WorldWideScience

Sample records for graphs genetic activity

  1. Representation of activity in images using geospatial temporal graphs

    Science.gov (United States)

    Brost, Randolph; McLendon, III, William C.; Parekh, Ojas D.; Rintoul, Mark Daniel; Watson, Jean-Paul; Strip, David R.; Diegert, Carl

    2018-05-01

    Various technologies pertaining to modeling patterns of activity observed in remote sensing images using geospatial-temporal graphs are described herein. Graphs are constructed by representing objects in remote sensing images as nodes, and connecting nodes with undirected edges representing either distance or adjacency relationships between objects and directed edges representing changes in time. Activity patterns may be discerned from the graphs by coding nodes representing persistent objects like buildings differently from nodes representing ephemeral objects like vehicles, and examining the geospatial-temporal relationships of ephemeral nodes within the graph.

  2. System Response Analysis and Model Order Reduction, Using Conventional Method, Bond Graph Technique and Genetic Programming

    Directory of Open Access Journals (Sweden)

    Lubna Moin

    2009-04-01

    Full Text Available This research paper basically explores and compares the different modeling and analysis techniques and than it also explores the model order reduction approach and significance. The traditional modeling and simulation techniques for dynamic systems are generally adequate for single-domain systems only, but the Bond Graph technique provides new strategies for reliable solutions of multi-domain system. They are also used for analyzing linear and non linear dynamic production system, artificial intelligence, image processing, robotics and industrial automation. This paper describes a unique technique of generating the Genetic design from the tree structured transfer function obtained from Bond Graph. This research work combines bond graphs for model representation with Genetic programming for exploring different ideas on design space tree structured transfer function result from replacing typical bond graph element with their impedance equivalent specifying impedance lows for Bond Graph multiport. This tree structured form thus obtained from Bond Graph is applied for generating the Genetic Tree. Application studies will identify key issues and importance for advancing this approach towards becoming on effective and efficient design tool for synthesizing design for Electrical system. In the first phase, the system is modeled using Bond Graph technique. Its system response and transfer function with conventional and Bond Graph method is analyzed and then a approach towards model order reduction is observed. The suggested algorithm and other known modern model order reduction techniques are applied to a 11th order high pass filter [1], with different approach. The model order reduction technique developed in this paper has least reduction errors and secondly the final model retains structural information. The system response and the stability analysis of the system transfer function taken by conventional and by Bond Graph method is compared and

  3. Simulating activation propagation in social networks using the graph theory

    Directory of Open Access Journals (Sweden)

    František Dařena

    2010-01-01

    Full Text Available The social-network formation and analysis is nowadays one of objects that are in a focus of intensive research. The objective of the paper is to suggest the perspective of representing social networks as graphs, with the application of the graph theory to problems connected with studying the network-like structures and to study spreading activation algorithm for reasons of analyzing these structures. The paper presents the process of modeling multidimensional networks by means of directed graphs with several characteristics. The paper also demonstrates using Spreading Activation algorithm as a good method for analyzing multidimensional network with the main focus on recommender systems. The experiments showed that the choice of parameters of the algorithm is crucial, that some kind of constraint should be included and that the algorithm is able to provide a stable environment for simulations with networks.

  4. Inflammatory aetiology of human myometrial activation tested using directed graphs.

    Directory of Open Access Journals (Sweden)

    2005-07-01

    Full Text Available THERE ARE THREE MAIN HYPOTHESES FOR THE ACTIVATION OF THE HUMAN UTERUS AT LABOUR: functional progesterone withdrawal, inflammatory stimulation, and oxytocin receptor activation. To test these alternatives we have taken information and data from the literature to develop causal pathway models for the activation of human myometrium. The data provided quantitative RT-PCR results on key genes from samples taken before and during labour. Principal component analysis showed that pre-labour samples form a homogenous group compared to those during labour. We therefore modelled the alternative causal pathways in non-labouring samples using directed graphs and statistically compared the likelihood of the different models using structural equations and D-separation approaches. Using the computer program LISREL, inflammatory activation as a primary event was highly consistent with the data (p = 0.925, progesterone withdrawal, as a primary event, is plausible (p = 0.499, yet comparatively unlikely, oxytocin receptor mediated initiation is less compatible with the data (p = 0.091. DGraph, a software program that creates directed graphs, produced similar results (p= 0.684, p= 0.280, and p = 0.04, respectively. This outcome supports an inflammatory aetiology for human labour. Our results demonstrate the value of directed graphs in determining the likelihood of causal relationships in biology in situations where experiments are not possible.

  5. Phenotypic Graphs and Evolution Unfold the Standard Genetic Code as the Optimal

    Science.gov (United States)

    Zamudio, Gabriel S.; José, Marco V.

    2018-03-01

    In this work, we explicitly consider the evolution of the Standard Genetic Code (SGC) by assuming two evolutionary stages, to wit, the primeval RNY code and two intermediate codes in between. We used network theory and graph theory to measure the connectivity of each phenotypic graph. The connectivity values are compared to the values of the codes under different randomization scenarios. An error-correcting optimal code is one in which the algebraic connectivity is minimized. We show that the SGC is optimal in regard to its robustness and error-tolerance when compared to all random codes under different assumptions.

  6. Unsupervised active learning based on hierarchical graph-theoretic clustering.

    Science.gov (United States)

    Hu, Weiming; Hu, Wei; Xie, Nianhua; Maybank, Steve

    2009-10-01

    Most existing active learning approaches are supervised. Supervised active learning has the following problems: inefficiency in dealing with the semantic gap between the distribution of samples in the feature space and their labels, lack of ability in selecting new samples that belong to new categories that have not yet appeared in the training samples, and lack of adaptability to changes in the semantic interpretation of sample categories. To tackle these problems, we propose an unsupervised active learning framework based on hierarchical graph-theoretic clustering. In the framework, two promising graph-theoretic clustering algorithms, namely, dominant-set clustering and spectral clustering, are combined in a hierarchical fashion. Our framework has some advantages, such as ease of implementation, flexibility in architecture, and adaptability to changes in the labeling. Evaluations on data sets for network intrusion detection, image classification, and video classification have demonstrated that our active learning framework can effectively reduce the workload of manual classification while maintaining a high accuracy of automatic classification. It is shown that, overall, our framework outperforms the support-vector-machine-based supervised active learning, particularly in terms of dealing much more efficiently with new samples whose categories have not yet appeared in the training samples.

  7. Sampling frequency affects ActiGraph activity counts

    DEFF Research Database (Denmark)

    Brønd, Jan Christian; Arvidsson, Daniel

    that is normally performed at frequencies higher than 2.5 Hz. With the ActiGraph model GT3X one has the option to select sample frequency from 30 to 100 Hz. This study investigated the effect of the sampling frequency on the ouput of the bandpass filter.Methods: A synthetic frequency sweep of 0-15 Hz was generated...... in Matlab and sampled at frequencies of 30-100 Hz. Also, acceleration signals during indoor walking and running were sampled at 30 Hz using the ActiGraph GT3X and resampled in Matlab to frequencies of 40-100 Hz. All data was processed with the ActiLife software.Results: Acceleration frequencies between 5......-15 Hz escaped the bandpass filter when sampled at 40, 50, 70, 80 and 100 Hz, while this was not the case when sampled at 30, 60 and 90 Hz. During the ambulatory activities this artifact resultet in different activity count output from the ActiLife software with different sampling frequency...

  8. Fast Graph Partitioning Active Contours for Image Segmentation Using Histograms

    Directory of Open Access Journals (Sweden)

    Nath SumitK

    2009-01-01

    Full Text Available Abstract We present a method to improve the accuracy and speed, as well as significantly reduce the memory requirements, for the recently proposed Graph Partitioning Active Contours (GPACs algorithm for image segmentation in the work of Sumengen and Manjunath (2006. Instead of computing an approximate but still expensive dissimilarity matrix of quadratic size, , for a 2D image of size and regular image tiles of size , we use fixed length histograms and an intensity-based symmetric-centrosymmetric extensor matrix to jointly compute terms associated with the complete dissimilarity matrix. This computationally efficient reformulation of GPAC using a very small memory footprint offers two distinct advantages over the original implementation. It speeds up convergence of the evolving active contour and seamlessly extends performance of GPAC to multidimensional images.

  9. Undergraduate Student Construction and Interpretation of Graphs in Physics Lab Activities

    Science.gov (United States)

    Nixon, Ryan S.; Godfrey, T. J.; Mayhew, Nicholas T.; Wiegert, Craig C.

    2016-01-01

    Lab activities are an important element of an undergraduate physics course. In these lab activities, students construct and interpret graphs in order to connect the procedures of the lab with an understanding of the related physics concepts. This study investigated undergraduate students' construction and interpretation of graphs with best-fit…

  10. Structured sparse canonical correlation analysis for brain imaging genetics: an improved GraphNet method.

    Science.gov (United States)

    Du, Lei; Huang, Heng; Yan, Jingwen; Kim, Sungeun; Risacher, Shannon L; Inlow, Mark; Moore, Jason H; Saykin, Andrew J; Shen, Li

    2016-05-15

    Structured sparse canonical correlation analysis (SCCA) models have been used to identify imaging genetic associations. These models either use group lasso or graph-guided fused lasso to conduct feature selection and feature grouping simultaneously. The group lasso based methods require prior knowledge to define the groups, which limits the capability when prior knowledge is incomplete or unavailable. The graph-guided methods overcome this drawback by using the sample correlation to define the constraint. However, they are sensitive to the sign of the sample correlation, which could introduce undesirable bias if the sign is wrongly estimated. We introduce a novel SCCA model with a new penalty, and develop an efficient optimization algorithm. Our method has a strong upper bound for the grouping effect for both positively and negatively correlated features. We show that our method performs better than or equally to three competing SCCA models on both synthetic and real data. In particular, our method identifies stronger canonical correlations and better canonical loading patterns, showing its promise for revealing interesting imaging genetic associations. The Matlab code and sample data are freely available at http://www.iu.edu/∼shenlab/tools/angscca/ shenli@iu.edu Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  11. The Graph, Geometry and Symmetries of the Genetic Code with Hamming Metric

    Directory of Open Access Journals (Sweden)

    Reijer Lenstra

    2015-07-01

    Full Text Available The similarity patterns of the genetic code result from similar codons encoding similar messages. We develop a new mathematical model to analyze these patterns. The physicochemical characteristics of amino acids objectively quantify their differences and similarities; the Hamming metric does the same for the 64 codons of the codon set. (Hamming distances equal the number of different codon positions: AAA and AAC are at 1-distance; codons are maximally at 3-distance. The CodonPolytope, a 9-dimensional geometric object, is spanned by 64 vertices that represent the codons and the Euclidian distances between these vertices correspond one-to-one with intercodon Hamming distances. The CodonGraph represents the vertices and edges of the polytope; each edge equals a Hamming 1-distance. The mirror reflection symmetry group of the polytope is isomorphic to the largest permutation symmetry group of the codon set that preserves Hamming distances. These groups contain 82,944 symmetries. Many polytope symmetries coincide with the degeneracy and similarity patterns of the genetic code. These code symmetries are strongly related with the face structure of the polytope with smaller faces displaying stronger code symmetries. Splitting the polytope stepwise into smaller faces models an early evolution of the code that generates this hierarchy of code symmetries. The canonical code represents a class of 41,472 codes with equivalent symmetries; a single class among an astronomical number of symmetry classes comprising all possible codes.

  12. Learning about Science Graphs and Word Games. Superific Science Book V. A Good Apple Science Activity Book for Grades 5-8+.

    Science.gov (United States)

    Conway, Lorraine

    This packet of student materials contains a variety of worksheet activities dealing with science graphs and science word games. These reproducible materials deal with: (1) bar graphs; (2) line graphs; (3) circle graphs; (4) pictographs; (5) histograms; (6) artgraphs; (7) designing your own graphs; (8) medical prefixes; (9) color prefixes; (10)…

  13. EpiGeNet: A Graph Database of Interdependencies Between Genetic and Epigenetic Events in Colorectal Cancer.

    Science.gov (United States)

    Balaur, Irina; Saqi, Mansoor; Barat, Ana; Lysenko, Artem; Mazein, Alexander; Rawlings, Christopher J; Ruskin, Heather J; Auffray, Charles

    2017-10-01

    The development of colorectal cancer (CRC)-the third most common cancer type-has been associated with deregulations of cellular mechanisms stimulated by both genetic and epigenetic events. StatEpigen is a manually curated and annotated database, containing information on interdependencies between genetic and epigenetic signals, and specialized currently for CRC research. Although StatEpigen provides a well-developed graphical user interface for information retrieval, advanced queries involving associations between multiple concepts can benefit from more detailed graph representation of the integrated data. This can be achieved by using a graph database (NoSQL) approach. Data were extracted from StatEpigen and imported to our newly developed EpiGeNet, a graph database for storage and querying of conditional relationships between molecular (genetic and epigenetic) events observed at different stages of colorectal oncogenesis. We illustrate the enhanced capability of EpiGeNet for exploration of different queries related to colorectal tumor progression; specifically, we demonstrate the query process for (i) stage-specific molecular events, (ii) most frequently observed genetic and epigenetic interdependencies in colon adenoma, and (iii) paths connecting key genes reported in CRC and associated events. The EpiGeNet framework offers improved capability for management and visualization of data on molecular events specific to CRC initiation and progression.

  14. SIMULATION OF DRIVER’S LOCOMOTIVE-HANDLING ACTIVITY USING THE THEORY OF FUZZY GRAPHS

    Directory of Open Access Journals (Sweden)

    T. V. Butko

    2015-03-01

    Full Text Available Purpose. The efficiency and safety of locomotive control improving is important and relevant scientific and practical problem. Every driver during the trains-handling bases on his experience and knowledge, that is why the compilation and detection the most efficient ways to control the locomotive-handling is one of the stages of measures development to reduce transportation costs. The purpose of this paper is a formalization process description of locomotive-handling and quality parameters determination of this process. Methodology. In order to achieve this goal the theory of fuzzy probabilistic graphs was used. Vertices of the graph correspond to the events start and end operations at train-handling. The graph arcs describe operations on train-handling. Graph consists of thirteen peaks corresponding to the main control actions of the engine-driver. The weighting factors of transitions between vertices are assigned by fuzzy numbers. Their values were obtained by expert estimates. Fuzzy probabilities and transition time are presented as numbers with trapezoidal membership function. Findings. Using successive merging of parallel arcs, loops and vertices elimination, the equivalent fuzzy graph of train-handling and the corresponding L-matrix were obtained. Equivalent graph takes into account separately activity of the driver during normal operation and during emergency situations. Originality. The theoretical foundations of describing process formalization in driver’s locomotive-handling activity were developed using the fuzzy probabilistic graph. The parameters characterizing the decision-making process of engineer were obtained. Practical value. With the resulting model it is possible to estimate the available reserves for the quality improvement of locomotive-handling. Reduction in the time for decision-making will lead to the approximation the current mode of control to the rational one and decrease costs of hauling operations. And reduction

  15. Revised graphs of activation data for fusion reactor applications

    International Nuclear Information System (INIS)

    Seki, Yasushi; Kawasaki, Hiromitsu; Yamamuro, Nobuhiro; Iijima, Shungo.

    1991-06-01

    Activation data are required for calculation of induced activity in a fusion reactor. This report gives in graphical form, the activation data which have been evaluated based on recent measurements and calculations, for use in the activation calculation code system THIDA-2. It shows transmutation and decay chain data, activation cross sections and decay gamma-ray emission data for 152 nuclides of interest in terms of fusion reactor design. This report is an updated and enlarged version of a similar report compiled in 1982 for the activation data of 116 nuclides, which had been shown to be extremely effective in referring the activation data and in locating and correcting inappropriate data. (author)

  16. Active and passive spatial learning in human navigation: acquisition of graph knowledge.

    Science.gov (United States)

    Chrastil, Elizabeth R; Warren, William H

    2015-07-01

    It is known that active exploration of a new environment leads to better spatial learning than does passive visual exposure. We ask whether specific components of active learning differentially contribute to particular forms of spatial knowledge-the exploration-specific learning hypothesis. Previously, we found that idiothetic information during walking is the primary active contributor to metric survey knowledge (Chrastil & Warren, 2013). In this study, we test the contributions of 3 components to topological graph and route knowledge: visual information, idiothetic information, and cognitive decision making. Four groups of participants learned the locations of 8 objects in a virtual hedge maze by (a) walking or (b) watching a video, crossed with (1) either making decisions about their path or (2) being guided through the maze. Route and graph knowledge were assessed by walking in the maze corridors from a starting object to the remembered location of a test object, with frequent detours. Decision making during exploration significantly contributed to subsequent route finding in the walking condition, whereas idiothetic information did not. Participants took novel routes and the metrically shortest routes on the majority of both direct and barrier trials, indicating that labeled graph knowledge-not merely route knowledge-was acquired. We conclude that, consistent with the exploration-specific learning hypothesis, decision making is the primary component of active learning for the acquisition of topological graph knowledge, whereas idiothetic information is the primary component for metric survey knowledge. (c) 2015 APA, all rights reserved.

  17. Comparison of three generations of ActiGraph activity monitors under free-living conditions

    DEFF Research Database (Denmark)

    Grydeland, May; Hansen, Bjørge Herman; Ried-Larsen, M.

    2014-01-01

    .7%. The inter-generation differences varied in magnitude and direction across intensity levels, with the largest difference found in the highest intensities. CONCLUSION: We found that the ActiGraph model AM7164 yields higher outputs of mean physical activity intensity (mcpm) than the models GT1M and GT3X...

  18. Online Graphing Activity for Principles of Economics Courses

    OpenAIRE

    Oskar R. Harmon; James Lambrinos

    2010-01-01

    This paper describes how an online drawing program and bulletin board are used to create active learning activities for a principles of economics class. In the activity the student downloads an initial diagram that sets up a textbook principles scenario. The student uses an image-editing program to complete the diagram, so that it represents the outcome predicted in the textbook and posts it to a bulletin board. The tools for the activity: SumoPaint.com, and WikiSpaces.com; are free and avail...

  19. Biomechanical examination of the ‘plateau phenomenon’ in ActiGraph vertical activity counts

    International Nuclear Information System (INIS)

    John, Dinesh; Miller, Ross; Kozey-Keadle, Sarah; Caldwell, Graham; Freedson, Patty

    2012-01-01

    This paper determines if the leveling off (‘plateau/inverted-U’ phenomenon) of vertical ActiGraph activity counts during running at higher speeds is attributable to the monitor's signal filtering and acceleration detection characteristics. Ten endurance-trained male participants (mean (SD) age = 28.2 (4.7) years) walked at 3, 5 and 7 km h −1 , and ran at 8, 10, 12, 14, 16, 18 and 20 km h −1 on a force treadmill while wearing an ActiGraph GT3X monitor at the waist. Triaxial accelerations of the body's center of mass (CoM) and frequency content of these accelerations were computed from the force treadmill data. GT3X vertical activity counts demonstrated the expected ‘plateau/inverted-U’ phenomenon. In contrast, vertical CoM accelerations increased with increasing speed (1.32 ± 0.26 g at 10 km h −1 and 1.68 ± 0.24 g at 20 km h −1 ). The dominant frequency in the CoM acceleration signals increased with running speed (14.8 ± 3.2 Hz at 10 km h −1 and 24.8 ± 3.2 Hz at 20 km h −1 ) and lay beyond the ActiGraph band-pass filter (0.25 to 2.5 Hz) limits. In conclusion, CoM acceleration magnitudes during walking and running lie within the ActiGraph monitor's dynamic acceleration detecting capability. Acceleration signals of higher frequencies that are eliminated by the ActiGraph band-pass filter may be necessary to distinguish among exercise intensity at higher running speeds. (paper)

  20. Convergent validity of ActiGraph and Actical accelerometers for estimating physical activity in adults

    DEFF Research Database (Denmark)

    Duncan, Scott; Stewart, Tom; Bo Schneller, Mikkel

    2018-01-01

    PURPOSE: The aim of the present study was to examine the convergent validity of two commonly-used accelerometers for estimating time spent in various physical activity intensities in adults. METHODS: The sample comprised 37 adults (26 males) with a mean (SD) age of 37.6 (12.2) years from San Diego......, USA. Participants wore ActiGraph GT3X+ and Actical accelerometers for three consecutive days. Percent agreement was used to compare time spent within four physical activity intensity categories under three counts per minute (CPM) threshold protocols: (1) using thresholds developed specifically......Graph and Actical accelerometers provide significantly different estimates of time spent in various physical activity intensities. Regression and threshold adjustment were able to reduce these differences, although some level of non-agreement persisted. Researchers should be aware of the inherent limitations...

  1. Graph-based representation of behavior in detection and prediction of daily living activities.

    Science.gov (United States)

    Augustyniak, Piotr; Ślusarczyk, Grażyna

    2018-04-01

    Various surveillance systems capture signs of human activities of daily living (ADLs) and store multimodal information as time line behavioral records. In this paper, we present a novel approach to the analysis of a behavioral record used in a surveillance system designed for use in elderly smart homes. The description of a subject's activity is first decomposed into elementary poses - easily detectable by dedicated intelligent sensors - and represented by the share coefficients. Then, the activity is represented in the form of an attributed graph, where nodes correspond to elementary poses. As share coefficients of poses are expressed as attributes assigned to graph nodes, their change corresponding to a subject's action is represented by flow in graph edges. The behavioral record is thus a time series of graphs, which tiny size facilitates storage and management of long-term monitoring results. At the system learning stage, the contribution of elementary poses is accumulated, discretized and probability-ordered leading to a finite list representing the possible transitions between states. Such a list is independently built for each room in the supervised residence, and employed for assessment of the current action in the context of subject's habits and a room purpose. The proposed format of a behavioral record, applied to an adaptive surveillance system, is particularly advantageous for representing new activities not known at the setup stage, for providing a quantitative measure of transitions between poses and for expressing the difference between a predicted and actual action in a numerical way. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Object segmentation using graph cuts and active contours in a pyramidal framework

    Science.gov (United States)

    Subudhi, Priyambada; Mukhopadhyay, Susanta

    2018-03-01

    Graph cuts and active contours are two very popular interactive object segmentation techniques in the field of computer vision and image processing. However, both these approaches have their own well-known limitations. Graph cut methods perform efficiently giving global optimal segmentation result for smaller images. However, for larger images, huge graphs need to be constructed which not only takes an unacceptable amount of memory but also increases the time required for segmentation to a great extent. On the other hand, in case of active contours, initial contour selection plays an important role in the accuracy of the segmentation. So a proper selection of initial contour may improve the complexity as well as the accuracy of the result. In this paper, we have tried to combine these two approaches to overcome their above-mentioned drawbacks and develop a fast technique of object segmentation. Here, we have used a pyramidal framework and applied the mincut/maxflow algorithm on the lowest resolution image with the least number of seed points possible which will be very fast due to the smaller size of the image. Then, the obtained segmentation contour is super-sampled and and worked as the initial contour for the next higher resolution image. As the initial contour is very close to the actual contour, so fewer number of iterations will be required for the convergence of the contour. The process is repeated for all the high-resolution images and experimental results show that our approach is faster as well as memory efficient as compare to both graph cut or active contour segmentation alone.

  3. Subgraph detection using graph signals

    KAUST Repository

    Chepuri, Sundeep Prabhakar

    2017-03-06

    In this paper we develop statistical detection theory for graph signals. In particular, given two graphs, namely, a background graph that represents an usual activity and an alternative graph that represents some unusual activity, we are interested in answering the following question: To which of the two graphs does the observed graph signal fit the best? To begin with, we assume both the graphs are known, and derive an optimal Neyman-Pearson detector. Next, we derive a suboptimal detector for the case when the alternative graph is not known. The developed theory is illustrated with numerical experiments.

  4. Subgraph detection using graph signals

    KAUST Repository

    Chepuri, Sundeep Prabhakar; Leus, Geert

    2017-01-01

    In this paper we develop statistical detection theory for graph signals. In particular, given two graphs, namely, a background graph that represents an usual activity and an alternative graph that represents some unusual activity, we are interested in answering the following question: To which of the two graphs does the observed graph signal fit the best? To begin with, we assume both the graphs are known, and derive an optimal Neyman-Pearson detector. Next, we derive a suboptimal detector for the case when the alternative graph is not known. The developed theory is illustrated with numerical experiments.

  5. Student Use of Self-Data for Out-of-Class Graphing Activities Increases Student Engagement and Learning Outcomes†

    Science.gov (United States)

    DeBoy, Cynthia A.

    2017-01-01

    Two out-of-class graphing activities related to hormonal regulation of the reproductive cycle and stress responses are used to determine whether student use of self-data vs. provided data increases engagement, learning outcomes, and attitude changes. Comparisons of quizzes and surveys for students using self- vs. provided data suggest that while both activities increase learning outcomes, use of self-data compared with provided data has a greater impact on increasing learning outcomes, promotes recognition that hormones are relevant, and enhances confidence in graphing skills and graphing efficacy. PMID:29854057

  6. Genetic Algorithm and Graph Theory Based Matrix Factorization Method for Online Friend Recommendation

    Directory of Open Access Journals (Sweden)

    Qu Li

    2014-01-01

    Full Text Available Online friend recommendation is a fast developing topic in web mining. In this paper, we used SVD matrix factorization to model user and item feature vector and used stochastic gradient descent to amend parameter and improve accuracy. To tackle cold start problem and data sparsity, we used KNN model to influence user feature vector. At the same time, we used graph theory to partition communities with fairly low time and space complexity. What is more, matrix factorization can combine online and offline recommendation. Experiments showed that the hybrid recommendation algorithm is able to recommend online friends with good accuracy.

  7. Development of Kinematic Graphs of Median Nerve during Active Finger Motion: Implications of Smartphone Use.

    Directory of Open Access Journals (Sweden)

    Hoi-Chi Woo

    Full Text Available Certain hand activities cause deformation and displacement of the median nerve at the carpal tunnel due to the gliding motion of tendons surrounding it. As smartphone usage escalates, this raises the public's concern whether hand activities while using smartphones can lead to median nerve problems.The aims of this study were to 1 develop kinematic graphs and 2 investigate the associated deformation and rotational information of median nerve in the carpal tunnel during hand activities.Dominant wrists of 30 young adults were examined with ultrasonography by placing a transducer transversely on their wrist crease. Ultrasound video clips were recorded when the subject performing 1 thumb opposition with the wrist in neutral position, 2 thumb opposition with the wrist in ulnar deviation and 3 pinch grip with the wrist in neutral position. Six still images that were separated by 0.2-second intervals were then captured from the ultrasound video for the determination of 1 cross-sectional area (CSA, 2 flattening ratio (FR, 3 rotational displacement (RD and 4 translational displacement (TD of median nerve in the carpal tunnel, and these collected information of deformation, rotational and displacement of median nerve were compared between 1 two successive time points during a single hand activity and 2 different hand motions at the same time point. Finally, kinematic graphs were constructed to demonstrate the mobility of median nerve during different hand activities.Performing different hand activities during this study led to a gradual reduction in CSA of the median nerve, with thumb opposition together with the wrist in ulnar deviation causing the greatest extent of deformation of the median nerve. Thumb opposition with the wrist in ulnar deviation also led to the largest extent of TD when compared to the other two hand activities of this study. Kinematic graphs showed that the motion pathways of median nerve during different hand activities were complex

  8. Graph Aggregation

    NARCIS (Netherlands)

    Endriss, U.; Grandi, U.

    Graph aggregation is the process of computing a single output graph that constitutes a good compromise between several input graphs, each provided by a different source. One needs to perform graph aggregation in a wide variety of situations, e.g., when applying a voting rule (graphs as preference

  9. Optimization Route of Food Logistics Distribution Based on Genetic and Graph Cluster Scheme Algorithm

    OpenAIRE

    Jing Chen

    2015-01-01

    This study takes the concept of food logistics distribution as the breakthrough point, by means of the aim of optimization of food logistics distribution routes and analysis of the optimization model of food logistics route, as well as the interpretation of the genetic algorithm, it discusses the optimization of food logistics distribution route based on genetic and cluster scheme algorithm.

  10. Graph theory

    CERN Document Server

    Diestel, Reinhard

    2017-01-01

    This standard textbook of modern graph theory, now in its fifth edition, combines the authority of a classic with the engaging freshness of style that is the hallmark of active mathematics. It covers the core material of the subject with concise yet reliably complete proofs, while offering glimpses of more advanced methods in each field by one or two deeper results, again with proofs given in full detail. The book can be used as a reliable text for an introductory course, as a graduate text, and for self-study. From the reviews: “This outstanding book cannot be substituted with any other book on the present textbook market. It has every chance of becoming the standard textbook for graph theory.”Acta Scientiarum Mathematiciarum “Deep, clear, wonderful. This is a serious book about the heart of graph theory. It has depth and integrity. ”Persi Diaconis & Ron Graham, SIAM Review “The book has received a very enthusiastic reception, which it amply deserves. A masterly elucidation of modern graph theo...

  11. Introduction to graph theory

    CERN Document Server

    Wilson, Robin J

    1985-01-01

    Graph Theory has recently emerged as a subject in its own right, as well as being an important mathematical tool in such diverse subjects as operational research, chemistry, sociology and genetics. This book provides a comprehensive introduction to the subject.

  12. The Genetic Activity Profile database.

    Science.gov (United States)

    Waters, M D; Stack, H F; Garrett, N E; Jackson, M A

    1991-12-01

    A graphic approach termed a Genetic Activity Profile (GAP) has been developed to display a matrix of data on the genetic and related effects of selected chemical agents. The profiles provide a visual overview of the quantitative (doses) and qualitative (test results) data for each chemical. Either the lowest effective dose (LED) or highest ineffective dose (HID) is recorded for each agent and bioassay. Up to 200 different test systems are represented across the GAP. Bioassay systems are organized according to the phylogeny of the test organisms and the end points of genetic activity. The methodology for the production and evaluation of GAPs has been developed in collaboration with the International Agency for Research on Cancer. Data on individual chemicals have been compiled by IARC and by the U.S. Environmental Protection Agency. Data are available on 299 compounds selected from volumes 1-50 of the IARC Monographs and on 115 compounds identified as Superfund Priority Substances. Software to display the GAPs on an IBM-compatible personal computer is available from the authors. Structurally similar compounds frequently display qualitatively and quantitatively similar GAPs. By examining the patterns of GAPs of pairs and groups of chemicals, it is possible to make more informed decisions regarding the selection of test batteries to be used in evaluating chemical analogs. GAPs have provided useful data for the development of weight-of-evidence hazard ranking schemes. Also, some knowledge of the potential genetic activity of complex environmental mixtures may be gained from assessing the GAPs of component chemicals. The fundamental techniques and computer programs devised for the GAP database may be used to develop similar databases in other disciplines.

  13. Network clustering analysis using mixture exponential-family random graph models and its application in genetic interaction data.

    Science.gov (United States)

    Wang, Yishu; Zhao, Hongyu; Deng, Minghua; Fang, Huaying; Yang, Dejie

    2017-08-24

    Epistatic miniarrary profile (EMAP) studies have enabled the mapping of large-scale genetic interaction networks and generated large amounts of data in model organisms. It provides an incredible set of molecular tools and advanced technologies that should be efficiently understanding the relationship between the genotypes and phenotypes of individuals. However, the network information gained from EMAP cannot be fully exploited using the traditional statistical network models. Because the genetic network is always heterogeneous, for example, the network structure features for one subset of nodes are different from those of the left nodes. Exponentialfamily random graph models (ERGMs) are a family of statistical models, which provide a principled and flexible way to describe the structural features (e.g. the density, centrality and assortativity) of an observed network. However, the single ERGM is not enough to capture this heterogeneity of networks. In this paper, we consider a mixture ERGM (MixtureEGRM) networks, which model a network with several communities, where each community is described by a single EGRM.

  14. Graph sampling

    OpenAIRE

    Zhang, L.-C.; Patone, M.

    2017-01-01

    We synthesise the existing theory of graph sampling. We propose a formal definition of sampling in finite graphs, and provide a classification of potential graph parameters. We develop a general approach of Horvitz–Thompson estimation to T-stage snowball sampling, and present various reformulations of some common network sampling methods in the literature in terms of the outlined graph sampling theory.

  15. Graph spectrum

    NARCIS (Netherlands)

    Brouwer, A.E.; Haemers, W.H.; Brouwer, A.E.; Haemers, W.H.

    2012-01-01

    This chapter presents some simple results on graph spectra.We assume the reader is familiar with elementary linear algebra and graph theory. Throughout, J will denote the all-1 matrix, and 1 is the all-1 vector.

  16. Medical Image Segmentation by Combining Graph Cut and Oriented Active Appearance Models

    Science.gov (United States)

    Chen, Xinjian; Udupa, Jayaram K.; Bağcı, Ulaş; Zhuge, Ying; Yao, Jianhua

    2017-01-01

    In this paper, we propose a novel 3D segmentation method based on the effective combination of the active appearance model (AAM), live wire (LW), and graph cut (GC). The proposed method consists of three main parts: model building, initialization, and segmentation. In the model building part, we construct the AAM and train the LW cost function and GC parameters. In the initialization part, a novel algorithm is proposed for improving the conventional AAM matching method, which effectively combines the AAM and LW method, resulting in Oriented AAM (OAAM). A multi-object strategy is utilized to help in object initialization. We employ a pseudo-3D initialization strategy, and segment the organs slice by slice via multi-object OAAM method. For the segmentation part, a 3D shape constrained GC method is proposed. The object shape generated from the initialization step is integrated into the GC cost computation, and an iterative GC-OAAM method is used for object delineation. The proposed method was tested in segmenting the liver, kidneys, and spleen on a clinical CT dataset and also tested on the MICCAI 2007 grand challenge for liver segmentation training dataset. The results show the following: (a) An overall segmentation accuracy of true positive volume fraction (TPVF) > 94.3%, false positive volume fraction (FPVF) wordpress.com/research/. PMID:22311862

  17. Equipackable graphs

    DEFF Research Database (Denmark)

    Vestergaard, Preben Dahl; Hartnell, Bert L.

    2006-01-01

    There are many results dealing with the problem of decomposing a fixed graph into isomorphic subgraphs. There has also been work on characterizing graphs with the property that one can delete the edges of a number of edge disjoint copies of the subgraph and, regardless of how that is done, the gr...

  18. Medical image segmentation by combining graph cuts and oriented active appearance models.

    Science.gov (United States)

    Chen, Xinjian; Udupa, Jayaram K; Bagci, Ulas; Zhuge, Ying; Yao, Jianhua

    2012-04-01

    In this paper, we propose a novel method based on a strategic combination of the active appearance model (AAM), live wire (LW), and graph cuts (GCs) for abdominal 3-D organ segmentation. The proposed method consists of three main parts: model building, object recognition, and delineation. In the model building part, we construct the AAM and train the LW cost function and GC parameters. In the recognition part, a novel algorithm is proposed for improving the conventional AAM matching method, which effectively combines the AAM and LW methods, resulting in the oriented AAM (OAAM). A multiobject strategy is utilized to help in object initialization. We employ a pseudo-3-D initialization strategy and segment the organs slice by slice via a multiobject OAAM method. For the object delineation part, a 3-D shape-constrained GC method is proposed. The object shape generated from the initialization step is integrated into the GC cost computation, and an iterative GC-OAAM method is used for object delineation. The proposed method was tested in segmenting the liver, kidneys, and spleen on a clinical CT data set and also on the MICCAI 2007 Grand Challenge liver data set. The results show the following: 1) The overall segmentation accuracy of true positive volume fraction TPVF > 94.3% and false positive volume fraction can be achieved; 2) the initialization performance can be improved by combining the AAM and LW; 3) the multiobject strategy greatly facilitates initialization; 4) compared with the traditional 3-D AAM method, the pseudo-3-D OAAM method achieves comparable performance while running 12 times faster; and 5) the performance of the proposed method is comparable to state-of-the-art liver segmentation algorithm. The executable version of the 3-D shape-constrained GC method with a user interface can be downloaded from http://xinjianchen.wordpress.com/research/.

  19. Invited commentary: Physical activity, mortality, and genetics.

    Science.gov (United States)

    Rankinen, Tuomo; Bouchard, Claude

    2007-08-01

    The importance of regular physical activity to human health has been recognized for a long time, and a physically active lifestyle is now defined as a major component of public health policies. The independent contribution of regular physical activity to lower morbidity and mortality rates is generally accepted, and the biologic mechanisms mediating these health effects are actively investigated. A few years ago, data from the Finnish Twin Registry suggested that genetic selection may account for some of the physical-activity-related benefits on mortality rates. However, results from the Swedish Twin Registry study reported by Carlsson et al. in the current issue of the Journal (Am J Epidemiol 2007;166:255-259) do not support the genetic selection hypothesis. In this commentary, the authors review the nature of the associations among physical activity level, fitness, and longevity, with special reference to the role of human genetic variation, and discuss potential reasons for different outcomes of these large twin studies.

  20. Agreement between activPAL and ActiGraph for assessing children's sedentary time

    Directory of Open Access Journals (Sweden)

    Ridgers Nicola D

    2012-02-01

    Full Text Available Abstract Background Accelerometers have been used to determine the amount of time that children spend sedentary. However, as time spent sitting may be detrimental to health, research is needed to examine whether accelerometer sedentary cut-points reflect the amount of time children spend sitting. The aim of this study was to: a examine agreement between ActiGraph (AG cut-points for sedentary time and objectively-assessed periods of free-living sitting and sitting plus standing time using the activPAL (aP; and b identify cut-points to determine time spent sitting and sitting plus standing. Methods Forty-eight children (54% boys aged 8-12 years wore a waist-mounted AG and thigh-mounted aP for two consecutive school days (9-3:30 pm. AG data were analyzed using 17 cut-points between 50-850 counts·min-1 in 50 counts·min-1 increments to determine sedentary time during class-time, break time and school hours. Sitting and sitting plus standing time were obtained from the aP for these periods. Limits of agreement were computed to evaluate bias between AG50 to AG850 sedentary time and sitting and sitting plus standing time. Receiver Operator Characteristic (ROC analyses identified AG cut-points that maximized sensitivity and specificity for sitting and sitting plus standing time. Results The smallest mean bias between aP sitting time and AG sedentary time was AG150 for class time (3.8 minutes, AG50 for break time (-0.8 minutes, and AG100 for school hours (-5.2 minutes. For sitting plus standing time, the smallest bias was observed for AG850. ROC analyses revealed an optimal cut-point of 96 counts·min-1 (AUC = 0.75 for sitting time, which had acceptable sensitivity (71.7% and specificity (67.8%. No optimal cut-point was obtained for sitting plus standing (AUC = 0.51. Conclusions Estimates of free-living sitting time in children during school hours can be obtained using an AG cut-point of 100 counts·min-1. Higher sedentary cut-points may capture both

  1. Estimating Physical Activity and Sedentary Behavior in a Free-Living Context: A Pragmatic Comparison of Consumer-Based Activity Trackers and ActiGraph Accelerometry.

    Science.gov (United States)

    Gomersall, Sjaan R; Ng, Norman; Burton, Nicola W; Pavey, Toby G; Gilson, Nicholas D; Brown, Wendy J

    2016-09-07

    Activity trackers are increasingly popular with both consumers and researchers for monitoring activity and for promoting positive behavior change. However, there is a lack of research investigating the performance of these devices in free-living contexts, for which findings are likely to vary from studies conducted in well-controlled laboratory settings. The aim was to compare Fitbit One and Jawbone UP estimates of steps, moderate-to-vigorous physical activity (MVPA), and sedentary behavior with data from the ActiGraph GT3X+ accelerometer in a free-living context. Thirty-two participants were recruited using convenience sampling; 29 provided valid data for this study (female: 90%, 26/29; age: mean 39.6, SD 11.0 years). On two occasions for 7 days each, participants wore an ActiGraph GT3X+ accelerometer on their right hip and either a hip-worn Fitbit One (n=14) or wrist-worn Jawbone UP (n=15) activity tracker. Daily estimates of steps and very active minutes were derived from the Fitbit One (n=135 days) and steps, active time, and longest idle time from the Jawbone UP (n=154 days). Daily estimates of steps, MVPA, and longest sedentary bout were derived from the corresponding days of ActiGraph data. Correlation coefficients and Bland-Altman plots with examination of systematic bias were used to assess convergent validity and agreement between the devices and the ActiGraph. Cohen's kappa was used to assess the agreement between each device and the ActiGraph for classification of active versus inactive (≥10,000 steps per day and ≥30 min/day of MVPA) comparable with public health guidelines. Correlations with ActiGraph estimates of steps and MVPA ranged between .72 and .90 for Fitbit One and .56 and .75 for Jawbone UP. Compared with ActiGraph estimates, both devices overestimated daily steps by 8% (Fitbit One) and 14% (Jawbone UP). However, mean differences were larger for daily MVPA (Fitbit One: underestimated by 46%; Jawbone UP: overestimated by 50%). There was

  2. Interaction graphs

    DEFF Research Database (Denmark)

    Seiller, Thomas

    2016-01-01

    Interaction graphs were introduced as a general, uniform, construction of dynamic models of linear logic, encompassing all Geometry of Interaction (GoI) constructions introduced so far. This series of work was inspired from Girard's hyperfinite GoI, and develops a quantitative approach that should...... be understood as a dynamic version of weighted relational models. Until now, the interaction graphs framework has been shown to deal with exponentials for the constrained system ELL (Elementary Linear Logic) while keeping its quantitative aspect. Adapting older constructions by Girard, one can clearly define...... "full" exponentials, but at the cost of these quantitative features. We show here that allowing interpretations of proofs to use continuous (yet finite in a measure-theoretic sense) sets of states, as opposed to earlier Interaction Graphs constructions were these sets of states were discrete (and finite...

  3. Introduction to graph theory

    CERN Document Server

    Trudeau, Richard J

    1994-01-01

    Preface1. Pure Mathematics Introduction; Euclidean Geometry as Pure Mathematics; Games; Why Study Pure Mathematics?; What's Coming; Suggested Reading2. Graphs Introduction; Sets; Paradox; Graphs; Graph diagrams; Cautions; Common Graphs; Discovery; Complements and Subgraphs; Isomorphism; Recognizing Isomorphic Graphs; Semantics The Number of Graphs Having a Given nu; Exercises; Suggested Reading3. Planar Graphs Introduction; UG, K subscript 5, and the Jordan Curve Theorem; Are there More Nonplanar Graphs?; Expansions; Kuratowski's Theorem; Determining Whether a Graph is Planar or

  4. Graph theory

    CERN Document Server

    Gould, Ronald

    2012-01-01

    This introduction to graph theory focuses on well-established topics, covering primary techniques and including both algorithmic and theoretical problems. The algorithms are presented with a minimum of advanced data structures and programming details. This thoroughly corrected 1988 edition provides insights to computer scientists as well as advanced undergraduates and graduate students of topology, algebra, and matrix theory. Fundamental concepts and notation and elementary properties and operations are the first subjects, followed by examinations of paths and searching, trees, and networks. S

  5. Graphs & digraphs

    CERN Document Server

    Chartrand, Gary; Zhang, Ping

    2010-01-01

    Gary Chartrand has influenced the world of Graph Theory for almost half a century. He has supervised more than a score of Ph.D. dissertations and written several books on the subject. The most widely known of these texts, Graphs and Digraphs, … has much to recommend it, with clear exposition, and numerous challenging examples [that] make it an ideal textbook for the advanced undergraduate or beginning graduate course. The authors have updated their notation to reflect the current practice in this still-growing area of study. By the authors' estimation, the 5th edition is approximately 50% longer than the 4th edition. … the legendary Frank Harary, author of the second graph theory text ever produced, is one of the figures profiled. His book was the standard in the discipline for several decades. Chartrand, Lesniak and Zhang have produced a worthy successor.-John T. Saccoman, MAA Reviews, June 2012 (This book is in the MAA's basic library list.)As with the earlier editions, the current text emphasizes clear...

  6. Tracing the Construction of Mathematical Activity with an Advanced Graphing Calculator to Understand the Roles of Technology Developers, Teachers and Students

    Science.gov (United States)

    Hillman, Thomas

    2014-01-01

    This article examines mathematical activity with digital technology by tracing it from its development through its use in classrooms. Drawing on material-semiotic approaches from the field of Science and Technology Studies, it examines the visions of mathematical activity that developers had for an advanced graphing calculator. It then follows the…

  7. Validation of Physical Activity Tracking via Android Smartphones Compared to ActiGraph Accelerometer: Laboratory-Based and Free-Living Validation Studies.

    Science.gov (United States)

    Hekler, Eric B; Buman, Matthew P; Grieco, Lauren; Rosenberger, Mary; Winter, Sandra J; Haskell, William; King, Abby C

    2015-04-15

    There is increasing interest in using smartphones as stand-alone physical activity monitors via their built-in accelerometers, but there is presently limited data on the validity of this approach. The purpose of this work was to determine the validity and reliability of 3 Android smartphones for measuring physical activity among midlife and older adults. A laboratory (study 1) and a free-living (study 2) protocol were conducted. In study 1, individuals engaged in prescribed activities including sedentary (eg, sitting), light (sweeping), moderate (eg, walking 3 mph on a treadmill), and vigorous (eg, jogging 5 mph on a treadmill) activity over a 2-hour period wearing both an ActiGraph and 3 Android smartphones (ie, HTC MyTouch, Google Nexus One, and Motorola Cliq). In the free-living study, individuals engaged in usual daily activities over 7 days while wearing an Android smartphone (Google Nexus One) and an ActiGraph. Study 1 included 15 participants (age: mean 55.5, SD 6.6 years; women: 56%, 8/15). Correlations between the ActiGraph and the 3 phones were strong to very strong (ρ=.77-.82). Further, after excluding bicycling and standing, cut-point derived classifications of activities yielded a high percentage of activities classified correctly according to intensity level (eg, 78%-91% by phone) that were similar to the ActiGraph's percent correctly classified (ie, 91%). Study 2 included 23 participants (age: mean 57.0, SD 6.4 years; women: 74%, 17/23). Within the free-living context, results suggested a moderate correlation (ie, ρ=.59, PAndroid smartphone can provide comparable estimates of physical activity to an ActiGraph in both a laboratory-based and free-living context for estimating sedentary and MVPA and that different Android smartphones may reliably confer similar estimates.

  8. Left-ventricle segmentation in real-time 3D echocardiography using a hybrid active shape model and optimal graph search approach

    Science.gov (United States)

    Zhang, Honghai; Abiose, Ademola K.; Campbell, Dwayne N.; Sonka, Milan; Martins, James B.; Wahle, Andreas

    2010-03-01

    Quantitative analysis of the left ventricular shape and motion patterns associated with left ventricular mechanical dyssynchrony (LVMD) is essential for diagnosis and treatment planning in congestive heart failure. Real-time 3D echocardiography (RT3DE) used for LVMD analysis is frequently limited by heavy speckle noise or partially incomplete data, thus a segmentation method utilizing learned global shape knowledge is beneficial. In this study, the endocardial surface of the left ventricle (LV) is segmented using a hybrid approach combining active shape model (ASM) with optimal graph search. The latter is used to achieve landmark refinement in the ASM framework. Optimal graph search translates the 3D segmentation into the detection of a minimum-cost closed set in a graph and can produce a globally optimal result. Various information-gradient, intensity distributions, and regional-property terms-are used to define the costs for the graph search. The developed method was tested on 44 RT3DE datasets acquired from 26 LVMD patients. The segmentation accuracy was assessed by surface positioning error and volume overlap measured for the whole LV as well as 16 standard LV regions. The segmentation produced very good results that were not achievable using ASM or graph search alone.

  9. Chromatic graph theory

    CERN Document Server

    Chartrand, Gary; Rosen, Kenneth H

    2008-01-01

    Beginning with the origin of the four color problem in 1852, the field of graph colorings has developed into one of the most popular areas of graph theory. Introducing graph theory with a coloring theme, Chromatic Graph Theory explores connections between major topics in graph theory and graph colorings as well as emerging topics. This self-contained book first presents various fundamentals of graph theory that lie outside of graph colorings, including basic terminology and results, trees and connectivity, Eulerian and Hamiltonian graphs, matchings and factorizations, and graph embeddings. The remainder of the text deals exclusively with graph colorings. It covers vertex colorings and bounds for the chromatic number, vertex colorings of graphs embedded on surfaces, and a variety of restricted vertex colorings. The authors also describe edge colorings, monochromatic and rainbow edge colorings, complete vertex colorings, several distinguishing vertex and edge colorings, and many distance-related vertex coloring...

  10. Using Graph Components Derived from an Associative Concept Dictionary to Predict fMRI Neural Activation Patterns that Represent the Meaning of Nouns.

    Directory of Open Access Journals (Sweden)

    Hiroyuki Akama

    Full Text Available In this study, we introduce an original distance definition for graphs, called the Markov-inverse-F measure (MiF. This measure enables the integration of classical graph theory indices with new knowledge pertaining to structural feature extraction from semantic networks. MiF improves the conventional Jaccard and/or Simpson indices, and reconciles both the geodesic information (random walk and co-occurrence adjustment (degree balance and distribution. We measure the effectiveness of graph-based coefficients through the application of linguistic graph information for a neural activity recorded during conceptual processing in the human brain. Specifically, the MiF distance is computed between each of the nouns used in a previous neural experiment and each of the in-between words in a subgraph derived from the Edinburgh Word Association Thesaurus of English. From the MiF-based information matrix, a machine learning model can accurately obtain a scalar parameter that specifies the degree to which each voxel in (the MRI image of the brain is activated by each word or each principal component of the intermediate semantic features. Furthermore, correlating the voxel information with the MiF-based principal components, a new computational neurolinguistics model with a network connectivity paradigm is created. This allows two dimensions of context space to be incorporated with both semantic and neural distributional representations.

  11. Semantic graphs and associative memories

    Science.gov (United States)

    Pomi, Andrés; Mizraji, Eduardo

    2004-12-01

    Graphs have been increasingly utilized in the characterization of complex networks from diverse origins, including different kinds of semantic networks. Human memories are associative and are known to support complex semantic nets; these nets are represented by graphs. However, it is not known how the brain can sustain these semantic graphs. The vision of cognitive brain activities, shown by modern functional imaging techniques, assigns renewed value to classical distributed associative memory models. Here we show that these neural network models, also known as correlation matrix memories, naturally support a graph representation of the stored semantic structure. We demonstrate that the adjacency matrix of this graph of associations is just the memory coded with the standard basis of the concept vector space, and that the spectrum of the graph is a code invariant of the memory. As long as the assumptions of the model remain valid this result provides a practical method to predict and modify the evolution of the cognitive dynamics. Also, it could provide us with a way to comprehend how individual brains that map the external reality, almost surely with different particular vector representations, are nevertheless able to communicate and share a common knowledge of the world. We finish presenting adaptive association graphs, an extension of the model that makes use of the tensor product, which provides a solution to the known problem of branching in semantic nets.

