WorldWideScience

Sample records for graphite resistance heater

  1. Oxidation Resistant Graphite Studies

    Energy Technology Data Exchange (ETDEWEB)

    W. Windes; R. Smith

    2014-07-01

    The Very High Temperature Reactor (VHTR) Graphite Research and Development Program is investigating doped nuclear graphite grades exhibiting oxidation resistance. During a oxygen ingress accident the oxidation rates of the high temperature graphite core region would be extremely high resulting in significant structural damage to the core. Reducing the oxidation rate of the graphite core material would reduce the structural effects and keep the core integrity intact during any air-ingress accident. Oxidation testing of graphite doped with oxidation resistant material is being conducted to determine the extent of oxidation rate reduction. Nuclear grade graphite doped with varying levels of Boron-Carbide (B4C) was oxidized in air at nominal 740°C at 10/90% (air/He) and 100% air. The oxidation rates of the boronated and unboronated graphite grade were compared. With increasing boron-carbide content (up to 6 vol%) the oxidation rate was observed to have a 20 fold reduction from unboronated graphite. Visual inspection and uniformity of oxidation across the surface of the specimens were conducted. Future work to determine the remaining mechanical strength as well as graphite grades with SiC doped material are discussed.

  2. Improvement in transdermal drug delivery performance by graphite oxide/temperature-responsive hydrogel composites with micro heater

    International Nuclear Information System (INIS)

    Yun, Jumi; Lee, Dae Hoon; Im, Ji Sun; Kim, Hyung-Il

    2012-01-01

    Transdermal drug delivery system (TDDS) was prepared with temperature-responsive hydrogel. The graphite was oxidized and incorporated into hydrogel matrix to improve the thermal response of hydrogel. The micro heater was fabricated to control the temperature precisely by adopting a joule heating method. The drug in hydrogel was delivered through a hairless mouse skin by controlling temperature. The efficiency of drug delivery was improved obviously by incorporation of graphite oxide due to the excellent thermal conductivity and the increased interfacial affinity between graphite oxide and hydrogel matrix. The fabricated micro heater was effective in controlling the temperature over lower critical solution temperature of hydrogel precisely with a small voltage less than 1 V. The cell viability test on graphite oxide composite hydrogel showed enough safety for using as a transdermal drug delivery patch. The performance of TDDS could be improved noticeably based on temperature-responsive hydrogel, thermally conductive graphite oxide, and efficient micro heater. - Graphical abstract: The high-performance transdermal drug delivery system could be prepared by combining temperature-responsive hydrogel, thermally conductive graphite oxide with improved interfacial affinity, and efficient micro heater fabricated by a joule heating method. Highlights: ► High performance of transdermal drug delivery system with an easy control of voltage. ► Improved thermal response of hydrogel by graphite oxide incorporation. ► Efficient micro heater fabricated by a joule heating method.

  3. Improvement in transdermal drug delivery performance by graphite oxide/temperature-responsive hydrogel composites with micro heater

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Jumi [Department of Fine Chemical Engineering and Applied Chemistry, BK21-E2M, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Lee, Dae Hoon [Environment Research Division, Korea Institute of Machinery and Materials, 171 Jang-dong, Yusong-gu, Daejeon 305-343 (Korea, Republic of); Im, Ji Sun [Department of Fine Chemical Engineering and Applied Chemistry, BK21-E2M, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Kim, Hyung-Il, E-mail: hikim@cnu.ac.kr [Department of Fine Chemical Engineering and Applied Chemistry, BK21-E2M, Chungnam National University, Daejeon 305-764 (Korea, Republic of)

    2012-08-01

    Transdermal drug delivery system (TDDS) was prepared with temperature-responsive hydrogel. The graphite was oxidized and incorporated into hydrogel matrix to improve the thermal response of hydrogel. The micro heater was fabricated to control the temperature precisely by adopting a joule heating method. The drug in hydrogel was delivered through a hairless mouse skin by controlling temperature. The efficiency of drug delivery was improved obviously by incorporation of graphite oxide due to the excellent thermal conductivity and the increased interfacial affinity between graphite oxide and hydrogel matrix. The fabricated micro heater was effective in controlling the temperature over lower critical solution temperature of hydrogel precisely with a small voltage less than 1 V. The cell viability test on graphite oxide composite hydrogel showed enough safety for using as a transdermal drug delivery patch. The performance of TDDS could be improved noticeably based on temperature-responsive hydrogel, thermally conductive graphite oxide, and efficient micro heater. - Graphical abstract: The high-performance transdermal drug delivery system could be prepared by combining temperature-responsive hydrogel, thermally conductive graphite oxide with improved interfacial affinity, and efficient micro heater fabricated by a joule heating method. Highlights: Black-Right-Pointing-Pointer High performance of transdermal drug delivery system with an easy control of voltage. Black-Right-Pointing-Pointer Improved thermal response of hydrogel by graphite oxide incorporation. Black-Right-Pointing-Pointer Efficient micro heater fabricated by a joule heating method.

  4. Low cost sic coated erosion resistant graphite

    International Nuclear Information System (INIS)

    Zafar, M.F.; Nicholls, J.R.

    2007-01-01

    The development of materials with unique and improved properties using low cost processes is essential to increase performance and reduce cost of the solid rocket motors. Specifically advancements are needed for boost phase nozzle. As these motors operate at very high pressure and temperatures, the nozzle must survive high thermal stresses with minimal erosion to maintain performance. Currently three material choices are being exploited; which are refractory metals, graphite and carbon-carbon composites. Of these three materials graphite is the most attractive choice because of its low cost, light weight, and easy forming. However graphite is prone to erosion, both chemical and mechanical, which may affect the ballistic conditions and mechanical properties of the nozzle. To minimize this erosion high density graphite is usually preferred; which is again very expensive. Another technique used to minimize the erosion is Pyrolytic Graphite (PG) coating inside the nozzle. However PG coating is prone to cracking and spallation along with very cumbersome deposition process. Another possible methodology to avoid this erosion is to convert the inside surface of the rocket nozzle to Silicon Carbide (SiC), which is very erosion resistant and have much better thermal stability compared to graphite and even PG. Due to its functionally gradient nature such a layer will be very adherent and resistant to spallation. The current research is focused on synthesizing, characterizing and oxidation testing of such a converted SiC layer on commercial grade graphite. (author)

  5. Development of synthetic graphite resistive elements for sintering furnace

    International Nuclear Information System (INIS)

    Otani, C.; Rezende, Mirabel C.; Polidoro, H.A.; Otani, S.

    1987-01-01

    The synthetic graphites have been produced using lignin coke, natural graphite and phenolic resin. The bulk density, porosity, flexural strength and eletrical resistivity measurements have been performed on specimens at about 2400 0 C. The performance of these materials, as heating elements, was evaluated in a sintering furnace prototype. This paper reports the fabrication process and the experimental results. (Author) [pt

  6. Sheathed electrical resistance heaters for nuclear or other specialized service - approved 1973

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    This specification presents the requirements for cylindrical metal-sheathed, electrical resistance heaters with compacted mineral-oxide insulation for nuclear or other specialized service. The intended use of a sheathed heater in a specific nuclear or general application will require an evaluation by the purchaser of the compatibility of the heater assembly in the proposed application including the effects of the integrated proposed application including the effects of the integrated neutron flux, temperature, and atmosphere on the properties of the materials of construction. This specification does not include all possible specifications, standards, etc. for materials that may be used in sheathing, insulation, resistance wire, or conductors wire in nuclear environments. The requirements of this specification include only the austenitic stainless steels and nickel-based alloys for sheathing; magnesium oxide, aluminum oxide, beryllium oxide for insulation; and nickel-chromium or iron-chromium-aluminum heater elements with or without low-resistance connecting wires. The intent of this specification is to present the requirements for heaters capable of operating at sheath temperatures and heat fluxes that will limit the maximum internal heater-element temperature to 1050 0 C

  7. Electrical resistivity monitoring of the thermomechanical heater test in Yucca Mountain

    International Nuclear Information System (INIS)

    Ramirez, A.; Daily, W.; Buettner, M.

    1997-01-01

    A test is being conducted in the densely welded Topopah Springs tuff within Yucca Mountain, Nevada to study the thermomechanical and hydrological behavior of this horizon when it is headed. A single 4 kW heater, placed in a horizontal borehole, was turned on August, 1996 and will continue to heat the rockmass until April 1997. Of the several thermal, mechanical and hydrological measurements being used to monitor the rockmass response, electrical resistance tomography (ERT) is being used to monitor the movement of liquid water with a special interest in the movement of condensate out of the system. Four boreholes, containing a total of 30 ERT electrodes, were drilled to form the sides of a 30 foot square with the heater at the center and perpendicular to the plane. Images of resistivity change were calculated using data collected before and during the heating episode. The changes recovered show a region of decreasing resistivity approximately centered around the heater. The size this region grows with time and the resistivity decreases become stronger. The changes in resistivity are caused by both temperature and saturation changes. The observed resistivity changes suggest that the rock adjacent to the heater dries as heating progresses. This dry region is surrounded by a region of increased saturation where steam recondenses and imbibes into the rock

  8. Electrical resistivity monitoring of the thermomechanical heater test in Yucca Mountain

    International Nuclear Information System (INIS)

    Ramirez, A.; Daily, W.; Buettner, M.; LaBrecque, L

    1996-01-01

    A test is being conducted in the densely welded Topopah Springs tuff within Yucca Mountain, Nevada to study the thermomechanical and hydrological behavior of this horizon when it is heated. A single 4 kW heater, placed in a horizontal borehole, was turned on August, 1996 and will continue to heat the rockmass until April 1997. Of the several thermal, mechanical and hydrological measurements being used to monitor the rockmass response, electrical resistance tomography (ERT) is being used to monitor the movement of liquid water with a special interest in the movement of condensate out of the system. Four boreholes, containing a total of 30 ERT electrodes, were drilled to form the sides of a 30 foot square with the heater at the center and perpendicular to the plane. Images of resistivity change were calculated using data collected before and during the heating episode. The changes recovered show a region of decreasing resistivity approximately centered around the heater. The size this region grows with time and -the resistivity decreases become stronger. The changes in resistivity are caused by both temperature and saturation changes. The observed resistivity changes suggest that the rock adjacent to the heater dries as heating progresses. This dry region is surrounded by a region of increased saturation where steam recondenses and imbibes into the rock

  9. Electrical resistivity monitoring of the single heater test in Yucca Mountain

    International Nuclear Information System (INIS)

    Ramirez, A.

    1997-10-01

    Of the several thermal, mechanical and hydrological measurements being used to monitor the rockmass response in the Single Heater Test, electrical resistance tomography (ERT) is being used to monitor the movement of liquid water with a special interest in the movement of condensate out of the system. Images of resistivity change were calculated using data collected before, during and after the heating episode. This report will concentrate on the results obtained after heating ceased; previous reports discuss the results obtained during the heating phase. The changes recovered show a region of increasing resistivity approximately centered around the heater as the rock mass cooled. The size of this region grows with time and the resistivity increases become stronger. The increases in resistivity are caused by both temperature and saturation changes. The Waxman Smits model has been used to calculate rock saturation after accounting for temperature effects. The saturation estimates suggest that during the heating phase, a region of drying forms around the heater. During the cooling phase, the dry region has remained relatively stable. Wetter rock regions which developed below the heater during the heating phase, are slowly becoming smaller in size during the cooling phase. The last set of images indicate that some rewetting of the dry zone may be occurring. The accuracy of the saturation estimates depends on several factors that are only partly understood

  10. Effects of Oxidation on Oxidation-Resistant Graphite

    Energy Technology Data Exchange (ETDEWEB)

    Windes, William [Idaho National Lab. (INL), Idaho Falls, ID (United States); Smith, Rebecca [Idaho National Lab. (INL), Idaho Falls, ID (United States); Carroll, Mark [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-05-01

    The Advanced Reactor Technology (ART) Graphite Research and Development Program is investigating doped nuclear graphite grades that exhibit oxidation resistance through the formation of protective oxides on the surface of the graphite material. In the unlikely event of an oxygen ingress accident, graphite components within the VHTR core region are anticipated to oxidize so long as the oxygen continues to enter the hot core region and the core temperatures remain above 400°C. For the most serious air-ingress accident which persists over several hours or days the continued oxidation can result in significant structural damage to the core. Reducing the oxidation rate of the graphite core material during any air-ingress accident would mitigate the structural effects and keep the core intact. Previous air oxidation testing of nuclear-grade graphite doped with varying levels of boron-carbide (B4C) at a nominal 739°C was conducted for a limited number of doped specimens demonstrating a dramatic reduction in oxidation rate for the boronated graphite grade. This report summarizes the conclusions from this small scoping study by determining the effects of oxidation on the mechanical strength resulting from oxidation of boronated and unboronated graphite to a 10% mass loss level. While the B4C additive did reduce mechanical strength loss during oxidation, adding B4C dopants to a level of 3.5% or more reduced the as-fabricated compressive strength nearly 50%. This effectively minimized any benefits realized from the protective film formed on the boronated grades. Future work to infuse different graphite grades with silicon- and boron-doped material as a post-machining conditioning step for nuclear components is discussed as a potential solution for these challenges in this report.

  11. The effect of inlet conditions on the air side hydraulic resistance and flow maldistribution in industrial air heaters

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann-Vocke, Jonas, E-mail: jh63@waikato.ac.nz [University of Waikato, Energy Research Group, School of Science and Engineering, Private Bag 3105, Hamilton 3240 (New Zealand); Neale, James, E-mail: jamesn@waikato.ac.nz [University of Waikato, Energy Research Group, School of Science and Engineering, Private Bag 3105, Hamilton 3240 (New Zealand); Walmsley, Michael, E-mail: walmsley@waikato.ac.nz [University of Waikato, Department of Engineering, School of Science and Engineering, Private Bag 3105, Hamilton 3240 (New Zealand)

    2011-08-15

    Highlights: > Measured the effects of air heater inlet header geometry on hydraulic performance. > Measured the effects of inlet header flow maldistribution on hydraulic performance. > Inlet header flow maldistribution increases air heater system hydraulic resistance. - Abstract: Experimental system hydraulic resistance measurements on a scale air heater unit have highlighted the excessive hydraulic resistance of typical industry configurations. Both poor header inlet conditions and large header expansion angles are shown to contribute to system hydraulic resistance magnitudes 20-100% higher than suitable benchmark cases. Typical centrifugal fan system efficiencies well under 80% multiply the system resistance effects resulting in larger fan power penalties. Velocity profile measurements taken upstream and downstream of the test heat exchanger under flow maldistribution conditions provide insight into the flow maldistribution spreading caused by the heat exchanger resistance. The anisotropic resistance of the plate fin-and-tube heat exchanger is shown to result in resistance induced flow dispersion being concentrated in the axis parallel to the plate fins.

  12. Harwell Graphite Calorimeter

    International Nuclear Information System (INIS)

    Linacre, J.K.

    1970-01-01

    The calorimeter is of the steady state temperature difference type. It contains a graphite sample supported axially in a graphite outer jacket, the assembly being contained in a thin stainless steel outer can. The temperature of the jacket and the temperature difference between sample and jacket are measured by chromel-alumel thermocouples. The instrument is calibrated by means of an electric heater of low mass positioned on the axis of the sample. The resistance of the heater is known and both current through the heater and the potential across it may be measured. The instrument is filled with nitrogen at a pressure of one half atmosphere at room temperature. The calorimeter has been designed for prolonged operation at temperatures up to 600°C, and dose rates up to 1 Wg -1 , and instruments have been in use for periods in excess of one year

  13. Characteristics of joint resistance with different kinds of HTS tapes for heater trigger switch

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Je Yull; Park, Young Gun; Lee, Woo Seung; Jo, Hyun Chul; Ko, Tae Kuk [Yonsei University, Seoul (Korea, Republic of); Yoon, Yong Soo [Shin Ansan University, Ansan (Korea, Republic of)

    2014-03-15

    Recently, many researches on the system of superconducting power supply and superconducting magnetic energy storage (SMES) using high temperature superconducting (HTS) tapes has been progressed. Those kinds of superconducting devices use the heater trigger switches that have a control delay problem at moments of heating up and cooling down. One way to reduce the time delay is using a different HTS tape at trigger part. For example, HTS tape having lower critical temperature can reduce time delay of heating up and heating down stage for heater trigger operation. This paper deals with resistances joint with different kinds of HTS tapes which have different properties to verify usefulness of the suggested method. Three kinds of commercial HTS tapes with different specifications are selected as samples and two kinds of solders are used for comparison. Joint is performed with temperature and pressure controllable joint machine and the joint characteristics are analyzed under the repeatable conditions.

  14. Graphite

    Science.gov (United States)

    Robinson, Gilpin R.; Hammarstrom, Jane M.; Olson, Donald W.; Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.

    2017-12-19

    Graphite is a form of pure carbon that normally occurs as black crystal flakes and masses. It has important properties, such as chemical inertness, thermal stability, high electrical conductivity, and lubricity (slipperiness) that make it suitable for many industrial applications, including electronics, lubricants, metallurgy, and steelmaking. For some of these uses, no suitable substitutes are available. Steelmaking and refractory applications in metallurgy use the largest amount of produced graphite; however, emerging technology uses in large-scale fuel cell, battery, and lightweight high-strength composite applications could substantially increase world demand for graphite.Graphite ores are classified as “amorphous” (microcrystalline), and “crystalline” (“flake” or “lump or chip”) based on the ore’s crystallinity, grain-size, and morphology. All graphite deposits mined today formed from metamorphism of carbonaceous sedimentary rocks, and the ore type is determined by the geologic setting. Thermally metamorphosed coal is the usual source of amorphous graphite. Disseminated crystalline flake graphite is mined from carbonaceous metamorphic rocks, and lump or chip graphite is mined from veins in high-grade metamorphic regions. Because graphite is chemically inert and nontoxic, the main environmental concerns associated with graphite mining are inhalation of fine-grained dusts, including silicate and sulfide mineral particles, and hydrocarbon vapors produced during the mining and processing of ore. Synthetic graphite is manufactured from hydrocarbon sources using high-temperature heat treatment, and it is more expensive to produce than natural graphite.Production of natural graphite is dominated by China, India, and Brazil, which export graphite worldwide. China provides approximately 67 percent of worldwide output of natural graphite, and, as the dominant exporter, has the ability to set world prices. China has significant graphite reserves, and

  15. Monitoring of high temperature zone by resistivity tomography during in-situ heater test in sedimentary soft rocks

    International Nuclear Information System (INIS)

    Kubota, Kenji; Suzuki, Koichi; Ikenoya, Takafumi; Takakura, Nozomu; Tani, Kazuo

    2008-01-01

    In-situ heater test has been conducted to evaluate the influence of high temperature in an underground facility at a depth of 50 m. Resistivity monitoring is thought to be effective to map the extent of the high temperature zone. So we have conducted resistivity tomography during the heater test. As a result, low resistivity zone was appeared near the heated area as starting the heating, and the zone was expanded. Resistivity of rock is proportional to resistivity of pore water. It is known that pore water resistivity decreases as the temperature rise. This suggests that high temperature zone is detected and spatial distribution of temperature can be mapped by resistivity tomography. (author)

  16. Design and simulation of resistive SOI CMOS micro-heaters for high temperature gas sensors

    International Nuclear Information System (INIS)

    Iwaki, T; Covington, J A; Udrea, F; Ali, S Z; Guha, P K; Gardner, J W

    2005-01-01

    This paper describes the design of doped single crystal silicon (SCS) microhotplates for gas sensors. Resistive heaters are formed by an n+/p+ implantation into a Silicon-On-Insulator (SOI) wafer with a post-CMOS deep reactive ion etch to remove the silicon substrate. Hence they are fully compatible with CMOS technologies and allows for the integration of associated drive/detection circuitry. 2D electro-thermal models have been constructed and the results of numerical simulations using FEMLAB[reg] are given. Simulations show these micro-hotplates can operate at temperatures of 500 deg. C with a drive voltage of only 5 V and a power consumption of less than 100 mW

  17. The effect of inlet conditions on the air side hydraulic resistance and flow maldistribution in industrial air heaters

    International Nuclear Information System (INIS)

    Hoffmann-Vocke, Jonas; Neale, James; Walmsley, Michael

    2011-01-01

    Highlights: → Measured the effects of air heater inlet header geometry on hydraulic performance. → Measured the effects of inlet header flow maldistribution on hydraulic performance. → Inlet header flow maldistribution increases air heater system hydraulic resistance. - Abstract: Experimental system hydraulic resistance measurements on a scale air heater unit have highlighted the excessive hydraulic resistance of typical industry configurations. Both poor header inlet conditions and large header expansion angles are shown to contribute to system hydraulic resistance magnitudes 20-100% higher than suitable benchmark cases. Typical centrifugal fan system efficiencies well under 80% multiply the system resistance effects resulting in larger fan power penalties. Velocity profile measurements taken upstream and downstream of the test heat exchanger under flow maldistribution conditions provide insight into the flow maldistribution spreading caused by the heat exchanger resistance. The anisotropic resistance of the plate fin-and-tube heat exchanger is shown to result in resistance induced flow dispersion being concentrated in the axis parallel to the plate fins.

  18. Infrared Heaters

    Science.gov (United States)

    1979-01-01

    The heating units shown in the accompanying photos are Panelbloc infrared heaters, energy savers which burn little fuel in relation to their effective heat output. Produced by Bettcher Manufacturing Corporation, Cleveland, Ohio, Panelblocs are applicable to industrial or other facilities which have ceilings more than 12 feet high, such as those pictured: at left the Bare Hills Tennis Club, Baltimore, Maryland and at right, CVA Lincoln- Mercury, Gaithersburg, Maryland. The heaters are mounted high above the floor and they radiate infrared energy downward. Panelblocs do not waste energy by warming the surrounding air. Instead, they beam invisible heat rays directly to objects which absorb the radiation- people, floors, machinery and other plant equipment. All these objects in turn re-radiate the energy to the air. A key element in the Panelbloc design is a coating applied to the aluminized steel outer surface of the heater. This coating must be corrosion resistant at high temperatures and it must have high "emissivity"-the ability of a surface to emit radiant energy. The Bettcher company formerly used a porcelain coating, but it caused a production problem. Bettcher did not have the capability to apply the material in its own plant, so the heaters had to be shipped out of state for porcelainizing, which entailed extra cost. Bettcher sought a coating which could meet the specifications yet be applied in its own facilities. The company asked The Knowledge Availability Systems Center, Pittsburgh, Pennsylvania, a NASA Industrial Applications Center (IAC), for a search of NASA's files

  19. Study on wear resistance of vanadium alloying compacted/vermicular graphite cast iron

    International Nuclear Information System (INIS)

    Park, Yoon Woo

    1987-01-01

    Wear resistance of the Compacted/Vermicular graphite cast irons was studied by changing the vanadium content in the cast irons. The results obtained in this work are summarized as follows. 1. When the same amount of vanadium was added to the flake graphite cast iron, spheroidal graphitecast iron and Compacted/Vermicular graphite cast iron, spheroidal graphite cast iron and Compacted/Vermicular graphite cast iron wear resistance decreased in following sequence, that is, flake graphite cast iron> spheroidal graphite cast iron>Compacted/Vermicular graphite cast iron. 2. Addition of vanadium to the Compacted/Vermicular cast iron leaded to a remarkable increase in hardness because it made the amount of pearlite in matrix increase. 3. Addition of vanadium to the compacted/Vermicular graphite cast iron significantly enhanced wear resistance and the maximum resistance was achieved at about 0.36% vanadium. 4. The maximum amount of wear apppeared at sliding speed of about 1.4m/sec and wear mode was considered to be oxidation abrasion from the observation of wear tracks. (Author)

  20. Improvement of thermal shock resistance of isotropic graphite by Ti-doping

    International Nuclear Information System (INIS)

    Lopez-Galilea, I.; Ordas, N.; Garcia-Rosales, C.; Lindig, S.

    2009-01-01

    Ti-doped isotropic graphite is a promising candidate material for the strike point area of the ITER divertor due to its reduced chemical erosion by hydrogen bombardment and its high thermal shock resistance, mainly due the catalytic effect of TiC on the graphitization leading to an increase of thermal conductivity and to higher mechanical strength. Several manufacturing parameters such as oxidative stabilization treatment, carbonization cycle, graphitization temperature and dwell time during graphitization have been investigated in order to establish a relationship between these parameters and the final properties.

  1. Improvement of thermal shock resistance of isotropic graphite by Ti-doping

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Galilea, I. [Inmaculada Lopez-Galilea, CEIT and Tecnun (University of Navarra), Po de Manuel Lardizabal, 15 E-20018 San Sebastian (Spain)], E-mail: ilopez@ceit.es; Ordas, N.; Garcia-Rosales, C. [Inmaculada Lopez-Galilea, CEIT and Tecnun (University of Navarra), Po de Manuel Lardizabal, 15 E-20018 San Sebastian (Spain); Lindig, S. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, D-85748 Garching (Germany)

    2009-04-30

    Ti-doped isotropic graphite is a promising candidate material for the strike point area of the ITER divertor due to its reduced chemical erosion by hydrogen bombardment and its high thermal shock resistance, mainly due the catalytic effect of TiC on the graphitization leading to an increase of thermal conductivity and to higher mechanical strength. Several manufacturing parameters such as oxidative stabilization treatment, carbonization cycle, graphitization temperature and dwell time during graphitization have been investigated in order to establish a relationship between these parameters and the final properties.

  2. Influence of expandable graphite on fire resistance and water resistance of flame-retardant coatings

    International Nuclear Information System (INIS)

    Wang, Zhenyu; Han, Enhou; Ke, Wei

    2007-01-01

    Expandable graphite (EG) coating and ammonium polyphosphate-pentaerythritol-melamine (APP-PER-MEL) coating were prepared. Thermal degradation and char formation of the coatings were investigated by differential thermal analysis (DTA), thermogravimetry (TG), X-ray diffraction (XRD), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The results have shown that the anti-oxidation and fire-resistant properties of expandable graphite coating containing EG with size of 74 μm are better than those of APP-PER-MEL coating. The static immersion test was applied to study water resistance of the coatings, and the fire protection test and mechanical test were used to analyse heat insulation and mechanical properties of coatings before and after water immersion. The fire-resistant and mechanical properties of APP-PER-MEL coating were severely damaged by water immersion, whereas EG coating containing 8.5% EG with size of 74 μm could retain the good fire resistance even after 500 h water immersion

  3. Fabrication and testing of fire resistant graphite composite panels

    Science.gov (United States)

    Roper, W. D.

    1986-01-01

    Eight different graphite composite panels were fabricated using four different resin matrices. The resin matrices included Hercules 71775, a blend of vinylpolystyrpyridine and bismaleimide, H795, a bismaleimide, Cycom 6162, a phenolic, and PSP 6022m, a polystyrylpyridine. Graphite panels were fabricated using fabric or unidirectional tape. Described are the processes for preparing these panels and some of their mechanical, thermal and flammability properties. Panel properties are compared with state-of-the-art epoxy fiberglass composite panels.

  4. Irradiation test plan of oxidation-resistant graphite in WWR-K Research Reactor

    International Nuclear Information System (INIS)

    Sumita, Junya; Shibata, Taiju; Sakaba, Nariaki; Osaki, Hirotaka; Kato, Hideki; Fujitsuka, Kunihiro; Muto, Takenori; Gizatulin, Shamil; Shaimerdenov, Asset; Dyussambayev, Daulet; Chakrov, Petr

    2014-01-01

    Graphite materials are used for the in-core components of High Temperature Gas-cooled Reactor (HTGR) which is a graphite-moderated and helium gas-cooled reactor. In the case of air ingress accident in HTGR, SiO_2 protective layer is formed on the surface of SiC layer in TRISO CFP and oxidation of SiC does not proceed and fission products are retained inside the fuel particle. A new safety concept for the HTGR, called Naturally Safe HTGR, has been recently proposed. To enhance the safety of Naturally Safe HTGR ultimately, it is expected that oxidation-resistant graphite is used for graphite components to prevent the TRISO CFPs and fuel compacts from failure. SiC coating is one of candidate methods for oxidation-resistant graphite. JAEA and four graphite companies launched R&Ds to develop the oxidation-resistant graphite and the International Science and Technology Center (ISTC) partner project with JAEA and INP was launched to investigate the irradiation effects on the oxidation-resistant graphite. To determine grades of the oxidation-resistant graphite which will be adopted as irradiation test, a preliminary oxidation test was carried out. This paper described the results of the preliminary oxidation test, the plan of out-of-pile test, irradiation test and post-irradiation test (PIE) of the oxidation-resistant graphite. The results of the preliminary oxidation test showed that the integrity of the oxidation resistant graphite was confirmed and that all of grades used in the preliminary test can be adopted as the irradiation test. Target irradiation temperature was determined to be 1473 (K) and neutron fluence was determined to be from 0.54 × 10"2"5through 1.4 × 10"2"5 (/m"2, E>0.18MeV). Weight change, oxidation rate, activation energy, surface condition, etc. will be evaluated in out-of-pile test and weight change, irradiation effect on oxidation rate and activation energy, surface condition, etc. will be evaluated in PIE. (author)

  5. Design and optimization of resistance wire electric heater for hypersonic wind tunnel

    Science.gov (United States)

    Rehman, Khurram; Malik, Afzaal M.; Khan, I. J.; Hassan, Jehangir

    2012-06-01

    The range of flow velocities of high speed wind tunnels varies from Mach 1.0 to hypersonic order. In order to achieve such high speed flows, a high expansion nozzle is employed in the converging-diverging section of wind tunnel nozzle. The air for flow is compressed and stored in pressure vessels at temperatures close to ambient conditions. The stored air is dried and has minimum amount of moisture level. However, when this air is expanded rapidly, its temperature drops significantly and liquefaction conditions can be encountered. Air at near room temperature will liquefy due to expansion cooling at a flow velocity of more than Mach 4.0 in a wind tunnel test section. Such liquefaction may not only be hazardous to the model under test and wind tunnel structure; it may also affect the test results. In order to avoid liquefaction of air, a pre-heater is employed in between the pressure vessel and the converging-diverging section of a wind tunnel. A number of techniques are being used for heating the flow in high speed wind tunnels. Some of these include the electric arc heating, pebble bed electric heating, pebble bed natural gas fired heater, hydrogen burner heater, and the laser heater mechanisms. The most common are the pebble bed storage type heaters, which are inefficient, contaminating and time consuming. A well designed electrically heating system can be efficient, clean and simple in operation, for accelerating the wind tunnel flow up to Mach 10. This paper presents CFD analysis of electric preheater for different configurations to optimize its design. This analysis has been done using ANSYS 12.1 FLUENT package while geometry and meshing was done in GAMBIT.

  6. A Radiosonde Using a Humidity Sensor Array with a Platinum Resistance Heater and Multi-Sensor Data Fusion

    Science.gov (United States)

    Shi, Yunbo; Luo, Yi; Zhao, Wenjie; Shang, Chunxue; Wang, Yadong; Chen, Yinsheng

    2013-01-01

    This paper describes the design and implementation of a radiosonde which can measure the meteorological temperature, humidity, pressure, and other atmospheric data. The system is composed of a CPU, microwave module, temperature sensor, pressure sensor and humidity sensor array. In order to effectively solve the humidity sensor condensation problem due to the low temperatures in the high altitude environment, a capacitive humidity sensor including four humidity sensors to collect meteorological humidity and a platinum resistance heater was developed using micro-electro-mechanical-system (MEMS) technology. A platinum resistance wire with 99.999% purity and 0.023 mm in diameter was used to obtain the meteorological temperature. A multi-sensor data fusion technique was applied to process the atmospheric data. Static and dynamic experimental results show that the designed humidity sensor with platinum resistance heater can effectively tackle the sensor condensation problem, shorten response times and enhance sensitivity. The humidity sensor array can improve measurement accuracy and obtain a reliable initial meteorological humidity data, while the multi-sensor data fusion technique eliminates the uncertainty in the measurement. The radiosonde can accurately reflect the meteorological changes. PMID:23857263

  7. The coherent interlayer resistance of a single, rotated interface between two stacks of AB graphite

    Energy Technology Data Exchange (ETDEWEB)

    Habib, K. M. Masum, E-mail: khabib@ee.ucr.edu; Sylvia, Somaia S.; Neupane, Mahesh; Lake, Roger K., E-mail: rlake@ee.ucr.edu [Department of Electrical Engineering, University of California, Riverside, California 92521-0204 (United States); Ge, Supeng [Department of Physics and Astronomy, University of California, Riverside, California 92521-0204 (United States)

    2013-12-09

    The coherent, interlayer resistance of a misoriented, rotated interface between two stacks of AB graphite is determined for a variety of misorientation angles. The quantum-resistance of the ideal AB stack is on the order of 1 to 10 mΩ μm{sup 2}. For small rotation angles, the coherent interlayer resistance exponentially approaches the ideal quantum resistance at energies away from the charge neutrality point. Over a range of intermediate angles, the resistance increases exponentially with cell size for minimum size unit cells. Larger cell sizes, of similar angles, may not follow this trend. The energy dependence of the interlayer transmission is described.

  8. The coherent interlayer resistance of a single, rotated interface between two stacks of AB graphite

    International Nuclear Information System (INIS)

    Habib, K. M. Masum; Sylvia, Somaia S.; Neupane, Mahesh; Lake, Roger K.; Ge, Supeng

    2013-01-01

    The coherent, interlayer resistance of a misoriented, rotated interface between two stacks of AB graphite is determined for a variety of misorientation angles. The quantum-resistance of the ideal AB stack is on the order of 1 to 10 mΩ μm 2 . For small rotation angles, the coherent interlayer resistance exponentially approaches the ideal quantum resistance at energies away from the charge neutrality point. Over a range of intermediate angles, the resistance increases exponentially with cell size for minimum size unit cells. Larger cell sizes, of similar angles, may not follow this trend. The energy dependence of the interlayer transmission is described

  9. A process for the production of a scale-proof and corrosion-resistant coating on graphite and carbon bodies

    Science.gov (United States)

    Fitzer, E.

    1981-01-01

    A process for the production of a corrosion resistant coating on graphite and carbon bodies is described. The carbon or graphite body is coated or impregnated with titanium silicide under the addition of a metal containing wetting agent in a nitrogen free atmosphere, so that a tight coating is formed.

  10. In-situ electric resistance measurements and annealing effects of graphite exposed to swift heavy ions

    International Nuclear Information System (INIS)

    Fernandes, Sandrina; Pellemoine, Frederique; Tomut, Marilena; Avilov, Mikhail; Bender, Markus; Boulesteix, Marine; Krause, Markus; Mittig, Wolfgang; Schein, Mike; Severin, Daniel; Trautmann, Christina

    2013-01-01

    To study the suitability of using graphite as material for high-power targets for rare isotope production at the future Facility for Rare Isotope Beams (FRIB) in the USA and at the Facility for Antiproton and Ion Research (FAIR) in Germany, thin foils of polycrystalline graphite were exposed to 8.6-MeV/u Au ions reaching a maximum fluence of 1 × 10 15 ions/cm 2 . Foil irradiation temperatures of up to 1800 °C were obtained by ohmic heating. In-situ monitoring of the electrical resistance of the graphite foils during and after irradiation provided information on beam-induced radiation damage. The rate of electrical resistance increase as a function of fluence was found to decrease with increasing irradiation temperature, indicating a more efficient annealing of the irradiation-produced defects. This is corroborated by the observation that graphite foils irradiated at temperatures below about 800 °C showed cracks and pronounced deformations, which did not appear on the samples irradiated at higher temperatures

  11. In-situ electric resistance measurements and annealing effects of graphite exposed to swift heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, Sandrina [Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI (United States); Pellemoine, Frederique, E-mail: pellemoi@frib.msu.edu [Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI (United States); Tomut, Marilena [GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt (Germany); National Institute for Materials Physics (NIMP), Bucharest (Romania); Avilov, Mikhail [Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI (United States); Bender, Markus [GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt (Germany); Boulesteix, Marine [Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI (United States); Krause, Markus [GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt (Germany); Technische Universität, Darmstadt (Germany); Mittig, Wolfgang [National Superconducting Cyclotron Lab (NSCL), Michigan State University, East Lansing, MI (United States); Schein, Mike [Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI (United States); Severin, Daniel [GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt (Germany); Trautmann, Christina [GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt (Germany); Technische Universität, Darmstadt (Germany)

    2013-11-01

    To study the suitability of using graphite as material for high-power targets for rare isotope production at the future Facility for Rare Isotope Beams (FRIB) in the USA and at the Facility for Antiproton and Ion Research (FAIR) in Germany, thin foils of polycrystalline graphite were exposed to 8.6-MeV/u Au ions reaching a maximum fluence of 1 × 10{sup 15} ions/cm{sup 2}. Foil irradiation temperatures of up to 1800 °C were obtained by ohmic heating. In-situ monitoring of the electrical resistance of the graphite foils during and after irradiation provided information on beam-induced radiation damage. The rate of electrical resistance increase as a function of fluence was found to decrease with increasing irradiation temperature, indicating a more efficient annealing of the irradiation-produced defects. This is corroborated by the observation that graphite foils irradiated at temperatures below about 800 °C showed cracks and pronounced deformations, which did not appear on the samples irradiated at higher temperatures.

  12. Feasibility of using electrical downhole heaters in Faja heavy oil reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, R.; Bashbush, J.L.; Rincon, A. [Society of Petroleum Engineers, Richardson, TX (United States)]|[Schlumberger, Sugar Land, TX (United States)

    2008-10-15

    Numerical models were used to examine the effect of downhole heaters in enhanced oil recovery (EOR) processes in Venezuela's Orinoco reservoir. The downhole heaters were equipped with mineral-insulated cables that allowed alternating currents to flow between 2 conductors packed in a resistive core composed of polymers and graphite. The heaters were used in conjunction with steam assisted gravity drainage (SAGD) processes and also used in horizontal wells for limited amounts of time in order to accelerate production and pressure declines. The models incorporated the petrophysical and fluid characteristics of the Ayacucho area in the Faja del Orinoco. A compositional-thermal simulator was used to describe heat and fluid flow within the reservoir. A total of 8 scenarios were used to examine the electrical heaters with horizontal and vertical wells with heaters of various capacities. Results of the study were then used in an economic analysis of capitalized and operating costs. Results of the study showed that downhole heaters are an economically feasible EOR option for both vertical and horizontal wells. Use of the heaters prior to SAGD processes accelerated production and achieved higher operational efficiencies. 5 refs., 9 tabs., 15 figs.

  13. Development of electrically heated rods with resistive element of graphite or carbon/carbon composites for simulating transients in nuclear reactors

    International Nuclear Information System (INIS)

    Polidoro, H.A.

    1987-01-01

    Thermo-hydraulic problems, in nuclear plants are normally analysed by the use of electrically heated rods. The direct or indirect heater rods are limited in their use because, for high temperatures and high heat flux, the heating element temperature approach its melting point. The use of platinum or tantalum is not economically viable. Graphite and carbon/carbon composites are alternative materials because they are good electrical conductors and have good mechanical properties at high temperatures. Graphite and carbon/carbon composites were used to make heating elements for testing by indirect heating. The swaging process used to reduce the cladding diameter prevented the fabrication of graphite heater rods. Carbon/carbon composite used to make heating elements gave good results up to a heat flux of 100 W/cm 2 . It is easy to verify that this value can be exceeded if the choice of the complementary materials for insulator and cladding improved. (author) [pt

  14. Semi-transparent gold film as simultaneous surface heater and resistance thermometer for nucleate boiling studies

    International Nuclear Information System (INIS)

    Oker, E.; Merte, H. Jr.

    1981-01-01

    A large (22 x 25 mm) semi-transparent thin film of gold, approximately 400 A in thickness, is deposited on a glass substrate for simultaneous use as a heat source and resistance thermometer. Construction techniques and calibration procedures are described, and a sample application to a transient boiling process is included with simultaneous high speed photographs taken through the thin film from beneath

  15. Improvement of thermal shock resistance of isotropic graphite by ti-doping

    International Nuclear Information System (INIS)

    Lopez-Galilea, I.; Ordas, N.; Garcia-Rosales, C.; Lindig, S.

    2007-01-01

    Full text of publication follows: Carbon fiber reinforced carbon (CFC) is the present candidate material for the strike point area of the ITER divertor due to its ability to withstand excessive heat loads during ELMs and plasma disruptions. However, chemical erosion of carbon under hydrogen bombardment from the plasma involves serious disadvantages for this application (replacement and safety problems due to tritium co-deposition). In addition, the manufacturing process of present CFC candidate materials is long and complex resulting in high costs, and CFC materials are inherently anisotropic. Doping of carbon with small amounts (several at. %) of titanium has proved to be effective in reducing chemical erosion while maintaining or even improving the mechanical properties. furthermore, TiC as dopant contributes to increase significantly the thermal conductivity and consequently the thermal shock resistance, due to the catalytic effect of this carbide on the graphitization. The aim of this work is to improve substantially the thermal shock resistance of fine-grained isotropic graphite by doping it with small amounts of TiC, reducing at the same time the chemical erosion. By this way Ti-doped graphites could be competitive with present CFC candidate materials for next step fusion devices. To achieve this, a synthetic naphthalene-derived mesophase pitch named AR is used as carbon precursor; this raw material exhibits excellent graphitizability, high chemical purity and consistent quality. Due to the low viscosity at the softening point of AR, resulting in swelling during the carbonization treatment, it is necessary to modify the initial viscosity of AR by an adequate oxidative stabilization treatment. As dopant, TiC powder with 130 nm average particle size is added. The influence of several manufacturing parameters such as oxidative stabilization treatment, carbonization cycle, graphitization temperature and dwell time during graphitization have been investigated in

  16. Improvement of thermal shock resistance of isotropic graphite by ti-doping

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Galilea, I.; Ordas, N.; Garcia-Rosales, C. [Navarrra Univ., CEPT, San Sebastian (Spain); Lindig, S. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Garching (Germany)

    2007-07-01

    Full text of publication follows: Carbon fiber reinforced carbon (CFC) is the present candidate material for the strike point area of the ITER divertor due to its ability to withstand excessive heat loads during ELMs and plasma disruptions. However, chemical erosion of carbon under hydrogen bombardment from the plasma involves serious disadvantages for this application (replacement and safety problems due to tritium co-deposition). In addition, the manufacturing process of present CFC candidate materials is long and complex resulting in high costs, and CFC materials are inherently anisotropic. Doping of carbon with small amounts (several at. %) of titanium has proved to be effective in reducing chemical erosion while maintaining or even improving the mechanical properties. furthermore, TiC as dopant contributes to increase significantly the thermal conductivity and consequently the thermal shock resistance, due to the catalytic effect of this carbide on the graphitization. The aim of this work is to improve substantially the thermal shock resistance of fine-grained isotropic graphite by doping it with small amounts of TiC, reducing at the same time the chemical erosion. By this way Ti-doped graphites could be competitive with present CFC candidate materials for next step fusion devices. To achieve this, a synthetic naphthalene-derived mesophase pitch named AR is used as carbon precursor; this raw material exhibits excellent graphitizability, high chemical purity and consistent quality. Due to the low viscosity at the softening point of AR, resulting in swelling during the carbonization treatment, it is necessary to modify the initial viscosity of AR by an adequate oxidative stabilization treatment. As dopant, TiC powder with 130 nm average particle size is added. The influence of several manufacturing parameters such as oxidative stabilization treatment, carbonization cycle, graphitization temperature and dwell time during graphitization have been investigated in

  17. Fundamental studies of low velocity impact resistance of graphite fiber reinforced polymer matrix composites

    International Nuclear Information System (INIS)

    Bowles, K.J.

    1985-01-01

    A study was conducted to relate the impact resistance of graphite fiber reinforced composites with matrix properties through gaining an understanding of the basic mechanics involved in the deformation and fracture process, and the effect of the polymer matrix structure on these mechanisms. It was found that the resin matrix structure influences the composite impact resistance in at least two ways. The integration of flexibilizers into the polymer chain structure tends to reduce the T/sub G/ and the mechanical properties of the polymer. The reduction in the mechanical properties of the matrix does not enhance the composite impact resistance because it allows matrix controlled failure to initiate impact damage. Linear polymers, which contain no active groups for cross-linking, do not toughen composites because the fiber-matrix interfacial bond is not of sufficient strength to prevent interfacial failure from occurring. Toughness must be built into the basic polymer backbone and cross-linking structure

  18. Mechanical property characterization and impact resistance of selected graphite/PEEK composite materials

    Science.gov (United States)

    Baker, Donald J.

    1994-01-01

    To use graphite polyetheretherketone (PEEK) material on highly curved surfaces requires that the material be drapable and easily conformable to the surface. This paper presents the mechanical property characterization and impact resistance results for laminates made from two types of graphite/PEEK materials that will conform to a curved surface. These laminates were made from two different material forms. These forms are: (1) a fabric where each yarn is a co-mingled Celion G30-500 3K graphite fiber and PEEK thermoplastic fiber; and (2) an interleaved material of Celion G30-500 3K graphite fabric interleaved with PEEK thermoplastic film. The experimental results from the fabric laminates are compared with results for laminates made from AS4/PEEK unidirectional tape. The results indicate that the tension and compression moduli for quasi-isotropic and orthotropic laminates made from fabric materials are at least 79 percent of the modulus of equivalent laminates made from tape material. The strength of fabric material laminates is at least 80 percent of laminates made from tape material. The evaluation of fabric material for shear stiffness indicates that a tape material laminate could be replaced by a fabric material laminate and still maintain 89 percent of the shear stiffness of the tape material laminate. The notched quasi-isotropic compression panel failure strength is 42 to 46 percent of the unnotched quasi-isotropic laminate strength. Damage area after impact with 20 ft-lbs of impact energy is larger for the co-mingled panels than for the interleaved panels. The inerleaved panels have less damage than panels made from tape material. Residual compression strength of quasi-isotropic panels after impact of 20 ft-lbs of energy varies between 33 percent of the undamaged quasi-isotropic material strength for the tape material and 38 percent of the undamaged quasi-isotropic material strength for the co-mingled fabric material.

  19. FIRE-RESISTANCE PROPERTIES RESEARCH OF “WATER GLASS - GRAPHITE MICROPARTICLES” COMPOSITE MATERIAL

    Directory of Open Access Journals (Sweden)

    E. A. Pitukhin

    2016-03-01

    Full Text Available Subject of Research. Research results of the fire-resistance for “water glass - graphite microparticles” composite material (CM are given. The method for fire-resistance test of the micro composition is suggested in order to determine the limit state of the experimental samples under hightemperature action. Method. Test-benchequipment being used for research includes metering devices of temperature and time, as well as laboratory electric furnace PL20 with a maximum temperature in the chamber up to 1250ºC. Fire-resistance limit for the test samples of composite material is determined by the loss of insulating ability (I. For that purpose, the time is obtained from the test beginning with the standard temperature mode up to a limiting condition. Main Results. In accordance with the requirements of regulatory documents fire-resistance limit I15 has been obtained equal to 15 minutes. The qualitative and quantitative phase analysis of the CM structure has been done. By the study of samples by X-ray diffraction and electron microscopy we have determined that the material retains the same chemical structure with a monotonic heating above 700° C. Practical Relevance. The composite material with obtained characteristics can be used as a protective coating for building constructions with the aim of fire-resistance enhancement and fuel hazard reduction.

  20. The characteristics of TiC and oxidation resistance and mechanical properties of TiC coated graphite under corrosive environment

    International Nuclear Information System (INIS)

    Yoda, Shinichi; Oku, Tatsuo; Ioka, Ikuo; Umekawa, Shokichi.

    1982-07-01

    Core region of the Very High Temperature Gas Cooled Reactor (VHTR) consists mainly of polycrystalline graphite whose mechanical properties degradated by corrosion resulting from such impurities as O 2 , H 2 O, and CO 2 in coolant He gas. Mechanical properties and oxidation resistance of TiC coated graphite under corrosive condition were examined in order to evaluate the effects of TiC coating on preventing the graphite from its degradation in service condition of the VHTR. Characteristics of TiC coating was also examined using EPMA. Holding the specimen at 1373 K for 6 hr produced strong interface between TiC coating and the graphite, however, microcracks on TiC coating was observed, the origin of which is ascribed to mismatch in thermal expansion between TiC coating and the graphite. Oxidation rate of TiC coated graphite was one-thirds of that of uncoated graphite, which demonstrated that TiC coating on the graphite improved the oxidation resistance of the graphite. However, debonding of TiC coating layer at the interface was observed after heating for 3 to 4 hr in the oxidation condition. Changes in Young's modulus of TiC coated graphite were a half of that of uncoated graphite. Flexural strength of TiC coated graphite remained at the original value up to about 4 hr oxidation, therafter it decreased abruptly as was the trend of uncoated graphite. It is concluded that TiC coating on graphite materials is very effective in improving oxidation resistance and suppressing degradation of mechanical properties of the graphite. (author)

  1. Feedwater heater

    International Nuclear Information System (INIS)

    Murata, Shigeto; Minato, Akihiko; Yokomizo, Osamu; Masuhara, Yasuhiro.

    1991-01-01

    The present invention concerns a feedwater heater for a BWR type reactor. A cylinder is fit into the lower portion of a drain inlet pipe, to which drain water inflows from a turbine, and a disk is disposed to the lower end of the cylinder vertically to the axis of the cylinder, to constitute a drain water dispersing mechanism. Drain water inflown from the drain inlet pipe is fallen in the cylinder and collides against the disk. The collided drain water is splashed horizontally by its kinetic energy to reach the heat transfer pipe and conducts heat exchange. In this case, the drain water is converted into fine droplets by the collision against the disk and scattered in a wide range in the heater. As a result, sensible heat in the drain water can be transferred to feedwater effectively. Then, even the heat energy of the drain water can be utilized effectively for heat exchange, to improve the heat exchange efficiency. (I.N.)

  2. The Effect of Novolac and Graphite Polycrystal on the Acetone Penetration and Thermal Resistance of Nanocomposites Based on Nitrile Rubber

    Directory of Open Access Journals (Sweden)

    Rasool Mahboudi

    2015-03-01

    Full Text Available Developments of high diffusive environments in coincidence with emerging fluids with strong ability to destroy polymeric systems have resulted in rapid deformation and destruction of polymeric parts when in contact with such aggressive environments. Therefore, nowadays, there is a great need to develop highly resistant materials towards aggressive chemicals and harsh conditions. In this paper the effect of graphite polycrystal powders and novolac type phenolic resin has been experimentally studied towards acetone diffusion and thermal stability of polyacrylonitrile butadiene rubber/novolac/graphite polycrystal nanocomposites. The results obtained from dynamic mechanical thermal analysis (DMTA and swelling in acetone showed that after 32 h samples reached to 94.2% of final swelling state. By using Avrami equation and swelling experimental data, the functionality of Ln(m/m0 to novolac and graphite polycrystal weight fraction and test duration time were evaluated. This theoretical equation evaluated and predicted the amount of Ln(m/m0 with 5.92% error after 32 h. Increases in graphite polycrystal content were followed by decreases in diffusion of acetone and modulus, before glass transition temperature, and increased thermal stability and thermal resistance of the nanocomposites. Increases in novolac content by 35 wt%, decreased glass transition temperature, thermal stability and thermal resistance of the nanocomposites. In nanocomposite, containing 45 wt% of novolac, dynamic mechanical thermal analysis (DMTA data and scanning electron microscope (SEM images showed phase separation of thermoset and elastomer in the nanocomposite blend.

  3. Graphite suspension in carbon dioxide

    International Nuclear Information System (INIS)

    Roche, R.

    1965-01-01

    Since 1963 the Atomic Division of SNECMA has been conducting, under a contract with the CEA, an experimental work with a two-component fluid comprised of carbon dioxide and small graphite particles. The primary purpose was the determination of basic engineering information pertaining to the stability and the flowability of the suspension. The final form of the experimental loop consists mainly of the following items: a light-phase compressor, a heavy-phase pump, an electrical-resistance type heater section, a cooling heat exchanger, a hairpin loop, a transparent test section and a separator. During the course of the testing, it was observed that the fluid could be circulated quite easily in a broad range of variation of the suspension density and velocity - density from 30 to 170 kg/m 3 and velocity from 2 to 24 m/s. The system could be restarted and circulation maintained without any difficulty, even with the heavy-phase pump alone. The graphite did not have a tendency to pack or agglomerate during operation. No graphite deposition was observed on the wall of the tubing. A long period run (250 hours) has shown the evolution of the particle dimensions. Starting with graphite of surface area around 20 m 2 /g (graphite particles about 1 μ), the powder surface area reaches an asymptotic value of 300 m 2 /g (all the particles less than 0.3 μ). Moisture effect on flow stability, flow distribution between two parallel channels, pressure drop in straight tubes, recompression ratio in diffusers were also investigated. (author) [fr

  4. Brazing graphite to graphite

    International Nuclear Information System (INIS)

    Peterson, G.R.

    1976-01-01

    Graphite is joined to graphite by employing both fine molybdenum powder as the brazing material and an annealing step that together produce a virtually metal-free joint exhibiting properties similar to those found in the parent graphite. Molybdenum powder is placed between the faying surfaces of two graphite parts and melted to form molybdenum carbide. The joint area is thereafter subjected to an annealing operation which diffuses the carbide away from the joint and into the graphite parts. Graphite dissolved by the dispersed molybdenum carbide precipitates into the joint area, replacing the molybdenum carbide to provide a joint of graphite

  5. Impact resistance and interlaminar fracture toughness of through-the-thickness reinforced graphite/epoxy

    Science.gov (United States)

    Dexter, H. B.; Funk, J. G.

    1986-01-01

    Five through-the-thickness stitch configurations are analyzed to determine the effect of impact resistance and interlaminar fracture toughness on T3000/3501-6 graphite/epoxy. The test specimens were stitched with either polyester or Kevlar yarns and with various stitch parameters. Tension and compression mechanical, impact and compression-after-impact, and double cantilever beam tests were conducted. It is observed that the stitched laminates have tension and compression strengths 20-25 percent lower than the strengths of unstitched laminates, the tension strength of stitched laminates is reduced with increasing number of stitches, and the compression strength increases as the number of stitches are increased. The impact data reveal that the Kevlar stitched laminates have less damage than unstitched laminates; the most effective configuration for suppressing impact damage and improving interlaminar fracture toughness consists of Kevlar yarns 1/4 inch apart with eight stitches per inch. The mode 1 critical strain energy release rate for the 1/4 inch Kevlar eight stitch laminate was calculated as 30 times higher than that of the unstitched.

  6. Special graphites; Graphites speciaux

    Energy Technology Data Exchange (ETDEWEB)

    Leveque, P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-07-01

    A large fraction of the work undertaken jointly by the Commissariat a l'Energie Atomique (CEA) and the Pechiney Company has been the improvement of the properties of nuclear pile graphite and the opening up of new fields of graphite application. New processes for the manufacture of carbons and special graphites have been developed: forged graphite, pyro-carbons, high density graphite agglomeration of graphite powders by cracking of natural gas, impervious graphites. The physical properties of these products and their reaction with various oxidising gases are described. The first irradiation results are also given. (authors) [French] Ameliorer les proprietes du graphite nucleaire pour empilements et ouvrir de nouveaux domaines d'application au graphite constituent une part importante de l'effort entrepris en commun par le Commissariat a l'Energie Atomique (CEA) et la compagnie PECHINEY. Des procedes nouveaux de fabrication de carbones et graphites speciaux ont ete mis au point: graphite forge, pyrocarbone, graphite de haute densite, agglomeration de poudres de graphite par craquage de gaz naturel, graphites impermeables. Les proprietes physiques de ces produits ainsi que leur reaction avec differents gaz oxydants sont decrites. Les premiers resultats d'irradiation sont aussi donnes. (auteurs)

  7. The correlation of low-velocity impact resistance of graphite-fiber-reinforced composites with matrix properties

    Science.gov (United States)

    Bowles, Kenneth J.

    1988-01-01

    Summarized are basic studies that were conducted to correlate the impact resistance of graphite-fiber-reinforced composites with polymer matrix properties. Three crosslinked epoxy resins and a linear polysulfone were selected as composite matrices. As a group, these resins possess a significantly large range of mechanical properties. The mechanical properties of the resins and their respective composites were measured. Neat resin specimens and unidirectional and crossply composite specimens were impact tested with an instrumented dropweight tester. Impact resistances of the specimens were assesseed on the basis of loading capability, energy absorption, and extent of damage.

  8. Packaged die heater

    Science.gov (United States)

    Spielberger, Richard; Ohme, Bruce Walker; Jensen, Ronald J.

    2011-06-21

    A heater for heating packaged die for burn-in and heat testing is described. The heater may be a ceramic-type heater with a metal filament. The heater may be incorporated into the integrated circuit package as an additional ceramic layer of the package, or may be an external heater placed in contact with the package to heat the die. Many different types of integrated circuit packages may be accommodated. The method provides increased energy efficiency for heating the die while reducing temperature stresses on testing equipment. The method allows the use of multiple heaters to heat die to different temperatures. Faulty die may be heated to weaken die attach material to facilitate removal of the die. The heater filament or a separate temperature thermistor located in the package may be used to accurately measure die temperature.

  9. Wear resistance and friction reduction in acrylo nitrile butadiene rubber through hybrid combination of graphite flakes and nano tungsten disulphide

    Energy Technology Data Exchange (ETDEWEB)

    Agrawal, Neha, E-mail: neha87bhu@gmail.com [Defence Material Store Research Development and Establishment (DMSRDE), DRDO, GT Road, Kanpur 208013, U.P (India); Indian Institute of Technology Bombay, Powai, Mumbai 400076, Maharashtra (India); Pandey, Akanksha; Parihar, A. S.; Mishra, A. K.; Mukhopadhyay, K.; Prasad, N. E. [Defence Material Store Research Development and Establishment (DMSRDE), DRDO, GT Road, Kanpur 208013, U.P (India); Gandhi, M. N.; Bhattacharyya, A. R. [Indian Institute of Technology Bombay, Powai, Mumbai 400076, Maharashtra (India)

    2016-05-06

    Friction and wear have considerable role in the life span of two interacting parts. Incorporation of nanofillers in polymers/elastomers matrix causes commendable changes in its tribologicalproperties. The main purpose of this work is to reduce the coefficient of friction and wear rate of Acrylo Nitrile Butadiene rubber (NBR). To achieve such objective traditionally well knownlubricants graphite(G), tungsten disulphide (WS{sub 2}) and there hybrid combination was incorporated in NBR matrix. Effect of applied load (force) and concentration of fillers on tribological properties of NBR had been studied. The filler incorporation enhanced the hardnessby 8%, showed resistance to hydraulic oil and aging effect also got improved significantly. A particular optimized concentration of NBR with hybrid combination of 2% WS{sub 2} and 4% Graphite showed minimum coefficient of friction as well as wear rate. A hypothesis could be attributed that similar lamellar structure of WS{sub 2} and Graphite along with formation of a stable nanoscale disulfide tribofilmcould result in lowering of friction. These substantially improved properties of nanoreinforced rubber materials would definitely pave promising path for plethora of potential technological applications.

  10. Wear resistance and friction reduction in acrylo nitrile butadiene rubber through hybrid combination of graphite flakes and nano tungsten disulphide

    International Nuclear Information System (INIS)

    Agrawal, Neha; Pandey, Akanksha; Parihar, A. S.; Mishra, A. K.; Mukhopadhyay, K.; Prasad, N. E.; Gandhi, M. N.; Bhattacharyya, A. R.

    2016-01-01

    Friction and wear have considerable role in the life span of two interacting parts. Incorporation of nanofillers in polymers/elastomers matrix causes commendable changes in its tribologicalproperties. The main purpose of this work is to reduce the coefficient of friction and wear rate of Acrylo Nitrile Butadiene rubber (NBR). To achieve such objective traditionally well knownlubricants graphite(G), tungsten disulphide (WS_2) and there hybrid combination was incorporated in NBR matrix. Effect of applied load (force) and concentration of fillers on tribological properties of NBR had been studied. The filler incorporation enhanced the hardnessby 8%, showed resistance to hydraulic oil and aging effect also got improved significantly. A particular optimized concentration of NBR with hybrid combination of 2% WS_2 and 4% Graphite showed minimum coefficient of friction as well as wear rate. A hypothesis could be attributed that similar lamellar structure of WS_2 and Graphite along with formation of a stable nanoscale disulfide tribofilmcould result in lowering of friction. These substantially improved properties of nanoreinforced rubber materials would definitely pave promising path for plethora of potential technological applications.

  11. Wear resistance and friction reduction in acrylo nitrile butadiene rubber through hybrid combination of graphite flakes and nano tungsten disulphide

    Science.gov (United States)

    Agrawal, Neha; Pandey, Akanksha; Parihar, A. S.; Mishra, A. K.; Gandhi, M. N.; Bhattacharyya, A. R.; Mukhopadhyay, K.; Prasad, N. E.

    2016-05-01

    Friction and wear have considerable role in the life span of two interacting parts. Incorporation of nanofillers in polymers/elastomers matrix causes commendable changes in its tribologicalproperties. The main purpose of this work is to reduce the coefficient of friction and wear rate of Acrylo Nitrile Butadiene rubber (NBR). To achieve such objective traditionally well knownlubricants graphite(G), tungsten disulphide (WS2) and there hybrid combination was incorporated in NBR matrix. Effect of applied load (force) and concentration of fillers on tribological properties of NBR had been studied. The filler incorporation enhanced the hardnessby 8%, showed resistance to hydraulic oil and aging effect also got improved significantly. A particular optimized concentration of NBR with hybrid combination of 2% WS2 and 4% Graphite showed minimum coefficient of friction as well as wear rate. A hypothesis could be attributed that similar lamellar structure of WS2 and Graphite along with formation of a stable nanoscale disulfide tribofilmcould result in lowering of friction. These substantially improved properties of nanoreinforced rubber materials would definitely pave promising path for plethora of potential technological applications.

  12. Highly sensitive piezo-resistive graphite nanoplatelet-carbon nanotube hybrids/polydimethylsilicone composites with improved conductive network construction.

