycles, and single- or multicommodity flows. Suitable for a course on algorithms, graph theory, or planar graphs, the volume will also be useful for computer scientists and graph theorists at the research level. An extensive reference section is included.
Quantum chaos on discrete graphs
International Nuclear Information System (INIS)
Smilansky, Uzy
2007-01-01
Adapting a method developed for the study of quantum chaos on quantum (metric) graphs (Kottos and Smilansky 1997 Phys. Rev. Lett. 79 4794, Kottos and Smilansky 1999 Ann. Phys., NY 274 76), spectral ζ functions and trace formulae for discrete Laplacians on graphs are derived. This is achieved by expressing the spectral secular equation in terms of the periodic orbits of the graph and obtaining functions which belong to the class of ζ functions proposed originally by Ihara (1966 J. Mat. Soc. Japan 18 219) and expanded by subsequent authors (Stark and Terras 1996 Adv. Math. 121 124, Kotani and Sunada 2000 J. Math. Sci. Univ. Tokyo 7 7). Finally, a model of 'classical dynamics' on the discrete graph is proposed. It is analogous to the corresponding classical dynamics derived for quantum graphs (Kottos and Smilansky 1997 Phys. Rev. Lett. 79 4794, Kottos and Smilansky 1999 Ann. Phys., NY 274 76). (fast track communication)
On characterizing terrain visibility graphs
Directory of Open Access Journals (Sweden)
William Evans
2015-06-01
Full Text Available A terrain is an $x$-monotone polygonal line in the $xy$-plane. Two vertices of a terrain are mutually visible if and only if there is no terrain vertex on or above the open line segment connecting them. A graph whose vertices represent terrain vertices and whose edges represent mutually visible pairs of terrain vertices is called a terrain visibility graph. We would like to find properties that are both necessary and sufficient for a graph to be a terrain visibility graph; that is, we would like to characterize terrain visibility graphs.Abello et al. [Discrete and Computational Geometry, 14(3:331--358, 1995] showed that all terrain visibility graphs are “persistent”. They showed that the visibility information of a terrain point set implies some ordering requirements on the slopes of the lines connecting pairs of points in any realization, and as a step towards showing sufficiency, they proved that for any persistent graph $M$ there is a total order on the slopes of the (pseudo lines in a generalized configuration of points whose visibility graph is $M$.We give a much simpler proof of this result by establishing an orientation to every triple of vertices, reflecting some slope ordering requirements that are consistent with $M$ being the visibility graph, and prove that these requirements form a partial order. We give a faster algorithm to construct a total order on the slopes. Our approach attempts to clarify the implications of the graph theoretic properties on the ordering of the slopes, and may be interpreted as defining properties on an underlying oriented matroid that we show is a restricted type of $3$-signotope.
Graph embedding with rich information through heterogeneous graph
Sun, Guolei
2017-11-12
Graph embedding, aiming to learn low-dimensional representations for nodes in graphs, has attracted increasing attention due to its critical application including node classification, link prediction and clustering in social network analysis. Most existing algorithms for graph embedding only rely on the topology information and fail to use the copious information in nodes as well as edges. As a result, their performance for many tasks may not be satisfactory. In this thesis, we proposed a novel and general framework for graph embedding with rich text information (GERI) through constructing a heterogeneous network, in which we integrate node and edge content information with graph topology. Specially, we designed a novel biased random walk to explore the constructed heterogeneous network with the notion of flexible neighborhood. Our sampling strategy can compromise between BFS and DFS local search on heterogeneous graph. To further improve our algorithm, we proposed semi-supervised GERI (SGERI), which learns graph embedding in an discriminative manner through heterogeneous network with label information. The efficacy of our method is demonstrated by extensive comparison experiments with 9 baselines over multi-label and multi-class classification on various datasets including Citeseer, Cora, DBLP and Wiki. It shows that GERI improves the Micro-F1 and Macro-F1 of node classification up to 10%, and SGERI improves GERI by 5% in Wiki.
Geometric covers, graph orientations, counter games
DEFF Research Database (Denmark)
Berglin, Edvin
-directed graph is dynamic (can be altered by some outside actor), some orientations may need to be reversed in order to maintain the low out-degree. We present a new algorithm that is simpler than earlier work, yet matches or outperforms the efficiency of these results with very few exceptions. Counter games...... example is Line Cover, also known as Point-Line Cover, where a set of points in a geometric space are to be covered by placing a restricted number of lines. We present new FPT algorithms for the sub-family Curve Cover (which includes Line Cover), as well as for Hyperplane Cover restricted to R 3 (i...... are a type of abstract game played over a set of counters holding values, and these values may be moved between counters according to some set of rules. Typically they are played between two players: the adversary who tries to concentrate the greatest value possible in a single counter, and the benevolent...
Image based Monument Recognition using Graph based Visual Saliency
DEFF Research Database (Denmark)
Kalliatakis, Grigorios; Triantafyllidis, Georgios
2013-01-01
This article presents an image-based application aiming at simple image classification of well-known monuments in the area of Heraklion, Crete, Greece. This classification takes place by utilizing Graph Based Visual Saliency (GBVS) and employing Scale Invariant Feature Transform (SIFT) or Speeded......, the images have been previously processed according to the Graph Based Visual Saliency model in order to keep either SIFT or SURF features corresponding to the actual monuments while the background “noise” is minimized. The application is then able to classify these images, helping the user to better...
CORECLUSTER: A Degeneracy Based Graph Clustering Framework
Giatsidis , Christos; Malliaros , Fragkiskos; Thilikos , Dimitrios M. ,; Vazirgiannis , Michalis
2014-01-01
International audience; Graph clustering or community detection constitutes an important task forinvestigating the internal structure of graphs, with a plethora of applications in several domains. Traditional tools for graph clustering, such asspectral methods, typically suffer from high time and space complexity. In thisarticle, we present \\textsc{CoreCluster}, an efficient graph clusteringframework based on the concept of graph degeneracy, that can be used along withany known graph clusteri...
Matching of renewable source of energy generation graphs and electrical load in local energy system
Lezhniuk, Petro; Komar, Vyacheslav; Sobchuk, Dmytro; Kravchuk, Sergiy; Kacejko, Piotr; Zavidsky, Vladislav
2017-08-01
The paper contains the method of matching generation graph of photovoltaic electric stations and consumers. Characteristic feature of this method is the application of morphometric analysis for assessment of non-uniformity of the integrated graph of energy supply, optimal coefficients of current distribution, that enables by mean of refining the powers, transferring in accordance with the graph , to provide the decrease of electric energy losses in the grid and transport task, as the optimization tool.
Hierarchy of modular graph identities
International Nuclear Information System (INIS)
D’Hoker, Eric; Kaidi, Justin
2016-01-01
The low energy expansion of Type II superstring amplitudes at genus one is organized in terms of modular graph functions associated with Feynman graphs of a conformal scalar field on the torus. In earlier work, surprising identities between two-loop graphs at all weights, and between higher-loop graphs of weights four and five were constructed. In the present paper, these results are generalized in two complementary directions. First, all identities at weight six and all dihedral identities at weight seven are obtained and proven. Whenever the Laurent polynomial at the cusp is available, the form of these identities confirms the pattern by which the vanishing of the Laurent polynomial governs the full modular identity. Second, the family of modular graph functions is extended to include all graphs with derivative couplings and worldsheet fermions. These extended families of modular graph functions are shown to obey a hierarchy of inhomogeneous Laplace eigenvalue equations. The eigenvalues are calculated analytically for the simplest infinite sub-families and obtained by Maple for successively more complicated sub-families. The spectrum is shown to consist solely of eigenvalues s(s−1) for positive integers s bounded by the weight, with multiplicities which exhibit rich representation-theoretic patterns.
Semantic graphs and associative memories
Pomi, Andrés; Mizraji, Eduardo
2004-12-01
Graphs have been increasingly utilized in the characterization of complex networks from diverse origins, including different kinds of semantic networks. Human memories are associative and are known to support complex semantic nets; these nets are represented by graphs. However, it is not known how the brain can sustain these semantic graphs. The vision of cognitive brain activities, shown by modern functional imaging techniques, assigns renewed value to classical distributed associative memory models. Here we show that these neural network models, also known as correlation matrix memories, naturally support a graph representation of the stored semantic structure. We demonstrate that the adjacency matrix of this graph of associations is just the memory coded with the standard basis of the concept vector space, and that the spectrum of the graph is a code invariant of the memory. As long as the assumptions of the model remain valid this result provides a practical method to predict and modify the evolution of the cognitive dynamics. Also, it could provide us with a way to comprehend how individual brains that map the external reality, almost surely with different particular vector representations, are nevertheless able to communicate and share a common knowledge of the world. We finish presenting adaptive association graphs, an extension of the model that makes use of the tensor product, which provides a solution to the known problem of branching in semantic nets.
Hierarchy of modular graph identities
Energy Technology Data Exchange (ETDEWEB)
D’Hoker, Eric; Kaidi, Justin [Mani L. Bhaumik Institute for Theoretical Physics, Department of Physics and Astronomy,University of California,Los Angeles, CA 90095 (United States)
2016-11-09
The low energy expansion of Type II superstring amplitudes at genus one is organized in terms of modular graph functions associated with Feynman graphs of a conformal scalar field on the torus. In earlier work, surprising identities between two-loop graphs at all weights, and between higher-loop graphs of weights four and five were constructed. In the present paper, these results are generalized in two complementary directions. First, all identities at weight six and all dihedral identities at weight seven are obtained and proven. Whenever the Laurent polynomial at the cusp is available, the form of these identities confirms the pattern by which the vanishing of the Laurent polynomial governs the full modular identity. Second, the family of modular graph functions is extended to include all graphs with derivative couplings and worldsheet fermions. These extended families of modular graph functions are shown to obey a hierarchy of inhomogeneous Laplace eigenvalue equations. The eigenvalues are calculated analytically for the simplest infinite sub-families and obtained by Maple for successively more complicated sub-families. The spectrum is shown to consist solely of eigenvalues s(s−1) for positive integers s bounded by the weight, with multiplicities which exhibit rich representation-theoretic patterns.
XML Graphs in Program Analysis
DEFF Research Database (Denmark)
Møller, Anders; Schwartzbach, Michael I.
2011-01-01
of XML graphs against different XML schema languages, and provide a software package that enables others to make use of these ideas. We also survey the use of XML graphs for program analysis with four very different languages: XACT (XML in Java), Java Servlets (Web application programming), XSugar......XML graphs have shown to be a simple and effective formalism for representing sets of XML documents in program analysis. It has evolved through a six year period with variants tailored for a range of applications. We present a unified definition, outline the key properties including validation...
Rabern, Landon
2007-01-01
We improve upper bounds on the chromatic number proven independently in \\cite{reedNote} and \\cite{ingo}. Our main lemma gives a sufficient condition for two paths in graph to be completely joined. Using this, we prove that if a graph has an optimal coloring with more than $\\frac{\\omega}{2}$ singleton color classes, then it satisfies $\\chi \\leq \\frac{\\omega + \\Delta + 1}{2}$. It follows that a graph satisfying $n - \\Delta < \\alpha + \\frac{\\omega - 1}{2}$ must also satisfy $\\chi \\leq \\frac{\\ome...
Graphs with Eulerian unit spheres
Knill, Oliver
2015-01-01
d-spheres in graph theory are inductively defined as graphs for which all unit spheres S(x) are (d-1)-spheres and that the removal of one vertex renders the graph contractible. Eulerian d-spheres are geometric d-spheres which are d+1 colorable. We prove here that G is an Eulerian sphere if and only if the degrees of all the (d-2)-dimensional sub-simplices in G are even. This generalizes a Kempe-Heawood result for d=2 and is work related to the conjecture that all d-spheres have chromatic numb...
Exploring and Making Sense of Large Graphs
2015-08-01
WWW), Rio de Janeiro , Brazil, pages 119–130. ACM, 2013. [BYH04] Xiao Bai, Hang Yu, and Edwin R. Hancock. Graph Matching Using Spectral Embedding and...grant number DE -AC52-07NA27344, the Defense Advanced Research Projects Agency under grant number W911NF-11-C-0088, the Air Force Research Laboratory...MDL principle) visualizing. Table 3.8: Feature-based comparison of VOG with alternative approaches. So ft clu ste rin g De ns e b lo ck s St ar s Ch ai
Low-algorithmic-complexity entropy-deceiving graphs
Zenil, Hector
2017-07-08
In estimating the complexity of objects, in particular, of graphs, it is common practice to rely on graphand information-theoretic measures. Here, using integer sequences with properties such as Borel normality, we explain how these measures are not independent of the way in which an object, such as a graph, can be described or observed. From observations that can reconstruct the same graph and are therefore essentially translations of the same description, we see that when applying a computable measure such as the Shannon entropy, not only is it necessary to preselect a feature of interest where there is one, and to make an arbitrary selection where there is not, but also more general properties, such as the causal likelihood of a graph as a measure (opposed to randomness), can be largely misrepresented by computable measures such as the entropy and entropy rate. We introduce recursive and nonrecursive (uncomputable) graphs and graph constructions based on these integer sequences, whose different lossless descriptions have disparate entropy values, thereby enabling the study and exploration of a measure\\'s range of applications and demonstrating the weaknesses of computable measures of complexity.
Low-algorithmic-complexity entropy-deceiving graphs
Zenil, Hector; Kiani, Narsis A.; Tegner, Jesper
2017-01-01
In estimating the complexity of objects, in particular, of graphs, it is common practice to rely on graphand information-theoretic measures. Here, using integer sequences with properties such as Borel normality, we explain how these measures are not independent of the way in which an object, such as a graph, can be described or observed. From observations that can reconstruct the same graph and are therefore essentially translations of the same description, we see that when applying a computable measure such as the Shannon entropy, not only is it necessary to preselect a feature of interest where there is one, and to make an arbitrary selection where there is not, but also more general properties, such as the causal likelihood of a graph as a measure (opposed to randomness), can be largely misrepresented by computable measures such as the entropy and entropy rate. We introduce recursive and nonrecursive (uncomputable) graphs and graph constructions based on these integer sequences, whose different lossless descriptions have disparate entropy values, thereby enabling the study and exploration of a measure's range of applications and demonstrating the weaknesses of computable measures of complexity.
Szabó, György; Fáth, Gábor
2007-07-01
Game theory is one of the key paradigms behind many scientific disciplines from biology to behavioral sciences to economics. In its evolutionary form and especially when the interacting agents are linked in a specific social network the underlying solution concepts and methods are very similar to those applied in non-equilibrium statistical physics. This review gives a tutorial-type overview of the field for physicists. The first four sections introduce the necessary background in classical and evolutionary game theory from the basic definitions to the most important results. The fifth section surveys the topological complications implied by non-mean-field-type social network structures in general. The next three sections discuss in detail the dynamic behavior of three prominent classes of models: the Prisoner's Dilemma, the Rock-Scissors-Paper game, and Competing Associations. The major theme of the review is in what sense and how the graph structure of interactions can modify and enrich the picture of long term behavioral patterns emerging in evolutionary games.
Perkins, David Nikolaus; Brost, Randolph; Ray, Lawrence P.
2017-08-08
Various technologies for facilitating analysis of large remote sensing and geolocation datasets to identify features of interest are described herein. A search query can be submitted to a computing system that executes searches over a geospatial temporal semantic (GTS) graph to identify features of interest. The GTS graph comprises nodes corresponding to objects described in the remote sensing and geolocation datasets, and edges that indicate geospatial or temporal relationships between pairs of nodes in the nodes. Trajectory information is encoded in the GTS graph by the inclusion of movable nodes to facilitate searches for features of interest in the datasets relative to moving objects such as vehicles.
Properly colored connectivity of graphs
Li, Xueliang; Qin, Zhongmei
2018-01-01
A comprehensive survey of proper connection of graphs is discussed in this book with real world applications in computer science and network security. Beginning with a brief introduction, comprising relevant definitions and preliminary results, this book moves on to consider a variety of properties of graphs that imply bounds on the proper connection number. Detailed proofs of significant advancements toward open problems and conjectures are presented with complete references. Researchers and graduate students with an interest in graph connectivity and colorings will find this book useful as it builds upon fundamental definitions towards modern innovations, strategies, and techniques. The detailed presentation lends to use as an introduction to proper connection of graphs for new and advanced researchers, a solid book for a graduate level topics course, or as a reference for those interested in expanding and further developing research in the area.
Graph anomalies in cyber communications
Energy Technology Data Exchange (ETDEWEB)
Vander Wiel, Scott A [Los Alamos National Laboratory; Storlie, Curtis B [Los Alamos National Laboratory; Sandine, Gary [Los Alamos National Laboratory; Hagberg, Aric A [Los Alamos National Laboratory; Fisk, Michael [Los Alamos National Laboratory
2011-01-11
Enterprises monitor cyber traffic for viruses, intruders and stolen information. Detection methods look for known signatures of malicious traffic or search for anomalies with respect to a nominal reference model. Traditional anomaly detection focuses on aggregate traffic at central nodes or on user-level monitoring. More recently, however, traffic is being viewed more holistically as a dynamic communication graph. Attention to the graph nature of the traffic has expanded the types of anomalies that are being sought. We give an overview of several cyber data streams collected at Los Alamos National Laboratory and discuss current work in modeling the graph dynamics of traffic over the network. We consider global properties and local properties within the communication graph. A method for monitoring relative entropy on multiple correlated properties is discussed in detail.
Open Graphs and Computational Reasoning
Directory of Open Access Journals (Sweden)
Lucas Dixon
2010-06-01
Full Text Available We present a form of algebraic reasoning for computational objects which are expressed as graphs. Edges describe the flow of data between primitive operations which are represented by vertices. These graphs have an interface made of half-edges (edges which are drawn with an unconnected end and enjoy rich compositional principles by connecting graphs along these half-edges. In particular, this allows equations and rewrite rules to be specified between graphs. Particular computational models can then be encoded as an axiomatic set of such rules. Further rules can be derived graphically and rewriting can be used to simulate the dynamics of a computational system, e.g. evaluating a program on an input. Examples of models which can be formalised in this way include traditional electronic circuits as well as recent categorical accounts of quantum information.
Woeginger, G.J.
1998-01-01
In this short note we argue that the toughness of split graphs can be computed in polynomial time. This solves an open problem from a recent paper by Kratsch et al. (Discrete Math. 150 (1996) 231–245).
Generating random networks and graphs
Coolen, Ton; Roberts, Ekaterina
2017-01-01
This book supports researchers who need to generate random networks, or who are interested in the theoretical study of random graphs. The coverage includes exponential random graphs (where the targeted probability of each network appearing in the ensemble is specified), growth algorithms (i.e. preferential attachment and the stub-joining configuration model), special constructions (e.g. geometric graphs and Watts Strogatz models) and graphs on structured spaces (e.g. multiplex networks). The presentation aims to be a complete starting point, including details of both theory and implementation, as well as discussions of the main strengths and weaknesses of each approach. It includes extensive references for readers wishing to go further. The material is carefully structured to be accessible to researchers from all disciplines while also containing rigorous mathematical analysis (largely based on the techniques of statistical mechanics) to support those wishing to further develop or implement the theory of rand...
Graph theory and its applications
Gross, Jonathan L
2006-01-01
Gross and Yellen take a comprehensive approach to graph theory that integrates careful exposition of classical developments with emerging methods, models, and practical needs. Their unparalleled treatment provides a text ideal for a two-semester course and a variety of one-semester classes, from an introductory one-semester course to courses slanted toward classical graph theory, operations research, data structures and algorithms, or algebra and topology.
A faithful functor among algebras and graphs
Falcón Ganfornina, Óscar Jesús; Falcón Ganfornina, Raúl Manuel; Núñez Valdés, Juan; Pacheco Martínez, Ana María; Villar Liñán, María Trinidad; Vigo Aguiar, Jesús (Coordinador)
2016-01-01
The problem of identifying a functor between the categories of algebras and graphs is currently open. Based on a known algorithm that identifies isomorphisms of Latin squares with isomorphism of vertex-colored graphs, we describe here a pair of graphs that enable us to find a faithful functor between finite-dimensional algebras over finite fields and these graphs.
Graphs with branchwidth at most three
Bodlaender, H.L.; Thilikos, D.M.
1997-01-01
In this paper we investigate both the structure of graphs with branchwidth at most three, as well as algorithms to recognise such graphs. We show that a graph has branchwidth at most three, if and only if it has treewidth at most three and does not contain the three-dimensional binary cube graph
A Modal-Logic Based Graph Abstraction
Bauer, J.; Boneva, I.B.; Kurban, M.E.; Rensink, Arend; Ehrig, H; Heckel, R.; Rozenberg, G.; Taentzer, G.
2008-01-01
Infinite or very large state spaces often prohibit the successful verification of graph transformation systems. Abstract graph transformation is an approach that tackles this problem by abstracting graphs to abstract graphs of bounded size and by lifting application of productions to abstract
Graphs whose complement and square are isomorphic
DEFF Research Database (Denmark)
Pedersen, Anders Sune
2014-01-01
We study square-complementary graphs, that is, graphs whose complement and square are isomorphic. We prove several necessary conditions for a graph to be square-complementary, describe ways of building new square-complementary graphs from existing ones, construct infinite families of square-compl...
Acyclicity in edge-colored graphs
DEFF Research Database (Denmark)
Gutin, Gregory; Jones, Mark; Sheng, Bin
2017-01-01
A walk W in edge-colored graphs is called properly colored (PC) if every pair of consecutive edges in W is of different color. We introduce and study five types of PC acyclicity in edge-colored graphs such that graphs of PC acyclicity of type i is a proper superset of graphs of acyclicity of type...
Building Scalable Knowledge Graphs for Earth Science
Ramachandran, Rahul; Maskey, Manil; Gatlin, Patrick; Zhang, Jia; Duan, Xiaoyi; Miller, J. J.; Bugbee, Kaylin; Christopher, Sundar; Freitag, Brian
2017-01-01
Knowledge Graphs link key entities in a specific domain with other entities via relationships. From these relationships, researchers can query knowledge graphs for probabilistic recommendations to infer new knowledge. Scientific papers are an untapped resource which knowledge graphs could leverage to accelerate research discovery. Goal: Develop an end-to-end (semi) automated methodology for constructing Knowledge Graphs for Earth Science.
Port-Hamiltonian Systems on Open Graphs
Schaft, A.J. van der; Maschke, B.M.
2010-01-01
In this talk we discuss how to define in an intrinsic manner port-Hamiltonian dynamics on open graphs. Open graphs are graphs where some of the vertices are boundary vertices (terminals), which allow interconnection with other systems. We show that a directed graph carries two natural Dirac
Constructing Dense Graphs with Unique Hamiltonian Cycles
Lynch, Mark A. M.
2012-01-01
It is not difficult to construct dense graphs containing Hamiltonian cycles, but it is difficult to generate dense graphs that are guaranteed to contain a unique Hamiltonian cycle. This article presents an algorithm for generating arbitrarily large simple graphs containing "unique" Hamiltonian cycles. These graphs can be turned into dense graphs…
Skew-adjacency matrices of graphs
Cavers, M.; Cioaba, S.M.; Fallat, S.; Gregory, D.A.; Haemers, W.H.; Kirkland, S.J.; McDonald, J.J.; Tsatsomeros, M.
2012-01-01
The spectra of the skew-adjacency matrices of a graph are considered as a possible way to distinguish adjacency cospectral graphs. This leads to the following topics: graphs whose skew-adjacency matrices are all cospectral; relations between the matchings polynomial of a graph and the characteristic
Commuting graphs of matrix algebras
International Nuclear Information System (INIS)
Akbari, S.; Bidkhori, H.; Mohammadian, A.
2006-08-01
The commuting graph of a ring R, denoted by Γ(R), is a graph whose vertices are all non- central elements of R and two distinct vertices x and y are adjacent if and only if xy = yx. The commuting graph of a group G, denoted by Γ(G), is similarly defined. In this paper we investigate some graph theoretic properties of Γ(M n (F)), where F is a field and n ≥ 2. Also we study the commuting graphs of some classical groups such as GL n (F) and SL n (F). We show that Γ(M n (F)) is a connected graph if and only if every field extension of F of degree n contains a proper intermediate field. We prove that apart from finitely many fields, a similar result is true for Γ(GL n (F)) and Γ(SL n (F)). Also we show that for two fields E and F and integers m, n ≥> 2, if Γ(M m (E)) ≅ Γ(M n (F)), then m = n and vertical bar E vertical bar = vertical bar F vertical bar. (author)
Exploring Text and Icon Graph Interpretation in Students with Dyslexia: An Eye-tracking Study.
Kim, Sunjung; Wiseheart, Rebecca
2017-02-01
A growing body of research suggests that individuals with dyslexia struggle to use graphs efficiently. Given the persistence of orthographic processing deficits in dyslexia, this study tested whether graph interpretation deficits in dyslexia are directly related to difficulties processing the orthographic components of graphs (i.e. axes and legend labels). Participants were 80 college students with and without dyslexia. Response times and eye movements were recorded as students answered comprehension questions about simple data displayed in bar graphs. Axes and legends were labelled either with words (mixed-modality graphs) or icons (orthography-free graphs). Students also answered informationally equivalent questions presented in sentences (orthography-only condition). Response times were slower in the dyslexic group only for processing sentences. However, eye tracking data revealed group differences for processing mixed-modality graphs, whereas no group differences were found for the orthography-free graphs. When processing bar graphs, students with dyslexia differ from their able reading peers only when graphs contain orthographic features. Implications for processing informational text are discussed. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
A Ranking Approach on Large-Scale Graph With Multidimensional Heterogeneous Information.
Wei, Wei; Gao, Bin; Liu, Tie-Yan; Wang, Taifeng; Li, Guohui; Li, Hang
2016-04-01
Graph-based ranking has been extensively studied and frequently applied in many applications, such as webpage ranking. It aims at mining potentially valuable information from the raw graph-structured data. Recently, with the proliferation of rich heterogeneous information (e.g., node/edge features and prior knowledge) available in many real-world graphs, how to effectively and efficiently leverage all information to improve the ranking performance becomes a new challenging problem. Previous methods only utilize part of such information and attempt to rank graph nodes according to link-based methods, of which the ranking performances are severely affected by several well-known issues, e.g., over-fitting or high computational complexity, especially when the scale of graph is very large. In this paper, we address the large-scale graph-based ranking problem and focus on how to effectively exploit rich heterogeneous information of the graph to improve the ranking performance. Specifically, we propose an innovative and effective semi-supervised PageRank (SSP) approach to parameterize the derived information within a unified semi-supervised learning framework (SSLF-GR), then simultaneously optimize the parameters and the ranking scores of graph nodes. Experiments on the real-world large-scale graphs demonstrate that our method significantly outperforms the algorithms that consider such graph information only partially.
Graph Quasicontinuous Functions and Densely Continuous Forms
Directory of Open Access Journals (Sweden)
Lubica Hola
2017-07-01
Full Text Available Let $X, Y$ be topological spaces. A function $f: X \\to Y$ is said to be graph quasicontinuous if there is a quasicontinuous function $g: X \\to Y$ with the graph of $g$ contained in the closure of the graph of $f$. There is a close relation between the notions of graph quasicontinuous functions and minimal usco maps as well as the notions of graph quasicontinuous functions and densely continuous forms. Every function with values in a compact Hausdorff space is graph quasicontinuous; more generally every locally compact function is graph quasicontinuous.
Directory of Open Access Journals (Sweden)
SERGIY KOZERENKO
2016-04-01
Full Text Available One feature of the famous Sharkovsky’s theorem is that it can be proved using digraphs of a special type (the so–called Markov graphs. The most general definition assigns a Markov graph to every continuous map from the topological graph to itself. We show that this definition is too broad, i.e. every finite digraph can be viewed as a Markov graph of some one–dimensional dynamical system on a tree. We therefore consider discrete analogues of Markov graphs for vertex maps on combinatorial trees and characterize all maps on trees whose discrete Markov graphs are of the following types: complete, complete bipartite, the disjoint union of cycles, with every arc being a loop.
Dataflow Interchange Format and a Framework for Processing Dataflow Graphs
National Research Council Canada - National Science Library
Keceli, Fuat
2004-01-01
..., and recognizing useful subclasses of dataflow models. This thesis also develops the framework for a Java-based software repository that provides dataflow analysis and optimization algorithms for DIF representations. The featured framework is accompanied by toolboxes for hierarchical design support and visualization of graphs.
Content-Agnostic Malware Detection in Heterogeneous Malicious Distribution Graph
Alabdulmohsin, Ibrahim; Han, Yufei; Shen, Yun; Zhang, Xiangliang
2016-01-01
graph has more than 4 million edges and 2.7 million nodes that differ in type, such as IPs, URLs, and files. We propose a novel Bayesian label propagation model to unify the multi-source information, including content-agnostic features of different node
Generating hierarchical scale free-graphs from fractals
Komjáthy, J.; Simon, K.
2011-01-01
Motivated by the hierarchial network model of E. Ravasz, A.-L. Barabási, and T. Vicsek, we introduce deterministic scale-free networks derived from a graph directed self-similar fractal ¿. With rigorous mathematical results we verify that our model captures some of the most important features of
Interactive Graph Layout of a Million Nodes
Peng Mi; Maoyuan Sun; Moeti Masiane; Yong Cao; Chris North
2016-01-01
Sensemaking of large graphs, specifically those with millions of nodes, is a crucial task in many fields. Automatic graph layout algorithms, augmented with real-time human-in-the-loop interaction, can potentially support sensemaking of large graphs. However, designing interactive algorithms to achieve this is challenging. In this paper, we tackle the scalability problem of interactive layout of large graphs, and contribute a new GPU-based force-directed layout algorithm that exploits graph to...
Khovanov homology of graph-links
Energy Technology Data Exchange (ETDEWEB)
Nikonov, Igor M [M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics, Moscow (Russian Federation)
2012-08-31
Graph-links arise as the intersection graphs of turning chord diagrams of links. Speaking informally, graph-links provide a combinatorial description of links up to mutations. Many link invariants can be reformulated in the language of graph-links. Khovanov homology, a well-known and useful knot invariant, is defined for graph-links in this paper (in the case of the ground field of characteristic two). Bibliography: 14 titles.