  12. Physical Activity Assessment with the ActiGraph GT3X and Doubly Labeled Water.

    Science.gov (United States)

    Chomistek, Andrea K; Yuan, Changzheng; Matthews, Charles E; Troiano, Richard P; Bowles, Heather R; Rood, Jennifer; Barnett, Junaidah B; Willett, Walter C; Rimm, Eric B; Bassett, David R

    2017-09-01

    To compare the degree to which four accelerometer metrics-total activity counts per day (TAC per day), steps per day (steps per day), physical activity energy expenditure (PAEE) (kcal·kg·d), and moderate- to vigorous-intensity physical activity (MVPA) (min·d)-were correlated with PAEE measured by doubly labeled water (DLW). Additionally, accelerometer metrics based on vertical axis counts and triaxial counts were compared. This analysis included 684 women and 611 men age 43 to 83 yr. Participants wore the Actigraph GT3X on the hip for 7 d twice during the study and the average of the two measurements was used. Each participant also completed one DLW measurement, with a subset having a repeat. PAEE was estimated by subtracting resting metabolic rate and the thermic effect of food from total daily energy expenditure estimated by DLW. Partial Spearman correlations were used to estimate associations between PAEE and each accelerometer metric. Correlations between the accelerometer metrics and DLW-determined PAEE were higher for triaxial counts than vertical axis counts. After adjusting for weight, age, accelerometer wear time, and fat free mass, the correlation between TAC per day based on triaxial counts and DLW-determined PAEE was 0.44 in women and 0.41 in men. Correlations for steps per day and accelerometer-estimated PAEE with DLW-determined PAEE were similar. After adjustment for within-person variation in DLW-determined PAEE, the correlations for TAC per day increased to 0.61 and 0.49, respectively. Correlations between MVPA and DLW-determined PAEE were lower, particularly for modified bouts of ≥10 min. Accelerometer measures that represent total activity volume, including TAC per day, steps per day, and PAEE, were more highly correlated with DLW-determined PAEE than MVPA using traditional thresholds and should be considered by researchers seeking to reduce accelerometer data to a single metric.

  13. Excellence in Physics Education Award Talk: Curriculum Development for Active Learning using Real Time Graphing and Data Collection Tools

    Science.gov (United States)

    Laws, Priscilla

    2010-02-01

    In June 1986 Ronald Thornton (at the Tufts University Center for Science and Mathematics Teaching) and Priscilla Laws (at Dickinson College) applied independently for grants to develop curricular materials based on both the outcomes of Physics Education Research and the use of Microcomputer Based Laboratory Tools (MBL) developed by Robert Tinker, Ron Thornton and others at Technical Education Research Centers (TERC). Thornton proposed to develop a series of Tools for Scientific Thinking (TST) laboratory exercises to address known learning difficulties using carefully sequenced MBL observations. These TST laboratories were to be beta tested at several types of institutions. Laws proposed to develop a Workshop Physics Activity Guide for a 2 semester calculus-based introductory course sequence centering on MBL-based guided inquiry. Workshop Physics was to be designed to replace traditional lectures and separate labs in relatively small classes and was to be tested at Dickinson College. In September 1986 a project officer at the Fund for Post-Secondary Education (FIPSE) awarded grants to Laws and Thornton provided that they would collaborate. David Sokoloff (at the University of Oregon) joined Thornton to develop and test the TST laboratories. This talk will describe the 23 year collaboration between Thornton, Laws, and Sokoloff that led to the development of a suite of Activity Based Physics curricular materials, new apparatus and enhanced computer tools for real time graphing, data collection and mathematical modeling. The Suite includes TST Labs, the Workshop Physics Activity Guide, RealTime Physics Laboratory Modules, and a series of Interactive Lecture Demonstrations. A textbook and a guide to using the Suite were also developed. The vital importance of obtaining continued grant support, doing continuous research on student learning, collaborating with instructors at other institutions, and forging relationships with vendors and publishers will be described. )

  14. Graph visualization (Invited talk)

    NARCIS (Netherlands)

    Wijk, van J.J.; Kreveld, van M.J.; Speckmann, B.

    2012-01-01

    Black and white node link diagrams are the classic method to depict graphs, but these often fall short to give insight in large graphs or when attributes of nodes and edges play an important role. Graph visualization aims obtaining insight in such graphs using interactive graphical representations.

  15. Pragmatic Graph Rewriting Modifications

    OpenAIRE

    Rodgers, Peter; Vidal, Natalia

    1999-01-01

    We present new pragmatic constructs for easing programming in visual graph rewriting programming languages. The first is a modification to the rewriting process for nodes the host graph, where nodes specified as 'Once Only' in the LHS of a rewrite match at most once with a corresponding node in the host graph. This reduces the previously common use of tags to indicate the progress of matching in the graph. The second modification controls the application of LHS graphs, where those specified a...

  16. Public health genetic counselors: activities, skills, and sources of learning.

    Science.gov (United States)

    McWalter, Kirsty M; Sdano, Mallory R; Dave, Gaurav; Powell, Karen P; Callanan, Nancy

    2015-06-01

    Specialization within genetic counseling is apparent, with 29 primary specialties listed in the National Society of Genetic Counselors' 2012 Professional Status Survey (PSS). PSS results show a steady proportion of genetic counselors primarily involved in public health, yet do not identify all those performing public health activities. Little is known about the skills needed to perform activities outside of "traditional" genetic counselor roles and the expertise needed to execute those skills. This study aimed to identify genetic counselors engaging in public health activities, the skills used, and the most influential sources of learning for those skills. Participants (N = 155) reported involvement in several public health categories: (a) Education of Public and/or Health Care Providers (n = 80, 52 %), (b) Population-Based Screening Programs (n = 70, 45 %), (c) Lobbying/Public Policy (n = 62, 40 %), (d) Public Health Related Research (n = 47, 30 %), and (e) State Chronic Disease Programs (n = 12, 8 %). Regardless of category, "on the job" was the most common primary source of learning. Genetic counseling training program was the most common secondary source of learning. Results indicate that the number of genetic counselors performing public health activities is likely higher than PSS reports, and that those who may not consider themselves "public health genetic counselors" do participate in public health activities. Genetic counselors learn a diverse skill set in their training programs; some skills are directly applicable to public health genetics, while other public health skills require additional training and/or knowledge.

  17. Graphs and matrices

    CERN Document Server

    Bapat, Ravindra B

    2014-01-01

    This new edition illustrates the power of linear algebra in the study of graphs. The emphasis on matrix techniques is greater than in other texts on algebraic graph theory. Important matrices associated with graphs (for example, incidence, adjacency and Laplacian matrices) are treated in detail. Presenting a useful overview of selected topics in algebraic graph theory, early chapters of the text focus on regular graphs, algebraic connectivity, the distance matrix of a tree, and its generalized version for arbitrary graphs, known as the resistance matrix. Coverage of later topics include Laplacian eigenvalues of threshold graphs, the positive definite completion problem and matrix games based on a graph. Such an extensive coverage of the subject area provides a welcome prompt for further exploration. The inclusion of exercises enables practical learning throughout the book. In the new edition, a new chapter is added on the line graph of a tree, while some results in Chapter 6 on Perron-Frobenius theory are reo...

  18. Adaptive Graph Convolutional Neural Networks

    OpenAIRE

    Li, Ruoyu; Wang, Sheng; Zhu, Feiyun; Huang, Junzhou

    2018-01-01

    Graph Convolutional Neural Networks (Graph CNNs) are generalizations of classical CNNs to handle graph data such as molecular data, point could and social networks. Current filters in graph CNNs are built for fixed and shared graph structure. However, for most real data, the graph structures varies in both size and connectivity. The paper proposes a generalized and flexible graph CNN taking data of arbitrary graph structure as input. In that way a task-driven adaptive graph is learned for eac...

  19. On middle cube graphs

    Directory of Open Access Journals (Sweden)

    C. Dalfo

    2015-10-01

    Full Text Available We study a family of graphs related to the $n$-cube. The middle cube graph of parameter k is the subgraph of $Q_{2k-1}$ induced by the set of vertices whose binary representation has either $k-1$ or $k$ number of ones. The middle cube graphs can be obtained from the well-known odd graphs by doubling their vertex set. Here we study some of the properties of the middle cube graphs in the light of the theory of distance-regular graphs. In particular, we completely determine their spectra (eigenvalues and their multiplicities, and associated eigenvectors.

  20. Total colourings of graphs

    CERN Document Server

    Yap, Hian-Poh

    1996-01-01

    This book provides an up-to-date and rapid introduction to an important and currently active topic in graph theory. The author leads the reader to the forefront of research in this area. Complete and easily readable proofs of all the main theorems, together with numerous examples, exercises and open problems are given. The book is suitable for use as a textbook or as seminar material for advanced undergraduate and graduate students. The references are comprehensive and so it will also be useful for researchers as a handbook.

  1. Chemical Graph Transformation with Stereo-Information

    DEFF Research Database (Denmark)

    Andersen, Jakob Lykke; Flamm, Christoph; Merkle, Daniel

    2017-01-01

    Double Pushout graph transformation naturally facilitates the modelling of chemical reactions: labelled undirected graphs model molecules and direct derivations model chemical reactions. However, the most straightforward modelling approach ignores the relative placement of atoms and their neighbo......Double Pushout graph transformation naturally facilitates the modelling of chemical reactions: labelled undirected graphs model molecules and direct derivations model chemical reactions. However, the most straightforward modelling approach ignores the relative placement of atoms...... and their neighbours in space. Stereoisomers of chemical compounds thus cannot be distinguished, even though their chemical activity may differ substantially. In this contribution we propose an extended chemical graph transformation system with attributes that encode information about local geometry. The modelling...... of graph transformation, but we here propose a framework that also allows for partially specified stereoinformation. While there are several stereochemical configurations to be considered, we focus here on the tetrahedral molecular shape, and suggest general principles for how to treat all other chemically...

  2. Graph algorithms in the titan toolkit.

    Energy Technology Data Exchange (ETDEWEB)

    McLendon, William Clarence, III; Wylie, Brian Neil

    2009-10-01

    Graph algorithms are a key component in a wide variety of intelligence analysis activities. The Graph-Based Informatics for Non-Proliferation and Counter-Terrorism project addresses the critical need of making these graph algorithms accessible to Sandia analysts in a manner that is both intuitive and effective. Specifically we describe the design and implementation of an open source toolkit for doing graph analysis, informatics, and visualization that provides Sandia with novel analysis capability for non-proliferation and counter-terrorism.

  3. Price competition on graphs

    NARCIS (Netherlands)

    Soetevent, A.R.

    2010-01-01

    This paper extends Hotelling's model of price competition with quadratic transportation costs from a line to graphs. I propose an algorithm to calculate firm-level demand for any given graph, conditional on prices and firm locations. One feature of graph models of price competition is that spatial

  4. Graphing Inequalities, Connecting Meaning

    Science.gov (United States)

    Switzer, J. Matt

    2014-01-01

    Students often have difficulty with graphing inequalities (see Filloy, Rojano, and Rubio 2002; Drijvers 2002), and J. Matt Switzer's students were no exception. Although students can produce graphs for simple inequalities, they often struggle when the format of the inequality is unfamiliar. Even when producing a correct graph of an…

  5. Similarity Measure of Graphs

    Directory of Open Access Journals (Sweden)

    Amine Labriji

    2017-07-01

    Full Text Available The topic of identifying the similarity of graphs was considered as highly recommended research field in the Web semantic, artificial intelligence, the shape recognition and information research. One of the fundamental problems of graph databases is finding similar graphs to a graph query. Existing approaches dealing with this problem are usually based on the nodes and arcs of the two graphs, regardless of parental semantic links. For instance, a common connection is not identified as being part of the similarity of two graphs in cases like two graphs without common concepts, the measure of similarity based on the union of two graphs, or the one based on the notion of maximum common sub-graph (SCM, or the distance of edition of graphs. This leads to an inadequate situation in the context of information research. To overcome this problem, we suggest a new measure of similarity between graphs, based on the similarity measure of Wu and Palmer. We have shown that this new measure satisfies the properties of a measure of similarities and we applied this new measure on examples. The results show that our measure provides a run time with a gain of time compared to existing approaches. In addition, we compared the relevance of the similarity values obtained, it appears that this new graphs measure is advantageous and  offers a contribution to solving the problem mentioned above.

  6. Distance-regular graphs

    NARCIS (Netherlands)

    van Dam, Edwin R.; Koolen, Jack H.; Tanaka, Hajime

    2016-01-01

    This is a survey of distance-regular graphs. We present an introduction to distance-regular graphs for the reader who is unfamiliar with the subject, and then give an overview of some developments in the area of distance-regular graphs since the monograph 'BCN'[Brouwer, A.E., Cohen, A.M., Neumaier,

  7. Fuzzy Graph Language Recognizability

    OpenAIRE

    Kalampakas , Antonios; Spartalis , Stefanos; Iliadis , Lazaros

    2012-01-01

    Part 5: Fuzzy Logic; International audience; Fuzzy graph language recognizability is introduced along the lines of the established theory of syntactic graph language recognizability by virtue of the algebraic structure of magmoids. The main closure properties of the corresponding class are investigated and several interesting examples of fuzzy graph languages are examined.

  8. Spectra of Graphs

    NARCIS (Netherlands)

    Brouwer, A.E.; Haemers, W.H.

    2012-01-01

    This book gives an elementary treatment of the basic material about graph spectra, both for ordinary, and Laplace and Seidel spectra. The text progresses systematically, by covering standard topics before presenting some new material on trees, strongly regular graphs, two-graphs, association

  9. Predicting mining activity with parallel genetic algorithms

    Science.gov (United States)

    Talaie, S.; Leigh, R.; Louis, S.J.; Raines, G.L.; Beyer, H.G.; O'Reilly, U.M.; Banzhaf, Arnold D.; Blum, W.; Bonabeau, C.; Cantu-Paz, E.W.; ,; ,

    2005-01-01

    We explore several different techniques in our quest to improve the overall model performance of a genetic algorithm calibrated probabilistic cellular automata. We use the Kappa statistic to measure correlation between ground truth data and data predicted by the model. Within the genetic algorithm, we introduce a new evaluation function sensitive to spatial correctness and we explore the idea of evolving different rule parameters for different subregions of the land. We reduce the time required to run a simulation from 6 hours to 10 minutes by parallelizing the code and employing a 10-node cluster. Our empirical results suggest that using the spatially sensitive evaluation function does indeed improve the performance of the model and our preliminary results also show that evolving different rule parameters for different regions tends to improve overall model performance. Copyright 2005 ACM.

  10. Graphs and Homomorphisms

    CERN Document Server

    Hell, Pavol

    2004-01-01

    This is a book about graph homomorphisms. Graph theory is now an established discipline but the study of graph homomorphisms has only recently begun to gain wide acceptance and interest. The subject gives a useful perspective in areas such as graph reconstruction, products, fractional and circular colourings, and has applications in complexity theory, artificial intelligence, telecommunication, and, most recently, statistical physics.Based on the authors' lecture notes for graduate courses, this book can be used as a textbook for a second course in graph theory at 4th year or master's level an

  11. Simplicial complexes of graphs

    CERN Document Server

    Jonsson, Jakob

    2008-01-01

    A graph complex is a finite family of graphs closed under deletion of edges. Graph complexes show up naturally in many different areas of mathematics, including commutative algebra, geometry, and knot theory. Identifying each graph with its edge set, one may view a graph complex as a simplicial complex and hence interpret it as a geometric object. This volume examines topological properties of graph complexes, focusing on homotopy type and homology. Many of the proofs are based on Robin Forman's discrete version of Morse theory. As a byproduct, this volume also provides a loosely defined toolbox for attacking problems in topological combinatorics via discrete Morse theory. In terms of simplicity and power, arguably the most efficient tool is Forman's divide and conquer approach via decision trees; it is successfully applied to a large number of graph and digraph complexes.

  12. Introduction to quantum graphs

    CERN Document Server

    Berkolaiko, Gregory

    2012-01-01

    A "quantum graph" is a graph considered as a one-dimensional complex and equipped with a differential operator ("Hamiltonian"). Quantum graphs arise naturally as simplified models in mathematics, physics, chemistry, and engineering when one considers propagation of waves of various nature through a quasi-one-dimensional (e.g., "meso-" or "nano-scale") system that looks like a thin neighborhood of a graph. Works that currently would be classified as discussing quantum graphs have been appearing since at least the 1930s, and since then, quantum graphs techniques have been applied successfully in various areas of mathematical physics, mathematics in general and its applications. One can mention, for instance, dynamical systems theory, control theory, quantum chaos, Anderson localization, microelectronics, photonic crystals, physical chemistry, nano-sciences, superconductivity theory, etc. Quantum graphs present many non-trivial mathematical challenges, which makes them dear to a mathematician's heart. Work on qu...

  13. Graphing trillions of triangles.

    Science.gov (United States)

    Burkhardt, Paul

    2017-07-01

    The increasing size of Big Data is often heralded but how data are transformed and represented is also profoundly important to knowledge discovery, and this is exemplified in Big Graph analytics. Much attention has been placed on the scale of the input graph but the product of a graph algorithm can be many times larger than the input. This is true for many graph problems, such as listing all triangles in a graph. Enabling scalable graph exploration for Big Graphs requires new approaches to algorithms, architectures, and visual analytics. A brief tutorial is given to aid the argument for thoughtful representation of data in the context of graph analysis. Then a new algebraic method to reduce the arithmetic operations in counting and listing triangles in graphs is introduced. Additionally, a scalable triangle listing algorithm in the MapReduce model will be presented followed by a description of the experiments with that algorithm that led to the current largest and fastest triangle listing benchmarks to date. Finally, a method for identifying triangles in new visual graph exploration technologies is proposed.

  14. Organolead compounds shown to be genetically active

    Energy Technology Data Exchange (ETDEWEB)

    Ahlberg, J; Ramel, C; Wachtmeister, C A

    1972-01-01

    The purpose of the present investigation was to determine whether alkyllead compounds would cause a genetic effect similar to that caused by alkyl mercury compounds. Experiments were conducted on Allium cepa (onion) in order to determine the effect of lead compounds on the spindle fiber mechanism. Results indicate that disturbances of the spindle fiber mechanism occur even at very low concentrations. The lowest concentration at which such effects are observed seems to be between 10/sup -6/ and 10/sup -7/ M for the organic compounds. Although no effect can be observed on the spindle fibers at lower dosages, the mitotic index is changed even at a dose of 10/sup -7/ M with dimethyllead. A preliminary experiment was made on Drosophila with triethyllead in order to investigate whether the effects which were observed on mitoses in Allium would also be observed in a meiotic cell system in an animal.

  15. Quantitative genetic activity graphical profiles for use in chemical evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Waters, M.D. [Environmental Protection Agency, Washington, DC (United States); Stack, H.F.; Garrett, N.E.; Jackson, M.A. [Environmental Health Research and Testing, Inc., Research Triangle Park, NC (United States)

    1990-12-31

    A graphic approach, terms a Genetic Activity Profile (GAP), was developed to display a matrix of data on the genetic and related effects of selected chemical agents. The profiles provide a visual overview of the quantitative (doses) and qualitative (test results) data for each chemical. Either the lowest effective dose or highest ineffective dose is recorded for each agent and bioassay. Up to 200 different test systems are represented across the GAP. Bioassay systems are organized according to the phylogeny of the test organisms and the end points of genetic activity. The methodology for producing and evaluating genetic activity profile was developed in collaboration with the International Agency for Research on Cancer (IARC). Data on individual chemicals were compiles by IARC and by the US Environmental Protection Agency (EPA). Data are available on 343 compounds selected from volumes 1-53 of the IARC Monographs and on 115 compounds identified as Superfund Priority Substances. Software to display the GAPs on an IBM-compatible personal computer is available from the authors. Structurally similar compounds frequently display qualitatively and quantitatively similar profiles of genetic activity. Through examination of the patterns of GAPs of pairs and groups of chemicals, it is possible to make more informed decisions regarding the selection of test batteries to be used in evaluation of chemical analogs. GAPs provided useful data for development of weight-of-evidence hazard ranking schemes. Also, some knowledge of the potential genetic activity of complex environmental mixtures may be gained from an assessment of the genetic activity profiles of component chemicals. The fundamental techniques and computer programs devised for the GAP database may be used to develop similar databases in other disciplines. 36 refs., 2 figs.

  16. Physical activity level of three generation families. Genetic and environmental factors

    Directory of Open Access Journals (Sweden)

    Raquel Nichele de Chaves

    2010-09-01

    Full Text Available This study aims (1 to investigate the presence of familial aggregation in physical activity (PA levels and sedentary behavior (SB among members of three generations families and (2 to estimate the magnitude of additive genetic influences on PA and SB phenotypes. The sample consisted of 100 extended families covering three generations (n=1034, from the Lisbon area, Portugal. Phenotypes were assessed via the short version of the self-administered International Physical Activity Questionnaire (IPAQ-SF. Measured phenotypes: total physical activity (TPA; vigorous (VPA; moderate (MPA; walking; time spent in sitting time (ST, watching television (WT and PA levels classification. Body mass index (BMI was calculated. Exploratory family analysis in all phenotypes was conducted in PEDSTATS software. The genetic component (h2 and shared environmental effect were estimated using maximum likelihood implemented in the SOLAR software package. All graphs were done in HLM software. Sex, age, sex*age, age2, sex*age2 and BMI were used as covariates. Significant level was set at 0,05. Genetic component estimates (h2 were as follows: TPA h2=0,28±0,06 (p<0.0001; VPA h2=0,35±0,06 (p<0.0001; MPA h2=0,29±0,06 (p<0.0001; walking h2=0,40±0,06 (p<0.0001; ST h2=0,29±0,06 (p<0.0001; WT h2=0,15±0,06 (p<0.003 and determination of the level physical activity h2=0,35±0,14 (p<0.007. Shared environmental effect was not significant. These results showed a low-to-moderate genetic contribution, between 15% to 40% of the total variability, in the PA and SB phenotypes. The genetic factors have low to moderate influence in this sample. Non-shared environmental factors appear to have the major contribution in these phenotypes.

  17. Introductory graph theory

    CERN Document Server

    Chartrand, Gary

    1984-01-01

    Graph theory is used today in the physical sciences, social sciences, computer science, and other areas. Introductory Graph Theory presents a nontechnical introduction to this exciting field in a clear, lively, and informative style. Author Gary Chartrand covers the important elementary topics of graph theory and its applications. In addition, he presents a large variety of proofs designed to strengthen mathematical techniques and offers challenging opportunities to have fun with mathematics. Ten major topics - profusely illustrated - include: Mathematical Models, Elementary Concepts of Grap

  18. Graphs on Surfaces and the Partition Function of String Theory

    OpenAIRE

    Garcia-Islas, J. Manuel

    2007-01-01

    Graphs on surfaces is an active topic of pure mathematics belonging to graph theory. It has also been applied to physics and relates discrete and continuous mathematics. In this paper we present a formal mathematical description of the relation between graph theory and the mathematical physics of discrete string theory. In this description we present problems of the combinatorial world of real importance for graph theorists. The mathematical details of the paper are as follows: There is a com...

  19. Price Competition on Graphs

    OpenAIRE

    Adriaan R. Soetevent

    2010-01-01

    This paper extends Hotelling's model of price competition with quadratic transportation costs from a line to graphs. I propose an algorithm to calculate firm-level demand for any given graph, conditional on prices and firm locations. One feature of graph models of price competition is that spatial discontinuities in firm-level demand may occur. I show that the existence result of D'Aspremont et al. (1979) does not extend to simple star graphs. I conjecture that this non-existence result holds...

  20. Price Competition on Graphs

    OpenAIRE

    Pim Heijnen; Adriaan Soetevent

    2014-01-01

    This paper extends Hotelling's model of price competition with quadratic transportation costs from a line to graphs. We derive an algorithm to calculate firm-level demand for any given graph, conditional on prices and firm locations. These graph models of price competition may lead to spatial discontinuities in firm-level demand. We show that the existence result of D'Aspremont et al. (1979) does not extend to simple star graphs and conjecture that this non-existence result holds more general...

  1. Pattern graph rewrite systems

    Directory of Open Access Journals (Sweden)

    Aleks Kissinger

    2014-03-01

    Full Text Available String diagrams are a powerful tool for reasoning about physical processes, logic circuits, tensor networks, and many other compositional structures. Dixon, Duncan and Kissinger introduced string graphs, which are a combinatoric representations of string diagrams, amenable to automated reasoning about diagrammatic theories via graph rewrite systems. In this extended abstract, we show how the power of such rewrite systems can be greatly extended by introducing pattern graphs, which provide a means of expressing infinite families of rewrite rules where certain marked subgraphs, called !-boxes ("bang boxes", on both sides of a rule can be copied any number of times or removed. After reviewing the string graph formalism, we show how string graphs can be extended to pattern graphs and how pattern graphs and pattern rewrite rules can be instantiated to concrete string graphs and rewrite rules. We then provide examples demonstrating the expressive power of pattern graphs and how they can be applied to study interacting algebraic structures that are central to categorical quantum mechanics.

  2. Functions and graphs

    CERN Document Server

    Gelfand, I M; Shnol, E E

    1969-01-01

    The second in a series of systematic studies by a celebrated mathematician I. M. Gelfand and colleagues, this volume presents students with a well-illustrated sequence of problems and exercises designed to illuminate the properties of functions and graphs. Since readers do not have the benefit of a blackboard on which a teacher constructs a graph, the authors abandoned the customary use of diagrams in which only the final form of the graph appears; instead, the book's margins feature step-by-step diagrams for the complete construction of each graph. The first part of the book employs simple fu

  3. Creating more effective graphs

    CERN Document Server

    Robbins, Naomi B

    2012-01-01

    A succinct and highly readable guide to creating effective graphs The right graph can be a powerful tool for communicating information, improving a presentation, or conveying your point in print. If your professional endeavors call for you to present data graphically, here's a book that can help you do it more effectively. Creating More Effective Graphs gives you the basic knowledge and techniques required to choose and create appropriate graphs for a broad range of applications. Using real-world examples everyone can relate to, the author draws on her years of experience in gr

  4. Graph Generator Survey

    Energy Technology Data Exchange (ETDEWEB)

    Lothian, Joshua [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Powers, Sarah S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sullivan, Blair D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Baker, Matthew B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Schrock, Jonathan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Poole, Stephen W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2013-10-01

    The benchmarking effort within the Extreme Scale Systems Center at Oak Ridge National Laboratory seeks to provide High Performance Computing benchmarks and test suites of interest to the DoD sponsor. The work described in this report is a part of the effort focusing on graph generation. A previously developed benchmark, SystemBurn, allowed the emulation of different application behavior profiles within a single framework. To complement this effort, similar capabilities are desired for graph-centric problems. This report examines existing synthetic graph generator implementations in preparation for further study on the properties of their generated synthetic graphs.

  5. Loose Graph Simulations

    DEFF Research Database (Denmark)

    Mansutti, Alessio; Miculan, Marino; Peressotti, Marco

    2017-01-01

    We introduce loose graph simulations (LGS), a new notion about labelled graphs which subsumes in an intuitive and natural way subgraph isomorphism (SGI), regular language pattern matching (RLPM) and graph simulation (GS). Being a unification of all these notions, LGS allows us to express directly...... also problems which are “mixed” instances of previous ones, and hence which would not fit easily in any of them. After the definition and some examples, we show that the problem of finding loose graph simulations is NP-complete, we provide formal translation of SGI, RLPM, and GS into LGSs, and we give...

  6. Graph Compression by BFS

    Directory of Open Access Journals (Sweden)

    Alberto Apostolico

    2009-08-01

    Full Text Available The Web Graph is a large-scale graph that does not fit in main memory, so that lossless compression methods have been proposed for it. This paper introduces a compression scheme that combines efficient storage with fast retrieval for the information in a node. The scheme exploits the properties of the Web Graph without assuming an ordering of the URLs, so that it may be applied to more general graphs. Tests on some datasets of use achieve space savings of about 10% over existing methods.

  7. Graph Theory. 1. Fragmentation of Structural Graphs

    Directory of Open Access Journals (Sweden)

    Lorentz JÄNTSCHI

    2002-12-01

    Full Text Available The investigation of structural graphs has many fields of applications in engineering, especially in applied sciences like as applied chemistry and physics, computer sciences and automation, electronics and telecommunication. The main subject of the paper is to express fragmentation criteria in graph using a new method of investigation: terminal paths. Using terminal paths are defined most of the fragmentation criteria that are in use in molecular topology, but the fields of applications are more generally than that, as I mentioned before. Graphical examples of fragmentation are given for every fragmentation criteria. Note that all fragmentation is made with a computer program that implements a routine for every criterion.[1] A web routine for tracing all terminal paths in graph can be found at the address: http://vl.academicdirect.ro/molecular_topology/tpaths/ [1] M. V. Diudea, I. Gutman, L. Jäntschi, Molecular Topology, Nova Science, Commack, New York, 2001, 2002.

  8. A graph rewriting programming language for graph drawing

    OpenAIRE

    Rodgers, Peter

    1998-01-01

    This paper describes Grrr, a prototype visual graph drawing tool. Previously there were no visual languages for programming graph drawing algorithms despite the inherently visual nature of the process. The languages which gave a diagrammatic view of graphs were not computationally complete and so could not be used to implement complex graph drawing algorithms. Hence current graph drawing tools are all text based. Recent developments in graph rewriting systems have produced computationally com...

  9. Graph Transforming Java Data

    NARCIS (Netherlands)

    de Mol, M.J.; Rensink, Arend; Hunt, James J.

    This paper introduces an approach for adding graph transformation-based functionality to existing JAVA programs. The approach relies on a set of annotations to identify the intended graph structure, as well as on user methods to manipulate that structure, within the user’s own JAVA class

  10. Distance-transitive graphs

    NARCIS (Netherlands)

    Cohen, A.M.; Beineke, L.W.; Wilson, R.J.; Cameron, P.J.

    2004-01-01

    In this chapter we investigate the classification of distance-transitive graphs: these are graphs whose automorphism groups are transitive on each of the sets of pairs of vertices at distance i, for i = 0, 1,.... We provide an introduction into the field. By use of the classification of finite

  11. Adventures in graph theory

    CERN Document Server

    Joyner, W David

    2017-01-01

    This textbook acts as a pathway to higher mathematics by seeking and illuminating the connections between graph theory and diverse fields of mathematics, such as calculus on manifolds, group theory, algebraic curves, Fourier analysis, cryptography and other areas of combinatorics. An overview of graph theory definitions and polynomial invariants for graphs prepares the reader for the subsequent dive into the applications of graph theory. To pique the reader’s interest in areas of possible exploration, recent results in mathematics appear throughout the book, accompanied with examples of related graphs, how they arise, and what their valuable uses are. The consequences of graph theory covered by the authors are complicated and far-reaching, so topics are always exhibited in a user-friendly manner with copious graphs, exercises, and Sage code for the computation of equations. Samples of the book’s source code can be found at github.com/springer-math/adventures-in-graph-theory. The text is geared towards ad...

  12. Recognition of fractal graphs

    NARCIS (Netherlands)

    Perepelitsa, VA; Sergienko, [No Value; Kochkarov, AM

    1999-01-01

    Definitions of prefractal and fractal graphs are introduced, and they are used to formulate mathematical models in different fields of knowledge. The topicality of fractal-graph recognition from the point of view, of fundamental improvement in the efficiency of the solution of algorithmic problems

  13. Graph Colouring Algorithms

    DEFF Research Database (Denmark)

    Husfeldt, Thore

    2015-01-01

    This chapter presents an introduction to graph colouring algorithms. The focus is on vertex-colouring algorithms that work for general classes of graphs with worst-case performance guarantees in a sequential model of computation. The presentation aims to demonstrate the breadth of available...

  14. Packing Degenerate Graphs Greedily

    Czech Academy of Sciences Publication Activity Database

    Allen, P.; Böttcher, J.; Hladký, J.; Piguet, Diana

    2017-01-01

    Roč. 61, August (2017), s. 45-51 ISSN 1571-0653 R&D Projects: GA ČR GJ16-07822Y Institutional support: RVO:67985807 Keywords : tree packing conjecture * graph packing * graph processes Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics

  15. Permanent Genetic Access to Transiently Active Neurons via TRAP: Targeted Recombination in Active Populations

    OpenAIRE

    Guenthner, Casey J.; Miyamichi, Kazunari; Yang, Helen H.; Heller, H. Craig; Luo, Liqun

    2013-01-01

    Targeting genetically encoded tools for neural circuit dissection to relevant cellular populations is a major challenge in neurobiology. We developed a new approach, Targeted Recombination in Active Populations (TRAP), to obtain genetic access to neurons that were activated by defined stimuli. This method utilizes mice in which the tamoxifen-dependent recombinase CreERT2 is expressed in an activity-dependent manner from the loci of the immediate early genes Arc and Fos. Active cells that expr...

  16. Generalized connectivity of graphs

    CERN Document Server

    Li, Xueliang

    2016-01-01

    Noteworthy results, proof techniques, open problems and conjectures in generalized (edge-) connectivity are discussed in this book. Both theoretical and practical analyses for generalized (edge-) connectivity of graphs are provided. Topics covered in this book include: generalized (edge-) connectivity of graph classes, algorithms, computational complexity, sharp bounds, Nordhaus-Gaddum-type results, maximum generalized local connectivity, extremal problems, random graphs, multigraphs, relations with the Steiner tree packing problem and generalizations of connectivity. This book enables graduate students to understand and master a segment of graph theory and combinatorial optimization. Researchers in graph theory, combinatorics, combinatorial optimization, probability, computer science, discrete algorithms, complexity analysis, network design, and the information transferring models will find this book useful in their studies.

  17. Autoregressive Moving Average Graph Filtering

    OpenAIRE

    Isufi, Elvin; Loukas, Andreas; Simonetto, Andrea; Leus, Geert

    2016-01-01

    One of the cornerstones of the field of signal processing on graphs are graph filters, direct analogues of classical filters, but intended for signals defined on graphs. This work brings forth new insights on the distributed graph filtering problem. We design a family of autoregressive moving average (ARMA) recursions, which (i) are able to approximate any desired graph frequency response, and (ii) give exact solutions for tasks such as graph signal denoising and interpolation. The design phi...

  18. Extremal graph theory

    CERN Document Server

    Bollobas, Bela

    2004-01-01

    The ever-expanding field of extremal graph theory encompasses a diverse array of problem-solving methods, including applications to economics, computer science, and optimization theory. This volume, based on a series of lectures delivered to graduate students at the University of Cambridge, presents a concise yet comprehensive treatment of extremal graph theory.Unlike most graph theory treatises, this text features complete proofs for almost all of its results. Further insights into theory are provided by the numerous exercises of varying degrees of difficulty that accompany each chapter. A

  19. GC-ASM: Synergistic Integration of Graph-Cut and Active Shape Model Strategies for Medical Image Segmentation.

    Science.gov (United States)

    Chen, Xinjian; Udupa, Jayaram K; Alavi, Abass; Torigian, Drew A

    2013-05-01

    Image segmentation methods may be classified into two categories: purely image based and model based. Each of these two classes has its own advantages and disadvantages. In this paper, we propose a novel synergistic combination of the image based graph-cut (GC) method with the model based ASM method to arrive at the GC-ASM method for medical image segmentation. A multi-object GC cost function is proposed which effectively integrates the ASM shape information into the GC framework. The proposed method consists of two phases: model building and segmentation. In the model building phase, the ASM model is built and the parameters of the GC are estimated. The segmentation phase consists of two main steps: initialization (recognition) and delineation. For initialization, an automatic method is proposed which estimates the pose (translation, orientation, and scale) of the model, and obtains a rough segmentation result which also provides the shape information for the GC method. For delineation, an iterative GC-ASM algorithm is proposed which performs finer delineation based on the initialization results. The proposed methods are implemented to operate on 2D images and evaluated on clinical chest CT, abdominal CT, and foot MRI data sets. The results show the following: (a) An overall delineation accuracy of TPVF > 96%, FPVF ASM for different objects, modalities, and body regions. (b) GC-ASM improves over ASM in its accuracy and precision to search region. (c) GC-ASM requires far fewer landmarks (about 1/3 of ASM) than ASM. (d) GC-ASM achieves full automation in the segmentation step compared to GC which requires seed specification and improves on the accuracy of GC. (e) One disadvantage of GC-ASM is its increased computational expense owing to the iterative nature of the algorithm.

  20. Graph-theoretical concepts and physicochemical data

    Directory of Open Access Journals (Sweden)

    Lionello Pogliani

    2003-02-01

    Full Text Available Graph theoretical concepts have been used to model the molecular polarizabilities of fifty-four organic derivatives, and the induced dipole moment of a set of fifty-seven organic compounds divided into three subsets. The starting point of these modeling strategies is the hydrogen-suppressed chemical graph and pseudograph of a molecule, which works very well for second row atoms. From these types of graphs a set of graph-theoretical basis indices, the molecular connectivity indices, can be derived and used to model properties and activities of molecules. With the aid of the molecular connectivity basis indices it is then possible to build higher-order descriptors. The problem of 'graph' encoding the contribution of the inner-core electrons of heteroatoms can here be solved with the aid of odd complete graphs, Kp-(p-odd. The use of these graph tools allow to draw an optimal modeling of the molecular polarizabilities and a satisfactory modeling of the induced dipole moment of a wide set of organic derivatives.

  1. Profiling bacterial kinase activity using a genetic circuit

    DEFF Research Database (Denmark)

    van der Helm, Eric; Bech, Rasmus; Lehning, Christina Eva

    Phosphorylation is a post-translational modification that regulates the activity of several key proteins in bacteria and eukaryotes. Accordingly, a variety of tools has been developed to measure kinase activity. To couple phosphorylation to an in vivo fluorescent readout we used the Bacillus...... subtilis kinase PtkA, transmembrane activator TkmA and the repressor FatR to construct a genetic circuit in E. coli. By tuning the repressor and kinase expression level at the same time, we were able to show a 4.2-fold increase in signal upon kinase induction. We furthermore validated that the previously...... reported FatR Y45E mutation1 attenuates operator repression. This genetic circuit provides a starting point for computational protein design and a metagenomic library-screening tool....

  2. Downhill Domination in Graphs

    Directory of Open Access Journals (Sweden)

    Haynes Teresa W.

    2014-08-01

    Full Text Available A path π = (v1, v2, . . . , vk+1 in a graph G = (V,E is a downhill path if for every i, 1 ≤ i ≤ k, deg(vi ≥ deg(vi+1, where deg(vi denotes the degree of vertex vi ∈ V. The downhill domination number equals the minimum cardinality of a set S ⊆ V having the property that every vertex v ∈ V lies on a downhill path originating from some vertex in S. We investigate downhill domination numbers of graphs and give upper bounds. In particular, we show that the downhill domination number of a graph is at most half its order, and that the downhill domination number of a tree is at most one third its order. We characterize the graphs obtaining each of these bounds

  3. Tailored Random Graph Ensembles

    International Nuclear Information System (INIS)

    Roberts, E S; Annibale, A; Coolen, A C C

    2013-01-01

    Tailored graph ensembles are a developing bridge between biological networks and statistical mechanics. The aim is to use this concept to generate a suite of rigorous tools that can be used to quantify and compare the topology of cellular signalling networks, such as protein-protein interaction networks and gene regulation networks. We calculate exact and explicit formulae for the leading orders in the system size of the Shannon entropies of random graph ensembles constrained with degree distribution and degree-degree correlation. We also construct an ergodic detailed balance Markov chain with non-trivial acceptance probabilities which converges to a strictly uniform measure and is based on edge swaps that conserve all degrees. The acceptance probabilities can be generalized to define Markov chains that target any alternative desired measure on the space of directed or undirected graphs, in order to generate graphs with more sophisticated topological features.

  4. Cycles in graphs

    CERN Document Server

    Alspach, BR

    1985-01-01

    This volume deals with a variety of problems involving cycles in graphs and circuits in digraphs. Leading researchers in this area present here 3 survey papers and 42 papers containing new results. There is also a collection of unsolved problems.

  5. Hyperbolicity in median graphs

    Indian Academy of Sciences (India)

    mic problems in hyperbolic spaces and hyperbolic graphs have been .... that in general the main obstacle is that we do not know the location of ...... [25] Jonckheere E and Lohsoonthorn P, A hyperbolic geometry approach to multipath routing,.

  6. Groups, graphs and random walks

    CERN Document Server

    Salvatori, Maura; Sava-Huss, Ecaterina

    2017-01-01

    An accessible and panoramic account of the theory of random walks on groups and graphs, stressing the strong connections of the theory with other branches of mathematics, including geometric and combinatorial group theory, potential analysis, and theoretical computer science. This volume brings together original surveys and research-expository papers from renowned and leading experts, many of whom spoke at the workshop 'Groups, Graphs and Random Walks' celebrating the sixtieth birthday of Wolfgang Woess in Cortona, Italy. Topics include: growth and amenability of groups; Schrödinger operators and symbolic dynamics; ergodic theorems; Thompson's group F; Poisson boundaries; probability theory on buildings and groups of Lie type; structure trees for edge cuts in networks; and mathematical crystallography. In what is currently a fast-growing area of mathematics, this book provides an up-to-date and valuable reference for both researchers and graduate students, from which future research activities will undoubted...

  7. Sex-specific genetic effects in physical activity: results from a quantitative genetic analysis.

    Science.gov (United States)

    Diego, Vincent P; de Chaves, Raquel Nichele; Blangero, John; de Souza, Michele Caroline; Santos, Daniel; Gomes, Thayse Natacha; dos Santos, Fernanda Karina; Garganta, Rui; Katzmarzyk, Peter T; Maia, José A R

    2015-08-01

    The objective of this study is to present a model to estimate sex-specific genetic effects on physical activity (PA) levels and sedentary behaviour (SB) using three generation families. The sample consisted of 100 families covering three generations from Portugal. PA and SB were assessed via the International Physical Activity Questionnaire short form (IPAQ-SF). Sex-specific effects were assessed by genotype-by-sex interaction (GSI) models and sex-specific heritabilities. GSI effects and heterogeneity were tested in the residual environmental variance. SPSS 17 and SOLAR v. 4.1 were used in all computations. The genetic component for PA and SB domains varied from low to moderate (11% to 46%), when analyzing both genders combined. We found GSI effects for vigorous PA (p = 0.02) and time spent watching television (WT) (p < 0.001) that showed significantly higher additive genetic variance estimates in males. The heterogeneity in the residual environmental variance was significant for moderate PA (p = 0.02), vigorous PA (p = 0.006) and total PA (p = 0.001). Sex-specific heritability estimates were significantly higher in males only for WT, with a male-to-female difference in heritability of 42.5 (95% confidence interval: 6.4, 70.4). Low to moderate genetic effects on PA and SB traits were found. Results from the GSI model show that there are sex-specific effects in two phenotypes, VPA and WT with a stronger genetic influence in males.

  8. Uniform Single Valued Neutrosophic Graphs

    Directory of Open Access Journals (Sweden)

    S. Broumi

    2017-09-01

    Full Text Available In this paper, we propose a new concept named the uniform single valued neutrosophic graph. An illustrative example and some properties are examined. Next, we develop an algorithmic approach for computing the complement of the single valued neutrosophic graph. A numerical example is demonstrated for computing the complement of single valued neutrosophic graphs and uniform single valued neutrosophic graph.

  9. Collective Rationality in Graph Aggregation

    NARCIS (Netherlands)

    Endriss, U.; Grandi, U.; Schaub, T.; Friedrich, G.; O'Sullivan, B.

    2014-01-01

    Suppose a number of agents each provide us with a directed graph over a common set of vertices. Graph aggregation is the problem of computing a single “collective” graph that best represents the information inherent in this profile of individual graphs. We consider this aggregation problem from the

  10. Classical dynamics on graphs

    International Nuclear Information System (INIS)

    Barra, F.; Gaspard, P.

    2001-01-01

    We consider the classical evolution of a particle on a graph by using a time-continuous Frobenius-Perron operator that generalizes previous propositions. In this way, the relaxation rates as well as the chaotic properties can be defined for the time-continuous classical dynamics on graphs. These properties are given as the zeros of some periodic-orbit zeta functions. We consider in detail the case of infinite periodic graphs where the particle undergoes a diffusion process. The infinite spatial extension is taken into account by Fourier transforms that decompose the observables and probability densities into sectors corresponding to different values of the wave number. The hydrodynamic modes of diffusion are studied by an eigenvalue problem of a Frobenius-Perron operator corresponding to a given sector. The diffusion coefficient is obtained from the hydrodynamic modes of diffusion and has the Green-Kubo form. Moreover, we study finite but large open graphs that converge to the infinite periodic graph when their size goes to infinity. The lifetime of the particle on the open graph is shown to correspond to the lifetime of a system that undergoes a diffusion process before it escapes

  11. Modern graph theory

    CERN Document Server

    Bollobás, Béla

    1998-01-01

    The time has now come when graph theory should be part of the education of every serious student of mathematics and computer science, both for its own sake and to enhance the appreciation of mathematics as a whole. This book is an in-depth account of graph theory, written with such a student in mind; it reflects the current state of the subject and emphasizes connections with other branches of pure mathematics. The volume grew out of the author's earlier book, Graph Theory -- An Introductory Course, but its length is well over twice that of its predecessor, allowing it to reveal many exciting new developments in the subject. Recognizing that graph theory is one of several courses competing for the attention of a student, the book contains extensive descriptive passages designed to convey the flavor of the subject and to arouse interest. In addition to a modern treatment of the classical areas of graph theory such as coloring, matching, extremal theory, and algebraic graph theory, the book presents a detailed ...

  12. Graph mining for next generation sequencing: leveraging the assembly graph for biological insights.

    Science.gov (United States)

    Warnke-Sommer, Julia; Ali, Hesham

    2016-05-06

    The assembly of Next Generation Sequencing (NGS) reads remains a challenging task. This is especially true for the assembly of metagenomics data that originate from environmental samples potentially containing hundreds to thousands of unique species. The principle objective of current assembly tools is to assemble NGS reads into contiguous stretches of sequence called contigs while maximizing for both accuracy and contig length. The end goal of this process is to produce longer contigs with the major focus being on assembly only. Sequence read assembly is an aggregative process, during which read overlap relationship information is lost as reads are merged into longer sequences or contigs. The assembly graph is information rich and capable of capturing the genomic architecture of an input read data set. We have developed a novel hybrid graph in which nodes represent sequence regions at different levels of granularity. This model, utilized in the assembly and analysis pipeline Focus, presents a concise yet feature rich view of a given input data set, allowing for the extraction of biologically relevant graph structures for graph mining purposes. Focus was used to create hybrid graphs to model metagenomics data sets obtained from the gut microbiomes of five individuals with Crohn's disease and eight healthy individuals. Repetitive and mobile genetic elements are found to be associated with hybrid graph structure. Using graph mining techniques, a comparative study of the Crohn's disease and healthy data sets was conducted with focus on antibiotics resistance genes associated with transposase genes. Results demonstrated significant differences in the phylogenetic distribution of categories of antibiotics resistance genes in the healthy and diseased patients. Focus was also evaluated as a pure assembly tool and produced excellent results when compared against the Meta-velvet, Omega, and UD-IDBA assemblers. Mining the hybrid graph can reveal biological phenomena captured

  13. Proxy Graph: Visual Quality Metrics of Big Graph Sampling.

    Science.gov (United States)

    Nguyen, Quan Hoang; Hong, Seok-Hee; Eades, Peter; Meidiana, Amyra

    2017-06-01

    Data sampling has been extensively studied for large scale graph mining. Many analyses and tasks become more efficient when performed on graph samples of much smaller size. The use of proxy objects is common in software engineering for analysis and interaction with heavy objects or systems. In this paper, we coin the term 'proxy graph' and empirically investigate how well a proxy graph visualization can represent a big graph. Our investigation focuses on proxy graphs obtained by sampling; this is one of the most common proxy approaches. Despite the plethora of data sampling studies, this is the first evaluation of sampling in the context of graph visualization. For an objective evaluation, we propose a new family of quality metrics for visual quality of proxy graphs. Our experiments cover popular sampling techniques. Our experimental results lead to guidelines for using sampling-based proxy graphs in visualization.

  14. On some covering graphs of a graph

    Directory of Open Access Journals (Sweden)

    Shariefuddin Pirzada

    2016-10-01

    Full Text Available For a graph $G$ with vertex set $V(G=\\{v_1, v_2, \\dots, v_n\\}$, let $S$ be the covering set of $G$ having the maximum degree over all the minimum covering sets of $G$. Let $N_S[v]=\\{u\\in S : uv \\in E(G \\}\\cup \\{v\\}$ be the closed neighbourhood of the vertex $v$ with respect to $S.$ We define a square matrix $A_S(G= (a_{ij},$ by $a_{ij}=1,$ if $\\left |N_S[v_i]\\cap N_S[v_j] \\right| \\geq 1, i\

  15. Fundamentals of algebraic graph transformation

    CERN Document Server

    Ehrig, Hartmut; Prange, Ulrike; Taentzer, Gabriele

    2006-01-01

    Graphs are widely used to represent structural information in the form of objects and connections between them. Graph transformation is the rule-based manipulation of graphs, an increasingly important concept in computer science and related fields. This is the first textbook treatment of the algebraic approach to graph transformation, based on algebraic structures and category theory. Part I is an introduction to the classical case of graph and typed graph transformation. In Part II basic and advanced results are first shown for an abstract form of replacement systems, so-called adhesive high-level replacement systems based on category theory, and are then instantiated to several forms of graph and Petri net transformation systems. Part III develops typed attributed graph transformation, a technique of key relevance in the modeling of visual languages and in model transformation. Part IV contains a practical case study on model transformation and a presentation of the AGG (attributed graph grammar) tool envir...

  16. The STAPL Parallel Graph Library

    KAUST Repository

    Harshvardhan,

    2013-01-01

    This paper describes the stapl Parallel Graph Library, a high-level framework that abstracts the user from data-distribution and parallelism details and allows them to concentrate on parallel graph algorithm development. It includes a customizable distributed graph container and a collection of commonly used parallel graph algorithms. The library introduces pGraph pViews that separate algorithm design from the container implementation. It supports three graph processing algorithmic paradigms, level-synchronous, asynchronous and coarse-grained, and provides common graph algorithms based on them. Experimental results demonstrate improved scalability in performance and data size over existing graph libraries on more than 16,000 cores and on internet-scale graphs containing over 16 billion vertices and 250 billion edges. © Springer-Verlag Berlin Heidelberg 2013.

