Jensen, Finn Verner; Nielsen, Thomas Dyhre
2016-01-01
Mathematically, a Bayesian graphical model is a compact representation of the joint probability distribution for a set of variables. The most frequently used type of Bayesian graphical models are Bayesian networks. The structural part of a Bayesian graphical model is a graph consisting of nodes...
Kreiner, Svend; Christensen, Karl Bang
Rasch models; Partial Credit models; Rating Scale models; Item bias; Differential item functioning; Local independence; Graphical models......Rasch models; Partial Credit models; Rating Scale models; Item bias; Differential item functioning; Local independence; Graphical models...
Højsgaard, Søren; Edwards, David; Lauritzen, Steffen
Graphical models in their modern form have been around since the late 1970s and appear today in many areas of the sciences. Along with the ongoing developments of graphical models, a number of different graphical modeling software programs have been written over the years. In recent years many...... of these software developments have taken place within the R community, either in the form of new packages or by providing an R ingerface to existing software. This book attempts to give the reader a gentle introduction to graphical modeling using R and the main features of some of these packages. In addition......, the book provides examples of how more advanced aspects of graphical modeling can be represented and handled within R. Topics covered in the seven chapters include graphical models for contingency tables, Gaussian and mixed graphical models, Bayesian networks and modeling high dimensional data...
INTRA graphical package - INTRA-Graph 1.0
Hofman, D.; Edlund, O.
2001-04-01
INTRA-Graph 1.0 has been developed at Studsvik Eco and Safety AB in the frame of the European Fusion Technology Programme for application in the safety analysis using the INTRA code. INTRA-Graph 1.0 is a graphical package producing 2-dimensional plots of results generated by the INTRA code. INTRA-Graph 1.0 has been developed by extending the Grace package source code, distributed under the terms of GNU General Public License. The changes in the Grace source files are limited to provide easy updates of the INTRA-Graph when a new version of Grace will be released. The INTRA-related functionality has been implemented in new source files. The present report describes and gives complete listing of these files. The changes in the Grace source files are also described and the listing of the changed parts of the files is presented. The report gives detailed explanations and examples of files required for installation and configuration of INTRA-Graph on the different types of Unix workstations
Learning Graphical Models With Hubs.
Tan, Kean Ming; London, Palma; Mohan, Karthik; Lee, Su-In; Fazel, Maryam; Witten, Daniela
2014-10-01
We consider the problem of learning a high-dimensional graphical model in which there are a few hub nodes that are densely-connected to many other nodes. Many authors have studied the use of an ℓ 1 penalty in order to learn a sparse graph in the high-dimensional setting. However, the ℓ 1 penalty implicitly assumes that each edge is equally likely and independent of all other edges. We propose a general framework to accommodate more realistic networks with hub nodes, using a convex formulation that involves a row-column overlap norm penalty. We apply this general framework to three widely-used probabilistic graphical models: the Gaussian graphical model, the covariance graph model, and the binary Ising model. An alternating direction method of multipliers algorithm is used to solve the corresponding convex optimization problems. On synthetic data, we demonstrate that our proposed framework outperforms competitors that do not explicitly model hub nodes. We illustrate our proposal on a webpage data set and a gene expression data set.
Højsgaard, Søren; Lauritzen, Steffen
2012-01-01
Graphical models in their modern form have been around since the late 1970s and appear today in many areas of the sciences. Along with the ongoing developments of graphical models, a number of different graphical modeling software programs have been written over the years. In recent years many of these software developments have taken place within the R community, either in the form of new packages or by providing an R interface to existing software. This book attempts to give the reader a gentle introduction to graphical modeling using R and the main features of some of these packages. In add
Budhiraja, A.S.; Mukherjee, D.; Wu, R.
2017-01-01
We consider a variation of the supermarket model in which the servers can communicate with their neighbors and where the neighborhood relationships are described in terms of a suitable graph. Tasks with unit-exponential service time distributions arrive at each vertex as independent Poisson
Xuan, Junyu; Lu, Jie; Zhang, Guangquan; Luo, Xiangfeng
2015-12-01
Graph mining has been a popular research area because of its numerous application scenarios. Many unstructured and structured data can be represented as graphs, such as, documents, chemical molecular structures, and images. However, an issue in relation to current research on graphs is that they cannot adequately discover the topics hidden in graph-structured data which can be beneficial for both the unsupervised learning and supervised learning of the graphs. Although topic models have proved to be very successful in discovering latent topics, the standard topic models cannot be directly applied to graph-structured data due to the "bag-of-word" assumption. In this paper, an innovative graph topic model (GTM) is proposed to address this issue, which uses Bernoulli distributions to model the edges between nodes in a graph. It can, therefore, make the edges in a graph contribute to latent topic discovery and further improve the accuracy of the supervised and unsupervised learning of graphs. The experimental results on two different types of graph datasets show that the proposed GTM outperforms the latent Dirichlet allocation on classification by using the unveiled topics of these two models to represent graphs.
Planar graphical models which are easy
Chertkov, Michael [Los Alamos National Laboratory; Chernyak, Vladimir [WAYNE STATE UNIV
2009-01-01
We describe a rich family of binary variables statistical mechanics models on planar graphs which are equivalent to Gaussian Grassmann Graphical models (free fermions). Calculation of partition function (weighted counting) in the models is easy (of polynomial complexity) as reduced to evaluation of determinants of matrixes linear in the number of variables. In particular, this family of models covers Holographic Algorithms of Valiant and extends on the Gauge Transformations discussed in our previous works.
Graphic Symbol Recognition using Graph Based Signature and Bayesian Network Classifier
Luqman, Muhammad Muzzamil; Brouard, Thierry; Ramel, Jean-Yves
2010-01-01
We present a new approach for recognition of complex graphic symbols in technical documents. Graphic symbol recognition is a well known challenge in the field of document image analysis and is at heart of most graphic recognition systems. Our method uses structural approach for symbol representation and statistical classifier for symbol recognition. In our system we represent symbols by their graph based signatures: a graphic symbol is vectorized and is converted to an attributed relational g...
Using Graph and Vertex Entropy to Compare Empirical Graphs with Theoretical Graph Models
Tomasz Kajdanowicz
2016-09-01
Full Text Available Over the years, several theoretical graph generation models have been proposed. Among the most prominent are: the Erdős–Renyi random graph model, Watts–Strogatz small world model, Albert–Barabási preferential attachment model, Price citation model, and many more. Often, researchers working with real-world data are interested in understanding the generative phenomena underlying their empirical graphs. They want to know which of the theoretical graph generation models would most probably generate a particular empirical graph. In other words, they expect some similarity assessment between the empirical graph and graphs artificially created from theoretical graph generation models. Usually, in order to assess the similarity of two graphs, centrality measure distributions are compared. For a theoretical graph model this means comparing the empirical graph to a single realization of a theoretical graph model, where the realization is generated from the given model using an arbitrary set of parameters. The similarity between centrality measure distributions can be measured using standard statistical tests, e.g., the Kolmogorov–Smirnov test of distances between cumulative distributions. However, this approach is both error-prone and leads to incorrect conclusions, as we show in our experiments. Therefore, we propose a new method for graph comparison and type classification by comparing the entropies of centrality measure distributions (degree centrality, betweenness centrality, closeness centrality. We demonstrate that our approach can help assign the empirical graph to the most similar theoretical model using a simple unsupervised learning method.
Graphical models for genetic analyses
Lauritzen, Steffen Lilholt; Sheehan, Nuala A.
2003-01-01
This paper introduces graphical models as a natural environment in which to formulate and solve problems in genetics and related areas. Particular emphasis is given to the relationships among various local computation algorithms which have been developed within the hitherto mostly separate areas...... of graphical models and genetics. The potential of graphical models is explored and illustrated through a number of example applications where the genetic element is substantial or dominating....
Interactive graphics for the Macintosh: software review of FlexiGraphs.
Antonak, R F
1990-01-01
While this product is clearly unique, its usefulness to individuals outside small business environments is somewhat limited. FlexiGraphs is, however, a reasonable first attempt to design a microcomputer software package that controls data through interactive editing within a graph. Although the graphics capabilities of mainframe programs such as MINITAB (Ryan, Joiner, & Ryan, 1981) and the graphic manipulations available through exploratory data analysis (e.g., Velleman & Hoaglin, 1981) will not be surpassed anytime soon by this program, a researcher may want to add this program to a software library containing other Macintosh statistics, drawing, and graphics programs if only to obtain the easy-to-obtain curve fitting and line smoothing options. I welcome the opportunity to review the enhanced "scientific" version of FlexiGraphs that the author of the program indicates is currently under development. An MS-DOS version of the program should be available within the year.
Graph modeling systems and methods
Neergaard, Mike
2015-10-13
An apparatus and a method for vulnerability and reliability modeling are provided. The method generally includes constructing a graph model of a physical network using a computer, the graph model including a plurality of terminating vertices to represent nodes in the physical network, a plurality of edges to represent transmission paths in the physical network, and a non-terminating vertex to represent a non-nodal vulnerability along a transmission path in the physical network. The method additionally includes evaluating the vulnerability and reliability of the physical network using the constructed graph model, wherein the vulnerability and reliability evaluation includes a determination of whether each terminating and non-terminating vertex represents a critical point of failure. The method can be utilized to evaluate wide variety of networks, including power grid infrastructures, communication network topologies, and fluid distribution systems.
Bond Graph Modeling and Simulation of Mechatronic Systems
Habib, Tufail; Nielsen, Kjeld; Jørgensen, Kaj Asbjørn
2012-01-01
One of the demanding steps in the design and development of Mechatronic systems is to develop the initial model to visualize the response of a system. The Bond Graph (BG) method is a graphical approach for the design of multidomain systems. That is ideal for visualizing the essential characterist......One of the demanding steps in the design and development of Mechatronic systems is to develop the initial model to visualize the response of a system. The Bond Graph (BG) method is a graphical approach for the design of multidomain systems. That is ideal for visualizing the essential...
Graph Model Based Indoor Tracking
Jensen, Christian Søndergaard; Lu, Hua; Yang, Bin
2009-01-01
The tracking of the locations of moving objects in large indoor spaces is important, as it enables a range of applications related to, e.g., security and indoor navigation and guidance. This paper presents a graph model based approach to indoor tracking that offers a uniform data management...
Moving beyond the Bar Plot and the Line Graph to Create Informative and Attractive Graphics
Larson-Hall, Jenifer
2017-01-01
Graphics are often mistaken for a mere frill in the methodological arsenal of data analysis when in fact they can be one of the simplest and at the same time most powerful methods of communicating statistical information (Tufte, 2001). The first section of the article argues for the statistical necessity of graphs, echoing and amplifying similar…
Promoting Graphical Thinking: Using Temperature and a Graphing Calculator to Teach Kinetics Concepts
Cortes-Figueroa, Jose E.; Moore-Russo, Deborah A.
2004-01-01
A combination of graphical thinking with chemical and physical theories in the classroom is encouraged by using the Calculator-Based Laboratory System (CBL) with a temperature sensor and graphing calculator. The theory of first-order kinetics is logically explained with the aid of the cooling or heating of the metal bead of the CBL's temperature…
Application of Computer Graphics to Graphing in Algebra and Trigonometry. Final Report.
Morris, J. Richard
This project was designed to improve the graphing competency of students in elementary algebra, intermediate algebra, and trigonometry courses at Virginia Commonwealth University. Computer graphics programs were designed using an Apple II Plus computer and implemented using Pascal. The software package is interactive and gives students control…
Bond graph modeling of centrifugal compression systems
Uddin, Nur; Gravdahl, Jan Tommy
2015-01-01
A novel approach to model unsteady fluid dynamics in a compressor network by using a bond graph is presented. The model is intended in particular for compressor control system development. First, we develop a bond graph model of a single compression system. Bond graph modeling offers a different perspective to previous work by modeling the compression system based on energy flow instead of fluid dynamics. Analyzing the bond graph model explains the energy flow during compressor surge. Two pri...
Transforming Graphical System Models to Graphical Attack Models
Ivanova, Marieta Georgieva; Probst, Christian W.; Hansen, Rene Rydhof
2016-01-01
Manually identifying possible attacks on an organisation is a complex undertaking; many different factors must be considered, and the resulting attack scenarios can be complex and hard to maintain as the organisation changes. System models provide a systematic representation of organisations...... approach to transforming graphical system models to graphical attack models in the form of attack trees. Based on an asset in the model, our transformations result in an attack tree that represents attacks by all possible actors in the model, after which the actor in question has obtained the asset....
A Type Graph Model for Java Programs
Rensink, Arend; Zambon, Eduardo
2009-01-01
In this report we present a type graph that models all executable constructs of the Java programming language. Such a model is useful for any graph-based technique that relies on a representation of Java programs as graphs. The model can be regarded as a common representation to which all Java
A Type Graph Model for Java Programs
Rensink, Arend; Zambon, Eduardo; Lee, D.; Lopes, A.; Poetzsch-Heffter, A.
2009-01-01
In this work we present a type graph that models all executable constructs of the Java programming language. Such a model is useful for any graph-based technique that relies on a representation of Java programs as graphs. The model can be regarded as a common representation to which all Java syntax
Graph-based modelling in engineering
Rysiński, Jacek
2017-01-01
This book presents versatile, modern and creative applications of graph theory in mechanical engineering, robotics and computer networks. Topics related to mechanical engineering include e.g. machine and mechanism science, mechatronics, robotics, gearing and transmissions, design theory and production processes. The graphs treated are simple graphs, weighted and mixed graphs, bond graphs, Petri nets, logical trees etc. The authors represent several countries in Europe and America, and their contributions show how different, elegant, useful and fruitful the utilization of graphs in modelling of engineering systems can be. .
The gRbase Package for Graphical Modelling in R
Højsgaard, Søren; Dethlefsen, Claus
We have developed a package, called , consisting of a number of classes and associated methods to support the analysis of data using graphical models. It is developed for the open source language, R, and is available for several platforms. The package is intended to be widely extendible...... these building blocks can be combined and integrated with inference engines in the special cases of hierarchical log-linear models (undirected models). gRbase gRbase dynamicGraph...... and flexible so that package developers may implement further types of graphical models using the available methods. contains methods for representing data, specification of models using a formal language, and is linked to , an interactive graphical user interface for manipulating graphs. We show how...
Quantum Graphical Models and Belief Propagation
Leifer, M.S.; Poulin, D.
2008-01-01
Belief Propagation algorithms acting on Graphical Models of classical probability distributions, such as Markov Networks, Factor Graphs and Bayesian Networks, are amongst the most powerful known methods for deriving probabilistic inferences amongst large numbers of random variables. This paper presents a generalization of these concepts and methods to the quantum case, based on the idea that quantum theory can be thought of as a noncommutative, operator-valued, generalization of classical probability theory. Some novel characterizations of quantum conditional independence are derived, and definitions of Quantum n-Bifactor Networks, Markov Networks, Factor Graphs and Bayesian Networks are proposed. The structure of Quantum Markov Networks is investigated and some partial characterization results are obtained, along the lines of the Hammersley-Clifford theorem. A Quantum Belief Propagation algorithm is presented and is shown to converge on 1-Bifactor Networks and Markov Networks when the underlying graph is a tree. The use of Quantum Belief Propagation as a heuristic algorithm in cases where it is not known to converge is discussed. Applications to decoding quantum error correcting codes and to the simulation of many-body quantum systems are described
ModelMate - A graphical user interface for model analysis
Banta, Edward R.
2011-01-01
ModelMate is a graphical user interface designed to facilitate use of model-analysis programs with models. This initial version of ModelMate supports one model-analysis program, UCODE_2005, and one model software program, MODFLOW-2005. ModelMate can be used to prepare input files for UCODE_2005, run UCODE_2005, and display analysis results. A link to the GW_Chart graphing program facilitates visual interpretation of results. ModelMate includes capabilities for organizing directories used with the parallel-processing capabilities of UCODE_2005 and for maintaining files in those directories to be identical to a set of files in a master directory. ModelMate can be used on its own or in conjunction with ModelMuse, a graphical user interface for MODFLOW-2005 and PHAST.
Modeling chemical kinetics graphically
Heck, A.
2012-01-01
In literature on chemistry education it has often been suggested that students, at high school level and beyond, can benefit in their studies of chemical kinetics from computer supported activities. Use of system dynamics modeling software is one of the suggested quantitative approaches that could
Grms or graphical representation of model spaces. Vol. I Basics
Duch, W.
1986-01-01
This book presents a novel approach to the many-body problem in quantum chemistry, nuclear shell-theory and solid-state theory. Many-particle model spaces are visualized using graphs, each path of a graph labeling a single basis function or a subspace of functions. Spaces of a very high dimension are represented by small graphs. Model spaces have structure that is reflected in the architecture of the corresponding graphs, that in turn is reflected in the structure of the matrices corresponding to operators acting in these spaces. Insight into this structure leads to formulation of very efficient computer algorithms. Calculation of matrix elements is reduced to comparison of paths in a graph, without ever looking at the functions themselves. Using only very rudimentary mathematical tools graphical rules of matrix element calculation in abelian cases are derived, in particular segmentation rules obtained in the unitary group approached are rederived. The graphs are solutions of Diophantine equations of the type appearing in different branches of applied mathematics. Graphical representation of model spaces should find as many applications as has been found for diagramatical methods in perturbation theory
Modelling of JET diagnostics using Bayesian Graphical Models
Svensson, J. [IPP Greifswald, Greifswald (Germany); Ford, O. [Imperial College, London (United Kingdom); McDonald, D.; Hole, M.; Nessi, G. von; Meakins, A.; Brix, M.; Thomsen, H.; Werner, A.; Sirinelli, A.
2011-07-01
The mapping between physics parameters (such as densities, currents, flows, temperatures etc) defining the plasma 'state' under a given model and the raw observations of each plasma diagnostic will 1) depend on the particular physics model used, 2) is inherently probabilistic, from uncertainties on both observations and instrumental aspects of the mapping, such as calibrations, instrument functions etc. A flexible and principled way of modelling such interconnected probabilistic systems is through so called Bayesian graphical models. Being an amalgam between graph theory and probability theory, Bayesian graphical models can simulate the complex interconnections between physics models and diagnostic observations from multiple heterogeneous diagnostic systems, making it relatively easy to optimally combine the observations from multiple diagnostics for joint inference on parameters of the underlying physics model, which in itself can be represented as part of the graph. At JET about 10 diagnostic systems have to date been modelled in this way, and has lead to a number of new results, including: the reconstruction of the flux surface topology and q-profiles without any specific equilibrium assumption, using information from a number of different diagnostic systems; profile inversions taking into account the uncertainties in the flux surface positions and a substantial increase in accuracy of JET electron density and temperature profiles, including improved pedestal resolution, through the joint analysis of three diagnostic systems. It is believed that the Bayesian graph approach could potentially be utilised for very large sets of diagnostics, providing a generic data analysis framework for nuclear fusion experiments, that would be able to optimally utilize the information from multiple diagnostics simultaneously, and where the explicit graph representation of the connections to underlying physics models could be used for sophisticated model testing. This
Co-occurrence rate networks: towards separate training for undirected graphical models
Zhu, Zhemin
2015-01-01
Dependence is a universal phenomenon which can be observed everywhere. In machine learning, probabilistic graphical models (PGMs) represent dependence relations with graphs. PGMs find wide applications in natural language processing (NLP), speech processing, computer vision, biomedicine, information
A New Type of Graphical Passwords Based on Odd-Elegant Labelled Graphs
Hongyu Wang
2018-01-01
Full Text Available Graphical password (GPW is one of various passwords used in information communication. The QR code, which is widely used in the current world, is one of GPWs. Topsnut-GPWs are new-type GPWs made by topological structures (also, called graphs and number theory, but the existing GPWs use pictures/images almost. We design new Topsnut-GPWs by means of a graph labelling, called odd-elegant labelling. The new Topsnut-GPWs will be constructed by Topsnut-GPWs having smaller vertex numbers; in other words, they are compound Topsnut-GPWs such that they are more robust to deciphering attacks. Furthermore, the new Topsnut-GPWs can induce some mathematical problems and conjectures.
Mechatronic modeling and simulation using bond graphs
Das, Shuvra
2009-01-01
Introduction to Mechatronics and System ModelingWhat Is Mechatronics?What Is a System and Why Model Systems?Mathematical Modeling Techniques Used in PracticeSoftwareBond Graphs: What Are They?Engineering SystemsPortsGeneralized VariablesBond GraphsBasic Components in SystemsA Brief Note about Bond Graph Power DirectionsSummary of Bond Direction RulesDrawing Bond Graphs for Simple Systems: Electrical and MechanicalSimplification Rules for Junction StructureDrawing Bond Graphs for Electrical SystemsDrawing Bond Graphs for Mechanical SystemsCausalityDrawing Bond Graphs for Hydraulic and Electronic Components and SystemsSome Basic Properties and Concepts for FluidsBond Graph Model of Hydraulic SystemsElectronic SystemsDeriving System Equations from Bond GraphsSystem VariablesDeriving System EquationsTackling Differential CausalityAlgebraic LoopsSolution of Model Equations and Their InterpretationZeroth Order SystemsFirst Order SystemsSecond Order SystemTransfer Functions and Frequency ResponsesNumerical Solution ...
Graphical models for inference under outcome-dependent sampling
Didelez, V; Kreiner, S; Keiding, N
2010-01-01
a node for the sampling indicator, assumptions about sampling processes can be made explicit. We demonstrate how to read off such graphs whether consistent estimation of the association between exposure and outcome is possible. Moreover, we give sufficient graphical conditions for testing and estimating......We consider situations where data have been collected such that the sampling depends on the outcome of interest and possibly further covariates, as for instance in case-control studies. Graphical models represent assumptions about the conditional independencies among the variables. By including...
A model of language inflection graphs
Fukś, Henryk; Farzad, Babak; Cao, Yi
2014-01-01
Inflection graphs are highly complex networks representing relationships between inflectional forms of words in human languages. For so-called synthetic languages, such as Latin or Polish, they have particularly interesting structure due to the abundance of inflectional forms. We construct the simplest form of inflection graphs, namely a bipartite graph in which one group of vertices corresponds to dictionary headwords and the other group to inflected forms encountered in a given text. We, then, study projection of this graph on the set of headwords. The projection decomposes into a large number of connected components, to be called word groups. Distribution of sizes of word group exhibits some remarkable properties, resembling cluster distribution in a lattice percolation near the critical point. We propose a simple model which produces graphs of this type, reproducing the desired component distribution and other topological features.
Graphical interpretation of numerical model results
Drewes, D.R.
1979-01-01
Computer software has been developed to produce high quality graphical displays of data from a numerical grid model. The code uses an existing graphical display package (DISSPLA) and overcomes some of the problems of both line-printer output and traditional graphics. The software has been designed to be flexible enough to handle arbitrarily placed computation grids and a variety of display requirements
GRAPHICAL MODELS OF THE AIRCRAFT MAINTENANCE PROCESS
Stanislav Vladimirovich Daletskiy
2017-01-01
Full Text Available The aircraft maintenance is realized by a rapid sequence of maintenance organizational and technical states, its re- search and analysis are carried out by statistical methods. The maintenance process concludes aircraft technical states con- nected with the objective patterns of technical qualities changes of the aircraft as a maintenance object and organizational states which determine the subjective organization and planning process of aircraft using. The objective maintenance pro- cess is realized in Maintenance and Repair System which does not include maintenance organization and planning and is a set of related elements: aircraft, Maintenance and Repair measures, executors and documentation that sets rules of their interaction for maintaining of the aircraft reliability and readiness for flight. The aircraft organizational and technical states are considered, their characteristics and heuristic estimates of connection in knots and arcs of graphs and of aircraft organi- zational states during regular maintenance and at technical state failure are given. It is shown that in real conditions of air- craft maintenance, planned aircraft technical state control and maintenance control through it, is only defined by Mainte- nance and Repair conditions at a given Maintenance and Repair type and form structures, and correspondingly by setting principles of Maintenance and Repair work types to the execution, due to maintenance, by aircraft and all its units mainte- nance and reconstruction strategies. The realization of planned Maintenance and Repair process determines the one of the constant maintenance component. The proposed graphical models allow to reveal quantitative correlations between graph knots to improve maintenance processes by statistical research methods, what reduces manning, timetable and expenses for providing safe civil aviation aircraft maintenance.
Bayesian graphical models for genomewide association studies.
Verzilli, Claudio J; Stallard, Nigel; Whittaker, John C
2006-07-01
As the extent of human genetic variation becomes more fully characterized, the research community is faced with the challenging task of using this information to dissect the heritable components of complex traits. Genomewide association studies offer great promise in this respect, but their analysis poses formidable difficulties. In this article, we describe a computationally efficient approach to mining genotype-phenotype associations that scales to the size of the data sets currently being collected in such studies. We use discrete graphical models as a data-mining tool, searching for single- or multilocus patterns of association around a causative site. The approach is fully Bayesian, allowing us to incorporate prior knowledge on the spatial dependencies around each marker due to linkage disequilibrium, which reduces considerably the number of possible graphical structures. A Markov chain-Monte Carlo scheme is developed that yields samples from the posterior distribution of graphs conditional on the data from which probabilistic statements about the strength of any genotype-phenotype association can be made. Using data simulated under scenarios that vary in marker density, genotype relative risk of a causative allele, and mode of inheritance, we show that the proposed approach has better localization properties and leads to lower false-positive rates than do single-locus analyses. Finally, we present an application of our method to a quasi-synthetic data set in which data from the CYP2D6 region are embedded within simulated data on 100K single-nucleotide polymorphisms. Analysis is quick (<5 min), and we are able to localize the causative site to a very short interval.
Towards using the chordal graph polytope in learning decomposable models
Studený, Milan; Cussens, J.
2017-01-01
Roč. 88, č. 1 (2017), s. 259-281 ISSN 0888-613X. [8th International Conference of Probabilistic Graphical Models. Lugano, 06.09.2016-09.09.2016] R&D Projects: GA ČR(CZ) GA16-12010S Institutional support: RVO:67985556 Keywords : learning decomposable models * integer linear programming * characteristic imset * chordal graph polytope * clutter inequalities * separation problem Subject RIV: BA - General Mathematics OBOR OECD: Statistics and probability Impact factor: 2.845, year: 2016 http://library.utia.cas.cz/separaty/2017/MTR/studeny-0475614.pdf
Graphical Gaussian models with edge and vertex symmetries
Højsgaard, Søren; Lauritzen, Steffen L
2008-01-01
We introduce new types of graphical Gaussian models by placing symmetry restrictions on the concentration or correlation matrix. The models can be represented by coloured graphs, where parameters that are associated with edges or vertices of the same colour are restricted to being identical. We...... study the properties of such models and derive the necessary algorithms for calculating maximum likelihood estimates. We identify conditions for restrictions on the concentration and correlation matrices being equivalent. This is for example the case when symmetries are generated by permutation...
Mastering probabilistic graphical models using Python
Ankan, Ankur
2015-01-01
If you are a researcher or a machine learning enthusiast, or are working in the data science field and have a basic idea of Bayesian learning or probabilistic graphical models, this book will help you to understand the details of graphical models and use them in your data science problems.
Infinite Random Graphs as Statistical Mechanical Models
Durhuus, Bergfinnur Jøgvan; Napolitano, George Maria
2011-01-01
We discuss two examples of infinite random graphs obtained as limits of finite statistical mechanical systems: a model of two-dimensional dis-cretized quantum gravity defined in terms of causal triangulated surfaces, and the Ising model on generic random trees. For the former model we describe a ...
Design of reconfigurable antennas using graph models
Costantine, Joseph; Christodoulou, Christos G; Christodoulou, Christos G
2013-01-01
This lecture discusses the use of graph models to represent reconfigurable antennas. The rise of antennas that adapt to their environment and change their operation based on the user's request hasn't been met with clear design guidelines. There is a need to propose some rules for the optimization of any reconfigurable antenna design and performance. Since reconfigurable antennas are seen as a collection of self-organizing parts, graph models can be introduced to relate each possible topology to a corresponding electromagnetic performance in terms of achieving a characteristic frequency of oper
A graph model for opportunistic network coding
Sorour, Sameh
2015-08-12
© 2015 IEEE. Recent advancements in graph-based analysis and solutions of instantly decodable network coding (IDNC) trigger the interest to extend them to more complicated opportunistic network coding (ONC) scenarios, with limited increase in complexity. In this paper, we design a simple IDNC-like graph model for a specific subclass of ONC, by introducing a more generalized definition of its vertices and the notion of vertex aggregation in order to represent the storage of non-instantly-decodable packets in ONC. Based on this representation, we determine the set of pairwise vertex adjacency conditions that can populate this graph with edges so as to guarantee decodability or aggregation for the vertices of each clique in this graph. We then develop the algorithmic procedures that can be applied on the designed graph model to optimize any performance metric for this ONC subclass. A case study on reducing the completion time shows that the proposed framework improves on the performance of IDNC and gets very close to the optimal performance.
Bond graph modeling of nuclear reactor dynamics
Tylee, J.L.
1981-01-01
A tenth-order linear model of a pressurized water reactor (PWR) is developed using bond graph techniques. The model describes the nuclear heat generation process and the transfer of this heat to the reactor coolant. Comparisons between the calculated model response and test data from a small-scale PWR show the model to be an adequate representation of the actual plant dynamics. Possible application of the model in an advanced plant diagnostic system is discussed
Kuramoto model for infinite graphs with kernels
Canale, Eduardo
2015-01-07
In this paper we study the Kuramoto model of weakly coupled oscillators for the case of non trivial network with large number of nodes. We approximate of such configurations by a McKean-Vlasov stochastic differential equation based on infinite graph. We focus on circulant graphs which have enough symmetries to make the computations easier. We then focus on the asymptotic regime where an integro-partial differential equation is derived. Numerical analysis and convergence proofs of the Fokker-Planck-Kolmogorov equation are conducted. Finally, we provide numerical examples that illustrate the convergence of our method.
Algorithms and Models for the Web Graph
Gleich, David F.; Komjathy, Julia; Litvak, Nelli
2015-01-01
This volume contains the papers presented at WAW2015, the 12th Workshop on Algorithms and Models for the Web-Graph held during December 10–11, 2015, in Eindhoven. There were 24 submissions. Each submission was reviewed by at least one, and on average two, Program Committee members. The committee
Graphical Model Debugger Framework for Embedded Systems
Zeng, Kebin
2010-01-01
Model Driven Software Development has offered a faster way to design and implement embedded real-time software by moving the design to a model level, and by transforming models to code. However, the testing of embedded systems has remained at the code level. This paper presents a Graphical Model...... Debugger Framework, providing an auxiliary avenue of analysis of system models at runtime by executing generated code and updating models synchronously, which allows embedded developers to focus on the model level. With the model debugger, embedded developers can graphically test their design model...
Graphical modelling software in R - status
Detlefsen, Claus; Højsgaard, Søren; Lauritzen, Steffen L
2007-01-01
Graphical models in their modern form have been around for nearly a quarter of a century. Various computer programs for inference in graphical models have been developed over that period. Some examples of free software programs are BUGS (Thomas 1994), CoCo (Badsberg2001), Digram (Klein, Keiding......, and Kreiner 1995), MIM (Edwards 2000), and Tetrad (Glymour, Scheines, Spirtes, and Kelley 1987). The gR initiative (Lauritzen 2002) aims at making graphical models available in R (R Development Core Team 2006). A small grant from the Danish Science Foundation supported this initiative. We will summarize...... the results of the initiative so far. Specifically we will illustrate some of the R packages for graphical modelling currently on CRAN and discuss their strengths and weaknesses....
Light reflection models for computer graphics.
Greenberg, D P
1989-04-14
During the past 20 years, computer graphic techniques for simulating the reflection of light have progressed so that today images of photorealistic quality can be produced. Early algorithms considered direct lighting only, but global illumination phenomena with indirect lighting, surface interreflections, and shadows can now be modeled with ray tracing, radiosity, and Monte Carlo simulations. This article describes the historical development of computer graphic algorithms for light reflection and pictorially illustrates what will be commonly available in the near future.
Stable Graphical Model Estimation with Random Forests for Discrete, Continuous, and Mixed Variables
Fellinghauer, Bernd; Bühlmann, Peter; Ryffel, Martin; von Rhein, Michael; Reinhardt, Jan D.
2011-01-01
A conditional independence graph is a concise representation of pairwise conditional independence among many variables. Graphical Random Forests (GRaFo) are a novel method for estimating pairwise conditional independence relationships among mixed-type, i.e. continuous and discrete, variables. The number of edges is a tuning parameter in any graphical model estimator and there is no obvious number that constitutes a good choice. Stability Selection helps choosing this parameter with respect to...
Kraft, Peter; Sørensen, Jens Otto
Interface Abstract: The paper describes an Entity Relationship (ER) model with a diagrammed schema and extensions modeled into a graph. The semantics of schema symbols are fundamentally simple implying a unified model where given conceptualizations of environments are diagrammed uniquely. By the ......Interface Abstract: The paper describes an Entity Relationship (ER) model with a diagrammed schema and extensions modeled into a graph. The semantics of schema symbols are fundamentally simple implying a unified model where given conceptualizations of environments are diagrammed uniquely...... with a unified graphic model is more efficient and less error-prone than working with more complex ER models and models based on lexical description. Key terms: Entity-relationship model, path expressions, entity-relationship language, derived interface view, view updates, graphical models....
Strategic Port Graph Rewriting: An Interactive Modelling and Analysis Framework
Maribel Fernández
2014-07-01
Full Text Available We present strategic portgraph rewriting as a basis for the implementation of visual modelling and analysis tools. The goal is to facilitate the specification, analysis and simulation of complex systems, using port graphs. A system is represented by an initial graph and a collection of graph rewriting rules, together with a user-defined strategy to control the application of rules. The strategy language includes constructs to deal with graph traversal and management of rewriting positions in the graph. We give a small-step operational semantics for the language, and describe its implementation in the graph transformation and visualisation tool PORGY.
Graphical Model Theory for Wireless Sensor Networks
Davis, William B.
2002-01-01
Information processing in sensor networks, with many small processors, demands a theory of computation that allows the minimization of processing effort, and the distribution of this effort throughout the network. Graphical model theory provides a probabilistic theory of computation that explicitly addresses complexity and decentralization for optimizing network computation. The junction tree algorithm, for decentralized inference on graphical probability models, can be instantiated in a variety of applications useful for wireless sensor networks, including: sensor validation and fusion; data compression and channel coding; expert systems, with decentralized data structures, and efficient local queries; pattern classification, and machine learning. Graphical models for these applications are sketched, and a model of dynamic sensor validation and fusion is presented in more depth, to illustrate the junction tree algorithm
Transforming Graphical System Models To Graphical Attack Models
Ivanova, Marieta Georgieva; Probst, Christian W.; Hansen, René Rydhof; Kammüller, Florian; Mauw, S.; Kordy, B.
2015-01-01
Manually identifying possible attacks on an organisation is a complex undertaking; many different factors must be considered, and the resulting attack scenarios can be complex and hard to maintain as the organisation changes. System models provide a systematic representation of organisations that
Adaptive Inference on General Graphical Models
Acar, Umut A.; Ihler, Alexander T.; Mettu, Ramgopal; Sumer, Ozgur
2012-01-01
Many algorithms and applications involve repeatedly solving variations of the same inference problem; for example we may want to introduce new evidence to the model or perform updates to conditional dependencies. The goal of adaptive inference is to take advantage of what is preserved in the model and perform inference more rapidly than from scratch. In this paper, we describe techniques for adaptive inference on general graphs that support marginal computation and updates to the conditional ...
Efficiently adapting graphical models for selectivity estimation
Tzoumas, Kostas; Deshpande, Amol; Jensen, Christian S.
2013-01-01
cardinality estimation without making the independence assumption. By carefully using concepts from the field of graphical models, we are able to factor the joint probability distribution over all the attributes in the database into small, usually two-dimensional distributions, without a significant loss...... in estimation accuracy. We show how to efficiently construct such a graphical model from the database using only two-way join queries, and we show how to perform selectivity estimation in a highly efficient manner. We integrate our algorithms into the PostgreSQL DBMS. Experimental results indicate...
Building probabilistic graphical models with Python
Karkera, Kiran R
2014-01-01
This is a short, practical guide that allows data scientists to understand the concepts of Graphical models and enables them to try them out using small Python code snippets, without being too mathematically complicated. If you are a data scientist who knows about machine learning and want to enhance your knowledge of graphical models, such as Bayes network, in order to use them to solve real-world problems using Python libraries, this book is for you. This book is intended for those who have some Python and machine learning experience, or are exploring the machine learning field.
Formal Analysis of Graphical Security Models
Aslanyan, Zaruhi
, software components and human actors interacting with each other to form so-called socio-technical systems. The importance of socio-technical systems to modern societies requires verifying their security properties formally, while their inherent complexity makes manual analyses impracticable. Graphical...... models for security offer an unrivalled opportunity to describe socio-technical systems, for they allow to represent different aspects like human behaviour, computation and physical phenomena in an abstract yet uniform manner. Moreover, these models can be assigned a formal semantics, thereby allowing...... formal verification of their properties. Finally, their appealing graphical notations enable to communicate security concerns in an understandable way also to non-experts, often in charge of the decision making. This dissertation argues that automated techniques can be developed on graphical security...
Modeling and Simulation of a Wind Turbine Driven Induction Generator Using Bond Graph
Lachouri Abderrazak
2015-12-01
Full Text Available The objective of this paper is to investigate the modelling and simulation of wind turbine applied on induction generator with bond graph methodology as a graphical and multi domain approach. They provide a precise and unambiguous modelling tool, which allows for the specification of hierarchical physical structures. The paper begins with an introduction to the bond graphs technique, followed by an implementation of the wind turbine model. Simulation results illustrate the simplified system response obtained using the 20-sim software.
Perception in statistical graphics
VanderPlas, Susan Ruth
There has been quite a bit of research on statistical graphics and visualization, generally focused on new types of graphics, new software to create graphics, interactivity, and usability studies. Our ability to interpret and use statistical graphics hinges on the interface between the graph itself and the brain that perceives and interprets it, and there is substantially less research on the interplay between graph, eye, brain, and mind than is sufficient to understand the nature of these relationships. The goal of the work presented here is to further explore the interplay between a static graph, the translation of that graph from paper to mental representation (the journey from eye to brain), and the mental processes that operate on that graph once it is transferred into memory (mind). Understanding the perception of statistical graphics should allow researchers to create more effective graphs which produce fewer distortions and viewer errors while reducing the cognitive load necessary to understand the information presented in the graph. Taken together, these experiments should lay a foundation for exploring the perception of statistical graphics. There has been considerable research into the accuracy of numerical judgments viewers make from graphs, and these studies are useful, but it is more effective to understand how errors in these judgments occur so that the root cause of the error can be addressed directly. Understanding how visual reasoning relates to the ability to make judgments from graphs allows us to tailor graphics to particular target audiences. In addition, understanding the hierarchy of salient features in statistical graphics allows us to clearly communicate the important message from data or statistical models by constructing graphics which are designed specifically for the perceptual system.
Probabilistic reasoning with graphical security models
Kordy, Barbara; Pouly, Marc; Schweitzer, Patrick
This work provides a computational framework for meaningful probabilistic evaluation of attack–defense scenarios involving dependent actions. We combine the graphical security modeling technique of attack–defense trees with probabilistic information expressed in terms of Bayesian networks. In order
Modeling Software Evolution using Algebraic Graph Rewriting
Ciraci, Selim; van den Broek, Pim
We show how evolution requests can be formalized using algebraic graph rewriting. In particular, we present a way to convert the UML class diagrams to colored graphs. Since changes in software may effect the relation between the methods of classes, our colored graph representation also employs the
William E. Butler
2014-09-01
Full Text Available The Richard Floor Biorepository supports collaborative studies of extracellular vesicles (EVs found in human fluids and tissue specimens. The current emphasis is on biomarkers for central nervous system neoplasms but its structure may serve as a template for collaborative EV translational studies in other fields. The informatic system provides specimen inventory tracking with bar codes assigned to specimens and containers and projects, is hosted on globalized cloud computing resources, and embeds a suite of shared documents, calendars, and video-conferencing features. Clinical data are recorded in relation to molecular EV attributes and may be tagged with terms drawn from a network of externally maintained ontologies thus offering expansion of the system as the field matures. We fashioned the graphical user interface (GUI around a web-based data visualization package. This system is now in an early stage of deployment, mainly focused on specimen tracking and clinical, laboratory, and imaging data capture in support of studies to optimize detection and analysis of brain tumour–specific mutations. It currently includes 4,392 specimens drawn from 611 subjects, the majority with brain tumours. As EV science evolves, we plan biorepository changes which may reflect multi-institutional collaborations, proteomic interfaces, additional biofluids, changes in operating procedures and kits for specimen handling, novel procedures for detection of tumour-specific EVs, and for RNA extraction and changes in the taxonomy of EVs. We have used an ontology-driven data model and web-based architecture with a graph theory–driven GUI to accommodate and stimulate the semantic web of EV science.
Butler, William E.; Atai, Nadia; Carter, Bob; Hochberg, Fred
2014-01-01
The Richard Floor Biorepository supports collaborative studies of extracellular vesicles (EVs) found in human fluids and tissue specimens. The current emphasis is on biomarkers for central nervous system neoplasms but its structure may serve as a template for collaborative EV translational studies in other fields. The informatic system provides specimen inventory tracking with bar codes assigned to specimens and containers and projects, is hosted on globalized cloud computing resources, and embeds a suite of shared documents, calendars, and video-conferencing features. Clinical data are recorded in relation to molecular EV attributes and may be tagged with terms drawn from a network of externally maintained ontologies thus offering expansion of the system as the field matures. We fashioned the graphical user interface (GUI) around a web-based data visualization package. This system is now in an early stage of deployment, mainly focused on specimen tracking and clinical, laboratory, and imaging data capture in support of studies to optimize detection and analysis of brain tumour–specific mutations. It currently includes 4,392 specimens drawn from 611 subjects, the majority with brain tumours. As EV science evolves, we plan biorepository changes which may reflect multi-institutional collaborations, proteomic interfaces, additional biofluids, changes in operating procedures and kits for specimen handling, novel procedures for detection of tumour-specific EVs, and for RNA extraction and changes in the taxonomy of EVs. We have used an ontology-driven data model and web-based architecture with a graph theory–driven GUI to accommodate and stimulate the semantic web of EV science. PMID:25317275
Butler, William E; Atai, Nadia; Carter, Bob; Hochberg, Fred
2014-01-01
The Richard Floor Biorepository supports collaborative studies of extracellular vesicles (EVs) found in human fluids and tissue specimens. The current emphasis is on biomarkers for central nervous system neoplasms but its structure may serve as a template for collaborative EV translational studies in other fields. The informatic system provides specimen inventory tracking with bar codes assigned to specimens and containers and projects, is hosted on globalized cloud computing resources, and embeds a suite of shared documents, calendars, and video-conferencing features. Clinical data are recorded in relation to molecular EV attributes and may be tagged with terms drawn from a network of externally maintained ontologies thus offering expansion of the system as the field matures. We fashioned the graphical user interface (GUI) around a web-based data visualization package. This system is now in an early stage of deployment, mainly focused on specimen tracking and clinical, laboratory, and imaging data capture in support of studies to optimize detection and analysis of brain tumour-specific mutations. It currently includes 4,392 specimens drawn from 611 subjects, the majority with brain tumours. As EV science evolves, we plan biorepository changes which may reflect multi-institutional collaborations, proteomic interfaces, additional biofluids, changes in operating procedures and kits for specimen handling, novel procedures for detection of tumour-specific EVs, and for RNA extraction and changes in the taxonomy of EVs. We have used an ontology-driven data model and web-based architecture with a graph theory-driven GUI to accommodate and stimulate the semantic web of EV science.
Graphs of groups on surfaces interactions and models
White, AT
2001-01-01
The book, suitable as both an introductory reference and as a text book in the rapidly growing field of topological graph theory, models both maps (as in map-coloring problems) and groups by means of graph imbeddings on sufaces. Automorphism groups of both graphs and maps are studied. In addition connections are made to other areas of mathematics, such as hypergraphs, block designs, finite geometries, and finite fields. There are chapters on the emerging subfields of enumerative topological graph theory and random topological graph theory, as well as a chapter on the composition of English
Diagrams: A Visual Survey of Graphs, Maps, Charts and Diagrams for the Graphic Designer.
Lockwood, Arthur
Since the ultimate success of any diagram rests in its clarity, it is important that the designer select a method of presentation which will achieve this aim. He should be aware of the various ways in which statistics can be shown diagrammatically, how information can be incorporated in maps, and how events can be plotted in chart or graph form.…
Procedural Content Graphs for Urban Modeling
Pedro Brandão Silva
2015-01-01
Full Text Available Massive procedural content creation, for example, for virtual urban environments, is a difficult, yet important challenge. While shape grammars are a popular example of effectiveness in architectural modeling, they have clear limitations regarding readability, manageability, and expressive power when addressing a variety of complex structural designs. Moreover, shape grammars aim at geometry specification and do not facilitate integration with other types of content, such as textures or light sources, which could rather accompany the generation process. We present procedural content graphs, a graph-based solution for procedural generation that addresses all these issues in a visual, flexible, and more expressive manner. Besides integrating handling of diverse types of content, this approach introduces collective entity manipulation as lists, seamlessly providing features such as advanced filtering, grouping, merging, ordering, and aggregation, essentially unavailable in shape grammars. Hereby, separated entities can be easily merged or just analyzed together in order to perform a variety of context-based decisions and operations. The advantages of this approach are illustrated via examples of tasks that are either very cumbersome or simply impossible to express with previous grammar approaches.
A cognitive architecture-based model of graph comprehension
Peebles, David
2012-01-01
I present a model of expert comprehension performance for 2 × 2 "interaction" graphs typically used to present data from two-way factorial research designs. Developed using the ACT-R cognitive architecture, the model simulates the cognitive and perceptual operations involved in interpreting interaction graphs and provides a detailed characterisation of the information extracted from the diagram, the prior knowledge required to interpret interaction graphs, and the knowledge generated during t...
An internet graph model based on trade-off optimization
Alvarez-Hamelin, J. I.; Schabanel, N.
2004-03-01
This paper presents a new model for the Internet graph (AS graph) based on the concept of heuristic trade-off optimization, introduced by Fabrikant, Koutsoupias and Papadimitriou in[CITE] to grow a random tree with a heavily tailed degree distribution. We propose here a generalization of this approach to generate a general graph, as a candidate for modeling the Internet. We present the results of our simulations and an analysis of the standard parameters measured in our model, compared with measurements from the physical Internet graph.
State space model extraction of thermohydraulic systems – Part I: A linear graph approach
Uren, K.R.; Schoor, G. van
2013-01-01
Thermohydraulic simulation codes are increasingly making use of graphical design interfaces. The user can quickly and easily design a thermohydraulic system by placing symbols on the screen resembling system components. These components can then be connected to form a system representation. Such system models may then be used to obtain detailed simulations of the physical system. Usually this kind of simulation models are too complex and not ideal for control system design. Therefore, a need exists for automated techniques to extract lumped parameter models useful for control system design. The goal of this first paper, in a two part series, is to propose a method that utilises a graphical representation of a thermohydraulic system, and a lumped parameter modelling approach, to extract state space models. In this methodology each physical domain of the thermohydraulic system is represented by a linear graph. These linear graphs capture the interaction between all components within and across energy domains – hydraulic, thermal and mechanical. These linear graphs are analysed using a graph-theoretic approach to derive reduced order state space models. These models capture the dominant dynamics of the thermohydraulic system and are ideal for control system design purposes. The proposed state space model extraction method is demonstrated by considering a U-tube system. A non-linear state space model is extracted representing both the hydraulic and thermal domain dynamics of the system. The simulated state space model is compared with a Flownex ® model of the U-tube. Flownex ® is a validated systems thermal-fluid simulation software package. - Highlights: • A state space model extraction methodology based on graph-theoretic concepts. • An energy-based approach to consider multi-domain systems in a common framework. • Allow extraction of transparent (white-box) state space models automatically. • Reduced order models containing only independent state
Hierarchical graphs for rule-based modeling of biochemical systems
Hu Bin
2011-02-01
Full Text Available Abstract Background In rule-based modeling, graphs are used to represent molecules: a colored vertex represents a component of a molecule, a vertex attribute represents the internal state of a component, and an edge represents a bond between components. Components of a molecule share the same color. Furthermore, graph-rewriting rules are used to represent molecular interactions. A rule that specifies addition (removal of an edge represents a class of association (dissociation reactions, and a rule that specifies a change of a vertex attribute represents a class of reactions that affect the internal state of a molecular component. A set of rules comprises an executable model that can be used to determine, through various means, the system-level dynamics of molecular interactions in a biochemical system. Results For purposes of model annotation, we propose the use of hierarchical graphs to represent structural relationships among components and subcomponents of molecules. We illustrate how hierarchical graphs can be used to naturally document the structural organization of the functional components and subcomponents of two proteins: the protein tyrosine kinase Lck and the T cell receptor (TCR complex. We also show that computational methods developed for regular graphs can be applied to hierarchical graphs. In particular, we describe a generalization of Nauty, a graph isomorphism and canonical labeling algorithm. The generalized version of the Nauty procedure, which we call HNauty, can be used to assign canonical labels to hierarchical graphs or more generally to graphs with multiple edge types. The difference between the Nauty and HNauty procedures is minor, but for completeness, we provide an explanation of the entire HNauty algorithm. Conclusions Hierarchical graphs provide more intuitive formal representations of proteins and other structured molecules with multiple functional components than do the regular graphs of current languages for
A formal definition of data flow graph models
Kavi, Krishna M.; Buckles, Bill P.; Bhat, U. Narayan
1986-01-01
In this paper, a new model for parallel computations and parallel computer systems that is based on data flow principles is presented. Uninterpreted data flow graphs can be used to model computer systems including data driven and parallel processors. A data flow graph is defined to be a bipartite graph with actors and links as the two vertex classes. Actors can be considered similar to transitions in Petri nets, and links similar to places. The nondeterministic nature of uninterpreted data flow graphs necessitates the derivation of liveness conditions.
Intelligent diagnosis of jaundice with dynamic uncertain causality graph model*
Hao, Shao-rui; Geng, Shi-chao; Fan, Lin-xiao; Chen, Jia-jia; Zhang, Qin; Li, Lan-juan
2017-01-01
Jaundice is a common and complex clinical symptom potentially occurring in hepatology, general surgery, pediatrics, infectious diseases, gynecology, and obstetrics, and it is fairly difficult to distinguish the cause of jaundice in clinical practice, especially for general practitioners in less developed regions. With collaboration between physicians and artificial intelligence engineers, a comprehensive knowledge base relevant to jaundice was created based on demographic information, symptoms, physical signs, laboratory tests, imaging diagnosis, medical histories, and risk factors. Then a diagnostic modeling and reasoning system using the dynamic uncertain causality graph was proposed. A modularized modeling scheme was presented to reduce the complexity of model construction, providing multiple perspectives and arbitrary granularity for disease causality representations. A “chaining” inference algorithm and weighted logic operation mechanism were employed to guarantee the exactness and efficiency of diagnostic reasoning under situations of incomplete and uncertain information. Moreover, the causal interactions among diseases and symptoms intuitively demonstrated the reasoning process in a graphical manner. Verification was performed using 203 randomly pooled clinical cases, and the accuracy was 99.01% and 84.73%, respectively, with or without laboratory tests in the model. The solutions were more explicable and convincing than common methods such as Bayesian Networks, further increasing the objectivity of clinical decision-making. The promising results indicated that our model could be potentially used in intelligent diagnosis and help decrease public health expenditure. PMID:28471111
Graph Modeling for Quadratic Assignment Problems Associated with the Hypercube
Mittelmann, Hans; Peng Jiming; Wu Xiaolin
2009-01-01
In the paper we consider the quadratic assignment problem arising from channel coding in communications where one coefficient matrix is the adjacency matrix of a hypercube in a finite dimensional space. By using the geometric structure of the hypercube, we first show that there exist at least n different optimal solutions to the underlying QAPs. Moreover, the inherent symmetries in the associated hypercube allow us to obtain partial information regarding the optimal solutions and thus shrink the search space and improve all the existing QAP solvers for the underlying QAPs.Secondly, we use graph modeling technique to derive a new integer linear program (ILP) models for the underlying QAPs. The new ILP model has n(n-1) binary variables and O(n 3 log(n)) linear constraints. This yields the smallest known number of binary variables for the ILP reformulation of QAPs. Various relaxations of the new ILP model are obtained based on the graphical characterization of the hypercube, and the lower bounds provided by the LP relaxations of the new model are analyzed and compared with what provided by several classical LP relaxations of QAPs in the literature.