    Science.gov (United States)

    Zhao, Hang; Bai, Jinbo

    2015-05-13

    The constructions of internal conductive network are dependent on microstructures of conductive fillers, determining various electrical performances of composites. Here, we present the advanced graphite nanoplatelet-carbon nanotube hybrids/polydimethylsilicone (GCHs/PDMS) composites with high piezo-resistive performance. GCH particles were synthesized by the catalyst chemical vapor deposition approach. The synthesized GCHs can be well dispersed in the matrix through the mechanical blending process. Due to the exfoliated GNP and aligned CNTs coupling structure, the flexible composite shows an ultralow percolation threshold (0.64 vol %) and high piezo-resistive sensitivity (gauge factor ∼ 10(3) and pressure sensitivity ∼ 0.6 kPa(-1)). Slight motions of finger can be detected and distinguished accurately using the composite film as a typical wearable sensor. These results indicate that designing the internal conductive network could be a reasonable strategy to improve the piezo-resistive performance of composites.

  13. Effect of electrical pulse treatment on the thermal fatigue resistance of bionic compacted graphite cast iron processed in water

    International Nuclear Information System (INIS)

    Liu, Yan; Zhou, Hong; Su, Hang; Yang, Chunyan; Cheng, Jingyan; Zhang, Peng; Ren, Luquan

    2012-01-01

    Highlights: ► Electrical pulse treatment can reduce cracks on bionic units before thermal fatigue tests. ► Electrical pulse treatment can reduce crack sources during thermal fatigue tests. ► Thermal fatigue resistance of bionic units processed in water is enhanced. ► Thermal fatigue resistance of bionic CGI processed in water is improved. -- Abstract: In order to further enhance the thermal fatigue resistance of bionic compacted graphite cast iron (CGI) which is processed by laser in water, the electrical pulse treatment is applied to improve the thermal fatigue resistance of bionic units. The results show that the electrical pulse treatment causes the supersaturated carbon atoms located in the lattice of austenite to react with the iron atoms to form the Fe 3 C. The microstructures of the bionic units processed in water are refined by the electrical pulse treatment. The cracks on the bionic units are reduced by the electrical pulse treatment before the thermal fatigue tests; and during the tests, the thermal fatigue resistance of bionic units is therefore enhanced by reducing the crack sources. By this way, the thermal fatigue resistance of bionic CGI processed in water is improved.

  14. Field Performance of Heat Pump Water Heaters in the Northeast

    Energy Technology Data Exchange (ETDEWEB)

    Shapiro, Carl [Consortium for Advanced Residential Buildings, Norwalk, CT (United States); Puttagunta, Srikanth [Consortium for Advanced Residential Buildings, Norwalk, CT (United States)

    2016-02-01

    Heat pump water heaters (HPWHs) are finally entering the mainstream residential water heater market. Potential catalysts are increased consumer demand for higher energy efficiency electric water heating and a new Federal water heating standard that effectively mandates use of HPWHs for electric storage water heaters with nominal capacities greater than 55 gallons. When compared to electric resistance water heating, the energy and cost savings potential of HPWHs is tremendous. Converting all electric resistance water heaters to HPWHs could save American consumers 7.8 billion dollars annually ($182 per household) in water heating operating costs and cut annual residential source energy consumption for water heating by 0.70 quads.

  15. ASSESSMENT OF RANGES OF POSSIBLE CHANGE OF TEMPORARY RESISTANCE OF CAST IRON WITH LAMELLAR AND FLAKED GRAPHITE ON THEIR HARDNESS

    Directory of Open Access Journals (Sweden)

    S. G. Sandomirskii

    2017-01-01

    Full Text Available The analysis of ranges of possible change of temporary resistance of sB of castings from ductile and gray cast iron is carried out. The analytical description of ranges of change of sВ depending on casting BH hardness is developed. It is shown that the range of change of sВ of pig-iron castings, wider in comparison with steel, with the measured hardness of BH is caused variations of forms and the amount of graphite inclusions at the considered classes of cast iron and influence of thickness of a wall of casting from gray cast iron on dependence of sВ (HB. The result is intended for determination of the guaranteed casting size sВ without her destruction, when there is no information on sВ of check test pieces.

  16. Resistivity features in intercalated graphite compounds with bromine and iodine chloride in the region of structural phase transitions in the layer of intercalate

    International Nuclear Information System (INIS)

    Ovsyijenko, Yi.V.; Lazarenko, O.A.; Matsuj, L.Yu.; Prokopov, O.Yi.

    2013-01-01

    In the paper anomalous changes of resistivity in graphite intercalated compounds with iodine chloride and bromine are investigated in the phase transition temperature interval. It is shown that these anomalies are caused by the change of carriers mobility in the phase transitional interval as well as by the origin of ''mobile ions liquids''

  17. Organic-resistant screen-printed graphitic electrodes: Application to on-site monitoring of liquid fuels

    International Nuclear Information System (INIS)

    Almeida, Eduardo S.; Silva, Luiz A.J.; Sousa, Raquel M.F.; Richter, Eduardo M.; Foster, Christopher W.; Banks, Craig E.; Munoz, Rodrigo A.A.

    2016-01-01

    This work presents the potential application of organic-resistant screen-printed graphitic electrodes (SPGEs) for fuel analysis. The required analysis of the antioxidant 2,6-di-tert-butylphenol (2,6-DTBP) in biodiesel and jet fuel is demonstrated as a proof-of-concept. The screen-printing of graphite, Ag/AgCl and insulator inks on a polyester substrate (250 μm thickness) resulted in SPGEs highly compatible with liquid fuels. SPGEs were placed on a batch-injection analysis (BIA) cell, which was filled with a hydroethanolic solution containing 99% v/v ethanol and 0.1 mol L −1 HClO 4 (electrolyte). An electronic micropipette was connected to the cell to perform injections (100 μL) of sample or standard solutions. Over 200 injections can be injected continuously without replacing electrolyte and SPGE strip. Amperometric detection (+1.1 V vs. Ag/AgCl) of 2,6-DTBP provided fast (around 8 s) and precise (RSD = 0.7%, n = 12) determinations using an external calibration curve. The method was applied for the analysis of biodiesel and aviation jet fuel samples and comparable results with liquid and gas chromatographic analyses, typically required for biodiesel and jet fuel samples, were obtained. Hence, these SPGE strips are completely compatible with organic samples and their combination with the BIA cell shows great promise for routine and portable analysis of fuels and other organic liquid samples without requiring sophisticated sample treatments. - Highlights: • Organic-resistant screen-printed graphitic electrodes (SPGE) for (bio)fuels. • Screen-printing of conductive and insulator inks on thin polyester substrate. • Continuous detection of antioxidants in electrolyte with 99% v/v ethanol. • SPGE coupled with batch-injection analysis allows over 200 injections (100 μL). • Similar results to GC and HPLC analyses of biodiesel and aviation jet fuels.

  18. Organic-resistant screen-printed graphitic electrodes: Application to on-site monitoring of liquid fuels

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Eduardo S.; Silva, Luiz A.J.; Sousa, Raquel M.F.; Richter, Eduardo M. [Universidade Federal de Uberlândia, Universidade Federal de Uberlândia, Av. João Naves de Ávila, 2121, Uberlândia, MG, 38408100 (Brazil); Foster, Christopher W.; Banks, Craig E. [Manchester Metropolitan University, Faculty of Science and the Environment, School of Science and the Environment, Division of Chemistry and Environmental Science, Manchester, M1 5GD, England (United Kingdom); Munoz, Rodrigo A.A., E-mail: raamunoz@iqufu.ufu.br [Universidade Federal de Uberlândia, Universidade Federal de Uberlândia, Av. João Naves de Ávila, 2121, Uberlândia, MG, 38408100 (Brazil)

    2016-08-31

    This work presents the potential application of organic-resistant screen-printed graphitic electrodes (SPGEs) for fuel analysis. The required analysis of the antioxidant 2,6-di-tert-butylphenol (2,6-DTBP) in biodiesel and jet fuel is demonstrated as a proof-of-concept. The screen-printing of graphite, Ag/AgCl and insulator inks on a polyester substrate (250 μm thickness) resulted in SPGEs highly compatible with liquid fuels. SPGEs were placed on a batch-injection analysis (BIA) cell, which was filled with a hydroethanolic solution containing 99% v/v ethanol and 0.1 mol L{sup −1} HClO{sub 4} (electrolyte). An electronic micropipette was connected to the cell to perform injections (100 μL) of sample or standard solutions. Over 200 injections can be injected continuously without replacing electrolyte and SPGE strip. Amperometric detection (+1.1 V vs. Ag/AgCl) of 2,6-DTBP provided fast (around 8 s) and precise (RSD = 0.7%, n = 12) determinations using an external calibration curve. The method was applied for the analysis of biodiesel and aviation jet fuel samples and comparable results with liquid and gas chromatographic analyses, typically required for biodiesel and jet fuel samples, were obtained. Hence, these SPGE strips are completely compatible with organic samples and their combination with the BIA cell shows great promise for routine and portable analysis of fuels and other organic liquid samples without requiring sophisticated sample treatments. - Highlights: • Organic-resistant screen-printed graphitic electrodes (SPGE) for (bio)fuels. • Screen-printing of conductive and insulator inks on thin polyester substrate. • Continuous detection of antioxidants in electrolyte with 99% v/v ethanol. • SPGE coupled with batch-injection analysis allows over 200 injections (100 μL). • Similar results to GC and HPLC analyses of biodiesel and aviation jet fuels.

  19. Fabrication and electrical resistivity of Mo-doped VO2 thin films coated on graphite conductive plates by a sol-gel method

    Energy Technology Data Exchange (ETDEWEB)

    Choi, W.; Jung, H.M.; Um, S. [Hanyang Univ., Seoul (Korea, Republic of). School of Mechanical Engineering

    2008-07-01

    Vanadium oxides (VO2) can be used in optical devices, thermochromic smart windows and sensors. This paper reported on a study in which vanadium pentoxide (V2O5) powder was prepared and mixed with Molybdenum Oxides (MoO3) to form Mo-doped and -undoped VO2 thin films by a sol-gel method on graphite conductive substrates. The micro-structure and chemical compositions of the Mo-doped and -undoped VO2 thin films was investigated using X-Ray diffraction and scanning electron microscopy. Changes in electrical resistivity were measured as a function of the stoichiometric compositions between vanadium and molybdenum. In this study. Mo-doped and -undoped VO2 thin films showed the typical metal to insulator transition (MIT), where temperature range could be adjusted by modifying the dopant atomic ratio. The through-plane substrate structure of the Mo-doped layer influences the electrical resistivity of the graphite substrate. As the amount of the molybdenum increases, the electrical resistivity of the graphite conductive substrate decreases in the lower temperature range below the freezing point of water. The experimental results showed that if carefully controlled, thermal dissipation of VO2 thin films can be used as a self-heating source to melt frozen water with the electrical current flowing through the graphite substrate. 3 refs., 3 figs.

  20. Special graphites

    International Nuclear Information System (INIS)

    Leveque, P.

    1964-01-01

    A large fraction of the work undertaken jointly by the Commissariat a l'Energie Atomique (CEA) and the Pechiney Company has been the improvement of the properties of nuclear pile graphite and the opening up of new fields of graphite application. New processes for the manufacture of carbons and special graphites have been developed: forged graphite, pyro-carbons, high density graphite agglomeration of graphite powders by cracking of natural gas, impervious graphites. The physical properties of these products and their reaction with various oxidising gases are described. The first irradiation results are also given. (authors) [fr

  1. Organic-resistant screen-printed graphitic electrodes: Application to on-site monitoring of liquid fuels.

    Science.gov (United States)

    Almeida, Eduardo S; Silva, Luiz A J; Sousa, Raquel M F; Richter, Eduardo M; Foster, Christopher W; Banks, Craig E; Munoz, Rodrigo A A

    2016-08-31

    This work presents the potential application of organic-resistant screen-printed graphitic electrodes (SPGEs) for fuel analysis. The required analysis of the antioxidant 2,6-di-tert-butylphenol (2,6-DTBP) in biodiesel and jet fuel is demonstrated as a proof-of-concept. The screen-printing of graphite, Ag/AgCl and insulator inks on a polyester substrate (250 μm thickness) resulted in SPGEs highly compatible with liquid fuels. SPGEs were placed on a batch-injection analysis (BIA) cell, which was filled with a hydroethanolic solution containing 99% v/v ethanol and 0.1 mol L(-1) HClO4 (electrolyte). An electronic micropipette was connected to the cell to perform injections (100 μL) of sample or standard solutions. Over 200 injections can be injected continuously without replacing electrolyte and SPGE strip. Amperometric detection (+1.1 V vs. Ag/AgCl) of 2,6-DTBP provided fast (around 8 s) and precise (RSD = 0.7%, n = 12) determinations using an external calibration curve. The method was applied for the analysis of biodiesel and aviation jet fuel samples and comparable results with liquid and gas chromatographic analyses, typically required for biodiesel and jet fuel samples, were obtained. Hence, these SPGE strips are completely compatible with organic samples and their combination with the BIA cell shows great promise for routine and portable analysis of fuels and other organic liquid samples without requiring sophisticated sample treatments. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. A silicon nanowire heater and thermometer

    Science.gov (United States)

    Zhao, Xingyan; Dan, Yaping

    2017-07-01

    In the thermal conductivity measurements of thermoelectric materials, heaters and thermometers made of the same semiconducting materials under test, forming a homogeneous system, will significantly simplify fabrication and integration. In this work, we demonstrate a high-performance heater and thermometer made of single silicon nanowires (SiNWs). The SiNWs are patterned out of a silicon-on-insulator wafer by CMOS-compatible fabrication processes. The electronic properties of the nanowires are characterized by four-probe and low temperature Hall effect measurements. The I-V curves of the nanowires are linear at small voltage bias. The temperature dependence of the nanowire resistance allows the nanowire to be used as a highly sensitive thermometer. At high voltage bias, the I-V curves of the nanowire become nonlinear due to the effect of Joule heating. The temperature of the nanowire heater can be accurately monitored by the nanowire itself as a thermometer.

  3. Thermo-hydraulic performance enhancement of solar air heater ...

    African Journals Online (AJOL)

    DR OKE

    Keywords: Solar air heater; Nusselt number; thermal efficiency; multiple arcs with ... loss; and one or two covers of glass or transparent plastic provide resistance to ..... Methods of testing to determine the thermal performance of solar collectors.

  4. Coupled solar still, solar heater

    Energy Technology Data Exchange (ETDEWEB)

    Davison, R R; Harris, W B; Moor, D H; Delyannis, A; Delyannis, E [eds.

    1976-01-01

    Computer simulation of combinations of solar stills and solar heaters indicates the probable economic advantage of such an arrangement in many locations if the size of the heater is optimized relative to that of the still. Experience with various low cost solar heaters is discussed.

  5. Immersible solar heater for fluids

    Science.gov (United States)

    Kronberg, James W.

    1995-01-01

    An immersible solar heater comprising a light-absorbing panel attached to a frame for absorbing heat energy from the light and transferring the absorbed heat energy directly to the fluid in which the heater is immersed. The heater can be used to heat a swimming pool, for example, and is held in position and at a preselected angle by a system of floats, weights and tethers so that the panel can operate efficiently. A skid can be used in one embodiment to prevent lateral movement of the heater along the bottom of the pool. Alternative embodiments include different arrangements of the weights, floats and tethers and methods for making the heater.

  6. Compact instantaneous water heater

    Energy Technology Data Exchange (ETDEWEB)

    Azevedo, Jorge G.W.; Machado, Antonio R.; Ferraz, Andre D.; Rocha, Ivan C.C. da; Konishi, Ricardo [Companhia de Gas de Santa Catarina (SCGAS), Florianopolis, SC (Brazil); Lehmkuhl, Willian A.; Francisco Jr, Roberto W.; Hatanaka, Ricardo L.; Pereira, Fernando M.; Oliveira, Amir A.M. [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil)

    2012-07-01

    This paper presents an experimental study of combustion in an inert porous medium in a liquid heating device application. This project aims to increase efficiency in the application of natural gas in residential and commercial sectors with the use of advanced combustion and heat transfer. The goal is to facilitate the development of a high performance compact water heater allowing hot water supply for up to two simultaneous showers. The experiment consists in a cylindrical porous burner with an integrated annular water heat exchanger. The reactants were injected radially into the burner and the flame stabilizes within the porous matrix. The water circulates in a coiled pipe positioned at the center of the burner. This configuration allows for heat transfer by conduction and radiation from the solid matrix to the heat exchanger. This article presented preliminary experimental results of a new water heater based on an annular porous burner. The range of equivalence ratios tested varied from 0.65 to 0.8. The power range was varied from 3 to 5 kW. Increasing the equivalence ratio or decreasing the total power input of the burner resulted in increased thermal efficiencies of the water heater. Thermal efficiencies varying from 60 to 92% were obtained. The condition for the goal of a comfortable bath was 20 deg C for 8-12 L/min. This preliminary prototype has achieved water temperature of 11deg C for 5 L/min. Further optimizations will be necessary in order to achieve intense heating with high thermal efficiency. (author)

  7. Analysis of polymer foil heaters as infrared radiation sources

    International Nuclear Information System (INIS)

    Witek, Krzysztof; Piotrowski, Tadeusz; Skwarek, Agata

    2012-01-01

    Infrared radiation as a heat source is used in many fields. In particular, the positive effect of far-infrared radiation on living organisms has been observed. This paper presents two technological solutions for infrared heater production using polymer-silver and polymer-carbon pastes screenprinted on foil substrates. The purpose of this work was the identification of polymer layers as a specific frequency range IR radiation sources. The characterization of the heaters was determined mainly by measurement of the surface temperature distribution using a thermovision camera and the spectral characteristics were determined using a special measuring system. Basic parameters obtained for both, polymer silver and polymer carbon heaters were similar and were as follows: power rating of 10–12 W/dm 2 , continuous working surface temperature of 80–90 °C, temperature coefficient of resistance (TCR) about +900 ppm/K for polymer-carbon heater and about +2000 ppm/K for polymer-silver, maximum radiation intensity in the wavelength range of 6–14 μm with top intensity at 8.5 μm and heating time about 20 min. For comparison purposes, commercial panel heater was tested. The results show that the characteristics of infrared polymer heaters are similar to the characteristics of the commercial heater, so they can be taken into consideration as the alternative infrared radiation sources.

  8. Artificial graphites

    International Nuclear Information System (INIS)

    Maire, J.

    1984-01-01

    Artificial graphites are obtained by agglomeration of carbon powders with an organic binder, then by carbonisation at 1000 0 C and graphitization at 2800 0 C. After description of the processes and products, we show how the properties of the various materials lead to the various uses. Using graphite enables us to solve some problems, but it is not sufficient to satisfy all the need of the application. New carbonaceous material open application range. Finally, if some products are becoming obsolete, other ones are being developed in new applications [fr

  9. Low cost solar air heater

    International Nuclear Information System (INIS)

    Gill, R.S.; Singh, Sukhmeet; Singh, Parm Pal

    2012-01-01

    Highlights: ► Single glazed low cost solar air heater is more efficient during summer while double glazed is better in winter. ► For the same initial investment, low cost solar air heaters collect more energy than packed bed solar air heater. ► During off season low cost solar air heater can be stored inside as it is light in weight. - Abstract: Two low cost solar air heaters viz. single glazed and double glazed were designed, fabricated and tested. Thermocole, ultraviolet stabilised plastic sheet, etc. were used for fabrication to reduce the fabrication cost. These were tested simultaneously at no load and with load both in summer and winter seasons along with packed bed solar air heater using iron chips for absorption of radiation. The initial costs of single glazed and double glazed are 22.8% and 26.8% of the initial cost of packed bed solar air heater of the same aperture area. It was found that on a given day at no load, the maximum stagnation temperatures of single glazed and double glazed solar air heater were 43.5 °C and 62.5 °C respectively. The efficiencies of single glazed, double glazed and packed bed solar air heaters corresponding to flow rate of 0.02 m 3 /s-m 2 were 30.29%, 45.05% and 71.68% respectively in winter season. The collector efficiency factor, heat removal factor based on air outlet temperature and air inlet temperature for three solar air heaters were also determined.

  10. Light-weight radioisotope heater impact tests

    International Nuclear Information System (INIS)

    Reimus, M.A.H.; Rinehart, G.H.; Herrera, A.

    1998-01-01

    The light-weight radioisotope heater unit (LWRHU) is a 238 PuO 2 -fueled heat source designed to provide one thermal watt in each of various locations on a spacecraft. Los Alamos National Laboratory designed, fabricated, and safety tested the LWRHU. The heat source consists of a hot-pressed 238 PuO 2 fuel pellet, a Pt-30Rh vented capsule, a pyrolytic graphite insulator, and a fineweave-pierced fabric graphite aeroshell assembly. To compare the performance of the LWRHUs fabricated for the Cassini mission with the performance of those fabricated for the Galileo mission, and to determine a failure threshold, two types of impact tests were conducted. A post-reentry impact test was performed on one of 180 flight-quality units produced for the Cassini mission and a series of sequential impact tests using simulant-fueled LWRHU capsules were conducted respectively. The results showed that deformation and fuel containment of the impacted Cassini LWRHU was similar to that of a previously tested Galileo LWRHU. Both units sustained minimal deformation of the aeroshell and fueled capsule; the fuel was entirely contained by the platinum capsule. Sequential impacting, in both end-on and side-on orientations, resulted in increased damage with each subsequent impact. Sequential impacting of the LWRHU appears to result in slightly greater damage than a single impact at the final impact velocity of 50 m/s

  11. Enhancing the oxidation resistance of graphite by applying an SiC coat with crack healing at an elevated temperature

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jae-Won, E-mail: pjw@kaeri.re.kr [Korea Atomic Energy Research Institute, 1045 Daedeok-Daero, Yuseong-Gu, Daejeon-City (Korea, Republic of); Kim, Eung-Seon; Kim, Jae-Un [Korea Atomic Energy Research Institute, 1045 Daedeok-Daero, Yuseong-Gu, Daejeon-City (Korea, Republic of); Kim, Yootaek [Dept. of Materials Engineering, Kyonggi Universtiy, Suwon (Korea, Republic of); Windes, William E. [Idaho National Laboratory, Idaho Falls, ID 83415 (United States)

    2016-08-15

    Highlights: • Ion beam mixed SiC coating was performed on the graphite for the enhanced adhesion. • The SiC coated was cracked at the elevated temperature, confirming the strong bonding, and then was vigorously oxidized leaving only the SiC layer. • For crack healing, CVD crack healing increased by ∼4 times in 20% weight reduction in air at 900 °C as compared to PVD crack healing. - Abstract: The potential of reducing the oxidation of the supporting graphite components during normal and/or accident conditions in the Very High Temperature Reactor (VHTR) design has been studied. In this work efforts have been made to slow the oxidation process of the graphite with a thin SiC coating (∼ 10 μm). Upon heating at ≥ 1173 K in air, the spallations and cracks were formed in the dense columnar structured SiC coating layer grown on the graphite with a functionally gradient electron beam physical vapor deposition (EB-PVD. In accordance with the formations of these defects, the sample was vigorously oxidized, leaving only the SiC coating layer. Then, efforts were made to heal the surface defects using additional EB-PVD with ion beam bombardment and chemical vapor deposition (CVD). The EB-PVD did not effectively heal the cracks. But, the CVD was more appropriate for crack healing, likely due to its excellent crack line filling capability with a high density and high aspect ratio. It took ∼ 34 min for the 20% weight loss of the CVD crack healed sample in the oxidation test with annealing at 1173 K, while it took ∼ 8 min for the EB-PVD coated sample, which means it took ∼4 times longer at 1173 K for the same weight reduction in this experimental set-up.

  12. Enhancing the oxidation resistance of graphite by applying an SiC coat with crack healing at an elevated temperature

    International Nuclear Information System (INIS)

    Park, Jae-Won; Kim, Eung-Seon; Kim, Jae-Un; Kim, Yootaek; Windes, William E.

    2016-01-01

    Highlights: • Ion beam mixed SiC coating was performed on the graphite for the enhanced adhesion. • The SiC coated was cracked at the elevated temperature, confirming the strong bonding, and then was vigorously oxidized leaving only the SiC layer. • For crack healing, CVD crack healing increased by ∼4 times in 20% weight reduction in air at 900 °C as compared to PVD crack healing. - Abstract: The potential of reducing the oxidation of the supporting graphite components during normal and/or accident conditions in the Very High Temperature Reactor (VHTR) design has been studied. In this work efforts have been made to slow the oxidation process of the graphite with a thin SiC coating (∼ 10 μm). Upon heating at ≥ 1173 K in air, the spallations and cracks were formed in the dense columnar structured SiC coating layer grown on the graphite with a functionally gradient electron beam physical vapor deposition (EB-PVD. In accordance with the formations of these defects, the sample was vigorously oxidized, leaving only the SiC coating layer. Then, efforts were made to heal the surface defects using additional EB-PVD with ion beam bombardment and chemical vapor deposition (CVD). The EB-PVD did not effectively heal the cracks. But, the CVD was more appropriate for crack healing, likely due to its excellent crack line filling capability with a high density and high aspect ratio. It took ∼ 34 min for the 20% weight loss of the CVD crack healed sample in the oxidation test with annealing at 1173 K, while it took ∼ 8 min for the EB-PVD coated sample, which means it took ∼4 times longer at 1173 K for the same weight reduction in this experimental set-up.

  13. Enhanced oxidation resistance of SiC coating on Graphite by crack healing at the elevated temperature

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jae-Won; Kim, Eung-Seon; Kim, Jae-Un; Kim, Yoo-Taek [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Windes, William E. [Idaho National Laboratory, Idaho (United States)

    2015-10-15

    An oxidation protective SiC coating on the graphite components could assist in slowing the oxidation down. However, the irradiation induced dimensional changes in the graphite (shrinkage followed by swelling) can occur, while the SiC CVD coating has been reported to swell even at a low dose neutron irradiation. In this work, functionally gradient electron beam evaporative coating with an ion beam processing was firstly conducted and then SiC coating on the FG coating to the desired thickness is followed. For the crack healing, both the repeated EB-PVD and CVD were performed. Oxidation and thermal cycling tests of the coated specimens were performed and reflected in the process development. In this work, efforts have been paid to heal the cracks in the SiC coated layer on graphite with both EB-PVD and CVD. CVD seems to be more appropriate coating method for crack healing probably due to its excellent crack-line filling capability for high density and high aspect ratio.

  14. Enhancing the oxidation resistance of graphite by applying an SiC coat with crack healing at an elevated temperature

    Science.gov (United States)

    Park, Jae-Won; Kim, Eung-Seon; Kim, Jae-Un; Kim, Yootaek; Windes, William E.

    2016-08-01

    The potential of reducing the oxidation of the supporting graphite components during normal and/or accident conditions in the Very High Temperature Reactor (VHTR) design has been studied. In this work efforts have been made to slow the oxidation process of the graphite with a thin SiC coating (∼ 10 μm). Upon heating at ≥ 1173 K in air, the spallations and cracks were formed in the dense columnar structured SiC coating layer grown on the graphite with a functionally gradient electron beam physical vapor deposition (EB-PVD. In accordance with the formations of these defects, the sample was vigorously oxidized, leaving only the SiC coating layer. Then, efforts were made to heal the surface defects using additional EB-PVD with ion beam bombardment and chemical vapor deposition (CVD). The EB-PVD did not effectively heal the cracks. But, the CVD was more appropriate for crack healing, likely due to its excellent crack line filling capability with a high density and high aspect ratio. It took ∼ 34 min for the 20% weight loss of the CVD crack healed sample in the oxidation test with annealing at 1173 K, while it took ∼ 8 min for the EB-PVD coated sample, which means it took ∼4 times longer at 1173 K for the same weight reduction in this experimental set-up.

  15. Glass-Graphite Composite Materials

    International Nuclear Information System (INIS)

    Mayzan, M.Z.H.; Lloyd, J.W.; Heath, P.G.; Stennett, M.C.; Hyatt, N.C.; Hand, R.J.

    2016-01-01

    A summary is presented of investigations into the potential of producing glass-composite materials for the immobilisation of graphite or other carbonaceous materials arising from nuclear power generation. The methods are primarily based on the production of base glasses which are subsequently sintered with powdered graphite or simulant TRISO particles. Consideration is also given to the direct preparation of glass-graphite composite materials using microwave technology. Production of dense composite wasteforms with TRISO particles was more successful than with powdered graphite, as wasteforms containing larger amounts of graphite were resistant to densification and the glasses tried did not penetrate the pores under the pressureless conditions used. Based on the results obtained it is concluded that the production of dense glassgraphite composite wasteforms will require the application of pressure. (author)

  16. Solar water heaters in Taiwan

    International Nuclear Information System (INIS)

    Chang, K.; Lee, T.; Chung, K.

    2006-01-01

    Solar water heater has been commercialized during the last two decades in Taiwan. The government initiated the incentive programs during 1986-1991 and 2000-2004. This created an economic incentive for the end-users. The total area of solar collectors installed was more than one million square meters. The data also show that most of the solar water heaters are mainly used by the domestic sector for hot water production (about 97%). The regional popularization analysis indicates limited installation of solar water heaters in the northern district. In the eastern district and remote islands, the problems of climatic conditions and availability of localized installers/dealers are addressed. (author)

  17. 46 CFR 119.320 - Water heaters.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Water heaters. 119.320 Section 119.320 Shipping COAST... Machinery § 119.320 Water heaters. (a) A water heater must meet the requirements of Parts 53 and 63 in... electric water heater is also acceptable if it: (1) Has a capacity of not more than 454 liters (120 gallons...

  18. 46 CFR 182.320 - Water heaters.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Water heaters. 182.320 Section 182.320 Shipping COAST...) MACHINERY INSTALLATION Auxiliary Machinery § 182.320 Water heaters. (a) A water heater must meet the...), except that an electric water heater is also acceptable if it: (1) Has a capacity of not more than 454...

  19. Heater head for stirling engine

    Science.gov (United States)

    Corey, John A.

    1985-07-09

    A monolithic heater head assembly which augments cast fins with ceramic inserts which narrow the flow of combustion gas and obtains high thermal effectiveness with the assembly including an improved flange design which gives greater durability and reduced conduction loss.

  20. Energy discharge heater power supply

    International Nuclear Information System (INIS)

    Jaskierny, W.

    1992-11-01

    The heater power supply is intended to supply capacitively stored,energy to embedded heater strips in cryo magnets. The amount of energy can be controlled by setting different charge different capacitor values. Two chassis' can be operated in series or interlocks are provided. The charge voltage, number of capacitors pulse can be monitored. There and dual channel has two discharge supplies in one chassis. This report reviews the characteristics of this power supply further

  1. Solar Hot Water Heater

    Science.gov (United States)

    1978-01-01

    The solar panels pictured below, mounted on a Moscow, Idaho home, are part of a domestic hot water heating system capable of providing up to 100 percent of home or small business hot water needs. Produced by Lennox Industries Inc., Marshalltown, Iowa, the panels are commercial versions of a collector co-developed by NASA. In an effort to conserve energy, NASA has installed solar collectors at a number of its own facilities and is conducting research to develop the most efficient systems. Lewis Research Center teamed with Honeywell Inc., Minneapolis, Minnesota to develop the flat plate collector shown. Key to the collector's efficiency is black chrome coating on the plate developed for use on spacecraft solar cells, the coating prevents sun heat from "reradiating," or escaping outward. The design proved the most effective heat absorber among 23 different types of collectors evaluated in a Lewis test program. The Lennox solar domestic hot water heating system has three main components: the array of collectors, a "solar module" (blue unit pictured) and a conventional water heater. A fluid-ethylene glycol and water-is circulated through the collectors to absorb solar heat. The fluid is then piped to a double-walled jacket around a water tank within the solar module.

  2. A graphite foam reinforced by graphite particles

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, J.J.; Wang, X.Y.; Guo, L.F.; Wang, Y.M.; Wang, Y.P.; Yu, M.F.; Lau, K.T.T. [DongHua University, Shanghai (China). College of Material Science and Engineering

    2007-11-15

    Graphite foam was obtained after carbonization and graphitization of a pitch foam formed by the pyrolysis of coal tar based mesophase pitch mixed with graphite particles in a high pressure and temperature chamber. The graphite foam possessed high mechanical strength and exceptional thermal conductivity after adding the graphite particles. Experimental results showed that the thermal conductivity of modified graphite foam reached 110W/m K, and its compressive strength increased from 3.7 MPa to 12.5 MPa with the addition of 5 wt% graphite particles. Through the microscopic observation, it was also found that fewer micro-cracks were formed in the cell wall of the modified foam as compared with pure graphite foam. The graphitization degree of modified foam reached 84.9% and the ligament of graphite foam exhibited high alignment after carbonization at 1200{sup o}C for 3 h and graphitization at 3000{sup o}C for 10 min.

  3. Graphite suspension in carbon dioxide; Suspension de graphite dans le gaz carbonique

    Energy Technology Data Exchange (ETDEWEB)

    Roche, R [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires; Moussez, C; Rouvillois, X; Brevet, R [Societe Nationale d' Etude et de Construction de Moteurs d' Aviation (SNECMA), 75 - Paris (France)

    1965-07-01

    Since 1963 the Atomic Division of SNECMA has been conducting, under a contract with the CEA, an experimental work with a two-component fluid comprised of carbon dioxide and small graphite particles. The primary purpose was the determination of basic engineering information pertaining to the stability and the flowability of the suspension. The final form of the experimental loop consists mainly of the following items: a light-phase compressor, a heavy-phase pump, an electrical-resistance type heater section, a cooling heat exchanger, a hairpin loop, a transparent test section and a separator. During the course of the testing, it was observed that the fluid could be circulated quite easily in a broad range of variation of the suspension density and velocity - density from 30 to 170 kg/m{sup 3} and velocity from 2 to 24 m/s. The system could be restarted and circulation maintained without any difficulty, even with the heavy-phase pump alone. The graphite did not have a tendency to pack or agglomerate during operation. No graphite deposition was observed on the wall of the tubing. A long period run (250 hours) has shown the evolution of the particle dimensions. Starting with graphite of surface area around 20 m{sup 2}/g (graphite particles about 1 {mu}), the powder surface area reaches an asymptotic value of 300 m{sup 2}/g (all the particles less than 0.3 {mu}). Moisture effect on flow stability, flow distribution between two parallel channels, pressure drop in straight tubes, recompression ratio in diffusers were also investigated. (author) [French] Depuis 1963 la Division Atomique de la SNECMA conduit, dans le cadre d'un contrat avec le Commissariat A l'Energie Atomique, l'etude experimentale d'une suspension de fines particules de graphite dans le gaz carbonique. L'objectif principal est d'obtenir des informations d'ordre mecanique et technologique sur la mise en oeuvre de l'ecoulement de ce fluide diphase. Le circuit experimental comprend principalement: un

  4. MHD oxidant intermediate temperature ceramic heater study

    Science.gov (United States)

    Carlson, A. W.; Chait, I. L.; Saari, D. P.; Marksberry, C. L.

    1981-09-01

    The use of three types of directly fired ceramic heaters for preheating oxygen enriched air to an intermediate temperature of 1144K was investigated. The three types of ceramic heaters are: (1) a fixed bed, periodic flow ceramic brick regenerative heater; (2) a ceramic pebble regenerative heater. The heater design, performance and operating characteristics under conditions in which the particulate matter is not solidified are evaluated. A comparison and overall evaluation of the three types of ceramic heaters and temperature range determination at which the particulate matter in the MHD exhaust gas is estimated to be a dry powder are presented.

  5. Architecture for Absorption Based Heaters

    Science.gov (United States)

    Moghaddam, Saeed; Chugh, Devesh

    2018-04-24

    An absorption based heater is constructed on a fluid barrier heat exchanging plate such that it requires little space in a structure. The absorption based heater has a desorber, heat exchanger, and absorber sequentially placed on the fluid barrier heat exchanging plate. The vapor exchange faces of the desorber and the absorber are covered by a vapor permeable membrane that is permeable to a refrigerant vapor but impermeable to an absorbent. A process fluid flows on the side of the fluid barrier heat exchanging plate opposite the vapor exchange face through the absorber and subsequently through the heat exchanger. The absorption based heater can include a second plate with a condenser situated parallel to the fluid barrier heat exchanging plate and opposing the desorber for condensation of the refrigerant for additional heating of the process fluid.

  6. Heat Pump Water Heaters and American Homes: A Good Fit?

    Energy Technology Data Exchange (ETDEWEB)

    Franco, Victor; Lekov, Alex; Meyers, Steve; Letschert, Virginie

    2010-05-14

    Heat pump water heaters (HPWHs) are over twice as energy-efficient as conventional electric resistance water heaters, with the potential to save substantial amounts of electricity. Drawing on analysis conducted for the U.S. Department of Energy's recently-concluded rulemaking on amended standards for water heaters, this paper evaluates key issues that will determine how well, and to what extent, this technology will fit in American homes. The key issues include: 1) equipment cost of HPWHs; 2) cooling of the indoor environment by HPWHs; 3) size and air flow requirements of HPWHs; 4) performance of HPWH under different climate conditions and varying hot water use patterns; and 5) operating cost savings under different electricity prices and hot water use. The paper presents the results of a life-cycle cost analysis of the adoption of HPWHs in a representative sample of American homes, as well as national impact analysis for different market share scenarios. Assuming equipment costs that would result from high production volume, the results show that HPWHs can be cost effective in all regions for most single family homes, especially when the water heater is not installed in a conditioned space. HPWHs are not cost effective for most manufactured home and multi-family installations, due to lower average hot water use and the water heater in the majority of cases being installed in conditioned space, where cooling of the indoor environment and size and air flow requirements of HPWHs increase installation costs.

  7. Graphite oxidation in HTGR atmosphere

    International Nuclear Information System (INIS)

    Growcock, F.B.; Barry, J.J.; Finfrock, C.C.; Rivera, E.; Heiser, J.H. III

    1982-01-01

    On-going and recently completed studies of the effect of thermal oxidation on the structural integrity of HTGR candidate graphites are described, and some results are presented and discussed. This work includes the study of graphite properties which may play decisive roles in the graphites' resistance to oxidation and fracture: pore size distribution, specific surface area and impurity distribution. Studies of strength loss mechanisms in addition to normal oxidation are described. Emphasis is placed on investigations of the gas permeability of HTGR graphites and the surface burnoff phenomenon observed during recent density profile measurements. The recently completed studies of catalytic pitting and the effects of prestress and stress on reactivity and ultimate strength are also discussed

  8. Householders' use of storage heaters

    Energy Technology Data Exchange (ETDEWEB)

    Crawshaw, C M; Williams, D I; Steele, L M

    1986-11-01

    An investigation into the understanding and use of storage heater controls was carried out. The general level of satisfaction with storage heating was high (90%) and most people had a reasonable idea of how the system works, what the controls do and of the tariff costs. However, the study did find substantial areas of ignorance; 37% could not say what controls their heater had and 15% did not know what tariff they were on. This lack of knowledge may prevent users getting the best performance from their heating system, resulting in discomfort and large bills.

  9. Thermally exfoliated graphite oxide

    Science.gov (United States)

    Prud'Homme, Robert K. (Inventor); Aksay, Ilhan A. (Inventor); Abdala, Ahmed (Inventor)

    2011-01-01

    A modified graphite oxide material contains a thermally exfoliated graphite oxide with a surface area of from about 300 sq m/g to 2600 sq m/g, wherein the thermally exfoliated graphite oxide displays no signature of the original graphite and/or graphite oxide, as determined by X-ray diffraction.

  10. Solar Water Heater Installation Package

    Science.gov (United States)

    1982-01-01

    A 48-page report describes water-heating system, installation (covering collector orientation, mounting, plumbing and wiring), operating instructions and maintenance procedures. Commercial solar-powered water heater system consists of a solar collector, solar-heated-water tank, electrically heated water tank and controls. Analysis of possible hazards from pressure, electricity, toxicity, flammability, gas, hot water and steam are also included.

  11. Solar water heater design package

    Science.gov (United States)

    1981-01-01

    Package describes commercial domestic-hot-water heater with roof or rack mounted solar collectors. System is adjustable to pre-existing gas or electric hot-water house units. Design package includes drawings, description of automatic control logic, evaluation measurements, possible design variations, list of materials and installation tools, and trouble-shooting guide and manual.

  12. Build Your Own Solar Air Heater.

    Science.gov (United States)

    Conservation and Renewable Energy Inquiry and Referral Service (DOE), Silver Spring, MD.

    The solar air heater is a simple device for catching some of the sun's energy to heat a home. Procedures for making and installing such a heater are presented. Included is a materials list, including tools needed for constructing the heater, sources for obtaining further details, and a list of material specifications. (JN)

  13. Accelerator Magnet Quench Heater Technology and Quality Control Tests for the LHC High Luminosity Upgrade

    CERN Document Server

    AUTHOR|(CDS)2132435; Seifert, Thomas

    The High Luminosity upgrade of the Large Hadron Collider (HL-LHC) foresees the installation of new superconducting Nb$_{3}$Sn magnets. For the protection of these magnets, quench heaters are placed on the magnet coils. The quench heater circuits are chemically etched from a stainless steel foil that is glued onto a flexible Polyimide film, using flexible printed circuit production technology. Approximately 500 quench heaters with a total length of about 3000 m are needed for the HL-LHC magnets. In order to keep the heater circuit electrical resistance in acceptable limits, an approximately 10 µm-thick Cu coating is applied onto the steel foil. The quality of this Cu coating has been found critical in the quench heater production. The work described in this thesis focuses on the characterisation of Cu coatings produced by electrolytic deposition, sputtering and electron beam evaporation. The quality of the Cu coatings from different manufacturers has been assessed for instance by ambient temperature electrica...

  14. 14 CFR 23.859 - Combustion heater fire protection.

    Science.gov (United States)

    2010-01-01

    ... relief of any backfire that, if so restricted, could cause heater failure. (d) Heater controls: general. Provision must be made to prevent the hazardous accumulation of water or ice on or in any heater control... heater in case of leakage. (2) The region surrounding the heater, if the heater fuel system has fittings...

  15. Influence of irradiation on high-strength graphites

    International Nuclear Information System (INIS)

    Virgil'ev, Yu.S.; Grebennik, V.N.; Kalyagina, I.P.

    1989-01-01

    To ensure efficiency of the graphite elements of the construction of the masonry of reactors, the graphite must possess high radiation stability, strength, and heat resistance. In this connection, the physical properties of graphites based on uncalcined petroleum coke with a binder - high-temperature hard coal pitch - the amount of which reaches 40% are considered in this paper

  16. Bridged graphite oxide materials

    Science.gov (United States)

    Herrera-Alonso, Margarita (Inventor); McAllister, Michael J. (Inventor); Aksay, Ilhan A. (Inventor); Prud'homme, Robert K. (Inventor)

    2010-01-01

    Bridged graphite oxide material comprising graphite sheets bridged by at least one diamine bridging group. The bridged graphite oxide material may be incorporated in polymer composites or used in adsorption media.

  17. Light weight radioisotope heater unit (LWRHU) production for the Cassini mission

    International Nuclear Information System (INIS)

    Rinehart, G.H.

    1997-01-01

    The Light-Weight Radioisotope Heater Unit (LWRHU) is a [sup 238]PuO[sub 2] fueled heat source designed to provide one thermal watt in each of various locations on a spacecraft. The heat sources are required to maintain the temperature of specific components within normal operating ranges. The heat source consists of a hot- pressed [sup 238]PuO[sub 2] fuel pellet, a Pt-3ORh vented capsule, a pyrolytic graphite insulator, and a woven graphite aeroshell assembly. Los Alamos National Laboratory has fabricated 180 heat sources, 157 of which will be used on the Cassini mission

  18. Light weight radioisotope heater unit (LWRHU): a technical description of the reference design

    International Nuclear Information System (INIS)

    Tate, R.E.

    1982-01-01

    The Light Weight Radioisotope Heater Unit (LWRHU), a new radioisotope heater unit for use in space missions, is a 238 PuO 2 -fueled unit designed to provide a thermal watt in dispersed locations on a spacecraft. The LWRHU is required to maintain the temperature of a component at a level where the component will function reliably in space. Two major constraints are placed on the unit's design; it must be as light as possible and must provide enough protection to immobilize the plutonium fuel to the maximum extent in all phases of the unit's lifetime. The four components are pelletized fuel, platinum-alloy encapsulation, pyrolytic graphite thermal insulation, and high-technology graphite ablation shell. The LWRHU is a cylinder 32 mm (1.26 in.) high and 26 mm (1.02 in.) in diameter. It weighs slightly less than 40 g

  19. Process for purifying graphite

    International Nuclear Information System (INIS)

    Clausius, R.A.

    1985-01-01

    A process for purifying graphite comprising: comminuting graphite containing mineral matter to liberate at least a portion of the graphite particles from the mineral matter; mixing the comminuted graphite particles containing mineral matter with water and hydrocarbon oil to form a fluid slurry; separating a water phase containing mineral matter and a hydrocarbon oil phase containing grahite particles; and separating the graphite particles from the hydrocarbon oil to obtain graphite particles reduced in mineral matter. Depending upon the purity of the graphite desired, steps of the process can be repeated one or more times to provide a progressively purer graphite

  20. Half Bridge Inductive Heater

    Directory of Open Access Journals (Sweden)

    Zoltán GERMÁN-SALLÓ

    2015-12-01

    Full Text Available Induction heating performs contactless, efficient and fast heating of conductive materials, therefore became one of the preferred heating procedure in industrial, domestic and medical applications. During induction heating the high-frequency alternating currents that heat the material are induced by means of electromagnetic induction. The material to be heated is placed inside the time-varying magnetic field generated by applying a highfrequency alternating current to an induction coil. The alternating electromagnetic field induces eddy currents in the workpiece, resulting resistive losses, which then heat the material. This paper describes the design of a power electronic converter circuit for induction heating equipment and presents the obtained results. The realized circuit is a low power half bridge resonant inverter which uses power MOS transistors and adequate driver circuits.

  1. Effect of thermal annealing on property changes of neutron-irradiated non-graphitized carbon materials and nuclear graphite

    International Nuclear Information System (INIS)

    Matsuo, Hideto

    1991-06-01

    Changes in dimension of non-graphitized carbon materials and nuclear graphite, and the bulk density, electrical resistivity, Young's modulus and thermal expansivity of nuclear graphite were studied after neutron irradiation at 1128-1483 K and the successive thermal annealing up to 2573 K. Carbon materials showed larger and anisotropic dimensional shrinkage than that of nuclear graphite after the irradiation. The irradiation-induced dimensional shrinkage of carbon materials decreased during annealing at temperatures from 1773 to 2023 K, followed by a slight increase at higher temperatures. On the other hand, the irradiated nuclear graphite hardly showed the changes in length, density and thermal expansivity under the thermal annealing, but the electrical resistivity and Young's modulus showed a gradual decrease with annealing temperature. It has been clarified that there exists significant difference in the effect of thermal annealing on irradiation-induced dimensional shrinkage between graphitized nuclear graphite and non-graphitized carbon materials. (author)

  2. Integrity Assessment of GOH Heater Tube

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Bong Sang; Hong, J. H.; Oh, Y. J.; Yoon, J. H.; Oh, J. M. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-08-01

    An assessment of structural integrity of ASTM A312-TP347 GOH heater tube was performed. The surface notches which had been produced during tube manufacturing process were analyzed microscopically. Chemical analysis, hardness tests, tensile tests, and J-Integral fracture resistance tests were carried out to compare the mechanical properties with those of the material specification and also with the other material of the same type. The test results showed the mechanical properties of the GOH tube material are within the specification range. An elastic-plastic fracture mechanics analysis based on the DPFAD method reveals the tube an appropriate safety margin for the normal operation. 13 refs., 5 tabs., 24 figs. (author)

  3. Welding shield for coupling heaters

    Science.gov (United States)

    Menotti, James Louis

    2010-03-09

    Systems for coupling end portions of two elongated heater portions and methods of using such systems to treat a subsurface formation are described herein. A system may include a holding system configured to hold end portions of the two elongated heater portions so that the end portions are abutted together or located near each other; a shield for enclosing the end portions, and one or more inert gas inlets configured to provide at least one inert gas to flush the system with inert gas during welding of the end portions. The shield may be configured to inhibit oxidation during welding that joins the end portions together. The shield may include a hinged door that, when closed, is configured to at least partially isolate the interior of the shield from the atmosphere. The hinged door, when open, is configured to allow access to the interior of the shield.

  4. Space Station solar water heater

    Science.gov (United States)

    Horan, D. C.; Somers, Richard E.; Haynes, R. D.

    1990-01-01

    The feasibility of directly converting solar energy for crew water heating on the Space Station Freedom (SSF) and other human-tended missions such as a geosynchronous space station, lunar base, or Mars spacecraft was investigated. Computer codes were developed to model the systems, and a proof-of-concept thermal vacuum test was conducted to evaluate system performance in an environment simulating the SSF. The results indicate that a solar water heater is feasible. It could provide up to 100 percent of the design heating load without a significant configuration change to the SSF or other missions. The solar heater system requires only 15 percent of the electricity that an all-electric system on the SSF would require. This allows a reduction in the solar array or a surplus of electricity for onboard experiments.

  5. Molded polymer solar water heater

    Science.gov (United States)

    Bourne, Richard C.; Lee, Brian E.

    2004-11-09

    A solar water heater has a rotationally-molded water box and a glazing subassembly disposed over the water box that enhances solar gain and provides an insulating air space between the outside environment and the water box. When used with a pressurized water system, an internal heat exchanger is integrally molded within the water box. Mounting and connection hardware is included to provide a rapid and secure method of installation.

  6. Laboratory Performance Evaluation of Residential Integrated Heat Pump Water Heaters

    Energy Technology Data Exchange (ETDEWEB)

    Sparn, B.; Hudon, K.; Christensen, D.

    2014-06-01

    This paper explores the laboratory performance of five integrated Heat Pump Water Heaters (HPWHs) across a wide range of operating conditions representative of U.S. climate regions. HPWHs are expected to provide significant energy savings in certain climate zones when compared to typical electric resistance water heaters. Results show that this technology is a viable option in most climates, but differences in control schemes and design features impact the performance of the units tested. Tests were conducted to map heat pump performance across the operating range and to determine the logic used to control the heat pump and the backup electric heaters. Other tests performed include two unique draw profile tests, reduced air flow performance tests and the standard DOE rating tests. The results from all these tests are presented here for all five units tested. The results of these tests will be used to improve the EnergyPlus heat pump water heater for use in BEopt™ whole-house building simulations.

  7. Laboratory Performance Evaluation of Residential Integrated Heat Pump Water Heaters

    Energy Technology Data Exchange (ETDEWEB)

    Sparn, B.; Hudon, K.; Christensen, D.

    2014-06-01

    This paper explores the laboratory performance of five integrated Heat Pump Water Heaters (HPWHs) across a wide range of operating conditions representative of US climate regions. HPWHs are expected to provide significant energy savings in certain climate zones when compared to typical electric resistance water heaters. Results show that this technology is a viable option in most climates, but differences in control schemes and design features impact the performance of the units tested. Tests were conducted to map heat pump performance across the operating range and to determine the logic used to control the heat pump and the backup electric heaters. Other tests performed include two unique draw profile tests, reduced air flow performance tests and the standard DOE rating tests. The results from all these tests are presented here for all five units tested. The results of these tests will be used to improve the EnergyPlus heat pump water heater for use in BEopt(tm) whole-house building simulations.

  8. Design and performance of low-wattage electrical heater probe

    International Nuclear Information System (INIS)

    Biddle, R.; Wetzel, J.R.; Cech, R.

    1997-01-01

    A mound electrical calibration heater (MECH) has been used in several EG and G Mound developed calorimeters as a calibration tool. They are very useful over the wattage range of a few to 500 W. At the lower end of the range, a bias develops between the MECH probe and calibrated heat standards. A low-wattage electrical calibration heater (L WECH) probe is being developed by the Safeguards Science and Technology group (NIS-5) of Los Alamos National Laboratory based upon a concept proposed by EG and G Mound personnel. The probe combines electrical resistive heating and laser-light powered heating. The LWECH probe is being developed for use with power settings up to 2W. The electrical heater will be used at the high end of the range, and laser-light power will be used low end of the wattage range. The system consists of two components: the heater probe and a control unit. The probe is inserted into the measuring cavity through an opening in the insulating baffle, and a sleeve is required to adapt to the measuring chamber. The probe is powered and controlled using electronics modules located separately. This paper will report on the design of the LWECH probe, initial tests, and expected performance

  9. Influence of Metal-Coated Graphite Powders on Microstructure and Properties of the Bronze-Matrix/Graphite Composites

    Science.gov (United States)

    Zhao, Jian-hua; Li, Pu; Tang, Qi; Zhang, Yan-qing; He, Jian-sheng; He, Ke

    2017-02-01

    In this study, the bronze-matrix/x-graphite (x = 0, 1, 3 and 5%) composites were fabricated by powder metallurgy route by using Cu-coated graphite, Ni-coated graphite and pure graphite, respectively. The microstructure, mechanical properties and corrosive behaviors of bronze/Cu-coated-graphite (BCG), bronze/Ni-coated-graphite (BNG) and bronze/pure-graphite (BPG) were characterized and investigated. Results show that the Cu-coated and Ni-coated graphite could definitely increase the bonding quality between the bronze matrix and graphite. In general, with the increase in graphite content in bronze-matrix/graphite composites, the friction coefficients, ultimate density and wear rates of BPG, BCG and BNG composites all went down. However, the Vickers microhardness of the BNG composite would increase as the graphite content increased, which was contrary to the BPG and BCG composites. When the graphite content was 3%, the friction coefficient of BNG composite was more stable than that of BCG and BPG composites, indicating that BNG composite had a better tribological performance than the others. Under all the values of applied loads (10, 20, 40 and 60N), the BCG and BNG composites exhibited a lower wear rate than BPG composite. What is more, the existence of nickel in graphite powders could effectively improve the corrosion resistance of the BNG composite.

  10. One new route to optimize the oxidation resistance of TiC/hastelloy (Ni-based alloy) composites applied for intermediate temperature solid oxide fuel cell interconnect by increasing graphite particle size

    Science.gov (United States)

    Qi, Qian; Liu, Yan; Wang, Lujie; Zhang, Hui; Huang, Jian; Huang, Zhengren

    2017-09-01

    TiC/hastelloy composites with suitable thermal expansion and excellent electrical conductivity are promising candidates for IT-SOFC interconnect. In this paper, the TiC/hastelloy composites are fabricated by in-situ reactive infiltration, and the oxidation resistance of composites is optimized by increasing graphite particle size. Results show that the increase of graphite particles size from 1 μm to 40 μm reduces TiC particle size from 2.68 μm to 2.22 μm by affecting the formation process of TiC. Moreover, the decrease of TiC particles size accelerates the fast formation of dense and continuous TiO2/Cr2O3 oxide layer, which bring down the mass gain (800 °C/100 h) from 2.03 mg cm-2 to 1.18 mg cm-2. Meanwhile, the coefficient of thermal expansion decreases from 11.15 × 10-6 °C-1 to 10.80 × 10-6 °C-1, and electrical conductivity maintains about 5800 S cm-1 at 800 °C. Therefore, the decrease of graphite particle size is one simple and effective route to optimize the oxidation resistance of composites, and meantime keeps suitable thermal expansion and good electrical conductivity.

  11. Production of an impermeable composite of irradiated graphite and glass by hot isostatic pressing as a long term leach resistant waste form

    Energy Technology Data Exchange (ETDEWEB)

    Fachinger, Johannes; Muller, Walter [FNAG ZU Hanau, Hanau (Germany); Marsat, Eric [FNAG SAS Le Pont de Claix (France); Grosse, Karl-Heinz; Seemann, Richard [ALD Hanau (Germany); Scales, Charlie; Easton, Michael Mark [NNL, Workington (United Kingdom); Anthony Banford [NNL, Warrington (United Kingdom); University of Manchester, Manchester (United Kingdom)

    2013-07-01

    Around 250,000 tons of irradiated graphite (i-graphite) exists worldwide and can be considered as a current waste or future waste stream. The largest national i-graphite inventory is located in UK (∼ 100,000 tons) with significant quantities also in Russia and France [5]. Most of the i-graphite remains in the cores of shutdown nuclear reactors including the MAGNOX type in UK and the UNGG in France. Whilst there are still operational power reactors with graphite cores, such as the Russian RBMKs and the AGRs in UK, all of them will reach their end of life during the next two decades. The most common reference waste management option of i-graphite is a wet or dry retrieval of the graphite blocks from the reactor core and the grouting of these blocks in a container without further conditioning. This produces large waste package volumes because the encapsulation capacity of the grout is limited and large cavities in the graphite blocks could reduce the packing densities. Packing densities from 0.5 to 1 tons per cubic meter have been assumed for grouting solutions. Furthermore the grout is permeable. This could over time allow the penetration of aqueous phases into the waste block and a potential dissolution and release of radionuclides. As a result particularly highly soluble radionuclides may not be retained by the grout. Vitrification could present an alternative, however a similar waste package volume increase may be expected since the encapsulation capacity of glass is potentially similar to or worse than that of grout. FNAG has developed a process for the production of a graphite-glass composite material called Impermeable Graphite Matrix (IGM) [3]. This process is also applicable to irradiated graphite which allows the manufacturing of an impermeable material without volume increase. Crushed i-graphite is mixed with 20 vol.% of glass and then pressed under vacuum at an elevated temperature in an axial hot vacuum press (HVP). The obtained product has zero or

  12. Production of an impermeable composite of irradiated graphite and glass by hot isostatic pressing as a long term leach resistant waste form

    International Nuclear Information System (INIS)

    Fachinger, Johannes; Muller, Walter; Marsat, Eric; Grosse, Karl-Heinz; Seemann, Richard; Scales, Charlie; Easton, Michael Mark; Anthony Banford

    2013-01-01

    Around 250,000 tons of irradiated graphite (i-graphite) exists worldwide and can be considered as a current waste or future waste stream. The largest national i-graphite inventory is located in UK (∼ 100,000 tons) with significant quantities also in Russia and France [5]. Most of the i-graphite remains in the cores of shutdown nuclear reactors including the MAGNOX type in UK and the UNGG in France. Whilst there are still operational power reactors with graphite cores, such as the Russian RBMKs and the AGRs in UK, all of them will reach their end of life during the next two decades. The most common reference waste management option of i-graphite is a wet or dry retrieval of the graphite blocks from the reactor core and the grouting of these blocks in a container without further conditioning. This produces large waste package volumes because the encapsulation capacity of the grout is limited and large cavities in the graphite blocks could reduce the packing densities. Packing densities from 0.5 to 1 tons per cubic meter have been assumed for grouting solutions. Furthermore the grout is permeable. This could over time allow the penetration of aqueous phases into the waste block and a potential dissolution and release of radionuclides. As a result particularly highly soluble radionuclides may not be retained by the grout. Vitrification could present an alternative, however a similar waste package volume increase may be expected since the encapsulation capacity of glass is potentially similar to or worse than that of grout. FNAG has developed a process for the production of a graphite-glass composite material called Impermeable Graphite Matrix (IGM) [3]. This process is also applicable to irradiated graphite which allows the manufacturing of an impermeable material without volume increase. Crushed i-graphite is mixed with 20 vol.% of glass and then pressed under vacuum at an elevated temperature in an axial hot vacuum press (HVP). The obtained product has zero or

  13. Solar air heaters and their applications

    Science.gov (United States)

    Selcuk, M. K.

    1977-01-01

    The solar air heater appears to be the most logical choice, as far as the ultimate application of heating air to maintain a comfortable environment is concerned. One disadvantage of solar air heaters is the need for handling larger volumes of air than liquids due to the low density of air as a working substance. Another disadvantage is the low thermal capacity of air. In cases where thermal storage is needed, water is superior to air. Design variations of solar air heaters are discussed along with the calculation of the efficiency of a flat plate solar air heater, the performance of various collector types, and the applications of solar air heaters. Attention is given to collectors with nonporous absorber plates, collectors with porous absorbers, the performance of flat plate collectors with finned absorbers, a wire mesh absorber, and an overlapped glass plate air heater.

  14. Thermal conductivity of a graphite bipolar plate (BPP) and its thermal contact resistance with fuel cell gas diffusion layers: Effect of compression, PTFE, micro porous layer (MPL), BPP out-of-flatness and cyclic load

    Science.gov (United States)

    Sadeghifar, Hamidreza; Djilali, Ned; Bahrami, Majid

    2015-01-01

    This paper reports on measurements of thermal conductivity of a graphite bipolar plate (BPP) as a function of temperature and its thermal contact resistance (TCR) with treated and untreated gas diffusion layers (GDLs). The thermal conductivity of the BPP decreases with temperature and its thermal contact resistance with GDLs, which has been overlooked in the literature, is found to be dominant over a relatively wide range of compression. The effects of PTFE loading, micro porous layer (MPL), compression, and BPP out-of-flatness are also investigated experimentally. It is found that high PTFE loadings, MPL and even small BPP out-of-flatness increase the BPP-GDL thermal contact resistance dramatically. The paper also presents the effect of cyclic load on the total resistance of a GDL-BPP assembly, which sheds light on the behavior of these materials under operating conditions in polymer electrolyte membrane fuel cells.

  15. Parallel heater system for subsurface formations

    Science.gov (United States)

    Harris, Christopher Kelvin [Houston, TX; Karanikas, John Michael [Houston, TX; Nguyen, Scott Vinh [Houston, TX

    2011-10-25

    A heating system for a subsurface formation is disclosed. The system includes a plurality of substantially horizontally oriented or inclined heater sections located in a hydrocarbon containing layer in the formation. At least a portion of two of the heater sections are substantially parallel to each other. The ends of at least two of the heater sections in the layer are electrically coupled to a substantially horizontal, or inclined, electrical conductor oriented substantially perpendicular to the ends of the at least two heater sections.

  16. 14 CFR 25.859 - Combustion heater fire protection.