  17. Graphs, groups and surfaces

    CERN Document Server

    White, AT

    1985-01-01

    The field of topological graph theory has expanded greatly in the ten years since the first edition of this book appeared. The original nine chapters of this classic work have therefore been revised and updated. Six new chapters have been added, dealing with: voltage graphs, non-orientable imbeddings, block designs associated with graph imbeddings, hypergraph imbeddings, map automorphism groups and change ringing.Thirty-two new problems have been added to this new edition, so that there are now 181 in all; 22 of these have been designated as ``difficult'''' and 9 as ``unsolved''''. Three of the four unsolved problems from the first edition have been solved in the ten years between editions; they are now marked as ``difficult''''.

  18. Profinite graphs and groups

    CERN Document Server

    Ribes, Luis

    2017-01-01

    This book offers a detailed introduction to graph theoretic methods in profinite groups and applications to abstract groups. It is the first to provide a comprehensive treatment of the subject. The author begins by carefully developing relevant notions in topology, profinite groups and homology, including free products of profinite groups, cohomological methods in profinite groups, and fixed points of automorphisms of free pro-p groups. The final part of the book is dedicated to applications of the profinite theory to abstract groups, with sections on finitely generated subgroups of free groups, separability conditions in free and amalgamated products, and algorithms in free groups and finite monoids. Profinite Graphs and Groups will appeal to students and researchers interested in profinite groups, geometric group theory, graphs and connections with the theory of formal languages. A complete reference on the subject, the book includes historical and bibliographical notes as well as a discussion of open quest...

  19. Subdominant pseudoultrametric on graphs

    Energy Technology Data Exchange (ETDEWEB)

    Dovgoshei, A A; Petrov, E A [Institute of Applied Mathematics and Mechanics, National Academy of Sciences of Ukraine, Donetsk (Ukraine)

    2013-08-31

    Let (G,w) be a weighted graph. We find necessary and sufficient conditions under which the weight w:E(G)→R{sup +} can be extended to a pseudoultrametric on V(G), and establish a criterion for the uniqueness of such an extension. We demonstrate that (G,w) is a complete k-partite graph, for k≥2, if and only if for any weight that can be extended to a pseudoultrametric, among all such extensions one can find the least pseudoultrametric consistent with w. We give a structural characterization of graphs for which the subdominant pseudoultrametric is an ultrametric for any strictly positive weight that can be extended to a pseudoultrametric. Bibliography: 14 titles.

  20. Quantitative graph theory mathematical foundations and applications

    CERN Document Server

    Dehmer, Matthias

    2014-01-01

    The first book devoted exclusively to quantitative graph theory, Quantitative Graph Theory: Mathematical Foundations and Applications presents and demonstrates existing and novel methods for analyzing graphs quantitatively. Incorporating interdisciplinary knowledge from graph theory, information theory, measurement theory, and statistical techniques, this book covers a wide range of quantitative-graph theoretical concepts and methods, including those pertaining to real and random graphs such as:Comparative approaches (graph similarity or distance)Graph measures to characterize graphs quantitat

  1. Augmented marked graphs

    CERN Document Server

    Cheung, King Sing

    2014-01-01

    Petri nets are a formal and theoretically rich model for the modelling and analysis of systems. A subclass of Petri nets, augmented marked graphs possess a structure that is especially desirable for the modelling and analysis of systems with concurrent processes and shared resources.This monograph consists of three parts: Part I provides the conceptual background for readers who have no prior knowledge on Petri nets; Part II elaborates the theory of augmented marked graphs; finally, Part III discusses the application to system integration. The book is suitable as a first self-contained volume

  2. Graph Query Portal

    OpenAIRE

    Dayal, Amit; Brock, David

    2018-01-01

    Prashant Chandrasekar, a lead developer for the Social Interactome project, has tasked the team with creating a graph representation of the data collected from the social networks involved in that project. The data is currently stored in a MySQL database. The client requested that the graph database be Cayley, but after a literature review, Neo4j was chosen. The reasons for this shift will be explained in the design section. Secondarily, the team was tasked with coming up with three scena...

  3. Spectral radius of graphs

    CERN Document Server

    Stevanovic, Dragan

    2015-01-01

    Spectral Radius of Graphs provides a thorough overview of important results on the spectral radius of adjacency matrix of graphs that have appeared in the literature in the preceding ten years, most of them with proofs, and including some previously unpublished results of the author. The primer begins with a brief classical review, in order to provide the reader with a foundation for the subsequent chapters. Topics covered include spectral decomposition, the Perron-Frobenius theorem, the Rayleigh quotient, the Weyl inequalities, and the Interlacing theorem. From this introduction, the

  4. Graph embedding with rich information through heterogeneous graph

    KAUST Repository

    Sun, Guolei

    2017-01-01

    Graph embedding, aiming to learn low-dimensional representations for nodes in graphs, has attracted increasing attention due to its critical application including node classification, link prediction and clustering in social network analysis. Most

  5. Using Graph and Vertex Entropy to Compare Empirical Graphs with Theoretical Graph Models

    Directory of Open Access Journals (Sweden)

    Tomasz Kajdanowicz

    2016-09-01

    Full Text Available Over the years, several theoretical graph generation models have been proposed. Among the most prominent are: the Erdős–Renyi random graph model, Watts–Strogatz small world model, Albert–Barabási preferential attachment model, Price citation model, and many more. Often, researchers working with real-world data are interested in understanding the generative phenomena underlying their empirical graphs. They want to know which of the theoretical graph generation models would most probably generate a particular empirical graph. In other words, they expect some similarity assessment between the empirical graph and graphs artificially created from theoretical graph generation models. Usually, in order to assess the similarity of two graphs, centrality measure distributions are compared. For a theoretical graph model this means comparing the empirical graph to a single realization of a theoretical graph model, where the realization is generated from the given model using an arbitrary set of parameters. The similarity between centrality measure distributions can be measured using standard statistical tests, e.g., the Kolmogorov–Smirnov test of distances between cumulative distributions. However, this approach is both error-prone and leads to incorrect conclusions, as we show in our experiments. Therefore, we propose a new method for graph comparison and type classification by comparing the entropies of centrality measure distributions (degree centrality, betweenness centrality, closeness centrality. We demonstrate that our approach can help assign the empirical graph to the most similar theoretical model using a simple unsupervised learning method.

  6. Handbook of graph grammars and computing by graph transformation

    CERN Document Server

    Engels, G; Kreowski, H J; Rozenberg, G

    1999-01-01

    Graph grammars originated in the late 60s, motivated by considerations about pattern recognition and compiler construction. Since then, the list of areas which have interacted with the development of graph grammars has grown quite impressively. Besides the aforementioned areas, it includes software specification and development, VLSI layout schemes, database design, modeling of concurrent systems, massively parallel computer architectures, logic programming, computer animation, developmental biology, music composition, visual languages, and many others.The area of graph grammars and graph tran

  7. Topics in graph theory graphs and their Cartesian product

    CERN Document Server

    Imrich, Wilfried; Rall, Douglas F

    2008-01-01

    From specialists in the field, you will learn about interesting connections and recent developments in the field of graph theory by looking in particular at Cartesian products-arguably the most important of the four standard graph products. Many new results in this area appear for the first time in print in this book. Written in an accessible way, this book can be used for personal study in advanced applications of graph theory or for an advanced graph theory course.

  8. ANN multiscale model of anti-HIV drugs activity vs AIDS prevalence in the US at county level based on information indices of molecular graphs and social networks.

    Science.gov (United States)

    González-Díaz, Humberto; Herrera-Ibatá, Diana María; Duardo-Sánchez, Aliuska; Munteanu, Cristian R; Orbegozo-Medina, Ricardo Alfredo; Pazos, Alejandro

    2014-03-24

    This work is aimed at describing the workflow for a methodology that combines chemoinformatics and pharmacoepidemiology methods and at reporting the first predictive model developed with this methodology. The new model is able to predict complex networks of AIDS prevalence in the US counties, taking into consideration the social determinants and activity/structure of anti-HIV drugs in preclinical assays. We trained different Artificial Neural Networks (ANNs) using as input information indices of social networks and molecular graphs. We used a Shannon information index based on the Gini coefficient to quantify the effect of income inequality in the social network. We obtained the data on AIDS prevalence and the Gini coefficient from the AIDSVu database of Emory University. We also used the Balaban information indices to quantify changes in the chemical structure of anti-HIV drugs. We obtained the data on anti-HIV drug activity and structure (SMILE codes) from the ChEMBL database. Last, we used Box-Jenkins moving average operators to quantify information about the deviations of drugs with respect to data subsets of reference (targets, organisms, experimental parameters, protocols). The best model found was a Linear Neural Network (LNN) with values of Accuracy, Specificity, and Sensitivity above 0.76 and AUROC > 0.80 in training and external validation series. This model generates a complex network of AIDS prevalence in the US at county level with respect to the preclinical activity of anti-HIV drugs in preclinical assays. To train/validate the model and predict the complex network we needed to analyze 43,249 data points including values of AIDS prevalence in 2,310 counties in the US vs ChEMBL results for 21,582 unique drugs, 9 viral or human protein targets, 4,856 protocols, and 10 possible experimental measures.

  9. Partitioning a call graph

    NARCIS (Netherlands)

    Bisseling, R.H.; Byrka, J.; Cerav-Erbas, S.; Gvozdenovic, N.; Lorenz, M.; Pendavingh, R.A.; Reeves, C.; Röger, M.; Verhoeven, A.; Berg, van den J.B.; Bhulai, S.; Hulshof, J.; Koole, G.; Quant, C.; Williams, J.F.

    2006-01-01

    Splitting a large software system into smaller and more manageable units has become an important problem for many organizations. The basic structure of a software system is given by a directed graph with vertices representing the programs of the system and arcs representing calls from one program to

  10. Coloring geographical threshold graphs

    Energy Technology Data Exchange (ETDEWEB)

    Bradonjic, Milan [Los Alamos National Laboratory; Percus, Allon [Los Alamos National Laboratory; Muller, Tobias [EINDHOVEN UNIV. OF TECH

    2008-01-01

    We propose a coloring algorithm for sparse random graphs generated by the geographical threshold graph (GTG) model, a generalization of random geometric graphs (RGG). In a GTG, nodes are distributed in a Euclidean space, and edges are assigned according to a threshold function involving the distance between nodes as well as randomly chosen node weights. The motivation for analyzing this model is that many real networks (e.g., wireless networks, the Internet, etc.) need to be studied by using a 'richer' stochastic model (which in this case includes both a distance between nodes and weights on the nodes). Here, we analyze the GTG coloring algorithm together with the graph's clique number, showing formally that in spite of the differences in structure between GTG and RGG, the asymptotic behavior of the chromatic number is identical: {chi}1n 1n n / 1n n (1 + {omicron}(1)). Finally, we consider the leading corrections to this expression, again using the coloring algorithm and clique number to provide bounds on the chromatic number. We show that the gap between the lower and upper bound is within C 1n n / (1n 1n n){sup 2}, and specify the constant C.

  11. Supermarket model on graphs

    NARCIS (Netherlands)

    Budhiraja, A.S.; Mukherjee, D.; Wu, R.

    2017-01-01

    We consider a variation of the supermarket model in which the servers can communicate with their neighbors and where the neighborhood relationships are described in terms of a suitable graph. Tasks with unit-exponential service time distributions arrive at each vertex as independent Poisson

  12. Basin Hopping Graph

    DEFF Research Database (Denmark)

    Kucharik, Marcel; Hofacker, Ivo; Stadler, Peter

    2014-01-01

    of the folding free energy landscape, however, can provide the relevant information. Results We introduce the basin hopping graph (BHG) as a novel coarse-grained model of folding landscapes. Each vertex of the BHG is a local minimum, which represents the corresponding basin in the landscape. Its edges connect...

  13. Resistance and relatedness on an evolutionary graph

    Science.gov (United States)

    Maciejewski, Wes

    2012-01-01

    When investigating evolution in structured populations, it is often convenient to consider the population as an evolutionary graph—individuals as nodes, and whom they may act with as edges. There has, in recent years, been a surge of interest in evolutionary graphs, especially in the study of the evolution of social behaviours. An inclusive fitness framework is best suited for this type of study. A central requirement for an inclusive fitness analysis is an expression for the genetic similarity between individuals residing on the graph. This has been a major hindrance for work in this area as highly technical mathematics are often required. Here, I derive a result that links genetic relatedness between haploid individuals on an evolutionary graph to the resistance between vertices on a corresponding electrical network. An example that demonstrates the potential computational advantage of this result over contemporary approaches is provided. This result offers more, however, to the study of population genetics than strictly computationally efficient methods. By establishing a link between gene transfer and electric circuit theory, conceptualizations of the latter can enhance understanding of the former. PMID:21849384

  14. The STAPL Parallel Graph Library

    KAUST Repository

    Harshvardhan,; Fidel, Adam; Amato, Nancy M.; Rauchwerger, Lawrence

    2013-01-01

    This paper describes the stapl Parallel Graph Library, a high-level framework that abstracts the user from data-distribution and parallelism details and allows them to concentrate on parallel graph algorithm development. It includes a customizable

  15. Fitchi: haplotype genealogy graphs based on the Fitch algorithm.

    Science.gov (United States)

    Matschiner, Michael

    2016-04-15

    : In population genetics and phylogeography, haplotype genealogy graphs are important tools for the visualization of population structure based on sequence data. In this type of graph, node sizes are often drawn in proportion to haplotype frequencies and edge lengths represent the minimum number of mutations separating adjacent nodes. I here present Fitchi, a new program that produces publication-ready haplotype genealogy graphs based on the Fitch algorithm. http://www.evoinformatics.eu/fitchi.htm : michaelmatschiner@mac.com Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  16. AN EFFECTIVE RECOMMENDATIONS BY DIFFUSION ALGORITHM FOR WEB GRAPH MINING

    Directory of Open Access Journals (Sweden)

    S. Vasukipriya

    2013-04-01

    Full Text Available The information on the World Wide Web grows in an explosive rate. Societies are relying more on the Web for their miscellaneous needs of information. Recommendation systems are active information filtering systems that attempt to present the information items like movies, music, images, books recommendations, tags recommendations, query suggestions, etc., to the users. Various kinds of data bases are used for the recommendations; fundamentally these data bases can be molded in the form of many types of graphs. Aiming at provided that a general framework on effective DR (Recommendations by Diffusion algorithm for web graphs mining. First introduce a novel graph diffusion model based on heat diffusion. This method can be applied to both undirected graphs and directed graphs. Then it shows how to convert different Web data sources into correct graphs in our models.

  17. A Clustering Graph Generator

    Energy Technology Data Exchange (ETDEWEB)

    Winlaw, Manda [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); De Sterck, Hans [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sanders, Geoffrey [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-10-26

    In very simple terms a network can be de ned as a collection of points joined together by lines. Thus, networks can be used to represent connections between entities in a wide variety of elds including engi- neering, science, medicine, and sociology. Many large real-world networks share a surprising number of properties, leading to a strong interest in model development research and techniques for building synthetic networks have been developed, that capture these similarities and replicate real-world graphs. Modeling these real-world networks serves two purposes. First, building models that mimic the patterns and prop- erties of real networks helps to understand the implications of these patterns and helps determine which patterns are important. If we develop a generative process to synthesize real networks we can also examine which growth processes are plausible and which are not. Secondly, high-quality, large-scale network data is often not available, because of economic, legal, technological, or other obstacles [7]. Thus, there are many instances where the systems of interest cannot be represented by a single exemplar network. As one example, consider the eld of cybersecurity, where systems require testing across diverse threat scenarios and validation across diverse network structures. In these cases, where there is no single exemplar network, the systems must instead be modeled as a collection of networks in which the variation among them may be just as important as their common features. By developing processes to build synthetic models, so-called graph generators, we can build synthetic networks that capture both the essential features of a system and realistic variability. Then we can use such synthetic graphs to perform tasks such as simulations, analysis, and decision making. We can also use synthetic graphs to performance test graph analysis algorithms, including clustering algorithms and anomaly detection algorithms.

  18. Groupies in multitype random graphs

    OpenAIRE

    Shang, Yilun

    2016-01-01

    A groupie in a graph is a vertex whose degree is not less than the average degree of its neighbors. Under some mild conditions, we show that the proportion of groupies is very close to 1/2 in multitype random graphs (such as stochastic block models), which include Erd?s-R?nyi random graphs, random bipartite, and multipartite graphs as special examples. Numerical examples are provided to illustrate the theoretical results.

  19. Groupies in multitype random graphs.

    Science.gov (United States)

    Shang, Yilun

    2016-01-01

    A groupie in a graph is a vertex whose degree is not less than the average degree of its neighbors. Under some mild conditions, we show that the proportion of groupies is very close to 1/2 in multitype random graphs (such as stochastic block models), which include Erdős-Rényi random graphs, random bipartite, and multipartite graphs as special examples. Numerical examples are provided to illustrate the theoretical results.

  20. Temporal Representation in Semantic Graphs

    Energy Technology Data Exchange (ETDEWEB)

    Levandoski, J J; Abdulla, G M

    2007-08-07

    A wide range of knowledge discovery and analysis applications, ranging from business to biological, make use of semantic graphs when modeling relationships and concepts. Most of the semantic graphs used in these applications are assumed to be static pieces of information, meaning temporal evolution of concepts and relationships are not taken into account. Guided by the need for more advanced semantic graph queries involving temporal concepts, this paper surveys the existing work involving temporal representations in semantic graphs.

  1. Quantum walks on quotient graphs

    International Nuclear Information System (INIS)

    Krovi, Hari; Brun, Todd A.

    2007-01-01

    A discrete-time quantum walk on a graph Γ is the repeated application of a unitary evolution operator to a Hilbert space corresponding to the graph. If this unitary evolution operator has an associated group of symmetries, then for certain initial states the walk will be confined to a subspace of the original Hilbert space. Symmetries of the original graph, given by its automorphism group, can be inherited by the evolution operator. We show that a quantum walk confined to the subspace corresponding to this symmetry group can be seen as a different quantum walk on a smaller quotient graph. We give an explicit construction of the quotient graph for any subgroup H of the automorphism group and illustrate it with examples. The automorphisms of the quotient graph which are inherited from the original graph are the original automorphism group modulo the subgroup H used to construct it. The quotient graph is constructed by removing the symmetries of the subgroup H from the original graph. We then analyze the behavior of hitting times on quotient graphs. Hitting time is the average time it takes a walk to reach a given final vertex from a given initial vertex. It has been shown in earlier work [Phys. Rev. A 74, 042334 (2006)] that the hitting time for certain initial states of a quantum walks can be infinite, in contrast to classical random walks. We give a condition which determines whether the quotient graph has infinite hitting times given that they exist in the original graph. We apply this condition for the examples discussed and determine which quotient graphs have infinite hitting times. All known examples of quantum walks with hitting times which are short compared to classical random walks correspond to systems with quotient graphs much smaller than the original graph; we conjecture that the existence of a small quotient graph with finite hitting times is necessary for a walk to exhibit a quantum speedup

  2. A generalization of total graphs

    Indian Academy of Sciences (India)

    M Afkhami

    2018-04-12

    Apr 12, 2018 ... product of any lower triangular matrix with the transpose of any element of U belongs to U. The ... total graph of R, which is denoted by T( (R)), is a simple graph with all elements of R as vertices, and ...... [9] Badawi A, On dot-product graph of a commutative ring, Communications in Algebra 43 (2015). 43–50.

  3. Graph transformation tool contest 2008

    NARCIS (Netherlands)

    Rensink, Arend; van Gorp, Pieter

    This special section is the outcome of the graph transformation tool contest organised during the Graph-Based Tools (GraBaTs) 2008 workshop, which took place as a satellite event of the International Conference on Graph Transformation (ICGT) 2008. The contest involved two parts: three “off-line case

  4. On dominator colorings in graphs

    Indian Academy of Sciences (India)

    colors required for a dominator coloring of G is called the dominator .... Theorem 1.3 shows that the complete graph Kn is the only connected graph of order n ... Conversely, if a graph G satisfies condition (i) or (ii), it is easy to see that χd(G) =.

  5. Topic Model for Graph Mining.

    Science.gov (United States)

    Xuan, Junyu; Lu, Jie; Zhang, Guangquan; Luo, Xiangfeng

    2015-12-01

    Graph mining has been a popular research area because of its numerous application scenarios. Many unstructured and structured data can be represented as graphs, such as, documents, chemical molecular structures, and images. However, an issue in relation to current research on graphs is that they cannot adequately discover the topics hidden in graph-structured data which can be beneficial for both the unsupervised learning and supervised learning of the graphs. Although topic models have proved to be very successful in discovering latent topics, the standard topic models cannot be directly applied to graph-structured data due to the "bag-of-word" assumption. In this paper, an innovative graph topic model (GTM) is proposed to address this issue, which uses Bernoulli distributions to model the edges between nodes in a graph. It can, therefore, make the edges in a graph contribute to latent topic discovery and further improve the accuracy of the supervised and unsupervised learning of graphs. The experimental results on two different types of graph datasets show that the proposed GTM outperforms the latent Dirichlet allocation on classification by using the unveiled topics of these two models to represent graphs.

  6. Algorithms for Planar Graphs and Graphs in Metric Spaces

    DEFF Research Database (Denmark)

    Wulff-Nilsen, Christian

    structural properties that can be exploited. For instance, a road network or a wire layout on a microchip is typically (near-)planar and distances in the network are often defined w.r.t. the Euclidean or the rectilinear metric. Specialized algorithms that take advantage of such properties are often orders...... of magnitude faster than the corresponding algorithms for general graphs. The first and main part of this thesis focuses on the development of efficient planar graph algorithms. The most important contributions include a faster single-source shortest path algorithm, a distance oracle with subquadratic...... for geometric graphs and graphs embedded in metric spaces. Roughly speaking, the stretch factor is a real value expressing how well a (geo-)metric graph approximates the underlying complete graph w.r.t. distances. We give improved algorithms for computing the stretch factor of a given graph and for augmenting...

  7. A seminar on graph theory

    CERN Document Server

    Harary, Frank

    2015-01-01

    Presented in 1962-63 by experts at University College, London, these lectures offer a variety of perspectives on graph theory. Although the opening chapters form a coherent body of graph theoretic concepts, this volume is not a text on the subject but rather an introduction to the extensive literature of graph theory. The seminar's topics are geared toward advanced undergraduate students of mathematics.Lectures by this volume's editor, Frank Harary, include ""Some Theorems and Concepts of Graph Theory,"" ""Topological Concepts in Graph Theory,"" ""Graphical Reconstruction,"" and other introduc

  8. Spectral fluctuations of quantum graphs

    International Nuclear Information System (INIS)

    Pluhař, Z.; Weidenmüller, H. A.

    2014-01-01

    We prove the Bohigas-Giannoni-Schmit conjecture in its most general form for completely connected simple graphs with incommensurate bond lengths. We show that for graphs that are classically mixing (i.e., graphs for which the spectrum of the classical Perron-Frobenius operator possesses a finite gap), the generating functions for all (P,Q) correlation functions for both closed and open graphs coincide (in the limit of infinite graph size) with the corresponding expressions of random-matrix theory, both for orthogonal and for unitary symmetry

  9. Dynamic Representations of Sparse Graphs

    DEFF Research Database (Denmark)

    Brodal, Gerth Stølting; Fagerberg, Rolf

    1999-01-01

    We present a linear space data structure for maintaining graphs with bounded arboricity—a large class of sparse graphs containing e.g. planar graphs and graphs of bounded treewidth—under edge insertions, edge deletions, and adjacency queries. The data structure supports adjacency queries in worst...... case O(c) time, and edge insertions and edge deletions in amortized O(1) and O(c+log n) time, respectively, where n is the number of nodes in the graph, and c is the bound on the arboricity....

  10. Domination criticality in product graphs

    Directory of Open Access Journals (Sweden)

    M.R. Chithra

    2015-07-01

    Full Text Available A connected dominating set is an important notion and has many applications in routing and management of networks. Graph products have turned out to be a good model of interconnection networks. This motivated us to study the Cartesian product of graphs G with connected domination number, γc(G=2,3 and characterize such graphs. Also, we characterize the k−γ-vertex (edge critical graphs and k−γc-vertex (edge critical graphs for k=2,3 where γ denotes the domination number of G. We also discuss the vertex criticality in grids.

  11. Graph Creation, Visualisation and Transformation

    Directory of Open Access Journals (Sweden)

    Maribel Fernández

    2010-03-01

    Full Text Available We describe a tool to create, edit, visualise and compute with interaction nets - a form of graph rewriting systems. The editor, called GraphPaper, allows users to create and edit graphs and their transformation rules using an intuitive user interface. The editor uses the functionalities of the TULIP system, which gives us access to a wealth of visualisation algorithms. Interaction nets are not only a formalism for the specification of graphs, but also a rewrite-based computation model. We discuss graph rewriting strategies and a language to express them in order to perform strategic interaction net rewriting.

  12. Study of Chromatic parameters of Line, Total, Middle graphs and Graph operators of Bipartite graph

    Science.gov (United States)

    Nagarathinam, R.; Parvathi, N.

    2018-04-01

    Chromatic parameters have been explored on the basis of graph coloring process in which a couple of adjacent nodes receives different colors. But the Grundy and b-coloring executes maximum colors under certain restrictions. In this paper, Chromatic, b-chromatic and Grundy number of some graph operators of bipartite graph has been investigat

  13. Graph Sampling for Covariance Estimation

    KAUST Repository

    Chepuri, Sundeep Prabhakar

    2017-04-25

    In this paper the focus is on subsampling as well as reconstructing the second-order statistics of signals residing on nodes of arbitrary undirected graphs. Second-order stationary graph signals may be obtained by graph filtering zero-mean white noise and they admit a well-defined power spectrum whose shape is determined by the frequency response of the graph filter. Estimating the graph power spectrum forms an important component of stationary graph signal processing and related inference tasks such as Wiener prediction or inpainting on graphs. The central result of this paper is that by sampling a significantly smaller subset of vertices and using simple least squares, we can reconstruct the second-order statistics of the graph signal from the subsampled observations, and more importantly, without any spectral priors. To this end, both a nonparametric approach as well as parametric approaches including moving average and autoregressive models for the graph power spectrum are considered. The results specialize for undirected circulant graphs in that the graph nodes leading to the best compression rates are given by the so-called minimal sparse rulers. A near-optimal greedy algorithm is developed to design the subsampling scheme for the non-parametric and the moving average models, whereas a particular subsampling scheme that allows linear estimation for the autoregressive model is proposed. Numerical experiments on synthetic as well as real datasets related to climatology and processing handwritten digits are provided to demonstrate the developed theory.

  14. Towards Scalable Graph Computation on Mobile Devices.

    Science.gov (United States)

    Chen, Yiqi; Lin, Zhiyuan; Pienta, Robert; Kahng, Minsuk; Chau, Duen Horng

    2014-10-01

    Mobile devices have become increasingly central to our everyday activities, due to their portability, multi-touch capabilities, and ever-improving computational power. Such attractive features have spurred research interest in leveraging mobile devices for computation. We explore a novel approach that aims to use a single mobile device to perform scalable graph computation on large graphs that do not fit in the device's limited main memory, opening up the possibility of performing on-device analysis of large datasets, without relying on the cloud. Based on the familiar memory mapping capability provided by today's mobile operating systems, our approach to scale up computation is powerful and intentionally kept simple to maximize its applicability across the iOS and Android platforms. Our experiments demonstrate that an iPad mini can perform fast computation on large real graphs with as many as 272 million edges (Google+ social graph), at a speed that is only a few times slower than a 13″ Macbook Pro. Through creating a real world iOS app with this technique, we demonstrate the strong potential application for scalable graph computation on a single mobile device using our approach.

  15. Towards Scalable Graph Computation on Mobile Devices

    Science.gov (United States)

    Chen, Yiqi; Lin, Zhiyuan; Pienta, Robert; Kahng, Minsuk; Chau, Duen Horng

    2015-01-01

    Mobile devices have become increasingly central to our everyday activities, due to their portability, multi-touch capabilities, and ever-improving computational power. Such attractive features have spurred research interest in leveraging mobile devices for computation. We explore a novel approach that aims to use a single mobile device to perform scalable graph computation on large graphs that do not fit in the device's limited main memory, opening up the possibility of performing on-device analysis of large datasets, without relying on the cloud. Based on the familiar memory mapping capability provided by today's mobile operating systems, our approach to scale up computation is powerful and intentionally kept simple to maximize its applicability across the iOS and Android platforms. Our experiments demonstrate that an iPad mini can perform fast computation on large real graphs with as many as 272 million edges (Google+ social graph), at a speed that is only a few times slower than a 13″ Macbook Pro. Through creating a real world iOS app with this technique, we demonstrate the strong potential application for scalable graph computation on a single mobile device using our approach. PMID:25859564

  16. Practical graph mining with R

    CERN Document Server

    Hendrix, William; Jenkins, John; Padmanabhan, Kanchana; Chakraborty, Arpan

    2014-01-01

    Practical Graph Mining with R presents a "do-it-yourself" approach to extracting interesting patterns from graph data. It covers many basic and advanced techniques for the identification of anomalous or frequently recurring patterns in a graph, the discovery of groups or clusters of nodes that share common patterns of attributes and relationships, the extraction of patterns that distinguish one category of graphs from another, and the use of those patterns to predict the category of new graphs. Hands-On Application of Graph Data Mining Each chapter in the book focuses on a graph mining task, such as link analysis, cluster analysis, and classification. Through applications using real data sets, the book demonstrates how computational techniques can help solve real-world problems. The applications covered include network intrusion detection, tumor cell diagnostics, face recognition, predictive toxicology, mining metabolic and protein-protein interaction networks, and community detection in social networks. De...

  17. Canonical Labelling of Site Graphs

    Directory of Open Access Journals (Sweden)

    Nicolas Oury

    2013-06-01

    Full Text Available We investigate algorithms for canonical labelling of site graphs, i.e. graphs in which edges bind vertices on sites with locally unique names. We first show that the problem of canonical labelling of site graphs reduces to the problem of canonical labelling of graphs with edge colourings. We then present two canonical labelling algorithms based on edge enumeration, and a third based on an extension of Hopcroft's partition refinement algorithm. All run in quadratic worst case time individually. However, one of the edge enumeration algorithms runs in sub-quadratic time for graphs with "many" automorphisms, and the partition refinement algorithm runs in sub-quadratic time for graphs with "few" bisimulation equivalences. This suite of algorithms was chosen based on the expectation that graphs fall in one of those two categories. If that is the case, a combined algorithm runs in sub-quadratic worst case time. Whether this expectation is reasonable remains an interesting open problem.

  18. Learning heat diffusion graphs

    OpenAIRE

    Thanou, Dorina; Dong, Xiaowen; Kressner, Daniel; Frossard, Pascal

    2016-01-01

    Effective information analysis generally boils down to properly identifying the structure or geometry of the data, which is often represented by a graph. In some applications, this structure may be partly determined by design constraints or pre-determined sensing arrangements, like in road transportation networks for example. In general though, the data structure is not readily available and becomes pretty difficult to define. In particular, the global smoothness assumptions, that most of the...

  19. An Unusual Exponential Graph

    Science.gov (United States)

    Syed, M. Qasim; Lovatt, Ian

    2014-01-01

    This paper is an addition to the series of papers on the exponential function begun by Albert Bartlett. In particular, we ask how the graph of the exponential function y = e[superscript -t/t] would appear if y were plotted versus ln t rather than the normal practice of plotting ln y versus t. In answering this question, we find a new way to…

  20. Understanding Charts and Graphs.

    Science.gov (United States)

    1987-07-28

    Farenheit degrees, which have no Onaturalo zero ); finally, ratio scales have numbers that are ordered so that the magnitudes of differences are important and...system. They have to do with the very nature of how marks serve as meaningful symbols. In the ideal case, a chart or graph will be absolutely unambiguous...and these laws comprise this principle (see Stevens, 1974). Absolute discriminability: A minimal magnitude of a mark is necessary for it to be detected

  1. Genetics Home Reference: activated PI3K-delta syndrome

    Science.gov (United States)

    ... Conditions Diagnosis & Management Resources Genetic Testing (1 link) Genetic Testing Registry: Immunodeficiency 14 Other Diagnosis and Management Resources (1 link) National Institute of Allergy and Infectious Diseases: Primary Immune Deficiency Diseases: Talking to Your Doctor ...

  2. Tuning of active vibration controllers for ACTEX by genetic algorithm

    Science.gov (United States)

    Kwak, Moon K.; Denoyer, Keith K.

    1999-06-01

    This paper is concerned with the optimal tuning of digitally programmable analog controllers on the ACTEX-1 smart structures flight experiment. The programmable controllers for each channel include a third order Strain Rate Feedback (SRF) controller, a fifth order SRF controller, a second order Positive Position Feedback (PPF) controller, and a fourth order PPF controller. Optimal manual tuning of several control parameters can be a difficult task even though the closed-loop control characteristics of each controller are well known. Hence, the automatic tuning of individual control parameters using Genetic Algorithms is proposed in this paper. The optimal control parameters of each control law are obtained by imposing a constraint on the closed-loop frequency response functions using the ACTEX mathematical model. The tuned control parameters are then uploaded to the ACTEX electronic control electronics and experiments on the active vibration control are carried out in space. The experimental results on ACTEX will be presented.

  3. Permanent genetic access to transiently active neurons via TRAP: targeted recombination in active populations.

    Science.gov (United States)

    Guenthner, Casey J; Miyamichi, Kazunari; Yang, Helen H; Heller, H Craig; Luo, Liqun

    2013-06-05

    Targeting genetically encoded tools for neural circuit dissection to relevant cellular populations is a major challenge in neurobiology. We developed an approach, targeted recombination in active populations (TRAP), to obtain genetic access to neurons that were activated by defined stimuli. This method utilizes mice in which the tamoxifen-dependent recombinase CreER(T2) is expressed in an activity-dependent manner from the loci of the immediate early genes Arc and Fos. Active cells that express CreER(T2) can only undergo recombination when tamoxifen is present, allowing genetic access to neurons that are active during a time window of less than 12 hr. We show that TRAP can provide selective access to neurons activated by specific somatosensory, visual, and auditory stimuli and by experience in a novel environment. When combined with tools for labeling, tracing, recording, and manipulating neurons, TRAP offers a powerful approach for understanding how the brain processes information and generates behavior. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Graphs cospectral with a friendship graph or its complement

    Directory of Open Access Journals (Sweden)

    Alireza Abdollahi

    2013-12-01

    Full Text Available Let $n$ be any positive integer and let $F_n$ be the friendship (or Dutch windmill graph with $2n+1$ vertices and $3n$ edges. Here we study graphs with the same adjacency spectrum as the $F_n$. Two graphs are called cospectral if the eigenvalues multiset of their adjacency matrices are the same. Let $G$ be a graph cospectral with $F_n$. Here we prove that if $G$ has no cycle of length $4$ or $5$, then $Gcong F_n$. Moreover if $G$ is connected and planar then $Gcong F_n$.All but one of connected components of $G$ are isomorphic to $K_2$.The complement $overline{F_n}$ of the friendship graph is determined by its adjacency eigenvalues, that is, if $overline{F_n}$ is cospectral with a graph $H$, then $Hcong overline{F_n}$.

  5. Decomposing Oriented Graphs into Six Locally Irregular Oriented Graphs

    DEFF Research Database (Denmark)

    Bensmail, Julien; Renault, Gabriel

    2016-01-01

    An undirected graph G is locally irregular if every two of its adjacent vertices have distinct degrees. We say that G is decomposable into k locally irregular graphs if there exists a partition E1∪E2∪⋯∪Ek of the edge set E(G) such that each Ei induces a locally irregular graph. It was recently co...

  6. X-Graphs: Language and Algorithms for Heterogeneous Graph Streams

    Science.gov (United States)

    2017-09-01

    are widely used by academia and industry. 15. SUBJECT TERMS Data Analytics, Graph Analytics, High-Performance Computing 16. SECURITY CLASSIFICATION...form the core of the DeepDive Knowledge Construction System. 2 INTRODUCTION The goal of the X-Graphs project was to develop computational techniques...memory multicore machine. Ringo is based on Snap.py and SNAP, and uses Python . Ringo now allows the integration of Delite DSL Framework Graph

  7. Endomorphisms of graph algebras

    DEFF Research Database (Denmark)

    Conti, Roberto; Hong, Jeong Hee; Szymanski, Wojciech

    2012-01-01

    We initiate a systematic investigation of endomorphisms of graph C*-algebras C*(E), extending several known results on endomorphisms of the Cuntz algebras O_n. Most but not all of this study is focused on endomorphisms which permute the vertex projections and globally preserve the diagonal MASA D...... that the restriction to the diagonal MASA of an automorphism which globally preserves both D_E and the core AF-subalgebra eventually commutes with the corresponding one-sided shift. Secondly, we exhibit several properties of proper endomorphisms, investigate invertibility of localized endomorphisms both on C...

  8. Graph Algorithm Animation with Grrr

    OpenAIRE

    Rodgers, Peter; Vidal, Natalia

    2000-01-01

    We discuss geometric positioning, highlighting of visited nodes and user defined highlighting that form the algorithm animation facilities in the Grrr graph rewriting programming language. The main purpose of animation was initially for the debugging and profiling of Grrr code, but recently it has been extended for the purpose of teaching algorithms to undergraduate students. The animation is restricted to graph based algorithms such as graph drawing, list manipulation or more traditional gra...

  9. Optimization Problems on Threshold Graphs

    Directory of Open Access Journals (Sweden)

    Elena Nechita

    2010-06-01

    Full Text Available During the last three decades, different types of decompositions have been processed in the field of graph theory. Among these we mention: decompositions based on the additivity of some characteristics of the graph, decompositions where the adjacency law between the subsets of the partition is known, decompositions where the subgraph induced by every subset of the partition must have predeterminate properties, as well as combinations of such decompositions. In this paper we characterize threshold graphs using the weakly decomposition, determine: density and stability number, Wiener index and Wiener polynomial for threshold graphs.

  10. Eulerian Graphs and Related Topics

    CERN Document Server

    Fleischner, Herbert

    1990-01-01

    The two volumes comprising Part 1 of this work embrace the theme of Eulerian trails and covering walks. They should appeal both to researchers and students, as they contain enough material for an undergraduate or graduate graph theory course which emphasizes Eulerian graphs, and thus can be read by any mathematician not yet familiar with graph theory. But they are also of interest to researchers in graph theory because they contain many recent results, some of which are only partial solutions to more general problems. A number of conjectures have been included as well. Various problems (such a

  11. Solved and unsolved problems of chemical graph theory

    International Nuclear Information System (INIS)

    Trinajstic, N.; Klein, D.J.; Randic, M.

    1986-01-01

    The development of several novel graph theoretical concepts and their applications in different branches of chemistry are reviewed. After a few introductory remarks they follow with an outline of selected important graph theoretical invariants, introducing some new results and indicating some open problems. They continue with discussing the problem of graph characterization and construction of graphs of chemical interest, with a particular emphasis on large systems. Finally they consider various problems and difficulties associated with special subgraphs, including subgraphs representing Kekule valence structures. The paper ends with a brief review of structure-property and structure-activity correlations, the topic which is one of prime motivations for application of graph theory to chemistry

  12. Quantum Graph Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Maunz, Peter Lukas Wilhelm [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sterk, Jonathan David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lobser, Daniel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Parekh, Ojas D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ryan-Anderson, Ciaran [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-01-01

    In recent years, advanced network analytics have become increasingly important to na- tional security with applications ranging from cyber security to detection and disruption of ter- rorist networks. While classical computing solutions have received considerable investment, the development of quantum algorithms to address problems, such as data mining of attributed relational graphs, is a largely unexplored space. Recent theoretical work has shown that quan- tum algorithms for graph analysis can be more efficient than their classical counterparts. Here, we have implemented a trapped-ion-based two-qubit quantum information proces- sor to address these goals. Building on Sandia's microfabricated silicon surface ion traps, we have designed, realized and characterized a quantum information processor using the hyperfine qubits encoded in two 171 Yb + ions. We have implemented single qubit gates using resonant microwave radiation and have employed Gate set tomography (GST) to characterize the quan- tum process. For the first time, we were able to prove that the quantum process surpasses the fault tolerance thresholds of some quantum codes by demonstrating a diamond norm distance of less than 1 . 9 x 10 [?] 4 . We used Raman transitions in order to manipulate the trapped ions' motion and realize two-qubit gates. We characterized the implemented motion sensitive and insensitive single qubit processes and achieved a maximal process infidelity of 6 . 5 x 10 [?] 5 . We implemented the two-qubit gate proposed by Molmer and Sorensen and achieved a fidelity of more than 97 . 7%.

  13. Asymptote Misconception on Graphing Functions: Does Graphing Software Resolve It?

    Directory of Open Access Journals (Sweden)

    Mehmet Fatih Öçal

    2017-01-01

    Full Text Available Graphing function is an important issue in mathematics education due to its use in various areas of mathematics and its potential roles for students to enhance learning mathematics. The use of some graphing software assists students’ learning during graphing functions. However, the display of graphs of functions that students sketched by hand may be relatively different when compared to the correct forms sketched using graphing software. The possible misleading effects of this situation brought a discussion of a misconception (asymptote misconception on graphing functions. The purpose of this study is two- fold. First of all, this study investigated whether using graphing software (GeoGebra in this case helps students to determine and resolve this misconception in calculus classrooms. Second, the reasons for this misconception are sought. The multiple case study was utilized in this study. University students in two calculus classrooms who received instructions with (35 students or without GeoGebra assisted instructions (32 students were compared according to whether they fell into this misconception on graphing basic functions (1/x, lnx, ex. In addition, students were interviewed to reveal the reasons behind this misconception. Data were analyzed by means of descriptive and content analysis methods. The findings indicated that those who received GeoGebra assisted instruction were better in resolving it. In addition, the reasons behind this misconception were found to be teacher-based, exam-based and some other factors.

  14. Dual gene activation and knockout screen reveals directional dependencies in genetic networks. | Office of Cancer Genomics

    Science.gov (United States)

    Understanding the direction of information flow is essential for characterizing how genetic networks affect phenotypes. However, methods to find genetic interactions largely fail to reveal directional dependencies. We combine two orthogonal Cas9 proteins from Streptococcus pyogenes and Staphylococcus aureus to carry out a dual screen in which one gene is activated while a second gene is deleted in the same cell. We analyze the quantitative effects of activation and knockout to calculate genetic interaction and directionality scores for each gene pair.

  15. ON BIPOLAR SINGLE VALUED NEUTROSOPHIC GRAPHS

    OpenAIRE

    Said Broumi; Mohamed Talea; Assia Bakali; Florentin Smarandache

    2016-01-01

    In this article, we combine the concept of bipolar neutrosophic set and graph theory. We introduce the notions of bipolar single valued neutrosophic graphs, strong bipolar single valued neutrosophic graphs, complete bipolar single valued neutrosophic graphs, regular bipolar single valued neutrosophic graphs and investigate some of their related properties.

  16. Graph Theory. 2. Vertex Descriptors and Graph Coloring

    Directory of Open Access Journals (Sweden)

    Lorentz JÄNTSCHI

    2002-12-01

    Full Text Available This original work presents the construction of a set of ten sequence matrices and their applications for ordering vertices in graphs. For every sequence matrix three ordering criteria are applied: lexicographic ordering, based on strings of numbers, corresponding to every vertex, extracted as rows from sequence matrices; ordering by the sum of path lengths from a given vertex; and ordering by the sum of paths, starting from a given vertex. We also examine a graph that has different orderings for the above criteria. We then proceed to demonstrate that every criterion induced its own partition of graph vertex. We propose the following theoretical result: both LAVS and LVDS criteria generate identical partitioning of vertices in any graph. Finally, a coloring of graph vertices according to introduced ordering criteria was proposed.

  17. On an edge partition and root graphs of some classes of line graphs

    Directory of Open Access Journals (Sweden)

    K Pravas

    2017-04-01

    Full Text Available The Gallai and the anti-Gallai graphs of a graph $G$ are complementary pairs of spanning subgraphs of the line graph of $G$. In this paper we find some structural relations between these graph classes by finding a partition of the edge set of the line graph of a graph $G$ into the edge sets of the Gallai and anti-Gallai graphs of $G$. Based on this, an optimal algorithm to find the root graph of a line graph is obtained. Moreover, root graphs of diameter-maximal, distance-hereditary, Ptolemaic and chordal graphs are also discussed.

  18. An Application of Cartesian Graphing to Seismic Exploration.

    Science.gov (United States)

    Robertson, Douglas Frederick

    1992-01-01

    Describes how college students enrolled in a course in elementary algebra apply graphing and algebra to data collected from a seismic profile to uncover the structure of a subterranean rock formation. Includes steps guiding the activity. (MDH)

  19. The planar cubic Cayley graphs

    CERN Document Server

    Georgakopoulos, Agelos

    2018-01-01

    The author obtains a complete description of the planar cubic Cayley graphs, providing an explicit presentation and embedding for each of them. This turns out to be a rich class, comprising several infinite families. He obtains counterexamples to conjectures of Mohar, Bonnington and Watkins. The author's analysis makes the involved graphs accessible to computation, corroborating a conjecture of Droms.

  20. Groupies in random bipartite graphs

    OpenAIRE

    Yilun Shang

    2010-01-01

    A vertex $v$ of a graph $G$ is called a groupie if its degree is notless than the average of the degrees of its neighbors. In thispaper we study the influence of bipartition $(B_1,B_2)$ on groupiesin random bipartite graphs $G(B_1,B_2,p)$ with both fixed $p$ and$p$ tending to zero.

  1. Nested Dynamic Condition Response Graphs

    DEFF Research Database (Denmark)

    Hildebrandt, Thomas; Mukkamala, Raghava Rao; Slaats, Tijs

    2012-01-01

    We present an extension of the recently introduced declarative process model Dynamic Condition Response Graphs ( DCR Graphs) to allow nested subgraphs and a new milestone relation between events. The extension was developed during a case study carried out jointly with our industrial partner...

  2. Bell inequalities for graph states

    International Nuclear Information System (INIS)

    Toth, G.; Hyllus, P.; Briegel, H.J.; Guehne, O.

    2005-01-01

    Full text: In the last years graph states have attracted an increasing interest in the field of quantum information theory. Graph states form a family of multi-qubit states which comprises many popular states such as the GHZ states and the cluster states. They also play an important role in applications. For instance, measurement based quantum computation uses graph states as resources. From a theoretical point of view, it is remarkable that graph states allow for a simple description in terms of stabilizing operators. In this contribution, we investigate the non-local properties of graph states. We derive a family of Bell inequalities which require three measurement settings for each party and are maximally violated by graph states. In turn, any graph state violates at least one of the inequalities. We show that for certain types of graph states the violation of these inequalities increases exponentially with the number of qubits. We also discuss connections to other entanglement properties such as the positively of the partial transpose or the geometric measure of entanglement. (author)

  3. Graph Sampling for Covariance Estimation

    KAUST Repository

    Chepuri, Sundeep Prabhakar; Leus, Geert

    2017-01-01

    specialize for undirected circulant graphs in that the graph nodes leading to the best compression rates are given by the so-called minimal sparse rulers. A near-optimal greedy algorithm is developed to design the subsampling scheme for the non

  4. Network reconstruction via graph blending

    Science.gov (United States)

    Estrada, Rolando

    2016-05-01

    Graphs estimated from empirical data are often noisy and incomplete due to the difficulty of faithfully observing all the components (nodes and edges) of the true graph. This problem is particularly acute for large networks where the number of components may far exceed available surveillance capabilities. Errors in the observed graph can render subsequent analyses invalid, so it is vital to develop robust methods that can minimize these observational errors. Errors in the observed graph may include missing and spurious components, as well fused (multiple nodes are merged into one) and split (a single node is misinterpreted as many) nodes. Traditional graph reconstruction methods are only able to identify missing or spurious components (primarily edges, and to a lesser degree nodes), so we developed a novel graph blending framework that allows us to cast the full estimation problem as a simple edge addition/deletion problem. Armed with this framework, we systematically investigate the viability of various topological graph features, such as the degree distribution or the clustering coefficients, and existing graph reconstruction methods for tackling the full estimation problem. Our experimental results suggest that incorporating any topological feature as a source of information actually hinders reconstruction accuracy. We provide a theoretical analysis of this phenomenon and suggest several avenues for improving this estimation problem.

  5. A cluster algorithm for graphs

    NARCIS (Netherlands)

    S. van Dongen

    2000-01-01

    textabstractA cluster algorithm for graphs called the emph{Markov Cluster algorithm (MCL~algorithm) is introduced. The algorithm provides basically an interface to an algebraic process defined on stochastic matrices, called the MCL~process. The graphs may be both weighted (with nonnegative weight)

  6. Planar graphs theory and algorithms

    CERN Document Server

    Nishizeki, T

    1988-01-01

    Collected in this volume are most of the important theorems and algorithms currently known for planar graphs, together with constructive proofs for the theorems. Many of the algorithms are written in Pidgin PASCAL, and are the best-known ones; the complexities are linear or 0(nlogn). The first two chapters provide the foundations of graph theoretic notions and algorithmic techniques. The remaining chapters discuss the topics of planarity testing, embedding, drawing, vertex- or edge-coloring, maximum independence set, subgraph listing, planar separator theorem, Hamiltonian cycles, and single- or multicommodity flows. Suitable for a course on algorithms, graph theory, or planar graphs, the volume will also be useful for computer scientists and graph theorists at the research level. An extensive reference section is included.

  7. Quantum chaos on discrete graphs

    International Nuclear Information System (INIS)

    Smilansky, Uzy

    2007-01-01

    Adapting a method developed for the study of quantum chaos on quantum (metric) graphs (Kottos and Smilansky 1997 Phys. Rev. Lett. 79 4794, Kottos and Smilansky 1999 Ann. Phys., NY 274 76), spectral ζ functions and trace formulae for discrete Laplacians on graphs are derived. This is achieved by expressing the spectral secular equation in terms of the periodic orbits of the graph and obtaining functions which belong to the class of ζ functions proposed originally by Ihara (1966 J. Mat. Soc. Japan 18 219) and expanded by subsequent authors (Stark and Terras 1996 Adv. Math. 121 124, Kotani and Sunada 2000 J. Math. Sci. Univ. Tokyo 7 7). Finally, a model of 'classical dynamics' on the discrete graph is proposed. It is analogous to the corresponding classical dynamics derived for quantum graphs (Kottos and Smilansky 1997 Phys. Rev. Lett. 79 4794, Kottos and Smilansky 1999 Ann. Phys., NY 274 76). (fast track communication)

  8. RJSplot: Interactive Graphs with R.

    Science.gov (United States)

    Barrios, David; Prieto, Carlos

    2018-03-01

    Data visualization techniques provide new methods for the generation of interactive graphs. These graphs allow a better exploration and interpretation of data but their creation requires advanced knowledge of graphical libraries. Recent packages have enabled the integration of interactive graphs in R. However, R provides limited graphical packages that allow the generation of interactive graphs for computational biology applications. The present project has joined the analytical power of R with the interactive graphical features of JavaScript in a new R package (RJSplot). It enables the easy generation of interactive graphs in R, provides new visualization capabilities, and contributes to the advance of computational biology analytical methods. At present, 16 interactive graphics are available in RJSplot, such as the genome viewer, Manhattan plots, 3D plots, heatmaps, dendrograms, networks, and so on. The RJSplot package is freely available online at http://rjsplot.net. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. From protein interactions to functional annotation: graph alignment in Herpes

    Czech Academy of Sciences Publication Activity Database

    Kolář, Michal; Lassig, M.; Berg, J.