PRIVATE GRAPHS – ACCESS RIGHTS ON GRAPHS FOR SEAMLESS NAVIGATION
Directory of Open Access Journals (Sweden)
W. Dorner
2016-06-01
Full Text Available After the success of GNSS (Global Navigational Satellite Systems and navigation services for public streets, indoor seems to be the next big development in navigational services, relying on RTLS – Real Time Locating Services (e.g. WIFI and allowing seamless navigation. In contrast to navigation and routing services on public streets, seamless navigation will cause an additional challenge: how to make routing data accessible to defined users or restrict access rights for defined areas or only to parts of the graph to a defined user group? The paper will present case studies and data from literature, where seamless and especially indoor navigation solutions are presented (hospitals, industrial complexes, building sites, but the problem of restricted access rights was only touched from a real world, but not a technical perspective. The analysis of case studies will show, that the objective of navigation and the different target groups for navigation solutions will demand well defined access rights and require solutions, how to make only parts of a graph to a user or application available to solve a navigational task. The paper will therefore introduce the concept of private graphs, which is defined as a graph for navigational purposes covering the street, road or floor network of an area behind a public street and suggest different approaches how to make graph data for navigational purposes available considering access rights and data protection, privacy and security issues as well.
Direct computation of scattering matrices for general quantum graphs
International Nuclear Information System (INIS)
Caudrelier, V.; Ragoucy, E.
2010-01-01
We present a direct and simple method for the computation of the total scattering matrix of an arbitrary finite noncompact connected quantum graph given its metric structure and local scattering data at each vertex. The method is inspired by the formalism of Reflection-Transmission algebras and quantum field theory on graphs though the results hold independently of this formalism. It yields a simple and direct algebraic derivation of the formula for the total scattering and has a number of advantages compared to existing recursive methods. The case of loops (or tadpoles) is easily incorporated in our method. This provides an extension of recent similar results obtained in a completely different way in the context of abstract graph theory. It also allows us to discuss briefly the inverse scattering problem in the presence of loops using an explicit example to show that the solution is not unique in general. On top of being conceptually very easy, the computational advantage of the method is illustrated on two examples of 'three-dimensional' graphs (tetrahedron and cube) for which other methods are rather heavy or even impractical.
Analyzing Social Media Relationships in Context with Discussion Graphs
DEFF Research Database (Denmark)
Kiciman, Emre; Choudhury, Munmun De; Counts, Scott
2013-01-01
We present discussion graphs, a hyper-graph-based representation of social media discussions that captures both the structural features of the relationships among entities as well as the context of the discussions from which they were derived. Building on previous analyses of social media network...... and pseudo-cliques, when applied to the analysis of textual social media content. We apply our framework across several domains captured in Twitter, including the mining of peoples' statements about their locations and activities and discussions of the U.S. 2012 elections....
Interactive exploration of large-scale time-varying data using dynamic tracking graphs
Widanagamaachchi, W.; Christensen, C.; Bremer, P.-T; Pascucci, Valerio
2012-01-01
that use one spatial dimension to indicate time and show the "tracks" of each feature as it evolves, merges or disappears. However, for practical data sets creating the corresponding optimal graph layouts that minimize the number of intersections can take
Eigenfunction statistics on quantum graphs
International Nuclear Information System (INIS)
Gnutzmann, S.; Keating, J.P.; Piotet, F.
2010-01-01
We investigate the spatial statistics of the energy eigenfunctions on large quantum graphs. It has previously been conjectured that these should be described by a Gaussian Random Wave Model, by analogy with quantum chaotic systems, for which such a model was proposed by Berry in 1977. The autocorrelation functions we calculate for an individual quantum graph exhibit a universal component, which completely determines a Gaussian Random Wave Model, and a system-dependent deviation. This deviation depends on the graph only through its underlying classical dynamics. Classical criteria for quantum universality to be met asymptotically in the large graph limit (i.e. for the non-universal deviation to vanish) are then extracted. We use an exact field theoretic expression in terms of a variant of a supersymmetric σ model. A saddle-point analysis of this expression leads to the estimates. In particular, intensity correlations are used to discuss the possible equidistribution of the energy eigenfunctions in the large graph limit. When equidistribution is asymptotically realized, our theory predicts a rate of convergence that is a significant refinement of previous estimates. The universal and system-dependent components of intensity correlation functions are recovered by means of an exact trace formula which we analyse in the diagonal approximation, drawing in this way a parallel between the field theory and semiclassics. Our results provide the first instance where an asymptotic Gaussian Random Wave Model has been established microscopically for eigenfunctions in a system with no disorder.
Directory of Open Access Journals (Sweden)
Andreas P. Braun
2016-04-01
Full Text Available Box graphs succinctly and comprehensively characterize singular fibers of elliptic fibrations in codimension two and three, as well as flop transitions connecting these, in terms of representation theoretic data. We develop a framework that provides a systematic map between a box graph and a crepant algebraic resolution of the singular elliptic fibration, thus allowing an explicit construction of the fibers from a singular Weierstrass or Tate model. The key tool is what we call a fiber face diagram, which shows the relevant information of a (partial toric triangulation and allows the inclusion of more general algebraic blowups. We shown that each such diagram defines a sequence of weighted algebraic blowups, thus providing a realization of the fiber defined by the box graph in terms of an explicit resolution. We show this correspondence explicitly for the case of SU(5 by providing a map between box graphs and fiber faces, and thereby a sequence of algebraic resolutions of the Tate model, which realizes each of the box graphs.
Degree-based graph construction
International Nuclear Information System (INIS)
Kim, Hyunju; Toroczkai, Zoltan; Erdos, Peter L; Miklos, Istvan; Szekely, Laszlo A
2009-01-01
Degree-based graph construction is a ubiquitous problem in network modelling (Newman et al 2006 The Structure and Dynamics of Networks (Princeton Studies in Complexity) (Princeton, NJ: Princeton University Press), Boccaletti et al 2006 Phys. Rep. 424 175), ranging from social sciences to chemical compounds and biochemical reaction networks in the cell. This problem includes existence, enumeration, exhaustive construction and sampling questions with aspects that are still open today. Here we give necessary and sufficient conditions for a sequence of nonnegative integers to be realized as a simple graph's degree sequence, such that a given (but otherwise arbitrary) set of connections from an arbitrarily given node is avoided. We then use this result to present a swap-free algorithm that builds all simple graphs realizing a given degree sequence. In a wider context, we show that our result provides a greedy construction method to build all the f-factor subgraphs (Tutte 1952 Can. J. Math. 4 314) embedded within K n setmn S k , where K n is the complete graph and S k is a star graph centred on one of the nodes. (fast track communication)
Integer Flows and Circuit Covers of Graphs and Signed Graphs
Cheng, Jian
The work in Chapter 2 is motivated by Tutte and Jaeger's pioneering work on converting modulo flows into integer-valued flows for ordinary graphs. For a signed graphs (G, sigma), we first prove that for each k ∈ {2, 3}, if (G, sigma) is (k - 1)-edge-connected and contains an even number of negative edges when k = 2, then every modulo k-flow of (G, sigma) can be converted into an integer-valued ( k + 1)-ow with a larger or the same support. We also prove that if (G, sigma) is odd-(2p+1)-edge-connected, then (G, sigma) admits a modulo circular (2 + 1/ p)-flows if and only if it admits an integer-valued circular (2 + 1/p)-flows, which improves all previous result by Xu and Zhang (DM2005), Schubert and Steffen (EJC2015), and Zhu (JCTB2015). Shortest circuit cover conjecture is one of the major open problems in graph theory. It states that every bridgeless graph G contains a set of circuits F such that each edge is contained in at least one member of F and the length of F is at most 7/5∥E(G)∥. This concept was recently generalized to signed graphs by Macajova et al. (JGT2015). In Chapter 3, we improve their upper bound from 11∥E( G)∥ to 14/3 ∥E(G)∥, and if G is 2-edgeconnected and has even negativeness, then it can be further reduced to 11/3 ∥E(G)∥. Tutte's 3-flow conjecture has been studied by many graph theorists in the last several decades. As a new approach to this conjecture, DeVos and Thomassen considered the vectors as ow values and found that there is a close relation between vector S1-flows and integer 3-NZFs. Motivated by their observation, in Chapter 4, we prove that if a graph G admits a vector S1-flow with rank at most two, then G admits an integer 3-NZF. The concept of even factors is highly related to the famous Four Color Theorem. We conclude this dissertation in Chapter 5 with an improvement of a recent result by Chen and Fan (JCTB2016) on the upperbound of even factors. We show that if a graph G contains an even factor, then it
Graph-like continua, augmenting arcs, and Menger's theorem
DEFF Research Database (Denmark)
Thomassen, Carsten; Vella, Antoine
2008-01-01
We show that an adaptation of the augmenting path method for graphs proves Menger's Theorem for wide classes of topological spaces. For example, it holds for locally compact, locally connected, metric spaces, as already known. The method lends itself particularly well to another class of spaces......, connected graph. While closed subsets of such a space behave nicely in that they are compact and locally connected (and therefore locally arcwise connected), the general subspaces do not: They may be connected without being arcwise connected. Nevertheless, they satisfy Menger's Theorem......., namely the locally arcwise connected, hereditarily locally connected, metric spaces. Finally, it applies to every space where every point can be separated from every closed set not containing it by a finite set, in particular to every subspace of the Freudenthal compactification of a locally finite...
On the chromatic number of pentagon-free graphs of large minimum degree
DEFF Research Database (Denmark)
Thomassen, Carsten
2007-01-01
We prove that, for each fixed real number c > 0, the pentagon-free graphs of minimum degree at least cn (where n is the number of vertices) have bounded chromatic number. This problem was raised by Erdős and Simonovits in 1973. A similar result holds for any other fixed odd cycle, except the tria...
Graph theory with applications
Vasudev, C
2006-01-01
Salient Features Over 1500 problems are used to illustrate concepts, related to different topics, and introduce applications. Over 1000 exercises in the text with many different types of questions posed. Precise mathematical language is used without excessive formalism and abstraction. Care has been taken to balance the mix of notation and words in mathematical statements. Problem sets are stated clearly and unambiguously, and all are carefully graded for various levels of difficulty. This text has been carefully designed for flexible use.
Directory of Open Access Journals (Sweden)
Asha K Varghese
2017-01-01
Full Text Available A 21-day-old male infant, born as the first child to a nonconsanguineous couple, presented with nonspecific symptoms, signs, and superimposed infection. Investigations conducted were not conclusive to arrive at a diagnosis. In 6 days, the infant succumbed to his condition. Postmortem samples were analyzed for metabolic substances, and liver biopsy was done. Urine metabolic screening showed the presence of amino acids and reducing substance. Further analysis proved the presence of galactose, generalized aminoaciduria, and liver biopsy with features of inborn error of metabolism. Further samples for higher investigations were not available, which draws attention to the need of being able to diagnose the condition early enough to save lives. We are suggesting a helpful, easy to perform, and cheap diagnostic test algorithm for diagnosing galactosemia in resource-poor settings.
DEFF Research Database (Denmark)
Stockmarr, Leila
2013-01-01
Vi bygger som besatte mure og barrierer for at holde flygtninge ude og tæmme de negative konsekvenser af den neoliberale globalisering.......Vi bygger som besatte mure og barrierer for at holde flygtninge ude og tæmme de negative konsekvenser af den neoliberale globalisering....
A Practical Approach to Constructing a Knowledge Graph for Cybersecurity
Directory of Open Access Journals (Sweden)
Yan Jia
2018-02-01
Full Text Available Cyberattack forms are complex and varied, and the detection and prediction of dynamic types of attack are always challenging tasks. Research on knowledge graphs is becoming increasingly mature in many fields. At present, it is very significant that certain scholars have combined the concept of the knowledge graph with cybersecurity in order to construct a cybersecurity knowledge base. This paper presents a cybersecurity knowledge base and deduction rules based on a quintuple model. Using machine learning, we extract entities and build ontology to obtain a cybersecurity knowledge base. New rules are then deduced by calculating formulas and using the path-ranking algorithm. The Stanford named entity recognizer (NER is also used to train an extractor to extract useful information. Experimental results show that the Stanford NER provides many features and the useGazettes parameter may be used to train a recognizer in the cybersecurity domain in preparation for future work. Keywords: Cybersecurity, Knowledge graph, Knowledge deduction
Graph modeling systems and methods
Neergaard, Mike
2015-10-13
An apparatus and a method for vulnerability and reliability modeling are provided. The method generally includes constructing a graph model of a physical network using a computer, the graph model including a plurality of terminating vertices to represent nodes in the physical network, a plurality of edges to represent transmission paths in the physical network, and a non-terminating vertex to represent a non-nodal vulnerability along a transmission path in the physical network. The method additionally includes evaluating the vulnerability and reliability of the physical network using the constructed graph model, wherein the vulnerability and reliability evaluation includes a determination of whether each terminating and non-terminating vertex represents a critical point of failure. The method can be utilized to evaluate wide variety of networks, including power grid infrastructures, communication network topologies, and fluid distribution systems.
Feder, Tomá s; Motwani, Rajeev
2009-01-01
Results on graph turnpike problem without distinctness, including its NP-completeness, and an O(m+n log n) algorithm, is presented. The usual turnpike problem has all pairwise distances given, but does not specify which pair of vertices w e corresponds to. There are two other problems that can be viewed as special cases of the graph turnpike problem, including the bandwidth problem and the low-distortion graph embedding problem. The aim for the turnpike problem in the NP-complete is to orient the edges with weights w i in either direction so that when the whole cycle is transversed in the real line, it returns to a chosen starting point for the cycle. An instance of the turnpike problem with or without distinctness is uniquely mappable if there exists at most one solution up to translation and choice of orientation.
Feder, Tomás
2009-06-01
Results on graph turnpike problem without distinctness, including its NP-completeness, and an O(m+n log n) algorithm, is presented. The usual turnpike problem has all pairwise distances given, but does not specify which pair of vertices w e corresponds to. There are two other problems that can be viewed as special cases of the graph turnpike problem, including the bandwidth problem and the low-distortion graph embedding problem. The aim for the turnpike problem in the NP-complete is to orient the edges with weights w i in either direction so that when the whole cycle is transversed in the real line, it returns to a chosen starting point for the cycle. An instance of the turnpike problem with or without distinctness is uniquely mappable if there exists at most one solution up to translation and choice of orientation.
Negation switching invariant signed graphs
Directory of Open Access Journals (Sweden)
Deepa Sinha
2014-04-01
Full Text Available A signed graph (or, $sigraph$ in short is a graph G in which each edge x carries a value $\\sigma(x \\in \\{-, +\\}$ called its sign. Given a sigraph S, the negation $\\eta(S$ of the sigraph S is a sigraph obtained from S by reversing the sign of every edge of S. Two sigraphs $S_{1}$ and $S_{2}$ on the same underlying graph are switching equivalent if it is possible to assign signs `+' (`plus' or `-' (`minus' to vertices of $S_{1}$ such that by reversing the sign of each of its edges that has received opposite signs at its ends, one obtains $S_{2}$. In this paper, we characterize sigraphs which are negation switching invariant and also see for what sigraphs, S and $\\eta (S$ are signed isomorphic.
International Nuclear Information System (INIS)
Rosmanis, Ansis
2011-01-01
I introduce a continuous-time quantum walk on graphs called the quantum snake walk, the basis states of which are fixed-length paths (snakes) in the underlying graph. First, I analyze the quantum snake walk on the line, and I show that, even though most states stay localized throughout the evolution, there are specific states that most likely move on the line as wave packets with momentum inversely proportional to the length of the snake. Next, I discuss how an algorithm based on the quantum snake walk might potentially be able to solve an extended version of the glued trees problem, which asks to find a path connecting both roots of the glued trees graph. To the best of my knowledge, no efficient quantum algorithm solving this problem is known yet.
The new protein topology graph library web server.
Schäfer, Tim; Scheck, Andreas; Bruneß, Daniel; May, Patrick; Koch, Ina
2016-02-01
We present a new, extended version of the Protein Topology Graph Library web server. The Protein Topology Graph Library describes the protein topology on the super-secondary structure level. It allows to compute and visualize protein ligand graphs and search for protein structural motifs. The new server features additional information on ligand binding to secondary structure elements, increased usability and an application programming interface (API) to retrieve data, allowing for an automated analysis of protein topology. The Protein Topology Graph Library server is freely available on the web at http://ptgl.uni-frankfurt.de. The website is implemented in PHP, JavaScript, PostgreSQL and Apache. It is supported by all major browsers. The VPLG software that was used to compute the protein ligand graphs and all other data in the database is available under the GNU public license 2.0 from http://vplg.sourceforge.net. tim.schaefer@bioinformatik.uni-frankfurt.de; ina.koch@bioinformatik.uni-frankfurt.de Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Generating hierarchial scale-free graphs from fractals
Energy Technology Data Exchange (ETDEWEB)
Komjathy, Julia, E-mail: komyju@math.bme.hu [Department of Stochastics, Institute of Mathematics, Technical University of Budapest, H-1529 P.O. Box 91 (Hungary); Simon, Karoly, E-mail: simonk@math.bme.hu [Department of Stochastics, Institute of Mathematics, Technical University of Budapest, H-1529 P.O. Box 91 (Hungary)
2011-08-15
Highlights: > We generate deterministic scale-free networks using graph-directed self similar IFS. > Our model exhibits similar clustering, power law decay properties to real networks. > The average length of shortest path and the diameter of the graph are determined. > Using this model, we generate random graphs with prescribed power law exponent. - Abstract: Motivated by the hierarchial network model of E. Ravasz, A.-L. Barabasi, and T. Vicsek, we introduce deterministic scale-free networks derived from a graph directed self-similar fractal {Lambda}. With rigorous mathematical results we verify that our model captures some of the most important features of many real networks: the scale-free and the high clustering properties. We also prove that the diameter is the logarithm of the size of the system. We point out a connection between the power law exponent of the degree distribution and some intrinsic geometric measure theoretical properties of the underlying fractal. Using our (deterministic) fractal {Lambda} we generate random graph sequence sharing similar properties.
On Graph Rewriting, Reduction and Evaluation
DEFF Research Database (Denmark)
Zerny, Ian
2010-01-01
We inter-derive two prototypical styles of graph reduction: reduction machines à la Turner and graph rewriting systems à la Barendregt et al. To this end, we adapt Danvy et al.'s mechanical program derivations from the world of terms to the world of graphs. We also outline how to inter-derive a t......We inter-derive two prototypical styles of graph reduction: reduction machines à la Turner and graph rewriting systems à la Barendregt et al. To this end, we adapt Danvy et al.'s mechanical program derivations from the world of terms to the world of graphs. We also outline how to inter...
The fascinating world of graph theory
Benjamin, Arthur; Zhang, Ping
2015-01-01
Graph theory goes back several centuries and revolves around the study of graphs-mathematical structures showing relations between objects. With applications in biology, computer science, transportation science, and other areas, graph theory encompasses some of the most beautiful formulas in mathematics-and some of its most famous problems. The Fascinating World of Graph Theory explores the questions and puzzles that have been studied, and often solved, through graph theory. This book looks at graph theory's development and the vibrant individuals responsible for the field's growth. Introducin
Graph-based modelling in engineering
Rysiński, Jacek
2017-01-01
This book presents versatile, modern and creative applications of graph theory in mechanical engineering, robotics and computer networks. Topics related to mechanical engineering include e.g. machine and mechanism science, mechatronics, robotics, gearing and transmissions, design theory and production processes. The graphs treated are simple graphs, weighted and mixed graphs, bond graphs, Petri nets, logical trees etc. The authors represent several countries in Europe and America, and their contributions show how different, elegant, useful and fruitful the utilization of graphs in modelling of engineering systems can be. .
XML Graphs in Program Analysis
DEFF Research Database (Denmark)
Møller, Anders; Schwartzbach, Michael Ignatieff
2007-01-01
XML graphs have shown to be a simple and effective formalism for representing sets of XML documents in program analysis. It has evolved through a six year period with variants tailored for a range of applications. We present a unified definition, outline the key properties including validation...... of XML graphs against different XML schema languages, and provide a software package that enables others to make use of these ideas. We also survey four very different applications: XML in Java, Java Servlets and JSP, transformations between XML and non-XML data, and XSLT....
Graph topologies on closed multifunctions
Directory of Open Access Journals (Sweden)
Giuseppe Di Maio
2003-10-01
Full Text Available In this paper we study function space topologies on closed multifunctions, i.e. closed relations on X x Y using various hypertopologies. The hypertopologies are in essence, graph topologies i.e topologies on functions considered as graphs which are subsets of X x Y . We also study several topologies, including one that is derived from the Attouch-Wets filter on the range. We state embedding theorems which enable us to generalize and prove some recent results in the literature with the use of known results in the hyperspace of the range space and in the function space topologies of ordinary functions.
Cyclic graphs and Apery's theorem
International Nuclear Information System (INIS)
Sorokin, V N
2002-01-01
This is a survey of results about the behaviour of Hermite-Pade approximants for graphs of Markov functions, and a survey of interpolation problems leading to Apery's result about the irrationality of the value ζ(3) of the Riemann zeta function. The first example is given of a cyclic graph for which the Hermite-Pade problem leads to Apery's theorem. Explicit formulae for solutions are obtained, namely, Rodrigues' formulae and integral representations. The asymptotic behaviour of the approximants is studied, and recurrence formulae are found
Interacting particle systems on graphs
Sood, Vishal
In this dissertation, the dynamics of socially or biologically interacting populations are investigated. The individual members of the population are treated as particles that interact via links on a social or biological network represented as a graph. The effect of the structure of the graph on the properties of the interacting particle system is studied using statistical physics techniques. In the first chapter, the central concepts of graph theory and social and biological networks are presented. Next, interacting particle systems that are drawn from physics, mathematics and biology are discussed in the second chapter. In the third chapter, the random walk on a graph is studied. The mean time for a random walk to traverse between two arbitrary sites of a random graph is evaluated. Using an effective medium approximation it is found that the mean first-passage time between pairs of sites, as well as all moments of this first-passage time, are insensitive to the density of links in the graph. The inverse of the mean-first passage time varies non-monotonically with the density of links near the percolation transition of the random graph. Much of the behavior can be understood by simple heuristic arguments. Evolutionary dynamics, by which mutants overspread an otherwise uniform population on heterogeneous graphs, are studied in the fourth chapter. Such a process underlies' epidemic propagation, emergence of fads, social cooperation or invasion of an ecological niche by a new species. The first part of this chapter is devoted to neutral dynamics, in which the mutant genotype does not have a selective advantage over the resident genotype. The time to extinction of one of the two genotypes is derived. In the second part of this chapter, selective advantage or fitness is introduced such that the mutant genotype has a higher birth rate or a lower death rate. This selective advantage leads to a dynamical competition in which selection dominates for large populations
Combinatorics and graph theory
Vasudev, C
2007-01-01
About the Book: This text has been carefully designed for flexible use for First Semester M.C.A. course of Uttar Pradesh Technical University (U.P.T.U.), and it contains the following features: Precise mathematical language is used without excessive formalism and abstraction. Over 900 exercises (problem sets) in the text with many different types of questions posed. Care has been taken to balance the mix of notation and words in mathematical statements. Problem sets (exercises) are stated clearly and unambiguously and all are carefully graded for various levels of difficulty. Contents:
Multiple graph regularized protein domain ranking
Wang, Jim Jing-Yan
2012-11-19
Background: Protein domain ranking is a fundamental task in structural biology. Most protein domain ranking methods rely on the pairwise comparison of protein domains while neglecting the global manifold structure of the protein domain database. Recently, graph regularized ranking that exploits the global structure of the graph defined by the pairwise similarities has been proposed. However, the existing graph regularized ranking methods are very sensitive to the choice of the graph model and parameters, and this remains a difficult problem for most of the protein domain ranking methods.Results: To tackle this problem, we have developed the Multiple Graph regularized Ranking algorithm, MultiG-Rank. Instead of using a single graph to regularize the ranking scores, MultiG-Rank approximates the intrinsic manifold of protein domain distribution by combining multiple initial graphs for the regularization. Graph weights are learned with ranking scores jointly and automatically, by alternately minimizing an objective function in an iterative algorithm. Experimental results on a subset of the ASTRAL SCOP protein domain database demonstrate that MultiG-Rank achieves a better ranking performance than single graph regularized ranking methods and pairwise similarity based ranking methods.Conclusion: The problem of graph model and parameter selection in graph regularized protein domain ranking can be solved effectively by combining multiple graphs. This aspect of generalization introduces a new frontier in applying multiple graphs to solving protein domain ranking applications. 2012 Wang et al; licensee BioMed Central Ltd.
Multiple graph regularized protein domain ranking
Wang, Jim Jing-Yan; Bensmail, Halima; Gao, Xin
2012-01-01
Background: Protein domain ranking is a fundamental task in structural biology. Most protein domain ranking methods rely on the pairwise comparison of protein domains while neglecting the global manifold structure of the protein domain database. Recently, graph regularized ranking that exploits the global structure of the graph defined by the pairwise similarities has been proposed. However, the existing graph regularized ranking methods are very sensitive to the choice of the graph model and parameters, and this remains a difficult problem for most of the protein domain ranking methods.Results: To tackle this problem, we have developed the Multiple Graph regularized Ranking algorithm, MultiG-Rank. Instead of using a single graph to regularize the ranking scores, MultiG-Rank approximates the intrinsic manifold of protein domain distribution by combining multiple initial graphs for the regularization. Graph weights are learned with ranking scores jointly and automatically, by alternately minimizing an objective function in an iterative algorithm. Experimental results on a subset of the ASTRAL SCOP protein domain database demonstrate that MultiG-Rank achieves a better ranking performance than single graph regularized ranking methods and pairwise similarity based ranking methods.Conclusion: The problem of graph model and parameter selection in graph regularized protein domain ranking can be solved effectively by combining multiple graphs. This aspect of generalization introduces a new frontier in applying multiple graphs to solving protein domain ranking applications. 2012 Wang et al; licensee BioMed Central Ltd.
Multiple graph regularized protein domain ranking.
Wang, Jim Jing-Yan; Bensmail, Halima; Gao, Xin
2012-11-19
Protein domain ranking is a fundamental task in structural biology. Most protein domain ranking methods rely on the pairwise comparison of protein domains while neglecting the global manifold structure of the protein domain database. Recently, graph regularized ranking that exploits the global structure of the graph defined by the pairwise similarities has been proposed. However, the existing graph regularized ranking methods are very sensitive to the choice of the graph model and parameters, and this remains a difficult problem for most of the protein domain ranking methods. To tackle this problem, we have developed the Multiple Graph regularized Ranking algorithm, MultiG-Rank. Instead of using a single graph to regularize the ranking scores, MultiG-Rank approximates the intrinsic manifold of protein domain distribution by combining multiple initial graphs for the regularization. Graph weights are learned with ranking scores jointly and automatically, by alternately minimizing an objective function in an iterative algorithm. Experimental results on a subset of the ASTRAL SCOP protein domain database demonstrate that MultiG-Rank achieves a better ranking performance than single graph regularized ranking methods and pairwise similarity based ranking methods. The problem of graph model and parameter selection in graph regularized protein domain ranking can be solved effectively by combining multiple graphs. This aspect of generalization introduces a new frontier in applying multiple graphs to solving protein domain ranking applications.
Multiple graph regularized protein domain ranking
Directory of Open Access Journals (Sweden)
Wang Jim
2012-11-01
Full Text Available Abstract Background Protein domain ranking is a fundamental task in structural biology. Most protein domain ranking methods rely on the pairwise comparison of protein domains while neglecting the global manifold structure of the protein domain database. Recently, graph regularized ranking that exploits the global structure of the graph defined by the pairwise similarities has been proposed. However, the existing graph regularized ranking methods are very sensitive to the choice of the graph model and parameters, and this remains a difficult problem for most of the protein domain ranking methods. Results To tackle this problem, we have developed the Multiple Graph regularized Ranking algorithm, MultiG-Rank. Instead of using a single graph to regularize the ranking scores, MultiG-Rank approximates the intrinsic manifold of protein domain distribution by combining multiple initial graphs for the regularization. Graph weights are learned with ranking scores jointly and automatically, by alternately minimizing an objective function in an iterative algorithm. Experimental results on a subset of the ASTRAL SCOP protein domain database demonstrate that MultiG-Rank achieves a better ranking performance than single graph regularized ranking methods and pairwise similarity based ranking methods. Conclusion The problem of graph model and parameter selection in graph regularized protein domain ranking can be solved effectively by combining multiple graphs. This aspect of generalization introduces a new frontier in applying multiple graphs to solving protein domain ranking applications.
Procedural Content Graphs for Urban Modeling
Directory of Open Access Journals (Sweden)
Pedro Brandão Silva
2015-01-01
Full Text Available Massive procedural content creation, for example, for virtual urban environments, is a difficult, yet important challenge. While shape grammars are a popular example of effectiveness in architectural modeling, they have clear limitations regarding readability, manageability, and expressive power when addressing a variety of complex structural designs. Moreover, shape grammars aim at geometry specification and do not facilitate integration with other types of content, such as textures or light sources, which could rather accompany the generation process. We present procedural content graphs, a graph-based solution for procedural generation that addresses all these issues in a visual, flexible, and more expressive manner. Besides integrating handling of diverse types of content, this approach introduces collective entity manipulation as lists, seamlessly providing features such as advanced filtering, grouping, merging, ordering, and aggregation, essentially unavailable in shape grammars. Hereby, separated entities can be easily merged or just analyzed together in order to perform a variety of context-based decisions and operations. The advantages of this approach are illustrated via examples of tasks that are either very cumbersome or simply impossible to express with previous grammar approaches.
Constructing Knowledge Graphs of Depression
Huang, Zhisheng; Yang, Jie; van Harmelen, Frank; Hu, Qing
2017-01-01
Knowledge Graphs have been shown to be useful tools for integrating multiple medical knowledge sources, and to support such tasks as medical decision making, literature retrieval, determining healthcare quality indicators, co-morbodity analysis and many others. A large number of medical knowledge
Partitioning graphs into connected parts
Hof, van 't P.; Paulusma, D.; Woeginger, G.J.; Frid, A.; Morozov, A.S.; Rybalchenko, A.; Wagner, K.W.
2009-01-01
The 2-DISJOINT CONNECTED SUBGRAPHS problem asks if a given graph has two vertex-disjoint connected subgraphs containing pre-specified sets of vertices. We show that this problem is NP-complete even if one of the sets has cardinality 2. The LONGEST PATH CONTRACTIBILITY problem asks for the largest
Isoperimetric inequalities for minimal graphs
International Nuclear Information System (INIS)
Pacelli Bessa, G.; Montenegro, J.F.