    Science.gov (United States)

    2010-01-01

    ..., could cause heater failure. (d) Heater controls; general. Provision must be made to prevent the hazardous accumulation of water or ice on or in any heater control component, control system tubing, or... leakage. (2) The region surrounding the heater, if the heater fuel system has fittings that, if they...

  17. SINGLE HEATER TEST FINAL REPORT

    Energy Technology Data Exchange (ETDEWEB)

    J.B. Cho

    1999-05-01

    The Single Heater Test is the first of the in-situ thermal tests conducted by the U.S. Department of Energy as part of its program of characterizing Yucca Mountain in Nevada as the potential site for a proposed deep geologic repository for the disposal of spent nuclear fuel and high-level nuclear waste. The Site Characterization Plan (DOE 1988) contained an extensive plan of in-situ thermal tests aimed at understanding specific aspects of the response of the local rock-mass around the potential repository to the heat from the radioactive decay of the emplaced waste. With the refocusing of the Site Characterization Plan by the ''Civilian Radioactive Waste Management Program Plan'' (DOE 1994), a consolidated thermal testing program emerged by 1995 as documented in the reports ''In-Situ Thermal Testing Program Strategy'' (DOE 1995) and ''Updated In-Situ Thermal Testing Program Strategy'' (CRWMS M&O 1997a). The concept of the Single Heater Test took shape in the summer of 1995 and detailed planning and design of the test started with the beginning fiscal year 1996. The overall objective of the Single Heater Test was to gain an understanding of the coupled thermal, mechanical, hydrological, and chemical processes that are anticipated to occur in the local rock-mass in the potential repository as a result of heat from radioactive decay of the emplaced waste. This included making a priori predictions of the test results using existing models and subsequently refining or modifying the models, on the basis of comparative and interpretive analyses of the measurements and predictions. A second, no less important, objective was to try out, in a full-scale field setting, the various instruments and equipment to be employed in the future on a much larger, more complex, thermal test of longer duration, such as the Drift Scale Test. This ''shake down'' or trial aspect of the Single Heater Test applied

  18. SINGLE HEATER TEST FINAL REPORT

    International Nuclear Information System (INIS)

    J.B. Cho

    1999-01-01

    The Single Heater Test is the first of the in-situ thermal tests conducted by the U.S. Department of Energy as part of its program of characterizing Yucca Mountain in Nevada as the potential site for a proposed deep geologic repository for the disposal of spent nuclear fuel and high-level nuclear waste. The Site Characterization Plan (DOE 1988) contained an extensive plan of in-situ thermal tests aimed at understanding specific aspects of the response of the local rock-mass around the potential repository to the heat from the radioactive decay of the emplaced waste. With the refocusing of the Site Characterization Plan by the ''Civilian Radioactive Waste Management Program Plan'' (DOE 1994), a consolidated thermal testing program emerged by 1995 as documented in the reports ''In-Situ Thermal Testing Program Strategy'' (DOE 1995) and ''Updated In-Situ Thermal Testing Program Strategy'' (CRWMS M and O 1997a). The concept of the Single Heater Test took shape in the summer of 1995 and detailed planning and design of the test started with the beginning fiscal year 1996. The overall objective of the Single Heater Test was to gain an understanding of the coupled thermal, mechanical, hydrological, and chemical processes that are anticipated to occur in the local rock-mass in the potential repository as a result of heat from radioactive decay of the emplaced waste. This included making a priori predictions of the test results using existing models and subsequently refining or modifying the models, on the basis of comparative and interpretive analyses of the measurements and predictions. A second, no less important, objective was to try out, in a full-scale field setting, the various instruments and equipment to be employed in the future on a much larger, more complex, thermal test of longer duration, such as the Drift Scale Test. This ''shake down'' or trial aspect of the Single Heater Test applied not just to the hardware, but also to the teamwork and cooperation between

  19. Solar Water-Heater Design Package

    Science.gov (United States)

    1982-01-01

    Information on a solar domestic-hot water heater is contained in 146 page design package. System consists of solar collector, storage tanks, automatic control circuitry and auxiliary heater. Data-acquisition equipment at sites monitors day-by-day performance. Includes performance specifications, schematics, solar-collector drawings and drawings of control parts.

  20. Heater for Combustible-Gas Tanks

    Science.gov (United States)

    Ingle, Walter B.

    1987-01-01

    Proposed heater for pressurizing hydrogen, oxygen, or another combustible liquid or gas sealed in immersion cup in pressurized tank. Firmly supported in finned cup, coiled rod transfers heat through liquid metal to gas tank. Heater assembly welded or bolted to tank flange.

  1. Strategy Guideline: Proper Water Heater Selection

    Energy Technology Data Exchange (ETDEWEB)

    Hoeschele, M. [Alliance for Residential Building Innovation, Davis, CA (United States); Springer, D. [Alliance for Residential Building Innovation, Davis, CA (United States); German, A. [Alliance for Residential Building Innovation, Davis, CA (United States); Staller, J. [Alliance for Residential Building Innovation, Davis, CA (United States); Zhang, Y. [Alliance for Residential Building Innovation, Davis, CA (United States)

    2015-04-01

    This Strategy Guideline on proper water heater selection was developed by the Building America team Alliance for Residential Building Innovation to provide step-by-step procedures for evaluating preferred cost-effective options for energy efficient water heater alternatives based on local utility rates, climate, and anticipated loads.

  2. Strategy Guideline. Proper Water Heater Selection

    Energy Technology Data Exchange (ETDEWEB)

    Hoeschele, M. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States); Springer, D. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States); German, A. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States); Staller, J. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States); Zhang, Y. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States)

    2015-04-09

    This Strategy Guideline on proper water heater selection was developed by the Building America team Alliance for Residential Building Innovation to provide step-by-step procedures for evaluating preferred cost-effective options for energy efficient water heater alternatives based on local utility rates, climate, and anticipated loads.

  3. Field Performance of Heat Pump Water Heaters in the Northeast

    Energy Technology Data Exchange (ETDEWEB)

    Shapiro, Carl [Consortium for Advanced Residential Buildings, Norfolk, CT (United States); Puttagunta, Srikanth [Consortium for Advanced Residential Buildings, Norfolk, CT (United States)

    2016-02-05

    Heat pump water heaters (HPWHs) are finally entering the mainstream residential water heater market. Potential catalysts are increased consumer demand for higher energy efficiency electric water heating and a new Federal water heating standard that effectively mandates use of HPWHs for electric storage water heaters with nominal capacities greater than 55 gallons. When compared to electric resistance water heating, the energy and cost savings potential of HPWHs is tremendous. Converting all electric resistance water heaters to HPWHs could save American consumers 7.8 billion dollars annually ($182 per household) in water heating operating costs and cut annual residential source energy consumption for water heating by 0.70 quads. Steven Winter Associates, Inc. embarked on one of the first in situ studies of these newly released HPWH products through a partnership with two sponsoring electric utility companies, National Grid and NSTAR, and one sponsoring energy efficiency service program administrator, Cape Light Compact. Recent laboratory studies have measured performance of HPWHs under various operating conditions, but publically available field studies have not been as available. This evaluation attempts to provide publicly available field data on new HPWHs by monitoring the performance of three recently released products (General Electric GeoSpring(TM), A.O. Smith Voltex(R), and Stiebel Eltron Accelera(R) 300). Fourteen HPWHs were installed in Massachusetts and Rhode Island and monitored for over a year. Of the 14 units, ten were General Electric models (50 gallon units), two were Stiebel Eltron models (80 gallon units), and two were A.O. Smith models (one 60-gallon and one 80-gallon unit).

  4. Sensing capabilities of graphite based MR elastomers

    International Nuclear Information System (INIS)

    Tian, T F; Li, W H; Deng, Y M

    2011-01-01

    This paper presents both experimental and theoretical investigations of the sensing capabilities of graphite based magnetorheological elastomers (MREs). In this study, eight MRE samples with varying graphite weight fractions were fabricated and their resistance under different magnetic fields and external loadings were measured with a multi-meter. With an increment of graphite weight fraction, the resistance of MRE sample decreases steadily. Higher magnetic fields result in a resistance increase. Based on an ideal assumption of a perfect chain structure, a mathematical model was developed to investigate the relationship between the MRE resistance with external loading. In this model, the current flowing through the chain structure consists of both a tunnel current and a conductivity current, both of which depend on external loadings. The modelling parameters have been identified and reconstructed from comparison with experimental results. The comparison indicates that both experimental results and modelling predictions agree favourably well

  5. Outlook for solar water heaters in Taiwan

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Keh-Chin [Department of Aeronautical and Astronautical Engineering, National Cheng Kung University, Kueijen, Tainan, Taiwan 711 (China); Lee, Tsong-Sheng; Chung, Kung-Ming [Aerospace Science and Technology Research Center, National Cheng Kung University, Kueijen, Tainan, Taiwan 711 (China); Lin, Wei-Min [Tainan University of Technology (China)

    2008-01-15

    The share of indigenous energy supply continuously decreases over the last two decades in Taiwan. The development and use of renewable energy sources and technologies are becoming vital for the management of energy supply and demand. For promotion of solar water heaters, the incentive programs were firstly initiated in the period of 1986-1991 and re-initiated from 2000 to the present. These programs create an economic incentive for the end users and have a drastic effect on the popularization of solar water heaters. To further promote solar water heaters during the current incentive program period, several key factors are addressed. In addition to the cost of solar water heaters and energy price index, the potential market of solar water heaters in Taiwan is associated with the climatic conditions, population structure, urbanization, building type of housing and status of new construction. (author)

  6. Outlook for solar water heaters in Taiwan

    International Nuclear Information System (INIS)

    Chang, Keh-Chin; Lee, Tsong-Sheng; Chung, Kung-Ming; Lin, Wei-Min

    2008-01-01

    The share of indigenous energy supply continuously decreases over the last two decades in Taiwan. The development and use of renewable energy sources and technologies are becoming vital for the management of energy supply and demand. For promotion of solar water heaters, the incentive programs were firstly initiated in the period of 1986-1991 and re-initiated from 2000 to the present. These programs create an economic incentive for the end users and have a drastic effect on the popularization of solar water heaters. To further promote solar water heaters during the current incentive program period, several key factors are addressed. In addition to the cost of solar water heaters and energy price index, the potential market of solar water heaters in Taiwan is associated with the climatic conditions, population structure, urbanization, building type of housing and status of new construction. (author)

  7. Buffer mass test - Heater design and operation

    International Nuclear Information System (INIS)

    Nilsson, J.; Ramqvist, G.; Pusch, R.

    1984-06-01

    The nuclear waste is assumed to be contained in cylindrical metal canisters which will be inserted in deposition holes. Heat is generated as a result of the continuing decay of the radioactive waste and in the Buffer Mass Test (BMT) the heat flux expected from such canisters was simulated by the use of six electric heaters. the heaters were constructed partly of aluminium and partly of stainless steel. They are 1520 mm in length and 380 mm in diameter, and give a maximum power output of 3000 W. The heater power can be monitored by panel meters coupled to a computer-based data acquisition system. Both the heater and the control system were manufactured with a high degree of redundancy in case of component failure. This report describes the design, construction, testing, installation and necessary tools for heater installation and dismantling operation. (author)

  8. Superhydrophilic graphite surfaces and water-dispersible graphite colloids by electrochemical exfoliation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yueh-Feng [Department of Chemical and Materials Engineering, National Central University, Jhongli, 320 Taiwan (China); Chen, Shih-Ming; Lai, Wei-Hao [Materials and Chemical Research Laboratories, Industrial Technology Research Institute, Chutung, Hsinchu, 31040 Taiwan (China); Sheng, Yu-Jane [Department of Chemical Engineering, National Taiwan University, Taipei, 106 Taiwan (China); Tsao, Heng-Kwong [Department of Chemical and Materials Engineering, Department of Physics, National Central University, Jhongli, 320 Taiwan (China)

    2013-08-14

    Superhydrophilic graphite surfaces and water-dispersible graphite colloids are obtained by electrochemical exfoliation with hydrophobic graphite electrodes. Such counterintuitive characteristics are caused by partial oxidation and investigated by examining both graphite electrodes and exfoliated particles after electrolysis. The extent of surface oxidation can be explored through contact angle measurement, scanning electron microscope, electrical sheet resistance, x-ray photoelectron spectroscopy, zeta-potential analyzer, thermogravimetric analysis, UV-visible, and Raman spectroscopy. The degree of wettability of the graphite anode can be altered by the electrolytic current and time. The water contact angle declines generally with increasing the electrolytic current or time. After a sufficient time, the graphite anode becomes superhydrophilic and its hydrophobicity can be recovered by peeling with adhesive tape. This consequence reveals that the anodic graphite is oxidized by oxygen bubbles but the oxidation just occurs at the outer layers of the graphite sheet. Moreover, the characteristics of oxidation revealed by UV peak shift, peak ratio between D and G bands, and negative zeta-potential indicate the presence of graphite oxide on the outer shell of the exfoliated colloids. However, thermogravimetric analysis for the extent of decomposition of oxygen functional groups verifies that the amount of oxygen groups is significantly less than that of graphite oxide prepared via Hummer method. The structure of this partially oxidized graphite may consist of a graphite core covered with an oxidized shell. The properties of the exfoliated colloids are also influenced by pH of the electrolytic solution. As pH is increased, the extent of oxidation descends and the thickness of oxidized shell decreases. Those results reveal that the degree of oxidation of exfoliated nanoparticles can be manipulated simply by controlling pH.

  9. Phonon scattering in graphite

    International Nuclear Information System (INIS)

    Wagner, P.

    1976-04-01

    Effects on graphite thermal conductivities due to controlled alterations of the graphite structure by impurity addition, porosity, and neutron irradiation are shown to be consistent with the phonon-scattering formulation 1/l = Σ/sub i equals 1/sup/n/ 1/l/sub i/. Observed temperature effects on these doped and irradiated graphites are also explained by this mechanism

  10. Graphite nanoreinforcements in polymer nanocomposites

    Science.gov (United States)

    Fukushima, Hiroyuki

    , or carbon blacks. The exfoliated graphite flakes reached the percolation threshold at 1.93 wt% (1.13 vol%) in an epoxy system and the resistivity of the composite showed 39 ohm•cm with 7 wt% of exfoliated graphite, which is comparable to the high-grade carbon black based systems. The vapor grown carbon fiber based composites showed higher resistivity at the same filler contents while the conventional carbon fiber composites showed much higher resistivity and percolation threshold. Stress distribution analysis by Finite Element Method revealed the stress concentration condition of composite systems is affected by factors such as shape of the reinforcements, aspect ratio, and geological arrangements. Based on these results, an optimal morphology design of nanocomposite system was proposed. Market research revealed that there is a realistic possibility for applying the new process and material in commercial products and a venture business plan was proposed based on this new technology. The venture plan won "The Most Innovative Design" award at the 2002 Michigan Collegiate Entrepreneur's Conference.

  11. Particulate matter sensor with a heater

    Science.gov (United States)

    Hall, Matthew [Austin, TX

    2011-08-16

    An apparatus to detect particulate matter. The apparatus includes a sensor electrode, a shroud, and a heater. The electrode measures a chemical composition within an exhaust stream. The shroud surrounds at least a portion of the sensor electrode, exclusive of a distal end of the sensor electrode exposed to the exhaust stream. The shroud defines an air gap between the sensor electrode and the shroud and an opening toward the distal end of the sensor electrode. The heater is mounted relative to the sensor electrode. The heater burns off particulate matter in the air gap between the sensor electrode and the shroud.

  12. 14 CFR 29.859 - Combustion heater fire protection.

    Science.gov (United States)

    2010-01-01

    ... relief of any backfire that, if so restricted, could cause heater failure. (d) Heater controls; general. There must be means to prevent the hazardous accumulation of water or ice on or in any heater control... malfunctioning; or (ii) Allow flammable fluids or vapors to reach the heater in case of leakage. (2) Each part of...

  13. Is your electric process heater safe?

    Energy Technology Data Exchange (ETDEWEB)

    Tiras, C.S.

    2000-04-01

    Over the past 35 years, electric process heaters (EPHs) have been used to heat flowing fluids in different sectors of the energy industry: oil and gas exploration and production, refineries, petrochemical plants, pipeline compression facilities and power-generation plants. EPHs offer several advantages over fired heaters and shell-and-tube exchangers, which have been around for many years, including: smaller size, lighter weight, cleaner operation, lower capital costs, lower maintenance costs, no emissions or leakage, better control and improved safety. However, while many industrial standards have addressed safety concerns of fired heaters and shell-and-tube exchangers (API, TEMA, NFPA, OSHA and NEC), no standards address EPHs. The paper presents a list of questions that plant operators need to ask about the safety of their electric process heaters. The answers are also given.

  14. Design data brochure: Solar hot air heater

    Science.gov (United States)

    1978-01-01

    The design, installation, performance, and application of a solar hot air heater for residential, commercial and industrial use is reported. The system has been installed at the Concho Indian School in El Reno, Oklahoma.

  15. A prototype construction of bearing heater system

    International Nuclear Information System (INIS)

    Firman Silitonga

    2007-01-01

    A bearing heater system has been successfully constructed using transformer-like method of 1000 VA power, 220 V primary voltage, and 50 Hz electrical frequency. The bearing heater consists of primary coil 230 turns, U type and bar-type iron core with 36 cm 2 , 9 cm 2 ,and 3 cm 2 cross-section, and electrical isolation. The bearing heater is used to enlarge the diameter of the bearing so that it can be easily fixed on an electric motor shaft during replacement because the heating is conducted by treated the bearing as a secondary coil of a transformer. This bearing heater can be used for bearing with 3 and 6 cm of inner diameter and 12 cm of maximum outside diameter. (author)

  16. Graphite target for the spiral project

    International Nuclear Information System (INIS)

    Putaux, J.C.; Ducourtieux, M.; Ferro, A.; Foury, P.; Kotfila, L.; Mueller, A.C.; Obert, J.; Pauwels, N.; Potier, J.C.; Proust, J.; Loiselet, M.

    1996-01-01

    A study of the thermal and physical properties of graphite targets for the SPIRAL project is presented. The main objective is to develop an optimized set-up both mechanically and thermally resistant, presenting good release properties (hot targets with thin slices). The results of irradiation tests concerning the mechanical and thermal resistance of the first prototype of SPIRAL target with conical geometry are presented. The micro-structural properties of the graphite target is also studied, in order to check that the release properties are not deteriorated by the irradiation. Finally, the results concerning the latest pilot target internally heated by an electrical current are shown. (author)

  17. Unregulated heat output of a storage heater

    OpenAIRE

    Lysak, Oleg Віталійович

    2017-01-01

    In the article the factors determining the heat transfer between the outer surfaces of a storage heater and the ambient air. This heat exchange is unregulated, and its definition is a precondition for assessing heat output range of this type of units. It was made the analysis of the literature on choosing insulating materials for each of the external surfaces of storage heaters: in foreign literature, there are recommendations on the use of various types of insulation depending on the type of...

  18. Water hammers in direct contact heater systems

    International Nuclear Information System (INIS)

    Uffer, R.

    1983-01-01

    This paper discusses the causes and mitigation or prevention of water hammers occurring in direct contact heaters and their attached lines. These water hammers are generally caused by rapid pressure reductions in the heaters or by water lines not flowing full. Proper design and operating measures can prevent or mitigate water hammer occurrence. Water hammers often do not originate at the areas where damage is noted

  19. The role of graphite morphology and matrix structure on low ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Thermal cycling resistance; graphite morphology; grey cast iron; austempered ductile iron; compacted/vermicular graphite iron; matrix decompo- sition. 1. Introduction. When a material is subjected to a temperature gradient, it tends to expand differentially. During this process, thermal stresses are induced. The source of ...

  20. Proximity annealing of sulfur-implanted gallium arsenide using a strip heater

    International Nuclear Information System (INIS)

    Banerjee, S.; Baker, J.

    1985-01-01

    A graphite strip heater has been employed for rapid (-- 30 s) thermal annealing (RTA), at temperatures between 850 and 1150 0 C, of Cr-doped GaAs implanted with 120 keV 32 S + with doses between 10 13 and 10 15 cm -2 . In order to minimize the incongruent evaporation of As, proximity anneals were employed by protecting the implanted samples with GaAs cover pieces. RTA yields electrical activation and donor mobilities better than or comparable to furnace annealing, with less redistribution of the implanted S and background Cr. (author)

  1. A graphite nanoeraser

    DEFF Research Database (Denmark)

    Liu, Ze; Bøggild, Peter; Yang, Jia-rui

    2011-01-01

    We present here a method for cleaning intermediate-size (up to 50 nm) contamination from highly oriented pyrolytic graphite and graphene. Electron-beam-induced deposition of carbonaceous material on graphene and graphite surfaces inside a scanning electron microscope, which is difficult to remove...... by conventional techniques, can be removed by direct mechanical wiping using a graphite nanoeraser, thus drastically reducing the amount of contamination. We discuss potential applications of this cleaning procedure....

  2. Dependence of strength on particle size in graphite

    International Nuclear Information System (INIS)

    Kennedy, E.P.; Kennedy, C.R.

    The strength to particle size relationship for specially fabricated graphites has been demonstrated and rationalized using fracture mechanics. In the past, similar studies have yielded empirical data using only commercially available material. Thus, experimental verification of these relationships has been difficult. However, the graphites of this study were fabricated by controlling the particle size ranges for a series of isotropic graphites. All graphites that were evaluated had a constant 1.85 g/cm 3 density. Thus, particle size was the only variable. This study also considered the particle size effect on other physical properties; coefficient of thermal expansion (CTE), electrical resistivity, fracture strain, and Young's modulus

  3. Method for producing dustless graphite spheres from waste graphite fines

    Science.gov (United States)

    Pappano, Peter J [Oak Ridge, TN; Rogers, Michael R [Clinton, TN

    2012-05-08

    A method for producing graphite spheres from graphite fines by charging a quantity of spherical media into a rotatable cylindrical overcoater, charging a quantity of graphite fines into the overcoater thereby forming a first mixture of spherical media and graphite fines, rotating the overcoater at a speed such that the first mixture climbs the wall of the overcoater before rolling back down to the bottom thereby forming a second mixture of spherical media, graphite fines, and graphite spheres, removing the second mixture from the overcoater, sieving the second mixture to separate graphite spheres, charging the first mixture back into the overcoater, charging an additional quantity of graphite fines into the overcoater, adjusting processing parameters like overcoater dimensions, graphite fines charge, overcoater rotation speed, overcoater angle of rotation, and overcoater time of rotation, before repeating the steps until graphite fines are converted to graphite spheres.

  4. Graphite targets at LAMPF

    International Nuclear Information System (INIS)

    Brown, R.D.; Grisham, D.L.

    1983-01-01

    Rotating polycrystalline and stationary pyrolytic graphite target designs for the LAMPF experimental area are described. Examples of finite element calculations of temperatures and stresses are presented. Some results of a metallographic investigation of irradiated pyrolytic graphite target plates are included, together with a brief description of high temperature bearings for the rotating targets

  5. Electrochemical Ultracapacitors Using Graphitic Nanostacks

    Science.gov (United States)

    Marotta, Christopher

    2012-01-01

    Electrochemical ultracapacitors (ECs) have been developed using graphitic nanostacks as the electrode material. The advantages of this technology will be the reduction of device size due to superior power densities and relative powers compared to traditional activated carbon electrodes. External testing showed that these materials display reduced discharge response times compared to state-of-the-art materials. Such applications are advantageous for pulsed power applications such as burst communications (satellites, cell phones), electromechanical actuators, and battery load leveling in electric vehicles. These carbon nanostructures are highly conductive and offer an ordered mesopore network. These attributes will provide more complete electrolyte wetting, and faster release of stored charge compared to activated carbon. Electrochemical capacitor (EC) electrode materials were developed using commercially available nanomaterials and modifying them to exploit their energy storage properties. These materials would be an improvement over current ECs that employ activated carbon as the electrode material. Commercially available graphite nanofibers (GNFs) are used as precursor materials for the synthesis of graphitic nanostacks (GNSs). These materials offer much greater surface area than graphite flakes. Additionally, these materials offer a superior electrical conductivity and a greater average pore size compared to activated carbon electrodes. The state of the art in EC development uses activated carbon (AC) as the electrode material. AC has a high surface area, but its small average pore size inhibits electrolyte ingress/egress. Additionally, AC has a higher resistivity, which generates parasitic heating in high-power applications. This work focuses on fabricating EC from carbon that has a very different structure by increasing the surface area of the GNF by intercalation or exfoliation of the graphitic basal planes. Additionally, various functionalities to the GNS

  6. Electrochemical treatment of graphite

    Energy Technology Data Exchange (ETDEWEB)

    Podlovilin, V.I.; Egorov, I.M.; Zhernovoj, A.I.

    1983-01-01

    In the course of investigating various modes of electrochemical treatment (ECT) it has been found that graphite anode treatment begins under the ''glow mode''. A behaviour of some marks of graphite with the purpose of ECT technique development in different electrolytes has been tested. Electrolytes have been chosen of three types: highly alkaline (pH 13-14), neutral (pH-Z) and highly acidic (pH 1-2). For the first time parallel to mechanical electroerosion treatment, ECT of graphite and carbon graphite materials previously considered chemically neutral is proposed. ECT of carbon graphite materials has a number of advantages as compared with electroerrosion and mechanical ones with respect to the treatment rate and purity (ronghness) of the surface. A small quantity of sludge (6-8%) under ECT is in highly alkali electrolytes.

  7. Electrochemical treatment of graphite

    International Nuclear Information System (INIS)

    Podlovilin, V.I.; Egorov, I.M.; Zhernovoj, A.I.

    1983-01-01

    In the course of investigating various modes of electroche-- mical treatment (ECT) it has been found that graphite anode treatment begins under the ''glow mode''. A behaviour of some marks of graphite with the purpose of ECT technique development in different electrolytes has been tested. Electrolytes have been chosen of three types: highly alkaline (pH 13-14), neutral (pH-Z) and highly acidic (pH 1-2). For the first time parallel to mechanical electroerosion treatment ECT graphite and carbon graphite materials previously considered chemically neutral is proposed. ECT of carbon graphite materials has a number of advantages as compared with electroerrosion and mechanical ones this is treatment rate and purity (ronghness) of the surface. A sMall quantity of sludge (6-8%) under ECT is in highly alkali electrolytes

  8. Connecting ring and process to fix heaters in a pressure vessel by means of these rings

    International Nuclear Information System (INIS)

    Bailleul, G.; Caloine, P.; Coville, P.

    1984-01-01

    The invention can applies to the installation of heaters for nuclear reactor pressurizer or to the installation of any kind of reheaters by means of electric resistances when these reheaters have to work under important pressures. The connecting ring is made of a single metallic piece, two coaxial tubes joined each other by a skirt nearly radial; the skirt joins an end of the outer cylindrical tube and an intermediate zone of the inner cylindrical tube. The invention concerns also a heater provided with such a connecting ring, substituted for a part of its metallic envelope, and a process of fastening of these heaters on a pressure vessel. The description given in the frame of a pressurizer applies to the case of a gas reheater or to a reheater for liquid under pressure such as liquid sodium in a tank [fr

  9. Dissemination of Solar Water Heaters in Taiwan: The Case of Remote Islands

    Directory of Open Access Journals (Sweden)

    Kung-Ming Chung

    2013-10-01

    Full Text Available Solar water heaters represent the success story in the development of renewable energy in Taiwan. With increasing public awareness, there are over 0.3 million residential systems in operation. To disseminate solar water heaters in remote islands, economic feasibility and water quality are taken into account in this study. The payback period in Kinmen and Penghu Counties are evaluated, according to effective annual solar energy gain, hot water consumption pattern and cost. Assessment of the scaling and corrosion tendencies for solar water heaters using tap and underground water are also presented. For flat-plate solar collectors with metal components, favorable corrosion resistance and protective anti-corrosion coatings are required.

  10. Development of Industrially Produced Composite Quench Heaters for the LHC Superconducting Lattice Magnets

    CERN Document Server

    Szeless, Balázs; Calvone, F

    1996-01-01

    The quench heaters are vital elements for the protection of the LHC superconducting lattice magnets in the case of resistive transitions of the conductor. The basic concept of magnet protection and technical solutions are briefly presented. The quench heater consists of partially copper clad stainless steel strips sandwiched in between electric insulating carrier foils with electrical and mechanical properties such as to withstand high voltages, low temperatures, pressures and ionizing radiation. Testing of some commercial available electric insulation foils, polyimide (PI), polyetheretherketon (PEEK) and polyarylate (PA) and combinations of adhesive systems which are suitable for industrial processing are described. Possible industrial methods for series production for some 80 km of these composite quench heaters are indicated.

  11. Evaluation of examination techniques for ferritic stainless steel feedwater heater tubing

    International Nuclear Information System (INIS)

    Nugent, M.J.; Catapano, M.C.

    1995-01-01

    Ferritic stainless steel has been finding increased application in utility plant feedwater heaters due to good strength and corrosion resistance and absence of potential copper contamination of feedwater system. Ferritic stainless steel is highly magnetic and is generally not inspectable using conventional eddy current testing techniques. A variety of techniques have been developed for inspection of this tubing material used in typical heat exchanger applications. Through a project funded by the Empire State Electric Energy Research Corporation (ESEERCO), the evaluation of data generated by four present state of the art NDE testing techniques were evaluated on a controlled mock-up of the heater tubing with service related defects. The primary objective was to determine the strengths and limitations of each method. The testing of two in service feedwater heaters at the Consolidated Edison Company of New York, Inc. (Con Edison's) Arthur Kill Generating Station also allowed further evaluations based on actual field conditions

  12. Thermal-mechanical-hydrological-chemical responses in the single heater test at the ESF

    International Nuclear Information System (INIS)

    Lin, W.; Blair, S.; Buettner, M

    1997-01-01

    The Single Heater Test (SHT) is conducted in the Exploratory Studies Facility (ESF) to study the thermal-mechanical responses of the rock mass. A set of boreholes were drilled in the test region for conducting a scoping test of the coupled thermal-mechanical- hydrological-chemical (TMHC) processes. The holes for the TMHC tests include electrical resistivity tomography (ERT), neutron logging/temperature, hydrological, and optical multiple point borehole extensometers. A 4-kW heater was installed in the heater hole, and was energized on August 26, 1996. Some observed movements of the water around the heater are associated with a possible dry-out region near the heater. The water that has been moved is more dilute than the in situ ground water, except for the concentration of Ca. This indicates that fractures are the major water pathways, and the displaced water may have reached an equilibrium with carbonate minerals on the fracture surfaces. No mechanical-hydrological coupling has been observed. The tests are on-going, and more data will be collected and analyzed

  13. Stretchable Tattoo-Like Heater with On-Site Temperature Feedback Control

    Directory of Open Access Journals (Sweden)

    Andrew Stier

    2018-04-01

    Full Text Available Wearable tissue heaters can play many important roles in the medical field. They may be used for heat therapy, perioperative warming and controlled transdermal drug delivery, among other applications. State-of-the-art heaters are too bulky, rigid, or difficult to control to be able to maintain long-term wearability and safety. Recently, there has been progress in the development of stretchable heaters that may be attached directly to the skin surface, but they often use expensive materials or processes and take significant time to fabricate. Moreover, they lack continuously active, on-site, unobstructive temperature feedback control, which is critical for accommodating the dynamic temperatures required for most medical applications. We have developed, fabricated and tested a cost-effective, large area, ultra-thin and ultra-soft tattoo-like heater that has autonomous proportional-integral-derivative (PID temperature control. The device comprises a stretchable aluminum heater and a stretchable gold resistance temperature detector (RTD on a soft medical tape as fabricated using the cost and time effective “cut-and-paste” method. It can be noninvasively laminated onto human skin and can follow skin deformation during flexure without imposing any constraint. We demonstrate the device’s ability to maintain a target temperature typical of medical uses over extended durations of time and to accurately adjust to a new set point in process. The cost of the device is low enough to justify disposable use.

  14. Asymptomatic Intracorneal Graphite Deposits following Graphite Pencil Injury

    OpenAIRE

    Philip, Swetha Sara; John, Deepa; John, Sheeja Susan

    2012-01-01

    Reports of graphite pencil lead injuries to the eye are rare. Although graphite is considered to remain inert in the eye, it has been known to cause severe inflammation and damage to ocular structures. We report a case of a 12-year-old girl with intracorneal graphite foreign bodies following a graphite pencil injury.

  15. High-temperature MEMS Heater Platforms: Long-term Performance of Metal and Semiconductor Heater Materials

    Directory of Open Access Journals (Sweden)

    Theodor Doll

    2006-04-01

    Full Text Available Micromachined thermal heater platforms offer low electrical power consumptionand high modulation speed, i.e. properties which are advantageous for realizing non-dispersive infrared (NDIR gas- and liquid monitoring systems. In this paper, we report oninvestigations on silicon-on-insulator (SOI based infrared (IR emitter devices heated byemploying different kinds of metallic and semiconductor heater materials. Our resultsclearly reveal the superior high-temperature performance of semiconductor over metallicheater materials. Long-term stable emitter operation in the vicinity of 1300 K could beattained using heavily antimony-doped tin dioxide (SnO2:Sb heater elements.

  16. Electrical properties of Egyptian natural graphite

    International Nuclear Information System (INIS)

    El-Shazly, O.; El-Wahidy, E.F.; Elanany, N.; Saad, N.A.

    1992-06-01

    The electrical properties of Egyptian natural graphite flakes, obtained from the graphite schists of Wadi Bent, Eastern Desert, were measured. The flakes were ground and compressed into pellets. The standard four probe dc method was used to measure the temperature dependence of the electric resistivity from room temperature down to 12 K. The transverse and longitudinal magnetoresistance were measured in the low magnetic field range at temperatures 300 K, 77 K and 12 K. The transverse magnetoresistance data was used to estimate the average mobility, assuming a simple two-band model. (author). 20 refs, 4 figs, 1 tab

  17. Recent developments in graphite

    International Nuclear Information System (INIS)

    Cunningham, J.E.

    1983-01-01

    Overall, the HTGR graphite situation is in excellent shape. In both of the critical requirements, fuel blocks and support structures, adequate graphites are at hand and improved grades are sufficiently far along in truncation. In the aerospace field, GraphNOL N3M permits vehicle performance with confidence in trajectories unobtainable with any other existing material. For fusion energy applications, no other graphite can simultaneously withstand both extreme thermal shock and neutron damage. Hence, the material promises to create new markets as well as to offer a better candidate material for existing applications

  18. Graphite for fusion energy applications

    International Nuclear Information System (INIS)

    Eatherly, W.P.; Clausing, R.E.; Strehlow, R.A.; Kennedy, C.R.; Mioduszewski, P.K.

    1987-03-01

    Graphite is in widespread and beneficial use in present fusion energy devices. This report reflects the view of graphite materials scientists on using graphite in fusion devices. Graphite properties are discussed with emphasis on application to fusion reactors. This report is intended to be introductory and descriptive and is not intended to serve as a definitive information source

  19. Surface coating of graphite pebbles for Korean HCCR TBM

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Youngmin [National Fusion Research Institute, Daejeon (Korea, Republic of); Yun, Young-Hoon, E-mail: yunh2@dsu.ac.kr [Dongshin University, Naju (Korea, Republic of); Park, Yi-Hyun; Ahn, Mu-Young; Cho, Seungyon [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    Highlights: • A CVR-SiC coating was successfully formed on graphite pebbles for neutron reflector. • Dense and fine-grained surface morphologies of the SiC coatings were observed. • Oxidation resistance of the CVR-SiC-coated graphite pebbles was improved. - Abstract: The new concept of the recently modified Helium-Cooled Ceramic Reflector (HCCR) Test Blanket Module (TBM) is to adopt a graphite reflector in the form of a pebble bed. A protective SiC coating is applied to the graphite pebbles to prohibit their reaction with steam or air as well as dust generation during TBM operation. In this research, the chemical vapor reaction (CVR) method was applied to fabricate SiC-coated graphite pebbles in a silica source. Relatively dense CVR-SiC coating was successfully formed on the graphite pebbles through the reduction of the graphite phase with SiO gas that was simply created from the silica source at 1850 °C (2 h). The microstructural features, XRD patterns, pore-size distribution and oxidation behavior of the SiC-coated graphite pebbles were investigated. To develop the practical process, which will be applied for mass production hereafter, a novel alternative method was applied to form the layer of SiC coating on the graphite pebbles over the silica source.

  20. Characteristics of first loaded IG-110 graphite in HTTR core

    International Nuclear Information System (INIS)

    Sumita, Junya; Shibata, Taiju; Iyoku, Tatsuo; Sawa, Kazuhiro; Hanawa, Satoshi; Ishihara, Masahiro

    2006-10-01

    IG-110 graphite is a fine-grained isotropic and nuclear-grade graphite with excellent resistivity on both irradiation and corrosion and with high strength. The IG-110 graphite is used for the graphite components of High Temperature Engineering Test Reactor (HTTR) such as fuel and control rod guide blocks and support posts. In order to design and fabricate the graphite components in the HTTR, the Japan Atomic Energy Research Institute (the Japan Atomic Energy Agency at present) had established the graphite structural design code and design data on the basis of former research results. After the design code establishment, the IG-110 graphite components were fabricated and loaded in the HTTR core. This report summarized the characteristics of the first loaded IG-110 graphite as basic data for surveillance test, measuring material characteristics changed by neutron irradiation and oxidation. By comparing the design data, it was shown that the first loaded IG-110 graphite had excellent strength properties and enough safety margins to the stress limits in the design code. (author)

  1. Surface coating of graphite pebbles for Korean HCCR TBM

    International Nuclear Information System (INIS)

    Lee, Youngmin; Yun, Young-Hoon; Park, Yi-Hyun; Ahn, Mu-Young; Cho, Seungyon

    2014-01-01

    Highlights: • A CVR-SiC coating was successfully formed on graphite pebbles for neutron reflector. • Dense and fine-grained surface morphologies of the SiC coatings were observed. • Oxidation resistance of the CVR-SiC-coated graphite pebbles was improved. - Abstract: The new concept of the recently modified Helium-Cooled Ceramic Reflector (HCCR) Test Blanket Module (TBM) is to adopt a graphite reflector in the form of a pebble bed. A protective SiC coating is applied to the graphite pebbles to prohibit their reaction with steam or air as well as dust generation during TBM operation. In this research, the chemical vapor reaction (CVR) method was applied to fabricate SiC-coated graphite pebbles in a silica source. Relatively dense CVR-SiC coating was successfully formed on the graphite pebbles through the reduction of the graphite phase with SiO gas that was simply created from the silica source at 1850 °C (2 h). The microstructural features, XRD patterns, pore-size distribution and oxidation behavior of the SiC-coated graphite pebbles were investigated. To develop the practical process, which will be applied for mass production hereafter, a novel alternative method was applied to form the layer of SiC coating on the graphite pebbles over the silica source

  2. Process and device for replacing heater in PWR pressurizer

    International Nuclear Information System (INIS)

    Gente, D.; Giron, M.

    1990-01-01

    To assure the tight fixation of replacing heater on a pressurizer penetration sleeve, a gas metal-arc welding single pass is executed. A tubular shaft is fixed over end of heater projecting from penetration sleeve. Over shaft is fixed tubular support for the torch which can rotate about axis of support axis heater. Welding torch and welding wire feeder roll are rotated in synchronisation by appropriate motors. Weld is made in single pass round periphery of heater and penetration sleeve [fr

  3. Solar Water-Heater Design and Installation

    Science.gov (United States)

    Harlamert, P.; Kennard, J.; Ciriunas, J.

    1982-01-01

    Solar/Water heater system works as follows: Solar--heated air is pumped from collectors through rock bin from top to bottom. Air handler circulates heated air through an air-to-water heat exchanger, which transfers heat to incoming well water. In one application, it may reduce oil use by 40 percent.

  4. 49 CFR 393.77 - Heaters.

    Science.gov (United States)

    2010-10-01

    ... or of any exposed portions of the heaters, inclusive of exhaust stacks, pipes, or conduits shall be... disassembly of any of its parts, including exhaust stacks, pipes, or conduits, upon overturn of the vehicle in... will never exceed 0.2 percent in the cargo space. The exhaust pipe, stack, or conduit if required shall...

  5. 49 CFR 179.12 - Interior heater systems.

    Science.gov (United States)

    2010-10-01

    ... Design Requirements § 179.12 Interior heater systems. (a) Interior heater systems shall be of approved design and materials. If a tank is divided into compartments, a separate system shall be provided for... 49 Transportation 2 2010-10-01 2010-10-01 false Interior heater systems. 179.12 Section 179.12...

  6. Fire-tube immersion heater optimization program and field heater audit program

    Energy Technology Data Exchange (ETDEWEB)

    Croteau, P. [Petro-Canada, Calgary, AB (Canada)

    2007-07-01

    This presentation provided an overview of the top 5 priorities for emission reduction and eco-efficiency by the Petroleum Technology Alliance of Canada (PTAC). These included venting of methane emissions; fuel consumption in reciprocating engines; fuel consumption in fired heaters; flaring and incineration; and fugitive emissions. It described the common concern for many upstream operating companies as being energy consumption associated with immersion heaters. PTAC fire-tube heater and line heater studies were presented. Combustion efficiency was discussed in terms of excess air, fire-tube selection, heat flux rate, and reliability guidelines. Other topics included heat transfer and fire-tube design; burner selection; burner duty cycle; heater tune up inspection procedure; and insulation. Two other programs were also discussed, notably a Petro-Canada fire-tube immersion heater optimization program and the field audit program run by Natural Resources Canada. It was concluded that improved efficiency involves training; managing excess air in combustion; managing the burner duty cycle; striving for 82 per cent combustion efficiency; and providing adequate insulation to reduce energy demand. tabs., figs.

  7. Carbon-14 Graphitization Chemistry

    Science.gov (United States)

    Miller, James; Collon, Philippe; Laverne, Jay

    2014-09-01

    Accelerator Mass Spectrometry (AMS) is a process that allows for the analysis of mass of certain materials. It is a powerful process because it results in the ability to separate rare isotopes with very low abundances from a large background, which was previously impossible. Another advantage of AMS is that it only requires very small amounts of material for measurements. An important application of this process is radiocarbon dating because the rare 14C isotopes can be separated from the stable 14N background that is 10 to 13 orders of magnitude larger, and only small amounts of the old and fragile organic samples are necessary for measurement. Our group focuses on this radiocarbon dating through AMS. When performing AMS, the sample needs to be loaded into a cathode at the back of an ion source in order to produce a beam from the material to be analyzed. For carbon samples, the material must first be converted into graphite in order to be loaded into the cathode. My role in the group is to convert the organic substances into graphite. In order to graphitize the samples, a sample is first combusted to form carbon dioxide gas and then purified and reduced into the graphite form. After a couple weeks of research and with the help of various Physics professors, I developed a plan and began to construct the setup necessary to perform the graphitization. Once the apparatus is fully completed, the carbon samples will be graphitized and loaded into the AMS machine for analysis.

  8. Melting temperature of graphite

    International Nuclear Information System (INIS)

    Korobenko, V.N.; Savvatimskiy, A.I.

    2001-01-01

    Full Text: Pulse of electrical current is used for fast heating (∼ 1 μs) of metal and graphite specimens placed in dielectric solid media. Specimen consists of two strips (90 μm in thick) placed together with small gap so they form a black body model. Quasy-monocrystal graphite specimens were used for uniform heating of graphite. Temperature measurements were fulfilled with fast pyrometer and with composite 2-strip black body model up to melting temperature. There were fulfilled experiments with zirconium and tungsten of the same black body construction. Additional temperature measurements of liquid zirconium and liquid tungsten are made. Specific heat capacity (c P ) of liquid zirconium and of liquid tungsten has a common feature in c P diminishing just after melting. It reveals c P diminishing after melting in both cases over the narrow temperature range up to usual values known from steady state measurements. Over the next wide temperature range heat capacity for W (up to 5000 K) and Zr (up to 4100 K) show different dependencies of heat capacity on temperature in liquid state. The experiments confirmed a high quality of 2-strip black body model used for graphite temperature measurements. Melting temperature plateau of tungsten (3690 K) was used for pyrometer calibration area for graphite temperature measurement. As a result, a preliminary value of graphite melting temperature of 4800 K was obtained. (author)

  9. Lid heater for glass melter

    International Nuclear Information System (INIS)

    Phillips, T.D.

    1993-01-01

    A glass melter having a lid electrode for heating the glass melt radiantly. The electrode comprises a series of INCONEL 690 tubes running above the melt across the melter interior and through the melter walls and having nickel cores inside the tubes beginning where the tubes leave the melter interior and nickel connectors to connect the tubes electrically in series. An applied voltage causes the tubes to generate heat of electrical resistance for melting frit injected onto the melt. The cores limit heat generated as the current passes through the walls of the melter. Nickel bus connection to the electrical power supply minimizes heat transfer away from the melter that would occur if standard copper or water-cooled copper connections were used between the supply and the INCONEL 690 heating tubes. 3 figures

  10. Nuclear graphite ageing and turnaround

    International Nuclear Information System (INIS)

    Marsden, B.J.; Hall, G.N.; Smart, J.

    2001-01-01

    Graphite moderated reactors are being operated in many countries including, the UK, Russia, Lithuania, Ukraine and Japan. Many of these reactors will operate well into the next century. New designs of High Temperature Graphite Moderated Reactors (HTRS) are being built in China and Japan. The design life of these graphite-moderated reactors is governed by the ageing of the graphite core due to fast neutron damage, and also, in the case of carbon dioxide cooled reactors by the rate of oxidation of the graphite. Nuclear graphites are polycrystalline in nature and it is the irradiation-induced damage to the individual graphite crystals that determines the material property changes with age. The life of a graphite component in a nuclear reactor can be related to the graphite irradiation induced dimensional changes. Graphites typically shrink with age, until a point is reached where the shrinkage stops and the graphite starts to swell. This change from shrinkage to swelling is known as ''turnaround''. It is well known that pre-oxidising graphite specimens caused ''turnaround'' to be delayed, thus extending the life of the graphite, and hence the life of the reactor. However, there was no satisfactory explanation of this behaviour. This paper presents a numerical crystal based model of dimensional change in graphite, which explains the delay in ''turnaround'' in the pre-oxidised specimens irradiated in a fast neutron flux, in terms of crystal accommodation and orientation and change in compliance due to radiolytic oxidation. (author)

  11. The cathode material for a plasma-arc heater

    Science.gov (United States)

    Yelyutin, A. V.; Berlin, I. K.; Averyanov, V. V.; Kadyshevskii, V. S.; Savchenko, A. A.; Putintseva, R. G.

    1983-11-01

    The cathode of a plasma arc heater experiences a large thermal load. The temperature of its working surface, which is in contact with the plasma, reaches high values, as a result of which the electrode material is subject to erosion. Refractory metals are usually employed for the cathode material, but because of the severe erosion do not usually have a long working life. The most important electrophysical characteristic of the electrode is the electron work function. The use of materials with a low electron work function allows a decrease in the heat flow to the cathode, and this leads to an increase in its erosion resistance and working life. The electroerosion of certain materials employed for the cathode in an electric arc plasma generator in the process of reduction smelting of refractory metals was studied.

  12. Recompressed exfoliated graphite articles

    Science.gov (United States)

    Zhamu, Aruna; Shi, Jinjun; Guo, Jiusheng; Jang, Bor Z

    2013-08-06

    This invention provides an electrically conductive, less anisotropic, recompressed exfoliated graphite article comprising a mixture of (a) expanded or exfoliated graphite flakes; and (b) particles of non-expandable graphite or carbon, wherein the non-expandable graphite or carbon particles are in the amount of between about 3% and about 70% by weight based on the total weight of the particles and the expanded graphite flakes combined; wherein the mixture is compressed to form the article having an apparent bulk density of from about 0.1 g/cm.sup.3 to about 2.0 g/cm.sup.3. The article exhibits a thickness-direction conductivity typically greater than 50 S/cm, more typically greater than 100 S/cm, and most typically greater than 200 S/cm. The article, when used in a thin foil or sheet form, can be a useful component in a sheet molding compound plate used as a fuel cell separator or flow field plate. The article may also be used as a current collector for a battery, supercapacitor, or any other electrochemical cell.

  13. Solar water heater for NASA's Space Station

    Science.gov (United States)

    Somers, Richard E.; Haynes, R. Daniel

    1988-01-01

    The feasibility of using a solar water heater for NASA's Space Station is investigated using computer codes developed to model the Space Station configuration, orbit, and heating systems. Numerous orbit variations, system options, and geometries for the collector were analyzed. Results show that a solar water heater, which would provide 100 percent of the design heating load and would not impose a significant impact on the Space Station overall design is feasible. A heat pipe or pumped fluid radial plate collector of about 10-sq m, placed on top of the habitat module was found to be well suited for satisfying water demand of the Space Station. Due to the relatively small area required by a radial plate, a concentrator is unnecessary. The system would use only 7 to 10 percent as much electricity as an electric water-heating system.

  14. Field Monitoring Protocol. Heat Pump Water Heaters

    Energy Technology Data Exchange (ETDEWEB)

    Sparn, B. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Earle, L. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Christensen, D. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Maguire, J. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Wilson, E. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hancock, C. E. [Mountain Energy Partnership, Longmont, CO (United States)

    2013-02-01

    This document provides a standard field monitoring protocol for evaluating the installed performance of Heat Pump Water Heaters in residential buildings. The report is organized to be consistent with the chronology of field test planning and execution. Research questions are identified first, followed by a discussion of analysis methods, and then the details of measuring the required information are laid out. A field validation of the protocol at a house near the NREL campus is included for reference.

  15. Field Monitoring Protocol: Heat Pump Water Heaters

    Energy Technology Data Exchange (ETDEWEB)

    Sparn, B.; Earle, L.; Christensen, D.; Maguire, J.; Wilson, E.; Hancock, E.

    2013-02-01

    This document provides a standard field monitoring protocol for evaluating the installed performance of Heat Pump Water Heaters in residential buildings. The report is organized to be consistent with the chronology of field test planning and execution. Research questions are identified first, followed by a discussion of analysis methods, and then the details of measuring the required information are laid out. A field validation of the protocol at a house near the NREL campus is included for reference.

  16. Ansys Benchmark of the Single Heater Test

    International Nuclear Information System (INIS)

    H.M. Wade; H. Marr; M.J. Anderson

    2006-01-01

    The Single Heater Test (SHT) is the first of three in-situ thermal tests included in the site characterization program for the potential nuclear waste monitored geologic repository at Yucca Mountain. The heating phase of the SHT started in August 1996 and was concluded in May 1997 after 9 months of heating. Cooling continued until January 1998, at which time post-test characterization of the test block commenced. Numerous thermal, hydrological, mechanical, and chemical sensors monitored the coupled processes in the unsaturated fractured rock mass around the heater (CRWMS M and O 1999). The objective of this calculation is to benchmark a numerical simulation of the rock mass thermal behavior against the extensive data set that is available from the thermal test. The scope is limited to three-dimensional (3-D) numerical simulations of the computational domain of the Single Heater Test and surrounding rock mass. This calculation supports the waste package thermal design methodology, and is developed by Waste Package Department (WPD) under Office of Civilian Radioactive Waste Management (OCRWM) procedure AP-3.12Q, Revision 0, ICN 3, BSCN 1, Calculations

  17. Bromine intercalated graphite for lightweight composite conductors

    KAUST Repository

    Amassian, Aram; Patole, Archana

    2017-01-01

    A method of fabricating a bromine-graphite/metal composite includes intercalating bromine within layers of graphite via liquid-phase bromination to create brominated-graphite and consolidating the brominated-graphite with a metal nanopowder via a

  18. Cementation of Nuclear Graphite Using Geopolymers

    International Nuclear Information System (INIS)

    Girke, N.A.; Steinmetz, H-J.; Bukaemsky, A.; Bosbach, D.; Hermann, E.; Griebel, I.

    2016-01-01

    Geopolymers are solid aluminosilicate materials usually formed by alkali hydroxide or alkali silicate activation of solid precursors such as coal fly ash, calcined clay and/or metallurgical slag. Today the primary application of geopolymer technology is in the development of alternatives to Portland-based cements. Variations in the ratio of aluminium to silicon, and alkali to silicon or addition of structure support, produce geopolymers with different physical and mechanical properties. These materials have an amorphous three-dimensional structure that gives geopolymers certain properties, such as fire and acid resistance, low leach rate, which make them an ideal substitute for ordinary Portland cement (OPC) in a wide range of applications especially in conditioning and storage of radioactive waste. Therefore investigations have been initiated on how and to which amount graphite as a hydrophobic material can be mixed with cement or concrete to form stable waste products and which concretes fulfil the necessary specifications best. As a result, geopolymers have been identified as a promising matrix for graphite containing nuclear wastes. With geopolymers, both favourable properties in the cementation process and a high long time structural stability of the products can be achieved. Investigations include: • direct mixing of graphite with geopolymers with or without sand as a mechanically stabilizing medium; • production of cement-graphite granulates as intermediate products and embedding of these granulates in geopolymer; • coating of formed graphite pieces with geopolymer.The report shows that carbon in the form of graphite can both be integrated with different grain size spectra as well as shaped in the hydraulic binder geopolymer and meets the requirements for a stable long-term immobilisation. (author)

  19. Cesium diffusion in graphite

    International Nuclear Information System (INIS)

    Evans, R.B. III; Davis, W. Jr.; Sutton, A.L. Jr.

    1980-05-01

    Experiments on diffusion of 137 Cs in five types of graphite were performed. The document provides a completion of the report that was started and includes a presentation of all of the diffusion data, previously unpublished. Except for data on mass transfer of 137 Cs in the Hawker-Siddeley graphite, analyses of experimental results were initiated but not completed. The mass transfer process of cesium in HS-1-1 graphite at 600 to 1000 0 C in a helium atmosphere is essentially pure diffusion wherein values of (E/epsilon) and ΔE of the equation D/epsilon = (D/epsilon) 0 exp [-ΔE/RT] are about 4 x 10 -2 cm 2 /s and 30 kcal/mole, respectively

  20. Irradiation Creep in Graphite

    Energy Technology Data Exchange (ETDEWEB)

    Ubic, Rick; Butt, Darryl; Windes, William

    2014-03-13

    An understanding of the underlying mechanisms of irradiation creep in graphite material is required to correctly interpret experimental data, explain micromechanical modeling results, and predict whole-core behavior. This project will focus on experimental microscopic data to demonstrate the mechanism of irradiation creep. High-resolution transmission electron microscopy should be able to image both the dislocations in graphite and the irradiation-induced interstitial clusters that pin those dislocations. The team will first prepare and characterize nanoscale samples of virgin nuclear graphite in a transmission electron microscope. Additional samples will be irradiated to varying degrees at the Advanced Test Reactor (ATR) facility and similarly characterized. Researchers will record microstructures and crystal defects and suggest a mechanism for irradiation creep based on the results. In addition, the purchase of a tensile holder for a transmission electron microscope will allow, for the first time, in situ observation of creep behavior on the microstructure and crystallographic defects.

  1. An International Survey of Electric Storage Tank Water Heater Efficiency and Standards

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Alissa; Lutz, James; McNeil, Michael A.; Covary, Theo

    2013-11-13

    Water heating is a main consumer of energy in households, especially in temperate and cold climates. In South Africa, where hot water is typically provided by electric resistance storage tank water heaters (geysers), water heating energy consumption exceeds cooking, refrigeration, and lighting to be the most consumptive single electric appliance in the home. A recent analysis for the Department of Trade and Industry (DTI) performed by the authors estimated that standing losses from electric geysers contributed over 1,000 kWh to the annual electricity bill for South African households that used them. In order to reduce this burden, the South African government is currently pursuing a programme of Energy Efficiency Standards and Labelling (EES&L) for electric appliances, including geysers. In addition, Eskom has a history of promoting heat pump water heaters (HPWH) through incentive programs, which can further reduce energy consumption. This paper provides a survey of international electric storage water heater test procedures and efficiency metrics which can serve as a reference for comparison with proposed geyser standards and ratings in South Africa. Additionally it provides a sample of efficiency technologies employed to improve the efficiency of electric storage water heaters, and outlines programs to promote adoption of improved efficiency. Finally, it surveys current programs used to promote HPWH and considers the potential for this technology to address peak demand more effectively than reduction of standby losses alone

  2. Regional Variation in Residential Heat Pump Water Heater Performance in the U.S.

    Energy Technology Data Exchange (ETDEWEB)

    Maguire, Jeff [National Renewable Energy Lab. (NREL), Golden, CO (United States); Burch, Jay [National Renewable Energy Lab. (NREL), Golden, CO (United States); Merrigan, Tim [National Renewable Energy Lab. (NREL), Golden, CO (United States); Ong, Sean [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2014-01-01

    Residential heat pump water heaters (HPWHs) have recently re-emerged on the U.S. market, and they have the potential to provide homeowners significant cost and energy savings. However, actual in use performance of a HPWH will vary significantly with climate, installation location, HVAC equipment, and hot water use. To determine the actual energy consumption of a HPWH in different U.S. regions, annual simulations of both 50 and 80 gallon HPWHs as well as a standard electric water heater were performed for over 900 locations across the United States. The simulations included a benchmark home to take into account interactions between the space conditioning equipment and the HPWH and a realistic hot water draw profile. It was found that the HPWH will always save some source energy when compared to a standard electric resistance water heater, although savings varies widely with location. In addition to looking at source energy savings, the breakeven cost (the net installed cost a HPWH would have to have to be a cost neutral replacement for a standard water heater) was also examined. The highest breakeven costs were seen in cases with high energy savings, such as the southeastern U.S., or high energy costs, such as New England and California. While the breakeven cost is higher for 80 gallon units than 50 gallon units, the higher net installed costs of an 80 gallon unit lead to the 50 gallon HPWHs being more likely to be cost effective.

  3. Regional Variation in Residential Heat Pump Water Heater Performance in the U.S.: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Maguire, J.; Burch, J.; Merrigan, T.; Ong, S.

    2014-01-01

    Residential heat pump water heaters (HPWHs) have recently reemerged on the U.S. market. These units have the potential to provide homeowners significant cost and energy savings. However, actual in use performance of a HPWH will vary significantly with climate, installation location, HVAC equipment, and hot water use. To determine what actual in use energy consumption of a HPWH may be in different regions of the U.S., annual simulations of both 50 and 80 gallon HPWHs as well as a standard electric water heater were performed for over 900 locations across the U.S. The simulations included a benchmark home to take into account interactions between the space conditioning equipment and the HPWH and a realistic hot water draw profile. It was found that the HPWH will always save some source energy when compared to a standard electric resistance water heater, although savings varies widely with location. In addition to looking at source energy savings, the breakeven cost (the net installed cost a HPWH would have to have to be a cost neutral replacement for a standard water heater) was also examined. The highest breakeven costs were seen in cases with high energy savings, such as the southeastern U.S., or high energy costs, such as New England and California. While the breakeven cost is higher for 80 gallon units than 50 gallon units, the higher net installed costs of an 80 gallon unit lead to the 50 gallon HPWHs being more likely to be cost effective.

  4. Heater Validation for the NEXT-C Hollow Cathodes

    Science.gov (United States)

    Verhey, Timothy R.; Soulas, George C.; Mackey, Jonathan A.

    2018-01-01

    Swaged cathode heaters whose design was successfully demonstrated under a prior flight project are to be provided by the NASA Glenn Research Center for the NEXT-C ion thruster being fabricated by Aerojet Rocketdyne. Extensive requalification activities were performed to validate process controls that had to be re-established or revised because systemic changes prevented reuse of the past approaches. A development batch of heaters was successfully fabricated based on the new process controls. Acceptance and cyclic life testing of multiple discharge and neutralizer sized heaters extracted from the development batch was initiated in August, 2016, with the last heater completing testing in April, 2017. Cyclic life testing results substantially exceeded the NEXT-C thruster requirement as well as all past experience for GRC-fabricated units. The heaters demonstrated ultimate cyclic life capability of 19050 to 33500 cycles. A qualification batch of heaters is now being fabricated using the finalized process controls. A set of six heaters will be acceptance and cyclic tested to verify conformance to the behavior observed with the development heaters. The heaters for flight use will be then be provided to the contractor from the remainder of the qualification batch. This paper summarizes the fabrication process control activities and the acceptance and life testing of the development heater units.

  5. Ultraflexible Transparent Film Heater Made of Ag Nanowire/PVA Composite for Rapid-Response Thermotherapy Pads.

    Science.gov (United States)

    Lan, Wei; Chen, Youxin; Yang, Zhiwei; Han, Weihua; Zhou, Jinyuan; Zhang, Yue; Wang, Junya; Tang, Guomei; Wei, Yupeng; Dou, Wei; Su, Qing; Xie, Erqing

    2017-02-22

    Ultraflexible transparent film heaters have been fabricated by embedding conductive silver (Ag) nanowires into a thin poly(vinyl alcohol) film (AgNW/PVA). A cold-pressing method was used to rationally adjust the sheet resistance of the composite films and thus the heating powers of the AgNW/PVA film heaters at certain biases. The film heaters have a favorable optical transmittance (93.1% at 26 Ω/sq) and an outstanding mechanical flexibility (no visible change in sheet resistance after 10 000 bending cycles and at a radius of curvature ≤1 mm). The film heaters have an environmental endurance, and there is no significant performance degradation after being kept at high temperature (80 °C) and high humidity (45 °C, 80% humidity) for half a year. The efficient Joule heating can increase the temperature of the film heaters (20 Ω/sq) to 74 °C in ∼20 s at a bias of 5 V. The fast-heating characteristics at low voltages (a few volts) associated with its transparent and flexibility properties make the poly(dimethylsiloxane)/AgNW/PVA composite film a potential candidate in medical thermotherapy pads.

