WorldWideScience

Sample records for graphite reactor quarterly

  1. Graphite materials for nuclear reactors

    International Nuclear Information System (INIS)

    Oku, Tatsuo

    1991-01-01

    Graphite materials have been used in the nuclear fission reactors from the beginning of the reactor development for the speed reduction and reflection of neutron. Graphite materials are used both as a moderator and as a reflector in the core of high temperature gas-cooled reactors, and both as a radiation shielding material and as a reflector in the surrounding of the core for the fast breeder reactor. On the other hand, graphite materials are being positively used as a first wall of plasma as it is known that low Z materials are useful for holding high temperature plasma in the nuclear fusion devices. In this paper the present status of the application of graphite materials to the nuclear fission reactors and fusion devices (reactors) is presented. In addition, a part of results on the related properties to the structural design and safety evaluation and results examined on the subjects that should be done in the future are also described. (author)

  2. Graphite reactor physics

    International Nuclear Information System (INIS)

    Bacher, P.; Cogne, F.

    1964-01-01

    The study of graphite-natural uranium power reactor physics, undertaken ten years ago when the Marcoule piles were built, has continued to keep in step with the development of this type of pile. From 1960 onwards the critical facility Marius has been available for a systematic study of the properties of lattices as a function of their pitch, of fuel geometry and of the diameter of cooling channels. This study has covered a very wide field: lattice pitch varying from 19 to 38 cm. uranium rods and tubes of cross-sections from 6 to 35 cm 2 , channels with diameters between 70 and 140 mm. The lattice calculation methods could thus be checked and where necessary adapted. The running of the Marcoule piles and the experiments carried out on them during the last few years have supplied valuable information on the overall evolution of the neutronic properties of the fuel as a function of irradiation. More detailed experiments have also been performed in Marius with plutonium-containing fuels (irradiated or synthetic fuels), and will be undertaken at the beginning of 1965 at high temperature in the critical facility Cesar, which is just being completed at Cadarache. Spent fuel analyses complement these results and help in their interpretation. The thermalization and spectra theories developed in France can thus be verified over the whole valid temperature range. The efficiency of control rods as a function of their dimensions, the materials of which they are made and the lattices surrounding them has been measured in Marius, and the results compared with calculation on the one hand and with the measurements carried out in EDF 1 on the other. Studies on the control proper of graphite piles were concerned essentially with the risks of spatial instability and the means of detecting and controlling them, and with flux distortions caused by the control rods. (authors) [fr

  3. CALANDRIA TYPE SODIUM GRAPHITE REACTOR

    Science.gov (United States)

    Peterson, R.M.; Mahlmeister, J.E.; Vaughn, N.E.; Sanders, W.J.; Williams, A.C.

    1964-02-11

    A sodium graphite power reactor in which the unclad graphite moderator and fuel elements are contained within a core tank is described. The core tank is submersed in sodium within the reactor vessel. Extending longitudinally through the core thnk are process tubes with fuel elements positioned therein. A bellows sealing means allows axial expansion and construction of the tubes. Within the core tank, a leakage plenum is located below the graphite, and above the graphite is a gas space. A vent line regulates the gas pressure in the space, and another line removes sodium from the plenum. The sodium coolant flows from the lower reactor vessel through the annular space between the fuel elements and process tubes and out into the reactor vessel space above the core tank. From there, the heated coolant is drawn off through an outlet line and sent to the heat exchange. (AEC)

  4. Graphite surveillance in N Reactor

    International Nuclear Information System (INIS)

    Woodruff, E.M.

    1991-09-01

    Graphite dimensional changes in N Reactor during its 24 yr operating history are reviewed. Test irradiation results, block measurements, stack profiles, top of reflector motion monitors, and visual observations of distortion are described. 18 refs., 14 figs., 1 tab

  5. Seismic research on graphite reactor core

    International Nuclear Information System (INIS)

    Lai Shigang; Sun Libin; Zhang Zhengming

    2013-01-01

    Background: Reactors with graphite core structure include production reactor, water-cooled graphite reactor, gas-cooled reactor, high-temperature gas-cooled reactor and so on. Multi-body graphite core structure has nonlinear response under seismic excitation, which is different from the response of general civil structure, metal connection structure or bolted structure. Purpose: In order to provide references for the designing and construction of HTR-PM. This paper reviews the history of reactor seismic research evaluation from certain countries, and summarizes the research methods and research results. Methods: By comparing the methods adopted in different gas-cooled reactor cores, inspiration for our own HTR seismic research was achieved. Results and Conclusions: In this paper, the research ideas of graphite core seismic during the process of designing, constructing and operating HTR-10 are expounded. Also the project progress of HTR-PM and the research on side reflection with the theory of similarity is introduced. (authors)

  6. Nuclear graphite for high temperature reactors

    International Nuclear Information System (INIS)

    Marsden, B.J.

    2001-01-01

    The cores and reflectors in modern High Temperature Gas Cooled Reactors (HTRs) are constructed from graphite components. There are two main designs; the Pebble Bed design and the Prism design. In both of these designs the graphite not only acts as a moderator, but is also a major structural component that may provide channels for the fuel and coolant gas, channels for control and safety shut off devices and provide thermal and neutron shielding. In addition, graphite components may act as a heat sink or conduction path during reactor trips and transients. During reactor operation, many of the graphite component physical properties are significantly changed by irradiation. These changes lead to the generation of significant internal shrinkage stresses and thermal shut down stresses that could lead to component failure. In addition, if the graphite is irradiated to a very high irradiation dose, irradiation swelling can lead to a rapid reduction in modulus and strength, making the component friable.The irradiation behaviour of graphite is strongly dependent on its virgin microstructure, which is determined by the manufacturing route. Nevertheless, there are available, irradiation data on many obsolete graphites of known microstructures. There is also a well-developed physical understanding of the process of irradiation damage in graphite. This paper proposes a specification for graphite suitable for modern HTRs. (author)

  7. Graphite moderated reactor for thermoelectric generation

    International Nuclear Information System (INIS)

    Akazawa, Issei; Yamada, Akira; Mizogami, Yorikata

    1998-01-01

    Fuel rods filled with cladded fuel particles distributed and filled are buried each at a predetermined distance in graphite blocks situated in a reactor core. Perforation channels for helium gas as coolants are formed to the periphery thereof passing through vertically. An alkali metal thermoelectric power generation module is disposed to the upper lid of a reactor container while being supported by a securing receptacle. Helium gas in the coolant channels in the graphite blocks in the reactor core absorbs nuclear reaction heat, to be heated to a high temperature, rises upwardly by the reduction of the specific gravity, and then flows into an upper space above the laminated graphite block layer. Then the gas collides against a ceiling and turns, and flows down in a circular gap around the circumference of the alkali metal thermoelectric generation module. In this case, it transfers heat to the alkali metal thermoelectric generation module. (I.N.)

  8. US graphite reactor D&D experience

    Energy Technology Data Exchange (ETDEWEB)

    Garrett, S.M.K.; Williams, N.C.

    1997-02-01

    This report describes the results of the U.S. Graphite Reactor Experience Task for the Decommissioning Strategy Plan for the Leningrad Nuclear Power Plant (NPP) Unit 1 Study. The work described in this report was performed by the Pacific Northwest National Laboratory (PNNL) for the Department of Energy (DOE).

  9. Fracture toughness of reactor grade graphites, 3

    International Nuclear Information System (INIS)

    Sato, Sennosuke; Awaji, Hideo; Akuzawa, Hironobu; Kon, Junichi.

    1979-01-01

    In our recent papers, we presented a new technique for determining the thermal shock fracture toughness, using a disk specimen with an edge crack. The thermal shock fracture toughness is defined as K sub( ic)k/Eα(K sub( ic) standing for fracture toughness; k for thermal conductivity; E for Young's modulus; α for thermal expansion coefficient) and it can be determined en bloc by measuring the threshold electric power of the arc discharge heating produced when an edge crack propagates in the disk. The value obtained is the fracture toughness corresponding to the thermal shock resistance defined as σk/Eα (σ standing for tensile strength). The experimental data shown in the following discussion concern themselves with four kinds of reactor grade graphite and some varieties of electrode graphite. (author)

  10. JACKETED FUEL ELEMENTS FOR GRAPHITE MODERATED REACTORS

    Science.gov (United States)

    Szilard, L.; Wigner, E.P.; Creutz, E.C.

    1959-05-12

    Fuel elements for a heterogeneous, fluid cooled, graphite moderated reactor are described. The fuel elements are comprised of a body of natural uranium hermetically sealed in a jacket of corrosion resistant material. The jacket, which may be aluminum or some other material which is non-fissionable and of a type having a low neutron capture cross-section, acts as a barrier between the fissioning isotope and the coolant or moderator or both. The jacket minimizes the tendency of the moderator and coolant to become radioactive and/or contaminated by fission fragments from the fissioning isotope.

  11. Developments in natural uranium - graphite reactors

    International Nuclear Information System (INIS)

    Bourgeois, J.

    1964-01-01

    The French natural uranium-graphite power-reactor programme has been developing - from EDF 1 to EDF 4 - in the direction of an increase of the unit power of the installations, of the specific and volume powers, and of an improvement in the operational security conditions. The high power of EDF 4 (500 MWe) and the integration of the primary circuit into the reactor vessel, which is itself made of pre-stressed concrete, make it possible to make the most of the annular fuel elements already in use in EDF 1, and to arrive thus at a very satisfactory solution. The use of an internally cooled fuel element (an annular element) has led to a further step forward: it now becomes possible to increase the pressure of the cooling gas without danger of causing creep in the uranium tube. The use of a pre-stressed concrete vessel makes this pressure increase possible, and the integration of the primary circuit avoids the risk of a rapid depressurization which would be in this case a major danger. This report deals with the main problems presented by this new type of nuclear power station, and gives the main lines of research and studies now being carried out in France. - Neutronic and thermal research has made it possible to consider using large size fuel elements (internal diameter = 77 mm, external diameter 95 mm) while still using natural uranium. - The problems connected with the production of these elements and with their in pile behaviour are the subject of a large programme, both out of pile and in power reactors (EDF 2) and test reactors (Pegase). - The increase in the size of the element leads to a large lattice pitch (35 to 40 cm). This makes it possible to consider having one charging aperture per channel or for a small number of channels, whether the charge machine be inside or outside the pressure vessel. In conclusion are given the main characteristics of a project for a 500 MWe power station using such a fuel element. In particular this project is compared to EDF 4

  12. Dismantling of the DIORIT research reactor - Conditioning of activated graphite.

    Science.gov (United States)

    Sierra Perler, Isabel Cecilia; Beer, Hans-Frieder; Müth, Joachim; Kramer, Andreas

    2017-08-16

    The research reactor DIORIT at the Paul Scherrer Institute was a natural uranium reactor moderated by D 2 O. It was put in operation in 1960 and finally shut down in August 1977. The dismantling project started in 1982 and could be successfully finished on September 11th, 2012. About 40 tons of activated reactor graphite had to be conditioned during the dismantling of this research reactor. The problem of conditioning of activated reactor graphite had not been solved so far worldwide. Therefore a conditioning method considering radiation protection and economic aspects had to be developed. As a result, the graphite was crushed to a particle size smaller than 5 mm and added as sand substitute to a specially developed grout. The produced graphite concrete was used as a matrix for embedding dismantling waste in containers. By conditioning the graphite conventionally, about 58.5 m 3 (13 containers) of waste volume would have been generated. The new PSI invention resulted in no additional waste caused by graphite. Consequently, the resulting waste volume, as well as the costs, were substantially reduced. Copyright © 2017. Published by Elsevier Ltd.