2007-09-01
Based on Markvorsen and Palmer's work on mean time exit and isoperimetric inequalities we establish slightly better isoperimetric inequalities and mean time exit estimates for minimal graphs in N x R. We also prove isoperimetric inequalities for submanifolds of Hadamard spaces with tamed second fundamental form. (author)
Ancestral Genres of Mathematical Graphs
Gerofsky, Susan
2011-01-01
Drawing from sources in gesture studies, cognitive science, the anthropology of religion and art/architecture history, this article explores cultural, bodily and cosmological resonances carried (unintentionally) by mathematical graphs on Cartesian coordinates. Concepts of asymmetric bodily spaces, grids, orthogonality, mapping and sacred spaces…
Humidity Graphs for All Seasons.
Esmael, F.
1982-01-01
In a previous article in this journal (Vol. 17, p358, 1979), a wet-bulb depression table was recommended for two simple experiments to determine relative humidity. However, the use of a graph is suggested because it gives the relative humidity directly from the wet and dry bulb readings. (JN)
Contracting a planar graph efficiently
DEFF Research Database (Denmark)
Holm, Jacob; Italiano, Giuseppe F.; Karczmarz, Adam
2017-01-01
the data structure, we can achieve optimal running times for decremental bridge detection, 2-edge connectivity, maximal 3-edge connected components, and the problem of finding a unique perfect matching for a static planar graph. Furthermore, we improve the running times of algorithms for several planar...
Graph Model Based Indoor Tracking
DEFF Research Database (Denmark)
Jensen, Christian Søndergaard; Lu, Hua; Yang, Bin
2009-01-01
The tracking of the locations of moving objects in large indoor spaces is important, as it enables a range of applications related to, e.g., security and indoor navigation and guidance. This paper presents a graph model based approach to indoor tracking that offers a uniform data management...
A graph with fractional revival
Bernard, Pierre-Antoine; Chan, Ada; Loranger, Érika; Tamon, Christino; Vinet, Luc
2018-02-01
An example of a graph that admits balanced fractional revival between antipodes is presented. It is obtained by establishing the correspondence between the quantum walk on a hypercube where the opposite vertices across the diagonals of each face are connected and, the coherent transport of single excitations in the extension of the Krawtchouk spin chain with next-to-nearest neighbour interactions.
Fixation Time for Evolutionary Graphs
Nie, Pu-Yan; Zhang, Pei-Ai
Evolutionary graph theory (EGT) is recently proposed by Lieberman et al. in 2005. EGT is successful for explaining biological evolution and some social phenomena. It is extremely important to consider the time of fixation for EGT in many practical problems, including evolutionary theory and the evolution of cooperation. This study characterizes the time to asymptotically reach fixation.
Coloring sums of extensions of certain graphs
Directory of Open Access Journals (Sweden)
Johan Kok
2017-12-01
Full Text Available We recall that the minimum number of colors that allow a proper coloring of graph $G$ is called the chromatic number of $G$ and denoted $\\chi(G$. Motivated by the introduction of the concept of the $b$-chromatic sum of a graph the concept of $\\chi'$-chromatic sum and $\\chi^+$-chromatic sum are introduced in this paper. The extended graph $G^x$ of a graph $G$ was recently introduced for certain regular graphs. This paper furthers the concepts of $\\chi'$-chromatic sum and $\\chi^+$-chromatic sum to extended paths and cycles. Bipartite graphs also receive some attention. The paper concludes with patterned structured graphs. These last said graphs are typically found in chemical and biological structures.
Mathematical Minute: Rotating a Function Graph
Bravo, Daniel; Fera, Joseph
2013-01-01
Using calculus only, we find the angles you can rotate the graph of a differentiable function about the origin and still obtain a function graph. We then apply the solution to odd and even degree polynomials.
Towards a theory of geometric graphs
Pach, Janos
2004-01-01
The early development of graph theory was heavily motivated and influenced by topological and geometric themes, such as the Konigsberg Bridge Problem, Euler's Polyhedral Formula, or Kuratowski's characterization of planar graphs. In 1936, when Denes Konig published his classical Theory of Finite and Infinite Graphs, the first book ever written on the subject, he stressed this connection by adding the subtitle Combinatorial Topology of Systems of Segments. He wanted to emphasize that the subject of his investigations was very concrete: planar figures consisting of points connected by straight-line segments. However, in the second half of the twentieth century, graph theoretical research took an interesting turn. In the most popular and most rapidly growing areas (the theory of random graphs, Ramsey theory, extremal graph theory, algebraic graph theory, etc.), graphs were considered as abstract binary relations rather than geometric objects. Many of the powerful techniques developed in these fields have been su...
Bounds on Gromov hyperbolicity constant in graphs
Indian Academy of Sciences (India)
Infinite graphs; Cartesian product graphs; independence number; domin- ation number; geodesics ... the secure transmission of information through the internet (see [15, 16]). In particular, ..... In particular, δ(G) is an integer multiple of 1/4.
Summary: beyond fault trees to fault graphs
International Nuclear Information System (INIS)
Alesso, H.P.; Prassinos, P.; Smith, C.F.
1984-09-01
Fault Graphs are the natural evolutionary step over a traditional fault-tree model. A Fault Graph is a failure-oriented directed graph with logic connectives that allows cycles. We intentionally construct the Fault Graph to trace the piping and instrumentation drawing (P and ID) of the system, but with logical AND and OR conditions added. Then we evaluate the Fault Graph with computer codes based on graph-theoretic methods. Fault Graph computer codes are based on graph concepts, such as path set (a set of nodes traveled on a path from one node to another) and reachability (the complete set of all possible paths between any two nodes). These codes are used to find the cut-sets (any minimal set of component failures that will fail the system) and to evaluate the system reliability
Torsional rigidity, isospectrality and quantum graphs
International Nuclear Information System (INIS)
Colladay, Don; McDonald, Patrick; Kaganovskiy, Leon
2017-01-01
We study torsional rigidity for graph and quantum graph analogs of well-known pairs of isospectral non-isometric planar domains. We prove that such isospectral pairs are distinguished by torsional rigidity. (paper)
VIGOR: Interactive Visual Exploration of Graph Query Results.
Pienta, Robert; Hohman, Fred; Endert, Alex; Tamersoy, Acar; Roundy, Kevin; Gates, Chris; Navathe, Shamkant; Chau, Duen Horng
2018-01-01
Finding patterns in graphs has become a vital challenge in many domains from biological systems, network security, to finance (e.g., finding money laundering rings of bankers and business owners). While there is significant interest in graph databases and querying techniques, less research has focused on helping analysts make sense of underlying patterns within a group of subgraph results. Visualizing graph query results is challenging, requiring effective summarization of a large number of subgraphs, each having potentially shared node-values, rich node features, and flexible structure across queries. We present VIGOR, a novel interactive visual analytics system, for exploring and making sense of query results. VIGOR uses multiple coordinated views, leveraging different data representations and organizations to streamline analysts sensemaking process. VIGOR contributes: (1) an exemplar-based interaction technique, where an analyst starts with a specific result and relaxes constraints to find other similar results or starts with only the structure (i.e., without node value constraints), and adds constraints to narrow in on specific results; and (2) a novel feature-aware subgraph result summarization. Through a collaboration with Symantec, we demonstrate how VIGOR helps tackle real-world problems through the discovery of security blindspots in a cybersecurity dataset with over 11,000 incidents. We also evaluate VIGOR with a within-subjects study, demonstrating VIGOR's ease of use over a leading graph database management system, and its ability to help analysts understand their results at higher speed and make fewer errors.
Graph run-length matrices for histopathological image segmentation.
Tosun, Akif Burak; Gunduz-Demir, Cigdem
2011-03-01
The histopathological examination of tissue specimens is essential for cancer diagnosis and grading. However, this examination is subject to a considerable amount of observer variability as it mainly relies on visual interpretation of pathologists. To alleviate this problem, it is very important to develop computational quantitative tools, for which image segmentation constitutes the core step. In this paper, we introduce an effective and robust algorithm for the segmentation of histopathological tissue images. This algorithm incorporates the background knowledge of the tissue organization into segmentation. For this purpose, it quantifies spatial relations of cytological tissue components by constructing a graph and uses this graph to define new texture features for image segmentation. This new texture definition makes use of the idea of gray-level run-length matrices. However, it considers the runs of cytological components on a graph to form a matrix, instead of considering the runs of pixel intensities. Working with colon tissue images, our experiments demonstrate that the texture features extracted from "graph run-length matrices" lead to high segmentation accuracies, also providing a reasonable number of segmented regions. Compared with four other segmentation algorithms, the results show that the proposed algorithm is more effective in histopathological image segmentation.
Bond graph modeling of centrifugal compression systems
Uddin, Nur; Gravdahl, Jan Tommy
2015-01-01
A novel approach to model unsteady fluid dynamics in a compressor network by using a bond graph is presented. The model is intended in particular for compressor control system development. First, we develop a bond graph model of a single compression system. Bond graph modeling offers a different perspective to previous work by modeling the compression system based on energy flow instead of fluid dynamics. Analyzing the bond graph model explains the energy flow during compressor surge. Two pri...
A Graph Calculus for Predicate Logic
Directory of Open Access Journals (Sweden)
Paulo A. S. Veloso
2013-03-01
Full Text Available We introduce a refutation graph calculus for classical first-order predicate logic, which is an extension of previous ones for binary relations. One reduces logical consequence to establishing that a constructed graph has empty extension, i. e. it represents bottom. Our calculus establishes that a graph has empty extension by converting it to a normal form, which is expanded to other graphs until we can recognize conflicting situations (equivalent to a formula and its negation.
Sphere and dot product representations of graphs
R.J. Kang (Ross); T. Müller (Tobias)
2012-01-01
textabstractA graph $G$ is a $k$-sphere graph if there are $k$-dimensional real vectors $v_1,\\dots,v_n$ such that $ij\\in E(G)$ if and only if the distance between $v_i$ and $v_j$ is at most $1$. A graph $G$ is a $k$-dot product graph if there are $k$-dimensional real vectors $v_1,\\dots,v_n$ such
Deep Learning with Dynamic Computation Graphs
Looks, Moshe; Herreshoff, Marcello; Hutchins, DeLesley; Norvig, Peter
2017-01-01
Neural networks that compute over graph structures are a natural fit for problems in a variety of domains, including natural language (parse trees) and cheminformatics (molecular graphs). However, since the computation graph has a different shape and size for every input, such networks do not directly support batched training or inference. They are also difficult to implement in popular deep learning libraries, which are based on static data-flow graphs. We introduce a technique called dynami...
Constructs for Programming with Graph Rewrites
Rodgers, Peter
2000-01-01
Graph rewriting is becoming increasingly popular as a method for programming with graph based data structures. We present several modifications to a basic serial graph rewriting paradigm and discuss how they improve coding programs in the Grrr graph rewriting programming language. The constructs we present are once only nodes, attractor nodes and single match rewrites. We illustrate the operation of the constructs by example. The advantages of adding these new rewrite modifiers is to reduce t...
Maryam, Syeda; McCrackin, Laura; Crowley, Mark; Rathi, Yogesh; Michailovich, Oleg
2017-03-01
The world's aging population has given rise to an increasing awareness towards neurodegenerative disorders, including Alzheimers Disease (AD). Treatment options for AD are currently limited, but it is believed that future success depends on our ability to detect the onset of the disease in its early stages. The most frequently used tools for this include neuropsychological assessments, along with genetic, proteomic, and image-based diagnosis. Recently, the applicability of Diffusion Magnetic Resonance Imaging (dMRI) analysis for early diagnosis of AD has also been reported. The sensitivity of dMRI to the microstructural organization of cerebral tissue makes it particularly well-suited to detecting changes which are known to occur in the early stages of AD. Existing dMRI approaches can be divided into two broad categories: region-based and tract-based. In this work, we propose a new approach, which extends region-based approaches to the simultaneous characterization of multiple brain regions. Given a predefined set of features derived from dMRI data, we compute the probabilistic distances between different brain regions and treat the resulting connectivity pattern as an undirected, fully-connected graph. The characteristics of this graph are then used as markers to discriminate between AD subjects and normal controls (NC). Although in this preliminary work we omit subjects in the prodromal stage of AD, mild cognitive impairment (MCI), our method demonstrates perfect separability between AD and NC subject groups with substantial margin, and thus holds promise for fine-grained stratification of NC, MCI and AD populations.
Blue breath holding is benign.
Stephenson, J B
1991-01-01
In their recent publication in this journal, Southall et al described typical cyanotic breath holding spells, both in otherwise healthy children and in those with brainstem lesions and other malformations. Their suggestions regarding possible autonomic disturbances may require further study, but they have adduced no scientific evidence to contradict the accepted view that in the intact child blue breath holding spells are benign. Those families in which an infant suffers an 'apparently life t...
On the sizes of expander graphs and minimum distances of graph codes
DEFF Research Database (Denmark)
Høholdt, Tom; Justesen, Jørn
2014-01-01
We give lower bounds for the minimum distances of graph codes based on expander graphs. The bounds depend only on the second eigenvalue of the graph and the parameters of the component codes. We also give an upper bound on the size of a degree regular graph with given second eigenvalue....
McMillen, Sue; McMillen, Beth
2010-01-01
Connecting stories to qualitative coordinate graphs has been suggested as an effective instructional strategy. Even students who are able to "create" bar graphs may struggle to correctly "interpret" them. Giving children opportunities to work with qualitative graphs can help them develop the skills to interpret, describe, and compare information…
The groupies of random multipartite graphs
Portmann, Marius; Wang, Hongyun
2012-01-01
If a vertex $v$ in a graph $G$ has degree larger than the average of the degrees of its neighbors, we call it a groupie in $G$. In the current work, we study the behavior of groupie in random multipartite graphs with the link probability between sets of nodes fixed. Our results extend the previous ones on random (bipartite) graphs.
Modeling Software Evolution using Algebraic Graph Rewriting
Ciraci, Selim; van den Broek, Pim
We show how evolution requests can be formalized using algebraic graph rewriting. In particular, we present a way to convert the UML class diagrams to colored graphs. Since changes in software may effect the relation between the methods of classes, our colored graph representation also employs the
A Type Graph Model for Java Programs
Rensink, Arend; Zambon, Eduardo
2009-01-01
In this report we present a type graph that models all executable constructs of the Java programming language. Such a model is useful for any graph-based technique that relies on a representation of Java programs as graphs. The model can be regarded as a common representation to which all Java
An intersection graph of straight lines
DEFF Research Database (Denmark)
Thomassen, Carsten
2002-01-01
G. Ehrlich, S. Even, and R.E. Tarjan conjectured that the graph obtained from a complete 3 partite graph K4,4,4 by deleting the edges of four disjoint triangles is not the intersection graph of straight line segments in the plane. We show that it is....
Girth 5 graphs from relative difference sets
DEFF Research Database (Denmark)
Jørgensen, Leif Kjær
2005-01-01
We consider the problem of construction of graphs with given degree $k$ and girth 5 and as few vertices as possible. We give a construction of a family of girth 5 graphs based on relative difference sets. This family contains the smallest known graph of degree 8 and girth 5 which was constructed ...
Cycles in weighted graphs and related topics
Zhang, Shenggui
2002-01-01
This thesis contains results on paths andcycles in graphs andon a more or less relatedtopic, the vulnerability of graphs. In the first part of the thesis, Chapters 2 through 5, we concentrate on paths andcycles in weightedgraphs. A number of sufficient conditions are presentedfor graphs to contain
Graph Transformation Semantics for a QVT Language
Rensink, Arend; Nederpel, Ronald; Bruni, Roberto; Varró, Dániel
It has been claimed by many in the graph transformation community that model transformation, as understood in the context of Model Driven Architecture, can be seen as an application of graph transformation. In this paper we substantiate this claim by giving a graph transformation-based semantics to
Girth 5 graphs from relative difference sets
DEFF Research Database (Denmark)
Jørgensen, Leif Kjær
We consider the problem of construction of graphs with given degree and girth 5 and as few vertices as possible. We give a construction of a family of girth 5 graphs based on relative difference sets. This family contains the smallest known graph of degree 8 and girth 5 which was constructed by G...
Improper colouring of (random) unit disk graphs
Kang, R.J.; Müller, T.; Sereni, J.S.
2008-01-01
For any graph G, the k-improper chromatic number ¿k(G) is the smallest number of colours used in a colouring of G such that each colour class induces a subgraph of maximum degree k. We investigate ¿k for unit disk graphs and random unit disk graphs to generalise results of McDiarmid and Reed
Alliances and Bisection Width for Planar Graphs
DEFF Research Database (Denmark)
Olsen, Martin; Revsbæk, Morten
2013-01-01
An alliance in a graph is a set of vertices (allies) such that each vertex in the alliance has at least as many allies (counting the vertex itself) as non-allies in its neighborhood of the graph. We show that any planar graph with minimum degree at least 4 can be split into two alliances in polyn...
A Type Graph Model for Java Programs
Rensink, Arend; Zambon, Eduardo; Lee, D.; Lopes, A.; Poetzsch-Heffter, A.
2009-01-01
In this work we present a type graph that models all executable constructs of the Java programming language. Such a model is useful for any graph-based technique that relies on a representation of Java programs as graphs. The model can be regarded as a common representation to which all Java syntax
RATGRAPH: Computer Graphing of Rational Functions.
Minch, Bradley A.
1987-01-01
Presents an easy-to-use Applesoft BASIC program that graphs rational functions and any asymptotes that the functions might have. Discusses the nature of rational functions, graphing them manually, employing a computer to graph rational functions, and describes how the program works. (TW)
A new cluster algorithm for graphs
S. van Dongen
1998-01-01
textabstractA new cluster algorithm for graphs called the emph{Markov Cluster algorithm ($MCL$ algorithm) is introduced. The graphs may be both weighted (with nonnegative weight) and directed. Let~$G$~be such a graph. The $MCL$ algorithm simulates flow in $G$ by first identifying $G$ in a
Well-covered graphs and factors
DEFF Research Database (Denmark)
Randerath, Bert; Vestergaard, Preben D.
2006-01-01
A maximum independent set of vertices in a graph is a set of pairwise nonadjacent vertices of largest cardinality α. Plummer defined a graph to be well-covered, if every independent set is contained in a maximum independent set of G. Every well-covered graph G without isolated vertices has a perf...
A new characterization of trivially perfect graphs
Directory of Open Access Journals (Sweden)
Christian Rubio Montiel
2015-03-01
Full Text Available A graph $G$ is \\emph{trivially perfect} if for every induced subgraph the cardinality of the largest set of pairwise nonadjacent vertices (the stability number $\\alpha(G$ equals the number of (maximal cliques $m(G$. We characterize the trivially perfect graphs in terms of vertex-coloring and we extend some definitions to infinite graphs.
47 CFR 80.761 - Conversion graphs.
2010-10-01
... MARITIME SERVICES Standards for Computing Public Coast Station VHF Coverage § 80.761 Conversion graphs. The following graphs must be employed where conversion from one to the other of the indicated types of units is... 47 Telecommunication 5 2010-10-01 2010-10-01 false Conversion graphs. 80.761 Section 80.761...
Growing hierarchical probabilistic self-organizing graphs.
López-Rubio, Ezequiel; Palomo, Esteban José
2011-07-01
Since the introduction of the growing hierarchical self-organizing map, much work has been done on self-organizing neural models with a dynamic structure. These models allow adjusting the layers of the model to the features of the input dataset. Here we propose a new self-organizing model which is based on a probabilistic mixture of multivariate Gaussian components. The learning rule is derived from the stochastic approximation framework, and a probabilistic criterion is used to control the growth of the model. Moreover, the model is able to adapt to the topology of each layer, so that a hierarchy of dynamic graphs is built. This overcomes the limitations of the self-organizing maps with a fixed topology, and gives rise to a faithful visualization method for high-dimensional data.
BioJS DAGViewer: A reusable JavaScript component for displaying directed graphs.
Kalderimis, Alexis; Stepan, Radek; Sullivan, Julie; Lyne, Rachel; Lyne, Michael; Micklem, Gos
2014-01-01
The DAGViewer BioJS component is a reusable JavaScript component made available as part of the BioJS project and intended to be used to display graphs of structured data, with a particular emphasis on Directed Acyclic Graphs (DAGs). It enables users to embed representations of graphs of data, such as ontologies or phylogenetic trees, in hyper-text documents (HTML). This component is generic, since it is capable (given the appropriate configuration) of displaying any kind of data that is organised as a graph. The features of this component which are useful for examining and filtering large and complex graphs are described. http://github.com/alexkalderimis/dag-viewer-biojs; http://github.com/biojs/biojs; http://dx.doi.org/10.5281/zenodo.8303.
Methods of filtering the graph images of the functions
Directory of Open Access Journals (Sweden)
Олександр Григорович Бурса
2017-06-01
Full Text Available The theoretical aspects of cleaning raster images of scanned graphs of functions from digital, chromatic and luminance distortions by using computer graphics techniques have been considered. The basic types of distortions characteristic of graph images of functions have been stated. To suppress the distortion several methods, providing for high-quality of the resulting images and saving their topological features, were suggested. The paper describes the techniques developed and improved by the authors: the method of cleaning the image of distortions by means of iterative contrasting, based on the step-by-step increase in image contrast in the graph by 1%; the method of small entities distortion restoring, based on the thinning of the known matrix of contrast increase filter (the allowable dimensions of the nucleus dilution radius convolution matrix, which provide for the retention of the graph lines have been established; integration technique of the noise reduction method by means of contrasting and distortion restoring method of small entities with known σ-filter. Each method in the complex has been theoretically substantiated. The developed methods involve treatment of graph images as the entire image (global processing and its fragments (local processing. The metrics assessing the quality of the resulting image with the global and local processing have been chosen, the substantiation of the choice as well as the formulas have been given. The proposed complex methods of cleaning the graphs images of functions from grayscale image distortions is adaptive to the form of an image carrier, the distortion level in the image and its distribution. The presented results of testing the developed complex of methods for a representative sample of images confirm its effectiveness
Evolutionary dynamics on graphs: Efficient method for weak selection
Fu, Feng; Wang, Long; Nowak, Martin A.; Hauert, Christoph
2009-04-01
Investigating the evolutionary dynamics of game theoretical interactions in populations where individuals are arranged on a graph can be challenging in terms of computation time. Here, we propose an efficient method to study any type of game on arbitrary graph structures for weak selection. In this limit, evolutionary game dynamics represents a first-order correction to neutral evolution. Spatial correlations can be empirically determined under neutral evolution and provide the basis for formulating the game dynamics as a discrete Markov process by incorporating a detailed description of the microscopic dynamics based on the neutral correlations. This framework is then applied to one of the most intriguing questions in evolutionary biology: the evolution of cooperation. We demonstrate that the degree heterogeneity of a graph impedes cooperation and that the success of tit for tat depends not only on the number of rounds but also on the degree of the graph. Moreover, considering the mutation-selection equilibrium shows that the symmetry of the stationary distribution of states under weak selection is skewed in favor of defectors for larger selection strengths. In particular, degree heterogeneity—a prominent feature of scale-free networks—generally results in a more pronounced increase in the critical benefit-to-cost ratio required for evolution to favor cooperation as compared to regular graphs. This conclusion is corroborated by an analysis of the effects of population structures on the fixation probabilities of strategies in general 2×2 games for different types of graphs. Computer simulations confirm the predictive power of our method and illustrate the improved accuracy as compared to previous studies.
On a conjecture concerning helly circle graphs
Directory of Open Access Journals (Sweden)
Durán Guillermo
2003-01-01
Full Text Available We say that G is an e-circle graph if there is a bijection between its vertices and straight lines on the cartesian plane such that two vertices are adjacent in G if and only if the corresponding lines intersect inside the circle of radius one. This definition suggests a method for deciding whether a given graph G is an e-circle graph, by constructing a convenient system S of equations and inequations which represents the structure of G, in such a way that G is an e-circle graph if and only if S has a solution. In fact, e-circle graphs are exactly the circle graphs (intersection graphs of chords in a circle, and thus this method provides an analytic way for recognizing circle graphs. A graph G is a Helly circle graph if G is a circle graph and there exists a model of G by chords such that every three pairwise intersecting chords intersect at the same point. A conjecture by Durán (2000 states that G is a Helly circle graph if and only if G is a circle graph and contains no induced diamonds (a diamond is a graph formed by four vertices and five edges. Many unsuccessful efforts - mainly based on combinatorial and geometrical approaches - have been done in order to validate this conjecture. In this work, we utilize the ideas behind the definition of e-circle graphs and restate this conjecture in terms of an equivalence between two systems of equations and inequations, providing a new, analytic tool to deal with it.
Centrosymmetric Graphs And A Lower Bound For Graph Energy Of Fullerenes
Directory of Open Access Journals (Sweden)
Katona Gyula Y.
2014-11-01
Full Text Available The energy of a molecular graph G is defined as the summation of the absolute values of the eigenvalues of adjacency matrix of a graph G. In this paper, an infinite class of fullerene graphs with 10n vertices, n ≥ 2, is considered. By proving centrosymmetricity of the adjacency matrix of these fullerene graphs, a lower bound for its energy is given. Our method is general and can be extended to other class of fullerene graphs.
Subsampling for graph power spectrum estimation
Chepuri, Sundeep Prabhakar; Leus, Geert
2016-01-01
In this paper we focus on subsampling stationary random signals that reside on the vertices of undirected graphs. Second-order stationary graph signals are obtained by filtering white noise and they admit a well-defined power spectrum. Estimating the graph power spectrum forms a central component of stationary graph signal processing and related inference tasks. We show that by sampling a significantly smaller subset of vertices and using simple least squares, we can reconstruct the power spectrum of the graph signal from the subsampled observations, without any spectral priors. In addition, a near-optimal greedy algorithm is developed to design the subsampling scheme.
On 4-critical t-perfect graphs
Benchetrit, Yohann
2016-01-01
It is an open question whether the chromatic number of $t$-perfect graphs is bounded by a constant. The largest known value for this parameter is 4, and the only example of a 4-critical $t$-perfect graph, due to Laurent and Seymour, is the complement of the line graph of the prism $\\Pi$ (a graph is 4-critical if it has chromatic number 4 and all its proper induced subgraphs are 3-colorable). In this paper, we show a new example of a 4-critical $t$-perfect graph: the complement of the line gra...
Subsampling for graph power spectrum estimation
Chepuri, Sundeep Prabhakar
2016-10-06
In this paper we focus on subsampling stationary random signals that reside on the vertices of undirected graphs. Second-order stationary graph signals are obtained by filtering white noise and they admit a well-defined power spectrum. Estimating the graph power spectrum forms a central component of stationary graph signal processing and related inference tasks. We show that by sampling a significantly smaller subset of vertices and using simple least squares, we can reconstruct the power spectrum of the graph signal from the subsampled observations, without any spectral priors. In addition, a near-optimal greedy algorithm is developed to design the subsampling scheme.
Proving relations between modular graph functions
International Nuclear Information System (INIS)
Basu, Anirban
2016-01-01
We consider modular graph functions that arise in the low energy expansion of the four graviton amplitude in type II string theory. The vertices of these graphs are the positions of insertions of vertex operators on the toroidal worldsheet, while the links are the scalar Green functions connecting the vertices. Graphs with four and five links satisfy several non-trivial relations, which have been proved recently. We prove these relations by using elementary properties of Green functions and the details of the graphs. We also prove a relation between modular graph functions with six links. (paper)
Xiong, B.; Oude Elberink, S.; Vosselman, G.
2014-07-01
In the task of 3D building model reconstruction from point clouds we face the problem of recovering a roof topology graph in the presence of noise, small roof faces and low point densities. Errors in roof topology graphs will seriously affect the final modelling results. The aim of this research is to automatically correct these errors. We define the graph correction as a graph-to-graph problem, similar to the spelling correction problem (also called the string-to-string problem). The graph correction is more complex than string correction, as the graphs are 2D while strings are only 1D. We design a strategy based on a dictionary of graph edit operations to automatically identify and correct the errors in the input graph. For each type of error the graph edit dictionary stores a representative erroneous subgraph as well as the corrected version. As an erroneous roof topology graph may contain several errors, a heuristic search is applied to find the optimum sequence of graph edits to correct the errors one by one. The graph edit dictionary can be expanded to include entries needed to cope with errors that were previously not encountered. Experiments show that the dictionary with only fifteen entries already properly corrects one quarter of erroneous graphs in about 4500 buildings, and even half of the erroneous graphs in one test area, achieving as high as a 95% acceptance rate of the reconstructed models.
Graph-based unsupervised feature selection and multiview ...
Indian Academy of Sciences (India)
2015-09-28
Sep 28, 2015 ... is presented by Yu et al. (2010) to retrieve biomedical ... dimensional microarray data, still require further research to be done in this topic .... relatively aggressive and require therapy soon after diagnosis or else patient dies ...
Significance evaluation in factor graphs
DEFF Research Database (Denmark)
Madsen, Tobias; Hobolth, Asger; Jensen, Jens Ledet
2017-01-01
in genomics and the multiple-testing issues accompanying them, accurate significance evaluation is of great importance. We here address the problem of evaluating statistical significance of observations from factor graph models. Results Two novel numerical approximations for evaluation of statistical...... significance are presented. First a method using importance sampling. Second a saddlepoint approximation based method. We develop algorithms to efficiently compute the approximations and compare them to naive sampling and the normal approximation. The individual merits of the methods are analysed both from....... Conclusions The applicability of saddlepoint approximation and importance sampling is demonstrated on known models in the factor graph framework. Using the two methods we can substantially improve computational cost without compromising accuracy. This contribution allows analyses of large datasets...
Groups, graphs and random walks
Salvatori, Maura; Sava-Huss, Ecaterina
2017-01-01
An accessible and panoramic account of the theory of random walks on groups and graphs, stressing the strong connections of the theory with other branches of mathematics, including geometric and combinatorial group theory, potential analysis, and theoretical computer science. This volume brings together original surveys and research-expository papers from renowned and leading experts, many of whom spoke at the workshop 'Groups, Graphs and Random Walks' celebrating the sixtieth birthday of Wolfgang Woess in Cortona, Italy. Topics include: growth and amenability of groups; Schrödinger operators and symbolic dynamics; ergodic theorems; Thompson's group F; Poisson boundaries; probability theory on buildings and groups of Lie type; structure trees for edge cuts in networks; and mathematical crystallography. In what is currently a fast-growing area of mathematics, this book provides an up-to-date and valuable reference for both researchers and graduate students, from which future research activities will undoubted...