    2008-01-01

    Roč. 2, č. 90 (2008), e-e ISSN 1752-0509 Institutional research plan: CEZ:AV0Z50520514 Keywords : graph alignment * functional annotation * protein orthology Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.706, year: 2008

  10. On characterizing terrain visibility graphs

    Directory of Open Access Journals (Sweden)

    William Evans

    2015-06-01

    Full Text Available A terrain is an $x$-monotone polygonal line in the $xy$-plane. Two vertices of a terrain are mutually visible if and only if there is no terrain vertex on or above the open line segment connecting them. A graph whose vertices represent terrain vertices and whose edges represent mutually visible pairs of terrain vertices is called a terrain visibility graph. We would like to find properties that are both necessary and sufficient for a graph to be a terrain visibility graph; that is, we would like to characterize terrain visibility graphs.Abello et al. [Discrete and Computational Geometry, 14(3:331--358, 1995] showed that all terrain visibility graphs are “persistent”. They showed that the visibility information of a terrain point set implies some ordering requirements on the slopes of the lines connecting pairs of points in any realization, and as a step towards showing sufficiency, they proved that for any persistent graph $M$ there is a total order on the slopes of the (pseudo lines in a generalized configuration of points whose visibility graph is $M$.We give a much simpler proof of this result by establishing an orientation to every triple of vertices, reflecting some slope ordering requirements that are consistent with $M$ being the visibility graph, and prove that these requirements form a partial order. We give a faster algorithm to construct a total order on the slopes. Our approach attempts to clarify the implications of the graph theoretic properties on the ordering of the slopes, and may be interpreted as defining properties on an underlying oriented matroid that we show is a restricted type of $3$-signotope.

  11. GCPSO in cooperation with graph theory to distribution network reconfiguration for energy saving

    International Nuclear Information System (INIS)

    Assadian, Mehdi; Farsangi, Malihe M.; Nezamabadi-pour, Hossein

    2010-01-01

    Network reconfiguration for loss reduction in distribution system is an important way to save energy. This paper investigates the ability of guaranteed convergence particle swarm optimization (GCPSO) and particle swarm optimization (PSO) in cooperation with graph theory for network reconfiguration to reduce the power loss and enhancement of voltage profile of distribution systems. Numerical results of three distribution systems are presented which illustrate the feasibility of the proposed method by GCPSO and PSO using the graph theory. To validate the obtained results, genetic algorithm (GA) using graph theory is also applied and is compared with the proposed GCPSO and PSO using graph theory.

  12. Graph embedding with rich information through heterogeneous graph

    KAUST Repository

    Sun, Guolei

    2017-11-12

    Graph embedding, aiming to learn low-dimensional representations for nodes in graphs, has attracted increasing attention due to its critical application including node classification, link prediction and clustering in social network analysis. Most existing algorithms for graph embedding only rely on the topology information and fail to use the copious information in nodes as well as edges. As a result, their performance for many tasks may not be satisfactory. In this thesis, we proposed a novel and general framework for graph embedding with rich text information (GERI) through constructing a heterogeneous network, in which we integrate node and edge content information with graph topology. Specially, we designed a novel biased random walk to explore the constructed heterogeneous network with the notion of flexible neighborhood. Our sampling strategy can compromise between BFS and DFS local search on heterogeneous graph. To further improve our algorithm, we proposed semi-supervised GERI (SGERI), which learns graph embedding in an discriminative manner through heterogeneous network with label information. The efficacy of our method is demonstrated by extensive comparison experiments with 9 baselines over multi-label and multi-class classification on various datasets including Citeseer, Cora, DBLP and Wiki. It shows that GERI improves the Micro-F1 and Macro-F1 of node classification up to 10%, and SGERI improves GERI by 5% in Wiki.

  13. CORECLUSTER: A Degeneracy Based Graph Clustering Framework

    OpenAIRE

    Giatsidis , Christos; Malliaros , Fragkiskos; Thilikos , Dimitrios M. ,; Vazirgiannis , Michalis

    2014-01-01

    International audience; Graph clustering or community detection constitutes an important task forinvestigating the internal structure of graphs, with a plethora of applications in several domains. Traditional tools for graph clustering, such asspectral methods, typically suffer from high time and space complexity. In thisarticle, we present \\textsc{CoreCluster}, an efficient graph clusteringframework based on the concept of graph degeneracy, that can be used along withany known graph clusteri...

  14. Institute of Genetics. Progress report on research and development activities in 1994

    International Nuclear Information System (INIS)

    1995-01-01

    The Institute of Genetics performed R and D work on the following subjects: Effects induced by radiation, oxygen radicals, and chemical mutagens; Regulation of genetic activity; Mechanisms of tumor spreading; Genetic models of mice for simulation of defects in man; p53 and the 'dioxin' receptor as targets of toxic agents. The research results achieved in the reporting period are reviewed and explained. (orig./MG) [de

  15. Hierarchy of modular graph identities

    International Nuclear Information System (INIS)

    D’Hoker, Eric; Kaidi, Justin

    2016-01-01

    The low energy expansion of Type II superstring amplitudes at genus one is organized in terms of modular graph functions associated with Feynman graphs of a conformal scalar field on the torus. In earlier work, surprising identities between two-loop graphs at all weights, and between higher-loop graphs of weights four and five were constructed. In the present paper, these results are generalized in two complementary directions. First, all identities at weight six and all dihedral identities at weight seven are obtained and proven. Whenever the Laurent polynomial at the cusp is available, the form of these identities confirms the pattern by which the vanishing of the Laurent polynomial governs the full modular identity. Second, the family of modular graph functions is extended to include all graphs with derivative couplings and worldsheet fermions. These extended families of modular graph functions are shown to obey a hierarchy of inhomogeneous Laplace eigenvalue equations. The eigenvalues are calculated analytically for the simplest infinite sub-families and obtained by Maple for successively more complicated sub-families. The spectrum is shown to consist solely of eigenvalues s(s−1) for positive integers s bounded by the weight, with multiplicities which exhibit rich representation-theoretic patterns.

  16. Hierarchy of modular graph identities

    Energy Technology Data Exchange (ETDEWEB)

    D’Hoker, Eric; Kaidi, Justin [Mani L. Bhaumik Institute for Theoretical Physics, Department of Physics and Astronomy,University of California,Los Angeles, CA 90095 (United States)

    2016-11-09

    The low energy expansion of Type II superstring amplitudes at genus one is organized in terms of modular graph functions associated with Feynman graphs of a conformal scalar field on the torus. In earlier work, surprising identities between two-loop graphs at all weights, and between higher-loop graphs of weights four and five were constructed. In the present paper, these results are generalized in two complementary directions. First, all identities at weight six and all dihedral identities at weight seven are obtained and proven. Whenever the Laurent polynomial at the cusp is available, the form of these identities confirms the pattern by which the vanishing of the Laurent polynomial governs the full modular identity. Second, the family of modular graph functions is extended to include all graphs with derivative couplings and worldsheet fermions. These extended families of modular graph functions are shown to obey a hierarchy of inhomogeneous Laplace eigenvalue equations. The eigenvalues are calculated analytically for the simplest infinite sub-families and obtained by Maple for successively more complicated sub-families. The spectrum is shown to consist solely of eigenvalues s(s−1) for positive integers s bounded by the weight, with multiplicities which exhibit rich representation-theoretic patterns.

  17. Genetics

    International Nuclear Information System (INIS)

    Hubitschek, H.E.

    1975-01-01

    Progress is reported on the following research projects: genetic effects of high LET radiations; genetic regulation, alteration, and repair; chromosome replication and the division cycle of Escherichia coli; effects of radioisotope decay in the DNA of microorganisms; initiation and termination of DNA replication in Bacillus subtilis; mutagenesis in mouse myeloma cells; lethal and mutagenic effects of near-uv radiation; effect of 8-methoxypsoralen on photodynamic lethality and mutagenicity in Escherichia coli; DNA repair of the lethal effects of far-uv; and near uv irradiation of bacterial cells

  18. XML Graphs in Program Analysis

    DEFF Research Database (Denmark)

    Møller, Anders; Schwartzbach, Michael I.

    2011-01-01

    of XML graphs against different XML schema languages, and provide a software package that enables others to make use of these ideas. We also survey the use of XML graphs for program analysis with four very different languages: XACT (XML in Java), Java Servlets (Web application programming), XSugar......XML graphs have shown to be a simple and effective formalism for representing sets of XML documents in program analysis. It has evolved through a six year period with variants tailored for a range of applications. We present a unified definition, outline the key properties including validation...

  19. Coloring and The Lonely Graph

    OpenAIRE

    Rabern, Landon

    2007-01-01

    We improve upper bounds on the chromatic number proven independently in \\cite{reedNote} and \\cite{ingo}. Our main lemma gives a sufficient condition for two paths in graph to be completely joined. Using this, we prove that if a graph has an optimal coloring with more than $\\frac{\\omega}{2}$ singleton color classes, then it satisfies $\\chi \\leq \\frac{\\omega + \\Delta + 1}{2}$. It follows that a graph satisfying $n - \\Delta < \\alpha + \\frac{\\omega - 1}{2}$ must also satisfy $\\chi \\leq \\frac{\\ome...

  20. Graphs with Eulerian unit spheres

    OpenAIRE

    Knill, Oliver

    2015-01-01

    d-spheres in graph theory are inductively defined as graphs for which all unit spheres S(x) are (d-1)-spheres and that the removal of one vertex renders the graph contractible. Eulerian d-spheres are geometric d-spheres which are d+1 colorable. We prove here that G is an Eulerian sphere if and only if the degrees of all the (d-2)-dimensional sub-simplices in G are even. This generalizes a Kempe-Heawood result for d=2 and is work related to the conjecture that all d-spheres have chromatic numb...

  1. Employing Genetic "Moments" in the History of Mathematics in Classroom Activities

    Science.gov (United States)

    Farmaki, Vassiliki; Paschos, Theodorus

    2007-01-01

    The integration of history into educational practice can lead to the development of activities through the use of genetic "moments" in the history of mathematics. In the present paper, we utilize Oresme's genetic ideas--developed during the fourteenth century, including ideas on the velocity-time graphical representation as well as geometric…

  2. Evolutionary games on graphs

    Science.gov (United States)

    Szabó, György; Fáth, Gábor

    2007-07-01

    Game theory is one of the key paradigms behind many scientific disciplines from biology to behavioral sciences to economics. In its evolutionary form and especially when the interacting agents are linked in a specific social network the underlying solution concepts and methods are very similar to those applied in non-equilibrium statistical physics. This review gives a tutorial-type overview of the field for physicists. The first four sections introduce the necessary background in classical and evolutionary game theory from the basic definitions to the most important results. The fifth section surveys the topological complications implied by non-mean-field-type social network structures in general. The next three sections discuss in detail the dynamic behavior of three prominent classes of models: the Prisoner's Dilemma, the Rock-Scissors-Paper game, and Competing Associations. The major theme of the review is in what sense and how the graph structure of interactions can modify and enrich the picture of long term behavioral patterns emerging in evolutionary games.

  3. Genetics

    DEFF Research Database (Denmark)

    Christensen, Kaare; McGue, Matt

    2016-01-01

    The sequenced genomes of individuals aged ≥80 years, who were highly educated, self-referred volunteers and with no self-reported chronic diseases were compared to young controls. In these data, healthy ageing is a distinct phenotype from exceptional longevity and genetic factors that protect...

  4. Properly colored connectivity of graphs

    CERN Document Server

    Li, Xueliang; Qin, Zhongmei

    2018-01-01

    A comprehensive survey of proper connection of graphs is discussed in this book with real world applications in computer science and network security. Beginning with a brief introduction, comprising relevant definitions and preliminary results, this book moves on to consider a variety of properties of graphs that imply bounds on the proper connection number. Detailed proofs of significant advancements toward open problems and conjectures are presented with complete references. Researchers and graduate students with an interest in graph connectivity and colorings will find this book useful as it builds upon fundamental definitions towards modern innovations, strategies, and techniques. The detailed presentation lends to use as an introduction to proper connection of graphs for new and advanced researchers, a solid book for a graduate level topics course, or as a reference for those interested in expanding and further developing research in the area.

  5. Graph anomalies in cyber communications

    Energy Technology Data Exchange (ETDEWEB)

    Vander Wiel, Scott A [Los Alamos National Laboratory; Storlie, Curtis B [Los Alamos National Laboratory; Sandine, Gary [Los Alamos National Laboratory; Hagberg, Aric A [Los Alamos National Laboratory; Fisk, Michael [Los Alamos National Laboratory

    2011-01-11

    Enterprises monitor cyber traffic for viruses, intruders and stolen information. Detection methods look for known signatures of malicious traffic or search for anomalies with respect to a nominal reference model. Traditional anomaly detection focuses on aggregate traffic at central nodes or on user-level monitoring. More recently, however, traffic is being viewed more holistically as a dynamic communication graph. Attention to the graph nature of the traffic has expanded the types of anomalies that are being sought. We give an overview of several cyber data streams collected at Los Alamos National Laboratory and discuss current work in modeling the graph dynamics of traffic over the network. We consider global properties and local properties within the communication graph. A method for monitoring relative entropy on multiple correlated properties is discussed in detail.

  6. Open Graphs and Computational Reasoning

    Directory of Open Access Journals (Sweden)

    Lucas Dixon

    2010-06-01

    Full Text Available We present a form of algebraic reasoning for computational objects which are expressed as graphs. Edges describe the flow of data between primitive operations which are represented by vertices. These graphs have an interface made of half-edges (edges which are drawn with an unconnected end and enjoy rich compositional principles by connecting graphs along these half-edges. In particular, this allows equations and rewrite rules to be specified between graphs. Particular computational models can then be encoded as an axiomatic set of such rules. Further rules can be derived graphically and rewriting can be used to simulate the dynamics of a computational system, e.g. evaluating a program on an input. Examples of models which can be formalised in this way include traditional electronic circuits as well as recent categorical accounts of quantum information.

  7. The toughness of split graphs

    NARCIS (Netherlands)

    Woeginger, G.J.

    1998-01-01

    In this short note we argue that the toughness of split graphs can be computed in polynomial time. This solves an open problem from a recent paper by Kratsch et al. (Discrete Math. 150 (1996) 231–245).

  8. Generating random networks and graphs

    CERN Document Server

    Coolen, Ton; Roberts, Ekaterina

    2017-01-01

    This book supports researchers who need to generate random networks, or who are interested in the theoretical study of random graphs. The coverage includes exponential random graphs (where the targeted probability of each network appearing in the ensemble is specified), growth algorithms (i.e. preferential attachment and the stub-joining configuration model), special constructions (e.g. geometric graphs and Watts Strogatz models) and graphs on structured spaces (e.g. multiplex networks). The presentation aims to be a complete starting point, including details of both theory and implementation, as well as discussions of the main strengths and weaknesses of each approach. It includes extensive references for readers wishing to go further. The material is carefully structured to be accessible to researchers from all disciplines while also containing rigorous mathematical analysis (largely based on the techniques of statistical mechanics) to support those wishing to further develop or implement the theory of rand...

  9. Graph theory and its applications

    CERN Document Server

    Gross, Jonathan L

    2006-01-01

    Gross and Yellen take a comprehensive approach to graph theory that integrates careful exposition of classical developments with emerging methods, models, and practical needs. Their unparalleled treatment provides a text ideal for a two-semester course and a variety of one-semester classes, from an introductory one-semester course to courses slanted toward classical graph theory, operations research, data structures and algorithms, or algebra and topology.

  10. DMPD: Genetic regulation of macrophage priming/activation: the Lsh gene story. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 1757110 Genetic regulation of macrophage priming/activation: the Lsh gene story. Bl... (.svg) (.html) (.csml) Show Genetic regulation of macrophage priming/activation: the Lsh gene story. Pubmed...ID 1757110 Title Genetic regulation of macrophage priming/activation: the Lsh gen

  11. Mutual Contextualization in Tripartite Graphs of Folksonomies

    Science.gov (United States)

    Yeung, Ching-Man Au; Gibbins, Nicholas; Shadbolt, Nigel

    The use of tags to describe Web resources in a collaborative manner has experienced rising popularity among Web users in recent years. The product of such activity is given the name folksonomy, which can be considered as a scheme of organizing information in the users' own way. This research work attempts to analyze tripartite graphs - graphs involving users, tags and resources - of folksonomies and discuss how these elements acquire their semantics through their associations with other elements, a process we call mutual contextualization. By studying such process, we try to identify solutions to problems such as tag disambiguation, retrieving documents of similar topics and discovering communities of users. This paper describes the basis of the research work, mentions work done so far and outlines future plans.

  12. A faithful functor among algebras and graphs

    OpenAIRE

    Falcón Ganfornina, Óscar Jesús; Falcón Ganfornina, Raúl Manuel; Núñez Valdés, Juan; Pacheco Martínez, Ana María; Villar Liñán, María Trinidad; Vigo Aguiar, Jesús (Coordinador)

    2016-01-01

    The problem of identifying a functor between the categories of algebras and graphs is currently open. Based on a known algorithm that identifies isomorphisms of Latin squares with isomorphism of vertex-colored graphs, we describe here a pair of graphs that enable us to find a faithful functor between finite-dimensional algebras over finite fields and these graphs.

  13. Graphs with branchwidth at most three

    NARCIS (Netherlands)

    Bodlaender, H.L.; Thilikos, D.M.

    1997-01-01

    In this paper we investigate both the structure of graphs with branchwidth at most three, as well as algorithms to recognise such graphs. We show that a graph has branchwidth at most three, if and only if it has treewidth at most three and does not contain the three-dimensional binary cube graph

  14. A Modal-Logic Based Graph Abstraction

    NARCIS (Netherlands)

    Bauer, J.; Boneva, I.B.; Kurban, M.E.; Rensink, Arend; Ehrig, H; Heckel, R.; Rozenberg, G.; Taentzer, G.

    2008-01-01

    Infinite or very large state spaces often prohibit the successful verification of graph transformation systems. Abstract graph transformation is an approach that tackles this problem by abstracting graphs to abstract graphs of bounded size and by lifting application of productions to abstract

  15. Graphs whose complement and square are isomorphic

    DEFF Research Database (Denmark)

    Pedersen, Anders Sune

    2014-01-01

    We study square-complementary graphs, that is, graphs whose complement and square are isomorphic. We prove several necessary conditions for a graph to be square-complementary, describe ways of building new square-complementary graphs from existing ones, construct infinite families of square-compl...

  16. Acyclicity in edge-colored graphs

    DEFF Research Database (Denmark)

    Gutin, Gregory; Jones, Mark; Sheng, Bin

    2017-01-01

    A walk W in edge-colored graphs is called properly colored (PC) if every pair of consecutive edges in W is of different color. We introduce and study five types of PC acyclicity in edge-colored graphs such that graphs of PC acyclicity of type i is a proper superset of graphs of acyclicity of type...

  17. Building Scalable Knowledge Graphs for Earth Science

    Science.gov (United States)

    Ramachandran, Rahul; Maskey, Manil; Gatlin, Patrick; Zhang, Jia; Duan, Xiaoyi; Miller, J. J.; Bugbee, Kaylin; Christopher, Sundar; Freitag, Brian

    2017-01-01

    Knowledge Graphs link key entities in a specific domain with other entities via relationships. From these relationships, researchers can query knowledge graphs for probabilistic recommendations to infer new knowledge. Scientific papers are an untapped resource which knowledge graphs could leverage to accelerate research discovery. Goal: Develop an end-to-end (semi) automated methodology for constructing Knowledge Graphs for Earth Science.

  18. Port-Hamiltonian Systems on Open Graphs

    NARCIS (Netherlands)

    Schaft, A.J. van der; Maschke, B.M.

    2010-01-01

    In this talk we discuss how to define in an intrinsic manner port-Hamiltonian dynamics on open graphs. Open graphs are graphs where some of the vertices are boundary vertices (terminals), which allow interconnection with other systems. We show that a directed graph carries two natural Dirac

  19. Constructing Dense Graphs with Unique Hamiltonian Cycles

    Science.gov (United States)

    Lynch, Mark A. M.

    2012-01-01

    It is not difficult to construct dense graphs containing Hamiltonian cycles, but it is difficult to generate dense graphs that are guaranteed to contain a unique Hamiltonian cycle. This article presents an algorithm for generating arbitrarily large simple graphs containing "unique" Hamiltonian cycles. These graphs can be turned into dense graphs…

  20. Skew-adjacency matrices of graphs

    NARCIS (Netherlands)

    Cavers, M.; Cioaba, S.M.; Fallat, S.; Gregory, D.A.; Haemers, W.H.; Kirkland, S.J.; McDonald, J.J.; Tsatsomeros, M.

    2012-01-01

    The spectra of the skew-adjacency matrices of a graph are considered as a possible way to distinguish adjacency cospectral graphs. This leads to the following topics: graphs whose skew-adjacency matrices are all cospectral; relations between the matchings polynomial of a graph and the characteristic

  1. Chromatic polynomials of random graphs

    International Nuclear Information System (INIS)

    Van Bussel, Frank; Fliegner, Denny; Timme, Marc; Ehrlich, Christoph; Stolzenberg, Sebastian

    2010-01-01

    Chromatic polynomials and related graph invariants are central objects in both graph theory and statistical physics. Computational difficulties, however, have so far restricted studies of such polynomials to graphs that were either very small, very sparse or highly structured. Recent algorithmic advances (Timme et al 2009 New J. Phys. 11 023001) now make it possible to compute chromatic polynomials for moderately sized graphs of arbitrary structure and number of edges. Here we present chromatic polynomials of ensembles of random graphs with up to 30 vertices, over the entire range of edge density. We specifically focus on the locations of the zeros of the polynomial in the complex plane. The results indicate that the chromatic zeros of random graphs have a very consistent layout. In particular, the crossing point, the point at which the chromatic zeros with non-zero imaginary part approach the real axis, scales linearly with the average degree over most of the density range. While the scaling laws obtained are purely empirical, if they continue to hold in general there are significant implications: the crossing points of chromatic zeros in the thermodynamic limit separate systems with zero ground state entropy from systems with positive ground state entropy, the latter an exception to the third law of thermodynamics.

  2. Commuting graphs of matrix algebras

    International Nuclear Information System (INIS)

    Akbari, S.; Bidkhori, H.; Mohammadian, A.

    2006-08-01

    The commuting graph of a ring R, denoted by Γ(R), is a graph whose vertices are all non- central elements of R and two distinct vertices x and y are adjacent if and only if xy = yx. The commuting graph of a group G, denoted by Γ(G), is similarly defined. In this paper we investigate some graph theoretic properties of Γ(M n (F)), where F is a field and n ≥ 2. Also we study the commuting graphs of some classical groups such as GL n (F) and SL n (F). We show that Γ(M n (F)) is a connected graph if and only if every field extension of F of degree n contains a proper intermediate field. We prove that apart from finitely many fields, a similar result is true for Γ(GL n (F)) and Γ(SL n (F)). Also we show that for two fields E and F and integers m, n ≥> 2, if Γ(M m (E)) ≅ Γ(M n (F)), then m = n and vertical bar E vertical bar = vertical bar F vertical bar. (author)

  3. Biological/Genetic Regulation of Physical Activity Level: Consensus from GenBioPAC.

    Science.gov (United States)

    Lightfoot, J Timothy; DE Geus, Eco J C; Booth, Frank W; Bray, Molly S; DEN Hoed, Marcel; Kaprio, Jaakko; Kelly, Scott A; Pomp, Daniel; Saul, Michael C; Thomis, Martine A; Garland, Theodore; Bouchard, Claude

    2018-04-01

    Physical activity unquestionably maintains and improves health; however, physical activity levels globally are low and not rising despite all the resources devoted to this goal. Attention in both the research literature and the public policy domain has focused on social-behavioral factors; however, a growing body of literature suggests that biological determinants play a significant role in regulating physical activity levels. For instance, physical activity level, measured in various manners, has a genetic component in both humans and nonhuman animal models. This consensus article, developed as a result of an American College of Sports Medicine-sponsored round table, provides a brief review of the theoretical concepts and existing literature that supports a significant role of genetic and other biological factors in the regulation of physical activity. Future research on physical activity regulation should incorporate genetics and other biological determinants of physical activity instead of a sole reliance on social and other environmental determinants.

  4. Genetic Networks Activated by Blast Injury to the Eye

    Science.gov (United States)

    2015-08-01

    Eye Center, Emory University, 6 Atlanta, GA 30322; 2Department of Anatomy and Neurobiology and Center for 7 Integrative and Translational Genomics...Sox11 is also required to maintain proper levels of hedgehog signaling, and mutations have been associated with coloboma due to improper optic fissure...OJ, Morris AC. Sox11 is required to maintain proper levels of Hedgehog signaling during vertebrate ocular morphogenesis. PLoS Genet 2014; 10(7

  5. Graph Quasicontinuous Functions and Densely Continuous Forms

    Directory of Open Access Journals (Sweden)

    Lubica Hola

    2017-07-01

    Full Text Available Let $X, Y$ be topological spaces. A function $f: X \\to Y$ is said to be graph quasicontinuous if there is a quasicontinuous function $g: X \\to Y$ with the graph of $g$ contained in the closure of the graph of $f$. There is a close relation between the notions of graph quasicontinuous functions and minimal usco maps as well as the notions of graph quasicontinuous functions and densely continuous forms. Every function with values in a compact Hausdorff space is graph quasicontinuous; more generally every locally compact function is graph quasicontinuous.

  6. Application of active learning modalities to achieve medical genetics competencies and their learning outcome assessments

    Directory of Open Access Journals (Sweden)

    Hagiwara N

    2017-12-01

    Full Text Available Nobuko Hagiwara Division of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, University of California, Davis, CA, USA Abstract: The steadily falling costs of genome sequencing, coupled with the growing number of genetic tests with proven clinical validity, have made the use of genetic testing more common in clinical practice. This development has necessitated nongeneticist physicians, especially primary care physicians, to become more responsible for assessing genetic risks for their patients. Providing undergraduate medical students a solid foundation in genomic medicine, therefore, has become all the more important to ensure the readiness of future physicians in applying genomic medicine to their patient care. In order to further enhance the effectiveness of instructing practical skills in medical genetics, the emphasis of active learning modules in genetics curriculum at medical schools has increased in recent years. This is because of the general acceptance of a better efficacy of active learner-centered pedagogy over passive lecturer-centered pedagogy. However, an objective standard to evaluate students’ skill levels in genomic medicine achieved by active learning is currently missing. Recently, entrustable professional activities (EPAs in genomic medicine have been proposed as a framework for developing physician competencies in genomic medicine. EPAs in genomic medicine provide a convenient guideline for not only developing genomic medicine curriculum but also assessing students’ competency levels in practicing genomic medicine. In this review, the efficacy of different types of active learning modules reported for medical genetics curricula is discussed using EPAs in genomic medicine as a common evaluation standard for modules’ learning outcomes. The utility of the EPAs in genomic medicine for designing active learning modules in undergraduate medical genetics curricula is also discussed. Keywords

  7. Interactive Graph Layout of a Million Nodes

    OpenAIRE

    Peng Mi; Maoyuan Sun; Moeti Masiane; Yong Cao; Chris North

    2016-01-01

    Sensemaking of large graphs, specifically those with millions of nodes, is a crucial task in many fields. Automatic graph layout algorithms, augmented with real-time human-in-the-loop interaction, can potentially support sensemaking of large graphs. However, designing interactive algorithms to achieve this is challenging. In this paper, we tackle the scalability problem of interactive layout of large graphs, and contribute a new GPU-based force-directed layout algorithm that exploits graph to...

  8. Khovanov homology of graph-links

    Energy Technology Data Exchange (ETDEWEB)

    Nikonov, Igor M [M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics, Moscow (Russian Federation)

    2012-08-31

    Graph-links arise as the intersection graphs of turning chord diagrams of links. Speaking informally, graph-links provide a combinatorial description of links up to mutations. Many link invariants can be reformulated in the language of graph-links. Khovanov homology, a well-known and useful knot invariant, is defined for graph-links in this paper (in the case of the ground field of characteristic two). Bibliography: 14 titles.

  9. PRIVATE GRAPHS – ACCESS RIGHTS ON GRAPHS FOR SEAMLESS NAVIGATION

    Directory of Open Access Journals (Sweden)

    W. Dorner

    2016-06-01

    Full Text Available After the success of GNSS (Global Navigational Satellite Systems and navigation services for public streets, indoor seems to be the next big development in navigational services, relying on RTLS – Real Time Locating Services (e.g. WIFI and allowing seamless navigation. In contrast to navigation and routing services on public streets, seamless navigation will cause an additional challenge: how to make routing data accessible to defined users or restrict access rights for defined areas or only to parts of the graph to a defined user group? The paper will present case studies and data from literature, where seamless and especially indoor navigation solutions are presented (hospitals, industrial complexes, building sites, but the problem of restricted access rights was only touched from a real world, but not a technical perspective. The analysis of case studies will show, that the objective of navigation and the different target groups for navigation solutions will demand well defined access rights and require solutions, how to make only parts of a graph to a user or application available to solve a navigational task. The paper will therefore introduce the concept of private graphs, which is defined as a graph for navigational purposes covering the street, road or floor network of an area behind a public street and suggest different approaches how to make graph data for navigational purposes available considering access rights and data protection, privacy and security issues as well.

  10. Stocking activities for the Arctic charr in Lake Geneva: Genetic effects in space and time.

    Science.gov (United States)

    Savary, Romain; Dufresnes, Christophe; Champigneulle, Alexis; Caudron, Arnaud; Dubey, Sylvain; Perrin, Nicolas; Fumagalli, Luca

    2017-07-01

    Artificial stocking practices are widely used by resource managers worldwide, in order to sustain fish populations exploited by both recreational and commercial activities, but their benefits are controversial. Former practices involved exotic strains, although current programs rather consider artificial breeding of local fishes (supportive breeding). Understanding the complex genetic effects of these management strategies is an important challenge with economic and conservation implications, especially in the context of population declines. In this study, we focus on the declining Arctic charr ( Salvelinus alpinus ) population from Lake Geneva (Switzerland and France), which has initially been restocked with allochtonous fishes in the early eighties, followed by supportive breeding. In this context, we conducted a genetic survey to document the evolution of the genetic diversity and structure throughout the last 50 years, before and after the initiation of hatchery supplementation, using contemporary and historical samples. We show that the introduction of exotic fishes was associated with a genetic bottleneck in the 1980-1990s, a break of Hardy-Weinberg Equilibrium (HWE), a reduction in genetic diversity, an increase in genetic structure among spawning sites, and a change in their genetic composition. Together with better environmental conditions, three decades of subsequent supportive breeding using local fishes allowed to re-establish HWE and the initial levels of genetic variation. However, current spawning sites have not fully recovered their original genetic composition and were extensively homogenized across the lake. Our study demonstrates the drastic genetic consequences of different restocking tactics in a comprehensive spatiotemporal framework and suggests that genetic alteration by nonlocal stocking may be partly reversible through supportive breeding. We recommend that conservation-based programs consider local diversity and implement adequate

  11. Eigenfunction statistics on quantum graphs

    International Nuclear Information System (INIS)

    Gnutzmann, S.; Keating, J.P.; Piotet, F.

    2010-01-01

    We investigate the spatial statistics of the energy eigenfunctions on large quantum graphs. It has previously been conjectured that these should be described by a Gaussian Random Wave Model, by analogy with quantum chaotic systems, for which such a model was proposed by Berry in 1977. The autocorrelation functions we calculate for an individual quantum graph exhibit a universal component, which completely determines a Gaussian Random Wave Model, and a system-dependent deviation. This deviation depends on the graph only through its underlying classical dynamics. Classical criteria for quantum universality to be met asymptotically in the large graph limit (i.e. for the non-universal deviation to vanish) are then extracted. We use an exact field theoretic expression in terms of a variant of a supersymmetric σ model. A saddle-point analysis of this expression leads to the estimates. In particular, intensity correlations are used to discuss the possible equidistribution of the energy eigenfunctions in the large graph limit. When equidistribution is asymptotically realized, our theory predicts a rate of convergence that is a significant refinement of previous estimates. The universal and system-dependent components of intensity correlation functions are recovered by means of an exact trace formula which we analyse in the diagonal approximation, drawing in this way a parallel between the field theory and semiclassics. Our results provide the first instance where an asymptotic Gaussian Random Wave Model has been established microscopically for eigenfunctions in a system with no disorder.

  12. Box graphs and resolutions I

    Directory of Open Access Journals (Sweden)

    Andreas P. Braun

    2016-04-01

    Full Text Available Box graphs succinctly and comprehensively characterize singular fibers of elliptic fibrations in codimension two and three, as well as flop transitions connecting these, in terms of representation theoretic data. We develop a framework that provides a systematic map between a box graph and a crepant algebraic resolution of the singular elliptic fibration, thus allowing an explicit construction of the fibers from a singular Weierstrass or Tate model. The key tool is what we call a fiber face diagram, which shows the relevant information of a (partial toric triangulation and allows the inclusion of more general algebraic blowups. We shown that each such diagram defines a sequence of weighted algebraic blowups, thus providing a realization of the fiber defined by the box graph in terms of an explicit resolution. We show this correspondence explicitly for the case of SU(5 by providing a map between box graphs and fiber faces, and thereby a sequence of algebraic resolutions of the Tate model, which realizes each of the box graphs.

  13. Degree-based graph construction

    International Nuclear Information System (INIS)

    Kim, Hyunju; Toroczkai, Zoltan; Erdos, Peter L; Miklos, Istvan; Szekely, Laszlo A

    2009-01-01

    Degree-based graph construction is a ubiquitous problem in network modelling (Newman et al 2006 The Structure and Dynamics of Networks (Princeton Studies in Complexity) (Princeton, NJ: Princeton University Press), Boccaletti et al 2006 Phys. Rep. 424 175), ranging from social sciences to chemical compounds and biochemical reaction networks in the cell. This problem includes existence, enumeration, exhaustive construction and sampling questions with aspects that are still open today. Here we give necessary and sufficient conditions for a sequence of nonnegative integers to be realized as a simple graph's degree sequence, such that a given (but otherwise arbitrary) set of connections from an arbitrarily given node is avoided. We then use this result to present a swap-free algorithm that builds all simple graphs realizing a given degree sequence. In a wider context, we show that our result provides a greedy construction method to build all the f-factor subgraphs (Tutte 1952 Can. J. Math. 4 314) embedded within K n setmn S k , where K n is the complete graph and S k is a star graph centred on one of the nodes. (fast track communication)

  14. Hierarchical organisation of causal graphs

    International Nuclear Information System (INIS)

    Dziopa, P.

    1993-01-01

    This paper deals with the design of a supervision system using a hierarchy of models formed by graphs, in which the variables are the nodes and the causal relations between the variables of the arcs. To obtain a representation of the variables evolutions which contains only the relevant features of their real evolutions, the causal relations are completed with qualitative transfer functions (QTFs) which produce roughly the behaviour of the classical transfer functions. Major improvements have been made in the building of the hierarchical organization. First, the basic variables of the uppermost level and the causal relations between them are chosen. The next graph is built by adding intermediary variables to the upper graph. When the undermost graph has been built, the transfer functions parameters corresponding to its causal relations are identified. The second task consists in the upwelling of the information from the undermost graph to the uppermost one. A fusion procedure of the causal relations has been designed to compute the QFTs relevant for each level. This procedure aims to reduce the number of parameters needed to represent an evolution at a high level of abstraction. These techniques have been applied to the hierarchical modelling of nuclear process. (authors). 8 refs., 12 figs

  15. Integer Flows and Circuit Covers of Graphs and Signed Graphs

    Science.gov (United States)

    Cheng, Jian

    The work in Chapter 2 is motivated by Tutte and Jaeger's pioneering work on converting modulo flows into integer-valued flows for ordinary graphs. For a signed graphs (G, sigma), we first prove that for each k ∈ {2, 3}, if (G, sigma) is (k - 1)-edge-connected and contains an even number of negative edges when k = 2, then every modulo k-flow of (G, sigma) can be converted into an integer-valued ( k + 1)-ow with a larger or the same support. We also prove that if (G, sigma) is odd-(2p+1)-edge-connected, then (G, sigma) admits a modulo circular (2 + 1/ p)-flows if and only if it admits an integer-valued circular (2 + 1/p)-flows, which improves all previous result by Xu and Zhang (DM2005), Schubert and Steffen (EJC2015), and Zhu (JCTB2015). Shortest circuit cover conjecture is one of the major open problems in graph theory. It states that every bridgeless graph G contains a set of circuits F such that each edge is contained in at least one member of F and the length of F is at most 7/5∥E(G)∥. This concept was recently generalized to signed graphs by Macajova et al. (JGT2015). In Chapter 3, we improve their upper bound from 11∥E( G)∥ to 14/3 ∥E(G)∥, and if G is 2-edgeconnected and has even negativeness, then it can be further reduced to 11/3 ∥E(G)∥. Tutte's 3-flow conjecture has been studied by many graph theorists in the last several decades. As a new approach to this conjecture, DeVos and Thomassen considered the vectors as ow values and found that there is a close relation between vector S1-flows and integer 3-NZFs. Motivated by their observation, in Chapter 4, we prove that if a graph G admits a vector S1-flow with rank at most two, then G admits an integer 3-NZF. The concept of even factors is highly related to the famous Four Color Theorem. We conclude this dissertation in Chapter 5 with an improvement of a recent result by Chen and Fan (JCTB2016) on the upperbound of even factors. We show that if a graph G contains an even factor, then it

  16. Graph modeling systems and methods

    Science.gov (United States)

    Neergaard, Mike

    2015-10-13

    An apparatus and a method for vulnerability and reliability modeling are provided. The method generally includes constructing a graph model of a physical network using a computer, the graph model including a plurality of terminating vertices to represent nodes in the physical network, a plurality of edges to represent transmission paths in the physical network, and a non-terminating vertex to represent a non-nodal vulnerability along a transmission path in the physical network. The method additionally includes evaluating the vulnerability and reliability of the physical network using the constructed graph model, wherein the vulnerability and reliability evaluation includes a determination of whether each terminating and non-terminating vertex represents a critical point of failure. The method can be utilized to evaluate wide variety of networks, including power grid infrastructures, communication network topologies, and fluid distribution systems.

  17. On the graph turnpike problem

    KAUST Repository

    Feder, Tomá s; Motwani, Rajeev

    2009-01-01

    Results on graph turnpike problem without distinctness, including its NP-completeness, and an O(m+n log n) algorithm, is presented. The usual turnpike problem has all pairwise distances given, but does not specify which pair of vertices w e corresponds to. There are two other problems that can be viewed as special cases of the graph turnpike problem, including the bandwidth problem and the low-distortion graph embedding problem. The aim for the turnpike problem in the NP-complete is to orient the edges with weights w i in either direction so that when the whole cycle is transversed in the real line, it returns to a chosen starting point for the cycle. An instance of the turnpike problem with or without distinctness is uniquely mappable if there exists at most one solution up to translation and choice of orientation.

  18. On the graph turnpike problem

    KAUST Repository

    Feder, Tomás

    2009-06-01

    Results on graph turnpike problem without distinctness, including its NP-completeness, and an O(m+n log n) algorithm, is presented. The usual turnpike problem has all pairwise distances given, but does not specify which pair of vertices w e corresponds to. There are two other problems that can be viewed as special cases of the graph turnpike problem, including the bandwidth problem and the low-distortion graph embedding problem. The aim for the turnpike problem in the NP-complete is to orient the edges with weights w i in either direction so that when the whole cycle is transversed in the real line, it returns to a chosen starting point for the cycle. An instance of the turnpike problem with or without distinctness is uniquely mappable if there exists at most one solution up to translation and choice of orientation.

  19. Negation switching invariant signed graphs

    Directory of Open Access Journals (Sweden)

    Deepa Sinha

    2014-04-01

    Full Text Available A signed graph (or, $sigraph$ in short is a graph G in which each edge x carries a value $\\sigma(x \\in \\{-, +\\}$ called its sign. Given a sigraph S, the negation $\\eta(S$ of the sigraph S is a sigraph obtained from S by reversing the sign of every edge of S. Two sigraphs $S_{1}$ and $S_{2}$ on the same underlying graph are switching equivalent if it is possible to assign signs `+' (`plus' or `-' (`minus' to vertices of $S_{1}$ such that by reversing the sign of each of its edges that has received opposite signs at its ends, one obtains $S_{2}$. In this paper, we characterize sigraphs which are negation switching invariant and also see for what sigraphs, S and $\\eta (S$ are signed isomorphic.

  20. Quantum snake walk on graphs

    International Nuclear Information System (INIS)

    Rosmanis, Ansis

    2011-01-01

    I introduce a continuous-time quantum walk on graphs called the quantum snake walk, the basis states of which are fixed-length paths (snakes) in the underlying graph. First, I analyze the quantum snake walk on the line, and I show that, even though most states stay localized throughout the evolution, there are specific states that most likely move on the line as wave packets with momentum inversely proportional to the length of the snake. Next, I discuss how an algorithm based on the quantum snake walk might potentially be able to solve an extended version of the glued trees problem, which asks to find a path connecting both roots of the glued trees graph. To the best of my knowledge, no efficient quantum algorithm solving this problem is known yet.

  1. An original approach to the mathematical concept of graph from braid crafts

    Directory of Open Access Journals (Sweden)

    Albanese Veronica

    2016-01-01

    Full Text Available In previous researches we found that a community of Argentinean artisans models its own practices of braiding using graphs. Inspired by these findings, we designed an educational activity to introduce the concept of graphs. The study of graphs helps students to develop combinatorial and systematic thinking as well as skills to model reality and abstract and generalize patterns from particular situations. The tasks proposed aim to construct the concept of graphs, then identify characteristics that allow some graphs to be models of braids and finally use them to invent more graphs for new braids. The activity performed in a secondary school teachers’ educational course, had quite satisfactory results due to the number of braids invented and the small amount of mistakes made by the participants.

  2. Acquisition of Genetic Aberrations by Activation-Induced Cytidine Deaminase (AID) during Inflammation-Associated Carcinogenesis

    International Nuclear Information System (INIS)

    Takai, Atsushi; Marusawa, Hiroyuki; Chiba, Tsutomu

    2011-01-01

    Genetic abnormalities such as nucleotide alterations and chromosomal disorders that accumulate in various tumor-related genes have an important role in cancer development. The precise mechanism of the acquisition of genetic aberrations, however, remains unclear. Activation-induced cytidine deaminase (AID), a nucleotide editing enzyme, is essential for the diversification of antibody production. AID is expressed only in activated B lymphocytes under physiologic conditions and induces somatic hypermutation and class switch recombination in immunoglobulin genes. Inflammation leads to aberrant AID expression in various gastrointestinal organs and increased AID expression contributes to cancer development by inducing genetic alterations in epithelial cells. Studies of how AID induces genetic disorders are expected to elucidate the mechanism of inflammation-associated carcinogenesis

  3. Genetic Algorithm Calibration of Probabilistic Cellular Automata for Modeling Mining Permit Activity

    Science.gov (United States)

    Louis, S.J.; Raines, G.L.

    2003-01-01

    We use a genetic algorithm to calibrate a spatially and temporally resolved cellular automata to model mining activity on public land in Idaho and western Montana. The genetic algorithm searches through a space of transition rule parameters of a two dimensional cellular automata model to find rule parameters that fit observed mining activity data. Previous work by one of the authors in calibrating the cellular automaton took weeks - the genetic algorithm takes a day and produces rules leading to about the same (or better) fit to observed data. These preliminary results indicate that genetic algorithms are a viable tool in calibrating cellular automata for this application. Experience gained during the calibration of this cellular automata suggests that mineral resource information is a critical factor in the quality of the results. With automated calibration, further refinements of how the mineral-resource information is provided to the cellular automaton will probably improve our model.

  4. Application of active learning modalities to achieve medical genetics competencies and their learning outcome assessments.

    Science.gov (United States)

    Hagiwara, Nobuko

    2017-01-01

    The steadily falling costs of genome sequencing, coupled with the growing number of genetic tests with proven clinical validity, have made the use of genetic testing more common in clinical practice. This development has necessitated nongeneticist physicians, especially primary care physicians, to become more responsible for assessing genetic risks for their patients. Providing undergraduate medical students a solid foundation in genomic medicine, therefore, has become all the more important to ensure the readiness of future physicians in applying genomic medicine to their patient care. In order to further enhance the effectiveness of instructing practical skills in medical genetics, the emphasis of active learning modules in genetics curriculum at medical schools has increased in recent years. This is because of the general acceptance of a better efficacy of active learner-centered pedagogy over passive lecturer-centered pedagogy. However, an objective standard to evaluate students' skill levels in genomic medicine achieved by active learning is currently missing. Recently, entrustable professional activities (EPAs) in genomic medicine have been proposed as a framework for developing physician competencies in genomic medicine. EPAs in genomic medicine provide a convenient guideline for not only developing genomic medicine curriculum but also assessing students' competency levels in practicing genomic medicine. In this review, the efficacy of different types of active learning modules reported for medical genetics curricula is discussed using EPAs in genomic medicine as a common evaluation standard for modules' learning outcomes. The utility of the EPAs in genomic medicine for designing active learning modules in undergraduate medical genetics curricula is also discussed.

  5. On Graph Rewriting, Reduction and Evaluation

    DEFF Research Database (Denmark)

    Zerny, Ian

    2010-01-01

    We inter-derive two prototypical styles of graph reduction: reduction machines à la Turner and graph rewriting systems à la Barendregt et al. To this end, we adapt Danvy et al.'s mechanical program derivations from the world of terms to the world of graphs. We also outline how to inter-derive a t......We inter-derive two prototypical styles of graph reduction: reduction machines à la Turner and graph rewriting systems à la Barendregt et al. To this end, we adapt Danvy et al.'s mechanical program derivations from the world of terms to the world of graphs. We also outline how to inter...

  6. The fascinating world of graph theory

    CERN Document Server

    Benjamin, Arthur; Zhang, Ping

    2015-01-01

    Graph theory goes back several centuries and revolves around the study of graphs-mathematical structures showing relations between objects. With applications in biology, computer science, transportation science, and other areas, graph theory encompasses some of the most beautiful formulas in mathematics-and some of its most famous problems. The Fascinating World of Graph Theory explores the questions and puzzles that have been studied, and often solved, through graph theory. This book looks at graph theory's development and the vibrant individuals responsible for the field's growth. Introducin

  7. Graph-based modelling in engineering

    CERN Document Server

    Rysiński, Jacek

    2017-01-01

    This book presents versatile, modern and creative applications of graph theory in mechanical engineering, robotics and computer networks. Topics related to mechanical engineering include e.g. machine and mechanism science, mechatronics, robotics, gearing and transmissions, design theory and production processes. The graphs treated are simple graphs, weighted and mixed graphs, bond graphs, Petri nets, logical trees etc. The authors represent several countries in Europe and America, and their contributions show how different, elegant, useful and fruitful the utilization of graphs in modelling of engineering systems can be. .

  8. XML Graphs in Program Analysis

    DEFF Research Database (Denmark)

    Møller, Anders; Schwartzbach, Michael Ignatieff

    2007-01-01

    XML graphs have shown to be a simple and effective formalism for representing sets of XML documents in program analysis. It has evolved through a six year period with variants tailored for a range of applications. We present a unified definition, outline the key properties including validation...... of XML graphs against different XML schema languages, and provide a software package that enables others to make use of these ideas. We also survey four very different applications: XML in Java, Java Servlets and JSP, transformations between XML and non-XML data, and XSLT....

  9. Graph topologies on closed multifunctions

    Directory of Open Access Journals (Sweden)

    Giuseppe Di Maio

    2003-10-01

    Full Text Available In this paper we study function space topologies on closed multifunctions, i.e. closed relations on X x Y using various hypertopologies. The hypertopologies are in essence, graph topologies i.e topologies on functions considered as graphs which are subsets of X x Y . We also study several topologies, including one that is derived from the Attouch-Wets filter on the range. We state embedding theorems which enable us to generalize and prove some recent results in the literature with the use of known results in the hyperspace of the range space and in the function space topologies of ordinary functions.

  10. Cyclic graphs and Apery's theorem

    International Nuclear Information System (INIS)

    Sorokin, V N

    2002-01-01

    This is a survey of results about the behaviour of Hermite-Pade approximants for graphs of Markov functions, and a survey of interpolation problems leading to Apery's result about the irrationality of the value ζ(3) of the Riemann zeta function. The first example is given of a cyclic graph for which the Hermite-Pade problem leads to Apery's theorem. Explicit formulae for solutions are obtained, namely, Rodrigues' formulae and integral representations. The asymptotic behaviour of the approximants is studied, and recurrence formulae are found

  11. Interacting particle systems on graphs

    Science.gov (United States)

    Sood, Vishal

    In this dissertation, the dynamics of socially or biologically interacting populations are investigated. The individual members of the population are treated as particles that interact via links on a social or biological network represented as a graph. The effect of the structure of the graph on the properties of the interacting particle system is studied using statistical physics techniques. In the first chapter, the central concepts of graph theory and social and biological networks are presented. Next, interacting particle systems that are drawn from physics, mathematics and biology are discussed in the second chapter. In the third chapter, the random walk on a graph is studied. The mean time for a random walk to traverse between two arbitrary sites of a random graph is evaluated. Using an effective medium approximation it is found that the mean first-passage time between pairs of sites, as well as all moments of this first-passage time, are insensitive to the density of links in the graph. The inverse of the mean-first passage time varies non-monotonically with the density of links near the percolation transition of the random graph. Much of the behavior can be understood by simple heuristic arguments. Evolutionary dynamics, by which mutants overspread an otherwise uniform population on heterogeneous graphs, are studied in the fourth chapter. Such a process underlies' epidemic propagation, emergence of fads, social cooperation or invasion of an ecological niche by a new species. The first part of this chapter is devoted to neutral dynamics, in which the mutant genotype does not have a selective advantage over the resident genotype. The time to extinction of one of the two genotypes is derived. In the second part of this chapter, selective advantage or fitness is introduced such that the mutant genotype has a higher birth rate or a lower death rate. This selective advantage leads to a dynamical competition in which selection dominates for large populations

  12. Physical activity level of three generation families. Genetic and environmental factors doi: 10.5007/1980-0037.2010v12n6p408

    Directory of Open Access Journals (Sweden)

    Raquel Nichele de Chaves

    2010-09-01

    Full Text Available This study aims (1 to investigate the presence of familial aggregation in physical activity (PA levels and sedentary behavior (SB among members of three generations families and (2 to estimate the magnitude of additive genetic influences on PA and SB phenotypes. The sample consisted of 100 extended families covering three generations (n=1034, from the Lisbon area, Portugal. Phenotypes were assessed via the short version of the self-administered International Physical Activity Questionnaire (IPAQ-SF. Measured phenotypes: total physical activity (TPA; vigorous (VPA; moderate (MPA; walking; time spent in sitting time (ST, watching television (WT and PA levels classification. Body mass index (BMI was calculated. Exploratory family analysis in all phenotypes was conducted in PEDSTATS software. The genetic component (h2 and shared environmental effect were estimated using maximum likelihood implemented in the SOLAR software package. All graphs were done in HLM software. Sex, age, sex*age, age2, sex*age2 and BMI were used as covariates. Significant level was set at 0,05. Genetic component estimates (h2 were as follows: TPA h2=0,28±0,06 (p<0.0001; VPA h2=0,35±0,06 (p<0.0001; MPA h2=0,29±0,06 (p<0.0001; walking h2=0,40±0,06 (p<0.0001; ST h2=0,29±0,06 (p<0.0001; WT h2=0,15±0,06 (p<0.003 and determination of the level physical activity h2=0,35±0,14 (p<0.007. Shared environmental effect was not significant. These results showed a low-to-moderate genetic contribution, between 15% to 40% of the total variability, in the PA and SB phenotypes. The genetic factors have low to moderate influence in this sample. Non-shared environmental factors appear to have the major contribution in these phenotypes.