  13. Nonlinear seismic analysis of a graphite reactor core

    International Nuclear Information System (INIS)

    Laframboise, W.L.; Desmond, T.P.

    1988-01-01

    Design and construction of the Department of Energy's N-Reactor located in Richland, Washington was begun in the late 1950s and completed in the early 1960s. Since then, the reactor core's structural integrity has been under review and is considered by some to be a possible safety concern. The reactor core is moderated by graphite. The safety concern stems from the degradation of the graphite due to the effects of long-term irradiation. To assess the safety of the reactor core when subjected to seismic loads, a dynamic time-history structural analysis was performed. The graphite core consists of 89 layers of numerous graphite blocks which are assembled in a 'lincoln-log' lattice. This assembly permits venting of steam in the event of a pressure tube rupture. However, such a design gives rise to a highly nonlinear structure when subjected to earthquake loads. The structural model accounted for the nonlinear interlayer sliding and for the closure and opening of gaps between the graphite blocks. The model was subjected to simulated earthquake loading, and the time-varying response of selected elements critical to safety were monitored. The analytically predicted responses (displacements and strains) were compared to allowable responses to assess margins of safety. (orig.)

  14. Assessment of management modes for graphite from reactor decommissioning

    International Nuclear Information System (INIS)

    White, I.F.; Smith, G.M.; Saunders, L.J.; Kaye, C.J.; Martin, T.J.; Clarke, G.H.; Wakerley, M.W.

    1984-01-01

    A technological and radiological assessment has been made of the management options for irradiated graphite wastes from the decommissioning of Magnox and advanced gas-cooled reactors. Detailed radionuclide inventories have been estimated, the main contribution being from activation of the graphite and its stable impurities. Three different packaging methods for graphite have been described; each could be used for either sea or land disposal, is logistically feasible and could be achieved at reasonable cost. Leaching tests have been carried out on small samples of irradiated graphite under a variety of conditions including those of the deep ocean bed; the different conditions had little effect on the observed leach rates of radiologically significant radionuclides. Radiological assessments were made of four generic options for disposal of packaged graphite: on the deep ocean bed, in deep geologic repositories at two different types of site, and by shallow land burial. Incineration of graphite was also considered, though this option presents logistical problems. With appropriate precautions during the lifetime of the Cobalt-60 content of the graphite, any of the options considered could give acceptably low doses to individuals, and all would merit further investigation in site-specific contexts

  15. Carbon-14 in neutron-irradiated graphite for graphite-moderated reactors. Joint research

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, Kimio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Matsuo, Hideto [Radioactive Waste Management and Nuclear Facility Decommissioning Technology Center, Tokyo (Japan)

    2002-12-01

    The graphite moderated gas cooled reactor operated by the Japan Atomic Power Company was stopped its commercial operation on March 1998, and the decommissioning process has been started. Graphite material is often used as the moderator and the reflector materials in the core of the gas cooled reactor. During the operation, a long life nuclide of {sup 14}C is generated in the graphite by several transmutation reactions. Separation of {sup 14}C isotope and the development of the separation method have been recognized to be critical issues for the decommissioning of the reactor core. To understand the current methodologies for the carbon isotope separation, literature on the subject was surveyed. Also, those on the physical and chemical behavior of {sup 14}C were surveyed. This is because the larger part of the nuclides in the graphite is produced from {sup 14}N by (n,p) reaction, and the location of them in the material tends to be different from those of the other carbon atoms. This report summarizes the result of survey on the open literature about the behavior of {sup 14}C and the separation methods, including the list of the literature on these subjects. (author)

  16. Graphite stack corrosion of BUGEY-1 reactor (synthesis)

    International Nuclear Information System (INIS)

    Petit, A.; Brie, M.

    1996-01-01

    The definitive shutdown date for the BUGEY-1 reactor was May 27th, 1994, after 12.18 full power equivalent years and this document briefly describes some of the feedback of experience from operation of this reactor. The radiolytic corrosion of graphite stack is the major problem for BUGEY-1 reactor, despite the inhibition of the reaction by small quantities of CH 4 added to the coolant gas. The mechanical behaviour of the pile is predicted using the ''INCA'' code (stress calculation), which uses the results of graphite weight loss variation determined using the ''USURE'' code. The weight loss of graphite is determined by annually taking core samples from the channel walls. The results of the last test programme undertaken after the definitive shutdown of BUGEY-1 have enabled an experimental graph to be established showing the evolution of the compression resistance (perpendicular and parallel direction to the extrusion axis) as a function of the weight loss. The numerous analyses, made on the samples carried out in the most sensitive regions, have allowed to verify that no brutal degradation of the mechanical properties of graphite happens for the high value of weight loss up to 40% (maximum weight loss reached locally). (author). 10 refs, 3 figs, 4 tabs

  17. Project accent: graphite irradiated creep in a materials test reactor

    International Nuclear Information System (INIS)

    Brooking, M.

    2014-01-01

    Atkins manages a pioneering programme of irradiation experiments for EDF Energy. One of these projects is Project ACCENT, designed to obtain evidence of a beneficial physical property of the graphite, which may extend the life of the Advanced Gas-cooled Reactors (AGRs). The project team combines the in-house experience of EDF Energy with two supplier organisations (providing the material test reactors and testing facilities) and supporting consultancies (Atkins and an independent technical expert). This paper describes: - Brief summary of the Project; - Discussion of the challenges faced by the Project; and - Conclusion elaborating on the aims of the Project. These challenging experiments use bespoke technology and both un-irradiated (virgin) and irradiated AGR graphite. The results will help to better understand graphite irradiation-induced creep (or stress modified dimensional change) properties and therefore more accurately determine lifetime and safe operating envelopes of the AGRs. The first round of irradiation has been completed, with a second round about to commence. This is a key step to realising the full lifetime ambition for AGRs, demonstrating the relaxation of stresses within the graphite bricks. (authors)

  18. Some equipment for graphite research in swimming pool reactors

    International Nuclear Information System (INIS)

    Seguin, M.; Arragon, Ph.; Dupont, G.; Gentil, J.; Tanis, G.

    1964-01-01

    The irradiation devices described are used for research concerning reactors of the natural uranium type, moderated by graphite and cooled by carbon dioxide. The devices are generally designed for use in swimming pool reactors. The following points have been particularly studied: - maximum use of the irradiation volume, - use of the simplest technological solutions, - standardization of certain constituent parts. This standardization calls for precision machining and careful assembling; these requirements are also true when a relatively low irradiation temperature is required and the nuclear heating is pronounced. Finally, the design of these devices is suitable for the irradiation of other fissile or non-fissile materials. (authors) [fr

  19. Reactor safety research programs. Quarterly progress report, January 1--March 31, 1977

    Energy Technology Data Exchange (ETDEWEB)

    Romano, A.J. (comp.)

    1977-05-01

    The projects reported each quarter are the following: Gas Reactor Safety Evaluation, THOR Code Development, SSC Code Development, LMFBR and LWR Safety Experiments, Fast Reactor Safety Code Validation, Technical Coordination of Structural Integrity, and Fast Reactor Safety Reliability Assessment.

  20. Reactor Safety Research Programs Quarterly Report October - December 1981

    Energy Technology Data Exchange (ETDEWEB)

    Edler, S. K.

    1982-03-01

    This document summarizes the work performed by Pacific Northwest laboratory (PNL) from October 1 through December 31, 1981, for the Division of Accident Evaluation, U.S. Nuclear Regulatory Commission (NRC). Evaluations of nondestructive examination (NDE) techniques and instrumentation are reported; areas of investigation include demonstrating the feasibility of determining the strength of structural graphite, evaluating the feasibility of detecting and analyzing flaw growth in reactor pressure boundary systems, examining NDE reliability and probabilistic fracture mechanics, and assessing the integrity of pressurized water reactor (PWR) steam generator tubes where serviceinduced degradation has been indicated. Experimental data and analytical models are being provided to aid in decision-making regarding pipe-to-pipe impacts following postulated breaks in high-energy fluid system piping. Core thermal models are being developed to provide better digital codes to compute the behavior of full-scale reactor systems under postulated accident conditions. Fuel assemblies and analytical support are being provided for experimental programs at other facilities. These programs include loss-of-coolant accident (LOCA) simulation tests at the NRU reactor, Chalk River, Canada; fuel rod deformation, severe fuel damage, and post accident coolability tests for the ESSOR reactor Super Sara Test Program, lspra, Italy; the instrumented fuel assembly irradiation program at Halden, Norway; and experimental programs at the Power Burst Facility, Idaho National Engineering Laboratory (INEL), Idaho Falls, Idaho. These programs will provide data for computer modeling of reactor system and fuel performance during various abnormal operating conditions.

  1. Reactor Safety Research Programs Quarterly Report July - September 1981

    Energy Technology Data Exchange (ETDEWEB)

    Edler, S. K.

    1982-01-01

    This document summarizes the work performed by Pacific Northwest laboratory (PNL) from July 1 through September 30, 1981, for the Division of Accident Evaluation, U.S. Nuclear Regulatory Commission (NRC). Evaluations of nondestructive examination (NDE) techniques and instrumentation are reported; areas of investigation include demonstrating the feasibility of determining the strength of structural graphite, evaluating the feasibility of detecting and analyzing flaw growth in reactor pressure boundary systems, examining NDE reliability and probabilistic fracture mechanics, and assessing the integrity of pressurized water reactor (PWR} steam generator tubes where service-induced degradation has been indicated. Experimental data and analytical models are being provided to aid in decision-making regarding pipe-to-pipe impacts following postulated breaks in high-energy fluid system piping. Core thermal models are being developed to provide better digital codes to compute the behavior of full-scale reactor systems under postulated accident conditions. Fuel assemblies and analytical support are being provided for experimental programs at other facilities. These programs include loss-of-coolant accident (LOCA) simulation tests at the NRU reactor, Chalk River, Canada; fuel rod deformation, severe fuel damage, and postaccident coolability tests for the ESSOR reactor Super Sara Test Program, lspra, Italy; the instrumented fuel assembly irradiation program at Halden, Norway; and experimental programs at the Power Burst Facility, Idaho National Engineering Laboratory (INEL), Idaho Falls, Idaho. These programs will provide data for computer modeling of reactor system and fuel performance during various abnormal operating conditions.