Flux networks in metabolic graphs
International Nuclear Information System (INIS)
Warren, P B; Queiros, S M Duarte; Jones, J L
2009-01-01
A metabolic model can be represented as a bipartite graph comprising linked reaction and metabolite nodes. Here it is shown how a network of conserved fluxes can be assigned to the edges of such a graph by combining the reaction fluxes with a conserved metabolite property such as molecular weight. A similar flux network can be constructed by combining the primal and dual solutions to the linear programming problem that typically arises in constraint-based modelling. Such constructions may help with the visualization of flux distributions in complex metabolic networks. The analysis also explains the strong correlation observed between metabolite shadow prices (the dual linear programming variables) and conserved metabolite properties. The methods were applied to recent metabolic models for Escherichia coli, Saccharomyces cerevisiae and Methanosarcina barkeri. Detailed results are reported for E. coli; similar results were found for other organisms
3-biplacement of bipartite graphs
Directory of Open Access Journals (Sweden)
Lech Adamus
2008-01-01
Full Text Available Let \\(G=(L,R;E\\ be a bipartite graph with color classes \\(L\\ and \\(R\\ and edge set \\(E\\. A set of two bijections \\(\\{\\varphi_1 , \\varphi_2\\}\\, \\(\\varphi_1 , \\varphi_2 :L \\cup R \\to L \\cup R\\, is said to be a \\(3\\-biplacement of \\(G\\ if \\(\\varphi_1(L= \\varphi_2(L = L\\ and \\(E \\cap \\varphi_1^*(E=\\emptyset\\, \\(E \\cap \\varphi_2^*(E=\\emptyset\\, \\(\\varphi_1^*(E \\cap \\varphi_2^*(E=\\emptyset\\, where \\(\\varphi_1^*\\, \\(\\varphi_2^*\\ are the maps defined on \\(E\\, induced by \\(\\varphi_1\\, \\(\\varphi_2\\, respectively. We prove that if \\(|L| = p\\, \\(|R| = q\\, \\(3 \\leq p \\leq q\\, then every graph \\(G=(L,R;E\\ of size at most \\(p\\ has a \\(3\\-biplacement.
On the centrality of some graphs
Directory of Open Access Journals (Sweden)
Vecdi Aytac
2017-10-01
Full Text Available A central issue in the analysis of complex networks is the assessment of their stability and vulnerability. A variety of measures have been proposed in the literature to quantify the stability of networks and a number of graph-theoretic parameters have been used to derive formulas for calculating network reliability. Different measures for graph vulnerability have been introduced so far to study different aspects of the graph behavior after removal of vertices or links such as connectivity, toughness, scattering number, binding number, residual closeness and integrity. In this paper, we consider betweenness centrality of a graph. Betweenness centrality of a vertex of a graph is portion of the shortest paths all pairs of vertices passing through a given vertex. In this paper, we obtain exact values for betweenness centrality for some wheel related graphs namely gear, helm, sunflower and friendship graphs.
Fibonacci number of the tadpole graph
Directory of Open Access Journals (Sweden)
Joe DeMaio
2014-10-01
Full Text Available In 1982, Prodinger and Tichy defined the Fibonacci number of a graph G to be the number of independent sets of the graph G. They did so since the Fibonacci number of the path graph Pn is the Fibonacci number F(n+2 and the Fibonacci number of the cycle graph Cn is the Lucas number Ln. The tadpole graph Tn,k is the graph created by concatenating Cn and Pk with an edge from any vertex of Cn to a pendant of Pk for integers n=3 and k=0. This paper establishes formulae and identities for the Fibonacci number of the tadpole graph via algebraic and combinatorial methods.
Software for Graph Analysis and Visualization
Directory of Open Access Journals (Sweden)
M. I. Kolomeychenko
2014-01-01
Full Text Available This paper describes the software for graph storage, analysis and visualization. The article presents a comparative analysis of existing software for analysis and visualization of graphs, describes the overall architecture of application and basic principles of construction and operation of the main modules. Furthermore, a description of the developed graph storage oriented to storage and processing of large-scale graphs is presented. The developed algorithm for finding communities and implemented algorithms of autolayouts of graphs are the main functionality of the product. The main advantage of the developed software is high speed processing of large size networks (up to millions of nodes and links. Moreover, the proposed graph storage architecture is unique and has no analogues. The developed approaches and algorithms are optimized for operating with big graphs and have high productivity.
Parallel External Memory Graph Algorithms
DEFF Research Database (Denmark)
Arge, Lars Allan; Goodrich, Michael T.; Sitchinava, Nodari
2010-01-01
In this paper, we study parallel I/O efficient graph algorithms in the Parallel External Memory (PEM) model, one o f the private-cache chip multiprocessor (CMP) models. We study the fundamental problem of list ranking which leads to efficient solutions to problems on trees, such as computing lowest...... an optimal speedup of Â¿(P) in parallel I/O complexity and parallel computation time, compared to the single-processor external memory counterparts....
Submanifolds weakly associated with graphs
Indian Academy of Sciences (India)
A CARRIAZO, L M FERN ´ANDEZ and A RODRÍGUEZ-HIDALGO. Department of Geometry and Topology, ..... by means of trees (connected graphs without cycles) and forests (disjoint unions of trees, see [6]) given in [3], by extending it to weak ... CR-submanifold. In this case, every tree is a K2. Finally, Theorem 3.8 of [3] can ...
Dexter: Data Extractor for scanned graphs
Demleitner, Markus
2011-12-01
The NASA Astrophysics Data System (ADS) now holds 1.3 million scanned pages, containing numerous plots and figures for which the original data sets are lost or inaccessible. The availability of scans of the figures can significantly ease the regeneration of the data sets. For this purpose, the ADS has developed Dexter, a Java applet that supports the user in this process. Dexter's basic functionality is to let the user manually digitize a plot by marking points and defining the coordinate transformation from the logical to the physical coordinate system. Advanced features include automatic identification of axes, tracing lines and finding points matching a template.
Topological structure of dictionary graphs
International Nuclear Information System (INIS)
Fuks, Henryk; Krzeminski, Mark
2009-01-01
We investigate the topological structure of the subgraphs of dictionary graphs constructed from WordNet and Moby thesaurus data. In the process of learning a foreign language, the learner knows only a subset of all words of the language, corresponding to a subgraph of a dictionary graph. When this subgraph grows with time, its topological properties change. We introduce the notion of the pseudocore and argue that the growth of the vocabulary roughly follows decreasing pseudocore numbers-that is, one first learns words with a high pseudocore number followed by smaller pseudocores. We also propose an alternative strategy for vocabulary growth, involving decreasing core numbers as opposed to pseudocore numbers. We find that as the core or pseudocore grows in size, the clustering coefficient first decreases, then reaches a minimum and starts increasing again. The minimum occurs when the vocabulary reaches a size between 10 3 and 10 4 . A simple model exhibiting similar behavior is proposed. The model is based on a generalized geometric random graph. Possible implications for language learning are discussed.
Quantum information processing with graph states
International Nuclear Information System (INIS)
Schlingemann, Dirk-Michael
2005-04-01
Graph states are multiparticle states which are associated with graphs. Each vertex of the graph corresponds to a single system or particle. The links describe quantum correlations (entanglement) between pairs of connected particles. Graph states were initiated independently by two research groups: On the one hand, graph states were introduced by Briegel and Raussendorf as a resource for a new model of one-way quantum computing, where algorithms are implemented by a sequence of measurements at single particles. On the other hand, graph states were developed by the author of this thesis and ReinhardWerner in Braunschweig, as a tool to build quantum error correcting codes, called graph codes. The connection between the two approaches was fully realized in close cooperation of both research groups. This habilitation thesis provides a survey of the theory of graph codes, focussing mainly, but not exclusively on the author's own research work. We present the theoretical and mathematical background for the analysis of graph codes. The concept of one-way quantum computing for general graph states is discussed. We explicitly show how to realize the encoding and decoding device of a graph code on a one-way quantum computer. This kind of implementation is to be seen as a mathematical description of a quantum memory device. In addition to that, we investigate interaction processes, which enable the creation of graph states on very large systems. Particular graph states can be created, for instance, by an Ising type interaction between next neighbor particles which sits at the points of an infinitely extended cubic lattice. Based on the theory of quantum cellular automata, we give a constructive characterization of general interactions which create a translationally invariant graph state. (orig.)
The paired-domination and the upper paired-domination numbers of graphs
Directory of Open Access Journals (Sweden)
Włodzimierz Ulatowski
2015-01-01
Full Text Available In this paper we continue the study of paired-domination in graphs. A paired-dominating set, abbreviated PDS, of a graph \\(G\\ with no isolated vertex is a dominating set of vertices whose induced subgraph has a perfect matching. The paired-domination number of \\(G\\, denoted by \\(\\gamma_{p}(G\\, is the minimum cardinality of a PDS of \\(G\\. The upper paired-domination number of \\(G\\, denoted by \\(\\Gamma_{p}(G\\, is the maximum cardinality of a minimal PDS of \\(G\\. Let \\(G\\ be a connected graph of order \\(n\\geq 3\\. Haynes and Slater in [Paired-domination in graphs, Networks 32 (1998, 199-206], showed that \\(\\gamma_{p}(G\\leq n-1\\ and they determine the extremal graphs \\(G\\ achieving this bound. In this paper we obtain analogous results for \\(\\Gamma_{p}(G\\. Dorbec, Henning and McCoy in [Upper total domination versus upper paired-domination, Questiones Mathematicae 30 (2007, 1-12] determine \\(\\Gamma_{p}(P_n\\, instead in this paper we determine \\(\\Gamma_{p}(C_n\\. Moreover, we describe some families of graphs \\(G\\ for which the equality \\(\\gamma_{p}(G=\\Gamma_{p}(G\\ holds.
Evaluation of vectorization potential of Graph500 on Intel's Xeon Phi
Stanic, Milan; Palomar, Oscar; Ratkovic, Ivan; Duric, Milovan; Unsal, Osman; Cristal, Adrian; Valero, Mateo
2014-01-01
Graph500 is a data intensive application for high performance computing and it is an increasingly important workload because graphs are a core part of most analytic applications. So far there is no work that examines if Graph500 is suitable for vectorization mostly due a lack of vector memory instructions for irregular memory accesses. The Xeon Phi is a massively parallel processor recently released by Intel with new features such as a wide 512-bit vector unit and vector scatter/gather instru...
Degree Associated Edge Reconstruction Number of Graphs with Regular Pruned Graph
Directory of Open Access Journals (Sweden)
P. Anusha Devi
2015-10-01
Full Text Available An ecard of a graph $G$ is a subgraph formed by deleting an edge. A da-ecard specifies the degree of the deleted edge along with the ecard. The degree associated edge reconstruction number of a graph $G,~dern(G,$ is the minimum number of da-ecards that uniquely determines $G.$ The adversary degree associated edge reconstruction number of a graph $G, adern(G,$ is the minimum number $k$ such that every collection of $k$ da-ecards of $G$ uniquely determines $G.$ The maximal subgraph without end vertices of a graph $G$ which is not a tree is the pruned graph of $G.$ It is shown that $dern$ of complete multipartite graphs and some connected graphs with regular pruned graph is $1$ or $2.$ We also determine $dern$ and $adern$ of corona product of standard graphs.
Indian Academy of Sciences (India)
The efficiency of an anchor may be expressed as the ratio (holding force + weight of anchor). In dry sand .... the market at the beginning of the coming season in three sizes, namely 20, 35 and. 60 lb. These are ... Taylor frozen-flow hypothesis.
The Capability to Hold Property
Claassen, Rutger
2015-01-01
This paper discusses the question of whether a capability theory of justice (such as that of Martha Nussbaum) should accept a basic “capability to hold property.” Answering this question is vital for bridging the gap between abstract capability theories of justice and their institutional
Equilibrium statistical mechanics on correlated random graphs
Barra, Adriano; Agliari, Elena
2011-02-01
Biological and social networks have recently attracted great attention from physicists. Among several aspects, two main ones may be stressed: a non-trivial topology of the graph describing the mutual interactions between agents and, typically, imitative, weighted, interactions. Despite such aspects being widely accepted and empirically confirmed, the schemes currently exploited in order to generate the expected topology are based on a priori assumptions and, in most cases, implement constant intensities for links. Here we propose a simple shift [-1,+1]\\to [0,+1] in the definition of patterns in a Hopfield model: a straightforward effect is the conversion of frustration into dilution. In fact, we show that by varying the bias of pattern distribution, the network topology (generated by the reciprocal affinities among agents, i.e. the Hebbian rule) crosses various well-known regimes, ranging from fully connected, to an extreme dilution scenario, then to completely disconnected. These features, as well as small-world properties, are, in this context, emergent and no longer imposed a priori. The model is throughout investigated also from a thermodynamics perspective: the Ising model defined on the resulting graph is analytically solved (at a replica symmetric level) by extending the double stochastic stability technique, and presented together with its fluctuation theory for a picture of criticality. Overall, our findings show that, at least at equilibrium, dilution (of whatever kind) simply decreases the strength of the coupling felt by the spins, but leaves the paramagnetic/ferromagnetic flavors unchanged. The main difference with respect to previous investigations is that, within our approach, replicas do not appear: instead of (multi)-overlaps as order parameters, we introduce a class of magnetizations on all the possible subgraphs belonging to the main one investigated: as a consequence, for these objects a closure for a self-consistent relation is achieved.
Neural complexity: A graph theoretic interpretation
Barnett, L.; Buckley, C. L.; Bullock, S.
2011-04-01
One of the central challenges facing modern neuroscience is to explain the ability of the nervous system to coherently integrate information across distinct functional modules in the absence of a central executive. To this end, Tononi [Proc. Natl. Acad. Sci. USA.PNASA60027-842410.1073/pnas.91.11.5033 91, 5033 (1994)] proposed a measure of neural complexity that purports to capture this property based on mutual information between complementary subsets of a system. Neural complexity, so defined, is one of a family of information theoretic metrics developed to measure the balance between the segregation and integration of a system’s dynamics. One key question arising for such measures involves understanding how they are influenced by network topology. Sporns [Cereb. Cortex53OPAV1047-321110.1093/cercor/10.2.127 10, 127 (2000)] employed numerical models in order to determine the dependence of neural complexity on the topological features of a network. However, a complete picture has yet to be established. While De Lucia [Phys. Rev. EPLEEE81539-375510.1103/PhysRevE.71.016114 71, 016114 (2005)] made the first attempts at an analytical account of this relationship, their work utilized a formulation of neural complexity that, we argue, did not reflect the intuitions of the original work. In this paper we start by describing weighted connection matrices formed by applying a random continuous weight distribution to binary adjacency matrices. This allows us to derive an approximation for neural complexity in terms of the moments of the weight distribution and elementary graph motifs. In particular, we explicitly establish a dependency of neural complexity on cyclic graph motifs.
Equilibrium statistical mechanics on correlated random graphs
International Nuclear Information System (INIS)
Barra, Adriano; Agliari, Elena
2011-01-01
Biological and social networks have recently attracted great attention from physicists. Among several aspects, two main ones may be stressed: a non-trivial topology of the graph describing the mutual interactions between agents and, typically, imitative, weighted, interactions. Despite such aspects being widely accepted and empirically confirmed, the schemes currently exploited in order to generate the expected topology are based on a priori assumptions and, in most cases, implement constant intensities for links. Here we propose a simple shift [-1,+1]→[0,+1] in the definition of patterns in a Hopfield model: a straightforward effect is the conversion of frustration into dilution. In fact, we show that by varying the bias of pattern distribution, the network topology (generated by the reciprocal affinities among agents, i.e. the Hebbian rule) crosses various well-known regimes, ranging from fully connected, to an extreme dilution scenario, then to completely disconnected. These features, as well as small-world properties, are, in this context, emergent and no longer imposed a priori. The model is throughout investigated also from a thermodynamics perspective: the Ising model defined on the resulting graph is analytically solved (at a replica symmetric level) by extending the double stochastic stability technique, and presented together with its fluctuation theory for a picture of criticality. Overall, our findings show that, at least at equilibrium, dilution (of whatever kind) simply decreases the strength of the coupling felt by the spins, but leaves the paramagnetic/ferromagnetic flavors unchanged. The main difference with respect to previous investigations is that, within our approach, replicas do not appear: instead of (multi)-overlaps as order parameters, we introduce a class of magnetizations on all the possible subgraphs belonging to the main one investigated: as a consequence, for these objects a closure for a self-consistent relation is achieved
Tian, Shu; Zhang, Ye; Yan, Yiming; Su, Nan
2016-10-01
Segmentation of real-world remote sensing images is a challenge due to the complex texture information with high heterogeneity. Thus, graph-based image segmentation methods have been attracting great attention in the field of remote sensing. However, most of the traditional graph-based approaches fail to capture the intrinsic structure of the feature space and are sensitive to noises. A ℓ-norm regularization-based graph segmentation method is proposed to segment remote sensing images. First, we use the occlusion of the random texture model (ORTM) to extract the local histogram features. Then, a ℓ-norm regularized low-rank and sparse representation (LNNLRS) is implemented to construct a ℓ-regularized nonnegative low-rank and sparse graph (LNNLRS-graph), by the union of feature subspaces. Moreover, the LNNLRS-graph has a high ability to discriminate the manifold intrinsic structure of highly homogeneous texture information. Meanwhile, the LNNLRS representation takes advantage of the low-rank and sparse characteristics to remove the noises and corrupted data. Last, we introduce the LNNLRS-graph into the graph regularization nonnegative matrix factorization to enhance the segmentation accuracy. The experimental results using remote sensing images show that when compared to five state-of-the-art image segmentation methods, the proposed method achieves more accurate segmentation results.
Exploiting graph kernels for high performance biomedical relation extraction.
Panyam, Nagesh C; Verspoor, Karin; Cohn, Trevor; Ramamohanarao, Kotagiri
2018-01-30
Relation extraction from biomedical publications is an important task in the area of semantic mining of text. Kernel methods for supervised relation extraction are often preferred over manual feature engineering methods, when classifying highly ordered structures such as trees and graphs obtained from syntactic parsing of a sentence. Tree kernels such as the Subset Tree Kernel and Partial Tree Kernel have been shown to be effective for classifying constituency parse trees and basic dependency parse graphs of a sentence. Graph kernels such as the All Path Graph kernel (APG) and Approximate Subgraph Matching (ASM) kernel have been shown to be suitable for classifying general graphs with cycles, such as the enhanced dependency parse graph of a sentence. In this work, we present a high performance Chemical-Induced Disease (CID) relation extraction system. We present a comparative study of kernel methods for the CID task and also extend our study to the Protein-Protein Interaction (PPI) extraction task, an important biomedical relation extraction task. We discuss novel modifications to the ASM kernel to boost its performance and a method to apply graph kernels for extracting relations expressed in multiple sentences. Our system for CID relation extraction attains an F-score of 60%, without using external knowledge sources or task specific heuristic or rules. In comparison, the state of the art Chemical-Disease Relation Extraction system achieves an F-score of 56% using an ensemble of multiple machine learning methods, which is then boosted to 61% with a rule based system employing task specific post processing rules. For the CID task, graph kernels outperform tree kernels substantially, and the best performance is obtained with APG kernel that attains an F-score of 60%, followed by the ASM kernel at 57%. The performance difference between the ASM and APG kernels for CID sentence level relation extraction is not significant. In our evaluation of ASM for the PPI task, ASM
Replica methods for loopy sparse random graphs
International Nuclear Information System (INIS)
Coolen, ACC
2016-01-01
I report on the development of a novel statistical mechanical formalism for the analysis of random graphs with many short loops, and processes on such graphs. The graphs are defined via maximum entropy ensembles, in which both the degrees (via hard constraints) and the adjacency matrix spectrum (via a soft constraint) are prescribed. The sum over graphs can be done analytically, using a replica formalism with complex replica dimensions. All known results for tree-like graphs are recovered in a suitable limit. For loopy graphs, the emerging theory has an appealing and intuitive structure, suggests how message passing algorithms should be adapted, and what is the structure of theories describing spin systems on loopy architectures. However, the formalism is still largely untested, and may require further adjustment and refinement. (paper)
Chemical Graph Transformation with Stereo-Information
DEFF Research Database (Denmark)
Andersen, Jakob Lykke; Flamm, Christoph; Merkle, Daniel
2017-01-01
Double Pushout graph transformation naturally facilitates the modelling of chemical reactions: labelled undirected graphs model molecules and direct derivations model chemical reactions. However, the most straightforward modelling approach ignores the relative placement of atoms and their neighbo......Double Pushout graph transformation naturally facilitates the modelling of chemical reactions: labelled undirected graphs model molecules and direct derivations model chemical reactions. However, the most straightforward modelling approach ignores the relative placement of atoms...... and their neighbours in space. Stereoisomers of chemical compounds thus cannot be distinguished, even though their chemical activity may differ substantially. In this contribution we propose an extended chemical graph transformation system with attributes that encode information about local geometry. The modelling...... of graph transformation, but we here propose a framework that also allows for partially specified stereoinformation. While there are several stereochemical configurations to be considered, we focus here on the tetrahedral molecular shape, and suggest general principles for how to treat all other chemically...
Reconstructing Topological Graphs and Continua
Gartside, Paul; Pitz, Max F.; Suabedissen, Rolf
2015-01-01
The deck of a topological space $X$ is the set $\\mathcal{D}(X)=\\{[X \\setminus \\{x\\}] \\colon x \\in X\\}$, where $[Z]$ denotes the homeomorphism class of $Z$. A space $X$ is topologically reconstructible if whenever $\\mathcal{D}(X)=\\mathcal{D}(Y)$ then $X$ is homeomorphic to $Y$. It is shown that all metrizable compact connected spaces are reconstructible. It follows that all finite graphs, when viewed as a 1-dimensional cell-complex, are reconstructible in the topological sense, and more genera...
INNOVATION DEVELOPMENT MANAGEMENT IN VERTICALLY INTEGRATED HOLDING COMPANY
Directory of Open Access Journals (Sweden)
Natalya T. Uspenskaja
2015-01-01
Full Text Available The trend towards production consolidation and integration processes taking place both in the Russian and global economies leads to development of business associations, with a holding company being the most common form inRussiaand around the globe. The evidence in favor of the formation of holding companies is that they can benefit from the scale (bulk purchasing, centralized stuff training; in the global capital and exports markets they can be more effective than smaller businesses and, if non-profitable, a loss-making structure is easier to liquidate than the entire company; holding companies and associations can be an effective defender from political interference. As the importance of the well-functioning and harmonized procedure for the companies’ integration will increase (especially in the context of Russian business, where specific features of many areas of the production system imply the use of holding oligopolies as the most effective form of market structures, there is a need in their more profound study and, in particular, in the analysis of the most important technologies of the general integration procedure. The article outlines the relevance of innovative development management of vertically integrated holding systems, lists principles of innovative activity management and considers the features of innovation management of a vertically integrated holding company. The objective of the research is to study theoretical and practical aspects of innovative development management in vertically integrated holding systems. The object of research is management structures in innovative holding companies. While working on the article, the following methods of economic research were used: abstract and logical method, empirical method, method of expert evaluations, as well as methods of structural and functional and statistical analysis.
On path hypercompositions in graphs and automata
Directory of Open Access Journals (Sweden)
Massouros Christos G.
2016-01-01
Full Text Available The paths in graphs define hypercompositions in the set of their vertices and therefore it is feasible to associate hypercompositional structures to each graph. Similarly, the strings of letters from their alphabet, define hypercompositions in the automata, which in turn define the associated hypergroups to the automata. The study of the associated hypercompositional structures gives results in both, graphs and automata theory.
Attack Graph Construction for Security Events Analysis
Directory of Open Access Journals (Sweden)
Andrey Alexeevich Chechulin
2014-09-01
Full Text Available The paper is devoted to investigation of the attack graphs construction and analysis task for a network security evaluation and real-time security event processing. Main object of this research is the attack modeling process. The paper contains the description of attack graphs building, modifying and analysis technique as well as overview of implemented prototype for network security analysis based on attack graph approach.
Steiner Distance in Graphs--A Survey
Mao, Yaping
2017-01-01
For a connected graph $G$ of order at least $2$ and $S\\subseteq V(G)$, the \\emph{Steiner distance} $d_G(S)$ among the vertices of $S$ is the minimum size among all connected subgraphs whose vertex sets contain $S$. In this paper, we summarize the known results on the Steiner distance parameters, including Steiner distance, Steiner diameter, Steiner center, Steiner median, Steiner interval, Steiner distance hereditary graph, Steiner distance stable graph, average Steiner distance, and Steiner ...
Density conditions for triangles in multipartite graphs
DEFF Research Database (Denmark)
Bondy, Adrian; Shen, Jin; Thomassé, Stephan
2006-01-01
subgraphs in G. We investigate in particular the case where G is a complete multipartite graph. We prove that a finite tripartite graph with all edge densities greater than the golden ratio has a triangle and that this bound is best possible. Also we show that an infinite-partite graph with finite parts has...... a triangle, provided that the edge density between any two parts is greater than 1/2....
Efficient Algorithmic Frameworks via Structural Graph Theory
2016-10-28
constant. For example, they measured that, on large samples of the entire network, the Amazon graph has average degree 17.7, the Facebook graph has average...department heads’ opinions of departments, and generally lack transparency and well-defined measures . On the other hand, the National Research Council (the...Efficient and practical resource block allocation for LTE -based D2D network via graph coloring. Wireless Networks 20(4): 611-624 (2014) 50. Hossein
Decomposing a planar graph into an independent set and a 3-degenerate graph
DEFF Research Database (Denmark)
Thomassen, Carsten
2001-01-01
We prove the conjecture made by O. V. Borodin in 1976 that the vertex set of every planar graph can be decomposed into an independent set and a set inducing a 3-degenerate graph. (C) 2001 Academic Press....
Graph algorithms in the titan toolkit.
Energy Technology Data Exchange (ETDEWEB)
McLendon, William Clarence, III; Wylie, Brian Neil
2009-10-01
Graph algorithms are a key component in a wide variety of intelligence analysis activities. The Graph-Based Informatics for Non-Proliferation and Counter-Terrorism project addresses the critical need of making these graph algorithms accessible to Sandia analysts in a manner that is both intuitive and effective. Specifically we describe the design and implementation of an open source toolkit for doing graph analysis, informatics, and visualization that provides Sandia with novel analysis capability for non-proliferation and counter-terrorism.
Xu, Kexiang; Trinajstić, Nenad
2015-01-01
This is the first book to focus on the topological index, the Harary index, of a graph, including its mathematical properties, chemical applications and some related and attractive open problems. This book is dedicated to Professor Frank Harary (1921—2005), the grandmaster of graph theory and its applications. It has be written by experts in the field of graph theory and its applications. For a connected graph G, as an important distance-based topological index, the Harary index H(G) is defined as the sum of the reciprocals of the distance between any two unordered vertices of the graph G. In this book, the authors report on the newest results on the Harary index of a graph. These results mainly concern external graphs with respect to the Harary index; the relations to other topological indices; its properties and applications to pure graph theory and chemical graph theory; and two significant variants, i.e., additively and multiplicatively weighted Harary indices. In the last chapter, we present a number o...
Mechatronic modeling and simulation using bond graphs
Das, Shuvra
2009-01-01
Introduction to Mechatronics and System ModelingWhat Is Mechatronics?What Is a System and Why Model Systems?Mathematical Modeling Techniques Used in PracticeSoftwareBond Graphs: What Are They?Engineering SystemsPortsGeneralized VariablesBond GraphsBasic Components in SystemsA Brief Note about Bond Graph Power DirectionsSummary of Bond Direction RulesDrawing Bond Graphs for Simple Systems: Electrical and MechanicalSimplification Rules for Junction StructureDrawing Bond Graphs for Electrical SystemsDrawing Bond Graphs for Mechanical SystemsCausalityDrawing Bond Graphs for Hydraulic and Electronic Components and SystemsSome Basic Properties and Concepts for FluidsBond Graph Model of Hydraulic SystemsElectronic SystemsDeriving System Equations from Bond GraphsSystem VariablesDeriving System EquationsTackling Differential CausalityAlgebraic LoopsSolution of Model Equations and Their InterpretationZeroth Order SystemsFirst Order SystemsSecond Order SystemTransfer Functions and Frequency ResponsesNumerical Solution ...
An algebraic approach to graph codes
DEFF Research Database (Denmark)
Pinero, Fernando
This thesis consists of six chapters. The first chapter, contains a short introduction to coding theory in which we explain the coding theory concepts we use. In the second chapter, we present the required theory for evaluation codes and also give an example of some fundamental codes in coding...... theory as evaluation codes. Chapter three consists of the introduction to graph based codes, such as Tanner codes and graph codes. In Chapter four, we compute the dimension of some graph based codes with a result combining graph based codes and subfield subcodes. Moreover, some codes in chapter four...
DEFF Research Database (Denmark)
Jensen, T.R.; Thomassen, Carsten
2000-01-01
If k is a prime power, and G is a graph with n vertices, then a k-coloring of G may be considered as a vector in GF(k)(n). We prove that the subspace of GF(3)(n) spanned by all 3-colorings of a planar triangle-free graph with n vertices has dimension n. In particular, any such graph has at least n...... - 1 nonequivalent 3-colorings, and the addition of any edge or any vertex of degree 3 results in a 3-colorable graph. (C) 2000 John Wiley & Sons, Inc....
Interactive Graph Layout of a Million Nodes
Directory of Open Access Journals (Sweden)
Peng Mi
2016-12-01
Full Text Available Sensemaking of large graphs, specifically those with millions of nodes, is a crucial task in many fields. Automatic graph layout algorithms, augmented with real-time human-in-the-loop interaction, can potentially support sensemaking of large graphs. However, designing interactive algorithms to achieve this is challenging. In this paper, we tackle the scalability problem of interactive layout of large graphs, and contribute a new GPU-based force-directed layout algorithm that exploits graph topology. This algorithm can interactively layout graphs with millions of nodes, and support real-time interaction to explore alternative graph layouts. Users can directly manipulate the layout of vertices in a force-directed fashion. The complexity of traditional repulsive force computation is reduced by approximating calculations based on the hierarchical structure of multi-level clustered graphs. We evaluate the algorithm performance, and demonstrate human-in-the-loop layout in two sensemaking case studies. Moreover, we summarize lessons learned for designing interactive large graph layout algorithms on the GPU.