Intelligent diagnosis of jaundice with dynamic uncertain causality graph model.
Hao, Shao-Rui; Geng, Shi-Chao; Fan, Lin-Xiao; Chen, Jia-Jia; Zhang, Qin; Li, Lan-Juan
2017-05-01
Jaundice is a common and complex clinical symptom potentially occurring in hepatology, general surgery, pediatrics, infectious diseases, gynecology, and obstetrics, and it is fairly difficult to distinguish the cause of jaundice in clinical practice, especially for general practitioners in less developed regions. With collaboration between physicians and artificial intelligence engineers, a comprehensive knowledge base relevant to jaundice was created based on demographic information, symptoms, physical signs, laboratory tests, imaging diagnosis, medical histories, and risk factors. Then a diagnostic modeling and reasoning system using the dynamic uncertain causality graph was proposed. A modularized modeling scheme was presented to reduce the complexity of model construction, providing multiple perspectives and arbitrary granularity for disease causality representations. A "chaining" inference algorithm and weighted logic operation mechanism were employed to guarantee the exactness and efficiency of diagnostic reasoning under situations of incomplete and uncertain information. Moreover, the causal interactions among diseases and symptoms intuitively demonstrated the reasoning process in a graphical manner. Verification was performed using 203 randomly pooled clinical cases, and the accuracy was 99.01% and 84.73%, respectively, with or without laboratory tests in the model. The solutions were more explicable and convincing than common methods such as Bayesian Networks, further increasing the objectivity of clinical decision-making. The promising results indicated that our model could be potentially used in intelligent diagnosis and help decrease public health expenditure.
Graphical models for inferring single molecule dynamics
Gonzalez Ruben L
2010-10-01
Full Text Available Abstract Background The recent explosion of experimental techniques in single molecule biophysics has generated a variety of novel time series data requiring equally novel computational tools for analysis and inference. This article describes in general terms how graphical modeling may be used to learn from biophysical time series data using the variational Bayesian expectation maximization algorithm (VBEM. The discussion is illustrated by the example of single-molecule fluorescence resonance energy transfer (smFRET versus time data, where the smFRET time series is modeled as a hidden Markov model (HMM with Gaussian observables. A detailed description of smFRET is provided as well. Results The VBEM algorithm returns the model’s evidence and an approximating posterior parameter distribution given the data. The former provides a metric for model selection via maximum evidence (ME, and the latter a description of the model’s parameters learned from the data. ME/VBEM provide several advantages over the more commonly used approach of maximum likelihood (ML optimized by the expectation maximization (EM algorithm, the most important being a natural form of model selection and a well-posed (non-divergent optimization problem. Conclusions The results demonstrate the utility of graphical modeling for inference of dynamic processes in single molecule biophysics.
Stochastic Spectral Descent for Discrete Graphical Models
Carlson, David; Hsieh, Ya-Ping; Collins, Edo; Carin, Lawrence; Cevher, Volkan
2015-01-01
Interest in deep probabilistic graphical models has in-creased in recent years, due to their state-of-the-art performance on many machine learning applications. Such models are typically trained with the stochastic gradient method, which can take a significant number of iterations to converge. Since the computational cost of gradient estimation is prohibitive even for modestly sized models, training becomes slow and practically usable models are kept small. In this paper we propose a new, largely tuning-free algorithm to address this problem. Our approach derives novel majorization bounds based on the Schatten- norm. Intriguingly, the minimizers of these bounds can be interpreted as gradient methods in a non-Euclidean space. We thus propose using a stochastic gradient method in non-Euclidean space. We both provide simple conditions under which our algorithm is guaranteed to converge, and demonstrate empirically that our algorithm leads to dramatically faster training and improved predictive ability compared to stochastic gradient descent for both directed and undirected graphical models.
A graph model for opportunistic network coding
Sorour, Sameh; Aboutoraby, Neda; Al-Naffouri, Tareq Y.; Alouini, Mohamed-Slim
2015-01-01
© 2015 IEEE. Recent advancements in graph-based analysis and solutions of instantly decodable network coding (IDNC) trigger the interest to extend them to more complicated opportunistic network coding (ONC) scenarios, with limited increase
Kuramoto model for infinite graphs with kernels
Canale, Eduardo; Tembine, Hamidou; Tempone, Raul; Zouraris, Georgios E.
2015-01-01
. We focus on circulant graphs which have enough symmetries to make the computations easier. We then focus on the asymptotic regime where an integro-partial differential equation is derived. Numerical analysis and convergence proofs of the Fokker
Generic Graph Grammar: A Simple Grammar for Generic Procedural Modelling
Christiansen, Asger Nyman; Bærentzen, Jakob Andreas
2012-01-01
in a directed cyclic graph. Furthermore, the basic productions are chosen such that Generic Graph Grammar seamlessly combines the capabilities of L-systems to imitate biological growth (to model trees, animals, etc.) and those of split grammars to design structured objects (chairs, houses, etc.). This results...
Using graph approach for managing connectivity in integrative landscape modelling
Rabotin, Michael; Fabre, Jean-Christophe; Libres, Aline; Lagacherie, Philippe; Crevoisier, David; Moussa, Roger
2013-04-01
In cultivated landscapes, a lot of landscape elements such as field boundaries, ditches or banks strongly impact water flows, mass and energy fluxes. At the watershed scale, these impacts are strongly conditionned by the connectivity of these landscape elements. An accurate representation of these elements and of their complex spatial arrangements is therefore of great importance for modelling and predicting these impacts.We developped in the framework of the OpenFLUID platform (Software Environment for Modelling Fluxes in Landscapes) a digital landscape representation that takes into account the spatial variabilities and connectivities of diverse landscape elements through the application of the graph theory concepts. The proposed landscape representation consider spatial units connected together to represent the flux exchanges or any other information exchanges. Each spatial unit of the landscape is represented as a node of a graph and relations between units as graph connections. The connections are of two types - parent-child connection and up/downstream connection - which allows OpenFLUID to handle hierarchical graphs. Connections can also carry informations and graph evolution during simulation is possible (connections or elements modifications). This graph approach allows a better genericity on landscape representation, a management of complex connections and facilitate development of new landscape representation algorithms. Graph management is fully operational in OpenFLUID for developers or modelers ; and several graph tools are available such as graph traversal algorithms or graph displays. Graph representation can be managed i) manually by the user (for example in simple catchments) through XML-based files in easily editable and readable format or ii) by using methods of the OpenFLUID-landr library which is an OpenFLUID library relying on common open-source spatial libraries (ogr vector, geos topologic vector and gdal raster libraries). Open
Dynamic airspace configuration method based on a weighted graph model
Chen Yangzhou
2014-08-01
Full Text Available This paper proposes a new method for dynamic airspace configuration based on a weighted graph model. The method begins with the construction of an undirected graph for the given airspace, where the vertices represent those key points such as airports, waypoints, and the edges represent those air routes. Those vertices are used as the sites of Voronoi diagram, which divides the airspace into units called as cells. Then, aircraft counts of both each cell and of each air-route are computed. Thus, by assigning both the vertices and the edges with those aircraft counts, a weighted graph model comes into being. Accordingly the airspace configuration problem is described as a weighted graph partitioning problem. Then, the problem is solved by a graph partitioning algorithm, which is a mixture of general weighted graph cuts algorithm, an optimal dynamic load balancing algorithm and a heuristic algorithm. After the cuts algorithm partitions the model into sub-graphs, the load balancing algorithm together with the heuristic algorithm transfers aircraft counts to balance workload among sub-graphs. Lastly, airspace configuration is completed by determining the sector boundaries. The simulation result shows that the designed sectors satisfy not only workload balancing condition, but also the constraints such as convexity, connectivity, as well as minimum distance constraint.
GSMNet: A Hierarchical Graph Model for Moving Objects in Networks
Hengcai Zhang
2017-03-01
Full Text Available Existing data models for moving objects in networks are often limited by flexibly controlling the granularity of representing networks and the cost of location updates and do not encompass semantic information, such as traffic states, traffic restrictions and social relationships. In this paper, we aim to fill the gap of traditional network-constrained models and propose a hierarchical graph model called the Geo-Social-Moving model for moving objects in Networks (GSMNet that adopts four graph structures, RouteGraph, SegmentGraph, ObjectGraph and MoveGraph, to represent the underlying networks, trajectories and semantic information in an integrated manner. The bulk of user-defined data types and corresponding operators is proposed to handle moving objects and answer a new class of queries supporting three kinds of conditions: spatial, temporal and semantic information. Then, we develop a prototype system with the native graph database system Neo4Jto implement the proposed GSMNet model. In the experiment, we conduct the performance evaluation using simulated trajectories generated from the BerlinMOD (Berlin Moving Objects Database benchmark and compare with the mature MOD system Secondo. The results of 17 benchmark queries demonstrate that our proposed GSMNet model has strong potential to reduce time-consuming table join operations an d shows remarkable advantages with regard to representing semantic information and controlling the cost of location updates.
Pseudo-Bond Graph model for the analysis of the thermal behavior of buildings
Merabtine Abdelatif
2013-01-01
Full Text Available In this work, a simplified graphical modeling tool, which in some extent can be considered in halfway between detailed physical and Data driven dynamic models, has been developed. This model is based on Bond Graphs approach. This approach has the potential to display explicitly the nature of power in a building system, such as a phenomenon of storage, processing and dissipating energy such as Heating, Ventilation and Air-Conditioning (HVAC systems. This paper represents the developed models of the two transient heat conduction problems corresponding to the most practical cases in building envelope, such as the heat transfer through vertical walls, roofs and slabs. The validation procedure consists of comparing the results obtained with this model with analytical solution. It has shown very good agreement between measured data and Bond Graphs model simulation. The Bond Graphs technique is then used to model the building dynamic thermal behavior over a single zone building structure and compared with a set of experimental data. An evaluation of indoor temperature was carried out in order to check our Bond Graphs model.
Graph theoretical model of a sensorimotor connectome in zebrafish.
Stobb, Michael; Peterson, Joshua M; Mazzag, Borbala; Gahtan, Ethan
2012-01-01
Mapping the detailed connectivity patterns (connectomes) of neural circuits is a central goal of neuroscience. The best quantitative approach to analyzing connectome data is still unclear but graph theory has been used with success. We present a graph theoretical model of the posterior lateral line sensorimotor pathway in zebrafish. The model includes 2,616 neurons and 167,114 synaptic connections. Model neurons represent known cell types in zebrafish larvae, and connections were set stochastically following rules based on biological literature. Thus, our model is a uniquely detailed computational representation of a vertebrate connectome. The connectome has low overall connection density, with 2.45% of all possible connections, a value within the physiological range. We used graph theoretical tools to compare the zebrafish connectome graph to small-world, random and structured random graphs of the same size. For each type of graph, 100 randomly generated instantiations were considered. Degree distribution (the number of connections per neuron) varied more in the zebrafish graph than in same size graphs with less biological detail. There was high local clustering and a short average path length between nodes, implying a small-world structure similar to other neural connectomes and complex networks. The graph was found not to be scale-free, in agreement with some other neural connectomes. An experimental lesion was performed that targeted three model brain neurons, including the Mauthner neuron, known to control fast escape turns. The lesion decreased the number of short paths between sensory and motor neurons analogous to the behavioral effects of the same lesion in zebrafish. This model is expandable and can be used to organize and interpret a growing database of information on the zebrafish connectome.
Graph theoretical model of a sensorimotor connectome in zebrafish.
Michael Stobb
Full Text Available Mapping the detailed connectivity patterns (connectomes of neural circuits is a central goal of neuroscience. The best quantitative approach to analyzing connectome data is still unclear but graph theory has been used with success. We present a graph theoretical model of the posterior lateral line sensorimotor pathway in zebrafish. The model includes 2,616 neurons and 167,114 synaptic connections. Model neurons represent known cell types in zebrafish larvae, and connections were set stochastically following rules based on biological literature. Thus, our model is a uniquely detailed computational representation of a vertebrate connectome. The connectome has low overall connection density, with 2.45% of all possible connections, a value within the physiological range. We used graph theoretical tools to compare the zebrafish connectome graph to small-world, random and structured random graphs of the same size. For each type of graph, 100 randomly generated instantiations were considered. Degree distribution (the number of connections per neuron varied more in the zebrafish graph than in same size graphs with less biological detail. There was high local clustering and a short average path length between nodes, implying a small-world structure similar to other neural connectomes and complex networks. The graph was found not to be scale-free, in agreement with some other neural connectomes. An experimental lesion was performed that targeted three model brain neurons, including the Mauthner neuron, known to control fast escape turns. The lesion decreased the number of short paths between sensory and motor neurons analogous to the behavioral effects of the same lesion in zebrafish. This model is expandable and can be used to organize and interpret a growing database of information on the zebrafish connectome.
Bond graph model-based fault diagnosis of hybrid systems
Borutzky, Wolfgang
2015-01-01
This book presents a bond graph model-based approach to fault diagnosis in mechatronic systems appropriately represented by a hybrid model. The book begins by giving a survey of the fundamentals of fault diagnosis and failure prognosis, then recalls state-of-art developments referring to latest publications, and goes on to discuss various bond graph representations of hybrid system models, equations formulation for switched systems, and simulation of their dynamic behavior. The structured text: • focuses on bond graph model-based fault detection and isolation in hybrid systems; • addresses isolation of multiple parametric faults in hybrid systems; • considers system mode identification; • provides a number of elaborated case studies that consider fault scenarios for switched power electronic systems commonly used in a variety of applications; and • indicates that bond graph modelling can also be used for failure prognosis. In order to facilitate the understanding of fault diagnosis and the presented...
Application of Bond Graph Modeling for Photovoltaic Module Simulation
Madi S.
2016-01-01
Full Text Available In this paper, photovoltaic generator is represented using the bond-graph methodology. Starting from the equivalent circuit the bond graph and the block diagram of the photovoltaic generator have been derived. Upon applying bond graph elements and rules a mathematical model of the photovoltaic generator is obtained. Simulation results of this obtained model using real recorded data (irradiation and temperature at the Renewable Energies Development Centre in Bouzaréah – Algeria are obtained using MATLAB/SMULINK software. The results have compared with datasheet of the photovoltaic generator for validation purposes.
A new intrusion prevention model using planning knowledge graph
Cai, Zengyu; Feng, Yuan; Liu, Shuru; Gan, Yong
2013-03-01
Intelligent plan is a very important research in artificial intelligence, which has applied in network security. This paper proposes a new intrusion prevention model base on planning knowledge graph and discuses the system architecture and characteristics of this model. The Intrusion Prevention based on plan knowledge graph is completed by plan recognition based on planning knowledge graph, and the Intrusion response strategies and actions are completed by the hierarchical task network (HTN) planner in this paper. Intrusion prevention system has the advantages of intelligent planning, which has the advantage of the knowledge-sharing, the response focused, learning autonomy and protective ability.
Screw-vector bond graphs for kinetic-static modelling and analysis of mechanisms
Bidard, Catherine
1994-01-01
This dissertation deals with the kinetic-static modelling and analysis of spatial mechanisms used in robotics systems. A framework is proposed, which embodies a geometrical and a network approach for kinetic-static modelling. For this purpose we use screw theory and bond graphs. A new form of bond graphs is introduced: the screw-vector bond graph, whose power variables are defined to be wrenches and twists expressed as intrinsic screw-vectors. The mechanism is then identified as a network, whose components are kinematic pairs and whose topology is described by a directed graph. A screw-vector Simple Junction Structure represents the topological constraints. Kinematic pairs are represented by one-port elements, defined by two reciprocal screw-vector spaces. Using dual bases of screw-vectors, a generic decomposition of kinematic pair elements is given. The reduction of kinetic-static models of series and parallel kinematic chains is used in order to derive kinetic-static functional models in geometric form. Thereupon, the computational causality assignment is adapted for the graphical analysis of the mobility and the functioning of spatial mechanisms, based on completely or incompletely specified models. (author) [fr
Modeling flow and transport in fracture networks using graphs
Karra, S.; O'Malley, D.; Hyman, J. D.; Viswanathan, H. S.; Srinivasan, G.
2018-03-01
Fractures form the main pathways for flow in the subsurface within low-permeability rock. For this reason, accurately predicting flow and transport in fractured systems is vital for improving the performance of subsurface applications. Fracture sizes in these systems can range from millimeters to kilometers. Although modeling flow and transport using the discrete fracture network (DFN) approach is known to be more accurate due to incorporation of the detailed fracture network structure over continuum-based methods, capturing the flow and transport in such a wide range of scales is still computationally intractable. Furthermore, if one has to quantify uncertainty, hundreds of realizations of these DFN models have to be run. To reduce the computational burden, we solve flow and transport on a graph representation of a DFN. We study the accuracy of the graph approach by comparing breakthrough times and tracer particle statistical data between the graph-based and the high-fidelity DFN approaches, for fracture networks with varying number of fractures and degree of heterogeneity. Due to our recent developments in capabilities to perform DFN high-fidelity simulations on fracture networks with large number of fractures, we are in a unique position to perform such a comparison. We show that the graph approach shows a consistent bias with up to an order of magnitude slower breakthrough when compared to the DFN approach. We show that this is due to graph algorithm's underprediction of the pressure gradients across intersections on a given fracture, leading to slower tracer particle speeds between intersections and longer travel times. We present a bias correction methodology to the graph algorithm that reduces the discrepancy between the DFN and graph predictions. We show that with this bias correction, the graph algorithm predictions significantly improve and the results are very accurate. The good accuracy and the low computational cost, with O (104) times lower times than
Ricardo Lopes Cardoso
Full Text Available Previous researches support that graphs are relevant decision aids to tasks related to the interpretation of numerical information. Moreover, literature shows that different types of graphical information can help or harm the accuracy on decision making of accountants and financial analysts. We conducted a 4×2 mixed-design experiment to examine the effects of numerical information disclosure on financial analysts' accuracy, and investigated the role of overconfidence in decision making. Results show that compared to text, column graph enhanced accuracy on decision making, followed by line graphs. No difference was found between table and textual disclosure. Overconfidence harmed accuracy, and both genders behaved overconfidently. Additionally, the type of disclosure (text, table, line graph and column graph did not affect the overconfidence of individuals, providing evidence that overconfidence is a personal trait. This study makes three contributions. First, it provides evidence from a larger sample size (295 of financial analysts instead of a smaller sample size of students that graphs are relevant decision aids to tasks related to the interpretation of numerical information. Second, it uses the text as a baseline comparison to test how different ways of information disclosure (line and column graphs, and tables can enhance understandability of information. Third, it brings an internal factor to this process: overconfidence, a personal trait that harms the decision-making process of individuals. At the end of this paper several research paths are highlighted to further study the effect of internal factors (personal traits on financial analysts' accuracy on decision making regarding numerical information presented in a graphical form. In addition, we offer suggestions concerning some practical implications for professional accountants, auditors, financial analysts and standard setters.
Cardoso, Ricardo Lopes; Leite, Rodrigo Oliveira; de Aquino, André Carlos Busanelli
2016-01-01
Previous researches support that graphs are relevant decision aids to tasks related to the interpretation of numerical information. Moreover, literature shows that different types of graphical information can help or harm the accuracy on decision making of accountants and financial analysts. We conducted a 4×2 mixed-design experiment to examine the effects of numerical information disclosure on financial analysts' accuracy, and investigated the role of overconfidence in decision making. Results show that compared to text, column graph enhanced accuracy on decision making, followed by line graphs. No difference was found between table and textual disclosure. Overconfidence harmed accuracy, and both genders behaved overconfidently. Additionally, the type of disclosure (text, table, line graph and column graph) did not affect the overconfidence of individuals, providing evidence that overconfidence is a personal trait. This study makes three contributions. First, it provides evidence from a larger sample size (295) of financial analysts instead of a smaller sample size of students that graphs are relevant decision aids to tasks related to the interpretation of numerical information. Second, it uses the text as a baseline comparison to test how different ways of information disclosure (line and column graphs, and tables) can enhance understandability of information. Third, it brings an internal factor to this process: overconfidence, a personal trait that harms the decision-making process of individuals. At the end of this paper several research paths are highlighted to further study the effect of internal factors (personal traits) on financial analysts' accuracy on decision making regarding numerical information presented in a graphical form. In addition, we offer suggestions concerning some practical implications for professional accountants, auditors, financial analysts and standard setters.
System dynamics and control with bond graph modeling
Kypuros, Javier
2013-01-01
Part I Dynamic System ModelingIntroduction to System DynamicsIntroductionSystem Decomposition and Model ComplexityMathematical Modeling of Dynamic SystemsAnalysis and Design of Dynamic SystemsControl of Dynamic SystemsDiagrams of Dynamic SystemsA Graph-Centered Approach to ModelingSummaryPracticeExercisesBasic Bond Graph ElementsIntroductionPower and Energy VariablesBasic 1-Port ElementsBasic 2-Ports ElementsJunction ElementsSimple Bond Graph ExamplesSummaryPracticeExercisesBond Graph Synthesis and Equation DerivationIntroductionGeneral GuidelinesMechanical TranslationMechanical RotationElectrical CircuitsHydraulic CircuitsMixed SystemsState Equation DerivationState-Space RepresentationsAlgebraic Loops and Derivative CausalitySummaryPracticeExercisesImpedance Bond GraphsIntroductionLaplace Transform of the State-Space EquationBasic 1-Port ImpedancesImpedance Bond Graph SynthesisJunctions, Transformers, and GyratorsEffort and Flow DividersSign ChangesTransfer Function DerivationAlternative Derivation of Transf...
A Statistical Graphical Model of the California Reservoir System
Taeb, A.; Reager, J. T.; Turmon, M.; Chandrasekaran, V.
2017-11-01
The recent California drought has highlighted the potential vulnerability of the state's water management infrastructure to multiyear dry intervals. Due to the high complexity of the network, dynamic storage changes in California reservoirs on a state-wide scale have previously been difficult to model using either traditional statistical or physical approaches. Indeed, although there is a significant line of research on exploring models for single (or a small number of) reservoirs, these approaches are not amenable to a system-wide modeling of the California reservoir network due to the spatial and hydrological heterogeneities of the system. In this work, we develop a state-wide statistical graphical model to characterize the dependencies among a collection of 55 major California reservoirs across the state; this model is defined with respect to a graph in which the nodes index reservoirs and the edges specify the relationships or dependencies between reservoirs. We obtain and validate this model in a data-driven manner based on reservoir volumes over the period 2003-2016. A key feature of our framework is a quantification of the effects of external phenomena that influence the entire reservoir network. We further characterize the degree to which physical factors (e.g., state-wide Palmer Drought Severity Index (PDSI), average temperature, snow pack) and economic factors (e.g., consumer price index, number of agricultural workers) explain these external influences. As a consequence of this analysis, we obtain a system-wide health diagnosis of the reservoir network as a function of PDSI.
A DNA Computing Model for the Graph Vertex Coloring Problem Based on a Probe Graph
Jin Xu
2018-02-01
Full Text Available The biggest bottleneck in DNA computing is exponential explosion, in which the DNA molecules used as data in information processing grow exponentially with an increase of problem size. To overcome this bottleneck and improve the processing speed, we propose a DNA computing model to solve the graph vertex coloring problem. The main points of the model are as follows: ① The exponential explosion problem is solved by dividing subgraphs, reducing the vertex colors without losing the solutions, and ordering the vertices in subgraphs; and ② the bio-operation times are reduced considerably by a designed parallel polymerase chain reaction (PCR technology that dramatically improves the processing speed. In this article, a 3-colorable graph with 61 vertices is used to illustrate the capability of the DNA computing model. The experiment showed that not only are all the solutions of the graph found, but also more than 99% of false solutions are deleted when the initial solution space is constructed. The powerful computational capability of the model was based on specific reactions among the large number of nanoscale oligonucleotide strands. All these tiny strands are operated by DNA self-assembly and parallel PCR. After thousands of accurate PCR operations, the solutions were found by recognizing, splicing, and assembling. We also prove that the searching capability of this model is up to O(359. By means of an exhaustive search, it would take more than 896 000 years for an electronic computer (5 × 1014 s−1 to achieve this enormous task. This searching capability is the largest among both the electronic and non-electronic computers that have been developed since the DNA computing model was proposed by Adleman’s research group in 2002 (with a searching capability of O(220. Keywords: DNA computing, Graph vertex coloring problem, Polymerase chain reaction
Markov chain Monte Carlo methods in directed graphical models
Højbjerre, Malene
Directed graphical models present data possessing a complex dependence structure, and MCMC methods are computer-intensive simulation techniques to approximate high-dimensional intractable integrals, which emerge in such models with incomplete data. MCMC computations in directed graphical models h...
Benchmarking Measures of Network Controllability on Canonical Graph Models
Wu-Yan, Elena; Betzel, Richard F.; Tang, Evelyn; Gu, Shi; Pasqualetti, Fabio; Bassett, Danielle S.
2018-03-01
The control of networked dynamical systems opens the possibility for new discoveries and therapies in systems biology and neuroscience. Recent theoretical advances provide candidate mechanisms by which a system can be driven from one pre-specified state to another, and computational approaches provide tools to test those mechanisms in real-world systems. Despite already having been applied to study network systems in biology and neuroscience, the practical performance of these tools and associated measures on simple networks with pre-specified structure has yet to be assessed. Here, we study the behavior of four control metrics (global, average, modal, and boundary controllability) on eight canonical graphs (including Erdős-Rényi, regular, small-world, random geometric, Barábasi-Albert preferential attachment, and several modular networks) with different edge weighting schemes (Gaussian, power-law, and two nonparametric distributions from brain networks, as examples of real-world systems). We observe that differences in global controllability across graph models are more salient when edge weight distributions are heavy-tailed as opposed to normal. In contrast, differences in average, modal, and boundary controllability across graph models (as well as across nodes in the graph) are more salient when edge weight distributions are less heavy-tailed. Across graph models and edge weighting schemes, average and modal controllability are negatively correlated with one another across nodes; yet, across graph instances, the relation between average and modal controllability can be positive, negative, or nonsignificant. Collectively, these findings demonstrate that controllability statistics (and their relations) differ across graphs with different topologies and that these differences can be muted or accentuated by differences in the edge weight distributions. More generally, our numerical studies motivate future analytical efforts to better understand the mathematical
Cloud Library for Directed Probabilistic Graphical Models
2014-10-01
notwithstanding any other provision of law , no person shall be subject to any penalty for failing to comply with a collection of information if it does not...with the Kiva dataset. The Bitcoin and Akamai data sets are deeply graph-structured and are thus not a natural fit for what is essentially a
Graphical User Interface for Simulink Integrated Performance Analysis Model
Durham, R. Caitlyn
2009-01-01
The J-2X Engine (built by Pratt & Whitney Rocketdyne,) in the Upper Stage of the Ares I Crew Launch Vehicle, will only start within a certain range of temperature and pressure for Liquid Hydrogen and Liquid Oxygen propellants. The purpose of the Simulink Integrated Performance Analysis Model is to verify that in all reasonable conditions the temperature and pressure of the propellants are within the required J-2X engine start boxes. In order to run the simulation, test variables must be entered at all reasonable values of parameters such as heat leak and mass flow rate. To make this testing process as efficient as possible in order to save the maximum amount of time and money, and to show that the J-2X engine will start when it is required to do so, a graphical user interface (GUI) was created to allow the input of values to be used as parameters in the Simulink Model, without opening or altering the contents of the model. The GUI must allow for test data to come from Microsoft Excel files, allow those values to be edited before testing, place those values into the Simulink Model, and get the output from the Simulink Model. The GUI was built using MATLAB, and will run the Simulink simulation when the Simulate option is activated. After running the simulation, the GUI will construct a new Microsoft Excel file, as well as a MATLAB matrix file, using the output values for each test of the simulation so that they may graphed and compared to other values.
A sediment graph model based on SCS-CN method
Singh, P. K.; Bhunya, P. K.; Mishra, S. K.; Chaube, U. C.
2008-01-01
SummaryThis paper proposes new conceptual sediment graph models based on coupling of popular and extensively used methods, viz., Nash model based instantaneous unit sediment graph (IUSG), soil conservation service curve number (SCS-CN) method, and Power law. These models vary in their complexity and this paper tests their performance using data of the Nagwan watershed (area = 92.46 km 2) (India). The sensitivity of total sediment yield and peak sediment flow rate computations to model parameterisation is analysed. The exponent of the Power law, β, is more sensitive than other model parameters. The models are found to have substantial potential for computing sediment graphs (temporal sediment flow rate distribution) as well as total sediment yield.
Frog: Asynchronous Graph Processing on GPU with Hybrid Coloring Model
Shi, Xuanhua; Luo, Xuan; Liang, Junling; Zhao, Peng; Di, Sheng; He, Bingsheng; Jin, Hai
2018-01-01
GPUs have been increasingly used to accelerate graph processing for complicated computational problems regarding graph theory. Many parallel graph algorithms adopt the asynchronous computing model to accelerate the iterative convergence. Unfortunately, the consistent asynchronous computing requires locking or atomic operations, leading to significant penalties/overheads when implemented on GPUs. As such, coloring algorithm is adopted to separate the vertices with potential updating conflicts, guaranteeing the consistency/correctness of the parallel processing. Common coloring algorithms, however, may suffer from low parallelism because of a large number of colors generally required for processing a large-scale graph with billions of vertices. We propose a light-weight asynchronous processing framework called Frog with a preprocessing/hybrid coloring model. The fundamental idea is based on Pareto principle (or 80-20 rule) about coloring algorithms as we observed through masses of realworld graph coloring cases. We find that a majority of vertices (about 80%) are colored with only a few colors, such that they can be read and updated in a very high degree of parallelism without violating the sequential consistency. Accordingly, our solution separates the processing of the vertices based on the distribution of colors. In this work, we mainly answer three questions: (1) how to partition the vertices in a sparse graph with maximized parallelism, (2) how to process large-scale graphs that cannot fit into GPU memory, and (3) how to reduce the overhead of data transfers on PCIe while processing each partition. We conduct experiments on real-world data (Amazon, DBLP, YouTube, RoadNet-CA, WikiTalk and Twitter) to evaluate our approach and make comparisons with well-known non-preprocessed (such as Totem, Medusa, MapGraph and Gunrock) and preprocessed (Cusha) approaches, by testing four classical algorithms (BFS, PageRank, SSSP and CC). On all the tested applications and
Nguyen, Louis H.; Ramakrishnan, Jayant; Granda, Jose J.
2006-01-01
The assembly and operation of the International Space Station (ISS) require extensive testing and engineering analysis to verify that the Space Station system of systems would work together without any adverse interactions. Since the dynamic behavior of an entire Space Station cannot be tested on earth, math models of the Space Station structures and mechanical systems have to be built and integrated in computer simulations and analysis tools to analyze and predict what will happen in space. The ISS Centrifuge Rotor (CR) is one of many mechanical systems that need to be modeled and analyzed to verify the ISS integrated system performance on-orbit. This study investigates using Bond Graph modeling techniques as quick and simplified ways to generate models of the ISS Centrifuge Rotor. This paper outlines the steps used to generate simple and more complex models of the CR using Bond Graph Computer Aided Modeling Program with Graphical Input (CAMP-G). Comparisons of the Bond Graph CR models with those derived from Euler-Lagrange equations in MATLAB and those developed using multibody dynamic simulation at the National Aeronautics and Space Administration (NASA) Johnson Space Center (JSC) are presented to demonstrate the usefulness of the Bond Graph modeling approach for aeronautics and space applications.
Graphical modeling and query language for hospitals.
Barzdins, Janis; Barzdins, Juris; Rencis, Edgars; Sostaks, Agris
2013-01-01
So far there has been little evidence that implementation of the health information technologies (HIT) is leading to health care cost savings. One of the reasons for this lack of impact by the HIT likely lies in the complexity of the business process ownership in the hospitals. The goal of our research is to develop a business model-based method for hospital use which would allow doctors to retrieve directly the ad-hoc information from various hospital databases. We have developed a special domain-specific process modelling language called the MedMod. Formally, we define the MedMod language as a profile on UML Class diagrams, but we also demonstrate it on examples, where we explain the semantics of all its elements informally. Moreover, we have developed the Process Query Language (PQL) that is based on MedMod process definition language. The purpose of PQL is to allow a doctor querying (filtering) runtime data of hospital's processes described using MedMod. The MedMod language tries to overcome deficiencies in existing process modeling languages, allowing to specify the loosely-defined sequence of the steps to be performed in the clinical process. The main advantages of PQL are in two main areas - usability and efficiency. They are: 1) the view on data through "glasses" of familiar process, 2) the simple and easy-to-perceive means of setting filtering conditions require no more expertise than using spreadsheet applications, 3) the dynamic response to each step in construction of the complete query that shortens the learning curve greatly and reduces the error rate, and 4) the selected means of filtering and data retrieving allows to execute queries in O(n) time regarding the size of the dataset. We are about to continue developing this project with three further steps. First, we are planning to develop user-friendly graphical editors for the MedMod process modeling and query languages. The second step is to do evaluation of usability the proposed language and tool
A cluster expansion approach to exponential random graph models
Yin, Mei
2012-01-01
The exponential family of random graphs are among the most widely studied network models. We show that any exponential random graph model may alternatively be viewed as a lattice gas model with a finite Banach space norm. The system may then be treated using cluster expansion methods from statistical mechanics. In particular, we derive a convergent power series expansion for the limiting free energy in the case of small parameters. Since the free energy is the generating function for the expectations of other random variables, this characterizes the structure and behavior of the limiting network in this parameter region
A Module for Graphical Display of Model Results with the CBP Toolbox
Smith, F. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)
2015-04-21
This report describes work performed by the Savannah River National Laboratory (SRNL) in fiscal year 2014 to add enhanced graphical capabilities to display model results in the Cementitious Barriers Project (CBP) Toolbox. Because Version 2.0 of the CBP Toolbox has just been released, the graphing enhancements described in this report have not yet been integrated into a new version of the Toolbox. Instead they have been tested using a standalone GoldSim model and, while they are substantially complete, may undergo further refinement before full implementation. Nevertheless, this report is issued to document the FY14 development efforts which will provide a basis for further development of the CBP Toolbox.
The hard-core model on random graphs revisited
Barbier, Jean; Krzakala, Florent; Zhang, Pan; Zdeborová, Lenka
2013-01-01
We revisit the classical hard-core model, also known as independent set and dual to vertex cover problem, where one puts particles with a first-neighbor hard-core repulsion on the vertices of a random graph. Although the case of random graphs with small and very large average degrees respectively are quite well understood, they yield qualitatively different results and our aim here is to reconciliate these two cases. We revisit results that can be obtained using the (heuristic) cavity method and show that it provides a closed-form conjecture for the exact density of the densest packing on random regular graphs with degree K ≥ 20, and that for K > 16 the nature of the phase transition is the same as for large K. This also shows that the hard-code model is the simplest mean-field lattice model for structural glasses and jamming
A Local Poisson Graphical Model for inferring networks from sequencing data.
Allen, Genevera I; Liu, Zhandong
2013-09-01
Gaussian graphical models, a class of undirected graphs or Markov Networks, are often used to infer gene networks based on microarray expression data. Many scientists, however, have begun using high-throughput sequencing technologies such as RNA-sequencing or next generation sequencing to measure gene expression. As the resulting data consists of counts of sequencing reads for each gene, Gaussian graphical models are not optimal for this discrete data. In this paper, we propose a novel method for inferring gene networks from sequencing data: the Local Poisson Graphical Model. Our model assumes a Local Markov property where each variable conditional on all other variables is Poisson distributed. We develop a neighborhood selection algorithm to fit our model locally by performing a series of l1 penalized Poisson, or log-linear, regressions. This yields a fast parallel algorithm for estimating networks from next generation sequencing data. In simulations, we illustrate the effectiveness of our methods for recovering network structure from count data. A case study on breast cancer microRNAs (miRNAs), a novel application of graphical models, finds known regulators of breast cancer genes and discovers novel miRNA clusters and hubs that are targets for future research.
Graphical Language for Data Processing
Alphonso, Keith
2011-01-01
A graphical language for processing data allows processing elements to be connected with virtual wires that represent data flows between processing modules. The processing of complex data, such as lidar data, requires many different algorithms to be applied. The purpose of this innovation is to automate the processing of complex data, such as LIDAR, without the need for complex scripting and programming languages. The system consists of a set of user-interface components that allow the user to drag and drop various algorithmic and processing components onto a process graph. By working graphically, the user can completely visualize the process flow and create complex diagrams. This innovation supports the nesting of graphs, such that a graph can be included in another graph as a single step for processing. In addition to the user interface components, the system includes a set of .NET classes that represent the graph internally. These classes provide the internal system representation of the graphical user interface. The system includes a graph execution component that reads the internal representation of the graph (as described above) and executes that graph. The execution of the graph follows the interpreted model of execution in that each node is traversed and executed from the original internal representation. In addition, there are components that allow external code elements, such as algorithms, to be easily integrated into the system, thus making the system infinitely expandable.
A note on intrinsic conditional autoregressive models for disconnected graphs
Freni-Sterrantino, Anna; Ventrucci, Massimo; Rue, Haavard
2018-01-01
In this note we discuss (Gaussian) intrinsic conditional autoregressive (CAR) models for disconnected graphs, with the aim of providing practical guidelines for how these models should be defined, scaled and implemented. We show how these suggestions can be implemented in two examples, on disease mapping.
A note on intrinsic conditional autoregressive models for disconnected graphs
Freni-Sterrantino, Anna
2018-05-23
In this note we discuss (Gaussian) intrinsic conditional autoregressive (CAR) models for disconnected graphs, with the aim of providing practical guidelines for how these models should be defined, scaled and implemented. We show how these suggestions can be implemented in two examples, on disease mapping.
A methodology for acquiring qualitative knowledge for probabilistic graphical models
Kjærulff, Uffe Bro; Madsen, Anders L.
2004-01-01
We present a practical and general methodology that simplifies the task of acquiring and formulating qualitative knowledge for constructing probabilistic graphical models (PGMs). The methodology efficiently captures and communicates expert knowledge, and has significantly eased the model...
The complete guide to blender graphics computer modeling and animation
Blain, John M
2014-01-01
Smoothly Leads Users into the Subject of Computer Graphics through the Blender GUIBlender, the free and open source 3D computer modeling and animation program, allows users to create and animate models and figures in scenes, compile feature movies, and interact with the models and create video games. Reflecting the latest version of Blender, The Complete Guide to Blender Graphics: Computer Modeling & Animation, 2nd Edition helps beginners learn the basics of computer animation using this versatile graphics program. This edition incorporates many new features of Blender, including developments
Gaussian covariance graph models accounting for correlated marker effects in genome-wide prediction.
Martínez, C A; Khare, K; Rahman, S; Elzo, M A
2017-10-01
Several statistical models used in genome-wide prediction assume uncorrelated marker allele substitution effects, but it is known that these effects may be correlated. In statistics, graphical models have been identified as a useful tool for covariance estimation in high-dimensional problems and it is an area that has recently experienced a great expansion. In Gaussian covariance graph models (GCovGM), the joint distribution of a set of random variables is assumed to be Gaussian and the pattern of zeros of the covariance matrix is encoded in terms of an undirected graph G. In this study, methods adapting the theory of GCovGM to genome-wide prediction were developed (Bayes GCov, Bayes GCov-KR and Bayes GCov-H). In simulated data sets, improvements in correlation between phenotypes and predicted breeding values and accuracies of predicted breeding values were found. Our models account for correlation of marker effects and permit to accommodate general structures as opposed to models proposed in previous studies, which consider spatial correlation only. In addition, they allow incorporation of biological information in the prediction process through its use when constructing graph G, and their extension to the multi-allelic loci case is straightforward. © 2017 Blackwell Verlag GmbH.
Using Canonical Forms for Isomorphism Reduction in Graph-based Model Checking
Kant, Gijs
Graph isomorphism checking can be used in graph-based model checking to achieve symmetry reduction. Instead of one-to-one comparing the graph representations of states, canonical forms of state graphs can be computed. These canonical forms can be used to store and compare states. However, computing
A Bond Graph Approach for the Modeling and Simulation of a Buck Converter
Rached Zrafi
2018-01-01
Full Text Available This paper deals with the modeling of bond graph buck converter systems. The bond graph formalism, which represents a heterogeneous formalism for physical modeling, is used to design a sub-model of a power MOSFET and PiN diode switchers. These bond graph models are based on the device’s electrical elements. The application of these models to a bond graph buck converter permit us to obtain an invariant causal structure when the switch devices change state. This paper shows the usefulness of the bond graph device’s modeling to simulate an implicit bond graph buck converter.
A Graph Based Framework to Model Virus Integration Sites
Raffaele Fronza
2016-01-01
Here, we addressed the challenge to: 1 define the notion of CIS on graph models, 2 demonstrate that the structure of CIS enters in the category of scale-free networks and 3 show that our network approach analyzes CIS dynamically in an integrated systems biology framework using the Retroviral Transposon Tagged Cancer Gene Database (RTCGD as a testing dataset.
Extensions of Scott's Graph Model and Kleene's Second Algebra
van Oosten, J.; Voorneveld, Niels
We use a way to extend partial combinatory algebras (pcas) by forcing them to represent certain functions. In the case of Scott’s Graph Model, equality is computable relative to the complement function. However, the converse is not true. This creates a hierarchy of pcas which relates to similar
An approach to multiscale modelling with graph grammars.
Ong, Yongzhi; Streit, Katarína; Henke, Michael; Kurth, Winfried
2014-09-01
Functional-structural plant models (FSPMs) simulate biological processes at different spatial scales. Methods exist for multiscale data representation and modification, but the advantages of using multiple scales in the dynamic aspects of FSPMs remain unclear. Results from multiscale models in various other areas of science that share fundamental modelling issues with FSPMs suggest that potential advantages do exist, and this study therefore aims to introduce an approach to multiscale modelling in FSPMs. A three-part graph data structure and grammar is revisited, and presented with a conceptual framework for multiscale modelling. The framework is used for identifying roles, categorizing and describing scale-to-scale interactions, thus allowing alternative approaches to model development as opposed to correlation-based modelling at a single scale. Reverse information flow (from macro- to micro-scale) is catered for in the framework. The methods are implemented within the programming language XL. Three example models are implemented using the proposed multiscale graph model and framework. The first illustrates the fundamental usage of the graph data structure and grammar, the second uses probabilistic modelling for organs at the fine scale in order to derive crown growth, and the third combines multiscale plant topology with ozone trends and metabolic network simulations in order to model juvenile beech stands under exposure to a toxic trace gas. The graph data structure supports data representation and grammar operations at multiple scales. The results demonstrate that multiscale modelling is a viable method in FSPM and an alternative to correlation-based modelling. Advantages and disadvantages of multiscale modelling are illustrated by comparisons with single-scale implementations, leading to motivations for further research in sensitivity analysis and run-time efficiency for these models.
A probabilistic graphical model based stochastic input model construction
Wan, Jiang; Zabaras, Nicholas
2014-01-01
Model reduction techniques have been widely used in modeling of high-dimensional stochastic input in uncertainty quantification tasks. However, the probabilistic modeling of random variables projected into reduced-order spaces presents a number of computational challenges. Due to the curse of dimensionality, the underlying dependence relationships between these random variables are difficult to capture. In this work, a probabilistic graphical model based approach is employed to learn the dependence by running a number of conditional independence tests using observation data. Thus a probabilistic model of the joint PDF is obtained and the PDF is factorized into a set of conditional distributions based on the dependence structure of the variables. The estimation of the joint PDF from data is then transformed to estimating conditional distributions under reduced dimensions. To improve the computational efficiency, a polynomial chaos expansion is further applied to represent the random field in terms of a set of standard random variables. This technique is combined with both linear and nonlinear model reduction methods. Numerical examples are presented to demonstrate the accuracy and efficiency of the probabilistic graphical model based stochastic input models. - Highlights: • Data-driven stochastic input models without the assumption of independence of the reduced random variables. • The problem is transformed to a Bayesian network structure learning problem. • Examples are given in flows in random media
Optimal covariance selection for estimation using graphical models
Vichik, Sergey; Oshman, Yaakov
2011-01-01
We consider a problem encountered when trying to estimate a Gaussian random field using a distributed estimation approach based on Gaussian graphical models. Because of constraints imposed by estimation tools used in Gaussian graphical models, the a priori covariance of the random field is constrained to embed conditional independence constraints among a significant number of variables. The problem is, then: given the (unconstrained) a priori covariance of the random field, and the conditiona...
A general graphical user interface for automatic reliability modeling
Liceaga, Carlos A.; Siewiorek, Daniel P.
1991-01-01
Reported here is a general Graphical User Interface (GUI) for automatic reliability modeling of Processor Memory Switch (PMS) structures using a Markov model. This GUI is based on a hierarchy of windows. One window has graphical editing capabilities for specifying the system's communication structure, hierarchy, reconfiguration capabilities, and requirements. Other windows have field texts, popup menus, and buttons for specifying parameters and selecting actions. An example application of the GUI is given.
Lal, Mahesh
2015-01-01
If you are a developer who wants to understand the fundamentals of modeling data in Neo4j and how it can be used to model full-fledged applications, then this book is for you. Some understanding of domain modeling may be advantageous but is not essential.
Multiplicative Attribute Graph Model of Real-World Networks
Kim, Myunghwan [Stanford Univ., CA (United States); Leskovec, Jure [Stanford Univ., CA (United States)
2010-10-20
Large scale real-world network data, such as social networks, Internet andWeb graphs, is ubiquitous in a variety of scientific domains. The study of such social and information networks commonly finds patterns and explain their emergence through tractable models. In most networks, especially in social networks, nodes also have a rich set of attributes (e.g., age, gender) associatedwith them. However, most of the existing network models focus only on modeling the network structure while ignoring the features of nodes in the network. Here we present a class of network models that we refer to as the Multiplicative Attribute Graphs (MAG), which naturally captures the interactions between the network structure and node attributes. We consider a model where each node has a vector of categorical features associated with it. The probability of an edge between a pair of nodes then depends on the product of individual attributeattribute similarities. The model yields itself to mathematical analysis as well as fit to real data. We derive thresholds for the connectivity, the emergence of the giant connected component, and show that the model gives rise to graphs with a constant diameter. Moreover, we analyze the degree distribution to show that the model can produce networks with either lognormal or power-law degree distribution depending on certain conditions.
An integrated introduction to computer graphics and geometric modeling
Goldman, Ronald
2009-01-01
… this book may be the first book on geometric modelling that also covers computer graphics. In addition, it may be the first book on computer graphics that integrates a thorough introduction to 'freedom' curves and surfaces and to the mathematical foundations for computer graphics. … the book is well suited for an undergraduate course. … The entire book is very well presented and obviously written by a distinguished and creative researcher and educator. It certainly is a textbook I would recommend. …-Computer-Aided Design, 42, 2010… Many books concentrate on computer programming and soon beco
Object recognition in images via a factor graph model
He, Yong; Wang, Long; Wu, Zhaolin; Zhang, Haisu
2018-04-01
Object recognition in images suffered from huge search space and uncertain object profile. Recently, the Bag-of- Words methods are utilized to solve these problems, especially the 2-dimension CRF(Conditional Random Field) model. In this paper we suggest the method based on a general and flexible fact graph model, which can catch the long-range correlation in Bag-of-Words by constructing a network learning framework contrasted from lattice in CRF. Furthermore, we explore a parameter learning algorithm based on the gradient descent and Loopy Sum-Product algorithms for the factor graph model. Experimental results on Graz 02 dataset show that, the recognition performance of our method in precision and recall is better than a state-of-art method and the original CRF model, demonstrating the effectiveness of the proposed method.
Graph and Network for Model Elicitation (GNOME Phase 2)
2013-02-01
GRAPH AND NETWORK FOR MODEL ELICITATION (GNOME PHASE II) CUBRC FEBRUARY 2013 FINAL TECHNICAL REPORT APPROVED FOR...NUMBER 00 5f. WORK UNIT NUMBER 01 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) CUBRC 4455 Genesee St. Buffalo, NY 14225 8. PERFORMING...Explorer Since the previous version of GNOME was developed as an Eclipse RCP plug-in, it allowed CUBRC to develop the Model Explorer separately without
Investigating Facebook Groups through a Random Graph Model
Dinithi Pallegedara; Lei Pan
2014-01-01
Facebook disseminates messages for billions of users everyday. Though there are log files stored on central servers, law enforcement agencies outside of the U.S. cannot easily acquire server log files from Facebook. This work models Facebook user groups by using a random graph model. Our aim is to facilitate detectives quickly estimating the size of a Facebook group with which a suspect is involved. We estimate this group size according to the number of immediate friends and the number of ext...
Spatio-Semantic Comparison of Large 3d City Models in Citygml Using a Graph Database
Nguyen, S. H.; Yao, Z.; Kolbe, T. H.
2017-10-01
A city may have multiple CityGML documents recorded at different times or surveyed by different users. To analyse the city's evolution over a given period of time, as well as to update or edit the city model without negating modifications made by other users, it is of utmost importance to first compare, detect and locate spatio-semantic changes between CityGML datasets. This is however difficult due to the fact that CityGML elements belong to a complex hierarchical structure containing multi-level deep associations, which can basically be considered as a graph. Moreover, CityGML allows multiple syntactic ways to define an object leading to syntactic ambiguities in the exchange format. Furthermore, CityGML is capable of including not only 3D urban objects' graphical appearances but also their semantic properties. Since to date, no known algorithm is capable of detecting spatio-semantic changes in CityGML documents, a frequent approach is to replace the older models completely with the newer ones, which not only costs computational resources, but also loses track of collaborative and chronological changes. Thus, this research proposes an approach capable of comparing two arbitrarily large-sized CityGML documents on both semantic and geometric level. Detected deviations are then attached to their respective sources and can easily be retrieved on demand. As a result, updating a 3D city model using this approach is much more efficient as only real changes are committed. To achieve this, the research employs a graph database as the main data structure for storing and processing CityGML datasets in three major steps: mapping, matching and updating. The mapping process transforms input CityGML documents into respective graph representations. The matching process compares these graphs and attaches edit operations on the fly. Found changes can then be executed using the Web Feature Service (WFS), the standard interface for updating geographical features across the web.
Graph visualization (Invited talk)
Wijk, van J.J.; Kreveld, van M.J.; Speckmann, B.
2012-01-01
Black and white node link diagrams are the classic method to depict graphs, but these often fall short to give insight in large graphs or when attributes of nodes and edges play an important role. Graph visualization aims obtaining insight in such graphs using interactive graphical representations.
Exponential random graph models for networks with community structure.