  2. Reactor Safety Research Programs Quarterly Report April -June 1980

    Energy Technology Data Exchange (ETDEWEB)

    Edler, S. K.

    1980-11-01

    This document summarizes the work performed by Pacific Northwest Laboratory (PNL) from April 1 through June 30, 1980, for the Division of Reactor Safety Research within the Nuclear Regulatory Commission {NRC). Evaluations of nondestructive examination (NDE) techniques and instrumentation are reported; areas of investigation include demonstrating the feasibility of determining structural graphite strength, evaluating the feasibility of detecting and analyzing flaw growth in reactor pressure boundary systems, examining NDE reliability and probabilistic fracture mechanics, and assessing the remaining integrity of pressurized water reactor (PWR) steam generator tubes where service-induced degradation has been indicated. Test assemblies and analytical support are being provided for experimental programs at other facilities. These programs include loss-of-coolant accident (LOCA) simulation tests at the NRU reactor, Chalk River, Canada; fuel rod deformation and postaccident coolability tests for the ESSOR Test Reactor Program, Ispra, Italy; blowdown and reflood tests in the test facility at Cadarache, France; the instrumented fuel assembly irradiation program at Halden, Norway; and experimental programs at the Power Burst Facility, Idaho National Engineering Laboratory (INEL). These programs will provide data for computer modeling of reactor system and fuel performance during various abnormal operating conditions.

  3. Boron coatings on graphite for fusion reactor applications

    International Nuclear Information System (INIS)

    Pierson, H.O.; Mullendore, A.W.

    1979-01-01

    This study is an experimental investigation of boron coatings on graphite and the preliminary determination of some of their physical and nuclear related properties. The boron was obtained by the decomposition of diborane in argon at 500 0 C and one atm. Adhesion to the graphite (POCO AXF-5Q) was good if a slightly abraded surface was provided. The boron was pseudo-amorphous, had high purity with no visually observable porosity and the fractured surface showed no growth features. It was very hard (VHN 25 = 2400 kg/mm 2 ) and had good resistance to hydrogen ion erosion and arcing. It may, therefore, be a suitable candidate for first wall and limiter coatings in tokamak fusion reactors

  4. Design guide for category VI reactors: air-cooled graphite reactors

    Energy Technology Data Exchange (ETDEWEB)

    Brynda, W J; Karol, R; Powell, R W

    1979-02-01

    The purpose of this Design Guide is to provide additional guidance to aid the DOE facility contractor in meeting the requirement that the siting, design, construction, modification, operation, maintenance, and decommissioning of DOE-owned air-cooled graphite reactors be in accordance with generally uniform standards, guides, and codes which are comparable to those applied to similar reactors licensed by the Nuclear Regulatory Commission (NRC).

  5. Irradiated graphite studies prior to decommissioning of G1, G2 and G3 reactors

    International Nuclear Information System (INIS)

    Bonal, J.P.; Vistoli, J.Ph.; Combes, C.

    2005-01-01

    G1 (46 MW th ), G2 (250 MW th ) and G3 (250 MW th ) are the first French plutonium production reactors owned by CEA (Commissariat a l'Energie Atomique). They started to be operated in 1956 (G1), 1959 (G2) and 1960 (G3); their final shutdown occurred in 1968, 1980 and 1984 respectively. Each reactor used about 1200 tons of graphite as moderator, moreover in G2 and G3, a 95 tons graphite wall is used to shield the rear side concrete from neutron irradiation. G1 is an air cooled reactor operated at a graphite temperature ranging from 30 C to 230 C; G2 and G3 are CO 2 cooled reactors and during operation the graphite temperature is higher (140 C to 400 C). These reactors are now partly decommissioned, but the graphite stacks are still inside the reactors. The graphite core radioactivity has decreased enough so that a full decommissioning stage may be considered. Conceming this decommissioning, the studies reported here are: (i) stored energy in graphite, (ii) graphite radioactivity measurements, (iii) leaching of radionuclide ( 14 C, 36 Cl, 63 Ni, 60 Co, 3 H) from graphite, (iv) chlorine diffusion through graphite. (authors)

  6. Characterization of graphite-matrix pulsed reactor fuels

    International Nuclear Information System (INIS)

    Karnes, C.H.; Marion, R.H.

    1976-01-01

    The performance of the Annular Core Pulsed Reactor (ACPR) is being upgraded in order to accommodate higher fluence experiments for fast reactor fuel element transient and safety studies. The increased fluence requires a two-zone core with the inner zone containing fuel having a high enthalpy and the capability of withstanding very high temperatures during both pulsed and steady state operation. Because the fuel is subjected to a temperature risetime of 2 to 5 ms and to a large temperature difference across the diameter, fracture due to thermal stresses is the primary failure mode. One of the fuels considered for the high enthalpy inner region is a graphite-matrix fuel containing a dispersion of uranium--zirconium carbide solid solution particles. A program was initiated to optimize the development of this class of fuel. This summary presents results on formulations of fuel which have been fabricated by the Materials Technology Group of the Los Alamos Scientific Laboratory

  7. Graphites and composites irradiations for gas cooled reactor core structures

    International Nuclear Information System (INIS)

    Van der Laan, J.G.; Vreeling, J.A.; Buckthorpe, D.E.; Reed, J.

    2008-01-01

    Full text of publication follows. Material investigations are undertaken as part of the European Commission 6. Framework Programme for helium-cooled fission reactors under development like HTR, VHTR, GCFR. The work comprises a range of activities, from (pre-)qualification to screening of newly designed materials. The High Flux Reactor at Petten is the main test bed for the irradiation test programmes of the HTRM/M1, RAPHAEL and ExtreMat Integrated Projects. These projects are supported by the European Commission 5. and 6. Framework Programmes. To a large extent they form the European contribution to the Generation-IV International Forum. NRG is also performing a Materials Test Reactor project to support British Energy in preparing extended operation of their Advanced Gas-cooled Reactors (AGR). Irradiations of commercial and developmental graphite grades for HTR core structures are undertaken in the range of 650 to 950 deg C, with a view to get data on physical and mechanical properties that enable engineering design. Various C- and SiC-based composite materials are considered for support structures or specific components like control rods. Irradiation test matrices are chosen to cover commercial materials, and to provide insight on the behaviour of various fibre and matrix types, and the effects of architecture and manufacturing process. The programme is connected with modelling activities to support data trending, and improve understanding of the material behaviour and micro-structural evolution. The irradiation programme involves products from a large variety of industrial and research partners, and there is strong interaction with other high technology areas with extreme environments like space, electronics and fusion. The project on AGR core structures graphite focuses on the effects of high dose neutron irradiation and simultaneous radiolytic oxidation in a range of 350 to 450 deg C. It is aimed to provide data on graphite properties into the parameter space

  8. QUARTERLY PROGRESS REPORT JANUARY, FEBRUARY, MARCH, 1968 REACTOR FUELS AND MATERIALS DEVELOPMENT PROGRAMS FOR FUELS AND MATERIALS BRANCH OF USAEC DIVISION OF REACTOR DEVELOPMENT AND TECHNOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    Cadwell, J. J.; de Halas, D. R.; Nightingale, R. E.; Worlton, D. C.

    1968-06-01

    Progress is reported in these areas: nuclear graphite; fuel development for gas-cooled reactors; HTGR graphite studies; nuclear ceramics; fast-reactor nitrides research; non-destructive testing; metallic fuels; basic swelling studies; ATR gas and water loop operation and maintenance; reactor fuels and materials; fast reactor dosimetry and damage analysis; and irradiation damage to reactor metals.

  9. Reactor safety research programs. Quarterly report, January-March 1982

    Energy Technology Data Exchange (ETDEWEB)

    Edler, S.K. (ed.)

    1982-07-01

    This document summarizes work performed by Pacific Northwest Laboratory (PNL) from January 1 through March 31, 1982, for the Division of Accident Evaluation and the Division of Engineering Technology, US Nuclear Regulatory Commission (NRC). Evaluations of nondestructive examination (NDE) techniques and instrumentation are reported; areas of investigation include demonstrating the feasibility of determining the strength of structural graphite, evaluating the feasibility of detecting and analyzing flaw growth in reactor pressure boundary systems, examining NDE reliability and probabilistic fracture mechanics, and assessing the integrity of pressurized water reactor (PWR) steam generator tubes where service-induced degradation has been indicated. Experimental data and analytical models are being provided to aid in decision-making regarding pipe-to-pipe impacts following postulated breaks in high-energy fluid system piping. Core thermal models are being developed to provide better digital codes to compute the behavior of full-scale reactor systems under postulated accident conditions. Fuel assemblies and analytical support are being provided for experimental programs at other facilities.

  10. Reactor safety research programs. Quarterly report, April-June 1982

    Energy Technology Data Exchange (ETDEWEB)

    Edler, S.K. (ed.)

    1982-11-01

    This document summarizes work performed by Pacific Northwest Laboratory (PNL) from April 1 through June 30, 1982, for the Division of Accident Evaluation and the Division of Engineering Technology, US Nuclear Regulatory Commission (NRC). Evaluations of nondestructive examination (NDE) techniques and instrumentation are reported; areas of investigation include demonstrating the feasibility of determining the strength of structural graphite, evaluating the feasibility of detecting and analyzing flaw growth in reactor pressure boundary systems, examining NDE reliability and probabilistic fracture mechanics, and assessing the integrity of pressurized water reactor (PWR) steam generator tubes where service-induced degradation has been indicated. Experimental data and analytical models are being provided to aid in decision-making regarding pipe-to-pipe impacts following postulated breaks in high-energy fluid system piping. Core thermal models are being developed to provide better digital codes to compute the behavior of full-scale reactor systems under postulated accident conditions. Fuel assemblies and analytical support are being provided for experimental programs at other facilities.

  11. Transient analysis of nuclear graphite oxidation for high temperature gas cooled reactor

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Wei, E-mail: wxu12@mails.tsinghua.edu.cn; Shi, Lei; Zheng, Yanhua

    2016-09-15

    Graphite is widely used as moderator, reflector and structural materials in the high temperature gas-cooled reactor pebble-bed modular (HTR-PM). In normal operating conditions or water/air ingress accident, the nuclear graphite in the reactor may be oxidized by air or steam. Oxidation behavior of nuclear graphite IG-110 which is used as the structural materials and reflector of HTR-PM is mainly researched in this paper. To investigate the penetration depth of oxygen in IG-110, this paper developed the one dimensional spherical oxidation model. In the oxidation model, the equations considered graphite porosity variation with the graphite weight loss. The effect of weight loss on the effective diffusion coefficient and the oxidation rate was also considered in this model. Based on this theoretical model, this paper obtained the relative concentration and local weight loss ratio profile in graphite. In addition, the local effective diffusion coefficient and oxidation rate in the graphite were also investigated.