Reconstructing Nearly Simple Polytopes from their Graph
Doolittle, Joseph
2017-01-01
We present a partial description of which polytopes are reconstructible from their graphs. This is an extension of work by Blind and Mani (1987) and Kalai (1988), which showed that simple polytopes can be reconstructed from their graphs. In particular, we introduce a notion of $h$-nearly simple and prove that 1-nearly simple and 2-nearly simple polytopes are reconstructible from their graphs. We also give an example of a 3-nearly simple polytope which is not reconstructible from its graph. Fu...
A Reduction of the Graph Reconstruction Conjecture
Directory of Open Access Journals (Sweden)
Monikandan S.
2014-08-01
Full Text Available A graph is said to be reconstructible if it is determined up to isomor- phism from the collection of all its one-vertex deleted unlabeled subgraphs. Reconstruction Conjecture (RC asserts that all graphs on at least three vertices are reconstructible. In this paper, we prove that interval-regular graphs and some new classes of graphs are reconstructible and show that RC is true if and only if all non-geodetic and non-interval-regular blocks G with diam(G = 2 or diam(Ḡ = diam(G = 3 are reconstructible
Total dominator chromatic number of a graph
Directory of Open Access Journals (Sweden)
Adel P. Kazemi
2015-06-01
Full Text Available Given a graph $G$, the total dominator coloring problem seeks a proper coloring of $G$ with the additional property that every vertex in the graph is adjacent to all vertices of a color class. We seek to minimize the number of color classes. We initiate to study this problem on several classes of graphs, as well as finding general bounds and characterizations. We also compare the total dominator chromatic number of a graph with the chromatic number and the total domination number of it.
Equitable Colorings Of Corona Multiproducts Of Graphs
Directory of Open Access Journals (Sweden)
Furmánczyk Hanna
2017-11-01
Full Text Available A graph is equitably k-colorable if its vertices can be partitioned into k independent sets in such a way that the numbers of vertices in any two sets differ by at most one. The smallest k for which such a coloring exists is known as the equitable chromatic number of G and denoted by =(G. It is known that the problem of computation of =(G is NP-hard in general and remains so for corona graphs. In this paper we consider the same model of coloring in the case of corona multiproducts of graphs. In particular, we obtain some results regarding the equitable chromatic number for the l-corona product G ◦l H, where G is an equitably 3- or 4-colorable graph and H is an r-partite graph, a cycle or a complete graph. Our proofs are mostly constructive in that they lead to polynomial algorithms for equitable coloring of such graph products provided that there is given an equitable coloring of G. Moreover, we confirm the Equitable Coloring Conjecture for corona products of such graphs. This paper extends the results from [H. Furmánczyk, K. Kaliraj, M. Kubale and V.J. Vivin, Equitable coloring of corona products of graphs, Adv. Appl. Discrete Math. 11 (2013 103–120].
VT Digital Line Graph Miscellaneous Transmission Lines
Vermont Center for Geographic Information — (Link to Metadata) This datalayer is comprised of Miscellaineous Transmission Lines. Digital line graph (DLG) data are digital representations of cartographic...
2010-07-01
... and Finance: Treasury Regulations Relating to Money and Finance (Continued) OFFICE OF INVESTMENT... FOREIGN PERSONS Definitions § 800.217 Hold. The terms hold(s) and holding mean legal or beneficial ownership, whether direct or indirect, whether through fiduciaries, agents, or other means. ...
Multiplicative Attribute Graph Model of Real-World Networks
Energy Technology Data Exchange (ETDEWEB)
Kim, Myunghwan [Stanford Univ., CA (United States); Leskovec, Jure [Stanford Univ., CA (United States)
2010-10-20
Large scale real-world network data, such as social networks, Internet andWeb graphs, is ubiquitous in a variety of scientific domains. The study of such social and information networks commonly finds patterns and explain their emergence through tractable models. In most networks, especially in social networks, nodes also have a rich set of attributes (e.g., age, gender) associatedwith them. However, most of the existing network models focus only on modeling the network structure while ignoring the features of nodes in the network. Here we present a class of network models that we refer to as the Multiplicative Attribute Graphs (MAG), which naturally captures the interactions between the network structure and node attributes. We consider a model where each node has a vector of categorical features associated with it. The probability of an edge between a pair of nodes then depends on the product of individual attributeattribute similarities. The model yields itself to mathematical analysis as well as fit to real data. We derive thresholds for the connectivity, the emergence of the giant connected component, and show that the model gives rise to graphs with a constant diameter. Moreover, we analyze the degree distribution to show that the model can produce networks with either lognormal or power-law degree distribution depending on certain conditions.
SPECIALIZATION AND SUSTAINABLE DEVELOPMENT OF AGRICULTURAL HOLDINGS
Directory of Open Access Journals (Sweden)
Zofia Kołoszko-Chomentowska
2016-03-01
Full Text Available In the present article, an attempt was made to assess the sustainability of agricultural holdings with diff erent directions of production. Agricultural holdings in the Podlaskie voivodeship registered in the FADN system in 2011–2012 were investigated. Assessment accounted for agroecological indicators (share of permanent grasslands, share of cereals in crops, soil coverage with vegetation, stock density and economic indicators (profi tableness of land and labor. Analysis was conducted according to a classifi cation into agricultural holding types: fi eldcrops, dairy cattle, and granivores. Fieldcrop and granivore holdings achieved more favourable environmental sustainability indicators. Holdings specializing in dairy cattle breeding posed a threat to the natural environment, mainly due to their excessive stock density. Economic sustainability assessment showed that granivore holdings were assessed most favorably. In these holdings, holding income per full-time worker was 37% greater than in fi eldcrop holdings and 57% greater than in dairy cattle holdings.
Poor textural image tie point matching via graph theory
Yuan, Xiuxiao; Chen, Shiyu; Yuan, Wei; Cai, Yang
2017-07-01
Feature matching aims to find corresponding points to serve as tie points between images. Robust matching is still a challenging task when input images are characterized by low contrast or contain repetitive patterns, occlusions, or homogeneous textures. In this paper, a novel feature matching algorithm based on graph theory is proposed. This algorithm integrates both geometric and radiometric constraints into an edge-weighted (EW) affinity tensor. Tie points are then obtained by high-order graph matching. Four pairs of poor textural images covering forests, deserts, bare lands, and urban areas are tested. For comparison, three state-of-the-art matching techniques, namely, scale-invariant feature transform (SIFT), speeded up robust features (SURF), and features from accelerated segment test (FAST), are also used. The experimental results show that the matching recall obtained by SIFT, SURF, and FAST varies from 0 to 35% in different types of poor textures. However, through the integration of both geometry and radiometry and the EW strategy, the recall obtained by the proposed algorithm is better than 50% in all four image pairs. The better matching recall improves the number of correct matches, dispersion, and positional accuracy.
A conceptual holding model for veterinary applications
Directory of Open Access Journals (Sweden)
Nicola Ferrè
2014-05-01
Full Text Available Spatial references are required when geographical information systems (GIS are used for the collection, storage and management of data. In the veterinary domain, the spatial component of a holding (of animals is usually defined by coordinates, and no other relevant information needs to be interpreted or used for manipulation of the data in the GIS environment provided. Users trying to integrate or reuse spatial data organised in such a way, frequently face the problem of data incompatibility and inconsistency. The root of the problem lies in differences with respect to syntax as well as variations in the semantic, spatial and temporal representations of the geographic features. To overcome these problems and to facilitate the inter-operability of different GIS, spatial data must be defined according to a “schema” that includes the definition, acquisition, analysis, access, presentation and transfer of such data between different users and systems. We propose an application “schema” of holdings for GIS applications in the veterinary domain according to the European directive framework (directive 2007/2/EC - INSPIRE. The conceptual model put forward has been developed at two specific levels to produce the essential and the abstract model, respectively. The former establishes the conceptual linkage of the system design to the real world, while the latter describes how the system or software works. The result is an application “schema” that formalises and unifies the information-theoretic foundations of how to spatially represent a holding in order to ensure straightforward information-sharing within the veterinary community.
Individual Travel Behavior Modeling of Public Transport Passenger Based on Graph Construction
Directory of Open Access Journals (Sweden)
Quan Liang
2018-01-01
Full Text Available This paper presents a novel method for mining the individual travel behavior regularity of different public transport passengers through constructing travel behavior graph based model. The individual travel behavior graph is developed to represent spatial positions, time distributions, and travel routes and further forecasts the public transport passenger’s behavior choice. The proposed travel behavior graph is composed of macronodes, arcs, and transfer probability. Each macronode corresponds to a travel association map and represents a travel behavior. A travel association map also contains its own nodes. The nodes of a travel association map are created when the processed travel chain data shows significant change. Thus, each node of three layers represents a significant change of spatial travel positions, travel time, and routes, respectively. Since a travel association map represents a travel behavior, the graph can be considered a sequence of travel behaviors. Through integrating travel association map and calculating the probabilities of the arcs, it is possible to construct a unique travel behavior graph for each passenger. The data used in this study are multimode data matched by certain rules based on the data of public transport smart card transactions and network features. The case study results show that graph based method to model the individual travel behavior of public transport passengers is effective and feasible. Travel behavior graphs support customized public transport travel characteristics analysis and demand prediction.
On cyclic orthogonal double covers of circulant graphs by special infinite graphs
Directory of Open Access Journals (Sweden)
R. El-Shanawany
2017-12-01
Full Text Available In this article, a technique to construct cyclic orthogonal double covers (CODCs of regular circulant graphs by certain infinite graph classes such as complete bipartite and tripartite graphs and disjoint union of butterfly and K1,2n−10 is introduced.
The complexity of the matching-cut problem for planar graphs and other graph classes
Bonsma, P.S.
2009-01-01
The Matching-Cut problem is the problem to decide whether a graph has an edge cut that is also a matching. Previously this problem was studied under the name of the Decomposable Graph Recognition problem, and proved to be -complete when restricted to graphs with maximum degree four. In this paper it
Demadroid: Object Reference Graph-Based Malware Detection in Android
Directory of Open Access Journals (Sweden)
Huanran Wang
2018-01-01
Full Text Available Smartphone usage has been continuously increasing in recent years. In addition, Android devices are widely used in our daily life, becoming the most attractive target for hackers. Therefore, malware analysis of Android platform is in urgent demand. Static analysis and dynamic analysis methods are two classical approaches. However, they also have some drawbacks. Motivated by this, we present Demadroid, a framework to implement the detection of Android malware. We obtain the dynamic information to build Object Reference Graph and propose λ-VF2 algorithm for graph matching. Extensive experiments show that Demadroid can efficiently identify the malicious features of malware. Furthermore, the system can effectively resist obfuscated attacks and the variants of known malware to meet the demand for actual use.
Diffusion-based recommendation with trust relations on tripartite graphs
Wang, Ximeng; Liu, Yun; Zhang, Guangquan; Xiong, Fei; Lu, Jie
2017-08-01
The diffusion-based recommendation approach is a vital branch in recommender systems, which successfully applies physical dynamics to make recommendations for users on bipartite or tripartite graphs. Trust links indicate users’ social relations and can provide the benefit of reducing data sparsity. However, traditional diffusion-based algorithms only consider rating links when making recommendations. In this paper, the complementarity of users’ implicit and explicit trust is exploited, and a novel resource-allocation strategy is proposed, which integrates these two kinds of trust relations on tripartite graphs. Through empirical studies on three benchmark datasets, our proposed method obtains better performance than most of the benchmark algorithms in terms of accuracy, diversity and novelty. According to the experimental results, our method is an effective and reasonable way to integrate additional features into the diffusion-based recommendation approach.
Exponential random graph models for networks with community structure.
Fronczak, Piotr; Fronczak, Agata; Bujok, Maksymilian
2013-09-01
Although the community structure organization is an important characteristic of real-world networks, most of the traditional network models fail to reproduce the feature. Therefore, the models are useless as benchmark graphs for testing community detection algorithms. They are also inadequate to predict various properties of real networks. With this paper we intend to fill the gap. We develop an exponential random graph approach to networks with community structure. To this end we mainly built upon the idea of blockmodels. We consider both the classical blockmodel and its degree-corrected counterpart and study many of their properties analytically. We show that in the degree-corrected blockmodel, node degrees display an interesting scaling property, which is reminiscent of what is observed in real-world fractal networks. A short description of Monte Carlo simulations of the models is also given in the hope of being useful to others working in the field.
Maximization of regional probabilities using Optimal Surface Graphs
DEFF Research Database (Denmark)
Arias Lorza, Andres M.; Van Engelen, Arna; Petersen, Jens
2018-01-01
Purpose: We present a segmentation method that maximizes regional probabilities enclosed by coupled surfaces using an Optimal Surface Graph (OSG) cut approach. This OSG cut determines the globally optimal solution given a graph constructed around an initial surface. While most methods for vessel...... wall segmentation only use edge information, we show that maximizing regional probabilities using an OSG improves the segmentation results. We applied this to automatically segment the vessel wall of the carotid artery in magnetic resonance images. Methods: First, voxel-wise regional probability maps...... were obtained using a Support Vector Machine classifier trained on local image features. Then, the OSG segments the regions which maximizes the regional probabilities considering smoothness and topological constraints. Results: The method was evaluated on 49 carotid arteries from 30 subjects...
Enabling Graph Appliance for Genome Assembly
Energy Technology Data Exchange (ETDEWEB)
Singh, Rina [ORNL; Graves, Jeffrey A [ORNL; Lee, Sangkeun (Matt) [ORNL; Sukumar, Sreenivas R [ORNL; Shankar, Mallikarjun [ORNL
2015-01-01
In recent years, there has been a huge growth in the amount of genomic data available as reads generated from various genome sequencers. The number of reads generated can be huge, ranging from hundreds to billions of nucleotide, each varying in size. Assembling such large amounts of data is one of the challenging computational problems for both biomedical and data scientists. Most of the genome assemblers developed have used de Bruijn graph techniques. A de Bruijn graph represents a collection of read sequences by billions of vertices and edges, which require large amounts of memory and computational power to store and process. This is the major drawback to de Bruijn graph assembly. Massively parallel, multi-threaded, shared memory systems can be leveraged to overcome some of these issues. The objective of our research is to investigate the feasibility and scalability issues of de Bruijn graph assembly on Cray s Urika-GD system; Urika-GD is a high performance graph appliance with a large shared memory and massively multithreaded custom processor designed for executing SPARQL queries over large-scale RDF data sets. However, to the best of our knowledge, there is no research on representing a de Bruijn graph as an RDF graph or finding Eulerian paths in RDF graphs using SPARQL for potential genome discovery. In this paper, we address the issues involved in representing a de Bruin graphs as RDF graphs and propose an iterative querying approach for finding Eulerian paths in large RDF graphs. We evaluate the performance of our implementation on real world ebola genome datasets and illustrate how genome assembly can be accomplished with Urika-GD using iterative SPARQL queries.
Graph Theory Roots of Spatial Operators for Kinematics and Dynamics
Jain, Abhinandan
2011-01-01
Spatial operators have been used to analyze the dynamics of robotic multibody systems and to develop novel computational dynamics algorithms. Mass matrix factorization, inversion, diagonalization, and linearization are among several new insights obtained using such operators. While initially developed for serial rigid body manipulators, the spatial operators and the related mathematical analysis have been shown to extend very broadly including to tree and closed topology systems, to systems with flexible joints, links, etc. This work uses concepts from graph theory to explore the mathematical foundations of spatial operators. The goal is to study and characterize the properties of the spatial operators at an abstract level so that they can be applied to a broader range of dynamics problems. The rich mathematical properties of the kinematics and dynamics of robotic multibody systems has been an area of strong research interest for several decades. These properties are important to understand the inherent physical behavior of systems, for stability and control analysis, for the development of computational algorithms, and for model development of faithful models. Recurring patterns in spatial operators leads one to ask the more abstract question about the properties and characteristics of spatial operators that make them so broadly applicable. The idea is to step back from the specific application systems, and understand more deeply the generic requirements and properties of spatial operators, so that the insights and techniques are readily available across different kinematics and dynamics problems. In this work, techniques from graph theory were used to explore the abstract basis for the spatial operators. The close relationship between the mathematical properties of adjacency matrices for graphs and those of spatial operators and their kernels were established. The connections hold across very basic requirements on the system topology, the nature of the component
Energy Technology Data Exchange (ETDEWEB)
Kucheryavyi, V I
1974-12-31
A parametric alpha -representation of Feynman amplitude for any spinor graph, which is expressed in terms of the Meijer's G functions, is obtained. This representation is valid both for divergent and convergent graphs. The available ChisholmNakanishi-Symanzik alpha -representation for convergent scalar graph turns out to be a special of the formula obtained. Besides that, the expression has a number of useful features. This representation automatically removes the infrared divergencies connected with zero photon mass. The expression has a form in which the scale-invariant terms are explicitly separated from the terms breaking the invariance. It is shown by considering the simplest graphs of quantum electrodynamics that this representation keeps gauge invariance and Ward's identity for renormalized amplitudes. (auth)
Maximum-entropy networks pattern detection, network reconstruction and graph combinatorics
Squartini, Tiziano
2017-01-01
This book is an introduction to maximum-entropy models of random graphs with given topological properties and their applications. Its original contribution is the reformulation of many seemingly different problems in the study of both real networks and graph theory within the unified framework of maximum entropy. Particular emphasis is put on the detection of structural patterns in real networks, on the reconstruction of the properties of networks from partial information, and on the enumeration and sampling of graphs with given properties. After a first introductory chapter explaining the motivation, focus, aim and message of the book, chapter 2 introduces the formal construction of maximum-entropy ensembles of graphs with local topological constraints. Chapter 3 focuses on the problem of pattern detection in real networks and provides a powerful way to disentangle nontrivial higher-order structural features from those that can be traced back to simpler local constraints. Chapter 4 focuses on the problem o...
Isospectral graphs with identical nodal counts
International Nuclear Information System (INIS)
Oren, Idan; Band, Ram
2012-01-01
According to a recent conjecture, isospectral objects have different nodal count sequences (Gnutzmann et al 2005 J. Phys. A: Math. Gen. 38 8921–33). We study generalized Laplacians on discrete graphs, and use them to construct the first non-trivial counterexamples to this conjecture. In addition, these examples demonstrate a surprising connection between isospectral discrete and quantum graphs. (paper)
Compression-based inference on graph data
Bloem, P.; van den Bosch, A.; Heskes, T.; van Leeuwen, D.
2013-01-01
We investigate the use of compression-based learning on graph data. General purpose compressors operate on bitstrings or other sequential representations. A single graph can be represented sequentially in many ways, which may in uence the performance of sequential compressors. Using Normalized
On minimum degree conditions for supereulerian graphs
Broersma, Haitze J.; Xiong, L.
1999-01-01
A graph is called supereulerian if it has a spanning closed trail. Let $G$ be a 2-edge-connected graph of order $n$ such that each minimal edge cut $E \\subseteq E (G)$ with $|E| \\le 3$ satisfies the property that each component of $G-E$ has order at least $(n-2)/5$. We prove that either $G$ is
On the exterior structure of graphs
International Nuclear Information System (INIS)
Kastler, Daniel
2004-01-01
After a detailed ab initio description of the exterior structure of graphs as handled by Connes and Kreimer in their work on renormalization (illustrated by the example of the φ 3 model in six dimensions) we spell out in detail their study of the Lie algebra of infinitesimal characters and of the group of characters of the Hopf algebra of Feynman graphs
The Minimum Distance of Graph Codes
DEFF Research Database (Denmark)
Høholdt, Tom; Justesen, Jørn
2011-01-01
We study codes constructed from graphs where the code symbols are associated with the edges and the symbols connected to a given vertex are restricted to be codewords in a component code. In particular we treat such codes from bipartite expander graphs coming from Euclidean planes and other...... geometries. We give results on the minimum distances of the codes....
Domination versus disjunctive domination in graphs | Henning ...
African Journals Online (AJOL)
Domination versus disjunctive domination in graphs. Michael A Henning, Sinclair A Marcon. Abstract. A dominating set in a graph G is a set S of vertices of G such that every vertex not in S is adjacent to a vertex of S. The domination number of G is the minimum cardinality of a dominating set of G. For a positive integer b, ...
Eigenvalues and expansion of bipartite graphs
DEFF Research Database (Denmark)
Høholdt, Tom; Janwa, Heeralal
2012-01-01
We prove lower bounds on the largest and second largest eigenvalue of the adjacency matrix of bipartite graphs and give necessary and sufficient conditions for equality. We give several examples of classes that are optimal with respect to the bouns. We prove that BIBD-graphs are characterized by ...
Indian Academy of Sciences (India)
1National Centre for Advanced Research in Discrete Mathematics ... 3Department of Computer Science, Ball State University, Muncie, IN, USA .... The corona of two disjoint graphs G1 and G2 is defined to be the graph G = G1 ◦ G2,.
Trajectories entropy in dynamical graphs with memory
Directory of Open Access Journals (Sweden)
Francesco eCaravelli
2016-04-01
Full Text Available In this paper we investigate the application of non-local graph entropy to evolving and dynamical graphs. The measure is based upon the notion of Markov diffusion on a graph, and relies on the entropy applied to trajectories originating at a specific node. In particular, we study the model of reinforcement-decay graph dynamics, which leads to scale free graphs. We find that the node entropy characterizes the structure of the network in the two parameter phase-space describing the dynamical evolution of the weighted graph. We then apply an adapted version of the entropy measure to purely memristive circuits. We provide evidence that meanwhile in the case of DC voltage the entropy based on the forward probability is enough to characterize the graph properties, in the case of AC voltage generators one needs to consider both forward and backward based transition probabilities. We provide also evidence that the entropy highlights the self-organizing properties of memristive circuits, which re-organizes itself to satisfy the symmetries of the underlying graph.
Graphs, Ideal Flow, and the Transportation Network
Teknomo, Kardi
2016-01-01
This lecture discusses the mathematical relationship between network structure and network utilization of transportation network. Network structure means the graph itself. Network utilization represent the aggregation of trajectories of agents in using the network graph. I show the similarity and relationship between the structural pattern of the network and network utilization.
Supplantation of Mental Operations on Graphs
Vogel, Markus; Girwidz, Raimund; Engel, Joachim
2007-01-01
Research findings show the difficulties younger students have in working with graphs. Higher mental operations are necessary for a skilled interpretation of abstract representations. We suggest connecting a concrete representation of the modeled problem with the related graph. The idea is to illustrate essential mental operations externally. This…
Some remarks on definability of process graphs
Grabmayer, C.A.; Klop, J.W.; Luttik, B.; Baier, C.; Hermanns, H.
2006-01-01
We propose the notions of "density" and "connectivity" of infinite process graphs and investigate them in the context of the wellknown process algebras BPA and BPP. For a process graph G, the density function in a state s maps a natural number n to the number of states of G with distance less or
Declarative Process Mining for DCR Graphs
DEFF Research Database (Denmark)
Debois, Søren; Hildebrandt, Thomas T.; Laursen, Paw Høvsgaard
2017-01-01
We investigate process mining for the declarative Dynamic Condition Response (DCR) graphs process modelling language. We contribute (a) a process mining algorithm for DCR graphs, (b) a proposal for a set of metrics quantifying output model quality, and (c) a preliminary example-based comparison...
A Graph Library Extension of SVG
DEFF Research Database (Denmark)
Nørmark, Kurt
2007-01-01
be aggregated as a single node, and an entire graph can be embedded in a single node. In addition, a number of different graph animations are described. The starting point of the SVG extension is a library that provides an exact of mirror of SVG 1.1 in the functional programming language Scheme. Each element...
Acyclicity in edge-colored graphs
DEFF Research Database (Denmark)
Gutin, Gregory; Jones, Mark; Sheng, Bin
2017-01-01
A walk W in edge-colored graphs is called properly colored (PC) if every pair of consecutive edges in W is of different color. We introduce and study five types of PC acyclicity in edge-colored graphs such that graphs of PC acyclicity of type i is a proper superset of graphs of acyclicity of type i......+1, i=1,2,3,4. The first three types are equivalent to the absence of PC cycles, PC closed trails, and PC closed walks, respectively. While graphs of types 1, 2 and 3 can be recognized in polynomial time, the problem of recognizing graphs of type 4 is, somewhat surprisingly, NP-hard even for 2-edge-colored...... graphs (i.e., when only two colors are used). The same problem with respect to type 5 is polynomial-time solvable for all edge-colored graphs. Using the five types, we investigate the border between intractability and tractability for the problems of finding the maximum number of internally vertex...
From concatenated codes to graph codes
DEFF Research Database (Denmark)
Justesen, Jørn; Høholdt, Tom
2004-01-01
We consider codes based on simple bipartite expander graphs. These codes may be seen as the first step leading from product type concatenated codes to more complex graph codes. We emphasize constructions of specific codes of realistic lengths, and study the details of decoding by message passing...
Graph coarsening and clustering on the GPU
Fagginger Auer, B.O.; Bisseling, R.H.
2013-01-01
Agglomerative clustering is an effective greedy way to quickly generate graph clusterings of high modularity in a small amount of time. In an effort to use the power offered by multi-core CPU and GPU hardware to solve the clustering problem, we introduce a fine-grained sharedmemory parallel graph
Pixels to Graphs by Associative Embedding
Newell, Alejandro; Deng, Jia
2017-01-01
network such that it takes in an input image and produces a full graph. This is done end-to-end in a single stage with the use of associative embeddings. The network learns to simultaneously identify all of the elements that make up a graph and piece them
Isomorphisms and traversability of directed path graphs
Broersma, Haitze J.; Li, Xueliang; Li, X.
1998-01-01
The concept of a line digraph is generalized to that of a directed path graph. The directed path graph $\\forw P_k(D)$ of a digraph $D$ is obtained by representing the directed paths on $k$ vertices of $D$ by vertices. Two vertices are joined by an arc whenever the corresponding directed paths in $D$
Perfect secure domination in graphs
Directory of Open Access Journals (Sweden)
S.V. Divya Rashmi
2017-07-01
Full Text Available Let $G=(V,E$ be a graph. A subset $S$ of $V$ is a dominating set of $G$ if every vertex in $Vsetminus S$ is adjacent to a vertex in $S.$ A dominating set $S$ is called a secure dominating set if for each $vin Vsetminus S$ there exists $uin S$ such that $v$ is adjacent to $u$ and $S_1=(Ssetminus{u}cup {v}$ is a dominating set. If further the vertex $uin S$ is unique, then $S$ is called a perfect secure dominating set. The minimum cardinality of a perfect secure dominating set of $G$ is called the perfect secure domination number of $G$ and is denoted by $gamma_{ps}(G.$ In this paper we initiate a study of this parameter and present several basic results.
Graph Mining Meets the Semantic Web
Energy Technology Data Exchange (ETDEWEB)
Lee, Sangkeun (Matt) [ORNL; Sukumar, Sreenivas R [ORNL; Lim, Seung-Hwan [ORNL
2015-01-01
The Resource Description Framework (RDF) and SPARQL Protocol and RDF Query Language (SPARQL) were introduced about a decade ago to enable flexible schema-free data interchange on the Semantic Web. Today, data scientists use the framework as a scalable graph representation for integrating, querying, exploring and analyzing data sets hosted at different sources. With increasing adoption, the need for graph mining capabilities for the Semantic Web has emerged. We address that need through implementation of three popular iterative Graph Mining algorithms (Triangle count, Connected component analysis, and PageRank). We implement these algorithms as SPARQL queries, wrapped within Python scripts. We evaluate the performance of our implementation on 6 real world data sets and show graph mining algorithms (that have a linear-algebra formulation) can indeed be unleashed on data represented as RDF graphs using the SPARQL query interface.
On the nullity number of graphs
Directory of Open Access Journals (Sweden)
Mustapha Aouchiche
2017-10-01
Full Text Available The paper discusses bounds on the nullity number of graphs. It is proved in [B. Cheng and B. Liu, On the nullity of graphs. Electron. J. Linear Algebra 16 (2007 60--67] that $\\eta \\le n - D$, where $\\eta$, n and D denote the nullity number, the order and the diameter of a connected graph, respectively. We first give a necessary condition on the extremal graphs corresponding to that bound, and then we strengthen the bound itself using the maximum clique number. In addition, we prove bounds on the nullity using the number of pendant neighbors in a graph. One of those bounds is an improvement of a known bound involving the domination number.
Three Syntactic Theories for Combinatory Graph Reduction
DEFF Research Database (Denmark)
Danvy, Olivier; Zerny, Ian
2011-01-01
in a third syntactic theory. The structure of the store-based abstract machine corresponding to this third syntactic theory oincides with that of Turner's original reduction machine. The three syntactic theories presented here The three syntactic heories presented here therefore have the following......We present a purely syntactic theory of graph reduction for the canonical combinators S, K, and I, where graph vertices are represented with evaluation contexts and let expressions. We express this syntactic theory as a reduction semantics, which we refocus into the first storeless abstract machine...... for combinatory graph reduction, which we refunctionalize into the first storeless natural semantics for combinatory graph reduction.We then factor out the introduction of let expressions to denote as many graph vertices as possible upfront instead of on demand, resulting in a second syntactic theory, this one...
Three Syntactic Theories for Combinatory Graph Reduction
DEFF Research Database (Denmark)
Danvy, Olivier; Zerny, Ian
2013-01-01
, as a store-based reduction semantics of combinatory term graphs. We then refocus this store-based reduction semantics into a store-based abstract machine. The architecture of this store-based abstract machine coincides with that of Turner's original reduction machine. The three syntactic theories presented......We present a purely syntactic theory of graph reduction for the canonical combinators S, K, and I, where graph vertices are represented with evaluation contexts and let expressions. We express this rst syntactic theory as a storeless reduction semantics of combinatory terms. We then factor out...... the introduction of let expressions to denote as many graph vertices as possible upfront instead of on demand . The factored terms can be interpreted as term graphs in the sense of Barendregt et al. We express this second syntactic theory, which we prove equivalent to the rst, as a storeless reduction semantics...