Fronczak, Piotr; Fronczak, Agata; Bujok, Maksymilian
2013-09-01
Although the community structure organization is an important characteristic of real-world networks, most of the traditional network models fail to reproduce the feature. Therefore, the models are useless as benchmark graphs for testing community detection algorithms. They are also inadequate to predict various properties of real networks. With this paper we intend to fill the gap. We develop an exponential random graph approach to networks with community structure. To this end we mainly built upon the idea of blockmodels. We consider both the classical blockmodel and its degree-corrected counterpart and study many of their properties analytically. We show that in the degree-corrected blockmodel, node degrees display an interesting scaling property, which is reminiscent of what is observed in real-world fractal networks. A short description of Monte Carlo simulations of the models is also given in the hope of being useful to others working in the field.
Jinping Sun
2017-01-01
Full Text Available The multiple hypothesis tracker (MHT is currently the preferred method for addressing data association problem in multitarget tracking (MTT application. MHT seeks the most likely global hypothesis by enumerating all possible associations over time, which is equal to calculating maximum a posteriori (MAP estimate over the report data. Despite being a well-studied method, MHT remains challenging mostly because of the computational complexity of data association. In this paper, we describe an efficient method for solving the data association problem using graphical model approaches. The proposed method uses the graph representation to model the global hypothesis formation and subsequently applies an efficient message passing algorithm to obtain the MAP solution. Specifically, the graph representation of data association problem is formulated as a maximum weight independent set problem (MWISP, which translates the best global hypothesis formation into finding the maximum weight independent set on the graph. Then, a max-product belief propagation (MPBP inference algorithm is applied to seek the most likely global hypotheses with the purpose of avoiding a brute force hypothesis enumeration procedure. The simulation results show that the proposed MPBP-MHT method can achieve better tracking performance than other algorithms in challenging tracking situations.
Integrating Surface Modeling into the Engineering Design Graphics Curriculum
Hartman, Nathan W.
2006-01-01
It has been suggested there is a knowledge base that surrounds the use of 3D modeling within the engineering design process and correspondingly within engineering design graphics education. While solid modeling receives a great deal of attention and discussion relative to curriculum efforts, and rightly so, surface modeling is an equally viable 3D…
A scalable community detection algorithm for large graphs using stochastic block models
Peng, Chengbin
2017-11-24
Community detection in graphs is widely used in social and biological networks, and the stochastic block model is a powerful probabilistic tool for describing graphs with community structures. However, in the era of
A scalable community detection algorithm for large graphs using stochastic block models
Peng, Chengbin; Zhang, Zhihua; Wong, Ka-Chun; Zhang, Xiangliang; Keyes, David E.
2017-01-01
Community detection in graphs is widely used in social and biological networks, and the stochastic block model is a powerful probabilistic tool for describing graphs with community structures. However, in the era of
A Graphical User Interface to Generalized Linear Models in MATLAB
Peter Dunn
1999-07-01
Full Text Available Generalized linear models unite a wide variety of statistical models in a common theoretical framework. This paper discusses GLMLAB-software that enables such models to be fitted in the popular mathematical package MATLAB. It provides a graphical user interface to the powerful MATLAB computational engine to produce a program that is easy to use but with many features, including offsets, prior weights and user-defined distributions and link functions. MATLAB's graphical capacities are also utilized in providing a number of simple residual diagnostic plots.
Design of Graph Analysis Model to support Decision Making
An, Sang Ha; Lee, Sung Jin; Chang, Soon Heung; Kim, Sung Ho; Kim, Tae Woon
2005-01-01
Korea is meeting the growing electric power needs by using nuclear, fissile, hydro energy and so on. But we can not use fissile energy forever, and the people's consideration about nature has been changed. So we have to prepare appropriate energy by the conditions before people need more energy. And we should prepare dynamic response because people's need would be changed as the time goes on. So we designed graphic analysis model (GAM) for the dynamic analysis of decision on the energy sources. It can support Analytic Hierarchy Process (AHP) analysis based on Graphic User Interface
Discrete Discriminant analysis based on tree-structured graphical models
Perez de la Cruz, Gonzalo; Eslava, Guillermina
The purpose of this paper is to illustrate the potential use of discriminant analysis based on tree{structured graphical models for discrete variables. This is done by comparing its empirical performance using estimated error rates for real and simulated data. The results show that discriminant a...... analysis based on tree{structured graphical models is a simple nonlinear method competitive with, and sometimes superior to, other well{known linear methods like those assuming mutual independence between variables and linear logistic regression.......The purpose of this paper is to illustrate the potential use of discriminant analysis based on tree{structured graphical models for discrete variables. This is done by comparing its empirical performance using estimated error rates for real and simulated data. The results show that discriminant...
The appliance of graphics modeling in nuclear plant information system
Bai Zhe; Li Guofang
2010-01-01
The nuclear plants contain a lot of sub-system, such as operation management, manufacture system, inventory system, human resource system and so forth. The standardized data graphics modeling technology can ensure the data interaction, compress the design cycle, avoid the replicated design, ensure the data integrity and consistent. The standardized data format which is on the basis of STEP standard and complied with XML is competent tool in different sub-system of nuclear plants. In order to meet this demand, a data graphics modeling standard is proposed. It is shown the relationship between systems, in system, between data by the standard. The graphic modeling effectively improves the performance between systems, designers, engineers, operations, supports department. It also provides the reliable and available data source for data mining and business intelligence. (authors)
Giovanni M. Marchetti
2006-02-01
Full Text Available We describe some functions in the R package ggm to derive from a given Markov model, represented by a directed acyclic graph, different types of graphs induced after marginalizing over and conditioning on some of the variables. The package has a few basic functions that find the essential graph, the induced concentration and covariance graphs, and several types of chain graphs implied by the directed acyclic graph (DAG after grouping and reordering the variables. These functions can be useful to explore the impact of latent variables or of selection effects on a chosen data generating model.
Track-stitching using graphical models and message passing
Van der Merwe, LJ
2013-07-01
Full Text Available In order to stitch tracks together, two tasks are required, namely tracking and track stitching. In this study track stitching is performed using a graphical model and message passing (belief propagation) approach. Tracks are modelled as nodes in a...
Efficient probabilistic model checking on general purpose graphic processors
Bosnacki, D.; Edelkamp, S.; Sulewski, D.; Pasareanu, C.S.
2009-01-01
We present algorithms for parallel probabilistic model checking on general purpose graphic processing units (GPGPUs). For this purpose we exploit the fact that some of the basic algorithms for probabilistic model checking rely on matrix vector multiplication. Since this kind of linear algebraic
Engineering graphic modelling a workbook for design engineers
Tjalve, E; Frackmann Schmidt, F
2013-01-01
Engineering Graphic Modelling: A Practical Guide to Drawing and Design covers how engineering drawing relates to the design activity. The book describes modeled properties, such as the function, structure, form, material, dimension, and surface, as well as the coordinates, symbols, and types of projection of the drawing code. The text provides drawing techniques, such as freehand sketching, bold freehand drawing, drawing with a straightedge, a draughting machine or a plotter, and use of templates, and then describes the types of drawing. Graphic designers, design engineers, mechanical engine
Enhanced Contact Graph Routing (ECGR) MACHETE Simulation Model
Segui, John S.; Jennings, Esther H.; Clare, Loren P.
2013-01-01
Contact Graph Routing (CGR) for Delay/Disruption Tolerant Networking (DTN) space-based networks makes use of the predictable nature of node contacts to make real-time routing decisions given unpredictable traffic patterns. The contact graph will have been disseminated to all nodes before the start of route computation. CGR was designed for space-based networking environments where future contact plans are known or are independently computable (e.g., using known orbital dynamics). For each data item (known as a bundle in DTN), a node independently performs route selection by examining possible paths to the destination. Route computation could conceivably run thousands of times a second, so computational load is important. This work refers to the simulation software model of Enhanced Contact Graph Routing (ECGR) for DTN Bundle Protocol in JPL's MACHETE simulation tool. The simulation model was used for performance analysis of CGR and led to several performance enhancements. The simulation model was used to demonstrate the improvements of ECGR over CGR as well as other routing methods in space network scenarios. ECGR moved to using earliest arrival time because it is a global monotonically increasing metric that guarantees the safety properties needed for the solution's correctness since route re-computation occurs at each node to accommodate unpredicted changes (e.g., traffic pattern, link quality). Furthermore, using earliest arrival time enabled the use of the standard Dijkstra algorithm for path selection. The Dijkstra algorithm for path selection has a well-known inexpensive computational cost. These enhancements have been integrated into the open source CGR implementation. The ECGR model is also useful for route metric experimentation and comparisons with other DTN routing protocols particularly when combined with MACHETE's space networking models and Delay Tolerant Link State Routing (DTLSR) model.
Annealed central limit theorems for the ising model on random graphs
Giardinà, C.; Giberti, C.; van der Hofstad, R.W.; Prioriello, M.L.
2016-01-01
The aim of this paper is to prove central limit theorems with respect to the annealed measure for the magnetization rescaled by √N of Ising models on random graphs. More precisely, we consider the general rank-1 inhomogeneous random graph (or generalized random graph), the 2-regular configuration
Large Deviations for the Annealed Ising Model on Inhomogeneous Random Graphs: Spins and Degrees
Dommers, Sander; Giardinà, Cristian; Giberti, Claudio; Hofstad, Remco van der
2018-04-01
We prove a large deviations principle for the total spin and the number of edges under the annealed Ising measure on generalized random graphs. We also give detailed results on how the annealing over the Ising model changes the degrees of the vertices in the graph and show how it gives rise to interesting correlated random graphs.
Bond Graph Modelling for Fault Detection and Isolation of an Ultrasonic Linear Motor
Mabrouk KHEMLICHE
2010-12-01
Full Text Available In this paper Bond Graph modeling, simulation and monitoring of ultrasonic linear motors are presented. Only the vibration of piezoelectric ceramics and stator will be taken into account. Contact problems between stator and rotor are not treated here. So, standing and travelling waves will be briefly presented since the majority of the motors use another wave type to generate the stator vibration and thus obtain the elliptic trajectory of the points on the surface of the stator in the first time. Then, electric equivalent circuit will be presented with the aim for giving a general idea of another way of graphical modelling of the vibrator introduced and developed. The simulations of an ultrasonic linear motor are then performed and experimental results on a prototype built at the laboratory are presented. Finally, validation of the Bond Graph method for modelling is carried out, comparing both simulation and experiment results. This paper describes the application of the FDI approach to an electrical system. We demonstrate the FDI effectiveness with real data collected from our automotive test. We introduce the analysis of the problem involved in the faults localization in this process. We propose a method of fault detection applied to the diagnosis and to determine the gravity of a detected fault. We show the possibilities of application of the new approaches to the complex system control.
MAGIC: Model and Graphic Information Converter
Herbert, W. C.
2009-01-01
MAGIC is a software tool capable of converting highly detailed 3D models from an open, standard format, VRML 2.0/97, into the proprietary DTS file format used by the Torque Game Engine from GarageGames. MAGIC is used to convert 3D simulations from authoritative sources into the data needed to run the simulations in NASA's Distributed Observer Network. The Distributed Observer Network (DON) is a simulation presentation tool built by NASA to facilitate the simulation sharing requirements of the Data Presentation and Visualization effort within the Constellation Program. DON is built on top of the Torque Game Engine (TGE) and has chosen TGE's Dynamix Three Space (DTS) file format to represent 3D objects within simulations.
Interactive computer graphics for bio-stereochemical modelling
Proc, Indian Acad. Sci., Vol. 87 A (Chem. Sci.), No. 4, April 1978, pp. 95-113, (e) printed in India. Interactive computer graphics for bio-stereochemical modelling. ROBERT REIN, SHLOMONIR, KAREN HAYDOCK and. ROBERTD MACELROY. Department of Experimental Pathology, Roswell Park Memorial Institute,. 666 Elm ...
Methods for teaching geometric modelling and computer graphics
Rotkov, S.I.; Faitel`son, Yu. Ts.
1992-05-01
This paper considers methods for teaching the methods and algorithms of geometric modelling and computer graphics to programmers, designers and users of CAD and computer-aided research systems. There is a bibliography that can be used to prepare lectures and practical classes. 37 refs., 1 tab.
ARTICLE Robust Diagnosis of Mechatronics System by Bond Graph Approach
Abderrahmene Sellami
2018-03-01
Full Text Available This article presents design of a robust diagnostic system based on bond graph model for a mechatronic system. Mechatronics is the synergistic and systemic combination of mechanics, electronics and computer science. The design of a mechatronic system modeled by the bond graph model becomes easier and more generous. The bond graph tool is a unified graphical language for all areas of engineering sciences and confirmed as a structured approach to modeling and simulation of multidisciplinary systems.
Guidelines for a graph-theoretic implementation of structural equation modeling
Grace, James B.; Schoolmaster, Donald R.; Guntenspergen, Glenn R.; Little, Amanda M.; Mitchell, Brian R.; Miller, Kathryn M.; Schweiger, E. William
2012-01-01
Structural equation modeling (SEM) is increasingly being chosen by researchers as a framework for gaining scientific insights from the quantitative analyses of data. New ideas and methods emerging from the study of causality, influences from the field of graphical modeling, and advances in statistics are expanding the rigor, capability, and even purpose of SEM. Guidelines for implementing the expanded capabilities of SEM are currently lacking. In this paper we describe new developments in SEM that we believe constitute a third-generation of the methodology. Most characteristic of this new approach is the generalization of the structural equation model as a causal graph. In this generalization, analyses are based on graph theoretic principles rather than analyses of matrices. Also, new devices such as metamodels and causal diagrams, as well as an increased emphasis on queries and probabilistic reasoning, are now included. Estimation under a graph theory framework permits the use of Bayesian or likelihood methods. The guidelines presented start from a declaration of the goals of the analysis. We then discuss how theory frames the modeling process, requirements for causal interpretation, model specification choices, selection of estimation method, model evaluation options, and use of queries, both to summarize retrospective results and for prospective analyses. The illustrative example presented involves monitoring data from wetlands on Mount Desert Island, home of Acadia National Park. Our presentation walks through the decision process involved in developing and evaluating models, as well as drawing inferences from the resulting prediction equations. In addition to evaluating hypotheses about the connections between human activities and biotic responses, we illustrate how the structural equation (SE) model can be queried to understand how interventions might take advantage of an environmental threshold to limit Typha invasions. The guidelines presented provide for
Bond graph modeling and simulation of impact dynamics of an automotive crash
Khurshid, A.; Malik, M.A.
2007-01-01
With increase in the speeds of automotives, safety has become more and more important aspect of designers to care for. Thus, it is necessary to design the automobile body structure keeping in view all the safety requirements. As a result of the above-mentioned facts, in the recent years, the designers in making automotives more safe, more collision resistant and crash worthy have focused increased attention on designing automotives, which provides greater protection for the drivers and the passengers in case of an accident. Before a new model is launched into the market, a complete collision analysis is carried out to check the damage reduction capabilities and impact protection of automotives in case of an accident. Research in the field of automotive collision and impact analysis is a continuing activity and dedicated groups of engineers are devoting their full time and efforts for this. In this research work, the main attention is focused to provide a detailed knowledge about automotive collision analysis. The objective of this research paper is to develop an understanding of the automotive collision response. For this, we have done a simulation experiment in which, on a railroad, a train car is separated from a train and is moving towards two stationary train cars. By using a bond graph model of the system its state-space equations are found. Then by using software, the simulation is carried out. The bond graph method is a graphical presentation of the power flow using bonds. (author)
Analysis of Local Dependence and Multidimensionality in Graphical Loglinear Rasch Models
Kreiner, Svend; Christensen, Karl Bang
2004-01-01
Local independence; Multidimensionality; Differential item functioning; Uniform local dependence and DIF; Graphical Rasch models; Loglinear Rasch model......Local independence; Multidimensionality; Differential item functioning; Uniform local dependence and DIF; Graphical Rasch models; Loglinear Rasch model...
Reasoning with probabilistic and deterministic graphical models exact algorithms
Dechter, Rina
2013-01-01
Graphical models (e.g., Bayesian and constraint networks, influence diagrams, and Markov decision processes) have become a central paradigm for knowledge representation and reasoning in both artificial intelligence and computer science in general. These models are used to perform many reasoning tasks, such as scheduling, planning and learning, diagnosis and prediction, design, hardware and software verification, and bioinformatics. These problems can be stated as the formal tasks of constraint satisfaction and satisfiability, combinatorial optimization, and probabilistic inference. It is well
Clone Detection for Graph-Based Model Transformation Languages
Strüber, Daniel; Plöger, Jennifer; Acretoaie, Vlad
2016-01-01
and analytical quality assurance. From these use cases, we derive a set of key requirements. We describe our customization of existing model clone detection techniques allowing us to address these requirements. Finally, we provide an experimental evaluation, indicating that our customization of ConQAT, one......Cloning is a convenient mechanism to enable reuse across and within software artifacts. On the downside, it is also a practice related to significant long-term maintainability impediments, thus generating a need to identify clones in affected artifacts. A large variety of clone detection techniques...... has been proposed for programming and modeling languages; yet no specific ones have emerged for model transformation languages. In this paper, we explore clone detection for graph-based model transformation languages. We introduce potential use cases for such techniques in the context of constructive...
Type-2 fuzzy graphical models for pattern recognition
Zeng, Jia
2015-01-01
This book discusses how to combine type-2 fuzzy sets and graphical models to solve a range of real-world pattern recognition problems such as speech recognition, handwritten Chinese character recognition, topic modeling as well as human action recognition. It covers these recent developments while also providing a comprehensive introduction to the fields of type-2 fuzzy sets and graphical models. Though primarily intended for graduate students, researchers and practitioners in fuzzy logic and pattern recognition, the book can also serve as a valuable reference work for researchers without any previous knowledge of these fields. Dr. Jia Zeng is a Professor at the School of Computer Science and Technology, Soochow University, China. Dr. Zhi-Qiang Liu is a Professor at the School of Creative Media, City University of Hong Kong, China.
On a Graphical Technique for Evaluating Some Rational Expectations Models
Johansen, Søren; Swensen, Anders R.
2011-01-01
Campbell and Shiller (1987) proposed a graphical technique for the present value model, which consists of plotting estimates of the spread and theoretical spread as calculated from the cointegrated vector autoregressive model without imposing the restrictions implied by the present value model....... In addition to getting a visual impression of the fit of the model, the purpose is to see if the two spreads are nevertheless similar as measured by correlation, variance ratio, and noise ratio. We extend these techniques to a number of rational expectation models and give a general definition of spread...
The Little-Hopfield model on a sparse random graph
Castillo, I Perez; Skantzos, N S
2004-01-01
We study the Hopfield model on a random graph in scaling regimes where the average number of connections per neuron is a finite number and the spin dynamics is governed by a synchronous execution of the microscopic update rule (Little-Hopfield model). We solve this model within replica symmetry, and by using bifurcation analysis we prove that the spin-glass/paramagnetic and the retrieval/paramagnetic transition lines of our phase diagram are identical to those of sequential dynamics. The first-order retrieval/spin-glass transition line follows by direct evaluation of our observables using population dynamics. Within the accuracy of numerical precision and for sufficiently small values of the connectivity parameter we find that this line coincides with the corresponding sequential one. Comparison with simulation experiments shows excellent agreement
Xu, Zhiqiang
2017-02-16
Attributed graph clustering, also known as community detection on attributed graphs, attracts much interests recently due to the ubiquity of attributed graphs in real life. Many existing algorithms have been proposed for this problem, which are either distance based or model based. However, model selection in attributed graph clustering has not been well addressed, that is, most existing algorithms assume the cluster number to be known a priori. In this paper, we propose two efficient approaches for attributed graph clustering with automatic model selection. The first approach is a popular Bayesian nonparametric method, while the second approach is an asymptotic method based on a recently proposed model selection criterion, factorized information criterion. Experimental results on both synthetic and real datasets demonstrate that our approaches for attributed graph clustering with automatic model selection significantly outperform the state-of-the-art algorithm.
Xu, Zhiqiang; Cheng, James; Xiao, Xiaokui; Fujimaki, Ryohei; Muraoka, Yusuke
2017-01-01
Attributed graph clustering, also known as community detection on attributed graphs, attracts much interests recently due to the ubiquity of attributed graphs in real life. Many existing algorithms have been proposed for this problem, which are either distance based or model based. However, model selection in attributed graph clustering has not been well addressed, that is, most existing algorithms assume the cluster number to be known a priori. In this paper, we propose two efficient approaches for attributed graph clustering with automatic model selection. The first approach is a popular Bayesian nonparametric method, while the second approach is an asymptotic method based on a recently proposed model selection criterion, factorized information criterion. Experimental results on both synthetic and real datasets demonstrate that our approaches for attributed graph clustering with automatic model selection significantly outperform the state-of-the-art algorithm.
Design of Graphic Aggregation Model for Evaluation of Energy Systems
An, Sang Ha; Jeong, Yong Hoon; Chang, Won Joon; Chang, Soon Heung; Kim, Sung Ho; Kim, Tae Woon
2006-01-01
Korea is meeting the growing electric power needs by mix of nuclear, fossil, hydro energy and so on. But we can not depend on fossil energy forever, and the people's concern about environment has been changed. So it is time to plan future energy mix considering multiple parameters such as economics, environment, social, energy security, etc. A multiple aggregation model has been used for decision making process in which multiple variables should be considered like energy mix. In this context, we designed Graphic Aggregation Model for Evaluation of energy systems (GAME) for the dynamic analysis of decision on the energy systems. It can support Analytic Hierarchy Process (AHP) analysis based on Graphic User Interface
GENI: A graphical environment for model-based control
Kleban, S.; Lee, M.; Zambre, Y.
1989-10-01
A new method to operate machine and beam simulation programs for accelerator control has been developed. Existing methods, although cumbersome, have been used in control systems for commissioning and operation of many machines. We developed GENI, a generalized graphical interface to these programs for model-based control. This ''object-oriented''-like environment is described and some typical applications are presented. 4 refs., 5 figs
Text Summarization Using FrameNet-Based Semantic Graph Model
Xu Han
2016-01-01
Full Text Available Text summarization is to generate a condensed version of the original document. The major issues for text summarization are eliminating redundant information, identifying important difference among documents, and recovering the informative content. This paper proposes a Semantic Graph Model which exploits the semantic information of sentence using FSGM. FSGM treats sentences as vertexes while the semantic relationship as the edges. It uses FrameNet and word embedding to calculate the similarity of sentences. This method assigns weight to both sentence nodes and edges. After all, it proposes an improved method to rank these sentences, considering both internal and external information. The experimental results show that the applicability of the model to summarize text is feasible and effective.
Critical Behavior of the Annealed Ising Model on Random Regular Graphs
Can, Van Hao
2017-11-01
In Giardinà et al. (ALEA Lat Am J Probab Math Stat 13(1):121-161, 2016), the authors have defined an annealed Ising model on random graphs and proved limit theorems for the magnetization of this model on some random graphs including random 2-regular graphs. Then in Can (Annealed limit theorems for the Ising model on random regular graphs, arXiv:1701.08639, 2017), we generalized their results to the class of all random regular graphs. In this paper, we study the critical behavior of this model. In particular, we determine the critical exponents and prove a non standard limit theorem stating that the magnetization scaled by n^{3/4} converges to a specific random variable, with n the number of vertices of random regular graphs.
Open Graphs and Computational Reasoning
Lucas Dixon
2010-06-01
Full Text Available We present a form of algebraic reasoning for computational objects which are expressed as graphs. Edges describe the flow of data between primitive operations which are represented by vertices. These graphs have an interface made of half-edges (edges which are drawn with an unconnected end and enjoy rich compositional principles by connecting graphs along these half-edges. In particular, this allows equations and rewrite rules to be specified between graphs. Particular computational models can then be encoded as an axiomatic set of such rules. Further rules can be derived graphically and rewriting can be used to simulate the dynamics of a computational system, e.g. evaluating a program on an input. Examples of models which can be formalised in this way include traditional electronic circuits as well as recent categorical accounts of quantum information.
An Empirical Study of Efficiency and Accuracy of Probabilistic Graphical Models
Nielsen, Jens Dalgaard; Jaeger, Manfred
2006-01-01
In this paper we compare Na\\ii ve Bayes (NB) models, general Bayes Net (BN) models and Probabilistic Decision Graph (PDG) models w.r.t. accuracy and efficiency. As the basis for our analysis we use graphs of size vs. likelihood that show the theoretical capabilities of the models. We also measure...
CONSISTENCY UNDER SAMPLING OF EXPONENTIAL RANDOM GRAPH MODELS.
Shalizi, Cosma Rohilla; Rinaldo, Alessandro
2013-04-01
The growing availability of network data and of scientific interest in distributed systems has led to the rapid development of statistical models of network structure. Typically, however, these are models for the entire network, while the data consists only of a sampled sub-network. Parameters for the whole network, which is what is of interest, are estimated by applying the model to the sub-network. This assumes that the model is consistent under sampling , or, in terms of the theory of stochastic processes, that it defines a projective family. Focusing on the popular class of exponential random graph models (ERGMs), we show that this apparently trivial condition is in fact violated by many popular and scientifically appealing models, and that satisfying it drastically limits ERGM's expressive power. These results are actually special cases of more general results about exponential families of dependent random variables, which we also prove. Using such results, we offer easily checked conditions for the consistency of maximum likelihood estimation in ERGMs, and discuss some possible constructive responses.
Fritzson, Peter; Gunnarsson, Johan; Jirstrand, Mats
2002-01-01
MathModelica is an integrated interactive development environment for advanced system modeling and simulation. The environment integrates Modelica-based modeling and simulation with graphic design, advanced scripting facilities, integration of program code, test cases, graphics, documentation, mathematical type setting, and symbolic formula manipulation provided via Mathematica. The user interface consists of a graphical Model Editor and Notebooks. The Model Editor is a graphical user interfa...
Individual Travel Behavior Modeling of Public Transport Passenger Based on Graph Construction
Quan Liang; Jiancheng Weng; Wei Zhou; Selene Baez Santamaria; Jianming Ma; Jian Rong
2018-01-01
This paper presents a novel method for mining the individual travel behavior regularity of different public transport passengers through constructing travel behavior graph based model. The individual travel behavior graph is developed to represent spatial positions, time distributions, and travel routes and further forecasts the public transport passenger’s behavior choice. The proposed travel behavior graph is composed of macronodes, arcs, and transfer probability. Each macronode corresponds...
Character expansion methods for matrix models of dually weighted graphs
Kazakov, V.A.; Staudacher, M.; Wynter, T.
1996-01-01
We consider generalized one-matrix models in which external fields allow control over the coordination numbers on both the original and dual lattices. We rederive in a simple fashion a character expansion formula for these models originally due to Itzykson and Di Francesco, and then demonstrate how to take the large N limit of this expansion. The relationship to the usual matrix model resolvent is elucidated. Our methods give as a by-product an extremely simple derivation of the Migdal integral equation describing the large N limit of the Itzykson-Zuber formula. We illustrate and check our methods by analysing a number of models solvable by traditional means. We then proceed to solve a new model: a sum over planar graphs possessing even coordination numbers on both the original and the dual lattice. We conclude by formulating equations for the case of arbitrary sets of even, self-dual coupling constants. This opens the way for studying the deep problem of phase transitions from random to flat lattices. (orig.). With 4 figs
Tailored graph ensembles as proxies or null models for real networks II: results on directed graphs
Roberts, E S; Coolen, A C C; Schlitt, T
2011-01-01
We generate new mathematical tools with which to quantify the macroscopic topological structure of large directed networks. This is achieved via a statistical mechanical analysis of constrained maximum entropy ensembles of directed random graphs with prescribed joint distributions for in- and out-degrees and prescribed degree-degree correlation functions. We calculate exact and explicit formulae for the leading orders in the system size of the Shannon entropies and complexities of these ensembles, and for information-theoretic distances. The results are applied to data on gene regulation networks.
Transformation of UML models to CSP : a case study for graph transformation tools
Varró, D.; Asztalos, M.; Bisztray, D.; Boronat, A.; Dang, D.; Geiß, R.; Greenyer, J.; Van Gorp, P.M.E.; Kniemeyer, O.; Narayanan, A.; Rencis, E.; Weinell, E.; Schürr, A.; Nagl, M.; Zündorf, A.
2008-01-01
Graph transformation provides an intuitive mechanism for capturing model transformations. In the current paper, we investigate and compare various graph transformation tools using a compact practical model transformation case study carried out as part of the AGTIVE 2007 Tool Contest [22]. The aim of
Pathfinding in graph-theoretic sabotage models. I. Simultaneous attack by several teams
Hulme, B.L.
1976-07-01
Graph models are developed for fixed-site safeguards systems. The problem of finding optimal routes for several sabotage teams is cast as a problem of finding shortest paths in a graph. The motivation, rationale, and interpretation of the mathematical models are discussed in detail, and an algorithm for efficiently solving the associated path problem is described
Recent developments in exponential random graph (p*) models for social networks
Robins, Garry; Snijders, Tom; Wang, Peng; Handcock, Mark; Pattison, Philippa
This article reviews new specifications for exponential random graph models proposed by Snijders et al. [Snijders, T.A.B., Pattison, P., Robins, G.L., Handcock, M., 2006. New specifications for exponential random graph models. Sociological Methodology] and demonstrates their improvement over
A handbook of statistical graphics using SAS ODS
Der, Geoff
2014-01-01
An Introduction to Graphics: Good Graphics, Bad Graphics, Catastrophic Graphics and Statistical GraphicsThe Challenger DisasterGraphical DisplaysA Little History and Some Early Graphical DisplaysGraphical DeceptionAn Introduction to ODS GraphicsGenerating ODS GraphsODS DestinationsStatistical Graphics ProceduresODS Graphs from Statistical ProceduresControlling ODS GraphicsControlling Labelling in GraphsODS Graphics EditorGraphs for Displaying the Characteristics of Univariate Data: Horse Racing, Mortality Rates, Forearm Lengths, Survival Times and Geyser EruptionsIntroductionPie Chart, Bar Cha
Xiaojin Li
2013-01-01
Full Text Available Previous studies have investigated both structural and functional brain networks via graph-theoretical methods. However, there is an important issue that has not been adequately discussed before: what is the optimal theoretical graph model for describing the structural networks of human brain? In this paper, we perform a comparative study to address this problem. Firstly, large-scale cortical regions of interest (ROIs are localized by recently developed and validated brain reference system named Dense Individualized Common Connectivity-based Cortical Landmarks (DICCCOL to address the limitations in the identification of the brain network ROIs in previous studies. Then, we construct structural brain networks based on diffusion tensor imaging (DTI data. Afterwards, the global and local graph properties of the constructed structural brain networks are measured using the state-of-the-art graph analysis algorithms and tools and are further compared with seven popular theoretical graph models. In addition, we compare the topological properties between two graph models, namely, stickiness-index-based model (STICKY and scale-free gene duplication model (SF-GD, that have higher similarity with the real structural brain networks in terms of global and local graph properties. Our experimental results suggest that among the seven theoretical graph models compared in this study, STICKY and SF-GD models have better performances in characterizing the structural human brain network.
Graphics-based nuclear facility modeling and management
Rod, S.R.
1991-07-01
Nuclear waste management facilities are characterized by their complexity, many unprecedented features, and numerous competing design requirements. This paper describes the development of comprehensive descriptive databases and three-dimensional models of nuclear waste management facilities and applies the database/model to an example facility. The important features of the facility database/model are its abilities to (1) process large volumes of site data, plant data, and nuclear material inventory data in an efficient, integrated manner; (2) produce many different representations of the data to fulfill information needs as they arise; (3) create a complete three-dimensional solid model of the plant with all related information readily accessible; and (4) support complete, consistent inventory control and plant configuration control. While the substantive heart of the system is the database, graphic visualization of the data vastly improves the clarity of the information presented. Graphic representations are a convenient framework for the presentation of plant and inventory data, allowing all types of information to be readily located and presented in a manner that is easily understood. 2 refs., 5 figs., 1 tab
Lubna Moin
2009-04-01
Full Text Available This research paper basically explores and compares the different modeling and analysis techniques and than it also explores the model order reduction approach and significance. The traditional modeling and simulation techniques for dynamic systems are generally adequate for single-domain systems only, but the Bond Graph technique provides new strategies for reliable solutions of multi-domain system. They are also used for analyzing linear and non linear dynamic production system, artificial intelligence, image processing, robotics and industrial automation. This paper describes a unique technique of generating the Genetic design from the tree structured transfer function obtained from Bond Graph. This research work combines bond graphs for model representation with Genetic programming for exploring different ideas on design space tree structured transfer function result from replacing typical bond graph element with their impedance equivalent specifying impedance lows for Bond Graph multiport. This tree structured form thus obtained from Bond Graph is applied for generating the Genetic Tree. Application studies will identify key issues and importance for advancing this approach towards becoming on effective and efficient design tool for synthesizing design for Electrical system. In the first phase, the system is modeled using Bond Graph technique. Its system response and transfer function with conventional and Bond Graph method is analyzed and then a approach towards model order reduction is observed. The suggested algorithm and other known modern model order reduction techniques are applied to a 11th order high pass filter [1], with different approach. The model order reduction technique developed in this paper has least reduction errors and secondly the final model retains structural information. The system response and the stability analysis of the system transfer function taken by conventional and by Bond Graph method is compared and
Rose, L.M.; Herrmannsdoerfer, M.; Mazanek, S.; Van Gorp, P.M.E.; Buchwald, S.; Horn, T.; Kalnina, E.; Koch, A.; Lano, K.; Schätz, B.; Wimmer, M.
2014-01-01
We describe the results of the Transformation Tool Contest 2010 workshop, in which nine graph and model transformation tools were compared for specifying model migration. The model migration problem—migration of UML activity diagrams from version 1.4 to version 2.2—is non-trivial and practically
Implementing the lattice Boltzmann model on commodity graphics hardware
Kaufman, Arie; Fan, Zhe; Petkov, Kaloian
2009-01-01
Modern graphics processing units (GPUs) can perform general-purpose computations in addition to the native specialized graphics operations. Due to the highly parallel nature of graphics processing, the GPU has evolved into a many-core coprocessor that supports high data parallelism. Its performance has been growing at a rate of squared Moore's law, and its peak floating point performance exceeds that of the CPU by an order of magnitude. Therefore, it is a viable platform for time-sensitive and computationally intensive applications. The lattice Boltzmann model (LBM) computations are carried out via linear operations at discrete lattice sites, which can be implemented efficiently using a GPU-based architecture. Our simulations produce results comparable to the CPU version while improving performance by an order of magnitude. We have demonstrated that the GPU is well suited for interactive simulations in many applications, including simulating fire, smoke, lightweight objects in wind, jellyfish swimming in water, and heat shimmering and mirage (using the hybrid thermal LBM). We further advocate the use of a GPU cluster for large scale LBM simulations and for high performance computing. The Stony Brook Visual Computing Cluster has been the platform for several applications, including simulations of real-time plume dispersion in complex urban environments and thermal fluid dynamics in a pressurized water reactor. Major GPU vendors have been targeting the high performance computing market with GPU hardware implementations. Software toolkits such as NVIDIA CUDA provide a convenient development platform that abstracts the GPU and allows access to its underlying stream computing architecture. However, software programming for a GPU cluster remains a challenging task. We have therefore developed the Zippy framework to simplify GPU cluster programming. Zippy is based on global arrays combined with the stream programming model and it hides the low-level details of the
GRAPHIC REALIZATION FOUNDATIONS OF LOGIC-SEMANTIC MODELING IN DIDACTICS
V. E. Steinberg
2017-01-01
Full Text Available Introduction. Nowadays, there are not a lot of works devoted to a graphic method of logic-semantic modeling of knowledge. Meanwhile, an interest towards this method increases due to the fact of essential increase of the content of visual component in information and educational sources. The present publication is the authors’ contribution into the solution of the problem of search of new forms and means convenient for visual and logic perception of a training material, its assimilation, operating by elements of knowledge and their transformations.The aim of the research is to justify graphical implementation of the method of logic-semantic modeling of knowledge, presented by a natural language (training language and to show the possibilities of application of figurative and conceptual models in student teaching.Methodology and research methods. The research methodology is based on the specified activity-regulatory, system-multi-dimensional and structural-invariant approach and the principle of multidimensionality. The methodology the graphic realization of the logic-semantic models in learning technologies is based on didactic design using computer training programs.Results and scientific novelty. Social and anthropological-cultural adaptation bases of the method of logical-semantic knowledge modeling to the problems of didactics are established and reasoned: coordinate-invariant matrix structure is presented as the basis of logical-semantic models of figurative and conceptual nature; the possibilities of using such models as multifunctional didactic regulators – support schemes, navigation in the content of the educational material, educational activities carried out by navigators, etc., are shown. The characteristics of new teaching tools as objects of semiotics and didactic of regulators are considered; their place and role in the structure of the external and internal training curricula learning activities are pointed out
A Probabilistic Graphical Model to Detect Chromosomal Domains
Heermann, Dieter; Hofmann, Andreas; Weber, Eva
To understand the nature of a cell, one needs to understand the structure of its genome. For this purpose, experimental techniques such as Hi-C detecting chromosomal contacts are used to probe the three-dimensional genomic structure. These experiments yield topological information, consistently showing a hierarchical subdivision of the genome into self-interacting domains across many organisms. Current methods for detecting these domains using the Hi-C contact matrix, i.e. a doubly-stochastic matrix, are mostly based on the assumption that the domains are distinct, thus non-overlapping. For overcoming this simplification and for being able to unravel a possible nested domain structure, we developed a probabilistic graphical model that makes no a priori assumptions on the domain structure. Within this approach, the Hi-C contact matrix is analyzed using an Ising like probabilistic graphical model whose coupling constant is proportional to each lattice point (entry in the contact matrix). The results show clear boundaries between identified domains and the background. These domain boundaries are dependent on the coupling constant, so that one matrix yields several clusters of different sizes, which show the self-interaction of the genome on different scales. This work was supported by a Grant from the International Human Frontier Science Program Organization (RGP0014/2014).
Statistical mechanics of sparse generalization and graphical model selection
Lage-Castellanos, Alejandro; Pagnani, Andrea; Weigt, Martin
2009-01-01
One of the crucial tasks in many inference problems is the extraction of an underlying sparse graphical model from a given number of high-dimensional measurements. In machine learning, this is frequently achieved using, as a penalty term, the L p norm of the model parameters, with p≤1 for efficient dilution. Here we propose a statistical mechanics analysis of the problem in the setting of perceptron memorization and generalization. Using a replica approach, we are able to evaluate the relative performance of naive dilution (obtained by learning without dilution, following by applying a threshold to the model parameters), L 1 dilution (which is frequently used in convex optimization) and L 0 dilution (which is optimal but computationally hard to implement). Whereas both L p diluted approaches clearly outperform the naive approach, we find a small region where L 0 works almost perfectly and strongly outperforms the simpler to implement L 1 dilution
Ice-sheet modelling accelerated by graphics cards
Brædstrup, Christian Fredborg; Damsgaard, Anders; Egholm, David Lundbek
2014-11-01
Studies of glaciers and ice sheets have increased the demand for high performance numerical ice flow models over the past decades. When exploring the highly non-linear dynamics of fast flowing glaciers and ice streams, or when coupling multiple flow processes for ice, water, and sediment, researchers are often forced to use super-computing clusters. As an alternative to conventional high-performance computing hardware, the Graphical Processing Unit (GPU) is capable of massively parallel computing while retaining a compact design and low cost. In this study, we present a strategy for accelerating a higher-order ice flow model using a GPU. By applying the newest GPU hardware, we achieve up to 180× speedup compared to a similar but serial CPU implementation. Our results suggest that GPU acceleration is a competitive option for ice-flow modelling when compared to CPU-optimised algorithms parallelised by the OpenMP or Message Passing Interface (MPI) protocols.
An Accurate and Dynamic Computer Graphics Muscle Model
Levine, David Asher
1997-01-01
A computer based musculo-skeletal model was developed at the University in the departments of Mechanical and Biomedical Engineering. This model accurately represents human shoulder kinematics. The result of this model is the graphical display of bones moving through an appropriate range of motion based on inputs of EMGs and external forces. The need existed to incorporate a geometric muscle model in the larger musculo-skeletal model. Previous muscle models did not accurately represent muscle geometries, nor did they account for the kinematics of tendons. This thesis covers the creation of a new muscle model for use in the above musculo-skeletal model. This muscle model was based on anatomical data from the Visible Human Project (VHP) cadaver study. Two-dimensional digital images from the VHP were analyzed and reconstructed to recreate the three-dimensional muscle geometries. The recreated geometries were smoothed, reduced, and sliced to form data files defining the surfaces of each muscle. The muscle modeling function opened these files during run-time and recreated the muscle surface. The modeling function applied constant volume limitations to the muscle and constant geometry limitations to the tendons.
Bipartite Graphs as Models of Population Structures in Evolutionary Multiplayer Games
Peña, Jorge; Rochat, Yannick
2012-01-01
By combining evolutionary game theory and graph theory, “games on graphs” study the evolutionary dynamics of frequency-dependent selection in population structures modeled as geographical or social networks. Networks are usually represented by means of unipartite graphs, and social interactions by two-person games such as the famous prisoner’s dilemma. Unipartite graphs have also been used for modeling interactions going beyond pairwise interactions. In this paper, we argue that bipartite graphs are a better alternative to unipartite graphs for describing population structures in evolutionary multiplayer games. To illustrate this point, we make use of bipartite graphs to investigate, by means of computer simulations, the evolution of cooperation under the conventional and the distributed N-person prisoner’s dilemma. We show that several implicit assumptions arising from the standard approach based on unipartite graphs (such as the definition of replacement neighborhoods, the intertwining of individual and group diversity, and the large overlap of interaction neighborhoods) can have a large impact on the resulting evolutionary dynamics. Our work provides a clear example of the importance of construction procedures in games on graphs, of the suitability of bigraphs and hypergraphs for computational modeling, and of the importance of concepts from social network analysis such as centrality, centralization and bipartite clustering for the understanding of dynamical processes occurring on networked population structures. PMID:22970237
Bayesian analysis for exponential random graph models using the adaptive exchange sampler
Jin, Ick Hoon; Liang, Faming; Yuan, Ying
2013-01-01
Exponential random graph models have been widely used in social network analysis. However, these models are extremely difficult to handle from a statistical viewpoint, because of the existence of intractable normalizing constants. In this paper, we
Ponten, S.C.; Daffertshofer, A.; Hillebrand, A.; Stam, C.J.
2010-01-01
We investigated the relationship between structural network properties and both synchronization strength and functional characteristics in a combined neural mass and graph theoretical model of the electroencephalogram (EEG). Thirty-two neural mass models (NMMs), each representing the lump activity
Visualizing Dataflow Graphs of Deep Learning Models in TensorFlow.
Wongsuphasawat, Kanit; Smilkov, Daniel; Wexler, James; Wilson, Jimbo; Mane, Dandelion; Fritz, Doug; Krishnan, Dilip; Viegas, Fernanda B; Wattenberg, Martin
2018-01-01
We present a design study of the TensorFlow Graph Visualizer, part of the TensorFlow machine intelligence platform. This tool helps users understand complex machine learning architectures by visualizing their underlying dataflow graphs. The tool works by applying a series of graph transformations that enable standard layout techniques to produce a legible interactive diagram. To declutter the graph, we decouple non-critical nodes from the layout. To provide an overview, we build a clustered graph using the hierarchical structure annotated in the source code. To support exploration of nested structure on demand, we perform edge bundling to enable stable and responsive cluster expansion. Finally, we detect and highlight repeated structures to emphasize a model's modular composition. To demonstrate the utility of the visualizer, we describe example usage scenarios and report user feedback. Overall, users find the visualizer useful for understanding, debugging, and sharing the structures of their models.
A graphical method for reducing and relating models in systems biology.
Gay, Steven; Soliman, Sylvain; Fages, François
2010-09-15
In Systems Biology, an increasing collection of models of various biological processes is currently developed and made available in publicly accessible repositories, such as biomodels.net for instance, through common exchange formats such as SBML. To date, however, there is no general method to relate different models to each other by abstraction or reduction relationships, and this task is left to the modeler for re-using and coupling models. In mathematical biology, model reduction techniques have been studied for a long time, mainly in the case where a model exhibits different time scales, or different spatial phases, which can be analyzed separately. These techniques are however far too restrictive to be applied on a large scale in systems biology, and do not take into account abstractions other than time or phase decompositions. Our purpose here is to propose a general computational method for relating models together, by considering primarily the structure of the interactions and abstracting from their dynamics in a first step. We present a graph-theoretic formalism with node merge and delete operations, in which model reductions can be studied as graph matching problems. From this setting, we derive an algorithm for deciding whether there exists a reduction from one model to another, and evaluate it on the computation of the reduction relations between all SBML models of the biomodels.net repository. In particular, in the case of the numerous models of MAPK signalling, and of the circadian clock, biologically meaningful mappings between models of each class are automatically inferred from the structure of the interactions. We conclude on the generality of our graphical method, on its limits with respect to the representation of the structure of the interactions in SBML, and on some perspectives for dealing with the dynamics. The algorithms described in this article are implemented in the open-source software modeling platform BIOCHAM available at http
Local fit evaluation of structural equation models using graphical criteria.
Thoemmes, Felix; Rosseel, Yves; Textor, Johannes
2018-03-01
Evaluation of model fit is critically important for every structural equation model (SEM), and sophisticated methods have been developed for this task. Among them are the χ² goodness-of-fit test, decomposition of the χ², derived measures like the popular root mean square error of approximation (RMSEA) or comparative fit index (CFI), or inspection of residuals or modification indices. Many of these methods provide a global approach to model fit evaluation: A single index is computed that quantifies the fit of the entire SEM to the data. In contrast, graphical criteria like d-separation or trek-separation allow derivation of implications that can be used for local fit evaluation, an approach that is hardly ever applied. We provide an overview of local fit evaluation from the viewpoint of SEM practitioners. In the presence of model misfit, local fit evaluation can potentially help in pinpointing where the problem with the model lies. For models that do fit the data, local tests can identify the parts of the model that are corroborated by the data. Local tests can also be conducted before a model is fitted at all, and they can be used even for models that are globally underidentified. We discuss appropriate statistical local tests, and provide applied examples. We also present novel software in R that automates this type of local fit evaluation. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
A componential model of human interaction with graphs: 1. Linear regression modeling
Gillan, Douglas J.; Lewis, Robert
1994-01-01
Task analyses served as the basis for developing the Mixed Arithmetic-Perceptual (MA-P) model, which proposes (1) that people interacting with common graphs to answer common questions apply a set of component processes-searching for indicators, encoding the value of indicators, performing arithmetic operations on the values, making spatial comparisons among indicators, and repsonding; and (2) that the type of graph and user's task determine the combination and order of the components applied (i.e., the processing steps). Two experiments investigated the prediction that response time will be linearly related to the number of processing steps according to the MA-P model. Subjects used line graphs, scatter plots, and stacked bar graphs to answer comparison questions and questions requiring arithmetic calculations. A one-parameter version of the model (with equal weights for all components) and a two-parameter version (with different weights for arithmetic and nonarithmetic processes) accounted for 76%-85% of individual subjects' variance in response time and 61%-68% of the variance taken across all subjects. The discussion addresses possible modifications in the MA-P model, alternative models, and design implications from the MA-P model.
Bond graphs for modelling, control and fault diagnosis of engineering systems
2017-01-01
This book presents theory and latest application work in Bond Graph methodology with a focus on: • Hybrid dynamical system models, • Model-based fault diagnosis, model-based fault tolerant control, fault prognosis • and also addresses • Open thermodynamic systems with compressible fluid flow, • Distributed parameter models of mechanical subsystems. In addition, the book covers various applications of current interest ranging from motorised wheelchairs, in-vivo surgery robots, walking machines to wind-turbines.The up-to-date presentation has been made possible by experts who are active members of the worldwide bond graph modelling community. This book is the completely revised 2nd edition of the 2011 Springer compilation text titled Bond Graph Modelling of Engineering Systems – Theory, Applications and Software Support. It extends the presentation of theory and applications of graph methodology by new developments and latest research results. Like the first edition, this book addresses readers in a...
Development of virtual hands using animation software and graphical modelling
Oliveira, Erick da S.; Junior, Alberico B. de C.
2016-01-01
The numerical dosimetry uses virtual anthropomorphic simulators to represent the human being in computational framework and thus assess the risks associated with exposure to a radioactive source. With the development of computer animation software, the development of these simulators was facilitated using only knowledge of human anatomy to prepare various types of simulators (man, woman, child and baby) in various positions (sitting, standing, running) or part thereof (head, trunk and limbs). These simulators are constructed by loops of handling and due to the versatility of the method, one can create various geometries irradiation was not possible before. In this work, we have built an exhibition of a radiopharmaceutical scenario manipulating radioactive material using animation software and graphical modeling and anatomical database. (author)
Modeling of tethered satellite formations using graph theory
Larsen, Martin Birkelund; Smith, Roy S; Blanke, Mogens
2011-01-01
satellite formation and proposes a method to deduce the equations of motion for the attitude dynamics of the formation in a compact form. The use of graph theory and Lagrange mechanics together allows a broad class of formations to be described using the same framework. A method is stated for finding...
Bond graph modeling and LQG/LTR controller design of magnetically levitation systems
Kim, Jong Shik; Park, Jeon Soo [Busan National Univ. (Korea, Republic of)
1991-09-01
A logical and systematic procedure to derive a mathematical model for magnetically levitation (MAGLEV) systems with a combined lift and guidance is developed by using bond graph modeling techniques. First, bond graph is contructed for the 1{sup st}-dimensional MAGLEV system in which three subsystems (energy feeding, track and vehicle) are considered. And, the 2{sup nd}-dimensional MAGLEV system in which lift and guidance dynamics are coupled is modeled by using the concept of multi-port field in bond graph languages. Finally, the LQG/LTR control system is designed for a multivariable MAGLEV system with stagger configuration type. In this paper, it has been shown that the bond graph is an excellent effective method for modeling multi-energy domain systems such as MAGLEV systems with uncertainties such as mass variations, track irregularities and wind gusts. (Author).
Bond graph modeling and LQG/LTR controller design of magnetically levitation systems
Kim, Jong Shik; Park, Jeon Soo
1991-01-01
A logical and systematic procedure to derive a mathematical model for magnetically levitation (MAGLEV) systems with a combined lift and guidance is developed by using bond graph modeling techniques. First, bond graph is contructed for the 1 st -dimensional MAGLEV system in which three subsystems (energy feeding, track and vehicle) are considered. And, the 2 nd -dimensional MAGLEV system in which lift and guidance dynamics are coupled is modeled by using the concept of multi-port field in bond graph languages. Finally, the LQG/LTR control system is designed for a multivariable MAGLEV system with stagger configuration type. In this paper, it has been shown that the bond graph is an excellent effective method for modeling multi-energy domain systems such as MAGLEV systems with uncertainties such as mass variations, track irregularities and wind gusts. (Author)
Graphic-based musculoskeletal model for biomechanical analyses and animation.
Chao, Edmund Y S
2003-04-01
The ability to combine physiology and engineering analyses with computer sciences has opened the door to the possibility of creating the 'Virtual Human' reality. This paper presents a broad foundation for a full-featured biomechanical simulator for the human musculoskeletal system physiology. This simulation technology unites the expertise in biomechanical analysis and graphic modeling to investigate joint and connective tissue mechanics at the structural level and to visualize the results in both static and animated forms together with the model. Adaptable anatomical models including prosthetic implants and fracture fixation devices and a robust computational infrastructure for static, kinematic, kinetic, and stress analyses under varying boundary and loading conditions are incorporated on a common platform, the VIMS (Virtual Interactive Musculoskeletal System). Within this software system, a manageable database containing long bone dimensions, connective tissue material properties and a library of skeletal joint system functional activities and loading conditions are also available and they can easily be modified, updated and expanded. Application software is also available to allow end-users to perform biomechanical analyses interactively. This paper details the design, capabilities, and features of the VIMS development at Johns Hopkins University, an effort possible only through academic and commercial collaborations. Examples using these models and the computational algorithms in a virtual laboratory environment are used to demonstrate the utility of this unique database and simulation technology. This integrated system will impact on medical education, basic research, device development and application, and clinical patient care related to musculoskeletal diseases, trauma, and rehabilitation.