  12. Graphite structural design code for the High Temperature Engineering Test Reactor

    International Nuclear Information System (INIS)

    1989-02-01

    The reactor internal structures of the High Temperature Engineering Test Reactor (HTTR) are made up of mainly graphite components. The characteristics of graphite are quite different in stress-strain behavior from metals, since the ductility of graphite is significantly less than metals. Therefore, the design codes provided for metal components can not be applied directly to graphite components. The graphite structural design code for the HTTR was drafted by JAERI and reviewed by specialists outside JAERI. The design code is established mainly on the basis of JAERI's research data and by reference to the fundamental concepts of the domestic design codes for metal components. In this design code, the graphite components are categorized into the core components and core support components and the stress limits are specified separately to meet the safety requirements to each. This report presents the graphite structural design code for the HTTR which is utlized for the present design of the HTTR. (author)

  13. Transient analysis of nuclear graphite oxidation for high temperature gas cooled reactor

    International Nuclear Information System (INIS)

    Xu Wei; Shi Lei; Zheng Yanhua

    2014-01-01

    Graphite is widely used in the high temperature gas-cooled reactor pebble-bed modular (HTR-PM). There are about 420,000 spherical fuel elements in the reactor core. The amount of graphite matrix in the reactor is dozens of tons. In normal operating conditions or water/air ingress accident, the matrix graphite of spherical fuel element may be oxidized by air or steam. This paper developed a new graphite oxidation model, considering the graphite porosity variation with the fractional burn-off. This model also considered the effects of microstructure development during oxidation and the resulting changing of diffusivity as well as the oxidation rate. Based on this theoretical model, this paper analyzed penetration depth and the graphite transient oxidation by oxygen. In addition, this paper obtained the weight loss ratio and oxidation rate trend over time and space. (author)

  14. Management of graphite material: a key issue for High Temperature Gas Reactor system (HTGR)

    International Nuclear Information System (INIS)

    Bourdeloie, C.; Marimbeau, P.; Robin, J.C.; Cellier, F.

    2005-01-01

    Graphite material is used in nuclear High Temperature Gas-cooled Reactors (HTGR, Fig.1) as moderator, thermal absorber and also as structural components of the core (Fig.2). This type of reactor was selected by the Generation IV forum as a potential high temperature provider for supplying hydrogen production plants and is under development in France in the frame of the AREVA ANTARES program. In order to select graphite grades to be used in these future reactors, the requirements for mechanical, thermal, physical-chemical properties must match the internal environment of the nuclear core, especially with regard to irradiation effect. Another important aspect that must be addressed early in design is the waste issue. Indeed, it is necessary to reduce the amount of nuclear waste produced by operation of the reactor during its lifetime. Preliminary assessment of the nuclear waste output for an ANTARES type 280 MWe HTGR over 60 year-lifetime gives an estimated 6000 m 3 of activated graphite waste. Thus, reducing the graphite waste production is an important issue for any HTGR system. First, this paper presents a preliminary inventory of graphite waste fluxes coming from a HTGR, in mass and volume, with magnitudes of radiological activities based on activation calculations of graphite during its stay in the core of the reactor. Normalized data corresponding to an output of 1 GWe.year electricity allows comparison of the waste production with other nuclear reactor systems. Second, possible routes to manage irradiated graphite waste are addressed in both the context of French nuclear waste management rules and by comparison to other national regulations. Routes for graphite waste disposal studied in different countries (concerning existing irradiated graphite waste) will be discussed with regard to new issues of large graphite waste from HTGR. Alternative or complementary solutions aiming at lowering volume of graphite waste to be managed will be presented. For example

  15. High temperature gas-cooled reactor (HTGR) graphite pebble fuel: Review of technologies for reprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Mcwilliams, A. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-09-08

    This report reviews literature on reprocessing high temperature gas-cooled reactor graphite fuel components. A basic review of the various fuel components used in the pebble bed type reactors is provided along with a survey of synthesis methods for the fabrication of the fuel components. Several disposal options are considered for the graphite pebble fuel elements including the storage of intact pebbles, volume reduction by separating the graphite from fuel kernels, and complete processing of the pebbles for waste storage. Existing methods for graphite removal are presented and generally consist of mechanical separation techniques such as crushing and grinding chemical techniques through the use of acid digestion and oxidation. Potential methods for reprocessing the graphite pebbles include improvements to existing methods and novel technologies that have not previously been investigated for nuclear graphite waste applications. The best overall method will be dependent on the desired final waste form and needs to factor in the technical efficiency, political concerns, cost, and implementation.

  16. Characterization, treatment and conditioning of radioactive graphite from decommissioning of nuclear reactors

    International Nuclear Information System (INIS)

    2006-09-01

    Graphite has been used as a moderator and reflector of neutrons in more than 100 nuclear power plants and in many research and plutonium-production reactors. It is used primarily as a neutron reflector or neutron moderator, although graphite is also used for other features of reactor cores, such as fuel sleeves. Many of the graphite-moderated reactors are now quite old, with some already shutdown. Therefore radioactive graphite dismantling and the management of radioactive graphite waste are becoming an increasingly important issue for a number of IAEA Member States. Worldwide, there are more than 230 000 tonnes of radioactive graphite which will eventually need to be managed as radioactive waste. Proper management of radioactive graphite waste requires complex planning and the implementation of several interrelated operations. There are two basic options for graphite waste management: (1) packaging of non-conditioned graphite waste with subsequent direct disposal of the waste packages, and (2) conditioning of graphite waste (principally either by incineration or calcination) with separate disposal of any waste products produced, such as incinerator ash. In both cases, the specific properties of graphite - such as Wigner energy, graphite dust explosibility, and radioactive gases released from waste graphite - have a potential impact on the safety of radioactive graphite waste management and need to be carefully considered. Radioactive graphite waste management is not specifically addressed in IAEA publications. Only general and limited information is available in publications dealing with decommissioning of nuclear reactors. This report provides a comprehensive discussion of radioactive graphite waste characterization, handling, conditioning and disposal throughout the operating and decommissioning life cycle. The first draft report was prepared at a meeting on 23-27 February 1998. A technical meeting (TM) was held in October 1999 in coincidence with the Seminar on

  17. Calculation of the Thermal State of the Graphite Moderator of the RBMK Reactor

    Directory of Open Access Journals (Sweden)

    Vorobiev Alexander V.

    2017-01-01

    Full Text Available This work is devoted to study the temperature field of the graphite stack of the RBMK reactor. In work was analyzed the influence of contact pressure between the components of the masonry on the temperature of the graphite moderator.

  18. Temperature control of the graphite stack of the reactor RBMK-1500

    International Nuclear Information System (INIS)

    Lesnoj, S.

    1998-01-01

    The paper includes general information about RBMK-1500 reactor, construction features and main technical data; graphite moderator stack, temperature channel, thermocouple TXA-1379, its basic technical and metrologic parameters as well as its advantages and disadvantages

  19. Developments in natural uranium - graphite reactors; Developpement des reacteurs a graphite et uranium naturel

    Energy Technology Data Exchange (ETDEWEB)

    Bourgeois, J. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires; Saitcevsky, B. [Electricite de France (EDF), 75 - Paris (France)

    1964-07-01

    The French natural uranium-graphite power-reactor programme has been developing - from EDF 1 to EDF 4 - in the direction of an increase of the unit power of the installations, of the specific and volume powers, and of an improvement in the operational security conditions. The high power of EDF 4 (500 MWe) and the integration of the primary circuit into the reactor vessel, which is itself made of pre-stressed concrete, make it possible to make the most of the annular fuel elements already in use in EDF 1, and to arrive thus at a very satisfactory solution. The use of an internally cooled fuel element (an annular element) has led to a further step forward: it now becomes possible to increase the pressure of the cooling gas without danger of causing creep in the uranium tube. The use of a pre-stressed concrete vessel makes this pressure increase possible, and the integration of the primary circuit avoids the risk of a rapid depressurization which would be in this case a major danger. This report deals with the main problems presented by this new type of nuclear power station, and gives the main lines of research and studies now being carried out in France. - Neutronic and thermal research has made it possible to consider using large size fuel elements (internal diameter = 77 mm, external diameter 95 mm) while still using natural uranium. - The problems connected with the production of these elements and with their in pile behaviour are the subject of a large programme, both out of pile and in power reactors (EDF 2) and test reactors (Pegase). - The increase in the size of the element leads to a large lattice pitch (35 to 40 cm). This makes it possible to consider having one charging aperture per channel or for a small number of channels, whether the charge machine be inside or outside the pressure vessel. In conclusion are given the main characteristics of a project for a 500 MWe power station using such a fuel element. In particular this project is compared to EDF 4

  20. Structural characteristics of a graphite moderated critical assembly for a Zero Power reactor at IEA (Brazil)

    International Nuclear Information System (INIS)

    Almeida Ferreira, A.C. de; Hukai, R.Y.

    1975-01-01

    The structural characteristics of a graphite moderated core of a critical assembly to be installed in the Zero Power Reactor of IEA have been defined. These characteristics are the graphite block dimensions, the number and dimensions of the holes in the graphite, the pitch, the dimensions of the sticks of fuel and graphite to be inserted in the holes, and the mechanical reproducibility of the system. The composition of the fuel and moderator sticks were also defined. The main boundary conditions were the range of the relation C/U and C/TH used in commercial HTGR and the neutronics homogeneity

  1. Production test IP-725, increased graphite temperature limit, F Reactor. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Russell, A.

    1965-12-10

    This report presents the results of a high graphite temperature test conducted at F Reactor from January, through June, 1965. Since the reactor was soon to be permanently shut down, this was believed to be a good opportunity to investigate the effect of increased graphite temperature on graphite stack oxidation with CO{sub 2}, During the first phase of the test, the graphite temperature limit was increased, from 650 C to 700 C for a period of approximately 3 1/2 months. During this phase of the test the actual maximum operating graphite temperature was maintained near the 700 C limit. During the second phase of the test the temperature limit was further increased to 750 C for approximately 2 months. Unfortunately,, the actual graphite operating temperature was maintained at the desired temperature level for only several weeks and thus complicated interpretation of the test results. Throughout the 6 month test period, stack oxidation was monitored with graphite samples inserted in 2 bare process tube channels and by measurement of CO (reaction product of graphite and CO{sub 2}) in the reactor gas atmosphere.

  2. Conditioning for definitive storage of radioactive graphite bricks from reactor decommissioning

    International Nuclear Information System (INIS)

    Costes, J.R.; Koch, C.; Tassigny, C. de; Vidal, H.; Raymond, A.