Algorithms and Data Structures for Graphs
DEFF Research Database (Denmark)
Rotenberg, Eva
are planar graphs, which are those that can be drawn on a piece of paper without any pair of edges crossing. For planar graphs where each edge can only be traversed in one direction, a fundamental question is whether there is a route from vertex A to vertex B in the graph. We show how such a graph can...... of the form: "Is there an edge such that all paths between A and B go via that edge?" and which can quickly be updated when edges are inserted or deleted. We further show how to represent a planar graph such that we can quickly update our representation when an edge is deleted, and such that questions...
OPEX: Optimized Eccentricity Computation in Graphs
Energy Technology Data Exchange (ETDEWEB)
Henderson, Keith [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2011-11-14
Real-world graphs have many properties of interest, but often these properties are expensive to compute. We focus on eccentricity, radius and diameter in this work. These properties are useful measures of the global connectivity patterns in a graph. Unfortunately, computing eccentricity for all nodes is O(n2) for a graph with n nodes. We present OPEX, a novel combination of optimizations which improves computation time of these properties by orders of magnitude in real-world experiments on graphs of many different sizes. We run OPEX on graphs with up to millions of links. OPEX gives either exact results or bounded approximations, unlike its competitors which give probabilistic approximations or sacrifice node-level information (eccentricity) to compute graphlevel information (diameter).
On The Roman Domination Stable Graphs
Directory of Open Access Journals (Sweden)
Hajian Majid
2017-11-01
Full Text Available A Roman dominating function (or just RDF on a graph G = (V,E is a function f : V → {0, 1, 2} satisfying the condition that every vertex u for which f(u = 0 is adjacent to at least one vertex v for which f(v = 2. The weight of an RDF f is the value f(V (G = Pu2V (G f(u. The Roman domination number of a graph G, denoted by R(G, is the minimum weight of a Roman dominating function on G. A graph G is Roman domination stable if the Roman domination number of G remains unchanged under removal of any vertex. In this paper we present upper bounds for the Roman domination number in the class of Roman domination stable graphs, improving bounds posed in [V. Samodivkin, Roman domination in graphs: the class RUV R, Discrete Math. Algorithms Appl. 8 (2016 1650049].
Disease management research using event graphs.
Allore, H G; Schruben, L W
2000-08-01
Event Graphs, conditional representations of stochastic relationships between discrete events, simulate disease dynamics. In this paper, we demonstrate how Event Graphs, at an appropriate abstraction level, also extend and organize scientific knowledge about diseases. They can identify promising treatment strategies and directions for further research and provide enough detail for testing combinations of new medicines and interventions. Event Graphs can be enriched to incorporate and validate data and test new theories to reflect an expanding dynamic scientific knowledge base and establish performance criteria for the economic viability of new treatments. To illustrate, an Event Graph is developed for mastitis, a costly dairy cattle disease, for which extensive scientific literature exists. With only a modest amount of imagination, the methodology presented here can be seen to apply modeling to any disease, human, plant, or animal. The Event Graph simulation presented here is currently being used in research and in a new veterinary epidemiology course. Copyright 2000 Academic Press.
Pixels to Graphs by Associative Embedding
Newell, Alejandro
2017-06-22
Graphs are a useful abstraction of image content. Not only can graphs represent details about individual objects in a scene but they can capture the interactions between pairs of objects. We present a method for training a convolutional neural network such that it takes in an input image and produces a full graph. This is done end-to-end in a single stage with the use of associative embeddings. The network learns to simultaneously identify all of the elements that make up a graph and piece them together. We benchmark on the Visual Genome dataset, and report a Recall@50 of 9.7% compared to the prior state-of-the-art at 3.4%, a nearly threefold improvement on the challenging task of scene graph generation.
Approximate Computing Techniques for Iterative Graph Algorithms
Energy Technology Data Exchange (ETDEWEB)
Panyala, Ajay R.; Subasi, Omer; Halappanavar, Mahantesh; Kalyanaraman, Anantharaman; Chavarria Miranda, Daniel G.; Krishnamoorthy, Sriram
2017-12-18
Approximate computing enables processing of large-scale graphs by trading off quality for performance. Approximate computing techniques have become critical not only due to the emergence of parallel architectures but also the availability of large scale datasets enabling data-driven discovery. Using two prototypical graph algorithms, PageRank and community detection, we present several approximate computing heuristics to scale the performance with minimal loss of accuracy. We present several heuristics including loop perforation, data caching, incomplete graph coloring and synchronization, and evaluate their efficiency. We demonstrate performance improvements of up to 83% for PageRank and up to 450x for community detection, with low impact of accuracy for both the algorithms. We expect the proposed approximate techniques will enable scalable graph analytics on data of importance to several applications in science and their subsequent adoption to scale similar graph algorithms.
Do More Economists Hold Stocks?
DEFF Research Database (Denmark)
Christiansen, Charlotte; Joensen, Juanna Schröter; Rangvid, Jesper
A unique data set enables us to test the hypothesis that more economists than otherwise identical investors hold stocks due to informational advantages. We confirm that economists have a significantly higher probability of participating in the stock market than investors with any other education......, even when controlling for several background characteristics. We make use of a large register-based panel data set containing detailed information on the educational attainments and various financial and socioeconomic variables. We model the stock market participation decision by the probit model...
Inferring ontology graph structures using OWL reasoning
Rodriguez-Garcia, Miguel Angel
2018-01-05
Ontologies are representations of a conceptualization of a domain. Traditionally, ontologies in biology were represented as directed acyclic graphs (DAG) which represent the backbone taxonomy and additional relations between classes. These graphs are widely exploited for data analysis in the form of ontology enrichment or computation of semantic similarity. More recently, ontologies are developed in a formal language such as the Web Ontology Language (OWL) and consist of a set of axioms through which classes are defined or constrained. While the taxonomy of an ontology can be inferred directly from the axioms of an ontology as one of the standard OWL reasoning tasks, creating general graph structures from OWL ontologies that exploit the ontologies\\' semantic content remains a challenge.We developed a method to transform ontologies into graphs using an automated reasoner while taking into account all relations between classes. Searching for (existential) patterns in the deductive closure of ontologies, we can identify relations between classes that are implied but not asserted and generate graph structures that encode for a large part of the ontologies\\' semantic content. We demonstrate the advantages of our method by applying it to inference of protein-protein interactions through semantic similarity over the Gene Ontology and demonstrate that performance is increased when graph structures are inferred using deductive inference according to our method. Our software and experiment results are available at http://github.com/bio-ontology-research-group/Onto2Graph .Onto2Graph is a method to generate graph structures from OWL ontologies using automated reasoning. The resulting graphs can be used for improved ontology visualization and ontology-based data analysis.
Inferring ontology graph structures using OWL reasoning.
Rodríguez-García, Miguel Ángel; Hoehndorf, Robert
2018-01-05
Ontologies are representations of a conceptualization of a domain. Traditionally, ontologies in biology were represented as directed acyclic graphs (DAG) which represent the backbone taxonomy and additional relations between classes. These graphs are widely exploited for data analysis in the form of ontology enrichment or computation of semantic similarity. More recently, ontologies are developed in a formal language such as the Web Ontology Language (OWL) and consist of a set of axioms through which classes are defined or constrained. While the taxonomy of an ontology can be inferred directly from the axioms of an ontology as one of the standard OWL reasoning tasks, creating general graph structures from OWL ontologies that exploit the ontologies' semantic content remains a challenge. We developed a method to transform ontologies into graphs using an automated reasoner while taking into account all relations between classes. Searching for (existential) patterns in the deductive closure of ontologies, we can identify relations between classes that are implied but not asserted and generate graph structures that encode for a large part of the ontologies' semantic content. We demonstrate the advantages of our method by applying it to inference of protein-protein interactions through semantic similarity over the Gene Ontology and demonstrate that performance is increased when graph structures are inferred using deductive inference according to our method. Our software and experiment results are available at http://github.com/bio-ontology-research-group/Onto2Graph . Onto2Graph is a method to generate graph structures from OWL ontologies using automated reasoning. The resulting graphs can be used for improved ontology visualization and ontology-based data analysis.
Graph-based Operational Semantics of a Lazy Functional Languages
DEFF Research Database (Denmark)
Rose, Kristoffer Høgsbro
1992-01-01
Presents Graph Operational Semantics (GOS): a semantic specification formalism based on structural operational semantics and term graph rewriting. Demonstrates the method by specifying the dynamic ...
Content-Agnostic Malware Detection in Heterogeneous Malicious Distribution Graph
Alabdulmohsin, Ibrahim
2016-10-26
Malware detection has been widely studied by analysing either file dropping relationships or characteristics of the file distribution network. This paper, for the first time, studies a global heterogeneous malware delivery graph fusing file dropping relationship and the topology of the file distribution network. The integration offers a unique ability of structuring the end-to-end distribution relationship. However, it brings large heterogeneous graphs to analysis. In our study, an average daily generated graph has more than 4 million edges and 2.7 million nodes that differ in type, such as IPs, URLs, and files. We propose a novel Bayesian label propagation model to unify the multi-source information, including content-agnostic features of different node types and topological information of the heterogeneous network. Our approach does not need to examine the source codes nor inspect the dynamic behaviours of a binary. Instead, it estimates the maliciousness of a given file through a semi-supervised label propagation procedure, which has a linear time complexity w.r.t. the number of nodes and edges. The evaluation on 567 million real-world download events validates that our proposed approach efficiently detects malware with a high accuracy. © 2016 Copyright held by the owner/author(s).
Multiplex visibility graphs to investigate recurrent neural network dynamics
Bianchi, Filippo Maria; Livi, Lorenzo; Alippi, Cesare; Jenssen, Robert
2017-03-01
A recurrent neural network (RNN) is a universal approximator of dynamical systems, whose performance often depends on sensitive hyperparameters. Tuning them properly may be difficult and, typically, based on a trial-and-error approach. In this work, we adopt a graph-based framework to interpret and characterize internal dynamics of a class of RNNs called echo state networks (ESNs). We design principled unsupervised methods to derive hyperparameters configurations yielding maximal ESN performance, expressed in terms of prediction error and memory capacity. In particular, we propose to model time series generated by each neuron activations with a horizontal visibility graph, whose topological properties have been shown to be related to the underlying system dynamics. Successively, horizontal visibility graphs associated with all neurons become layers of a larger structure called a multiplex. We show that topological properties of such a multiplex reflect important features of ESN dynamics that can be used to guide the tuning of its hyperparamers. Results obtained on several benchmarks and a real-world dataset of telephone call data records show the effectiveness of the proposed methods.
Allowance Holdings and Transfers Data Inventory
U.S. Environmental Protection Agency — The Allowance Holdings and Transfers Data Inventory contains measured data on holdings and transactions of allowances under the NOx Budget Trading Program (NBP), a...
Identifying patients with Alzheimer's disease using resting-state fMRI and graph theory.
Khazaee, Ali; Ebrahimzadeh, Ata; Babajani-Feremi, Abbas
2015-11-01
Study of brain network on the basis of resting-state functional magnetic resonance imaging (fMRI) has provided promising results to investigate changes in connectivity among different brain regions because of diseases. Graph theory can efficiently characterize different aspects of the brain network by calculating measures of integration and segregation. In this study, we combine graph theoretical approaches with advanced machine learning methods to study functional brain network alteration in patients with Alzheimer's disease (AD). Support vector machine (SVM) was used to explore the ability of graph measures in diagnosis of AD. We applied our method on the resting-state fMRI data of twenty patients with AD and twenty age and gender matched healthy subjects. The data were preprocessed and each subject's graph was constructed by parcellation of the whole brain into 90 distinct regions using the automated anatomical labeling (AAL) atlas. The graph measures were then calculated and used as the discriminating features. Extracted network-based features were fed to different feature selection algorithms to choose most significant features. In addition to the machine learning approach, statistical analysis was performed on connectivity matrices to find altered connectivity patterns in patients with AD. Using the selected features, we were able to accurately classify patients with AD from healthy subjects with accuracy of 100%. Results of this study show that pattern recognition and graph of brain network, on the basis of the resting state fMRI data, can efficiently assist in the diagnosis of AD. Classification based on the resting-state fMRI can be used as a non-invasive and automatic tool to diagnosis of Alzheimer's disease. Copyright © 2015 International Federation of Clinical Neurophysiology. All rights reserved.
Twin edge colorings of certain square graphs and product graphs
Directory of Open Access Journals (Sweden)
R Rajarajachozhan
2016-04-01
Full Text Available A twin edge $k\\!$-coloring of a graph $G$ is a proper edge $k$-coloring of $G$ with the elements of $\\mathbb{Z}_k$ so that the induced vertex $k$-coloring, in which the color of a vertex $v$ in $G$ is the sum in $\\mathbb{Z}_k$ of the colors of the edges incident with $v,$ is a proper vertex $k\\!$-coloring. The minimum $k$ for which $G$ has a twin edge $k\\!$-coloring is called the twin chromatic index of $G.$ Twin chromatic index of the square $P_n^2,$ $n\\ge 4,$ and the square $C_n^2,$ $n\\ge 6,$ are determined. In fact, the twin chromatic index of the square $C_7^2$ is $\\Delta+2,$ where $\\Delta$ is the maximum degree. Twin chromatic index of $C_m\\,\\Box\\,P_n$ is determined, where $\\Box$ denotes the Cartesian product. $C_r$ and $P_r$ are, respectively, the cycle, and the path on $r$ vertices each.
Graph-theoretical concepts and physicochemical data
Directory of Open Access Journals (Sweden)
Lionello Pogliani
2003-02-01
Full Text Available Graph theoretical concepts have been used to model the molecular polarizabilities of fifty-four organic derivatives, and the induced dipole moment of a set of fifty-seven organic compounds divided into three subsets. The starting point of these modeling strategies is the hydrogen-suppressed chemical graph and pseudograph of a molecule, which works very well for second row atoms. From these types of graphs a set of graph-theoretical basis indices, the molecular connectivity indices, can be derived and used to model properties and activities of molecules. With the aid of the molecular connectivity basis indices it is then possible to build higher-order descriptors. The problem of 'graph' encoding the contribution of the inner-core electrons of heteroatoms can here be solved with the aid of odd complete graphs, Kp-(p-odd. The use of these graph tools allow to draw an optimal modeling of the molecular polarizabilities and a satisfactory modeling of the induced dipole moment of a wide set of organic derivatives.
Optical generation of matter qubit graph states
International Nuclear Information System (INIS)
Benjamin, S C; Eisert, J; Stace, T M
2005-01-01
We present a scheme for rapidly entangling matter qubits in order to create graph states for one-way quantum computing. The qubits can be simple three-level systems in separate cavities. Coupling involves only local fields and a static (unswitched) linear optics network. Fusion of graph-state sections occurs with, in principle, zero probability of damaging the nascent graph state. We avoid the finite thresholds of other schemes by operating on two entangled pairs, so that each generates exactly one photon. We do not require the relatively slow single qubit local flips to be applied during the growth phase: growth of the graph state can then become a purely optical process. The scheme naturally generates graph states with vertices of high degree and so is easily able to construct minimal graph states, with consequent resource savings. The most efficient approach will be to create new graph-state edges even as qubits elsewhere are measured, in a 'just in time' approach. An error analysis indicates that the scheme is relatively robust against imperfections in the apparatus
Ultrasonic methods for locating hold-up
International Nuclear Information System (INIS)
Sinha, D.N.; Olinger, C.T.
1995-01-01
Hold-up remains one of the major contributing factors to unaccounted for materials and can be a costly problem in decontamination and decommissioning activities. Ultrasonic techniques are being developed to noninvasively monitor hold-up in process equipment where the inner surface of such equipment may be in contact with the hold-up material. These techniques may be useful in improving hold-up measurements as well as optimizing decontamination techniques
Color normalization of histology slides using graph regularized sparse NMF
Sha, Lingdao; Schonfeld, Dan; Sethi, Amit
2017-03-01
representation of a pixel in the stain density space is constrained to follow the feature distance of the pixel to pixels in the neighborhood graph. Utilizing color matrix transfer method with the stain concentrations found using our GSNMF method, the color normalization performance was also better than existing methods.
A heterogeneous graph-based recommendation simulator
Energy Technology Data Exchange (ETDEWEB)
Yeonchan, Ahn [Seoul National University; Sungchan, Park [Seoul National University; Lee, Matt Sangkeun [ORNL; Sang-goo, Lee [Seoul National University
2013-01-01
Heterogeneous graph-based recommendation frameworks have flexibility in that they can incorporate various recommendation algorithms and various kinds of information to produce better results. In this demonstration, we present a heterogeneous graph-based recommendation simulator which enables participants to experience the flexibility of a heterogeneous graph-based recommendation method. With our system, participants can simulate various recommendation semantics by expressing the semantics via meaningful paths like User Movie User Movie. The simulator then returns the recommendation results on the fly based on the user-customized semantics using a fast Monte Carlo algorithm.
Giant Components in Biased Graph Processes
Amir, Gideon; Gurel-Gurevich, Ori; Lubetzky, Eyal; Singer, Amit
2005-01-01
A random graph process, $\\Gorg[1](n)$, is a sequence of graphs on $n$ vertices which begins with the edgeless graph, and where at each step a single edge is added according to a uniform distribution on the missing edges. It is well known that in such a process a giant component (of linear size) typically emerges after $(1+o(1))\\frac{n}{2}$ edges (a phenomenon known as ``the double jump''), i.e., at time $t=1$ when using a timescale of $n/2$ edges in each step. We consider a generalization of ...
Graph Processing on GPUs: A Survey
DEFF Research Database (Denmark)
Shi, Xuanhua; Zheng, Zhigao; Zhou, Yongluan
2018-01-01
hundreds of billions, has attracted much attention in both industry and academia. It still remains a great challenge to process such large-scale graphs. Researchers have been seeking for new possible solutions. Because of the massive degree of parallelism and the high memory access bandwidth in GPU......, utilizing GPU to accelerate graph processing proves to be a promising solution. This article surveys the key issues of graph processing on GPUs, including data layout, memory access pattern, workload mapping, and specific GPU programming. In this article, we summarize the state-of-the-art research on GPU...
The Partial Mapping of the Web Graph
Directory of Open Access Journals (Sweden)
Kristina Machova
2009-06-01
Full Text Available The paper presents an approach to partial mapping of a web sub-graph. This sub-graph contains the nearest surroundings of an actual web page. Our work deals with acquiring relevant Hyperlinks of a base web site, generation of adjacency matrix, the nearest distance matrix and matrix of converted distances of Hyperlinks, detection of compactness of web representation, and visualization of its graphical representation. The paper introduces an LWP algorithm – a technique for Hyperlink filtration. This work attempts to help users with the orientation within the web graph.
Graph reconstruction with a betweenness oracle
DEFF Research Database (Denmark)
Abrahamsen, Mikkel; Bodwin, Greg; Rotenberg, Eva
2016-01-01
Graph reconstruction algorithms seek to learn a hidden graph by repeatedly querying a blackbox oracle for information about the graph structure. Perhaps the most well studied and applied version of the problem uses a distance oracle, which can report the shortest path distance between any pair...... of nodes. We introduce and study the betweenness oracle, where bet(a, m, z) is true iff m lies on a shortest path between a and z. This oracle is strictly weaker than a distance oracle, in the sense that a betweenness query can be simulated by a constant number of distance queries, but not vice versa...
A first course in graph theory
Chartrand, Gary
2012-01-01
This comprehensive text offers undergraduates a remarkably student-friendly introduction to graph theory. Written by two of the field's most prominent experts, it takes an engaging approach that emphasizes graph theory's history. Unique examples and lucid proofs provide a sound yet accessible treatment that stimulates interest in an evolving subject and its many applications.Optional sections designated as ""excursion"" and ""exploration"" present interesting sidelights of graph theory and touch upon topics that allow students the opportunity to experiment and use their imaginations. Three app
PDB2Graph: A toolbox for identifying critical amino acids map in proteins based on graph theory.
Niknam, Niloofar; Khakzad, Hamed; Arab, Seyed Shahriar; Naderi-Manesh, Hossein
2016-05-01
The integrative and cooperative nature of protein structure involves the assessment of topological and global features of constituent parts. Network concept takes complete advantage of both of these properties in the analysis concomitantly. High compatibility to structural concepts or physicochemical properties in addition to exploiting a remarkable simplification in the system has made network an ideal tool to explore biological systems. There are numerous examples in which different protein structural and functional characteristics have been clarified by the network approach. Here, we present an interactive and user-friendly Matlab-based toolbox, PDB2Graph, devoted to protein structure network construction, visualization, and analysis. Moreover, PDB2Graph is an appropriate tool for identifying critical nodes involved in protein structural robustness and function based on centrality indices. It maps critical amino acids in protein networks and can greatly aid structural biologists in selecting proper amino acid candidates for manipulating protein structures in a more reasonable and rational manner. To introduce the capability and efficiency of PDB2Graph in detail, the structural modification of Calmodulin through allosteric binding of Ca(2+) is considered. In addition, a mutational analysis for three well-identified model proteins including Phage T4 lysozyme, Barnase and Ribonuclease HI, was performed to inspect the influence of mutating important central residues on protein activity. Copyright © 2016 Elsevier Ltd. All rights reserved.
Yunia Mayasari, Ratih; Atmojo Kusmayadi, Tri
2018-04-01
Let G be a connected graph with vertex set V(G) and edge set E(G). For every pair of vertices u,v\\in V(G), the interval I[u, v] between u and v to be the collection of all vertices that belong to some shortest u ‑ v path. A vertex s\\in V(G) strongly resolves two vertices u and v if u belongs to a shortest v ‑ s path or v belongs to a shortest u ‑ s path. A vertex set S of G is a strong resolving set of G if every two distinct vertices of G are strongly resolved by some vertex of S. The strong metric basis of G is a strong resolving set with minimal cardinality. The strong metric dimension sdim(G) of a graph G is defined as the cardinality of strong metric basis. In this paper we determine the strong metric dimension of a generalized butterfly graph, starbarbell graph, and {C}mȯ {P}n graph. We obtain the strong metric dimension of generalized butterfly graph is sdim(BFn ) = 2n ‑ 2. The strong metric dimension of starbarbell graph is sdim(S{B}{m1,{m}2,\\ldots,{m}n})={\\sum }i=1n({m}i-1)-1. The strong metric dimension of {C}mȯ {P}n graph are sdim({C}mȯ {P}n)=2m-1 for m > 3 and n = 2, and sdim({C}mȯ {P}n)=2m-2 for m > 3 and n > 2.
Development of hold down plate of INGLE fuel assembly
International Nuclear Information System (INIS)
Kim, Hyeong Koo; Kim, Kyu Tae
1996-07-01
Hold down plate for the INGLE fuel which has been designed for high performance in the standpoints of thermal margin and structural integrity compared to current fuel for YGN 3/4 and UCN 3/4 has been developed and its structural integrity has been verified based on the eh stress analysis. The design feature of the developed hold down plate has not only perfect compatibility with the reactor internals of Korea standard reactor, but also brand-new locking mechanism between upper tie plate and guide tubes. This locking mechanism introduced to the INGLE fuel provides very simple and reliable reconstitutability. In this report, finite element stress analysis with the aid of the ANSYS code as a solver and the MSC/PATRAN code as a pre and post processor were performed to verify structural integrity of the hold down plate considering various load cases which seem to be applied to the hold down plate during its lifetime. Based on the analysis results, the developed hold down plate for INGLE fuel sustains structural integrity under considered load conditions. 3 tabs., 16 figs., 9 refs. (Author)
Hegarty, Peter; Lemieux, Anthony F; McQueen, Grant
2010-03-01
Graphs seem to connote facts more than words or tables do. Consequently, they seem unlikely places to spot implicit sexism at work. Yet, in 6 studies (N = 741), women and men constructed (Study 1) and recalled (Study 2) gender difference graphs with men's data first, and graphed powerful groups (Study 3) and individuals (Study 4) ahead of weaker ones. Participants who interpreted graph order as evidence of author "bias" inferred that the author graphed his or her own gender group first (Study 5). Women's, but not men's, preferences to graph men first were mitigated when participants graphed a difference between themselves and an opposite-sex friend prior to graphing gender differences (Study 6). Graph production and comprehension are affected by beliefs and suppositions about the groups represented in graphs to a greater degree than cognitive models of graph comprehension or realist models of scientific thinking have yet acknowledged.
Speech graphs provide a quantitative measure of thought disorder in psychosis.
Mota, Natalia B; Vasconcelos, Nivaldo A P; Lemos, Nathalia; Pieretti, Ana C; Kinouchi, Osame; Cecchi, Guillermo A; Copelli, Mauro; Ribeiro, Sidarta
2012-01-01
Psychosis has various causes, including mania and schizophrenia. Since the differential diagnosis of psychosis is exclusively based on subjective assessments of oral interviews with patients, an objective quantification of the speech disturbances that characterize mania and schizophrenia is in order. In principle, such quantification could be achieved by the analysis of speech graphs. A graph represents a network with nodes connected by edges; in speech graphs, nodes correspond to words and edges correspond to semantic and grammatical relationships. To quantify speech differences related to psychosis, interviews with schizophrenics, manics and normal subjects were recorded and represented as graphs. Manics scored significantly higher than schizophrenics in ten graph measures. Psychopathological symptoms such as logorrhea, poor speech, and flight of thoughts were grasped by the analysis even when verbosity differences were discounted. Binary classifiers based on speech graph measures sorted schizophrenics from manics with up to 93.8% of sensitivity and 93.7% of specificity. In contrast, sorting based on the scores of two standard psychiatric scales (BPRS and PANSS) reached only 62.5% of sensitivity and specificity. The results demonstrate that alterations of the thought process manifested in the speech of psychotic patients can be objectively measured using graph-theoretical tools, developed to capture specific features of the normal and dysfunctional flow of thought, such as divergence and recurrence. The quantitative analysis of speech graphs is not redundant with standard psychometric scales but rather complementary, as it yields a very accurate sorting of schizophrenics and manics. Overall, the results point to automated psychiatric diagnosis based not on what is said, but on how it is said.
Speech graphs provide a quantitative measure of thought disorder in psychosis.
Directory of Open Access Journals (Sweden)
Natalia B Mota
Full Text Available BACKGROUND: Psychosis has various causes, including mania and schizophrenia. Since the differential diagnosis of psychosis is exclusively based on subjective assessments of oral interviews with patients, an objective quantification of the speech disturbances that characterize mania and schizophrenia is in order. In principle, such quantification could be achieved by the analysis of speech graphs. A graph represents a network with nodes connected by edges; in speech graphs, nodes correspond to words and edges correspond to semantic and grammatical relationships. METHODOLOGY/PRINCIPAL FINDINGS: To quantify speech differences related to psychosis, interviews with schizophrenics, manics and normal subjects were recorded and represented as graphs. Manics scored significantly higher than schizophrenics in ten graph measures. Psychopathological symptoms such as logorrhea, poor speech, and flight of thoughts were grasped by the analysis even when verbosity differences were discounted. Binary classifiers based on speech graph measures sorted schizophrenics from manics with up to 93.8% of sensitivity and 93.7% of specificity. In contrast, sorting based on the scores of two standard psychiatric scales (BPRS and PANSS reached only 62.5% of sensitivity and specificity. CONCLUSIONS/SIGNIFICANCE: The results demonstrate that alterations of the thought process manifested in the speech of psychotic patients can be objectively measured using graph-theoretical tools, developed to capture specific features of the normal and dysfunctional flow of thought, such as divergence and recurrence. The quantitative analysis of speech graphs is not redundant with standard psychometric scales but rather complementary, as it yields a very accurate sorting of schizophrenics and manics. Overall, the results point to automated psychiatric diagnosis based not on what is said, but on how it is said.
Edge Cover Domination in Mangoldt Graph
African Journals Online (AJOL)
Bheema
Department of Applied Mathematics, Y.V. University, Kadapa, Andhra Pradesh, India. 2. Department of Mathematics, Sri Padmavati Mahila University, Tirupati, ...... arithmetic graphs, Ph.D Thesis, Sri Venkateswara University, Tirupati, India.
Inferring ontology graph structures using OWL reasoning
Rodriguez-Garcia, Miguel Angel; Hoehndorf, Robert
2018-01-01
' semantic content remains a challenge.We developed a method to transform ontologies into graphs using an automated reasoner while taking into account all relations between classes. Searching for (existential) patterns in the deductive closure of ontologies
Distance matrices and quadratic embedding of graphs
Directory of Open Access Journals (Sweden)
Nobuaki Obata
2018-04-01
Full Text Available A connected graph is said to be of QE class if it admits a quadratic embedding in a Hilbert space, or equivalently, if the distance matrix is conditionally negative definite. Several criteria for a graph to be of QE class are derived from the point of view of graph operations. For a quantitative criterion the QE constant is introduced and concrete examples are shown with explicit calculation. If the distance matrix admits a constant row sum, the QE constant coincides with the second largest eigenvalue of the distance matrix. The QE constants are determined for all graphs on $n$ vertices with $n\\le5$, among which two are not of QE class.
A graph model for opportunistic network coding
Sorour, Sameh; Aboutoraby, Neda; Al-Naffouri, Tareq Y.; Alouini, Mohamed-Slim
2015-01-01
© 2015 IEEE. Recent advancements in graph-based analysis and solutions of instantly decodable network coding (IDNC) trigger the interest to extend them to more complicated opportunistic network coding (ONC) scenarios, with limited increase
Kuramoto model for infinite graphs with kernels
Canale, Eduardo; Tembine, Hamidou; Tempone, Raul; Zouraris, Georgios E.
2015-01-01
. We focus on circulant graphs which have enough symmetries to make the computations easier. We then focus on the asymptotic regime where an integro-partial differential equation is derived. Numerical analysis and convergence proofs of the Fokker
Quantum Graphs And Their Resonance Properties
International Nuclear Information System (INIS)
Lipovsky, J.