  13. Genetic Analysis of Daily Activity in Humans and Mice

    National Research Council Canada - National Science Library

    Takahashi, Joseph

    1999-01-01

    .... We have characterized variation in five circadian phenotypes: free-running circadian period, phase angle of entrainment, amplitude of the circadian rhythm, circadian activity level, and dissociation of rhythmicity...

  14. Capturing the genetic makeup of the active microbiome in situ.

    Science.gov (United States)

    Singer, Esther; Wagner, Michael; Woyke, Tanja

    2017-09-01

    More than any other technology, nucleic acid sequencing has enabled microbial ecology studies to be complemented with the data volumes necessary to capture the extent of microbial diversity and dynamics in a wide range of environments. In order to truly understand and predict environmental processes, however, the distinction between active, inactive and dead microbial cells is critical. Also, experimental designs need to be sensitive toward varying population complexity and activity, and temporal as well as spatial scales of process rates. There are a number of approaches, including single-cell techniques, which were designed to study in situ microbial activity and that have been successively coupled to nucleic acid sequencing. The exciting new discoveries regarding in situ microbial activity provide evidence that future microbial ecology studies will indispensably rely on techniques that specifically capture members of the microbiome active in the environment. Herein, we review those currently used activity-based approaches that can be directly linked to shotgun nucleic acid sequencing, evaluate their relevance to ecology studies, and discuss future directions.

  15. Multiple graph regularized protein domain ranking

    KAUST Repository

    Wang, Jim Jing-Yan

    2012-11-19

    Background: Protein domain ranking is a fundamental task in structural biology. Most protein domain ranking methods rely on the pairwise comparison of protein domains while neglecting the global manifold structure of the protein domain database. Recently, graph regularized ranking that exploits the global structure of the graph defined by the pairwise similarities has been proposed. However, the existing graph regularized ranking methods are very sensitive to the choice of the graph model and parameters, and this remains a difficult problem for most of the protein domain ranking methods.Results: To tackle this problem, we have developed the Multiple Graph regularized Ranking algorithm, MultiG-Rank. Instead of using a single graph to regularize the ranking scores, MultiG-Rank approximates the intrinsic manifold of protein domain distribution by combining multiple initial graphs for the regularization. Graph weights are learned with ranking scores jointly and automatically, by alternately minimizing an objective function in an iterative algorithm. Experimental results on a subset of the ASTRAL SCOP protein domain database demonstrate that MultiG-Rank achieves a better ranking performance than single graph regularized ranking methods and pairwise similarity based ranking methods.Conclusion: The problem of graph model and parameter selection in graph regularized protein domain ranking can be solved effectively by combining multiple graphs. This aspect of generalization introduces a new frontier in applying multiple graphs to solving protein domain ranking applications. 2012 Wang et al; licensee BioMed Central Ltd.

  16. Multiple graph regularized protein domain ranking

    KAUST Repository

    Wang, Jim Jing-Yan; Bensmail, Halima; Gao, Xin

    2012-01-01

    Background: Protein domain ranking is a fundamental task in structural biology. Most protein domain ranking methods rely on the pairwise comparison of protein domains while neglecting the global manifold structure of the protein domain database. Recently, graph regularized ranking that exploits the global structure of the graph defined by the pairwise similarities has been proposed. However, the existing graph regularized ranking methods are very sensitive to the choice of the graph model and parameters, and this remains a difficult problem for most of the protein domain ranking methods.Results: To tackle this problem, we have developed the Multiple Graph regularized Ranking algorithm, MultiG-Rank. Instead of using a single graph to regularize the ranking scores, MultiG-Rank approximates the intrinsic manifold of protein domain distribution by combining multiple initial graphs for the regularization. Graph weights are learned with ranking scores jointly and automatically, by alternately minimizing an objective function in an iterative algorithm. Experimental results on a subset of the ASTRAL SCOP protein domain database demonstrate that MultiG-Rank achieves a better ranking performance than single graph regularized ranking methods and pairwise similarity based ranking methods.Conclusion: The problem of graph model and parameter selection in graph regularized protein domain ranking can be solved effectively by combining multiple graphs. This aspect of generalization introduces a new frontier in applying multiple graphs to solving protein domain ranking applications. 2012 Wang et al; licensee BioMed Central Ltd.

  17. Multiple graph regularized protein domain ranking.

    Science.gov (United States)

    Wang, Jim Jing-Yan; Bensmail, Halima; Gao, Xin

    2012-11-19

    Protein domain ranking is a fundamental task in structural biology. Most protein domain ranking methods rely on the pairwise comparison of protein domains while neglecting the global manifold structure of the protein domain database. Recently, graph regularized ranking that exploits the global structure of the graph defined by the pairwise similarities has been proposed. However, the existing graph regularized ranking methods are very sensitive to the choice of the graph model and parameters, and this remains a difficult problem for most of the protein domain ranking methods. To tackle this problem, we have developed the Multiple Graph regularized Ranking algorithm, MultiG-Rank. Instead of using a single graph to regularize the ranking scores, MultiG-Rank approximates the intrinsic manifold of protein domain distribution by combining multiple initial graphs for the regularization. Graph weights are learned with ranking scores jointly and automatically, by alternately minimizing an objective function in an iterative algorithm. Experimental results on a subset of the ASTRAL SCOP protein domain database demonstrate that MultiG-Rank achieves a better ranking performance than single graph regularized ranking methods and pairwise similarity based ranking methods. The problem of graph model and parameter selection in graph regularized protein domain ranking can be solved effectively by combining multiple graphs. This aspect of generalization introduces a new frontier in applying multiple graphs to solving protein domain ranking applications.

  18. Multiple graph regularized protein domain ranking

    Directory of Open Access Journals (Sweden)

    Wang Jim

    2012-11-01

    Full Text Available Abstract Background Protein domain ranking is a fundamental task in structural biology. Most protein domain ranking methods rely on the pairwise comparison of protein domains while neglecting the global manifold structure of the protein domain database. Recently, graph regularized ranking that exploits the global structure of the graph defined by the pairwise similarities has been proposed. However, the existing graph regularized ranking methods are very sensitive to the choice of the graph model and parameters, and this remains a difficult problem for most of the protein domain ranking methods. Results To tackle this problem, we have developed the Multiple Graph regularized Ranking algorithm, MultiG-Rank. Instead of using a single graph to regularize the ranking scores, MultiG-Rank approximates the intrinsic manifold of protein domain distribution by combining multiple initial graphs for the regularization. Graph weights are learned with ranking scores jointly and automatically, by alternately minimizing an objective function in an iterative algorithm. Experimental results on a subset of the ASTRAL SCOP protein domain database demonstrate that MultiG-Rank achieves a better ranking performance than single graph regularized ranking methods and pairwise similarity based ranking methods. Conclusion The problem of graph model and parameter selection in graph regularized protein domain ranking can be solved effectively by combining multiple graphs. This aspect of generalization introduces a new frontier in applying multiple graphs to solving protein domain ranking applications.

  19. GraphAlignment: Bayesian pairwise alignment of biological networks

    Czech Academy of Sciences Publication Activity Database

    Kolář, Michal; Meier, J.; Mustonen, V.; Lässig, M.; Berg, J.

    2012-01-01

    Roč. 6, November 21 (2012) ISSN 1752-0509 Grant - others:Deutsche Forschungsgemeinschaft(DE) SFB 680; Deutsche Forschungsgemeinschaft(DE) SFB-TR12; Deutsche Forschungsgemeinschaft(DE) BE 2478/2-1 Institutional research plan: CEZ:AV0Z50520514 Keywords : Graph alignment * Biological networks * Parameter estimation * Bioconductor Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.982, year: 2012

  20. Constructing Knowledge Graphs of Depression

    NARCIS (Netherlands)

    Huang, Zhisheng; Yang, Jie; van Harmelen, Frank; Hu, Qing

    2017-01-01

    Knowledge Graphs have been shown to be useful tools for integrating multiple medical knowledge sources, and to support such tasks as medical decision making, literature retrieval, determining healthcare quality indicators, co-morbodity analysis and many others. A large number of medical knowledge

  1. Partitioning graphs into connected parts

    NARCIS (Netherlands)

    Hof, van 't P.; Paulusma, D.; Woeginger, G.J.; Frid, A.; Morozov, A.S.; Rybalchenko, A.; Wagner, K.W.

    2009-01-01

    The 2-DISJOINT CONNECTED SUBGRAPHS problem asks if a given graph has two vertex-disjoint connected subgraphs containing pre-specified sets of vertices. We show that this problem is NP-complete even if one of the sets has cardinality 2. The LONGEST PATH CONTRACTIBILITY problem asks for the largest

  2. Isoperimetric inequalities for minimal graphs

    International Nuclear Information System (INIS)

    Pacelli Bessa, G.; Montenegro, J.F.

    2007-09-01

    Based on Markvorsen and Palmer's work on mean time exit and isoperimetric inequalities we establish slightly better isoperimetric inequalities and mean time exit estimates for minimal graphs in N x R. We also prove isoperimetric inequalities for submanifolds of Hadamard spaces with tamed second fundamental form. (author)

  3. Ancestral Genres of Mathematical Graphs

    Science.gov (United States)

    Gerofsky, Susan

    2011-01-01

    Drawing from sources in gesture studies, cognitive science, the anthropology of religion and art/architecture history, this article explores cultural, bodily and cosmological resonances carried (unintentionally) by mathematical graphs on Cartesian coordinates. Concepts of asymmetric bodily spaces, grids, orthogonality, mapping and sacred spaces…

  4. Humidity Graphs for All Seasons.

    Science.gov (United States)

    Esmael, F.

    1982-01-01

    In a previous article in this journal (Vol. 17, p358, 1979), a wet-bulb depression table was recommended for two simple experiments to determine relative humidity. However, the use of a graph is suggested because it gives the relative humidity directly from the wet and dry bulb readings. (JN)

  5. Contracting a planar graph efficiently

    DEFF Research Database (Denmark)

    Holm, Jacob; Italiano, Giuseppe F.; Karczmarz, Adam

    2017-01-01

    the data structure, we can achieve optimal running times for decremental bridge detection, 2-edge connectivity, maximal 3-edge connected components, and the problem of finding a unique perfect matching for a static planar graph. Furthermore, we improve the running times of algorithms for several planar...

  6. Graph Model Based Indoor Tracking

    DEFF Research Database (Denmark)

    Jensen, Christian Søndergaard; Lu, Hua; Yang, Bin

    2009-01-01

    The tracking of the locations of moving objects in large indoor spaces is important, as it enables a range of applications related to, e.g., security and indoor navigation and guidance. This paper presents a graph model based approach to indoor tracking that offers a uniform data management...

  7. A graph with fractional revival

    Science.gov (United States)

    Bernard, Pierre-Antoine; Chan, Ada; Loranger, Érika; Tamon, Christino; Vinet, Luc

    2018-02-01

    An example of a graph that admits balanced fractional revival between antipodes is presented. It is obtained by establishing the correspondence between the quantum walk on a hypercube where the opposite vertices across the diagonals of each face are connected and, the coherent transport of single excitations in the extension of the Krawtchouk spin chain with next-to-nearest neighbour interactions.

  8. Fixation Time for Evolutionary Graphs

    Science.gov (United States)

    Nie, Pu-Yan; Zhang, Pei-Ai

    Evolutionary graph theory (EGT) is recently proposed by Lieberman et al. in 2005. EGT is successful for explaining biological evolution and some social phenomena. It is extremely important to consider the time of fixation for EGT in many practical problems, including evolutionary theory and the evolution of cooperation. This study characterizes the time to asymptotically reach fixation.

  9. Classroom Activities to Engage Students and Promote Critical Thinking about Genetic Regulation of Bacterial Quorum Sensing

    Directory of Open Access Journals (Sweden)

    Kimberly Aebli

    2016-05-01

    Full Text Available We developed an interactive activity to mimic bacterial quorum sensing, and a classroom worksheet to promote critical thinking about genetic regulation of the lux operon. The interactive quorum sensing activity engages students and provides a direct visualization of how population density functions to influence light production in bacteria. The worksheet activity consists of practice problems that require students to apply basic knowledge of the lux operon in order to make predictions about genetic complementation experiments, and students must evaluate how genetic mutations in the lux operon affect gene expression and overall phenotype. The worksheet promotes critical thinking and problem solving skills, and emphasizes the roles of diffusible signaling molecules, regulatory proteins, and structural proteins in quorum sensing.

  10. Genetics Home Reference: complete plasminogen activator inhibitor 1 deficiency

    Science.gov (United States)

    ... well studied in a large family belonging to the Old Order Amish population of eastern and southern Indiana. Additional cases in North ... Human plasminogen activator inhibitor-1 (PAI-1) deficiency: characterization of a large kindred with a null mutation in the PAI-1 gene. Blood. 1997 Jul 1;90( ...

  11. Coloring sums of extensions of certain graphs

    Directory of Open Access Journals (Sweden)

    Johan Kok

    2017-12-01

    Full Text Available We recall that the minimum number of colors that allow a proper coloring of graph $G$ is called the chromatic number of $G$ and denoted $\\chi(G$. Motivated by the introduction of the concept of the $b$-chromatic sum of a graph the concept of $\\chi'$-chromatic sum and $\\chi^+$-chromatic sum are introduced in this paper. The extended graph $G^x$ of a graph $G$ was recently introduced for certain regular graphs. This paper furthers the concepts of $\\chi'$-chromatic sum and $\\chi^+$-chromatic sum to extended paths and cycles. Bipartite graphs also receive some attention. The paper concludes with patterned structured graphs. These last said graphs are typically found in chemical and biological structures.

  12. Mathematical Minute: Rotating a Function Graph

    Science.gov (United States)

    Bravo, Daniel; Fera, Joseph

    2013-01-01

    Using calculus only, we find the angles you can rotate the graph of a differentiable function about the origin and still obtain a function graph. We then apply the solution to odd and even degree polynomials.

  13. Towards a theory of geometric graphs

    CERN Document Server

    Pach, Janos

    2004-01-01

    The early development of graph theory was heavily motivated and influenced by topological and geometric themes, such as the Konigsberg Bridge Problem, Euler's Polyhedral Formula, or Kuratowski's characterization of planar graphs. In 1936, when Denes Konig published his classical Theory of Finite and Infinite Graphs, the first book ever written on the subject, he stressed this connection by adding the subtitle Combinatorial Topology of Systems of Segments. He wanted to emphasize that the subject of his investigations was very concrete: planar figures consisting of points connected by straight-line segments. However, in the second half of the twentieth century, graph theoretical research took an interesting turn. In the most popular and most rapidly growing areas (the theory of random graphs, Ramsey theory, extremal graph theory, algebraic graph theory, etc.), graphs were considered as abstract binary relations rather than geometric objects. Many of the powerful techniques developed in these fields have been su...

  14. Bounds on Gromov hyperbolicity constant in graphs

    Indian Academy of Sciences (India)

    Infinite graphs; Cartesian product graphs; independence number; domin- ation number; geodesics ... the secure transmission of information through the internet (see [15, 16]). In particular, ..... In particular, δ(G) is an integer multiple of 1/4.

  15. Summary: beyond fault trees to fault graphs

    International Nuclear Information System (INIS)

    Alesso, H.P.; Prassinos, P.; Smith, C.F.

    1984-09-01

    Fault Graphs are the natural evolutionary step over a traditional fault-tree model. A Fault Graph is a failure-oriented directed graph with logic connectives that allows cycles. We intentionally construct the Fault Graph to trace the piping and instrumentation drawing (P and ID) of the system, but with logical AND and OR conditions added. Then we evaluate the Fault Graph with computer codes based on graph-theoretic methods. Fault Graph computer codes are based on graph concepts, such as path set (a set of nodes traveled on a path from one node to another) and reachability (the complete set of all possible paths between any two nodes). These codes are used to find the cut-sets (any minimal set of component failures that will fail the system) and to evaluate the system reliability

  16. Torsional rigidity, isospectrality and quantum graphs

    International Nuclear Information System (INIS)

    Colladay, Don; McDonald, Patrick; Kaganovskiy, Leon

    2017-01-01

    We study torsional rigidity for graph and quantum graph analogs of well-known pairs of isospectral non-isometric planar domains. We prove that such isospectral pairs are distinguished by torsional rigidity. (paper)

  17. A linear graph for digoxin radioimmunoassay

    International Nuclear Information System (INIS)

    Smith, S.E.; Richter, A.

    1975-01-01

    The determination of drug or hormone concentrations by radio-immunoassay involves interpolation of values for radioisotope counts within standard curves, a technique which requires some dexterity in curve drawing and which results in some inaccuracy in practice. Most of the procedures designed to overcome these difficulties are complex and time-consuming. In radioimmunoassays involving saturation of the antibody-binding sites a special case exists in that the bound radioactivity is directly proportional to the specific activity of the ligand in the system. Thus a graph of the ratio of radioactivity bound in the absence to that in the presence of added non-radioactive ligand is linear against the concentration of added ligand (Hales,C.N., and Randle, P.J., 1963, Biochem. J., vol. 88, 137). A description is given of a simple and convenient modification of their method, and its application to the routine clinical determination of digoxin using a commercial kit (Lanoxitest β digoxin radioimmunoassay kit, Wellcome Reagents Ltd.). Specially constructed graph paper, which yields linearity with standard solutions, was designed so that it could be used directly without data transmission. The specific activity function appears as the upper arithmetical horizontal scale; corresponding values of the concentration of non-radioactive ligand in the solution added were individually calculated and appear on the lower scale opposite the appropriate values of the upper scale. The linearity of the graphs obtained confirmed that binding of digoxin was approximately constant through the range of clinical concentrations tested (0.5 to 8ng/ml), although binding declined slightly at higher concentrations. (U.K.)

  18. Bond graph modeling of centrifugal compression systems

    OpenAIRE

    Uddin, Nur; Gravdahl, Jan Tommy

    2015-01-01

    A novel approach to model unsteady fluid dynamics in a compressor network by using a bond graph is presented. The model is intended in particular for compressor control system development. First, we develop a bond graph model of a single compression system. Bond graph modeling offers a different perspective to previous work by modeling the compression system based on energy flow instead of fluid dynamics. Analyzing the bond graph model explains the energy flow during compressor surge. Two pri...

  19. A Graph Calculus for Predicate Logic

    Directory of Open Access Journals (Sweden)

    Paulo A. S. Veloso

    2013-03-01

    Full Text Available We introduce a refutation graph calculus for classical first-order predicate logic, which is an extension of previous ones for binary relations. One reduces logical consequence to establishing that a constructed graph has empty extension, i. e. it represents bottom. Our calculus establishes that a graph has empty extension by converting it to a normal form, which is expanded to other graphs until we can recognize conflicting situations (equivalent to a formula and its negation.

  20. Sphere and dot product representations of graphs

    NARCIS (Netherlands)

    R.J. Kang (Ross); T. Müller (Tobias)

    2012-01-01

    textabstractA graph $G$ is a $k$-sphere graph if there are $k$-dimensional real vectors $v_1,\\dots,v_n$ such that $ij\\in E(G)$ if and only if the distance between $v_i$ and $v_j$ is at most $1$. A graph $G$ is a $k$-dot product graph if there are $k$-dimensional real vectors $v_1,\\dots,v_n$ such

  1. Deep Learning with Dynamic Computation Graphs

    OpenAIRE

    Looks, Moshe; Herreshoff, Marcello; Hutchins, DeLesley; Norvig, Peter

    2017-01-01

    Neural networks that compute over graph structures are a natural fit for problems in a variety of domains, including natural language (parse trees) and cheminformatics (molecular graphs). However, since the computation graph has a different shape and size for every input, such networks do not directly support batched training or inference. They are also difficult to implement in popular deep learning libraries, which are based on static data-flow graphs. We introduce a technique called dynami...

  2. Constructs for Programming with Graph Rewrites

    OpenAIRE

    Rodgers, Peter

    2000-01-01

    Graph rewriting is becoming increasingly popular as a method for programming with graph based data structures. We present several modifications to a basic serial graph rewriting paradigm and discuss how they improve coding programs in the Grrr graph rewriting programming language. The constructs we present are once only nodes, attractor nodes and single match rewrites. We illustrate the operation of the constructs by example. The advantages of adding these new rewrite modifiers is to reduce t...

  3. Heritability of brain activity related to response inhibition: a longitudinal genetic study in adolescent twins

    Science.gov (United States)

    Anokhin, Andrey P.; Golosheykin, Simon; Grant, Julia D.; Heath, Andrew C.

    2017-01-01

    The ability to inhibit prepotent but context- or goal-inappropriate responses is essential for adaptive self-regulation of behavior. Deficits in response inhibition, a key component of impulsivity, have been implicated as a core dysfunction in a range of neuropsychiatric disorders such as ADHD and addictions. Identification of genetically transmitted variation in the neural underpinnings of response inhibition can help to elucidate etiological pathways to these disorders and establish the links between genes, brain, and behavior. However, little is known about genetic influences on the neural mechanisms of response inhibition during adolescence, a developmental period characterized by weak self-regulation of behavior. Here we investigated heritability of ERPs elicited in a Go/No-Go task in a large sample of adolescent twins assessed longitudinally at ages 12, 14, and 16. Genetic analyses showed significant heritability of inhibition-related frontal N2 and P3 components at all three ages, with 50 to 60% of inter-individual variability being attributable to genetic factors. These genetic influences included both common genetic factors active at different ages and novel genetic influences emerging during development. Finally, individual differences in the rate of developmental changes from age 12 to age 16 were significantly influenced by genetic factors. In conclusion, the present study provides the first evidence for genetic influences on neural correlates of response inhibition during adolescence and suggests that ERPs elicited in the Go/No-Go task can serve as intermediate neurophysiological phenotypes (endophenotypes) for the study of disinhibition and impulse control disorders. PMID:28300615

  4. On the sizes of expander graphs and minimum distances of graph codes

    DEFF Research Database (Denmark)

    Høholdt, Tom; Justesen, Jørn

    2014-01-01

    We give lower bounds for the minimum distances of graph codes based on expander graphs. The bounds depend only on the second eigenvalue of the graph and the parameters of the component codes. We also give an upper bound on the size of a degree regular graph with given second eigenvalue....

  5. My Bar Graph Tells a Story

    Science.gov (United States)

    McMillen, Sue; McMillen, Beth

    2010-01-01

    Connecting stories to qualitative coordinate graphs has been suggested as an effective instructional strategy. Even students who are able to "create" bar graphs may struggle to correctly "interpret" them. Giving children opportunities to work with qualitative graphs can help them develop the skills to interpret, describe, and compare information…

  6. The groupies of random multipartite graphs

    OpenAIRE

    Portmann, Marius; Wang, Hongyun

    2012-01-01

    If a vertex $v$ in a graph $G$ has degree larger than the average of the degrees of its neighbors, we call it a groupie in $G$. In the current work, we study the behavior of groupie in random multipartite graphs with the link probability between sets of nodes fixed. Our results extend the previous ones on random (bipartite) graphs.

  7. Modeling Software Evolution using Algebraic Graph Rewriting

    NARCIS (Netherlands)

    Ciraci, Selim; van den Broek, Pim

    We show how evolution requests can be formalized using algebraic graph rewriting. In particular, we present a way to convert the UML class diagrams to colored graphs. Since changes in software may effect the relation between the methods of classes, our colored graph representation also employs the

  8. A Type Graph Model for Java Programs

    NARCIS (Netherlands)

    Rensink, Arend; Zambon, Eduardo

    2009-01-01

    In this report we present a type graph that models all executable constructs of the Java programming language. Such a model is useful for any graph-based technique that relies on a representation of Java programs as graphs. The model can be regarded as a common representation to which all Java

  9. An intersection graph of straight lines

    DEFF Research Database (Denmark)

    Thomassen, Carsten

    2002-01-01

    G. Ehrlich, S. Even, and R.E. Tarjan conjectured that the graph obtained from a complete 3 partite graph K4,4,4 by deleting the edges of four disjoint triangles is not the intersection graph of straight line segments in the plane. We show that it is....

  10. Girth 5 graphs from relative difference sets

    DEFF Research Database (Denmark)

    Jørgensen, Leif Kjær

    2005-01-01

    We consider the problem of construction of graphs with given degree $k$ and girth 5 and as few vertices as possible. We give a construction of a family of girth 5 graphs based on relative difference sets. This family contains the smallest known graph of degree 8 and girth 5 which was constructed ...

  11. Cycles in weighted graphs and related topics

    NARCIS (Netherlands)

    Zhang, Shenggui

    2002-01-01

    This thesis contains results on paths andcycles in graphs andon a more or less relatedtopic, the vulnerability of graphs. In the first part of the thesis, Chapters 2 through 5, we concentrate on paths andcycles in weightedgraphs. A number of sufficient conditions are presentedfor graphs to contain

  12. Graph Transformation Semantics for a QVT Language

    NARCIS (Netherlands)

    Rensink, Arend; Nederpel, Ronald; Bruni, Roberto; Varró, Dániel

    It has been claimed by many in the graph transformation community that model transformation, as understood in the context of Model Driven Architecture, can be seen as an application of graph transformation. In this paper we substantiate this claim by giving a graph transformation-based semantics to

  13. Girth 5 graphs from relative difference sets

    DEFF Research Database (Denmark)

    Jørgensen, Leif Kjær

    We consider the problem of construction of graphs with given degree and girth 5 and as few vertices as possible. We give a construction of a family of girth 5 graphs based on relative difference sets. This family contains the smallest known graph of degree 8 and girth 5 which was constructed by G...

  14. Improper colouring of (random) unit disk graphs

    NARCIS (Netherlands)

    Kang, R.J.; Müller, T.; Sereni, J.S.

    2008-01-01

    For any graph G, the k-improper chromatic number ¿k(G) is the smallest number of colours used in a colouring of G such that each colour class induces a subgraph of maximum degree k. We investigate ¿k for unit disk graphs and random unit disk graphs to generalise results of McDiarmid and Reed

  15. Alliances and Bisection Width for Planar Graphs

    DEFF Research Database (Denmark)

    Olsen, Martin; Revsbæk, Morten

    2013-01-01

    An alliance in a graph is a set of vertices (allies) such that each vertex in the alliance has at least as many allies (counting the vertex itself) as non-allies in its neighborhood of the graph. We show that any planar graph with minimum degree at least 4 can be split into two alliances in polyn...

  16. A Type Graph Model for Java Programs

    NARCIS (Netherlands)

    Rensink, Arend; Zambon, Eduardo; Lee, D.; Lopes, A.; Poetzsch-Heffter, A.

    2009-01-01

    In this work we present a type graph that models all executable constructs of the Java programming language. Such a model is useful for any graph-based technique that relies on a representation of Java programs as graphs. The model can be regarded as a common representation to which all Java syntax

  17. RATGRAPH: Computer Graphing of Rational Functions.

    Science.gov (United States)

    Minch, Bradley A.

    1987-01-01

    Presents an easy-to-use Applesoft BASIC program that graphs rational functions and any asymptotes that the functions might have. Discusses the nature of rational functions, graphing them manually, employing a computer to graph rational functions, and describes how the program works. (TW)

  18. A new cluster algorithm for graphs

    NARCIS (Netherlands)

    S. van Dongen

    1998-01-01

    textabstractA new cluster algorithm for graphs called the emph{Markov Cluster algorithm ($MCL$ algorithm) is introduced. The graphs may be both weighted (with nonnegative weight) and directed. Let~$G$~be such a graph. The $MCL$ algorithm simulates flow in $G$ by first identifying $G$ in a

  19. Well-covered graphs and factors

    DEFF Research Database (Denmark)

    Randerath, Bert; Vestergaard, Preben D.

    2006-01-01

    A maximum independent set of vertices in a graph is a set of pairwise nonadjacent vertices of largest cardinality α. Plummer defined a graph to be well-covered, if every independent set is contained in a maximum independent set of G. Every well-covered graph G without isolated vertices has a perf...

  20. A new characterization of trivially perfect graphs

    Directory of Open Access Journals (Sweden)

    Christian Rubio Montiel

    2015-03-01

    Full Text Available A graph $G$ is \\emph{trivially perfect} if for every induced subgraph the cardinality of the largest set of pairwise nonadjacent vertices (the stability number $\\alpha(G$ equals the number of (maximal cliques $m(G$. We characterize the trivially perfect graphs in terms of vertex-coloring and we extend some definitions to infinite graphs.

  1. 47 CFR 80.761 - Conversion graphs.

    Science.gov (United States)

    2010-10-01

    ... MARITIME SERVICES Standards for Computing Public Coast Station VHF Coverage § 80.761 Conversion graphs. The following graphs must be employed where conversion from one to the other of the indicated types of units is... 47 Telecommunication 5 2010-10-01 2010-10-01 false Conversion graphs. 80.761 Section 80.761...

  2. Physical activity and mortality: is the association explained by genetic selection?

    Science.gov (United States)

    Carlsson, Sofia; Andersson, Tomas; Lichtenstein, Paul; Michaëlsson, Karl; Ahlbom, Anders

    2007-08-01

    Public health recommendations promote physical activity to improve health and longevity. Recent data suggest that the association between physical activity and mortality may be due to genetic selection. Using data on twins, the authors investigated whether genetic selection explains the association between physical activity and mortality. Data were based on a postal questionnaire answered by 13,109 Swedish twin pairs in 1972. The national Cause of Death Register was used for information about all-cause mortality (n=1,800) and cardiovascular disease mortality (n=638) during 1975-2004. The risk of death was reduced by 34% for men (relative risk=0.64, 95% confidence interval: 0.50, 0.83) and by 25% for women (relative risk=0.75, 95% confidence interval: 0.50, 1.14) reporting high physical activity levels. Within-pair comparisons of monozygotic twins showed that, compared with their less active co-twin, the more active twin had a 20% (odds ratio=0.80, 95% confidence interval: 0.65, 0.99) reduced risk of all-cause mortality and a 32% (odds ratio=0.68, 95% confidence interval: 0.49, 0.95) reduced risk of cardiovascular disease mortality. Results indicate that physical activity is associated with a reduced risk of mortality not due to genetic selection. This finding supports a causal link between physical activity and mortality.

  3. On a conjecture concerning helly circle graphs

    Directory of Open Access Journals (Sweden)

    Durán Guillermo

    2003-01-01

    Full Text Available We say that G is an e-circle graph if there is a bijection between its vertices and straight lines on the cartesian plane such that two vertices are adjacent in G if and only if the corresponding lines intersect inside the circle of radius one. This definition suggests a method for deciding whether a given graph G is an e-circle graph, by constructing a convenient system S of equations and inequations which represents the structure of G, in such a way that G is an e-circle graph if and only if S has a solution. In fact, e-circle graphs are exactly the circle graphs (intersection graphs of chords in a circle, and thus this method provides an analytic way for recognizing circle graphs. A graph G is a Helly circle graph if G is a circle graph and there exists a model of G by chords such that every three pairwise intersecting chords intersect at the same point. A conjecture by Durán (2000 states that G is a Helly circle graph if and only if G is a circle graph and contains no induced diamonds (a diamond is a graph formed by four vertices and five edges. Many unsuccessful efforts - mainly based on combinatorial and geometrical approaches - have been done in order to validate this conjecture. In this work, we utilize the ideas behind the definition of e-circle graphs and restate this conjecture in terms of an equivalence between two systems of equations and inequations, providing a new, analytic tool to deal with it.

  4. Centrosymmetric Graphs And A Lower Bound For Graph Energy Of Fullerenes

    Directory of Open Access Journals (Sweden)

    Katona Gyula Y.

    2014-11-01

    Full Text Available The energy of a molecular graph G is defined as the summation of the absolute values of the eigenvalues of adjacency matrix of a graph G. In this paper, an infinite class of fullerene graphs with 10n vertices, n ≥ 2, is considered. By proving centrosymmetricity of the adjacency matrix of these fullerene graphs, a lower bound for its energy is given. Our method is general and can be extended to other class of fullerene graphs.

  5. Subsampling for graph power spectrum estimation

    KAUST Repository

    Chepuri, Sundeep Prabhakar; Leus, Geert

    2016-01-01

    In this paper we focus on subsampling stationary random signals that reside on the vertices of undirected graphs. Second-order stationary graph signals are obtained by filtering white noise and they admit a well-defined power spectrum. Estimating the graph power spectrum forms a central component of stationary graph signal processing and related inference tasks. We show that by sampling a significantly smaller subset of vertices and using simple least squares, we can reconstruct the power spectrum of the graph signal from the subsampled observations, without any spectral priors. In addition, a near-optimal greedy algorithm is developed to design the subsampling scheme.

  6. On 4-critical t-perfect graphs

    OpenAIRE

    Benchetrit, Yohann

    2016-01-01

    It is an open question whether the chromatic number of $t$-perfect graphs is bounded by a constant. The largest known value for this parameter is 4, and the only example of a 4-critical $t$-perfect graph, due to Laurent and Seymour, is the complement of the line graph of the prism $\\Pi$ (a graph is 4-critical if it has chromatic number 4 and all its proper induced subgraphs are 3-colorable). In this paper, we show a new example of a 4-critical $t$-perfect graph: the complement of the line gra...

  7. Subsampling for graph power spectrum estimation

    KAUST Repository

    Chepuri, Sundeep Prabhakar

    2016-10-06

    In this paper we focus on subsampling stationary random signals that reside on the vertices of undirected graphs. Second-order stationary graph signals are obtained by filtering white noise and they admit a well-defined power spectrum. Estimating the graph power spectrum forms a central component of stationary graph signal processing and related inference tasks. We show that by sampling a significantly smaller subset of vertices and using simple least squares, we can reconstruct the power spectrum of the graph signal from the subsampled observations, without any spectral priors. In addition, a near-optimal greedy algorithm is developed to design the subsampling scheme.

  8. Proving relations between modular graph functions

    International Nuclear Information System (INIS)

    Basu, Anirban

    2016-01-01

    We consider modular graph functions that arise in the low energy expansion of the four graviton amplitude in type II string theory. The vertices of these graphs are the positions of insertions of vertex operators on the toroidal worldsheet, while the links are the scalar Green functions connecting the vertices. Graphs with four and five links satisfy several non-trivial relations, which have been proved recently. We prove these relations by using elementary properties of Green functions and the details of the graphs. We also prove a relation between modular graph functions with six links. (paper)

  9. A graph edit dictionary for correcting errors in roof topology graphs reconstructed from point clouds

    Science.gov (United States)

    Xiong, B.; Oude Elberink, S.; Vosselman, G.

    2014-07-01

    In the task of 3D building model reconstruction from point clouds we face the problem of recovering a roof topology graph in the presence of noise, small roof faces and low point densities. Errors in roof topology graphs will seriously affect the final modelling results. The aim of this research is to automatically correct these errors. We define the graph correction as a graph-to-graph problem, similar to the spelling correction problem (also called the string-to-string problem). The graph correction is more complex than string correction, as the graphs are 2D while strings are only 1D. We design a strategy based on a dictionary of graph edit operations to automatically identify and correct the errors in the input graph. For each type of error the graph edit dictionary stores a representative erroneous subgraph as well as the corrected version. As an erroneous roof topology graph may contain several errors, a heuristic search is applied to find the optimum sequence of graph edits to correct the errors one by one. The graph edit dictionary can be expanded to include entries needed to cope with errors that were previously not encountered. Experiments show that the dictionary with only fifteen entries already properly corrects one quarter of erroneous graphs in about 4500 buildings, and even half of the erroneous graphs in one test area, achieving as high as a 95% acceptance rate of the reconstructed models.

  10. Genetic architecture of motives for leisure-time physical activity : a twin study

    NARCIS (Netherlands)

    Aaltonen, S.; Kaprio, J.; Vuoksimaa, E.; Huppertz, C.; Kujala, U. M.; Silventoinen, K.

    2017-01-01

    The aim of this study was to estimate the contribution of genetic and environmental influences on motives for engaging in leisure-time physical activity. The participants were obtained from the FinnTwin16 study. A modified version of the Recreational Exercise Motivation Measure was used to assess

  11. Comparative study of genetic activity of chlorambucil's active metabolite steroidal esters: The role of steroidal skeleton on aneugenic potential

    International Nuclear Information System (INIS)

    Efthimiou, M.; Ouranou, D.; Stephanou, G.; Demopoulos, N.A.; Nikolaropoulos, S.S.; Alevizos, Ph.

    2010-01-01

    p-N,N-bis(2-chloroethyl)aminophenylacetic acid (PHE), a nitrogen mustard analogue and chlorambucil's active metabolite used as chemotherapeutic agent, has been shown that, in addition to its clastogenic activity, induces chromosome delay. In the present study an efford has been made (a) to investigate if the steroidal analogues of PHE (EA-92, EA-97, AK-333, AK-409 and AK-433) exert the same genetic activity as the parent compound, (b) to further analyze the aneugenic activity of nitrogen mustard analogues, (c) to investigate the mechanism by which they exert aneugenic potential and (d) to correlate the genetic activity with chemical structure. For this purpose the Cytokinesis Block Micronucleus (CBMN) assay was conducted in human lymphocytes in vitro and the micronucleus (MN) frequency was determined to investigate their genetic activity. The mechanism of micronucleation was determined in combination with Fluorescence In Situ Hybridization (FISH) using pancentromeric DNA probe. Since one of the mechanisms that chemicals cause aneuploidy is through alterations in the mitotic spindle, we also investigated the effect of the above compounds on the integrity and morphology of the mitotic spindle using double immunofluorescence of β- and γ-tubulin in C 2 C 12 mouse cell line. We found that PHE and its steroidal analogues, EA-92, EA-97, AK-333, AK-409 and AK-433, affect cell proliferation in human lymphocytes and C 2 C 12 mouse cells. All studied compounds are capable of inducing chromosome breakage events, as indicated by the enhanced C - MN frequencies. The less lipophilic compounds are the most genetically active molecules. PHE and only two of the studied analogues, AK-409 and AK-433, the most hydrophilic ones, showed aneugenic potential, by increasing the frequencies of MN containing a whole chromosome. The aneugenic potential of the above referred analogues is associated with amplification of centrosome number, since they caused high multipolar metaphase

  12. Significance evaluation in factor graphs

    DEFF Research Database (Denmark)

    Madsen, Tobias; Hobolth, Asger; Jensen, Jens Ledet

    2017-01-01

    in genomics and the multiple-testing issues accompanying them, accurate significance evaluation is of great importance. We here address the problem of evaluating statistical significance of observations from factor graph models. Results Two novel numerical approximations for evaluation of statistical...... significance are presented. First a method using importance sampling. Second a saddlepoint approximation based method. We develop algorithms to efficiently compute the approximations and compare them to naive sampling and the normal approximation. The individual merits of the methods are analysed both from....... Conclusions The applicability of saddlepoint approximation and importance sampling is demonstrated on known models in the factor graph framework. Using the two methods we can substantially improve computational cost without compromising accuracy. This contribution allows analyses of large datasets...

  13. Flux networks in metabolic graphs

    International Nuclear Information System (INIS)

    Warren, P B; Queiros, S M Duarte; Jones, J L

    2009-01-01

    A metabolic model can be represented as a bipartite graph comprising linked reaction and metabolite nodes. Here it is shown how a network of conserved fluxes can be assigned to the edges of such a graph by combining the reaction fluxes with a conserved metabolite property such as molecular weight. A similar flux network can be constructed by combining the primal and dual solutions to the linear programming problem that typically arises in constraint-based modelling. Such constructions may help with the visualization of flux distributions in complex metabolic networks. The analysis also explains the strong correlation observed between metabolite shadow prices (the dual linear programming variables) and conserved metabolite properties. The methods were applied to recent metabolic models for Escherichia coli, Saccharomyces cerevisiae and Methanosarcina barkeri. Detailed results are reported for E. coli; similar results were found for other organisms

  14. 3-biplacement of bipartite graphs

    Directory of Open Access Journals (Sweden)

    Lech Adamus

    2008-01-01

    Full Text Available Let \\(G=(L,R;E\\ be a bipartite graph with color classes \\(L\\ and \\(R\\ and edge set \\(E\\. A set of two bijections \\(\\{\\varphi_1 , \\varphi_2\\}\\, \\(\\varphi_1 , \\varphi_2 :L \\cup R \\to L \\cup R\\, is said to be a \\(3\\-biplacement of \\(G\\ if \\(\\varphi_1(L= \\varphi_2(L = L\\ and \\(E \\cap \\varphi_1^*(E=\\emptyset\\, \\(E \\cap \\varphi_2^*(E=\\emptyset\\, \\(\\varphi_1^*(E \\cap \\varphi_2^*(E=\\emptyset\\, where \\(\\varphi_1^*\\, \\(\\varphi_2^*\\ are the maps defined on \\(E\\, induced by \\(\\varphi_1\\, \\(\\varphi_2\\, respectively. We prove that if \\(|L| = p\\, \\(|R| = q\\, \\(3 \\leq p \\leq q\\, then every graph \\(G=(L,R;E\\ of size at most \\(p\\ has a \\(3\\-biplacement.

  15. On the centrality of some graphs

    Directory of Open Access Journals (Sweden)

    Vecdi Aytac

    2017-10-01

    Full Text Available A central issue in the analysis of complex networks is the assessment of their stability and vulnerability. A variety of measures have been proposed in the literature to quantify the stability of networks and a number of graph-theoretic parameters have been used to derive formulas for calculating network reliability. Different measures for graph vulnerability have been introduced so far to study different aspects of the graph behavior after removal of vertices or links such as connectivity, toughness, scattering number, binding number, residual closeness and integrity. In this paper, we consider betweenness centrality of a graph. Betweenness centrality of a vertex of a graph is portion of the shortest paths all pairs of vertices passing through a given vertex. In this paper, we obtain exact values for betweenness centrality for some wheel related graphs namely gear, helm, sunflower and friendship graphs.

  16. Quantum walk on a chimera graph

    Science.gov (United States)

    Xu, Shu; Sun, Xiangxiang; Wu, Jizhou; Zhang, Wei-Wei; Arshed, Nigum; Sanders, Barry C.

    2018-05-01

    We analyse a continuous-time quantum walk on a chimera graph, which is a graph of choice for designing quantum annealers, and we discover beautiful quantum walk features such as localization that starkly distinguishes classical from quantum behaviour. Motivated by technological thrusts, we study continuous-time quantum walk on enhanced variants of the chimera graph and on diminished chimera graph with a random removal of vertices. We explain the quantum walk by constructing a generating set for a suitable subgroup of graph isomorphisms and corresponding symmetry operators that commute with the quantum walk Hamiltonian; the Hamiltonian and these symmetry operators provide a complete set of labels for the spectrum and the stationary states. Our quantum walk characterization of the chimera graph and its variants yields valuable insights into graphs used for designing quantum-annealers.

  17. Fibonacci number of the tadpole graph

    Directory of Open Access Journals (Sweden)

    Joe DeMaio

    2014-10-01

    Full Text Available In 1982, Prodinger and Tichy defined the Fibonacci number of a graph G to be the number of independent sets of the graph G. They did so since the Fibonacci number of the path graph Pn is the Fibonacci number F(n+2 and the Fibonacci number of the cycle graph Cn is the Lucas number Ln. The tadpole graph Tn,k is the graph created by concatenating Cn and Pk with an edge from any vertex of Cn to a pendant of Pk for integers n=3 and k=0. This paper establishes formulae and identities for the Fibonacci number of the tadpole graph via algebraic and combinatorial methods.

  18. Software for Graph Analysis and Visualization

    Directory of Open Access Journals (Sweden)

    M. I. Kolomeychenko

    2014-01-01

    Full Text Available This paper describes the software for graph storage, analysis and visualization. The article presents a comparative analysis of existing software for analysis and visualization of graphs, describes the overall architecture of application and basic principles of construction and operation of the main modules. Furthermore, a description of the developed graph storage oriented to storage and processing of large-scale graphs is presented. The developed algorithm for finding communities and implemented algorithms of autolayouts of graphs are the main functionality of the product. The main advantage of the developed software is high speed processing of large size networks (up to millions of nodes and links. Moreover, the proposed graph storage architecture is unique and has no analogues. The developed approaches and algorithms are optimized for operating with big graphs and have high productivity.

  19. Parallel External Memory Graph Algorithms

    DEFF Research Database (Denmark)

    Arge, Lars Allan; Goodrich, Michael T.; Sitchinava, Nodari

    2010-01-01

    In this paper, we study parallel I/O efficient graph algorithms in the Parallel External Memory (PEM) model, one o f the private-cache chip multiprocessor (CMP) models. We study the fundamental problem of list ranking which leads to efficient solutions to problems on trees, such as computing lowest...... an optimal speedup of ¿(P) in parallel I/O complexity and parallel computation time, compared to the single-processor external memory counterparts....

  20. Submanifolds weakly associated with graphs

    Indian Academy of Sciences (India)

    A CARRIAZO, L M FERN ´ANDEZ and A RODRÍGUEZ-HIDALGO. Department of Geometry and Topology, ..... by means of trees (connected graphs without cycles) and forests (disjoint unions of trees, see [6]) given in [3], by extending it to weak ... CR-submanifold. In this case, every tree is a K2. Finally, Theorem 3.8 of [3] can ...

  1. Topological structure of dictionary graphs

    International Nuclear Information System (INIS)

    Fuks, Henryk; Krzeminski, Mark

    2009-01-01

    We investigate the topological structure of the subgraphs of dictionary graphs constructed from WordNet and Moby thesaurus data. In the process of learning a foreign language, the learner knows only a subset of all words of the language, corresponding to a subgraph of a dictionary graph. When this subgraph grows with time, its topological properties change. We introduce the notion of the pseudocore and argue that the growth of the vocabulary roughly follows decreasing pseudocore numbers-that is, one first learns words with a high pseudocore number followed by smaller pseudocores. We also propose an alternative strategy for vocabulary growth, involving decreasing core numbers as opposed to pseudocore numbers. We find that as the core or pseudocore grows in size, the clustering coefficient first decreases, then reaches a minimum and starts increasing again. The minimum occurs when the vocabulary reaches a size between 10 3 and 10 4 . A simple model exhibiting similar behavior is proposed. The model is based on a generalized geometric random graph. Possible implications for language learning are discussed.

  2. Analyzing Social Media Relationships in Context with Discussion Graphs

    DEFF Research Database (Denmark)

    Kiciman, Emre; Choudhury, Munmun De; Counts, Scott

    2013-01-01

    We present discussion graphs, a hyper-graph-based representation of social media discussions that captures both the structural features of the relationships among entities as well as the context of the discussions from which they were derived. Building on previous analyses of social media network...... and pseudo-cliques, when applied to the analysis of textual social media content. We apply our framework across several domains captured in Twitter, including the mining of peoples' statements about their locations and activities and discussions of the U.S. 2012 elections....

  3. Quantum information processing with graph states

    International Nuclear Information System (INIS)

    Schlingemann, Dirk-Michael

    2005-04-01

    Graph states are multiparticle states which are associated with graphs. Each vertex of the graph corresponds to a single system or particle. The links describe quantum correlations (entanglement) between pairs of connected particles. Graph states were initiated independently by two research groups: On the one hand, graph states were introduced by Briegel and Raussendorf as a resource for a new model of one-way quantum computing, where algorithms are implemented by a sequence of measurements at single particles. On the other hand, graph states were developed by the author of this thesis and ReinhardWerner in Braunschweig, as a tool to build quantum error correcting codes, called graph codes. The connection between the two approaches was fully realized in close cooperation of both research groups. This habilitation thesis provides a survey of the theory of graph codes, focussing mainly, but not exclusively on the author's own research work. We present the theoretical and mathematical background for the analysis of graph codes. The concept of one-way quantum computing for general graph states is discussed. We explicitly show how to realize the encoding and decoding device of a graph code on a one-way quantum computer. This kind of implementation is to be seen as a mathematical description of a quantum memory device. In addition to that, we investigate interaction processes, which enable the creation of graph states on very large systems. Particular graph states can be created, for instance, by an Ising type interaction between next neighbor particles which sits at the points of an infinitely extended cubic lattice. Based on the theory of quantum cellular automata, we give a constructive characterization of general interactions which create a translationally invariant graph state. (orig.)

  4. Genetic and environmental influences on the allocation of adolescent leisure time activities.

    Science.gov (United States)

    Haberstick, Brett C; Zeiger, Joanna S; Corley, Robin P

    2014-01-01

    There is a growing recognition of the importance of the out-of-school activities in which adolescents choose to participate. Youth activities vary widely in terms of specific activities and in time devoted to them but can generally be grouped by the type and total duration spent per type. We collected leisure time information using a 17-item leisure time questionnaire in a large sample of same- and opposite-sex adolescent twin pairs (N = 2847). Using both univariate and multivariate genetic models, we sought to determine the type and magnitude of genetic and environmental influences on the allocation of time toward different leisure times. Results indicated that both genetic and shared and nonshared environmental influences were important contributors to individual differences in physical, social, intellectual, family, and passive activities such as watching television. The magnitude of these influences differed between males and females. Environmental influences were the primary factors contributing to the covariation of different leisure time activities. Our results suggest the importance of heritable influences on the allocation of leisure time activity by adolescents and highlight the importance of environmental experiences in these choices.