    1990-01-01

    The decommissioning of gas-graphite reactors in the EC (e.g. French UNGGs, British Magnox reactors and AGRs, and reactors in Spain and in Italy) will produce large amounts of graphite bricks. This graphite cannot be accepted without particular conditioning by the existing shallow land disposal sites. The aim of the study is to examine the behaviour of graphite waste and to develop a conditioning technique which makes this waste acceptable for shallow land disposal sites. 18 kg of graphite core samples with an outside diameter of 74 mm were removed from the G2 gas-cooled reactor at Marcoule. Their radioactivity is highly dependent on the position of the graphite bricks inside the reactor. Measured results indicate an activity range of 100-400 MBq/kg with 90% Tritium, 5% 14 C, 3% 60 Co, 1.5% 63 Ni. Repeated porosity analyses showed that open porosity ranging from 0 to 100 μm exceeded 23 vol% in the graphite. Water penetration kinetics were investigated in unimpregnated graphite and resulted in impregnation by water of 50-90% of the open porosity. Preliminary lixiviation tests on the crude samples showed quick lixidegree of Cs (several per cent) and of 60 Co, and 133 Ba at a lesser degree. The proposed conditioning technique does not involve a simple coating but true impregnation by a tar-epoxy mixture. The bricks recovered intact from the core by robot services will be placed one by one inside a cylindrical metallic container. But this container may corrode and the bricks may become fragmented in the future, the normally porous graphite will be unaffected by leaching since it is proved that all pores larger than 0.1 μm will be filled with the tar-epoxy mixture. This is a true long-term waste packaging concept. The very simple technology required for industrial implementation is discussed

  3. Graphite

    Science.gov (United States)

    Robinson, Gilpin R.; Hammarstrom, Jane M.; Olson, Donald W.; Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.

    2017-12-19

    Graphite is a form of pure carbon that normally occurs as black crystal flakes and masses. It has important properties, such as chemical inertness, thermal stability, high electrical conductivity, and lubricity (slipperiness) that make it suitable for many industrial applications, including electronics, lubricants, metallurgy, and steelmaking. For some of these uses, no suitable substitutes are available. Steelmaking and refractory applications in metallurgy use the largest amount of produced graphite; however, emerging technology uses in large-scale fuel cell, battery, and lightweight high-strength composite applications could substantially increase world demand for graphite.Graphite ores are classified as “amorphous” (microcrystalline), and “crystalline” (“flake” or “lump or chip”) based on the ore’s crystallinity, grain-size, and morphology. All graphite deposits mined today formed from metamorphism of carbonaceous sedimentary rocks, and the ore type is determined by the geologic setting. Thermally metamorphosed coal is the usual source of amorphous graphite. Disseminated crystalline flake graphite is mined from carbonaceous metamorphic rocks, and lump or chip graphite is mined from veins in high-grade metamorphic regions. Because graphite is chemically inert and nontoxic, the main environmental concerns associated with graphite mining are inhalation of fine-grained dusts, including silicate and sulfide mineral particles, and hydrocarbon vapors produced during the mining and processing of ore. Synthetic graphite is manufactured from hydrocarbon sources using high-temperature heat treatment, and it is more expensive to produce than natural graphite.Production of natural graphite is dominated by China, India, and Brazil, which export graphite worldwide. China provides approximately 67 percent of worldwide output of natural graphite, and, as the dominant exporter, has the ability to set world prices. China has significant graphite reserves, and

  4. Experience of on-site disposal of production uranium-graphite nuclear reactor.

    Science.gov (United States)

    Pavliuk, Alexander O; Kotlyarevskiy, Sergey G; Bespala, Evgeny V; Zakharova, Elena V; Ermolaev, Vyacheslav M; Volkova, Anna G

    2018-04-01

    The paper reported the experience gained in the course of decommissioning EI-2 Production Uranium-Graphite Nuclear Reactor. EI-2 was a production Uranium-Graphite Nuclear Reactor located on the Production and Demonstration Center for Uranium-Graphite Reactors JSC (PDC UGR JSC) site of Seversk City, Tomsk Region, Russia. EI-2 commenced its operation in 1958, and was shut down on December 28, 1990, having operated for the period of 33 years all together. The extra pure grade graphite for the moderator, water for the coolant, and uranium metal for the fuel were used in the reactor. During the operation nitrogen gas was passed through the graphite stack of the reactor. In the process of decommissioning the PDC UGR JSC site the cavities in the reactor space were filled with clay-based materials. A specific composite barrier material based on clays and minerals of Siberian Region was developed for the purpose. Numerical modeling demonstrated the developed clay composite would make efficient geological barriers preventing release of radionuclides into the environment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Draft of standard for graphite core components in high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Shibata, Taiju; Sawa, Kazuhiro; Eto, Motokuni; Kunimoto, Eiji; Shiozawa, Shusaku; Oku, Tatsuo; Maruyama, Tadashi

    2010-01-01

    For the design of the graphite components in the High Temperature Engineering Test Reactor (HTTR), the graphite structural design code for the HTTR etc. were applied. However, general standard systems for the High Temperature Gas-cooled Reactor (HTGR) have not been established yet. The authors had studied on the technical issues which is necessary for the establishment of a general standard system for the graphite components in the HTGR. The results of the study were documented and discussed at a 'Special committee on research on preparation for codes for graphite components in HTGR' at Atomic Energy Society of Japan (AESJ). As a result, 'Draft of Standard for Graphite Core Components in High Temperature Gas-cooled Reactor.' was established. In the draft standard, the graphite components are classified three categories (A, B and C) in the standpoints of safety functions and possibility of replacement. For the components in the each class, design standard, material and product standards, and in-service inspection and maintenance standard are determined. As an appendix of the design standard, the graphical expressions of material property data of 1G-110 graphite as a function of fast neutron fluence are expressed. The graphical expressions were determined through the interpolation and extrapolation of the irradiated data. (author)

  6. The use of graphite for the reduction of void reactivity in CANDU reactors

    International Nuclear Information System (INIS)

    Min, B.J.; Kim, B.G.; Sim, K-S.

    1995-01-01

    Coolant void reactivity can be reduced by using burnable poison in CANDU reactors. The use of graphite in the fuel bundle is introduced to reduce coolant void reactivity by adding an appropriate amount of burnable poison in the central rod. This study shows that sufficiently low void reactivity which in controllable by Reactor Regulating System (RRS) can be achieved by using graphite used fuel with slightly enriched uranium. Zero void reactivity can be also obtained by using graphite used fuel with a large central rod. A new fuel bundle with graphite rods can substantially reduce the void reactivity with less burnup penalty compared to previously proposed low void reactivity fuel with depleted uranium. (author)

  7. Thermodynamic Simulation of Equilibrium Composition of Reaction Products at Dehydration of a Technological Channel in a Uranium-Graphite Reactor

    Science.gov (United States)

    Pavliuk, A. O.; Zagumennov, V. S.; Kotlyarevskiy, S. G.; Bespala, E. V.

    2018-01-01

    The problems of accumulation of nuclear fuel spills in the graphite stack in the course of operation of uranium-graphite nuclear reactors are considered. The results of thermodynamic analysis of the processes in the graphite stack at dehydration of a technological channel, fuel element shell unsealing and migration of fission products, and activation of stable nuclides in structural elements of the reactor and actinides inside the graphite moderator are given. The main chemical reactions and compounds that are produced in these modes in the reactor channel during its operation and that may be hazardous after its shutdown and decommissioning are presented. Thermodynamic simulation of the equilibrium composition is performed using the specialized code TERRA. The results of thermodynamic simulation of the equilibrium composition in different cases of technological channel dehydration in the course of the reactor operation show that, if the temperature inside the active core of the nuclear reactor increases to the melting temperature of the fuel element, oxides and carbides of nuclear fuel are produced. The mathematical model of the nonstationary heat transfer in a graphite stack of a uranium-graphite reactor in the case of the technological channel dehydration is presented. The results of calculated temperature evolution at the center of the fuel element, the replaceable graphite element, the air gap, and in the surface layer of the block graphite are given. The numerical results show that, in the case of dehydration of the technological channel in the uranium-graphite reactor with metallic uranium, the main reaction product is uranium dioxide UO2 in the condensed phase. Low probability of production of pyrophoric uranium compounds (UH3) in the graphite stack is proven, which allows one to disassemble the graphite stack without the risk of spontaneous graphite ignition in the course of decommissioning of the uranium-graphite nuclear reactor.

  8. Degradation of graphite in gas cooled reactors due to radiolytic oxidation

    International Nuclear Information System (INIS)

    Moskovic, R.

    2014-01-01

    Magnox reactors employ pile grade A (PGA) graphite as a moderator. Reactor cores are constructed typically of twelve to thirteen layers of graphite bricks. Fuel channels (FC) are in the centre of all bricks and interstitial channels (IC) at the centre of the corners of every second set of four bricks. The reactor core is cooled by carbon dioxide, the temperature of graphite core increases from 250 °C at the bottom to 360 °C at the top of the core. The neutron dose increases progressively with the operating time of the reactor. The graphite core looses mass as a result of radiolytic oxidation. The process is dependent on both total energy deposition and temperature which correlates with core height. Fast neutron dose accumulates at the same rate as the total energy deposited and is readily available. The reduction of density of moderator graphite increases the porosity and in turn changes both the physical and mechanical properties of graphite. The mechanical properties and density of graphite are measured either on samples installed in the reactor prior to service or trepanned from graphite bricks. The data obtained on these samples are interrogated using probability modelling to establish trends with increasing service life. Results of the analyses are illustrated in the paper. PGA graphite is an aggregate of coarse needle coke filler particles within a matrix of fine coke flour particles mixed with pitch binder. The bricks are fabricated in the green condition by extrusion of dry calcinated coke impregnated with liquid pitch binder and then graphitized at 2800 °C. This produces a polygranular aggregate with orthotropic properties. The strength properties of graphite are measured using different types of tests. The most commonly used tests involve bending, uniaxial and diametral compression. The initiation and propagation of cracks was investigated to improve understanding of strength behaviour. Cracking was examined on macro-scale using optical microscopy and

  9. TSX graphite for extended use in the N-Reactor

    International Nuclear Information System (INIS)

    Kennedy, C.R.