Automated Modeling and Simulation Using the Bond Graph Method for the Aerospace Industry
Granda, Jose J.; Montgomery, Raymond C.
2003-01-01
Bond graph modeling was originally developed in the late 1950s by the late Prof. Henry M. Paynter of M.I.T. Prof. Paynter acted well before his time as the main advantage of his creation, other than the modeling insight that it provides and the ability of effectively dealing with Mechatronics, came into fruition only with the recent advent of modern computer technology and the tools derived as a result of it, including symbolic manipulation, MATLAB, and SIMULINK and the Computer Aided Modeling Program (CAMPG). Thus, only recently have these tools been available allowing one to fully utilize the advantages that the bond graph method has to offer. The purpose of this paper is to help fill the knowledge void concerning its use of bond graphs in the aerospace industry. The paper first presents simple examples to serve as a tutorial on bond graphs for those not familiar with the technique. The reader is given the basic understanding needed to appreciate the applications that follow. After that, several aerospace applications are developed such as modeling of an arresting system for aircraft carrier landings, suspension models used for landing gears and multibody dynamics. The paper presents also an update on NASA's progress in modeling the International Space Station (ISS) using bond graph techniques, and an advanced actuation system utilizing shape memory alloys. The later covers the Mechatronics advantages of the bond graph method, applications that simultaneously involves mechanical, hydraulic, thermal, and electrical subsystem modeling.
Individual Travel Behavior Modeling of Public Transport Passenger Based on Graph Construction
Quan Liang
2018-01-01
Full Text Available This paper presents a novel method for mining the individual travel behavior regularity of different public transport passengers through constructing travel behavior graph based model. The individual travel behavior graph is developed to represent spatial positions, time distributions, and travel routes and further forecasts the public transport passenger’s behavior choice. The proposed travel behavior graph is composed of macronodes, arcs, and transfer probability. Each macronode corresponds to a travel association map and represents a travel behavior. A travel association map also contains its own nodes. The nodes of a travel association map are created when the processed travel chain data shows significant change. Thus, each node of three layers represents a significant change of spatial travel positions, travel time, and routes, respectively. Since a travel association map represents a travel behavior, the graph can be considered a sequence of travel behaviors. Through integrating travel association map and calculating the probabilities of the arcs, it is possible to construct a unique travel behavior graph for each passenger. The data used in this study are multimode data matched by certain rules based on the data of public transport smart card transactions and network features. The case study results show that graph based method to model the individual travel behavior of public transport passengers is effective and feasible. Travel behavior graphs support customized public transport travel characteristics analysis and demand prediction.
Tyner, Bryan C.; Fienup, Daniel M.
2015-01-01
Graphing is socially significant for behavior analysts; however, graphing can be difficult to learn. Video modeling (VM) may be a useful instructional method but lacks evidence for effective teaching of computer skills. A between-groups design compared the effects of VM, text-based instruction, and no instruction on graphing performance.…
A lossy graph model for delay reduction in generalized instantly decodable network coding
Douik, Ahmed S.
2014-06-01
The problem of minimizing the decoding delay in Generalized instantly decodable network coding (G-IDNC) for both perfect and lossy feedback scenarios is formulated as a maximum weight clique problem over the G-IDNC graph in. In this letter, we introduce a new lossy G-IDNC graph (LG-IDNC) model to further minimize the decoding delay in lossy feedback scenarios. Whereas the G-IDNC graph represents only doubtless combinable packets, the LG-IDNC graph represents also uncertain packet combinations, arising from lossy feedback events, when the expected decoding delay of XORing them among themselves or with other certain packets is lower than that expected when sending these packets separately. We compare the decoding delay performance of LG-IDNC and G-IDNC graphs through extensive simulations. Numerical results show that our new LG-IDNC graph formulation outperforms the G-IDNC graph formulation in all lossy feedback situations and achieves significant improvement in the decoding delay especially when the feedback erasure probability is higher than the packet erasure probability. © 2012 IEEE.
Bedini, Andrea; Jacobsen, Jesper Lykke
2010-01-01
Combining tree decomposition and transfer matrix techniques provides a very general algorithm for computing exact partition functions of statistical models defined on arbitrary graphs. The algorithm is particularly efficient in the case of planar graphs. We illustrate it by computing the Potts model partition functions and chromatic polynomials (the number of proper vertex colourings using Q colours) for large samples of random planar graphs with up to N = 100 vertices. In the latter case, our algorithm yields a sub-exponential average running time of ∼ exp(1.516√N), a substantial improvement over the exponential running time ∼exp (0.245N) provided by the hitherto best-known algorithm. We study the statistics of chromatic roots of random planar graphs in some detail, comparing the findings with results for finite pieces of a regular lattice.
Deadlock Detection Based on Automatic Code Generation from Graphical CSP Models
Jovanovic, D.S.; Liet, Geert K.; Broenink, Johannes F.; Karelse, F.
2004-01-01
The paper describes a way of using standard formal analysis tools for checking deadlock freedom in graphical models for CSP descriptions of concurrent systems. The models capture specification of a possible concurrent implementation of a system to be realized. Building the graphical models and
JACK - ANTHROPOMETRIC MODELING SYSTEM FOR SILICON GRAPHICS WORKSTATIONS
Smith, B.
1994-01-01
JACK is an interactive graphics program developed at the University of Pennsylvania that displays and manipulates articulated geometric figures. JACK is typically used to observe how a human mannequin interacts with its environment and what effects body types will have upon the performance of a task in a simulated environment. Any environment can be created, and any number of mannequins can be placed anywhere in that environment. JACK includes facilities to construct limited geometric objects, position figures, perform a variety of analyses on the figures, describe the motion of the figures and specify lighting and surface property information for rendering high quality images. JACK is supplied with a variety of body types pre-defined and known to the system. There are both male and female bodies, ranging from the 5th to the 95th percentile, based on NASA Standard 3000. Each mannequin is fully articulated and reflects the joint limitations of a normal human. JACK is an editor for manipulating previously defined objects known as "Peabody" objects. Used to describe the figures as well as the internal data structure for representing them, Peabody is a language with a powerful and flexible mechanism for representing connectivity between objects, both the joints between individual segments within a figure and arbitrary connections between different figures. Peabody objects are generally comprised of several individual figures, each one a collection of segments. Each segment has a geometry represented by PSURF files that consist of polygons or curved surface patches. Although JACK does not have the capability to create new objects, objects may be created by other geometric modeling programs and then translated into the PSURF format. Environment files are a collection of figures and attributes that may be dynamically moved under the control of an animation file. The animation facilities allow the user to create a sequence of commands that duplicate the movements of a
A Gaussian graphical model approach to climate networks
Zerenner, Tanja, E-mail: tanjaz@uni-bonn.de [Meteorological Institute, University of Bonn, Auf dem Hügel 20, 53121 Bonn (Germany); Friederichs, Petra; Hense, Andreas [Meteorological Institute, University of Bonn, Auf dem Hügel 20, 53121 Bonn (Germany); Interdisciplinary Center for Complex Systems, University of Bonn, Brühler Straße 7, 53119 Bonn (Germany); Lehnertz, Klaus [Department of Epileptology, University of Bonn, Sigmund-Freud-Straße 25, 53105 Bonn (Germany); Helmholtz Institute for Radiation and Nuclear Physics, University of Bonn, Nussallee 14-16, 53115 Bonn (Germany); Interdisciplinary Center for Complex Systems, University of Bonn, Brühler Straße 7, 53119 Bonn (Germany)
2014-06-15
Distinguishing between direct and indirect connections is essential when interpreting network structures in terms of dynamical interactions and stability. When constructing networks from climate data the nodes are usually defined on a spatial grid. The edges are usually derived from a bivariate dependency measure, such as Pearson correlation coefficients or mutual information. Thus, the edges indistinguishably represent direct and indirect dependencies. Interpreting climate data fields as realizations of Gaussian Random Fields (GRFs), we have constructed networks according to the Gaussian Graphical Model (GGM) approach. In contrast to the widely used method, the edges of GGM networks are based on partial correlations denoting direct dependencies. Furthermore, GRFs can be represented not only on points in space, but also by expansion coefficients of orthogonal basis functions, such as spherical harmonics. This leads to a modified definition of network nodes and edges in spectral space, which is motivated from an atmospheric dynamics perspective. We construct and analyze networks from climate data in grid point space as well as in spectral space, and derive the edges from both Pearson and partial correlations. Network characteristics, such as mean degree, average shortest path length, and clustering coefficient, reveal that the networks posses an ordered and strongly locally interconnected structure rather than small-world properties. Despite this, the network structures differ strongly depending on the construction method. Straightforward approaches to infer networks from climate data while not regarding any physical processes may contain too strong simplifications to describe the dynamics of the climate system appropriately.
Gaussian graphical modeling reveals specific lipid correlations in glioblastoma cells
Mueller, Nikola S.; Krumsiek, Jan; Theis, Fabian J.; Böhm, Christian; Meyer-Bäse, Anke
2011-06-01
Advances in high-throughput measurements of biological specimens necessitate the development of biologically driven computational techniques. To understand the molecular level of many human diseases, such as cancer, lipid quantifications have been shown to offer an excellent opportunity to reveal disease-specific regulations. The data analysis of the cell lipidome, however, remains a challenging task and cannot be accomplished solely based on intuitive reasoning. We have developed a method to identify a lipid correlation network which is entirely disease-specific. A powerful method to correlate experimentally measured lipid levels across the various samples is a Gaussian Graphical Model (GGM), which is based on partial correlation coefficients. In contrast to regular Pearson correlations, partial correlations aim to identify only direct correlations while eliminating indirect associations. Conventional GGM calculations on the entire dataset can, however, not provide information on whether a correlation is truly disease-specific with respect to the disease samples and not a correlation of control samples. Thus, we implemented a novel differential GGM approach unraveling only the disease-specific correlations, and applied it to the lipidome of immortal Glioblastoma tumor cells. A large set of lipid species were measured by mass spectrometry in order to evaluate lipid remodeling as a result to a combination of perturbation of cells inducing programmed cell death, while the other perturbations served solely as biological controls. With the differential GGM, we were able to reveal Glioblastoma-specific lipid correlations to advance biomedical research on novel gene therapies.
A Gaussian graphical model approach to climate networks
Zerenner, Tanja; Friederichs, Petra; Hense, Andreas; Lehnertz, Klaus
2014-01-01
Distinguishing between direct and indirect connections is essential when interpreting network structures in terms of dynamical interactions and stability. When constructing networks from climate data the nodes are usually defined on a spatial grid. The edges are usually derived from a bivariate dependency measure, such as Pearson correlation coefficients or mutual information. Thus, the edges indistinguishably represent direct and indirect dependencies. Interpreting climate data fields as realizations of Gaussian Random Fields (GRFs), we have constructed networks according to the Gaussian Graphical Model (GGM) approach. In contrast to the widely used method, the edges of GGM networks are based on partial correlations denoting direct dependencies. Furthermore, GRFs can be represented not only on points in space, but also by expansion coefficients of orthogonal basis functions, such as spherical harmonics. This leads to a modified definition of network nodes and edges in spectral space, which is motivated from an atmospheric dynamics perspective. We construct and analyze networks from climate data in grid point space as well as in spectral space, and derive the edges from both Pearson and partial correlations. Network characteristics, such as mean degree, average shortest path length, and clustering coefficient, reveal that the networks posses an ordered and strongly locally interconnected structure rather than small-world properties. Despite this, the network structures differ strongly depending on the construction method. Straightforward approaches to infer networks from climate data while not regarding any physical processes may contain too strong simplifications to describe the dynamics of the climate system appropriately
GDM:A New Graph Based Data Model Using Functional Abstractionx
Sankhayan Choudhury; Nabendu Chaki; Swapan Bhattacharya
2006-01-01
In this paper, a Graph-based semantic Data Model (GDM) is proposed with the primary objective of bridging the gap between the human perception of an enterprise and the needs of computing infrastructure to organize information in some particular manner for efficient storage and retrieval. The Graph Data Model (GDM) has been proposed as an alternative data model to combine the advantages of the relational model with the positive features of semantic data models.The proposed GDM offers a structural representation for interacting to the designer, making it always easy to comprehend the complex relations amongst basic data items. GDM allows an entire database to be viewed as a Graph (V, E) in a layered organization. Here, a graph is created in a bottom up fashion where V represents the basic instances of data or a functionally abstracted module, called primary semantic group (PSG) and secondary semantic group (SSG). An edge in the model implies the relationship among the secondary semantic groups. The contents of the lowest layer are the semantically grouped data values in the form of primary semantic groups. The SSGs are nothing but the higher-level abstraction and are created by the method of encapsulation of various PSGs, SSGs and basic data elements. This encapsulation methodology to provide a higher-level abstraction continues generating various secondary semantic groups until the designer thinks that it is sufficient to declare the actual problem domain. GDM, thus, uses standard abstractions available in a semantic data model with a structural representation in terms of a graph. The operations on the data model are formalized in the proposed graph algebra. A Graph Query Language (GQL) is also developed, maintaining similaritywith the widely accepted user-friendly SQL. Finally, the paper also presents the methodology to make this GDM compatible with the distributed environment,and a corresponding query processing technique for distributed environment is also
Bond Graph Model of Cerebral Circulation: Toward Clinically Feasible Systemic Blood Flow Simulations
Safaei, Soroush; Blanco, Pablo J.; Müller, Lucas O.; Hellevik, Leif R.; Hunter, Peter J.
2018-01-01
We propose a detailed CellML model of the human cerebral circulation that runs faster than real time on a desktop computer and is designed for use in clinical settings when the speed of response is important. A lumped parameter mathematical model, which is based on a one-dimensional formulation of the flow of an incompressible fluid in distensible vessels, is constructed using a bond graph formulation to ensure mass conservation and energy conservation. The model includes arterial vessels with geometric and anatomical data based on the ADAN circulation model. The peripheral beds are represented by lumped parameter compartments. We compare the hemodynamics predicted by the bond graph formulation of the cerebral circulation with that given by a classical one-dimensional Navier-Stokes model working on top of the whole-body ADAN model. Outputs from the bond graph model, including the pressure and flow signatures and blood volumes, are compared with physiological data. PMID:29551979
Creating more effective graphs
Robbins, Naomi B
2012-01-01
A succinct and highly readable guide to creating effective graphs The right graph can be a powerful tool for communicating information, improving a presentation, or conveying your point in print. If your professional endeavors call for you to present data graphically, here's a book that can help you do it more effectively. Creating More Effective Graphs gives you the basic knowledge and techniques required to choose and create appropriate graphs for a broad range of applications. Using real-world examples everyone can relate to, the author draws on her years of experience in gr
BDgraph: An R Package for Bayesian Structure Learning in Graphical Models
Mohammadi, A.; Wit, E.C.
2017-01-01
Graphical models provide powerful tools to uncover complicated patterns in multivariate data and are commonly used in Bayesian statistics and machine learning. In this paper, we introduce an R package BDgraph which performs Bayesian structure learning for general undirected graphical models with
A Novel Efficient Graph Model for the Multiple Longest Common Subsequences (MLCS Problem
Zhan Peng
2017-08-01
Full Text Available Searching for the Multiple Longest Common Subsequences (MLCS of multiple sequences is a classical NP-hard problem, which has been used in many applications. One of the most effective exact approaches for the MLCS problem is based on dominant point graph, which is a kind of directed acyclic graph (DAG. However, the time and space efficiency of the leading dominant point graph based approaches is still unsatisfactory: constructing the dominated point graph used by these approaches requires a huge amount of time and space, which hinders the applications of these approaches to large-scale and long sequences. To address this issue, in this paper, we propose a new time and space efficient graph model called the Leveled-DAG for the MLCS problem. The Leveled-DAG can timely eliminate all the nodes in the graph that cannot contribute to the construction of MLCS during constructing. At any moment, only the current level and some previously generated nodes in the graph need to be kept in memory, which can greatly reduce the memory consumption. Also, the final graph contains only one node in which all of the wanted MLCS are saved, thus, no additional operations for searching the MLCS are needed. The experiments are conducted on real biological sequences with different numbers and lengths respectively, and the proposed algorithm is compared with three state-of-the-art algorithms. The experimental results show that the time and space needed for the Leveled-DAG approach are smaller than those for the compared algorithms especially on large-scale and long sequences.
An Interactive Teaching System for Bond Graph Modeling and Simulation in Bioengineering
Roman, Monica; Popescu, Dorin; Selisteanu, Dan
2013-01-01
The objective of the present work was to implement a teaching system useful in modeling and simulation of biotechnological processes. The interactive system is based on applications developed using 20-sim modeling and simulation software environment. A procedure for the simulation of bioprocesses modeled by bond graphs is proposed and simulators…
Transformation Strategies between Block-Oriented and Graph-Oriented Process Modelling Languages
Mendling, Jan; Lassen, Kristian Bisgaard; Zdun, Uwe
2006-01-01
Much recent research work discusses the transformation between different process modelling languages. This work, however, is mainly focussed on specific process modelling languages, and thus the general reusability of the applied transformation concepts is rather limited. In this paper, we aim...... to abstract from concrete transformation strategies by distinguishing two major paradigms for representing control flow in process modelling languages: block-oriented languages (such as BPEL and BPML) and graph-oriented languages (such as EPCs and YAWL). The contribution of this paper are generic strategies...... for transforming from block-oriented process languages to graph-oriented languages, and vice versa....
Modeling, Control and Analyze of Multi-Machine Drive Systems using Bond Graph Technique
J. Belhadj
2006-03-01
Full Text Available In this paper, a system viewpoint method has been investigated to study and analyze complex systems using Bond Graph technique. These systems are multimachine multi-inverter based on Induction Machine (IM, well used in industries like rolling mills, textile, and railway traction. These systems are multi-domains, multi-scales time and present very strong internal and external couplings, with non-linearity characterized by a high model order. The classical study with analytic model is difficult to manipulate and it is limited to some performances. In this study, a “systemic approach” is presented to design these kinds of systems, using an energetic representation based on Bond Graph formalism. Three types of multimachine are studied with their control strategies. The modeling is carried out by Bond Graph and results are discussed to show the performances of this methodology
RJSplot: Interactive Graphs with R.
Barrios, David; Prieto, Carlos
2018-03-01
Data visualization techniques provide new methods for the generation of interactive graphs. These graphs allow a better exploration and interpretation of data but their creation requires advanced knowledge of graphical libraries. Recent packages have enabled the integration of interactive graphs in R. However, R provides limited graphical packages that allow the generation of interactive graphs for computational biology applications. The present project has joined the analytical power of R with the interactive graphical features of JavaScript in a new R package (RJSplot). It enables the easy generation of interactive graphs in R, provides new visualization capabilities, and contributes to the advance of computational biology analytical methods. At present, 16 interactive graphics are available in RJSplot, such as the genome viewer, Manhattan plots, 3D plots, heatmaps, dendrograms, networks, and so on. The RJSplot package is freely available online at http://rjsplot.net. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
A nonlinear q-voter model with deadlocks on the Watts-Strogatz graph
Sznajd-Weron, Katarzyna; Michal Suszczynski, Karol
2014-07-01
We study the nonlinear $q$-voter model with deadlocks on a Watts-Strogats graph. Using Monte Carlo simulations, we obtain so called exit probability and exit time. We determine how network properties, such as randomness or density of links influence exit properties of a model.
P2 : A random effects model with covariates for directed graphs
van Duijn, M.A.J.; Snijders, T.A.B.; Zijlstra, B.J.H.
A random effects model is proposed for the analysis of binary dyadic data that represent a social network or directed graph, using nodal and/or dyadic attributes as covariates. The network structure is reflected by modeling the dependence between the relations to and from the same actor or node.
Connections between the Sznajd model with general confidence rules and graph theory
Timpanaro, André M.; Prado, Carmen P. C.
2012-10-01
The Sznajd model is a sociophysics model that is used to model opinion propagation and consensus formation in societies. Its main feature is that its rules favor bigger groups of agreeing people. In a previous work, we generalized the bounded confidence rule in order to model biases and prejudices in discrete opinion models. In that work, we applied this modification to the Sznajd model and presented some preliminary results. The present work extends what we did in that paper. We present results linking many of the properties of the mean-field fixed points, with only a few qualitative aspects of the confidence rule (the biases and prejudices modeled), finding an interesting connection with graph theory problems. More precisely, we link the existence of fixed points with the notion of strongly connected graphs and the stability of fixed points with the problem of finding the maximal independent sets of a graph. We state these results and present comparisons between the mean field and simulations in Barabási-Albert networks, followed by the main mathematical ideas and appendices with the rigorous proofs of our claims and some graph theory concepts, together with examples. We also show that there is no qualitative difference in the mean-field results if we require that a group of size q>2, instead of a pair, of agreeing agents be formed before they attempt to convince other sites (for the mean field, this would coincide with the q-voter model).
Transformation Strategies between Block-Oriented and Graph-Oriented Process Modelling Languages
Mendling, Jan; Lassen, Kristian Bisgaard; Zdun, Uwe
to abstract from concrete transformationstrategies by distinguishing two major paradigms for process modelling languages:block-oriented languages (such as BPEL and BPML) and graph-oriented languages(such as EPCs and YAWL). The contribution of this paper are generic strategiesfor transforming from block......Much recent research work discusses the transformation between differentprocess modelling languages. This work, however, is mainly focussed on specific processmodelling languages, and thus the general reusability of the applied transformationconcepts is rather limited. In this paper, we aim......-oriented process languages to graph-oriented languages,and vice versa. We also present two case studies of applying our strategies....
Solving Problem of Graph Isomorphism by Membrane-Quantum Hybrid Model
Artiom Alhazov
2015-10-01
Full Text Available This work presents the application of new parallelization methods based on membrane-quantum hybrid computing to graph isomorphism problem solving. Applied membrane-quantum hybrid computational model was developed by authors. Massive parallelism of unconventional computing is used to implement classic brute force algorithm efficiently. This approach does not suppose any restrictions of considered graphs types. The estimated performance of the model is less then quadratic that makes a very good result for the problem of \\textbf{NP} complexity.
Decision making in water resource planning: Models and computer graphics
Fedra, K; Carlsen, A J [ed.
1987-01-01
This paper describes some basic concepts of simulation-based decision support systems for water resources management and the role of symbolic, graphics-based user interfaces. Designed to allow direct and easy access to advanced methods of analysis and decision support for a broad and heterogeneous group of users, these systems combine data base management, system simulation, operations research techniques such as optimization, interactive data analysis, elements of advanced decision technology, and artificial intelligence, with a friendly and conversational, symbolic display oriented user interface. Important features of the interface are the use of several parallel or alternative styles of interaction and display, indlucing colour graphics and natural language. Combining quantitative numerical methods with qualitative and heuristic approaches, and giving the user direct and interactive control over the systems function, human knowledge, experience and judgement are integrated with formal approaches into a tightly coupled man-machine system through an intelligent and easily accessible user interface. 4 drawings, 42 references.
GraphCrunch 2: Software tool for network modeling, alignment and clustering.
Kuchaiev, Oleksii; Stevanović, Aleksandar; Hayes, Wayne; Pržulj, Nataša
2011-01-19
Recent advancements in experimental biotechnology have produced large amounts of protein-protein interaction (PPI) data. The topology of PPI networks is believed to have a strong link to their function. Hence, the abundance of PPI data for many organisms stimulates the development of computational techniques for the modeling, comparison, alignment, and clustering of networks. In addition, finding representative models for PPI networks will improve our understanding of the cell just as a model of gravity has helped us understand planetary motion. To decide if a model is representative, we need quantitative comparisons of model networks to real ones. However, exact network comparison is computationally intractable and therefore several heuristics have been used instead. Some of these heuristics are easily computable "network properties," such as the degree distribution, or the clustering coefficient. An important special case of network comparison is the network alignment problem. Analogous to sequence alignment, this problem asks to find the "best" mapping between regions in two networks. It is expected that network alignment might have as strong an impact on our understanding of biology as sequence alignment has had. Topology-based clustering of nodes in PPI networks is another example of an important network analysis problem that can uncover relationships between interaction patterns and phenotype. We introduce the GraphCrunch 2 software tool, which addresses these problems. It is a significant extension of GraphCrunch which implements the most popular random network models and compares them with the data networks with respect to many network properties. Also, GraphCrunch 2 implements the GRAph ALigner algorithm ("GRAAL") for purely topological network alignment. GRAAL can align any pair of networks and exposes large, dense, contiguous regions of topological and functional similarities far larger than any other existing tool. Finally, GraphCruch 2 implements an
GraphCrunch 2: Software tool for network modeling, alignment and clustering
Hayes Wayne
2011-01-01
Full Text Available Abstract Background Recent advancements in experimental biotechnology have produced large amounts of protein-protein interaction (PPI data. The topology of PPI networks is believed to have a strong link to their function. Hence, the abundance of PPI data for many organisms stimulates the development of computational techniques for the modeling, comparison, alignment, and clustering of networks. In addition, finding representative models for PPI networks will improve our understanding of the cell just as a model of gravity has helped us understand planetary motion. To decide if a model is representative, we need quantitative comparisons of model networks to real ones. However, exact network comparison is computationally intractable and therefore several heuristics have been used instead. Some of these heuristics are easily computable "network properties," such as the degree distribution, or the clustering coefficient. An important special case of network comparison is the network alignment problem. Analogous to sequence alignment, this problem asks to find the "best" mapping between regions in two networks. It is expected that network alignment might have as strong an impact on our understanding of biology as sequence alignment has had. Topology-based clustering of nodes in PPI networks is another example of an important network analysis problem that can uncover relationships between interaction patterns and phenotype. Results We introduce the GraphCrunch 2 software tool, which addresses these problems. It is a significant extension of GraphCrunch which implements the most popular random network models and compares them with the data networks with respect to many network properties. Also, GraphCrunch 2 implements the GRAph ALigner algorithm ("GRAAL" for purely topological network alignment. GRAAL can align any pair of networks and exposes large, dense, contiguous regions of topological and functional similarities far larger than any other
Seiller, Thomas
2016-01-01
Interaction graphs were introduced as a general, uniform, construction of dynamic models of linear logic, encompassing all Geometry of Interaction (GoI) constructions introduced so far. This series of work was inspired from Girard's hyperfinite GoI, and develops a quantitative approach that should...... be understood as a dynamic version of weighted relational models. Until now, the interaction graphs framework has been shown to deal with exponentials for the constrained system ELL (Elementary Linear Logic) while keeping its quantitative aspect. Adapting older constructions by Girard, one can clearly define...... "full" exponentials, but at the cost of these quantitative features. We show here that allowing interpretations of proofs to use continuous (yet finite in a measure-theoretic sense) sets of states, as opposed to earlier Interaction Graphs constructions were these sets of states were discrete (and finite...
Quantum graphs: a simple model for chaotic scattering
Kottos, Tsampikos; Smilansky, Uzy
2003-01-01
We connect quantum graphs with infinite leads, and turn them into scattering systems. We show that they display all the features which characterize quantum scattering systems with an underlying classical chaotic dynamics: typical poles, delay time and conductance distributions, Ericson fluctuations, and when considered statistically, the ensemble of scattering matrices reproduces quite well the predictions of the appropriately defined random matrix ensembles. The underlying classical dynamics can be defined, and it provides important parameters which are needed for the quantum theory. In particular, we derive exact expressions for the scattering matrix, and an exact trace formula for the density of resonances, in terms of classical orbits, analogous to the semiclassical theory of chaotic scattering. We use this in order to investigate the origin of the connection between random matrix theory and the underlying classical chaotic dynamics. Being an exact theory, and due to its relative simplicity, it offers new insights into this problem which is at the forefront of the research in chaotic scattering and related fields
Soetevent, A.R.
2010-01-01
This paper extends Hotelling's model of price competition with quadratic transportation costs from a line to graphs. I propose an algorithm to calculate firm-level demand for any given graph, conditional on prices and firm locations. One feature of graph models of price competition is that spatial
Relun, Anne; Grosbois, Vladimir; Alexandrov, Tsviatko; Sánchez-Vizcaíno, Jose M; Waret-Szkuta, Agnes; Molia, Sophie; Etter, Eric Marcel Charles; Martínez-López, Beatriz
2017-01-01
In most European countries, data regarding movements of live animals are routinely collected and can greatly aid predictive epidemic modeling. However, the use of complete movements' dataset to conduct policy-relevant predictions has been so far limited by the massive amount of data that have to be processed (e.g., in intensive commercial systems) or the restricted availability of timely and updated records on animal movements (e.g., in areas where small-scale or extensive production is predominant). The aim of this study was to use exponential random graph models (ERGMs) to reproduce, understand, and predict pig trade networks in different European production systems. Three trade networks were built by aggregating movements of pig batches among premises (farms and trade operators) over 2011 in Bulgaria, Extremadura (Spain), and Côtes-d'Armor (France), where small-scale, extensive, and intensive pig production are predominant, respectively. Three ERGMs were fitted to each network with various demographic and geographic attributes of the nodes as well as six internal network configurations. Several statistical and graphical diagnostic methods were applied to assess the goodness of fit of the models. For all systems, both exogenous (attribute-based) and endogenous (network-based) processes appeared to govern the structure of pig trade network, and neither alone were capable of capturing all aspects of the network structure. Geographic mixing patterns strongly structured pig trade organization in the small-scale production system, whereas belonging to the same company or keeping pigs in the same housing system appeared to be key drivers of pig trade, in intensive and extensive production systems, respectively. Heterogeneous mixing between types of production also explained a part of network structure, whichever production system considered. Limited information is thus needed to capture most of the global structure of pig trade networks. Such findings will be useful
Graph theory applied to noise and vibration control in statistical energy analysis models.
Guasch, Oriol; Cortés, Lluís
2009-06-01
A fundamental aspect of noise and vibration control in statistical energy analysis (SEA) models consists in first identifying and then reducing the energy flow paths between subsystems. In this work, it is proposed to make use of some results from graph theory to address both issues. On the one hand, linear and path algebras applied to adjacency matrices of SEA graphs are used to determine the existence of any order paths between subsystems, counting and labeling them, finding extremal paths, or determining the power flow contributions from groups of paths. On the other hand, a strategy is presented that makes use of graph cut algorithms to reduce the energy flow from a source subsystem to a receiver one, modifying as few internal and coupling loss factors as possible.
Use of Graph-Theoretic Models in Technological Preparation of Assembly Plant
Peter Franzevich Yurchik
2015-05-01
Full Text Available The article examines the existing ways of describing the structural and technological properties of the product in the process of building and repair. It turned out that the main body of work on the preparation process of assembling production uses graph-theoretic model of the product. It is shown that, in general, the structural integrity of many-form connections and relations on the set of components that can not be adequately described by binary structures, such as graphs, networks or trees.
Graphics-based intelligent search and abstracting using Data Modeling
Jaenisch, Holger M.; Handley, James W.; Case, Carl T.; Songy, Claude G.
2002-11-01
This paper presents an autonomous text and context-mining algorithm that converts text documents into point clouds for visual search cues. This algorithm is applied to the task of data-mining a scriptural database comprised of the Old and New Testaments from the Bible and the Book of Mormon, Doctrine and Covenants, and the Pearl of Great Price. Results are generated which graphically show the scripture that represents the average concept of the database and the mining of the documents down to the verse level.
Model-Based Requirements Management in Gear Systems Design Based On Graph-Based Design Languages
Kevin Holder
2017-10-01
Full Text Available For several decades, a wide-spread consensus concerning the enormous importance of an in-depth clarification of the specifications of a product has been observed. A weak clarification of specifications is repeatedly listed as a main cause for the failure of product development projects. Requirements, which can be defined as the purpose, goals, constraints, and criteria associated with a product development project, play a central role in the clarification of specifications. The collection of activities which ensure that requirements are identified, documented, maintained, communicated, and traced throughout the life cycle of a system, product, or service can be referred to as “requirements engineering”. These activities can be supported by a collection and combination of strategies, methods, and tools which are appropriate for the clarification of specifications. Numerous publications describe the strategy and the components of requirements management. Furthermore, recent research investigates its industrial application. Simultaneously, promising developments of graph-based design languages for a holistic digital representation of the product life cycle are presented. Current developments realize graph-based languages by the diagrams of the Unified Modelling Language (UML, and allow the automatic generation and evaluation of multiple product variants. The research presented in this paper seeks to present a method in order to combine the advantages of a conscious requirements management process and graph-based design languages. Consequently, the main objective of this paper is the investigation of a model-based integration of requirements in a product development process by means of graph-based design languages. The research method is based on an in-depth analysis of an exemplary industrial product development, a gear system for so-called “Electrical Multiple Units” (EMU. Important requirements were abstracted from a gear system
Performance analysis of chi models using discrete-time probabilistic reward graphs
Trcka, N.; Georgievska, S.; Markovski, J.; Andova, S.; Vink, de E.P.
2008-01-01
We propose the model of discrete-time probabilistic reward graphs (DTPRGs) for performance analysis of systems exhibiting discrete deterministic time delays and probabilistic behavior, via their interpretation as discrete-time Markov reward chains, full-fledged platform for qualitative and
Greenyer, Joel; Kindler, Ekkart
2010-01-01
and for model-based software engineering approaches in general. QVT (Query/View/Transformation) is the transformation technology recently proposed for this purpose by the OMG. TGGs (Triple Graph Grammars) are another transformation technology proposed in the mid-nineties, used for example in the FUJABA CASE...
Interactive Gaussian Graphical Models for Discovering Depth Trends in ChemCam Data
Oyen, D. A.; Komurlu, C.; Lanza, N. L.
2018-04-01
Interactive Gaussian graphical models discover surface compositional features on rocks in ChemCam targets. Our approach visualizes shot-to-shot relationships among LIBS observations, and identifies the wavelengths involved in the trend.
Stochastic Analysis of a Queue Length Model Using a Graphics Processing Unit
Přikryl, Jan; Kocijan, J.
2012-01-01
Roč. 5, č. 2 (2012), s. 55-62 ISSN 1802-971X R&D Projects: GA MŠk(CZ) MEB091015 Institutional support: RVO:67985556 Keywords : graphics processing unit * GPU * Monte Carlo simulation * computer simulation * modeling Subject RIV: BC - Control Systems Theory http://library.utia.cas.cz/separaty/2012/AS/prikryl-stochastic analysis of a queue length model using a graphics processing unit.pdf
Bridging Weighted Rules and Graph Random Walks for Statistical Relational Models
Seyed Mehran Kazemi
2018-02-01
Full Text Available The aim of statistical relational learning is to learn statistical models from relational or graph-structured data. Three main statistical relational learning paradigms include weighted rule learning, random walks on graphs, and tensor factorization. These paradigms have been mostly developed and studied in isolation for many years, with few works attempting at understanding the relationship among them or combining them. In this article, we study the relationship between the path ranking algorithm (PRA, one of the most well-known relational learning methods in the graph random walk paradigm, and relational logistic regression (RLR, one of the recent developments in weighted rule learning. We provide a simple way to normalize relations and prove that relational logistic regression using normalized relations generalizes the path ranking algorithm. This result provides a better understanding of relational learning, especially for the weighted rule learning and graph random walk paradigms. It opens up the possibility of using the more flexible RLR rules within PRA models and even generalizing both by including normalized and unnormalized relations in the same model.
Tyner, Bryan C; Fienup, Daniel M
2015-09-01
Graphing is socially significant for behavior analysts; however, graphing can be difficult to learn. Video modeling (VM) may be a useful instructional method but lacks evidence for effective teaching of computer skills. A between-groups design compared the effects of VM, text-based instruction, and no instruction on graphing performance. Participants who used VM constructed graphs significantly faster and with fewer errors than those who used text-based instruction or no instruction. Implications for instruction are discussed. © Society for the Experimental Analysis of Behavior.
Harary, Frank
2015-01-01
Presented in 1962-63 by experts at University College, London, these lectures offer a variety of perspectives on graph theory. Although the opening chapters form a coherent body of graph theoretic concepts, this volume is not a text on the subject but rather an introduction to the extensive literature of graph theory. The seminar's topics are geared toward advanced undergraduate students of mathematics.Lectures by this volume's editor, Frank Harary, include ""Some Theorems and Concepts of Graph Theory,"" ""Topological Concepts in Graph Theory,"" ""Graphical Reconstruction,"" and other introduc
Geometrical and Graphical Solutions of Quadratic Equations.
Hornsby, E. John, Jr.
1990-01-01
Presented are several geometrical and graphical methods of solving quadratic equations. Discussed are Greek origins, Carlyle's method, von Staudt's method, fixed graph methods and imaginary solutions. (CW)
Endriss, U.; Grandi, U.
Graph aggregation is the process of computing a single output graph that constitutes a good compromise between several input graphs, each provided by a different source. One needs to perform graph aggregation in a wide variety of situations, e.g., when applying a voting rule (graphs as preference
Entropy and Graph Based Modelling of Document Coherence using Discourse Entities
Petersen, Casper; Lioma, Christina; Simonsen, Jakob Grue
2015-01-01
We present two novel models of document coherence and their application to information retrieval (IR). Both models approximate document coherence using discourse entities, e.g. the subject or object of a sentence. Our first model views text as a Markov process generating sequences of discourse...... entities (entity n-grams); we use the entropy of these entity n-grams to approximate the rate at which new information appears in text, reasoning that as more new words appear, the topic increasingly drifts and text coherence decreases. Our second model extends the work of Guinaudeau & Strube [28......] that represents text as a graph of discourse entities, linked by different relations, such as their distance or adjacency in text. We use several graph topology metrics to approximate different aspects of the discourse flow that can indicate coherence, such as the average clustering or betweenness of discourse...
Symbolic Dependency Graphs for PCTL Model-Checking
Mariegaard, Anders; Larsen, Kim Guldstrand
2017-01-01
We consider the problem of model-checking a subset of probabilistic CTL, interpreted over (discrete-time) Markov reward models, allowing the specification of lower bounds on the probability of the set of paths satisfying a cost-bounded path formula. We first consider a reduction to fixed-point co......We consider the problem of model-checking a subset of probabilistic CTL, interpreted over (discrete-time) Markov reward models, allowing the specification of lower bounds on the probability of the set of paths satisfying a cost-bounded path formula. We first consider a reduction to fixed...
TaskMaster: a prototype graphical user interface to a schedule optimization model
Banham, Stephen R.
1990-01-01
Approved for public release, distribution is unlimited This thesis investigates the use of current graphical interface techniques to build more effective computer-user interfaces to Operations Research (OR) schedule optimization models. The design is directed at the scheduling decision maker who possesses limited OR experience. The feasibility and validity of building an interface for this kind of user is demonstrated in the development of a prototype graphical user interface called TaskMa...
Graph Modelling Approach: Application to a Distillation Column
Hovelaque, V.; Commault, C.; Bahar, Mehrdad
1997-01-01
Introduction, structured systems and digraphs, distillation column model, generic input-output decoupling problem, generic disturbance rejection problem, concluding remarks.......Introduction, structured systems and digraphs, distillation column model, generic input-output decoupling problem, generic disturbance rejection problem, concluding remarks....
Around power law for PageRank components in Buckley-Osthus model of web graph
Gasnikov, Alexander; Zhukovskii, Maxim; Kim, Sergey; Noskov, Fedor; Plaunov, Stepan; Smirnov, Daniil
2017-01-01
In the paper we investigate power law for PageRank components for the Buckley-Osthus model for web graph. We compare different numerical methods for PageRank calculation. With the best method we do a lot of numerical experiments. These experiments confirm the hypothesis about power law. At the end we discuss real model of web-ranking based on the classical PageRank approach.
Hermann, Frank; Ehrig, Hartmut; Orejas, Fernando; Ulrike, Golas
2010-01-01
Triple Graph Grammars (TGGs) are a well-established concept for the specification of model transformations. In previous work we have formalized and analyzed already crucial properties of model transformations like termination, correctness and completeness, but functional behaviour - especially local confluence - is missing up to now. In order to close this gap we generate forward translation rules, which extend standard forward rules by translation attributes keeping track of the elements whi...
Using a High-Dimensional Graph of Semantic Space to Model Relationships among Words
Alice F Jackson
2014-05-01
Full Text Available The GOLD model (Graph Of Language Distribution is a network model constructed based on co-occurrence in a large corpus of natural language that may be used to explore what information may be present in a graph-structured model of language, and what information may be extracted through theoretically-driven algorithms as well as standard graph analysis methods. The present study will employ GOLD to examine two types of relationship between words: semantic similarity and associative relatedness. Semantic similarity refers to the degree of overlap in meaning between words, while associative relatedness refers to the degree to which two words occur in the same schematic context. It is expected that a graph structured model of language constructed based on co-occurrence should easily capture associative relatedness, because this type of relationship is thought to be present directly in lexical co-occurrence. However, it is hypothesized that semantic similarity may be extracted from the intersection of the set of first-order connections, because two words that are semantically similar may occupy similar thematic or syntactic roles across contexts and thus would co-occur lexically with the same set of nodes. Two versions the GOLD model that differed in terms of the co-occurence window, bigGOLD at the paragraph level and smallGOLD at the adjacent word level, were directly compared to the performance of a well-established distributional model, Latent Semantic Analysis (LSA. The superior performance of the GOLD models (big and small suggest that a single acquisition and storage mechanism, namely co-occurrence, can account for associative and conceptual relationships between words and is more psychologically plausible than models using singular value decomposition.
Using a high-dimensional graph of semantic space to model relationships among words.
Jackson, Alice F; Bolger, Donald J
2014-01-01
The GOLD model (Graph Of Language Distribution) is a network model constructed based on co-occurrence in a large corpus of natural language that may be used to explore what information may be present in a graph-structured model of language, and what information may be extracted through theoretically-driven algorithms as well as standard graph analysis methods. The present study will employ GOLD to examine two types of relationship between words: semantic similarity and associative relatedness. Semantic similarity refers to the degree of overlap in meaning between words, while associative relatedness refers to the degree to which two words occur in the same schematic context. It is expected that a graph structured model of language constructed based on co-occurrence should easily capture associative relatedness, because this type of relationship is thought to be present directly in lexical co-occurrence. However, it is hypothesized that semantic similarity may be extracted from the intersection of the set of first-order connections, because two words that are semantically similar may occupy similar thematic or syntactic roles across contexts and thus would co-occur lexically with the same set of nodes. Two versions the GOLD model that differed in terms of the co-occurence window, bigGOLD at the paragraph level and smallGOLD at the adjacent word level, were directly compared to the performance of a well-established distributional model, Latent Semantic Analysis (LSA). The superior performance of the GOLD models (big and small) suggest that a single acquisition and storage mechanism, namely co-occurrence, can account for associative and conceptual relationships between words and is more psychologically plausible than models using singular value decomposition (SVD).
Bayesian analysis for exponential random graph models using the adaptive exchange sampler
Jin, Ick Hoon
2013-01-01
Exponential random graph models have been widely used in social network analysis. However, these models are extremely difficult to handle from a statistical viewpoint, because of the existence of intractable normalizing constants. In this paper, we consider a fully Bayesian analysis for exponential random graph models using the adaptive exchange sampler, which solves the issue of intractable normalizing constants encountered in Markov chain Monte Carlo (MCMC) simulations. The adaptive exchange sampler can be viewed as a MCMC extension of the exchange algorithm, and it generates auxiliary networks via an importance sampling procedure from an auxiliary Markov chain running in parallel. The convergence of this algorithm is established under mild conditions. The adaptive exchange sampler is illustrated using a few social networks, including the Florentine business network, molecule synthetic network, and dolphins network. The results indicate that the adaptive exchange algorithm can produce more accurate estimates than approximate exchange algorithms, while maintaining the same computational efficiency.
Effect of disorder on condensation in the lattice gas model on a random graph.
Handford, Thomas P; Dear, Alexander; Pérez-Reche, Francisco J; Taraskin, Sergei N
2014-07-01
The lattice gas model of condensation in a heterogeneous pore system, represented by a random graph of cells, is studied using an exact analytical solution. A binary mixture of pore cells with different coordination numbers is shown to exhibit two phase transitions as a function of chemical potential in a certain temperature range. Heterogeneity in interaction strengths is demonstrated to reduce the critical temperature and, for large-enough degreeS of disorder, divides the cells into ones which are either on average occupied or unoccupied. Despite treating the pore space loops in a simplified manner, the random-graph model provides a good description of condensation in porous structures containing loops. This is illustrated by considering capillary condensation in a structural model of mesoporous silica SBA-15.
Graph-based Models for Data and Decision Making
2016-02-16
most softwru-e) do not allow extemal synchronization. This is a generalized version of the MATB developed to assess multitasking in pilot -like... Multitasking …………………………...2 1.7 ACT-R and LBA Model Mimicry Reveals Similarity Across Levels of Analysis……..2 1.8 Exploring Individual Differences via...Netherlands, April 9-11, 39-44.) 1.6 Modeling the Workload of Capacity of Visual Multitasking We are extending the application of the capacity
A topo-graph model for indistinct target boundary definition from anatomical images.
Cui, Hui; Wang, Xiuying; Zhou, Jianlong; Gong, Guanzhong; Eberl, Stefan; Yin, Yong; Wang, Lisheng; Feng, Dagan; Fulham, Michael
2018-06-01
It can be challenging to delineate the target object in anatomical imaging when the object boundaries are difficult to discern due to the low contrast or overlapping intensity distributions from adjacent tissues. We propose a topo-graph model to address this issue. The first step is to extract a topographic representation that reflects multiple levels of topographic information in an input image. We then define two types of node connections - nesting branches (NBs) and geodesic edges (GEs). NBs connect nodes corresponding to initial topographic regions and GEs link the nodes at a detailed level. The weights for NBs are defined to measure the similarity of regional appearance, and weights for GEs are defined with geodesic and local constraints. NBs contribute to the separation of topographic regions and the GEs assist the delineation of uncertain boundaries. Final segmentation is achieved by calculating the relevance of the unlabeled nodes to the labels by the optimization of a graph-based energy function. We test our model on 47 low contrast CT studies of patients with non-small cell lung cancer (NSCLC), 10 contrast-enhanced CT liver cases and 50 breast and abdominal ultrasound images. The validation criteria are the Dice's similarity coefficient and the Hausdorff distance. Student's t-test show that our model outperformed the graph models with pixel-only, pixel and regional, neighboring and radial connections (p-values <0.05). Our findings show that the topographic representation and topo-graph model provides improved delineation and separation of objects from adjacent tissues compared to the tested models. Copyright © 2018 Elsevier B.V. All rights reserved.
EPA Communications Stylebook: Graphics Guide
Includes standards and guidance for graphics typography, layout, composition, color scheme, appropriate use of charts and graphs, logos and related symbols, and consistency with the message of accompanied content.
On a Numerical and Graphical Technique for Evaluating some Models Involving Rational Expectations
Johansen, Søren; Swensen, Anders Rygh
Campbell and Shiller (1987) proposed a graphical technique for the present value model which consists of plotting the spread and theoretical spread as calculated from the cointegrated vector autoregressive model. We extend these techniques to a number of rational expectation models and give...
On a numerical and graphical technique for evaluating some models involving rational expectations
Johansen, Søren; Swensen, Anders Rygh
Campbell and Shiller (1987) proposed a graphical technique for the present value model which consists of plotting the spread and theoretical spread as calculated from the cointegrated vector autoregressive model. We extend these techniques to a number of rational expectation models and give...
Graph configuration model based evaluation of the education-occupation match.
Gadar, Laszlo; Abonyi, Janos
2018-01-01
To study education-occupation matchings we developed a bipartite network model of education to work transition and a graph configuration model based metric. We studied the career paths of 15 thousand Hungarian students based on the integrated database of the National Tax Administration, the National Health Insurance Fund, and the higher education information system of the Hungarian Government. A brief analysis of gender pay gap and the spatial distribution of over-education is presented to demonstrate the background of the research and the resulted open dataset. We highlighted the hierarchical and clustered structure of the career paths based on the multi-resolution analysis of the graph modularity. The results of the cluster analysis can support policymakers to fine-tune the fragmented program structure of higher education.
Modelling and analysis of distributed simulation protocols with distributed graph transformation
Lara, Juan de; Taentzer, Gabriele
2005-01-01
Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. J. de Lara, and G. Taentzer, "Modelling and analysis of distributed simulation protocols with distributed graph transformation...
Hadronic equation of state in the statistical bootstrap model and linear graph theory
Fre, P.; Page, R.
1976-01-01
Taking a statistical mechanical point og view, the statistical bootstrap model is discussed and, from a critical analysis of the bootstrap volume comcept, it is reached a physical ipothesis, which leads immediately to the hadronic equation of state provided by the bootstrap integral equation. In this context also the connection between the statistical bootstrap and the linear graph theory approach to interacting gases is analyzed
Hybrid Model For Reverberant Indoor Radio Channels Using Rays and Graphs
Steinböck, Gerhard; Gan, Mingming; Meissner, Paul
2016-01-01
efficient calculation of the channel transfer function considering infinitely many components. We use ray-tracing and the theory of room electromagnetics to obtain the parameter settings for the propagation graph. Thus the proposed hybrid model does not require new or additional parameters in comparison...... to ray-tracing. Simulation results show good agreement with measurements with respect to the inclusion of the diffuse tail in both the delay power spectrum and the azimuth delay power spectrum....
Franco-Salvador, Marc; Gupta, Parth; Rosso, Paolo
2013-01-01
Cross-language plagiarism detection attempts to identify and extract automatically plagiarism among documents in different languages. Plagiarized fragments can be translated verbatim copies or may alter their structure to hide the copying, which is known as paraphrasing and is more difficult to detect. In order to improve the paraphrasing detection, we use a knowledge graph-based approach to obtain and compare context models of document fragments in different languages. Experimental results i...
Augmenting Parametric Optimal Ascent Trajectory Modeling with Graph Theory
Dees, Patrick D.; Zwack, Matthew R.; Edwards, Stephen; Steffens, Michael
2016-01-01
into Conceptual and Pre-Conceptual design, knowledge of the effects originating from changes to the vehicle must be calculated. In order to do this, a model capable of quantitatively describing any vehicle within the entire design space under consideration must be constructed. This model must be based upon analysis of acceptable fidelity, which in this work comes from POST. Design space interrogation can be achieved with surrogate modeling, a parametric, polynomial equation representing a tool. A surrogate model must be informed by data from the tool with enough points to represent the solution space for the chosen number of variables with an acceptable level of error. Therefore, Design Of Experiments (DOE) is used to select points within the design space to maximize information gained on the design space while minimizing number of data points required. To represent a design space with a non-trivial number of variable parameters the number of points required still represent an amount of work which would take an inordinate amount of time via the current paradigm of manual analysis, and so an automated method was developed. The best practices of expert trajectory analysts working within NASA Marshall's Advanced Concepts Office (ACO) were implemented within a tool called multiPOST. These practices include how to use the output data from a previous run of POST to inform the next, determining whether a trajectory solution is feasible from a real-world perspective, and how to handle program execution errors. The tool was then augmented with multiprocessing capability to enable analysis on multiple trajectories simultaneously, allowing throughput to scale with available computational resources. In this update to the previous work the authors discuss issues with the method and solutions.
Structure-Based Low-Rank Model With Graph Nuclear Norm Regularization for Noise Removal.