  6. Intercomparison of graphite irradiations

    Energy Technology Data Exchange (ETDEWEB)

    Hering, H; Perio, P; Seguin, M [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1959-07-01

    While fast neutrons only are effective in damaging graphite, results of irradiations are more or less universally expressed in terms of thermal neutron fluxes. This paper attempts to correlate irradiations made in different reactors, i.e., in fluxes of different spectral compositions. Those attempts are based on comparison of 1) bulk length change and volume expansion, and 2) crystalline properties (e.g., lattice parameter C, magnetic susceptibility, stored energy, etc.). The methods used by various authors for determining the lattice constants of irradiated graphite are discussed. (author)

  7. A highly crystalline single Au wire network as a high temperature transparent heater

    Science.gov (United States)

    Rao, K. D. M.; Kulkarni, Giridhar U.

    2014-05-01

    A transparent conductor which can generate high temperatures finds important applications in optoelectronics. In this article, a wire network made of Au on quartz is shown to serve as an effective high temperature transparent heater. The heater has been fabricated by depositing Au onto a cracked sacrificial template. The highly interconnected Au wire network thus formed exhibited a transmittance of ~87% in a wide spectral range with a sheet resistance of 5.4 Ω □-1. By passing current through the network, it could be joule heated to ~600 °C within a few seconds. The extraordinary thermal performance and stability owe much to the seamless junctions present in the wire network. Furthermore, the wire network gets self-annealed through joule heating as seen from its increased crystallinity. Interestingly, both transmittance and sheet resistance improved following annealing to 92% and 3.2 Ω □-1, respectively. A transparent conductor which can generate high temperatures finds important applications in optoelectronics. In this article, a wire network made of Au on quartz is shown to serve as an effective high temperature transparent heater. The heater has been fabricated by depositing Au onto a cracked sacrificial template. The highly interconnected Au wire network thus formed exhibited a transmittance of ~87% in a wide spectral range with a sheet resistance of 5.4 Ω □-1. By passing current through the network, it could be joule heated to ~600 °C within a few seconds. The extraordinary thermal performance and stability owe much to the seamless junctions present in the wire network. Furthermore, the wire network gets self-annealed through joule heating as seen from its increased crystallinity. Interestingly, both transmittance and sheet resistance improved following annealing to 92% and 3.2 Ω □-1, respectively. Electronic supplementary information (ESI) available: Optical micrographs, EDAX, XRD, SEM and TEM images of Au metal wires. See DOI: 10.1039/c4nr00869c

  8. Transparent and flexible heaters based on Al:ZnO degenerate semiconductor

    Science.gov (United States)

    Roul, Monee K.; Obasogie, Brandon; Kogo, Gilbert; Skuza, J. R.; Mundle, R. M.; Pradhan, A. K.

    2017-10-01

    We report on high performance transparent Al:ZnO (AZO) thin film heaters on flexible polymer (polyethylene terephthalate) and glass substrates which demonstrate low sheet resistivity. AZO thin films were grown by radio-frequency magnetron sputtering at low Ts (below 200 °C) on flexible, transparent polyethylene terephthalate substrates that show stable and reproducible results by applying low (pain/injury therapy smart windows, automobile window defrosters, and low-cost power electronics.

  9. Graphite-based photovoltaic cells

    Science.gov (United States)

    Lagally, Max; Liu, Feng

    2010-12-28

    The present invention uses lithographically patterned graphite stacks as the basic building elements of an efficient and economical photovoltaic cell. The basic design of the graphite-based photovoltaic cells includes a plurality of spatially separated graphite stacks, each comprising a plurality of vertically stacked, semiconducting graphene sheets (carbon nanoribbons) bridging electrically conductive contacts.

  10. Assessment of radioisotope heaters for remote terrestrial applications

    International Nuclear Information System (INIS)

    Uherka, K.L.

    1987-05-01

    This paper examines the feasibility of using radioisotope byproducts for special heating applications at remote sites in Alaska and other cold regions. The investigation included assessment of candidate radioisotope materials for heater applications, identification of the most promising cold region applications, evaluation of key technical issues and implementation constraints, and development of conceptual heater designs for candidate applications. Strontium-90 (Sr-90) was selected as the most viable fuel for radioisotopic heaters used in terrestrial applications. Opportunities for the application of radioisotopic heaters were determined through site visits to representative Alaska installations. Candidate heater applications included water storage tanks, sludge digesters, sewage lagoons, water piping systems, well-head pumping stations, emergency shelters, and fuel storage tank deicers. Radioisotopic heaters for water storage tank freeze-up protection and for enhancement of biological waste treatment processes at remote sites were selected as the most promising applications

  11. Graphite-graphite oxide composite electrode for vanadium redox flow battery

    International Nuclear Information System (INIS)

    Li Wenyue; Liu Jianguo; Yan Chuanwei

    2011-01-01

    Highlights: → A new composite electrode is designed for vanadium redox flow battery (VRB). → The graphite oxide (GO) is used as electrode reactions catalyst. → The excellent electrode activity is attributed to the oxygen-containing groups attached on the GO surface. → A catalytic mechanism of the GO towards the redox reactions is presumed. - Abstract: A graphite/graphite oxide (GO) composite electrode for vanadium redox battery (VRB) was prepared successfully in this paper. The materials were characterized with X-ray diffraction, X-ray photoelectron spectroscopy and scanning electron microscopy. The specific surface area was measured by the Brunauer-Emmett-Teller method. The redox reactions of [VO 2 ] + /[VO] 2+ and V 3+ /V 2+ were studied with cyclic voltammetry and electrochemical impedance spectroscopy. The results indicated that the electrochemical performances of the electrode were improved greatly when 3 wt% GO was added into graphite electrode. The redox peak currents of [VO 2 ] + /[VO] 2+ and V 3+ /V 2+ couples on the composite electrode were increased nearly twice as large as that on the graphite electrode, and the charge transfer resistances of the redox pairs on the composite electrode are also reduced. The enhanced electrochemical activity could be ascribed to the presence of plentiful oxygen functional groups on the basal planes and sheet edges of the GO and large specific surface areas introduced by the GO.

  12. Multi-step heater deployment in a subsurface formation

    Science.gov (United States)

    Mason, Stanley Leroy [Allen, TX

    2012-04-03

    A method for installing a horizontal or inclined subsurface heater includes placing a heating section of a heater in a horizontal or inclined section of a wellbore with an installation tool. The tool is uncoupled from the heating section. A lead in section is mechanically and electrically coupled to the heating section of the heater. The lead-in section is located in an angled or vertical section of the wellbore.

  13. Electronic properties of graphite

    International Nuclear Information System (INIS)

    Schneider, J.

    2010-10-01

    In this thesis, low-temperature magneto-transport (T ∼ 10 mK) and the de Haas-van Alphen effect of both natural graphite and highly oriented pyrolytic graphite (HOPG) are examined. In the first part, low field magneto-transport up to B = 11 T is discussed. A Fourier analysis of the background removed signal shows that the electric transport in graphite is governed by two types of charge carriers, electrons and holes. Their phase and frequency values are in agreement with the predictions of the SWM-model. The SWM-model is confirmed by detailed band structure calculations using the magnetic field Hamiltonian of graphite. The movement of the Fermi at B > 2 T is calculated self-consistently assuming that the sum of the electron and hole concentrations is constant. The second part of the thesis deals with high field magneto-transport of natural graphite in the magnetic field range 0 ≤ B ≤ 28 T. Both spin splitting of magneto-transport features in tilted field configuration and the onset of the charge density wave (CDW) phase for different temperatures with the magnetic field applied normal to the sample plane are discussed. Concerning the Zeeman effect, the SWM calculations including the Fermi energy movement require a g-factor of g* equal to 2.5 ± 0.1 to reproduce the spin spilt features. The measurements of the charge density wave state confirm that its onset magnetic field can be described by a Bardeen-Cooper-Schrieffer (BCS)-type formula. The measurements of the de Haas-van Alphen effect are in agreement with the results of the magneto-transport measurements at low field. (author)

  14. Feedwater heater tube-to-tubesheet connections

    International Nuclear Information System (INIS)

    Yokell, S.

    1993-01-01

    This paper discusses some practical aspects of expanded, welded, and welded-and-expanded feedwater heater tube-to-tubesheet joints. It outlines elastic-plastic tube expanding theory. It examines uniform-pressure-expanded tube joint strength and correlating roller-expanded joint strength with wall reduction and rolling torque. For materials subject to stress-corrosion cracking (SCC), it recommends heat treating tube ends before expanding. For materials subject to fatigue and tube-end cracking, it advocates two-stage expanding: (1) expanding enough to create firm tube-hole contact over the full tubesheet thickness; and (2) re-expanding at full pressure or torque. The paper emphasizes the desirability of segregating heats of tubing, mapping the tube-heat locations and making the heat map a permanent part of the heater maintenance file. It recommends when to provide TEMA/HEI Power Plant Standard annular grooves for roller-expanding and provides an equation for determining optimum groove width for uniform-pressure expanding. The paper also reviews welding requirements for welds of tubes to tubesheets. The review covers front-face welding before and after expanding and the reasons for welding first. It outlines current thinking about definitions of strength- and seal-welds of front-face welded joint in terms of their functions and load-carrying abilities. It presents a proposal for determining the required size of strength welds for use in Section VIII of the ASME Boiler and Pressure Vessel Code (the Code). It shows why welded-and-expanded feedwater heater tube-to-tubesheet joints should be full-strength and full-depth expanded. It makes recommendations for pressure- and leak-testing. This work also proposes the industry consider butt welding the tubes to the steam-side face of the tubesheet as a regular method of tube joining. The results of a survey of manufacturers practices are appended. 30 refs., 14 figs

  15. Experimental Creep Life Assessment for the Advanced Stirling Convertor Heater Head

    Science.gov (United States)

    Krause, David L.; Kalluri, Sreeramesh; Shah, Ashwin R.; Korovaichuk, Igor

    2010-01-01

    The United States Department of Energy is planning to develop the Advanced Stirling Radioisotope Generator (ASRG) for the National Aeronautics and Space Administration (NASA) for potential use on future space missions. The ASRG provides substantial efficiency and specific power improvements over radioisotope power systems of heritage designs. The ASRG would use General Purpose Heat Source modules as energy sources and the free-piston Advanced Stirling Convertor (ASC) to convert heat into electrical energy. Lockheed Martin Corporation of Valley Forge, Pennsylvania, is integrating the ASRG systems, and Sunpower, Inc., of Athens, Ohio, is designing and building the ASC. NASA Glenn Research Center of Cleveland, Ohio, manages the Sunpower contract and provides technology development in several areas for the ASC. One area is reliability assessment for the ASC heater head, a critical pressure vessel within which heat is converted into mechanical oscillation of a displacer piston. For high system efficiency, the ASC heater head operates at very high temperature (850 C) and therefore is fabricated from an advanced heat-resistant nickel-based superalloy Microcast MarM-247. Since use of MarM-247 in a thin-walled pressure vessel is atypical, much effort is required to assure that the system will operate reliably for its design life of 17 years. One life-limiting structural response for this application is creep; creep deformation is the accumulation of time-dependent inelastic strain under sustained loading over time. If allowed to progress, the deformation eventually results in creep rupture. Since creep material properties are not available in the open literature, a detailed creep life assessment of the ASC heater head effort is underway. This paper presents an overview of that creep life assessment approach, including the reliability-based creep criteria developed from coupon testing, and the associated heater head deterministic and probabilistic analyses. The approach also

  16. Correlation between some mechanical and physical properties of polycrystalline graphites

    International Nuclear Information System (INIS)

    Yoda, Shinichi; Fujisaki, Katsuo

    1982-01-01

    Mechanical and physical properties of polycrystalline graphites, tensile strength, compressive strength, flexural strength, Young's modulus, thermal expansion coefficient, electrical resistivity, volume fraction of porosity, and graphitisation were measured for ten brand graphites. Correlation between the mechanical and physical properties of the graphites were studied. Young's modulus and thermal expansion coefficient of the graphites depend on volume fraction of porosity. The Young's modulus of the graphites tended to increase with increasing the thermal expansion coefficient. For an anisotropic graphite, an interesting relationship between the Young's modulus E and the thermal expansion coefficient al pha was found in any specimen orientations; alpha E=constant. The value of alphah E was dependent upon the volume fraction of porosity. It should be noted here that the electrical resistivity increased with decreasing grain size. The flexural and the compressive strength were related with the volume fraction of porosity while the tensile strength was not, The relationships between the tensile, the compressive and the flexural strength can be approximately expressed as linear functions over a wide range of the stresses. (author)

  17. Development of fracture toughness test method for nuclear grade graphite

    Energy Technology Data Exchange (ETDEWEB)

    Chang, C. H.; Lee, J. S.; Cho, H. C.; Kim, D. J.; Lee, D. J. [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2006-02-15

    Because of its high strength and stability at very high temperature, as well as very low thermal neutron absorption cross-section, graphite has been widely used as a structural material in Gas Cooled Reactors (GCR). Recently, many countries are developing the Very High Temperature gas cooled Reactor (VHTR) because of the potentials of hydrogen production, as well as its safety and viable economics. In VHTR, helium gas serves as the primary coolant. Graphite will be used as a reflector, moderator and core structural materials. The life time of graphite is determined from dimensional changes due to neutron irradiation, which closely relates to the changes of crystal structure. The changes of both lattice parameter and crystallite size can be easily measured by X-ray diffraction method. However, due to high cost and long time of neutron irradiation test, ion irradiation test is being performed instead in KAERI. Therefore, it is essential to develop the technique for measurement of ion irradiation damage of nuclear graphite. Fracture toughness of nuclear grade graphite is one of the key properties in the design and development of VHTR. It is important not only to evaluate the various properties of candidate graphite but also to assess the integrity of nuclear grade graphite during operation. Although fracture toughness tests on graphite have been performed in many laboratories, there have been wide variations in values of the calculated fracture toughness, due to the differences in the geometry of specimens and test conditions. Hence, standard test method for nuclear graphite is required to obtain the reliable fracture toughness values. Crack growth behavior of nuclear grade graphite shows rising R-curve which means the increase in crack growth resistance as the crack length increases. Crack bridging and microcracking have been proposed to be the dominant mechanisms of rising R-curve behavior. In this paper, the technique to measure the changes of crystallite size and

  18. The preliminary feasibility of intercalated graphite railgun armatures

    International Nuclear Information System (INIS)

    Gaier, J.R.; Yashan, D.; Naud, S.

    1991-01-01

    This paper reports on graphite intercalation compounds which may provide an excellent material for the fabrication of electro-magnetic railgun armatures. As a pulse of power is fed into the armature the intercalate could be excited into the plasma state around the edges of the armature, while the bulk of the current would be carried through the graphite block. Such an armature would have desirable characteristics of both diffuse plasma armatures and bulk conduction armatures. In addition, the highly anisotropic nature of these materials could enable the electrical and thermal conductivity to be tailored to meet the specific requirements of electromagnetic railgun armatures. Preliminary investigations have been performed in an attempt to determine the feasibility of using graphite intercalation compounds as railgun armatures. Issues of fabrication, resistivity, stability, and electrical current spreading have been addressed for the case of highly oriented pyrolytic graphite

  19. Oxidation parameters of nuclear graphite for HTGR air-ingress

    International Nuclear Information System (INIS)

    Kim, E.S.; No, H.C.

    2004-01-01

    In order to investigate chemical behaviors of the graphite during an air-ingress accident in HTGR, the kinetic tests on nuclear graphite IG-110 were performed in chemical reaction dominant regime. In the present experiment, inlet gas flow rate ranged between 8 and 18 SLPM, graphite temperatures and oxygen mole fraction ranged from 540 to 630degC and from 3 to 30% respectively. The test section was made of a quartz tube having 75 mm diameter and 750 mm length and the test specimen machined to the size of 21 mm diameter and 30 mm length was supported at the center of it by the alumina rod. The 15 kW induction heater was installed around the outside of test section to heat the specimen and its temperature was measured by 2 infrared thermometers. The oxidation rate was calculated from the gas concentration analysis between inlet and outlet using NDIR (non-dispersive infrared) gas analyzer. As a result the activation energy (Ea) and the order of reaction (n) were determined within 95% confidence level and the qualitative characteristics of the two parameters were also widely investigated by experimental and analytical methods. (author)

  20. Evaluation of radiofrequency dielectric heaters workers exposure

    International Nuclear Information System (INIS)

    Benes, M.; Del Frate, S.; Villalta, R.

    2008-01-01

    Radiofrequency dielectric heaters (RFDH) are widely used in the woodworking industry for gluing laminates by applying pressure and RF heating. The workers operating such equipment remain in the vicinity of the machinery all day and can therefore be exposed to considerable levels of electric and magnetic field at RFs. This work describes the method used to measure the strength of fields generated by this particular machinery. This procedure is based on current methods cited in the literature and introduces the necessary modifications to meet this specific case. In particular, as there is often a scarcity of technical data available relating to such heaters, it is suggested that a spectrum analyser be used for measurements in the frequencies domain. On the basis of the data obtained the norms of reference are established, the instrumentation to be used in successive stages determined as well as the identification of possible sources of interference from spurious signals. Furthermore, a mapping of the field strengths is presented and the means of determining the decay curve as a function of distance. This last type of measurement is done to estimate the effectiveness of grounding the machinery. The report ends with an estimate of the exposure of workers to electromagnetic fields and also some recommendations for reducing risk. (authors)

  1. Radioisotopic heater units warm an interplanetary spacecraft

    International Nuclear Information System (INIS)

    Franco-Ferreira, E.A.

    1998-01-01

    The Cassini orbiter and Huygens probe, which were successfully launched on October 15, 1997, constitute NASA's last grand-scale interplanetary mission of this century. The mission, which consists of a four-year, close-up study of Saturn and its moons, begins in July 2004 with Cassini's 60 orbits of Saturn and about 33 fly-bys of the large moon Titan. The Huygens probe will descend and land on Titan. Investigations will include Saturn's atmosphere, its rings and its magnetosphere. The atmosphere and surface of Titan and other icy moons also will be characterized. Because of the great distance of Saturn from the sun, some of the instruments and equipment on both the orbiter and the probe require external heaters to maintain their temperature within normal operating ranges. These requirements are met by Light Weight Radioisotope Heater Units (LWRHUs) designed, fabricated and safety tested at Los Alamos National Laboratory, New Mexico. An improved gas tungsten arc welding procedure lowered costs and decreased processing time for heat units for the Cassini spacecraft

  2. Improvement of reliability of heater and condenser

    International Nuclear Information System (INIS)

    Yamagishi, Hiroki

    1988-01-01

    Recently, the diversification of the operation modes of power plants has advanced as well as daily start and stop and weekly start and stop operations, as the result, the needs for the reliability improvement of various heat exchangers around steam turbines heighten. In newly constructed plants, the design to meet this demand is carried out, but also in existing platns, the application of the latest technology is investigated. As for the reliability of condensers, aluminum brass cooling tubes have been used by doing the optimal maintenance and taking the measures against deposit attack. In the case of requiring high reliability, the examples of adopting titanium cooling tubes increased. The technology of titanium tube condensers, completely assembled condensers, the replacement of existing brass tubes with titanium tubes and so on are discussed. In the case of feed heaters, the deterioration phenomena due to the lapse of long years, such as the attack of steel tube inlet, the drain attack on the external surfaces of steel tubes, the ammonia attack of aluminum brass tubes and the adhesion of scale to heaters, are explained, and the countermeasures are shown. (Kako, I.)

  3. Biogas Digester with Simple Solar Heater

    Directory of Open Access Journals (Sweden)

    Kh S Karimov

    2012-10-01

    Full Text Available ABSTRACT: In this research work, the design, fabrication and investigation of a biogas digester with simple solar heater are presented. For the solar heater, a built-in reverse absorber type heater was used. The maximum temperature (50°C inside the methane tank was taken as a main parameter for the design of the digester. Then, the energy balance equation for the case of a static mass of fluid being heated was used to model the process. The parameters of thermal insulation of the methane tank were also included in the calculations. The biogas digester consisted of a methane tank with built-in solar reverse absorber heater to harness the radiant solar energy for heating the slurry comprising of different organic wastes (dung, sewage, food wastes etc.. The methane tank was initially filled to 70% of its volume with organic wastes from the GIK institute’s sewage. The remaining volume was filled with sewage and cow dung from other sources. During a three month period (October-December, 2009 and another two month period (February-March, 2010, the digester was investigated. The effects of solar radiation on the absorber, the slurry’s temperature, and the ambient temperature were all measured during these investigations. It was found that using sewage only and sewage with cow dung in the slurry resulted in retention times of four and two weeks, respectively. The corresponding biogas produced was 0.4 m3 and 8.0 m3, respectively. Finally, this paper also elaborates on the upgradation of biogas through the removal of carbon dioxide, hydrogen sulphide and water vapour, and also the process of conversion of biogas energy into electric powerABSTRAK: Kajian ini membentangkan rekabentuk, fabrikasi dan penyelidikan tentang pencerna biogas dengan pemanas solar ringkas. Sebagai pemanas solar, ia dilengkapkan dengan penyerap pemanas beralik. Suhu maksimum(50oC di dalam tangki metana telah diambil sebagai parameter utama rekabentuk pencerna. Dengan menggunakan

  4. Summer Indoor Heat Pump Water Heater Evaluation in a Hot-Dry Climate

    Energy Technology Data Exchange (ETDEWEB)

    Hoeschele, Marc [National Renewable Energy Lab. (NREL), Golden, CO (United States); Seitzler, Matthew [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-05-01

    Heat pump water heaters offer a significant opportunity to improve water heating performance for the over 40% of U.S. households that heat domestic hot water using electric resistance storage water heaters. Numerous field studies have also been completed documenting performance in a variety of climates and applications. More recent evaluation efforts have focused attention on the performance of May through September 2014, with ongoing winter monitoring being sponsored by California utility partners. Summer results show favorable system performance with extrapolated annual water heating savings of 1,466 to 2,300 kWh per year, based on the observed hot water loads. Additional summer space cooling benefits savings of 121 to 135 kWh per year were projected, further increasing the water energy savings.

  5. A high-response transparent heater based on a CuS nanosheet film with superior mechanical flexibility and chemical stability.

    Science.gov (United States)

    Xie, Shuyao; Li, Teng; Xu, Zijie; Wang, Yanan; Liu, Xiangyang; Guo, Wenxi

    2018-04-05

    Transparent heaters are widely used in technologies such as window defrosting/defogging, displays, gas sensing, and medical equipment. Apart from mechanical robustness and electrical and optical reliabilities, outstanding chemical stability is also critical to the application of transparent heaters. In this regard, we first present a highly flexible and large-area CuS transparent heater fabricated by a colloidal crackle pattern method with an optimized sheet resistance (Rs) as low as 21.5 Ω sq-1 at a ∼80% transmittance. The CuS transparent heater exhibits remarkable mechanical robustness during bending tests as well as high chemical stability against acid and alkali environments. In the application as a transparent heater, the CuS heater demonstrates a high thermal resistance of 197 °C W-1 cm2 with a fast switching time (solar panels. These CuS network TCEs with high flexibility, transparency, conductivity, and chemical stability could be widely used in wearable electronic products.

  6. Preparation of nanoporous carbons from graphite nanofibres

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Byung-Joo [Department of Green Chemistry and Environmental Biotechnology, University of Science and Technology, PO Box 107, Yuseong, Daejeon 305-600 (Korea, Republic of); Park, Soo-Jin [Department of Chemistry, Inha University, 253, Nam-gu, Incheon 402-751 (Korea, Republic of)

    2006-09-14

    In this study we manufactured highly porous graphite nanofibres (GNFs) by physical activation in order to develop promising energy storage materials. The activation was performed at activation temperatures in the range of 800-1050 deg. C. The pore structures of the porous GNFs were analysed using N{sub 2}/77 K adsorption isotherms. After the activation, the porous GNFs showed a decrease in diameter and scratches on their surfaces, resulting from surface oxidation and the opening of the graphitic layers, respectively. It was found that the specific surface area of the porous GNFs prepared at 1050 deg. C was more than 2000 m{sup 2} g{sup -1} without loss of their fibre shape or serious increase in electrical resistivity. This result indicates that porous GNFs prepared under optimal conditions can have a much higher specific surface area and are promising materials for energy storage technologies.

  7. A standard graphite block

    Energy Technology Data Exchange (ETDEWEB)

    Ivkovic, M; Zdravkovic, Z; Sotic, O [Department of Reactor Physics and Dynamics, Boris Kidric Institute of nuclear sciences Vinca, Belgrade (Yugoslavia)

    1966-04-15

    A graphite block was calibrated for the thermal neutron flux of the Ra-Be source using indium foils as detectors. Experimental values of the thermal neutron flux along the central vertical axis of the system were corrected for the self-shielding effect and depression of flux in the detector. The experimental values obtained were compared with the values calculated on the basis of solving the conservation neutron equation by the continuous slowing-down theory. In this theoretical calculation of the flux the Ra-Be source was divided into three resonance energy regions. The measurement of the thermal neutron diffusion length in the standard graphite block is described. The measurements were performed in the thermal neutron region of the system. The experimental results were interpreted by the diffusion theory for point thermal neutron source in the finite system. The thermal neutron diffusion length was calculated to be L= 50.9 {+-}3.1 cm for the following graphite characteristics: density = 1.7 g/cm{sup 3}; boron content = 0.1 ppm; absorption cross section = 3.7 mb.

  8. A standard graphite block

    International Nuclear Information System (INIS)

    Ivkovic, M.; Zdravkovic, Z.; Sotic, O.

    1966-04-01

    A graphite block was calibrated for the thermal neutron flux of the Ra-Be source using indium foils as detectors. Experimental values of the thermal neutron flux along the central vertical axis of the system were corrected for the self-shielding effect and depression of flux in the detector. The experimental values obtained were compared with the values calculated on the basis of solving the conservation neutron equation by the continuous slowing-down theory. In this theoretical calculation of the flux the Ra-Be source was divided into three resonance energy regions. The measurement of the thermal neutron diffusion length in the standard graphite block is described. The measurements were performed in the thermal neutron region of the system. The experimental results were interpreted by the diffusion theory for point thermal neutron source in the finite system. The thermal neutron diffusion length was calculated to be L= 50.9 ±3.1 cm for the following graphite characteristics: density = 1.7 g/cm 3 ; boron content = 0.1 ppm; absorption cross section = 3.7 mb

  9. Solar water heaters in China. A new day dawning

    International Nuclear Information System (INIS)

    Han, Jingyi; Mol, Arthur P.J.; Lu, Yonglong

    2010-01-01

    Solar thermal utilization, especially the application of solar water heater technology, has developed rapidly in China in recent decades. Manufacturing and marketing developments have been especially strong in provinces such as Zhejiang, Shandong and Jiangsu. This paper takes Zhejiang, a relatively affluent province, as a case study area to assess the performance of solar water heater utilization in China. The study will focus on institutional setting, economic and technological performance, energy performance, and environmental and social impact. Results show that China has greatly increased solar water heater utilization, which has brought China great economic, environmental and social benefits. However, China is confronted with malfeasant market competition, technical flaws in solar water heater products and social conflict concerning solar water heater installation. For further development of the solar water heater, China should clarify the compulsory installation policy and include solar water heaters into the current 'Home Appliances Going to the Countryside' project; most of the widely used vacuum tube products should be replaced by flat plate products, and the technology improvement should focus on anti-freezing and water saving; the resources of solar water heater market should be consolidated and most of the OEM manufacturers should evolve to ODM and OBM enterprises. (author)

  10. Structural disorder of graphite and implications for graphite thermometry

    Science.gov (United States)

    Kirilova, Martina; Toy, Virginia; Rooney, Jeremy S.; Giorgetti, Carolina; Gordon, Keith C.; Collettini, Cristiano; Takeshita, Toru

    2018-02-01

    Graphitization, or the progressive maturation of carbonaceous material, is considered an irreversible process. Thus, the degree of graphite crystallinity, or its structural order, has been calibrated as an indicator of the peak metamorphic temperatures experienced by the host rocks. However, discrepancies between temperatures indicated by graphite crystallinity versus other thermometers have been documented in deformed rocks. To examine the possibility of mechanical modifications of graphite structure and the potential impacts on graphite thermometry, we performed laboratory deformation experiments. We sheared highly crystalline graphite powder at normal stresses of 5 and 25 megapascal (MPa) and aseismic velocities of 1, 10 and 100 µm s-1. The degree of structural order both in the starting and resulting materials was analyzed by Raman microspectroscopy. Our results demonstrate structural disorder of graphite, manifested as changes in the Raman spectra. Microstructural observations show that brittle processes caused the documented mechanical modifications of the aggregate graphite crystallinity. We conclude that the calibrated graphite thermometer is ambiguous in active tectonic settings.

  11. Structural disorder of graphite and implications for graphite thermometry

    Directory of Open Access Journals (Sweden)

    M. Kirilova

    2018-02-01

    Full Text Available Graphitization, or the progressive maturation of carbonaceous material, is considered an irreversible process. Thus, the degree of graphite crystallinity, or its structural order, has been calibrated as an indicator of the peak metamorphic temperatures experienced by the host rocks. However, discrepancies between temperatures indicated by graphite crystallinity versus other thermometers have been documented in deformed rocks. To examine the possibility of mechanical modifications of graphite structure and the potential impacts on graphite thermometry, we performed laboratory deformation experiments. We sheared highly crystalline graphite powder at normal stresses of 5 and 25  megapascal (MPa and aseismic velocities of 1, 10 and 100 µm s−1. The degree of structural order both in the starting and resulting materials was analyzed by Raman microspectroscopy. Our results demonstrate structural disorder of graphite, manifested as changes in the Raman spectra. Microstructural observations show that brittle processes caused the documented mechanical modifications of the aggregate graphite crystallinity. We conclude that the calibrated graphite thermometer is ambiguous in active tectonic settings.

  12. Measure Guideline: Heat Pump Water Heaters in New and Existing Homes

    Energy Technology Data Exchange (ETDEWEB)

    Shapiro, C.; Puttagunta, S.; Owens, D.

    2012-02-01

    This Building America Measure Guideline is intended for builders, contractors, homeowners, and policy-makers. This document is intended to explore the issues surrounding heat pump water heaters (HPWHs) to ensure that homeowners and contractors have the tools needed to appropriately and efficiently install HPWHs. Heat pump water heaters (HPWHs) promise to significantly reduce energy consumption for domestic hot water (DHW) over standard electric resistance water heaters (ERWHs). While ERWHs perform with energy factors (EFs) around 0.9, new HPWHs boast EFs upwards of 2.0. High energy factors in HPWHs are achieved by combining a vapor compression system, which extracts heat from the surrounding air at high efficiencies, with electric resistance element(s), which are better suited to meet large hot water demands. Swapping ERWHs with HPWHs could result in roughly 50% reduction in water heating energy consumption for 35.6% of all U.S. households. This Building America Measure Guideline is intended for builders, contractors, homeowners, and policy-makers. While HPWHs promise to significantly reduce energy use for DHW, proper installation, selection, and maintenance of HPWHs is required to ensure high operating efficiency and reliability. This document is intended to explore the issues surrounding HPWHs to ensure that homeowners and contractors have the tools needed to appropriately and efficiently install HPWHs. Section 1 of this guideline provides a brief description of HPWHs and their operation. Section 2 highlights the cost and energy savings of HPWHs as well as the variables that affect HPWH performance, reliability, and efficiency. Section 3 gives guidelines for proper installation and maintenance of HPWHs, selection criteria for locating HPWHs, and highlights of important differences between ERWH and HPWH installations. Throughout this document, CARB has included results from the evaluation of 14 heat pump water heaters (including three recently released HPWH

  13. Infrared transparent graphene heater for silicon photonic integrated circuits.

    Science.gov (United States)

    Schall, Daniel; Mohsin, Muhammad; Sagade, Abhay A; Otto, Martin; Chmielak, Bartos; Suckow, Stephan; Giesecke, Anna Lena; Neumaier, Daniel; Kurz, Heinrich

    2016-04-18

    Thermo-optical tuning of the refractive index is one of the pivotal operations performed in integrated silicon photonic circuits for thermal stabilization, compensation of fabrication tolerances, and implementation of photonic operations. Currently, heaters based on metal wires provide the temperature control in the silicon waveguide. The strong interaction of metal and light, however, necessitates a certain gap between the heater and the photonic structure to avoid significant transmission loss. Here we present a graphene heater that overcomes this constraint and enables an energy efficient tuning of the refractive index. We achieve a tuning power as low as 22 mW per free spectral range and fast response time of 3 µs, outperforming metal based waveguide heaters. Simulations support the experimental results and suggest that for graphene heaters the spacing to the silicon can be further reduced yielding the best possible energy efficiency and operation speed.

  14. Bromine intercalated graphite for lightweight composite conductors

    KAUST Repository

    Amassian, Aram

    2017-07-20

    A method of fabricating a bromine-graphite/metal composite includes intercalating bromine within layers of graphite via liquid-phase bromination to create brominated-graphite and consolidating the brominated-graphite with a metal nanopowder via a mechanical pressing operation to generate a bromine-graphite/metal composite material.

  15. Graphite and boron carbide composites made by hot-pressing

    International Nuclear Information System (INIS)

    Miyazaki, K.; Hagio, T.; Kobayashi, K.

    1981-01-01

    Composites consisting of graphite and boron carbide were made by hot-pressing mixed powders of coke carbon and boron carbide. The change of relative density, mechanical strength and electrical resistivity of the composites and the X-ray parameters of coke carbon were investigated with increase of boron carbide content and hot-pressing temperature. From these experiments, it was found that boron carbide powder has a remarkable effect on sintering and graphitization of coke carbon powder above the hot-pressing temperature of 2000 0 C. At 2200 0 C, electrical resistivity of the composite and d(002) spacing of coke carbon once showed minimum values at about 5 to 10 wt% boron carbide and then increased. The strength of the composite increased with increase of boron carbide content. It was considered that some boron from boron carbide began to diffuse substitutionally into the graphite structure above 2000 0 C and densification and graphitization were promoted with the diffusion of boron. Improvements could be made to the mechanical strength, density, oxidation resistance and manufacturing methods by comparing with the properties and processes of conventional graphites. (author)

  16. Chemical stabilization of graphite surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Bistrika, Alexander A.; Lerner, Michael M.

    2018-04-03

    Embodiments of a device, or a component of a device, including a stabilized graphite surface, methods of stabilizing graphite surfaces, and uses for the devices or components are disclosed. The device or component includes a surface comprising graphite, and a plurality of haloaryl ions and/or haloalkyl ions bound to at least a portion of the graphite. The ions may be perhaloaryl ions and/or perhaloalkyl ions. In certain embodiments, the ions are perfluorobenzenesulfonate anions. Embodiments of the device or component including stabilized graphite surfaces may maintain a steady-state oxidation or reduction surface current density after being exposed to continuous oxidation conditions for a period of at least 1-100 hours. The device or component is prepared by exposing a graphite-containing surface to an acidic aqueous solution of the ions under oxidizing conditions. The device or component can be exposed in situ to the solution.

  17. Heat exchanger using graphite foam

    Science.gov (United States)

    Campagna, Michael Joseph; Callas, James John

    2012-09-25

    A heat exchanger is disclosed. The heat exchanger may have an inlet configured to receive a first fluid and an outlet configured to discharge the first fluid. The heat exchanger may further have at least one passageway configured to conduct the first fluid from the inlet to the outlet. The at least one passageway may be composed of a graphite foam and a layer of graphite material on the exterior of the graphite foam. The layer of graphite material may form at least a partial barrier between the first fluid and a second fluid external to the at least one passageway.

  18. Application of quantitative image analysis to the investigation of macroporosity of graphitic materials

    International Nuclear Information System (INIS)

    Delle, W.; Koizlik, K.; Hoven, H.; Wallura, E.

    1978-01-01

    The essence of quantitative image analysis is that the classification of graphitic materials to be inspected is possible on the basis of the grey value contrast between pores (dark) and carbon (bright). Macroporosity is defined as total of all pores with diameters larger than 0.2 μm. The pore size distributions and pore shapes of graphites based on petroleum, pitch, gilsonite and fluid coke as well as graphitic fuel matrices and pyrolytic carbons were investigated. The relationships between maximum grain size, macroporosity and total porosity as well as the anisotropies of macroporosity and electrical resistivity of graphite were established. (orig./GSC) [de

  19. Fluid bed solids heater. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Preuit, L. C.

    1980-01-01

    A solids heater which operates at up to 2000 F was designed, fabricated, installed and operated through checkout at the Morgantown Energy Technology Center at Morgantown, West Virginia. The system, designated the 2000 F Fluid Bed Solids Heater (FBSH) uses a fluidized bed to heat limestone to 600 F and aluminium oxide or silicon carbide to 2000 F and discharges heated solids upon demand. The FBSH with added valve handling and pressurization equipment is known as the Valve Hot Solids Test Unit and is intended for use by the US Department of Energy for testing of valves for severe service applications in coal conversion and utilization processes. The FBSH as designed and supplied by Combustion Power Company includes process equipment, controls, the enclosing building and other associated equipment. In the 600 F range of operation it can circulate limestone through two valve test trains simultaneously on a continuous basis. Only one valve test train is used for 2000 F solids and operation in that range is also continuous. Limestone, crushed to minus 5/16 size, is heated, discharged, and recycled at a maximum average rate of 250 lb/min while aluminum oxide or silicon carbide, No. 8 grit, is circulated at rates up to 167 lb/min. The FBSH control system is designed for automatic operation, and capability is included for external computerized data acquisition and/or supervisory control. An operating and maintenance manual and as-built drawings have been submitted. This report describes the FBSH equipment, its design basis, and its operation. It has been prepared and submitted in fulfillment of Contract Number DIAC05-77ET10499.

  20. Coating of graphite flakes with MgO/carbon nanocomposite via gas state reaction

    Energy Technology Data Exchange (ETDEWEB)

    Sharif, M., E-mail: Sharif_m@metaleng.iust.ac.i [Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Faghihi-Sani, M.A. [Sharif University of Technology, Tehran (Iran, Islamic Republic of); Golestani-Fard, F. [Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Saberi, A. [Tabriz University (Iran, Islamic Republic of); Soltani, Ali Khalife [Iran University of Science and Technology, Tehran (Iran, Islamic Republic of)

    2010-06-18

    Coating of graphite flakes with MgO/carbon nanocomposite was carried out via gaseous state reaction between mixture of Mg metal, CO gas and graphite flakes at 1000 {sup o}C. XRD and FE-SEM analysis of coating showed that the coating was comprised of MgO nano particles and amorphous carbon distributed smoothly and covered the graphite surface evenly. Thermodynamic calculations were employed to predict the reaction sequences as well as phase stability. The effect of coating on water wettability and oxidation resistance of graphite was studied using contact angle measurement and TG analysis, respectively. It was demonstrated that the reaction between Mg and CO could result in MgO/C nanocomposite deposition. The coating improved water wettability of graphite and also enhanced the oxidation resistance of graphite flakes significantly. Also the graphite coating showed significant phenolic resin-wettabilty owing to high surface area of such hydrophilic nano composite coating. The importance of graphite coating is explained with emphasis on its potential application in graphite containing refractories.

  1. Coating of graphite flakes with MgO/carbon nanocomposite via gas state reaction

    International Nuclear Information System (INIS)

    Sharif, M.; Faghihi-Sani, M.A.; Golestani-Fard, F.; Saberi, A.; Soltani, Ali Khalife

    2010-01-01

    Coating of graphite flakes with MgO/carbon nanocomposite was carried out via gaseous state reaction between mixture of Mg metal, CO gas and graphite flakes at 1000 o C. XRD and FE-SEM analysis of coating showed that the coating was comprised of MgO nano particles and amorphous carbon distributed smoothly and covered the graphite surface evenly. Thermodynamic calculations were employed to predict the reaction sequences as well as phase stability. The effect of coating on water wettability and oxidation resistance of graphite was studied using contact angle measurement and TG analysis, respectively. It was demonstrated that the reaction between Mg and CO could result in MgO/C nanocomposite deposition. The coating improved water wettability of graphite and also enhanced the oxidation resistance of graphite flakes significantly. Also the graphite coating showed significant phenolic resin-wettabilty owing to high surface area of such hydrophilic nano composite coating. The importance of graphite coating is explained with emphasis on its potential application in graphite containing refractories.

  2. Purification and preparation of graphite oxide from natural graphite

    Energy Technology Data Exchange (ETDEWEB)

    Panatarani, C., E-mail: c.panatarani@phys.unpad.ac.id; Muthahhari, N.; Joni, I. Made [Instrumentation Systems and Functional Material Processing Laboratory, Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Padjadjaran University, Jl. Raya Bandung-Sumedang KM 21, Jatinangor, 45363, Jawa Barat (Indonesia); Rianto, Anton [Grafindo Nusantara Ltd., Belagio Mall Lantai 2, Unit 0 L3-19, Kawasan Mega Kuningan, Kav. B4 No.3, Jakarta Selatan (Indonesia)

    2016-03-11

    Graphite oxide has attracted much interest as a possible route for preparation of natural graphite in the large-scale production and manipulation of graphene as a material with extraordinary electronic properties. Graphite oxide was prepared by modified Hummers method from purified natural graphite sample from West Kalimantan. We demonstrated that natural graphite is well-purified by acid leaching method. The purified graphite was proceed for intercalating process by modifying Hummers method. The modification is on the reaction time and temperature of the intercalation process. The materials used in the intercalating process are H{sub 2}SO{sub 4} and KMNO{sub 4}. The purified natural graphite is analyzed by carbon content based on Loss on Ignition test. The thermo gravimetricanalysis and the Fouriertransform infrared spectroscopy are performed to investigate the oxidation results of the obtained GO which is indicated by the existence of functional groups. In addition, the X-ray diffraction and energy dispersive X-ray spectroscopy are also applied to characterize respectively for the crystal structure and elemental analysis. The results confirmed that natural graphite samples with 68% carbon content was purified into 97.68 % carbon content. While the intercalation process formed a formation of functional groups in the obtained GO. The results show that the temperature and reaction times have improved the efficiency of the oxidation process. It is concluded that these method could be considered as an important route for large-scale production of graphene.

  3. Electrical heaters for thermo-mechanical tests at the Stripa mine

    International Nuclear Information System (INIS)

    Burleigh, R.H.; Binnall, E.P.; DuBois, A.O.; Norgren, D.U.; Ortiz, A.R.

    1979-01-01

    Electrical heaters were installed at the Stripa mine in Sweden to simulate the heat flux expected from canisters containing nuclear waste. Three heater types were designed and fabricated: two full scale heaters, 2.6 m in length and 324 mm in diameter, supplying a maximum power output of 5 kW; eight peripheral heaters of 25 mm diameter, supplying 1.1 kW; and eight time scale heaters, one-third the size and power of the full scale heaters. The heater power can be monitored by panel meters as well as by a computer-based data acquisition system. Both the controller and the heater were designed with a high degree of redundancy in case of component failure. Auxiliary items were provided with the heaters to monitor borehole decrepitation and heater temperature, and to dewater the heater holes. This report describes the above systems and relates experience gained during testing, installation, and operation

  4. Management of UKAEA graphite liabilities

    International Nuclear Information System (INIS)

    Wise, M.

    2001-01-01

    The UK Atomic Energy Authority (UKAEA) is responsible for managing its liabilities for redundant research reactors and other active facilities concerned with the development of the UK nuclear technology programme since 1947. These liabilities include irradiated graphite from a variety of different sources including low irradiation temperature reactor graphite (the Windscale Piles 1 and 2, British Energy Pile O and Graphite Low Energy Experimental Pile at Harwell and the Material Testing Reactors at Harwell and Dounreay), advanced gas-cooled reactor graphite (from the Windscale Advanced Gas-cooled Reactor) and graphite from fast reactor systems (neutron shield graphite from the Dounreay Prototype Fast Reactor and Dounreay Fast Reactor). The decommissioning and dismantling of these facilities will give rise to over 6,000 tonnes of graphite requiring disposal. The first graphite will be retrieved from the dismantling of Windscale Pile 1 and the Windscale Advanced Gas-cooled Reactor during the next five years. UKAEA has undertaken extensive studies to consider the best practicable options for disposing of these graphite liabilities in a manner that is safe whilst minimising the associated costs and technical risks. These options include (but are not limited to), disposal as Low Level Waste, incineration, or encapsulation and disposal as Intermediate Level Waste. There are a number of technical issues associated with each of these proposed disposal options; these include Wigner energy, radionuclide inventory determination, encapsulation of graphite dust, galvanic coupling interactions enhancing the corrosion of mild steel and public acceptability. UKAEA is currently developing packaging concepts and designing packaging plants for processing these graphite wastes in consultation with other holders of graphite wastes throughout Europe. 'Letters of Comfort' have been sought from both the Low Level Waste and the Intermediate Level Waste disposal organisations to support the

  5. Thermal shock test of TiC and graphite

    International Nuclear Information System (INIS)

    Shirakawa, H.; Okamura, J.; Son, P.; Miyake, M.

    1989-01-01

    Thermal shock tests were performed by pulse electron beam heating on chemically vapor deposited coatings of TiC on Poco graphite, bulk TiC, and several kinds of isotropic graphite. The specimens were heated at various power densities (10-45 MW/m 2 ) for various pulse durations (1-2 s) to examine the dependence of thermal failures on heating conditions. The TiC coating on graphite suffered cracking, surface melting and evaporation by the thermal pulse. The surface melting limit, defined as F τ 1/2 , where F is the minimum power density that causes surface melting for a specified pulse duration τ, was approximately 48 MWs 1/2 /m 2 for the TiC coating. The combined-Carbon/Titanium ratio of the coating after electron beam heating decreased with increasing power density and pulse duration. The bulk TiC specimens were so brittle that they fractured at heat load conditions where the coating showed no damage. The graphite specimens showed sublimation as a principal damage mechanism by the thermal pulse, and the sublimation weight loss decreased with increasing the thermal conductivity of the specimen. It was confirmed that the TiC coating on graphite had favorable resistance to thermal shock as compared to the bulk TiC and that graphite with high thermal conductivity is promising material as a high heat flux component. (orig.)

  6. Experimental and theoretical investigation of Stirling engine heater: Parametrical optimization

    International Nuclear Information System (INIS)

    Gheith, R.; Hachem, H.; Aloui, F.; Ben Nasrallah, S.

    2015-01-01

    Highlights: • A Stirling engine was investigated to optimize its operation and its performance. • The porous medium present the highest amount of heat exchanged in a Stirling engine. • The heater characteristics are determinant points to enhance the thermal exchange in Stirling engine. • All operation parameters influence the heater performances. • Thermal and exergy heater efficiencies are sensible to temperature and pressure. - Abstract: The aim of this work is to optimize γ Stirling engine performances with a special care given to the heater. This latter consists of 20 tubes in order to increase the exchange area between the working gas and the hot source. Different parameters were chosen to evaluate numerically and experimentally the heater. The selected four independent parameters are: heating temperature (300–500 °C), initial filling pressure (3–8 bar), cooling water flow rate (0.2–3 l/min) and frequency (2–7 Hz). The amount of energy exchanged in the heater is significantly influenced by the frequency and heating temperature but it is slightly enhanced with the increase in the cooling water flow rate. The thermal and the exergy efficiencies of the heater are very sensible to the temperature and pressure variations.

  7. Graphite in Science and Nuclear Technique

    OpenAIRE

    Zhmurikov, E. I.; Bubnenkov, I. A.; Dremov, V. V.; Samarin, S. I.; Pokrovsky, A. S.; Harkov, D. V.

    2013-01-01

    The monograph is devoted to the application of graphite and graphite composites in science and technology. The structure and electrical properties, the technological aspects of production of high-strength synthetic graphites, the dynamics of the graphite destruction, traditionally used in the nuclear industry are discussed. It is focuses on the characteristics of graphitization and properties of graphite composites based on carbon isotope 13C. The book is based, generally, on the original res...

  8. Heater experiments in the Climax Stock, Nevada Test Site

    International Nuclear Information System (INIS)

    Ramspott, L.; Ballou, L.

    1977-01-01

    The Climax Stock is a composite granitic intrusive at the Nevada Test Site, with an existing shaft and an open drift about 1400 ft. below the surface. In September 1977, the Lawrence Livermore Laboratory plans to operate three in-situ heater experiments in this area. The first experiment consists of a single heater surrounded by thermocouples at distances of from 1/10 to 5 meters. The close spacing will scale down the time required for useful thermal measurements. The heater, which is 3 meters long and capable of about 3 kW, will be energized for a month, turned off for a month, and the cycle repeated. The rock surface temperature in the heater hole is not expected to exceed 500 to 600 0 C, and the temperature beyond 0.1 m into the rock is not expected to exceed 400 0 C. Measurements will be taken during all four months. These measurements will be compared with numerical simulations to determine the thermal properties of the medium. The second experiment, also involving only a single heater, will be more completely instrumented to include the measurement of permeability, rock displacement, stress/strain, and possibly acoustic emission measurements. The scale of the experiment will be larger, and the heater will be energized continuously for about 4 months. The third test in the series is envisioned to be a scale-up of the second, except that multiple heaters will be used. These heaters will be energized for about a year. They will be arranged around a pillar structure left in the room to obtain information on mine stability in the presence of multiple heaters

  9. Modification of structural graphite machining

    International Nuclear Information System (INIS)

    Lavrenev, M.M.

    1979-01-01

    Studied are machining procedures for structural graphites (GMZ, MG, MG-1, PPG) most widely used in industry, of the article mass being about 50 kg. Presented are dependences necessary for the calculation of cross sections of chip suction tappers and duster pipelines in machine shops for structural graphite machining

  10. Thermal behaviour of solar air heater with compound parabolic concentrator

    International Nuclear Information System (INIS)

    Tchinda, Rene

    2008-01-01

    A mathematical model for computing the thermal performance of an air heater with a truncated compound parabolic concentrator having a flat one-sided absorber is presented. A computer code that employs an iterative solution procedure is constructed to solve the governing energy equations and to estimate the performance parameters of the collector. The effects of the air mass flow rate, the wind speed and the collector length on the thermal performance of the present air heater are investigated. Predictions for the performance of the solar heater also exhibit reasonable agreement, with experimental data with an average error of 7%

  11. Implementation of heaters on thermally actuated spacecraft mechanisms

    Science.gov (United States)

    Busch, John D.; Bokaie, Michael D.

    1994-01-01

    This paper presents general insight into the design and implementation of heaters as used in actuating mechanisms for spacecraft. Problems and considerations that were encountered during development of the Deep Space Probe and Science Experiment (DSPSE) solar array release mechanism are discussed. Obstacles included large expected fluctuations in ambient temperature, variations in voltage supply levels outgassing concerns, heater circuit design, materials selection, and power control options. Successful resolution of these issues helped to establish a methodology which can be applied to many of the heater design challenges found in thermally actuated mechanisms.

  12. Thermally driven self-healing using copper nanofiber heater

    Science.gov (United States)

    Lee, Min Wook; Jo, Hong Seok; Yoon, Sam S.; Yarin, Alexander L.

    2017-07-01

    Nano-textured transparent heaters made of copper nanofibers (CuNFs) are used to facilitate accelerated self-healing of bromobutyl rubber (BIIR). The heater and BIIR layer are separately deposited on each side of a transparent flexible polyethylene terephthalate (PET) substrate. A pre-notched crack on the BIIR layer was bridged due to heating facilitated by CuNFs. In the corrosion test, a cracked BIIR layer covered a steel substrate. An accelerated self-healing of the crack due to the transparent copper nanofiber heater facilitated an anti-corrosion protective effect of the BIIR layer.

  13. PWR pressurizer with heaters well which can be obturate and sealing process

    International Nuclear Information System (INIS)

    Godin, B.; Guicherd, L.

    1991-01-01

    Each heater well is prolongated at the end located outer the pressurizer containment by a sleeve internally tapped which is prolongated at the other end by a guiding and fixation sleeve for welding the heater. The heater well can be obturated by a threaded plug introduce in the tapped part of the sleeve after cutting the welding sleeve and extraction of the heater [fr

  14. 40 CFR 63.7506 - Do any boilers or process heaters have limited requirements?

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 13 2010-07-01 2010-07-01 false Do any boilers or process heaters have..., and Institutional Boilers and Process Heaters General Compliance Requirements § 63.7506 Do any boilers or process heaters have limited requirements? (a) New or reconstructed boilers and process heaters in...

  15. 40 CFR 63.7491 - Are any boilers or process heaters not subject to this subpart?

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 13 2010-07-01 2010-07-01 false Are any boilers or process heaters not..., and Institutional Boilers and Process Heaters What This Subpart Covers § 63.7491 Are any boilers or process heaters not subject to this subpart? The types of boilers and process heaters listed in paragraphs...

  16. Management of radioactive waste in nuclear power: handling of irradiated graphite from water-cooled graphite reactors

    International Nuclear Information System (INIS)

    Anfimov, S.S.

    2000-01-01

    As a result of decommissioning of water-cooled graphite-moderated reactors, a large amount of rad-waste in the form of graphite stack fragments is generated (on average 1500-2000 tons per reactor). That is why it is essentially important, although complex from the technical point of view, to develop advanced technologies based on up-to-date remotely-controlled systems for unmanned dismantling of the graphite stack containing highly-active long-lived radionuclides and for conditioning of irradiated graphite (IG) for the purposes of transportation and subsequent long term and ecologically safe storage either on NPP sites or in special-purpose geological repositories. The main characteristics critical for radiation and nuclear hazards of the graphite stack are as follows: the graphite stack is contaminated with nuclear fuel that has gotten there as a result of the accidents; the graphite mass is 992 tons, total activity -6?104 Ci (at the time of unit shutdown); the fuel mass in the reactor stack amounts to 100-140 kg, as estimated by IPPE and RDIPE, respectively; γ-radiation dose rate in the stack cells varies from 4 to 4300 R/h, with the prevailing values being in the range from 50 to 100 R/h. In this paper the traditional methods of rad-waste handling as bituminization technology, cementing technology are discussed. In terms of IG handling technology two lines were identified: long-term storage of conditioned IG and IG disposal by means of incineration. The specific cost of graphite immobilization in a radiation-resistant polymeric matrix amounts to -2600 USD per 1 t of graphite, whereas the specific cost of immobilization in slag-stone containers with an inorganic binder (cement) is -1400 USD per 1 t of graphite. On the other hand, volume of conditioned IG rad-waste subject for disposal, if obtained by means of the first technology, is 2-2.5 times less than the volume of rad-waste generated by means of the second technology. It can be concluded from the above that

  17. Management of aging of water heaters in nuclear power plants

    International Nuclear Information System (INIS)

    Martin-Serrano Ledesma, C.; Toro del toro, J.; Real Rubio, I.; Garcia Montejano, A.

    2014-01-01

    The scope of this work includes the study of all feedwater heaters (from 1 to 6) in their two trains (A and B). In this study the main degradation phenomena that affect them, the operating parameters that can warn of a possible malfunction of the heater and possible strategies inspection, repair and replacement are analyzed. As a result of this study, a higher priority is obtained at a lower state of degradation of the heaters, possibly with a strategy inspection, repair or replacement, for each recharge, until the end of life of the plant. This will be a live program, which must be fed back to the studies of the parameters of operation of the heater during operation and results of the inspection of each recharge. May verify the effectiveness of aging management program using different indicators. (Author)

  18. New Home Buyer Solar Water Heater Trade-Off Study

    International Nuclear Information System (INIS)

    Symmetrics Marketing Corporation

    1999-01-01

    This report details the results of a research conducted in 1998 and 1999 and outlines a marketing deployment plan designed for businesses interested in marketing solar water heaters in the new home industry

  19. solar dryer with biomass backup heater for drying fruits

    African Journals Online (AJOL)

    SOLAR DRYER WITH BIOMASS BACKUP HEATER FOR DRYING FRUITS: DEVELOPMENT AND PERFORMANCE ANALYSIS. ... Journal of Science and Technology (Ghana) ... Most solar dryers rely on only solar energy as the heat source.

  20. Measured data from the Avery Island Site C heater test

    International Nuclear Information System (INIS)

    Waldman, H.; Stickney, R.G.

    1984-11-01

    Over the past six years, a comprehensive field testing program was conducted in the Avery Island salt mine. Three single canister heater tests were included in the testing program. Specifically, electric heaters, which simulate canisters of heat-generating nuclear waste, were placed in the floor of the Avery Island salt mine, and measurements were made of the response of the salt to heating. These tests were in operation by June 1978. One of the three heater tests, Site C, operated for a period of 1858 days and was decommissioned during July and August 1983. This data report presents the temperature and displacement data gathered during the operation and decommissioning of the Site C heater test. The purpose of this data report is to transmit the data to the scientific community. Rigorous analysis and interpretation of the data are considered beyond the scope of a data report. 6 references, 21 figures, 1 table

  1. High-temperature brazing of graphite using aluminium as brazing alloy

    International Nuclear Information System (INIS)

    Anikin, L.T.; Kravetskij, G.A.; Dergunova, V.S.

    1977-01-01

    The possibility of enhancing the strength of brazed joints, as well as the effect of the parameters of resistance heating of graphite VPP with PA-4 aluminium on the structure, composition and strength of the joint have been studied. It has been established that brazing of graphite materials, using an aluminium solder will produce a heat-resistant joint of a graphitic composition if the brazing temperature exceeds 2200 deg C. Thermocycling in the course of brazing results in a substantial (1.5-fold) increase in the strength of brazed joints

  2. Heater-Integrated Cantilevers for Nano-Samples Thermogravimetric Analysis

    OpenAIRE

    Toffoli, Valeria; Carrato, Sergio; Lee, Dongkyu; Jeon, Sangmin; Lazzarino, Marco

    2013-01-01

    The design and characteristics of a micro-system for thermogravimetric analysis (TGA) in which heater, temperature sensor and mass sensor are integrated into a single device are presented. The system consists of a suspended cantilever that incorporates a microfabricated resistor, used as both heater and thermometer. A three-dimensional finite element analysis was used to define the structure parameters. TGA sensors were fabricated by standard microlithographic techniques and tested using mill...

  3. Temperature limited heater utilizing non-ferromagnetic conductor

    Science.gov (United States)

    Vinegar,; Harold J. , Harris; Kelvin, Christopher [Houston, TX

    2012-07-17

    A heater is described. The heater includes a ferromagnetic conductor and an electrical conductor electrically coupled to the ferromagnetic conductor. The ferromagnetic conductor is positioned relative to the electrical conductor such that an electromagnetic field produced by time-varying current flow in the ferromagnetic conductor confines a majority of the flow of the electrical current to the electrical conductor at temperatures below or near a selected temperature.

  4. Hypervelocity impacts into graphite

    Science.gov (United States)

    Latunde-Dada, S.; Cheesman, C.; Day, D.; Harrison, W.; Price, S.

    2011-03-01

    Studies have been conducted into the characterisation of the behaviour of commercial graphite (brittle) when subjected to hypervelocity impacts by a range of projectiles. The experiments were conducted with a two-stage gas gun capable of launching projectiles of differing density and strength to speeds of about 6kms-1 at right angles into target plates. The damage caused is quantified by measurements of the crater depth and diameters. From the experimental data collected, scaling laws were derived which correlate the crater dimensions to the velocity and the density of the projectile. It was found that for moderate projectile densities the crater dimensions obey the '2/3 power law' which applies to ductile materials.

  5. Hypervelocity impacts into graphite

    International Nuclear Information System (INIS)

    Latunde-Dada, S; Cheesman, C; Day, D; Harrison, W; Price, S

    2011-01-01

    Studies have been conducted into the characterisation of the behaviour of commercial graphite (brittle) when subjected to hypervelocity impacts by a range of projectiles. The experiments were conducted with a two-stage gas gun capable of launching projectiles of differing density and strength to speeds of about 6kms -1 at right angles into target plates. The damage caused is quantified by measurements of the crater depth and diameters. From the experimental data collected, scaling laws were derived which correlate the crater dimensions to the velocity and the density of the projectile. It was found that for moderate projectile densities the crater dimensions obey the '2/3 power law' which applies to ductile materials.

  6. Acoustic emission from polycrystalline graphites

    International Nuclear Information System (INIS)

    Ioka, I.; Yoda, S.; Oku, T.; Miyamoto, Y.

    1987-01-01

    Acoustic emission was monitored from polycrystalline graphites with different microstructure (pore size and pore volume) subjected to compressive loading. The graphites used in this study comprised five brands, that is, PGX, ISEM-1, IG-11, IG-15, and ISO-88. A root mean square (RMS) voltage and event counts of acoustic emission for graphites were measured during compressive loading. The acoustic emission was measured using a computed-based data acquisition and analysis system. The graphites were first deformed up to 80 % of the average fracture stress, then unloaded and reloaded again until the fracture occured. During the first loading, the change in RMS voltage for acoustic emission was detected from the initial stage. During the unloading, the RMS voltage became zero level as soon as the applied stress was released and then gradually rose to a peak and declined. The behavior indicated that the reversed plastic deformation occured in graphites. During the second loading, the RMS voltage gently increased until the applied stress exceeded the maximum stress of the first loading; there is no Kaiser effect in the graphites. A bicrystal model could give a reasonable explanation of this results. The empirical equation between the ratio of σ AE to σ f and σ f was obtained. It is considered that the detection of microfracture by the acoustic emission technique is effective in macrofracture prediction of polycrystalline graphites. (author)

  7. Radiolytic graphite oxidation revisited

    International Nuclear Information System (INIS)

    Minshall, P.C.; Sadler, I.A.; Wickham, A.J.