    1985-08-01

    This report reviews the limited amount of irradiation data available for grade TSX graphite with the purpose of obtaining reasonable estimates of material behavior. The results are enhanced by obtaining generalized behavior characteristics demonstrated by similar grades of graphite, such as CSF, AGOT, and PGA. Intent of this work is to furnish the necessary coefficients to describe the material behavior for inclusion in the constitutive equations for the anisotropic graphite grade TSX. Estimates of the free-dimensional changes of TSX graphite as a function of temperature and fluence have been made and shown to be in good agreement with the data. The effects of irradiation on other physical properties, such as elastic moduli, conductivity, and coefficient of thermal expansion, are also described. The irradiation creep characteristics of TSX graphite are also estimated on the basis of data for similar grades of graphite in the US and Europe. Crude approximations of stresses generated in the keyed structure were made to demonstrate the magnitude of the problem. The results clearly predict that the filler-block keys will fail and the tube-block keys will not. It is also indicated that the overall stack height growth will be increased by 25 to 38 mm (1 to 1.5 in.) because of creep

  10. quarters

    Directory of Open Access Journals (Sweden)

    Elena Grigoryeva

    2016-10-01

    Full Text Available Are there many words combining both space and time? A quarter is one of such rare words: it means both a part of the city space and a period of the year. A regular city has parts bordered by four streets. For example, Chita is a city with an absolutely orthogonal historical center. This Utopian city was designed by Decembrists in the depth of Siberian ore-mines (120. The 130 Quarter in Irkutsk is irregular from its inception because of its triangular form. Located between two roads, the forked quarter was initially bordered by flows along the west-east axis – the main direction of the country. That is why it appreciated the gift for the 350 anniversary of its transit existence – a promenade for an unhurried flow of pedestrians. The quarter manages this flow quite well, while overcoming the difficulties of new existence and gathering myths (102. Arousing many expectations, the “Irkutsk’s Quarters” project continues the theme that was begun by the 130 Quarter and involved regeneration, revival and search for Genius Loci and the key to each single quarter (74. Beaded on the trading axis, these shabby and unfriendly quarters full of rubbish should be transformed for the good of inhabitants, guests and the small business. The triptych by Lidin, Rappaport and Nevlyutov is about happiness of urbanship and cities for people, too (58. The City Community Forum was also devoted to the urban theme (114. Going through the last quarter of the year, we hope that Irkutsk will keep to the right policy, so that in the near future the wooden downtown quarters will become its pride, and the design, construction and investment complexes will join in desire to increase the number of comfortable and lively quarters in our city. The Baikal Beam will get one more landmark: the Smart School (22 for Irkutsk’s children, including orphans, will be built in several years on the bank of Chertugeevsky Bay.

  11. Fuel elements for high temperature reactors having special suitability for reuse of the structural graphite

    International Nuclear Information System (INIS)

    Huschka, H.; Herrmann, F.J.

    1976-01-01

    There are prepared fuel elements for high temperature reactors from which the fuel zone can be removed from the structural graphite after the burnup of the fissile material has taken place so that the fuel element can be filled with new fuel and again placed in the reactor by having the strength of the matrix in the fuel zone sufficient for binding the embedded coated fuel particles but substantially less than the strength of the structural graphite whereby by the action of force it can be easily split up without destroying the particles

  12. Graphite-moderated and heavy water-moderated spectral shift controlled reactors; Reactores de moderador solido controlados por desplazamiento espectral

    Energy Technology Data Exchange (ETDEWEB)

    Alcala Ruiz, F.

    1984-07-01

    It has been studied the physical mechanisms related with the spectral shift control method and their general positive effects on economical and non-proliferant aspects (extension of the fuel cycle length and low proliferation index). This methods has been extended to non-hydrogenous fuel cells of high moderator/fuel ratio: heavy water cells have been con- trolled by graphite rods graphite-moderated and gas-cooled cells have been controlled by berylium rods and graphite-moderated and water-cooled cells have been controlled by a changing mixture of heavy and light water. It has been carried out neutron and thermal analysis on a pre design of these types of fuel cells. We have studied its neutron optimization and their fuel cycles, temperature coefficients and proliferation indices. Finally, we have carried out a comparative analysis of the fuel cycles of conventionally controlled PWRs and graphite-moderated, water-cooled and spectral shift controlled reactors. (Author) 71 refs.

  13. Nuclear graphite development, operational problems, and resolution of these problems at the Hanford production reactors

    International Nuclear Information System (INIS)

    Morgan, W.C.

    1996-01-01

    This paper chronicles the history of the Hanford Production Reactor, from the initial design considerations for B, D, and F Reactors through the selection of the agreed method for safe disposal of the decommissioned reactors. The operational problems that challenged the operations and support staff of each new generation of production reactors, the engineering actions an operational changes that alleviated or resolved the immediate problems, the changes in reactor design and design-bases for the next generation of production reactors, and the changes in manufacturing variables that resulted in new ''improved'' grades of nuclear graphites for use in the moderators of the Hanford Production Reactors are reviewed in the context of the existing knowledge-base and the mission-driven priorities on the time. 14 refs, 6 figs, 3 tabs

  14. Graphite-moderated and heavy water-moderated spectral shift controlled reactors

    International Nuclear Information System (INIS)

    Alcala Ruiz, F.

    1984-01-01

    It has been studied the physical mechanisms related with the spectral shift control method and their general positive effects on economical and non-proliferant aspects (extension of the fuel cycle length and low proliferation index). This methods has been extended to non-hydrogenous fuel cells of high moderator/fuel ratio: heavy water cells have been con- trolled by graphite rods graphite-moderated and gas-cooled cells have been controlled by berylium rods and graphite-moderated and water-cooled cells have been controlled by a changing mixture of heavy and light water. It has been carried out neutron and thermal analysis on a pre design of these types of fuel cells. We have studied its neutron optimization and their fuel cycles, temperature coefficients and proliferation indices. Finally, we have carried out a comparative analysis of the fuel cycles of conventionally controlled PWRs and graphite-moderated, water-cooled and spectral shift controlled reactors. (Author) 71 refs

  15. Deformation and fracture of irradiated polygranular pile grade A reactor core graphite

    International Nuclear Information System (INIS)

    Heard, P.J.; Wootton, M.R.; Moskovic, R.; Flewitt, P.E.J.

    2011-01-01

    Highlights: → Mechanical properties of PGA nuclear graphite specimens were tested. → Load-displacement characteristics were consistent with quasi-brittle behaviour. → Micro-cracks observed in non-linear part of load-displacement curve pre-peak load. → Micro-testing showed surface tilts consistent with twinning. → Irradiated specimens failed at 20% lower load for 15% weight loss material. - Abstract: Pile grade A (PGA) graphite is used as a moderator in UK gas cooled nuclear reactors. This is a polygranular, aggregate material with quasi-brittle behaviour. When exposed to the service environment the material is subject to radiolytic oxidation that results in mass loss and an attendant increase in porosity. In the present work both unirradiated and irradiated small specimens of PGA graphite have been subjected to diametral compression. A novel trench-probe loading method is also described that allows micro-scale specimens prepared by focused ion beam milling to be fractured in a focused ion beam work station. This allows the fracture characteristics of selected regions of the graphite microstructure to be interrogated. The load-displacement and fracture characteristics of both the unirradiated and irradiated PGA graphite are compared and shown to be consistent with quasi-brittle behaviour. In addition, surface features consistent with elastically induced twins are observed associated with filler particles of the graphite. The results are discussed with respect to the quasi-brittle behaviour of this polygranular graphite.

  16. Tests for removal of Co-60 and Eu-154 from irradiated graphite in the TRIGA Reactor

    International Nuclear Information System (INIS)

    Arsene, Carmen

    2009-01-01

    The irradiated graphite in Romania is mainly generated in the thermal columns of TRIGA and WWER-S research reactors (about 9 tones). It was found that the radionuclide content of the graphite irradiated in the TRIGA research reactor is mainly due to C-14 (103 Bq/g), Eu-152 (600-700 Bq/g) and Co-60 (130-150 Bq/g) and low amounts of Eu-154 and Cs-137, depending on location in the thermal column and on irradiation history. In order to minimize the waste inventory and volume in view of their final disposal, in the present paper we show the results of experiments performed for developing and optimizing methods for the chemical decontamination of the irradiated graphite. These procedures are based on strong alkaline solutions for Eu-152 and strong acid solutions for Co-60. The influence of the process parameters on the decontamination factor is investigated. (authors)

  17. Neutron energy spectrum in graphite blankets of fusion reactors

    International Nuclear Information System (INIS)

    Tsechanski, A.

    1981-09-01

    Neutron flux measurements were performed in a graphite stack and compared with calculations made with a two dimensional transport computer code. In the present work it is observed that the calculated spectrum in the elastic and inelastic scattering ranges (the first collision range in both cases), is sensitive to details of the angular distribution of these neutrons. Regarding the discrepancies in the elastic scattering range it is concluded that the microscopic cross section library ENDF/B-IV overestimates the large angle scattering (back scattering) as can be seen from comparison of measured and calculated spectra. The two most important conclusions of the present work are: 1. Inelastic scattering interaction of D-T neutrons in graphite cannot be calculated without a proper account of energy-angle correlation. 2. An experimental setup supplying monoenergetic collimated D-T neutrons constitutes a sensitive although indirect means for measuring angular distributions in inelastic and elastic scattering

  18. Irradiation test plan of oxidation-resistant graphite in WWR-K Research Reactor

    International Nuclear Information System (INIS)

    Sumita, Junya; Shibata, Taiju; Sakaba, Nariaki; Osaki, Hirotaka; Kato, Hideki; Fujitsuka, Kunihiro; Muto, Takenori; Gizatulin, Shamil; Shaimerdenov, Asset; Dyussambayev, Daulet; Chakrov, Petr

    2014-01-01

    Graphite materials are used for the in-core components of High Temperature Gas-cooled Reactor (HTGR) which is a graphite-moderated and helium gas-cooled reactor. In the case of air ingress accident in HTGR, SiO 2 protective layer is formed on the surface of SiC layer in TRISO CFP and oxidation of SiC does not proceed and fission products are retained inside the fuel particle. A new safety concept for the HTGR, called Naturally Safe HTGR, has been recently proposed. To enhance the safety of Naturally Safe HTGR ultimately, it is expected that oxidation-resistant graphite is used for graphite components to prevent the TRISO CFPs and fuel compacts from failure. SiC coating is one of candidate methods for oxidation-resistant graphite. JAEA and four graphite companies launched R&Ds to develop the oxidation-resistant graphite and the International Science and Technology Center (ISTC) partner project with JAEA and INP was launched to investigate the irradiation effects on the oxidation-resistant graphite. To determine grades of the oxidation-resistant graphite which will be adopted as irradiation test, a preliminary oxidation test was carried out. This paper described the results of the preliminary oxidation test, the plan of out-of-pile test, irradiation test and post-irradiation test (PIE) of the oxidation-resistant graphite. The results of the preliminary oxidation test showed that the integrity of the oxidation resistant graphite was confirmed and that all of grades used in the preliminary test can be adopted as the irradiation test. Target irradiation temperature was determined to be 1473 (K) and neutron fluence was determined to be from 0.54 × 10 25 through 1.4 × 10 25 (/m 2 , E>0.18MeV). Weight change, oxidation rate, activation energy, surface condition, etc. will be evaluated in out-of-pile test and weight change, irradiation effect on oxidation rate and activation energy, surface condition, etc. will be evaluated in PIE. (author)

  19. An explication of the Graphite Structural Design Code of core components for the High Temperature Engineering Test Reactor

    International Nuclear Information System (INIS)

    Iyoku, Tatsuo; Ishihara, Masahiro; Toyota, Junji; Shiozawa, Shusaku

    1991-05-01

    The integrity evaluation of the core graphite components for the High Temperature Engineering Test Reactor (HTTR) will be carried out based upon the Graphite Structural Design Code for core components. In the application of this design code, it is necessary to make clear the basic concept to evaluate the integrity of core components of HTTR. Therefore, considering the detailed design of core graphite structures such as fuel graphite blocks, etc. of HTTR, this report explicates the design code in detail about the concepts of stress and fatigue limits, integrity evaluation method of oxidized graphite components and thermal irradiation stress analysis method etc. (author)

  20. Development and testing of nuclear graphite for the German pebble-bed high temperature reactor

    International Nuclear Information System (INIS)

    Haag, G.; Delle, W.; Nickel, H.; Theymann, W.; Wilhelmi, G.