Ge, Qi; Jing, Xiao-Yuan; Wu, Fei; Wei, Zhi-Hui; Xiao, Liang; Shao, Wen-Ze; Yue, Dong; Li, Hai-Bo
2017-07-01
Nonlocal image representation methods, including group-based sparse coding and block-matching 3-D filtering, have shown their great performance in application to low-level tasks. The nonlocal prior is extracted from each group consisting of patches with similar intensities. Grouping patches based on intensity similarity, however, gives rise to disturbance and inaccuracy in estimation of the true images. To address this problem, we propose a structure-based low-rank model with graph nuclear norm regularization. We exploit the local manifold structure inside a patch and group the patches by the distance metric of manifold structure. With the manifold structure information, a graph nuclear norm regularization is established and incorporated into a low-rank approximation model. We then prove that the graph-based regularization is equivalent to a weighted nuclear norm and the proposed model can be solved by a weighted singular-value thresholding algorithm. Extensive experiments on additive white Gaussian noise removal and mixed noise removal demonstrate that the proposed method achieves a better performance than several state-of-the-art algorithms.
Graph Theory. 1. Fragmentation of Structural Graphs
Lorentz JÄNTSCHI
2002-12-01
Full Text Available The investigation of structural graphs has many fields of applications in engineering, especially in applied sciences like as applied chemistry and physics, computer sciences and automation, electronics and telecommunication. The main subject of the paper is to express fragmentation criteria in graph using a new method of investigation: terminal paths. Using terminal paths are defined most of the fragmentation criteria that are in use in molecular topology, but the fields of applications are more generally than that, as I mentioned before. Graphical examples of fragmentation are given for every fragmentation criteria. Note that all fragmentation is made with a computer program that implements a routine for every criterion.[1] A web routine for tracing all terminal paths in graph can be found at the address: http://vl.academicdirect.ro/molecular_topology/tpaths/ [1] M. V. Diudea, I. Gutman, L. Jäntschi, Molecular Topology, Nova Science, Commack, New York, 2001, 2002.
Graphical means for inspecting qualitative models of system behaviour
Bouwer, A.; Bredeweg, B.
2010-01-01
This article presents the design and evaluation of a tool for inspecting conceptual models of system behaviour. The basis for this research is the Garp framework for qualitative simulation. This framework includes modelling primitives, such as entities, quantities and causal dependencies, which are
Zhang, L.-C.; Patone, M.
2017-01-01
We synthesise the existing theory of graph sampling. We propose a formal definition of sampling in finite graphs, and provide a classification of potential graph parameters. We develop a general approach of Horvitz–Thompson estimation to T-stage snowball sampling, and present various reformulations of some common network sampling methods in the literature in terms of the outlined graph sampling theory.
Graphics metafile interface to ARAC emergency response models for remote workstation study
Lawver, B.S.
1985-01-01
The Department of Energy's Atmospheric Response Advisory Capability models are executed on computers at a central computer center with the output distributed to accident advisors in the field. The output of these atmospheric diffusion models are generated as contoured isopleths of concentrations. When these isopleths are overlayed with local geography, they become a useful tool to the accident site advisor. ARAC has developed a workstation that is located at potential accident sites. The workstation allows the accident advisor to view color plots of the model results, scale those plots and print black and white hardcopy of the model results. The graphics metafile, also known as Virtual Device Metafile (VDM) allows the models to generate a single device independent output file that is partitioned into geography, isoopleths and labeling information. The metafile is a very compact data storage technique that is output device independent. The metafile frees the model from either generating output for all known graphic devices or requiring the model to be rerun for additional graphic devices. With the partitioned metafile ARAC can transmit to the remote workstation the isopleths and labeling for each model. The geography database may not change and can be transmitted only when needed. This paper describes the important features of the remote workstation and how these features are supported by the device independent graphics metafile
Introduction to quantum graphs
Berkolaiko, Gregory
2012-01-01
A "quantum graph" is a graph considered as a one-dimensional complex and equipped with a differential operator ("Hamiltonian"). Quantum graphs arise naturally as simplified models in mathematics, physics, chemistry, and engineering when one considers propagation of waves of various nature through a quasi-one-dimensional (e.g., "meso-" or "nano-scale") system that looks like a thin neighborhood of a graph. Works that currently would be classified as discussing quantum graphs have been appearing since at least the 1930s, and since then, quantum graphs techniques have been applied successfully in various areas of mathematical physics, mathematics in general and its applications. One can mention, for instance, dynamical systems theory, control theory, quantum chaos, Anderson localization, microelectronics, photonic crystals, physical chemistry, nano-sciences, superconductivity theory, etc. Quantum graphs present many non-trivial mathematical challenges, which makes them dear to a mathematician's heart. Work on qu...
Nonintersecting string model and graphical approach: equivalence with a Potts model
Perk, J.H.H.; Wu, F.Y.
1986-01-01
Using a graphical method the authors establish the exact equivalence of the partition function of a q-state nonintersecting string (NIS) model on an arbitrary planar, even-valenced lattice with that of a q 2 -state Potts model on a relaxed lattice. The NIS model considered in this paper is one in which the vertex weights are expressible as sums of those of basic vertex types, and the resulting Potts model generally has multispin interactions. For the square and Kagome lattices this leads to the equivalence of a staggered NIS model with Potts models with anisotropic pair interactions, indicating that these NIS models have a first-order transition for q greater than 2. For the triangular lattice the NIS model turns out to be the five-vertex model of Wu and Lin and it relates to a Potts model with two- and three-site interactions. The most general model the authors discuss is an oriented NIS model which contains the six-vertex model and the NIS models of Stroganov and Schultz as special cases
SpineCreator: a Graphical User Interface for the Creation of Layered Neural Models.
Cope, A J; Richmond, P; James, S S; Gurney, K; Allerton, D J
2017-01-01
There is a growing requirement in computational neuroscience for tools that permit collaborative model building, model sharing, combining existing models into a larger system (multi-scale model integration), and are able to simulate models using a variety of simulation engines and hardware platforms. Layered XML model specification formats solve many of these problems, however they are difficult to write and visualise without tools. Here we describe a new graphical software tool, SpineCreator, which facilitates the creation and visualisation of layered models of point spiking neurons or rate coded neurons without requiring the need for programming. We demonstrate the tool through the reproduction and visualisation of published models and show simulation results using code generation interfaced directly into SpineCreator. As a unique application for the graphical creation of neural networks, SpineCreator represents an important step forward for neuronal modelling.
Golovanov, M.N.; Zyuzin, N.N.; Levin, G.L.; Chesnokov, A.N.
1987-01-01
An approach for estimation of reliability factors of complex reserved systems at early stages of development using the method of imitating simulation is considered. Different types of models, their merits and lacks are given. Features of in-core monitoring systems and advosability of graph model and graph theory element application for estimating reliability of such systems are shown. The results of investigation of the reliability factors of the reactor monitoring, control and core local protection subsystem are shown
Model Verification and Validation Using Graphical Information Systems Tools
2013-07-31
Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law , no person shall be...12 Geomorphic Measurements...to a model. Ocean flows, which are organized E-2 current systems, transport heat and salinity and cause water to pile up as a water surface
Heckbert, Paul S
1994-01-01
Graphics Gems IV contains practical techniques for 2D and 3D modeling, animation, rendering, and image processing. The book presents articles on polygons and polyhedral; a mix of formulas, optimized algorithms, and tutorial information on the geometry of 2D, 3D, and n-D space; transformations; and parametric curves and surfaces. The text also includes articles on ray tracing; shading 3D models; and frame buffer techniques. Articles on image processing; algorithms for graphical layout; basic interpolation methods; and subroutine libraries for vector and matrix algebra are also demonstrated. Com
A Practical Probabilistic Graphical Modeling Tool for Weighing ...
Past weight-of-evidence frameworks for adverse ecological effects have provided soft-scoring procedures for judgments based on the quality and measured attributes of evidence. Here, we provide a flexible probabilistic structure for weighing and integrating lines of evidence for ecological risk determinations. Probabilistic approaches can provide both a quantitative weighing of lines of evidence and methods for evaluating risk and uncertainty. The current modeling structure wasdeveloped for propagating uncertainties in measured endpoints and their influence on the plausibility of adverse effects. To illustrate the approach, we apply the model framework to the sediment quality triad using example lines of evidence for sediment chemistry measurements, bioassay results, and in situ infauna diversity of benthic communities using a simplified hypothetical case study. We then combine the three lines evidence and evaluate sensitivity to the input parameters, and show how uncertainties are propagated and how additional information can be incorporated to rapidly update the probability of impacts. The developed network model can be expanded to accommodate additional lines of evidence, variables and states of importance, and different types of uncertainties in the lines of evidence including spatial and temporal as well as measurement errors. We provide a flexible Bayesian network structure for weighing and integrating lines of evidence for ecological risk determinations
Central Limit Theorem for Exponentially Quasi-local Statistics of Spin Models on Cayley Graphs
Reddy, Tulasi Ram; Vadlamani, Sreekar; Yogeshwaran, D.
2018-04-01
Central limit theorems for linear statistics of lattice random fields (including spin models) are usually proven under suitable mixing conditions or quasi-associativity. Many interesting examples of spin models do not satisfy mixing conditions, and on the other hand, it does not seem easy to show central limit theorem for local statistics via quasi-associativity. In this work, we prove general central limit theorems for local statistics and exponentially quasi-local statistics of spin models on discrete Cayley graphs with polynomial growth. Further, we supplement these results by proving similar central limit theorems for random fields on discrete Cayley graphs taking values in a countable space, but under the stronger assumptions of α -mixing (for local statistics) and exponential α -mixing (for exponentially quasi-local statistics). All our central limit theorems assume a suitable variance lower bound like many others in the literature. We illustrate our general central limit theorem with specific examples of lattice spin models and statistics arising in computational topology, statistical physics and random networks. Examples of clustering spin models include quasi-associated spin models with fast decaying covariances like the off-critical Ising model, level sets of Gaussian random fields with fast decaying covariances like the massive Gaussian free field and determinantal point processes with fast decaying kernels. Examples of local statistics include intrinsic volumes, face counts, component counts of random cubical complexes while exponentially quasi-local statistics include nearest neighbour distances in spin models and Betti numbers of sub-critical random cubical complexes.
Joint Bayesian variable and graph selection for regression models with network-structured predictors
Peterson, C. B.; Stingo, F. C.; Vannucci, M.
2015-01-01
In this work, we develop a Bayesian approach to perform selection of predictors that are linked within a network. We achieve this by combining a sparse regression model relating the predictors to a response variable with a graphical model describing conditional dependencies among the predictors. The proposed method is well-suited for genomic applications since it allows the identification of pathways of functionally related genes or proteins which impact an outcome of interest. In contrast to previous approaches for network-guided variable selection, we infer the network among predictors using a Gaussian graphical model and do not assume that network information is available a priori. We demonstrate that our method outperforms existing methods in identifying network-structured predictors in simulation settings, and illustrate our proposed model with an application to inference of proteins relevant to glioblastoma survival. PMID:26514925
Structural identifiability of cyclic graphical models of biological networks with latent variables.
Wang, Yulin; Lu, Na; Miao, Hongyu
2016-06-13
Graphical models have long been used to describe biological networks for a variety of important tasks such as the determination of key biological parameters, and the structure of graphical model ultimately determines whether such unknown parameters can be unambiguously obtained from experimental observations (i.e., the identifiability problem). Limited by resources or technical capacities, complex biological networks are usually partially observed in experiment, which thus introduces latent variables into the corresponding graphical models. A number of previous studies have tackled the parameter identifiability problem for graphical models such as linear structural equation models (SEMs) with or without latent variables. However, the limited resolution and efficiency of existing approaches necessarily calls for further development of novel structural identifiability analysis algorithms. An efficient structural identifiability analysis algorithm is developed in this study for a broad range of network structures. The proposed method adopts the Wright's path coefficient method to generate identifiability equations in forms of symbolic polynomials, and then converts these symbolic equations to binary matrices (called identifiability matrix). Several matrix operations are introduced for identifiability matrix reduction with system equivalency maintained. Based on the reduced identifiability matrices, the structural identifiability of each parameter is determined. A number of benchmark models are used to verify the validity of the proposed approach. Finally, the network module for influenza A virus replication is employed as a real example to illustrate the application of the proposed approach in practice. The proposed approach can deal with cyclic networks with latent variables. The key advantage is that it intentionally avoids symbolic computation and is thus highly efficient. Also, this method is capable of determining the identifiability of each single parameter and
Yue, Chen; Chen, Shaojie; Sair, Haris I; Airan, Raag; Caffo, Brian S
2015-09-01
Data reproducibility is a critical issue in all scientific experiments. In this manuscript, the problem of quantifying the reproducibility of graphical measurements is considered. The image intra-class correlation coefficient (I2C2) is generalized and the graphical intra-class correlation coefficient (GICC) is proposed for such purpose. The concept for GICC is based on multivariate probit-linear mixed effect models. A Markov Chain Monte Carlo EM (mcm-cEM) algorithm is used for estimating the GICC. Simulation results with varied settings are demonstrated and our method is applied to the KIRBY21 test-retest dataset.
Deptuła Adam
2017-01-01
Full Text Available Analysis and synthesis of mechanisms is one of the fundamental tasks of engineering. Mechanisms can suffer from errors due to versatile reasons. Graph-based methods of analysis and synthesis of planetary gears constitute an alternative method for checking their correctness. Previous applications of the graph theory concerned modelling gears for dynamic analysis, kinematic analysis, synthesis, structural analysis, gearshift optimization and automatic design based on so-called graph grammars. Some tasks may be performed only with the methods resulting from the graph theory, e.g. enumeration of structural solutions. The contour plot method consists in distinguishing a series of consecutive rigid units of the analysed mechanism, forming a closed loop (so-called contour. At a later stage, it is possible to analyze the obtained contour graph as a directed graph of dependence. This work presents an example of the application of game-tree structures in describing the contour graph of a planetary gear. In addition, complex parametric tree structures are included.
Verschoor, M.; Jalba, A.C.
2012-01-01
Elastically deformable models have found applications in various areas ranging from mechanical sciences and engineering to computer graphics. The method of Finite Elements has been the tool of choice for solving the underlying PDE, when accuracy and stability of the computations are more important
A Monthly Water-Balance Model Driven By a Graphical User Interface
McCabe, Gregory J.; Markstrom, Steven L.
2007-01-01
This report describes a monthly water-balance model driven by a graphical user interface, referred to as the Thornthwaite monthly water-balance program. Computations of monthly water-balance components of the hydrologic cycle are made for a specified location. The program can be used as a research tool, an assessment tool, and a tool for classroom instruction.
Scaling-up spatially-explicit ecological models using graphics processors
Koppel, Johan van de; Gupta, Rohit; Vuik, Cornelis
2011-01-01
How the properties of ecosystems relate to spatial scale is a prominent topic in current ecosystem research. Despite this, spatially explicit models typically include only a limited range of spatial scales, mostly because of computing limitations. Here, we describe the use of graphics processors to
Incorporating Solid Modeling and Team-Based Design into Freshman Engineering Graphics.
Buchal, Ralph O.
2001-01-01
Describes the integration of these topics through a major team-based design and computer aided design (CAD) modeling project in freshman engineering graphics at the University of Western Ontario. Involves n=250 students working in teams of four to design and document an original Lego toy. Includes 12 references. (Author/YDS)
Oishi, Makoto; Fukuda, Masafumi; Hiraishi, Tetsuya; Yajima, Naoki; Sato, Yosuke; Fujii, Yukihiko
2012-09-01
The purpose of this paper is to report on the authors' advanced presurgical interactive virtual simulation technique using a 3D computer graphics model for microvascular decompression (MVD) surgery. The authors performed interactive virtual simulation prior to surgery in 26 patients with trigeminal neuralgia or hemifacial spasm. The 3D computer graphics models for interactive virtual simulation were composed of the brainstem, cerebellum, cranial nerves, vessels, and skull individually created by the image analysis, including segmentation, surface rendering, and data fusion for data collected by 3-T MRI and 64-row multidetector CT systems. Interactive virtual simulation was performed by employing novel computer-aided design software with manipulation of a haptic device to imitate the surgical procedures of bone drilling and retraction of the cerebellum. The findings were compared with intraoperative findings. In all patients, interactive virtual simulation provided detailed and realistic surgical perspectives, of sufficient quality, representing the lateral suboccipital route. The causes of trigeminal neuralgia or hemifacial spasm determined by observing 3D computer graphics models were concordant with those identified intraoperatively in 25 (96%) of 26 patients, which was a significantly higher rate than the 73% concordance rate (concordance in 19 of 26 patients) obtained by review of 2D images only (p computer graphics model provided a realistic environment for performing virtual simulations prior to MVD surgery and enabled us to ascertain complex microsurgical anatomy.
Exploring Topsnut-Graphical Passwords by Twin Odd-elegant Trees
Wang Hong-yu
2017-01-01
Full Text Available Graphical passwords are facing a good opportunity as 2-dimension codes are accepted by many people, since it has been applied in mobile devices, electronic equipments with touch screen, and so on. QR codes can be considered as a type of graphical passwords. Topsnut-graphical password differs from the existing graphical passwords, and has been investigated and developed. In this article, a new type of Topsnut-graphical passwords has been designed by technique of graph theory, called twin odd-elegant labelling. We make the twin odd-elegant graphs for one-key vs two or more locks (conversely, one-lock vs two or more keys. These Topsnut-GPWs show perfect matching characteristics of locks (TOE-lock-models and keys (TOE-key-models. We show examples for testing our methods which can be easily transformed into effective algorithms.
A Graphical Adversarial Risk Analysis Model for Oil and Gas Drilling Cybersecurity
Vieira, Aitor Couce; Houmb, Siv Hilde; Insua, David Rios
2014-01-01
Oil and gas drilling is based, increasingly, on operational technology, whose cybersecurity is complicated by several challenges. We propose a graphical model for cybersecurity risk assessment based on Adversarial Risk Analysis to face those challenges. We also provide an example of the model in the context of an offshore drilling rig. The proposed model provides a more formal and comprehensive analysis of risks, still using the standard business language based on decisions, risks, and value.
A Graphical Adversarial Risk Analysis Model for Oil and Gas Drilling Cybersecurity
Aitor Couce Vieira
2014-04-01
Full Text Available Oil and gas drilling is based, increasingly, on operational technology, whose cybersecurity is complicated by several challenges. We propose a graphical model for cybersecurity risk assessment based on Adversarial Risk Analysis to face those challenges. We also provide an example of the model in the context of an offshore drilling rig. The proposed model provides a more formal and comprehensive analysis of risks, still using the standard business language based on decisions, risks, and value.
Adriaan R. Soetevent
2010-01-01
This paper extends Hotelling's model of price competition with quadratic transportation costs from a line to graphs. I propose an algorithm to calculate firm-level demand for any given graph, conditional on prices and firm locations. One feature of graph models of price competition is that spatial discontinuities in firm-level demand may occur. I show that the existence result of D'Aspremont et al. (1979) does not extend to simple star graphs. I conjecture that this non-existence result holds...
Pim Heijnen; Adriaan Soetevent
2014-01-01
This paper extends Hotelling's model of price competition with quadratic transportation costs from a line to graphs. We derive an algorithm to calculate firm-level demand for any given graph, conditional on prices and firm locations. These graph models of price competition may lead to spatial discontinuities in firm-level demand. We show that the existence result of D'Aspremont et al. (1979) does not extend to simple star graphs and conjecture that this non-existence result holds more general...
Fundamentals of algebraic graph transformation
Ehrig, Hartmut; Prange, Ulrike; Taentzer, Gabriele
2006-01-01
Graphs are widely used to represent structural information in the form of objects and connections between them. Graph transformation is the rule-based manipulation of graphs, an increasingly important concept in computer science and related fields. This is the first textbook treatment of the algebraic approach to graph transformation, based on algebraic structures and category theory. Part I is an introduction to the classical case of graph and typed graph transformation. In Part II basic and advanced results are first shown for an abstract form of replacement systems, so-called adhesive high-level replacement systems based on category theory, and are then instantiated to several forms of graph and Petri net transformation systems. Part III develops typed attributed graph transformation, a technique of key relevance in the modeling of visual languages and in model transformation. Part IV contains a practical case study on model transformation and a presentation of the AGG (attributed graph grammar) tool envir...
Graphing trillions of triangles.
Burkhardt, Paul
2017-07-01
The increasing size of Big Data is often heralded but how data are transformed and represented is also profoundly important to knowledge discovery, and this is exemplified in Big Graph analytics. Much attention has been placed on the scale of the input graph but the product of a graph algorithm can be many times larger than the input. This is true for many graph problems, such as listing all triangles in a graph. Enabling scalable graph exploration for Big Graphs requires new approaches to algorithms, architectures, and visual analytics. A brief tutorial is given to aid the argument for thoughtful representation of data in the context of graph analysis. Then a new algebraic method to reduce the arithmetic operations in counting and listing triangles in graphs is introduced. Additionally, a scalable triangle listing algorithm in the MapReduce model will be presented followed by a description of the experiments with that algorithm that led to the current largest and fastest triangle listing benchmarks to date. Finally, a method for identifying triangles in new visual graph exploration technologies is proposed.
Kumar, Abhishek; Clement, Shibu; Agrawal, V P
2010-07-15
An attempt is made to address a few ecological and environment issues by developing different structural models for effluent treatment system for electroplating. The effluent treatment system is defined with the help of different subsystems contributing to waste minimization. Hierarchical tree and block diagram showing all possible interactions among subsystems are proposed. These non-mathematical diagrams are converted into mathematical models for design improvement, analysis, comparison, storage retrieval and commercially off-the-shelf purchases of different subsystems. This is achieved by developing graph theoretic model, matrix models and variable permanent function model. Analysis is carried out by permanent function, hierarchical tree and block diagram methods. Storage and retrieval is done using matrix models. The methodology is illustrated with the help of an example. Benefits to the electroplaters/end user are identified. 2010 Elsevier B.V. All rights reserved.
Chartrand, Gary
1984-01-01
Graph theory is used today in the physical sciences, social sciences, computer science, and other areas. Introductory Graph Theory presents a nontechnical introduction to this exciting field in a clear, lively, and informative style. Author Gary Chartrand covers the important elementary topics of graph theory and its applications. In addition, he presents a large variety of proofs designed to strengthen mathematical techniques and offers challenging opportunities to have fun with mathematics. Ten major topics - profusely illustrated - include: Mathematical Models, Elementary Concepts of Grap
Brouwer, A.E.; Haemers, W.H.; Brouwer, A.E.; Haemers, W.H.
2012-01-01
This chapter presents some simple results on graph spectra.We assume the reader is familiar with elementary linear algebra and graph theory. Throughout, J will denote the all-1 matrix, and 1 is the all-1 vector.
Phase-locked patterns of the Kuramoto model on 3-regular graphs
DeVille, Lee; Ermentrout, Bard
2016-09-01
We consider the existence of non-synchronized fixed points to the Kuramoto model defined on sparse networks: specifically, networks where each vertex has degree exactly three. We show that "most" such networks support multiple attracting phase-locked solutions that are not synchronized and study the depth and width of the basins of attraction of these phase-locked solutions. We also show that it is common in "large enough" graphs to find phase-locked solutions where one or more of the links have angle difference greater than π/2.
Vertex labeling and routing in self-similar outerplanar unclustered graphs modeling complex networks
Comellas, Francesc; Miralles, Alicia
2009-01-01
This paper introduces a labeling and optimal routing algorithm for a family of modular, self-similar, small-world graphs with clustering zero. Many properties of this family are comparable to those of networks associated with technological and biological systems with low clustering, such as the power grid, some electronic circuits and protein networks. For these systems, the existence of models with an efficient routing protocol is of interest to design practical communication algorithms in relation to dynamical processes (including synchronization) and also to understand the underlying mechanisms that have shaped their particular structure.
Modeling And Simulation As The Basis For Hybridity In The Graphic Discipline Learning/Teaching Area
Jana Žiljak Vujić
2009-01-01
Full Text Available Only some fifteen years have passed since the scientific graphics discipline was established. In the transition period from the College of Graphics to «Integrated Graphic Technology Studies» to the contemporary Faculty of Graphics Arts with the University in Zagreb, three main periods of development can be noted: digital printing, computer prepress and automatic procedures in postpress packaging production. Computer technology has enabled a change in the methodology of teaching graphics technology and studying it on the level of secondary and higher education. The task has been set to create tools for simulating printing processes in order to master the program through a hybrid system consisting of methods that are separate in relation to one another: learning with the help of digital models and checking in the actual real system. We are setting a hybrid project for teaching because the overall acquired knowledge is the result of completely different methods. The first method is on the free programs level functioning without consequences. Everything remains as a record in the knowledge database that can be analyzed, statistically processed and repeated with new parameter values of the system being researched. The second method uses the actual real system where the results are in proving the value of new knowledge and this is something that encourages and stimulates new cycles of hybrid behavior in mastering programs. This is the area where individual learning incurs. The hybrid method allows the possibility of studying actual situations on a computer model, proving it on an actual real model and entering the area of learning envisaging future development.
Modeling and Simulation as the Basis for Hybridity in the Graphic Discipline Learning/Teaching Area
Vilko Ziljak
2009-11-01
Full Text Available Only some fifteen years have passed since the scientific graphics discipline was established. In the transition period from the College of Graphics to «Integrated Graphic Technology Studies» to the contemporary Faculty of Graphics Arts with the University in Zagreb, three main periods of development can be noted: digital printing, computer prepress and automatic procedures in postpress packaging production. Computer technology has enabled a change in the methodology of teaching graphics technology and studying it on the level of secondary and higher education. The task has been set to create tools for simulating printing processes in order to master the program through a hybrid system consisting of methods that are separate in relation to one another: learning with the help of digital models and checking in the actual real system. We are setting a hybrid project for teaching because the overall acquired knowledge is the result of completely different methods. The first method is on the free programs level functioning without consequences. Everything remains as a record in the knowledge database that can be analyzed, statistically processed and repeated with new parameter values of the system being researched. The second method uses the actual real system where the results are in proving the value of new knowledge and this is something that encourages and stimulates new cycles of hybrid behavior in mastering programs. This is the area where individual learning incurs. The hybrid method allows the possibility of studying actual situations on a computer model, proving it on an actual real model and entering the area of learning envisaging future development.
Pogliani, Lionello
2010-01-30
Twelve properties of a highly heterogeneous class of organic solvents have been modeled with a graph-theoretical molecular connectivity modified (MC) method, which allows to encode the core electrons and the hydrogen atoms. The graph-theoretical method uses the concepts of simple, general, and complete graphs, where these last types of graphs are used to encode the core electrons. The hydrogen atoms have been encoded by the aid of a graph-theoretical perturbation parameter, which contributes to the definition of the valence delta, delta(v), a key parameter in molecular connectivity studies. The model of the twelve properties done with a stepwise search algorithm is always satisfactory, and it allows to check the influence of the hydrogen content of the solvent molecules on the choice of the type of descriptor. A similar argument holds for the influence of the halogen atoms on the type of core electron representation. In some cases the molar mass, and in a minor way, special "ad hoc" parameters have been used to improve the model. A very good model of the surface tension could be obtained by the aid of five experimental parameters. A mixed model method based on experimental parameters plus molecular connectivity indices achieved, instead, to consistently improve the model quality of five properties. To underline is the importance of the boiling point temperatures as descriptors in these last two model methodologies. Copyright 2009 Wiley Periodicals, Inc.
Spataru, Sergiu; Sera, Dezso; Kerekes, Tamas
2012-01-01
This paper presents a set of laboratory tools aimed to support students with various backgrounds (no programming) to understand photovoltaic array modelling and characterization techniques. A graphical user interface (GUI) has been developed in Matlab, for modelling PV arrays and characterizing...... the effect of different types of parameters and operating conditions, on the current-voltage and power-voltage curves. The GUI is supported by experimental investigation and validation on PV module level, with the help of an indoor flash solar simulator....
Graphical models for simulation and control of robotic systems for waste handling
Drotning, W.D.; Bennett, P.C.
1992-01-01
This paper discusses detailed geometric models which have been used within a graphical simulation environment to study transportation cask facility design and to perform design and analyses of robotic systems for handling of nuclear waste. The models form the basis for a robot control environment which provides safety, flexibility, and reliability for operations which span the spectrum from autonomous control to tasks requiring direct human intervention
Planning of O&M for Offfshore Wind Turbines using Bayesian Graphical Models
Nielsen, Jannie Jessen; Sørensen, John Dalsgaard
2010-01-01
The costs to operation and maintenance (O&M) for offshore wind turbines are large, and riskbased planning of O&M has the potential of reducing these costs. This paper presents how Bayesian graphical models can be used to establish a probabilistic damage model and include data from imperfect...... inspections and monitoring. The method offers efficient updating of the failure probability, which is necessary for risk-based decision making. An application example is presented to demonstrate the capabilities of the method....
Modeling and Density Estimation of an Urban Freeway Network Based on Dynamic Graph Hybrid Automata.
Chen, Yangzhou; Guo, Yuqi; Wang, Ying
2017-03-29
In this paper, in order to describe complex network systems, we firstly propose a general modeling framework by combining a dynamic graph with hybrid automata and thus name it Dynamic Graph Hybrid Automata (DGHA). Then we apply this framework to model traffic flow over an urban freeway network by embedding the Cell Transmission Model (CTM) into the DGHA. With a modeling procedure, we adopt a dual digraph of road network structure to describe the road topology, use linear hybrid automata to describe multi-modes of dynamic densities in road segments and transform the nonlinear expressions of the transmitted traffic flow between two road segments into piecewise linear functions in terms of multi-mode switchings. This modeling procedure is modularized and rule-based, and thus is easily-extensible with the help of a combination algorithm for the dynamics of traffic flow. It can describe the dynamics of traffic flow over an urban freeway network with arbitrary topology structures and sizes. Next we analyze mode types and number in the model of the whole freeway network, and deduce a Piecewise Affine Linear System (PWALS) model. Furthermore, based on the PWALS model, a multi-mode switched state observer is designed to estimate the traffic densities of the freeway network, where a set of observer gain matrices are computed by using the Lyapunov function approach. As an example, we utilize the PWALS model and the corresponding switched state observer to traffic flow over Beijing third ring road. In order to clearly interpret the principle of the proposed method and avoid computational complexity, we adopt a simplified version of Beijing third ring road. Practical application for a large-scale road network will be implemented by decentralized modeling approach and distributed observer designing in the future research.
Caetano, Marco Antonio Leonel; Yoneyama, Takashi
2015-07-01
This work concerns the study of the effects felt by a network as a whole when a specific node is perturbed. Many real world systems can be described by network models in which the interactions of the various agents can be represented as an edge of a graph. With a graph model in hand, it is possible to evaluate the effect of deleting some of its edges on the architecture and values of nodes of the network. Eventually a node may end up isolated from the rest of the network and an interesting problem is to have a quantitative measure of the impact of such an event. For instance, in the field of finance, the network models are very popular and the proposed methodology allows to carry out "what if" tests in terms of weakening the links between the economic agents, represented as nodes. The two main concepts employed in the proposed methodology are (i) the vibrational IC-Information Centrality, which can provide a measure of the relative importance of a particular node in a network and (ii) autocatalytic networks that can indicate the evolutionary trends of the network. Although these concepts were originally proposed in the context of other fields of knowledge, they were also found to be useful in analyzing financial networks. In order to illustrate the applicability of the proposed methodology, a case of study using the actual data comprising stock market indices of 12 countries is presented.
Application of dynamic uncertain causality graph in spacecraft fault diagnosis: Logic cycle
Yao, Quanying; Zhang, Qin; Liu, Peng; Yang, Ping; Zhu, Ma; Wang, Xiaochen
2017-04-01
Intelligent diagnosis system are applied to fault diagnosis in spacecraft. Dynamic Uncertain Causality Graph (DUCG) is a new probability graphic model with many advantages. In the knowledge expression of spacecraft fault diagnosis, feedback among variables is frequently encountered, which may cause directed cyclic graphs (DCGs). Probabilistic graphical models (PGMs) such as bayesian network (BN) have been widely applied in uncertain causality representation and probabilistic reasoning, but BN does not allow DCGs. In this paper, DUGG is applied to fault diagnosis in spacecraft: introducing the inference algorithm for the DUCG to deal with feedback. Now, DUCG has been tested in 16 typical faults with 100% diagnosis accuracy.
Paćko, P; Bielak, T; Staszewski, W J; Uhl, T; Spencer, A B; Worden, K
2012-01-01
This paper demonstrates new parallel computation technology and an implementation for Lamb wave propagation modelling in complex structures. A graphical processing unit (GPU) and computer unified device architecture (CUDA), available in low-cost graphical cards in standard PCs, are used for Lamb wave propagation numerical simulations. The local interaction simulation approach (LISA) wave propagation algorithm has been implemented as an example. Other algorithms suitable for parallel discretization can also be used in practice. The method is illustrated using examples related to damage detection. The results demonstrate good accuracy and effective computational performance of very large models. The wave propagation modelling presented in the paper can be used in many practical applications of science and engineering. (paper)
Lucas, B.
1994-05-01
After having recalled the usual diagnosis techniques (failure index, decision tree) and those based on an artificial intelligence approach, the author reports a research aimed at exploring the knowledge and model generation technique. He focuses on the design of an aid to model generation tool and aid-to-diagnosis tool. The bond graph technique is shown to be adapted to the aid to model generation, and is then adapted to the aid to diagnosis. The developed tool is applied to three projects: DIADEME (a diagnosis system based on physical model), the improvement of the SEXTANT diagnosis system (an expert system for transient analysis), and the investigation on an Ariane 5 launcher component. Notably, the author uses the Reiter and Greiner algorithm
The Gaussian Graphical Model in Cross-Sectional and Time-Series Data.
Epskamp, Sacha; Waldorp, Lourens J; Mõttus, René; Borsboom, Denny
2018-04-16
We discuss the Gaussian graphical model (GGM; an undirected network of partial correlation coefficients) and detail its utility as an exploratory data analysis tool. The GGM shows which variables predict one-another, allows for sparse modeling of covariance structures, and may highlight potential causal relationships between observed variables. We describe the utility in three kinds of psychological data sets: data sets in which consecutive cases are assumed independent (e.g., cross-sectional data), temporally ordered data sets (e.g., n = 1 time series), and a mixture of the 2 (e.g., n > 1 time series). In time-series analysis, the GGM can be used to model the residual structure of a vector-autoregression analysis (VAR), also termed graphical VAR. Two network models can then be obtained: a temporal network and a contemporaneous network. When analyzing data from multiple subjects, a GGM can also be formed on the covariance structure of stationary means-the between-subjects network. We discuss the interpretation of these models and propose estimation methods to obtain these networks, which we implement in the R packages graphicalVAR and mlVAR. The methods are showcased in two empirical examples, and simulation studies on these methods are included in the supplementary materials.
GRAPHICAL USER INTERFACE WITH APPLICATIONS IN SUSCEPTIBLE-INFECTIOUS-SUSCEPTIBLE MODELS.
Ilea, M; Turnea, M; Arotăriţei, D; Rotariu, Mariana; Popescu, Marilena
2015-01-01
Practical significance of understanding the dynamics and evolution of infectious diseases increases continuously in contemporary world. The mathematical study of the dynamics of infectious diseases has a long history. By incorporating statistical methods and computer-based simulations in dynamic epidemiological models, it could be possible for modeling methods and theoretical analyses to be more realistic and reliable, allowing a more detailed understanding of the rules governing epidemic spreading. To provide the basis for a disease transmission, the population of a region is often divided into various compartments, and the model governing their relation is called the compartmental model. To present all of the information available, a graphical user interface provides icons and visual indicators. The graphical interface shown in this paper is performed using the MATLAB software ver. 7.6.0. MATLAB software offers a wide range of techniques by which data can be displayed graphically. The process of data viewing involves a series of operations. To achieve it, I had to make three separate files, one for defining the mathematical model and two for the interface itself. Considering a fixed population, it is observed that the number of susceptible individuals diminishes along with an increase in the number of infectious individuals so that in about ten days the number of individuals infected and susceptible, respectively, has the same value. If the epidemic is not controlled, it will continue for an indefinite period of time. By changing the global parameters specific of the SIS model, a more rapid increase of infectious individuals is noted. Using the graphical user interface shown in this paper helps achieving a much easier interaction with the computer, simplifying the structure of complex instructions by using icons and menus, and, in particular, programs and files are much easier to organize. Some numerical simulations have been presented to illustrate theoretical
WE-E-BRE-05: Ensemble of Graphical Models for Predicting Radiation Pneumontis Risk
Lee, S; Ybarra, N; Jeyaseelan, K; El Naqa, I [McGill University, Montreal, Quebec (Canada); Faria, S; Kopek, N [Montreal General Hospital, Montreal, Quebec (Canada)
2014-06-15
Purpose: We propose a prior knowledge-based approach to construct an interaction graph of biological and dosimetric radiation pneumontis (RP) covariates for the purpose of developing a RP risk classifier. Methods: We recruited 59 NSCLC patients who received curative radiotherapy with minimum 6 month follow-up. 16 RP events was observed (CTCAE grade ≥2). Blood serum was collected from every patient before (pre-RT) and during RT (mid-RT). From each sample the concentration of the following five candidate biomarkers were taken as covariates: alpha-2-macroglobulin (α2M), angiotensin converting enzyme (ACE), transforming growth factor β (TGF-β), interleukin-6 (IL-6), and osteopontin (OPN). Dose-volumetric parameters were also included as covariates. The number of biological and dosimetric covariates was reduced by a variable selection scheme implemented by L1-regularized logistic regression (LASSO). Posterior probability distribution of interaction graphs between the selected variables was estimated from the data under the literature-based prior knowledge to weight more heavily the graphs that contain the expected associations. A graph ensemble was formed by averaging the most probable graphs weighted by their posterior, creating a Bayesian Network (BN)-based RP risk classifier. Results: The LASSO selected the following 7 RP covariates: (1) pre-RT concentration level of α2M, (2) α2M level mid- RT/pre-RT, (3) pre-RT IL6 level, (4) IL6 level mid-RT/pre-RT, (5) ACE mid-RT/pre-RT, (6) PTV volume, and (7) mean lung dose (MLD). The ensemble BN model achieved the maximum sensitivity/specificity of 81%/84% and outperformed univariate dosimetric predictors as shown by larger AUC values (0.78∼0.81) compared with MLD (0.61), V20 (0.65) and V30 (0.70). The ensembles obtained by incorporating the prior knowledge improved classification performance for the ensemble size 5∼50. Conclusion: We demonstrated a probabilistic ensemble method to detect robust associations between
Zhang, Xiao-Fei; Ou-Yang, Le; Yan, Hong
2017-08-15
Understanding how gene regulatory networks change under different cellular states is important for revealing insights into network dynamics. Gaussian graphical models, which assume that the data follow a joint normal distribution, have been used recently to infer differential networks. However, the distributions of the omics data are non-normal in general. Furthermore, although much biological knowledge (or prior information) has been accumulated, most existing methods ignore the valuable prior information. Therefore, new statistical methods are needed to relax the normality assumption and make full use of prior information. We propose a new differential network analysis method to address the above challenges. Instead of using Gaussian graphical models, we employ a non-paranormal graphical model that can relax the normality assumption. We develop a principled model to take into account the following prior information: (i) a differential edge less likely exists between two genes that do not participate together in the same pathway; (ii) changes in the networks are driven by certain regulator genes that are perturbed across different cellular states and (iii) the differential networks estimated from multi-view gene expression data likely share common structures. Simulation studies demonstrate that our method outperforms other graphical model-based algorithms. We apply our method to identify the differential networks between platinum-sensitive and platinum-resistant ovarian tumors, and the differential networks between the proneural and mesenchymal subtypes of glioblastoma. Hub nodes in the estimated differential networks rediscover known cancer-related regulator genes and contain interesting predictions. The source code is at https://github.com/Zhangxf-ccnu/pDNA. szuouyl@gmail.com. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Krzysztof Małecki
2017-12-01
Full Text Available A complex system is a set of mutually interacting elements for which it is possible to construct a mathematical model. This article focuses on the cellular automata theory and the graph theory in order to compare various types of cellular automata and to analyse applications of graph structures together with cellular automata. It proposes a graph cellular automaton with a variable configuration of cells and relation-based neighbourhoods (r–GCA. The developed mechanism enables modelling of phenomena found in complex systems (e.g., transport networks, urban logistics, social networks taking into account the interaction between the existing objects. As an implementation example, modelling of moving vehicles has been made and r–GCA was compared to the other cellular automata models simulating the road traffic and used in the computer simulation process.
Perepelitsa, VA; Sergienko, [No Value; Kochkarov, AM
1999-01-01
Definitions of prefractal and fractal graphs are introduced, and they are used to formulate mathematical models in different fields of knowledge. The topicality of fractal-graph recognition from the point of view, of fundamental improvement in the efficiency of the solution of algorithmic problems
Husfeldt, Thore
2015-01-01
This chapter presents an introduction to graph colouring algorithms. The focus is on vertex-colouring algorithms that work for general classes of graphs with worst-case performance guarantees in a sequential model of computation. The presentation aims to demonstrate the breadth of available...
From least squares to multilevel modeling: A graphical introduction to Bayesian inference
Loredo, Thomas J.
2016-01-01
This tutorial presentation will introduce some of the key ideas and techniques involved in applying Bayesian methods to problems in astrostatistics. The focus will be on the big picture: understanding the foundations (interpreting probability, Bayes's theorem, the law of total probability and marginalization), making connections to traditional methods (propagation of errors, least squares, chi-squared, maximum likelihood, Monte Carlo simulation), and highlighting problems where a Bayesian approach can be particularly powerful (Poisson processes, density estimation and curve fitting with measurement error). The "graphical" component of the title reflects an emphasis on pictorial representations of some of the math, but also on the use of graphical models (multilevel or hierarchical models) for analyzing complex data. Code for some examples from the talk will be available to participants, in Python and in the Stan probabilistic programming language.
Pecevski, Dejan; Buesing, Lars; Maass, Wolfgang
2011-12-01
An important open problem of computational neuroscience is the generic organization of computations in networks of neurons in the brain. We show here through rigorous theoretical analysis that inherent stochastic features of spiking neurons, in combination with simple nonlinear computational operations in specific network motifs and dendritic arbors, enable networks of spiking neurons to carry out probabilistic inference through sampling in general graphical models. In particular, it enables them to carry out probabilistic inference in Bayesian networks with converging arrows ("explaining away") and with undirected loops, that occur in many real-world tasks. Ubiquitous stochastic features of networks of spiking neurons, such as trial-to-trial variability and spontaneous activity, are necessary ingredients of the underlying computational organization. We demonstrate through computer simulations that this approach can be scaled up to neural emulations of probabilistic inference in fairly large graphical models, yielding some of the most complex computations that have been carried out so far in networks of spiking neurons.
A semiparametric graphical modelling approach for large-scale equity selection.
Liu, Han; Mulvey, John; Zhao, Tianqi
2016-01-01
We propose a new stock selection strategy that exploits rebalancing returns and improves portfolio performance. To effectively harvest rebalancing gains, we apply ideas from elliptical-copula graphical modelling and stability inference to select stocks that are as independent as possible. The proposed elliptical-copula graphical model has a latent Gaussian representation; its structure can be effectively inferred using the regularized rank-based estimators. The resulting algorithm is computationally efficient and scales to large data-sets. To show the efficacy of the proposed method, we apply it to conduct equity selection based on a 16-year health care stock data-set and a large 34-year stock data-set. Empirical tests show that the proposed method is superior to alternative strategies including a principal component analysis-based approach and the classical Markowitz strategy based on the traditional buy-and-hold assumption.
Probabilistic Graphical Models for the Analysis and Synthesis of Musical Audio
2010-11-01
Graphical model for the HDP. . . . . . . . . . . . . . . . . . . . . . . . . 15 2.5 Chinese Restaurant Franchise (CRF) for three groups of eight observations...associated with ob- servations indirectly through table assignments in the Chinese Restaurant Franchise (CRF). This means that the concentration...other kj,−i in the same song j and on the global component proportions β is given by the Chinese 95 restaurant franchise : p(kji|kj,−i,β, α) = n·kj
Surles, M C; Richardson, J S; Richardson, D C; Brooks, F P
1994-02-01
We describe a new paradigm for modeling proteins in interactive computer graphics systems--continual maintenance of a physically valid representation, combined with direct user control and visualization. This is achieved by a fast algorithm for energy minimization, capable of real-time performance on all atoms of a small protein, plus graphically specified user tugs. The modeling system, called Sculpt, rigidly constrains bond lengths, bond angles, and planar groups (similar to existing interactive modeling programs), while it applies elastic restraints to minimize the potential energy due to torsions, hydrogen bonds, and van der Waals and electrostatic interactions (similar to existing batch minimization programs), and user-specified springs. The graphical interface can show bad and/or favorable contacts, and individual energy terms can be turned on or off to determine their effects and interactions. Sculpt finds a local minimum of the total energy that satisfies all the constraints using an augmented Lagrange-multiplier method; calculation time increases only linearly with the number of atoms because the matrix of constraint gradients is sparse and banded. On a 100-MHz MIPS R4000 processor (Silicon Graphics Indigo), Sculpt achieves 11 updates per second on a 20-residue fragment and 2 updates per second on an 80-residue protein, using all atoms except non-H-bonding hydrogens, and without electrostatic interactions. Applications of Sculpt are described: to reverse the direction of bundle packing in a designed 4-helix bundle protein, to fold up a 2-stranded beta-ribbon into an approximate beta-barrel, and to design the sequence and conformation of a 30-residue peptide that mimics one partner of a protein subunit interaction. Computer models that are both interactive and physically realistic (within the limitations of a given force field) have 2 significant advantages: (1) they make feasible the modeling of very large changes (such as needed for de novo design), and
Menopause and big data: Word Adjacency Graph modeling of menopause-related ChaCha data.
Carpenter, Janet S; Groves, Doyle; Chen, Chen X; Otte, Julie L; Miller, Wendy R
2017-07-01
To detect and visualize salient queries about menopause using Big Data from ChaCha. We used Word Adjacency Graph (WAG) modeling to detect clusters and visualize the range of menopause-related topics and their mutual proximity. The subset of relevant queries was fully modeled. We split each query into token words (ie, meaningful words and phrases) and removed stopwords (ie, not meaningful functional words). The remaining words were considered in sequence to build summary tables of words and two and three-word phrases. Phrases occurring at least 10 times were used to build a network graph model that was iteratively refined by observing and removing clusters of unrelated content. We identified two menopause-related subsets of queries by searching for questions containing menopause and menopause-related terms (eg, climacteric, hot flashes, night sweats, hormone replacement). The first contained 263,363 queries from individuals aged 13 and older and the second contained 5,892 queries from women aged 40 to 62 years. In the first set, we identified 12 topic clusters: 6 relevant to menopause and 6 less relevant. In the second set, we identified 15 topic clusters: 11 relevant to menopause and 4 less relevant. Queries about hormones were pervasive within both WAG models. Many of the queries reflected low literacy levels and/or feelings of embarrassment. We modeled menopause-related queries posed by ChaCha users between 2009 and 2012. ChaCha data may be used on its own or in combination with other Big Data sources to identify patient-driven educational needs and create patient-centered interventions.
Magnolia Tilca
2014-10-01
Full Text Available The aim of this paper is to study the existence of the solution for the overlapping generations model, using fixed point theorems in metric spaces endowed with a graph. The overlapping generations model has been introduced and developed by Maurice Allais (1947, Paul Samuelson (1958, Peter Diamond (1965 and so on. The present paper treats the case presented by Edmond (2008 in (Edmond, 2008 for a continuous time. The theorem of existence of the solution for the prices fixed point problem derived from the overlapping generations model gives an approximation of the solution via the graph theory. The tools employed in this study are based on applications of the Jachymski fixed point theorem on metric spaces endowed with a graph (Jachymski, 2008
Inventory of data bases, graphics packages, and models in Department of Energy laboratories
Shriner, C.R.; Peck, L.J.
1978-11-01
A central inventory of energy-related environmental bibliographic and numeric data bases, graphics packages, integrated hardware/software systems, and models was established at Oak Ridge National Laboratory in an effort to make these resources at Department of Energy (DOE) laboratories better known and available to researchers and managers. This inventory will also serve to identify and avoid duplication among laboratories. The data were collected at each DOE laboratory, then sent to ORNL and merged into a single file. This document contains the data from the merged file. The data descriptions are organized under major data types: data bases, graphics packages, integrated hardware/software systems, and models. The data include descriptions of subject content, documentation, and contact persons. Also provided are computer data such as media on which the item is available, size of the item, computer on which the item executes, minimum hardware configuration necessary to execute the item, software language(s) and/or data base management system utilized, and character set used. For the models, additional data are provided to define the model more accurately. These data include a general statement of algorithms, computational methods, and theories used by the model; organizations currently using the model; the general application area of the model; sources of data utilized by the model; model validation methods, sensitivity analysis, and procedures; and general model classification. Data in this inventory will be available for on-line data retrieval on the DOE/RECON system
A nonlinear q-voter model with deadlocks on the Watts–Strogatz graph
Sznajd-Weron, Katarzyna; Suszczynski, Karol Michal
2014-01-01
We study the nonlinear q-voter model with deadlocks on a Watts–Strogatz graph characterized by two parameters k and β. Using Monte Carlo simulations, we obtain a so-called exit probability and an exit time. We determine how network properties, such as randomness or density of links, influence the exit properties of a model. In particular we show that the exit probability, which is the probability that the system ends up with all spins up, starting with the p fraction of up-spins, has the general form E(p) = p α /(p α + (1 − p) α ). Moreover, using the finite-size scaling technique we show that the exit probability exponent α depends both on the parameter q as well as the network structure, i.e. k and β. (paper)
Error-Rate Estimation Based on Multi-Signal Flow Graph Model and Accelerated Radiation Tests.
Wei He
Full Text Available A method of evaluating the single-event effect soft-error vulnerability of space instruments before launched has been an active research topic in recent years. In this paper, a multi-signal flow graph model is introduced to analyze the fault diagnosis and meantime to failure (MTTF for space instruments. A model for the system functional error rate (SFER is proposed. In addition, an experimental method and accelerated radiation testing system for a signal processing platform based on the field programmable gate array (FPGA is presented. Based on experimental results of different ions (O, Si, Cl, Ti under the HI-13 Tandem Accelerator, the SFER of the signal processing platform is approximately 10-3(error/particle/cm2, while the MTTF is approximately 110.7 h.
Robu, V.; Poutré, la J.A.
2009-01-01
Graphical utility models represent powerful formalisms for modeling complex agent decisions involving multiple issues [2]. In the context of negotiation, it has been shown [10] that using utility graphs enables reaching Paretoefficient agreements with a limited number of negotiation steps, even for
Handbook of graph grammars and computing by graph transformation
Engels, G; Kreowski, H J; Rozenberg, G
1999-01-01
Graph grammars originated in the late 60s, motivated by considerations about pattern recognition and compiler construction. Since then, the list of areas which have interacted with the development of graph grammars has grown quite impressively. Besides the aforementioned areas, it includes software specification and development, VLSI layout schemes, database design, modeling of concurrent systems, massively parallel computer architectures, logic programming, computer animation, developmental biology, music composition, visual languages, and many others.The area of graph grammars and graph tran
Treinish, Lloyd A.; Gough, Michael L.; Wildenhain, W. David
1987-01-01
The capability was developed of rapidly producing visual representations of large, complex, multi-dimensional space and earth sciences data sets via the implementation of computer graphics modeling techniques on the Massively Parallel Processor (MPP) by employing techniques recently developed for typically non-scientific applications. Such capabilities can provide a new and valuable tool for the understanding of complex scientific data, and a new application of parallel computing via the MPP. A prototype system with such capabilities was developed and integrated into the National Space Science Data Center's (NSSDC) Pilot Climate Data System (PCDS) data-independent environment for computer graphics data display to provide easy access to users. While developing these capabilities, several problems had to be solved independently of the actual use of the MPP, all of which are outlined.