  5. Degree Associated Edge Reconstruction Number of Graphs with Regular Pruned Graph

    Directory of Open Access Journals (Sweden)

    P. Anusha Devi

    2015-10-01

    Full Text Available An ecard of a graph $G$ is a subgraph formed by deleting an edge. A da-ecard specifies the degree of the deleted edge along with the ecard. The degree associated edge reconstruction number of a graph $G,~dern(G,$ is the minimum number of da-ecards that uniquely determines $G.$  The adversary degree associated edge reconstruction number of a graph $G, adern(G,$ is the minimum number $k$ such that every collection of $k$ da-ecards of $G$ uniquely determines $G.$ The maximal subgraph without end vertices of a graph $G$ which is not a tree is the pruned graph of $G.$ It is shown that $dern$ of complete multipartite graphs and some connected graphs with regular pruned graph is $1$ or $2.$ We also determine $dern$ and $adern$ of corona product of standard graphs.

  6. Indexing molecules with chemical graph identifiers.

    Science.gov (United States)

    Gregori-Puigjané, Elisabet; Garriga-Sust, Rut; Mestres, Jordi

    2011-09-01

    Fast and robust algorithms for indexing molecules have been historically considered strategic tools for the management and storage of large chemical libraries. This work introduces a modified and further extended version of the molecular equivalence number naming adaptation of the Morgan algorithm (J Chem Inf Comput Sci 2001, 41, 181-185) for the generation of a chemical graph identifier (CGI). This new version corrects for the collisions recognized in the original adaptation and includes the ability to deal with graph canonicalization, ensembles (salts), and isomerism (tautomerism, regioisomerism, optical isomerism, and geometrical isomerism) in a flexible manner. Validation of the current CGI implementation was performed on the open NCI database and the drug-like subset of the ZINC database containing 260,071 and 5,348,089 structures, respectively. The results were compared with those obtained with some of the most widely used indexing codes, such as the CACTVS hash code and the new InChIKey. The analyses emphasize the fact that compound management activities, like duplicate analysis of chemical libraries, are sensitive to the exact definition of compound uniqueness and thus still depend, to a minor extent, on the type and flexibility of the molecular index being used. Copyright © 2011 Wiley Periodicals, Inc.

  7. Differential trypanocidal activity of novel macrolide antibiotics; correlation to genetic lineage.

    Science.gov (United States)

    Aquilino, Carolina; Gonzalez Rubio, Maria Luisa; Seco, Elena Maria; Escudero, Leticia; Corvo, Laura; Soto, Manuel; Fresno, Manuel; Malpartida, Francisco; Bonay, Pedro

    2012-01-01

    Here we report the systematic study of the anti-trypanocidal activity of some new products derived from S. diastatus on 14 different T. cruzi strains spanning the six genetic lineages of T. cruzi. As the traditional growth inhibition curves giving similar IC(50) showed great differences on antibiotic and lineage tested, we decided to preserve the wealth of information derived from each inhibition curve and used an algorithm related to potency of the drugs, combined in a matrix data set used to generate a cluster tree. The cluster thus generated based just on drug susceptibility data closely resembles the phylogenies of the lineages derived from genetic data and provides a novel approach to correlate genetic data with phenotypes related to pathogenesis of Chagas disease. Furthermore we provide clues on the drugs mechanism of action.

  8. Molecular genetic analysis of activation-tagged transcription factors thought to be involved in photomorphogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Neff, Michael M.

    2011-06-23

    This is a final report for Department of Energy Grant No. DE-FG02-08ER15927 entitled “Molecular Genetic Analysis of Activation-Tagged Transcription Factors Thought to be Involved in Photomorphogenesis”. Based on our preliminary photobiological and genetic analysis of the sob1-D mutant, we hypothesized that OBP3 is a transcription factor involved in both phytochrome and cryptochrome-mediated signal transduction. In addition, we hypothesized that OBP3 is involved in auxin signaling and root development. Based on our preliminary photobiological and genetic analysis of the sob2-D mutant, we also hypothesized that a related gene, LEP, is involved in hormone signaling and seedling development.

  9. Differential trypanocidal activity of novel macrolide antibiotics; correlation to genetic lineage.

    Directory of Open Access Journals (Sweden)

    Carolina Aquilino

    Full Text Available Here we report the systematic study of the anti-trypanocidal activity of some new products derived from S. diastatus on 14 different T. cruzi strains spanning the six genetic lineages of T. cruzi. As the traditional growth inhibition curves giving similar IC(50 showed great differences on antibiotic and lineage tested, we decided to preserve the wealth of information derived from each inhibition curve and used an algorithm related to potency of the drugs, combined in a matrix data set used to generate a cluster tree. The cluster thus generated based just on drug susceptibility data closely resembles the phylogenies of the lineages derived from genetic data and provides a novel approach to correlate genetic data with phenotypes related to pathogenesis of Chagas disease. Furthermore we provide clues on the drugs mechanism of action.

  10. Genetic diversity and pectinolytic activity of epiphytic yeasts from grape carposphere.

    Science.gov (United States)

    Filho, M Cilião; Bertéli, M B D; Valle, J S; Paccola-Meirelles, L D; Linde, G A; Barcellos, F G; Colauto, N B

    2017-06-20

    The genetic diversity of epiphytic yeasts from grape carposphere is susceptible to environmental variations that determine the predominant carposphere microbiota. Understanding the diversity of yeasts that inhabit grape carposphere in different environments and their pectinolytic activity is a way to understand the biotechnological potential that surrounds us and help improve winemaking. Therefore, this study aimed to evaluate the pectinolytic activity and characterize the genetic diversity of isolated epiphytic yeasts from grape carposphere. Grapes of the Bordeaux cultivar were collected from different regions of Paraná and Rio Grande do Sul States, in Brazil, and the yeasts were isolated from these grape carpospheres. Monosporic isolates were morphologically and genetically characterized on potato dextrose agar medium and by PCR-RFLP and rep-PCR (BOX-PCR) in the ITS1-5.8S-ITS2 region of rDNA. The index of pectinolytic activity of isolates was also evaluated estimating the ratio between the halo diameter of enzymatic degradation and the diameter of the colony when the isolates were grown in cultivation medium containing 10 g/L pectin, 5 g/L yeast extract, 15 g/L agar, 0.12% (w/v) Congo red, and pH 6.2. We observed that the grape carposphere is an environment with a great genetic diversity of epiphytic yeasts of the following genera: Cryptococcus (31.25%), Pichia (25.0%), Candida (25.0%), Dekkera (12.5%), and Saccharomyces (6.25%). The PCR-RFLP technique allowed analyzing existing polymorphism among individuals of a population based on a more restrict and evolutionarily preserved region, mostly utilized to differentiate isolates at the genus level. Approximately 33% of yeast isolates presented pectinolytic activity with potential biotechnological for wine and fruit juice production. This great genetic variability found indicated that it is a potential reservoir of genes to be applied in viniculture improvement programs.

  11. Replica methods for loopy sparse random graphs

    International Nuclear Information System (INIS)

    Coolen, ACC

    2016-01-01

    I report on the development of a novel statistical mechanical formalism for the analysis of random graphs with many short loops, and processes on such graphs. The graphs are defined via maximum entropy ensembles, in which both the degrees (via hard constraints) and the adjacency matrix spectrum (via a soft constraint) are prescribed. The sum over graphs can be done analytically, using a replica formalism with complex replica dimensions. All known results for tree-like graphs are recovered in a suitable limit. For loopy graphs, the emerging theory has an appealing and intuitive structure, suggests how message passing algorithms should be adapted, and what is the structure of theories describing spin systems on loopy architectures. However, the formalism is still largely untested, and may require further adjustment and refinement. (paper)

  12. Reconstructing Topological Graphs and Continua

    OpenAIRE

    Gartside, Paul; Pitz, Max F.; Suabedissen, Rolf

    2015-01-01

    The deck of a topological space $X$ is the set $\\mathcal{D}(X)=\\{[X \\setminus \\{x\\}] \\colon x \\in X\\}$, where $[Z]$ denotes the homeomorphism class of $Z$. A space $X$ is topologically reconstructible if whenever $\\mathcal{D}(X)=\\mathcal{D}(Y)$ then $X$ is homeomorphic to $Y$. It is shown that all metrizable compact connected spaces are reconstructible. It follows that all finite graphs, when viewed as a 1-dimensional cell-complex, are reconstructible in the topological sense, and more genera...

  13. Decomposing a graph into bistars

    DEFF Research Database (Denmark)

    Thomassen, Carsten

    2013-01-01

    Bárat and the present author conjectured that, for each tree T, there exists a natural number kT such that the following holds: If G is a kT-edge-connected graph such that |E(T)| divides |E(G)|, then G has a T-decomposition, that is, a decomposition of the edge set into trees each of which...... is isomorphic to T. The conjecture has been verified for infinitely many paths and for each star. In this paper we verify the conjecture for an infinite family of trees that are neither paths nor stars, namely all the bistars S(k,k+1)....

  14. On path hypercompositions in graphs and automata

    Directory of Open Access Journals (Sweden)

    Massouros Christos G.

    2016-01-01

    Full Text Available The paths in graphs define hypercompositions in the set of their vertices and therefore it is feasible to associate hypercompositional structures to each graph. Similarly, the strings of letters from their alphabet, define hypercompositions in the automata, which in turn define the associated hypergroups to the automata. The study of the associated hypercompositional structures gives results in both, graphs and automata theory.

  15. Attack Graph Construction for Security Events Analysis

    Directory of Open Access Journals (Sweden)

    Andrey Alexeevich Chechulin

    2014-09-01

    Full Text Available The paper is devoted to investigation of the attack graphs construction and analysis task for a network security evaluation and real-time security event processing. Main object of this research is the attack modeling process. The paper contains the description of attack graphs building, modifying and analysis technique as well as overview of implemented prototype for network security analysis based on attack graph approach.

  16. Steiner Distance in Graphs--A Survey

    OpenAIRE

    Mao, Yaping

    2017-01-01

    For a connected graph $G$ of order at least $2$ and $S\\subseteq V(G)$, the \\emph{Steiner distance} $d_G(S)$ among the vertices of $S$ is the minimum size among all connected subgraphs whose vertex sets contain $S$. In this paper, we summarize the known results on the Steiner distance parameters, including Steiner distance, Steiner diameter, Steiner center, Steiner median, Steiner interval, Steiner distance hereditary graph, Steiner distance stable graph, average Steiner distance, and Steiner ...

  17. Density conditions for triangles in multipartite graphs

    DEFF Research Database (Denmark)

    Bondy, Adrian; Shen, Jin; Thomassé, Stephan

    2006-01-01

    subgraphs in G. We investigate in particular the case where G is a complete multipartite graph. We prove that a finite tripartite graph with all edge densities greater than the golden ratio has a triangle and that this bound is best possible. Also we show that an infinite-partite graph with finite parts has...... a triangle, provided that the edge density between any two parts is greater than 1/2....

  18. Efficient Algorithmic Frameworks via Structural Graph Theory

    Science.gov (United States)

    2016-10-28

    constant. For example, they measured that, on large samples of the entire network, the Amazon graph has average degree 17.7, the Facebook graph has average...department heads’ opinions of departments, and generally lack transparency and well-defined measures . On the other hand, the National Research Council (the...Efficient and practical resource block allocation for LTE -based D2D network via graph coloring. Wireless Networks 20(4): 611-624 (2014) 50. Hossein

  19. Decomposing a planar graph into an independent set and a 3-degenerate graph

    DEFF Research Database (Denmark)

    Thomassen, Carsten

    2001-01-01

    We prove the conjecture made by O. V. Borodin in 1976 that the vertex set of every planar graph can be decomposed into an independent set and a set inducing a 3-degenerate graph. (C) 2001 Academic Press....

  20. The Harary index of a graph

    CERN Document Server

    Xu, Kexiang; Trinajstić, Nenad

    2015-01-01

    This is the first book to focus on the topological index, the Harary index, of a graph, including its mathematical properties, chemical applications and some related and attractive open problems. This book is dedicated to Professor Frank Harary (1921—2005), the grandmaster of graph theory and its applications. It has be written by experts in the field of graph theory and its applications. For a connected graph G, as an important distance-based topological index, the Harary index H(G) is defined as the sum of the reciprocals of the distance between any two unordered vertices of the graph G. In this book, the authors report on the newest results on the Harary index of a graph. These results mainly concern external graphs with respect to the Harary index; the relations to other topological indices; its properties and applications to pure graph theory and chemical graph theory; and two significant variants, i.e., additively and multiplicatively weighted Harary indices. In the last chapter, we present a number o...

  1. Mechatronic modeling and simulation using bond graphs

    CERN Document Server

    Das, Shuvra

    2009-01-01

    Introduction to Mechatronics and System ModelingWhat Is Mechatronics?What Is a System and Why Model Systems?Mathematical Modeling Techniques Used in PracticeSoftwareBond Graphs: What Are They?Engineering SystemsPortsGeneralized VariablesBond GraphsBasic Components in SystemsA Brief Note about Bond Graph Power DirectionsSummary of Bond Direction RulesDrawing Bond Graphs for Simple Systems: Electrical and MechanicalSimplification Rules for Junction StructureDrawing Bond Graphs for Electrical SystemsDrawing Bond Graphs for Mechanical SystemsCausalityDrawing Bond Graphs for Hydraulic and Electronic Components and SystemsSome Basic Properties and Concepts for FluidsBond Graph Model of Hydraulic SystemsElectronic SystemsDeriving System Equations from Bond GraphsSystem VariablesDeriving System EquationsTackling Differential CausalityAlgebraic LoopsSolution of Model Equations and Their InterpretationZeroth Order SystemsFirst Order SystemsSecond Order SystemTransfer Functions and Frequency ResponsesNumerical Solution ...

  2. An algebraic approach to graph codes

    DEFF Research Database (Denmark)

    Pinero, Fernando

    This thesis consists of six chapters. The first chapter, contains a short introduction to coding theory in which we explain the coding theory concepts we use. In the second chapter, we present the required theory for evaluation codes and also give an example of some fundamental codes in coding...... theory as evaluation codes. Chapter three consists of the introduction to graph based codes, such as Tanner codes and graph codes. In Chapter four, we compute the dimension of some graph based codes with a result combining graph based codes and subfield subcodes. Moreover, some codes in chapter four...

  3. The color space of a graph

    DEFF Research Database (Denmark)

    Jensen, T.R.; Thomassen, Carsten

    2000-01-01

    If k is a prime power, and G is a graph with n vertices, then a k-coloring of G may be considered as a vector in GF(k)(n). We prove that the subspace of GF(3)(n) spanned by all 3-colorings of a planar triangle-free graph with n vertices has dimension n. In particular, any such graph has at least n...... - 1 nonequivalent 3-colorings, and the addition of any edge or any vertex of degree 3 results in a 3-colorable graph. (C) 2000 John Wiley & Sons, Inc....

  4. Interactive Graph Layout of a Million Nodes

    Directory of Open Access Journals (Sweden)

    Peng Mi

    2016-12-01

    Full Text Available Sensemaking of large graphs, specifically those with millions of nodes, is a crucial task in many fields. Automatic graph layout algorithms, augmented with real-time human-in-the-loop interaction, can potentially support sensemaking of large graphs. However, designing interactive algorithms to achieve this is challenging. In this paper, we tackle the scalability problem of interactive layout of large graphs, and contribute a new GPU-based force-directed layout algorithm that exploits graph topology. This algorithm can interactively layout graphs with millions of nodes, and support real-time interaction to explore alternative graph layouts. Users can directly manipulate the layout of vertices in a force-directed fashion. The complexity of traditional repulsive force computation is reduced by approximating calculations based on the hierarchical structure of multi-level clustered graphs. We evaluate the algorithm performance, and demonstrate human-in-the-loop layout in two sensemaking case studies. Moreover, we summarize lessons learned for designing interactive large graph layout algorithms on the GPU.

  5. Text-Filled Stacked Area Graphs

    DEFF Research Database (Denmark)

    Kraus, Martin

    2011-01-01

    -filled stacked area graphs; i.e., graphs that feature stacked areas that are filled with small-typed text. Since these graphs allow for computing the text layout automatically, it is possible to include large amounts of textual detail with very little effort. We discuss the most important challenges and some...... solutions for the design of text-filled stacked area graphs with the help of an exemplary visualization of the genres, publication years, and titles of a database of several thousand PC games....

  6. Reconstructing Nearly Simple Polytopes from their Graph

    OpenAIRE

    Doolittle, Joseph

    2017-01-01

    We present a partial description of which polytopes are reconstructible from their graphs. This is an extension of work by Blind and Mani (1987) and Kalai (1988), which showed that simple polytopes can be reconstructed from their graphs. In particular, we introduce a notion of $h$-nearly simple and prove that 1-nearly simple and 2-nearly simple polytopes are reconstructible from their graphs. We also give an example of a 3-nearly simple polytope which is not reconstructible from its graph. Fu...

  7. A Reduction of the Graph Reconstruction Conjecture

    Directory of Open Access Journals (Sweden)

    Monikandan S.

    2014-08-01

    Full Text Available A graph is said to be reconstructible if it is determined up to isomor- phism from the collection of all its one-vertex deleted unlabeled subgraphs. Reconstruction Conjecture (RC asserts that all graphs on at least three vertices are reconstructible. In this paper, we prove that interval-regular graphs and some new classes of graphs are reconstructible and show that RC is true if and only if all non-geodetic and non-interval-regular blocks G with diam(G = 2 or diam(Ḡ = diam(G = 3 are reconstructible

  8. Total dominator chromatic number of a graph

    Directory of Open Access Journals (Sweden)

    Adel P. Kazemi

    2015-06-01

    Full Text Available Given a graph $G$, the total dominator coloring problem seeks a proper coloring of $G$ with the additional property that every vertex in the graph is adjacent to all vertices of a color class. We seek to minimize the number of color classes. We initiate to study this problem on several classes of graphs, as well as finding general bounds and characterizations. We also compare the total dominator chromatic number of a graph with the chromatic number and the total domination number of it.

  9. Equitable Colorings Of Corona Multiproducts Of Graphs

    Directory of Open Access Journals (Sweden)

    Furmánczyk Hanna

    2017-11-01

    Full Text Available A graph is equitably k-colorable if its vertices can be partitioned into k independent sets in such a way that the numbers of vertices in any two sets differ by at most one. The smallest k for which such a coloring exists is known as the equitable chromatic number of G and denoted by =(G. It is known that the problem of computation of =(G is NP-hard in general and remains so for corona graphs. In this paper we consider the same model of coloring in the case of corona multiproducts of graphs. In particular, we obtain some results regarding the equitable chromatic number for the l-corona product G ◦l H, where G is an equitably 3- or 4-colorable graph and H is an r-partite graph, a cycle or a complete graph. Our proofs are mostly constructive in that they lead to polynomial algorithms for equitable coloring of such graph products provided that there is given an equitable coloring of G. Moreover, we confirm the Equitable Coloring Conjecture for corona products of such graphs. This paper extends the results from [H. Furmánczyk, K. Kaliraj, M. Kubale and V.J. Vivin, Equitable coloring of corona products of graphs, Adv. Appl. Discrete Math. 11 (2013 103–120].

  10. VT Digital Line Graph Miscellaneous Transmission Lines

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) This datalayer is comprised of Miscellaineous Transmission Lines. Digital line graph (DLG) data are digital representations of cartographic...

  11. Older but still fluent? Insights from the intrinsically active baseline configuration of the aging brain using a data driven graph-theoretical approach.

    Science.gov (United States)

    Muller, Angela M; Mérillat, Susan; Jäncke, Lutz

    2016-02-15

    A major part of our knowledge about the functioning of the aging brain comes from task-induced activation paradigms. However, the aging brain's intrinsic functional organization may be already a limiting factor for the outcome of an actual behavior. In order to get a better understanding of how this functional baseline configuration of the aging brain may affect cognitive performance, we analyzed task-free fMRI data of older 186 participants (mean age=70.4, 97 female) and their performance data in verbal fluency: First, we conducted an intrinsic connectivity contrast analysis (ICC) for the purpose of evaluating the brain regions whose degree of connectedness was significantly correlated with fluency performance. Secondly, using connectivity analyses we investigated how the clusters from the ICC functionally related to the other major resting-state networks. Apart from the importance of intact fronto-parietal long-range connections, the preserved capacity of the DMN for a finely attuned interaction with the executive-control network and the language network seems to be crucial for successful verbal fluency performance in older people. We provide further evidence that the right frontal regions might be more prominently affected by age-related decline. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Chemical graph-theoretic cluster expansions

    International Nuclear Information System (INIS)

    Klein, D.J.

    1986-01-01

    A general computationally amenable chemico-graph-theoretic cluster expansion method is suggested as a paradigm for incorporation of chemical structure concepts in a systematic manner. The cluster expansion approach is presented in a formalism general enough to cover a variety of empirical, semiempirical, and even ab initio applications. Formally such approaches for the utilization of chemical structure-related concepts may be viewed as discrete analogues of Taylor series expansions. The efficacy of the chemical structure concepts then is simply bound up in the rate of convergence of the cluster expansions. In many empirical applications, e.g., boiling points, chromatographic separation coefficients, and biological activities, this rate of convergence has been observed to be quite rapid. More note will be made here of quantum chemical applications. Relations to questions concerning size extensivity of energies and size consistency of wave functions are addressed

  13. SpectralNET – an application for spectral graph analysis and visualization

    Directory of Open Access Journals (Sweden)

    Schreiber Stuart L

    2005-10-01

    Full Text Available Abstract Background Graph theory provides a computational framework for modeling a variety of datasets including those emerging from genomics, proteomics, and chemical genetics. Networks of genes, proteins, small molecules, or other objects of study can be represented as graphs of nodes (vertices and interactions (edges that can carry different weights. SpectralNET is a flexible application for analyzing and visualizing these biological and chemical networks. Results Available both as a standalone .NET executable and as an ASP.NET web application, SpectralNET was designed specifically with the analysis of graph-theoretic metrics in mind, a computational task not easily accessible using currently available applications. Users can choose either to upload a network for analysis using a variety of input formats, or to have SpectralNET generate an idealized random network for comparison to a real-world dataset. Whichever graph-generation method is used, SpectralNET displays detailed information about each connected component of the graph, including graphs of degree distribution, clustering coefficient by degree, and average distance by degree. In addition, extensive information about the selected vertex is shown, including degree, clustering coefficient, various distance metrics, and the corresponding components of the adjacency, Laplacian, and normalized Laplacian eigenvectors. SpectralNET also displays several graph visualizations, including a linear dimensionality reduction for uploaded datasets (Principal Components Analysis and a non-linear dimensionality reduction that provides an elegant view of global graph structure (Laplacian eigenvectors. Conclusion SpectralNET provides an easily accessible means of analyzing graph-theoretic metrics for data modeling and dimensionality reduction. SpectralNET is publicly available as both a .NET application and an ASP.NET web application from http://chembank.broad.harvard.edu/resources/. Source code is

  14. Phenotypic and genetic characterization of Paecilomyces lilacinus strains with biocontrol activity against root-knot nematodes.

    Science.gov (United States)

    Gunasekera, T S; Holland, R J; Gillings, M R; Briscoe, D A; Neethling, D C; Williams, K L; Nevalainen, K M

    2000-09-01

    Efficient selection of fungi for biological control of nematodes requires a series of screening assays. Assessment of genetic diversity in the candidate species maximizes the variety of the isolates tested and permits the assignment of a particular genotype with high nematophagous potential using a rapid novel assay. Molecular analyses also facilitate separation between isolates, allowing the identification of proprietary strains and trace biocontrol strains in the environment. The resistance of propagules to UV radiation is an important factor in the survival of a biocontrol agent. We have analyzed 15 strains of the nematophagous fungus Paecilomyces lilacinus using these principles. Arbitrarily primed DNA and allozyme assays were applied to place the isolates into genetic clusters, and demonstrated that some genetically related P. lilacinus strains exhibit widespread geographic distributions. When exposed to UV radiation, some weakly nematophagous strains were generally more susceptible than effective isolates. A microtitre tray-based assay used to screen the pathogenic activity of each isolate to Meloidogyne javanica egg masses revealed that the nematophagous ability varied between 37%-100%. However, there was no clear relationship between nematophagous ability and genetic clusters. Molecular characterizations revealed sufficient diversity to allow tracking of strains released into the environment.

  15. On cyclic orthogonal double covers of circulant graphs by special infinite graphs

    Directory of Open Access Journals (Sweden)

    R. El-Shanawany

    2017-12-01

    Full Text Available In this article, a technique to construct cyclic orthogonal double covers (CODCs of regular circulant graphs by certain infinite graph classes such as complete bipartite and tripartite graphs and disjoint union of butterfly and K1,2n−10 is introduced.

  16. The complexity of the matching-cut problem for planar graphs and other graph classes

    NARCIS (Netherlands)

    Bonsma, P.S.

    2009-01-01

    The Matching-Cut problem is the problem to decide whether a graph has an edge cut that is also a matching. Previously this problem was studied under the name of the Decomposable Graph Recognition problem, and proved to be -complete when restricted to graphs with maximum degree four. In this paper it

  17. Generating ActiGraph counts from raw acceleration recorded by an alternative monitor

    DEFF Research Database (Denmark)

    Brønd, Jan Christian; Andersen, Lars Bo; Arvidsson, Daniel

    2017-01-01

    Introduction: Raw acceleration data collected by the ActiGraph accelerometer is aggregated using a proprietary method into arbitrary physical activity intensity units called counts, which has been extensively calibrated and validated against energy expenditure. Generating ActiGraph counts from any...... second across all rotational frequencies compared to the original ActiGraph method. Applying the aggregation method to the 24-hour free-living recordings resulted in an epoch level bias ranging from -16.2 to 0.9 counts per 10 second, a relative difference in the averaged physical activity (counts per...

  18. Probability on graphs random processes on graphs and lattices

    CERN Document Server

    Grimmett, Geoffrey

    2018-01-01

    This introduction to some of the principal models in the theory of disordered systems leads the reader through the basics, to the very edge of contemporary research, with the minimum of technical fuss. Topics covered include random walk, percolation, self-avoiding walk, interacting particle systems, uniform spanning tree, random graphs, as well as the Ising, Potts, and random-cluster models for ferromagnetism, and the Lorentz model for motion in a random medium. This new edition features accounts of major recent progress, including the exact value of the connective constant of the hexagonal lattice, and the critical point of the random-cluster model on the square lattice. The choice of topics is strongly motivated by modern applications, and focuses on areas that merit further research. Accessible to a wide audience of mathematicians and physicists, this book can be used as a graduate course text. Each chapter ends with a range of exercises.

  19. Enabling Graph Appliance for Genome Assembly

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Rina [ORNL; Graves, Jeffrey A [ORNL; Lee, Sangkeun (Matt) [ORNL; Sukumar, Sreenivas R [ORNL; Shankar, Mallikarjun [ORNL

    2015-01-01

    In recent years, there has been a huge growth in the amount of genomic data available as reads generated from various genome sequencers. The number of reads generated can be huge, ranging from hundreds to billions of nucleotide, each varying in size. Assembling such large amounts of data is one of the challenging computational problems for both biomedical and data scientists. Most of the genome assemblers developed have used de Bruijn graph techniques. A de Bruijn graph represents a collection of read sequences by billions of vertices and edges, which require large amounts of memory and computational power to store and process. This is the major drawback to de Bruijn graph assembly. Massively parallel, multi-threaded, shared memory systems can be leveraged to overcome some of these issues. The objective of our research is to investigate the feasibility and scalability issues of de Bruijn graph assembly on Cray s Urika-GD system; Urika-GD is a high performance graph appliance with a large shared memory and massively multithreaded custom processor designed for executing SPARQL queries over large-scale RDF data sets. However, to the best of our knowledge, there is no research on representing a de Bruijn graph as an RDF graph or finding Eulerian paths in RDF graphs using SPARQL for potential genome discovery. In this paper, we address the issues involved in representing a de Bruin graphs as RDF graphs and propose an iterative querying approach for finding Eulerian paths in large RDF graphs. We evaluate the performance of our implementation on real world ebola genome datasets and illustrate how genome assembly can be accomplished with Urika-GD using iterative SPARQL queries.

  20. Physical activity reduces the influence of genetic effects on BMI and waist circumference: a study in young adult twins.

    Science.gov (United States)

    Mustelin, L; Silventoinen, K; Pietiläinen, K; Rissanen, A; Kaprio, J

    2009-01-01

    Both obesity and exercise behavior are influenced by genetic and environmental factors. However, whether obesity and physical inactivity share the same genetic vs environmental etiology has rarely been studied. We therefore analyzed these complex relationships, and also examined whether physical activity modifies the degree of genetic influence on body mass index (BMI) and waist circumference (WC). The FinnTwin16 Study is a population-based, longitudinal study of five consecutive birth cohorts (1975-1979) of Finnish twins. Data on height, weight, WC and physical activity of 4343 subjects at the average age of 25 (range, 22-27 years) years were obtained by a questionnaire and self-measurement of WC. Quantitative genetic analyses based on linear structural equations were carried out by the Mx statistical package. The modifying effect of physical activity on genetic and environmental influences was analyzed using gene-environment interaction models. The overall heritability estimates were 79% in males and 78% in females for BMI, 56 and 71% for WC and 55 and 54% for physical activity, respectively. There was an inverse relationship between physical activity and WC in males (r = -0.12) and females (r=-0.18), and between physical activity and BMI in females (r = -0.12). Physical activity significantly modified the heritability of BMI and WC, with a high level of physical activity decreasing the additive genetic component in BMI and WC. Physically active subjects were leaner than sedentary ones, and physical activity reduced the influence of genetic factors to develop high BMI and WC. This suggests that the individuals at greatest genetic risk for obesity would benefit the most from physical activity.

  1. The relationship between structural and functional connectivity: graph theoretical analysis of an EEG neural mass model

    NARCIS (Netherlands)

    Ponten, S.C.; Daffertshofer, A.; Hillebrand, A.; Stam, C.J.

    2010-01-01

    We investigated the relationship between structural network properties and both synchronization strength and functional characteristics in a combined neural mass and graph theoretical model of the electroencephalogram (EEG). Thirty-two neural mass models (NMMs), each representing the lump activity

  2. Genetically encoded proton sensors reveal activity-dependent pH changes in neurons

    Directory of Open Access Journals (Sweden)

    Joseph Valentino Raimondo

    2012-05-01

    Full Text Available The regulation of hydrogen ion concentration (pH is fundamental to cell viability, metabolism and enzymatic function. Within the nervous system, the control of pH is also involved in diverse and dynamic processes including development, synaptic transmission and the control of network excitability. As pH affects neuronal activity, and can also itself be altered by neuronal activity, the existence of tools to accurately measure hydrogen ion fluctuations is important for understanding the role pH plays under physiological and pathological conditions. Outside of their use as a marker of synaptic release, genetically encoded pH sensors have not been utilised to study hydrogen ion fluxes associated with network activity. By combining whole-cell patch clamp with simultaneous two-photon or confocal imaging, we quantified the amplitude and time course of neuronal, intracellular, acidic transients evoked by epileptiform activity in two separate in vitro models of temporal lobe epilepsy. In doing so, we demonstrate the suitability of three genetically encoded pH sensors: deGFP4, E2GFP and Cl-sensor for investigating activity-dependent pH changes at the level of single neurons.

  3. Genetically encoded proton sensors reveal activity-dependent pH changes in neurons.

    Science.gov (United States)

    Raimondo, Joseph V; Irkle, Agnese; Wefelmeyer, Winnie; Newey, Sarah E; Akerman, Colin J

    2012-01-01

    The regulation of hydrogen ion concentration (pH) is fundamental to cell viability, metabolism, and enzymatic function. Within the nervous system, the control of pH is also involved in diverse and dynamic processes including development, synaptic transmission, and the control of network excitability. As pH affects neuronal activity, and can also itself be altered by neuronal activity, the existence of tools to accurately measure hydrogen ion fluctuations is important for understanding the role pH plays under physiological and pathological conditions. Outside of their use as a marker of synaptic release, genetically encoded pH sensors have not been utilized to study hydrogen ion fluxes associated with network activity. By combining whole-cell patch clamp with simultaneous two-photon or confocal imaging, we quantified the amplitude and time course of neuronal, intracellular, acidic transients evoked by epileptiform activity in two separate in vitro models of temporal lobe epilepsy. In doing so, we demonstrate the suitability of three genetically encoded pH sensors: deGFP4, E(2)GFP, and Cl-sensor for investigating activity-dependent pH changes at the level of single neurons.

  4. STRUCTURAL ANNOTATION OF EM IMAGES BY GRAPH CUT

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Hang; Auer, Manfred; Parvin, Bahram

    2009-05-08

    Biological images have the potential to reveal complex signatures that may not be amenable to morphological modeling in terms of shape, location, texture, and color. An effective analytical method is to characterize the composition of a specimen based on user-defined patterns of texture and contrast formation. However, such a simple requirement demands an improved model for stability and robustness. Here, an interactive computational model is introduced for learning patterns of interest by example. The learned patterns bound an active contour model in which the traditional gradient descent optimization is replaced by the more efficient optimization of the graph cut methods. First, the energy function is defined according to the curve evolution. Next, a graph is constructed with weighted edges on the energy function and is optimized with the graph cut algorithm. As a result, the method combines the advantages of the level set method and graph cut algorithm, i.e.,"topological" invariance and computational efficiency. The technique is extended to the multi-phase segmentation problem; the method is validated on synthetic images and then applied to specimens imaged by transmission electron microscopy(TEM).

  5. Isospectral graphs with identical nodal counts

    International Nuclear Information System (INIS)

    Oren, Idan; Band, Ram

    2012-01-01

    According to a recent conjecture, isospectral objects have different nodal count sequences (Gnutzmann et al 2005 J. Phys. A: Math. Gen. 38 8921–33). We study generalized Laplacians on discrete graphs, and use them to construct the first non-trivial counterexamples to this conjecture. In addition, these examples demonstrate a surprising connection between isospectral discrete and quantum graphs. (paper)

  6. Compression-based inference on graph data

    NARCIS (Netherlands)

    Bloem, P.; van den Bosch, A.; Heskes, T.; van Leeuwen, D.

    2013-01-01

    We investigate the use of compression-based learning on graph data. General purpose compressors operate on bitstrings or other sequential representations. A single graph can be represented sequentially in many ways, which may in uence the performance of sequential compressors. Using Normalized

  7. On minimum degree conditions for supereulerian graphs

    NARCIS (Netherlands)

    Broersma, Haitze J.; Xiong, L.

    1999-01-01

    A graph is called supereulerian if it has a spanning closed trail. Let $G$ be a 2-edge-connected graph of order $n$ such that each minimal edge cut $E \\subseteq E (G)$ with $|E| \\le 3$ satisfies the property that each component of $G-E$ has order at least $(n-2)/5$. We prove that either $G$ is

  8. On the exterior structure of graphs

    International Nuclear Information System (INIS)

    Kastler, Daniel

    2004-01-01

    After a detailed ab initio description of the exterior structure of graphs as handled by Connes and Kreimer in their work on renormalization (illustrated by the example of the φ 3 model in six dimensions) we spell out in detail their study of the Lie algebra of infinitesimal characters and of the group of characters of the Hopf algebra of Feynman graphs

  9. The Minimum Distance of Graph Codes

    DEFF Research Database (Denmark)

    Høholdt, Tom; Justesen, Jørn

    2011-01-01

    We study codes constructed from graphs where the code symbols are associated with the edges and the symbols connected to a given vertex are restricted to be codewords in a component code. In particular we treat such codes from bipartite expander graphs coming from Euclidean planes and other...... geometries. We give results on the minimum distances of the codes....

  10. Domination versus disjunctive domination in graphs | Henning ...

    African Journals Online (AJOL)

    Domination versus disjunctive domination in graphs. Michael A Henning, Sinclair A Marcon. Abstract. A dominating set in a graph G is a set S of vertices of G such that every vertex not in S is adjacent to a vertex of S. The domination number of G is the minimum cardinality of a dominating set of G. For a positive integer b, ...

  11. Eigenvalues and expansion of bipartite graphs

    DEFF Research Database (Denmark)

    Høholdt, Tom; Janwa, Heeralal

    2012-01-01

    We prove lower bounds on the largest and second largest eigenvalue of the adjacency matrix of bipartite graphs and give necessary and sufficient conditions for equality. We give several examples of classes that are optimal with respect to the bouns. We prove that BIBD-graphs are characterized by ...

  12. Co-Roman domination in graphs

    Indian Academy of Sciences (India)

    1National Centre for Advanced Research in Discrete Mathematics ... 3Department of Computer Science, Ball State University, Muncie, IN, USA .... The corona of two disjoint graphs G1 and G2 is defined to be the graph G = G1 ◦ G2,.

  13. Trajectories entropy in dynamical graphs with memory

    Directory of Open Access Journals (Sweden)

    Francesco eCaravelli

    2016-04-01

    Full Text Available In this paper we investigate the application of non-local graph entropy to evolving and dynamical graphs. The measure is based upon the notion of Markov diffusion on a graph, and relies on the entropy applied to trajectories originating at a specific node. In particular, we study the model of reinforcement-decay graph dynamics, which leads to scale free graphs. We find that the node entropy characterizes the structure of the network in the two parameter phase-space describing the dynamical evolution of the weighted graph. We then apply an adapted version of the entropy measure to purely memristive circuits. We provide evidence that meanwhile in the case of DC voltage the entropy based on the forward probability is enough to characterize the graph properties, in the case of AC voltage generators one needs to consider both forward and backward based transition probabilities. We provide also evidence that the entropy highlights the self-organizing properties of memristive circuits, which re-organizes itself to satisfy the symmetries of the underlying graph.

  14. Graphs, Ideal Flow, and the Transportation Network

    OpenAIRE

    Teknomo, Kardi

    2016-01-01

    This lecture discusses the mathematical relationship between network structure and network utilization of transportation network. Network structure means the graph itself. Network utilization represent the aggregation of trajectories of agents in using the network graph. I show the similarity and relationship between the structural pattern of the network and network utilization.

  15. Supplantation of Mental Operations on Graphs

    Science.gov (United States)

    Vogel, Markus; Girwidz, Raimund; Engel, Joachim

    2007-01-01

    Research findings show the difficulties younger students have in working with graphs. Higher mental operations are necessary for a skilled interpretation of abstract representations. We suggest connecting a concrete representation of the modeled problem with the related graph. The idea is to illustrate essential mental operations externally. This…

  16. Some remarks on definability of process graphs

    NARCIS (Netherlands)

    Grabmayer, C.A.; Klop, J.W.; Luttik, B.; Baier, C.; Hermanns, H.

    2006-01-01

    We propose the notions of "density" and "connectivity" of infinite process graphs and investigate them in the context of the wellknown process algebras BPA and BPP. For a process graph G, the density function in a state s maps a natural number n to the number of states of G with distance less or

  17. On revealing graph cycles via boundary measurements

    International Nuclear Information System (INIS)

    Belishev, M I; Wada, N

    2009-01-01

    This paper deals with boundary value inverse problems on a metric graph, the structure of the graph being assumed unknown. The question under consideration is how to detect from the dynamical and/or spectral inverse data whether the graph contains cycles (is not a tree). For any graph Ω, the dynamical as well as spectral boundary inverse data determine the so-called wave diameter d w : H -1 (Ω) → R defined on functionals supported in the graph. The known fact is that if Ω is a tree then d w ≥ 0 holds and, in this case, the inverse data determine Ω up to isometry. A graph Ω is said to be coordinate if the functions {dist Ω (., γ)} γin∂Ω constitute a coordinate system on Ω. For such graphs, we propose a procedure, which reveals the presence/absence of cycles. The hypothesis is that Ω contains cycles if and only if d w takes negative values. We do not justify this hypothesis in the general case but reduce it to a certain special class of graphs (suns)

  18. Declarative Process Mining for DCR Graphs

    DEFF Research Database (Denmark)

    Debois, Søren; Hildebrandt, Thomas T.; Laursen, Paw Høvsgaard

    2017-01-01

    We investigate process mining for the declarative Dynamic Condition Response (DCR) graphs process modelling language. We contribute (a) a process mining algorithm for DCR graphs, (b) a proposal for a set of metrics quantifying output model quality, and (c) a preliminary example-based comparison...

  19. A Graph Library Extension of SVG

    DEFF Research Database (Denmark)

    Nørmark, Kurt

    2007-01-01

    be aggregated as a single node, and an entire graph can be embedded in a single node. In addition, a number of different graph animations are described. The starting point of the SVG extension is a library that provides an exact of mirror of SVG 1.1 in the functional programming language Scheme. Each element...

  20. Acyclicity in edge-colored graphs

    DEFF Research Database (Denmark)

    Gutin, Gregory; Jones, Mark; Sheng, Bin

    2017-01-01

    A walk W in edge-colored graphs is called properly colored (PC) if every pair of consecutive edges in W is of different color. We introduce and study five types of PC acyclicity in edge-colored graphs such that graphs of PC acyclicity of type i is a proper superset of graphs of acyclicity of type i......+1, i=1,2,3,4. The first three types are equivalent to the absence of PC cycles, PC closed trails, and PC closed walks, respectively. While graphs of types 1, 2 and 3 can be recognized in polynomial time, the problem of recognizing graphs of type 4 is, somewhat surprisingly, NP-hard even for 2-edge-colored...... graphs (i.e., when only two colors are used). The same problem with respect to type 5 is polynomial-time solvable for all edge-colored graphs. Using the five types, we investigate the border between intractability and tractability for the problems of finding the maximum number of internally vertex...

  1. From concatenated codes to graph codes

    DEFF Research Database (Denmark)

    Justesen, Jørn; Høholdt, Tom

    2004-01-01

    We consider codes based on simple bipartite expander graphs. These codes may be seen as the first step leading from product type concatenated codes to more complex graph codes. We emphasize constructions of specific codes of realistic lengths, and study the details of decoding by message passing...

  2. Graph coarsening and clustering on the GPU

    NARCIS (Netherlands)

    Fagginger Auer, B.O.; Bisseling, R.H.

    2013-01-01

    Agglomerative clustering is an effective greedy way to quickly generate graph clusterings of high modularity in a small amount of time. In an effort to use the power offered by multi-core CPU and GPU hardware to solve the clustering problem, we introduce a fine-grained sharedmemory parallel graph

  3. Pixels to Graphs by Associative Embedding

    KAUST Repository

    Newell, Alejandro; Deng, Jia

    2017-01-01

    network such that it takes in an input image and produces a full graph. This is done end-to-end in a single stage with the use of associative embeddings. The network learns to simultaneously identify all of the elements that make up a graph and piece them

  4. Isomorphisms and traversability of directed path graphs

    NARCIS (Netherlands)

    Broersma, Haitze J.; Li, Xueliang; Li, X.

    1998-01-01

    The concept of a line digraph is generalized to that of a directed path graph. The directed path graph $\\forw P_k(D)$ of a digraph $D$ is obtained by representing the directed paths on $k$ vertices of $D$ by vertices. Two vertices are joined by an arc whenever the corresponding directed paths in $D$

  5. Perfect secure domination in graphs

    Directory of Open Access Journals (Sweden)

    S.V. Divya Rashmi

    2017-07-01

    Full Text Available Let $G=(V,E$ be a graph. A subset $S$ of $V$ is a dominating set of $G$ if every vertex in $Vsetminus  S$ is adjacent to a vertex in $S.$ A dominating set $S$ is called a secure dominating set if for each $vin Vsetminus S$ there exists $uin S$ such that $v$ is adjacent to $u$ and $S_1=(Ssetminus{u}cup {v}$ is a dominating set. If further the vertex $uin S$ is unique, then $S$ is called a perfect secure dominating set. The minimum cardinality of a perfect secure dominating set of $G$ is called the perfect  secure domination number of $G$ and is denoted by $gamma_{ps}(G.$ In this paper we initiate a study of this parameter and present several basic results.

  6. Graph Mining Meets the Semantic Web

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sangkeun (Matt) [ORNL; Sukumar, Sreenivas R [ORNL; Lim, Seung-Hwan [ORNL

    2015-01-01

    The Resource Description Framework (RDF) and SPARQL Protocol and RDF Query Language (SPARQL) were introduced about a decade ago to enable flexible schema-free data interchange on the Semantic Web. Today, data scientists use the framework as a scalable graph representation for integrating, querying, exploring and analyzing data sets hosted at different sources. With increasing adoption, the need for graph mining capabilities for the Semantic Web has emerged. We address that need through implementation of three popular iterative Graph Mining algorithms (Triangle count, Connected component analysis, and PageRank). We implement these algorithms as SPARQL queries, wrapped within Python scripts. We evaluate the performance of our implementation on 6 real world data sets and show graph mining algorithms (that have a linear-algebra formulation) can indeed be unleashed on data represented as RDF graphs using the SPARQL query interface.

  7. On the nullity number of graphs

    Directory of Open Access Journals (Sweden)

    Mustapha Aouchiche

    2017-10-01

    Full Text Available The paper discusses bounds on the nullity number of graphs. It is proved in [B. Cheng and B. Liu, On the nullity of graphs. Electron. J. Linear Algebra 16 (2007 60--67] that $\\eta \\le n - D$, where $\\eta$, n and D denote the nullity number, the order and the diameter of a connected graph, respectively. We first give a necessary condition on the extremal graphs corresponding to that bound, and then we strengthen the bound itself using the maximum clique number. In addition, we prove bounds on the nullity using the number of pendant neighbors in a graph. One of those bounds is an improvement of a known bound involving the domination number.

  8. Three Syntactic Theories for Combinatory Graph Reduction

    DEFF Research Database (Denmark)

    Danvy, Olivier; Zerny, Ian

    2011-01-01

    in a third syntactic theory. The structure of the store-based abstract machine corresponding to this third syntactic theory oincides with that of Turner's original reduction machine. The three syntactic theories presented here The three syntactic heories presented here therefore have the following......We present a purely syntactic theory of graph reduction for the canonical combinators S, K, and I, where graph vertices are represented with evaluation contexts and let expressions. We express this syntactic theory as a reduction semantics, which we refocus into the first storeless abstract machine...... for combinatory graph reduction, which we refunctionalize into the first storeless natural semantics for combinatory graph reduction.We then factor out the introduction of let expressions to denote as many graph vertices as possible upfront instead of on demand, resulting in a second syntactic theory, this one...

  9. Three Syntactic Theories for Combinatory Graph Reduction

    DEFF Research Database (Denmark)

    Danvy, Olivier; Zerny, Ian

    2013-01-01

    , as a store-based reduction semantics of combinatory term graphs. We then refocus this store-based reduction semantics into a store-based abstract machine. The architecture of this store-based abstract machine coincides with that of Turner's original reduction machine. The three syntactic theories presented......We present a purely syntactic theory of graph reduction for the canonical combinators S, K, and I, where graph vertices are represented with evaluation contexts and let expressions. We express this rst syntactic theory as a storeless reduction semantics of combinatory terms. We then factor out...... the introduction of let expressions to denote as many graph vertices as possible upfront instead of on demand . The factored terms can be interpreted as term graphs in the sense of Barendregt et al. We express this second syntactic theory, which we prove equivalent to the rst, as a storeless reduction semantics...

  10. Algorithms and Data Structures for Graphs

    DEFF Research Database (Denmark)

    Rotenberg, Eva

    are planar graphs, which are those that can be drawn on a piece of paper without any pair of edges crossing. For planar graphs where each edge can only be traversed in one direction, a fundamental question is whether there is a route from vertex A to vertex B in the graph. We show how such a graph can...... of the form: "Is there an edge such that all paths between A and B go via that edge?" and which can quickly be updated when edges are inserted or deleted. We further show how to represent a planar graph such that we can quickly update our representation when an edge is deleted, and such that questions...

  11. OPEX: Optimized Eccentricity Computation in Graphs

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, Keith [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2011-11-14

    Real-world graphs have many properties of interest, but often these properties are expensive to compute. We focus on eccentricity, radius and diameter in this work. These properties are useful measures of the global connectivity patterns in a graph. Unfortunately, computing eccentricity for all nodes is O(n2) for a graph with n nodes. We present OPEX, a novel combination of optimizations which improves computation time of these properties by orders of magnitude in real-world experiments on graphs of many different sizes. We run OPEX on graphs with up to millions of links. OPEX gives either exact results or bounded approximations, unlike its competitors which give probabilistic approximations or sacrifice node-level information (eccentricity) to compute graphlevel information (diameter).

  12. On The Roman Domination Stable Graphs

    Directory of Open Access Journals (Sweden)

    Hajian Majid

    2017-11-01

    Full Text Available A Roman dominating function (or just RDF on a graph G = (V,E is a function f : V → {0, 1, 2} satisfying the condition that every vertex u for which f(u = 0 is adjacent to at least one vertex v for which f(v = 2. The weight of an RDF f is the value f(V (G = Pu2V (G f(u. The Roman domination number of a graph G, denoted by R(G, is the minimum weight of a Roman dominating function on G. A graph G is Roman domination stable if the Roman domination number of G remains unchanged under removal of any vertex. In this paper we present upper bounds for the Roman domination number in the class of Roman domination stable graphs, improving bounds posed in [V. Samodivkin, Roman domination in graphs: the class RUV R, Discrete Math. Algorithms Appl. 8 (2016 1650049].

  13. Pristine transfinite graphs and permissive electrical networks

    CERN Document Server

    Zemanian, Armen H

    2001-01-01

    A transfinite graph or electrical network of the first rank is obtained conceptually by connecting conventionally infinite graphs and networks together at their infinite extremities. This process can be repeated to obtain a hierarchy of transfiniteness whose ranks increase through the countable ordinals. This idea, which is of recent origin, has enriched the theories of graphs and networks with radically new constructs and research problems. The book provides a more accessible introduction to the subject that, though sacrificing some generality, captures the essential ideas of transfiniteness for graphs and networks. Thus, for example, some results concerning discrete potentials and random walks on transfinite networks can now be presented more concisely. Conversely, the simplifications enable the development of many new results that were previously unavailable. Topics and features: *A simplified exposition provides an introduction to transfiniteness for graphs and networks.*Various results for conventional g...

  14. A model of language inflection graphs

    Science.gov (United States)

    Fukś, Henryk; Farzad, Babak; Cao, Yi

    2014-01-01

    Inflection graphs are highly complex networks representing relationships between inflectional forms of words in human languages. For so-called synthetic languages, such as Latin or Polish, they have particularly interesting structure due to the abundance of inflectional forms. We construct the simplest form of inflection graphs, namely a bipartite graph in which one group of vertices corresponds to dictionary headwords and the other group to inflected forms encountered in a given text. We, then, study projection of this graph on the set of headwords. The projection decomposes into a large number of connected components, to be called word groups. Distribution of sizes of word group exhibits some remarkable properties, resembling cluster distribution in a lattice percolation near the critical point. We propose a simple model which produces graphs of this type, reproducing the desired component distribution and other topological features.