    1996-01-01

    The importance of radiolytic oxidation in graphite-moderated CO 2 -cooled reactors has long been recognised, especially in the Advanced Gas-Cooled Reactors where potential rates are higher because of the higher gas pressure and ratings than the earlier Magnox designs. In all such reactors, the rate of oxidation is partly inhibited by the CO produced in the reaction and, in the AGR, further reduced by the deliberate addition of CH 4 . Significant roles are also played by H 2 and H 2 O. This paper reviews briefly the mechanisms of these processes and the data on which they are based. However, operational experience has demonstrated that these basic principles are unsatisfactory in a number of respects. Gilsocarbon graphites produced by different manufacturers have demonstrated a significant difference in oxidation rate despite a similar specification and apparent equivalence in their pore size and distribution, considered to be the dominant influence on oxidation rate for a given coolant-gas composition. Separately, the inhibiting influence of CH 4 , which for many years had been considered to arise from the formation of a sacrificial deposit on the pore walls, cannot adequately be explained by the actual quantities of such deposits found in monitoring samples which frequently contain far less deposited carbon than do samples from Magnox reactors where the only source of such deposits is the CO. The paper also describes the current status of moderator weight-loss predictions for Magnox and AGR Moderators and the validation of the POGO and DIFFUSE6 codes respectively. 2 refs, 5 figs

  8. Gravity and Heater Size Effects on Pool Boiling Heat Transfer

    Science.gov (United States)

    Kim, Jungho; Raj, Rishi

    2014-01-01

    The current work is based on observations of boiling heat transfer over a continuous range of gravity levels between 0g to 1.8g and varying heater sizes with a fluorinert as the test liquid (FC-72/n-perfluorohexane). Variable gravity pool boiling heat transfer measurements over a wide range of gravity levels were made during parabolic flight campaigns as well as onboard the International Space Station. For large heaters and-or higher gravity conditions, buoyancy dominated boiling and heat transfer results were heater size independent. The power law coefficient for gravity in the heat transfer equation was found to be a function of wall temperature under these conditions. Under low gravity conditions and-or for smaller heaters, surface tension forces dominated and heat transfer results were heater size dependent. A pool boiling regime map differentiating buoyancy and surface tension dominated regimes was developed along with a unified framework that allowed for scaling of pool boiling over a wide range of gravity levels and heater sizes. The scaling laws developed in this study are expected to allow performance quantification of phase change based technologies under variable gravity environments eventually leading to their implementation in space based applications.

  9. Performance characteristics of solar air heater with surface mounted obstacles

    International Nuclear Information System (INIS)

    Bekele, Adisu; Mishra, Manish; Dutta, Sushanta

    2014-01-01

    Highlights: • Solar air heater with delta shaped obstacles have been studied. • Obstacle angle of incidence strongly affects the thermo-hydraulic performance. • Thermal performance of obstacle mounted collectors is superior to smooth collectors. • Thermo-hydraulic performance of the present SAH is higher than those in previous studies. - Abstract: The performance of conventional solar air heaters (SAHs) can be improved by providing obstacles on the heated wall (i.e. on the absorber plate). Experiments have been performed to collect heat transfer and flow-friction data from an air heater duct with delta-shaped obstacles mounted on the absorber surface and having an aspect ratio 6:1 resembling the conditions close to the solar air heaters. This study encompassed for the range of Reynolds number (Re) from 2100 to 30,000, relative obstacle height (e/H) from 0.25 to 0.75, relative obstacle longitudinal pitch (P l /e) from 3/2 to 11/2, relative obstacle transverse pitch (P t /b) from 1 to 7/3 and the angle of incidence (α) varied from 30° to 90°. The thermo-hydraulic performance characteristics of SAH have been compared with the previous published works and the optimum range of the geometries have been explored for the better performance of such air-heaters compared to the other designs of solar air heaters

  10. Global analysis of the temperature and flow fields in samples heated in multizone resistance furnaces

    Science.gov (United States)

    Pérez-Grande, I.; Rivas, D.; de Pablo, V.

    The temperature field in samples heated in multizone resistance furnaces will be analyzed, using a global model where the temperature fields in the sample, the furnace and the insulation are coupled; the input thermal data is the electric power supplied to the heaters. The radiation heat exchange between the sample and the furnace is formulated analytically, taking into account specular reflections at the sample; for the solid sample the reflectance is both diffuse and specular, and for the melt it is mostly specular. This behavior is modeled through the exchange view factors, which depend on whether the sample is solid or liquid, and, therefore, they are not known a priori. The effect of this specular behavior in the temperature field will be analyzed, by comparing with the case of diffuse samples. A parameter of great importance is the thermal conductivity of the insulation material; it will be shown that the temperature field depends strongly on it. A careful characterization of the insulation is therefore necessary, here it will be done with the aid of experimental results, which will also serve to validate the model. The heating process in the floating-zone technique in microgravity conditions will be simulated; parameters like the Marangoni number or the temperature gradient at the melt-crystal interface will be estimated. Application to the case of compound samples (graphite-silicon-graphite) will be made; the temperature distribution in the silicon part will be studied, especially the temperature difference between the two graphite rods that hold the silicon, since it drives the thermocapillary flow in the melt. This flow will be studied, after coupling the previous model with the convective effects. The possibility of suppresing this flow by the controlled vibration of the graphite rods will be also analyzed. Numerical results show that the thermocapillary flow can indeed be counterbalanced quite effectively.

  11. Research and development of a heat-pump water heater. Volume 2. R and D task reports

    Energy Technology Data Exchange (ETDEWEB)

    Dunning, R.L.; Amthor, F.R.; Doyle, E.J.

    1978-08-01

    The heat pump water heater is a device that works much like a window air conditioner except that heat from the home is pumped into a water tank rather than to the outdoors. The objective established for the device is to operate with a Coefficient of Performance (COP) of 3 or, an input of one unit of electric energy would create three units of heat energy in the form of hot water. With such a COP, the device would use only one-third the energy and at one-third the cost of a standard resistance water heater. This Volume 2 contains the final reports of the three major tasks performed in Phase I. In Task 2, a market study identifies the future market and selects an initial target market and channel of distribution, all based on an analysis of the parameters affecting feasibility of the device and the factors that will affect its market acceptance. In the Task 3 report, the results of a design and test program to arrive at final designs of heat pumps for both new water heaters and for retrofitting existing water heaters are presented. In the Task 4 report, a plan for an extensive field demonstration involving use in actual homes is presented. Volume 1 contains a final summary report of the information in Volume 2.

  12. Computational Fluid Dynamics Model for Solar Thermal Storage Tanks with Helical Jacket Heater and Upper Spiral Coil Heater

    Energy Technology Data Exchange (ETDEWEB)

    Baek, Seung Man [Seoul Nat' l Univ., Seoul (Korea, Republic of); Zhong, Yiming; Nam, Jin Hyun [Daegu Univ., Daegu (Korea, Republic of); Chung, Jae Dong [Sejong Univ., Seoul (Korea, Republic of); Hong, Hiki [Kyung Hee Univ., Seoul (Korea, Republic of)

    2013-04-15

    In a solar domestic hot water (Shadow) system, solar energy is collected using collector panels, transferred to a circulating heat transfer fluid (brine), and eventually stored in a thermal storage tank (Test) as hot water. In this study, a computational fluid dynamics (CAD) model was developed to predict the solar thermal energy storage in a hybrid type Test equipped with a helical jacket heater (mantle heat exchanger) and an immersed spiral coil heater. The helical jacket heater, which is the brine flow path attached to the side wall of a Test, has advantages including simple system design, low brine flow rate, and enhanced thermal stratification. In addition, the spiral coil heater further enhances the thermal performance and thermal stratification of the Test. The developed model was validated by the good agreement between the CAD results and the experimental results performed with the hybrid-type Test in Shadow settings.

  13. Computational Fluid Dynamics Model for Solar Thermal Storage Tanks with Helical Jacket Heater and Upper Spiral Coil Heater

    International Nuclear Information System (INIS)

    Baek, Seung Man; Zhong, Yiming; Nam, Jin Hyun; Chung, Jae Dong; Hong, Hiki

    2013-01-01

    In a solar domestic hot water (Shadow) system, solar energy is collected using collector panels, transferred to a circulating heat transfer fluid (brine), and eventually stored in a thermal storage tank (Test) as hot water. In this study, a computational fluid dynamics (CAD) model was developed to predict the solar thermal energy storage in a hybrid type Test equipped with a helical jacket heater (mantle heat exchanger) and an immersed spiral coil heater. The helical jacket heater, which is the brine flow path attached to the side wall of a Test, has advantages including simple system design, low brine flow rate, and enhanced thermal stratification. In addition, the spiral coil heater further enhances the thermal performance and thermal stratification of the Test. The developed model was validated by the good agreement between the CAD results and the experimental results performed with the hybrid-type Test in Shadow settings

  14. Chemisputtering of interstellar graphite grains

    International Nuclear Information System (INIS)

    Draine, B.T.

    1979-01-01

    The rate of erosion of interstellar graphite grains as a result of chemical reaction with H, N, and O is estimated using the available experiment evidence. It is argued that ''chemical sputtering'' yields for interstellar graphite grains will be much less than unity, contrary to earlier estimates by Barlow and Silk. Chemical sputtering of graphite grains in evolving H II regions is found to be unimportant, except in extremely compact (n/sub H/> or approx. =10 5 cm -3 ) H II regions. Alternative explanations are considered for the apparent weakness of the lambda=2175 A extinction ''bump'' in the direction of several early type stars

  15. Obtention of nuclear grade graphite

    International Nuclear Information System (INIS)

    Ferreira, M.L.

    1984-01-01

    The impurity level of natural graphite found in some of the most important mines of the State of Minas Gerais - Brasil is determined. It is also concerned with the development and use of natural graphite in nuclear reactors. Standard methods for chemical and instrumentsal analysis such as Spectrografic Determination by Emission, Spectrografic Determination by X-Rays, Spectrografic Determination by Atomic Asorption, Photometric Determination, and also chemical and physical methods for separation of impurities as well standard method for Estimating the Thermal Neutron Absorption Cross Section of graphite were employed. Some aditionals methods of purification to the ordinary treatment such as the use of metanol and halogens are also described. (Author) [pt

  16. Interaction of boron with graphite: A van der Waals density functional study

    International Nuclear Information System (INIS)

    Liu, Juan; Wang, Chen; Liang, Tongxiang; Lai, Wensheng

    2016-01-01

    Highlights: • A van der Waals density-functional approach is applied to study the interaction of boron with graphite. • VdW-DF functionals give fair agreement of crystal parameters with experiments. • The π electron approaches boron while adsorbing on graphite surface. • The hole introduced by boron mainly concentrates on boron and the nearest three carbon atoms. • PBE cannot describe the interstitial boron in graphite because of the ignoring binding of graphite sheets. - Abstract: Boron doping has been widely investigated to improve oxidation resistance of graphite. In this work the interaction of boron with graphite is investigated by a van der Waals density-functional approach (vdW-DF). The traditional density-functional theory (DFT) is well accounted for the binding in boron-substituted graphite. However, to investigate the boron atom on graphite surface and the interstitial impurities require use of a description of graphite interlayer binding. Traditional DFT cannot describe the vdW physics, for instance, GGA calculations show no relevant binding between graphite sheets. LDA shows some binding, but they fail to provide an accurate account of vdW forces. In this paper, we compare the calculation results of graphite lattice constant and cohesive energy by several functionals, it shows that vdW-DF such as two optimized functionals optB88-vdW and optB86b-vdW give much improved results than traditional DFT. The vdW-DF approach is then applied to study the interaction of boron with graphite. Boron adsorption, substitution, and intercalation are discussed in terms of structural parameters and electronic structures. When adsorbing on graphite surface, boron behaves as π electron acceptor. The π electron approaches boron atom because of more electropositive of boron than carbon. For substitution situation, the hole introduced by boron mainly concentrates on boron and the nearest three carbon atoms. The B-doped graphite system with the hole has less

  17. Interaction of boron with graphite: A van der Waals density functional study

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Juan; Wang, Chen [Beijing Key Lab of Fine Ceramics, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China); Liang, Tongxiang, E-mail: txliang@tsinghua.edu.cn [State Key Lab of New Ceramic and Fine Processing, Tsinghua University, Beijing 100084 (China); Lai, Wensheng [Advanced Material Laboratory, School of Materials Science & Engineering, Tsinghua University, Beijing, 100084 (China)

    2016-08-30

    Highlights: • A van der Waals density-functional approach is applied to study the interaction of boron with graphite. • VdW-DF functionals give fair agreement of crystal parameters with experiments. • The π electron approaches boron while adsorbing on graphite surface. • The hole introduced by boron mainly concentrates on boron and the nearest three carbon atoms. • PBE cannot describe the interstitial boron in graphite because of the ignoring binding of graphite sheets. - Abstract: Boron doping has been widely investigated to improve oxidation resistance of graphite. In this work the interaction of boron with graphite is investigated by a van der Waals density-functional approach (vdW-DF). The traditional density-functional theory (DFT) is well accounted for the binding in boron-substituted graphite. However, to investigate the boron atom on graphite surface and the interstitial impurities require use of a description of graphite interlayer binding. Traditional DFT cannot describe the vdW physics, for instance, GGA calculations show no relevant binding between graphite sheets. LDA shows some binding, but they fail to provide an accurate account of vdW forces. In this paper, we compare the calculation results of graphite lattice constant and cohesive energy by several functionals, it shows that vdW-DF such as two optimized functionals optB88-vdW and optB86b-vdW give much improved results than traditional DFT. The vdW-DF approach is then applied to study the interaction of boron with graphite. Boron adsorption, substitution, and intercalation are discussed in terms of structural parameters and electronic structures. When adsorbing on graphite surface, boron behaves as π electron acceptor. The π electron approaches boron atom because of more electropositive of boron than carbon. For substitution situation, the hole introduced by boron mainly concentrates on boron and the nearest three carbon atoms. The B-doped graphite system with the hole has less

  18. Characterization of Ignalina NPP RBMK Reactors Graphite

    International Nuclear Information System (INIS)

    Hacker, P.J.; Neighbour, G.B.; Levinskas, R.; Milcius, D.

    2001-01-01

    The paper concentrates on the investigations of the initial physical properties of graphite used in production of graphite bricks of Ignalina NPP. These graphite bricks are used as nuclear moderator and major core structural components. Graphite bulk density is calculated by mensuration, pore volumes are measured by investigation of helium gas penetration in graphite pore network, the Young's modulus is determined using an ultrasonic time of flight method, the coefficient of thermal expansion is determined using a Netzsch dilatometer 402C, the fractured and machined graphite surfaces are studied using SEM, impurities are investigated qualitatively by EDAX, the degree of graphitization of the material is tested using X-ray diffraction. (author)

  19. Thermal performance of an integrated collector storage solar water heater (ICSSWH) with phase change materials (PCM)

    International Nuclear Information System (INIS)

    Chaabane, Monia; Mhiri, Hatem; Bournot, Philippe

    2014-01-01

    Highlights: • We study the effect of phase change materials integration on the thermal performances of an ICSSWH. • Two kinds and tree radiuses of the PCM layer are studied and the most appropriate design is presented. • The use of phase change materials in ICSSWH is determined to reduce the night thermal losses. • Myristic acid is the most appropriate PCM for this application regarding the daily and night operation. - Abstract: In this paper, we propose a numerical study of an integrated collector storage solar water heater (ICSSWH). Two numerical models in three-dimensional modeling are developed. The first one which describes a sensible heat storage unit (SHSU), allowing validating the numerical model. Based on the good agreement between numerical results and experimental data from literature, and as this type of solar water heater presents the disadvantage of its high night losses, we propose to integrate a phase change material (PCM) directly in the collector and to study its effect on the ICSSWH thermal performance. Indeed, a second 3D CFD model is developed and series of numerical simulations are conducted for two kind (myristic acid and RT42-graphite) and three radiuses (R = 0.2 m, R = 0.25 m and R = 0.3 m) of this PCM layer. Numerical results show that during the day-time, the latent heat storage unit (LHSU) performs better than the sensible one when myristic acid is used as PCM. Regarding the night operating of this solar system, it is found that the LHSU is more effective for both PCMs as it allows lower thermal losses and better heat preservation

  20. Elaboration of aluminum oxide-based graphite containing castables

    Science.gov (United States)

    Zhou, Ningsheng

    The aim of this work was set to develop effective and practicable new methods to incorporate natural flake graphite (FG) into the Al2O 3 based castables for iron and steel making applications. Three approaches, viz. micro-pelletized graphite (PG), crushed briquette of Al2O3-graphite (BAG) and TiO2 coated graphite (CFG), have been developed to insert flake graphite into Al2O 3 rich Al2O3-SiC based and Al2O 3-MgO based castables. These approaches were put into effect as countermeasures against the problems caused by FG in order: (1) to agglomerate the FG powders so as to decrease the specific surface area; (2) to diminish the density difference by using crushed carbon bonded compact of oxide-FG mixture; (3) to modify the surface of the flake graphite by forming hydrophilic coating; (4) to control the dispersion state of the graphite in the castable to maintain enough bonding strength; and (5) to use appropriate antioxidants to inhibit the oxidation of FG. The whole work was divided into two stages. In stage one, Al2O 3-SiC-C castables were dealt with to compare 4 modes of inserting graphite, i.e., by PG, BAG, CFG and FG. Overall properties were measured, all in correlation with graphite amount and incorporating mode. In stage two, efforts were made to reduce water demand in the Al2O3-MgO castables system. For this purpose, the matrix portion of the castable mixes was extracted and a coaxial double cylinder viscometer was adopted to investigate rheological characteristics of the matrix slurries vs. 4 kinds of deflocculants, through which the best deflocculant and its appropriate amount were found. Efforts were then made to add up to 30% MgO into the castables, using a limited amount of powders (antioxidants, Si, SiC, B4C and ZrB2, were added respectively or in combination. Overall properties of the castables, were investigated in correlation with MgO amount and graphite and antioxidant packages. Optimization work on oxidation and slag resistance was pursued. Finally

  1. Highly flexible transparent thin film heaters based on silver nanowires and aluminum zinc oxides

    Energy Technology Data Exchange (ETDEWEB)

    Cheong, Hahn-Gil; Kim, Jin-Hoon; Song, Jun-Hyuk; Jeong, Unyong; Park, Jin-Woo, E-mail: jwpark09@yonsei.ac.kr

    2015-08-31

    In this work, we developed highly flexible transparent film heaters (f-TFHs) composed of Ag nanowire networks (AgNWs) and aluminum zinc oxide (AZO). Uniform AgNWs were roll-to-roll coated on polyethylene terephthalate (PET) substrates using the Mayer rod method, and AZO was sputter-deposited atop the AgNWs at room temperature. The sheet resistance (R{sub s}) and transparency (T{sub opt}) of the AZO-coated AgNWs changed only slightly compared with the uncoated AgNWs. AZO is thermally less conductive than the heat pipes, but increases the thermal efficiency of the heaters blocking the heat convection through the air. Based on Joule heating, a higher average film temperature (T{sub ave}) is attained at a fixed electric potential drop between electrodes (ϕ) as the R{sub s} of the film decreases. Our experimental results revealed that T{sub ave} of the hybrid f-TFH is higher than AgNWs when the ratio of the area coverage of AgNWs to AZO is over a certain value. When a ϕ as low as 3 V/cm was applied to 5 cm × 5 cm f-TFHs, the maximum temperature of the hybrid film was over 100 °C, which is greater than that of AgNWs by more than 30 °C. Furthermore, uniform heating throughout the surfaces is achieved in the hybrid films while heating begins in small areas where densities of the nanowires (NWs) are the highest in the bare network. The non-uniform heating decreases the lifetime of f-TFHs by forming hot spots. Cyclic bending test results indicated that the hybrid films were as flexible as the AgNWs, and the R{sub s} of the hybrid films changes only slightly until 5000 cycles. Combined with the high-throughput coating technology presented here, the hybrid films will provide a robust and scalable strategy for large-area f-TFHs with highly enhanced performance. - Highlights: • We developed highly efficient flexible thin film heaters based on Ag nanowires and AZO composites. • In the composite, AZO plays an important role as an insulation blanket to block heat loss to

  2. Graphite in Science and Nuclear Technology

    OpenAIRE

    Zhmurikov, Evgenij

    2015-01-01

    This review is devoted to the application of graphite and graphite composites in the science and technology. Structure and electrical properties, technological aspects of producing of high-strength artificial graphite and dynamics of its destruction are considered. These type of graphite are traditionally used in the nuclear industry, so author concentrates on actual problems of application and testing of graphite materials in modern science and technology. Translated from chapters 1 of monog...

  3. Mesostructure of graphite composite and its lifetime

    OpenAIRE

    Zhmurikov, Evgenij

    2015-01-01

    This review is devoted to the application of graphite and graphite composites in science and technology. Structure and electrical properties, as so technological aspects of producing of high strength artificial graphite and dynamics of its destruction are considered. These type of graphite are traditionally used in the nuclear industry. Generally, the review relies, on the original results and concentrates on actual problems of application and testing of graphite materials in modern nuclear p...

  4. Combustion-Driven Oscillation in Process Heaters

    Energy Technology Data Exchange (ETDEWEB)

    Seebold, J.G. [Chevron Corporation (Retired), 198 James Avenue, Atherton, CA 94027 (United States)

    2005-10-15

    At this moment in thousands of process heaters all over the world there are, to borrow a phrase from the late Carl Sagan, 'billions and billions' of Btu/hr beneficially being released entirely free of pulsation. On those few occasions, perhaps a dozen and a half in my career, when I would get the inevitable 'Why me?' call, I have generally responsed with something like, 'Consider yourself lucky, you have a rare scientific curiosity on your hands'. Reflecting on the solutions ultimately found, I'm reminded that many years ago my friend Abbott Putnam shared with me an early AGA (American Gas Association) field-service bulletin that included a prescription for eliminating combustion-driven oscillations in home heating units; viz., 'Drill a hole; if that doesn't work, drill another hole' or words to that effect. Many times have I wished that I still had a copy of that bulletin and in this paper we will have occasion, once again, to reflect upon the value of that advice. In this paper we will discuss an instance that arose in a pioneering installation of a breakthrough development of 'extremely', to distinguish it from 'ultra', low-NOx lean premix burner technology. We will illustrate how, when and under what circumstances combustion-driven oscillation can arise; we will touch on the many alternatives for its elimination that were considered and investigated; and we will discuss three practical alternatives for eliminating combustion-driven oscillations.

  5. Multifamily Heat Pump Water Heater Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Hoeschele, M. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States); Weitzel, E. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States)

    2013-11-22

    Although heat pump water heaters (HPWHs) have gained significant attention in recent years as a high efficiency electric water heating solution for single family homes, central HPWHs for commercial or multi-family applications are not as well documented in terms of measured performance and cost effectiveness. To evaluate this technology, the Alliance for Residential Building Innovation team monitored the performance of a 10.5 ton central HPWH installed on a student apartment building at the West Village Zero Net Energy Community in Davis, California. Monitoring data collected over a 16 month period were then used to validate a TRNSYS simulation model. The TRNSYS model was then used to project performance in different climates using local electric rates. Results of the study indicate that after some initial commissioning issues, the HPWH operated reliably with an annual average efficiency of 2.12 (Coefficient of Performance). The observed efficiency was lower than the unit's rated efficiency, primarily due to the fact that the system rarely operated under steady-state conditions. Changes in the system configuration, storage tank sizing, and control settings would likely improve the observed field efficiency. Modeling results suggest significant energy savings relative to electric storage water heating systems (typical annual efficiencies around 0.90) providing for typical simple paybacks of six to ten years without any incentives. The economics versus gas water heating are currently much more challenging given the current low natural gas prices in much of the country. Increased market size for this technology would benefit cost effectiveness and spur greater technology innovation.

  6. Multifamily Heat Pump Water Heater Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Hoeschele, M. [Davis Energy Group, Davis, CA (United States). Alliance for Residential Building Innovation; Weitzel, E. [Davis Energy Group, Davis, CA (United States). Alliance for Residential Building Innovation

    2017-03-03

    Although heat pump water heaters (HPWHs) have gained significant attention in recent years as a high efficiency electric water heating solution for single family homes, central HPWHs for commercial or multi-family applications are not as well documented in terms of measured performance and cost effectiveness. To evaluate this technology, the Alliance for Residential Building Innovation team monitored the performance of a 10.5 ton central HPWH installed on a student apartment building at the West Village Zero Net Energy Community in Davis, California. Monitoring data collected over a 16 month period were then used to validate a TRNSYS simulation model. The TRNSYS model was then used to project performance in different climates using local electric rates. Results of the study indicate that after some initial commissioning issues, the HPWH operated reliably with an annual average efficiency of 2.12 (Coefficient of Performance). The observed efficiency was lower than the unit's rated efficiency, primarily due to the fact that the system rarely operated under steady-state conditions. Changes in the system configuration, storage tank sizing, and control settings would likely improve the observed field efficiency. Modeling results suggest significant energy savings relative to electric storage water heating systems (typical annual efficiencies around 0.90) providing for typical simple paybacks of six to ten years without any incentives. The economics versus gas water heating are currently much more challenging given the current low natural gas prices in much of the country. Increased market size for this technology would benefit cost effectiveness and spur greater technology innovation.

  7. Multifamily Heat Pump Water Heater Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Hoeschele, M. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States); Weitzel, E. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States)

    2017-03-01

    Although heat pump water heaters (HPWHs) have gained significant attention in recent years as a high efficiency electric water heating solution for single family homes, central HPWHs for commercial or multi-family applications are not as well documented in terms of measured performance and cost effectiveness. To evaluate this technology, the Alliance for Residential Building Innovation team monitored the performance of a 10.5 ton central HPWH installed on a student apartment building at the West Village Zero Net Energy Community in Davis, California. Monitoring data collected over a 16 month period were then used to validate a TRNSYS simulation model. The TRNSYS model was then used to project performance in different climates using local electric rates. Results of the study indicate that after some initial commissioning issues, the HPWH operated reliably with an annual average efficiency of 2.12 (Coefficient of Performance). The observed efficiency was lower than the unit's rated efficiency, primarily due to the fact that the system rarely operated under steady-state conditions. Changes in the system configuration, storage tank sizing, and control settings would likely improve the observed field efficiency. Modeling results suggest significant energy savings relative to electric storage water heating systems (typical annual efficiencies around 0.90) providing for typical simple paybacks of six to ten years without any incentives. The economics versus gas water heating are currently much more challenging given the current low natural gas prices in much of the country. Increased market size for this technology would benefit cost effectiveness and spur greater technology innovation.

  8. Graphite surveillance in N Reactor

    International Nuclear Information System (INIS)

    Woodruff, E.M.

    1991-09-01

    Graphite dimensional changes in N Reactor during its 24 yr operating history are reviewed. Test irradiation results, block measurements, stack profiles, top of reflector motion monitors, and visual observations of distortion are described. 18 refs., 14 figs., 1 tab

  9. Graphite materials for nuclear reactors

    International Nuclear Information System (INIS)

    Oku, Tatsuo

    1991-01-01

    Graphite materials have been used in the nuclear fission reactors from the beginning of the reactor development for the speed reduction and reflection of neutron. Graphite materials are used both as a moderator and as a reflector in the core of high temperature gas-cooled reactors, and both as a radiation shielding material and as a reflector in the surrounding of the core for the fast breeder reactor. On the other hand, graphite materials are being positively used as a first wall of plasma as it is known that low Z materials are useful for holding high temperature plasma in the nuclear fusion devices. In this paper the present status of the application of graphite materials to the nuclear fission reactors and fusion devices (reactors) is presented. In addition, a part of results on the related properties to the structural design and safety evaluation and results examined on the subjects that should be done in the future are also described. (author)

  10. Graphite selection for the PBMR reflector

    International Nuclear Information System (INIS)

    Marsden, B.J.; Preston, S.D.

    2000-01-01

    A high temperature, direct cycle gas turbine, graphite moderated, helium cooled, pebble-bed reactor (PBMR) is being designed and constructed in South Africa. One of the major components in the PBMR is the graphite reflector, which must be designed to last thirty-five full power years. Fast neutron irradiation changes the dimensions and material properties of reactor graphite, thus for design purposes a suitable graphite database is required. Data on the effect of irradiation on nuclear graphites has been gathered for many years, at considerable financial cost, but unfortunately these graphites are no longer available due to rationalization of the graphite industry and loss of key graphite coke supplies. However, it is possible, using un-irradiated graphite materials properties and knowledge of the particular graphite microstructure, to determine the probable irradiation behaviour. Three types of nuclear graphites are currently being considered for the PBMR reflector: an isostatically moulded, fine grained, high strength graphite and two extruded medium grained graphites of moderately high strength. Although there is some irradiation data available for these graphites, the data does not cover the temperature and dose range required for the PBMR. The available graphites have been examined to determine their microstructure and some of the key material properties are presented. (authors)

  11. Gas transport in graphitic materials

    International Nuclear Information System (INIS)

    Hoinkis, E.

    1995-02-01

    The characterization of the gas transport properties of porous solids is of interest in several fields of science and technology. Many catalysts, adsorbents, soils, graphites and carbons are porous. The gas transport through most porous solids can be well described by the dusty gas model invented by Evans, Watson and Mason. This model includes all modes of gas tranport under steady-state conditions, which are Knudsen diffusion, combined Knudsen/continuum diffusion and continuum diffusion, both for gas pairs with equal and different molecular weights. In the absence of a pressure difference gas transport in a pore system can be described by the combined Knudsen/continuum diffusion coefficient D 1 for component 1 in the pores, the Knudsen diffusion coefficient D 1K in the pores, and the continuum diffusion coefficient D 12 for a binary mixture in the pores. The resistance to stationary continuum diffusion of the pores is characterized by a geometrical factor (ε/τ) 12 = (ε/τ)D 12 , were D 12 is the continuum diffusion coefficient for a binary mixture in free space. The Wicke-Kallenbach method was often used to measure D 1 as function of pressure. D 12 and D 1K can be derived from a plot 1/D 1 νs P, and ε/τcan be calculated since D 12 is known. D 1K and the volume of dead end pores can be derived from transient measurements of the diffusional flux at low pressures. From D 1K the expression (ε/τ c ) anti l por may be calculated, which characterizes the pore system for molecular diffusion, where collisions with the pore walls are predominant. (orig.)

  12. Aluminum-graphite composite produced by mechanical milling and hot extrusion

    International Nuclear Information System (INIS)

    Flores-Zamora, M.I.; Estrada-Guel, I.; Gonzalez-Hernandez, J.; Miki-Yoshida, M.; Martinez-Sanchez, R.

    2007-01-01

    Aluminum-graphite composites were produced by mechanical milling followed by hot extrusion. Graphite content was varied between 0 and 1 wt.%. Al-graphite mixtures were initially mixed in a shaker mill without ball, followed by mechanical milling in a High-energy simoloyer mill for 2 h under argon atmosphere. Milled powders were subsequently pressed at ∼950 MPa for 2 min, and next sintered under vacuum for 3 h at 823 K. Finally, sintered products were held for 0.5 h at 823 K and hot extruded using indirect extrusion. Tension and compression tests were carried out to determine the yield stress and maximum stress of the materials. We found that the mechanical resistance increased as the graphite content increased. Microstructural characterization was done by transmission electron microscopy. Al-O-C nanofibers and graphite nanoparticles were observed in extruded samples by transmission electron microscopy. These nanoparticles and nanofibers seemed to be responsible of the reinforcement phenomenon

  13. Carbowaste: treatment and disposal of irradiated graphite and other carbonaceous waste

    International Nuclear Information System (INIS)

    Von Lensa, W.; Rizzato, C.; Baginski, K.; Banford, A.W.; Bradbury, D.; Goodwin, J.; Grambow, B.; Grave, M.J.; Jones, A.N.; Laurent, G.; Pina, G.; Vulpius, D.

    2014-01-01

    The European Project on 'Treatment and Disposal of Irradiated Graphite and other Carbonaceous Waste (CARBOWASTE)' addressed the retrieval, characterization, treatment, reuse and disposal of irradiated graphite with the following main results: - I-graphite waste features significantly depend on the specific manufacture process, on the operational conditions in the nuclear reactor (neutron dose, atmosphere, temperature etc.) and on radiolytic oxidation leading to partial releases of activation products and precursors during operation. - The neutron activation process generates significant recoil energies breaking pre-existing chemical bonds resulting in dislocations of activation products and new chemical compounds. - Most activation products exist in different chemical forms and at different locations. - I-graphite can be partly purified by thermal and chemical treatment processes leaving more leach-resistant waste products. - Leach tests and preliminary performance analyses show that i-graphite can be safely disposed of in a wide range of disposal systems, after appropriate treatment and/or conditioning. (authors)

  14. Structural Benchmark Testing for Stirling Convertor Heater Heads

    Science.gov (United States)

    Krause, David L.; Kalluri, Sreeramesh; Bowman, Randy R.

    2007-01-01

    The National Aeronautics and Space Administration (NASA) has identified high efficiency Stirling technology for potential use on long duration Space Science missions such as Mars rovers, deep space missions, and lunar applications. For the long life times required, a structurally significant design limit for the Stirling convertor heater head is creep deformation induced even under relatively low stress levels at high material temperatures. Conventional investigations of creep behavior adequately rely on experimental results from uniaxial creep specimens, and much creep data is available for the proposed Inconel-718 (IN-718) and MarM-247 nickel-based superalloy materials of construction. However, very little experimental creep information is available that directly applies to the atypical thin walls, the specific microstructures, and the low stress levels. In addition, the geometry and loading conditions apply multiaxial stress states on the heater head components, far from the conditions of uniaxial testing. For these reasons, experimental benchmark testing is underway to aid in accurately assessing the durability of Stirling heater heads. The investigation supplements uniaxial creep testing with pneumatic testing of heater head test articles at elevated temperatures and with stress levels ranging from one to seven times design stresses. This paper presents experimental methods, results, post-test microstructural analyses, and conclusions for both accelerated and non-accelerated tests. The Stirling projects use the results to calibrate deterministic and probabilistic analytical creep models of the heater heads to predict their life times.

  15. Filament heater current modulation for increased filament lifetime

    International Nuclear Information System (INIS)

    Paul, J.D.; Williams, H.E. III.

    1996-01-01

    The surface conversion H-minus ion source employs two 60 mil tungsten filaments which are approximately 17 centimeters in length. These filaments are heated to approximately 2,800 degrees centigrade by 95--100 amperes of DC heater current. The arc is struck at a 120 hertz rate, for 800 microseconds and is generally run at 30 amperes peak current. Although sputtering is considered a contributing factor in the demise of the filament, evaporation is of greater concern. If the peak arc current can be maintained with less average heater current, the filament evaporation rate for this arc current will diminish. In the vacuum of an ion source, the authors expect the filaments to retain much of their heat throughout a 1 millisecond (12% duty) loss of heater current. A circuit to eliminate 100 ampere heater currents from filaments during the arc pulse was developed. The magnetic field due to the 100 ampere current tends to hold electrons to the filament, decreasing the arc current. By eliminating this magnetic field, the arc should be more efficient, allowing the filaments to run at a lower average heater current. This should extend the filament lifetime. The circuit development and preliminary filament results are discussed

  16. Reinforcement of cement-based matrices with graphite nanomaterials

    Science.gov (United States)

    Sadiq, Muhammad Maqbool

    Cement-based materials offer a desirable balance of compressive strength, moisture resistance, durability, economy and energy-efficiency; their tensile strength, fracture energy and durability in aggressive environments, however, could benefit from further improvements. An option for realizing some of these improvements involves introduction of discrete fibers into concrete. When compared with today's micro-scale (steel, polypropylene, glass, etc.) fibers, graphite nanomaterials (carbon nanotube, nanofiber and graphite nanoplatelet) offer superior geometric, mechanical and physical characteristics. Graphite nanomaterials would realize their reinforcement potential as far as they are thoroughly dispersed within cement-based matrices, and effectively bond to cement hydrates. The research reported herein developed non-covalent and covalent surface modification techniques to improve the dispersion and interfacial interactions of graphite nanomaterials in cement-based matrices with a dense and well graded micro-structure. The most successful approach involved polymer wrapping of nanomaterials for increasing the density of hydrophilic groups on the nanomaterial surface without causing any damage to the their structure. The nanomaterials were characterized using various spectrometry techniques, and SEM (Scanning Electron Microscopy). The graphite nanomaterials were dispersed via selected sonication procedures in the mixing water of the cement-based matrix; conventional mixing and sample preparation techniques were then employed to prepare the cement-based nanocomposite samples, which were subjected to steam curing. Comprehensive engineering and durability characteristics of cement-based nanocomposites were determined and their chemical composition, microstructure and failure mechanisms were also assessed through various spectrometry, thermogravimetry, electron microscopy and elemental analyses. Both functionalized and non-functionalized nanomaterials as well as different

  17. Safety grade pressurizer heater power supply connector assembly

    International Nuclear Information System (INIS)

    Burnett, J.M.; Daftari, R.M.; Reyns, R.M.

    1987-01-01

    This patent describes a pressurizer heater power supply connector assembly for attaching a power cable to an electric heater within a pressurizer of a pressurized water nuclear reactor system, the electric heater having pin contacts. The assembly comprises: a pin-socket type connector including a tubular body having a first open end carrying a pin-socket contact member and an insert intermediate a shell and the pin-socket contact member, the contact member having socket means for electrically receiving and contacting the pin contacts, and a second open end; a flexible sealed conduit including a flexible corrugated tube having one end connected to the second open end of the pin-socket type connector, and another end; and a shop splice assembly including a header adapter and a hose clamp interconnected between the header adapter and another end of the flexible corrugated tube

  18. Test design requirements: Canister-scale heater test

    International Nuclear Information System (INIS)

    Schauer, M.I.; Craig, P.A.; Stickney, R.G.

    1986-03-01

    This document establishes the Test Design Requirements for the design of a canister scale heater test to be performed in the Exploratory Shaft test facility. The purpose of the test is to obtain thermomechanical rock mass response data for use in validation of the numerical models. The canister scale heater test is a full scale simulation of a high-level nuclear waste container in a prototypic emplacement borehole. Electric heaters are used to simulate the heat loads expected in an actual waste container. This document presents an overview of the test including objectives and justification for the test. A description of the test as it is presently envisioned is included. Discussions on Quality Assurance and Safety are also included in the document. 12 refs., 1 fig

  19. Loss of feedwater heater analysis for the South Texas Project

    International Nuclear Information System (INIS)

    Joyce, K.C.; Johnson, M.R.; Albury, C.R.

    1987-01-01

    The results of the steady state and transient analyses of the low pressure feedwater heater train for the South Texas Nuclear Project are presented. The South Texas Project consists of two 1250 MW Westinghouse PWR units. This analysis was performed using the Modular Modeling System (MMS) simulation code. The model presented will be incorporated into the secondary side model in support of the plant training simulator and the analysis of secondary side transients. Results of this analysis are considered preliminary until benchmarked against actual plant data. A model description of the feedwater heater train from the condensate pumps to the deaerator is presented. The methodology used to develop the model is also discussed. Results of the steady state run are presented, and a transient, the loss of extraction steam to feedwater heater 15A, is examined

  20. Studies on the development of special graphite for use in tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Bhatia, G.; Aggarwal, R.K.; Saha, M.; Sengupta, P.R.; Mishra, A. [National Physical Lab., New Delhi (India). Carbon Technology Unit

    2002-07-01

    Special graphite is considered as a critical component of the present-day tokamaks wherein it acts as the armour material for plasma-facing components. This graphite is required to possess, besides other characteristics, high values of bulk density, bending strength and electrical and thermal conductivities and a low value of ash content. Since such graphite was not commercially available in the country, efforts to develop it were initiated at the National Physical Laboratory, New Delhi. The basic approach to develop this graphite was based on green coke method of making the high density graphite, wherein the green coke was modified by incorporating in it small amounts of conducting carbon materials, i.e. needle coke, synthetic graphite and natural graphite. The resulting graphites were characterized with respect to various physical characteristics, namely, green density, weight loss, volume shrinkage, linear shrinkage, bulk density, bending strength, Young's modulus and electrical resistivity, etc. The results are described and discussed in the present paper. 6 refs., 2 tabs.

  1. Theoretical temperature fields for the Stripa heater project. Vol. 1

    International Nuclear Information System (INIS)

    Chan, T.; Cook, N.G.W.; Tsang, C.F.

    1978-09-01

    The report concerns thermal conduction calculations for the three in-situ heater experiments at Stripa which constitute part of the Swedish-American Cooperative Program on Radioactive Waste Storage in Mined Caverns. A semianalytic solution based on the Green's function method has been developed for an array of arbitrary time-dependent finite line heaters in a semi-infinite medium. This method as well as a three dimensional numerical model using IFD (Integrated Finite Difference) technique has been applied to model the field situations at Stripa. Comparison has demonstrated that the finite line source solution for the rock temperature is in excellent agreement with the numerical model solution as well as with a closed form finite cylinder source solution. It was found that maximum temperature rise in the rock within the two year experiment period will be 178 0 C for the 3.6 kW full-scale heater experiment, 345 0 C for the full-scale experiment with a 5 kW central heater and eight 0.72 kW peripheral heaters, and less than 200 0 C for the time-scaled experiment. The ring of eight peripheral heaters in the second full-scale experiment will provide a nominally uniform temperature rise within its perimeter a few weeks after turn-on. The high temperature zone is localized throughout the duration of all three experiments. Nevertheless, the effect of different spacings on the thermal interaction between adjacent radioactive waste canisters will be demonstrated by the time-scaled experiment. Detailed results are presented in the form of tables, temperature profiles and contour plots. Predicted temperatures have been stored in an on-site computer for real-time comparison with field data. 56 figures, 7 tables

  2. Flat plate solar air heater with latent heat storage

    Science.gov (United States)

    Touati, B.; Kerroumi, N.; Virgone, J.

    2017-02-01

    Our work contains two parts, first is an experimental study of the solar air heater with a simple flow and forced convection, we can use thatlaste oneit in many engineering's sectors as solardrying, space heating in particular. The second part is a numerical study with ansys fluent 15 of the storage of part of this solar thermal energy produced,using latent heat by using phase change materials (PCM). In the experimental parts, we realize and tested our solar air heater in URER.MS ADRAR, locate in southwest Algeria. Where we measured the solarradiation, ambient temperature, air flow, thetemperature of the absorber, glasses and the outlet temperature of the solar air heater from the Sunrise to the sunset. In the second part, we added a PCM at outlet part of the solar air heater. This PCM store a part of the energy produced in the day to be used in peak period at evening by using the latent heat where the PCMs present a grateful storagesystem.A numerical study of the fusion or also named the charging of the PCM using ANSYS Fluent 15, this code use the method of enthalpies to solve the fusion and solidification formulations. Furthermore, to improve the conjugate heat transfer between the heat transfer fluid (Air heated in solar plate air heater) and the PCM, we simulate the effect of adding fins to our geometry. Also, four user define are write in C code to describe the thermophysicalpropriety of the PCM, and the inlet temperature of our geometry which is the temperature at the outflow of the solar heater.

  3. High temperature soldering of graphite

    International Nuclear Information System (INIS)

    Anikin, L.T.; Kravetskij, G.A.; Dergunova, V.S.

    1977-01-01

    The effect is studied of the brazing temperature on the strength of the brazed joint of graphite materials. In one case, iron and nickel are used as solder, and in another, molybdenum. The contact heating of the iron and nickel with the graphite has been studied in the temperature range of 1400-2400 ged C, and molybdenum, 2200-2600 deg C. The quality of the joints has been judged by the tensile strength at temperatures of 2500-2800 deg C and by the microstructure. An investigation into the kinetics of carbon dissolution in molten iron has shown that the failure of the graphite in contact with the iron melt is due to the incorporation of iron atoms in the interbase planes. The strength of a joint formed with the participation of the vapour-gas phase is 2.5 times higher than that of a joint obtained by graphite recrystallization through the carbon-containing metal melt. The critical temperatures are determined of graphite brazing with nickel, iron, and molybdenum interlayers, which sharply increase the strength of the brazed joint as a result of the formation of a vapour-gas phase and deposition of fine-crystal carbon

  4. Experience with graphite in JET

    International Nuclear Information System (INIS)

    Pick, M.A.; Celentano, G.; Deksnis, E.; Dietz, K.J.; Shaw, R.; Sonnenberg, K.; Walravens, M.

    1987-01-01

    During the current operational period of JET more than 50% of the internal area of the machine is covered in graphite tiles. This includes the 15 m 2 of carbon tiles installed in the new toroidal limiter, the 40 poloidal belts of graphite tiles covering the U-joints and bellows as well as a two metre high ring (-- 20 m 2 ) or carbon tiles on the inner wall of the Torus. A ring of tiles in the equatorial plane (3 tiles high) consists of carbon-carbon fibre tiles. Test bed results indicated that the fine grained graphite tiles cracked at ∼ 1 kW/cm 2 for 2s of irradiation whereas the carbon-carbon fibre tiles were able to sustain a flux, limited by the irradiation facility, of 3.5 kW for 3s without any damage. The authors report on the generally positive experience they have had had with the installed graphite during the present and previous in-vessel configurations. This includes the physical integrity of the tiles under severe conditions such as high energy run-away electron beams, plasma disruptions and high heat fluxes. They report on the importance of the precise positioning of the inner wall and x-point tiles at the very high power fluxes of JET and the effect of deviations on both graphite and carbon-fibre tiles

  5. Porous (Swiss-Cheese Graphite

    Directory of Open Access Journals (Sweden)

    Joseph P. Abrahamson

    2018-05-01

    Full Text Available Porous graphite was prepared without the use of template by rapidly heating the carbonization products from mixtures of anthracene, fluorene, and pyrene with a CO2 laser. Rapid CO2 laser heating at a rate of 1.8 × 106 °C/s vaporizes out the fluorene-pyrene derived pitch while annealing the anthracene coke. The resulting structure is that of graphite with 100 nm spherical pores. The graphitizablity of the porous material is the same as pure anthracene coke. Transmission electron microscopy revealed that the interfaces between graphitic layers and the pore walls are unimpeded. Traditional furnace annealing does not result in the porous structure as the heating rates are too slow to vaporize out the pitch, thereby illustrating the advantage of fast thermal processing. The resultant porous graphite was prelithiated and used as an anode in lithium ion capacitors. The porous graphite when lithiated had a specific capacity of 200 mAh/g at 100 mA/g. The assembled lithium ion capacitor demonstrated an energy density as high as 75 Wh/kg when cycled between 2.2 V and 4.2 V.

  6. CREATION OF OPTIMIZATION MODEL OF STEAM BOILER RECUPERATIVE AIR HEATER

    Directory of Open Access Journals (Sweden)

    N. B. Carnickiy

    2006-01-01

    Full Text Available The paper proposes to use a mathematical modeling as one of the ways intended to improve quality of recuperative air heater design (RAH without significant additional costs, connected with the change of design materials or fuel type. The described conceptual mathematical AHP optimization model of RAH consists of optimized and constant parameters, technical limitations and optimality criteria.The paper considers a methodology for search of design and regime parameters of an air heater which is based on the methods of multi-criteria optimization. Conclusions for expediency of the given approach usage are made in the paper.

  7. Heater-Integrated Cantilevers for Nano-Samples Thermogravimetric Analysis

    Directory of Open Access Journals (Sweden)

    Valeria Toffoli

    2013-12-01

    Full Text Available The design and characteristics of a micro-system for thermogravimetric analysis (TGA in which heater, temperature sensor and mass sensor are integrated into a single device are presented. The system consists of a suspended cantilever that incorporates a microfabricated resistor, used as both heater and thermometer. A three-dimensional finite element analysis was used to define the structure parameters. TGA sensors were fabricated by standard microlithographic techniques and tested using milli-Q water and polyurethane microcapsule. The results demonstrated that our approach provides a faster and more sensitive TGA with respect to commercial systems.

  8. Performance of Thermosyphon Solar Water Heaters in Series

    Directory of Open Access Journals (Sweden)

    Tsong-Sheng Lee

    2012-08-01

    Full Text Available More than a single thermosyphon solar water heater may be employed in applications when considerable hot water consumption is required. In this experimental investigation, eight typical Taiwanese solar water heaters were connected in series. Degree of temperature stratification and thermosyphon flow rate in a horizontal tank were evaluated. The system was tested under no-load, intermittent and continuous load conditions. Results showed that there was stratification in tanks under the no-load condition. Temperature stratification also redeveloped after the draw-off. Analysis of thermal performance of the system was conducted for each condition.

  9. Quench Heater Experiments on the LHC Main Superconducting Magnets

    OpenAIRE

    Rodríguez-Mateos, F; Pugnat, P; Sanfilippo, S; Schmidt, R; Siemko, A; Sonnemann, F

    2000-01-01

    In case of a quench in one of the main dipoles and quadrupoles of CERN's Large Hadron Collider (LHC), the magnet has to be protected against excessive temperatures and high voltages. In order to uniformly distribute the stored magnetic energy in the coils, heater strips installed in the magnet are fired after quench detection. Tests of different quench heater configurations were performed on various 1 m long model and 15 m long prototype dipole magnets, as well as on a 3 m long prototype quad...

  10. Heater induced quenches in SSC [Superconducting Super Collider] model dipoles

    International Nuclear Information System (INIS)

    Hassenzahl, W.V.

    1986-10-01

    A 1-m long SSC dipole constructed at the Lawrence Berkeley laboratory was subjected to a series of heater induced quenches to determine: axial quench propagation velocities, transverse quench propagation, and conductor temperature rise. Quenches were produced by 3 heaters at different locations in the magnet and at several currents. The results of these studies are described and are compared to previously published theoretical studies of quenches on the SSC dipoles. These results are shown to be in agreement with the calculations of the program ''QUENCH'', which includes an increase of the quench velocity during the first few milliseconds of the quench

  11. Exposure of Ontario workers to radiofrequency fields from dielectric heaters

    International Nuclear Information System (INIS)

    Bitran, M.E.; Nishio, J.M.; Charron, D.E.

    1992-01-01

    As part of a program to assess and reduce the exposure of Ontario workers to non-ionizing radiations, stray electric and magnetic fields from 383 dielectric heaters were measured in 71 industrial establishments from 1988 to 1990. This represents a population of over 800 workers potentially exposed to radiofrequency (RE) electromagnetic fields. Electric and magnetic field strengths at the head, waist, and thigh levels of the operators, corrected by duty cycle, are presented for the different heater types surveyed. Worker exposure data and compliance with Ontario radiofrequency exposure guidelines are discussed. (author)

  12. Heater-Integrated Cantilevers for Nano-Samples Thermogravimetric Analysis

    Science.gov (United States)

    Toffoli, Valeria; Carrato, Sergio; Lee, Dongkyu; Jeon, Sangmin; Lazzarino, Marco

    2013-01-01

    The design and characteristics of a micro-system for thermogravimetric analysis (TGA) in which heater, temperature sensor and mass sensor are integrated into a single device are presented. The system consists of a suspended cantilever that incorporates a microfabricated resistor, used as both heater and thermometer. A three-dimensional finite element analysis was used to define the structure parameters. TGA sensors were fabricated by standard microlithographic techniques and tested using milli-Q water and polyurethane microcapsule. The results demonstrated that our approach provides a faster and more sensitive TGA with respect to commercial systems.

  13. Intercalated Graphite Fiber Conductor.

    Science.gov (United States)

    1980-12-01

    melting solders, used as electrical contacts as well as sealants for the glass containers described earlier, and high temperature gold varnish , used on...corrosion resistant to fluorine containing chemicals. Since the moisture permeability of the TFE is much less than that of the FEP, attempts were made to

  14. Graphite-ceramic rf Faraday-thermal shield and plasma limiter

    Science.gov (United States)

    Hwang, D.L.Q.; Hosea, J.C.

    1983-05-05

    The present invention is directed to a brazing procedure for joining a ceramic or glass material (e.g., Al/sub 2/O/sub 3/ or Macor) to graphite. In particular, the present invention is directed to a novel brazing procedure for the production of a brazed ceramic graphite product useful as a Faraday shield. The brazed ceramic graphite Faraday shield of the present invention may be used in Magnetic Fusion Devices (e.g., Princeton Large Torus Tokamak) or other high temperature resistant apparatus.

  15. Direct reform of graphite oxide electrodes by using ambient plasma for supercapacitor applications

    Science.gov (United States)

    Kim, Ho Jun; Jeong, Hae Kyung

    2017-10-01

    Ambient plasma is applied to graphite oxide electrodes directly to improve electrochemical properties for supercapacitor applications. Surface morphology of the electrodes after the plasma treatment changes dramatically and amount of oxygen reduced significantly, demonstrating a reduction effect on the graphite oxide electrode by the ambient plasma. Equivalent series resistance of the electrode also reduced from 108 Ω to 84 Ω after the plasma treatment. Corresponding specific capacitance, therefore, increases from 0.45 F cm-2 to 0.85 F cm-2, proving that the ambient plasma treatment is very efficient, clean, economic, and environment-friendly method to reform the graphite oxide electrodes directly for the supercapacitor applications.

  16. Properties of screen-printed modified graphite layers

    Directory of Open Access Journals (Sweden)

    J. Walter

    2010-07-01

    Full Text Available During last years protection of the environment is one of the important problems that should be solved by modern technology. Theimportant problems are toxic gases emitted by conventional power plants. One of the methods that contribute to decreasing air pollution is manufacturing of cheap solar energy devices that could be applied in households. Among different type of fabrication technology of solar cells, DSSC technology looks like one of the interesting because it is relatively simple and low cost technology. Nowadays a lot of researcher groups making investigations to improve its setup, to get the cost reduction. The methods to achieve this goal were proposed in ISE (Germany as a concept of monolithic dye sensitised solar cell. One of the ideas of this solar cells setup is replacing expensive TCO electrode by much cheaper graphite electrode. Replacing TCO glass by graphite layer has to be done only in case of comparable properties of those both electrodes. There are some tested ideas of manufacturing that electrode and some of them are successfully applied. Presented work has been focused on preparation graphite conductive electrode for DSSC technology application, fabricated by screen–printing technique. Investigations concern new graphite past composition suitable for graphite layer preparation. It was been found that applying additive of titanium organic compound (Tyzor GBA to the past composition result in good properties, characterised by low resistance and good adhesion between graphite particles in the printed layer. Some tested layers prepared from proposed paste compositions characterised by better conductivity then applied in conventional DSSC cells counter electrode. The optimal addition of the modifier has not fixed yet.Among tested pastes the most promising results has been achieved for paste contained the biggest amount of Tyzor GBA.

  17. Thermal Pyrolytic Graphite Enhanced Components

    Science.gov (United States)

    Hardesty, Robert E. (Inventor)

    2015-01-01

    A thermally conductive composite material, a thermal transfer device made of the material, and a method for making the material are disclosed. Apertures or depressions are formed in aluminum or aluminum alloy. Plugs are formed of thermal pyrolytic graphite. An amount of silicon sufficient for liquid interface diffusion bonding is applied, for example by vapor deposition or use of aluminum silicon alloy foil. The plugs are inserted in the apertures or depressions. Bonding energy is applied, for example by applying pressure and heat using a hot isostatic press. The thermal pyrolytic graphite, aluminum or aluminum alloy and silicon form a eutectic alloy. As a result, the plugs are bonded into the apertures or depressions. The composite material can be machined to produce finished devices such as the thermal transfer device. Thermally conductive planes of the thermal pyrolytic graphite plugs may be aligned in parallel to present a thermal conduction path.

  18. Friction anisotropy in boronated graphite

    International Nuclear Information System (INIS)

    Kumar, N.; Radhika, R.; Kozakov, A.T.; Pandian, R.; Chakravarty, S.; Ravindran, T.R.; Dash, S.; Tyagi, A.K.

    2015-01-01

    Graphical abstract: - Highlights: • Friction anisotropy in boronated graphite is observed in macroscopic sliding condition. • Low friction coefficient is observed in basal plane and becomes high in prismatic direction. • 3D phase of boronated graphite transformed into 2D structure after friction test. • Chemical activity is high in prismatic plane forming strong bonds between the sliding interfaces. - Abstract: Anisotropic friction behavior in macroscopic scale was observed in boronated graphite. Depending upon sliding speed and normal loads, this value was found to be in the range 0.1–0.35 in the direction of basal plane and becomes high 0.2–0.8 in prismatic face. Grazing-incidence X-ray diffraction analysis shows prominent reflection of (0 0 2) plane at basal and prismatic directions of boronated graphite. However, in both the wear tracks (1 1 0) plane become prominent and this transformation is induced by frictional energy. The structural transformation in wear tracks is supported by micro-Raman analysis which revealed that 3D phase of boronated graphite converted into a disordered 2D lattice structure. Thus, the structural aspect of disorder is similar in both the wear tracks and graphite transfer layers. Therefore, the crystallographic aspect is not adequate to explain anisotropic friction behavior. Results of X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy shows weak signature of oxygen complexes and functional groups in wear track of basal plane while these species dominate in prismatic direction. Abundance of these functional groups in prismatic plane indicates availability of chemically active sites tends to forming strong bonds between the sliding interfaces which eventually increases friction coefficient

  19. Friction anisotropy in boronated graphite

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, N., E-mail: niranjan@igcar.gov.in [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam (India); Radhika, R. [Crystal Growth Centre, Anna University, Chennai (India); Kozakov, A.T. [Research Institute of Physics, Southern Federal University, Rostov-on-Don (Russian Federation); Pandian, R. [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam (India); Chakravarty, S. [UGC-DAE CSR, Kalpakkam (India); Ravindran, T.R.; Dash, S.; Tyagi, A.K. [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam (India)

    2015-01-01

    Graphical abstract: - Highlights: • Friction anisotropy in boronated graphite is observed in macroscopic sliding condition. • Low friction coefficient is observed in basal plane and becomes high in prismatic direction. • 3D phase of boronated graphite transformed into 2D structure after friction test. • Chemical activity is high in prismatic plane forming strong bonds between the sliding interfaces. - Abstract: Anisotropic friction behavior in macroscopic scale was observed in boronated graphite. Depending upon sliding speed and normal loads, this value was found to be in the range 0.1–0.35 in the direction of basal plane and becomes high 0.2–0.8 in prismatic face. Grazing-incidence X-ray diffraction analysis shows prominent reflection of (0 0 2) plane at basal and prismatic directions of boronated graphite. However, in both the wear tracks (1 1 0) plane become prominent and this transformation is induced by frictional energy. The structural transformation in wear tracks is supported by micro-Raman analysis which revealed that 3D phase of boronated graphite converted into a disordered 2D lattice structure. Thus, the structural aspect of disorder is similar in both the wear tracks and graphite transfer layers. Therefore, the crystallographic aspect is not adequate to explain anisotropic friction behavior. Results of X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy shows weak signature of oxygen complexes and functional groups in wear track of basal plane while these species dominate in prismatic direction. Abundance of these functional groups in prismatic plane indicates availability of chemically active sites tends to forming strong bonds between the sliding interfaces which eventually increases friction coefficient.

  20. Microstructural characteristics, mechanical and wear behaviour of aluminium matrix hybrid composites reinforced with alumina, rice husk ash and graphite

    Directory of Open Access Journals (Sweden)

    Kenneth Kanayo Alaneme

    2015-09-01

    Full Text Available The microstructural characteristics, mechanical and wear behaviour of Aluminium matrix hybrid composites reinforced with alumina, rice husk ash (RHA and graphite were investigated. Alumina, RHA and graphite mixed in varied weight ratios were utilized to prepare 10 wt% hybrid reinforced Al-Mg-Si alloy based composites using two-step stir casting. Hardness, tensile properties, scanning electron microscopy, and wear tests were used to characterize the composites produced. The results show that Hardness decreases with increase in the weight ratio of RHA and graphite in the composites; and with RHA content greater than 50%, the effect of graphite on the hardness becomes less significant. The tensile strength for the composites containing o.5wt% graphite and up to 50% RHA was observed to be higher than that of the composites without graphite. The toughness values for the composites containing 0.5wt% graphite were in all cases higher than that of the composites without graphite. The % Elongation for all composites produced was within the range of 10–13% and the values were invariant to the RHA and graphite content. The tensile fracture surface morphology in all the composites produced was identical characterized with the presence of reinforcing particles housed in ductile dimples. The composites without graphite exhibited greater wear susceptibility in comparison to the composite grades containing graphite. However the wear resistance decreased with increase in the graphite content from 0.5 to 1.5 wt%.

  1. Neutron irradiations of polycrystalline graphites at 78 K

    International Nuclear Information System (INIS)

    Bochirol, L.; Bonjour, E.; Pluchery, M.

    1961-01-01

    As studies of resistivity restoration after irradiation by electrons have shown that no noticeable healing of created flaws occurs below 80 K, graphite samples are placed in a pool of boiling liquid nitrogen during irradiation and under a pressure slightly greater than normal pressure. Different values are measured: growth rate of a crystalline parameter, stored energy. The influence of irradiation temperature on damages created by a same dose is discussed [fr

  2. High-Temperature Compatible Nickel Silicide Thermometer And Heater For Catalytic Chemical Microreactors

    DEFF Research Database (Denmark)

    Jensen, Søren; Quaade, U.J.; Hansen, Ole

    2005-01-01

    Integration of heaters and thermometers is important for agile and accurate control and measurement of the thermal reaction conditions in microfabricated chemical reactors (microreactors). This paper describes development and operation of nickel silicide heaters and temperature sensors...... for temperatures exceeding 700 °C. The heaters and thermometers are integrated with chemical microreactors for heterogeneous catalytic conversion of gasses, and thermally activated catalytic conversion of CO to CO2 in the reactors is demonstrated. The heaters and thermometers are shown to be compatible...

  3. Effect of Collector Aspect Ratio on the Thermal Performance of Wavy Finned Absorber Solar Air Heater

    OpenAIRE

    Abhishek Priyam; Prabha Chand

    2016-01-01

    A theoretical investigation on the effect of collector aspect ratio on the thermal performance of wavy finned absorber solar air heaters has been performed. For the constant collector area, the various performance parameters have been calculated for plane and wavy finned solar air heaters. It has been found that the performance of wavy finned solar air heater improved with the increase in the collector aspect ratio. The performance of wavy finned solar air heater has been found 30 percent hig...

  4. Exergy Based Performance Analysis of Double Flow Solar Air Heater with Corrugated Absorber

    OpenAIRE

    S. P. Sharma; Som Nath Saha

    2017-01-01

    This paper presents the performance, based on exergy analysis of double flow solar air heaters with corrugated and flat plate absorber. A mathematical model of double flow solar air heater based on energy balance equations has been presented and the results obtained have been compared with that of a conventional flat-plate solar air heater. The double flow corrugated absorber solar air heater performs thermally better than the flat plate double flow and conventional flat-plate solar air heate...