An Xdata Architecture for Federated Graph Models and Multi-tier Asymmetric Computing
2014-01-01
Wikipedia, a scale-free random graph (kron), Akamai trace route data, Bitcoin transaction data, and a Twitter follower network. We present results for...3x (SSSP on a random graph) and nearly 300x (Akamai and Bitcoin ) over the CPU performance of a well-known and widely deployed CPU-based graph...provided better throughput for smaller frontiers such as roadmaps or the Bitcoin data set. In our work, we have focused on two-phase kernels, but it
IDAS, software support for mathematical models and map-based graphics
Birnbaum, M.D.; Wecker, D.B.
1984-01-01
IDAS (Intermediate Dose Assessment System) was developed for the U.S. Nuclear Regulatory Commission as a hardware/software host for radiological models and display of map-based plume graphics at the Operations Center (HQ), regional incident response centers, and site emergency facilities. IDAS design goals acknowledged the likelihood of future changes in the suite of models and the composition of map features for analysis and graphical display. IDAS provides a generalized software support environment to programmers and users of modeling programs. A database manager process provides multi-user access control to all input and output data for modeling programs. A programmer-created data description file (schema) specifies data field names, data types, legal and recommended ranges, default values, preferred units of measurement, and ''help'' text. Subroutine calls to IDAS from a model program invoke a consistent user interface which can show any of the schema contents, convert units of measurement, and route data to multiple logical devices, including the database. A stand-alone data editor allows the user to read and write model data records without execution of a model. IDAS stores digitized map features in a 4-level naming hierarchy. A user can select the map icon, color, and whether to show a stored name tag, for each map feature. The user also selects image scale (zoom) within limits set by map digitization. The resulting image combines static map information, computed analytic modeling results, and the user's feature selections for display to decision-makers
Positioning graphical objects on computer screens: a three-phase model.
Pastel, Robert
2011-02-01
This experiment identifies and models phases during the positioning of graphical objects (called cursors in this article) on computer displays. The human computer-interaction community has traditionally used Fitts' law to model selection in graphical user interfaces, whereas human factors experiments have found the single-component Fitts' law inadequate to model positioning of real objects. Participants (N=145) repeatedly positioned variably sized square cursors within variably sized rectangular targets using computer mice. The times for the cursor to just touch the target, for the cursor to enter the target, and for participants to indicate positioning completion were observed. The positioning tolerances were varied from very precise and difficult to imprecise and easy. The time for the cursor to touch the target was proportional to the initial cursor-target distance. The time for the cursor to completely enter the target after touching was proportional to the logarithms of cursor size divided by target tolerances. The time for participants to indicate positioning after entering was inversely proportional to the tolerance. A three-phase model defined by regions--distant, proximate, and inside the target--was proposed and could model the positioning tasks. The three-phase model provides a framework for ergonomists to evaluate new positioning techniques and can explain their deficiencies. The model provides a means to analyze tasks and enhance interaction during positioning.
Groupies in multitype random graphs
Shang, Yilun
2016-01-01
A groupie in a graph is a vertex whose degree is not less than the average degree of its neighbors. Under some mild conditions, we show that the proportion of groupies is very close to 1/2 in multitype random graphs (such as stochastic block models), which include Erd?s-R?nyi random graphs, random bipartite, and multipartite graphs as special examples. Numerical examples are provided to illustrate the theoretical results.
Groupies in multitype random graphs.
Shang, Yilun
2016-01-01
A groupie in a graph is a vertex whose degree is not less than the average degree of its neighbors. Under some mild conditions, we show that the proportion of groupies is very close to 1/2 in multitype random graphs (such as stochastic block models), which include Erdős-Rényi random graphs, random bipartite, and multipartite graphs as special examples. Numerical examples are provided to illustrate the theoretical results.
Temporal Representation in Semantic Graphs
Levandoski, J J; Abdulla, G M
2007-08-07
A wide range of knowledge discovery and analysis applications, ranging from business to biological, make use of semantic graphs when modeling relationships and concepts. Most of the semantic graphs used in these applications are assumed to be static pieces of information, meaning temporal evolution of concepts and relationships are not taken into account. Guided by the need for more advanced semantic graph queries involving temporal concepts, this paper surveys the existing work involving temporal representations in semantic graphs.
XML and Graphs for Modeling, Integration and Interoperability:a CMS Perspective
van Lingen, Frank
2004-01-01
This thesis reports on a designer's Ph.D. project called “XML and Graphs for Modeling, Integration and Interoperability: a CMS perspective”. The project has been performed at CERN, the European laboratory for particle physics, in collaboration with the Eindhoven University of Technology and the University of the West of England in Bristol. CMS (Compact Muon Solenoid) is a next-generation high energy physics experiment at CERN, which will start running in 2007. The complexity of such a detector used in the experiment and the autonomous groups that are part of the CMS experiment, result in disparate data sources (different in format, type and structure). Users need to access and exchange data located in multiple heterogeneous sources in a domain-specific manner and may want to access a simple unit of information without having to understand details of the underlying schema. Users want to access the same information from several different heterogeneous sources. It is neither desirable nor fea...
Generalized connectivity of graphs
Li, Xueliang
2016-01-01
Noteworthy results, proof techniques, open problems and conjectures in generalized (edge-) connectivity are discussed in this book. Both theoretical and practical analyses for generalized (edge-) connectivity of graphs are provided. Topics covered in this book include: generalized (edge-) connectivity of graph classes, algorithms, computational complexity, sharp bounds, Nordhaus-Gaddum-type results, maximum generalized local connectivity, extremal problems, random graphs, multigraphs, relations with the Steiner tree packing problem and generalizations of connectivity. This book enables graduate students to understand and master a segment of graph theory and combinatorial optimization. Researchers in graph theory, combinatorics, combinatorial optimization, probability, computer science, discrete algorithms, complexity analysis, network design, and the information transferring models will find this book useful in their studies.
Sanchez, Julio
2003-01-01
Part I - Graphics Fundamentals PC GRAPHICS OVERVIEW History and Evolution Short History of PC Video PS/2 Video Systems SuperVGA Graphics Coprocessors and Accelerators Graphics Applications State-of-the-Art in PC Graphics 3D Application Programming Interfaces POLYGONAL MODELING Vector and Raster Data Coordinate Systems Modeling with Polygons IMAGE TRANSFORMATIONS Matrix-based Representations Matrix Arithmetic 3D Transformations PROGRAMMING MATRIX TRANSFORMATIONS Numeric Data in Matrix Form Array Processing PROJECTIONS AND RENDERING Perspective The Rendering Pipeline LIGHTING AND SHADING Lightin
Highlighting the Structure-Function Relationship of the Brain with the Ising Model and Graph Theory
T. K. Das
2014-01-01
Full Text Available With the advent of neuroimaging techniques, it becomes feasible to explore the structure-function relationships in the brain. When the brain is not involved in any cognitive task or stimulated by any external output, it preserves important activities which follow well-defined spatial distribution patterns. Understanding the self-organization of the brain from its anatomical structure, it has been recently suggested to model the observed functional pattern from the structure of white matter fiber bundles. Different models which study synchronization (e.g., the Kuramoto model or global dynamics (e.g., the Ising model have shown success in capturing fundamental properties of the brain. In particular, these models can explain the competition between modularity and specialization and the need for integration in the brain. Graphing the functional and structural brain organization supports the model and can also highlight the strategy used to process and organize large amount of information traveling between the different modules. How the flow of information can be prevented or partially destroyed in pathological states, like in severe brain injured patients with disorders of consciousness or by pharmacological induction like in anaesthesia, will also help us to better understand how global or integrated behavior can emerge from local and modular interactions.
Prof. Patty K. Wongpakdee
2013-06-01
Full Text Available “Resurfacing Graphics” deals with the subject of unconventional design, with the purpose of engaging the viewer to experience the graphics beyond paper’s passive surface. Unconventional designs serve to reinvigorate people, whose senses are dulled by the typical, printed graphics, which bombard them each day. Today’s cutting-edge designers, illustrators and artists utilize graphics in a unique manner that allows for tactile interaction. Such works serve as valuable teaching models and encourage students to do the following: 1 investigate the trans-disciplines of art and technology; 2 appreciate that this approach can have a positive effect on the environment; 3 examine and research other approaches of design communications and 4 utilize new mediums to stretch the boundaries of artistic endeavor. This paper examines how visuals communicators are “Resurfacing Graphics” by using atypical surfaces and materials such as textile, wood, ceramics and even water. Such non-traditional transmissions of visual language serve to demonstrate student’s overreliance on paper as an outdated medium. With this exposure, students can become forward-thinking, eco-friendly, creative leaders by expanding their creative breadth and continuing the perpetual exploration for new ways to make their mark.
Prof. Patty K. Wongpakdee
2013-06-01
Full Text Available “Resurfacing Graphics” deals with the subject of unconventional design, with the purpose of engaging the viewer to experience the graphics beyond paper’s passive surface. Unconventional designs serve to reinvigorate people, whose senses are dulled by the typical, printed graphics, which bombard them each day. Today’s cutting-edge designers, illustrators and artists utilize graphics in a unique manner that allows for tactile interaction. Such works serve as valuable teaching models and encourage students to do the following: 1 investigate the trans-disciplines of art and technology; 2 appreciate that this approach can have a positive effect on the environment; 3 examine and research other approaches of design communications and 4 utilize new mediums to stretch the boundaries of artistic endeavor. This paper examines how visuals communicators are “Resurfacing Graphics” by using atypical surfaces and materials such as textile, wood, ceramics and even water. Such non-traditional transmissions of visual language serve to demonstrate student’s overreliance on paper as an outdated medium. With this exposure, students can become forward-thinking, eco-friendly, creative leaders by expanding their creative breadth and continuing the perpetual exploration for new ways to make their mark.
Vestergaard, Preben Dahl; Hartnell, Bert L.
2006-01-01
There are many results dealing with the problem of decomposing a fixed graph into isomorphic subgraphs. There has also been work on characterizing graphs with the property that one can delete the edges of a number of edge disjoint copies of the subgraph and, regardless of how that is done, the gr...
Robust Measurement via A Fused Latent and Graphical Item Response Theory Model.
Chen, Yunxiao; Li, Xiaoou; Liu, Jingchen; Ying, Zhiliang
2018-03-12
Item response theory (IRT) plays an important role in psychological and educational measurement. Unlike the classical testing theory, IRT models aggregate the item level information, yielding more accurate measurements. Most IRT models assume local independence, an assumption not likely to be satisfied in practice, especially when the number of items is large. Results in the literature and simulation studies in this paper reveal that misspecifying the local independence assumption may result in inaccurate measurements and differential item functioning. To provide more robust measurements, we propose an integrated approach by adding a graphical component to a multidimensional IRT model that can offset the effect of unknown local dependence. The new model contains a confirmatory latent variable component, which measures the targeted latent traits, and a graphical component, which captures the local dependence. An efficient proximal algorithm is proposed for the parameter estimation and structure learning of the local dependence. This approach can substantially improve the measurement, given no prior information on the local dependence structure. The model can be applied to measure both a unidimensional latent trait and multidimensional latent traits.
Neurally and ocularly informed graph-based models for searching 3D environments
Jangraw, David C.; Wang, Jun; Lance, Brent J.; Chang, Shih-Fu; Sajda, Paul
2014-08-01
Objective. As we move through an environment, we are constantly making assessments, judgments and decisions about the things we encounter. Some are acted upon immediately, but many more become mental notes or fleeting impressions—our implicit ‘labeling’ of the world. In this paper, we use physiological correlates of this labeling to construct a hybrid brain-computer interface (hBCI) system for efficient navigation of a 3D environment. Approach. First, we record electroencephalographic (EEG), saccadic and pupillary data from subjects as they move through a small part of a 3D virtual city under free-viewing conditions. Using machine learning, we integrate the neural and ocular signals evoked by the objects they encounter to infer which ones are of subjective interest to them. These inferred labels are propagated through a large computer vision graph of objects in the city, using semi-supervised learning to identify other, unseen objects that are visually similar to the labeled ones. Finally, the system plots an efficient route to help the subjects visit the ‘similar’ objects it identifies. Main results. We show that by exploiting the subjects’ implicit labeling to find objects of interest instead of exploring naively, the median search precision is increased from 25% to 97%, and the median subject need only travel 40% of the distance to see 84% of the objects of interest. We also find that the neural and ocular signals contribute in a complementary fashion to the classifiers’ inference of subjects’ implicit labeling. Significance. In summary, we show that neural and ocular signals reflecting subjective assessment of objects in a 3D environment can be used to inform a graph-based learning model of that environment, resulting in an hBCI system that improves navigation and information delivery specific to the user’s interests.
Neurally and ocularly informed graph-based models for searching 3D environments.
Jangraw, David C; Wang, Jun; Lance, Brent J; Chang, Shih-Fu; Sajda, Paul
2014-08-01
As we move through an environment, we are constantly making assessments, judgments and decisions about the things we encounter. Some are acted upon immediately, but many more become mental notes or fleeting impressions-our implicit 'labeling' of the world. In this paper, we use physiological correlates of this labeling to construct a hybrid brain-computer interface (hBCI) system for efficient navigation of a 3D environment. First, we record electroencephalographic (EEG), saccadic and pupillary data from subjects as they move through a small part of a 3D virtual city under free-viewing conditions. Using machine learning, we integrate the neural and ocular signals evoked by the objects they encounter to infer which ones are of subjective interest to them. These inferred labels are propagated through a large computer vision graph of objects in the city, using semi-supervised learning to identify other, unseen objects that are visually similar to the labeled ones. Finally, the system plots an efficient route to help the subjects visit the 'similar' objects it identifies. We show that by exploiting the subjects' implicit labeling to find objects of interest instead of exploring naively, the median search precision is increased from 25% to 97%, and the median subject need only travel 40% of the distance to see 84% of the objects of interest. We also find that the neural and ocular signals contribute in a complementary fashion to the classifiers' inference of subjects' implicit labeling. In summary, we show that neural and ocular signals reflecting subjective assessment of objects in a 3D environment can be used to inform a graph-based learning model of that environment, resulting in an hBCI system that improves navigation and information delivery specific to the user's interests.
A systematic composite service design modeling method using graph-based theory.
Elhag, Arafat Abdulgader Mohammed; Mohamad, Radziah; Aziz, Muhammad Waqar; Zeshan, Furkh
2015-01-01
The composite service design modeling is an essential process of the service-oriented software development life cycle, where the candidate services, composite services, operations and their dependencies are required to be identified and specified before their design. However, a systematic service-oriented design modeling method for composite services is still in its infancy as most of the existing approaches provide the modeling of atomic services only. For these reasons, a new method (ComSDM) is proposed in this work for modeling the concept of service-oriented design to increase the reusability and decrease the complexity of system while keeping the service composition considerations in mind. Furthermore, the ComSDM method provides the mathematical representation of the components of service-oriented design using the graph-based theoryto facilitate the design quality measurement. To demonstrate that the ComSDM method is also suitable for composite service design modeling of distributed embedded real-time systems along with enterprise software development, it is implemented in the case study of a smart home. The results of the case study not only check the applicability of ComSDM, but can also be used to validate the complexity and reusability of ComSDM. This also guides the future research towards the design quality measurement such as using the ComSDM method to measure the quality of composite service design in service-oriented software system.
Visualization of graphical information fusion results
Blasch, Erik; Levchuk, Georgiy; Staskevich, Gennady; Burke, Dustin; Aved, Alex
2014-06-01
Graphical fusion methods are popular to describe distributed sensor applications such as target tracking and pattern recognition. Additional graphical methods include network analysis for social, communications, and sensor management. With the growing availability of various data modalities, graphical fusion methods are widely used to combine data from multiple sensors and modalities. To better understand the usefulness of graph fusion approaches, we address visualization to increase user comprehension of multi-modal data. The paper demonstrates a use case that combines graphs from text reports and target tracks to associate events and activities of interest visualization for testing Measures of Performance (MOP) and Measures of Effectiveness (MOE). The analysis includes the presentation of the separate graphs and then graph-fusion visualization for linking network graphs for tracking and classification.
Graph-based Data Modeling and Analysis for Data Fusion in Remote Sensing
Fan, Lei
., fusion of multi-source data can in principal produce more detailed information than each single source. On the other hand, besides the abundant spectral information contained in HSI data, features such as texture and shape may be employed to represent data points from a spatial perspective. Furthermore, feature fusion also includes the strategy of removing redundant and noisy features in the dataset. One of the major problems in machine learning and pattern recognition is to develop appropriate representations for complex nonlinear data. In HSI processing, a particular data point is usually described as a vector with coordinates corresponding to the intensities measured in the spectral bands. This vector representation permits the application of linear and nonlinear transformations with linear algebra to find an alternative representation of the data. More generally, HSI is multi-dimensional in nature and the vector representation may lose the contextual correlations. Tensor representation provides a more sophisticated modeling technique and a higher-order generalization to linear subspace analysis. In graph theory, data points can be generalized as nodes with connectivities measured from the proximity of a local neighborhood. The graph-based framework efficiently characterizes the relationships among the data and allows for convenient mathematical manipulation in many applications, such as data clustering, feature extraction, feature selection and data alignment. In this thesis, graph-based approaches applied in the field of multi-source feature and data fusion in remote sensing area are explored. We will mainly investigate the fusion of spatial, spectral and LiDAR information with linear and multilinear algebra under graph-based framework for data clustering and classification problems.
Goel, Narendra S.; Rozehnal, Ivan; Thompson, Richard L.
1991-01-01
A computer-graphics-based model, named DIANA, is presented for generation of objects of arbitrary shape and for calculating bidirectional reflectances and scattering from them, in the visible and infrared region. The computer generation is based on a modified Lindenmayer system approach which makes it possible to generate objects of arbitrary shapes and to simulate their growth, dynamics, and movement. Rendering techniques are used to display an object on a computer screen with appropriate shading and shadowing and to calculate the scattering and reflectance from the object. The technique is illustrated with scattering from canopies of simulated corn plants.
A mathematical model for generating bipartite graphs and its application to protein networks
Nacher, J. C.; Ochiai, T.; Hayashida, M.; Akutsu, T.
2009-12-01
Complex systems arise in many different contexts from large communication systems and transportation infrastructures to molecular biology. Most of these systems can be organized into networks composed of nodes and interacting edges. Here, we present a theoretical model that constructs bipartite networks with the particular feature that the degree distribution can be tuned depending on the probability rate of fundamental processes. We then use this model to investigate protein-domain networks. A protein can be composed of up to hundreds of domains. Each domain represents a conserved sequence segment with specific functional tasks. We analyze the distribution of domains in Homo sapiens and Arabidopsis thaliana organisms and the statistical analysis shows that while (a) the number of domain types shared by k proteins exhibits a power-law distribution, (b) the number of proteins composed of k types of domains decays as an exponential distribution. The proposed mathematical model generates bipartite graphs and predicts the emergence of this mixing of (a) power-law and (b) exponential distributions. Our theoretical and computational results show that this model requires (1) growth process and (2) copy mechanism.
A mathematical model for generating bipartite graphs and its application to protein networks
Nacher, J C [Department of Complex Systems, Future University-Hakodate (Japan); Ochiai, T [Faculty of Engineering, Toyama Prefectural University (Japan); Hayashida, M; Akutsu, T [Bioinformatics Center, Institute for Chemical Research, Kyoto University (Japan)
2009-12-04
Complex systems arise in many different contexts from large communication systems and transportation infrastructures to molecular biology. Most of these systems can be organized into networks composed of nodes and interacting edges. Here, we present a theoretical model that constructs bipartite networks with the particular feature that the degree distribution can be tuned depending on the probability rate of fundamental processes. We then use this model to investigate protein-domain networks. A protein can be composed of up to hundreds of domains. Each domain represents a conserved sequence segment with specific functional tasks. We analyze the distribution of domains in Homo sapiens and Arabidopsis thaliana organisms and the statistical analysis shows that while (a) the number of domain types shared by k proteins exhibits a power-law distribution, (b) the number of proteins composed of k types of domains decays as an exponential distribution. The proposed mathematical model generates bipartite graphs and predicts the emergence of this mixing of (a) power-law and (b) exponential distributions. Our theoretical and computational results show that this model requires (1) growth process and (2) copy mechanism.
A mathematical model for generating bipartite graphs and its application to protein networks
Nacher, J C; Ochiai, T; Hayashida, M; Akutsu, T
2009-01-01
Complex systems arise in many different contexts from large communication systems and transportation infrastructures to molecular biology. Most of these systems can be organized into networks composed of nodes and interacting edges. Here, we present a theoretical model that constructs bipartite networks with the particular feature that the degree distribution can be tuned depending on the probability rate of fundamental processes. We then use this model to investigate protein-domain networks. A protein can be composed of up to hundreds of domains. Each domain represents a conserved sequence segment with specific functional tasks. We analyze the distribution of domains in Homo sapiens and Arabidopsis thaliana organisms and the statistical analysis shows that while (a) the number of domain types shared by k proteins exhibits a power-law distribution, (b) the number of proteins composed of k types of domains decays as an exponential distribution. The proposed mathematical model generates bipartite graphs and predicts the emergence of this mixing of (a) power-law and (b) exponential distributions. Our theoretical and computational results show that this model requires (1) growth process and (2) copy mechanism.
Andoulsi, R.
2001-12-01
We present in this thesis a study of a class of photovoltaic system by a bond graph approach. This study concerns the modelling, the analysis and the control of some configurations including PV generator, DC/DC converters and DC motor-pumps. The modelling of the different elements of a photovoltaic system is an indispensable stage that must precede all application of sizing, identification or simulation. However, theses PV systems are of hybrid type and their modelling is complex. It is why we use a unified modelling approach based on the bond graph technique. This methodology is completely systematic and has a sufficient flexibility for allowing the introduction of different components in the system. In the first chapter, we recall the principle of functioning of a photovoltaic generator and we treat mainly the MPPT (Maximum Power Point Tracking) working. In the second chapter, we elaborate bond graph models of various photovoltaic system configurations. For the PV source, we elaborate, in a first stage, a complete model taking into account the various physical phenomena influencing the quality of the PV source. In a second stage, we deduce a reduced bond graph model more easy to use for analysis and control purposes. For the DC/DC converters, we recall the bond graph modelling of switching elements and the average bond graph of the DC/DC converters developed in the literature. Thus, we deduce the bond graphs models of the various DC/DC converters to be used. The third chapter presents a dynamic study of some configurations stability in linear procedure. In the fourth chapter, we study the feasibility of non linear controllers by input/output linearization for some configurations of PV systems. In this study, we use the concept of inverse bond graph to determine, by a bond graph approach, the expression of the control input and the nature of the stability of the internal dynamics (dynamics of zeros). The fifth chapter is dedicated for the presentation of some
A phase plane graph based model of the ovulatory cycle lacking the "positive feedback" phenomenon
Kurbel Sven
2012-08-01
Full Text Available Abstract When hormones during the ovulatory cycle are shown in phase plane graphs, reported FSH and estrogen values form a specific pattern that resembles the leaning “&" symbol, while LH and progesterone (Pg values form a "boomerang" shape. Graphs in this paper were made using data reported by Stricker et al. [Clin Chem Lab Med 2006;44:883–887]. These patterns were used to construct a simplistic model of the ovulatory cycle without the conventional "positive feedback" phenomenon. The model is based on few well-established relations: hypothalamic GnRH secretion is increased under estrogen exposure during two weeks that start before the ovulatory surge and lasts till lutheolysis. the pituitary GnRH receptors are so prone to downregulation through ligand binding that this must be important for their function. in several estrogen target tissue progesterone receptor (PgR expression depends on previous estrogen binding to functional estrogen receptors (ER, while Pg binding to the expressed PgRs reduces both ER and PgR expression. Some key features of the presented model are here listed: High GnRH secretion induced by the recovered estrogen exposure starts in the late follicular phase and lasts till lutheolysis. The LH and FSH surges start due to combination of accumulated pituitary GnRH receptors and increased GnRH secretion. The surges quickly end due to partial downregulation of the pituitary GnRH receptors (64% reduction of the follicular phase pituitary GnRH receptors is needed to explain the reported LH drop after the surge. A strong increase in the lutheal Pg blood level, despite modest decline in LH levels, is explained as delayed expression of pituitary PgRs. Postponed pituitary PgRs expression enforces a negative feedback loop between Pg levels and LH secretions not before the mid lutheal phase. Lutheolysis is explained as a consequence of Pg binding to hypothalamic and pituitary PgRs that reduces local ER expression. When hypothalamic
Anquez, Jérémie; Boubekeur, Tamy; Bibin, Lazar; Angelini, Elsa; Bloch, Isabelle
2009-01-01
Potential sanitary effects related to electromagnetic fields exposure raise public concerns, especially for fetuses during pregnancy. Human fetus exposure can only be assessed through simulated dosimetry studies, performed on anthropomorphic models of pregnant women. In this paper, we propose a new methodology to generate a set of detailed utero-fetal unit (UFU) 3D models during the first and third trimesters of pregnancy, based on segmented 3D ultrasound and MRI data. UFU models are built using recent geometry processing methods derived from mesh-based computer graphics techniques and embedded in a synthetic woman body. Nine pregnant woman models have been generated using this approach and validated by obstetricians, for anatomical accuracy and representativeness.
New ROOT Graphical User Interfaces for fitting
Maline, D Gonzalez; Moneta, L; Antcheva, I
2010-01-01
ROOT, as a scientific data analysis framework, provides extensive capabilities via Graphical User Interfaces (GUI) for performing interactive analysis and visualizing data objects like histograms and graphs. A new interface for fitting has been developed for performing, exploring and comparing fits on data point sets such as histograms, multi-dimensional graphs or trees. With this new interface, users can build interactively the fit model function, set parameter values and constraints and select fit and minimization methods with their options. Functionality for visualizing the fit results is as well provided, with the possibility of drawing residuals or confidence intervals. Furthermore, the new fit panel reacts as a standalone application and it does not prevent users from interacting with other windows. We will describe in great detail the functionality of this user interface, covering as well new capabilities provided by the new fitting and minimization tools introduced recently in the ROOT framework.
Modelling of Non-Linear Pilot Disinfection Water System: A Bond Graph Approach
Naoufel ZITOUNI
2012-08-01
Full Text Available The ultraviolet (UV irradiations are used to solve the bacteriological problem of the drinking water quality. A discharge-gas lamp is used to produce this type of irradiation. The UV lamp is fed by photovoltaic (PV energy via electronic ballast composed by an inverter, a transformer and resonant circuit (RLC. The aim of this work is to give a useful global model of the system. In particular, we introduce the complicated UV lamp model and the water disinfection kinetics, where the radiant energy flux emitted by the discharge-gas lamp and the arc voltage are a complex functions of the current and time. This system is intended to be mainly used in rural zones, the photovoltaic modules as source of energy is an adequate solution. To optimise the power transfer from the PV array to ballast and UV lamp, a Maximum Power Point Tracking (MPPT device may be located between PV array and the loads. In this paper, we developed a bond-graph model which gives the water quality from UV flow, gas type, pressure, lamp current and geometrical characteristic. Finally reliable simulations are established and compared with experimental tests.
GRAPH-ORIENTED MODEL FOR NEO4J. A FREE ALTERNATIVE TO DECREASE TEMPORAL COMPLEXITY
Cleger, Eliober
2017-06-01
Full Text Available The University of Informatics Science uses the system of software project management (XedroGESPRO for monitoring and control the activities related to the production of software. The reports are based on a series of indicators to measure the progress of projects managed, among which those related to performance human resources. This system uses the relational model as the basis for storing information and indicators calculated by the technique of artificial intelligence "fuzzy logic" and stored procedures in the database manager PostgreSQL. All this meant a breakthrough and has produced satisfactory results in the last three years of operation, however significant delays are beginning to appear in the retrieval of information in those tables whose growth increases exponentially compared to the rest. This led to the creation of an oriented-graph model using the tool Neo4J, which reduces response times of queries needed to respond to each indicator. This paper presents the results of applying the model in a scenario closer to reality, which shows the decrease in temporal complexity.
Medical Image Segmentation by Combining Graph Cut and Oriented Active Appearance Models
Chen, Xinjian; Udupa, Jayaram K.; Bağcı, Ulaş; Zhuge, Ying; Yao, Jianhua
2017-01-01
In this paper, we propose a novel 3D segmentation method based on the effective combination of the active appearance model (AAM), live wire (LW), and graph cut (GC). The proposed method consists of three main parts: model building, initialization, and segmentation. In the model building part, we construct the AAM and train the LW cost function and GC parameters. In the initialization part, a novel algorithm is proposed for improving the conventional AAM matching method, which effectively combines the AAM and LW method, resulting in Oriented AAM (OAAM). A multi-object strategy is utilized to help in object initialization. We employ a pseudo-3D initialization strategy, and segment the organs slice by slice via multi-object OAAM method. For the segmentation part, a 3D shape constrained GC method is proposed. The object shape generated from the initialization step is integrated into the GC cost computation, and an iterative GC-OAAM method is used for object delineation. The proposed method was tested in segmenting the liver, kidneys, and spleen on a clinical CT dataset and also tested on the MICCAI 2007 grand challenge for liver segmentation training dataset. The results show the following: (a) An overall segmentation accuracy of true positive volume fraction (TPVF) > 94.3%, false positive volume fraction (FPVF) wordpress.com/research/. PMID:22311862
Graph Sampling for Covariance Estimation
Chepuri, Sundeep Prabhakar
2017-04-25
In this paper the focus is on subsampling as well as reconstructing the second-order statistics of signals residing on nodes of arbitrary undirected graphs. Second-order stationary graph signals may be obtained by graph filtering zero-mean white noise and they admit a well-defined power spectrum whose shape is determined by the frequency response of the graph filter. Estimating the graph power spectrum forms an important component of stationary graph signal processing and related inference tasks such as Wiener prediction or inpainting on graphs. The central result of this paper is that by sampling a significantly smaller subset of vertices and using simple least squares, we can reconstruct the second-order statistics of the graph signal from the subsampled observations, and more importantly, without any spectral priors. To this end, both a nonparametric approach as well as parametric approaches including moving average and autoregressive models for the graph power spectrum are considered. The results specialize for undirected circulant graphs in that the graph nodes leading to the best compression rates are given by the so-called minimal sparse rulers. A near-optimal greedy algorithm is developed to design the subsampling scheme for the non-parametric and the moving average models, whereas a particular subsampling scheme that allows linear estimation for the autoregressive model is proposed. Numerical experiments on synthetic as well as real datasets related to climatology and processing handwritten digits are provided to demonstrate the developed theory.
Domination criticality in product graphs
M.R. Chithra
2015-07-01
Full Text Available A connected dominating set is an important notion and has many applications in routing and management of networks. Graph products have turned out to be a good model of interconnection networks. This motivated us to study the Cartesian product of graphs G with connected domination number, γc(G=2,3 and characterize such graphs. Also, we characterize the k−γ-vertex (edge critical graphs and k−γc-vertex (edge critical graphs for k=2,3 where γ denotes the domination number of G. We also discuss the vertex criticality in grids.
Graph Creation, Visualisation and Transformation
Maribel Fernández
2010-03-01
Full Text Available We describe a tool to create, edit, visualise and compute with interaction nets - a form of graph rewriting systems. The editor, called GraphPaper, allows users to create and edit graphs and their transformation rules using an intuitive user interface. The editor uses the functionalities of the TULIP system, which gives us access to a wealth of visualisation algorithms. Interaction nets are not only a formalism for the specification of graphs, but also a rewrite-based computation model. We discuss graph rewriting strategies and a language to express them in order to perform strategic interaction net rewriting.
Pecevski, Dejan; Buesing, Lars; Maass, Wolfgang
2011-01-01
An important open problem of computational neuroscience is the generic organization of computations in networks of neurons in the brain. We show here through rigorous theoretical analysis that inherent stochastic features of spiking neurons, in combination with simple nonlinear computational operations in specific network motifs and dendritic arbors, enable networks of spiking neurons to carry out probabilistic inference through sampling in general graphical models. In particular, it enables them to carry out probabilistic inference in Bayesian networks with converging arrows (“explaining away”) and with undirected loops, that occur in many real-world tasks. Ubiquitous stochastic features of networks of spiking neurons, such as trial-to-trial variability and spontaneous activity, are necessary ingredients of the underlying computational organization. We demonstrate through computer simulations that this approach can be scaled up to neural emulations of probabilistic inference in fairly large graphical models, yielding some of the most complex computations that have been carried out so far in networks of spiking neurons. PMID:22219717
Dejan Pecevski
2011-12-01
Full Text Available An important open problem of computational neuroscience is the generic organization of computations in networks of neurons in the brain. We show here through rigorous theoretical analysis that inherent stochastic features of spiking neurons, in combination with simple nonlinear computational operations in specific network motifs and dendritic arbors, enable networks of spiking neurons to carry out probabilistic inference through sampling in general graphical models. In particular, it enables them to carry out probabilistic inference in Bayesian networks with converging arrows ("explaining away" and with undirected loops, that occur in many real-world tasks. Ubiquitous stochastic features of networks of spiking neurons, such as trial-to-trial variability and spontaneous activity, are necessary ingredients of the underlying computational organization. We demonstrate through computer simulations that this approach can be scaled up to neural emulations of probabilistic inference in fairly large graphical models, yielding some of the most complex computations that have been carried out so far in networks of spiking neurons.
InteractiveROSETTA: a graphical user interface for the PyRosetta protein modeling suite.
Schenkelberg, Christian D; Bystroff, Christopher
2015-12-15
Modern biotechnical research is becoming increasingly reliant on computational structural modeling programs to develop novel solutions to scientific questions. Rosetta is one such protein modeling suite that has already demonstrated wide applicability to a number of diverse research projects. Unfortunately, Rosetta is largely a command-line-driven software package which restricts its use among non-computational researchers. Some graphical interfaces for Rosetta exist, but typically are not as sophisticated as commercial software. Here, we present InteractiveROSETTA, a graphical interface for the PyRosetta framework that presents easy-to-use controls for several of the most widely used Rosetta protocols alongside a sophisticated selection system utilizing PyMOL as a visualizer. InteractiveROSETTA is also capable of interacting with remote Rosetta servers, facilitating sophisticated protocols that are not accessible in PyRosetta or which require greater computational resources. InteractiveROSETTA is freely available at https://github.com/schenc3/InteractiveROSETTA/releases and relies upon a separate download of PyRosetta which is available at http://www.pyrosetta.org after obtaining a license (free for academic use). © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Bond graph modelling of engineering systems: theory, applications and software support
Borutzky, Wolfgang; Margolis, Donald L
2011-01-01
... way such that analytical or computer response predictions can be straightforwardly carried out. Bond graphs are a concise pictorial representation of all types of interacting energetic systems. In my experience working with engineers on the development of complex systems it is obvious that these systems suffer from thermal problems, structural problems, vibration and noise problems, and control and stability issues that do not fit into a single discipline. Bond graphs provide the link by which all these different ...
ModelMuse - A Graphical User Interface for MODFLOW-2005 and PHAST
Winston, Richard B.
2009-01-01
ModelMuse is a graphical user interface (GUI) for the U.S. Geological Survey (USGS) models MODFLOW-2005 and PHAST. This software package provides a GUI for creating the flow and transport input file for PHAST and the input files for MODFLOW-2005. In ModelMuse, the spatial data for the model is independent of the grid, and the temporal data is independent of the stress periods. Being able to input these data independently allows the user to redefine the spatial and temporal discretization at will. This report describes the basic concepts required to work with ModelMuse. These basic concepts include the model grid, data sets, formulas, objects, the method used to assign values to data sets, and model features. The ModelMuse main window has a top, front, and side view of the model that can be used for editing the model, and a 3-D view of the model that can be used to display properties of the model. ModelMuse has tools to generate and edit the model grid. It also has a variety of interpolation methods and geographic functions that can be used to help define the spatial variability of the model. ModelMuse can be used to execute both MODFLOW-2005 and PHAST and can also display the results of MODFLOW-2005 models. An example of using ModelMuse with MODFLOW-2005 is included in this report. Several additional examples are described in the help system for ModelMuse, which can be accessed from the Help menu.
A comparison of algorithms for inference and learning in probabilistic graphical models.
Frey, Brendan J; Jojic, Nebojsa
2005-09-01
Research into methods for reasoning under uncertainty is currently one of the most exciting areas of artificial intelligence, largely because it has recently become possible to record, store, and process large amounts of data. While impressive achievements have been made in pattern classification problems such as handwritten character recognition, face detection, speaker identification, and prediction of gene function, it is even more exciting that researchers are on the verge of introducing systems that can perform large-scale combinatorial analyses of data, decomposing the data into interacting components. For example, computational methods for automatic scene analysis are now emerging in the computer vision community. These methods decompose an input image into its constituent objects, lighting conditions, motion patterns, etc. Two of the main challenges are finding effective representations and models in specific applications and finding efficient algorithms for inference and learning in these models. In this paper, we advocate the use of graph-based probability models and their associated inference and learning algorithms. We review exact techniques and various approximate, computationally efficient techniques, including iterated conditional modes, the expectation maximization (EM) algorithm, Gibbs sampling, the mean field method, variational techniques, structured variational techniques and the sum-product algorithm ("loopy" belief propagation). We describe how each technique can be applied in a vision model of multiple, occluding objects and contrast the behaviors and performances of the techniques using a unifying cost function, free energy.
Murrell, Paul
2005-01-01
R is revolutionizing the world of statistical computing. Powerful, flexible, and best of all free, R is now the program of choice for tens of thousands of statisticians. Destined to become an instant classic, R Graphics presents the first complete, authoritative exposition on the R graphical system. Paul Murrell, widely known as the leading expert on R graphics, has developed an in-depth resource that takes nothing for granted and helps both neophyte and seasoned users master the intricacies of R graphics. After an introductory overview of R graphics facilities, the presentation first focuses
Path generation algorithm for UML graphic modeling of aerospace test software
Qu, MingCheng; Wu, XiangHu; Tao, YongChao; Chen, Chao
2018-03-01
Aerospace traditional software testing engineers are based on their own work experience and communication with software development personnel to complete the description of the test software, manual writing test cases, time-consuming, inefficient, loopholes and more. Using the high reliability MBT tools developed by our company, the one-time modeling can automatically generate test case documents, which is efficient and accurate. UML model to describe the process accurately express the need to rely on the path is reached, the existing path generation algorithm are too simple, cannot be combined into a path and branch path with loop, or too cumbersome, too complicated arrangement generates a path is meaningless, for aerospace software testing is superfluous, I rely on our experience of ten load space, tailor developed a description of aerospace software UML graphics path generation algorithm.
REDUCED DATA FOR CURVE MODELING – APPLICATIONS IN GRAPHICS, COMPUTER VISION AND PHYSICS
Małgorzata Janik
2013-06-01
Full Text Available In this paper we consider the problem of modeling curves in Rn via interpolation without a priori specified interpolation knots. We discuss two approaches to estimate the missing knots for non-parametric data (i.e. collection of points. The first approach (uniform evaluation is based on blind guess in which knots are chosen uniformly. The second approach (cumulative chord parameterization incorporates the geometry of the distribution of data points. More precisely, the difference is equal to the Euclidean distance between data points qi+1 and qi. The second method partially compensates for the loss of the information carried by the reduced data. We also present the application of the above schemes for fitting non-parametric data in computer graphics (light-source motion rendering, in computer vision (image segmentation and in physics (high velocity particles trajectory modeling. Though experiments are conducted for points in R2 and R3 the entire method is equally applicable in Rn.
Mencarini, Letizia; Vignoli, Daniele; Gottard, Anna
2015-03-01
This paper studies fertility intentions and their outcomes, analyzing the complete path leading to fertility behavior according to the social psychological model of Theory Planned Behavior (TPB). We move beyond existing research using graphical models to have a precise understanding, and a formal description, of the developmental fertility decision-making process. Our findings yield new results for the Italian case which are empirically robust and theoretically coherent, adding important insights to the effectiveness of the TPB for fertility research. In line with TPB, all intentions' primary antecedents are found to be determinants of the level of fertility intentions, but do not affect fertility outcomes, being pre-filtered by fertility intentions. Nevertheless, in contrast with TPB, background factors are not fully mediated by intentions' primary antecedents, influencing directly fertility intentions and even fertility behaviors. Copyright © 2014 Elsevier Ltd. All rights reserved.
A Graph-Based Approach for 3D Building Model Reconstruction from Airborne LiDAR Point Clouds
Bin Wu
2017-01-01
Full Text Available 3D building model reconstruction is of great importance for environmental and urban applications. Airborne light detection and ranging (LiDAR is a very useful data source for acquiring detailed geometric and topological information of building objects. In this study, we employed a graph-based method based on hierarchical structure analysis of building contours derived from LiDAR data to reconstruct urban building models. The proposed approach first uses a graph theory-based localized contour tree method to represent the topological structure of buildings, then separates the buildings into different parts by analyzing their topological relationships, and finally reconstructs the building model by integrating all the individual models established through the bipartite graph matching process. Our approach provides a more complete topological and geometrical description of building contours than existing approaches. We evaluated the proposed method by applying it to the Lujiazui region in Shanghai, China, a complex and large urban scene with various types of buildings. The results revealed that complex buildings could be reconstructed successfully with a mean modeling error of 0.32 m. Our proposed method offers a promising solution for 3D building model reconstruction from airborne LiDAR point clouds.
A scale-free structure prior for graphical models with applications in functional genomics.
Paul Sheridan
Full Text Available The problem of reconstructing large-scale, gene regulatory networks from gene expression data has garnered considerable attention in bioinformatics over the past decade with the graphical modeling paradigm having emerged as a popular framework for inference. Analysis in a full Bayesian setting is contingent upon the assignment of a so-called structure prior-a probability distribution on networks, encoding a priori biological knowledge either in the form of supplemental data or high-level topological features. A key topological consideration is that a wide range of cellular networks are approximately scale-free, meaning that the fraction, , of nodes in a network with degree is roughly described by a power-law with exponent between and . The standard practice, however, is to utilize a random structure prior, which favors networks with binomially distributed degree distributions. In this paper, we introduce a scale-free structure prior for graphical models based on the formula for the probability of a network under a simple scale-free network model. Unlike the random structure prior, its scale-free counterpart requires a node labeling as a parameter. In order to use this prior for large-scale network inference, we design a novel Metropolis-Hastings sampler for graphical models that includes a node labeling as a state space variable. In a simulation study, we demonstrate that the scale-free structure prior outperforms the random structure prior at recovering scale-free networks while at the same time retains the ability to recover random networks. We then estimate a gene association network from gene expression data taken from a breast cancer tumor study, showing that scale-free structure prior recovers hubs, including the previously unknown hub SLC39A6, which is a zinc transporter that has been implicated with the spread of breast cancer to the lymph nodes. Our analysis of the breast cancer expression data underscores the value of the scale
The role of the autonomic nervous system in hypertension: a bond graph model study
Chen, Shuzhen; Gong, Yuexian; Dai, Kaiyong; Sui, Meirong; Yu, Yi; Ning, Gangmin; Zhang, Shaowen
2008-01-01
A bond graph model of the cardiovascular system with embedded autonomic nervous regulation was developed for a better understanding of the role of the autonomic nervous system (ANS) in hypertension. The model is described by a pump model of the heart and a detailed representation of the head and neck, pulmonary, coronary, abdomen and extremity circulation. It responds to sympathetic and parasympathetic activities by modifying systemic peripheral vascular resistance, heart rate, ventricular end-systolic elastance and venous unstressed volumes. The impairment of ANS is represented by an elevation of the baroreflex set point. The simulation results show that, compared with normotensive, in hypertension the systolic and diastolic blood pressure (SBP/DBP) rose from 112/77 mmHg to 144/94 mmHg and the left ventricular wall thickness (LVWT) increased from 10 mm to 12.74 mm. In the case that ANS regulation was absent, both the SBP and DBP further increased by 8 mmHg and the LVWT increased to 13.22 mm. The results also demonstrate that when ANS regulation is not severely damaged, e.g. the baroreflex set point is 97 mmHg, it still has an effect in preventing the rapid rise of blood pressure in hypertension; however, with the worsening of ANS regulation, its protective role weakens. The results agree with human physiological and pathological features in hemodynamic parameters and carotid baroreflex function curves, and indicate the role of ANS in blood pressure regulation and heart protection. In conclusion, the present model may provide a valid approach to study the pathophysiological conditions of the cardiovascular system and the mechanism of ANS regulation
A Study towards Building An Optimal Graph Theory Based Model For The Design of Tourism Website
Panigrahi, Goutam; Das, Anirban; Basu, Kajla
2010-10-01
Effective tourism website is a key to attract tourists from different parts of the world. Here we identify the factors of improving the effectiveness of website by considering it as a graph, where web pages including homepage are the nodes and hyperlinks are the edges between the nodes. In this model, the design constraints for building a tourism website are taken into consideration. Our objectives are to build a framework of an effective tourism website providing adequate level of information, service and also to enable the users to reach to the desired page by spending minimal loading time. In this paper an information hierarchy specifying the upper limit of outgoing link of a page has also been proposed. Following the hierarchy, the web developer can prepare an effective tourism website. Here loading time depends on page size and network traffic. We have assumed network traffic as uniform and the loading time is directly proportional with page size. This approach is done by quantifying the link structure of a tourism website. In this approach we also propose a page size distribution pattern of a tourism website.
de Santos-Sierra, Daniel; Sendiña-Nadal, Irene; Leyva, Inmaculada; Almendral, Juan A; Ayali, Amir; Anava, Sarit; Sánchez-Ávila, Carmen; Boccaletti, Stefano
2015-06-01
Large scale phase-contrast images taken at high resolution through the life of a cultured neuronal network are analyzed by a graph-based unsupervised segmentation algorithm with a very low computational cost, scaling linearly with the image size. The processing automatically retrieves the whole network structure, an object whose mathematical representation is a matrix in which nodes are identified neurons or neurons' clusters, and links are the reconstructed connections between them. The algorithm is also able to extract any other relevant morphological information characterizing neurons and neurites. More importantly, and at variance with other segmentation methods that require fluorescence imaging from immunocytochemistry techniques, our non invasive measures entitle us to perform a longitudinal analysis during the maturation of a single culture. Such an analysis furnishes the way of individuating the main physical processes underlying the self-organization of the neurons' ensemble into a complex network, and drives the formulation of a phenomenological model yet able to describe qualitatively the overall scenario observed during the culture growth. © 2014 International Society for Advancement of Cytometry.
Fixation Probability in a Two-Locus Model by the Ancestral Recombination–Selection Graph
Lessard, Sabin; Kermany, Amir R.
2012-01-01
We use the ancestral influence graph (AIG) for a two-locus, two-allele selection model in the limit of a large population size to obtain an analytic approximation for the probability of ultimate fixation of a single mutant allele A. We assume that this new mutant is introduced at a given locus into a finite population in which a previous mutant allele B is already segregating with a wild type at another linked locus. We deduce that the fixation probability increases as the recombination rate increases if allele A is either in positive epistatic interaction with B and allele B is beneficial or in no epistatic interaction with B and then allele A itself is beneficial. This holds at least as long as the recombination fraction and the selection intensity are small enough and the population size is large enough. In particular this confirms the Hill–Robertson effect, which predicts that recombination renders more likely the ultimate fixation of beneficial mutants at different loci in a population in the presence of random genetic drift even in the absence of epistasis. More importantly, we show that this is true from weak negative epistasis to positive epistasis, at least under weak selection. In the case of deleterious mutants, the fixation probability decreases as the recombination rate increases. This supports Muller’s ratchet mechanism to explain the accumulation of deleterious mutants in a population lacking recombination. PMID:22095080
Medical image segmentation by combining graph cuts and oriented active appearance models.
Chen, Xinjian; Udupa, Jayaram K; Bagci, Ulas; Zhuge, Ying; Yao, Jianhua
2012-04-01
In this paper, we propose a novel method based on a strategic combination of the active appearance model (AAM), live wire (LW), and graph cuts (GCs) for abdominal 3-D organ segmentation. The proposed method consists of three main parts: model building, object recognition, and delineation. In the model building part, we construct the AAM and train the LW cost function and GC parameters. In the recognition part, a novel algorithm is proposed for improving the conventional AAM matching method, which effectively combines the AAM and LW methods, resulting in the oriented AAM (OAAM). A multiobject strategy is utilized to help in object initialization. We employ a pseudo-3-D initialization strategy and segment the organs slice by slice via a multiobject OAAM method. For the object delineation part, a 3-D shape-constrained GC method is proposed. The object shape generated from the initialization step is integrated into the GC cost computation, and an iterative GC-OAAM method is used for object delineation. The proposed method was tested in segmenting the liver, kidneys, and spleen on a clinical CT data set and also on the MICCAI 2007 Grand Challenge liver data set. The results show the following: 1) The overall segmentation accuracy of true positive volume fraction TPVF > 94.3% and false positive volume fraction can be achieved; 2) the initialization performance can be improved by combining the AAM and LW; 3) the multiobject strategy greatly facilitates initialization; 4) compared with the traditional 3-D AAM method, the pseudo-3-D OAAM method achieves comparable performance while running 12 times faster; and 5) the performance of the proposed method is comparable to state-of-the-art liver segmentation algorithm. The executable version of the 3-D shape-constrained GC method with a user interface can be downloaded from http://xinjianchen.wordpress.com/research/.
Model Selection and Accounting for Model Uncertainty in Graphical Models Using OCCAM’s Window
1991-07-22
mental work; C, strenuous physical work; D, systolic blood pressure: E. ratio of 13 and Qt proteins; F, family anamnesis of coronary heart disease...of F, family anamnesis . The models are shown in Figure 4. 12 Table 1: Risk factors for Coronary lfeart Disea:W B No Yes A No Yes No Yes F E D C...a link from smoking (A) to systolic blood pressure (D). There is decisive evidence in favour of the marginal independence of family anamnesis of
Two graphical user interfaces for managing and analyzing MODFLOW groundwater-model scenarios
Banta, Edward R.
2014-01-01
Scenario Manager and Scenario Analyzer are graphical user interfaces that facilitate the use of calibrated, MODFLOW-based groundwater models for investigating possible responses to proposed stresses on a groundwater system. Scenario Manager allows a user, starting with a calibrated model, to design and run model scenarios by adding or modifying stresses simulated by the model. Scenario Analyzer facilitates the process of extracting data from model output and preparing such display elements as maps, charts, and tables. Both programs are designed for users who are familiar with the science on which groundwater modeling is based but who may not have a groundwater modeler’s expertise in building and calibrating a groundwater model from start to finish. With Scenario Manager, the user can manipulate model input to simulate withdrawal or injection wells, time-variant specified hydraulic heads, recharge, and such surface-water features as rivers and canals. Input for stresses to be simulated comes from user-provided geographic information system files and time-series data files. A Scenario Manager project can contain multiple scenarios and is self-documenting. Scenario Analyzer can be used to analyze output from any MODFLOW-based model; it is not limited to use with scenarios generated by Scenario Manager. Model-simulated values of hydraulic head, drawdown, solute concentration, and cell-by-cell flow rates can be presented in display elements. Map data can be represented as lines of equal value (contours) or as a gradated color fill. Charts and tables display time-series data obtained from output generated by a transient-state model run or from user-provided text files of time-series data. A display element can be based entirely on output of a single model run, or, to facilitate comparison of results of multiple scenarios, an element can be based on output from multiple model runs. Scenario Analyzer can export display elements and supporting metadata as a Portable
A family of small-world network models built by complete graph and iteration-function
Ma, Fei; Yao, Bing
2018-02-01
Small-world networks are popular in real-life complex systems. In the past few decades, researchers presented amounts of small-world models, in which some are stochastic and the rest are deterministic. In comparison with random models, it is not only convenient but also interesting to study the topological properties of deterministic models in some fields, such as graph theory, theorem computer sciences and so on. As another concerned darling in current researches, community structure (modular topology) is referred to as an useful statistical parameter to uncover the operating functions of network. So, building and studying such models with community structure and small-world character will be a demanded task. Hence, in this article, we build a family of sparse network space N(t) which is different from those previous deterministic models. Even though, our models are established in the same way as them, iterative generation. By randomly connecting manner in each time step, every resulting member in N(t) has no absolutely self-similar feature widely shared in a large number of previous models. This makes our insight not into discussing a class certain model, but into investigating a group various ones spanning a network space. Somewhat surprisingly, our results prove all members of N(t) to possess some similar characters: (a) sparsity, (b) exponential-scale feature P(k) ∼α-k, and (c) small-world property. Here, we must stress a very screming, but intriguing, phenomenon that the difference of average path length (APL) between any two members in N(t) is quite small, which indicates this random connecting way among members has no great effect on APL. At the end of this article, as a new topological parameter correlated to reliability, synchronization capability and diffusion properties of networks, the number of spanning trees on a representative member NB(t) of N(t) is studied in detail, then an exact analytical solution for its spanning trees entropy is also
Graphic Organizers: Outlets for Your Thoughts.