  15. Disease management research using event graphs.

    Science.gov (United States)

    Allore, H G; Schruben, L W

    2000-08-01

    Event Graphs, conditional representations of stochastic relationships between discrete events, simulate disease dynamics. In this paper, we demonstrate how Event Graphs, at an appropriate abstraction level, also extend and organize scientific knowledge about diseases. They can identify promising treatment strategies and directions for further research and provide enough detail for testing combinations of new medicines and interventions. Event Graphs can be enriched to incorporate and validate data and test new theories to reflect an expanding dynamic scientific knowledge base and establish performance criteria for the economic viability of new treatments. To illustrate, an Event Graph is developed for mastitis, a costly dairy cattle disease, for which extensive scientific literature exists. With only a modest amount of imagination, the methodology presented here can be seen to apply modeling to any disease, human, plant, or animal. The Event Graph simulation presented here is currently being used in research and in a new veterinary epidemiology course. Copyright 2000 Academic Press.

  16. Pixels to Graphs by Associative Embedding

    KAUST Repository

    Newell, Alejandro

    2017-06-22

    Graphs are a useful abstraction of image content. Not only can graphs represent details about individual objects in a scene but they can capture the interactions between pairs of objects. We present a method for training a convolutional neural network such that it takes in an input image and produces a full graph. This is done end-to-end in a single stage with the use of associative embeddings. The network learns to simultaneously identify all of the elements that make up a graph and piece them together. We benchmark on the Visual Genome dataset, and report a Recall@50 of 9.7% compared to the prior state-of-the-art at 3.4%, a nearly threefold improvement on the challenging task of scene graph generation.

  17. Approximate Computing Techniques for Iterative Graph Algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Panyala, Ajay R.; Subasi, Omer; Halappanavar, Mahantesh; Kalyanaraman, Anantharaman; Chavarria Miranda, Daniel G.; Krishnamoorthy, Sriram

    2017-12-18

    Approximate computing enables processing of large-scale graphs by trading off quality for performance. Approximate computing techniques have become critical not only due to the emergence of parallel architectures but also the availability of large scale datasets enabling data-driven discovery. Using two prototypical graph algorithms, PageRank and community detection, we present several approximate computing heuristics to scale the performance with minimal loss of accuracy. We present several heuristics including loop perforation, data caching, incomplete graph coloring and synchronization, and evaluate their efficiency. We demonstrate performance improvements of up to 83% for PageRank and up to 450x for community detection, with low impact of accuracy for both the algorithms. We expect the proposed approximate techniques will enable scalable graph analytics on data of importance to several applications in science and their subsequent adoption to scale similar graph algorithms.

  18. Graphs to estimate an individualized risk of breast cancer.

    Science.gov (United States)

    Benichou, J; Gail, M H; Mulvihill, J J

    1996-01-01

    Clinicians who counsel women about their risk for developing breast cancer need a rapid method to estimate individualized risk (absolute risk), as well as the confidence limits around that point. The Breast Cancer Detection Demonstration Project (BCDDP) model (sometimes called the Gail model) assumes no genetic model and simultaneously incorporates five risk factors, but involves cumbersome calculations and interpolations. This report provides graphs to estimate the absolute risk of breast cancer from the BCDDP model. The BCDDP recruited 280,000 women from 1973 to 1980 who were monitored for 5 years. From this cohort, 2,852 white women developed breast cancer and 3,146 controls were selected, all with complete risk-factor information. The BCDDP model, previously developed from these data, was used to prepare graphs that relate a specific summary relative-risk estimate to the absolute risk of developing breast cancer over intervals of 10, 20, and 30 years. Once a summary relative risk is calculated, the appropriate graph is chosen that shows the 10-, 20-, or 30-year absolute risk of developing breast cancer. A separate graph gives the 95% confidence limits around the point estimate of absolute risk. Once a clinician rules out a single gene trait that predisposes to breast cancer and elicits information on age and four risk factors, the tables and figures permit an estimation of a women's absolute risk of developing breast cancer in the next three decades. These results are intended to be applied to women who undergo regular screening. They should be used only in a formal counseling program to maximize a woman's understanding of the estimates and the proper use of them.

  19. Inferring ontology graph structures using OWL reasoning

    KAUST Repository

    Rodriguez-Garcia, Miguel Angel

    2018-01-05

    Ontologies are representations of a conceptualization of a domain. Traditionally, ontologies in biology were represented as directed acyclic graphs (DAG) which represent the backbone taxonomy and additional relations between classes. These graphs are widely exploited for data analysis in the form of ontology enrichment or computation of semantic similarity. More recently, ontologies are developed in a formal language such as the Web Ontology Language (OWL) and consist of a set of axioms through which classes are defined or constrained. While the taxonomy of an ontology can be inferred directly from the axioms of an ontology as one of the standard OWL reasoning tasks, creating general graph structures from OWL ontologies that exploit the ontologies\\' semantic content remains a challenge.We developed a method to transform ontologies into graphs using an automated reasoner while taking into account all relations between classes. Searching for (existential) patterns in the deductive closure of ontologies, we can identify relations between classes that are implied but not asserted and generate graph structures that encode for a large part of the ontologies\\' semantic content. We demonstrate the advantages of our method by applying it to inference of protein-protein interactions through semantic similarity over the Gene Ontology and demonstrate that performance is increased when graph structures are inferred using deductive inference according to our method. Our software and experiment results are available at http://github.com/bio-ontology-research-group/Onto2Graph .Onto2Graph is a method to generate graph structures from OWL ontologies using automated reasoning. The resulting graphs can be used for improved ontology visualization and ontology-based data analysis.

  20. Inferring ontology graph structures using OWL reasoning.

    Science.gov (United States)

    Rodríguez-García, Miguel Ángel; Hoehndorf, Robert

    2018-01-05

    Ontologies are representations of a conceptualization of a domain. Traditionally, ontologies in biology were represented as directed acyclic graphs (DAG) which represent the backbone taxonomy and additional relations between classes. These graphs are widely exploited for data analysis in the form of ontology enrichment or computation of semantic similarity. More recently, ontologies are developed in a formal language such as the Web Ontology Language (OWL) and consist of a set of axioms through which classes are defined or constrained. While the taxonomy of an ontology can be inferred directly from the axioms of an ontology as one of the standard OWL reasoning tasks, creating general graph structures from OWL ontologies that exploit the ontologies' semantic content remains a challenge. We developed a method to transform ontologies into graphs using an automated reasoner while taking into account all relations between classes. Searching for (existential) patterns in the deductive closure of ontologies, we can identify relations between classes that are implied but not asserted and generate graph structures that encode for a large part of the ontologies' semantic content. We demonstrate the advantages of our method by applying it to inference of protein-protein interactions through semantic similarity over the Gene Ontology and demonstrate that performance is increased when graph structures are inferred using deductive inference according to our method. Our software and experiment results are available at http://github.com/bio-ontology-research-group/Onto2Graph . Onto2Graph is a method to generate graph structures from OWL ontologies using automated reasoning. The resulting graphs can be used for improved ontology visualization and ontology-based data analysis.

  1. GASS-WEB: a web server for identifying enzyme active sites based on genetic algorithms.

    Science.gov (United States)

    Moraes, João P A; Pappa, Gisele L; Pires, Douglas E V; Izidoro, Sandro C

    2017-07-03

    Enzyme active sites are important and conserved functional regions of proteins whose identification can be an invaluable step toward protein function prediction. Most of the existing methods for this task are based on active site similarity and present limitations including performing only exact matches on template residues, template size restraints, despite not being capable of finding inter-domain active sites. To fill this gap, we proposed GASS-WEB, a user-friendly web server that uses GASS (Genetic Active Site Search), a method based on an evolutionary algorithm to search for similar active sites in proteins. GASS-WEB can be used under two different scenarios: (i) given a protein of interest, to match a set of specific active site templates; or (ii) given an active site template, looking for it in a database of protein structures. The method has shown to be very effective on a range of experiments and was able to correctly identify >90% of the catalogued active sites from the Catalytic Site Atlas. It also managed to achieve a Matthew correlation coefficient of 0.63 using the Critical Assessment of protein Structure Prediction (CASP 10) dataset. In our analysis, GASS was ranking fourth among 18 methods. GASS-WEB is freely available at http://gass.unifei.edu.br/. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  2. Graph-based Operational Semantics of a Lazy Functional Languages

    DEFF Research Database (Denmark)

    Rose, Kristoffer Høgsbro

    1992-01-01

    Presents Graph Operational Semantics (GOS): a semantic specification formalism based on structural operational semantics and term graph rewriting. Demonstrates the method by specifying the dynamic ...

  3. Dendritic cells for active anti-cancer immunotherapy: targeting activation pathways through genetic modification.

    Science.gov (United States)

    Breckpot, Karine; Escors, David

    2009-12-01

    Tumour immunotherapy has become a treatment modality for cancer, harnessing the immune system to recognize and eradicate tumour cells specifically. It is based on the expression of tumour associated antigens (TAA) by the tumour cells and aims at the induction of TAA-specific effector T cell responses, whilst overruling various mechanisms that can hamper the anti-tumour immune response, e.g. regulatory T cells (Treg). (Re-) activation of effector T cells requires the completion of a carefully orchestrated series of specific steps. Particularly important is the provision of TAA presentation and strong stimulatory signals, delivered by co-stimulatory surface molecules and cytokines. These can only be delivered by professional antigen-presenting cells, in particular dendritic cells (DC). Therefore, DC need to be loaded with TAA and appropriately activated. It is not surprising that an extensive part of DC research has focused on the delivery of both TAA and activation signals to DC, developing a one step approach to obtain potent stimulatory DC. The simultaneous delivery of TAA and activation signals is therefore the topic of this review, emphasizing the role of DC in mediating T cell activation and how we can manipulate DC for the pill-pose of enhancing tumour immunotherapy. As we gain a better understanding of the molecular and cellular mechanisms that mediate induction of TAA-specific T cells, rational approaches for the activation of T cell responses can be developed for the treatment of cancer.

  4. Application of genetic algorithm - multiple linear regressions to predict the activity of RSK inhibitors

    Directory of Open Access Journals (Sweden)

    Avval Zhila Mohajeri

    2015-01-01

    Full Text Available This paper deals with developing a linear quantitative structure-activity relationship (QSAR model for predicting the RSK inhibition activity of some new compounds. A dataset consisting of 62 pyrazino [1,2-α] indole, diazepino [1,2-α] indole, and imidazole derivatives with known inhibitory activities was used. Multiple linear regressions (MLR technique combined with the stepwise (SW and the genetic algorithm (GA methods as variable selection tools was employed. For more checking stability, robustness and predictability of the proposed models, internal and external validation techniques were used. Comparison of the results obtained, indicate that the GA-MLR model is superior to the SW-MLR model and that it isapplicable for designing novel RSK inhibitors.

  5. Applications of genetic algorithms on the structure-activity relationship analysis of some cinnamamides.

    Science.gov (United States)

    Hou, T J; Wang, J M; Liao, N; Xu, X J

    1999-01-01

    Quantitative structure-activity relationships (QSARs) for 35 cinnamamides were studied. By using a genetic algorithm (GA), a group of multiple regression models with high fitness scores was generated. From the statistical analyses of the descriptors used in the evolution procedure, the principal features affecting the anticonvulsant activity were found. The significant descriptors include the partition coefficient, the molar refraction, the Hammet sigma constant of the substituents on the benzene ring, and the formation energy of the molecules. It could be found that the steric complementarity and the hydrophobic interaction between the inhibitors and the receptor were very important to the biological activity, while the contribution of the electronic effect was not so obvious. Moreover, by construction of the spline models for these four principal descriptors, the effective range for each descriptor was identified.

  6. Genetic parameter estimates among scale activity score and farrowing disposition with reproductive traits in swine.

    Science.gov (United States)

    Schneider, J F; Rempel, L A; Rohrer, G A; Brown-Brandl, T M

    2011-11-01

    The primary objective of this study was to determine if certain behavior traits were genetically correlated with reproduction. If 1 or both of the behavior traits were found to be correlated, a secondary objective was to determine if the behavior traits could be useful in selecting for more productive females. A scale activity score taken at 5 mo of age and a farrowing disposition score taken at farrowing were selected as the behavioral traits. Scale activity score ranged from 1 to 5 and farrowing disposition ranged from 1 to 3. Reproductive traits included age at puberty, number born alive, number born dead, litter birth weight, average piglet birth weight, number weaned, litter weaning weight, average weaning weight, wean-to-estrus interval, ovulation rate including gilts, and postweaning ovulation rate. Genetic correlations between scale activity score and reproduction ranged from -0.79 to 0.61. Three of the correlations, number born alive (P < 0.01), average piglet birth weight (P < 0.001), and wean-to-estrus interval (P = 0.014), were statistically significant but included both favorable and antagonistic correlations. In contrast, all but 1 of the farrowing disposition correlations was favorable and ranged from -0.66 to 0.67. Although only the correlation with litter birth weight was significant (P = 0.018), the consistent favorable direction of all farrowing disposition correlations, except average weaning weight, shows a potential for inclusion of farrowing disposition into a selection program.

  7. Twin edge colorings of certain square graphs and product graphs

    Directory of Open Access Journals (Sweden)

    R Rajarajachozhan

    2016-04-01

    Full Text Available A twin edge $k\\!$-coloring of a graph $G$ is a proper edge $k$-coloring of $G$ with the elements of $\\mathbb{Z}_k$ so that the induced vertex $k$-coloring, in which the color of a vertex $v$ in $G$ is the sum in $\\mathbb{Z}_k$ of the colors of the edges incident with $v,$ is a proper vertex $k\\!$-coloring. The minimum $k$ for which $G$ has a twin edge $k\\!$-coloring is called the twin chromatic index of $G.$ Twin chromatic index of the square $P_n^2,$ $n\\ge 4,$ and the square $C_n^2,$ $n\\ge 6,$ are determined. In fact, the twin chromatic index of the square $C_7^2$ is $\\Delta+2,$ where $\\Delta$ is the maximum degree. Twin chromatic index of $C_m\\,\\Box\\,P_n$ is determined, where $\\Box$ denotes the Cartesian product. $C_r$ and $P_r$ are, respectively, the cycle, and the path on $r$ vertices each.

  8. StrigoQuant: A genetically encoded biosensor for quantifying strigolactone activity and specificity

    KAUST Repository

    Samodelov, S. L.

    2016-11-05

    Strigolactones are key regulators of plant development and interaction with symbiotic fungi; however, quantitative tools for strigolactone signaling analysis are lacking. We introduce a genetically encoded hormone biosensor used to analyze strigolactone-mediated processes, including the study of the components involved in the hormone perception/signaling complex and the structural specificity and sensitivity of natural and synthetic strigolactones in Arabidopsis, providing quantitative insights into the stereoselectivity of strigolactone perception. Given the high specificity, sensitivity, dynamic range of activity, modular construction, ease of implementation, and wide applicability, the biosensor StrigoQuant will be useful in unraveling multiple levels of strigolactone metabolic and signaling networks.

  9. Pilot Study on the Genetic Background of an Active Matrix Metalloproteinase-8 Test in Finnish Adolescents.

    Science.gov (United States)

    Heikkinen, Anna Maria; Raivisto, Teija; Kettunen, Kaisa; Kovanen, Leena; Haukka, Jari; Pakbaznejad Esmaeili, Elmira; Elg, Jessica; Gieselmann, Dirk-Rolf; Rathnayake, Nilminie; Ruokonen, Hellevi; Tervahartiala, Taina; Sorsa, Timo

    2017-05-01

    In periodontitis, genetics and smoking play important roles in host immune system response. The aim of this study is to determine whether the genetic background of initial periodontitis and caries could be detected using an active matrix metalloproteinase (aMMP)-8 chairside test in Finnish adolescents. Forty-seven participants gave approval for analysis of both oral fluid collection and DNA. An aMMP-8 chairside test was performed on participants (adolescents aged 15 to 17 years), and full-mouth clinical parameters of oral health were assessed including periodontal, oral mucosal, and caries status in Eastern Finland from 2014 to 2015. DNA was extracted from oral fluid samples and genotyped for 71 polymorphisms in 29 candidate genes for periodontitis. Results were analyzed using a logistic regression model. P values were corrected for multiple testing using false discovery rate (<0.05). aMMP-8 chairside test positivity and three or more ≥4 mm pockets were associated with vitamin D receptor (VDR) (rs2228570, P = 0.002, q = 0.04) and MMP3 (rs520540, rs639752, rs679620, P = 0.0009, 0.003, 0.003, q = 0.04, respectively). None of the other single-nucleotide polymorphisms studied showed a significant association with the aMMP-8 chairside test and at least one caries lesion positivity. Genetic polymorphisms of MMP3 and VDR are linked to initial periodontitis in Finnish adolescents, and the aMMP-8 chairside test can eventually detect initial periodontitis in young patients with predisposing genetic background.

  10. Television watching, leisure time physical activity, and the genetic predisposition in relation to body mass index in women and men.

    Science.gov (United States)

    Qi, Qibin; Li, Yanping; Chomistek, Andrea K; Kang, Jae H; Curhan, Gary C; Pasquale, Louis R; Willett, Walter C; Rimm, Eric B; Hu, Frank B; Qi, Lu

    2012-10-09

    Previous studies on gene-lifestyle interaction and obesity have focused mostly on the FTO gene and physical activity, whereas little attention has been paid to sedentary behavior as indicated by television (TV) watching. We analyzed interactions between TV watching, leisure time physical activity, and genetic predisposition in relation to body mass index (BMI) in 7740 women and 4564 men from 2 prospective cohorts: The Nurses' Health Study and the Health Professionals Follow-up Study. Data on physical activity and TV watching were collected 2 years before assessment of BMI. A weighted genetic risk score was calculated on the basis of 32 established BMI-associated variants. In both women and men, the genetic associations with BMI strengthened with increased hours of TV watching. An increment of 10 points in the weighted genetic risk score was associated with 0.8 (SE, 0.4), 0.8 (SE, 0.2), 1.4 (SE, 0.2), 1.5 (SE, 0.2), and 3.4 (SE, 1.0) kg/m(2) higher BMI across the 5 categories of TV watching (0-1, 2-5, 6-20, 21-40, and >40 h/wk; P for interaction=0.001). In contrast, the genetic association with BMI weakened with increased levels of physical activity. An increment of 10 points in the weighted genetic risk score was associated with 1.5 (SE, 0.2), 1.3 (SE, 0.2), 1.2 (SE, 0.2), 1.2 (SE, 0.2), and 0.8 (SE, 0.2) kg/m(2) higher BMI across the quintiles of physical activity. The interactions of TV watching and physical activity with genetic predisposition in relation to BMI were independent of each other. A sedentary lifestyle, indicated by prolonged TV watching, may accentuate the predisposition to elevated adiposity, whereas greater leisure time physical activity may attenuate the genetic association.

  11. Optical generation of matter qubit graph states

    International Nuclear Information System (INIS)

    Benjamin, S C; Eisert, J; Stace, T M

    2005-01-01

    We present a scheme for rapidly entangling matter qubits in order to create graph states for one-way quantum computing. The qubits can be simple three-level systems in separate cavities. Coupling involves only local fields and a static (unswitched) linear optics network. Fusion of graph-state sections occurs with, in principle, zero probability of damaging the nascent graph state. We avoid the finite thresholds of other schemes by operating on two entangled pairs, so that each generates exactly one photon. We do not require the relatively slow single qubit local flips to be applied during the growth phase: growth of the graph state can then become a purely optical process. The scheme naturally generates graph states with vertices of high degree and so is easily able to construct minimal graph states, with consequent resource savings. The most efficient approach will be to create new graph-state edges even as qubits elsewhere are measured, in a 'just in time' approach. An error analysis indicates that the scheme is relatively robust against imperfections in the apparatus

  12. Exploring the Effects of Active Learning on High School Students' Outcomes and Teachers' Perceptions of Biotechnology and Genetics Instruction

    Science.gov (United States)

    Mueller, Ashley L.; Knobloch, Neil A.; Orvis, Kathryn S.

    2015-01-01

    Active learning can engage high school students to learn science, yet there is limited understanding if active learning can help students learn challenging science concepts such as genetics and biotechnology. This quasi-experimental study explored the effects of active learning compared to passive learning regarding high school students'…

  13. Particle transport in breathing quantum graph

    International Nuclear Information System (INIS)

    Matrasulov, D.U.; Yusupov, J.R.; Sabirov, K.K.; Sobirov, Z.A.

    2012-01-01

    Full text: Particle transport in nanoscale networks and discrete structures is of fundamental and practical importance. Usually such systems are modeled by so-called quantum graphs, the systems attracting much attention in physics and mathematics during past two decades [1-5]. During last two decades quantum graphs found numerous applications in modeling different discrete structures and networks in nanoscale and mesoscopic physics (e.g., see reviews [1-3]). Despite considerable progress made in the study of particle dynamics most of the problems deal with unperturbed case and the case of time-dependent perturbation has not yet be explored. In this work we treat particle dynamics for quantum star graph with time-dependent bonds. In particular, we consider harmonically breathing quantum star graphs, the cases of monotonically contracting and expanding graphs. The latter can be solved exactly analytically. Edge boundaries are considered to be time-dependent, while branching point is assumed to be fixed. Quantum dynamics of a particle in such graphs is studied by solving Schrodinger equation with time-dependent boundary conditions given on a star graph. Time-dependence of the average kinetic energy is analyzed. Space-time evolution of the Gaussian wave packet is treated for harmonically breathing star graph. It is found that for certain frequencies energy is a periodic function of time, while for others it can be non-monotonically growing function of time. Such a feature can be caused by possible synchronization of the particles motion and the motions of the moving edges of graph bonds. (authors) References: [1] Tsampikos Kottos and Uzy Smilansky, Ann. Phys., 76, 274 (1999). [2] Sven Gnutzmann and Uzy Smilansky, Adv. Phys. 55, 527 (2006). [3] S. GnutzmannJ.P. Keating, F. Piotet, Ann. Phys., 325, 2595 (2010). [4] P.Exner, P.Seba, P.Stovicek, J. Phys. A: Math. Gen. 21, 4009 (1988). [5] J. Boman, P. Kurasov, Adv. Appl. Math., 35, 58 (2005)

  14. Visibility graphs for fMRI data: Multiplex temporal graphs and their modulations across resting-state networks

    Directory of Open Access Journals (Sweden)

    Speranza Sannino

    2017-10-01

    Full Text Available Visibility algorithms are a family of methods that map time series into graphs, such that the tools of graph theory and network science can be used for the characterization of time series. This approach has proved a convenient tool, and visibility graphs have found applications across several disciplines. Recently, an approach has been proposed to extend this framework to multivariate time series, allowing a novel way to describe collective dynamics. Here we test their application to fMRI time series, following two main motivations, namely that (a this approach allows vs to simultaneously capture and process relevant aspects of both local and global dynamics in an easy and intuitive way, and (b this provides a suggestive bridge between time series and network theory that nicely fits the consolidating field of network neuroscience. Our application to a large open dataset reveals differences in the similarities of temporal networks (and thus in correlated dynamics across resting-state networks, and gives indications that some differences in brain activity connected to psychiatric disorders could be picked up by this approach. Here we present the first application of multivariate visibility graphs to fMRI data. Visibility graphs are a way to represent a time series as a temporal network, evidencing specific aspects of its dynamics, such as extreme events. Multivariate time series, as those encountered in neuroscience, and in fMRI in particular, can be seen as a multiplex network, in which each layer represents a time series (a region of interest in the brain in our case. Here we report the method, we describe some relevant aspects of its application to BOLD time series, and we discuss the analogies and differences with existing methods. Finally, we present an application to a high-quality, publicly available dataset, containing healthy subjects and psychotic patients, and we discuss our findings. All the code to reproduce the analyses and the

  15. A heterogeneous graph-based recommendation simulator

    Energy Technology Data Exchange (ETDEWEB)

    Yeonchan, Ahn [Seoul National University; Sungchan, Park [Seoul National University; Lee, Matt Sangkeun [ORNL; Sang-goo, Lee [Seoul National University

    2013-01-01

    Heterogeneous graph-based recommendation frameworks have flexibility in that they can incorporate various recommendation algorithms and various kinds of information to produce better results. In this demonstration, we present a heterogeneous graph-based recommendation simulator which enables participants to experience the flexibility of a heterogeneous graph-based recommendation method. With our system, participants can simulate various recommendation semantics by expressing the semantics via meaningful paths like User Movie User Movie. The simulator then returns the recommendation results on the fly based on the user-customized semantics using a fast Monte Carlo algorithm.

  16. Giant Components in Biased Graph Processes

    OpenAIRE

    Amir, Gideon; Gurel-Gurevich, Ori; Lubetzky, Eyal; Singer, Amit

    2005-01-01

    A random graph process, $\\Gorg[1](n)$, is a sequence of graphs on $n$ vertices which begins with the edgeless graph, and where at each step a single edge is added according to a uniform distribution on the missing edges. It is well known that in such a process a giant component (of linear size) typically emerges after $(1+o(1))\\frac{n}{2}$ edges (a phenomenon known as ``the double jump''), i.e., at time $t=1$ when using a timescale of $n/2$ edges in each step. We consider a generalization of ...

  17. Graph Processing on GPUs: A Survey

    DEFF Research Database (Denmark)

    Shi, Xuanhua; Zheng, Zhigao; Zhou, Yongluan

    2018-01-01

    hundreds of billions, has attracted much attention in both industry and academia. It still remains a great challenge to process such large-scale graphs. Researchers have been seeking for new possible solutions. Because of the massive degree of parallelism and the high memory access bandwidth in GPU......, utilizing GPU to accelerate graph processing proves to be a promising solution. This article surveys the key issues of graph processing on GPUs, including data layout, memory access pattern, workload mapping, and specific GPU programming. In this article, we summarize the state-of-the-art research on GPU...

  18. The Partial Mapping of the Web Graph

    Directory of Open Access Journals (Sweden)

    Kristina Machova

    2009-06-01

    Full Text Available The paper presents an approach to partial mapping of a web sub-graph. This sub-graph contains the nearest surroundings of an actual web page. Our work deals with acquiring relevant Hyperlinks of a base web site, generation of adjacency matrix, the nearest distance matrix and matrix of converted distances of Hyperlinks, detection of compactness of web representation, and visualization of its graphical representation. The paper introduces an LWP algorithm – a technique for Hyperlink filtration.  This work attempts to help users with the orientation within the web graph.

  19. Graph reconstruction with a betweenness oracle

    DEFF Research Database (Denmark)

    Abrahamsen, Mikkel; Bodwin, Greg; Rotenberg, Eva

    2016-01-01

    Graph reconstruction algorithms seek to learn a hidden graph by repeatedly querying a blackbox oracle for information about the graph structure. Perhaps the most well studied and applied version of the problem uses a distance oracle, which can report the shortest path distance between any pair...... of nodes. We introduce and study the betweenness oracle, where bet(a, m, z) is true iff m lies on a shortest path between a and z. This oracle is strictly weaker than a distance oracle, in the sense that a betweenness query can be simulated by a constant number of distance queries, but not vice versa...

  20. A first course in graph theory

    CERN Document Server

    Chartrand, Gary

    2012-01-01

    This comprehensive text offers undergraduates a remarkably student-friendly introduction to graph theory. Written by two of the field's most prominent experts, it takes an engaging approach that emphasizes graph theory's history. Unique examples and lucid proofs provide a sound yet accessible treatment that stimulates interest in an evolving subject and its many applications.Optional sections designated as ""excursion"" and ""exploration"" present interesting sidelights of graph theory and touch upon topics that allow students the opportunity to experiment and use their imaginations. Three app

  1. Neural coding in graphs of bidirectional associative memories.

    Science.gov (United States)

    Bouchain, A David; Palm, Günther

    2012-01-24

    In the last years we have developed large neural network models for the realization of complex cognitive tasks in a neural network architecture that resembles the network of the cerebral cortex. We have used networks of several cortical modules that contain two populations of neurons (one excitatory, one inhibitory). The excitatory populations in these so-called "cortical networks" are organized as a graph of Bidirectional Associative Memories (BAMs), where edges of the graph correspond to BAMs connecting two neural modules and nodes of the graph correspond to excitatory populations with associative feedback connections (and inhibitory interneurons). The neural code in each of these modules consists essentially of the firing pattern of the excitatory population, where mainly it is the subset of active neurons that codes the contents to be represented. The overall activity can be used to distinguish different properties of the patterns that are represented which we need to distinguish and control when performing complex tasks like language understanding with these cortical networks. The most important pattern properties or situations are: exactly fitting or matching input, incomplete information or partially matching pattern, superposition of several patterns, conflicting information, and new information that is to be learned. We show simple simulations of these situations in one area or module and discuss how to distinguish these situations based on the overall internal activation of the module. This article is part of a Special Issue entitled "Neural Coding". Copyright © 2011 Elsevier B.V. All rights reserved.

  2. On the strong metric dimension of generalized butterfly graph, starbarbell graph, and {C}_{m}\\odot {P}_{n} graph

    Science.gov (United States)

    Yunia Mayasari, Ratih; Atmojo Kusmayadi, Tri

    2018-04-01

    Let G be a connected graph with vertex set V(G) and edge set E(G). For every pair of vertices u,v\\in V(G), the interval I[u, v] between u and v to be the collection of all vertices that belong to some shortest u ‑ v path. A vertex s\\in V(G) strongly resolves two vertices u and v if u belongs to a shortest v ‑ s path or v belongs to a shortest u ‑ s path. A vertex set S of G is a strong resolving set of G if every two distinct vertices of G are strongly resolved by some vertex of S. The strong metric basis of G is a strong resolving set with minimal cardinality. The strong metric dimension sdim(G) of a graph G is defined as the cardinality of strong metric basis. In this paper we determine the strong metric dimension of a generalized butterfly graph, starbarbell graph, and {C}mȯ {P}n graph. We obtain the strong metric dimension of generalized butterfly graph is sdim(BFn ) = 2n ‑ 2. The strong metric dimension of starbarbell graph is sdim(S{B}{m1,{m}2,\\ldots,{m}n})={\\sum }i=1n({m}i-1)-1. The strong metric dimension of {C}mȯ {P}n graph are sdim({C}mȯ {P}n)=2m-1 for m > 3 and n = 2, and sdim({C}mȯ {P}n)=2m-2 for m > 3 and n > 2.

  3. Genetics and Other Risk Factors for Past Concussions in Active-Duty Soldiers.

    Science.gov (United States)

    Dretsch, Michael N; Silverberg, Noah; Gardner, Andrew J; Panenka, William J; Emmerich, Tanja; Crynen, Gogce; Ait-Ghezala, Ghania; Chaytow, Helena; Mathura, Venkat; Crawford, Fiona C; Iverson, Grant L

    2017-02-15

    Risk factors for concussion in active-duty military service members are poorly understood. The present study examined the association between self-reported concussion history and genetics (apolipoprotein E [APOE], brain-derived neurotrophic factor [BDNF], and D2 dopamine receptor genes [DRD2]), trait personality measures (impulsive-sensation seeking and trait aggression-hostility), and current alcohol use. The sample included 458 soldiers who were preparing to deploy for Operation Iraqi Freedom/Operation Enduring Freedom. For those with the BDNF Met/Met genotype, 57.9% (11/19) had a history of one or more prior concussions, compared with 35.6% (154/432) of those with other BDNF genotypes (p = 0.049, odds ratio [OR] = 2.48). APOE and DRD2 genotypes were not associated with risk for past concussions. Those with the BDNF Met/Met genotype also reported greater aggression and hostility personality characteristics. When combined in a predictive model, prior military deployments, being male, and having the BDNF Met/Met genotype were independently associated with increased lifetime history of concussions in active-duty soldiers. Replication in larger independent samples is necessary to have more confidence in both the positive and negative genetic associations reported in this study.

  4. Hierarchical Control Strategy for Active Hydropneumatic Suspension Vehicles Based on Genetic Algorithms

    Directory of Open Access Journals (Sweden)

    Jinzhi Feng

    2015-02-01

    Full Text Available A new hierarchical control strategy for active hydropneumatic suspension systems is proposed. This strategy considers the dynamic characteristics of the actuator. The top hierarchy controller uses a combined control scheme: a genetic algorithm- (GA- based self-tuning proportional-integral-derivative controller and a fuzzy logic controller. For practical implementations of the proposed control scheme, a GA-based self-learning process is initiated only when the defined performance index of vehicle dynamics exceeds a certain debounce time threshold. The designed control algorithm is implemented on a virtual prototype and cosimulations are performed with different road disturbance inputs. Cosimulation results show that the active hydropneumatic suspension system designed in this study significantly improves riding comfort characteristics of vehicles. The robustness and adaptability of the proposed controller are also examined when the control system is subjected to extremely rough road conditions.

  5. Graphing the order of the sexes: constructing, recalling, interpreting, and putting the self in gender difference graphs.

    Science.gov (United States)

    Hegarty, Peter; Lemieux, Anthony F; McQueen, Grant

    2010-03-01

    Graphs seem to connote facts more than words or tables do. Consequently, they seem unlikely places to spot implicit sexism at work. Yet, in 6 studies (N = 741), women and men constructed (Study 1) and recalled (Study 2) gender difference graphs with men's data first, and graphed powerful groups (Study 3) and individuals (Study 4) ahead of weaker ones. Participants who interpreted graph order as evidence of author "bias" inferred that the author graphed his or her own gender group first (Study 5). Women's, but not men's, preferences to graph men first were mitigated when participants graphed a difference between themselves and an opposite-sex friend prior to graphing gender differences (Study 6). Graph production and comprehension are affected by beliefs and suppositions about the groups represented in graphs to a greater degree than cognitive models of graph comprehension or realist models of scientific thinking have yet acknowledged.

  6. Edge Cover Domination in Mangoldt Graph

    African Journals Online (AJOL)

    Bheema

    Department of Applied Mathematics, Y.V. University, Kadapa, Andhra Pradesh, India. 2. Department of Mathematics, Sri Padmavati Mahila University, Tirupati, ...... arithmetic graphs, Ph.D Thesis, Sri Venkateswara University, Tirupati, India.

  7. Digital Line Graphs (DLG) 24K

    Data.gov (United States)

    Kansas Data Access and Support Center — Digital line graph (DLG) data are digital representations of cartographic information. DLG's of map features are converted to digital form from maps and related...

  8. Inferring ontology graph structures using OWL reasoning

    KAUST Repository

    Rodriguez-Garcia, Miguel Angel; Hoehndorf, Robert

    2018-01-01

    ' semantic content remains a challenge.We developed a method to transform ontologies into graphs using an automated reasoner while taking into account all relations between classes. Searching for (existential) patterns in the deductive closure of ontologies

  9. Distance matrices and quadratic embedding of graphs

    Directory of Open Access Journals (Sweden)

    Nobuaki Obata

    2018-04-01

    Full Text Available A connected graph is said to be of QE class if it admits  a quadratic embedding in a Hilbert space, or equivalently, if the distance matrix is conditionally negative definite. Several criteria for a graph to be of QE class are derived from the point of view of graph operations. For a quantitative criterion the QE constant is introduced and concrete examples are shown with explicit calculation. If the distance matrix admits a constant row sum, the QE constant coincides with the second largest eigenvalue of the distance matrix. The QE constants are determined for all graphs on $n$ vertices with $n\\le5$, among which two are not of QE class.

  10. A graph model for opportunistic network coding

    KAUST Repository

    Sorour, Sameh; Aboutoraby, Neda; Al-Naffouri, Tareq Y.; Alouini, Mohamed-Slim

    2015-01-01

    © 2015 IEEE. Recent advancements in graph-based analysis and solutions of instantly decodable network coding (IDNC) trigger the interest to extend them to more complicated opportunistic network coding (ONC) scenarios, with limited increase

  11. Digital Line Graphs (DLG) 100K

    Data.gov (United States)

    Kansas Data Access and Support Center — Digital line graph (DLG) data are digital representations of cartographic information. DLG's of map features are converted to digital form from maps and related...

  12. Kuramoto model for infinite graphs with kernels

    KAUST Repository

    Canale, Eduardo; Tembine, Hamidou; Tempone, Raul; Zouraris, Georgios E.

    2015-01-01

    . We focus on circulant graphs which have enough symmetries to make the computations easier. We then focus on the asymptotic regime where an integro-partial differential equation is derived. Numerical analysis and convergence proofs of the Fokker

  13. Quantum Graphs And Their Resonance Properties

    International Nuclear Information System (INIS)

    Lipovsky, J.

    2016-01-01

    In the current review, we study the model of quantum graphs. We focus mainly on the resonance properties of quantum graphs. We define resolvent and scattering resonances and show their equivalence. We present various results on the asymptotics of the number of resolvent resonances in both non-magnetic and magnetic quantum graphs and find bounds on the coefficient by the leading term of the asymptotics. We explain methods how to find the spectral and resonance condition. Most of the notions and theorems are illustrated in examples. We show how to find resonances numerically and, in a simple example, we find trajectories of resonances in the complex plane. We discuss Fermi’s golden rule for quantum graphs and distribution of the mean intensity for the topological resonances. (author)

  14. Determining X-chains in graph states

    International Nuclear Information System (INIS)

    Wu, Jun-Yi; Kampermann, Hermann; Bruß, Dagmar

    2016-01-01

    The representation of graph states in the X-basis as well as the calculation of graph state overlaps can efficiently be performed by using the concept of X-chains (Wu et al 2015 Phys. Rev. A 92 012322). We present a necessary and sufficient criterion for X-chains and show that they can efficiently be determined by the Bareiss algorithm. An analytical approach for searching X-chain groups of a graph state is proposed. Furthermore we generalize the concept of X-chains to so-called Euler chains, whose induced subgraphs are Eulerian. This approach helps to determine if a given vertex set is an X-chain and we show how Euler chains can be used in the construction of multipartite Bell inequalities for graph states. (paper)

  15. The signed permutation group on Feynman graphs

    Energy Technology Data Exchange (ETDEWEB)

    Purkart, Julian, E-mail: purkart@physik.hu-berlin.de [Institute of Physics, Humboldt University, D-12489 Berlin (Germany)

    2016-08-15

    The Feynman rules assign to every graph an integral which can be written as a function of a scaling parameter L. Assuming L for the process under consideration is very small, so that contributions to the renormalization group are small, we can expand the integral and only consider the lowest orders in the scaling. The aim of this article is to determine specific combinations of graphs in a scalar quantum field theory that lead to a remarkable simplification of the first non-trivial term in the perturbation series. It will be seen that the result is independent of the renormalization scheme and the scattering angles. To achieve that goal we will utilize the parametric representation of scalar Feynman integrals as well as the Hopf algebraic structure of the Feynman graphs under consideration. Moreover, we will present a formula which reduces the effort of determining the first-order term in the perturbation series for the specific combination of graphs to a minimum.

  16. Destroying longest cycles in graphs and digraphs

    DEFF Research Database (Denmark)

    Van Aardt, Susan A.; Burger, Alewyn P.; Dunbar, Jean E.

    2015-01-01

    In 1978, C. Thomassen proved that in any graph one can destroy all the longest cycles by deleting at most one third of the vertices. We show that for graphs with circumference k≤8 it suffices to remove at most 1/k of the vertices. The Petersen graph demonstrates that this result cannot be extended...... to include k=9 but we show that in every graph with circumference nine we can destroy all 9-cycles by removing 1/5 of the vertices. We consider the analogous problem for digraphs and show that for digraphs with circumference k=2,3, it suffices to remove 1/k of the vertices. However this does not hold for k≥4....

  17. Use of Attack Graphs in Security Systems

    Directory of Open Access Journals (Sweden)

    Vivek Shandilya

    2014-01-01

    Full Text Available Attack graphs have been used to model the vulnerabilities of the systems and their potential exploits. The successful exploits leading to the partial/total failure of the systems are subject of keen security interest. Considerable effort has been expended in exhaustive modeling, analyses, detection, and mitigation of attacks. One prominent methodology involves constructing attack graphs of the pertinent system for analysis and response strategies. This not only gives the simplified representation of the system, but also allows prioritizing the security properties whose violations are of greater concern, for both detection and repair. We present a survey and critical study of state-of-the-art technologies in attack graph generation and use in security system. Based on our research, we identify the potential, challenges, and direction of the current research in using attack graphs.

  18. Query Optimizations over Decentralized RDF Graphs

    KAUST Repository

    Abdelaziz, Ibrahim; Mansour, Essam; Ouzzani, Mourad; Aboulnaga, Ashraf; Kalnis, Panos

    2017-01-01

    Applications in life sciences, decentralized social networks, Internet of Things, and statistical linked dataspaces integrate data from multiple decentralized RDF graphs via SPARQL queries. Several approaches have been proposed to optimize query

  19. Fixation probability on clique-based graphs

    Science.gov (United States)

    Choi, Jeong-Ok; Yu, Unjong

    2018-02-01

    The fixation probability of a mutant in the evolutionary dynamics of Moran process is calculated by the Monte-Carlo method on a few families of clique-based graphs. It is shown that the complete suppression of fixation can be realized with the generalized clique-wheel graph in the limit of small wheel-clique ratio and infinite size. The family of clique-star is an amplifier, and clique-arms graph changes from amplifier to suppressor as the fitness of the mutant increases. We demonstrate that the overall structure of a graph can be more important to determine the fixation probability than the degree or the heat heterogeneity. The dependence of the fixation probability on the position of the first mutant is discussed.

  20. High Dimensional Spectral Graph Theory and Non-backtracking Random Walks on Graphs

    Science.gov (United States)

    Kempton, Mark

    This thesis has two primary areas of focus. First we study connection graphs, which are weighted graphs in which each edge is associated with a d-dimensional rotation matrix for some fixed dimension d, in addition to a scalar weight. Second, we study non-backtracking random walks on graphs, which are random walks with the additional constraint that they cannot return to the immediately previous state at any given step. Our work in connection graphs is centered on the notion of consistency, that is, the product of rotations moving from one vertex to another is independent of the path taken, and a generalization called epsilon-consistency. We present higher dimensional versions of the combinatorial Laplacian matrix and normalized Laplacian matrix from spectral graph theory, and give results characterizing the consistency of a connection graph in terms of the spectra of these matrices. We generalize several tools from classical spectral graph theory, such as PageRank and effective resistance, to apply to connection graphs. We use these tools to give algorithms for sparsification, clustering, and noise reduction on connection graphs. In non-backtracking random walks, we address the question raised by Alon et. al. concerning how the mixing rate of a non-backtracking random walk to its stationary distribution compares to the mixing rate for an ordinary random walk. Alon et. al. address this question for regular graphs. We take a different approach, and use a generalization of Ihara's Theorem to give a new proof of Alon's result for regular graphs, and to extend the result to biregular graphs. Finally, we give a non-backtracking version of Polya's Random Walk Theorem for 2-dimensional grids.

  1. Expander graphs in pure and applied mathematics

    OpenAIRE

    Lubotzky, Alexander

    2012-01-01

    Expander graphs are highly connected sparse finite graphs. They play an important role in computer science as basic building blocks for network constructions, error correcting codes, algorithms and more. In recent years they have started to play an increasing role also in pure mathematics: number theory, group theory, geometry and more. This expository article describes their constructions and various applications in pure and applied mathematics.

  2. Data transfer using complete bipartite graph

    Science.gov (United States)

    Chandrasekaran, V. M.; Praba, B.; Manimaran, A.; Kailash, G.

    2017-11-01

    Information exchange extent is an estimation of the amount of information sent between two focuses on a framework in a given time period. It is an extremely significant perception in present world. There are many ways of message passing in the present situations. Some of them are through encryption, decryption, by using complete bipartite graph. In this paper, we recommend a method for communication using messages through encryption of a complete bipartite graph.

  3. Minimum K_2,3-saturated Graphs

    OpenAIRE

    Chen, Ya-Chen

    2010-01-01

    A graph is K_{2,3}-saturated if it has no subgraph isomorphic to K_{2,3}, but does contain a K_{2,3} after the addition of any new edge. We prove that the minimum number of edges in a K_{2,3}-saturated graph on n >= 5 vertices is sat(n, K_{2,3}) = 2n - 3.

  4. Graph Treewidth and Geometric Thickness Parameters

    OpenAIRE

    Dujmović, Vida; Wood, David R.

    2005-01-01

    Consider a drawing of a graph $G$ in the plane such that crossing edges are coloured differently. The minimum number of colours, taken over all drawings of $G$, is the classical graph parameter "thickness". By restricting the edges to be straight, we obtain the "geometric thickness". By further restricting the vertices to be in convex position, we obtain the "book thickness". This paper studies the relationship between these parameters and treewidth. Our first main result states that for grap...

  5. PERANCANGAN SISTEM PENJADWALAN PEMBELAJARAN MENGGUNAKAN GRAPH COLORING

    Directory of Open Access Journals (Sweden)

    Taufik Hidayatulloh

    2016-03-01

    Full Text Available Abstract - In learning scheduling problem often faced by schools in the new academic year. Sometimes collisions on the schedule was not found when the learning process has begun, so it is necessary to re-schedule on the schedule. And this resulted in the teaching and learning first weeks less to run well. Researchers previously have used various methods to solve the scheduling as Tabu search, Simulated Annealing, Network Flow, Graph Coloring. Graph Coloring (coloring of a graph is the simplest method and the experimental results indicate that the development of methods of scheduling Graph Coloring deliver results that meet an average of 93% across the specified constraints. At the time of split schedules that require extra energy at the start of learning did not experience a collision. With this system is expected to facilitate the allocation of space, teachers, lessons to avoid a collision. Keywords: Information Systems, Scheduling, graph coloring Abstraksi - Dalam masalah penjadwalan pembelajaran sering dihadapi sekolah pada tahun ajaran baru. Terkadang tabrakan pada jadwal itu baru ditemukan ketika proses belajar mengajar telah dimulai, sehingga perlu dilakukan penjadwalan ulang pada jadwal tersebut. Dan hal ini mengakibatkan kegiatan belajar mengajar pada minggu-minggu pertama kurang dapat berjalan dengan baik. Para peneliti sebelumnya telah menggunakan berbagai metode untuk memecahkan penjadwalan seperti Tabu search, Simulated Annealing, Network Flow, Graph Coloring. Graph Coloring (pewarnaan graf merupakan metode yang paling sederhana dan hasil percobaan menunjukkan bahwa pengembangan metode Graph Coloring memberikan hasil penjadwalan yang memenuhi rata-rata 93% seluruh constraints yang ditentukan. Pada saat membagi jadwal memerlukan energi ekstra agar pada saat di mulai pembelajaran tidak mengalami tabrakan. Dengan sistem ini diharapkan dapat mempermudah dalam mengalokasikan ruangan, guru, pelajaran agar tidak mengalami tabrakan. Kata

  6. Minimal Function Graphs are not Instrumented

    DEFF Research Database (Denmark)

    Mycroft, Alan; Rosendahl, Mads

    1992-01-01

    The minimal function graph semantics of Jones and Mycroft is a standard denotational semantics modified to include only `reachable' parts of a program. We show that it may be expressed directly in terms of the standard semantics without the need for instrumentation at the expression level and......, in doing so, bring out a connection with strictness. This also makes it possible to prove a stronger theorem of correctness for the minimal function graph semantics....

  7. Outer-totalistic cellular automata on graphs

    International Nuclear Information System (INIS)

    Marr, Carsten; Huett, Marc-Thorsten

    2009-01-01

    We present an intuitive formalism for implementing cellular automata on arbitrary topologies. By that means, we identify a symmetry operation in the class of elementary cellular automata. Moreover, we determine the subset of topologically sensitive elementary cellular automata and find that the overall number of complex patterns decreases under increasing neighborhood size in regular graphs. As exemplary applications, we apply the formalism to complex networks and compare the potential of scale-free graphs and metabolic networks to generate complex dynamics

  8. The many faces of graph dynamics

    Science.gov (United States)

    Pignolet, Yvonne Anne; Roy, Matthieu; Schmid, Stefan; Tredan, Gilles

    2017-06-01

    The topological structure of complex networks has fascinated researchers for several decades, resulting in the discovery of many universal properties and reoccurring characteristics of different kinds of networks. However, much less is known today about the network dynamics: indeed, complex networks in reality are not static, but rather dynamically evolve over time. Our paper is motivated by the empirical observation that network evolution patterns seem far from random, but exhibit structure. Moreover, the specific patterns appear to depend on the network type, contradicting the existence of a ‘one fits it all’ model. However, we still lack observables to quantify these intuitions, as well as metrics to compare graph evolutions. Such observables and metrics are needed for extrapolating or predicting evolutions, as well as for interpolating graph evolutions. To explore the many faces of graph dynamics and to quantify temporal changes, this paper suggests to build upon the concept of centrality, a measure of node importance in a network. In particular, we introduce the notion of centrality distance, a natural similarity measure for two graphs which depends on a given centrality, characterizing the graph type. Intuitively, centrality distances reflect the extent to which (non-anonymous) node roles are different or, in case of dynamic graphs, have changed over time, between two graphs. We evaluate the centrality distance approach for five evolutionary models and seven real-world social and physical networks. Our results empirically show the usefulness of centrality distances for characterizing graph dynamics compared to a null-model of random evolution, and highlight the differences between the considered scenarios. Interestingly, our approach allows us to compare the dynamics of very different networks, in terms of scale and evolution speed.

  9. Sparse geometric graphs with small dilation

    NARCIS (Netherlands)

    Aronov, B.; Berg, de M.; Cheong, O.; Gudmundsson, J.; Haverkort, H.J.; Vigneron, A.; Deng, X.; Du, D.

    2005-01-01

    Given a set S of n points in the plane, and an integer k such that 0 = k graph with vertex set S, at most n – 1 + k edges, and dilation O(n / (k + 1)) can be computed in time O(n log n). We also construct n–point sets for which any geometric graph with n – 1 + k edges

  10. Determinantal spanning forests on planar graphs

    OpenAIRE

    Kenyon, Richard

    2017-01-01

    We generalize the uniform spanning tree to construct a family of determinantal measures on essential spanning forests on periodic planar graphs in which every component tree is bi-infinite. Like the uniform spanning tree, these measures arise naturally from the laplacian on the graph. More generally these results hold for the "massive" laplacian determinant which counts rooted spanning forests with weight $M$ per finite component. These measures typically have a form of conformal invariance, ...