    1987-01-01

    Several types of high temperature reactors have been developed in the Federal Republic of Germany. They are all based on spherical fuel elements being surrounded by graphite as reflector material. As an example, HTR-500 developed by the Hochtemperatur Reaktorbau GmbH is shown. The core consists of the top reflector, the side reflector with inner and outer parts, the bottom reflector and the core support columns. The most serious problem with respect to fast neutron radiation damage had to be solved for the materials of those parts near the pebble bed. Regarding the temperature profile in the core, the top reflector is at 300 deg C, and as cooling gas flows from the top downward, the temperature of the inner side reflector rises to about 700 deg C at the bottom. Fortunately, the highest fast neutron load accumulated during the life time of a reactor corresponds to the lowest temperature. This makes graphite components easier to survive neutron exposure without being mechanically damaged, although the maximum fast neutron fluence is as high as 4 x 10 22 /cm 2 at about 400 deg C. HTR graphite components are divided into four classes according to loading. The raw materials for nuclear graphite, the development of pitch coke nuclear graphite, the irradiation behavior of ATR-2E and ASR-IRS and others are reported. (Kako, I.)

  1. An automatic regulating control system for a graphite moderated reactor using digital techniques

    International Nuclear Information System (INIS)

    Carvalho Goncalves Junior, J. de.

    1989-01-01

    The work propose an automatic regulating control system for a graphite moderated reactor using digital techniques. The system uses a microcomputer to monitor the power and the period, to run the control algorithm, and to generate electronic signals to excite the motor, which moves vertically the control rod banks. A nuclear reactor simulator was developed to test the control system. The simulator consists of a software based on the point kinetic equations and implanted in an analogical computer. The results show that this control system has a good performance and versatility. In addition, the simulator is capable of reproducing with accuracy the behavior of a nuclear reactor. (author)

  2. Radiations from fuel channels in a graphite-carbon dioxide gas reactor

    International Nuclear Information System (INIS)

    Devillers, Christian; Duco, Jacques; Lafore, Pierre; Le Dieu De Ville, Alain; Sonnet, Alain

    1964-10-01

    The authors report the study of the flow of equivalent thermal neutrons going out of fuel channels of a graphite-gas reactor (the importance of this flow is due to radiative captures in the iron of metallic structures of the enclosure above the core or in the enclosure concrete). They also address the gamma irradiation from the direct view of fuel elements, channel walls at the core level, and reflector, and gamma rays emitted by radiative capture in core weight plate walls. Calculation methods are proposed for the case of a reactor with or without fake cartridge. They compare flows and doses measured on an EDF reactor and those calculated

  3. Graphite Materials Testing in the ATR for Lifetime Management of Magnox Reactors

    International Nuclear Information System (INIS)

    Grover, S.B.; Metcalfe, M.P.

    2002-01-01

    A major feature of the Magnox gas cooled reactor design is the graphite core, which acts as the moderator but also provides the physical structure for fuel, control rods, instrumentation and coolant gas channels. The lifetime of a graphite core is dependent upon two principal aging processes: irradiation damage and radiolytic oxidation. Irradiation damage from fast neutrons creates lattice defects leading to changes in physical and mechanical properties and the accumulation of stresses. Radiolytic oxidation is caused by the reaction of oxidizing species from the carbon dioxide coolant gas with the graphite, these species being produced by gamma radiation. Radiolytic oxidation reduces the density and hence the moderating capability of the graphite, but also reduces strength affecting the integrity of core components. In order to manage continued operation over the planned lifetimes of their power stations, BNFL needed to extend their database of the effects of these two phenomena on the ir graphite cores through an irradiation experiment. This paper will discuss the background, purpose, and the processes taken and planned (i.e. post irradiation examination) to ensure meaningful data on the graphite core material is obtained from the irradiation experiment

  4. Methods used to address protection issues in graphite-gas reactors

    International Nuclear Information System (INIS)

    Brisbois, Jacques

    1969-01-01

    Protection issues are problems related to the presence of neutron and gamma radiations: biological dose, material heating, Wigner effect, gas ionization. The objective is then to determine the biological doses which are predictable in some reactor areas, and to assess the effects of irradiation on materials during the reactor lifetime. For these purposes, problems of particle propagation are addressed, and the effects of radiations related to one phenomenon or another are studied with respect to radiation energy. The author first describes methods used to compute general propagation. These are mainly codes using Monte Carlo or multi-group scattering methods. These methods are experimentally controlled on a sub-critical graphite-natural uranium set. In a second part, the author presents the different radiation sources which are to be taken into account in calculations. Then he indicates the nuclear constants to be used in the different codes, as well as the response functions to be used to calculate a specific phenomenon (steel, graphite Wigner effect, so on) from the particle spectrum. In the fourth part, the author describes the different methods which can be used to solve problems which are specific to graphite reactors. In the last part, obtained calculated results are compared with experimental measurements performed on power reactors [fr

  5. Pulsed neutron experiments on the graphite reactor EDF 3

    International Nuclear Information System (INIS)

    Fuster, S.; Tarabella, A.; Tellier, H.

    1967-04-01

    The use of pulsed neutron technique on the EDF 3 reactor has made possible to calibrate a rather great number of control elements. This technique which was tested on EDF 2 has given good results of which the interpretation is difficult due to the reactor size. As some processes ( geometrical location of sources and counters) were currently used to avoid this kind of difficulties another method for interpreting the results is proposed. The measurements are in good agreement with other experimental results obtained with the air-poisoning techniques and generally confirm the data obtained by preliminary computations. The experimental material was satisfying and seems particularly adapted to the problem to be solved. (author) [fr

  6. The status of graphite development for gas cooled reactors

    International Nuclear Information System (INIS)

    1993-02-01

    The meeting was convened by the IAEA on the recommendation of the International Working Group on Gas Cooled Reactors. It was attended by 61 participants from 6 countries. The meeting covered the following subjects: overview of national programs; design criteria, fracture mechanisms and component test; materials development and properties; non-destructive examination, inspection and surveillance. The participants presented 33 papers on behalf of their countries. A separate abstract was prepared for each of these papers. Refs, figs, tabs, photos and diagrams

  7. Overview of strength, crack propagation and fracture of nuclear reactor moderator graphite

    International Nuclear Information System (INIS)

    Moskovic, R.; Heard, P.J.; Flewitt, P.E.J.; Wootton, M.R.

    2013-01-01

    Highlights: • Fracture behaviour. • Cracking initiation and growth. • Different loadings configurations. • Fracture mechanisms. -- Abstract: Nuclear reactor moderator graphite is an aggregate of needle coke filler particles within a matrix of fine coke flour particles mixed with pitch binder. Following extrusion in green condition, impregnation with liquid pitch binder and graphitisation, a polygranular aggregate with orthotropic properties is produced. Its mechanical properties under several different loading conditions and associated cracking behaviour were examined to establish crack initiation and propagation behaviour. Both virgin and radiolytically oxidised material were examined using optical and electron optical microscopy, focused ion beam microscope and digital image correlation. The appearance of force vs. displacement curves varied with type of loading. Mostly linear elastic traces occurred in uniaxial tensile and flexural tests. Large departures from linear elastic behaviour were observed in standard uniaxial and diametral compression testing. Digital image correlation has shown that the initiation of cracking involves formation of a process zone which grows to a critical size of approximately 3–5 mm before a macro-crack is initiated. Cracks straddle a torturous path which zigzags between the filler particles through the matrix consistent with crack propagation along the filler matrix interface. This paper provides an overview of strength, crack propagation and fracture of nuclear reactor moderator graphite. It reviews the physical processes and mathematical approaches that have been adopted to describe the behaviour of brittle materials and then considers if they apply to reactor core graphites

  8. Study of new structures adapted to gas-graphite and gas-heavy water reactors

    International Nuclear Information System (INIS)

    Martin, R.; Roche, R.

    1964-01-01

    The experience acquired as a result of the operation of the Marcoule reactors and of the construction and start-up of the E.D.F. reactors on the one hand, and the conclusions of research and tests carried out out-of-pile on the other hand, lead to a considerable change in the general design of reactors of the gas-graphite type. The main modifications envisaged are analysed in the paper. The adoption of an annular fuel element and of a down-current cooling will make it possible to increase considerably the specific power and the power output of each channel; as a result there will be a considerable reduction in the number of the channels and a corresponding increase in the size of the unit cell. The graphite stack will have to be adapted to there new conditions. For security reasons, the use of prestressed concrete for the construction of the reactor vessel is becoming more widespread; they could lead to the exchangers and the fuel-handling apparatus becoming integrated inside the vessel (the so-called 'attic' device). A full-size mode) of this attic has been built at Saclay with the participation of EURATOM; the operational results obtained are presented as well as a new original design for the control rods. As for as the gas-heavy-water system is concerned, the research is carried out on two points of design; the first, which retains the use of horizontal pressure tubes, takes into account the experience acquired during the construction of the EL 4 reactor of which it will constitute an extrapolation; the second, arising from the research carried out on the gas-graphite system, will use a pre-stressed concrete vessel for holding the pressure, the moderator being almost at the same pressure as the cooling fluid and the fuel being placed in vertical channels. The relative merits of these two variants are analysed in the present paper. (authors) [fr

  9. Reactor-safety research programs. Quarterly report, October-December 1982. Volume 4

    Energy Technology Data Exchange (ETDEWEB)

    Edler, S.K. (ed.)

    1983-04-01

    Evaluations of nondestructive examination (NDE) techniques and instrumentation are reported; areas of investigation include demonstrating the feasibility of determining the strength of structural graphite, evaluating the feasibility of detecting and analyzing flaw growth in reactor pressure boundary systems, examining NDE reliability and probabilistic fracture mechanics, and assessing the integrity of pressurized-water-reactor steam-generator tubes where service-induced degradation has been indicated. Experimental data and analytical models are being provided to aid in decision making regarding pipe-to-pipe impacts following postulated breaks in high-energy fluid system piping. Core thermal models being developed to provide better digital codes to compute the bahavior of full-scale reactor systems under postulated accident conditions. Fuel assemblies and analytical support are being provided for experimental programs at other facilities.

  10. US/FRG umbrella agreement for cooperation in GCR Development. Fuel, fission products, and graphite subprogram. Quarterly status report, July 1, 1982-September 30, 1982

    International Nuclear Information System (INIS)

    Turner, R.F.