Ekhaml, Leticia
1998-01-01
Graphs, bars, charts, and diagrams have been used by designers, writers, and scientists to communicate. Now, research suggests that graphic organizers benefit teaching and learning. This article describes graphic organizers: sequential, conceptual, hierarchical, cyclical, Venn, fishbone or Ishikawa, squeeze and stretch, why-why, t-chart, KWL…
Balfer, Jenny; Bajorath, Jürgen
2014-09-22
Supervised machine learning models are widely used in chemoinformatics, especially for the prediction of new active compounds or targets of known actives. Bayesian classification methods are among the most popular machine learning approaches for the prediction of activity from chemical structure. Much work has focused on predicting structure-activity relationships (SARs) on the basis of experimental training data. By contrast, only a few efforts have thus far been made to rationalize the performance of Bayesian or other supervised machine learning models and better understand why they might succeed or fail. In this study, we introduce an intuitive approach for the visualization and graphical interpretation of naïve Bayesian classification models. Parameters derived during supervised learning are visualized and interactively analyzed to gain insights into model performance and identify features that determine predictions. The methodology is introduced in detail and applied to assess Bayesian modeling efforts and predictions on compound data sets of varying structural complexity. Different classification models and features determining their performance are characterized in detail. A prototypic implementation of the approach is provided.
Glossiness of Colored Papers based on Computer Graphics Model and Its Measuring Method
Aida, Teizo
In the case of colored papers, the color of surface effects strongly upon the gloss of its paper. The new glossiness for such a colored paper is suggested in this paper. First, using the Achromatic and Chromatic Munsell colored chips, the author obtained experimental equation which represents the relation between lightness V ( or V and saturation C ) and psychological glossiness Gph of these chips. Then, the author defined a new glossiness G for the colored papers, based on the above mentioned experimental equations Gph and Cook-Torrance's reflection model which are widely used in the filed of Computer Graphics. This new glossiness is shown to be nearly proportional to the psychological glossiness Gph. The measuring system for the new glossiness G is furthermore descrived. The measuring time for one specimen is within 1 minute.
Shaded computer graphic techniques for visualizing and interpreting analytic fluid flow models
Parke, F. I.
1981-01-01
Mathematical models which predict the behavior of fluid flow in different experiments are simulated using digital computers. The simulations predict values of parameters of the fluid flow (pressure, temperature and velocity vector) at many points in the fluid. Visualization of the spatial variation in the value of these parameters is important to comprehend and check the data generated, to identify the regions of interest in the flow, and for effectively communicating information about the flow to others. The state of the art imaging techniques developed in the field of three dimensional shaded computer graphics is applied to visualization of fluid flow. Use of an imaging technique known as 'SCAN' for visualizing fluid flow, is studied and the results are presented.
uPy: a ubiquitous computer graphics Python API with Biological Modeling Applications
Autin, L.; Johnson, G.; Hake, J.; Olson, A.; Sanner, M.
2015-01-01
In this paper we describe uPy, an extension module for the Python programming language that provides a uniform abstraction of the APIs of several 3D computer graphics programs called hosts, including: Blender, Maya, Cinema4D, and DejaVu. A plugin written with uPy is a unique piece of code that will run in all uPy-supported hosts. We demonstrate the creation of complex plug-ins for molecular/cellular modeling and visualization and discuss how uPy can more generally simplify programming for many types of projects (not solely science applications) intended for multi-host distribution. uPy is available at http://upy.scripps.edu PMID:24806987
Partition function expansion on region graphs and message-passing equations
Zhou, Haijun; Wang, Chuang; Xiao, Jing-Qing; Bi, Zedong
2011-01-01
Disordered and frustrated graphical systems are ubiquitous in physics, biology, and information science. For models on complete graphs or random graphs, deep understanding has been achieved through the mean-field replica and cavity methods. But finite-dimensional 'real' systems remain very challenging because of the abundance of short loops and strong local correlations. A statistical mechanics theory is constructed in this paper for finite-dimensional models based on the mathematical framework of the partition function expansion and the concept of region graphs. Rigorous expressions for the free energy and grand free energy are derived. Message-passing equations on the region graph, such as belief propagation and survey propagation, are also derived rigorously. (letter)
Gaussian Graphical Models Identify Networks of Dietary Intake in a German Adult Population.
Iqbal, Khalid; Buijsse, Brian; Wirth, Janine; Schulze, Matthias B; Floegel, Anna; Boeing, Heiner
2016-03-01
Data-reduction methods such as principal component analysis are often used to derive dietary patterns. However, such methods do not assess how foods are consumed in relation to each other. Gaussian graphical models (GGMs) are a set of novel methods that can address this issue. We sought to apply GGMs to derive sex-specific dietary intake networks representing consumption patterns in a German adult population. Dietary intake data from 10,780 men and 16,340 women of the European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam cohort were cross-sectionally analyzed to construct dietary intake networks. Food intake for each participant was estimated using a 148-item food-frequency questionnaire that captured the intake of 49 food groups. GGMs were applied to log-transformed intakes (grams per day) of 49 food groups to construct sex-specific food networks. Semiparametric Gaussian copula graphical models (SGCGMs) were used to confirm GGM results. In men, GGMs identified 1 major dietary network that consisted of intakes of red meat, processed meat, cooked vegetables, sauces, potatoes, cabbage, poultry, legumes, mushrooms, soup, and whole-grain and refined breads. For women, a similar network was identified with the addition of fried potatoes. Other identified networks consisted of dairy products and sweet food groups. SGCGMs yielded results comparable to those of GGMs. GGMs are a powerful exploratory method that can be used to construct dietary networks representing dietary intake patterns that reveal how foods are consumed in relation to each other. GGMs indicated an apparent major role of red meat intake in a consumption pattern in the studied population. In the future, identified networks might be transformed into pattern scores for investigating their associations with health outcomes. © 2016 American Society for Nutrition.
Buck-Boost DC-DC Converter Control by Using the Extracted Model from Signal Flow Graph Method
Mohammadian, Leila; Babaei, Ebrahim; Bannae Sharifian, Mohammad Bagher
2015-01-01
In this paper, the signal flow graph technique and Mason gain formula are applied for extracting the model and transfer functions from control to output and from input to output of a buck-boost converter. In order to investigate a controller necessity for the converter of assumed parameters, the frequency and time domain analysis are done and the open loop system characteristics are verified and the needed closed loop controlled system specifications are determined. Finally designing a contro...
Trudeau, Richard J
1994-01-01
Preface1. Pure Mathematics Introduction; Euclidean Geometry as Pure Mathematics; Games; Why Study Pure Mathematics?; What's Coming; Suggested Reading2. Graphs Introduction; Sets; Paradox; Graphs; Graph diagrams; Cautions; Common Graphs; Discovery; Complements and Subgraphs; Isomorphism; Recognizing Isomorphic Graphs; Semantics The Number of Graphs Having a Given nu; Exercises; Suggested Reading3. Planar Graphs Introduction; UG, K subscript 5, and the Jordan Curve Theorem; Are there More Nonplanar Graphs?; Expansions; Kuratowski's Theorem; Determining Whether a Graph is Planar or
Mathematical structures for computer graphics
Janke, Steven J
2014-01-01
A comprehensive exploration of the mathematics behind the modeling and rendering of computer graphics scenes Mathematical Structures for Computer Graphics presents an accessible and intuitive approach to the mathematical ideas and techniques necessary for two- and three-dimensional computer graphics. Focusing on the significant mathematical results, the book establishes key algorithms used to build complex graphics scenes. Written for readers with various levels of mathematical background, the book develops a solid foundation for graphics techniques and fills in relevant grap
Higher-order ice-sheet modelling accelerated by multigrid on graphics cards
Brædstrup, Christian; Egholm, David
2013-04-01
Higher-order ice flow modelling is a very computer intensive process owing primarily to the nonlinear influence of the horizontal stress coupling. When applied for simulating long-term glacial landscape evolution, the ice-sheet models must consider very long time series, while both high temporal and spatial resolution is needed to resolve small effects. The use of higher-order and full stokes models have therefore seen very limited usage in this field. However, recent advances in graphics card (GPU) technology for high performance computing have proven extremely efficient in accelerating many large-scale scientific computations. The general purpose GPU (GPGPU) technology is cheap, has a low power consumption and fits into a normal desktop computer. It could therefore provide a powerful tool for many glaciologists working on ice flow models. Our current research focuses on utilising the GPU as a tool in ice-sheet and glacier modelling. To this extent we have implemented the Integrated Second-Order Shallow Ice Approximation (iSOSIA) equations on the device using the finite difference method. To accelerate the computations, the GPU solver uses a non-linear Red-Black Gauss-Seidel iterator coupled with a Full Approximation Scheme (FAS) multigrid setup to further aid convergence. The GPU finite difference implementation provides the inherent parallelization that scales from hundreds to several thousands of cores on newer cards. We demonstrate the efficiency of the GPU multigrid solver using benchmark experiments.
Quantum-Assisted Learning of Hardware-Embedded Probabilistic Graphical Models
Benedetti, Marcello; Realpe-Gómez, John; Biswas, Rupak; Perdomo-Ortiz, Alejandro
2017-10-01
Mainstream machine-learning techniques such as deep learning and probabilistic programming rely heavily on sampling from generally intractable probability distributions. There is increasing interest in the potential advantages of using quantum computing technologies as sampling engines to speed up these tasks or to make them more effective. However, some pressing challenges in state-of-the-art quantum annealers have to be overcome before we can assess their actual performance. The sparse connectivity, resulting from the local interaction between quantum bits in physical hardware implementations, is considered the most severe limitation to the quality of constructing powerful generative unsupervised machine-learning models. Here, we use embedding techniques to add redundancy to data sets, allowing us to increase the modeling capacity of quantum annealers. We illustrate our findings by training hardware-embedded graphical models on a binarized data set of handwritten digits and two synthetic data sets in experiments with up to 940 quantum bits. Our model can be trained in quantum hardware without full knowledge of the effective parameters specifying the corresponding quantum Gibbs-like distribution; therefore, this approach avoids the need to infer the effective temperature at each iteration, speeding up learning; it also mitigates the effect of noise in the control parameters, making it robust to deviations from the reference Gibbs distribution. Our approach demonstrates the feasibility of using quantum annealers for implementing generative models, and it provides a suitable framework for benchmarking these quantum technologies on machine-learning-related tasks.
Quantum-Assisted Learning of Hardware-Embedded Probabilistic Graphical Models
Marcello Benedetti
2017-11-01
Full Text Available Mainstream machine-learning techniques such as deep learning and probabilistic programming rely heavily on sampling from generally intractable probability distributions. There is increasing interest in the potential advantages of using quantum computing technologies as sampling engines to speed up these tasks or to make them more effective. However, some pressing challenges in state-of-the-art quantum annealers have to be overcome before we can assess their actual performance. The sparse connectivity, resulting from the local interaction between quantum bits in physical hardware implementations, is considered the most severe limitation to the quality of constructing powerful generative unsupervised machine-learning models. Here, we use embedding techniques to add redundancy to data sets, allowing us to increase the modeling capacity of quantum annealers. We illustrate our findings by training hardware-embedded graphical models on a binarized data set of handwritten digits and two synthetic data sets in experiments with up to 940 quantum bits. Our model can be trained in quantum hardware without full knowledge of the effective parameters specifying the corresponding quantum Gibbs-like distribution; therefore, this approach avoids the need to infer the effective temperature at each iteration, speeding up learning; it also mitigates the effect of noise in the control parameters, making it robust to deviations from the reference Gibbs distribution. Our approach demonstrates the feasibility of using quantum annealers for implementing generative models, and it provides a suitable framework for benchmarking these quantum technologies on machine-learning-related tasks.
Law of large numbers for the SIR model with random vertex weights on Erdős-Rényi graph
Xue, Xiaofeng
2017-11-01
In this paper we are concerned with the SIR model with random vertex weights on Erdős-Rényi graph G(n , p) . The Erdős-Rényi graph G(n , p) is generated from the complete graph Cn with n vertices through independently deleting each edge with probability (1 - p) . We assign i. i. d. copies of a positive r. v. ρ on each vertex as the vertex weights. For the SIR model, each vertex is in one of the three states 'susceptible', 'infective' and 'removed'. An infective vertex infects a given susceptible neighbor at rate proportional to the production of the weights of these two vertices. An infective vertex becomes removed at a constant rate. A removed vertex will never be infected again. We assume that at t = 0 there is no removed vertex and the number of infective vertices follows a Bernoulli distribution B(n , θ) . Our main result is a law of large numbers of the model. We give two deterministic functions HS(ψt) ,HV(ψt) for t ≥ 0 and show that for any t ≥ 0, HS(ψt) is the limit proportion of susceptible vertices and HV(ψt) is the limit of the mean capability of an infective vertex to infect a given susceptible neighbor at moment t as n grows to infinity.
Annibale, A; Coolen, A C C; Fernandes, L P; Fraternali, F; Kleinjung, J
2009-01-01
We study the tailoring of structured random graph ensembles to real networks, with the objective of generating precise and practical mathematical tools for quantifying and comparing network topologies macroscopically, beyond the level of degree statistics. Our family of ensembles can produce graphs with any prescribed degree distribution and any degree-degree correlation function; its control parameters can be calculated fully analytically, and as a result we can calculate (asymptotically) formulae for entropies and complexities and for information-theoretic distances between networks, expressed directly and explicitly in terms of their measured degree distribution and degree correlations.
Repositioning the knee joint in human body FE models using a graphics-based technique.
Jani, Dhaval; Chawla, Anoop; Mukherjee, Sudipto; Goyal, Rahul; Vusirikala, Nataraju; Jayaraman, Suresh
2012-01-01
Human body finite element models (FE-HBMs) are available in standard occupant or pedestrian postures. There is a need to have FE-HBMs in the same posture as a crash victim or to be configured in varying postures. Developing FE models for all possible positions is not practically viable. The current work aims at obtaining a posture-specific human lower extremity model by reconfiguring an existing one. A graphics-based technique was developed to reposition the lower extremity of an FE-HBM by specifying the flexion-extension angle. Elements of the model were segregated into rigid (bones) and deformable components (soft tissues). The bones were rotated about the flexion-extension axis followed by rotation about the longitudinal axis to capture the twisting of the tibia. The desired knee joint movement was thus achieved. Geometric heuristics were then used to reposition the skin. A mapping defined over the space between bones and the skin was used to regenerate the soft tissues. Mesh smoothing was then done to augment mesh quality. The developed method permits control over the kinematics of the joint and maintains the initial mesh quality of the model. For some critical areas (in the joint vicinity) where element distortion is large, mesh smoothing is done to improve mesh quality. A method to reposition the knee joint of a human body FE model was developed. Repositions of a model from 9 degrees of flexion to 90 degrees of flexion in just a few seconds without subjective interventions was demonstrated. Because the mesh quality of the repositioned model was maintained to a predefined level (typically to the level of a well-made model in the initial configuration), the model was suitable for subsequent simulations.
Graphic user interface for COSMOS code
Oh, Je Yong; Koo, Yang Hyun; Lee, Byung Ho; Cheon, Jin Sik; Sohn, Dong Seong
2003-06-01
The Graphic User Interface (GUI) - which consisted of graphical elements such as windows, menu, button, icon, and so on - made it possible that the computer could be easily used for common users. Hence, the GUI was introduced to improve the efficiency to input parameters in COSMOS code. The functions to output graphs on the screen and postscript files were also added. And the graph library can be applied to the other codes. The details of principles of GUI and graphic library were described in the report
Monk, J.; Zhu, Y.; Koons, P. O.; Segee, B. E.
2009-12-01
With the introduction of the G8X series of cards by nVidia an architecture called CUDA was released, virtually all subsequent video cards have had CUDA support. With this new architecture nVidia provided extensions for C/C++ that create an Application Programming Interface (API) allowing code to be executed on the GPU. Since then the concept of GPGPU (general purpose graphics processing unit) has been growing, this is the concept that the GPU is very good a algebra and running things in parallel so we should take use of that power for other applications. This is highly appealing in the area of geodynamic modeling, as multiple parallel solutions of the same differential equations at different points in space leads to a large speedup in simulation speed. Another benefit of CUDA is a programmatic method of transferring large amounts of data between the computer's main memory and the dedicated GPU memory located on the video card. In addition to being able to compute and render on the video card, the CUDA framework allows for a large speedup in the situation, such as with a tiled display wall, where the rendered pixels are to be displayed in a different location than where they are rendered. A CUDA extension for VirtualGL was developed allowing for faster read back at high resolutions. This paper examines several aspects of rendering OpenGL graphics on large displays using VirtualGL and VNC. It demonstrates how performance can be significantly improved in rendering on a tiled monitor wall. We present a CUDA enhanced version of VirtualGL as well as the advantages to having multiple VNC servers. It will discuss restrictions caused by read back and blitting rates and how they are affected by different sizes of virtual displays being rendered.
Meznarich, R. A.; Shava, R. C.; Lightner, S. L.
2009-01-01
Engineering design graphics courses taught in colleges or universities should provide and equip students preparing for employment with the basic occupational graphics skill competences required by engineering and technology disciplines. Academic institutions should introduce and include topics that cover the newer and more efficient graphics…
Andres eOrtiz
2015-11-01
Full Text Available Alzheimer’s Disease (AD is the most common neurodegenerative disease in elderly people. Itsdevelopment has been shown to be closely related to changes in the brain connectivity networkand in the brain activation patterns along with structural changes caused by the neurodegenerativeprocess.Methods to infer dependence between brain regions are usually derived from the analysis ofcovariance between activation levels in the different areas. However, these covariance-basedmethods are not able to estimate conditional independence between variables to factor out theinfluence of other regions. Conversely, models based on the inverse covariance, or precisionmatrix, such as Sparse Gaussian Graphical Models allow revealing conditional independencebetween regions by estimating the covariance between two variables given the rest as constant.This paper uses Sparse Inverse Covariance Estimation (SICE methods to learn undirectedgraphs in order to derive functional and structural connectivity patterns from Fludeoxyglucose(18F-FDG Position Emission Tomography (PET data and segmented Magnetic Resonanceimages (MRI, drawn from the ADNI database, for Control, MCI (Mild Cognitive ImpairmentSubjects and AD subjects. Sparse computation fits perfectly here as brain regions usually onlyinteract with a few other areas.The models clearly show different metabolic covariation patters between subject groups, revealingthe loss of strong connections in AD and MCI subjects when compared to Controls. Similarly,the variance between GM (Grey Matter densities of different regions reveals different structuralcovariation patterns between the different groups. Thus, the different connectivity patterns forcontrols and AD are used in this paper to select regions of interest in PET and GM images withdiscriminative power for early AD diagnosis. Finally, functional an structural models are combinedto leverage the classification accuracy.The results obtained in this work show the usefulness
Cheung, King Sing
2014-01-01
Petri nets are a formal and theoretically rich model for the modelling and analysis of systems. A subclass of Petri nets, augmented marked graphs possess a structure that is especially desirable for the modelling and analysis of systems with concurrent processes and shared resources.This monograph consists of three parts: Part I provides the conceptual background for readers who have no prior knowledge on Petri nets; Part II elaborates the theory of augmented marked graphs; finally, Part III discusses the application to system integration. The book is suitable as a first self-contained volume
Energy Minimization of Discrete Protein Titration State Models Using Graph Theory
Purvine, Emilie; Monson, Kyle; Jurrus, Elizabeth; Star, Keith; Baker, Nathan A.
2016-01-01
There are several applications in computational biophysics which require the optimization of discrete interacting states; e.g., amino acid titration states, ligand oxidation states, or discrete rotamer angles. Such optimization can be very time-consuming as it scales exponentially in the number of sites to be optimized. In this paper, we describe a new polynomial-time algorithm for optimization of discrete states in macromolecular systems. This algorithm was adapted from image processing and uses techniques from discrete mathematics and graph theory to restate the optimization problem in terms of “maximum flow-minimum cut” graph analysis. The interaction energy graph, a graph in which vertices (amino acids) and edges (interactions) are weighted with their respective energies, is transformed into a flow network in which the value of the minimum cut in the network equals the minimum free energy of the protein, and the cut itself encodes the state that achieves the minimum free energy. Because of its deterministic nature and polynomial-time performance, this algorithm has the potential to allow for the ionization state of larger proteins to be discovered. PMID:27089174
Energy Minimization of Discrete Protein Titration State Models Using Graph Theory.
Purvine, Emilie; Monson, Kyle; Jurrus, Elizabeth; Star, Keith; Baker, Nathan A
2016-08-25
There are several applications in computational biophysics that require the optimization of discrete interacting states, for example, amino acid titration states, ligand oxidation states, or discrete rotamer angles. Such optimization can be very time-consuming as it scales exponentially in the number of sites to be optimized. In this paper, we describe a new polynomial time algorithm for optimization of discrete states in macromolecular systems. This algorithm was adapted from image processing and uses techniques from discrete mathematics and graph theory to restate the optimization problem in terms of "maximum flow-minimum cut" graph analysis. The interaction energy graph, a graph in which vertices (amino acids) and edges (interactions) are weighted with their respective energies, is transformed into a flow network in which the value of the minimum cut in the network equals the minimum free energy of the protein and the cut itself encodes the state that achieves the minimum free energy. Because of its deterministic nature and polynomial time performance, this algorithm has the potential to allow for the ionization state of larger proteins to be discovered.
Diestel, Reinhard
2017-01-01
This standard textbook of modern graph theory, now in its fifth edition, combines the authority of a classic with the engaging freshness of style that is the hallmark of active mathematics. It covers the core material of the subject with concise yet reliably complete proofs, while offering glimpses of more advanced methods in each field by one or two deeper results, again with proofs given in full detail. The book can be used as a reliable text for an introductory course, as a graduate text, and for self-study. From the reviews: “This outstanding book cannot be substituted with any other book on the present textbook market. It has every chance of becoming the standard textbook for graph theory.”Acta Scientiarum Mathematiciarum “Deep, clear, wonderful. This is a serious book about the heart of graph theory. It has depth and integrity. ”Persi Diaconis & Ron Graham, SIAM Review “The book has received a very enthusiastic reception, which it amply deserves. A masterly elucidation of modern graph theo...
Bond graphs : an integrating tool for design of mechatronic systems
Ould Bouamama, B.
2011-01-01
Bond graph is a powerful tool well known for dynamic modelling of multi physical systems: This is the only modelling technique to generate automatically state space or non-linear models using dedicated software tools (CAMP-G, 20-Sim, Symbols, Dymola...). Recently several fundamental theories have been developed for using a bond graph model not only for modeling but also as a real integrated tool from conceptual ideas to optimal practical realization of mechatronic system. This keynote presents a synthesis of those new theories which exploit some particular properties (such as causal, structural and behavioral) of this graphical methodology. Based on a pedagogical example, it will be shown how from a physical system (not a transfer function or state equation) and using only one representation (Bond graph), the following results can be performed: modeling (formal state equations generation), Control analysis (observability, controllability, Structural I/O decouplability, dynamic decoupling,...) diagnosis analysis (automatic generation of robust fault indicators, sensor placement, structural diagnosability) and finally sizing of actuators. The presentation will be illustrated by real industrial applications. Limits and perspectives of bond graph theory conclude the keynote.
Pairwise graphical models for structural health monitoring with dense sensor arrays
Mohammadi Ghazi, Reza; Chen, Justin G.; Büyüköztürk, Oral
2017-09-01
Through advances in sensor technology and development of camera-based measurement techniques, it has become affordable to obtain high spatial resolution data from structures. Although measured datasets become more informative by increasing the number of sensors, the spatial dependencies between sensor data are increased at the same time. Therefore, appropriate data analysis techniques are needed to handle the inference problem in presence of these dependencies. In this paper, we propose a novel approach that uses graphical models (GM) for considering the spatial dependencies between sensor measurements in dense sensor networks or arrays to improve damage localization accuracy in structural health monitoring (SHM) application. Because there are always unobserved damaged states in this application, the available information is insufficient for learning the GMs. To overcome this challenge, we propose an approximated model that uses the mutual information between sensor measurements to learn the GMs. The study is backed by experimental validation of the method on two test structures. The first is a three-story two-bay steel model structure that is instrumented by MEMS accelerometers. The second experimental setup consists of a plate structure and a video camera to measure the displacement field of the plate. Our results show that considering the spatial dependencies by the proposed algorithm can significantly improve damage localization accuracy.
Thompson, John
2009-01-01
Graphic storytelling is a medium that allows students to make and share stories, while developing their art communication skills. American comics today are more varied in genre, approach, and audience than ever before. When considering the impact of Japanese manga on the youth, graphic storytelling emerges as a powerful player in pop culture. In…
Skataric, Maja; Bose, Sandip; Zeroug, Smaine; Tilke, Peter
2017-02-01
It is not uncommon in the field of non-destructive evaluation that multiple measurements encompassing a variety of modalities are available for analysis and interpretation for determining the underlying states of nature of the materials or parts being tested. Despite and sometimes due to the richness of data, significant challenges arise in the interpretation manifested as ambiguities and inconsistencies due to various uncertain factors in the physical properties (inputs), environment, measurement device properties, human errors, and the measurement data (outputs). Most of these uncertainties cannot be described by any rigorous mathematical means, and modeling of all possibilities is usually infeasible for many real time applications. In this work, we will discuss an approach based on Hierarchical Bayesian Graphical Models (HBGM) for the improved interpretation of complex (multi-dimensional) problems with parametric uncertainties that lack usable physical models. In this setting, the input space of the physical properties is specified through prior distributions based on domain knowledge and expertise, which are represented as Gaussian mixtures to model the various possible scenarios of interest for non-destructive testing applications. Forward models are then used offline to generate the expected distribution of the proposed measurements which are used to train a hierarchical Bayesian network. In Bayesian analysis, all model parameters are treated as random variables, and inference of the parameters is made on the basis of posterior distribution given the observed data. Learned parameters of the posterior distribution obtained after the training can therefore be used to build an efficient classifier for differentiating new observed data in real time on the basis of pre-trained models. We will illustrate the implementation of the HBGM approach to ultrasonic measurements used for cement evaluation of cased wells in the oil industry.
Kateryna P. Osadcha
2017-12-01
Full Text Available The article is devoted to some aspects of the formation of future bachelor's graphic competence in computer sciences while teaching the fundamentals for working with three-dimensional modelling means. The analysis, classification and systematization of three-dimensional modelling means are given. The aim of research consists in investigating the set of instruments and classification of three-dimensional modelling means and correlation of skills, which are being formed, concerning inquired ones at the labour market in order to use them further in the process of forming graphic competence during training future bachelors in computer sciences. The peculiarities of the process of forming future bachelor's graphic competence in computer sciences by means of revealing, analyzing and systematizing three-dimensional modelling means and types of three-dimensional graphics at present stage of the development of informational technologies are traced a line round. The result of the research is a soft-ware choice in three-dimensional modelling for the process of training future bachelors in computer sciences.
Munteanu, Cristian R; Gonzalez-Diaz, Humberto; Garcia, Rafael; Loza, Mabel; Pazos, Alejandro
2015-01-01
The molecular information encoding into molecular descriptors is the first step into in silico Chemoinformatics methods in Drug Design. The Machine Learning methods are a complex solution to find prediction models for specific biological properties of molecules. These models connect the molecular structure information such as atom connectivity (molecular graphs) or physical-chemical properties of an atom/group of atoms to the molecular activity (Quantitative Structure - Activity Relationship, QSAR). Due to the complexity of the proteins, the prediction of their activity is a complicated task and the interpretation of the models is more difficult. The current review presents a series of 11 prediction models for proteins, implemented as free Web tools on an Artificial Intelligence Model Server in Biosciences, Bio-AIMS (http://bio-aims.udc.es/TargetPred.php). Six tools predict protein activity, two models evaluate drug - protein target interactions and the other three calculate protein - protein interactions. The input information is based on the protein 3D structure for nine models, 1D peptide amino acid sequence for three tools and drug SMILES formulas for two servers. The molecular graph descriptor-based Machine Learning models could be useful tools for in silico screening of new peptides/proteins as future drug targets for specific treatments.
Antonio Luis Ampliato Briones
2014-10-01
Full Text Available This paper primarily reflects on the need to create graphical codes for producing images intended to communicate architecture. Each step of the drawing needs to be a deliberate process in which the proposed code highlights the relationship between architectural theory and graphic action. Our aim is not to draw the result of the architectural process but the design structure of the actual process; to draw as we design; to draw as we build. This analysis of the work of the Late Gothic architect Hernan Ruiz the Elder, from Cordoba, addresses two aspects: the historical and architectural investigation, and the graphical project for communication purposes.
Mezlini, Aziz M; Goldenberg, Anna
2017-10-01
Discovering genetic mechanisms driving complex diseases is a hard problem. Existing methods often lack power to identify the set of responsible genes. Protein-protein interaction networks have been shown to boost power when detecting gene-disease associations. We introduce a Bayesian framework, Conflux, to find disease associated genes from exome sequencing data using networks as a prior. There are two main advantages to using networks within a probabilistic graphical model. First, networks are noisy and incomplete, a substantial impediment to gene discovery. Incorporating networks into the structure of a probabilistic models for gene inference has less impact on the solution than relying on the noisy network structure directly. Second, using a Bayesian framework we can keep track of the uncertainty of each gene being associated with the phenotype rather than returning a fixed list of genes. We first show that using networks clearly improves gene detection compared to individual gene testing. We then show consistently improved performance of Conflux compared to the state-of-the-art diffusion network-based method Hotnet2 and a variety of other network and variant aggregation methods, using randomly generated and literature-reported gene sets. We test Hotnet2 and Conflux on several network configurations to reveal biases and patterns of false positives and false negatives in each case. Our experiments show that our novel Bayesian framework Conflux incorporates many of the advantages of the current state-of-the-art methods, while offering more flexibility and improved power in many gene-disease association scenarios.
Configuring a Graphical User Interface for Managing Local HYSPLIT Model Runs Through AWIPS
Wheeler, mark M.; Blottman, Peter F.; Sharp, David W.; Hoeth, Brian; VanSpeybroeck, Kurt M.
2009-01-01
Responding to incidents involving the release of harmful airborne pollutants is a continual challenge for Weather Forecast Offices in the National Weather Service. When such incidents occur, current protocol recommends forecaster-initiated requests of NOAA's Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model output through the National Centers of Environmental Prediction to obtain critical dispersion guidance. Individual requests are submitted manually through a secured web site, with desired multiple requests submitted in sequence, for the purpose of obtaining useful trajectory and concentration forecasts associated with the significant release of harmful chemical gases, radiation, wildfire smoke, etc., into local the atmosphere. To help manage the local HYSPLIT for both routine and emergency use, a graphical user interface was designed for operational efficiency. The interface allows forecasters to quickly determine the current HYSPLIT configuration for the list of predefined sites (e.g., fixed sites and floating sites), and to make any necessary adjustments to key parameters such as Input Model. Number of Forecast Hours, etc. When using the interface, forecasters will obtain desired output more confidently and without the danger of corrupting essential configuration files.
Campolongo, Francesca; Braddock, Roger
1999-01-01
Sensitivity analysis screening methods aim to isolate the most important factors in experiments involving a large number of significant factors and interactions. This paper extends the one-factor-at-a-time screening method proposed by Morris. The new method, in addition to the 'overall' sensitivity measures already provided by the traditional Morris method, offers estimates of the two-factor interaction effects. The number of model evaluations required is O(k 2 ), where k is the number of model input factors. The efficient sampling strategy in the parameter space is based on concepts of graph theory and on the solution of the 'handcuffed prisoner problem'
Construction of a graphic interface for a nuclear reactor modelling and simulation
Cadrdenas C, Carlos Roberto; Riquelme R, Raul Antonio.
1995-01-01
A graphic interface is presented for real time transient analysis under reactivity insertion, reactor operators training, and the RECH-1 reactor licensing, using the Paret (Program for Analysis of Reactor Transients) computer code. 17 refs., 29 figs
GRAPHIC ADVERTISING, SPECIALIZED COMMUNICATIONS MODEL THROUGH SYMBOLS, WORDS, IMAGES WORDS, IMAGES
ADRONACHI Maria
2011-01-01
The aim of the paper is to identify the graphic advertising components: symbol, text, colour, to illustrate how they cooperate in order to create the advertising message, and to analyze the corelation product – advertising – consumer.
GRAPHIC ADVERTISING, SPECIALIZED COMMUNICATIONS MODEL THROUGH SYMBOLS, WORDS, IMAGES WORDS, IMAGES
ADRONACHI Maria
2011-06-01
Full Text Available The aim of the paper is to identify the graphic advertising components: symbol, text, colour, to illustrate how they cooperate in order to create the advertising message, and to analyze the corelation product – advertising – consumer.
A Model-Driven Approach to Graphical User Interface Runtime Adaptation
Criado, Javier; Vicente Chicote, Cristina; Iribarne, Luis; Padilla, Nicolás
2010-01-01
Graphical user interfaces play a key role in human-computer interaction, as they link the system with its end-users, allowing information exchange and improving communication. Nowadays, users increasingly demand applications with adaptive interfaces that dynamically evolve in response to their specific needs. Thus, providing graphical user interfaces with runtime adaptation capabilities is becoming more and more an important issue. To address this problem, this paper proposes a componen...
Gould, Ronald
2012-01-01
This introduction to graph theory focuses on well-established topics, covering primary techniques and including both algorithmic and theoretical problems. The algorithms are presented with a minimum of advanced data structures and programming details. This thoroughly corrected 1988 edition provides insights to computer scientists as well as advanced undergraduates and graduate students of topology, algebra, and matrix theory. Fundamental concepts and notation and elementary properties and operations are the first subjects, followed by examinations of paths and searching, trees, and networks. S
Chartrand, Gary; Zhang, Ping
2010-01-01
Gary Chartrand has influenced the world of Graph Theory for almost half a century. He has supervised more than a score of Ph.D. dissertations and written several books on the subject. The most widely known of these texts, Graphs and Digraphs, … has much to recommend it, with clear exposition, and numerous challenging examples [that] make it an ideal textbook for the advanced undergraduate or beginning graduate course. The authors have updated their notation to reflect the current practice in this still-growing area of study. By the authors' estimation, the 5th edition is approximately 50% longer than the 4th edition. … the legendary Frank Harary, author of the second graph theory text ever produced, is one of the figures profiled. His book was the standard in the discipline for several decades. Chartrand, Lesniak and Zhang have produced a worthy successor.-John T. Saccoman, MAA Reviews, June 2012 (This book is in the MAA's basic library list.)As with the earlier editions, the current text emphasizes clear...
Determining species expansion and extinction possibilities using probabilistic and graphical models
Chaturvedi Rajesh
2015-03-01
Full Text Available Survival of plant species is governed by a number of functions. The participation of each function in species survival and the impact of the contrary behaviour of the species vary from function to function. The probability of extinction of species varies in all such scenarios and has to be calculated separately. Secondly, species follow different patterns of dispersal and localisation at different stages of occupancy state of the site, therefore, the scenarios of competition for resources with climatic shifts leading to deterioration and loss of biodiversity resulting in extinction needs to be studied. Furthermore, most possible deviations of species from climax community states needs to be calculated before species become extinct due to sudden environmental disruption. Globally, various types of anthropogenic disturbances threaten the diversity of biological systems. The impact of these anthropogenic activities needs to be analysed to identify extinction patterns with respect to these activities. All the analyses mentioned above have been tried to be achieved through probabilistic or graphical models in this study.
Analysis of impact of general-purpose graphics processor units in supersonic flow modeling
Emelyanov, V. N.; Karpenko, A. G.; Kozelkov, A. S.; Teterina, I. V.; Volkov, K. N.; Yalozo, A. V.
2017-06-01
Computational methods are widely used in prediction of complex flowfields associated with off-normal situations in aerospace engineering. Modern graphics processing units (GPU) provide architectures and new programming models that enable to harness their large processing power and to design computational fluid dynamics (CFD) simulations at both high performance and low cost. Possibilities of the use of GPUs for the simulation of external and internal flows on unstructured meshes are discussed. The finite volume method is applied to solve three-dimensional unsteady compressible Euler and Navier-Stokes equations on unstructured meshes with high resolution numerical schemes. CUDA technology is used for programming implementation of parallel computational algorithms. Solutions of some benchmark test cases on GPUs are reported, and the results computed are compared with experimental and computational data. Approaches to optimization of the CFD code related to the use of different types of memory are considered. Speedup of solution on GPUs with respect to the solution on central processor unit (CPU) is compared. Performance measurements show that numerical schemes developed achieve 20-50 speedup on GPU hardware compared to CPU reference implementation. The results obtained provide promising perspective for designing a GPU-based software framework for applications in CFD.
Graph Transformation Semantics for a QVT Language
Rensink, Arend; Nederpel, Ronald; Bruni, Roberto; Varró, Dániel
It has been claimed by many in the graph transformation community that model transformation, as understood in the context of Model Driven Architecture, can be seen as an application of graph transformation. In this paper we substantiate this claim by giving a graph transformation-based semantics to
Nested Dynamic Condition Response Graphs
Hildebrandt, Thomas; Mukkamala, Raghava Rao; Slaats, Tijs
2012-01-01
We present an extension of the recently introduced declarative process model Dynamic Condition Response Graphs ( DCR Graphs) to allow nested subgraphs and a new milestone relation between events. The extension was developed during a case study carried out jointly with our industrial partner...
Glassner, Andrew S
1993-01-01
""The GRAPHICS GEMS Series"" was started in 1990 by Andrew Glassner. The vision and purpose of the Series was - and still is - to provide tips, techniques, and algorithms for graphics programmers. All of the gems are written by programmers who work in the field and are motivated by a common desire to share interesting ideas and tools with their colleagues. Each volume provides a new set of innovative solutions to a variety of programming problems.
Bergstrøm-Nielsen, Carl
1992-01-01
Texbook to be used along with training the practise of graphic notation. Describes method; exercises; bibliography; collection of examples. If you can read Danish, please refer to that edition which is by far much more updated.......Texbook to be used along with training the practise of graphic notation. Describes method; exercises; bibliography; collection of examples. If you can read Danish, please refer to that edition which is by far much more updated....
1990-01-01
A mathematician, David R. Hedgley, Jr. developed a computer program that considers whether a line in a graphic model of a three-dimensional object should or should not be visible. Known as the Hidden Line Computer Code, the program automatically removes superfluous lines and displays an object from a specific viewpoint, just as the human eye would see it. An example of how one company uses the program is the experience of Birdair which specializes in production of fabric skylights and stadium covers. The fabric called SHEERFILL is a Teflon coated fiberglass material developed in cooperation with DuPont Company. SHEERFILL glazed structures are either tension structures or air-supported tension structures. Both are formed by patterned fabric sheets supported by a steel or aluminum frame or cable network. Birdair uses the Hidden Line Computer Code, to illustrate a prospective structure to an architect or owner. The program generates a three- dimensional perspective with the hidden lines removed. This program is still used by Birdair and continues to be commercially available to the public.
Xiong, B.; Oude Elberink, S.; Vosselman, G.
2014-07-01
In the task of 3D building model reconstruction from point clouds we face the problem of recovering a roof topology graph in the presence of noise, small roof faces and low point densities. Errors in roof topology graphs will seriously affect the final modelling results. The aim of this research is to automatically correct these errors. We define the graph correction as a graph-to-graph problem, similar to the spelling correction problem (also called the string-to-string problem). The graph correction is more complex than string correction, as the graphs are 2D while strings are only 1D. We design a strategy based on a dictionary of graph edit operations to automatically identify and correct the errors in the input graph. For each type of error the graph edit dictionary stores a representative erroneous subgraph as well as the corrected version. As an erroneous roof topology graph may contain several errors, a heuristic search is applied to find the optimum sequence of graph edits to correct the errors one by one. The graph edit dictionary can be expanded to include entries needed to cope with errors that were previously not encountered. Experiments show that the dictionary with only fifteen entries already properly corrects one quarter of erroneous graphs in about 4500 buildings, and even half of the erroneous graphs in one test area, achieving as high as a 95% acceptance rate of the reconstructed models.
Creyx, M.; Delacourt, E.; Morin, C.; Desmet, B.
2016-01-01
A dynamic model using the bond graph formalism of the expansion cylinder of an open Joule cycle Ericsson engine intended for a biomass-fuelled micro-CHP system is presented. Dynamic phenomena, such as the thermodynamic evolution of air, the instantaneous air mass flow rates linked to pressure drops crossing the valves, the heat transferred through the expansion cylinder wall and the mechanical friction losses, are included in the model. The influence on the Ericsson engine performances of the main operating conditions (intake air pressure and temperature, timing of intake and exhaust valve closing, rotational speed, mechanical friction losses and heat transfer at expansion cylinder wall) is studied. The operating conditions maximizing the performances of the Ericsson engine used in the a biomass-fuelled micro-CHP unit are an intake air pressure between 6 and 8 bar, a maximized intake air temperature, an adjustment of the intake and exhaust valve closing corresponding to an expansion cycle close to the theoretical Joule cycle, a rotational speed close to 800 rpm. The heat transfer at the expansion cylinder wall reduces the engine performances. - Highlights: • A bond graph dynamic model of the Ericsson engine expansion cylinder is presented. • Dynamic aspects are modelled: pressure drops, friction losses, wall heat transfer. • Influent factors and phenomena on the engine performances are investigated. • Expansion cycles close to the theoretical Joule cycle maximize the performances. • The heat transfer at the expansion chamber wall reduces the performances.
Kucharik, Marcel; Hofacker, Ivo; Stadler, Peter
2014-01-01
of the folding free energy landscape, however, can provide the relevant information. Results We introduce the basin hopping graph (BHG) as a novel coarse-grained model of folding landscapes. Each vertex of the BHG is a local minimum, which represents the corresponding basin in the landscape. Its edges connect...
Graph-based geometric-iconic guide-wire tracking.
Honnorat, Nicolas; Vaillant, Régis; Paragios, Nikos
2011-01-01
In this paper we introduce a novel hybrid graph-based approach for Guide-wire tracking. The image support is captured by steerable filters and improved through tensor voting. Then, a graphical model is considered that represents guide-wire extraction/tracking through a B-spline control-point model. Points with strong geometric interest (landmarks) are automatically determined and anchored to such a representation. Tracking is then performed through discrete MRFs that optimize the spatio-temporal positions of the control points while establishing landmark temporal correspondences. Promising results demonstrate the potentials of our method.
Kopylova, N. S.; Bykova, A. A.; Beregovoy, D. N.
2018-05-01
Based on the landscape-geographical approach, a structural and logical scheme for the Northwestern Federal District Econet has been developed, which can be integrated into the federal and world ecological network in order to improve the environmental infrastructure of the region. The method of Northwestern Federal District Econet organization on the basis of graph theory by means of the Quantum GIS geographic information system is proposed as an effective mean of preserving and recreating the unique biodiversity of landscapes, regulation of the sphere of environmental protection.
Mujtaba, Ghulam; Shuib, Liyana; Raj, Ram Gopal; Rajandram, Retnagowri; Shaikh, Khairunisa; Al-Garadi, Mohammed Ali
2018-06-01
Text categorization has been used extensively in recent years to classify plain-text clinical reports. This study employs text categorization techniques for the classification of open narrative forensic autopsy reports. One of the key steps in text classification is document representation. In document representation, a clinical report is transformed into a format that is suitable for classification. The traditional document representation technique for text categorization is the bag-of-words (BoW) technique. In this study, the traditional BoW technique is ineffective in classifying forensic autopsy reports because it merely extracts frequent but discriminative features from clinical reports. Moreover, this technique fails to capture word inversion, as well as word-level synonymy and polysemy, when classifying autopsy reports. Hence, the BoW technique suffers from low accuracy and low robustness unless it is improved with contextual and application-specific information. To overcome the aforementioned limitations of the BoW technique, this research aims to develop an effective conceptual graph-based document representation (CGDR) technique to classify 1500 forensic autopsy reports from four (4) manners of death (MoD) and sixteen (16) causes of death (CoD). Term-based and Systematized Nomenclature of Medicine-Clinical Terms (SNOMED CT) based conceptual features were extracted and represented through graphs. These features were then used to train a two-level text classifier. The first level classifier was responsible for predicting MoD. In addition, the second level classifier was responsible for predicting CoD using the proposed conceptual graph-based document representation technique. To demonstrate the significance of the proposed technique, its results were compared with those of six (6) state-of-the-art document representation techniques. Lastly, this study compared the effects of one-level classification and two-level classification on the experimental results
Multiple graph regularized protein domain ranking
Wang, Jim Jing-Yan
2012-11-19
Background: Protein domain ranking is a fundamental task in structural biology. Most protein domain ranking methods rely on the pairwise comparison of protein domains while neglecting the global manifold structure of the protein domain database. Recently, graph regularized ranking that exploits the global structure of the graph defined by the pairwise similarities has been proposed. However, the existing graph regularized ranking methods are very sensitive to the choice of the graph model and parameters, and this remains a difficult problem for most of the protein domain ranking methods.Results: To tackle this problem, we have developed the Multiple Graph regularized Ranking algorithm, MultiG-Rank. Instead of using a single graph to regularize the ranking scores, MultiG-Rank approximates the intrinsic manifold of protein domain distribution by combining multiple initial graphs for the regularization. Graph weights are learned with ranking scores jointly and automatically, by alternately minimizing an objective function in an iterative algorithm. Experimental results on a subset of the ASTRAL SCOP protein domain database demonstrate that MultiG-Rank achieves a better ranking performance than single graph regularized ranking methods and pairwise similarity based ranking methods.Conclusion: The problem of graph model and parameter selection in graph regularized protein domain ranking can be solved effectively by combining multiple graphs. This aspect of generalization introduces a new frontier in applying multiple graphs to solving protein domain ranking applications. 2012 Wang et al; licensee BioMed Central Ltd.
Multiple graph regularized protein domain ranking
Wang, Jim Jing-Yan; Bensmail, Halima; Gao, Xin
2012-01-01
Background: Protein domain ranking is a fundamental task in structural biology. Most protein domain ranking methods rely on the pairwise comparison of protein domains while neglecting the global manifold structure of the protein domain database. Recently, graph regularized ranking that exploits the global structure of the graph defined by the pairwise similarities has been proposed. However, the existing graph regularized ranking methods are very sensitive to the choice of the graph model and parameters, and this remains a difficult problem for most of the protein domain ranking methods.Results: To tackle this problem, we have developed the Multiple Graph regularized Ranking algorithm, MultiG-Rank. Instead of using a single graph to regularize the ranking scores, MultiG-Rank approximates the intrinsic manifold of protein domain distribution by combining multiple initial graphs for the regularization. Graph weights are learned with ranking scores jointly and automatically, by alternately minimizing an objective function in an iterative algorithm. Experimental results on a subset of the ASTRAL SCOP protein domain database demonstrate that MultiG-Rank achieves a better ranking performance than single graph regularized ranking methods and pairwise similarity based ranking methods.Conclusion: The problem of graph model and parameter selection in graph regularized protein domain ranking can be solved effectively by combining multiple graphs. This aspect of generalization introduces a new frontier in applying multiple graphs to solving protein domain ranking applications. 2012 Wang et al; licensee BioMed Central Ltd.
Multiple graph regularized protein domain ranking.
Wang, Jim Jing-Yan; Bensmail, Halima; Gao, Xin
2012-11-19
Protein domain ranking is a fundamental task in structural biology. Most protein domain ranking methods rely on the pairwise comparison of protein domains while neglecting the global manifold structure of the protein domain database. Recently, graph regularized ranking that exploits the global structure of the graph defined by the pairwise similarities has been proposed. However, the existing graph regularized ranking methods are very sensitive to the choice of the graph model and parameters, and this remains a difficult problem for most of the protein domain ranking methods. To tackle this problem, we have developed the Multiple Graph regularized Ranking algorithm, MultiG-Rank. Instead of using a single graph to regularize the ranking scores, MultiG-Rank approximates the intrinsic manifold of protein domain distribution by combining multiple initial graphs for the regularization. Graph weights are learned with ranking scores jointly and automatically, by alternately minimizing an objective function in an iterative algorithm. Experimental results on a subset of the ASTRAL SCOP protein domain database demonstrate that MultiG-Rank achieves a better ranking performance than single graph regularized ranking methods and pairwise similarity based ranking methods. The problem of graph model and parameter selection in graph regularized protein domain ranking can be solved effectively by combining multiple graphs. This aspect of generalization introduces a new frontier in applying multiple graphs to solving protein domain ranking applications.
Multiple graph regularized protein domain ranking
Wang Jim
2012-11-01
Full Text Available Abstract Background Protein domain ranking is a fundamental task in structural biology. Most protein domain ranking methods rely on the pairwise comparison of protein domains while neglecting the global manifold structure of the protein domain database. Recently, graph regularized ranking that exploits the global structure of the graph defined by the pairwise similarities has been proposed. However, the existing graph regularized ranking methods are very sensitive to the choice of the graph model and parameters, and this remains a difficult problem for most of the protein domain ranking methods. Results To tackle this problem, we have developed the Multiple Graph regularized Ranking algorithm, MultiG-Rank. Instead of using a single graph to regularize the ranking scores, MultiG-Rank approximates the intrinsic manifold of protein domain distribution by combining multiple initial graphs for the regularization. Graph weights are learned with ranking scores jointly and automatically, by alternately minimizing an objective function in an iterative algorithm. Experimental results on a subset of the ASTRAL SCOP protein domain database demonstrate that MultiG-Rank achieves a better ranking performance than single graph regularized ranking methods and pairwise similarity based ranking methods. Conclusion The problem of graph model and parameter selection in graph regularized protein domain ranking can be solved effectively by combining multiple graphs. This aspect of generalization introduces a new frontier in applying multiple graphs to solving protein domain ranking applications.
Coloring geographical threshold graphs
Bradonjic, Milan [Los Alamos National Laboratory; Percus, Allon [Los Alamos National Laboratory; Muller, Tobias [EINDHOVEN UNIV. OF TECH
2008-01-01
We propose a coloring algorithm for sparse random graphs generated by the geographical threshold graph (GTG) model, a generalization of random geometric graphs (RGG). In a GTG, nodes are distributed in a Euclidean space, and edges are assigned according to a threshold function involving the distance between nodes as well as randomly chosen node weights. The motivation for analyzing this model is that many real networks (e.g., wireless networks, the Internet, etc.) need to be studied by using a 'richer' stochastic model (which in this case includes both a distance between nodes and weights on the nodes). Here, we analyze the GTG coloring algorithm together with the graph's clique number, showing formally that in spite of the differences in structure between GTG and RGG, the asymptotic behavior of the chromatic number is identical: {chi}1n 1n n / 1n n (1 + {omicron}(1)). Finally, we consider the leading corrections to this expression, again using the coloring algorithm and clique number to provide bounds on the chromatic number. We show that the gap between the lower and upper bound is within C 1n n / (1n 1n n){sup 2}, and specify the constant C.