  11. Effect of genetic type and casein haplotype on antioxidant activity of yogurts during storage.

    Science.gov (United States)

    Perna, A; Intaglietta, I; Simonetti, A; Gambacorta, E

    2013-06-01

    The aim of this work was to investigate the antioxidant activity of yogurt made from the milk of 2 breeds-Italian Brown and Italian Holstein-characterized by different casein haplotypes (αS1-, β-, and κ-caseins) during storage up to 15 d. The casein haplotype was determined by isoelectric focusing; antioxidant activity of yogurt was measured using 2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid). The statistical analysis showed a significant effect of the studied factors. Antioxidant activity increased during storage of both yogurt types, but yogurt produced with Italian Brown milk showed higher antioxidant activity than those produced with Italian Holstein milk. A high scavenging activity was present in yogurts with the allelic combination of BB-A(2)A(2)-BB. The results of this study suggest that the genetic type and the haplotype make a significant contribution in the production of yogurts with high nutraceutical value. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  12. Optimizing spread dynamics on graphs by message passing

    International Nuclear Information System (INIS)

    Altarelli, F; Braunstein, A; Dall’Asta, L; Zecchina, R

    2013-01-01

    Cascade processes are responsible for many important phenomena in natural and social sciences. Simple models of irreversible dynamics on graphs, in which nodes activate depending on the state of their neighbors, have been successfully applied to describe cascades in a large variety of contexts. Over the past decades, much effort has been devoted to understanding the typical behavior of the cascades arising from initial conditions extracted at random from some given ensemble. However, the problem of optimizing the trajectory of the system, i.e. of identifying appropriate initial conditions to maximize (or minimize) the final number of active nodes, is still considered to be practically intractable, with the only exception being models that satisfy a sort of diminishing returns property called submodularity. Submodular models can be approximately solved by means of greedy strategies, but by definition they lack cooperative characteristics which are fundamental in many real systems. Here we introduce an efficient algorithm based on statistical physics for the optimization of trajectories in cascade processes on graphs. We show that for a wide class of irreversible dynamics, even in the absence of submodularity, the spread optimization problem can be solved efficiently on large networks. Analytic and algorithmic results on random graphs are complemented by the solution of the spread maximization problem on a real-world network (the Epinions consumer reviews network). (paper)

  13. Optimizing spread dynamics on graphs by message passing

    Science.gov (United States)

    Altarelli, F.; Braunstein, A.; Dall'Asta, L.; Zecchina, R.

    2013-09-01

    Cascade processes are responsible for many important phenomena in natural and social sciences. Simple models of irreversible dynamics on graphs, in which nodes activate depending on the state of their neighbors, have been successfully applied to describe cascades in a large variety of contexts. Over the past decades, much effort has been devoted to understanding the typical behavior of the cascades arising from initial conditions extracted at random from some given ensemble. However, the problem of optimizing the trajectory of the system, i.e. of identifying appropriate initial conditions to maximize (or minimize) the final number of active nodes, is still considered to be practically intractable, with the only exception being models that satisfy a sort of diminishing returns property called submodularity. Submodular models can be approximately solved by means of greedy strategies, but by definition they lack cooperative characteristics which are fundamental in many real systems. Here we introduce an efficient algorithm based on statistical physics for the optimization of trajectories in cascade processes on graphs. We show that for a wide class of irreversible dynamics, even in the absence of submodularity, the spread optimization problem can be solved efficiently on large networks. Analytic and algorithmic results on random graphs are complemented by the solution of the spread maximization problem on a real-world network (the Epinions consumer reviews network).

  14. Optimal Embeddings of Distance Regular Graphs into Euclidean Spaces

    NARCIS (Netherlands)

    F. Vallentin (Frank)

    2008-01-01

    htmlabstractIn this paper we give a lower bound for the least distortion embedding of a distance regular graph into Euclidean space. We use the lower bound for finding the least distortion for Hamming graphs, Johnson graphs, and all strongly regular graphs. Our technique involves semidefinite

  15. Stability notions in synthetic graph generation: a preliminary study

    NARCIS (Netherlands)

    van Leeuwen, W.; Fletcher, G.H.L.; Yakovets, N.; Bonifati, A.; Markl, Volker; Orlando, Salvatore; Mitschang, Bernhard

    2017-01-01

    With the rise in adoption of massive graph data, it be- comes increasingly important to design graph processing algorithms which have predictable behavior as the graph scales. This work presents an initial study of stability in the context of a schema-driven synthetic graph generation. Specifically,

  16. On the Recognition of Fuzzy Circular Interval Graphs

    OpenAIRE

    Oriolo, Gianpaolo; Pietropaoli, Ugo; Stauffer, Gautier

    2011-01-01

    Fuzzy circular interval graphs are a generalization of proper circular arc graphs and have been recently introduced by Chudnovsky and Seymour as a fundamental subclass of claw-free graphs. In this paper, we provide a polynomial-time algorithm for recognizing such graphs, and more importantly for building a suitable representation.

  17. On the size of edge chromatic 5-critical graphs

    Directory of Open Access Journals (Sweden)

    K. Kayathri

    2017-04-01

    Full Text Available In this paper, we study the size of edge chromatic 5-critical graphs in several classes of 5-critical graphs. In most of the classes of 5-critical graphs in this paper, we have obtained their exact size and in the other classes of 5-critical graphs, we give new bounds on their number of major vertices and size.

  18. Smooth Bundling of Large Streaming and Sequence Graphs

    NARCIS (Netherlands)

    Hurter, C.; Ersoy, O.; Telea, A.

    2013-01-01

    Dynamic graphs are increasingly pervasive in modern information systems. However, understanding how a graph changes in time is difficult. We present here two techniques for simplified visualization of dynamic graphs using edge bundles. The first technique uses a recent image-based graph bundling

  19. Probabilistic Graph Layout for Uncertain Network Visualization.

    Science.gov (United States)

    Schulz, Christoph; Nocaj, Arlind; Goertler, Jochen; Deussen, Oliver; Brandes, Ulrik; Weiskopf, Daniel

    2017-01-01

    We present a novel uncertain network visualization technique based on node-link diagrams. Nodes expand spatially in our probabilistic graph layout, depending on the underlying probability distributions of edges. The visualization is created by computing a two-dimensional graph embedding that combines samples from the probabilistic graph. A Monte Carlo process is used to decompose a probabilistic graph into its possible instances and to continue with our graph layout technique. Splatting and edge bundling are used to visualize point clouds and network topology. The results provide insights into probability distributions for the entire network-not only for individual nodes and edges. We validate our approach using three data sets that represent a wide range of network types: synthetic data, protein-protein interactions from the STRING database, and travel times extracted from Google Maps. Our approach reveals general limitations of the force-directed layout and allows the user to recognize that some nodes of the graph are at a specific position just by chance.

  20. Quantum complexity of graph and algebraic problems

    International Nuclear Information System (INIS)

    Doern, Sebastian

    2008-01-01

    This thesis is organized as follows: In Chapter 2 we give some basic notations, definitions and facts from linear algebra, graph theory, group theory and quantum computation. In Chapter 3 we describe three important methods for the construction of quantum algorithms. We present the quantum search algorithm by Grover, the quantum amplitude amplification and the quantum walk search technique by Magniez et al. These three tools are the basis for the development of our new quantum algorithms for graph and algebra problems. In Chapter 4 we present two tools for proving quantum query lower bounds. We present the quantum adversary method by Ambainis and the polynomial method introduced by Beals et al. The quantum adversary tool is very useful to prove good lower bounds for many graph and algebra problems. The part of the thesis containing the original results is organized in two parts. In the first part we consider the graph problems. In Chapter 5 we give a short summary of known quantum graph algorithms. In Chapter 6 to 8 we study the complexity of our new algorithms for matching problems, graph traversal and independent set problems on quantum computers. In the second part of our thesis we present new quantum algorithms for algebraic problems. In Chapter 9 to 10 we consider group testing problems and prove quantum complexity bounds for important problems from linear algebra. (orig.)

  1. Multiple graph regularized nonnegative matrix factorization

    KAUST Repository

    Wang, Jim Jing-Yan

    2013-10-01

    Non-negative matrix factorization (NMF) has been widely used as a data representation method based on components. To overcome the disadvantage of NMF in failing to consider the manifold structure of a data set, graph regularized NMF (GrNMF) has been proposed by Cai et al. by constructing an affinity graph and searching for a matrix factorization that respects graph structure. Selecting a graph model and its corresponding parameters is critical for this strategy. This process is usually carried out by cross-validation or discrete grid search, which are time consuming and prone to overfitting. In this paper, we propose a GrNMF, called MultiGrNMF, in which the intrinsic manifold is approximated by a linear combination of several graphs with different models and parameters inspired by ensemble manifold regularization. Factorization metrics and linear combination coefficients of graphs are determined simultaneously within a unified object function. They are alternately optimized in an iterative algorithm, thus resulting in a novel data representation algorithm. Extensive experiments on a protein subcellular localization task and an Alzheimer\\'s disease diagnosis task demonstrate the effectiveness of the proposed algorithm. © 2013 Elsevier Ltd. All rights reserved.

  2. Quantum complexity of graph and algebraic problems

    Energy Technology Data Exchange (ETDEWEB)

    Doern, Sebastian

    2008-02-04

    This thesis is organized as follows: In Chapter 2 we give some basic notations, definitions and facts from linear algebra, graph theory, group theory and quantum computation. In Chapter 3 we describe three important methods for the construction of quantum algorithms. We present the quantum search algorithm by Grover, the quantum amplitude amplification and the quantum walk search technique by Magniez et al. These three tools are the basis for the development of our new quantum algorithms for graph and algebra problems. In Chapter 4 we present two tools for proving quantum query lower bounds. We present the quantum adversary method by Ambainis and the polynomial method introduced by Beals et al. The quantum adversary tool is very useful to prove good lower bounds for many graph and algebra problems. The part of the thesis containing the original results is organized in two parts. In the first part we consider the graph problems. In Chapter 5 we give a short summary of known quantum graph algorithms. In Chapter 6 to 8 we study the complexity of our new algorithms for matching problems, graph traversal and independent set problems on quantum computers. In the second part of our thesis we present new quantum algorithms for algebraic problems. In Chapter 9 to 10 we consider group testing problems and prove quantum complexity bounds for important problems from linear algebra. (orig.)

  3. Association analysis of PON2 genetic variants with serum paraoxonase activity and systemic lupus erythematosus

    Directory of Open Access Journals (Sweden)

    Manzi Susan

    2011-01-01

    Full Text Available Abstract Background Low serum paraoxonase (PON activity is associated with the risk of coronary artery disease, diabetes and systemic lupus erythematosus (SLE. Our prior studies have shown that the PON1/rs662 (p.Gln192Arg, PON1/rs854560 (p.Leu55Met, PON3/rs17884563 and PON3/rs740264 SNPs (single nucleotide polymorphisms significantly affect serum PON activity. Since PON1, PON2 and PON3 share high degree of structural and functional properties, in this study, we examined the role of PON2 genetic variation on serum PON activity, risk of SLE and SLE-related clinical manifestations in a Caucasian case-control sample. Methods PON2 SNPs were selected from HapMap and SeattleSNPs databases by including at least one tagSNP from each bin defined in these resources. A total of nineteen PON2 SNPs were successfully genotyped in 411 SLE cases and 511 healthy controls using pyrosequencing, restriction fragment length polymorphism (RFLP or TaqMan allelic discrimination methods. Results Our pair-wise linkage disequilibrium (LD analysis, using an r2 cutoff of 0.7, identified 14 PON2 tagSNPs that captured all 19 PON2 variants in our sample, 12 of which were not in high LD with known PON1 and PON3 SNP modifiers of PON activity. Stepwise regression analysis of PON activity, including the known modifiers, identified five PON2 SNPs [rs6954345 (p.Ser311Cys, rs13306702, rs987539, rs11982486, and rs4729189; P = 0.005 to 2.1 × 10-6] that were significantly associated with PON activity. We found no association of PON2 SNPs with SLE risk but modest associations were observed with lupus nephritis (rs11981433, rs17876205, rs17876183 and immunologic disorder (rs11981433 in SLE patients (P = 0.013 to 0.042. Conclusions Our data indicate that PON2 genetic variants significantly affect variation in serum PON activity and have modest effects on risk of lupus nephritis and SLE-related immunologic disorder.

  4. Orientations of infinite graphs with prescribed edge-connectivity

    DEFF Research Database (Denmark)

    Thomassen, Carsten

    2016-01-01

    We prove a decomposition result for locally finite graphs which can be used to extend results on edge-connectivity from finite to infinite graphs. It implies that every 4k-edge-connected graph G contains an immersion of some finite 2k-edge-connected Eulerian graph containing any prescribed vertex...... set (while planar graphs show that G need not containa subdivision of a simple finite graph of large edge-connectivity). Also, every 8k-edge connected infinite graph has a k-arc-connected orientation, as conjectured in 1989....

  5. On the local edge antimagicness of m-splitting graphs

    Science.gov (United States)

    Albirri, E. R.; Dafik; Slamin; Agustin, I. H.; Alfarisi, R.

    2018-04-01

    Let G be a connected and simple graph. A split graph is a graph derived by adding new vertex v‧ in every vertex v‧ such that v‧ adjacent to v in graph G. An m-splitting graph is a graph which has m v‧-vertices, denoted by mSpl(G). A local edge antimagic coloring in G = (V, E) graph is a bijection f:V (G)\\to \\{1,2,3,\\ldots,|V(G)|\\} in which for any two adjacent edges e 1 and e 2 satisfies w({e}1)\

  6. DIMENSI METRIK GRAPH LOBSTER Ln (q;r

    Directory of Open Access Journals (Sweden)

    PANDE GDE DONY GUMILAR

    2013-05-01

    Full Text Available The metric dimension of connected graph G is the cardinality of minimum resolving set in graph G. In this research, we study how to find the metric dimension of lobster graph Ln (q;r. Lobster graph Ln (q;r is a regular lobster graph with vertices backbone on the main path, every backbone vertex is connected to q hand vertices and every hand vertex is connected to r finger vertices, with n, q, r element of N. We obtain the metric dimension of lobster graph L2 (1;1 is 1, the metric dimension of lobster graph L2 (1;1 for n > 2 is 2.

  7. Relating zeta functions of discrete and quantum graphs

    Science.gov (United States)

    Harrison, Jonathan; Weyand, Tracy

    2018-02-01

    We write the spectral zeta function of the Laplace operator on an equilateral metric graph in terms of the spectral zeta function of the normalized Laplace operator on the corresponding discrete graph. To do this, we apply a relation between the spectrum of the Laplacian on a discrete graph and that of the Laplacian on an equilateral metric graph. As a by-product, we determine how the multiplicity of eigenvalues of the quantum graph, that are also in the spectrum of the graph with Dirichlet conditions at the vertices, depends on the graph geometry. Finally we apply the result to calculate the vacuum energy and spectral determinant of a complete bipartite graph and compare our results with those for a star graph, a graph in which all vertices are connected to a central vertex by a single edge.

  8. Bipartite separability and nonlocal quantum operations on graphs

    Science.gov (United States)

    Dutta, Supriyo; Adhikari, Bibhas; Banerjee, Subhashish; Srikanth, R.

    2016-07-01

    In this paper we consider the separability problem for bipartite quantum states arising from graphs. Earlier it was proved that the degree criterion is the graph-theoretic counterpart of the familiar positive partial transpose criterion for separability, although there are entangled states with positive partial transpose for which the degree criterion fails. Here we introduce the concept of partially symmetric graphs and degree symmetric graphs by using the well-known concept of partial transposition of a graph and degree criteria, respectively. Thus, we provide classes of bipartite separable states of dimension m ×n arising from partially symmetric graphs. We identify partially asymmetric graphs that lack the property of partial symmetry. We develop a combinatorial procedure to create a partially asymmetric graph from a given partially symmetric graph. We show that this combinatorial operation can act as an entanglement generator for mixed states arising from partially symmetric graphs.

  9. Quick Mining of Isomorphic Exact Large Patterns from Large Graphs

    KAUST Repository

    Almasri, Islam

    2014-12-01

    The applications of the sub graph isomorphism search are growing with the growing number of areas that model their systems using graphs or networks. Specifically, many biological systems, such as protein interaction networks, molecular structures and protein contact maps, are modeled as graphs. The sub graph isomorphism search is concerned with finding all sub graphs that are isomorphic to a relevant query graph, the existence of such sub graphs can reflect on the characteristics of the modeled system. The most computationally expensive step in the search for isomorphic sub graphs is the backtracking algorithm that traverses the nodes of the target graph. In this paper, we propose a pruning approach that is inspired by the minimum remaining value heuristic that achieves greater scalability over large query and target graphs. Our testing on various biological networks shows that performance enhancement of our approach over existing state-of-the-art approaches varies between 6x and 53x. © 2014 IEEE.

  10. Genus Ranges of 4-Regular Rigid Vertex Graphs.

    Science.gov (United States)

    Buck, Dorothy; Dolzhenko, Egor; Jonoska, Nataša; Saito, Masahico; Valencia, Karin

    2015-01-01

    A rigid vertex of a graph is one that has a prescribed cyclic order of its incident edges. We study orientable genus ranges of 4-regular rigid vertex graphs. The (orientable) genus range is a set of genera values over all orientable surfaces into which a graph is embedded cellularly, and the embeddings of rigid vertex graphs are required to preserve the prescribed cyclic order of incident edges at every vertex. The genus ranges of 4-regular rigid vertex graphs are sets of consecutive integers, and we address two questions: which intervals of integers appear as genus ranges of such graphs, and what types of graphs realize a given genus range. For graphs with 2 n vertices ( n > 1), we prove that all intervals [ a, b ] for all a genus ranges. For graphs with 2 n - 1 vertices ( n ≥ 1), we prove that all intervals [ a, b ] for all a genus ranges. We also provide constructions of graphs that realize these ranges.

  11. Quick Mining of Isomorphic Exact Large Patterns from Large Graphs

    KAUST Repository

    Almasri, Islam; Gao, Xin; Fedoroff, Nina V.

    2014-01-01

    The applications of the sub graph isomorphism search are growing with the growing number of areas that model their systems using graphs or networks. Specifically, many biological systems, such as protein interaction networks, molecular structures and protein contact maps, are modeled as graphs. The sub graph isomorphism search is concerned with finding all sub graphs that are isomorphic to a relevant query graph, the existence of such sub graphs can reflect on the characteristics of the modeled system. The most computationally expensive step in the search for isomorphic sub graphs is the backtracking algorithm that traverses the nodes of the target graph. In this paper, we propose a pruning approach that is inspired by the minimum remaining value heuristic that achieves greater scalability over large query and target graphs. Our testing on various biological networks shows that performance enhancement of our approach over existing state-of-the-art approaches varies between 6x and 53x. © 2014 IEEE.

  12. Bond graphs for modelling, control and fault diagnosis of engineering systems

    CERN Document Server

    2017-01-01

    This book presents theory and latest application work in Bond Graph methodology with a focus on: • Hybrid dynamical system models, • Model-based fault diagnosis, model-based fault tolerant control, fault prognosis • and also addresses • Open thermodynamic systems with compressible fluid flow, • Distributed parameter models of mechanical subsystems. In addition, the book covers various applications of current interest ranging from motorised wheelchairs, in-vivo surgery robots, walking machines to wind-turbines.The up-to-date presentation has been made possible by experts who are active members of the worldwide bond graph modelling community. This book is the completely revised 2nd edition of the 2011 Springer compilation text titled Bond Graph Modelling of Engineering Systems – Theory, Applications and Software Support. It extends the presentation of theory and applications of graph methodology by new developments and latest research results. Like the first edition, this book addresses readers in a...

  13. Inflammasome genetics contributes to the development and control of active pulmonary tuberculosis.

    Science.gov (United States)

    Souza de Lima, D; Ogusku, M M; Sadahiro, A; Pontillo, A

    2016-07-01

    Tuberculosis (TB) continues to be a major public health problem. An estimated one-third of the world's population is infected with Mycobacterium tuberculosis (Mtb) but remains asymptomatic (latent TB) and only 5% to 10% of these latent individuals will develop active pulmonary TB. Factors affecting the balance between latent and active TB are mostly unknown, even if host genome has been shown to contribute to the outcome of Mtb response. Acute inflammation and Th1 response are important in the early clearance of the bacteria as it was emphasized by the association between immune genes (i.e.: HLA, IFNG, TNF, NRPAM1, IL10) variants and the development of active pulmonary TB. Recently, the role of the inflammasome in experimental TB has been demonstrated, however, to our knowledge, no data still exist about the contribution of inflammasome genetics to Mtb susceptibility and/or to the development of active TB. For this reason, selected polymorphisms in inflammasome genes were analysed in a case/control cohort of individuals with active pulmonary TB from an endemic area of Brazil Amazon. Our data evidence the novel association between polymorphisms in NLRP3-inflammasome encoding genes and active pulmonary TB, and replicated the association between P2X7 and TB observed in other populations. These results emphasize the role of NLRP3-inflammasome also in human TB, and contribute to our knowledge about pathways involved in the development of active TB, even if deeper investigation are needed to fully elucidate the role of the complex in Mtb infection. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Joint Identification of Genetic Variants for Physical Activity in Korean Population

    Directory of Open Access Journals (Sweden)

    Jayoun Kim

    2014-07-01

    Full Text Available There has been limited research on genome-wide association with physical activity (PA. This study ascertained genetic associations between PA and 344,893 single nucleotide polymorphism (SNP markers in 8842 Korean samples. PA data were obtained from a validated questionnaire that included information on PA intensity and duration. Metabolic equivalent of tasks were calculated to estimate the total daily PA level for each individual. In addition to single- and multiple-SNP association tests, a pathway enrichment analysis was performed to identify the biological significance of SNP markers. Although no significant SNP was found at genome-wide significance level via single-SNP association tests, 59 genetic variants mapped to 76 genes were identified via a multiple SNP approach using a bootstrap selection stability measure. Pathway analysis for these 59 variants showed that maturity onset diabetes of the young (MODY was enriched. Joint identification of SNPs could enable the identification of multiple SNPs with good predictive power for PA and a pathway enriched for PA.

  15. Continuous-time quantum walks on star graphs

    International Nuclear Information System (INIS)

    Salimi, S.

    2009-01-01

    In this paper, we investigate continuous-time quantum walk on star graphs. It is shown that quantum central limit theorem for a continuous-time quantum walk on star graphs for N-fold star power graph, which are invariant under the quantum component of adjacency matrix, converges to continuous-time quantum walk on K 2 graphs (complete graph with two vertices) and the probability of observing walk tends to the uniform distribution.

  16. Learning directed acyclic graphs from large-scale genomics data.

    Science.gov (United States)

    Nikolay, Fabio; Pesavento, Marius; Kritikos, George; Typas, Nassos

    2017-09-20

    In this paper, we consider the problem of learning the genetic interaction map, i.e., the topology of a directed acyclic graph (DAG) of genetic interactions from noisy double-knockout (DK) data. Based on a set of well-established biological interaction models, we detect and classify the interactions between genes. We propose a novel linear integer optimization program called the Genetic-Interactions-Detector (GENIE) to identify the complex biological dependencies among genes and to compute the DAG topology that matches the DK measurements best. Furthermore, we extend the GENIE program by incorporating genetic interaction profile (GI-profile) data to further enhance the detection performance. In addition, we propose a sequential scalability technique for large sets of genes under study, in order to provide statistically significant results for real measurement data. Finally, we show via numeric simulations that the GENIE program and the GI-profile data extended GENIE (GI-GENIE) program clearly outperform the conventional techniques and present real data results for our proposed sequential scalability technique.

  17. Graph theory and the Virasoro master equation

    International Nuclear Information System (INIS)

    Obers, N.A.J.

    1991-01-01

    A brief history of affine Lie algebra, the Virasoro algebra and its culmination in the Virasoro master equation is given. By studying ansaetze of the master equation, the author obtains exact solutions and gains insight in the structure of large slices of affine-Virasoro space. He finds an isomorphism between the constructions in the ansatz SO(n) diag , which is a set of unitary, generically irrational affine-Virasoro constructions on SO(n), and the unlabeled graphs of order n. On the one hand, the conformal constructions, are classified by the graphs, while, conversely, a group-theoretic and conformal field-theoretic identification is obtained for every graph of graph theory. He also defines a class of magic Lie group bases in which the Virasoro master equation admits a simple metric ansatz {g metric }, whose structure is visible in the high-level expansion. When a magic basis is real on compact g, the corresponding g metric is a large system of unitary, generically irrational conformal field theories. Examples in this class include the graph-theory ansatz SO(n) diag in the Cartesian basis of SO(n), and the ansatz SU(n) metric in the Pauli-like basis of SU(n). Finally, he defines the 'sine-area graphs' of SU(n), which label the conformal field theories of SU(n) metric , and he notes that, in similar fashion, each magic basis of g defines a generalized graph theory on g which labels the conformal field theories of g metric

  18. Multiplex visibility graphs to investigate recurrent neural network dynamics

    Science.gov (United States)

    Bianchi, Filippo Maria; Livi, Lorenzo; Alippi, Cesare; Jenssen, Robert

    2017-03-01

    A recurrent neural network (RNN) is a universal approximator of dynamical systems, whose performance often depends on sensitive hyperparameters. Tuning them properly may be difficult and, typically, based on a trial-and-error approach. In this work, we adopt a graph-based framework to interpret and characterize internal dynamics of a class of RNNs called echo state networks (ESNs). We design principled unsupervised methods to derive hyperparameters configurations yielding maximal ESN performance, expressed in terms of prediction error and memory capacity. In particular, we propose to model time series generated by each neuron activations with a horizontal visibility graph, whose topological properties have been shown to be related to the underlying system dynamics. Successively, horizontal visibility graphs associated with all neurons become layers of a larger structure called a multiplex. We show that topological properties of such a multiplex reflect important features of ESN dynamics that can be used to guide the tuning of its hyperparamers. Results obtained on several benchmarks and a real-world dataset of telephone call data records show the effectiveness of the proposed methods.

  19. Genetic diversity of b-glucuronidase activity among 14 strains of the dominant human gut anaerobe Ruminococcus gnavus

    Directory of Open Access Journals (Sweden)

    Diane Beaud

    2006-01-01

    Full Text Available Bacterial beta-glucuronidase activity in the gut increases the enterohepatic circulation of toxic compounds and plays a major role in the etiology of colon cancer. Previously, we had found that the gus gene, which codes for beta-glucuronidase in a dominant anaerobic species of the gut microbiota, Ruminococcus gnavus strain E1, is transcribed as part of an operon that includes three ORFs that code for beta-glucoside permeases of the phosphotransferase systems. This genetic organization had never been described. We have now compared beta-glucuronidase activity and the genetic environment of the gus gene in 14 strains of Ruminococcus gnavus.We found that five out of the seven glucuronidase-positive R. gnavus strains possessed another glucuronidase gene different from the gusA operon of R. gnavus E1. This dominant commensal intestinal species appears to have a high degree of genetic diversity in the genes that control beta-glucuronidase activity.

  20. Supporting Fourth Graders' Ability to Interpret Graphs through Real-Time Graphing Technology: A Preliminary Study

    Science.gov (United States)

    Deniz, Hasan; Dulger, Mehmet F.

    2012-01-01

    This study examined to what extent inquiry-based instruction supported with real-time graphing technology improves fourth grader's ability to interpret graphs as representations of physical science concepts such as motion and temperature. This study also examined whether there is any difference between inquiry-based instruction supported with…

  1. Proving termination of graph transformation systems using weighted type graphs over semirings

    NARCIS (Netherlands)

    Bruggink, H.J.S.; König, B.; Nolte, D.; Zantema, H.; Parisi-Presicce, F.; Westfechtel, B.

    2015-01-01

    We introduce techniques for proving uniform termination of graph transformation systems, based on matrix interpretations for string rewriting. We generalize this technique by adapting it to graph rewriting instead of string rewriting and by generalizing to ordered semirings. In this way we obtain a

  2. GoFFish: A Sub-Graph Centric Framework for Large-Scale Graph Analytics1

    Energy Technology Data Exchange (ETDEWEB)

    Simmhan, Yogesh; Kumbhare, Alok; Wickramaarachchi, Charith; Nagarkar, Soonil; Ravi, Santosh; Raghavendra, Cauligi; Prasanna, Viktor

    2014-08-25

    Large scale graph processing is a major research area for Big Data exploration. Vertex centric programming models like Pregel are gaining traction due to their simple abstraction that allows for scalable execution on distributed systems naturally. However, there are limitations to this approach which cause vertex centric algorithms to under-perform due to poor compute to communication overhead ratio and slow convergence of iterative superstep. In this paper we introduce GoFFish a scalable sub-graph centric framework co-designed with a distributed persistent graph storage for large scale graph analytics on commodity clusters. We introduce a sub-graph centric programming abstraction that combines the scalability of a vertex centric approach with the flexibility of shared memory sub-graph computation. We map Connected Components, SSSP and PageRank algorithms to this model to illustrate its flexibility. Further, we empirically analyze GoFFish using several real world graphs and demonstrate its significant performance improvement, orders of magnitude in some cases, compared to Apache Giraph, the leading open source vertex centric implementation. We map Connected Components, SSSP and PageRank algorithms to this model to illustrate its flexibility. Further, we empirically analyze GoFFish using several real world graphs and demonstrate its significant performance improvement, orders of magnitude in some cases, compared to Apache Giraph, the leading open source vertex centric implementation.

  3. APOE moderates the association between lifestyle activities and cognitive performance: evidence of genetic plasticity in aging.

    Science.gov (United States)

    Runge, Shannon K; Small, Brent J; McFall, G Peggy; Dixon, Roger A

    2014-05-01

    The current study examined independent and interactive effects between Apolipoprotein E (APOE) genotype and two types of cognitively-stimulating lifestyle activities (CSLA)-integrated information processing (CSLA-II) and novel information processing (CSLA-NI)-on concurrent and longitudinal changes in cognition. Three-wave data across 6 years of follow-up from the Victoria Longitudinal Study (n=278; ages 55-94) and linear mixed model analyses were used to characterize the effects of APOE genotype and participation in CSLA-II and CSLA-NI in four cognitive domains. Significant CSLA effects on cognition were observed. More frequent participation in challenging activities (i.e., CSLA-NI) was associated with higher baseline scores on word recall, fact recall, vocabulary and verbal fluency. Conversely, higher participation in less cognitively-challenging activities (i.e., CSLA-II) was associated with lower scores on fact recall and verbal fluency. No longitudinal CSLA-cognition effects were found. Two significant genetic effects were observed. First, APOE moderated CSLA-II and CSLA-NI associations with baseline verbal fluency and fact recall scores. Second, APOE non-ɛ4 carriers' baseline performance were more likely to be moderated by CSLA participation, compared to APOE-ɛ4 carriers. Our findings suggest APOE may be a "plasticity" gene that makes individuals more or less amenable to the influence of protective factors such as CSLA.

  4. Genetically determined measures of striatal D2 signaling predict prefrontal activity during working memory performance.

    Science.gov (United States)

    Bertolino, Alessandro; Taurisano, Paolo; Pisciotta, Nicola Marco; Blasi, Giuseppe; Fazio, Leonardo; Romano, Raffaella; Gelao, Barbara; Lo Bianco, Luciana; Lozupone, Madia; Di Giorgio, Annabella; Caforio, Grazia; Sambataro, Fabio; Niccoli-Asabella, Artor; Papp, Audrey; Ursini, Gianluca; Sinibaldi, Lorenzo; Popolizio, Teresa; Sadee, Wolfgang; Rubini, Giuseppe

    2010-02-22

    Variation of the gene coding for D2 receptors (DRD2) has been associated with risk for schizophrenia and with working memory deficits. A functional intronic SNP (rs1076560) predicts relative expression of the two D2 receptors isoforms, D2S (mainly pre-synaptic) and D2L (mainly post-synaptic). However, the effect of functional genetic variation of DRD2 on striatal dopamine D2 signaling and on its correlation with prefrontal activity during working memory in humans is not known. Thirty-seven healthy subjects were genotyped for rs1076560 (G>T) and underwent SPECT with [123I]IBZM (which binds primarily to post-synaptic D2 receptors) and with [123I]FP-CIT (which binds to pre-synaptic dopamine transporters, whose activity and density is also regulated by pre-synaptic D2 receptors), as well as BOLD fMRI during N-Back working memory. Subjects carrying the T allele (previously associated with reduced D2S expression) had striatal reductions of [123I]IBZM and of [123I]FP-CIT binding. DRD2 genotype also differentially predicted the correlation between striatal dopamine D2 signaling (as identified with factor analysis of the two radiotracers) and activity of the prefrontal cortex during working memory as measured with BOLD fMRI, which was positive in GG subjects and negative in GT. Our results demonstrate that this functional SNP within DRD2 predicts striatal binding of the two radiotracers to dopamine transporters and D2 receptors as well as the correlation between striatal D2 signaling with prefrontal cortex activity during performance of a working memory task. These data are consistent with the possibility that the balance of excitatory/inhibitory modulation of striatal neurons may also affect striatal outputs in relationship with prefrontal activity during working memory performance within the cortico-striatal-thalamic-cortical pathway.

  5. Genetically determined measures of striatal D2 signaling predict prefrontal activity during working memory performance.

    Directory of Open Access Journals (Sweden)

    Alessandro Bertolino

    2010-02-01

    Full Text Available Variation of the gene coding for D2 receptors (DRD2 has been associated with risk for schizophrenia and with working memory deficits. A functional intronic SNP (rs1076560 predicts relative expression of the two D2 receptors isoforms, D2S (mainly pre-synaptic and D2L (mainly post-synaptic. However, the effect of functional genetic variation of DRD2 on striatal dopamine D2 signaling and on its correlation with prefrontal activity during working memory in humans is not known.Thirty-seven healthy subjects were genotyped for rs1076560 (G>T and underwent SPECT with [123I]IBZM (which binds primarily to post-synaptic D2 receptors and with [123I]FP-CIT (which binds to pre-synaptic dopamine transporters, whose activity and density is also regulated by pre-synaptic D2 receptors, as well as BOLD fMRI during N-Back working memory.Subjects carrying the T allele (previously associated with reduced D2S expression had striatal reductions of [123I]IBZM and of [123I]FP-CIT binding. DRD2 genotype also differentially predicted the correlation between striatal dopamine D2 signaling (as identified with factor analysis of the two radiotracers and activity of the prefrontal cortex during working memory as measured with BOLD fMRI, which was positive in GG subjects and negative in GT.Our results demonstrate that this functional SNP within DRD2 predicts striatal binding of the two radiotracers to dopamine transporters and D2 receptors as well as the correlation between striatal D2 signaling with prefrontal cortex activity during performance of a working memory task. These data are consistent with the possibility that the balance of excitatory/inhibitory modulation of striatal neurons may also affect striatal outputs in relationship with prefrontal activity during working memory performance within the cortico-striatal-thalamic-cortical pathway.

  6. Farnesoid X receptor (FXR activation and FXR genetic variation in inflammatory bowel disease.

    Directory of Open Access Journals (Sweden)

    Rian M Nijmeijer

    Full Text Available BACKGROUND: We previously showed that activation of the bile salt nuclear receptor Farnesoid X Receptor (FXR protects against intestinal inflammation in mice. Reciprocally, these inflammatory mediators may decrease FXR activation. We investigated whether FXR activation is repressed in the ileum and colon of inflammatory bowel disease (IBD patients in remission. Additionally, we evaluated whether genetic variation in FXR is associated with IBD. METHODS: mRNA expression of FXR and FXR target gene SHP was determined in ileal and colonic biopsies of patients with Crohn's colitis (n = 15 and ulcerative colitis (UC; n = 12, all in clinical remission, and healthy controls (n = 17. Seven common tagging SNPs and two functional SNPs in FXR were genotyped in 2355 Dutch IBD patients (1162 Crohn's disease (CD and 1193 UC and in 853 healthy controls. RESULTS: mRNA expression of SHP in the ileum is reduced in patients with Crohn's colitis but not in patients with UC compared to controls. mRNA expression of villus marker Villin was correlated with FXR and SHP in healthy controls, a correlation that was weaker in UC patients and absent in CD patients. None of the SNPs was associated with IBD, UC or CD, nor with clinical subgroups of CD. CONCLUSIONS: FXR activation in the ileum is decreased in patients with Crohn's colitis. This may be secondary to altered enterohepatic circulation of bile salts or transrepression by inflammatory signals but does not seem to be caused by the studied SNPs in FXR. Increasing FXR activity by synthetic FXR agonists may have benefit in CD patients.

  7. An investigation of Hebbian phase sequences as assembly graphs

    Directory of Open Access Journals (Sweden)

    Daniel Gomes Almeida Filho

    2014-04-01

    Full Text Available Hebb proposed that synapses between neurons that fire synchronously are strengthened, forming cell assemblies and phase sequences. The former, on a shorter scale, are ensembles of synchronized cells that function transiently as a closed processing system; the latter, on a larger scale, correspond to the sequential activation of cell assemblies able to represent percepts and behaviors. Nowadays, the recording of large neuronal populations allows for the detection of multiple cell assemblies. Within Hebb’s theory, the next logical step is the analysis of phase sequences. Here we detected phase sequences as consecutive assembly activation patterns, and then analyzed their graph attributes in relation to behavior. We investigated action potentials recorded from the adult rat hippocampus and neocortex before, during and after novel object exploration (experimental periods. Within assembly graphs, each assembly corresponded to a node, and each edge corresponded to the temporal sequence of consecutive node activations. The sum of all assembly activations was proportional to firing rates, but the activity of individual assemblies was not. Assembly repertoire was stable across experimental periods, suggesting that novel experience does not create new assemblies in the adult rat. Assembly graph attributes, on the other hand, varied significantly across behavioral states and experimental periods, and were separable enough to correctly classify experimental periods (Naïve Bayes classifier; maximum AUROCs ranging from 0.55 to 0.99 and behavioral states (waking, slow wave sleep, and rapid eye movement sleep; maximum AUROCs s ranging from 0.64 to 0.98. Our findings agree with Hebb’s view that assemblies correspond to primitive building blocks of representation, nearly unchanged in the adult, while phase sequences are labile across behavioral states and change after novel experience. The results are compatible with a role for phase sequences in behavior

  8. Generating Realistic Labelled, Weighted Random Graphs

    Directory of Open Access Journals (Sweden)

    Michael Charles Davis

    2015-12-01

    Full Text Available Generative algorithms for random graphs have yielded insights into the structure and evolution of real-world networks. Most networks exhibit a well-known set of properties, such as heavy-tailed degree distributions, clustering and community formation. Usually, random graph models consider only structural information, but many real-world networks also have labelled vertices and weighted edges. In this paper, we present a generative model for random graphs with discrete vertex labels and numeric edge weights. The weights are represented as a set of Beta Mixture Models (BMMs with an arbitrary number of mixtures, which are learned from real-world networks. We propose a Bayesian Variational Inference (VI approach, which yields an accurate estimation while keeping computation times tractable. We compare our approach to state-of-the-art random labelled graph generators and an earlier approach based on Gaussian Mixture Models (GMMs. Our results allow us to draw conclusions about the contribution of vertex labels and edge weights to graph structure.

  9. A graph model for opportunistic network coding

    KAUST Repository

    Sorour, Sameh

    2015-08-12

    © 2015 IEEE. Recent advancements in graph-based analysis and solutions of instantly decodable network coding (IDNC) trigger the interest to extend them to more complicated opportunistic network coding (ONC) scenarios, with limited increase in complexity. In this paper, we design a simple IDNC-like graph model for a specific subclass of ONC, by introducing a more generalized definition of its vertices and the notion of vertex aggregation in order to represent the storage of non-instantly-decodable packets in ONC. Based on this representation, we determine the set of pairwise vertex adjacency conditions that can populate this graph with edges so as to guarantee decodability or aggregation for the vertices of each clique in this graph. We then develop the algorithmic procedures that can be applied on the designed graph model to optimize any performance metric for this ONC subclass. A case study on reducing the completion time shows that the proposed framework improves on the performance of IDNC and gets very close to the optimal performance.

  10. Percolator: Scalable Pattern Discovery in Dynamic Graphs

    Energy Technology Data Exchange (ETDEWEB)

    Choudhury, Sutanay; Purohit, Sumit; Lin, Peng; Wu, Yinghui; Holder, Lawrence B.; Agarwal, Khushbu

    2018-02-06

    We demonstrate Percolator, a distributed system for graph pattern discovery in dynamic graphs. In contrast to conventional mining systems, Percolator advocates efficient pattern mining schemes that (1) support pattern detection with keywords; (2) integrate incremental and parallel pattern mining; and (3) support analytical queries such as trend analysis. The core idea of Percolator is to dynamically decide and verify a small fraction of patterns and their in- stances that must be inspected in response to buffered updates in dynamic graphs, with a total mining cost independent of graph size. We demonstrate a) the feasibility of incremental pattern mining by walking through each component of Percolator, b) the efficiency and scalability of Percolator over the sheer size of real-world dynamic graphs, and c) how the user-friendly GUI of Percolator inter- acts with users to support keyword-based queries that detect, browse and inspect trending patterns. We also demonstrate two user cases of Percolator, in social media trend analysis and academic collaboration analysis, respectively.

  11. PDB2Graph: A toolbox for identifying critical amino acids map in proteins based on graph theory.

    Science.gov (United States)

    Niknam, Niloofar; Khakzad, Hamed; Arab, Seyed Shahriar; Naderi-Manesh, Hossein

    2016-05-01

    The integrative and cooperative nature of protein structure involves the assessment of topological and global features of constituent parts. Network concept takes complete advantage of both of these properties in the analysis concomitantly. High compatibility to structural concepts or physicochemical properties in addition to exploiting a remarkable simplification in the system has made network an ideal tool to explore biological systems. There are numerous examples in which different protein structural and functional characteristics have been clarified by the network approach. Here, we present an interactive and user-friendly Matlab-based toolbox, PDB2Graph, devoted to protein structure network construction, visualization, and analysis. Moreover, PDB2Graph is an appropriate tool for identifying critical nodes involved in protein structural robustness and function based on centrality indices. It maps critical amino acids in protein networks and can greatly aid structural biologists in selecting proper amino acid candidates for manipulating protein structures in a more reasonable and rational manner. To introduce the capability and efficiency of PDB2Graph in detail, the structural modification of Calmodulin through allosteric binding of Ca(2+) is considered. In addition, a mutational analysis for three well-identified model proteins including Phage T4 lysozyme, Barnase and Ribonuclease HI, was performed to inspect the influence of mutating important central residues on protein activity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Prediction of Nucleotide Binding Peptides Using Star Graph Topological Indices.

    Science.gov (United States)

    Liu, Yong; Munteanu, Cristian R; Fernández Blanco, Enrique; Tan, Zhiliang; Santos Del Riego, Antonino; Pazos, Alejandro

    2015-11-01

    The nucleotide binding proteins are involved in many important cellular processes, such as transmission of genetic information or energy transfer and storage. Therefore, the screening of new peptides for this biological function is an important research topic. The current study proposes a mixed methodology to obtain the first classification model that is able to predict new nucleotide binding peptides, using only the amino acid sequence. Thus, the methodology uses a Star graph molecular descriptor of the peptide sequences and the Machine Learning technique for the best classifier. The best model represents a Random Forest classifier based on two features of the embedded and non-embedded graphs. The performance of the model is excellent, considering similar models in the field, with an Area Under the Receiver Operating Characteristic Curve (AUROC) value of 0.938 and true positive rate (TPR) of 0.886 (test subset). The prediction of new nucleotide binding peptides with this model could be useful for drug target studies in drug development. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Survey of Approaches to Generate Realistic Synthetic Graphs

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Seung-Hwan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lee, Sangkeun [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Powers, Sarah S [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Shankar, Mallikarjun [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Imam, Neena [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-10-01

    A graph is a flexible data structure that can represent relationships between entities. As with other data analysis tasks, the use of realistic graphs is critical to obtaining valid research results. Unfortunately, using the actual ("real-world") graphs for research and new algorithm development is difficult due to the presence of sensitive information in the data or due to the scale of data. This results in practitioners developing algorithms and systems that employ synthetic graphs instead of real-world graphs. Generating realistic synthetic graphs that provide reliable statistical confidence to algorithmic analysis and system evaluation involves addressing technical hurdles in a broad set of areas. This report surveys the state of the art in approaches to generate realistic graphs that are derived from fitted graph models on real-world graphs.

  14. An Association-Oriented Partitioning Approach for Streaming Graph Query

    Directory of Open Access Journals (Sweden)

    Yun Hao

    2017-01-01

    Full Text Available The volumes of real-world graphs like knowledge graph are increasing rapidly, which makes streaming graph processing a hot research area. Processing graphs in streaming setting poses significant challenges from different perspectives, among which graph partitioning method plays a key role. Regarding graph query, a well-designed partitioning method is essential for achieving better performance. Existing offline graph partitioning methods often require full knowledge of the graph, which is not possible during streaming graph processing. In order to handle this problem, we propose an association-oriented streaming graph partitioning method named Assc. This approach first computes the rank values of vertices with a hybrid approximate PageRank algorithm. After splitting these vertices with an adapted variant affinity propagation algorithm, the process order on vertices in the sliding window can be determined. Finally, according to the level of these vertices and their association, the partition where the vertices should be distributed is decided. We compare its performance with a set of streaming graph partition methods and METIS, a widely adopted offline approach. The results show that our solution can partition graphs with hundreds of millions of vertices in streaming setting on a large collection of graph datasets and our approach outperforms other graph partitioning methods.

  15. Low blood glucose precipitates spike-and-wave activity in genetically predisposed animals.

    Science.gov (United States)

    Reid, Christopher A; Kim, Tae Hwan; Berkovic, Samuel F; Petrou, Steven

    2011-01-01

    Absence epilepsies are common, with a major genetic contribution to etiology. Certain environmental factors can influence absence occurrence but a complete understanding of absence precipitation is lacking. Herein we investigate if lowering blood glucose increases spike-wave activity in mouse models with varying seizure susceptibility. Three mouse models were used: an absence seizure model based on the knockin of a human GABA(A) γ2(R43Q) mutation (DBA(R43Q)), the spike-wave discharge (SWD)-prone DBA/2J strain, and the seizure resistant C57Bl/6 strain. Electrocorticography (ECoG) studies were recorded to determine SWDs during hypoglycemia induced by insulin or overnight fasting. An insulin-mediated reduction in blood glucose levels to 4 mm (c.a. 40% reduction) was sufficient to double SWD occurrence in the DBA(R43Q) model and in the SWD-prone DBA/2J mouse strain. Larger reductions in blood glucose further increased SWDs in both these models. However, even with large reductions in blood glucose, no discharges were observed in the seizure-resistant C57Bl/6 mouse strain. Injection of glucose reversed the impact of insulin on SWDs in the DBA(R43Q) model, supporting a reduction in blood glucose as the modulating influence. Overnight fasting reduced blood glucose levels to 4.5 mm (c.a. 35% reduction) and, like insulin, caused a doubling in occurrence of SWDs. Low blood glucose can precipitate SWDs in genetically predisposed animal models and should be considered as a potential environmental risk factor in patients with absence epilepsy. Wiley Periodicals, Inc. © 2010 International League Against Epilepsy.

  16. Resistance Distances in Vertex-Face Graphs

    Science.gov (United States)

    Shangguan, Yingmin; Chen, Haiyan

    2018-01-01

    The computation of two-point resistances in networks is a classical problem in electric circuit theory and graph theory. Let G be a triangulation graph with n vertices embedded on an orientable surface. Define K(G) to be the graph obtained from G by inserting a new vertex vϕ to each face ϕ of G and adding three new edges (u, vϕ), (v, vϕ) and (w, vϕ), where u, v and w are three vertices on the boundary of ϕ. In this paper, using star-triangle transformation and resistance local-sum rules, explicit relations between resistance distances in K(G) and those in G are obtained. These relations enable us to compute resistance distance between any two points of Kk(G) recursively. As explanation examples, some resistances in several networks are computed, including the modified Apollonian network and networks constructed from tetrahedron, octahedron and icosahedron, respectively.

  17. Herdable Systems Over Signed, Directed Graphs

    KAUST Repository

    Ruf, Sebastian F.

    2018-04-11

    This paper considers the notion of herdability, a set-based reachability condition, which asks whether the state of a system can be controlled to be element-wise larger than a non-negative threshold. The basic theory of herdable systems is presented, including a necessary and sufficient condition for herdability. This paper then considers the impact of the underlying graph structure of a linear system on the herdability of the system, for the case where the graph is represented as signed and directed. By classifying nodes based on the length and sign of walks from an input, we find a class of completely herdable systems as well as provide a complete characterization of nodes that can be herded in systems with an underlying graph that is a directed out-branching rooted at a single input.

  18. A graph algebra for scalable visual analytics.

    Science.gov (United States)

    Shaverdian, Anna A; Zhou, Hao; Michailidis, George; Jagadish, Hosagrahar V

    2012-01-01

    Visual analytics (VA), which combines analytical techniques with advanced visualization features, is fast becoming a standard tool for extracting information from graph data. Researchers have developed many tools for this purpose, suggesting a need for formal methods to guide these tools' creation. Increased data demands on computing requires redesigning VA tools to consider performance and reliability in the context of analysis of exascale datasets. Furthermore, visual analysts need a way to document their analyses for reuse and results justification. A VA graph framework encapsulated in a graph algebra helps address these needs. Its atomic operators include selection and aggregation. The framework employs a visual operator and supports dynamic attributes of data to enable scalable visual exploration of data.

  19. Visibility graph approach to exchange rate series

    Science.gov (United States)

    Yang, Yue; Wang, Jianbo; Yang, Huijie; Mang, Jingshi

    2009-10-01

    By means of a visibility graph, we investigate six important exchange rate series. It is found that the series convert into scale-free and hierarchically structured networks. The relationship between the scaling exponents of the degree distributions and the Hurst exponents obeys the analytical prediction for fractal Brownian motions. The visibility graph can be used to obtain reliable values of Hurst exponents of the series. The characteristics are explained by using the multifractal structures of the series. The exchange rate of EURO to Japanese Yen is widely used to evaluate risk and to estimate trends in speculative investments. Interestingly, the hierarchies of the visibility graphs for the exchange rate series of these two currencies are significantly weak compared with that of the other series.

  20. Learning molecular energies using localized graph kernels

    Science.gov (United States)

    Ferré, Grégoire; Haut, Terry; Barros, Kipton

    2017-03-01

    Recent machine learning methods make it possible to model potential energy of atomic configurations with chemical-level accuracy (as calculated from ab initio calculations) and at speeds suitable for molecular dynamics simulation. Best performance is achieved when the known physical constraints are encoded in the machine learning models. For example, the atomic energy is invariant under global translations and rotations; it is also invariant to permutations of same-species atoms. Although simple to state, these symmetries are complicated to encode into machine learning algorithms. In this paper, we present a machine learning approach based on graph theory that naturally incorporates translation, rotation, and permutation symmetries. Specifically, we use a random walk graph kernel to measure the similarity of two adjacency matrices, each of which represents a local atomic environment. This Graph Approximated Energy (GRAPE) approach is flexible and admits many possible extensions. We benchmark a simple version of GRAPE by predicting atomization energies on a standard dataset of organic molecules.