  5. Experimental Research of a Water-Source Heat Pump Water Heater System

    OpenAIRE

    Zhongchao Zhao; Yanrui Zhang; Haojun Mi; Yimeng Zhou; Yong Zhang

    2018-01-01

    The heat pump water heater (HPWH), as a portion of the eco-friendly technologies using renewable energy, has been applied for years in developed countries. Air-source heat pump water heaters and solar-assisted heat pump water heaters have been widely applied and have become more and more popular because of their comparatively higher energy efficiency and environmental protection. Besides use of the above resources, the heat pump water heater system can also adequately utilize an available wat...

  6. Raman characterization of bulk ferromagnetic nanostructured graphite

    International Nuclear Information System (INIS)

    Pardo, Helena; Divine Khan, Ngwashi; Faccio, Ricardo; Araújo-Moreira, F.M.; Fernández-Werner, Luciana

    2012-01-01

    Raman spectroscopy was used to characterize bulk ferromagnetic graphite samples prepared by controlled oxidation of commercial pristine graphite powder. The G:D band intensity ratio, the shape and position of the 2D band and the presence of a band around 2950 cm -1 showed a high degree of disorder in the modified graphite sample, with a significant presence of exposed edges of graphitic planes as well as a high degree of attached hydrogen atoms.

  7. Fabrication of Graphene by Cleaving Graphite Chemically

    Institute of Scientific and Technical Information of China (English)

    ZHAO Shu-hua; ZHAO Xiao-ting; FAN Hou-gang; YANG Li-li; ZHANG Yong-jun; YANG Jing-hai

    2011-01-01

    Graphite was chemically cleaved to graphene by Billups Reaction,and the morphologies and microstructures of graphene were characterized by SEM,Raman and AFM.The results show that the graphite was first functionalized by l-iodododecane,which led to the cleavage of the graphene layer in the graphite.The second decoration cleaved the graphite further and graphene was obtained.The heights of the graphene layer were larger than 1 nm due to the organic decoration.

  8. Method of Joining Graphite Fibers to a Substrate

    Science.gov (United States)

    Beringer, Durwood M. (Inventor); Caron, Mark E. (Inventor); Taddey, Edmund P. (Inventor); Gleason, Brian P. (Inventor)

    2014-01-01

    A method of assembling a metallic-graphite structure includes forming a wetted graphite subassembly by arranging one or more layers of graphite fiber material including a plurality of graphite fibers and applying a layer of metallization material to ends of the plurality of graphite fibers. At least one metallic substrate is secured to the wetted graphite subassembly via the layer of metallization material.

  9. Design procedure of capsule with multistage heater control (named MUSTAC)

    International Nuclear Information System (INIS)

    Someya, Hiroyuki; Endoh, Yasuichi; Hoshiya, Taiji; Niimi, Motoji; Harayama, Yasuo

    1990-11-01

    A capsule with electric heaters at multistage (named MUSTAC) is a type of capsule used in JMTR. The heaters are assembled in the capsule. Supply electric current to the heaters can be independently adjusted with a control systems that keeps irradiation specimens to constant temperature. The capsule being used, the irradiation specimen are inserted into specimen holders. Gas-gap size, between outer surface of specimen holders and inner surface of capsule casing, is calculated and determined to be flatten temperature of loaded specimens over the region. The rise or drop of specimen temperature in accordance with reactor power fluctuations is corrected within the target temperature of specimen by using the heaters filled into groove at specimen holder surface. The present report attempts to propose a reasonable design procedure of the capsules by means of compiling experience for designs, works and irradiation data of the capsules and to prepare for useful informations against onward capsule design. The key point of the capsule lies on thermal design. Now design thermal calculations are complicated in case of specimen holder with multihole. Resolving these issues, it is considered from new on that an emphasis have to placed on settling a thermal calculation device, for an example, a computer program on calculation specimen temperature. (author)

  10. Embedded cladding surface thermocouples on Zircaloy-sheathed heater rods

    International Nuclear Information System (INIS)

    Wilkins, S.C.

    1977-06-01

    Titanium-sheathed Type K thermocouples embedded in the cladding wall of zircaloy-sheathed heater rods are described. These thermocouples constitute part of a program intended to characterize the uncertainty of measurements made by surface-mounted cladding thermocouples on nuclear fuel rods. Fabrication and installation detail, and laboratory testing of sample thermocouple installations are included

  11. Feedwater heater performance evaluation using the heat exchanger workstation

    International Nuclear Information System (INIS)

    Ranganathan, K.M.; Singh, G.P.; Tsou, J.L.

    1995-01-01

    A Heat Exchanger Workstation (HEW) has been developed to monitor the condition of heat exchanging equipment power plants. HEW enables engineers to analyze thermal performance and failure events for power plant feedwater heaters. The software provides tools for heat balance calculation and performance analysis. It also contains an expert system that enables performance enhancement. The Operation and Maintenance (O ampersand M) reference module on CD-ROM for HEW will be available by the end of 1995. Future developments of HEW would result in Condenser Expert System (CONES) and Balance of Plant Expert System (BOPES). HEW consists of five tightly integrated applications: A Database system for heat exchanger data storage, a Diagrammer system for creating plant heat exchanger schematics and data display, a Performance Analyst system for analyzing and predicting heat exchanger performance, a Performance Advisor expert system for expertise on improving heat exchanger performance and a Water Calculator system for computing properties of steam and water. In this paper an analysis of a feedwater heater which has been off-line is used to demonstrate how HEW can analyze the performance of the feedwater heater train and provide an economic justification for either replacing or repairing the feedwater heater

  12. Solar water heaters in China: A new day dawning

    NARCIS (Netherlands)

    Han, Jingyi; Mol, A.P.J.; Lu, Y.

    2010-01-01

    Solar thermal utilization, especially the application of solar water heater technology, has developed rapidly in China in recent decades. Manufacturing and marketing developments have been especially strong in provinces such as Zhejiang, Shandong and Jiangsu. This paper takes Zhejiang, a relatively

  13. 40 CFR 63.988 - Incinerators, boilers, and process heaters.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 10 2010-07-01 2010-07-01 false Incinerators, boilers, and process... Routing to a Fuel Gas System or a Process § 63.988 Incinerators, boilers, and process heaters. (a) Equipment and operating requirements. (1) Owners or operators using incinerators, boilers, or process...

  14. South Africa. Fertile ground for solar water heaters

    Energy Technology Data Exchange (ETDEWEB)

    Oirere, Shem

    2012-07-01

    The national solar water heating plan, launched by South Africa's state power utility Eskom, seems to be making good progress with the power generator saying at least 215,000 solar water heater (SWH) systems had been installed by February this year. (orig.)

  15. Preheating Water In The Covers Of Solar Water Heaters

    Science.gov (United States)

    Bhandari, Pradeep

    1995-01-01

    Solar water heaters that include glass covers over absorber plates redesigned to increase efficiencies according to proposal. Redesign includes modification of single-layer glass cover into double-layer glass cover and addition of plumbing so cool water to be heated made to flow between layers of cover before entering absorber plate.

  16. NORTH PORTAL - WATER HEATER CALCULATION - CHANGE HOUSE FACILITY No.5008

    International Nuclear Information System (INIS)

    R.B. Blackstone

    1996-01-01

    The purpose of this design analysis and calculation is to determine the demand for hot water in the Change House Facility and the selection of a water heater of appropriate size in accordance with the Uniform Plumbing Code (Section 4.4.1) and U.S. Department of Energy Order 6430.1A-1540 (Section 4.4.2)

  17. 40 CFR 65.149 - Boilers and process heaters.

    Science.gov (United States)

    2010-07-01

    ... stream is not introduced as or with the primary fuel, a temperature monitoring device in the fire box...-throughput transfer racks, as applicable, shall meet the requirements of this section. (2) The vent stream... thermal units per hour) or greater. (ii) A boiler or process heater into which the vent stream is...

  18. Assessment of a Hybrid Retrofit Gas Water Heater

    Energy Technology Data Exchange (ETDEWEB)

    Hoeschele, Marc [Davis Energy Group, Davis, CA (United States); Weitzel, Elizabeth [Davis Energy Group, Davis, CA (United States); Backman, Christine [Davis Energy Group, Davis, CA (United States)

    2017-02-28

    This project completed a modeling evaluation of a hybrid gas water heater that combines a reduced capacity tankless unit with a downsized storage tank. This product would meet a significant market need by providing a higher efficiency gas water heater solution for retrofit applications while maintaining compatibility with the 1/2 inch gas lines and standard B vents found in most homes. The TRNSYS simulation tool was used to model a base case 0.60 EF atmospheric gas storage water, a 0.82 EF non-condensing gas tankless water heater, an existing (high capacity) hybrid unit on the market, and an alternative hybrid unit with lower storage volume and reduced gas input requirements. Simulations were completed under a 'peak day' sizing scenario with 183 gpd hot water loads in a Minnesota winter climate case. Full-year simulations were then completed in three climates (ranging from Phoenix to Minneapolis) for three hot water load scenarios (36, 57, and 96 gpd). Model projections indicate that the alternative hybrid offers an average 4.5% efficiency improvement relative to the 0.60 EF gas storage unit across all scenarios modeled. The alternative hybrid water heater evaluated does show promise, but the current low cost of natural gas across much of the country and the relatively small incremental efficiency improvement poses challenges in initially building a market demand for the product.

  19. Assessment of a Hybrid Retrofit Gas Water Heater

    Energy Technology Data Exchange (ETDEWEB)

    Hoeschele, Marc [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States); Weitzel, Elizabeth [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States); Backman, Christine [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States)

    2017-02-01

    This project completed a modeling evaluation of a hybrid gas water heater that combines a reduced capacity tankless unit with a downsized storage tank. This product would meet a significant market need by providing a higher efficiency gas water heater solution for retrofit applications while maintaining compatibility with the 1/2 inch gas lines and standard B vents found in most homes. The TRNSYS simulation tool was used to model a base case 0.60 EF atmospheric gas storage water, a 0.82 EF non-condensing gas tankless water heater, an existing (high capacity) hybrid unit on the market, and an alternative hybrid unit with lower storage volume and reduced gas input requirements. Simulations were completed under a 'peak day' sizing scenario with 183 gpd hot water loads in a Minnesota winter climate case. Full-year simulations were then completed in three climates (ranging from Phoenix to Minneapolis) for three hot water load scenarios (36, 57, and 96 gpd). Model projections indicate that the alternative hybrid offers an average 4.5% efficiency improvement relative to the 0.60 EF gas storage unit across all scenarios modeled. The alternative hybrid water heater evaluated does show promise, but the current low cost of natural gas across much of the country and the relatively small incremental efficiency improvement poses challenges in initially building a market demand for the product.

  20. Marketing and promoting solar water heaters to home builders

    Energy Technology Data Exchange (ETDEWEB)

    Keller, C.; Ghent, P.

    1999-12-06

    This is the final report of a four-task project to develop a marketing plan designed for businesses interested in marketing solar water heaters in the new home industry. This report outlines suggested marketing communication materials and other promotional tools focused on selling products to the new home builder. Information relevant to promoting products to the new home buyer is also included.

  1. Implementing and Testing the LINTAB, HEATER and PLOTTAB code package

    International Nuclear Information System (INIS)

    Cullen, D.E.; Smith, J.J.

    1987-07-01

    Enclosed is a description of the magnetic tape or floppy diskette containing the LINTAB, HEATER and PLOTTAB code package. In addition detailed information is provided on implementation and testing of these codes. These codes are documented in IAEA-NDS-84. (author)

  2. Fast thermal nanoimprint lithography by a stamp with integrated heater

    DEFF Research Database (Denmark)

    Tormen, Massimo; Malureanu, Radu; Pedersen, Rasmus Haugstrup

    2008-01-01

    We propose fast nanoimprinting lithography (NIL) process based on the use of stamps with integrated heater. The latter consists of heavily ion implantation n-type doped silicon layer buried below the microstructured surface of the stamp. The stamp is heated by Joule effect, by 50 μs 25 Hz...

  3. Photoemission study of K on graphite

    NARCIS (Netherlands)

    Bennich, P.; Puglia, C.; Brühwiler, P.A.; Nilsson, A.; Sandell, A.; Mårtensson, N.; Rudolf, P.

    1999-01-01

    The physical and electronic structure of the dispersed and (2×2) phases of K/graphite have been characterized by valence and core-level photoemission. Charge transfer from K to graphite is found to occur at all coverages, and includes transfer of charge to the second graphite layer. A rigid band

  4. Separation medium containing thermally exfoliated graphite oxide

    Science.gov (United States)

    Prud'homme, Robert K. (Inventor); Aksay, Ilhan A. (Inventor); Herrera-Alonso, Margarita (Inventor)

    2012-01-01

    A separation medium, such as a chromatography filling or packing, containing a modified graphite oxide material, which is a thermally exfoliated graphite oxide with a surface area of from about 300 m.sup.2/g to 2600 m.sup.2/g, wherein the thermally exfoliated graphite oxide has a surface that has been at least partially functionalized.

  5. NMR studies on graphite-methanol system

    International Nuclear Information System (INIS)

    El-Akkad, T.M.

    1977-01-01

    The nuclear magnetic relaxation times for protons of methanol on graphite have been studied. The perpendicular and the transversal magnetization as a function of temperature were measured. The results show that the presence of graphite slowed down the methanol movement compared with that in the pure alcohol, and that the methanol molecules are attached to the graphite surface via methyl groups. (author)

  6. Transparent Electrode Based on Silver Nanowires and Polyimide for Film Heater and Flexible Solar Cell.

    Science.gov (United States)

    He, Xin; Duan, Feng; Liu, Junyan; Lan, Qiuming; Wu, Jianhao; Yang, Chengyan; Yang, Weijia; Zeng, Qingguang; Wang, Huafang

    2017-11-29

    Transparent, conductive, and flexible Ag nanowire (NW)-polyimide (PI) composite films were fabricated by a facile solution method. Well-dispersed Ag NWs result in percolation networks on the PI supporting layer. A series of films with transmittance values of 53-80% and sheet resistances of 2.8-16.5 Ω/sq were investigated. To further verify the practicability of the Ag NWs-PI film in optoelectronic devices, we utilized it in a film heater and a flexible solar cell. The film heater was able to generate a temperature of 58 °C at a driving voltage of 3.5 V within 20 s, indicating its potential application in heating devices that require low power consumption and fast response. The flexible solar cell based on the composite film with a transmittance value of 71% presented a power conversion efficiency of 3.53%. These successful applications proved that the fabricated Ag NWs-PI composite film is a good candidate for application in flexible optoelectronic devices.

  7. 77 FR 74559 - Energy Conservation Program for Consumer Products: Test Procedures for Residential Water Heaters...

    Science.gov (United States)

    2012-12-17

    ... Conservation Program for Consumer Products: Test Procedures for Residential Water Heaters, Direct Heating... Energy (DOE) is amending its test procedures for residential water heaters, direct heating equipment (DHE... necessary for residential water heaters, because the existing test procedures for those products already...

  8. 76 FR 56347 - Energy Conservation Program for Consumer Products: Test Procedures for Residential Water Heaters...

    Science.gov (United States)

    2011-09-13

    ... Conservation Program for Consumer Products: Test Procedures for Residential Water Heaters, Direct Heating... proposed to amend, where appropriate, its test procedures for residential water heaters, direct heating... notes that the test procedure and metric for residential water heaters currently address and incorporate...

  9. Heater improves cold-temperature capacity of silver-cadmium batteries

    Science.gov (United States)

    Webster, W. H., Jr.; Jackson, T. P.

    1975-01-01

    Eight heaters are included in 14-cell package to provide 14-Vdc. Each heater is 11-ohm self-adhesive strip placed across broad face of each pair of cells. They are installed before cells are wired. Heaters are in series and are connected through pair of redundant thermostats.

  10. Recovery Act: Water Heater ZigBee Open Standard Wireless Controller

    Energy Technology Data Exchange (ETDEWEB)

    Butler, William P. [Emerson Electric Co., St. Louis, MO (United States); Buescher, Tom [Emerson Electric Co., St. Louis, MO (United States)

    2014-04-30

    The objective of Emerson's Water Heater ZigBee Open Standard Wireless Controller is to support the DOE's AARA priority for Clean, Secure Energy by designing a water heater control that levels out residential and small business peak electricity demand through thermal energy storage in the water heater tank.

  11. Nuclear plant power up-rate study: feedwater heater evaluations

    International Nuclear Information System (INIS)

    Svensson, Eric; Catapano, Michael; Coakley, Michael; Thomas, Dan

    2014-01-01

    Given today's nuclear industry business climate, it has become common for Utility companies to consider increasing unit capacities through turbine replacement and power up-rates. An integral part of the studies conducted by many towards this end, involve the generation of a set of turbine cycle heat balances with predicted performance parameters for the up-rated condition. Once these tentative operating values are established, it becomes necessary to evaluate the suitability of the existing components within each system to ensure they are capable of continued safe and reliable operation. The ultimate cost for the up-rate, including the cost for any major required modifications or significant replacements is weighed against increased revenue generated from the up-rate over time. Exelon's Peach Bottom Atomic Power Station (PBAPS) is currently planning for an Extended Power up-rate (EPU) for both units. To ensure the existing Feedwater Heaters (FWH) could maintain the operating and transient response margins at the EPU condition, an engineering study was conducted. Powerfect Inc. in conjunction with SPX Heat Transfer LLC were contracted to provide engineering services to analyze the design, thermal performance, reliability and operating conditions at projected EPU conditions. Specifically, to address the following with regard to the station's Feedwater Heaters (FWHs): 1. Evaluate Drain Cooler (DC) Velocities - including zone inlet velocity, cross and window velocities and outlet velocities. 2. Evaluate Drain Cooler Zone Pressure Drop for effect on drain cooler margins to flashing. 3. Evaluate differential pressure allowable across the pass partition plate. 4. Evaluate Drain Cooler Tube Vibration Potential. 5. Perform detailed steam dome velocity calculations. The goal of the study was to identify the most susceptible areas within the heaters for problems and potential failures when operating at the higher duty of the EPU condition for the remaining life

  12. Evaluation of the Demand Response Performance of Electric Water Heaters

    Energy Technology Data Exchange (ETDEWEB)

    Mayhorn, Ebony T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Widder, Sarah H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Parker, Steven A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Pratt, Richard M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Chassin, Forrest S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-03-17

    The purpose of this project is to verify or refute many of the concerns raised by utilities regarding the ability of large tank HPWHs to perform DR by measuring the performance of HPWHs compared to ERWHs in providing DR services. perform DR by measuring the performance of HPWHs compared to ERWHs in providing DR services. This project was divided into three phases. Phase 1 consisted of week-long laboratory experiments designed to demonstrate technical feasibility of individual large-tank HPWHs in providing DR services compared to large-tank ERWHs. In Phase 2, the individual behaviors of the water heaters were then extrapolated to a population by first calibrating readily available water heater models developed in GridLAB-D simulation software to experimental results obtained in Phase 1. These models were used to simulate a population of water heaters and generate annual load profiles to assess the impacts on system-level power and residential load curves. Such population modeling allows for the inherent and permanent load reduction accomplished by the more efficient HPWHs to be considered, in addition to the temporal DR services the water heater can provide by switching ON or OFF as needed by utilities. The economic and emissions impacts of using large-tank water heaters in DR programs are then analyzed from the utility and consumer perspective, based on National Impacts Analysis in Phase 3. Phase 1 is discussed in this report. Details on Phases 2 and 3 can be found in the companion report (Cooke et al. 2014).

  13. Superconductivity in graphite intercalation compounds

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Robert P. [Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 0HE (United Kingdom); Weller, Thomas E.; Howard, Christopher A. [Department of Physics & Astronomy, University College of London, Gower Street, London WCIE 6BT (United Kingdom); Dean, Mark P.M. [Department of Condensed Matter Physics and Materials Science, Brookhaven National Laboratory, Upton, NY 11973 (United States); Rahnejat, Kaveh C. [Department of Physics & Astronomy, University College of London, Gower Street, London WCIE 6BT (United Kingdom); Saxena, Siddharth S. [Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 0HE (United Kingdom); Ellerby, Mark, E-mail: mark.ellerby@ucl.ac.uk [Department of Physics & Astronomy, University College of London, Gower Street, London WCIE 6BT (United Kingdom)

    2015-07-15

    Highlights: • Historical background of graphite intercalates. • Superconductivity in graphite intercalates and its place in the field of superconductivity. • Recent developments. • Relevant modeling of superconductivity in graphite intercalates. • Interpretations that pertain and questions that remain. - Abstract: The field of superconductivity in the class of materials known as graphite intercalation compounds has a history dating back to the 1960s (Dresselhaus and Dresselhaus, 1981; Enoki et al., 2003). This paper recontextualizes the field in light of the discovery of superconductivity in CaC{sub 6} and YbC{sub 6} in 2005. In what follows, we outline the crystal structure and electronic structure of these and related compounds. We go on to experiments addressing the superconducting energy gap, lattice dynamics, pressure dependence, and how these relate to theoretical studies. The bulk of the evidence strongly supports a BCS superconducting state. However, important questions remain regarding which electronic states and phonon modes are most important for superconductivity, and whether current theoretical techniques can fully describe the dependence of the superconducting transition temperature on pressure and chemical composition.

  14. Superconductivity in graphite intercalation compounds

    International Nuclear Information System (INIS)

    Smith, Robert P.; Weller, Thomas E.; Howard, Christopher A.; Dean, Mark P.M.; Rahnejat, Kaveh C.; Saxena, Siddharth S.; Ellerby, Mark

    2015-01-01

    Highlights: • Historical background of graphite intercalates. • Superconductivity in graphite intercalates and its place in the field of superconductivity. • Recent developments. • Relevant modeling of superconductivity in graphite intercalates. • Interpretations that pertain and questions that remain. - Abstract: The field of superconductivity in the class of materials known as graphite intercalation compounds has a history dating back to the 1960s (Dresselhaus and Dresselhaus, 1981; Enoki et al., 2003). This paper recontextualizes the field in light of the discovery of superconductivity in CaC 6 and YbC 6 in 2005. In what follows, we outline the crystal structure and electronic structure of these and related compounds. We go on to experiments addressing the superconducting energy gap, lattice dynamics, pressure dependence, and how these relate to theoretical studies. The bulk of the evidence strongly supports a BCS superconducting state. However, important questions remain regarding which electronic states and phonon modes are most important for superconductivity, and whether current theoretical techniques can fully describe the dependence of the superconducting transition temperature on pressure and chemical composition

  15. Graphite oral tattoo: case report.

    Science.gov (United States)

    Moraes, Renata Mendonça; Gouvêa Lima, Gabriela de Morais; Guilhermino, Marinaldo; Vieira, Mayana Soares; Carvalho, Yasmin Rodarte; Anbinder, Ana Lia

    2015-10-16

    Pigmented oral lesions compose a large number of pathological entities, including exogenous pigmentat oral tattoos, such as amalgam and graphite tattoos. We report a rare case of a graphite tattoo on the palate of a 62-year-old patient with a history of pencil injury, compare it with amalgam tattoos, and determine the prevalence of oral tattoos in our Oral Pathology Service. We also compare the clinical and histological findings of grafite and amalgam tattoos. Oral tattoos affect women more frequently in the region of the alveolar ridge. Graphite tattoos occur in younger patients when compared with the amalgam type. Histologically, amalgam lesions represent impregnation of the reticular fibers of vessels and nerves with silver, whereas in cases of graphite tattoos, this impregnation is not observed, but it is common to observe a granulomatous inflammatory response, less evident in cases of amalgam tattoos. Both types of lesions require no treatment, but in some cases a biopsy may be done to rule out melanocytic lesions.

  16. 'In situ' expanded graphite extinguishant

    International Nuclear Information System (INIS)

    Cao Qixin; Shou Yuemei; He Bangrong

    1987-01-01

    This report is concerning the development of the extinguishant for sodium fire and the investigation of its extinguishing property. The experiment result shows that 'in situ' expanded graphite developed by the authors is a kind of extinguishant which extinguishes sodium fire quickly and effectively and has no environment pollution during use and the amount of usage is little

  17. Graphite stack corrosion of BUGEY-1 reactor (synthesis)

    International Nuclear Information System (INIS)

    Petit, A.; Brie, M.

    1996-01-01

    The definitive shutdown date for the BUGEY-1 reactor was May 27th, 1994, after 12.18 full power equivalent years and this document briefly describes some of the feedback of experience from operation of this reactor. The radiolytic corrosion of graphite stack is the major problem for BUGEY-1 reactor, despite the inhibition of the reaction by small quantities of CH 4 added to the coolant gas. The mechanical behaviour of the pile is predicted using the ''INCA'' code (stress calculation), which uses the results of graphite weight loss variation determined using the ''USURE'' code. The weight loss of graphite is determined by annually taking core samples from the channel walls. The results of the last test programme undertaken after the definitive shutdown of BUGEY-1 have enabled an experimental graph to be established showing the evolution of the compression resistance (perpendicular and parallel direction to the extrusion axis) as a function of the weight loss. The numerous analyses, made on the samples carried out in the most sensitive regions, have allowed to verify that no brutal degradation of the mechanical properties of graphite happens for the high value of weight loss up to 40% (maximum weight loss reached locally). (author). 10 refs, 3 figs, 4 tabs

  18. Characterisation of Chlorine Behavior in French Graphite

    International Nuclear Information System (INIS)

    Blondel, A.; Moncoffre, N.; Toulhoat, N.; Bererd, N.; Petit, L.; Laurent, G.; Lamouroux, C.

    2016-01-01

    Chlorine 36 is one of the main radionuclides of concern for French graphite waste disposal. In order to help the understanding of its leaching behaviour under disposal conditions, the respective impact of temperature, irradiation and gas radiolysis on chlorine release in reactor has been studied. Chlorine 36 has been simulated through chlorine 37 ion implantation in virgin nuclear graphite samples. Results show that part of chlorine is highly mobile in graphite in the range of French reactors operating temperatures in relation with graphite structural recovering. Ballistic damage generated by irradiation also promotes chlorine release whereas no clear impact of the coolant gas radiolysis was observed in the absence of graphite radiolytic corrosion. (author)

  19. Some aspects of nuclear graphite production in France; Etude generale sur les graphites nucleaires produits en France

    Energy Technology Data Exchange (ETDEWEB)

    Gueron, J; Hering, H [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires; Legendre, A [Pechiney, 75 - Paris (France)

    1958-07-01

    1) Manufacturing: A summary and results on the CEA-Pechiney purification process are given. Variations in the preparation of green pastes and their effects on graphitized material are described. 2) Physical and mechanical properties: Results are given on: - Statistics of dimensional variatior products having square cross-section. - Statistical variation of thermal expansion coefficients and of electrical conductivity. - Density of normals to carbon layer planes and their connexion with thermal expansion. - Stress-strain cycles and conclusions drawn therefrom. - Mechanical resistance and gas permeability of items for supporting fuel elements. 3) Behaviour under radiation: Alteration under radiation of French graphites irradiated either in G1 pile or in experimental piles, and thermal annealing of those alterations, are given. (author)Fren. [French] 1) Fabrication: On resume le procede d'epuration CEA-PECHINEY, ainsi que diverses modalites de preparation des pates et on expose les resultats obtenus. 2) Proprietes physiques et mecaniques: On indique le resultat d'etudes sur: - la statistique des dimensions de produits a section carree. - celle des variations des coefficients de dilatation thermique et de la conductibilite electrique. - la densite des normales aux plans graphitiques et leur connexion avec la dilatation thermique. - la compression mecanique du graphite. - la solidite mecanique et la permeabilite aux gaz de pieces destinees a supporter des cartouches de combustible. 3) Tenue sous rayonnement: Modification sous rayonnement des graphites fran is irradies soit dans la pile G1, soit dans des piles experimentales, et guerison thermique de ces modifications. (auteur)

  20. Highly thermal conductivity and infrared emissivity of flexible transparent film heaters utilizing silver-decorated carbon nanomaterials as fillers

    International Nuclear Information System (INIS)

    Li, Yu-An; Chen, Yin-Ju; Tai, Nyan-Hwa

    2014-01-01

    A flexible transparent film heater using functionalized few-walled carbon nanotubes and graphene nanosheets decorated with silver nanoparticles as fillers and poly(3,4-ethylenedioxythiophene)- poly(4-stryrenesulfonate) (PEDOT:PSS) as a dispersant possesses excellent optoelectronic and electrothermal properties. The film possesses a low sheet resistance of 53.0 ± 4.2 ohm · sq −1 , a transmittance of 80.2 ± 0.8% at a wavelength of 550 nm, a high thermal conductivity of 142.0 ± 9.6 W · m −1  · K −1 , a quick response time of less than 60 s, stable heating performance, good reliability, low power consumption, flexibility, and uniform heat diffusion. Besides, the film shows an average infrared emissivity of 0.53 in the wavelength range of 4 to 14 μm, which shows an outstanding heat release performance by radiation. The flexible transparent film heaters adopting graphene and carbon nanotubes as fillers boast excellent electrothermal performance through heat conduction and infrared radiation, suggesting that they are good substitutes for traditional metallic and indium tin oxide film heaters. (papers)

  1. Equations for nickel-chromium wire heaters of column transfer lines in gas chromatographic-electroantennographic detection (GC-EAD).

    Science.gov (United States)

    Byers, John A

    2004-05-30

    Heating of chromatographic columns, transfer lines, and other devices is often required in neuroscience research. For example, volatile compounds passing through a capillary column of a gas chromatograph (GC) can be split, with half exiting the instrument through a heated transfer line to an insect antenna or olfactory sensillum for electroantennographic detector (GC-EAD) recordings. The heated transfer line is used to prevent condensation of various chemicals in the capillary that would otherwise occur at room temperature. Construction of such a transfer line heater is described using (80/20%) nickel-chromium heating wire wrapped in a helical coil and powered by a 120/220 V ac rheostat. Algorithms were developed in a computer program to estimate the voltage at which a rheostat should be set to obtain the desired heater temperature for a specific coil. The coil attributes (radius, width, number of loops, or length of each loop) are input by the user, as well as AWG size of heating wire and desired heater temperature. The program calculates total length of wire in the helix, resistance of the wire, amperage used, and the voltage to set the rheostat. A discussion of semiochemical isolation methods using the GC-EAD and bioassays is presented.

  2. AGC-2 Graphite Preirradiation Data Package

    Energy Technology Data Exchange (ETDEWEB)

    David Swank; Joseph Lord; David Rohrbaugh; William Windes

    2012-10-01

    The NGNP Graphite R&D program is currently establishing the safe operating envelope of graphite core components for a Very High Temperature Reactor (VHTR) design. The program is generating quantitative data necessary for predicting the behavior and operating performance of the new nuclear graphite grades. To determine the in-service behavior of the graphite for pebble bed and prismatic designs, the Advanced Graphite Creep (AGC) experiment is underway. This experiment is examining the properties and behavior of nuclear grade graphite over a large spectrum of temperatures, neutron fluences and compressive loads. Each experiment consists of over 400 graphite specimens that are characterized prior to irradiation and following irradiation. Six experiments are planned with the first, AGC-1, currently being irradiated in the Advanced Test Reactor (ATR) and pre-irradiation characterization of the second, AGC-2, completed. This data package establishes the readiness of 512 specimens for assembly into the AGC-2 capsule.

  3. Laminated exfoliated graphite composite-metal compositions for fuel cell flow field plate or bipolar plate applications

    Science.gov (United States)

    Zhamu, Aruna; Shi, Jinjun; Guo, Jiusheng; Jang, Bor Z

    2014-05-20

    An electrically conductive laminate composition for fuel cell flow field plate or bipolar plate applications. The laminate composition comprises at least a thin metal sheet having two opposed exterior surfaces and a first exfoliated graphite composite sheet bonded to the first of the two exterior surfaces of the metal sheet wherein the exfoliated graphite composite sheet comprises: (a) expanded or exfoliated graphite and (b) a binder or matrix material to bond the expanded graphite for forming a cohered sheet, wherein the binder or matrix material is between 3% and 60% by weight based on the total weight of the first exfoliated graphite composite sheet. Preferably, the first exfoliated graphite composite sheet further comprises particles of non-expandable graphite or carbon in the amount of between 3% and 60% by weight based on the total weight of the non-expandable particles and the expanded graphite. Further preferably, the laminate comprises a second exfoliated graphite composite sheet bonded to the second surface of the metal sheet to form a three-layer laminate. Surface flow channels and other desired geometric features can be built onto the exterior surfaces of the laminate to form a flow field plate or bipolar plate. The resulting laminate has an exceptionally high thickness-direction conductivity and excellent resistance to gas permeation.

  4. On residual gas analysis during high temperature baking of graphite tiles

    International Nuclear Information System (INIS)

    Prakash, A A; Chaudhuri, P; Khirwadkar, S; Reddy, D Chenna; Saxena, Y C; Chauhan, N; Raole, P M

    2008-01-01

    Steady-state Super-conducting Tokamak-1 (SST-1) is a medium size tokamak with major radius of 1.1 m and minor radius of 0.20 m. It is designed for plasma discharge duration of 1000 seconds to obtain fully steady-state plasma operation. Plasma Facing Components (PFC), consisting of divertors, passive stabilizers, baffles and poloidal limiters are also designed to be UHV compatible for steady state operation. All PFC are made up of graphite tiles mechanically attached to the copper alloy substrate. Graphite is one of the preferred first wall armour material in present day tokamaks. High thermal shock resistance and low atomic number of carbon are the most important properties of graphite for this application. High temperature vacuum baking of graphite tiles is the standard process to remove the impurities. Residual Gas Analyzer (RGA) has been used for qualitative and quantitative measurements of released gases from graphite tiles during baking. Surface Analysis of graphite tiles has also been done before and after baking. This paper describes the residual gas analysis during baking and surface analysis of graphite tiles

  5. On residual gas analysis during high temperature baking of graphite tiles

    Energy Technology Data Exchange (ETDEWEB)

    Prakash, A A; Chaudhuri, P; Khirwadkar, S; Reddy, D Chenna; Saxena, Y C [Institute for Plasma Research, Bhat, Gandhinagar - 382 428 (India); Chauhan, N; Raole, P M [Facilitation Center for Industrial Plasma Technologies, IPR, Gandhinagar (India)], E-mail: arun@ipr.res.in

    2008-05-01

    Steady-state Super-conducting Tokamak-1 (SST-1) is a medium size tokamak with major radius of 1.1 m and minor radius of 0.20 m. It is designed for plasma discharge duration of 1000 seconds to obtain fully steady-state plasma operation. Plasma Facing Components (PFC), consisting of divertors, passive stabilizers, baffles and poloidal limiters are also designed to be UHV compatible for steady state operation. All PFC are made up of graphite tiles mechanically attached to the copper alloy substrate. Graphite is one of the preferred first wall armour material in present day tokamaks. High thermal shock resistance and low atomic number of carbon are the most important properties of graphite for this application. High temperature vacuum baking of graphite tiles is the standard process to remove the impurities. Residual Gas Analyzer (RGA) has been used for qualitative and quantitative measurements of released gases from graphite tiles during baking. Surface Analysis of graphite tiles has also been done before and after baking. This paper describes the residual gas analysis during baking and surface analysis of graphite tiles.

  6. Density functional theory investigation of oxygen interaction with boron-doped graphite

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Juan; Wang, Chen [State Key Lab of New Ceramic and Fine Processing, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China); Liang, Tongxiang, E-mail: txliang@tsinghua.edu.cn [State Key Lab of New Ceramic and Fine Processing, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China); Lai, Wensheng [Advanced Material Laboratory, School of Materials Science & Engineering, Tsinghua University, Beijing, 100084 (China)

    2016-12-30

    Highlights: • Density-functional approach is applied to study the interaction of oxygen with boron-doped graphite. • Adsorption and diffusion of oxygen atoms on boron doped graphite surfaces are studied. • Recombination of oxygen is investigated by ER and LH mechanisms. • Low boron concentration facilitates O{sub 2} formation while high boron loading inhibits the recombination. • The presence of B−B bonds due to boron accumulation makes it impossible for oxygen recombination. - Abstract: Boron inserted as impurity by substitution of carbon atoms in graphite is known to change (improve or deteriorate) oxidation resistance of nuclear graphite, but the reason for both catalytic and inhibiting oxidation is still uncertain. As a first step, this work is more specially devoted to the adsorption and diffusion of oxygen atoms on the surface and related to the problem of oxygen retention on the pure and boron-containing graphite surfaces. Adsorption energies and energy barriers associated to the diffusion for molecular oxygen recombination are calculated in the density functional theory framework. The existence of boron modifies the electronic structure of the surface, which results in an increase of the adsorption energy for O. However, low boron loading makes it easier for the recombination into molecular oxygen. For high boron concentration, it induces a better O retention capability in graphite because the presence of B-B bonds decreases recombination of the adsorbed oxygen atoms. A possible explanation for both catalytic and inhibiting effects of boron in graphite is proposed.

  7. Progress in radioactive graphite waste management

    International Nuclear Information System (INIS)

    2010-07-01

    Radioactive graphite constitutes a major waste stream which arises during the decommissioning of certain types of nuclear installations. Worldwide, a total of around 250 000 tonnes of radioactive graphite, comprising graphite moderators and reflectors, will require management solutions in the coming years. 14 C is the radionuclide of greatest concern in nuclear graphite; it arises principally through the interaction of reactor neutrons with nitrogen, which is present in graphite as an impurity or in the reactor coolant or cover gas. 3 H is created by the reactions of neutrons with 6 Li impurities in graphite as well as in fission of the fuel. 36 Cl is generated in the neutron activation of chlorine impurities in graphite. Problems in the radioactive waste management of graphite arise mainly because of the large volumes requiring disposal, the long half-lives of the main radionuclides involved and the specific properties of graphite - such as stored Wigner energy, graphite dust explosibility and the potential for radioactive gases to be released. Various options for the management of radioactive graphite have been studied but a generally accepted approach for its conditioning and disposal does not yet exist. Different solutions may be appropriate in different cases. In most of the countries with radioactive graphite to manage, little progress has been made to date in respect of the disposal of this material. Only in France has there been specific thinking about a dedicated graphite waste-disposal facility (within ANDRA): other major producers of graphite waste (UK and the countries of the former Soviet Union) are either thinking in terms of repository disposal or have no developed plans. A conference entitled 'Solutions for Graphite Waste: a Contribution to the Accelerated Decommissioning of Graphite Moderated Nuclear Reactors' was held at the University of Manchester 21-23 March 2007 in order to stimulate progress in radioactive graphite waste management

  8. CO{sub 2} capture from oil refinery process heaters through oxyfuel combustion

    Energy Technology Data Exchange (ETDEWEB)

    M.B. Wilkinson; J.C. Boden; T. Gilmartin; C. Ward; D.A. Cross; R.J. Allam; N.W.Ivens [BP, Sunbury-on-Thames (United Kingdom)

    2003-07-01

    BP has a programme to develop technologies that could reduce greenhouse gas emissions, by the capture and storage of CO{sub 2} from existing industrial boilers and process heaters. One generic technology under development is oxyfuel combustion, with flue gas recycle. Previous studies, by three of the authors, have concluded that refinery steam boilers could be successfully converted to oxyfuel firing. Fired heaters, however, differ from boilers in several respects and so it was decided to study the feasibility of converting process heaters. Three heaters, located on BP s Grangemouth refinery, were chosen as examples, as they are typical of large numbers of heaters worldwide. In establishing the parameters of the study, it was decided that the heat fluxes to the process tubes should not be increased, compared to conventional air firing. For two of the heaters this was achieved by proposing a slightly higher recycle rate than for the boiler conversion studied earlier - the heater duty would be retained with no changes to the tubes. For the third heater, where the process duty uses only the radiant section, the CO{sub 2} capture cost and the firing rate could be reduced by lowering the recycle rate. Some air in leakage to these heaters was considered inevitable, despite measures to control it, and therefore plant to remove residual inerts from the CO{sub 2} product was designed. Cryogenic oxygen production was selected for two heaters, but for the smallest heater vacuum swing adsorption was more economic. 3 refs., 2 figs., 2 tabs.

  9. Voronoi-Tessellated Graphite Produced by Low-Temperature Catalytic Graphitization from Renewable Resources.

    Science.gov (United States)

    Zhao, Leyi; Zhao, Xiuyun; Burke, Luke T; Bennett, J Craig; Dunlap, Richard A; Obrovac, Mark N

    2017-09-11

    A highly crystalline graphite powder was prepared from the low temperature (800-1000 °C) graphitization of renewable hard carbon precursors using a magnesium catalyst. The resulting graphite particles are composed of Voronoi-tessellated regions comprising irregular sheets; each Voronoi-tessellated region having a small "seed" particle located near their centroid on the surface. This suggests nucleated outward growth of graphitic carbon, which has not been previously observed. Each seed particle consists of a spheroidal graphite shell on the inside of which hexagonal graphite platelets are perpendicularly affixed. This results in a unique high surface area graphite with a high degree of graphitization that is made with renewable feedstocks at temperatures far below that conventionally used for artificial graphites. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Borehole heater test at KAERI Underground Research Tunnel

    International Nuclear Information System (INIS)

    Kwon, S. K.; Cho, W. J.; Jeon, S. W.

    2009-09-01

    At HLW repository, the temperature change due to the decay heat in near field can affect the hydraulic, mechanical, and chemical behaviors and influence on the repository safety. Therefore, the understanding of the thermal behavior in near field is essential for the site selection, design, as well as operation of the repository. In this study, various studies for the in situ heater test, which is for the investigation of the thermo-mechanical behavior in rock mass, were carried out. At first, similar in situ tests at foreign URLs were reviewed and summarized the major conclusions from the tests. After then an adequate design of heater, observation sensors, and data logging system were developed and installed with a consideration of the site condition and test purposes. In order to minimize the effect of hydraulic phenomenon, a relatively day zone was chosen for the in situ test. Joint distribution and characteristics in the zone were surveyed and the rock mass properties were determined with various laboratory tests. In this study, an adequate location for an in situ borehole heater test was chosen. Also a heater for the test was designed and manufactured and the sensors for measuring the rock behavior were installed. It was possible to observe that stiff joints are developed overwhelmingly in the test area from the joint survey at the tunnel wall. The major rock and rock mass properties at the test site could be determined from the thermo-mechanical laboratory tests using the rock cores retrieved from the site. The measured data were implemented in the three-dimensional computer simulation. From the modeling using FLAC3D code, it was possible to find that the heat convection through the tunnel wall can influence on temperature distribution in rock. Because of that it was necessary to installed a blocking wall to minimize the effect of ventilation system on the heater test, which is carrying out nearby the tunnel wall. The in situ borehole heater test is the first

  11. Graphite structure and magnetic parameters of flake graphite cast iron

    Czech Academy of Sciences Publication Activity Database

    Vértesy, G.; Uchimoto, T.; Takagi, T.; Tomáš, Ivan; Kage, H.

    2017-01-01

    Roč. 442, Nov (2017), s. 397-402 ISSN 0304-8853 R&D Projects: GA ČR GB14-36566G Institutional support: RVO:68378271 Keywords : magnetic NDE * magnetic adaptive testing * cast iron * graphite structure * pearlite content Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 2.630, year: 2016

  12. Collector Efficiency in Downward-Type Internal-Recycle Solar Air Heaters with Attached Fins

    Directory of Open Access Journals (Sweden)

    Chii-Dong Ho

    2013-10-01

    Full Text Available The internal-recycle operation effect on collector efficiency in downward-type rectangular solar air heaters with attached fins is theoretically investigated. It is found that considerable collector efficiency is obtainable if the collector has attached fins and the operation is carried out with internal recycling. The recycling operation increases the fluid velocity to decrease the heat transfer resistance, compensating for the undesirable effect of decreasing the heat transfer driving force (temperature difference due to remixing. The attached fins provide an enlarged heat transfer area. The order of performance in a device of same size is: double pass with recycle and fins > double pass with recycle but without fins > single pass without recycle and fins.

  13. Failure investigation of super heater tubes of coal fired power plant

    Directory of Open Access Journals (Sweden)

    A.K. Pramanick

    2017-10-01

    Full Text Available Cause of failure of two adjacent super heater tubes made of Cr-Mo steel of a coal based 60 MW thermal power plant has been portrayed in present investigation. Oxide deposits were found on internal surface of tubes. Deposits created significant resistance to heat transfer and resulted in undesirable rise in component temperature. This situation, in turn, aggravated the condition of gas side that was exposed to high temperature. Localized heating coarsened carbides as well as propelled precipitation of new brittle phases along grain boundary resulting in embrittlement of tube material. Continuous exposure to high temperature softened the tube material and tube wall was thinned down with bulging toward outside. Creep void formation along grain boundary was observed and steered intergranular cracking. All these effects contributed synergistically and tubes were failed ultimately due to overload under high Hoop stress.

  14. Household wood heater usage and indoor leakage of BTEX in Launceston, Australia: A null result

    Science.gov (United States)

    Galbally, Ian E.; Gillett, Robert W.; Powell, Jennifer C.; Lawson, Sarah J.; Bentley, Simon T.; Weeks, Ian A.

    A study has been conducted in Launceston, Australia, to determine within households with wood heaters the effect of leakage from the heater and flue on the indoor air concentrations of the pollutants: benzene, toluene, ethylbenzene and xylene (BTEX). The study involved three classes: 28 households without wood heaters, 19 households with wood heaters compliant with the relevant Australian Standard and 30 households with non-compliant wood heaters. Outdoor and indoor BTEX concentrations were measured in each household for 7 days during summer when there was little or no wood heater usage, and for 7 days during winter when there was widespread wood heater usage. Each participant kept a household activity diary throughout their sampling periods. For wintertime, there were no significant differences of the indoor BTEX concentrations between the three classes of households. Also there were no significant relationships between BTEX indoor concentrations within houses and several measures of the amount of wood heater use within these houses. For the households sampled in this study, the use of a wood heater within a house did not lead to BTEX release within that house and had no direct detectable influence on the concentrations of BTEX within the house. We propose that the pressure differences associated with the both the leakiness or permeability of the building envelope and the draught of the wood heater have key roles in determining whether there will be backflow of smoke from the wood heater into the house. For a leaky house with a well maintained wood heater there should be no backflow of smoke from the wood heater into the house. However backflow of smoke may occur in well sealed houses. The study also found that wood heater emissions raise the outdoor concentrations of BTEX in winter in Launceston and through the mixing of outdoor air through the building envelopes into the houses, these emissions contribute to increases in the indoor concentrations of BTEX in

  15. Suppressing propylene carbonate decomposition by coating graphite electrode foil with silver

    International Nuclear Information System (INIS)

    Gao, J.; Zhang, H.P.; Fu, L.J.; Zhang, T.; Wu, Y.P.; Takamura, T.; Wu, H.Q.; Holze, R.

    2007-01-01

    A method has been developed to suppress the decomposition of propylene carbonate (PC) by coating graphite electrode foil with a layer of silver. Results from electrochemical impedance measurements show that the Ag-coated graphite electrode presents lower charge transfer resistance and faster diffusion of lithium ions in comparison with the virginal one. Cyclic voltammograms and discharge-charge measurements suggest that the decomposition of propylene carbonate and co-intercalation of solvated lithium ions are prevented, and lithium ions can reversibly intercalate into and deintercalate from the Ag-coated graphite electrode. These results indicate that Ag-coating is a good way to improve the electrochemical performance of graphitic carbon in PC-based electrolyte solutions

  16. Modernization of the feedwater heaters control level of the Almaraz I Nuclear Power Plant by OVATION system

    International Nuclear Information System (INIS)

    Madronal Rodriguez, E.; Cabrero Munoz, J. E.

    2010-01-01

    As a result of the process of technological renovation of the heaters system and the power increase project, Almaraz Nuclear Power Plant has made several design changes in the feedwater heaters system. Within these changes, the old heaters control loops are replaced because the new power will increase the heaters drainage caudal. This modernization is carried out using the OVATION control system.

  17. Heater rod temperature change at boiling transition under flow oscillation

    International Nuclear Information System (INIS)

    Kasai, Shigeru; Toba, Akio; Takigawa, Yukio; Ebata, Shigeo; Morooka, Shin-ichi; Shirakawa, Ken-etsu; Utsuno, Hideaki.

    1986-01-01

    The experiments were performed to investigate the boiling transition phenomenon under flow oscillation (OSBT) during thermal hydraulic instability. It was found, from the experimental results, that the thermal hydraulic instability did not immediately lead to the boiling transition (BT) and, even when the BT occurred due to a power increase, the change in the heater rod temperature was periodically up and down with a saw-toothed shape and no excursion occurred. To investigate the temperature change characteristics, an analysis was also performed using the transient thermal hydraulics code. The analytical results showed that the shape of the heater rod temperature change was well simulated by presuming a repeat of alternate BT and rewetting. Based on these results, further analysis has been performed with the lumped parameter model to investigate the temperature profile characteristics as well as the effects of the post-BT heat transfer coefficient and the flow oscillation period on the maximum temperature. (author)

  18. ELF radiation from the Tromsoe super heater facility

    International Nuclear Information System (INIS)

    Barr, R.; Stubbe, P.

    1991-01-01

    Direct comparisons have been made of the ionospheric ELF radiation produced by the new (1 GW ERP) and old (250 MW ERP) antennas of the Tromsoe heater system, but no significant differences in the ELF signal strength have been detected. This initially surprising result is shown to require a value of unity for the index relating the received ELF signal strength to HF power input to the antenna. A series of experiments performed solely to derive more accurate values for this power index provided values ranging from 0.74 to 0.97, dependent on the ELF frequencies generated. It has been suggested that ELF radiation from the normal Tromsoe heater facility should be limited by saturation effects, even when operating well below the maximum HF power density (3mW/m 2 in the D-region). No evidence for such saturation effects has been found even at power densities greater than 10mW/m 2

  19. Manual for investigation and correction of feedwater heater failures

    International Nuclear Information System (INIS)

    Bell, R.J.; Diaz-Tous, I.A.; Bartz, J.A.

    1993-01-01

    The Electric Power Research Institute (EPRI) has sponsored the development of a recently published manual which is designed to assist utility personnel in identifying and correcting closed feedwater heater problems. The main portion of the manual describes common failure modes, probable means of identifying root causes and appropriate corrective actions. These include materials selection, fabrication practices, design, normal/abnormal operation and maintenance. The manual appendices include various data, intended to aid those involved in monitoring and condition assessment of feedwater heaters. This paper contains a detailed overview of the manual content and suggested means for its efficient use by utility engineers and operations and maintenance personnel who are charged with the responsibilities of performing investigations to identify the root cause(s) of closed feedwater problems/failures and to provide appropriate corrective actions. 4 refs., 3 figs., 2 tabs

  20. Experimentation of a Solar Water Heater with Integrated Storage Tank

    International Nuclear Information System (INIS)

    Elhmidi, I; Frikha, N; Chaouchi, B; Gabsi, S

    2009-01-01

    An integrated collector storage (ICS) solar water heater was constructed in 2004 and studied its optical and thermal performance. It was revealed that it has some thermal shortcomings of thermal performances. The ICS system consists of one cylindrical horizontal tank properly mounted in a stationary symmetrical Compound Parabolic Concentrating (CPC) reflector trough. The main objective was to delimit the causes of these deficiencies and trying to diagnose them. A rigorous experimentation of the solar water heater has been done over its daily energetic output as well as the evolution of the nocturnal thermal losses. In fact, three successive days, including nights, of operation have permitted to obtain diagrams describing the variations of mean temperature in the tank and the thermal loss coefficient during night of our installation. The experimental results, compared with those obtained by simulation, showed a perfecting of thermal performances of system which approach from those of other models introduced on the international market

  1. MD#1826: Measurement of Quench Heater vertical kick

    CERN Document Server

    Valette, Matthieu; Lindstrom, Bjorn Hans Filip; Bortot, Lorenzo; Fernandez Navarro, Alejandro; Schmidt, Rudiger; Verweij, Arjan

    2018-01-01

    Following the observation of vertical orbit oscillations of the LHC beam between the detection of a (beam induced) quench of an LHC main dipole and the beam dump, a study was started to verify that the orbit distortions are caused by the firing of the quench heaters (QH). Simulation of the magnetic field generated by the discharge of the QH and its effect on the beam confirmed it was the most likely cause. A dedicated experiment with 450 GeV proton beams was performed to validate the simulation results. The results are presented below and compared to the simulations. Furthermore, estimates on the effect of quench heater firing in superconducting magnets other than the studied LHC main dipoles on the circulating proton beams in LHC and the future HL-LHC are discussed.

  2. Actual performance and economic feasibility of residential solar water heaters

    International Nuclear Information System (INIS)

    Anhalt, J.

    1987-01-01

    Four residential solar water heaters currently available on the Brazilian market have been evaluated to their possible use for substituting the common electric shower head. The tests were carried out with the solar systems mounted side by side on an artificial roof. The hot water demand was simulated following a consumer profile which represents a Brazilian family with an income of seven minimum salaries. The data, which was collected automatically and presented in the form of graphs and tables, shows that an optimized solar water heater could save as much as 65% of the energy demand for residential water heating in the state of Sao Paulo. An economical study concludes that the installation and maintenance of such a solar system is feasible if long term financing is available. (author)

  3. An experimental evaluation of multi-pass solar air heaters

    Energy Technology Data Exchange (ETDEWEB)

    Satcunanathan, S.; Persad, P.

    1980-12-01

    Three collectors of identical dimensions but operating in the single-pass, two-pass and three-pass modes were tested simultaneously under ambient conditions. It was found that the two-pass air heater was consistently better than the single-pass air heater over the day for the range of mass flow rates considered. It was also found that at a mass flow rate of 0.0095 kg s/sup -1/ m/sup -2/, the thermal performances of the two-pass and three-pass collectors were identical, but at higher flow rates the two-pass collector was superior to the three-pass collector, the superiority decreasing with increasing mass flow rate.

  4. Graphite moderated 252Cf source

    International Nuclear Information System (INIS)

    Sajo B, L.; Barros, H.; Greaves, E. D.; Vega C, H. R.

    2014-08-01

    The thorium molten salt reactor is an attractive and affordable nuclear power option for developing countries with insufficient infrastructure and limited technological capability. In the aim of personnel training and experience gathering at the Universidad Simon Bolivar there is in progress a project of developing a subcritical thorium liquid fuel reactor. The neutron source to run this subcritical reactor is a 252 Cf source and the reactor will use high-purity graphite as moderator. Using the MCNP5 code the neutron spectra of the 252 Cf in the center of the graphite moderator has been estimated along the channel where the liquid thorium salt will be inserted; also the ambient dose equivalent due to the source has been determined around the moderator. (Author)

  5. Fission Product Sorptivity in Graphite

    Energy Technology Data Exchange (ETDEWEB)

    Tompson, Jr., Robert V. [Univ. of Missouri, Columbia, MO (United States); Loyalka, Sudarshan [Univ. of Missouri, Columbia, MO (United States); Ghosh, Tushar [Univ. of Missouri, Columbia, MO (United States); Viswanath, Dabir [Univ. of Missouri, Columbia, MO (United States); Walton, Kyle [Univ. of Missouri, Columbia, MO (United States); Haffner, Robert [Univ. of Missouri, Columbia, MO (United States)

    2015-04-01

    Both adsorption and absorption (sorption) of fission product (FP) gases on/into graphite are issues of interest in very high temperature reactors (VHTRs). In the original proposal, we proposed to use packed beds of graphite particles to measure sorption at a variety of temperatures and to use an electrodynamic balance (EDB) to measure sorption onto single graphite particles (a few μm in diameter) at room temperature. The use of packed beds at elevated temperature is not an issue. However, the TPOC requested revision of this initial proposal to included single particle measurements at elevated temperatures up to 1100 °C. To accommodate the desire of NEUP to extend the single particle EDB measurements to elevated temperatures it was necessary to significantly revise the plan and the budget. These revisions were approved. In the EDB method, we levitate a single graphite particle (the size, surface characteristics, morphology, purity, and composition of the particle can be varied) or agglomerate in the balance and measure the sorption of species by observing the changes in mass. This process involves the use of an electron stepping technique to measure the total charge on a particle which, in conjunction with the measured suspension voltages for the particle, allows for determinations of mass and, hence, of mass changes which then correspond to measurements of sorption. Accommodating elevated temperatures with this type of system required a significant system redesign and required additional time that ultimately was not available. These constraints also meant that the grant had to focus on fewer species as a result. Overall, the extension of the original proposed single particle work to elevated temperatures added greatly to the complexity of the proposed project and added greatly to the time that would eventually be required as well. This means that the bulk of the experimental progress was made using the packed bed sorption systems. Only being able to recruit one

  6. Graphite for high-temperature reactors

    International Nuclear Information System (INIS)

    Hammer, W.; Leushacke, D.F.; Nickel, H.; Theymann, W.

    1976-01-01

    The different graphites necessary for HTRs are being developed, produced and tested within the Federal German ''Development Programme Nuclear Graphite''. Up to now, batches of the following graphite grades have been manufactured and fully characterized by the SIGRI Company to demonstrate reproducibility: pitch coke graphite AS2-500 for the hexagonal fuel elements and exchangeable reflector blocks; special pitch coke graphite ASI2-500 for reflector blocks of the pebble-bed reactor and as back-up material for the hexagonal fuel elements; graphite for core support columns. The material data obtained fulfill most of the requirements under present specifications. Production of large-size blocks for the permanent side reflector and the core support blocks is under way. The test programme covers all areas important for characterizing and judging HTR-graphites. In-pile testing comprises evaluation of the material for irradiation-induced changes of dimensions, mechanical and thermal properties - including behaviour under temperature cycling and creep behaviour - as well as irradiating fuel element segments and blocks. Testing out-of-pile includes: evaluation of corrosion rates and influence of corrosion on strength; strength measurements; including failure criteria. The test programme has been carried out extensively on the AS2-graphite, and the results obtained show that this graphite is suitable as HTGR fuel element graphite. (author)

  7. AGC-3 Graphite Preirradiation Data Analysis Report

    Energy Technology Data Exchange (ETDEWEB)

    William Windes; David Swank; David Rohrbaugh; Joseph Lord

    2013-09-01

    This report describes the specimen loading order and documents all pre-irradiation examination material property measurement data for the graphite specimens contained within the third Advanced Graphite Capsule (AGC-3) irradiation capsule. The AGC-3 capsule is third in six planned irradiation capsules comprising the Advanced Graphite Creep (AGC) test series. The AGC test series is used to irradiate graphite specimens allowing quantitative data necessary for predicting the irradiation behavior and operating performance of new nuclear graphite grades to be generated which will ascertain the in-service behavior of the graphite for pebble bed and prismatic Very High Temperature Reactor (VHTR) designs. The general design of AGC-3 test capsule is similar to the AGC-2 test capsule, material property tests were conducted on graphite specimens prior to loading into the AGC-3 irradiation assembly. However the 6 major nuclear graphite grades in AGC-2 were modified; two previous graphite grades (IG-430 and H-451) were eliminated and one was added (Mersen’s 2114 was added). Specimen testing from three graphite grades (PCEA, 2114, and NBG-17) was conducted at Idaho National Laboratory (INL) and specimen testing for two grades (IG-110 and NBG-18) were conducted at Oak Ridge National Laboratory (ORNL) from May 2011 to July 2013. This report also details the specimen loading methodology for the graphite specimens inside the AGC-3 irradiation capsule. The AGC-3 capsule design requires "matched pair" creep specimens that have similar dose levels above and below the neutron flux profile mid-plane to provide similar specimens with and without an applied load. This document utilized the neutron flux profile calculated for the AGC-3 capsule design, the capsule dimensions, and the size (length) of the selected graphite and silicon carbide samples to create a stacking order that can produce "matched pairs" of graphite samples above and below the AGC-3 capsule elevation mid-point to

  8. Optimization algorithms intended for self-tuning feedwater heater model

    International Nuclear Information System (INIS)

    Czop, P; Barszcz, T; Bednarz, J

    2013-01-01

    This work presents a self-tuning feedwater heater model. This work continues the work on first-principle gray-box methodology applied to diagnostics and condition assessment of power plant components. The objective of this work is to review and benchmark the optimization algorithms regarding the time required to achieve the best model fit to operational power plant data. The paper recommends the most effective algorithm to be used in the model adjustment process.

  9. On the low-field Hall coefficient of graphite

    Directory of Open Access Journals (Sweden)

    P. Esquinazi

    2014-11-01

    Full Text Available We have measured the temperature and magnetic field dependence of the Hall coefficient (RH in three, several micrometer long multigraphene samples of thickness between ∼9 to ∼30 nm in the temperature range 0.1 to 200 K and up to 0.2 T field. The temperature dependence of the longitudinal resistance of two of the samples indicates the contribution from embedded interfaces running parallel to the graphene layers. At low enough temperatures and fields RH is positive in all samples, showing a crossover to negative values at high enough fields and/or temperatures in samples with interfaces contribution. The overall results are compatible with the reported superconducting behavior of embedded interfaces in the graphite structure and indicate that the negative low magnetic field Hall coefficient is not intrinsic of the ideal graphite structure.