Winlaw, Manda [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); De Sterck, Hans [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sanders, Geoffrey [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2015-10-26
In very simple terms a network can be de ned as a collection of points joined together by lines. Thus, networks can be used to represent connections between entities in a wide variety of elds including engi- neering, science, medicine, and sociology. Many large real-world networks share a surprising number of properties, leading to a strong interest in model development research and techniques for building synthetic networks have been developed, that capture these similarities and replicate real-world graphs. Modeling these real-world networks serves two purposes. First, building models that mimic the patterns and prop- erties of real networks helps to understand the implications of these patterns and helps determine which patterns are important. If we develop a generative process to synthesize real networks we can also examine which growth processes are plausible and which are not. Secondly, high-quality, large-scale network data is often not available, because of economic, legal, technological, or other obstacles [7]. Thus, there are many instances where the systems of interest cannot be represented by a single exemplar network. As one example, consider the eld of cybersecurity, where systems require testing across diverse threat scenarios and validation across diverse network structures. In these cases, where there is no single exemplar network, the systems must instead be modeled as a collection of networks in which the variation among them may be just as important as their common features. By developing processes to build synthetic models, so-called graph generators, we can build synthetic networks that capture both the essential features of a system and realistic variability. Then we can use such synthetic graphs to perform tasks such as simulations, analysis, and decision making. We can also use synthetic graphs to performance test graph analysis algorithms, including clustering algorithms and anomaly detection algorithms.
Ward-Garrison, Christian; Markstrom, Steven L.; Hay, Lauren E.
2009-01-01
The U.S. Geological Survey Downsizer is a computer application that selects, downloads, verifies, and formats station-based time-series data for environmental-resource models, particularly the Precipitation-Runoff Modeling System. Downsizer implements the client-server software architecture. The client presents a map-based, graphical user interface that is intuitive to modelers; the server provides streamflow and climate time-series data from over 40,000 measurement stations across the United States. This report is the Downsizer user's manual and provides (1) an overview of the software design, (2) installation instructions, (3) a description of the graphical user interface, (4) a description of selected output files, and (5) troubleshooting information.
The Partial Mapping of the Web Graph
Kristina Machova
2009-06-01
Full Text Available The paper presents an approach to partial mapping of a web sub-graph. This sub-graph contains the nearest surroundings of an actual web page. Our work deals with acquiring relevant Hyperlinks of a base web site, generation of adjacency matrix, the nearest distance matrix and matrix of converted distances of Hyperlinks, detection of compactness of web representation, and visualization of its graphical representation. The paper introduces an LWP algorithm – a technique for Hyperlink filtration. This work attempts to help users with the orientation within the web graph.
TU-D-209-03: Alignment of the Patient Graphic Model Using Fluoroscopic Images for Skin Dose Mapping
Oines, A; Oines, A; Kilian-Meneghin, J; Karthikeyan, B; Rudin, S; Bednarek, D [University at Buffalo (SUNY) School of Med., Buffalo, NY (United States)
2016-06-15
Purpose: The Dose Tracking System (DTS) was developed to provide realtime feedback of skin dose and dose rate during interventional fluoroscopic procedures. A color map on a 3D graphic of the patient represents the cumulative dose distribution on the skin. Automated image correlation algorithms are described which use the fluoroscopic procedure images to align and scale the patient graphic for more accurate dose mapping. Methods: Currently, the DTS employs manual patient graphic selection and alignment. To improve the accuracy of dose mapping and automate the software, various methods are explored to extract information about the beam location and patient morphology from the procedure images. To match patient anatomy with a reference projection image, preprocessing is first used, including edge enhancement, edge detection, and contour detection. Template matching algorithms from OpenCV are then employed to find the location of the beam. Once a match is found, the reference graphic is scaled and rotated to fit the patient, using image registration correlation functions in Matlab. The algorithm runs correlation functions for all points and maps all correlation confidences to a surface map. The highest point of correlation is used for alignment and scaling. The transformation data is saved for later model scaling. Results: Anatomic recognition is used to find matching features between model and image and image registration correlation provides for alignment and scaling at any rotation angle with less than onesecond runtime, and at noise levels in excess of 150% of those found in normal procedures. Conclusion: The algorithm provides the necessary scaling and alignment tools to improve the accuracy of dose distribution mapping on the patient graphic with the DTS. Partial support from NIH Grant R01-EB002873 and Toshiba Medical Systems Corp.
TU-D-209-03: Alignment of the Patient Graphic Model Using Fluoroscopic Images for Skin Dose Mapping
Oines, A; Oines, A; Kilian-Meneghin, J; Karthikeyan, B; Rudin, S; Bednarek, D
2016-01-01
Purpose: The Dose Tracking System (DTS) was developed to provide realtime feedback of skin dose and dose rate during interventional fluoroscopic procedures. A color map on a 3D graphic of the patient represents the cumulative dose distribution on the skin. Automated image correlation algorithms are described which use the fluoroscopic procedure images to align and scale the patient graphic for more accurate dose mapping. Methods: Currently, the DTS employs manual patient graphic selection and alignment. To improve the accuracy of dose mapping and automate the software, various methods are explored to extract information about the beam location and patient morphology from the procedure images. To match patient anatomy with a reference projection image, preprocessing is first used, including edge enhancement, edge detection, and contour detection. Template matching algorithms from OpenCV are then employed to find the location of the beam. Once a match is found, the reference graphic is scaled and rotated to fit the patient, using image registration correlation functions in Matlab. The algorithm runs correlation functions for all points and maps all correlation confidences to a surface map. The highest point of correlation is used for alignment and scaling. The transformation data is saved for later model scaling. Results: Anatomic recognition is used to find matching features between model and image and image registration correlation provides for alignment and scaling at any rotation angle with less than onesecond runtime, and at noise levels in excess of 150% of those found in normal procedures. Conclusion: The algorithm provides the necessary scaling and alignment tools to improve the accuracy of dose distribution mapping on the patient graphic with the DTS. Partial support from NIH Grant R01-EB002873 and Toshiba Medical Systems Corp.
Probabilistic graphical models to deal with age estimation of living persons.
Sironi, Emanuele; Gallidabino, Matteo; Weyermann, Céline; Taroni, Franco
2016-03-01
Due to the rise of criminal, civil and administrative judicial situations involving people lacking valid identity documents, age estimation of living persons has become an important operational procedure for numerous forensic and medicolegal services worldwide. The chronological age of a given person is generally estimated from the observed degree of maturity of some selected physical attributes by means of statistical methods. However, their application in the forensic framework suffers from some conceptual and practical drawbacks, as recently claimed in the specialised literature. The aim of this paper is therefore to offer an alternative solution for overcoming these limits, by reiterating the utility of a probabilistic Bayesian approach for age estimation. This approach allows one to deal in a transparent way with the uncertainty surrounding the age estimation process and to produce all the relevant information in the form of posterior probability distribution about the chronological age of the person under investigation. Furthermore, this probability distribution can also be used for evaluating in a coherent way the possibility that the examined individual is younger or older than a given legal age threshold having a particular legal interest. The main novelty introduced by this work is the development of a probabilistic graphical model, i.e. a Bayesian network, for dealing with the problem at hand. The use of this kind of probabilistic tool can significantly facilitate the application of the proposed methodology: examples are presented based on data related to the ossification status of the medial clavicular epiphysis. The reliability and the advantages of this probabilistic tool are presented and discussed.
The effectiveness of an interactive 3-dimensional computer graphics model for medical education.
Battulga, Bayanmunkh; Konishi, Takeshi; Tamura, Yoko; Moriguchi, Hiroki
2012-07-09
Medical students often have difficulty achieving a conceptual understanding of 3-dimensional (3D) anatomy, such as bone alignment, muscles, and complex movements, from 2-dimensional (2D) images. To this end, animated and interactive 3-dimensional computer graphics (3DCG) can provide better visual information to users. In medical fields, research on the advantages of 3DCG in medical education is relatively new. To determine the educational effectiveness of interactive 3DCG. We divided 100 participants (27 men, mean (SD) age 17.9 (0.6) years, and 73 women, mean (SD) age 18.1 (1.1) years) from the Health Sciences University of Mongolia (HSUM) into 3DCG (n = 50) and textbook-only (control) (n = 50) groups. The control group used a textbook and 2D images, while the 3DCG group was trained to use the interactive 3DCG shoulder model in addition to a textbook. We conducted a questionnaire survey via an encrypted satellite network between HSUM and Tokushima University. The questionnaire was scored on a 5-point Likert scale from strongly disagree (score 1) to strongly agree (score 5). Interactive 3DCG was effective in undergraduate medical education. Specifically, there was a significant difference in mean (SD) scores between the 3DCG and control groups in their response to questionnaire items regarding content (4.26 (0.69) vs 3.85 (0.68), P = .001) and teaching methods (4.33 (0.65) vs 3.74 (0.79), P < .001), but no significant difference in the Web category. Participants also provided meaningful comments on the advantages of interactive 3DCG. Interactive 3DCG materials have positive effects on medical education when properly integrated into conventional education. In particular, our results suggest that interactive 3DCG is more efficient than textbooks alone in medical education and can motivate students to understand complex anatomical structures.
Javan, Ramin; Zeman, Merissa N
2018-02-01
In the context of medical three-dimensional (3D) printing, in addition to 3D reconstruction from cross-sectional imaging, graphic design plays a role in developing and/or enhancing 3D-printed models. A custom prototype modular 3D model of the liver was graphically designed depicting segmental anatomy of the parenchyma containing color-coded hepatic vasculature and biliary tree. Subsequently, 3D printing was performed using transparent resin for the surface of the liver and polyamide material to develop hollow internal structures that allow for passage of catheters and wires. A number of concepts were incorporated into the model. A representative mass with surrounding feeding arterial supply was embedded to demonstrate tumor embolization. A straight narrow hollow tract connecting the mass to the surface of the liver, displaying the path of a biopsy device's needle, and the concept of needle "throw" length was designed. A connection between the middle hepatic and right portal veins was created to demonstrate transjugular intrahepatic portosystemic shunt (TIPS) placement. A hollow amorphous structure representing an abscess was created to allow the demonstration of drainage catheter placement with the formation of pigtail tip. Percutaneous biliary drain and cholecystostomy tube placement were also represented. The skills of graphic designers may be utilized in creating highly customized 3D-printed models. A model was developed for the demonstration and simulation of multiple hepatobiliary interventions, for training purposes, patient counseling and consenting, and as a prototype for future development of a functioning interventional phantom.
Khaouch, Zakaria; Zekraoui, Mustapha; Bengourram, Jamaa; Kouider, Nourreeddine; Mabrouki, Mustapha
2016-11-01
In this paper, we would like to focus on modeling main parts of the wind turbines (blades, gearbox, tower, generator and pitching system) from a mechatronics viewpoint using the Bond-Graph Approach (BGA). Then, these parts are combined together in order to simulate the complete system. Moreover, the real dynamic behavior of the wind turbine is taken into account and with the new model; final load simulation is more realistic offering benefits and reliable system performance. This model can be used to develop control algorithms to reduce fatigue loads and enhance power production. Different simulations are carried-out in order to validate the proposed wind turbine model, using real data provided in the open literature (blade profile and gearbox parameters for a 750 kW wind turbine). Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Making Graphical Inferences: A Hierarchical Framework
2004-08-01
from graphs is considered one of the more complex skills graph readers should possess. According to the National Council of Teachers of Mathematics ...understanding graphical perception. Human Computer Interaction, 8, 353-388. NCTM : Standards for Mathematics . (2003, 2003). Pinker, S. (1990). A theory... NCTM ) the simplest type of question involves the extraction or comparison of a few explicitly represented data points (read-offs) ( NCTM : Standards
Julianto, E. A.; Suntoro, W. A.; Dewi, W. S.; Partoyo
2018-03-01
Climate change has been reported to exacerbate land resources degradation including soil fertility decline. The appropriate validity use on soil fertility evaluation could reduce the risk of climate change effect on plant cultivation. This study aims to assess the validity of a Soil Fertility Evaluation Model using a graphical approach. The models evaluated were the Indonesian Soil Research Center (PPT) version model, the FAO Unesco version model, and the Kyuma version model. Each model was then correlated with rice production (dry grain weight/GKP). The goodness of fit of each model can be tested to evaluate the quality and validity of a model, as well as the regression coefficient (R2). This research used the Eviews 9 programme by a graphical approach. The results obtained three curves, namely actual, fitted, and residual curves. If the actual and fitted curves are widely apart or irregular, this means that the quality of the model is not good, or there are many other factors that are still not included in the model (large residual) and conversely. Indeed, if the actual and fitted curves show exactly the same shape, it means that all factors have already been included in the model. Modification of the standard soil fertility evaluation models can improve the quality and validity of a model.
Brook Weld Muller
2014-12-01
Full Text Available This essay describes strategic approaches to graphic representation associated with critical environmental engagement and that build from the idea of works of architecture as stitches in the ecological fabric of the city. It focuses on the building up of partial or fragmented graphics in order to describe inclusive, open-ended possibilities for making architecture that marry rich experience and responsive performance. An aphoristic approach to crafting drawings involves complex layering, conscious absence and the embracing of tension. A self-critical attitude toward the generation of imagery characterized by the notion of ‘loose precision’ may lead to more transformative and environmentally responsive architectures.
Quantum chaos on discrete graphs
Smilansky, Uzy
2007-01-01
Adapting a method developed for the study of quantum chaos on quantum (metric) graphs (Kottos and Smilansky 1997 Phys. Rev. Lett. 79 4794, Kottos and Smilansky 1999 Ann. Phys., NY 274 76), spectral ζ functions and trace formulae for discrete Laplacians on graphs are derived. This is achieved by expressing the spectral secular equation in terms of the periodic orbits of the graph and obtaining functions which belong to the class of ζ functions proposed originally by Ihara (1966 J. Mat. Soc. Japan 18 219) and expanded by subsequent authors (Stark and Terras 1996 Adv. Math. 121 124, Kotani and Sunada 2000 J. Math. Sci. Univ. Tokyo 7 7). Finally, a model of 'classical dynamics' on the discrete graph is proposed. It is analogous to the corresponding classical dynamics derived for quantum graphs (Kottos and Smilansky 1997 Phys. Rev. Lett. 79 4794, Kottos and Smilansky 1999 Ann. Phys., NY 274 76). (fast track communication)
Graphic displays on PCs of gaseous diffusion models of radionuclide releases to the atmosphere
Campo Ortega, E. del
1993-01-01
The well-known MESOI program has been modified and improved to adapt it to a PC/AT with VGA colour monitor. Far from losing any of its powerful characteristics to calculate the transport, diffusion, deposition and decay of gaseous radioactive effluents discharged to the atmosphere, it has been enhanced to allow graphic viewing of concentrations, wind speed and direction and puff locations in colour, all on a background map of the site. The background covers a 75 x 75 km square and has a graphic grid density of 421 x 421 pixels. This means that effluent concentration is represented approximately every 170 metres in the 'clouded-area'. Among the modifications and enhancements made, the following are of particular interest: 1. A new subroutine called NUBE has been added, which calculates the distribution of effluent concentration of activity in a grid of 421 x 421 pixels. 2. Several subroutines have been added to obtain graphic displays and printouts of the cloud, wind field and puff locations. 3. Graphic display of the geographic plane of the area surrounding the effluent release point. 4. Off-line preparation of meteorological and topographical data files necessary for program execution. (author)
Reacting to Graphic Horror: A Model of Empathy and Emotional Behavior.
Tamborini, Ron; And Others
1990-01-01
Studies viewer response to graphic horror films. Reports that undergraduate mass communication students viewed clips from two horror films and a scientific television program. Concludes that people who score high on measures for wandering imagination, fictional involvement, humanistic orientation, and emotional contagion tend to find horror films…
A. V. Krasnyuk
2008-03-01
Full Text Available Three-dimensional design possibilities of the AutoCAD system for performing graphic tasks are presented in the article. On the basis of the studies conducted the features of application of computer-aided design system are noted and the methods allowing to decrease considerably the quantity of errors at making the drawings are offered.
Kirk, David
1994-01-01
This sequel to Graphics Gems (Academic Press, 1990), and Graphics Gems II (Academic Press, 1991) is a practical collection of computer graphics programming tools and techniques. Graphics Gems III contains a larger percentage of gems related to modeling and rendering, particularly lighting and shading. This new edition also covers image processing, numerical and programming techniques, modeling and transformations, 2D and 3D geometry and algorithms,ray tracing and radiosity, rendering, and more clever new tools and tricks for graphics programming. Volume III also includes a
Semantic graphs and associative memories
Pomi, Andrés; Mizraji, Eduardo
2004-12-01
Graphs have been increasingly utilized in the characterization of complex networks from diverse origins, including different kinds of semantic networks. Human memories are associative and are known to support complex semantic nets; these nets are represented by graphs. However, it is not known how the brain can sustain these semantic graphs. The vision of cognitive brain activities, shown by modern functional imaging techniques, assigns renewed value to classical distributed associative memory models. Here we show that these neural network models, also known as correlation matrix memories, naturally support a graph representation of the stored semantic structure. We demonstrate that the adjacency matrix of this graph of associations is just the memory coded with the standard basis of the concept vector space, and that the spectrum of the graph is a code invariant of the memory. As long as the assumptions of the model remain valid this result provides a practical method to predict and modify the evolution of the cognitive dynamics. Also, it could provide us with a way to comprehend how individual brains that map the external reality, almost surely with different particular vector representations, are nevertheless able to communicate and share a common knowledge of the world. We finish presenting adaptive association graphs, an extension of the model that makes use of the tensor product, which provides a solution to the known problem of branching in semantic nets.
Ingkasuwan Papapit
2012-08-01
Full Text Available Abstract Background Starch serves as a temporal storage of carbohydrates in plant leaves during day/night cycles. To study transcriptional regulatory modules of this dynamic metabolic process, we conducted gene regulation network analysis based on small-sample inference of graphical Gaussian model (GGM. Results Time-series significant analysis was applied for Arabidopsis leaf transcriptome data to obtain a set of genes that are highly regulated under a diurnal cycle. A total of 1,480 diurnally regulated genes included 21 starch metabolic enzymes, 6 clock-associated genes, and 106 transcription factors (TF. A starch-clock-TF gene regulation network comprising 117 nodes and 266 edges was constructed by GGM from these 133 significant genes that are potentially related to the diurnal control of starch metabolism. From this network, we found that β-amylase 3 (b-amy3: At4g17090, which participates in starch degradation in chloroplast, is the most frequently connected gene (a hub gene. The robustness of gene-to-gene regulatory network was further analyzed by TF binding site prediction and by evaluating global co-expression of TFs and target starch metabolic enzymes. As a result, two TFs, indeterminate domain 5 (AtIDD5: At2g02070 and constans-like (COL: At2g21320, were identified as positive regulators of starch synthase 4 (SS4: At4g18240. The inference model of AtIDD5-dependent positive regulation of SS4 gene expression was experimentally supported by decreased SS4 mRNA accumulation in Atidd5 mutant plants during the light period of both short and long day conditions. COL was also shown to positively control SS4 mRNA accumulation. Furthermore, the knockout of AtIDD5 and COL led to deformation of chloroplast and its contained starch granules. This deformity also affected the number of starch granules per chloroplast, which increased significantly in both knockout mutant lines. Conclusions In this study, we utilized a systematic approach of microarray
Li, Zhigang; Shi, Zhongping; Li, Xin
2014-05-01
Several fermentations with consecutively feeding of acetate/butyrate were conducted in a 7 L fermentor and the results indicated that exogenous acetate/butyrate enhanced solvents productivities by 47.1% and 39.2% respectively, and changed butyrate/acetate ratios greatly. Then extracellular butyrate/acetate ratios were utilized for calculation of acids rates and the results revealed that acetate and butyrate formation pathways were almost blocked by corresponding acids feeding. In addition, models for acetate/butyrate feeding fermentations were constructed by graph theory based on calculation results and relevant reports. Solvents concentrations and butanol/acetone ratios of these fermentations were also calculated and the results of models calculation matched fermentation data accurately which demonstrated that models were constructed in a reasonable way. Copyright © 2014 Elsevier Ltd. All rights reserved.
Magezi, David A
2015-01-01
Linear mixed-effects models (LMMs) are increasingly being used for data analysis in cognitive neuroscience and experimental psychology, where within-participant designs are common. The current article provides an introductory review of the use of LMMs for within-participant data analysis and describes a free, simple, graphical user interface (LMMgui). LMMgui uses the package lme4 (Bates et al., 2014a,b) in the statistical environment R (R Core Team).
Summary: beyond fault trees to fault graphs
Alesso, H.P.; Prassinos, P.; Smith, C.F.
1984-09-01
Fault Graphs are the natural evolutionary step over a traditional fault-tree model. A Fault Graph is a failure-oriented directed graph with logic connectives that allows cycles. We intentionally construct the Fault Graph to trace the piping and instrumentation drawing (P and ID) of the system, but with logical AND and OR conditions added. Then we evaluate the Fault Graph with computer codes based on graph-theoretic methods. Fault Graph computer codes are based on graph concepts, such as path set (a set of nodes traveled on a path from one node to another) and reachability (the complete set of all possible paths between any two nodes). These codes are used to find the cut-sets (any minimal set of component failures that will fail the system) and to evaluate the system reliability
Bergstrøm-Nielsen, Carl
2010-01-01
Graphic notation is taught to music therapy students at Aalborg University in both simple and elaborate forms. This is a method of depicting music visually, and notations may serve as memory aids, as aids for analysis and reflection, and for communication purposes such as supervision or within...
The graphics calculator in mathematics education: A critical review of recent research
Penglase, Marina; Arnold, Stephen
1996-04-01
The graphics calculator, sometimes referred to as the "super calculator," has sparked great interest among mathematics educators. Considered by many to be a tool which has the potential to revolutionise mathematics education, a significant amount of research has been conducted into its effectiveness as a tool for instruction and learning within precalculus and calculus courses, specifically in the study of functions, graphing and modelling. Some results suggest that these devices (a) can facilitate the learning of functions and graphing concepts and the development of spatial visualisation skills; (b) promote mathematical investigation and exploration; and (c) encourage a shift in emphasis from algebraic manipulation and proof to graphical investigation and examination of the relationship between graphical, algebraic and geometric representations. Other studies, however, indicate that there is still a need for manipulative techniques in the learning of function and graphing concepts, that the use of graphics calculators may not facilitate the learning of particular precalculus topics, and that some "de-skilling" may occur, especially among males. It is the contention of this paper, however, that much of the research in this new and important field fails to provide clear guidance or even to inform debate in adequate ways regarding the role of graphics calculators in mathematics teaching and learning. By failing to distinguish the role of the tool from that of the instructional process, many studies reviewed could be more appropriately classified as "program evaluations" rather than as research on the graphics calculator per se. Further, claims regarding the effectiveness of the graphics calculator as a tool for learning frequently fail to recognise that judgments of effectiveness result directly from existing assumptions regarding both assessment practice and student "achievement."
Lu, T W; O'Connor, J J
1996-01-01
A computer graphics-based model of the knee ligaments in the sagittal plane was developed for the simulation and visualization of the shape changes and fibre recruitment process of the ligaments during motion under unloaded and loaded conditions. The cruciate and collateral ligaments were modelled as ordered arrays of fibres which link attachment areas on the tibia and femur. Fibres slacken and tighten as the ligament attachment areas on the bones rotate and translate relative to each other. A four-bar linkage, composed of the femur, tibia and selected isometric fibres of the two cruciates, was used to determine the motion of the femur relative to the tibia during passive (unloaded) movement. Fibres were assumed to slacken in a Euler buckling mode when the distances between their attachments are less than chosen reference lengths. The ligament shape changes and buckling patterns are demonstrated with computer graphics. When the tibia is translated anteriorly or posteriorly relative to the femur by muscle forces and external loads, some ligament fibres tighten and are recruited progressively to transmit increasing shear forces. The shape changes and fibre recruitment patterns predicted by the model compare well qualitatively with experimental results reported in the literature. The computer graphics approach provides insight into the micro behaviour of the knee ligaments. It may help to explain ligament injury mechanisms and provide useful information to guide the design of ligament replacements.
A Directed Acyclic Graph-Large Margin Distribution Machine Model for Music Symbol Classification.
Cuihong Wen
Full Text Available Optical Music Recognition (OMR has received increasing attention in recent years. In this paper, we propose a classifier based on a new method named Directed Acyclic Graph-Large margin Distribution Machine (DAG-LDM. The DAG-LDM is an improvement of the Large margin Distribution Machine (LDM, which is a binary classifier that optimizes the margin distribution by maximizing the margin mean and minimizing the margin variance simultaneously. We modify the LDM to the DAG-LDM to solve the multi-class music symbol classification problem. Tests are conducted on more than 10000 music symbol images, obtained from handwritten and printed images of music scores. The proposed method provides superior classification capability and achieves much higher classification accuracy than the state-of-the-art algorithms such as Support Vector Machines (SVMs and Neural Networks (NNs.
A Directed Acyclic Graph-Large Margin Distribution Machine Model for Music Symbol Classification.
Wen, Cuihong; Zhang, Jing; Rebelo, Ana; Cheng, Fanyong
2016-01-01
Optical Music Recognition (OMR) has received increasing attention in recent years. In this paper, we propose a classifier based on a new method named Directed Acyclic Graph-Large margin Distribution Machine (DAG-LDM). The DAG-LDM is an improvement of the Large margin Distribution Machine (LDM), which is a binary classifier that optimizes the margin distribution by maximizing the margin mean and minimizing the margin variance simultaneously. We modify the LDM to the DAG-LDM to solve the multi-class music symbol classification problem. Tests are conducted on more than 10000 music symbol images, obtained from handwritten and printed images of music scores. The proposed method provides superior classification capability and achieves much higher classification accuracy than the state-of-the-art algorithms such as Support Vector Machines (SVMs) and Neural Networks (NNs).
On an emotional node: modeling sentiment in graphs of action verbs
Petersen, Michael Kai; Hansen, Lars Kai
2012-01-01
Neuroimaging studies have over the past decades established that language is grounded in sensorimotor areas of the brain. Not only action verbs related to face and hand motion but also emotional expressions activate premotor systems in the brain. Hypothesizing that patterns of neural activation...... might be reflected in the latent semantics of words, we apply hierarchical clustering and network graph analysis to quantify the interaction of emotion and motion related action verbs based on two large-scale text corpora. Comparing the word topologies to neural networks we suggest that the co......-activation of associated word forms in the brain resemble the latent semantics of action verbs, which may in turn reflect parameters of force and spatial differentiation underlying action based language....
Chartrand, Gary; Rosen, Kenneth H
2008-01-01
Beginning with the origin of the four color problem in 1852, the field of graph colorings has developed into one of the most popular areas of graph theory. Introducing graph theory with a coloring theme, Chromatic Graph Theory explores connections between major topics in graph theory and graph colorings as well as emerging topics. This self-contained book first presents various fundamentals of graph theory that lie outside of graph colorings, including basic terminology and results, trees and connectivity, Eulerian and Hamiltonian graphs, matchings and factorizations, and graph embeddings. The remainder of the text deals exclusively with graph colorings. It covers vertex colorings and bounds for the chromatic number, vertex colorings of graphs embedded on surfaces, and a variety of restricted vertex colorings. The authors also describe edge colorings, monochromatic and rainbow edge colorings, complete vertex colorings, several distinguishing vertex and edge colorings, and many distance-related vertex coloring...
Chemical Graph Transformation with Stereo-Information
Andersen, Jakob Lykke; Flamm, Christoph; Merkle, Daniel
2017-01-01
Double Pushout graph transformation naturally facilitates the modelling of chemical reactions: labelled undirected graphs model molecules and direct derivations model chemical reactions. However, the most straightforward modelling approach ignores the relative placement of atoms and their neighbo......Double Pushout graph transformation naturally facilitates the modelling of chemical reactions: labelled undirected graphs model molecules and direct derivations model chemical reactions. However, the most straightforward modelling approach ignores the relative placement of atoms...... and their neighbours in space. Stereoisomers of chemical compounds thus cannot be distinguished, even though their chemical activity may differ substantially. In this contribution we propose an extended chemical graph transformation system with attributes that encode information about local geometry. The modelling...... of graph transformation, but we here propose a framework that also allows for partially specified stereoinformation. While there are several stereochemical configurations to be considered, we focus here on the tetrahedral molecular shape, and suggest general principles for how to treat all other chemically...
A Qualitative Approach to Sketch the Graph of a Function.
Alson, Pedro
1992-01-01
Presents a qualitative and global method of graphing functions that involves transformations of the graph of a known function in the cartesian coordinate system referred to as graphic operators. Explains how the method has been taught to students and some comments about the results obtained. (MDH)
VAX Professional Workstation goes graphic
Downward, J.G.
1984-01-01
The VAX Professional Workstation (VPW) is a collection of programs and procedures designed to provide an integrated work-station environment for the staff at KMS Fusion's research laboratories. During the past year numerous capabilities have been added to VPW, including support for VT125/VT240/4014 graphic workstations, editing windows, and additional desk utilities. Graphics workstation support allows users to create, edit, and modify graph data files, enter the data via a graphic tablet, create simple plots with DATATRIEVE or DECgraph on ReGIS terminals, or elaborate plots with TEKGRAPH on ReGIS or Tektronix terminals. Users may assign display error bars to the data and interactively plot it in a variety of ways. Users also can create and display viewgraphs. Hard copy output for a large network of office terminals is obtained by multiplexing each terminal's video output into a recently developed video multiplexer front ending a single channel video hard copy unit
Nigam, Ravi; Schlosser, Ralf W; Lloyd, Lyle L
2006-09-01
Matrix strategies employing parts of speech arranged in systematic language matrices and milieu language teaching strategies have been successfully used to teach word combining skills to children who have cognitive disabilities and some functional speech. The present study investigated the acquisition and generalized production of two-term semantic relationships in a new population using new types of symbols. Three children with cognitive disabilities and little or no functional speech were taught to combine graphic symbols. The matrix strategy and the mand-model procedure were used concomitantly as intervention procedures. A multiple probe design across sets of action-object combinations with generalization probes of untrained combinations was used to teach the production of graphic symbol combinations. Results indicated that two of the three children learned the early syntactic-semantic rule of combining action-object symbols and demonstrated generalization to untrained action-object combinations and generalization across trainers. The results and future directions for research are discussed.
AptRank: an adaptive PageRank model for protein function prediction on bi-relational graphs.
Jiang, Biaobin; Kloster, Kyle; Gleich, David F; Gribskov, Michael
2017-06-15
Diffusion-based network models are widely used for protein function prediction using protein network data and have been shown to outperform neighborhood-based and module-based methods. Recent studies have shown that integrating the hierarchical structure of the Gene Ontology (GO) data dramatically improves prediction accuracy. However, previous methods usually either used the GO hierarchy to refine the prediction results of multiple classifiers, or flattened the hierarchy into a function-function similarity kernel. No study has taken the GO hierarchy into account together with the protein network as a two-layer network model. We first construct a Bi-relational graph (Birg) model comprised of both protein-protein association and function-function hierarchical networks. We then propose two diffusion-based methods, BirgRank and AptRank, both of which use PageRank to diffuse information on this two-layer graph model. BirgRank is a direct application of traditional PageRank with fixed decay parameters. In contrast, AptRank utilizes an adaptive diffusion mechanism to improve the performance of BirgRank. We evaluate the ability of both methods to predict protein function on yeast, fly and human protein datasets, and compare with four previous methods: GeneMANIA, TMC, ProteinRank and clusDCA. We design four different validation strategies: missing function prediction, de novo function prediction, guided function prediction and newly discovered function prediction to comprehensively evaluate predictability of all six methods. We find that both BirgRank and AptRank outperform the previous methods, especially in missing function prediction when using only 10% of the data for training. The MATLAB code is available at https://github.rcac.purdue.edu/mgribsko/aptrank . gribskov@purdue.edu. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
Analysis of graphical representation among freshmen in undergraduate physics laboratory
Adam, A. S.; Anggrayni, S.; Kholiq, A.; Putri, N. P.; Suprapto, N.
2018-03-01
Physics concept understanding is the importance of the physics laboratory among freshmen in the undergraduate program. These include the ability to interpret the meaning of the graph to make an appropriate conclusion. This particular study analyses the graphical representation among freshmen in an undergraduate physics laboratory. This study uses empirical study with quantitative approach. The graphical representation covers 3 physics topics: velocity of sound, simple pendulum and spring system. The result of this study shows most of the freshmen (90% of the sample) make a graph based on the data from physics laboratory. It means the transferring process of raw data which illustrated in the table to physics graph can be categorised. Most of the Freshmen use the proportional principle of the variable in graph analysis. However, Freshmen can't make the graph in an appropriate variable to gain more information and can't analyse the graph to obtain the useful information from the slope.
Thematization of the Calculus Graphing Schema
Cooley, Laurel; Baker, Bernadette; Trigueros, Maria
2003-01-01
This article is the result of an investigation of students' conceptualizations of calculus graphing techniques after they had completed at least two semesters of calculus. The work and responses of 27 students to a series of questions that solicit information about the graphical implications of the first derivative, second derivative, continuity,…
On Graph Refutation for Relational Inclusions
Paulo A. S. Veloso
2012-03-01
Full Text Available We introduce a graphical refutation calculus for relational inclusions: it reduces establishing a relational inclusion to establishing that a graph constructed from it has empty extension. This sound and complete calculus is conceptually simpler and easier to use than the usual ones.
Hegarty, Peter; Lemieux, Anthony F; McQueen, Grant
2010-03-01
Graphs seem to connote facts more than words or tables do. Consequently, they seem unlikely places to spot implicit sexism at work. Yet, in 6 studies (N = 741), women and men constructed (Study 1) and recalled (Study 2) gender difference graphs with men's data first, and graphed powerful groups (Study 3) and individuals (Study 4) ahead of weaker ones. Participants who interpreted graph order as evidence of author "bias" inferred that the author graphed his or her own gender group first (Study 5). Women's, but not men's, preferences to graph men first were mitigated when participants graphed a difference between themselves and an opposite-sex friend prior to graphing gender differences (Study 6). Graph production and comprehension are affected by beliefs and suppositions about the groups represented in graphs to a greater degree than cognitive models of graph comprehension or realist models of scientific thinking have yet acknowledged.
Dynamic graph system for a semantic database
Mizell, David
2015-01-27
A method and system in a computer system for dynamically providing a graphical representation of a data store of entries via a matrix interface is disclosed. A dynamic graph system provides a matrix interface that exposes to an application program a graphical representation of data stored in a data store such as a semantic database storing triples. To the application program, the matrix interface represents the graph as a sparse adjacency matrix that is stored in compressed form. Each entry of the data store is considered to represent a link between nodes of the graph. Each entry has a first field and a second field identifying the nodes connected by the link and a third field with a value for the link that connects the identified nodes. The first, second, and third fields represent the rows, column, and elements of the adjacency matrix.
A graphical method for estimating the tunneling factor for mode conversion processes
Swanson, D.G.
1994-01-01
The fundamental parameter characterizing the strength of any mode conversion process is the tunneling parameter, which is typically determined from a model dispersion relation which is transformed into a differential equation. Here a graphical method is described which gives the tunneling parameter from quantities directly measured from a simple graph of the dispersion relation. The accuracy of the estimate depends only on the accuracy of the measurements
Brémaud, Pierre
2017-01-01
The emphasis in this book is placed on general models (Markov chains, random fields, random graphs), universal methods (the probabilistic method, the coupling method, the Stein-Chen method, martingale methods, the method of types) and versatile tools (Chernoff's bound, Hoeffding's inequality, Holley's inequality) whose domain of application extends far beyond the present text. Although the examples treated in the book relate to the possible applications, in the communication and computing sciences, in operations research and in physics, this book is in the first instance concerned with theory. The level of the book is that of a beginning graduate course. It is self-contained, the prerequisites consisting merely of basic calculus (series) and basic linear algebra (matrices). The reader is not assumed to be trained in probability since the first chapters give in considerable detail the background necessary to understand the rest of the book. .
Graph anomalies in cyber communications
Vander Wiel, Scott A [Los Alamos National Laboratory; Storlie, Curtis B [Los Alamos National Laboratory; Sandine, Gary [Los Alamos National Laboratory; Hagberg, Aric A [Los Alamos National Laboratory; Fisk, Michael [Los Alamos National Laboratory
2011-01-11
Enterprises monitor cyber traffic for viruses, intruders and stolen information. Detection methods look for known signatures of malicious traffic or search for anomalies with respect to a nominal reference model. Traditional anomaly detection focuses on aggregate traffic at central nodes or on user-level monitoring. More recently, however, traffic is being viewed more holistically as a dynamic communication graph. Attention to the graph nature of the traffic has expanded the types of anomalies that are being sought. We give an overview of several cyber data streams collected at Los Alamos National Laboratory and discuss current work in modeling the graph dynamics of traffic over the network. We consider global properties and local properties within the communication graph. A method for monitoring relative entropy on multiple correlated properties is discussed in detail.
Generating random networks and graphs
Coolen, Ton; Roberts, Ekaterina
2017-01-01
This book supports researchers who need to generate random networks, or who are interested in the theoretical study of random graphs. The coverage includes exponential random graphs (where the targeted probability of each network appearing in the ensemble is specified), growth algorithms (i.e. preferential attachment and the stub-joining configuration model), special constructions (e.g. geometric graphs and Watts Strogatz models) and graphs on structured spaces (e.g. multiplex networks). The presentation aims to be a complete starting point, including details of both theory and implementation, as well as discussions of the main strengths and weaknesses of each approach. It includes extensive references for readers wishing to go further. The material is carefully structured to be accessible to researchers from all disciplines while also containing rigorous mathematical analysis (largely based on the techniques of statistical mechanics) to support those wishing to further develop or implement the theory of rand...
Zhang, Honghai; Abiose, Ademola K.; Campbell, Dwayne N.; Sonka, Milan; Martins, James B.; Wahle, Andreas
2010-03-01
Quantitative analysis of the left ventricular shape and motion patterns associated with left ventricular mechanical dyssynchrony (LVMD) is essential for diagnosis and treatment planning in congestive heart failure. Real-time 3D echocardiography (RT3DE) used for LVMD analysis is frequently limited by heavy speckle noise or partially incomplete data, thus a segmentation method utilizing learned global shape knowledge is beneficial. In this study, the endocardial surface of the left ventricle (LV) is segmented using a hybrid approach combining active shape model (ASM) with optimal graph search. The latter is used to achieve landmark refinement in the ASM framework. Optimal graph search translates the 3D segmentation into the detection of a minimum-cost closed set in a graph and can produce a globally optimal result. Various information-gradient, intensity distributions, and regional-property terms-are used to define the costs for the graph search. The developed method was tested on 44 RT3DE datasets acquired from 26 LVMD patients. The segmentation accuracy was assessed by surface positioning error and volume overlap measured for the whole LV as well as 16 standard LV regions. The segmentation produced very good results that were not achievable using ASM or graph search alone.
Quick Mining of Isomorphic Exact Large Patterns from Large Graphs
Almasri, Islam
2014-12-01
The applications of the sub graph isomorphism search are growing with the growing number of areas that model their systems using graphs or networks. Specifically, many biological systems, such as protein interaction networks, molecular structures and protein contact maps, are modeled as graphs. The sub graph isomorphism search is concerned with finding all sub graphs that are isomorphic to a relevant query graph, the existence of such sub graphs can reflect on the characteristics of the modeled system. The most computationally expensive step in the search for isomorphic sub graphs is the backtracking algorithm that traverses the nodes of the target graph. In this paper, we propose a pruning approach that is inspired by the minimum remaining value heuristic that achieves greater scalability over large query and target graphs. Our testing on various biological networks shows that performance enhancement of our approach over existing state-of-the-art approaches varies between 6x and 53x. © 2014 IEEE.
Quick Mining of Isomorphic Exact Large Patterns from Large Graphs
Almasri, Islam; Gao, Xin; Fedoroff, Nina V.
2014-01-01
The applications of the sub graph isomorphism search are growing with the growing number of areas that model their systems using graphs or networks. Specifically, many biological systems, such as protein interaction networks, molecular structures and protein contact maps, are modeled as graphs. The sub graph isomorphism search is concerned with finding all sub graphs that are isomorphic to a relevant query graph, the existence of such sub graphs can reflect on the characteristics of the modeled system. The most computationally expensive step in the search for isomorphic sub graphs is the backtracking algorithm that traverses the nodes of the target graph. In this paper, we propose a pruning approach that is inspired by the minimum remaining value heuristic that achieves greater scalability over large query and target graphs. Our testing on various biological networks shows that performance enhancement of our approach over existing state-of-the-art approaches varies between 6x and 53x. © 2014 IEEE.
Graph theory and its applications
Gross, Jonathan L
2006-01-01
Gross and Yellen take a comprehensive approach to graph theory that integrates careful exposition of classical developments with emerging methods, models, and practical needs. Their unparalleled treatment provides a text ideal for a two-semester course and a variety of one-semester classes, from an introductory one-semester course to courses slanted toward classical graph theory, operations research, data structures and algorithms, or algebra and topology.
Roy, S. G.; Koons, P. O.; Gerbi, C. C.; Capps, D. K.; Tucker, G. E.; Rogers, Z. A.
2014-12-01
Sophisticated numerical tools exist for modeling geomorphic processes and linking them to tectonic and climatic systems, but they are often seen as inaccessible for users with an exploratory level of interest. We have improved the accessibility of landscape evolution models by producing a simple graphics user interface (GUI) that takes advantage of the Channel-Hillslope Integrated Landscape Development (CHILD) model. Model access is flexible: the user can edit values for basic geomorphic, tectonic, and climate parameters, or obtain greater control by defining the spatiotemporal distributions of those parameters. Users can make educated predictions by choosing their own parametric values for the governing equations and interpreting the results immediately through model graphics. This method of modeling allows users to iteratively build their understanding through experimentation. Use of this GUI is intended for inquiry and discovery-based learning activities. We discuss a number of examples of how the GUI can be used at the upper high school, introductory university, and advanced university level. Effective teaching modules initially focus on an inquiry-based example guided by the instructor. As students become familiar with the GUI and the CHILD model, the class can shift to more student-centered exploration and experimentation. To make model interpretations more robust, digital elevation models can be imported and direct comparisons can be made between CHILD model results and natural topography. The GUI is available online through the University of Maine's Earth and Climate Sciences website, through the Community Surface Dynamics Modeling System (CSDMS) model repository, or by contacting the corresponding author.
On a conjecture concerning helly circle graphs
Durán Guillermo
2003-01-01
Full Text Available We say that G is an e-circle graph if there is a bijection between its vertices and straight lines on the cartesian plane such that two vertices are adjacent in G if and only if the corresponding lines intersect inside the circle of radius one. This definition suggests a method for deciding whether a given graph G is an e-circle graph, by constructing a convenient system S of equations and inequations which represents the structure of G, in such a way that G is an e-circle graph if and only if S has a solution. In fact, e-circle graphs are exactly the circle graphs (intersection graphs of chords in a circle, and thus this method provides an analytic way for recognizing circle graphs. A graph G is a Helly circle graph if G is a circle graph and there exists a model of G by chords such that every three pairwise intersecting chords intersect at the same point. A conjecture by Durán (2000 states that G is a Helly circle graph if and only if G is a circle graph and contains no induced diamonds (a diamond is a graph formed by four vertices and five edges. Many unsuccessful efforts - mainly based on combinatorial and geometrical approaches - have been done in order to validate this conjecture. In this work, we utilize the ideas behind the definition of e-circle graphs and restate this conjecture in terms of an equivalence between two systems of equations and inequations, providing a new, analytic tool to deal with it.
Wang, Yishu; Zhao, Hongyu; Deng, Minghua; Fang, Huaying; Yang, Dejie
2017-08-24
Epistatic miniarrary profile (EMAP) studies have enabled the mapping of large-scale genetic interaction networks and generated large amounts of data in model organisms. It provides an incredible set of molecular tools and advanced technologies that should be efficiently understanding the relationship between the genotypes and phenotypes of individuals. However, the network information gained from EMAP cannot be fully exploited using the traditional statistical network models. Because the genetic network is always heterogeneous, for example, the network structure features for one subset of nodes are different from those of the left nodes. Exponentialfamily random graph models (ERGMs) are a family of statistical models, which provide a principled and flexible way to describe the structural features (e.g. the density, centrality and assortativity) of an observed network. However, the single ERGM is not enough to capture this heterogeneity of networks. In this paper, we consider a mixture ERGM (MixtureEGRM) networks, which model a network with several communities, where each community is described by a single EGRM.
Filippo Trentini
2015-03-01
Full Text Available Backgroung. In public health one debated issue is related to consequences of improper self-management in health care. Some theoretical models have been proposed in Health Communication theory which highlight how components such general literacy and specific knowledge of the disease might be very important for effective actions in healthcare system. Methods. This paper aims at investigating the consistency of Health Empowerment Model by means of both graphical models approach, which is a “data driven” method and a Structural Equation Modeling (SEM approach, which is instead “theory driven”, showing the different information pattern that can be revealed in a health care research context.The analyzed dataset provides data on the relationship between the Health Empowerment Model constructs and the behavioral and health status in 263 chronic low back pain (cLBP patients. We used the graphical models approach to evaluate the dependence structure in a “blind” way, thus learning the structure from the data.Results. From the estimation results dependence structure confirms links design assumed in SEM approach directly from researchers, thus validating the hypotheses which generated the Health Empowerment Model constructs.Conclusions. This models comparison helps in avoiding confirmation bias. In Structural Equation Modeling, we used SPSS AMOS 21 software. Graphical modeling algorithms were implemented in a R software environment.
Moore-Russo, Deborah A.; Cortes-Figueroa, Jose E.; Schuman, Michael J.
2006-01-01
The use of Calculator-Based Laboratory (CBL) technology, the graphing calculator, and the cooling and heating of water to model the behavior of consecutive first-order reactions is presented, where B is the reactant, I is the intermediate, and P is the product for an in-class demonstration. The activity demonstrates the spontaneous and consecutive…
Pragmatic Graph Rewriting Modifications
Rodgers, Peter; Vidal, Natalia
1999-01-01
We present new pragmatic constructs for easing programming in visual graph rewriting programming languages. The first is a modification to the rewriting process for nodes the host graph, where nodes specified as 'Once Only' in the LHS of a rewrite match at most once with a corresponding node in the host graph. This reduces the previously common use of tags to indicate the progress of matching in the graph. The second modification controls the application of LHS graphs, where those specified a...
Computer graphics and research projects
Ingtrakul, P.
1994-01-01
This report was prepared as an account of scientific visualization tools and application tools for scientists and engineers. It is provided a set of tools to create pictures and to interact with them in natural ways. It applied many techniques of computer graphics and computer animation through a number of full-color presentations as computer animated commercials, 3D computer graphics, dynamic and environmental simulations, scientific modeling and visualization, physically based modelling, and beavioral, skelatal, dynamics, and particle animation. It took in depth at original hardware and limitations of existing PC graphics adapters contain syste m performance, especially with graphics intensive application programs and user interfaces
Lucas, B.
1994-05-15
After having recalled the usual diagnosis techniques (failure index, decision tree) and those based on an artificial intelligence approach, the author reports a research aimed at exploring the knowledge and model generation technique. He focuses on the design of an aid to model generation tool and aid-to-diagnosis tool. The bond graph technique is shown to be adapted to the aid to model generation, and is then adapted to the aid to diagnosis. The developed tool is applied to three projects: DIADEME (a diagnosis system based on physical model), the improvement of the SEXTANT diagnosis system (an expert system for transient analysis), and the investigation on an Ariane 5 launcher component. Notably, the author uses the Reiter and Greiner algorithm
A.N. Khomchenko
2016-08-01
Full Text Available The paper considers the problem of bi-cubic interpolation on the final element of serendipity family. With cognitive-graphical analysis the rigid model of Ergatoudis, Irons and Zenkevich (1968 compared with alternative models, obtained by the methods: direct geometric design, a weighted averaging of the basis polynomials, systematic generation of bases (advanced Taylor procedure. The emphasis is placed on the phenomenon of "gravitational repulsion" (Zenkevich paradox. The causes of rising of inadequate physical spectra nodal loads on serendipity elements of higher orders are investigated. Soft modeling allows us to build a lot of serendipity elements of bicubic interpolation, and you do not even need to know the exact form of the rigid model. The different interpretations of integral characteristics of the basis polynomials: geometrical, physical, probability are offered. Under the soft model in the theory of interpolation of function of two variables implies the model amenable to change through the choice of basis. Such changes in the family of Lagrangian finite elements of higher orders are excluded (hard simulation. Standard models of serendipity family (Zenkevich were also tough. It was found that the "responsibility" for the rigidity of serendipity model rests on ruled surfaces (zero Gaussian curvature - conoids that predominate in the base set. Cognitive portraits zero lines of standard serendipity surfaces suggested that in order to "mitigate" of serendipity pattern conoid should better be replaced by surfaces of alternating Gaussian curvature. The article shows the alternative (soft bases of serendipity models. The work is devoted to solving scientific and technological problems aimed at the creation, dissemination and use of cognitive computer graphics in teaching and learning. The results are of interest to students of specialties: "Computer Science and Information Technologies", "System Analysis", "Software Engineering", as well as
Graphical calculus for Gaussian pure states
Menicucci, Nicolas C.; Flammia, Steven T.; Loock, Peter van
2011-01-01
We provide a unified graphical calculus for all Gaussian pure states, including graph transformation rules for all local and semilocal Gaussian unitary operations, as well as local quadrature measurements. We then use this graphical calculus to analyze continuous-variable (CV) cluster states, the essential resource for one-way quantum computing with CV systems. Current graphical approaches to CV cluster states are only valid in the unphysical limit of infinite squeezing, and the associated graph transformation rules only apply when the initial and final states are of this form. Our formalism applies to all Gaussian pure states and subsumes these rules in a natural way. In addition, the term 'CV graph state' currently has several inequivalent definitions in use. Using this formalism we provide a single unifying definition that encompasses all of them. We provide many examples of how the formalism may be used in the context of CV cluster states: defining the 'closest' CV cluster state to a given Gaussian pure state and quantifying the error in the approximation due to finite squeezing; analyzing the optimality of certain methods of generating CV cluster states; drawing connections between this graphical formalism and bosonic Hamiltonians with Gaussian ground states, including those useful for CV one-way quantum computing; and deriving a graphical measure of bipartite entanglement for certain classes of CV cluster states. We mention other possible applications of this formalism and conclude with a brief note on fault tolerance in CV one-way quantum computing.
Made Tirta, I.; Anggraeni, Dian
2018-04-01
Statistical models have been developed rapidly into various directions to accommodate various types of data. Data collected from longitudinal, repeated measured, clustered data (either continuous, binary, count, or ordinal), are more likely to be correlated. Therefore statistical model for independent responses, such as Generalized Linear Model (GLM), Generalized Additive Model (GAM) are not appropriate. There are several models available to apply for correlated responses including GEEs (Generalized Estimating Equations), for marginal model and various mixed effect model such as GLMM (Generalized Linear Mixed Models) and HGLM (Hierarchical Generalized Linear Models) for subject spesific models. These models are available on free open source software R, but they can only be accessed through command line interface (using scrit). On the othe hand, most practical researchers very much rely on menu based or Graphical User Interface (GUI). We develop, using Shiny framework, standard pull down menu Web-GUI that unifies most models for correlated responses. The Web-GUI has accomodated almost all needed features. It enables users to do and compare various modeling for repeated measure data (GEE, GLMM, HGLM, GEE for nominal responses) much more easily trough online menus. This paper discusses the features of the Web-GUI and illustrates the use of them. In General we find that GEE, GLMM, HGLM gave very closed results.