2016-01-01
In the current review, we study the model of quantum graphs. We focus mainly on the resonance properties of quantum graphs. We define resolvent and scattering resonances and show their equivalence. We present various results on the asymptotics of the number of resolvent resonances in both non-magnetic and magnetic quantum graphs and find bounds on the coefficient by the leading term of the asymptotics. We explain methods how to find the spectral and resonance condition. Most of the notions and theorems are illustrated in examples. We show how to find resonances numerically and, in a simple example, we find trajectories of resonances in the complex plane. We discuss Fermi’s golden rule for quantum graphs and distribution of the mean intensity for the topological resonances. (author)
Determining X-chains in graph states
International Nuclear Information System (INIS)
Wu, Jun-Yi; Kampermann, Hermann; Bruß, Dagmar
2016-01-01
The representation of graph states in the X-basis as well as the calculation of graph state overlaps can efficiently be performed by using the concept of X-chains (Wu et al 2015 Phys. Rev. A 92 012322). We present a necessary and sufficient criterion for X-chains and show that they can efficiently be determined by the Bareiss algorithm. An analytical approach for searching X-chain groups of a graph state is proposed. Furthermore we generalize the concept of X-chains to so-called Euler chains, whose induced subgraphs are Eulerian. This approach helps to determine if a given vertex set is an X-chain and we show how Euler chains can be used in the construction of multipartite Bell inequalities for graph states. (paper)
The signed permutation group on Feynman graphs
Energy Technology Data Exchange (ETDEWEB)
Purkart, Julian, E-mail: purkart@physik.hu-berlin.de [Institute of Physics, Humboldt University, D-12489 Berlin (Germany)
2016-08-15
The Feynman rules assign to every graph an integral which can be written as a function of a scaling parameter L. Assuming L for the process under consideration is very small, so that contributions to the renormalization group are small, we can expand the integral and only consider the lowest orders in the scaling. The aim of this article is to determine specific combinations of graphs in a scalar quantum field theory that lead to a remarkable simplification of the first non-trivial term in the perturbation series. It will be seen that the result is independent of the renormalization scheme and the scattering angles. To achieve that goal we will utilize the parametric representation of scalar Feynman integrals as well as the Hopf algebraic structure of the Feynman graphs under consideration. Moreover, we will present a formula which reduces the effort of determining the first-order term in the perturbation series for the specific combination of graphs to a minimum.
Use of Attack Graphs in Security Systems
Directory of Open Access Journals (Sweden)
Vivek Shandilya
2014-01-01
Full Text Available Attack graphs have been used to model the vulnerabilities of the systems and their potential exploits. The successful exploits leading to the partial/total failure of the systems are subject of keen security interest. Considerable effort has been expended in exhaustive modeling, analyses, detection, and mitigation of attacks. One prominent methodology involves constructing attack graphs of the pertinent system for analysis and response strategies. This not only gives the simplified representation of the system, but also allows prioritizing the security properties whose violations are of greater concern, for both detection and repair. We present a survey and critical study of state-of-the-art technologies in attack graph generation and use in security system. Based on our research, we identify the potential, challenges, and direction of the current research in using attack graphs.
Query Optimizations over Decentralized RDF Graphs
Abdelaziz, Ibrahim; Mansour, Essam; Ouzzani, Mourad; Aboulnaga, Ashraf; Kalnis, Panos
2017-01-01
Applications in life sciences, decentralized social networks, Internet of Things, and statistical linked dataspaces integrate data from multiple decentralized RDF graphs via SPARQL queries. Several approaches have been proposed to optimize query
Fixation probability on clique-based graphs
Choi, Jeong-Ok; Yu, Unjong
2018-02-01
The fixation probability of a mutant in the evolutionary dynamics of Moran process is calculated by the Monte-Carlo method on a few families of clique-based graphs. It is shown that the complete suppression of fixation can be realized with the generalized clique-wheel graph in the limit of small wheel-clique ratio and infinite size. The family of clique-star is an amplifier, and clique-arms graph changes from amplifier to suppressor as the fitness of the mutant increases. We demonstrate that the overall structure of a graph can be more important to determine the fixation probability than the degree or the heat heterogeneity. The dependence of the fixation probability on the position of the first mutant is discussed.
High Dimensional Spectral Graph Theory and Non-backtracking Random Walks on Graphs
Kempton, Mark
This thesis has two primary areas of focus. First we study connection graphs, which are weighted graphs in which each edge is associated with a d-dimensional rotation matrix for some fixed dimension d, in addition to a scalar weight. Second, we study non-backtracking random walks on graphs, which are random walks with the additional constraint that they cannot return to the immediately previous state at any given step. Our work in connection graphs is centered on the notion of consistency, that is, the product of rotations moving from one vertex to another is independent of the path taken, and a generalization called epsilon-consistency. We present higher dimensional versions of the combinatorial Laplacian matrix and normalized Laplacian matrix from spectral graph theory, and give results characterizing the consistency of a connection graph in terms of the spectra of these matrices. We generalize several tools from classical spectral graph theory, such as PageRank and effective resistance, to apply to connection graphs. We use these tools to give algorithms for sparsification, clustering, and noise reduction on connection graphs. In non-backtracking random walks, we address the question raised by Alon et. al. concerning how the mixing rate of a non-backtracking random walk to its stationary distribution compares to the mixing rate for an ordinary random walk. Alon et. al. address this question for regular graphs. We take a different approach, and use a generalization of Ihara's Theorem to give a new proof of Alon's result for regular graphs, and to extend the result to biregular graphs. Finally, we give a non-backtracking version of Polya's Random Walk Theorem for 2-dimensional grids.
Expander graphs in pure and applied mathematics
Lubotzky, Alexander
2012-01-01
Expander graphs are highly connected sparse finite graphs. They play an important role in computer science as basic building blocks for network constructions, error correcting codes, algorithms and more. In recent years they have started to play an increasing role also in pure mathematics: number theory, group theory, geometry and more. This expository article describes their constructions and various applications in pure and applied mathematics.
Data transfer using complete bipartite graph
Chandrasekaran, V. M.; Praba, B.; Manimaran, A.; Kailash, G.
2017-11-01
Information exchange extent is an estimation of the amount of information sent between two focuses on a framework in a given time period. It is an extremely significant perception in present world. There are many ways of message passing in the present situations. Some of them are through encryption, decryption, by using complete bipartite graph. In this paper, we recommend a method for communication using messages through encryption of a complete bipartite graph.
Minimum K_2,3-saturated Graphs
Chen, Ya-Chen
2010-01-01
A graph is K_{2,3}-saturated if it has no subgraph isomorphic to K_{2,3}, but does contain a K_{2,3} after the addition of any new edge. We prove that the minimum number of edges in a K_{2,3}-saturated graph on n >= 5 vertices is sat(n, K_{2,3}) = 2n - 3.
Graph Treewidth and Geometric Thickness Parameters
Dujmović, Vida; Wood, David R.
2005-01-01
Consider a drawing of a graph $G$ in the plane such that crossing edges are coloured differently. The minimum number of colours, taken over all drawings of $G$, is the classical graph parameter "thickness". By restricting the edges to be straight, we obtain the "geometric thickness". By further restricting the vertices to be in convex position, we obtain the "book thickness". This paper studies the relationship between these parameters and treewidth. Our first main result states that for grap...
PERANCANGAN SISTEM PENJADWALAN PEMBELAJARAN MENGGUNAKAN GRAPH COLORING
Directory of Open Access Journals (Sweden)
Taufik Hidayatulloh
2016-03-01
Full Text Available Abstract - In learning scheduling problem often faced by schools in the new academic year. Sometimes collisions on the schedule was not found when the learning process has begun, so it is necessary to re-schedule on the schedule. And this resulted in the teaching and learning first weeks less to run well. Researchers previously have used various methods to solve the scheduling as Tabu search, Simulated Annealing, Network Flow, Graph Coloring. Graph Coloring (coloring of a graph is the simplest method and the experimental results indicate that the development of methods of scheduling Graph Coloring deliver results that meet an average of 93% across the specified constraints. At the time of split schedules that require extra energy at the start of learning did not experience a collision. With this system is expected to facilitate the allocation of space, teachers, lessons to avoid a collision. Keywords: Information Systems, Scheduling, graph coloring Abstraksi - Dalam masalah penjadwalan pembelajaran sering dihadapi sekolah pada tahun ajaran baru. Terkadang tabrakan pada jadwal itu baru ditemukan ketika proses belajar mengajar telah dimulai, sehingga perlu dilakukan penjadwalan ulang pada jadwal tersebut. Dan hal ini mengakibatkan kegiatan belajar mengajar pada minggu-minggu pertama kurang dapat berjalan dengan baik. Para peneliti sebelumnya telah menggunakan berbagai metode untuk memecahkan penjadwalan seperti Tabu search, Simulated Annealing, Network Flow, Graph Coloring. Graph Coloring (pewarnaan graf merupakan metode yang paling sederhana dan hasil percobaan menunjukkan bahwa pengembangan metode Graph Coloring memberikan hasil penjadwalan yang memenuhi rata-rata 93% seluruh constraints yang ditentukan. Pada saat membagi jadwal memerlukan energi ekstra agar pada saat di mulai pembelajaran tidak mengalami tabrakan. Dengan sistem ini diharapkan dapat mempermudah dalam mengalokasikan ruangan, guru, pelajaran agar tidak mengalami tabrakan. Kata
Minimal Function Graphs are not Instrumented
DEFF Research Database (Denmark)
Mycroft, Alan; Rosendahl, Mads
1992-01-01
The minimal function graph semantics of Jones and Mycroft is a standard denotational semantics modified to include only `reachable' parts of a program. We show that it may be expressed directly in terms of the standard semantics without the need for instrumentation at the expression level and......, in doing so, bring out a connection with strictness. This also makes it possible to prove a stronger theorem of correctness for the minimal function graph semantics....
Outer-totalistic cellular automata on graphs
International Nuclear Information System (INIS)
Marr, Carsten; Huett, Marc-Thorsten
2009-01-01
We present an intuitive formalism for implementing cellular automata on arbitrary topologies. By that means, we identify a symmetry operation in the class of elementary cellular automata. Moreover, we determine the subset of topologically sensitive elementary cellular automata and find that the overall number of complex patterns decreases under increasing neighborhood size in regular graphs. As exemplary applications, we apply the formalism to complex networks and compare the potential of scale-free graphs and metabolic networks to generate complex dynamics
The many faces of graph dynamics
Pignolet, Yvonne Anne; Roy, Matthieu; Schmid, Stefan; Tredan, Gilles
2017-06-01
The topological structure of complex networks has fascinated researchers for several decades, resulting in the discovery of many universal properties and reoccurring characteristics of different kinds of networks. However, much less is known today about the network dynamics: indeed, complex networks in reality are not static, but rather dynamically evolve over time. Our paper is motivated by the empirical observation that network evolution patterns seem far from random, but exhibit structure. Moreover, the specific patterns appear to depend on the network type, contradicting the existence of a ‘one fits it all’ model. However, we still lack observables to quantify these intuitions, as well as metrics to compare graph evolutions. Such observables and metrics are needed for extrapolating or predicting evolutions, as well as for interpolating graph evolutions. To explore the many faces of graph dynamics and to quantify temporal changes, this paper suggests to build upon the concept of centrality, a measure of node importance in a network. In particular, we introduce the notion of centrality distance, a natural similarity measure for two graphs which depends on a given centrality, characterizing the graph type. Intuitively, centrality distances reflect the extent to which (non-anonymous) node roles are different or, in case of dynamic graphs, have changed over time, between two graphs. We evaluate the centrality distance approach for five evolutionary models and seven real-world social and physical networks. Our results empirically show the usefulness of centrality distances for characterizing graph dynamics compared to a null-model of random evolution, and highlight the differences between the considered scenarios. Interestingly, our approach allows us to compare the dynamics of very different networks, in terms of scale and evolution speed.
Sparse geometric graphs with small dilation
Aronov, B.; Berg, de M.; Cheong, O.; Gudmundsson, J.; Haverkort, H.J.; Vigneron, A.; Deng, X.; Du, D.
2005-01-01
Given a set S of n points in the plane, and an integer k such that 0 = k
2013-04-18
... bank holding company's Consolidated Financial Statements for Bank Holding Companies (FR Y-9C) forms; \\3... Balance Sheet of the BHC's Consolidated Financial Statements for Bank Holding Companies (FR Y-9C) (OMB No... holding companies with $50 billion or more in total consolidated assets, and nonbank financial companies...
Optimal Embeddings of Distance Regular Graphs into Euclidean Spaces
F. Vallentin (Frank)
2008-01-01
htmlabstractIn this paper we give a lower bound for the least distortion embedding of a distance regular graph into Euclidean space. We use the lower bound for finding the least distortion for Hamming graphs, Johnson graphs, and all strongly regular graphs. Our technique involves semidefinite
Stability notions in synthetic graph generation: a preliminary study
van Leeuwen, W.; Fletcher, G.H.L.; Yakovets, N.; Bonifati, A.; Markl, Volker; Orlando, Salvatore; Mitschang, Bernhard
2017-01-01
With the rise in adoption of massive graph data, it be- comes increasingly important to design graph processing algorithms which have predictable behavior as the graph scales. This work presents an initial study of stability in the context of a schema-driven synthetic graph generation. Specifically,
On the Recognition of Fuzzy Circular Interval Graphs
Oriolo, Gianpaolo; Pietropaoli, Ugo; Stauffer, Gautier
2011-01-01
Fuzzy circular interval graphs are a generalization of proper circular arc graphs and have been recently introduced by Chudnovsky and Seymour as a fundamental subclass of claw-free graphs. In this paper, we provide a polynomial-time algorithm for recognizing such graphs, and more importantly for building a suitable representation.
On the size of edge chromatic 5-critical graphs
Directory of Open Access Journals (Sweden)
K. Kayathri
2017-04-01
Full Text Available In this paper, we study the size of edge chromatic 5-critical graphs in several classes of 5-critical graphs. In most of the classes of 5-critical graphs in this paper, we have obtained their exact size and in the other classes of 5-critical graphs, we give new bounds on their number of major vertices and size.
Smooth Bundling of Large Streaming and Sequence Graphs
Hurter, C.; Ersoy, O.; Telea, A.
2013-01-01
Dynamic graphs are increasingly pervasive in modern information systems. However, understanding how a graph changes in time is difficult. We present here two techniques for simplified visualization of dynamic graphs using edge bundles. The first technique uses a recent image-based graph bundling
Probabilistic Graph Layout for Uncertain Network Visualization.
Schulz, Christoph; Nocaj, Arlind; Goertler, Jochen; Deussen, Oliver; Brandes, Ulrik; Weiskopf, Daniel
2017-01-01
We present a novel uncertain network visualization technique based on node-link diagrams. Nodes expand spatially in our probabilistic graph layout, depending on the underlying probability distributions of edges. The visualization is created by computing a two-dimensional graph embedding that combines samples from the probabilistic graph. A Monte Carlo process is used to decompose a probabilistic graph into its possible instances and to continue with our graph layout technique. Splatting and edge bundling are used to visualize point clouds and network topology. The results provide insights into probability distributions for the entire network-not only for individual nodes and edges. We validate our approach using three data sets that represent a wide range of network types: synthetic data, protein-protein interactions from the STRING database, and travel times extracted from Google Maps. Our approach reveals general limitations of the force-directed layout and allows the user to recognize that some nodes of the graph are at a specific position just by chance.
Quantum complexity of graph and algebraic problems
International Nuclear Information System (INIS)
Doern, Sebastian
2008-01-01
This thesis is organized as follows: In Chapter 2 we give some basic notations, definitions and facts from linear algebra, graph theory, group theory and quantum computation. In Chapter 3 we describe three important methods for the construction of quantum algorithms. We present the quantum search algorithm by Grover, the quantum amplitude amplification and the quantum walk search technique by Magniez et al. These three tools are the basis for the development of our new quantum algorithms for graph and algebra problems. In Chapter 4 we present two tools for proving quantum query lower bounds. We present the quantum adversary method by Ambainis and the polynomial method introduced by Beals et al. The quantum adversary tool is very useful to prove good lower bounds for many graph and algebra problems. The part of the thesis containing the original results is organized in two parts. In the first part we consider the graph problems. In Chapter 5 we give a short summary of known quantum graph algorithms. In Chapter 6 to 8 we study the complexity of our new algorithms for matching problems, graph traversal and independent set problems on quantum computers. In the second part of our thesis we present new quantum algorithms for algebraic problems. In Chapter 9 to 10 we consider group testing problems and prove quantum complexity bounds for important problems from linear algebra. (orig.)
Multiple graph regularized nonnegative matrix factorization
Wang, Jim Jing-Yan
2013-10-01
Non-negative matrix factorization (NMF) has been widely used as a data representation method based on components. To overcome the disadvantage of NMF in failing to consider the manifold structure of a data set, graph regularized NMF (GrNMF) has been proposed by Cai et al. by constructing an affinity graph and searching for a matrix factorization that respects graph structure. Selecting a graph model and its corresponding parameters is critical for this strategy. This process is usually carried out by cross-validation or discrete grid search, which are time consuming and prone to overfitting. In this paper, we propose a GrNMF, called MultiGrNMF, in which the intrinsic manifold is approximated by a linear combination of several graphs with different models and parameters inspired by ensemble manifold regularization. Factorization metrics and linear combination coefficients of graphs are determined simultaneously within a unified object function. They are alternately optimized in an iterative algorithm, thus resulting in a novel data representation algorithm. Extensive experiments on a protein subcellular localization task and an Alzheimer\\'s disease diagnosis task demonstrate the effectiveness of the proposed algorithm. © 2013 Elsevier Ltd. All rights reserved.
Quantum complexity of graph and algebraic problems
Energy Technology Data Exchange (ETDEWEB)
Doern, Sebastian
2008-02-04
This thesis is organized as follows: In Chapter 2 we give some basic notations, definitions and facts from linear algebra, graph theory, group theory and quantum computation. In Chapter 3 we describe three important methods for the construction of quantum algorithms. We present the quantum search algorithm by Grover, the quantum amplitude amplification and the quantum walk search technique by Magniez et al. These three tools are the basis for the development of our new quantum algorithms for graph and algebra problems. In Chapter 4 we present two tools for proving quantum query lower bounds. We present the quantum adversary method by Ambainis and the polynomial method introduced by Beals et al. The quantum adversary tool is very useful to prove good lower bounds for many graph and algebra problems. The part of the thesis containing the original results is organized in two parts. In the first part we consider the graph problems. In Chapter 5 we give a short summary of known quantum graph algorithms. In Chapter 6 to 8 we study the complexity of our new algorithms for matching problems, graph traversal and independent set problems on quantum computers. In the second part of our thesis we present new quantum algorithms for algebraic problems. In Chapter 9 to 10 we consider group testing problems and prove quantum complexity bounds for important problems from linear algebra. (orig.)
An Automatic Cognitive Graph-Based Segmentation for Detection of Blood Vessels in Retinal Images
Directory of Open Access Journals (Sweden)
Rasha Al Shehhi
2016-01-01
Full Text Available This paper presents a hierarchical graph-based segmentation for blood vessel detection in digital retinal images. This segmentation employs some of perceptual Gestalt principles: similarity, closure, continuity, and proximity to merge segments into coherent connected vessel-like patterns. The integration of Gestalt principles is based on object-based features (e.g., color and black top-hat (BTH morphology and context and graph-analysis algorithms (e.g., Dijkstra path. The segmentation framework consists of two main steps: preprocessing and multiscale graph-based segmentation. Preprocessing is to enhance lighting condition, due to low illumination contrast, and to construct necessary features to enhance vessel structure due to sensitivity of vessel patterns to multiscale/multiorientation structure. Graph-based segmentation is to decrease computational processing required for region of interest into most semantic objects. The segmentation was evaluated on three publicly available datasets. Experimental results show that preprocessing stage achieves better results compared to state-of-the-art enhancement methods. The performance of the proposed graph-based segmentation is found to be consistent and comparable to other existing methods, with improved capability of detecting small/thin vessels.
spa: Semi-Supervised Semi-Parametric Graph-Based Estimation in R
Directory of Open Access Journals (Sweden)
Mark Culp
2011-04-01
Full Text Available In this paper, we present an R package that combines feature-based (X data and graph-based (G data for prediction of the response Y . In this particular case, Y is observed for a subset of the observations (labeled and missing for the remainder (unlabeled. We examine an approach for fitting Y = Xβ + f(G where β is a coefficient vector and f is a function over the vertices of the graph. The procedure is semi-supervised in nature (trained on the labeled and unlabeled sets, requiring iterative algorithms for fitting this estimate. The package provides several key functions for fitting and evaluating an estimator of this type. The package is illustrated on a text analysis data set, where the observations are text documents (papers, the response is the category of paper (either applied or theoretical statistics, the X information is the name of the journal in which the paper resides, and the graph is a co-citation network, with each vertex an observation and each edge the number of times that the two papers cite a common paper. An application involving classification of protein location using a protein interaction graph and an application involving classification on a manifold with part of the feature data converted to a graph are also presented.
Orientations of infinite graphs with prescribed edge-connectivity
DEFF Research Database (Denmark)
Thomassen, Carsten
2016-01-01
We prove a decomposition result for locally finite graphs which can be used to extend results on edge-connectivity from finite to infinite graphs. It implies that every 4k-edge-connected graph G contains an immersion of some finite 2k-edge-connected Eulerian graph containing any prescribed vertex...... set (while planar graphs show that G need not containa subdivision of a simple finite graph of large edge-connectivity). Also, every 8k-edge connected infinite graph has a k-arc-connected orientation, as conjectured in 1989....
On the local edge antimagicness of m-splitting graphs
Albirri, E. R.; Dafik; Slamin; Agustin, I. H.; Alfarisi, R.
2018-04-01
Let G be a connected and simple graph. A split graph is a graph derived by adding new vertex v‧ in every vertex v‧ such that v‧ adjacent to v in graph G. An m-splitting graph is a graph which has m v‧-vertices, denoted by mSpl(G). A local edge antimagic coloring in G = (V, E) graph is a bijection f:V (G)\\to \\{1,2,3,\\ldots,|V(G)|\\} in which for any two adjacent edges e 1 and e 2 satisfies w({e}1)\
DIMENSI METRIK GRAPH LOBSTER Ln (q;r
Directory of Open Access Journals (Sweden)
PANDE GDE DONY GUMILAR
2013-05-01
Full Text Available The metric dimension of connected graph G is the cardinality of minimum resolving set in graph G. In this research, we study how to find the metric dimension of lobster graph Ln (q;r. Lobster graph Ln (q;r is a regular lobster graph with vertices backbone on the main path, every backbone vertex is connected to q hand vertices and every hand vertex is connected to r finger vertices, with n, q, r element of N. We obtain the metric dimension of lobster graph L2 (1;1 is 1, the metric dimension of lobster graph L2 (1;1 for n > 2 is 2.
2006-01-01
ALICE's main austenitic stainless steel support structure (the Space Frame) has recently gone through many tests that proved quite challenging: insuring the structure is sound and lowering it horizontally into the ALICE cavern. This structure is constructed to hold the large volume detectors, such as the Time Projection Chamber, Transition Radiation Detector and Time of Flight inside the ALICE solenoid magnet. After the final assembly at CERN, two large mobile cranes were needed for the job of lifting and turning the 14 tonne frame onto its side. Once shifted, it was placed in Building SX2, one of the surface assembly areas designated for ALICE. The structure, which is 8 m in diameter and 7 m long, underwent many tests in its new position. Geometric control tests were performed by measuring each of the 18 cells and placing wooden or metal samples constructed to the same dimensions as the real thing inside the structure. The most important check was the movement of the real Time Projection Chamber from its s...
Relating zeta functions of discrete and quantum graphs
Harrison, Jonathan; Weyand, Tracy
2018-02-01
We write the spectral zeta function of the Laplace operator on an equilateral metric graph in terms of the spectral zeta function of the normalized Laplace operator on the corresponding discrete graph. To do this, we apply a relation between the spectrum of the Laplacian on a discrete graph and that of the Laplacian on an equilateral metric graph. As a by-product, we determine how the multiplicity of eigenvalues of the quantum graph, that are also in the spectrum of the graph with Dirichlet conditions at the vertices, depends on the graph geometry. Finally we apply the result to calculate the vacuum energy and spectral determinant of a complete bipartite graph and compare our results with those for a star graph, a graph in which all vertices are connected to a central vertex by a single edge.
Bipartite separability and nonlocal quantum operations on graphs
Dutta, Supriyo; Adhikari, Bibhas; Banerjee, Subhashish; Srikanth, R.
2016-07-01
In this paper we consider the separability problem for bipartite quantum states arising from graphs. Earlier it was proved that the degree criterion is the graph-theoretic counterpart of the familiar positive partial transpose criterion for separability, although there are entangled states with positive partial transpose for which the degree criterion fails. Here we introduce the concept of partially symmetric graphs and degree symmetric graphs by using the well-known concept of partial transposition of a graph and degree criteria, respectively. Thus, we provide classes of bipartite separable states of dimension m ×n arising from partially symmetric graphs. We identify partially asymmetric graphs that lack the property of partial symmetry. We develop a combinatorial procedure to create a partially asymmetric graph from a given partially symmetric graph. We show that this combinatorial operation can act as an entanglement generator for mixed states arising from partially symmetric graphs.
Quick Mining of Isomorphic Exact Large Patterns from Large Graphs
Almasri, Islam
2014-12-01
The applications of the sub graph isomorphism search are growing with the growing number of areas that model their systems using graphs or networks. Specifically, many biological systems, such as protein interaction networks, molecular structures and protein contact maps, are modeled as graphs. The sub graph isomorphism search is concerned with finding all sub graphs that are isomorphic to a relevant query graph, the existence of such sub graphs can reflect on the characteristics of the modeled system. The most computationally expensive step in the search for isomorphic sub graphs is the backtracking algorithm that traverses the nodes of the target graph. In this paper, we propose a pruning approach that is inspired by the minimum remaining value heuristic that achieves greater scalability over large query and target graphs. Our testing on various biological networks shows that performance enhancement of our approach over existing state-of-the-art approaches varies between 6x and 53x. © 2014 IEEE.
Genus Ranges of 4-Regular Rigid Vertex Graphs.
Buck, Dorothy; Dolzhenko, Egor; Jonoska, Nataša; Saito, Masahico; Valencia, Karin
2015-01-01
A rigid vertex of a graph is one that has a prescribed cyclic order of its incident edges. We study orientable genus ranges of 4-regular rigid vertex graphs. The (orientable) genus range is a set of genera values over all orientable surfaces into which a graph is embedded cellularly, and the embeddings of rigid vertex graphs are required to preserve the prescribed cyclic order of incident edges at every vertex. The genus ranges of 4-regular rigid vertex graphs are sets of consecutive integers, and we address two questions: which intervals of integers appear as genus ranges of such graphs, and what types of graphs realize a given genus range. For graphs with 2 n vertices ( n > 1), we prove that all intervals [ a, b ] for all a genus ranges. For graphs with 2 n - 1 vertices ( n ≥ 1), we prove that all intervals [ a, b ] for all a genus ranges. We also provide constructions of graphs that realize these ranges.
Quick Mining of Isomorphic Exact Large Patterns from Large Graphs
Almasri, Islam; Gao, Xin; Fedoroff, Nina V.
2014-01-01
The applications of the sub graph isomorphism search are growing with the growing number of areas that model their systems using graphs or networks. Specifically, many biological systems, such as protein interaction networks, molecular structures and protein contact maps, are modeled as graphs. The sub graph isomorphism search is concerned with finding all sub graphs that are isomorphic to a relevant query graph, the existence of such sub graphs can reflect on the characteristics of the modeled system. The most computationally expensive step in the search for isomorphic sub graphs is the backtracking algorithm that traverses the nodes of the target graph. In this paper, we propose a pruning approach that is inspired by the minimum remaining value heuristic that achieves greater scalability over large query and target graphs. Our testing on various biological networks shows that performance enhancement of our approach over existing state-of-the-art approaches varies between 6x and 53x. © 2014 IEEE.
International Nuclear Information System (INIS)
Golovanov, M.N.; Zyuzin, N.N.; Levin, G.L.; Chesnokov, A.N.
1987-01-01
An approach for estimation of reliability factors of complex reserved systems at early stages of development using the method of imitating simulation is considered. Different types of models, their merits and lacks are given. Features of in-core monitoring systems and advosability of graph model and graph theory element application for estimating reliability of such systems are shown. The results of investigation of the reliability factors of the reactor monitoring, control and core local protection subsystem are shown
Continuous-time quantum walks on star graphs
International Nuclear Information System (INIS)
Salimi, S.
2009-01-01
In this paper, we investigate continuous-time quantum walk on star graphs. It is shown that quantum central limit theorem for a continuous-time quantum walk on star graphs for N-fold star power graph, which are invariant under the quantum component of adjacency matrix, converges to continuous-time quantum walk on K 2 graphs (complete graph with two vertices) and the probability of observing walk tends to the uniform distribution.
Dependency Parsing with Transformed Feature
Directory of Open Access Journals (Sweden)
Fuxiang Wu
2017-01-01
Full Text Available Dependency parsing is an important subtask of natural language processing. In this paper, we propose an embedding feature transforming method for graph-based parsing, transform-based parsing, which directly utilizes the inner similarity of the features to extract information from all feature strings including the un-indexed strings and alleviate the feature sparse problem. The model transforms the extracted features to transformed features via applying a feature weight matrix, which consists of similarities between the feature strings. Since the matrix is usually rank-deficient because of similar feature strings, it would influence the strength of constraints. However, it is proven that the duplicate transformed features do not degrade the optimization algorithm: the margin infused relaxed algorithm. Moreover, this problem can be alleviated by reducing the number of the nearest transformed features of a feature. In addition, to further improve the parsing accuracy, a fusion parser is introduced to integrate transformed and original features. Our experiments verify that both transform-based and fusion parser improve the parsing accuracy compared to the corresponding feature-based parser.
Analysis of the 2005-2016 Earthquake Sequence in Northern Iran Using the Visibility Graph Method
Khoshnevis, Naeem; Taborda, Ricardo; Azizzadeh-Roodpish, Shima; Telesca, Luciano
2017-11-01
We present an analysis of the seismicity of northern Iran in the period between 2005 and 2016 using a recently introduced method based on concepts of graph theory. The method relies on the inter-event visibility defined in terms of a connectivity degree parameter, k, which is correlated with the earthquake magnitude, M. Previous studies show that the slope m of the line fitting the k- M plot by the least squares method also observes a relationship with the b value from the Gutenberg-Richter law, thus rendering the graph analysis useful to examine the seismicity of a region. These correlations seem to hold for the analysis of relatively small sequences of earthquakes, offering the possibility of studying seismicity parameters in time. We apply this approach to the case of the seismicity of northern Iran, using an earthquake catalog for the tectonic seismic regions of Azerbaijan, Alborz, and Kopeh Dagh. We use results drawn for this region with the visibility graph approach in combination with results from other similar studies to further improve the universal relationship between m and b, and show that the visibility graph approach can be considered as a valid alternative for analyzing regional seismicity properties and earthquake sequences.