  10. Analisis Termal High Pressure Feedwater Heater di PLTU PT. XYZ

    Directory of Open Access Journals (Sweden)

    Maria Ulfa Damayanti

    2017-01-01

    Full Text Available Abstrak- PT. XYZ mengoperasikan tiga unit Pembangkit Listrik Tenaga Uap (PLTU unit 3, 7 dan 8 berkapasitas 2.030 MegaWatt. Pada PLTU Paiton unit 7 dan 8 terdapat delapan buah feedwater heater yaitu empat buah Low Pressure Water Heater (LPWH, tiga buah High Pressure Water Heater (HPWH, dan sebuah dearator. Pada PLTU Paiton unit 7 dan 8 terdapat kerusakan pada HPWH 6 yang menyebabkan penurunan efisiensi dari siklus secara keseluruhan. Penurunan efisiensi dapat terjadi karena temperatur feedwater sebelum masuk ke boiler terlalu rendah, sehingga kalor yang dibutuhkan oleh boiler untuk memanaskan feedwater meningkat. Oleh karena itu konsumsi batubara akan meningkat dan menyebabkan terjadi kenaikan biaya operasional harian dalam sistem pembangkit. Dari data Divisi Produksi PT. XYZ Unit 7 dan 8 diperoleh spesifikasi HPWH 6, 7, dan 8 dan propertis fluida dalam HPWH 6, 7, dan 8. Data tersebut digunakan sebagai dasar analisis termal yang meliputi performa masing-masing HPH. Tahap selanjutnya dalam analisis termal adalah memvariasikan beban 25%, 50%, 75%, 100%, dan 105%. Tahap terakhir analisis adalah menghitung performa dengan variasi sumbatan (plug 5%, 10%, 15%, dan 20% sesuai dengan variasi beban. Hasil yang didapatkan dari penelitian tugas akhir ini adalah nilai effectiveness tertinggi tercapai pada pembebanan 100% serta menghasilkan pressure drop tertinggi pada pembebanan 105%, nilai effectiveness terbesar serta nilai pressure drop terkecil terjadi pada zona Condensing, serta sumbatan (plugging pada HPH akan menyebabkan penurunan nilai effectiveness dan kenaikan pressure drop sisi tube.

  11. Conasauga near-surface heater experiment. Final report

    International Nuclear Information System (INIS)

    Krumhansl, J.L.

    1979-11-01

    The Conasauga Experiment was undertaken to begin assessment of the thermomechanical and chemical response of a specific shale to the heat resulting from emplacement of high-level nuclear wastes. Canister-size heaters were implanted in Conasauga shale in Tennessee. Instrumentation arrays wee placed at various depths in drill holes around each heater. The heaters operated for 8 months and, after the first 4 days, were maintained at 385 0 C. Emphasis was on characterizing the thermal and mechanical response of the formation. Conduction was the major mode of heat transport; convection was perceptible only at temperatures above the boiling point of water. Despite dehydration of the shale at higher temperatures, in situ thermal conductivity was essentially constant and not a function of temperature. The mechanical response of the formation was a slight overall expansion, apparently resulting in a general decrease in permeability. Metallurgical observations were made, the stability of a borosilicate glass wasteform simulant was assessed, and changes in formation mineralogy and groundwater composition were documented. In each of these areas, transient nonequilibrium processes occur that affect material stability and may be important in determining the integrity of a repository. In general, data from the test reflect favorably on the use of shale as a disposal medium for nuclear waste

  12. CFD modeling of fouling in crude oil pre-heaters

    International Nuclear Information System (INIS)

    Bayat, Mahmoud; Aminian, Javad; Bazmi, Mansour; Shahhosseini, Shahrokh; Sharifi, Khashayar

    2012-01-01

    Highlights: ► A conceptual CFD-based model to predict fouling in industrial crude oil pre-heaters. ► Tracing fouling formation in the induction and developing continuation periods. ► Effect of chemical components, shell-side HTC and turbulent flow on the fouling rate. - Abstract: In this study, a conceptual procedure based on the computational fluid dynamic (CFD) technique has been developed to predict fouling rate in an industrial crude oil pre-heater. According to the developed CFD concept crude oil was assumed to be composed of three pseudo-components comprising of petroleum, asphaltene and salt. The binary diffusion coefficients were appropriately categorized into five different groups. The species transport model was applied to simulate the mixing and transport of chemical species. The possibility of adherence of reaction products to the wall was taken into account by applying a high viscosity for the products in competition with the shear stress on the wall. Results showed a reasonable agreement between the model predictions and the plant data. The CFD model could be applied to new operating conditions to investigate the details of the crude oil fouling in the industrial pre-heaters.

  13. Electric Water Heater Modeling and Control Strategies for Demand Response

    Energy Technology Data Exchange (ETDEWEB)

    Diao, Ruisheng; Lu, Shuai; Elizondo, Marcelo A.; Mayhorn, Ebony T.; Zhang, Yu; Samaan, Nader A.

    2012-07-22

    Abstract— Demand response (DR) has a great potential to provide balancing services at normal operating conditions and emergency support when a power system is subject to disturbances. Effective control strategies can significantly relieve the balancing burden of conventional generators and reduce investment on generation and transmission expansion. This paper is aimed at modeling electric water heaters (EWH) in households and tests their response to control strategies to implement DR. The open-loop response of EWH to a centralized signal is studied by adjusting temperature settings to provide regulation services; and two types of decentralized controllers are tested to provide frequency support following generator trips. EWH models are included in a simulation platform in DIgSILENT to perform electromechanical simulation, which contains 147 households in a distribution feeder. Simulation results show the dependence of EWH response on water heater usage . These results provide insight suggestions on the need of control strategies to achieve better performance for demand response implementation. Index Terms— Centralized control, decentralized control, demand response, electrical water heater, smart grid

  14. Control and Coordination of Frequency Responsive Residential Water Heaters

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Tess L.; Kalsi, Karanjit; Elizondo, Marcelo A.; Marinovici, Laurentiu D.; Pratt, Richard M.

    2016-07-31

    Demand-side frequency control can complement traditional generator controls to maintain the stability of large electric systems in the face of rising uncertainty and variability associated with renewable energy resources. This paper presents a hierarchical frequency-based load control strategy that uses a supervisor to flexibly adjust control gains that a population of end-use loads respond to in a decentralized manner to help meet the NERC BAL-003-1 frequency response standard at both the area level and interconnection level. The load model is calibrated and used to model populations of frequency-responsive water heaters in a PowerWorld simulation of the U.S. Western Interconnection (WECC). The proposed design is implemented and demonstrated on physical water heaters in a laboratory setting. A significant fraction of the required frequency response in the WECC could be supplied by electric water heaters alone at penetration levels of less than 15%, while contributing to NERC requirements at the interconnection and area levels.

  15. Preliminary results report: Conasauga near-surface heater experiment

    International Nuclear Information System (INIS)

    Krumhansl, J.L.

    1979-06-01

    From November 1977 to August 1978, two near-surface heater experiments were operated in two somewhat different stratigraphic sequences within the Conasauga formation which consist predominantly of shale. Specific phenomena investigated were the thermal and mechanical responses of the formation to an applied heat load, as well as the mineralogical changes induced by heating. Objective was to provide a minimal integrated field and laboratory study that would supply a data base which could be used in planning more expensive and complex vault-type experiments in other localities. The experiments were operated with heater power levels of between 6 and 8 kW for heater mid-plane temperatures of 385 0 C. The temperature fields within the shale were measured and analysis is in progress. Steady state conditions were achieved within 90 days. Conduction appears to be the principal mechanism of heat transport through the formation. Limited mechanical response measurements consisting of vertical displacement and stress data indicate general agreement with predictions. Posttest data, collection of which await experiment shutdown and cooling of the formation, include the mineralogy of posttest cores, posttest transmissivity measurements and corrosion data on metallurgical samples

  16. Results from heater-induced quenches of A 4.5 m Reference Design D dipole for the SSC

    International Nuclear Information System (INIS)

    Ganetis, G.; Prodell, A.

    1986-01-01

    Quench studies were performed using a 4.5 m long Reference Design D, SSC dipole to determine the temperature rise of the magnet conductor during a quench by measuring the resistance of the conductor cable in the immediate vicinity of the quench. The single bore magnet was wound with improved NbTi conductor in a 2-layer cosine θ coil configuration of 4.0 cm inner diameter. Eight pairs of voltage taps were installed at various locations on the right side of the inner coil of the magnet. ''Spot'' heaters were centrally located between the voltage taps of 4 of these pairs on the midplane turn of the inner coil to initiate magnet quenches. A redundant array of voltage taps and heaters was also installed on the left side of the inner coil. The resistance of the conductor was obtained from observations of the current and voltage during a magnet quench. The temperature of the conductor was then determined by comparing its resistance to an R vs T curve appropriate for the conductor. The quantity ∫ I 2 dt and the temperature, T, are presented as a function of current, and the maximum conductor temperature is shown as a function of ∫ I 2 dt. Measured longitudinal and azimuthal quench propagation velocities are also presented as a function of magnet current, and the temperatures at several locations on the inner magnet coil are plotted as a function of the time after a quench was initiated

  17. Environmentally benign graphite intercalation compound composition for exfoliated graphite, flexible graphite, and nano-scaled graphene platelets

    Science.gov (United States)

    Zhamu, Aruna; Jang, Bor Z.

    2014-06-17

    A carboxylic-intercalated graphite compound composition for the production of exfoliated graphite, flexible graphite, or nano-scaled graphene platelets. The composition comprises a layered graphite with interlayer spaces or interstices and a carboxylic acid residing in at least one of the interstices, wherein the composition is prepared by a chemical oxidation reaction which uses a combination of a carboxylic acid and hydrogen peroxide as an intercalate source. Alternatively, the composition may be prepared by an electrochemical reaction, which uses a carboxylic acid as both an electrolyte and an intercalate source. Exfoliation of the invented composition does not release undesirable chemical contaminants into air or drainage.

  18. Pyrolytic graphite gauge for measuring heat flux

    Science.gov (United States)

    Bunker, Robert C. (Inventor); Ewing, Mark E. (Inventor); Shipley, John L. (Inventor)

    2002-01-01

    A gauge for measuring heat flux, especially heat flux encountered in a high temperature environment, is provided. The gauge includes at least one thermocouple and an anisotropic pyrolytic graphite body that covers at least part of, and optionally encases the thermocouple. Heat flux is incident on the anisotropic pyrolytic graphite body by arranging the gauge so that the gauge surface on which convective and radiative fluxes are incident is perpendicular to the basal planes of the pyrolytic graphite. The conductivity of the pyrolytic graphite permits energy, transferred into the pyrolytic graphite body in the form of heat flux on the incident (or facing) surface, to be quickly distributed through the entire pyrolytic graphite body, resulting in small substantially instantaneous temperature gradients. Temperature changes to the body can thereby be measured by the thermocouple, and reduced to quantify the heat flux incident to the body.

  19. Attenuation of thermal neutron through graphite

    International Nuclear Information System (INIS)

    Adib, M.; Ismaail, H.; Fathaallah, M.; Abbas, Y.; Habib, N.; Wahba, M.

    2004-01-01

    Calculation of the nuclear capture, thermal diffuse and Bragg scattering cross-sections as a function of graphite temperature and crystalline from for neutron energies from 1 me V< E<10 eV were carried out. Computer programs have been developed which allow calculation for the graphite hexagonal closed-pack structure in its polycrystalline form and pyrolytic one. I The calculated total cross-section for polycrystalline graphite were compared with the experimental values. An overall agreement is indicated between the calculated values and experimental ones. Agreement was also obtained for neutron cross-section measured for oriented pyrolytic graphite at room and liquid nitrogen temperatures. A feasibility study for use of graphite in powdered form as a cold neutron filter is details. The calculated attenuation of thermal neutrons through large mosaic pyrolytic graphite show that such crystals can be used effectively as second order filter of thermal neutron beams and that cooling improve their effectiveness

  20. Uranium Oxide Aerosol Transport in Porous Graphite

    Energy Technology Data Exchange (ETDEWEB)

    Blanchard, Jeremy; Gerlach, David C.; Scheele, Randall D.; Stewart, Mark L.; Reid, Bruce D.; Gauglitz, Phillip A.; Bagaasen, Larry M.; Brown, Charles C.; Iovin, Cristian; Delegard, Calvin H.; Zelenyuk, Alla; Buck, Edgar C.; Riley, Brian J.; Burns, Carolyn A.

    2012-01-23

    The objective of this paper is to investigate the transport of uranium oxide particles that may be present in carbon dioxide (CO2) gas coolant, into the graphite blocks of gas-cooled, graphite moderated reactors. The transport of uranium oxide in the coolant system, and subsequent deposition of this material in the graphite, of such reactors is of interest because it has the potential to influence the application of the Graphite Isotope Ratio Method (GIRM). The GIRM is a technology that has been developed to validate the declared operation of graphite moderated reactors. GIRM exploits isotopic ratio changes that occur in the impurity elements present in the graphite to infer cumulative exposure and hence the reactor’s lifetime cumulative plutonium production. Reference Gesh, et. al., for a more complete discussion on the GIRM technology.

  1. Dynamics of graphite flake on a liquid

    Science.gov (United States)

    Miura, K.; Tsuda, D.; Kaneta, Y.; Harada, R.; Ishikawa, M.; Sasaki, N.

    2006-11-01

    One-directional motion, where graphite flakes are driven by a nanotip on an octamethylcyclotetrasiloxane (OMCTS) liquid surface, is presented. A transition from quasiperiodic to chaotic motions occurs in the dynamics of a graphite flake when its velocity is increased. The dynamics of graphite flakes pulled by the nanotip on an OMCTS liquid surface can be treated as that of a nanobody on a liquid.

  2. Sealing nuclear graphite with pyrolytic carbon

    International Nuclear Information System (INIS)

    Feng, Shanglei; Xu, Li; Li, Li; Bai, Shuo; Yang, Xinmei; Zhou, Xingtai

    2013-01-01

    Pyrolytic carbon (PyC) coatings were deposited on IG-110 nuclear graphite by thermal decomposition of methane at ∼1830 °C. The PyC coatings are anisotropic and airtight enough to protect IG-110 nuclear graphite against the permeation of molten fluoride salts and the diffusion of gases. The investigations indicate that the sealing nuclear graphite with PyC coating is a promising method for its application in Molten Salt Reactor (MSR)

  3. Nanostructured carbon films with oriented graphitic planes

    International Nuclear Information System (INIS)

    Teo, E. H. T.; Kalish, R.; Kulik, J.; Kauffmann, Y.; Lifshitz, Y.

    2011-01-01

    Nanostructured carbon films with oriented graphitic planes can be deposited by applying energetic carbon bombardment. The present work shows the possibility of structuring graphitic planes perpendicular to the substrate in following two distinct ways: (i) applying sufficiently large carbon energies for deposition at room temperature (E>10 keV), (ii) utilizing much lower energies for deposition at elevated substrate temperatures (T>200 deg. C). High resolution transmission electron microscopy is used to probe the graphitic planes. The alignment achieved at elevated temperatures does not depend on the deposition angle. The data provides insight into the mechanisms leading to the growth of oriented graphitic planes under different conditions.

  4. Production of nuclear graphite in France

    International Nuclear Information System (INIS)

    Legendre, P.; Mondet, L.; Arragon, Ph.; Cornuault, P.; Gueron, J.; Hering, H.

    1955-01-01

    The graphite intended for the construction of the reactors is obtained by the usual process: confection of a cake from coke of oil and tar, cooked (in a electric oven) then the product of cook is graphitized, also by electric heating. The use of the air transportation and the control of conditions cooking and graphitization have permitted to increase the nuclear graphite production as well as to better control their physical and mechanical properties and to reduce to the minimum the unwanted stains. (M.B.) [fr

  5. AC induction field heating of graphite foam

    Science.gov (United States)

    Klett, James W.; Rios, Orlando; Kisner, Roger

    2017-08-22

    A magneto-energy apparatus includes an electromagnetic field source for generating a time-varying electromagnetic field. A graphite foam conductor is disposed within the electromagnetic field. The graphite foam when exposed to the time-varying electromagnetic field conducts an induced electric current, the electric current heating the graphite foam. An energy conversion device utilizes heat energy from the heated graphite foam to perform a heat energy consuming function. A device for heating a fluid and a method of converting energy are also disclosed.

  6. Nuclear graphite for high temperature reactors

    International Nuclear Information System (INIS)

    Marsden, B.J.

    2001-01-01

    The cores and reflectors in modern High Temperature Gas Cooled Reactors (HTRs) are constructed from graphite components. There are two main designs; the Pebble Bed design and the Prism design. In both of these designs the graphite not only acts as a moderator, but is also a major structural component that may provide channels for the fuel and coolant gas, channels for control and safety shut off devices and provide thermal and neutron shielding. In addition, graphite components may act as a heat sink or conduction path during reactor trips and transients. During reactor operation, many of the graphite component physical properties are significantly changed by irradiation. These changes lead to the generation of significant internal shrinkage stresses and thermal shut down stresses that could lead to component failure. In addition, if the graphite is irradiated to a very high irradiation dose, irradiation swelling can lead to a rapid reduction in modulus and strength, making the component friable.The irradiation behaviour of graphite is strongly dependent on its virgin microstructure, which is determined by the manufacturing route. Nevertheless, there are available, irradiation data on many obsolete graphites of known microstructures. There is also a well-developed physical understanding of the process of irradiation damage in graphite. This paper proposes a specification for graphite suitable for modern HTRs. (author)

  7. Structural analysis of polycrystalline (graphitized) materials

    International Nuclear Information System (INIS)

    Efremenko, M.M.; Kravchik, A.E.; Osmakov, A.S.

    1993-01-01

    Specific features of the structure of polycrystal carbon materials (CM), characterized by high enough degree of structural perfection and different genesis are analyzed. From the viewpoint of fine and supercrystallite structure analysis of the most characteristic groups of graphitized CM: artificial graphites, and natural graphites, as well, has been carried out. It is ascertained that in paracrystal CM a monolayer of hexagonally-bound carbon atoms is the basic element of the structure, and in graphitized CM - a microlayer. The importance of the evaluation of the degree of three-dimensional ordering of the microlayer is shown

  8. Principle design and data of graphite components

    International Nuclear Information System (INIS)

    Ishihara, Masahiro; Sumita, Junya; Shibata, Taiju; Iyoku, Tatsuo; Oku, Tatsuo

    2004-01-01

    The High Temperature Engineering Test Reactor (HTTR) constructed by Japan Atomic Energy Research Institute (JAERI) is a graphite-moderated and helium-gas-cooled reactor with prismatic fuel elements of hexagonal blocks. The reactor internal structures of the HTTR are mainly made up of graphite components. As well known, the graphite is a brittle material and there were no available design criteria for brittle materials. Therefore, JAERI had to develop the design criteria taking account of the brittle fracture behavior. In this paper, concept and key specification of the developed graphite design criteria is described, and also an outline of the quality control specified in the design criteria is mentioned

  9. Low temperature vapor phase digestion of graphite

    Energy Technology Data Exchange (ETDEWEB)

    Pierce, Robert A.

    2017-04-18

    A method for digestion and gasification of graphite for removal from an underlying surface is described. The method can be utilized to remove graphite remnants of a formation process from the formed metal piece in a cleaning process. The method can be particularly beneficial in cleaning castings formed with graphite molding materials. The method can utilize vaporous nitric acid (HNO.sub.3) or vaporous HNO.sub.3 with air/oxygen to digest the graphite at conditions that can avoid damage to the underlying surface.

  10. The Fracture Toughness of Nuclear Graphites Grades

    Energy Technology Data Exchange (ETDEWEB)

    Burchell, Timothy D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Erdman, III, Donald L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lowden, Rick R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hunter, James A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hannel, Cara C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-04-01

    New measurements of graphite mode I critical stress intensity factor, KIc (commonly referred to as the fracture toughness) and the mode II critical shear stress intensity, KIIc, are reported and compared with prior data for KIc and KIIc. The new data are for graphite grades PCEA, IG-110 and 2114. Variations of KIc and acoustic emission (AE) data with graphite texture are reported and discussed. The Codes and Standards applications of fracture toughness, KIc, data are also discussed. A specified minimum value for nuclear graphite KIc is recommended.

  11. Electrolysis of acidic sodium chloride solution with a graphite anode. I. Graphite electrode

    NARCIS (Netherlands)

    Janssen, L.J.J.; Hoogland, J.G.

    1969-01-01

    A graphite anode evolving Cl from a chloride soln. is slowly oxidized to CO and CO2. This oxidn. causes a change in the characteristics of the electrode in aging, comprising a change of the nature of the graphite surface and an increase of the surface area. It appears that a new graphite electrode

  12. Study of wear mechanism of chopped fiber reinforced epoxy composite filled with graphite and bronze

    Science.gov (United States)

    Patil, Nitinchand; Prasad, Krishna

    2018-04-01

    The combined effect of graphite and sintered bronze with a short glass fiber reinforced epoxy composites was investigated in this work. A pin on disc wear test was carried out to study the wear behaviour and mechanism of the composites. The objective of this work is to develop an alternate friction resistance material for the application of sliding bearing. It was observed that the addition of sintered bronze improved mechanical and thermal stability of the composites as bronze has low contact resistance with graphite and has high thermal conductivity. It was observed from the test results that increased volume percentage of graphite and presence of bronze are play significant role in wear mechanism of the composites. It was observed from the scanning electronic microscopes (SEM) that the abrasive and adhesive wear mechanism was prominent in this study. It was also evident from the result that the frictional force remains stable irrespective of the applied normal load.

  13. New high-temperature flame-resistant resin matrix for RP/C

    Science.gov (United States)

    Kourtides, D. A.

    1981-01-01

    The processing parameters of graphite composites utilizing graphite fabric and epoxy or other advanced thermoset and thermoplastic resins as matrices are discussed. The evaluated properties include anaerobic char yield, limiting oxygen index, smoke evolution, moisture absorption, and high-temperature mechanical properties. It is shown that graphite composites having the highest char yield exhibit optimum fire-resistant properties.

  14. Performance Study of Solar Air Heater Having Absorber Plate with Half-Perforated Baffles

    OpenAIRE

    Maheshwari, B. K.; Karwa, Rajendra; Gharai, S. K.

    2011-01-01

    The paper presents a detailed mathematical model for performance prediction of a smooth duct solar air heater validated against the experimental results. Experimental study on a solar air heater having absorber plate with half-perforated baffles on the air flow side shows thermal efficiency enhancement of 28%–45% over that of the smooth duct solar air heater, which is attributed to the heat transfer enhancement (of the order of 180%–235%) due to the perforated baffles attached to the absorber...

  15. Hydrogen storage in graphitic nanofibres

    OpenAIRE

    McCaldin, Simon Roger

    2007-01-01

    There is huge need to develop an alternative to hydrocarbons fuel, which does not produce CO2 or contribute to global warming - 'the hydrogen economy' is such an alternative, however the storage of hydrogen is the key technical barrier that must be overcome. The potential of graphitic nanofibres (GNFs) to be used as materials to allow the solid-state storage of hydrogen has thus been investigated. This has been conducted with a view to further developing the understanding of the mechanism(s) ...

  16. Growth of carbon nanotubes in arc plasma treated graphite disc: microstructural characterization and electrical conductivity study

    Science.gov (United States)

    Nayak, B. B.; Sahu, R. K.; Dash, T.; Pradhan, S.

    2018-03-01

    Circular graphite discs were treated in arc plasma by varying arcing time. Analysis of the plasma treated discs by field emission scanning electron microscope revealed globular grain morphologies on the surfaces, but when the same were observed at higher magnification and higher resolution under transmission electron microscope, growth of multiwall carbon nanotubes of around 2 nm diameter was clearly seen. In situ growth of carbon nanotube bundles/bunches consisting of around 0.7 nm tube diameter was marked in the case of 6 min treated disc surface. Both the untreated and the plasma treated graphite discs were characterized by X-ray diffraction, energy dispersive spectra of X-ray, X-ray photoelectron spectroscopy, transmission electron microscopy, micro Raman spectroscopy and BET surface area measurement. From Raman spectra, BET surface area and microstructure observed in transmission electron microscope, growth of several layers of graphene was identified. Four-point probe measurements for electrical resistivity/conductivity of the graphite discs treated under different plasma conditions showed significant increase in conductivity values over that of untreated graphite conductivity value and the best result, i.e., around eightfold increase in conductivity, was observed in the case of 6 min plasma treated sample exhibiting carbon nanotube bundles/bunches grown on disc surface. By comparing the microstructures of the untreated and plasma treated graphite discs, the electrical conductivity increase in graphite disc is attributed to carbon nanotubes (including bundles/bunches) growth on disc surface by plasma treatment.

  17. Performance Study of Graphite Anode Slurry in Lithium-ion Flow Battery by Ball Milling

    Directory of Open Access Journals (Sweden)

    FENG Cai-mei

    2018-02-01

    Full Text Available Graphite anode slurry of lithium-ion flow battery was prepared by the method of ball milling. The morphology, conductivity, specific capacity and cycle performance of graphite anode slurry were studied. Results show that the addition of conductive carbon material can improve the suspension stability of the electrode slurry; the ball milling process can not only improve the suspension stability but also reduce the resistivity of the mixed powders of graphite and conductive carbon materials, the ball milling effect is satisfactory when the mass ratio of the balls and the solid particles is 5:1, but too high ratio of the milling ball and the solid materials can destroy the layer structure of the graphite and affect the stability of the slurry. Increasing the fraction of the graphite and conductive carbon materials can form stable electrical network structure in the slurry and improve the reversible capacity; at the premise of keeping the flowability of the electrode slurry, the reversible specific capacity can be more than 40mAh/g. The capacity loss of graphite anode slurry mainly occurs in the first charging-discharging process, as the increase of the cycles, the capacity loss rate decreases, the capacity goes stable after 5 cycles.

  18. Mixed graphite cast iron for automotive exhaust component applications

    OpenAIRE

    De-lin Li

    2017-01-01

    Both spheroidal graphite iron and compacted graphite iron are used in the automotive industry. A recently proposed mixed graphite iron exhibits a microstructure between the conventional spheroidal graphite iron and compacted graphite iron. Evaluation results clearly indicate the suitability and benefits of mixed graphite iron for exhaust component applications with respect to casting, machining, mechanical, thermophysical, oxidation, and thermal fatigue properties. A new ASTM standard speci...

  19. Nuclear graphite waste management. Proceedings of a technical committee meeting

    International Nuclear Information System (INIS)

    2001-05-01

    The purpose of the seminar was to bring together the specialists dealing with various aspects of radioactive graphite waste management to exchange and review information on the decommissioning, characterisation, processing and disposal of irradiated graphite from reactor cores and other graphite waste associated with reactor operation. The seminar covered radioactive graphite characterisation, the effect of irradiation on graphite components, Wigner energy, radioactive graphite waste treatment, conditioning, interim storage and long term disposal options. Individual papers presented at the seminar were indexed separately

  20. 78 FR 7394 - Notification of Proposed Production Activity; GE Appliances; Subzone 29C (Electric Water Heaters...

    Science.gov (United States)

    2013-02-01

    ..., freezers, apparel washing machines and dryers, electric ranges, and air-conditioners, under FTZ procedures...), fan motors, fans, filter/ dryers, expansion valves, accumulators, parts of electric water heaters...

  1. Energy efficiency and indoor thermal perception. A comparative study between radiant panel and portable convective heaters

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Ahmed Hamza H.; Morsy, Mahmoud Gaber [Department of Mechanical Engineering, Faculty of Engineering, Assiut University, Assiut, 71516 (Egypt)

    2010-11-15

    This study investigates experimentally the thermal perception of indoor environment for evaluating the ability of radiant panel heaters to produce thermal comfort for space occupants as well as the energy consumption in comparison with conventional portable natural convective heaters. The thermal perception results show that, compared with conventional convection heater, a radiantly heated office room maintains a lower ambient air temperature while providing equal levels of thermal perception on the thermal dummy head as the convective heater and saves up to 39.1% of the energy consumption per day. However, for human subjects' vote experiments, the results show that for an environmentally controlled test room at outdoor environment temperatures of 0C and 5C, using two radiant panel heaters with a total capacity of 580 W leads to a better comfort sensation than the conventional portable natural convective heater with a 670 W capacity, with an energy saving of about 13.4%. In addition, for an outdoor environment temperature of 10C, using one radiant panel heater with a capacity of 290 W leads to a better comfort sensation than the conventional convection heater with a 670 W capacity, with an energy saving of about 56.7%. From the analytical results, it is found that distributing the radiant panel heater inside the office room, one on the wall facing the window and the other on the wall close to the window, provides the best operative temperature distribution within the room.

  2. Heater test planning for the near surface test facility at the Hanford reservation

    International Nuclear Information System (INIS)

    DuBois, A.; Binnall, E.; Chan, T.; McEvoy, M.; Nelson, P.; Remer, J.

    1979-03-01

    The underground test facility NSTF being constructed at Gable Mountain, is the site for a group of experiments designed to evaluate the thermo-mechanical suitability of a deep basalt stratum as a permanent repository for nuclear waste. Thermo-mechanical modeling was performed to help design the instrumentation arrays for the three proposed heater tests (two full scale tests and one time scale test) and predict the thermal environment of the heaters and instruments. The modeling does not reflect recent RHO revisions to the in situ heater experiment plan. Heaters, instrumentation, and data acquisition system designs and recommendations were adapted from those used in Sweden

  3. An overview of the development of solar water heater industry in China

    International Nuclear Information System (INIS)

    Runqing, Hu; Peijun, Sun; Zhongying, Wang

    2012-01-01

    This article introduce the development of China solar water heater industry .Gives an overview of stages, market, manufacturing, application and testing about China solar water heater industry. Show the market data from 1998 to 2009. Analyze the experiences and features about the industry. The article also introduces the policy for solar hot water industry in China. These policies have accelerated the development of industry in which the main two incentive policies have the greatest influence on solar water heater industry. First one is the policy of mandatory installation of solar water heater implemented since 2007 by some local governments at provincial and municipal levels. Second is the subsidy policy for solar water heaters in the household appliances going to the countryside scheme implemented since 2009. At last the article gives the reason why China solar water heater industry have so rapid growth. From technology research, industrialization, prices and policy environment gives analysis. - Highlights: ► We compared International and China market about solar thermal products. ► The reason for rapid development of China solar water heater is explained. ► The experience of China solar water heater industry would give reference to other develop country. ► “Meet the demands of customer” is the main driver for the solar water heater industry development. ► The policy framework about China solar thermal industry was introduced. The industry achieved commercial operation without subsidy.

  4. Analysis of Wigner energy release process in graphite stack of shut-down uranium-graphite reactor

    OpenAIRE

    Bespala, E. V.; Pavliuk, A. O.; Kotlyarevskiy, S. G.

    2015-01-01

    Data, which finding during thermal differential analysis of sampled irradiated graphite are presented. Results of computational modeling of Winger energy release process from irradiated graphite staking are demonstrated. It's shown, that spontaneous combustion of graphite possible only in adiabatic case.

  5. A solar assisted heat-pump dryer and water heater

    International Nuclear Information System (INIS)

    Hawlader, M.N.A.; Chou, S.K.; Jahangeer, K.A.; Rahman, S.M.A.

    2006-01-01

    Growing concern about the depletion of conventional energy resources has provided impetus for considerable research and development in the area of alternative energy sources. A solar assisted heat pump dryer and water heater found to be one of the solutions while exploring for alternative energy sources. The heat pump system is used for drying and water heating applications with the major share of the energy derived from the sun and the ambient. The solar assisted heat pump dryer and water heater has been designed, fabricated and tested. The performance of the system has been investigated under the meteorological conditions of Singapore. The system consists of a variable speed reciprocating compressor, evaporator-collector, storage tank, air cooled condenser, auxiliary heater, blower, dryer, dehumidifier, and air collector. The drying medium used is air and the drying chamber is configured to carry out batch drying of good grains. A water tank connected in series with the air cooled condenser delivers hot water for domestic applications. The water tank also ensures complete condensation of the refrigerant vapour. A simulation program is developed using Fortran language to evaluate the performance of the system and the influence of different variables. The performance indices considered to evaluate the performance of the system are: Solar Fraction (SF), Coefficient of Performance (COP) and Specific Moisture Extraction Rate (SMER). A COP value of 7.5 for a compressor speed of 1800 rpm was observed. Maximum collector efficiencies of 0.86 and 0.81 have been found for evaporator-collector and air collector, respectively. A value of the SMER of 0.79 has been obtained for a load of 20 kg and a compressor speed of 1200 rpm

  6. Mixed graphite cast iron for automotive exhaust component applications

    Directory of Open Access Journals (Sweden)

    De-lin Li

    2017-11-01

    Full Text Available Both spheroidal graphite iron and compacted graphite iron are used in the automotive industry. A recently proposed mixed graphite iron exhibits a microstructure between the conventional spheroidal graphite iron and compacted graphite iron. Evaluation results clearly indicate the suitability and benefits of mixed graphite iron for exhaust component applications with respect to casting, machining, mechanical, thermophysical, oxidation, and thermal fatigue properties. A new ASTM standard specification (A1095 has been created for compacted, mixed, and spheroidal graphite silicon-molybdenum iron castings. This paper attempts to outline the latest progress in mixed graphite iron published.

  7. Integral finned heater and cooler for stirling engines

    Science.gov (United States)

    Corey, John A.

    1984-01-01

    A piston and cylinder for a Stirling engine and the like having top and bottom meshing or nesting finned conical surfaces to provide large surface areas in close proximity to the working gas for good thermal (addition and subtraction of heat) exchange to the working gas and elimination of the usual heater and cooler dead volume. The piston fins at the hot end of the cylinder are perforated to permit the gas to pass into the piston interior and through a regenerator contained therein.

  8. MD#1826: Measurement of Quench Heater vertical kick

    OpenAIRE

    Valette, Matthieu; Wollmann, Daniel; Lindstrom, Bjorn Hans Filip; Bortot, Lorenzo; Fernandez Navarro, Alejandro; Schmidt, Rudiger; Verweij, Arjan

    2018-01-01

    Following the observation of vertical orbit oscillations of the LHC beam between the detection of a (beam induced) quench of an LHC main dipole and the beam dump, a study was started to verify that the orbit distortions are caused by the firing of the quench heaters (QH). Simulation of the magnetic field generated by the discharge of the QH and its effect on the beam confirmed it was the most likely cause. A dedicated experiment with 450 GeV proton beams was performed to validate the simulati...

  9. Benchmark Tests for Stirling Convertor Heater Head Life Assessment Conducted

    Science.gov (United States)

    Krause, David L.; Halford, Gary R.; Bowman, Randy R.

    2004-01-01

    A new in-house test capability has been developed at the NASA Glenn Research Center, where a critical component of the Stirling Radioisotope Generator (SRG) is undergoing extensive testing to aid the development of analytical life prediction methodology and to experimentally aid in verification of the flight-design component's life. The new facility includes two test rigs that are performing creep testing of the SRG heater head pressure vessel test articles at design temperature and with wall stresses ranging from operating level to seven times that (see the following photograph).

  10. Fuzzy Logic Approach to Diagnosis of Feedwater Heater Performance Degradation

    International Nuclear Information System (INIS)

    Kang, Yeon Kwan; Kim, Hyeon Min; Heo, Gyun Young; Sang, Seok Yoon

    2014-01-01

    Since failure in, damage to, and performance degradation of power generation components in operation under harsh environment of high pressure and high temperature may cause both economic and human loss at power plants, highly reliable operation and control of these components are necessary. Therefore, a systematic method of diagnosing the condition of these components in its early stages is required. There have been many researches related to the diagnosis of these components, but our group developed an approach using a regression model and diagnosis table, specializing in diagnosis relating to thermal efficiency degradation of power plant. However, there was a difficulty in applying the method using the regression model to power plants with different operating conditions because the model was sensitive to value. In case of the method that uses diagnosis table, it was difficult to find the level at which each performance degradation factor had an effect on the components. Therefore, fuzzy logic was introduced in order to diagnose performance degradation using both qualitative and quantitative results obtained from the components' operation data. The model makes performance degradation assessment using various performance degradation variables according to the input rule constructed based on fuzzy logic. The purpose of the model is to help the operator diagnose performance degradation of components of power plants. This paper makes an analysis of power plant feedwater heater by using fuzzy logic. Feedwater heater is one of the core components that regulate life-cycle of a power plant. Performance degradation has a direct effect on power generation efficiency. It is not easy to observe performance degradation of feedwater heater. However, on the other hand, troubles such as tube leakage may bring simultaneous damage to the tube bundle and therefore it is the object of concern in economic aspect. This study explains the process of diagnosing and verifying typical

  11. Using CFD to investigate heater fouling in a utility boiler

    International Nuclear Information System (INIS)

    Pang, L.; Sun, B.; Salcudean, M.

    2004-01-01

    A simulation investigation into the combustion and heat transfer process in a utility boiler is presented. The work is based on the commercial software Fluent 6.1.18. Flow, chemistry, energy, conservation and radiation models are used to simulate the process inside the furnace. Radiation and convection models are considered in the horizontal heater. The temperature and velocity fields are calculated to unveil the process inside and outside the furnace. The result shows that the fouling in reheater is formed because of the temperature and velocity field in the flue gas passage. A limited test is done to validate the simulation. (author)

  12. Performance analysis of a hybrid photovoltaic thermal solar air heater

    International Nuclear Information System (INIS)

    Othman, Mohd Yusof; Yatim, Baharudin; Abu Bakar, Mohd Nazari; Sopian, Kamaruzzaman

    2006-01-01

    A photovoltaic (PV/T) air heater is a collector that combines thermal and photovoltaic systems in one single hybrid generating unit. It generators both thermal and electrical energies simultaneously. A new design of a double-pass photovoltaic-thermal solar air collector with CPC and fins was successfully developed and fabricated at Universiti Kebangsaam Malaysia. This collector tested under actual environmental conditions to study its performance over a range of operating conditions. The test set-up, instrumentation and measurement are described further. It was found that the performance of the collector was in agreement with the theoretical prediction. Results of the outdoors test are presented and discussed(Author)

  13. Online fouling detection in electrical circulation heaters using neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Lalot, S. [M.E.T.I.E.R., Longuenesse Cedex (France); Universite de Valenciennes (France). LME; Lecoeuche, S. [M.E.T.I.E.R., Longuenesse Cedex (France); Universite de Lille (France). Laboratoire 13D

    2003-06-01

    Here is presented a method that is able to detect fouling during the service of a circulation electrical heater. The neural based technique is divided in two major steps: identification and classification. Each step uses a neural network, the connection weights of the first one being the inputs of the second network. Each step is detailed and the main characteristics and abilities of the two neural networks are given. It is shown that the method is able to discriminate fouling from viscosity modification that would lead to the same type of effect on the total heat transfer coefficient. (author)

  14. Fuzzy Logic Approach to Diagnosis of Feedwater Heater Performance Degradation

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Yeon Kwan; Kim, Hyeon Min; Heo, Gyun Young [Kyung Hee University, Yongin (Korea, Republic of); Sang, Seok Yoon [Engineering and Technical Center, Korea Hydro, Daejeon (Korea, Republic of)

    2014-08-15

    Since failure in, damage to, and performance degradation of power generation components in operation under harsh environment of high pressure and high temperature may cause both economic and human loss at power plants, highly reliable operation and control of these components are necessary. Therefore, a systematic method of diagnosing the condition of these components in its early stages is required. There have been many researches related to the diagnosis of these components, but our group developed an approach using a regression model and diagnosis table, specializing in diagnosis relating to thermal efficiency degradation of power plant. However, there was a difficulty in applying the method using the regression model to power plants with different operating conditions because the model was sensitive to value. In case of the method that uses diagnosis table, it was difficult to find the level at which each performance degradation factor had an effect on the components. Therefore, fuzzy logic was introduced in order to diagnose performance degradation using both qualitative and quantitative results obtained from the components' operation data. The model makes performance degradation assessment using various performance degradation variables according to the input rule constructed based on fuzzy logic. The purpose of the model is to help the operator diagnose performance degradation of components of power plants. This paper makes an analysis of power plant feedwater heater by using fuzzy logic. Feedwater heater is one of the core components that regulate life-cycle of a power plant. Performance degradation has a direct effect on power generation efficiency. It is not easy to observe performance degradation of feedwater heater. However, on the other hand, troubles such as tube leakage may bring simultaneous damage to the tube bundle and therefore it is the object of concern in economic aspect. This study explains the process of diagnosing and verifying typical

  15. Feed water pre-heater with two steam spaces

    International Nuclear Information System (INIS)

    Tratz, H.; Kelp, F.; Netsch, E.

    1976-01-01

    A feed water pre-heater for the two stage heating of feed water by condensing steam, having a low installed height is described, which can be installed in the steam ducts of turbines of large output, as in LWRs in nuclear power stations. The inner steam space is closed on one side by the water vessel, while the tubes of the inner steam space go straight from the water vessel, and the tubes of the outer steam space are bent into a U shape and open out into the water vessel. The two-stage preheater is thus surrounded by feedwater in two ways. (UWI) [de

  16. Methodology of characterization of radioactive graphite

    International Nuclear Information System (INIS)

    Pina, G.; Rodriguez, M.; Lara, E.; Magro, E.; Gascon, J. L.; Leganes, J. L.

    2014-01-01

    Since the dismantling of Vandellos I, ENRESA has promoted the precise knowledge of the inventory of irradiated graphite (graphite-i) through establishing methodologies for radiological characterization of the vector of radionuclides of interest and their correlations as the primary means of characterization strategy to establish the safer management of this material in its life cycle. (Author)

  17. Significance of primary irradiation creep in graphite

    CSIR Research Space (South Africa)

    Erasmus, C

    2013-05-01

    Full Text Available Traditionally primary irradiation creep is introduced into graphite analysis by applying the appropriate amount of creep strain to the model at the initial time-step. This is valid for graphite components that are subjected to high fast neutron flux...

  18. Inhibition of oxidation in nuclear graphite

    International Nuclear Information System (INIS)

    Winston, Philip L.; Sterbentz, James W.; Windes, William E.

    2015-01-01

    Graphite is a fundamental material of high-temperature gas-cooled nuclear reactors, providing both structure and neutron moderation. Its high thermal conductivity, chemical inertness, thermal heat capacity, and high thermal structural stability under normal and off-normal conditions contribute to the inherent safety of these reactor designs. One of the primary safety issues for a high-temperature graphite reactor core is the possibility of rapid oxidation of the carbon structure during an off-normal design basis event where an oxidising atmosphere (air ingress) can be introduced to the hot core. Although the current Generation IV high-temperature reactor designs attempt to mitigate any damage caused by a postulated air ingress event, the use of graphite components that inhibit oxidation is a logical step to increase the safety of these reactors. Recent experimental studies of graphite containing between 5.5 and 7 wt% boron carbide (B 4 C) indicate that oxidation is dramatically reduced even at prolonged exposures at temperatures up to 900 deg. C. The proposed addition of B 4 C to graphite components in the nuclear core would necessarily be enriched in B-11 isotope in order to minimise B-10 neutron absorption and graphite swelling. The enriched boron can be added to the graphite during billet fabrication. Experimental oxidation rate results and potential applications for borated graphite in nuclear reactor components will be discussed. (authors)

  19. Metal/graphite - composites in fusion engineering

    International Nuclear Information System (INIS)

    Staffler, R.; Kneringer, G.; Kny, E.; Reheis, N.

    1989-01-01

    Metal/graphite composites have been well known in medical industry for many years. X-ray tubes used in modern radiography, particularly in computerized tomography are equipped with rotating targets able to absorb a maximum of heat in a given time. Modern rotating targets consist of a refractory metal/graphite composite. Today the use of graphite as a plasma facing material is one predominant concept in fusion engineering. Depending on the thermal load, the graphite components have to be directly cooled (i.e. divertor plates) or inertially cooled (i.e. firstwall tiles). In case of direct cooling a metallurgical joining such as high temperature brazing between graphite and a metallic cooling structure shows the most promising results /1/. Inertially cooled graphite tiles have to be joined to a metallic backing plate in order to get a stable attachment to the supporting structure. The main requirements on the metallic partner of a metal/graphite composite used in the first wall area are: high melting point, high thermal strength, high thermal conductivity, low vapor pressure and a thermal expansion matching that of graphite. These properties are typical for the refractory metals such as molybdenum, tungsten and their alloys. 4 refs., 13 figs., 1 tab

  20. Metal/graphite - composites in fusion engineering

    International Nuclear Information System (INIS)

    Staffler, R.; Kneringer, G.; Kny, E.; Reheis, N.

    1995-01-01

    Metal/graphite composites have been well known in medical industry for many years. X-ray tubes used in modern radiography, particulary in computerized tomography are equipped with rotating targets able to absorb a maximum of heat in a given time. Modern rotating targets consist of a refractory metal/graphite composite. Today the use of graphite as a plasma facing material is one predominant concept in fusion engineering. Depending on the thermal load, the graphite components have to be directly cooled (i.e. divertor plates) or inertially cooled (i.e. firstwall tiles). In case of direct cooling a metallurgical joining such as high temperature brazing between graphite and a metalic cooling structure shows the most promising results /1/. Inertially cooled graphite tiles have to be joined to a metallic backing plate in order to get a stable attachment to the supporting structure. The main requirements on the metallic partner of a metal/graphite composite and in the first wall area are: high melting point, high thermal strength, high thermal conductivity, low vapour pressure and a thermal expansion matching that of graphite. These properties are typical for the refractory metals such as molybdenum, tungsten and their alloys. (author)

  1. Tire containing thermally exfoliated graphite oxide

    Science.gov (United States)

    Prud'homme, Robert K. (Inventor); Aksay, Ilhan A. (Inventor)

    2011-01-01

    A tire, tire lining or inner tube, containing a polymer composite, made of at least one rubber and/or at least one elastomer and a modified graphite oxide material, which is a thermally exfoliated graphite oxide with a surface area of from about 300 sq m/g to 2600 sq m/g.

  2. Effect of graphite target power density on tribological properties of graphite-like carbon films

    Science.gov (United States)

    Dong, Dan; Jiang, Bailing; Li, Hongtao; Du, Yuzhou; Yang, Chao

    2018-05-01

    In order to improve the tribological performance, a series of graphite-like carbon (GLC) films with different graphite target power densities were prepared by magnetron sputtering. The valence bond and microstructure of films were characterized by AFM, TEM, XPS and Raman spectra. The variation of mechanical and tribological properties with graphite target power density was analyzed. The results showed that with the increase of graphite target power density, the deposition rate and the ratio of sp2 bond increased obviously. The hardness firstly increased and then decreased with the increase of graphite target power density, whilst the friction coefficient and the specific wear rate increased slightly after a decrease with the increasing graphite target power density. The friction coefficient and the specific wear rate were the lowest when the graphite target power density was 23.3 W/cm2.

  3. Hydrogen storage in graphite nanofibers

    Energy Technology Data Exchange (ETDEWEB)

    Park, C.; Tan, C.D.; Hidalgo, R.; Baker, R.T.K.; Rodriguez, N.M. [Northeastern Univ., Boston, MA (United States). Chemistry Dept.

    1998-08-01

    Graphite nanofibers (GNF) are a type of material that is produced by the decomposition of carbon containing gases over metal catalyst particles at temperatures around 600 C. These molecularly engineered structures consist of graphene sheets perfectly arranged in a parallel, perpendicular or at angle orientation with respect to the fiber axis. The most important feature of the material is that only edges are exposed. Such an arrangement imparts the material with unique properties for gas adsorption because the evenly separated layers constitute the most ordered set of nanopores that can accommodate an adsorbate in the most efficient manner. In addition, the non-rigid pore walls can also expand so as to accommodate hydrogen in a multilayer conformation. Of the many varieties of structures that can be produced the authors have discovered that when gram quantities of a selected number of GNF are exposed to hydrogen at pressures of {approximately} 2,000 psi, they are capable of adsorbing and storing up to 40 wt% of hydrogen. It is believed that a strong interaction is established between hydrogen and the delocalized p-electrons present in the graphite layers and therefore a new type of chemistry is occurring within these confined structures.

  4. Graphite epoxy composite degradation by space radiation

    International Nuclear Information System (INIS)

    Taheri, M.; Sandquist, G.M.; Slaughter, D.M.; Bennion, J.

    1991-01-01

    The radiation environment in space is a critical consideration for successful operation in space. All manned space missions with a duration of more than a few days are subjected to elevated ionizing radiation exposures, which are a threat to both personnel and structures in space. The increasing demands for high-performance materials as structural components in the aerospace, aircraft, and defense industries have led to the development of materials such as graphite fiber-reinforced, epoxy resin matrix composites (Gr/Ep). These materials provide important advantages over conventional structural materials, such as ultrahigh specific strength, enhanced specific moduli, and better fatigue resistance. The fact that most advanced composite materials under cyclic fatigue loading evidence little or no observable crack growth prior to rapid fracture suggests that for fail-safe considerations of parts subject to catastrophic failure, a detailed evaluation of radiation damage from very energetic particle is crucial. The Gr/Ep components are believed to suffer severe degradation in space due to highly penetrating secondary radiation, mainly from neutrons and protons. Investigation into the performance and stability of Gr/Ep materials are planned

  5. In situ polymerization of monomers for polyphenylquinoxaline/graphite

    Science.gov (United States)

    Serafini, T. T.; Delvigs, P.; Vannucci, R. D.

    1973-01-01

    Methods currently used to prepare fiber reinforced, high temperature resistant polyphenylquinoxaline (PPQ) composites employ extremely viscous, low solids content solutions of high molecular weight PPQ polymers. An improved approach, described in this report, consists of impregnating the fiber with a solution of the appropriate monomers instead of a solution of previously synthesized high molecular weight polymer. Polymerization of the monomers occurs in situ on the fiber during the solvent removal and curing stages. The in situ polymerization approach greatly simplifies the fabrication of PPQ graphite fiber composites. The use of low viscosity monomeric type solutions facilitates fiber wetting, permits a high solids content, and eliminates the need for prior polymer synthesis.

  6. Methane generated from graphite--tritium interaction

    International Nuclear Information System (INIS)

    Coffin, D.O.; Walthers, C.R.

    1979-01-01

    When hydrogen isotopes are separated by cryogenic distillation, as little as 1 ppM of methane will eventually plug the still as frost accumulates on the column packings. Elemental carbon exposed to tritium generates methane spontaneously, and yet some dry transfer pumps, otherwise compatible with tritium, convey the gas with graphite rotors. This study was to determine the methane production rate for graphite in tritium. A pump manufacturer supplied graphite samples that we exposed to tritium gas at 0.8 atm. After 137 days we measured a methane synthesis rate of 6 ng/h per cm 2 of graphite exposed. At this rate methane might grow to a concentration of 0.01 ppM when pure tritium is transferred once through a typical graphite--rotor transfer pump. Such a low methane level will not cause column blockage, even if the cryogenic still is operated continuously for many years

  7. Chemical sputtering of graphite by H+ ions

    International Nuclear Information System (INIS)

    Busharov, N.P.; Gorbatov, E.A.; Gusev, V.M.; Guseva, M.I.; Martynenko, Y.V.

    1976-01-01

    In a study of the sputtering coefficient S for the sputtering of graphite by 10-keV H + ions as a function of the graphite temperature during the bombardment, it is found that at T> or =750degreeC the coefficient S is independent of the target temperature and has an anomalously high value, S=0.085 atom/ion. The high rate of sputtering of graphite by atomic hydrogen ions is shown to be due to chemical sputtering of the graphite, resulting primarily in the formation of CH 4 molecules. At T=1100degreeC, S falls off by a factor of about 3. A model for the chemical sputtering of graphite is proposed

  8. Graphite selection for the FMIT test cell

    International Nuclear Information System (INIS)

    Morgan, W.C.

    1982-06-01

    This document provides the basis for procuring a grade of graphite, at minimum cost, having minimum dimensional changes at low irradiation temperatures (nominal range 90 to 140 0 C). In light of those constraints, the author concludes that the most feasible approach is to attempt to reproduce a grade of graphite (TSGBF) which has exhibited a high degree of dimensional stability during low-temperature irradiations and on which irradiation-induced changes in other physical properties have been measured. The effects of differences in raw materials, especially coke morphology, and processing conditions, primarily graphitization temperture are briefly reviewed in terms of the practicality of producing a new grade of graphite with physical properties and irradiation-induced changes which would be very similar to those of TSGBF graphite. The production history and physical properties of TSGBF are also reviewed; no attempt is made, to project changes in dimensions or physical properties under the projected irradiation conditions

  9. AGC-2 Graphite Preirradiation Data Analysis Report

    Energy Technology Data Exchange (ETDEWEB)

    William Windes; W. David Swank; David Rohrbaugh; Joseph Lord

    2013-08-01

    This report described the specimen loading order and documents all pre-irradiation examination material property measurement data for the graphite specimens contained within the second Advanced Graphite Capsule (AGC-2) irradiation capsule. The AGC-2 capsule is the second in six planned irradiation capsules comprising the Advanced Graphite Creep (AGC) test series. The AGC test series is used to irradiate graphite specimens allowing quantitative data necessary for predicting the irradiation behavior and operating performance of new nuclear graphite grades to be generated which will ascertain the in-service behavior of the graphite for pebble bed and prismatic Very High Temperature Reactor (VHTR) designs. Similar to the AGC-1 specimen pre-irradiation examination report, material property tests were conducted on specimens from 18 nuclear graphite types but on an increased number of specimens (512) prior to loading into the AGC-2 irradiation assembly. All AGC-2 specimen testing was conducted at Idaho National Laboratory (INL) from October 2009 to August 2010. This report also details the specimen loading methodology for the graphite specimens inside the AGC-2 irradiation capsule. The AGC-2 capsule design requires “matched pair” creep specimens that have similar dose levels above and below the neutron flux profile mid-plane to provide similar specimens with and without an applied load. This document utilized the neutron flux profile calculated for the AGC-2 capsule design, the capsule dimensions, and the size (length) of the selected graphite and silicon carbide samples to create a stacking order that can produce “matched pairs” of graphite samples above and below the AGC-2 capsule elevation mid-point to provide specimens with similar neutron dose levels.

  10. Modeling Fission Product Sorption in Graphite Structures

    International Nuclear Information System (INIS)

    Szlufarska, Izabela; Morgan, Dane; Allen, Todd

    2013-01-01

    The goal of this project is to determine changes in adsorption and desorption of fission products to/from nuclear-grade graphite in response to a changing chemical environment. First, the project team will employ principle calculations and thermodynamic analysis to predict stability of fission products on graphite in the presence of structural defects commonly observed in very high-temperature reactor (VHTR) graphites. Desorption rates will be determined as a function of partial pressure of oxygen and iodine, relative humidity, and temperature. They will then carry out experimental characterization to determine the statistical distribution of structural features. This structural information will yield distributions of binding sites to be used as an input for a sorption model. Sorption isotherms calculated under this project will contribute to understanding of the physical bases of the source terms that are used in higher-level codes that model fission product transport and retention in graphite. The project will include the following tasks: Perform structural characterization of the VHTR graphite to determine crystallographic phases, defect structures and their distribution, volume fraction of coke, and amount of sp2 versus sp3 bonding. This information will be used as guidance for ab initio modeling and as input for sorptivity models; Perform ab initio calculations of binding energies to determine stability of fission products on the different sorption sites present in nuclear graphite microstructures. The project will use density functional theory (DFT) methods to calculate binding energies in vacuum and in oxidizing environments. The team will also calculate stability of iodine complexes with fission products on graphite sorption sites; Model graphite sorption isotherms to quantify concentration of fission products in graphite. The binding energies will be combined with a Langmuir isotherm statistical model to predict the sorbed concentration of fission products

  11. Inexpensive system protects megawatt resistance-heating furnace against high-voltage surges

    Science.gov (United States)

    Stearns, E. J.

    1971-01-01

    Coolant gas extinguishes arcing across the break in a heater element. Air-gap shunt which bypasses high voltage impressed across the circuit prevents damage if the resistance elements break and open the inductive circuit.

  12. Preparation and characterization of graphite-dispersed styrene-acrylic emulsion composite coating on magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Renhui [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Science, Lanzhou 730000 (China); Lanzhou University of Technology, College of Science, Lanzhou 730050 (China); Liang Jun, E-mail: jliang@licp.cas.cn [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Science, Lanzhou 730000 (China); Wang Qing [Lanzhou University of Technology, College of Science, Lanzhou 730050 (China)

    2012-03-01

    In this work, an electrically conductive, corrosion resistant graphite-dispersed styrene-acrylic emulsion composite coating on AZ91D magnesium alloy was successfully produced by the method of anodic deposition. The microstructure, composition and conductivity of the composite coating were characterized using optical microscope (OM), scanning electron microscope (SEM), X-ray diffraction (XRD), Fourier transform infrared spectrometer (FTIR) and four electrode volume resistivity instrument, respectively. The corrosion resistance of the coating was evaluated using potentiodynamic polarization measurements and salt spray tests. It is found that the graphite-dispersed styrene-acrylic emulsion composite coating was layered structure and displayed good electrical conductivity. The potentiodynamic polarization tests and salt spray tests reveal that the composite coating was successful in providing superior corrosion resistance to AZ91D magnesium alloy.

  13. Simple Retrofit High-Efficiency Natural Gas Water Heater Field Test

    Energy Technology Data Exchange (ETDEWEB)

    Schoenbauer, Ben [NorthernSTAR, St. Paul, MN (United States)

    2017-03-01

    High-performance water heaters are typically more time consuming and costly to install in retrofit applications, making high performance water heaters difficult to justify economically. However, recent advancements in high performance water heaters have targeted the retrofit market, simplifying installations and reducing costs. Four high efficiency natural gas water heaters designed specifically for retrofit applications were installed in single-family homes along with detailed monitoring systems to characterize their savings potential, their installed efficiencies, and their ability to meet household demands. The water heaters tested for this project were designed to improve the cost-effectiveness and increase market penetration of high efficiency water heaters in the residential retrofit market. The retrofit high efficiency water heaters achieved their goal of reducing costs, maintaining savings potential and installed efficiency of other high efficiency water heaters, and meeting the necessary capacity in order to improve cost-effectiveness. However, the improvements were not sufficient to achieve simple paybacks of less than ten years for the incremental cost compared to a minimum efficiency heater. Significant changes would be necessary to reduce the simple payback to six years or less. Annual energy savings in the range of $200 would also reduce paybacks to less than six years. These energy savings would require either significantly higher fuel costs (greater than $1.50 per therm) or very high usage (around 120 gallons per day). For current incremental costs, the water heater efficiency would need to be similar to that of a heat pump water heater to deliver a six year payback.

  14. DEVELOPMENT OF TECHNICAL DECISIONS FOR HEAT SUPPLY WITH TUBULAR GAS HEATERS

    Directory of Open Access Journals (Sweden)

    IRODOV V. F.

    2017-05-01

    Full Text Available Annotation. Problems formulation. The problem that is solved is the development of autonomous heat supply systems that reduce the capital costs of construction and increase the efficiency of the use of energy resources. One of the ways to solve this problem is the use of tubular gas heaters. For this, it is necessary to develop new technical solutions for heat supply with tubular gas heaters, as well as scientific and methodological support for the development, construction and operation of heat supply systems with tubular gas heaters. Analysis of recent research. Preliminary studies of infrared tubular gas heaters are considered, which were used to heat industrial enterprises with sufficiently high premises. The task was to extend the principles of heat supply by means of tubular heaters for heating air, water and heating medium in relatively low rooms. Goal and tasks. To lay out the development of technical solutions for heat supply with tubular gas heaters, which increase the efficiency and reliability of heat supply systems and extend the use of tubular gas heaters in heat supply. Results. Technical solutions for heat supply with tubular gas heaters have made it possible to extend their applications for heating air, water and heating medium in relatively low rooms. Scientific novelty. New technical solutions for heat supply with tubular gas heaters increase the efficiency of using fuel and energy resources at low capital costs. Practical significance. Technical solutions for heat supply using tubular heaters have the potential for wide application in the heat supply of industrial, public and residential facilities. Conclusions. For two decades, new technical solutions for heat supply with tubular gas heaters have been developed, which increase the efficiency and reliability of heat supply systems and can be widely used for autonomous heating.

  15. Simple Retrofit High-Efficiency Natural Gas Water Heater Field Test

    Energy Technology Data Exchange (ETDEWEB)

    Schoenbauer, Ben [NorthernSTAR, St. Paul, MN (United States)

    2017-03-28

    High performance water heaters are typically more time consuming and costly to install in retrofit applications, making high performance water heaters difficult to justify economically. However, recent advancements in high performance water heaters have targeted the retrofit market, simplifying installations and reducing costs. Four high efficiency natural gas water heaters designed specifically for retrofit applications were installed in single-family homes along with detailed monitoring systems to characterize their savings potential, their installed efficiencies, and their ability to meet household demands. The water heaters tested for this project were designed to improve the cost-effectiveness and increase market penetration of high efficiency water heaters in the residential retrofit market. The retrofit high efficiency water heaters achieved their goal of reducing costs, maintaining savings potential and installed efficiency of other high efficiency water heaters, and meeting the necessary capacity in order to improve cost-effectiveness. However, the improvements were not sufficient to achieve simple paybacks of less than ten years for the incremental cost compared to a minimum efficiency heater. Significant changes would be necessary to reduce the simple payback to six years or less. Annual energy savings in the range of $200 would also reduce paybacks to less than six years. These energy savings would require either significantly higher fuel costs (greater than $1.50 per therm) or very high usage (around 120 gallons per day). For current incremental costs, the water heater efficiency would need to be similar to that of a heat pump water heater to deliver a six year payback.

  16. First phase of small diameter heater experiments in tuff

    International Nuclear Information System (INIS)

    Zimmerman, R.M.

    1983-01-01

    As part of the Nevada Nuclear Waste Storage Investigations (NNWSI) project, we have undertaken small diameter heater experiments in the G-Tunnel Underground Facility on the Nevada Test Site (NTS). These experiments are to evaluate the thermal and hydrothermal behavior which might be encountered if heat producing nuclear waste were disposed of in welded and nonwelded tuffs. The two Phase I experiments discussed have focused on vertical borehole emplacements. In each experiment, temperatures were measured along the surface of the 10.2-cm-dia heater and the 12.7-cm-dia boreholes. For each experiment, measurements were compared with computer model representations. Maximum temperatures reached were: 196 0 C for the welded tuff after 21 days of operations at 800W and 173 0 C for the nonwelded tuff after 35 days of operations at 500W. Computed results indicate that the same heat transfer model (includes conduction and radiation only) can describe the behavior of both tuffs using empirical techniques to describe pore water vaporization. Hydrothermal measurements revealed heat-indiced water migration. Results indicated that small amounts of liquid water migrated into the welded tuff borehole early in the heating period. Once the rock-wall temperatures exceeded 94 0 C, in both tuffs, there was mass transport of water vapor as evidence indicated condensation cooler regions. Borehole pressures remained essentially ambient during the thermal periods

  17. Design of Solar Heat Sheet for Air Heaters

    Science.gov (United States)

    Priya, S. Shanmuga; Premalatha, M.; Thirunavukkarasu, I.