Local unitary versus local Clifford equivalence of stabilizer and graph states
International Nuclear Information System (INIS)
Zeng, Bei; Chung, Hyeyoun; Cross, Andrew W.; Chuang, Isaac L.
2007-01-01
The equivalence of stabilizer states under local transformations is of fundamental interest in understanding properties and uses of entanglement. Two stabilizer states are equivalent under the usual stochastic local operations and classical communication criterion if and only if they are equivalent under local unitary (LU) operations. More surprisingly, under certain conditions, two LU-equivalent stabilizer states are also equivalent under local Clifford (LC) operations, as was shown by Van den Nest et al. [Phys. Rev. A 71, 062323 (2005)]. Here, we broaden the class of stabilizer states for which LU equivalence implies LC equivalence (LU LC) to include all stabilizer states represented by graphs with cycles of length neither 3 nor 4. To compare our result with Van den Nest et al.'s, we show that any stabilizer state of distance δ=2 is beyond their criterion. We then further prove that LU LC holds for a more general class of stabilizer states of δ=2. We also explicitly construct graphs representing δ>2 stabilizer states which are beyond their criterion: we identify all 58 graphs with up to 11 vertices and construct graphs with 2 m -1 (m≥4) vertices using quantum error-correcting codes which have non-Clifford transversal gates
The structured ancestral selection graph and the many-demes limit.
Slade, Paul F; Wakeley, John
2005-02-01
We show that the unstructured ancestral selection graph applies to part of the history of a sample from a population structured by restricted migration among subpopulations, or demes. The result holds in the limit as the number of demes tends to infinity with proportionately weak selection, and we have also made the assumptions of island-type migration and that demes are equivalent in size. After an instantaneous sample-size adjustment, this structured ancestral selection graph converges to an unstructured ancestral selection graph with a mutation parameter that depends inversely on the migration rate. In contrast, the selection parameter for the population is independent of the migration rate and is identical to the selection parameter in an unstructured population. We show analytically that estimators of the migration rate, based on pairwise sequence differences, derived under the assumption of neutrality should perform equally well in the presence of weak selection. We also modify an algorithm for simulating genealogies conditional on the frequencies of two selected alleles in a sample. This permits efficient simulation of stronger selection than was previously possible. Using this new algorithm, we simulate gene genealogies under the many-demes ancestral selection graph and identify some situations in which migration has a strong effect on the time to the most recent common ancestor of the sample. We find that a similar effect also increases the sensitivity of the genealogy to selection.
Graph theory and the Virasoro master equation
International Nuclear Information System (INIS)
Obers, N.A.J.
1991-01-01
A brief history of affine Lie algebra, the Virasoro algebra and its culmination in the Virasoro master equation is given. By studying ansaetze of the master equation, the author obtains exact solutions and gains insight in the structure of large slices of affine-Virasoro space. He finds an isomorphism between the constructions in the ansatz SO(n) diag , which is a set of unitary, generically irrational affine-Virasoro constructions on SO(n), and the unlabeled graphs of order n. On the one hand, the conformal constructions, are classified by the graphs, while, conversely, a group-theoretic and conformal field-theoretic identification is obtained for every graph of graph theory. He also defines a class of magic Lie group bases in which the Virasoro master equation admits a simple metric ansatz {g metric }, whose structure is visible in the high-level expansion. When a magic basis is real on compact g, the corresponding g metric is a large system of unitary, generically irrational conformal field theories. Examples in this class include the graph-theory ansatz SO(n) diag in the Cartesian basis of SO(n), and the ansatz SU(n) metric in the Pauli-like basis of SU(n). Finally, he defines the 'sine-area graphs' of SU(n), which label the conformal field theories of SU(n) metric , and he notes that, in similar fashion, each magic basis of g defines a generalized graph theory on g which labels the conformal field theories of g metric
Excess cash holdings and shareholder value
Lee, Edward; Powell, Ronan
2011-01-01
We examine the determinants of corporate cash holdings in Australia and the impact on shareholder wealth of holding excess cash. Our results show that a trade-off model best explains the level of a firm’s cash holdings in Australia. We find that 'transitory' excess cash firms earn significantly higher risk-adjusted returns compared to 'persistent' excess cash firms, suggesting that the market penalises firms that hoard cash. The marginal value of cash also declines with larger cash balances, ...
Deniz, Hasan; Dulger, Mehmet F.
2012-01-01
This study examined to what extent inquiry-based instruction supported with real-time graphing technology improves fourth grader's ability to interpret graphs as representations of physical science concepts such as motion and temperature. This study also examined whether there is any difference between inquiry-based instruction supported with…
Proving termination of graph transformation systems using weighted type graphs over semirings
Bruggink, H.J.S.; König, B.; Nolte, D.; Zantema, H.; Parisi-Presicce, F.; Westfechtel, B.
2015-01-01
We introduce techniques for proving uniform termination of graph transformation systems, based on matrix interpretations for string rewriting. We generalize this technique by adapting it to graph rewriting instead of string rewriting and by generalizing to ordered semirings. In this way we obtain a
GoFFish: A Sub-Graph Centric Framework for Large-Scale Graph Analytics1
Energy Technology Data Exchange (ETDEWEB)
Simmhan, Yogesh; Kumbhare, Alok; Wickramaarachchi, Charith; Nagarkar, Soonil; Ravi, Santosh; Raghavendra, Cauligi; Prasanna, Viktor
2014-08-25
Large scale graph processing is a major research area for Big Data exploration. Vertex centric programming models like Pregel are gaining traction due to their simple abstraction that allows for scalable execution on distributed systems naturally. However, there are limitations to this approach which cause vertex centric algorithms to under-perform due to poor compute to communication overhead ratio and slow convergence of iterative superstep. In this paper we introduce GoFFish a scalable sub-graph centric framework co-designed with a distributed persistent graph storage for large scale graph analytics on commodity clusters. We introduce a sub-graph centric programming abstraction that combines the scalability of a vertex centric approach with the flexibility of shared memory sub-graph computation. We map Connected Components, SSSP and PageRank algorithms to this model to illustrate its flexibility. Further, we empirically analyze GoFFish using several real world graphs and demonstrate its significant performance improvement, orders of magnitude in some cases, compared to Apache Giraph, the leading open source vertex centric implementation. We map Connected Components, SSSP and PageRank algorithms to this model to illustrate its flexibility. Further, we empirically analyze GoFFish using several real world graphs and demonstrate its significant performance improvement, orders of magnitude in some cases, compared to Apache Giraph, the leading open source vertex centric implementation.
Listing All Maximal Cliques in Sparse Graphs in Near-optimal Time
2011-01-01
523 10 Arabisopsis thaliana 1745 3098 71 12 Drosophila melanogaster 7282 24894 176 12 Homo Sapiens 9527 31182 308 12 Schizosaccharomyces pombe 2031...clusters of actors [6,14,28,40] and may be used as features in exponential random graph models for statistical analysis of social networks [17,19,20,44,49...29. R. Horaud and T. Skordas. Stereo correspondence through feature grouping and maximal cliques. IEEE Trans. Patt. An. Mach. Int. 11(11):1168–1180
Face Recognition by Bunch Graph Method Using a Group Based Adaptive Tolerant Neural Network
Aradhana D.; Girish H.; Karibasappa K.; Reddy A. Chennakeshava
2011-01-01
This paper presents a new method for feature extraction from the facial image by using bunch graph method. These extracted geometric features of the face are used subsequently for face recognition by utilizing the group based adaptive neural network. This method is suitable, when the facial images are rotation and translation invariant. Further the technique also free from size invariance of facial image and is capable of identifying the facial images correctly when corrupted w...
Generating Realistic Labelled, Weighted Random Graphs
Directory of Open Access Journals (Sweden)
Michael Charles Davis
2015-12-01
Full Text Available Generative algorithms for random graphs have yielded insights into the structure and evolution of real-world networks. Most networks exhibit a well-known set of properties, such as heavy-tailed degree distributions, clustering and community formation. Usually, random graph models consider only structural information, but many real-world networks also have labelled vertices and weighted edges. In this paper, we present a generative model for random graphs with discrete vertex labels and numeric edge weights. The weights are represented as a set of Beta Mixture Models (BMMs with an arbitrary number of mixtures, which are learned from real-world networks. We propose a Bayesian Variational Inference (VI approach, which yields an accurate estimation while keeping computation times tractable. We compare our approach to state-of-the-art random labelled graph generators and an earlier approach based on Gaussian Mixture Models (GMMs. Our results allow us to draw conclusions about the contribution of vertex labels and edge weights to graph structure.
A graph model for opportunistic network coding
Sorour, Sameh
2015-08-12
© 2015 IEEE. Recent advancements in graph-based analysis and solutions of instantly decodable network coding (IDNC) trigger the interest to extend them to more complicated opportunistic network coding (ONC) scenarios, with limited increase in complexity. In this paper, we design a simple IDNC-like graph model for a specific subclass of ONC, by introducing a more generalized definition of its vertices and the notion of vertex aggregation in order to represent the storage of non-instantly-decodable packets in ONC. Based on this representation, we determine the set of pairwise vertex adjacency conditions that can populate this graph with edges so as to guarantee decodability or aggregation for the vertices of each clique in this graph. We then develop the algorithmic procedures that can be applied on the designed graph model to optimize any performance metric for this ONC subclass. A case study on reducing the completion time shows that the proposed framework improves on the performance of IDNC and gets very close to the optimal performance.
Percolator: Scalable Pattern Discovery in Dynamic Graphs
Energy Technology Data Exchange (ETDEWEB)
Choudhury, Sutanay; Purohit, Sumit; Lin, Peng; Wu, Yinghui; Holder, Lawrence B.; Agarwal, Khushbu
2018-02-06
We demonstrate Percolator, a distributed system for graph pattern discovery in dynamic graphs. In contrast to conventional mining systems, Percolator advocates efficient pattern mining schemes that (1) support pattern detection with keywords; (2) integrate incremental and parallel pattern mining; and (3) support analytical queries such as trend analysis. The core idea of Percolator is to dynamically decide and verify a small fraction of patterns and their in- stances that must be inspected in response to buffered updates in dynamic graphs, with a total mining cost independent of graph size. We demonstrate a) the feasibility of incremental pattern mining by walking through each component of Percolator, b) the efficiency and scalability of Percolator over the sheer size of real-world dynamic graphs, and c) how the user-friendly GUI of Percolator inter- acts with users to support keyword-based queries that detect, browse and inspect trending patterns. We also demonstrate two user cases of Percolator, in social media trend analysis and academic collaboration analysis, respectively.
Decomposing highly edge-connected graphs into homomorphic copies of a fixed tree
DEFF Research Database (Denmark)
Merker, Martin
2016-01-01
far this conjecture has only been verified for paths, stars, and a family of bistars. We prove a weaker version of the Tree Decomposition Conjecture, where we require the subgraphs in the decomposition to be isomorphic to graphs that can be obtained from T by vertex-identifications. We call......The Tree Decomposition Conjecture by Barát and Thomassen states that for every tree T there exists a natural number k(T) such that the following holds: If G is a k(T)-edge-connected simple graph with size divisible by the size of T, then G can be edge-decomposed into subgraphs isomorphic to T. So...... such a subgraph a homomorphic copy of T. This implies the Tree Decomposition Conjecture under the additional constraint that the girth of G is greater than the diameter of T. As an application, we verify the Tree Decomposition Conjecture for all trees of diameter at most 4....
Mal-Netminer: Malware Classification Approach Based on Social Network Analysis of System Call Graph
Directory of Open Access Journals (Sweden)
Jae-wook Jang
2015-01-01
Full Text Available As the security landscape evolves over time, where thousands of species of malicious codes are seen every day, antivirus vendors strive to detect and classify malware families for efficient and effective responses against malware campaigns. To enrich this effort and by capitalizing on ideas from the social network analysis domain, we build a tool that can help classify malware families using features driven from the graph structure of their system calls. To achieve that, we first construct a system call graph that consists of system calls found in the execution of the individual malware families. To explore distinguishing features of various malware species, we study social network properties as applied to the call graph, including the degree distribution, degree centrality, average distance, clustering coefficient, network density, and component ratio. We utilize features driven from those properties to build a classifier for malware families. Our experimental results show that “influence-based” graph metrics such as the degree centrality are effective for classifying malware, whereas the general structural metrics of malware are less effective for classifying malware. Our experiments demonstrate that the proposed system performs well in detecting and classifying malware families within each malware class with accuracy greater than 96%.
Survey of Approaches to Generate Realistic Synthetic Graphs
Energy Technology Data Exchange (ETDEWEB)
Lim, Seung-Hwan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lee, Sangkeun [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Powers, Sarah S [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Shankar, Mallikarjun [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Imam, Neena [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
2016-10-01
A graph is a flexible data structure that can represent relationships between entities. As with other data analysis tasks, the use of realistic graphs is critical to obtaining valid research results. Unfortunately, using the actual ("real-world") graphs for research and new algorithm development is difficult due to the presence of sensitive information in the data or due to the scale of data. This results in practitioners developing algorithms and systems that employ synthetic graphs instead of real-world graphs. Generating realistic synthetic graphs that provide reliable statistical confidence to algorithmic analysis and system evaluation involves addressing technical hurdles in a broad set of areas. This report surveys the state of the art in approaches to generate realistic graphs that are derived from fitted graph models on real-world graphs.
An Association-Oriented Partitioning Approach for Streaming Graph Query
Directory of Open Access Journals (Sweden)
Yun Hao
2017-01-01
Full Text Available The volumes of real-world graphs like knowledge graph are increasing rapidly, which makes streaming graph processing a hot research area. Processing graphs in streaming setting poses significant challenges from different perspectives, among which graph partitioning method plays a key role. Regarding graph query, a well-designed partitioning method is essential for achieving better performance. Existing offline graph partitioning methods often require full knowledge of the graph, which is not possible during streaming graph processing. In order to handle this problem, we propose an association-oriented streaming graph partitioning method named Assc. This approach first computes the rank values of vertices with a hybrid approximate PageRank algorithm. After splitting these vertices with an adapted variant affinity propagation algorithm, the process order on vertices in the sliding window can be determined. Finally, according to the level of these vertices and their association, the partition where the vertices should be distributed is decided. We compare its performance with a set of streaming graph partition methods and METIS, a widely adopted offline approach. The results show that our solution can partition graphs with hundreds of millions of vertices in streaming setting on a large collection of graph datasets and our approach outperforms other graph partitioning methods.
GDM:A New Graph Based Data Model Using Functional Abstractionx
Institute of Scientific and Technical Information of China (English)
Sankhayan Choudhury; Nabendu Chaki; Swapan Bhattacharya
2006-01-01
In this paper, a Graph-based semantic Data Model (GDM) is proposed with the primary objective of bridging the gap between the human perception of an enterprise and the needs of computing infrastructure to organize information in some particular manner for efficient storage and retrieval. The Graph Data Model (GDM) has been proposed as an alternative data model to combine the advantages of the relational model with the positive features of semantic data models.The proposed GDM offers a structural representation for interacting to the designer, making it always easy to comprehend the complex relations amongst basic data items. GDM allows an entire database to be viewed as a Graph (V, E) in a layered organization. Here, a graph is created in a bottom up fashion where V represents the basic instances of data or a functionally abstracted module, called primary semantic group (PSG) and secondary semantic group (SSG). An edge in the model implies the relationship among the secondary semantic groups. The contents of the lowest layer are the semantically grouped data values in the form of primary semantic groups. The SSGs are nothing but the higher-level abstraction and are created by the method of encapsulation of various PSGs, SSGs and basic data elements. This encapsulation methodology to provide a higher-level abstraction continues generating various secondary semantic groups until the designer thinks that it is sufficient to declare the actual problem domain. GDM, thus, uses standard abstractions available in a semantic data model with a structural representation in terms of a graph. The operations on the data model are formalized in the proposed graph algebra. A Graph Query Language (GQL) is also developed, maintaining similaritywith the widely accepted user-friendly SQL. Finally, the paper also presents the methodology to make this GDM compatible with the distributed environment,and a corresponding query processing technique for distributed environment is also
Continuous-time quantum walk on an extended star graph: Trapping and superradiance transition
Yalouz, Saad; Pouthier, Vincent
2018-02-01
A tight-binding model is introduced for describing the dynamics of an exciton on an extended star graph whose central node is occupied by a trap. On this graph, the exciton dynamics is governed by two kinds of eigenstates: many eigenstates are associated with degenerate real eigenvalues insensitive to the trap, whereas three decaying eigenstates characterized by complex energies contribute to the trapping process. It is shown that the excitonic population absorbed by the trap depends on the size of the graph, only. By contrast, both the size parameters and the absorption rate control the dynamics of the trapping. When these parameters are judiciously chosen, the efficiency of the transfer is optimized resulting in the minimization of the absorption time. Analysis of the eigenstates reveals that such a feature arises around the superradiance transition. Moreover, depending on the size of the network, two situations are highlighted where the transport efficiency is either superoptimized or suboptimized.
Time series analysis of the developed financial markets' integration using visibility graphs
Zhuang, Enyu; Small, Michael; Feng, Gang
2014-09-01
A time series representing the developed financial markets' segmentation from 1973 to 2012 is studied. The time series reveals an obvious market integration trend. To further uncover the features of this time series, we divide it into seven windows and generate seven visibility graphs. The measuring capabilities of the visibility graphs provide means to quantitatively analyze the original time series. It is found that the important historical incidents that influenced market integration coincide with variations in the measured graphical node degree. Through the measure of neighborhood span, the frequencies of the historical incidents are disclosed. Moreover, it is also found that large "cycles" and significant noise in the time series are linked to large and small communities in the generated visibility graphs. For large cycles, how historical incidents significantly affected market integration is distinguished by density and compactness of the corresponding communities.
GfaPy: a flexible and extensible software library for handling sequence graphs in Python.
Gonnella, Giorgio; Kurtz, Stefan
2017-10-01
GFA 1 and GFA 2 are recently defined formats for representing sequence graphs, such as assembly, variation or splicing graphs. The formats are adopted by several software tools. Here, we present GfaPy, a software package for creating, parsing and editing GFA graphs using the programming language Python. GfaPy supports GFA 1 and GFA 2, using the same interface and allows for interconversion between both formats. The software package provides a simple interface for custom record types, which is an important new feature of GFA 2 (compared to GFA 1). This enables new applications of the format. GfaPy is available open source at https://github.com/ggonnella/gfapy and installable via pip. gonnella@zbh.uni-hamburg.de. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Resistance Distances in Vertex-Face Graphs
Shangguan, Yingmin; Chen, Haiyan
2018-01-01
The computation of two-point resistances in networks is a classical problem in electric circuit theory and graph theory. Let G be a triangulation graph with n vertices embedded on an orientable surface. Define K(G) to be the graph obtained from G by inserting a new vertex vϕ to each face ϕ of G and adding three new edges (u, vϕ), (v, vϕ) and (w, vϕ), where u, v and w are three vertices on the boundary of ϕ. In this paper, using star-triangle transformation and resistance local-sum rules, explicit relations between resistance distances in K(G) and those in G are obtained. These relations enable us to compute resistance distance between any two points of Kk(G) recursively. As explanation examples, some resistances in several networks are computed, including the modified Apollonian network and networks constructed from tetrahedron, octahedron and icosahedron, respectively.
Herdable Systems Over Signed, Directed Graphs
Ruf, Sebastian F.
2018-04-11
This paper considers the notion of herdability, a set-based reachability condition, which asks whether the state of a system can be controlled to be element-wise larger than a non-negative threshold. The basic theory of herdable systems is presented, including a necessary and sufficient condition for herdability. This paper then considers the impact of the underlying graph structure of a linear system on the herdability of the system, for the case where the graph is represented as signed and directed. By classifying nodes based on the length and sign of walks from an input, we find a class of completely herdable systems as well as provide a complete characterization of nodes that can be herded in systems with an underlying graph that is a directed out-branching rooted at a single input.
Visibility graph approach to exchange rate series
Yang, Yue; Wang, Jianbo; Yang, Huijie; Mang, Jingshi
2009-10-01
By means of a visibility graph, we investigate six important exchange rate series. It is found that the series convert into scale-free and hierarchically structured networks. The relationship between the scaling exponents of the degree distributions and the Hurst exponents obeys the analytical prediction for fractal Brownian motions. The visibility graph can be used to obtain reliable values of Hurst exponents of the series. The characteristics are explained by using the multifractal structures of the series. The exchange rate of EURO to Japanese Yen is widely used to evaluate risk and to estimate trends in speculative investments. Interestingly, the hierarchies of the visibility graphs for the exchange rate series of these two currencies are significantly weak compared with that of the other series.
Learning molecular energies using localized graph kernels
Ferré, Grégoire; Haut, Terry; Barros, Kipton
2017-03-01
Recent machine learning methods make it possible to model potential energy of atomic configurations with chemical-level accuracy (as calculated from ab initio calculations) and at speeds suitable for molecular dynamics simulation. Best performance is achieved when the known physical constraints are encoded in the machine learning models. For example, the atomic energy is invariant under global translations and rotations; it is also invariant to permutations of same-species atoms. Although simple to state, these symmetries are complicated to encode into machine learning algorithms. In this paper, we present a machine learning approach based on graph theory that naturally incorporates translation, rotation, and permutation symmetries. Specifically, we use a random walk graph kernel to measure the similarity of two adjacency matrices, each of which represents a local atomic environment. This Graph Approximated Energy (GRAPE) approach is flexible and admits many possible extensions. We benchmark a simple version of GRAPE by predicting atomization energies on a standard dataset of organic molecules.
Herdable Systems Over Signed, Directed Graphs
Ruf, Sebastian F.; Egerstedt, Magnus; Shamma, Jeff S.
2018-01-01
This paper considers the notion of herdability, a set-based reachability condition, which asks whether the state of a system can be controlled to be element-wise larger than a non-negative threshold. The basic theory of herdable systems is presented, including a necessary and sufficient condition for herdability. This paper then considers the impact of the underlying graph structure of a linear system on the herdability of the system, for the case where the graph is represented as signed and directed. By classifying nodes based on the length and sign of walks from an input, we find a class of completely herdable systems as well as provide a complete characterization of nodes that can be herded in systems with an underlying graph that is a directed out-branching rooted at a single input.
A note on arbitrarily vertex decomposable graphs
Directory of Open Access Journals (Sweden)
Antoni Marczyk
2006-01-01
Full Text Available A graph \\(G\\ of order \\(n\\ is said to be arbitrarily vertex decomposable if for each sequence \\((n_{1},\\ldots,n_k\\ of positive integers such that \\(n_{1}+\\ldots+n_{k}=n\\ there exists a partition \\((V_{1},\\ldots,V_{k}\\ of the vertex set of \\(G\\ such that for each \\(i \\in \\{1,\\ldots,k\\}\\, \\(V_{i}\\ induces a connected subgraph of \\(G\\ on \\(n_i\\ vertices. In this paper we show that if \\(G\\ is a two-connected graph on \\(n\\ vertices with the independence number at most \\(\\lceil n/2\\rceil\\ and such that the degree sum of any pair of non-adjacent vertices is at least \\(n-3\\, then \\(G\\ is arbitrarily vertex decomposable. We present another result for connected graphs satisfying a similar condition, where the bound \\(n-3\\ is replaced by \\(n-2\\.
Dynamic graph system for a semantic database
Mizell, David
2015-01-27
A method and system in a computer system for dynamically providing a graphical representation of a data store of entries via a matrix interface is disclosed. A dynamic graph system provides a matrix interface that exposes to an application program a graphical representation of data stored in a data store such as a semantic database storing triples. To the application program, the matrix interface represents the graph as a sparse adjacency matrix that is stored in compressed form. Each entry of the data store is considered to represent a link between nodes of the graph. Each entry has a first field and a second field identifying the nodes connected by the link and a third field with a value for the link that connects the identified nodes. The first, second, and third fields represent the rows, column, and elements of the adjacency matrix.
Dynamic planar embeddings of dynamic graphs
DEFF Research Database (Denmark)
Holm, Jacob; Rotenberg, Eva
2015-01-01
-flip-linkable(u, v) providing a suggestion for a flip that will make them linkable if one exists. We will support all updates and queries in O(log2 n) time. Our time bounds match those of Italiano et al. for a static (flipless) embedding of a dynamic graph. Our new algorithm is simpler, exploiting...... that the complement of a spanning tree of a connected plane graph is a spanning tree of the dual graph. The primal and dual trees are interpreted as having the same Euler tour, and a main idea of the new algorithm is an elegant interaction between top trees over the two trees via their common Euler tour....
Dynamic planar embeddings of dynamic graphs
DEFF Research Database (Denmark)
Holm, Jacob; Rotenberg, Eva
2017-01-01
query, one-flip- linkable(u,v) providing a suggestion for a flip that will make them linkable if one exists. We support all updates and queries in O(log 2 n) time. Our time bounds match those of Italiano et al. for a static (flipless) embedding of a dynamic graph. Our new algorithm is simpler......, exploiting that the complement of a spanning tree of a connected plane graph is a spanning tree of the dual graph. The primal and dual trees are interpreted as having the same Euler tour, and a main idea of the new algorithm is an elegant interaction between top trees over the two trees via their common...
Inflation, operating cycle, and cash holdings
Directory of Open Access Journals (Sweden)
Yanchao Wang
2014-12-01
Full Text Available A corporate cash-holding strategy is a trade-off between the costs and benefits of holding cash. At the macrolevel, firms are inclined to adjust and optimize their cash-holding strategies in response to changes in purchasing power due to inflation. At the microlevel, the operating cycle, which indicates the speed and turnover of corporate cash flow, also influences the corporate cash-holding strategy. Firms flexibly adjust their cash-holding strategies in response to changes in the internal and external environment, which is referred to as the cash adjustment strategy. We examine these predicted relationships using a sample of listed firms in China’s stock market over the 1998–2009 period. Consistent with our predictions, the empirical results indicate a significant negative association between cash holdings and the CPI, but the relationship is reversed when the CPI reaches a certain level. There is also a U-shaped relationship between operating cycle and cash holdings, and this relationship is similarly influenced by changes in the inflation level. In examining the macroeconomic environment and microlevel firm-specific characteristics simultaneously, our findings supplement the literature on firms’ cash-holding strategies and provide theoretical and practical implications.
HaVec: An Efficient de Bruijn Graph Construction Algorithm for Genome Assembly
Directory of Open Access Journals (Sweden)
Md Mahfuzer Rahman
2017-01-01
Full Text Available Background. The rapid advancement of sequencing technologies has made it possible to regularly produce millions of high-quality reads from the DNA samples in the sequencing laboratories. To this end, the de Bruijn graph is a popular data structure in the genome assembly literature for efficient representation and processing of data. Due to the number of nodes in a de Bruijn graph, the main barrier here is the memory and runtime. Therefore, this area has received significant attention in contemporary literature. Results. In this paper, we present an approach called HaVec that attempts to achieve a balance between the memory consumption and the running time. HaVec uses a hash table along with an auxiliary vector data structure to store the de Bruijn graph thereby improving the total memory usage and the running time. A critical and noteworthy feature of HaVec is that it exhibits no false positive error. Conclusions. In general, the graph construction procedure takes the major share of the time involved in an assembly process. HaVec can be seen as a significant advancement in this aspect. We anticipate that HaVec will be extremely useful in the de Bruijn graph-based genome assembly.
Visualization of Morse connection graphs for topologically rich 2D vector fields.
Szymczak, Andrzej; Sipeki, Levente
2013-12-01
Recent advances in vector field topologymake it possible to compute its multi-scale graph representations for autonomous 2D vector fields in a robust and efficient manner. One of these representations is a Morse Connection Graph (MCG), a directed graph whose nodes correspond to Morse sets, generalizing stationary points and periodic trajectories, and arcs - to trajectories connecting them. While being useful for simple vector fields, the MCG can be hard to comprehend for topologically rich vector fields, containing a large number of features. This paper describes a visual representation of the MCG, inspired by previous work on graph visualization. Our approach aims to preserve the spatial relationships between the MCG arcs and nodes and highlight the coherent behavior of connecting trajectories. Using simulations of ocean flow, we show that it can provide useful information on the flow structure. This paper focuses specifically on MCGs computed for piecewise constant (PC) vector fields. In particular, we describe extensions of the PC framework that make it more flexible and better suited for analysis of data on complex shaped domains with a boundary. We also describe a topology simplification scheme that makes our MCG visualizations less ambiguous. Despite the focus on the PC framework, our approach could also be applied to graph representations or topological skeletons computed using different methods.
Strategic Port Graph Rewriting: An Interactive Modelling and Analysis Framework
Directory of Open Access Journals (Sweden)
Maribel Fernández
2014-07-01
Full Text Available We present strategic portgraph rewriting as a basis for the implementation of visual modelling and analysis tools. The goal is to facilitate the specification, analysis and simulation of complex systems, using port graphs. A system is represented by an initial graph and a collection of graph rewriting rules, together with a user-defined strategy to control the application of rules. The strategy language includes constructs to deal with graph traversal and management of rewriting positions in the graph. We give a small-step operational semantics for the language, and describe its implementation in the graph transformation and visualisation tool PORGY.
Some Results on the Graph Theory for Complex Neutrosophic Sets
Directory of Open Access Journals (Sweden)
Shio Gai Quek
2018-05-01
Full Text Available Fuzzy graph theory plays an important role in the study of the symmetry and asymmetry properties of fuzzy graphs. With this in mind, in this paper, we introduce new neutrosophic graphs called complex neutrosophic graphs of type 1 (abbr. CNG1. We then present a matrix representation for it and study some properties of this new concept. The concept of CNG1 is an extension of the generalized fuzzy graphs of type 1 (GFG1 and generalized single-valued neutrosophic graphs of type 1 (GSVNG1. The utility of the CNG1 introduced here are applied to a multi-attribute decision making problem related to Internet server selection.
Design of reconfigurable antennas using graph models
Costantine, Joseph; Christodoulou, Christos G; Christodoulou, Christos G
2013-01-01
This lecture discusses the use of graph models to represent reconfigurable antennas. The rise of antennas that adapt to their environment and change their operation based on the user's request hasn't been met with clear design guidelines. There is a need to propose some rules for the optimization of any reconfigurable antenna design and performance. Since reconfigurable antennas are seen as a collection of self-organizing parts, graph models can be introduced to relate each possible topology to a corresponding electromagnetic performance in terms of achieving a characteristic frequency of oper