    2011-12-01

    The technique of harnessing solar energy for drying offers significant potential to dry agricultural products such as food grains, fruits, vegetables and medicinal plants, thereby eliminating many of the problems experienced with open-sun drying and industrial drying, besides saving huge quantities of fossil fuels. A great deal of experimental work over the last few decades has already demonstrated that agricultural products can be satisfactorily dehydrated using solar energy. Various designs of small scale solar dryers have been developed in the recent past, mainly for drying agricultural products. Major problems experienced with solar dryers are their non-reliability as their operation largely depends on local weather conditions. While back-up heaters and hybrid dryers partly solved this issue, difficulties in controlling the drying air temperature and flow rate remains a problem, and affects the quality of the dried product. This study is aimed at eliminating the fluctuations in the quality of hot air supplied by simple solar air heaters used for drying fruits, vegetables and other applications. It is an attempt to analyse the applicability of the combination of an glazed transpired solar collector (tank), thermal storage and a intake fan(suction fan) to achieve a steady supply of air at a different atmospheric temperature and flow rate for drying fruits and vegetables. Development of an efficient, low-cost and reliable air heating system for drying applications is done.

  18. Subsidy programs on diffusion of solar water heaters: Taiwan's experience

    International Nuclear Information System (INIS)

    Chang, Keh-Chin; Lin, Wei-Min; Lee, Tsong-Sheng; Chung, Kung-Ming

    2011-01-01

    Financial incentives are essentially one of the key factors influencing diffusion of solar water heaters in many countries. Two subsidy programs were initiated by the government of Taiwan in 1986 (1986-1991) and 2000 (2000-present), respectively. Those long-term national programs are considered to be the driving force on local market expansion. In 2008, the regional subsidy programs for solar water heaters were announced by Kaohsiung city and Kiemen county, which resulted in the growth in sales. A revised subsidy was also initiated by the government of Taiwan in 2009. The subsidy is 50% more. However, the tremendous enlargement of market size with a high-level ratio of subsidy over total installation cost might result in a negative impact on a sustainable SWH industry and long-term development of the local market, which is associated with system design and post-installation service. This paper aims to address the relative efficiency and pitfalls of those national and regional programs. - Research Highlights: → The direct subsidy has been the driving force on market expansion in Taiwan. → Higher subsidy would certainly increase the total number of systems installed. → A high-level subsidy results in a negative impact on users or a sustainable industry.

  19. Graphite Oxidation Thermodynamics/Reactions

    International Nuclear Information System (INIS)

    Propp, W.A.

    1998-01-01

    The vulnerability of graphite-matrix spent nuclear fuel to oxidation by the ambient atmosphere if the fuel canister is breached was evaluated. Thermochemical and kinetic data over the anticipated range of storage temperatures (200 to 400 C) were used to calculate the times required for a total carbon mass loss of 1 mgcm-2 from a fuel specimen. At 200 C, the time required to produce even this small loss is large, 900,000 yr. However, at 400 C the time required is only 1.9 yr. The rate of oxidation at 200 C is negligible, and the rate even at 400 C is so small as to be of no practical consequence. Therefore, oxidation of the spent nuclear fuel upon a loss of canister integrity is not anticipated to be a concern based upon the results of this study

  20. High voltage bus and auxiliary heater control system for an electric or hybrid vehicle

    Science.gov (United States)

    Murty, Balarama Vempaty

    2000-01-01

    A control system for an electric or hybrid electric vehicle includes a vehicle system controller and a control circuit having an electric immersion heater. The heater is electrically connected to the vehicle's high voltage bus and is thermally coupled to a coolant loop containing a heater core for the vehicle's climate control system. The system controller responds to cabin heat requests from the climate control system by generating a pulse width modulated signal that is used by the control circuit to operate the heater at a duty cycle appropriate for the amount of cabin heating requested. The control system also uses the heater to dissipate excess energy produced by an auxiliary power unit and to provide electric braking when regenerative braking is not desirable and manual braking is not necessary. The control system further utilizes the heater to provide a safe discharge of a bank of energy storage capacitors following disconnection of the battery or one of the high voltage connectors used to transmit high voltage operating power to the various vehicle systems. The control circuit includes a high voltage clamping circuit that monitors the voltage on the bus and operates the heater to clamp down the bus voltage when it exceeds a pre-selected maximum voltage. The control system can also be used to phase in operation of the heater when the bus voltage exceeds a lower threshold voltage and can be used to phase out the auxiliary power unit charging and regenerative braking when the battery becomes fully charged.

  1. 40 CFR 63.7499 - What are the subcategories of boilers and process heaters?

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 13 2010-07-01 2010-07-01 false What are the subcategories of boilers..., and Institutional Boilers and Process Heaters Emission Limits and Work Practice Standards § 63.7499 What are the subcategories of boilers and process heaters? The subcategories of boilers and process...

  2. Analysis of Large- Capacity Water Heaters in Electric Thermal Storage Programs

    Energy Technology Data Exchange (ETDEWEB)

    Cooke, Alan L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Anderson, David M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Winiarski, David W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Carmichael, Robert T. [Cadeo Group, Washington D. C. (United States); Mayhorn, Ebony T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Fisher, Andrew R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-03-17

    This report documents a national impact analysis of large tank heat pump water heaters (HPWH) in electric thermal storage (ETS) programs and conveys the findings related to concerns raised by utilities regarding the ability of large-tank heat pump water heaters to provide electric thermal storage services.

  3. 75 FR 20111 - Energy Conservation Program: Energy Conservation Standards for Residential Water Heaters, Direct...

    Science.gov (United States)

    2010-04-16

    ... Program: Energy Conservation Standards for Residential Water Heaters, Direct Heating Equipment, and Pool... heating equipment and pool heaters. Table I.1--Amended Energy Conservation Standards for Residential Water... for national energy and water conservation; and 7. Other factors the Secretary of Energy (Secretary...

  4. 75 FR 21981 - Energy Conservation Program: Energy Conservation Standards for Residential Water Heaters, Direct...

    Science.gov (United States)

    2010-04-27

    ... DEPARTMENT OF ENERGY 10 CFR Part 430 [Docket Number EE-2006-BT-STD-0129] RIN 1904-AA90 Energy Conservation Program: Energy Conservation Standards for Residential Water Heaters, Direct Heating Equipment, and Pool Heaters Correction In rule document 2010-7611 beginning on page 20112 in the issue of Friday...

  5. Pengaruh Pelat Penyerap Ganda Model Gelombang dengan Penambahan Reflector terhadap Kinerja Solar Water Heater Sederhana

    OpenAIRE

    Ismail, Nova Risdiyanto

    2011-01-01

    Telah banyak dilakukan USAha meningkatkan kinerja solar water heater diantaranya modifikasi pelat penyerap tunggal menjadi ganda, modifikasi aliran untuk meningkatkan penyerapan panas, modifikasi material dan pelat penyerap ganda model gelombang. Penelitian ini bertujuan untuk mengetahui pengaruh pelat penyerap ganda model gelombang dengan penambahan reflector terhadap kinerja solar water heater sederhana. Dalam penelitian ini dilakukan secara eksperimen, untuk embandingkan kinerja pelat pen...

  6. A theoretical model for flow boiling CHF from short concave heaters

    International Nuclear Information System (INIS)

    Galloway, J.E.; Mudawar, I.

    1995-01-01

    Experiments were performed to enable the development of a new theoretical mode for the enhancement in CHF commonly observed with flow boiling on concave heater as compared to straight heaters. High-speed video imaging and photomicrography were employed to capture the trigger mechanism for CHF each type heater. A wavy vapor layer was observed to engulf the heater surface in each case, permitting liquid access to the surface only in regions where depressions (troughs) in the liquid vapor interface made contact with the surface. CHF in each case occurred when the pressure force exerted upon the wavy vapor-liquid inter ace in the contact region could no longer overcome the momentum of the vapor produced in these regional. Shorter interfacial wavelengths with greater curvature were measured on the curve, heater than on the straight heater, promoting a greater pressure force on the wave interface and a corresponding increase in CHF for the curved heater. A theoretics. CHF model is developed from these observations, based upon a new theory for hydrodynamic instability, along a curved interface. CHF data are predicted with good accuracy for both heaters. 23 refs., 9 figs

  7. CFD Study of Fluid Flow in an All-glass Evacuated Tube Solar Water Heater

    DEFF Research Database (Denmark)

    Ai, Ning; Fan, Jianhua; Li, Yumin

    2008-01-01

    Abstract: The all-glass evacuated tube solar water heater is one of the most widely used solar thermal technologies. The aim of the paper is to investigate fluid flow in the solar water heater by means of computational fluid dynamics (CFD). The investigation was carried out with a focus on the co...... for future system optimization....

  8. Optimal and Learning-Based Demand Response Mechanism for Electric Water Heater System

    Directory of Open Access Journals (Sweden)

    Bo Lin

    2017-10-01

    Full Text Available This paper investigates how to develop a learning-based demand response approach for electric water heater in a smart home that can minimize the energy cost of the water heater while meeting the comfort requirements of energy consumers. First, a learning-based, data-driven model of an electric water heater is developed by using a nonlinear autoregressive network with external input (NARX using neural network. The model is updated daily so that it can more accurately capture the actual thermal dynamic characteristics of the water heater especially in real-life conditions. Then, an optimization problem, based on the NARX water heater model, is formulated to optimize energy management of the water heater in a day-ahead, dynamic electricity price framework. A genetic algorithm is proposed in order to solve the optimization problem more efficiently. MATLAB (R2016a is used to evaluate the proposed learning-based demand response approach through a computational experiment strategy. The proposed approach is compared with conventional method for operation of an electric water heater. Cost saving and benefits of the proposed water heater energy management strategy are explored.

  9. 46 CFR 52.01-35 - Auxiliary, donkey, fired thermal fluid heater, and heating boilers.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Auxiliary, donkey, fired thermal fluid heater, and... (CONTINUED) MARINE ENGINEERING POWER BOILERS General Requirements § 52.01-35 Auxiliary, donkey, fired thermal... requirements for miscellaneous boiler types, such as donkey, fired thermal fluid heater, heating boiler, etc...

  10. 76 FR 63211 - Energy Efficiency Program: Test Procedures for Residential Water Heaters, Direct Heating...

    Science.gov (United States)

    2011-10-12

    ... DEPARTMENT OF ENERGY 10 CFR Part 430 [Docket Number EERE-2011-BT-TP-0042] RIN 1904-AC53 Energy Efficiency Program: Test Procedures for Residential Water Heaters, Direct Heating Equipment, and Pool Heaters AGENCY: Office of Energy Efficiency and Renewable Energy, Department of Energy. ACTION: Request for...

  11. Report of the workshop Energy Utility and Solar Water Heater 1993

    International Nuclear Information System (INIS)

    1993-01-01

    The title workshop was organized to increase the interest of energy utilities for the Solar Water Heater campaign by providing representatives of the utilities with information about the technical and marketing aspects of solar boilers, and to stimulate knowledge transfer between the energy utilities about the method, the possibilities and bottlenecks of solar water heater projects

  12. Thermomechanical behavior of graphite and coating materials subjected to a high heat flux

    Energy Technology Data Exchange (ETDEWEB)

    Ioki, K.; Yamada, M.; Nishikawa, M.; Uchikawa, T.; Onozuka, M.; Yamao, H.

    1987-07-01

    This study has been performed for the development of limiter and divertor plates. Their thermal and thermomechanical behavior were examined in heat load experiments with an electron beam facility, and were compared with analysis results. Graphite was proven to have a high thermal shock resistance. Its erosion thickness and thermal contact conductance were also studied. Copper alloy with coating and graphite brazed to metal were tested, and their feasibility was demonstrated for use as limiter and divertor plates of an advanced-type concept.

  13. Thermomechanical behavior of graphite and coating materials subjected to a high heat flux

    International Nuclear Information System (INIS)

    Ioki, K.; Yamada, M.; Nishikawa, M.; Uchikawa, T.; Onozuka, M.; Yamao, H.

    1987-01-01

    This study has been performed for the development of limiter and divertor plates. Their thermal and thermomechanical behavior were examined in heat load experiments with an electron beam facility, and were compared with analysis results. Graphite was proven to have a high thermal shock resistance. Its erosion thickness and thermal contact conductance were also studied. Copper alloy with coating and graphite brazed to metal were tested, and their feasibility was demonstrated for use as limiter and divertor plates of an advanced-type concept. (orig.)

  14. Energy efficiency improvement and fuel savings in water heaters using baffles

    International Nuclear Information System (INIS)

    Moeini Sedeh, Mahmoud; Khodadadi, J.M.

    2013-01-01

    Highlights: ► Thermal efficiency improved by simple/novel design of baffles inside water reservoir. ► Noticeable steady-state natural gas savings of about 5%. ► Extensive 3-D numerical investigations followed by experimental verifications. ► Baffle designs prototyped in identical water heaters for ANSI/US DOE test protocols. ► Numerical/experimental results verified thermal efficiency improvement and fuel savings. -- Abstract: Thermal efficiency improvement of a water heater was investigated numerically and experimentally in response to presence of a baffle, particularly designed for modifying the flow field within the water reservoir and enhancing heat transfer extracted into the water tank. A residential natural gas-fired water heater was selected for modifying its water tank through introducing a baffle for lowering natural gas consumption by 5% as a target. Based on the geometric features of the selected water heater, three-dimensional models of the water heater subsections were developed. Upon detailed studies of flow and heat transfer in each subsection, various sub-models were integrated to a complete model of the water heater. Thermal performance of the selected water heater was investigated numerically using computational fluid dynamics analysis. Prior to baffle design process and in order to verify the developed model of the water heater, time-dependent numerically-predicted temperatures were compared to the experimentally-measured temperatures under the same conditions at six (6) different locations inside the water tank and good agreement was observed. Upon verifying the numerical model, the fluid flow and heat transfer patterns were characterized for the selected water heater. The overall design of the baffle and its location and orientation were finalized based on the numerical results and a set of parametric studies. Finally, two baffle designs were proposed, with the second design being an optimized version of the first design. The

  15. Analysis of Uncertainties in Protection Heater Delay Time Measurements and Simulations in Nb$_{3}$Sn High-Field Accelerator Magnets

    CERN Document Server

    Salmi, Tiina; Marchevsky, Maxim; Bajas, Hugo; Felice, Helene; Stenvall, Antti

    2015-01-01

    The quench protection of superconducting high-field accelerator magnets is presently based on protection heaters, which are activated upon quench detection to accelerate the quench propagation within the winding. Estimations of the heater delay to initiate a normal zone in the coil are essential for the protection design. During the development of Nb3Sn magnets for the LHC luminosity upgrade, protection heater delays have been measured in several experiments, and a new computational tool CoHDA (Code for Heater Delay Analysis) has been developed for heater design. Several computational quench analyses suggest that the efficiency of the present heater technology is on the borderline of protecting the magnets. Quantifying the inevitable uncertainties related to the measured and simulated delays is therefore of pivotal importance. In this paper, we analyze the uncertainties in the heater delay measurements and simulations using data from five impregnated high-field Nb3Sn magnets with different heater geometries. ...

  16. Analysis of Uncertainties in Protection Heater Delay Time Measurements and Simulations in Nb$_{3}$Sn High-Field Accelerator Magnets

    CERN Document Server

    Salmi, Tiina; Marchevsky, Maxim; Bajas, Hugo; Felice, Helene; Stenvall, Antti

    2015-01-01

    The quench protection of superconducting high-field accelerator magnets is presently based on protection heaters, which are activated upon quench detection to accelerate the quench propagation within the winding. Estimations of the heater delay to initiate a normal zone in the coil are essential for the protection design. During the development of Nb$_{3}$Sn magnets for the LHC luminosity upgrade, protection heater delays have been measured in several experiments, and a new computational tool CoHDA (Code for Heater Delay Analysis) has been developed for heater design. Several computational quench analyses suggest that the efficiency of the present heater technology is on the borderline of protecting the magnets. Quantifying the inevitable uncertainties related to the measured and simulated delays is therefore of pivotal importance. In this paper, we analyze the uncertainties in the heater delay measurements and simulations using data from five impregnated high-field Nb$_{3}$Sn magnets with different heater ge...

  17. Electrochemical corrosion protection of storage water heaters in the building services; Elektrochemischer Korrosionsschutz von Speicher-Wassererwaermern in der Gebaeudetechnik

    Energy Technology Data Exchange (ETDEWEB)

    Bytyn, Wilfried [MAGONTEC GmbH, Bottrop (Germany)

    2012-06-15

    Storage water heaters currently experience a new consideration as a central thermal energy storage with an energy buffer characteristics. The contribution under consideration presents the principles and conditions of use for the cathodic corrosion protection of storage water heaters.

  18. Protection Heater Design Validation for the LARP Magnets Using Thermal Imaging

    CERN Document Server

    Marchevsky, M; Cheng, D W; Felice, H; Sabbi, G; Salmi, T; Stenvall, A; Chlachidze, G; Ambrosio, G; Ferracin, P; Izquierdo Bermudez, S; Perez, J C; Todesco, E

    2016-01-01

    Protection heaters are essential elements of a quench protection scheme for high-field accelerator magnets. Various heater designs fabricated by LARP and CERN have been already tested in the LARP high-field quadrupole HQ and presently being built into the coils of the high-field quadrupole MQXF. In order to compare the heat flow characteristics and thermal diffusion timescales of different heater designs, we powered heaters of two different geometries in ambient conditions and imaged the resulting thermal distributions using a high-sensitivity thermal video camera. We observed a peculiar spatial periodicity in the temperature distribution maps potentially linked to the structure of the underlying cable. Two-dimensional numerical simulation of heat diffusion and spatial heat distribution have been conducted, and the results of simulation and experiment have been compared. Imaging revealed hot spots due to a current concentration around high curvature points of heater strip of varying cross sections and visuali...

  19. Remote Visual Testing (RVT) for the diagnostic inspection of feedwater heaters

    International Nuclear Information System (INIS)

    Nugent, M.J.; Pellegrino, B.A.

    1993-01-01

    Feedwater heaters are an important component in the overall plant heat rate, reliability, availability, performance and maintenance considerations at power stations. The ability to diagnose heater problems in-situ properly can lead to: (1) Preventative plugging of damaged, but unfailed tubes; (2) In-place repair procedures; (3) Incorporation of corrective actions into replacement designs or heater/unit operations. The benefits and limitations of Non-Destructive Testing (NDT) on feedwater heaters are briefly reviewed. All Remote Visual Testing (RVT) including borescopes, fiberscopes, videoborescopes and Closed Circuit Television (CCTV) cameras are discussed along with currently accepted formats for documentation. The benefits of a comprehensive in-place inspection involving Remote Visual Testing are discussed in relationship to its diagnostic capabilities. The results of eight post-service heater inspections are discussed along with the root cause of failure of seven unique failure mechanisms. These inspections, including FWH access, RVT tool and data analysis, are detailed. 13 figs

  20. Finite element analyses of a heater-interruption in the HAW test field

    International Nuclear Information System (INIS)

    Horn, B.A. van den.

    1991-09-01

    In this report the results of two finite element analyses of the HAW field are presented. The determination of the influence of a heater-interruption on the tube load as well as the differences in the evaluation of the tube load for both types of boreholes (type A and type B) are the main objectives of this report. Axisymmetric models are made for both type of boreholes in order to simulate this heater-interruption. It appeared that a heater-interruption of 4 hours leads to a temperature drop of 17.2deg C at the borehole wall and to a maximum reduction of the tube load of 1.76 MPa. About 20 days after reparation of the heaters of the heaters the evolution of the maximum temperature and the maximum tube load will be rehabilitated; the difference with the corresponding evolutions due to an uninterrupted heat-production are negligible. (author). 9 refs.; 25 figs.; 5 tabs

  1. Channel uranium-graphite reactor mounting

    International Nuclear Information System (INIS)

    Polushkin, K.K.; Kuznetsov, A.G.; Zheleznyakov, B.N.

    1981-01-01

    According to theoretical principles of general engineering technology the engineering experience of construction-mounting works at the NPP with channel uranium-graphite reactors is systematized. Main parameters and structural features of the 1000 MW channel uranium-graphite reactors are considered. The succession of mounting operations, premounting equipment and pipelines preparation and mounting works technique are described. The most efficient methods of fitting, welding and machining of reactor elements are recommended. Main problems of technical control service are discussed. A typical netted diagram of main equipment of channel uranium-graphite reactors mounting is given

  2. Synthesis of soluble graphite and graphene.

    Science.gov (United States)

    Kelly, K F; Billups, W E

    2013-01-15

    Because of graphene's anticipated applications in electronics and its thermal, mechanical, and optical properties, many scientists and engineers are interested in this material. Graphene is an isolated layer of the π-stacked hexagonal allotrope of carbon known as graphite. The interlayer cohesive energy of graphite, or exfoliation energy, that results from van der Waals attractions over the interlayer spacing distance of 3.34 Å (61 meV/C atom) is many times weaker than the intralayer covalent bonding. Since graphene itself does not occur naturally, scientists and engineers are still learning how to isolate and manipulate individual layers of graphene. Some researchers have relied on the physical separation of the sheets, a process that can sometimes be as simple as peeling of sheets from crystalline graphite using Scotch tape. Other researchers have taken an ensemble approach, where they exploit the chemical conversion of graphite to the individual layers. The typical intermediary state is graphite oxide, which is often produced using strong oxidants under acidic conditions. Structurally, researchers hypothesize that acidic functional groups functionalize the oxidized material at the edges and a network of epoxy groups cover the sp(2)-bonded carbon network. The exfoliated material formed under these conditions can be used to form dispersions that are usually unstable. However, more importantly, irreversible defects form in the basal plane during oxidation and remain even after reduction of graphite oxide back to graphene-like material. As part of our interest in the dissolution of carbon nanomaterials, we have explored the derivatization of graphite following the same procedures that preserve the sp(2) bonding and the associated unique physical and electronic properties in the chemical processing of single-walled carbon nanotubes. In this Account, we describe efficient routes to exfoliate graphite either into graphitic nanoparticles or into graphene without

  3. Adsorption of lead over graphite oxide.

    Science.gov (United States)

    Olanipekun, Opeyemi; Oyefusi, Adebola; Neelgund, Gururaj M; Oki, Aderemi

    2014-01-24

    The adsorption efficiency and kinetics of removal of lead in presence of graphite oxide (GO) was determined using the Atomic Absorption Spectrophotometer (AAS). The GO was prepared by the chemical oxidation of graphite and characterized using FTIR, SEM, TGA and XRD. The adsorption efficiency of GO for the solution containing 50, 100 and 150 ppm of Pb(2+) was found to be 98%, 91% and 71% respectively. The adsorption ability of GO was found to be higher than graphite. Therefore, the oxidation of activated carbon in removal of heavy metals may be a viable option to reduce pollution in portable water. Published by Elsevier B.V.

  4. Interface structure between tetraglyme and graphite

    Science.gov (United States)

    Minato, Taketoshi; Araki, Yuki; Umeda, Kenichi; Yamanaka, Toshiro; Okazaki, Ken-ichi; Onishi, Hiroshi; Abe, Takeshi; Ogumi, Zempachi

    2017-09-01

    Clarification of the details of the interface structure between liquids and solids is crucial for understanding the fundamental processes of physical functions. Herein, we investigate the structure of the interface between tetraglyme and graphite and propose a model for the interface structure based on the observation of frequency-modulation atomic force microscopy in liquids. The ordering and distorted adsorption of tetraglyme on graphite were observed. It is found that tetraglyme stably adsorbs on graphite. Density functional theory calculations supported the adsorption structure. In the liquid phase, there is a layered structure of the molecular distribution with an average distance of 0.60 nm between layers.

  5. Status of Chronic Oxidation Studies of Graphite

    Energy Technology Data Exchange (ETDEWEB)

    Contescu, Cristian I. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mee, Robert W. [Univ. of Tennessee, Knoxville, TN (United States)

    2016-05-01

    Graphite will undergo extremely slow, but continuous oxidation by traces of moisture that will be present, albeit at very low levels, in the helium coolant of HTGR. This chronic oxidation may cause degradation of mechanical strength and thermal properties of graphite components if a porous oxidation layer penetrates deep enough in the bulk of graphite components during the lifetime of the reactor. The current research on graphite chronic oxidation is motivated by the acute need to understand the behavior of each graphite grade during prolonged exposure to high temperature chemical attack by moisture. The goal is to provide the elements needed to develop predictive models for long-time oxidation behavior of graphite components in the cooling helium of HTGR. The tasks derived from this goal are: (1) Oxidation rate measurements in order to determine and validate a comprehensive kinetic model suitable for prediction of intrinsic oxidation rates as a function of temperature and oxidant gas composition; (2) Characterization of effective diffusivity of water vapor in the graphite pore system in order to account for the in-pore transport of moisture; and (3) Development and validation of a predictive model for the penetration depth of the oxidized layer, in order to assess the risk of oxidation caused damage of particular graphite grades after prolonged exposure to the environment of helium coolant in HTGR. The most important and most time consuming of these tasks is the measurement of oxidation rates in accelerated oxidation tests (but still under kinetic control) and the development of a reliable kinetic model. This report summarizes the status of chronic oxidation studies on graphite, and then focuses on model development activities, progress of kinetic measurements, validation of results, and improvement of the kinetic models. Analysis of current and past results obtained with three grades of showed that the classical Langmuir-Hinshelwood model cannot reproduce all

  6. Preparation and tribological properties of self-lubricating TiO2/graphite composite coating on Ti6Al4V alloy

    International Nuclear Information System (INIS)

    Mu, Ming; Zhou, Xinjian; Xiao, Qian; Liang, Jun; Huo, Xiaodi

    2012-01-01

    Highlights: ► A TiO 2 /graphite composite coating is produced on Ti alloy by one-step PEO process. ► The TiO 2 /graphite composite coating exhibits excellent self-lubricating behavior. ► The self-lubricating composite coating improves the wear resistance by comparison to the conventional PEO coating. - Abstract: One-step plasma electrolytic oxidation (PEO) process in a graphite-dispersed phosphate electrolyte was used to prepare a graphite-containing oxide composite coating on Ti6Al4V alloy. The composition and microstructure of the oxide coatings produced in the phosphate electrolytes with and without addition of graphite were analyzed by X-ray diffractometer (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). The tribological properties of the uncoated Ti6Al4V alloy and oxide coatings were evaluated using a reciprocating ball-on-disk tribometer. Results showed that the graphite-containing oxide composite coating can be successfully produced on Ti6Al4V alloy in the graphite-dispersed phosphate electrolyte using PEO process. The graphite-containing oxide composite coating registered much lower friction coefficient and wear rate than the uncoated Ti6Al4V alloy and the oxide coating without graphite under dry sliding condition, exhibiting excellent self-lubricating property.

  7. Graphite and carbon/carbon components for hot gas ducts

    International Nuclear Information System (INIS)

    Popp, G.; Gruber, U.; Boeder, H.; Janssen, K.

    1984-01-01

    The large coal reserves in the Federal Republic of Germany and the uncertainty of the future energy situation on the world market make it appear sound policy to devote some thought to the gasification of coal. For certain chemical processes, moreover, it would be advantageous to have a reasonably priced source of process heat available. In the Federal Republic of Germany this process heat shall be produced in a high-temperature nuclear reactor (HTR), the primary heating temperatures being in the range between 950 deg. C and 1050 deg. C. One serious problem in utilisation of high temperature heat is the resistance of the construction materials. Ceramic materials with high temperature resistance are considered. The material includes graphite and CC carbon fibre reinforced carbon. As a result of the project promoted by Ministerium fur Wirtschaft (Federal Republic of Germany) it has been demonstrated that both CC and graphite manufactured by SIGRI GmbH are well suited for use in high temperature reactors

  8. Determination of trace amounts of cadmium in zirconium and its alloys by graphite furnace AAS

    International Nuclear Information System (INIS)

    Takashima, Kyoichiro; Toida, Yukio

    1994-01-01

    Trace amount of cadmium in zirconium and its alloys was determined by graphite furnace atomic absorption spectrometry (GF-AAS) after ion exchange separation. A 2g chip sample was decomposed with 20ml of hydrofluoric acid (1+9) and a few drops of nitric acid. A trace amount of cadmium was separated from zirconium by strongly acidic cation-exchange resin (MCI GEL CK 08P) using 50ml of hydrochloric acid as an eluent. The solution was gently evaporated to dryness on an electric hot plate heater and under an infrared lamp. The residue was dissolved in 1ml of nitric acid (1+14) and diluted to 10ml in a volumetric glass flask with distilled water. Ten microliters of this solution was injected into a graphite furnace and then atomized at 2200degC for 4s in argon at a flow rate of 3.0l/min. Acids used in the analytical procedure were purified by azeotropic distillation and cation-exchange resin. The limit of determination (3σ BK ) for cadmium was 0.5ngCd/g and the relative standard deviation (RSD) at 1ngCd/g level was less than 20% for the GF-AAS. The accuracy of this technique was confirmed by NIST SRM 1643b (trace elements in water). (author)

  9. Performance of AC/graphite capacitors at high weight ratios of AC/graphite

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hongyu [IM and T Ltd., Advanced Research Center, Saga University, 1341 Yoga-machi, Saga 840-0047 (Japan); Yoshio, Masaki [Advanced Research Center, Department of Applied Chemistry, Saga University, 1341 Yoga-machi, Saga 840-0047 (Japan)

    2008-03-01

    The effect of negative to positive electrode materials' weight ratio on the electrochemical performance of both activated carbon (AC)/AC and AC/graphite capacitors has been investigated, especially in the terms of capacity and cycle-ability. The limited capacity charge mode has been proposed to improve the cycle performance of AC/graphite capacitors at high weight ratios of AC/graphite. (author)

  10. Characterization of radiation damage induced by swift heavy ions in graphite

    Energy Technology Data Exchange (ETDEWEB)

    Hubert, Christian

    2016-05-15

    Graphite is a classical material in neutron radiation environments, being widely used in nuclear reactors and power plants as a moderator. For high energy particle accelerators, graphite provides ideal material properties because of the low Z of carbon and its corresponding low stopping power, thus when ion projectiles interact with graphite is the energy deposition rather low. This work aims to improve the understanding of how the irradiation with swift heavy ions (SHI) of kinetic energies in the range of MeV to GeV affects the structure of graphite and other carbon-based materials. Special focus of this project is given to beam induced changes of thermo-mechanical properties. For this purpose the Highly oriented pyrolytic graphite (HOPG) and glassy carbon (GC) (both serving as model materials), isotropic high density polycrystalline graphite (PG) and other carbon based materials like carbon fiber carbon composites (CFC), chemically expanded graphite (FG) and molybdenum carbide enhanced graphite composites (MoC) were exposed to different ions ranging from {sup 131}Xe to {sup 238}U provided by the UNILAC accelerator at GSI in Darmstadt, Germany. To investigate structural changes, various in-situ and off-line measurements were performed including Raman spectroscopy, x-ray diffraction and x-ray photo-electron spectroscopy. Thermo-mechanical properties were investigated using the laser-flash-analysis method, differential scanning calorimetry, micro/nano-indentation and 4-point electrical resistivity measurements. Beam induced stresses were investigated using profilometry. Obtained results provided clear evidence that ion beam-induced radiation damage leads to structural changes and degradation of thermal, mechanical and electrical properties of graphite. PG transforms towards a disordered sp2 structure, comparable to GC at high fluences. Irradiation-induced embrittlement is strongly reducing the lifetime of most high-dose exposed accelerator components. For

  11. Towards graphite-free hot zone for directional solidification of silicon

    Science.gov (United States)

    Dropka, Natasha; Buchovska, Iryna; Herrmann-Geppert, Iris; Klimm, Detlef; Kiessling, Frank M.; Degenhardt, Ulrich

    2018-06-01

    The reduction of SiC, Si3N4 and transition metals impurities in directionally solidified Si ingots poses one of the crucial challenges in the solar cells production. Particularly strong contamination comes from the graphite parts in the hot zone. Therefore, we selected three massive ceramic materials to replace graphite, developed the novel design of the crucible support and cover and compared the crystals grown in them with ingots from the standard graphite design. The experiments were performed for phosphorus n-doped silicon of G0 size. The ingots were compared with respect to O- and C-content, metal impurities, resistivity and lifetime. The superior performance of TiC relative to other ceramics was observed, particularly due to the lower concentration of substitutional carbon in Si ingot (up to 2.6 times) and the higher minority carrier lifetime of (up to 4.4 times) with narrow red zones.

  12. Mechanical and tribological properties of acrylonitrile–butadiene rubber filled with graphite and carbon black

    International Nuclear Information System (INIS)

    Wang, Lei Lei; Zhang, Li Qun; Tian, Ming

    2012-01-01

    Highlights: ► Graphite/carbon black/rubber micro- and nano-composites were prepared. ► Nanocomposites showed better mechanical properties and wear resistance. ► The effect of load and sliding speed on friction and wear is significant. ► Graphite lubricant film can reduce friction coefficient and wear rate. -- Abstract: In this work, acrylonitrile–butadiene rubber (NBR)/expanded graphite (EG)/carbon black (CB) micro- and nanocomposites were prepared by two different methods, and the resulting mechanical and tribological properties were compared with those of NBR/CB composites. Meanwhile, the effects of graphite dispersion and loading content, as well as the applied load and sliding velocity on the tribological behavior of the above composites under dry friction condition were also evaluated. The worn surfaces were analyzed by scanning electron microscopy (SEM) to disclose wear mechanism. As expected, the better the dispersion of graphite, the more remarkable enhancement on tensile and dynamic mechanical properties, and the greater reduction in the coefficient of friction (COF) and specific wear rate (W s ). It was found that a small amount of EG could effectively decrease COF and W s of NBR/CB composites because of the formation of graphite lubricant films. The COF and W s of NBR/CB/EG composites show a decreasing trend with a rise in applied load and sliding velocity. NBR/CB/EG nanocomposite always shows a stable wearing process with relatively low COF and W s . It is thought that well-dispersed graphite nano-sheets were beneficial to the formation of a fine and durable lubricant film.

  13. Management of radioactive waste in nuclear power: handling of irradiated graphite from water-cooled graphite reactors

    International Nuclear Information System (INIS)

    Anfimov, S.S.

    2001-01-01

    In this paper an radioactive waste processing of graphite from graphite moderated nuclear reactors at its decommissioning is discussed. Methods of processing of irradiated graphite are presented. It can be concluded that advanced methods for graphite radioactive waste handling are available nowadays. Implementation of these methods will allow to enhance environmental safety of nuclear power that will benefit its progress in the future

  14. A Graphite Isotope Ratio Method: A Primer on Estimating Plutonium Production in Graphite Moderated Reactors

    International Nuclear Information System (INIS)

    Gesh, Christopher J.

    2004-01-01

    The Graphite Isotope Ratio Method (GIRM) is a technique used to estimate the total plutonium production in a graphite-moderated reactor. The cumulative plutonium production in that reactor can be accurately determined by measuring neutron irradiation induced isotopic ratio changes in certain impurity elements within the graphite moderator. The method does not require detailed knowledge of a reactor's operating history, although that knowledge can decrease the uncertainty of the production estimate. The basic premise of the Graphite Isotope Ratio Method is that the fluence in non-fuel core components is directly related to the cumulative plutonium production in the nuclear fuel

  15. Policy development for solar water heaters: the case of Lebanon

    International Nuclear Information System (INIS)

    Chedid, R.B.

    2000-01-01

    Full text.The electric energy demand in Lebanon is estimated to grow at an average of 3-5% per year for the coming 10 years. Such an increase in energy demand is problematic for Lebanon since its economy is almost totally dependent on imported fuel which contributes to 97% of the overall energy requirements. Solar water heaters (SWH) are regarded as the most important element in a long term energy conservation and management strategy for this country, but their promotion is a national issue requiring the participation of many stake holders and decision makers. Additionally, the success of solar energy penetration into the existing energy market is constrained by many factors such as technical and financial limitations, decision criteria and policy instruments. This paper will explore the feasibility of SWH, and will work out, using the Analytic Hierarchy Process technique, a policy to ensure a large scale diffusion of SWH in the energy market

  16. Leak Detection of High Pressure Feedwater Heater Using Empirical Models

    International Nuclear Information System (INIS)

    Lee, Song Kyu; Kim, Eun Kee; Heo, Gyun Young; An, Sang Ha

    2009-01-01

    Even small leak from tube side or pass partition within the high pressure feedwater heater (HPFWH) causes a significant deficiency in its performance. Plant operation under the HPFWH leak condition for long time will result in cost increase. Tube side leak within HPFWH can produce the high velocity jet of water and it can cause neighboring tube failures. However, most of plants are being operated without any information for internal leaks of HPFWH, even though it is prone to be damaged under high temperature and high pressure operating conditions. Leaks from tubes and/or pass partition of HPFWH occurred in many nuclear power plants, for example, Mihama PS-2, Takahama PS-2 and Point Beach Nuclear Plant Unit 1. If the internal leaks of HPFWH are monitored, the cost can be reduced by inexpensive repairs relative to loss in performance and moreover plant shutdown as well as further tube damages can be prevented

  17. Synthesis of graphene nanoplatelets from peroxosulfate graphite intercalation compounds

    OpenAIRE

    MELEZHYK A.V.; TKACHEV A.G.

    2014-01-01

    Ultrasonic exfoliation of expanded graphite compound obtained by cold expansion of graphite intercalated with peroxodisulfuric acid was shown to allow the creation of graphene nanoplatelets with thickness of about 5-10 nm. The resulting graphene material contained surface oxide groups. The expanded graphite intercalation compound was exfoliated by ultrasound much easier than thermally expanded graphite. A mechanism for the cleavage of graphite to graphene nanoplatelets is proposed. It include...

  18. Graphite reactor physics; Physique des piles a graphite

    Energy Technology Data Exchange (ETDEWEB)

    Bacher, P; Cogne, F [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires; Noc, B [Electricite de France (EDF), 75 - Paris (France)

    1964-07-01

    The study of graphite-natural uranium power reactor physics, undertaken ten years ago when the Marcoule piles were built, has continued to keep in step with the development of this type of pile. From 1960 onwards the critical facility Marius has been available for a systematic study of the properties of lattices as a function of their pitch, of fuel geometry and of the diameter of cooling channels. This study has covered a very wide field: lattice pitch varying from 19 to 38 cm. uranium rods and tubes of cross-sections from 6 to 35 cm{sup 2}, channels with diameters between 70 and 140 mm. The lattice calculation methods could thus be checked and where necessary adapted. The running of the Marcoule piles and the experiments carried out on them during the last few years have supplied valuable information on the overall evolution of the neutronic properties of the fuel as a function of irradiation. More detailed experiments have also been performed in Marius with plutonium-containing fuels (irradiated or synthetic fuels), and will be undertaken at the beginning of 1965 at high temperature in the critical facility Cesar, which is just being completed at Cadarache. Spent fuel analyses complement these results and help in their interpretation. The thermalization and spectra theories developed in France can thus be verified over the whole valid temperature range. The efficiency of control rods as a function of their dimensions, the materials of which they are made and the lattices surrounding them has been measured in Marius, and the results compared with calculation on the one hand and with the measurements carried out in EDF 1 on the other. Studies on the control proper of graphite piles were concerned essentially with the risks of spatial instability and the means of detecting and controlling them, and with flux distortions caused by the control rods. (authors) [French] Entreprise il y a dix ans a l'occasion de la construction des piles de Marcoule, l'etude de la

  19. Ferromagnetic material inspection for feedwater heater and condenser tubes

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    In recent years, special ferritic stainless steels, such as AL29-4C/sup TM/, Sea-Cure/sup TM/, E-Brite/sup TM/, 439, and similar alloys have been introduced as tube material in condensers, feedwater heaters, moisture separator/reheaters, and other heat exchangers. In addition, carbon steel tubes are widely used in feedwater heaters and heat exchangers in chemical plants. The main problem with the in-service inspection of these ferritic alloys and carbon steel tubes lies in their highly ferromagnetic properties. These properties severely limit the application of the standard eddy current techniques. The effort was undertaken under EPRI sponsorship to develop a reliable technique for in-service inspection of ferromagnetic tubes. The new method combines the measurement of magnetic flux leakage generated around the defects with measurement of total flux in the tube wall. The heart of the inspection system is a special ID probe that magnetizes the tube and generates signals for any tube defect. A permanent record of inspection is provided with a strip-chart or magnetic tape recorder. The laboratory and field evaluation of this new system demonstrated its very good sensitivity to small defects, its reliability, and its ruggedness. Defects as small as 10% external wall loss in heavy wall carbon steel tube were detected. Tubes in the power plant were inspected at a rate of 300-500 tubes per eight-hour shift. The other advantages of this newly developed technique are its simplicity, low cost of instrumentation, easy data interpretation, and full portability

  20. Design and stability limits of the HPLWR re-heater

    International Nuclear Information System (INIS)

    Herbell, H.; Class, A.; Starflinger, J.; Schulenberg, T.

    2010-01-01

    The High Performance Light Water Reactor (HPLWR) is a particular design study of a supercritical water cooled reactor. A heat exchanger design has been proposed for the re-heater as a shell-and-tube heat exchanger. Inside the tubes fluid undergoes pseudo-condensing, e.g. it changes its density from steam-like to liquid-like properties (from 80 kg/m 3 to 582 kg/m 3 ) at supercritical pressure, whereas the shell side superheats intermediate pressure steam. For sub-critical pressures an instability has been reported by Goodykoontz and Dorsch (19679. The experiment exhibits unstable steam condensation in case of downward flow inside a tube of 7.4 mm diameter and 2.42 m length in some specific cases. The counter-current condenser was cooled with water flowing in an annulus surrounding the condenser tube. This experiment motivates the current investigation of instabilities for supercritical pseudo-condensation. The study includes static instabilities, i.e. Ledingegg instability and flow maldistribution of the parallel tubes, as well as pressure drop oscillations. At the present stage, no instabilities are predicted for the specific operation conditions of the HPLWR. The commercial system code APROS is used to perform one dimensional transient simulations of the described experiment to understand the physical mechanism. These simulations show that choking flow initiates the pressure oscillations. These periodically change steam temperatures, and consequently the condensation rate. In turn, this modifies the sound speed which is responsible for choking. Condensate reverse flow at choked conditions triggers the pressure waves. APROS simulations and experimental results agree well both in pressure amplitude and frequency. APROS simulations at supercritical pressure conditions did not exhibit any instability as the fluid velocity is clearly sub-sonic in the entire HPLWR re-heater. (authors)

  1. Low-Temperature Baseboard Heaters in Built Environments

    Energy Technology Data Exchange (ETDEWEB)

    Ploskic, Adnan

    2010-10-15

    The European Union has adopted a plan to decrease 20 % of total energy consumption through improved energy efficiency by 2020. One way of achieving this challenging goal may be to use efficient water-based heating systems supplied by heat pumps or other sustainable systems. The goal of this research was to analyze and improve the thermal performance of water-based baseboard heaters at low-temperature water supply. Both numerical (CFD) and analytical simulations were used to investigate the heat efficiency of the system. An additional objective of this work was to ensure that the indoor thermal comfort was satisfied in spaces served by such a low-temperature heating system. Analyses showed that it was fully possible to cover both transmission and ventilation heat losses using baseboard heaters supplied by 45 deg C water flow. The conventional baseboards, however, showed problems in suppressing the cold air down-flow created by 2.0 m high glazing and an outdoor temperature of -12 deg C. The draught discomfort at ankle level was slightly above the upper limit recommended by international and national standards. On the other hand, thermal baseboards with integrated ventilation air supply showed better ability to neutralize cold downdraught at the same height and conditions. Calculations also showed that the heat output from the integrated system with one ventilation inlet was approximately twice as high as that of the conventional one. The general conclusion from this work was that low temperature baseboards, especially with integrated ventilation air supply, are an efficient heating system and able to be combined with devices that utilize the low-quality sustainable energy sources such as heat pumps

  2. Seismic research on graphite reactor core

    International Nuclear Information System (INIS)

    Lai Shigang; Sun Libin; Zhang Zhengming

    2013-01-01

    Background: Reactors with graphite core structure include production reactor, water-cooled graphite reactor, gas-cooled reactor, high-temperature gas-cooled reactor and so on. Multi-body graphite core structure has nonlinear response under seismic excitation, which is different from the response of general civil structure, metal connection structure or bolted structure. Purpose: In order to provide references for the designing and construction of HTR-PM. This paper reviews the history of reactor seismic research evaluation from certain countries, and summarizes the research methods and research results. Methods: By comparing the methods adopted in different gas-cooled reactor cores, inspiration for our own HTR seismic research was achieved. Results and Conclusions: In this paper, the research ideas of graphite core seismic during the process of designing, constructing and operating HTR-10 are expounded. Also the project progress of HTR-PM and the research on side reflection with the theory of similarity is introduced. (authors)

  3. Review: BNL Tokamak graphite blanket design concepts

    International Nuclear Information System (INIS)

    Fillo, J.A.; Powell, J.R.

    1976-01-01

    The BNL minimum activity graphite blanket designs are reviewed, and three are discussed in the context of an experimental power reactor (EPR) and commercial power reactor. Basically, the three designs employ a 30 cm or thicker graphite screen. Bremsstrahlung energy is deposited on the graphite surface and re-radiated away as thermal radiation. Fast neutrons are slowed down in the graphite, depositing most of their energy, which is then radiated to a secondary blanket with coolant tubes, as in types A and B, or removed by intermittent direct gas cooling (type C). In types A and B, radiation damage to the coolant tubes in the secondary blanket is reduced by one or two orders of magnitude, while in type C, the blanket is only cooled when the reactor is shut down, so that coolant cannot quench the plasma. (Auth.)

  4. Immobilization of Rocky Flats Graphite Fines Residue

    International Nuclear Information System (INIS)

    Rudisill, T.S.

    1999-01-01

    The development of the immobilization process for graphite fines has proceeded through a series of experimental programs. The experimental procedures and results from each series of experiments are discussed in this report

  5. Optical motion control of maglev graphite.

    Science.gov (United States)

    Kobayashi, Masayuki; Abe, Jiro

    2012-12-26

    Graphite has been known as a typical diamagnetic material and can be levitated in the strong magnetic field. Here we show that the magnetically levitating pyrolytic graphite can be moved in the arbitrary place by simple photoirradiation. It is notable that the optical motion control system described in this paper requires only NdFeB permanent magnets and light source. The optical movement is driven by photothermally induced changes in the magnetic susceptibility of the graphite. Moreover, we demonstrate that light energy can be converted into rotational kinetic energy by means of the photothermal property. We find that the levitating graphite disk rotates at over 200 rpm under the sunlight, making it possible to develop a new class of light energy conversion system.

  6. Study on graphite samples for nuclear usage

    International Nuclear Information System (INIS)

    Suarez, J.C.M.; Silva Roseira, M. da

    1994-01-01

    Available as short communication only. The graphite, due to its properties (mechanical strength, thermal conductivity, high-temperature stability, machinability etc.) have many industrial applications, and consequently, an important strategic value. In the nuclear area, it has been used as moderator and reflector of neutrons in the fission process of uranium. The graphite can be produced from many types of carbonaceous materials by a variety of process dominated by the manufactures. This is the reason why there are in the world market a lot of graphite types with different physical and mechanical properties. The present investigation studies some physical characteristics of the graphite samples destined to use in a nuclear reactor. (author). 8 refs, 1 fig, 1 tab

  7. Collective modes in superconducting rhombohedral graphite

    Energy Technology Data Exchange (ETDEWEB)

    Kauppila, Ville [O.V. Lounasmaa Laboratory, Aalto University (Finland); Hyart, Timo; Heikkilae, Tero [University of Jyvaeskylae (Finland)

    2015-07-01

    Recently it was realized that coupling particles with a Dirac dispersion (such as electrons in graphene) can lead to a topologically protected state with flat band dispersion. Such a state could support superconductivity with unusually high critical temperatures. Perhaps the most promising way to realize such coupling in real materials is in the surface of rhombohedrally stacked graphite. We consider collective excitations (i.e. the Higgs modes) in surface superconducting rhombohedral graphite. We find two amplitude and two phase modes corresponding to the two surfaces of the graphite where the superconductivity lives. We calculate the dispersion of these modes. We also derive the Ginzburg-Landau theory for this material. We show that in superconducting rhombohedral graphite, the collective modes, unlike in conventional BCS superconductors, give a large contribution to thermodynamic properties of the material.

  8. Large Scale Reduction of Graphite Oxide

    Data.gov (United States)

    National Aeronautics and Space Administration — This project seeks to develop an optical method to reduce graphite oxide into graphene efficiently and in larger formats than currently available. Current reduction...

  9. Analysis of picosecond pulsed laser melted graphite

    International Nuclear Information System (INIS)

    Steinbeck, J.; Braunstein, G.; Speck, J.; Dresselhaus, M.S.; Huang, C.Y.; Malvezzi, A.M.; Bloembergen, N.

    1986-01-01

    A Raman microprobe and high resolution TEM have been used to analyze the resolidified region of liquid carbon generated by picosecond pulse laser radiation. From the relative intensities of the zone center Raman-allowed mode for graphite at 1582 cm -1 and the disorder-induced mode at 1360 cm -1 , the average graphite crystallite size in the resolidified region is determined as a function of position. By comparison with Rutherford backscattering spectra and Raman spectra from nonosecond pulsed laser melting experiments, the disorder depth for picosecond pulsed laser melted graphite is determined as a function of irradiating energy density. Comparisons of TEM micrographs for nanosecond and picosecond pulsed laser melting experiments show that the structure of the laser disordered regions in graphite are similar and exhibit similar behavior with increasing laser pulse fluence

  10. In-situ electrochemical coating of Ag nanoparticles onto graphite electrode with enhanced performance for Li-ion batteries

    International Nuclear Information System (INIS)

    Yun, Jiaojiao; Wang, Yan; Gao, Tian; Zheng, Huiyuan; Shen, Ming; Qu, Qunting; Zheng, Honghe

    2015-01-01

    The effects of silver hexafluorophosphate (AgPF 6 ) as an electrolyte additive on the electrochemical behaviors of graphite anode are systematically studied by cyclic voltammetry, galvanostatic charge-discharge, and electrochemical impedance spectroscopy. The surface structure and composition of graphite electrode after electrochemical cycles are investigated through scanning electron microscopy, X-ray diffraction, energy dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy. It is found that Ag nanoparticles derived from electrochemical reduction of Ag + are homogenously distributed on the graphite surface. Significant improvements on the discharge capacity, rate behavior, and low-temperature performance of graphite electrode are obtained. The reasons are associated with the decreased resistances of solid-electrolyte interface and charge-transfer process, which improve the electrode kinetics for Li + intercalation/deintercalation

  11. Graphite-based detectors of alkali metals for nuclear power plants

    International Nuclear Information System (INIS)

    Kalandarishvili, A.G.; Kuchukhidze, V.A.; Sordiya, T.D.; Shartava, Sh.Sh.; Stepennov, B.S.

    1993-01-01

    The coolants most commonly used in today's fast reactors are alkali metals or their alloys. A major problem in nuclear plant design is leakproofing of the liquid-metal cooling system, and many leak detection methods and safety specifications have been developed as a result. Whatever the safety standards adopted for nuclear plants in different countries, they all rely on the basic fact that control of the contamination and radiation hazards involved requires reliable monitoring equipment. Results are presented of trials with some leak detectors for the alkali-metal circuits of nuclear reactors. The principal component affecting the detector performance is the sensing element. In the detectors graphite was employed, whose laminar structure enables it to absorb efficiently alkali-metal vapors at high temperatures (320--500 K). This produces a continuous series of alkali-metal-graphite solid solutions with distinct electrical, thermal, and other physical properties. The principle of operation of the detectors resides in the characteristic reactions of the metal-graphite system. One detector type uses the change of electrical conductivity of the graphite-film sensor when it is exposed to alkali-metal vapor. In order to minimize the effect of temperature on the resistance the authors prepared composite layers of graphite intercalated with a donor impurity (cesium or barium), and a graphite-nickel material. The addition of a small percentage of cesium, barium, or nickel produces a material whose temperature coefficient of resistance is nearly zero. Used as a sensing element, such a material can eliminate the need for thermostatic control of the detector

  12. Evaluation of thermal shock strengths for graphite materials using a laser irradiation method

    International Nuclear Information System (INIS)

    Kim, Jae Hoon; Lee, Young Shin; Kim, Duck Hoi; Park, No Seok; Suh, Jeong; Kim, Jeng O.; Il Moon, Soon

    2004-01-01

    Thermal shock is a physical phenomenon that occurs during the exposure to rapidly high temperature and pressure changes or during quenching of a material. The rocket nozzle throat is exposed to combustion gas of high temperature. Therefore, it is important to select suitable materials having the appropriate thermal shock resistance and to evaluate these materials for rocket nozzle design. The material of this study is ATJ graphite, which is the candidate material for rocket nozzle throat. This study presents an experimental method to evaluate the thermal shock resistance and thermal shock fracture toughness of ATJ graphite using laser irradiation. In particular, thermal shock resistance tests are conducted with changes of specimen thickness, with laser source irradiated at the center of the specimen. Temperature distributions on the specimen surface are detected using type K and C thermocouples. Scanning electron microscope (SEM) is used to observe the thermal cracks on specimen surface

  13. Vapour pressure of caesium over nuclear graphite

    International Nuclear Information System (INIS)

    Faircloth, R.L.; Pummery, F.C.W.

    1976-01-01

    The vapour pressure of caesium over a fine-grained isotropic moulded gilsocarbon nuclear graphite intended for use in the manufacture of fuel tubes for the high temperature reactor has been determined as a function of temperature and concentration by means of the Knudsen effusion technique. The concentration range 0 to 10 μg caesium/g graphite was investigated and it was concluded that a Langmuir adsorption situation exists under these conditions. (author)

  14. Elastic properties of graphite and interstitial defects

    International Nuclear Information System (INIS)

    Ayasse, J.-B.

    1977-01-01

    The graphite elastic constants C 33 and C 44 , reflecting the interaction of the graphitic planes, were experimentally measured as a function of irradiation and temperature. A model of non-central strength atomic interaction was established to explain the experimental results obtained. This model is valid at zero temperature. The temperature dependence of the elastic properties was analyzed. The influence of the elastic property variations on the specific heat of the lattice at very low temperature was investigated [fr

  15. Energy evaluations, graphite corrosion in Bugey I

    International Nuclear Information System (INIS)

    Brisbois, J.; Fiche, C.

    1967-01-01

    Bugey I presents a problem of radiolytic corrosion of the graphite by the CO 2 under pressure at high temperature. This report aims to evaluate the energy transferred to the gas by a Bugey I core cell, in normal operating conditions. The water, the carbon oxides and the hydrogen formed quantities are deduced as the consumed graphite and methane. Experimental studies are realized in parallel to validate the presented results. (A.L.B.)

  16. High temperature tests for graphite materials

    OpenAIRE

    Zhmurikov, Evgenij

    2015-01-01

    This study was performed within the framework of the EURISOL for facilities SPIRAL-II (GANIL, France) and SPES (LNL, Italy), and aims to investigate the anticipated strength properties of fine-grained graphite at elevated temperatures. It appears that the major parameters that affect to the lifetime of a graphite target of this IP are the temperature and heating time. High temperature tests were conducted to simulate the heating under the influence of a beam of heavy particles by passing thro...

  17. Improved mechanical and functional properties of elastomer/graphite nanocomposites prepared by latex compounding

    International Nuclear Information System (INIS)

    Yang Jian; Tian Ming; Jia Qingxiu; Shi Junhong; Zhang Liqun; Lim Szuhui; Yu Zhongzhen; Mai Yiuwing

    2007-01-01

    The facile latex approach has been adopted to finely incorporate graphite nanosheets into elastomeric polymer matrix to obtain high-performance elastomeric nanocomposites with improved mechanical properties and functional properties. Scanning electron microscopy, transmission electron microscopy and X-ray diffraction experiments show that the nanostructures of the final nanocomposites exhibit a high degree of exfoliation and intercalation of graphite in the nitrile-butadiene rubber (NBR) matrix. Mechanical and dynamic-mechanical tests demonstrate that the NBR/graphite nanocomposites possess greatly increased elastic modulus and tensile strength, and desirably strong interfaces. The unexpected self-crosslinking of elastomer/graphite nanocomposites was discovered and then verified by oscillating disc rheometry and equilibrium swelling experiments. After critically examining various polymer types by X-ray photoelectron spectroscopy, electron spin resonance and Fourier transform infrared spectroscopy, a radical initiation mechanism was proposed to explain the self-crosslinking reaction. These NBR/graphite nanocomposites possess significantly improved wear resistance and gas barrier properties, and superior electrical/thermal conductivity. Such versatile functional properties make NBR nanocomposites a promising new class of advanced materials

  18. Adsorption of dysprosium on the graphite (0001) surface: Nucleation and growth at 300 K

    International Nuclear Information System (INIS)

    Kwolek, Emma J.; Lii-Rosales, Ann; Lei, Huaping; Wang, Cai-Zhuang; Tringides, Michael C.; Evans, James W.; Wallingford, Mark; Zhou, Yinghui; Thiel, Patricia A.

    2016-01-01

    We have studied nucleation and growth of Dy islands on the basal plane of graphite at 300 K using scanning tunneling microscopy, density functional theory (DFT) in a form that includes van der Waals interactions, and analytic theory. The interaction of atomic Dy with graphite is strong, while the diffusion barrier is small. Experiment shows that at 300 K, the density of nucleated islands is close to the value predicted for homogeneous nucleation, using critical nucleus size of 1 and the DFT-derived diffusion barrier. Homogeneous nucleation is also supported by the monomodal shape of the island size distributions. Comparison with the published island density of Dy on graphene shows that the value is about two orders of magnitude smaller on graphite, which can be attributed to more effective charge screening in graphite. The base of each island is 3 atomic layers high and atomically ordered, forming a coincidence lattice with the graphite. Islands resist coalescence, probably due to multiple rotational orientations associated with the coincidence lattice. Upper levels grow as discernible single-atom layers. Analysis of the level populations reveals significant downward interlayer transport, which facilitates growth of the base. This island shape is metastable, since more compact three-dimensional islands form at elevated growth temperature.

  19. Exfoliated graphite with graphene flakes as potential candidates for TL dosimeters at high gamma doses.

    Science.gov (United States)

    Ortiz-Morales, A; López-González, E; Rueda-Morales, G; Ortega-Cervantez, G; Ortiz-Lopez, J

    2018-06-06

    Graphite powder (GP) subjected to microwave radiation (MWG) results in exfoliation of graphite particles into few-layered graphene flakes (GF) intermixed with partially exfoliated graphite particles (PEG). Characterization of MWG by Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM) and Raman spectroscopy reveal few-layer GF with sizes ranging from 0.2 to 5 µm. Raman D, G, and 2D (G') bands characteristic of graphitic structures include evidence of the presence of bilayered graphene. The thermoluminescent (TL) dosimetric properties of MWG are evaluated and can be characterized as a gamma-ray sensitive and dose-resistant material with kinetic parameters (activation energy for the main peak located at 400 and 408 K is 0.69 and 0.72 eV) and threshold dose (~1 kGy and 5 kGy respectively). MWG is a low-Z material (Z eff = 6) with a wide linear range of TL dose-response (0.170-2.5 kGy) tested at doses in the 1-20 kGy range with promising results for applications in gamma-ray dosimetry. Results obtained in gamma irradiated MWG are compared with those obtained in graphite powder samples (GP) without microwave treatment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Improved mechanical and functional properties of elastomer/graphite nanocomposites prepared by latex compounding

    Energy Technology Data Exchange (ETDEWEB)

    Yang Jian [Key Laboratory for Nano-materials, Beijing University of Chemical Technology, Ministry of Education of China, Beijing 100029 (China); Key Laboratory on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100029 (China); Tian Ming [Key Laboratory for Nano-materials, Beijing University of Chemical Technology, Ministry of Education of China, Beijing 100029 (China); Jia Qingxiu [Key Laboratory on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100029 (China); Shi Junhong [Key Laboratory for Nano-materials, Beijing University of Chemical Technology, Ministry of Education of China, Beijing 100029 (China); Zhang Liqun [Key Laboratory for Nano-materials, Beijing University of Chemical Technology, Ministry of Education of China, Beijing 100029 (China); Key Laboratory on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100029 (China)], E-mail: zhanglq@mail.buct.edu.cn; Lim Szuhui; Yu Zhongzhen [Centre for Advanced Materials Technology (CAMT), School of Aerospace, Mechanical and Mechatronic Engineering (J07), University of Sydney, Sydney, NSW 2006 (Australia); Mai Yiuwing [Centre for Advanced Materials Technology (CAMT), School of Aerospace, Mechanical and Mechatronic Engineering (J07), University of Sydney, Sydney, NSW 2006 (Australia)], E-mail: y.mai@usyd.edu.au

    2007-10-15

    The facile latex approach has been adopted to finely incorporate graphite nanosheets into elastomeric polymer matrix to obtain high-performance elastomeric nanocomposites with improved mechanical properties and functional properties. Scanning electron microscopy, transmission electron microscopy and X-ray diffraction experiments show that the nanostructures of the final nanocomposites exhibit a high degree of exfoliation and intercalation of graphite in the nitrile-butadiene rubber (NBR) matrix. Mechanical and dynamic-mechanical tests demonstrate that the NBR/graphite nanocomposites possess greatly increased elastic modulus and tensile strength, and desirably strong interfaces. The unexpected self-crosslinking of elastomer/graphite nanocomposites was discovered and then verified by oscillating disc rheometry and equilibrium swelling experiments. After critically examining various polymer types by X-ray photoelectron spectroscopy, electron spin resonance and Fourier transform infrared spectroscopy, a radical initiation mechanism was proposed to explain the self-crosslinking reaction. These NBR/graphite nanocomposites possess significantly improved wear resistance and gas barrier properties, and superior electrical/thermal conductivity. Such versatile functional properties make NBR nanocomposites a promising new class of advanced materials.