    1982-10-01

    This report describes the status of the cooperative work being performed in the Fuel, Fission Product, and Graphite Subprogram under the HTR-Implementing Agreement of the United States/Federal Republic of Germany Umbrella Agreement for Cooperation in GCR Development. The status is described relative to the commitments in the Subprogram Plan for Fuel, Fission Products, and Graphite, Revision 5, April 1982. The work described was performed during the period July 1, 1982 through September 30, 1982 in the HTGR Base Technology Program at Oak Ridge National Laboratory, the HTGR Fuel and Plant Technology Programs at General Atomic Company (GA), and the Project HTR-Brennstoffkreislauf of the Entwicklungsgemeinschaft HTR at KFA Julich, HRB Mannheim, HOBEG Hanau, and SIGRI Meitingen. The requirement for and format of this quarterly status report are specified in the HTR Implementing Agreement procedures for cooperation. Responsibility for preparation of the quarterly report alternates between GA and KFA

  11. Safety evaluation for packaging (onsite) plutonium recycle test reactor graphite cask

    Energy Technology Data Exchange (ETDEWEB)

    Romano, T.

    1997-09-29

    This safety evaluation for packaging (SEP) provides the evaluation necessary to demonstrate that the Plutonium Recycle Test Reactor (PRTR) Graphite Cask meets the requirements of WHC-CM-2-14, Hazardous Material Packaging and Shipping, for transfer of Type B, fissile, non-highway route controlled quantities of radioactive material within the 300 Area of the Hanford Site. The scope of this SEP includes risk, shieldling, criticality, and.tiedown analyses to demonstrate that onsite transportation safety requirements are satisfied. This SEP also establishes operational and maintenance guidelines to ensure that transport of the PRTR Graphite Cask is performed safely in accordance with WHC-CM-2-14. This SEP is valid until October 1, 1999. After this date, an update or upgrade to this document is required.

  12. Deuterium migration in nuclear graphite: Consequences for the behavior of tritium in CO{sub 2}-cooled reactors and for the decontamination of irradiated graphite waste

    Energy Technology Data Exchange (ETDEWEB)

    Le Guillou, M. [Institut de Physique Nucléaire de Lyon, CNRS/IN2P3 UMR 5822, Université Claude Bernard Lyon 1, Université de Lyon – 4, rue Enrico Fermi, F-69622 Villeurbanne cedex (France); Agence nationale pour la gestion des déchets radioactifs, DRD/CM – 1-7, rue Jean Monnet, Parc de la Croix-Blanche, F-92298 Châtenay-Malabry cedex (France); Toulhoat, N., E-mail: nelly.toulhoat@univ-lyon1.fr [Institut de Physique Nucléaire de Lyon, CNRS/IN2P3 UMR 5822, Université Claude Bernard Lyon 1, Université de Lyon – 4, rue Enrico Fermi, F-69622 Villeurbanne cedex (France); CEA/DEN – Centre de Saclay, F-91191 Gif-sur-Yvette cedex (France); Pipon, Y. [Institut de Physique Nucléaire de Lyon, CNRS/IN2P3 UMR 5822, Université Claude Bernard Lyon 1, Université de Lyon – 4, rue Enrico Fermi, F-69622 Villeurbanne cedex (France); Institut Universitaire Technologique, Université Claude Bernard Lyon 1, Université de Lyon – 43, boulevard du 11 novembre 1918, F-69622 Villeurbanne cedex (France); Moncoffre, N. [Institut de Physique Nucléaire de Lyon, CNRS/IN2P3 UMR 5822, Université Claude Bernard Lyon 1, Université de Lyon – 4, rue Enrico Fermi, F-69622 Villeurbanne cedex (France); Khodja, H. [Laboratoire d’Etude des Eléments Légers, CEA/DSM/IRAMIS/NIMBE, UMR 3299 SIS2M – Centre de Saclay, F-91191 Gif-sur-Yvette cedex (France)

    2015-06-15

    In this paper, we aim at understanding tritium behavior in the graphite moderator of French CO{sub 2}-cooled nuclear fission reactors (called UNGG for “Uranium Naturel-Graphite-Gaz”) to get information on its distribution and inventory in the irradiated graphite waste after their dismantling. These findings should be useful both to improve waste treatment processes and to foresee tritium behavior during reactor decommissioning and waste disposal operations. The purpose of the present work is to elucidate the effects of temperature on the behavior of tritium during reactor operation. Furthermore, it aims at exploring options of thermal decontamination. For both purposes, annealing experiments were carried out in inert atmosphere as well as in thermal conditions as close as possible to those encountered in UNGG reactors and in view of a potential decontamination in humid gas. D{sup +} ions were implanted into virgin nuclear graphite in order to simulate tritium displaced from its original structural site through recoil during reactor operation. The effect of thermal treatments on the mobility of the implanted deuterium was then investigated at temperatures ranging from 200 to 1200 °C, in inert atmosphere (vacuum or argon), in a gas simulating the UNGG coolant gas (mainly CO{sub 2}) or in humid nitrogen. Deuterium was analyzed by Nuclear Reaction Analysis (NRA) both at millimetric and micrometric scales. We have identified three main stages for the deuterium release. The first one corresponds to deuterium permeation through graphite open pores. The second and third ones are controlled by the progressive detrapping of deuterium located at different trapping sites and its successive migration through the crystallites and along crystallites and coke grains edges. Extrapolating the thermal behavior of deuterium to tritium, the results show that the release becomes significant above the maximum UNGG reactor temperature of 500 °C and should be lower than 30% of the

  13. Deuterium migration in nuclear graphite: Consequences for the behavior of tritium in CO2-cooled reactors and for the decontamination of irradiated graphite waste

    Science.gov (United States)

    Le Guillou, M.; Toulhoat, N.; Pipon, Y.; Moncoffre, N.; Khodja, H.

    2015-06-01

    In this paper, we aim at understanding tritium behavior in the graphite moderator of French CO2-cooled nuclear fission reactors (called UNGG for "Uranium Naturel-Graphite-Gaz") to get information on its distribution and inventory in the irradiated graphite waste after their dismantling. These findings should be useful both to improve waste treatment processes and to foresee tritium behavior during reactor decommissioning and waste disposal operations. The purpose of the present work is to elucidate the effects of temperature on the behavior of tritium during reactor operation. Furthermore, it aims at exploring options of thermal decontamination. For both purposes, annealing experiments were carried out in inert atmosphere as well as in thermal conditions as close as possible to those encountered in UNGG reactors and in view of a potential decontamination in humid gas. D+ ions were implanted into virgin nuclear graphite in order to simulate tritium displaced from its original structural site through recoil during reactor operation. The effect of thermal treatments on the mobility of the implanted deuterium was then investigated at temperatures ranging from 200 to 1200 °C, in inert atmosphere (vacuum or argon), in a gas simulating the UNGG coolant gas (mainly CO2) or in humid nitrogen. Deuterium was analyzed by Nuclear Reaction Analysis (NRA) both at millimetric and micrometric scales. We have identified three main stages for the deuterium release. The first one corresponds to deuterium permeation through graphite open pores. The second and third ones are controlled by the progressive detrapping of deuterium located at different trapping sites and its successive migration through the crystallites and along crystallites and coke grains edges. Extrapolating the thermal behavior of deuterium to tritium, the results show that the release becomes significant above the maximum UNGG reactor temperature of 500 °C and should be lower than 30% of the total amount produced

  14. Oxidation damage evaluation by non-destructive method for graphite components in high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Shibata, Taiju; Tada, Tatsuya; Sumita, Junya; Sawa, Kazuhiro

    2008-01-01

    To develop non-destructive evaluation methods for oxidation damage on graphite components in High Temperature Gas-cooled Reactors (HTGRs), the applicability of ultrasonic wave and micro-indentation methods were investigated. Candidate graphites, IG-110 and IG-430, for core components of Very High Temperature Reactor (VHTR) were used in this study. These graphites were oxidized uniformly by air at 500degC. The following results were obtained from this study. (1) Ultrasonic wave velocities with 1 MHz can be expressed empirically by exponential formulas to burn-off, oxidation weight loss. (2) The porous condition of the oxidized graphite could be evaluated with wave propagation analysis with a wave-pore interaction model. It is important to consider the non-uniformity of oxidized porous condition. (3) Micro-indentation method is expected to determine the local oxidation damage. It is necessary to assess the variation of the test data. (author)

  15. Examination of Surface Deposits on Oldbury Reactor Core Graphite to Determine the Concentration and Distribution of 14C.

    Directory of Open Access Journals (Sweden)

    Liam Payne

    Full Text Available Pile Grade A graphite was used as a moderator and reflector material in the first generation of UK Magnox nuclear power reactors. As all of these reactors are now shut down there is a need to examine the concentration and distribution of long lived radioisotopes, such as 14C, to aid in understanding their behaviour in a geological disposal facility. A selection of irradiated graphite samples from Oldbury reactor one were examined where it was observed that Raman spectroscopy can distinguish between underlying graphite and a surface deposit found on exposed channel wall surfaces. The concentration of 14C in this deposit was examined by sequentially oxidising the graphite samples in air at low temperatures (450°C and 600°C to remove the deposit and then the underlying graphite. The gases produced were captured in a series of bubbler solutions that were analysed using liquid scintillation counting. It was observed that the surface deposit was relatively enriched with 14C, with samples originating lower in the reactor exhibiting a higher concentration of 14C. Oxidation at 600°C showed that the remaining graphite material consisted of two fractions of 14C, a surface associated fraction and a graphite lattice associated fraction. The results presented correlate well with previous studies on irradiated graphite that suggest there are up to three fractions of 14C; a readily releasable fraction (corresponding to that removed by oxidation at 450°C in this study, a slowly releasable fraction (removed early at 600°C in this study, and an unreleasable fraction (removed later at 600°C in this study.

  16. Sicral F1 graphite-core fuel element behavior in power reactors

    International Nuclear Information System (INIS)

    Rendu, M.

    1987-02-01

    Over 500 000 Sicral F1 graphite-core fuel elements have been manufactured by COGEMA to date and irradiated in GCR power reactors. Since 1963, this type of fuel element has been thoroughly investigated in design studies, in-core and out-of-core tests and post-mortem examinations. This report reviews the current state of knowledge on the irradiation behavior of the components under normal operating conditions and in incident situations (e.g. clad failure). It discusses how this work has led to optimization of the thermal, mechanical metallurgical and neutronic performance in order to obtain a can failure probability of less than 1.6 x 10 -5 , and defines general operating procedures for reactor implementation of this type of fuel element [fr

  17. Implications of Graphite Radiation Damage on the Neutronic, Operational, and Safety Aspects of Very High Temperature Reactors

    International Nuclear Information System (INIS)

    Hawari, Ayman I.

    2011-01-01

    In both the prismatic and pebble bed designs of Very High Temperature Reactors (VHTR), the graphite moderator is expected to reach exposure levels of 10 21 to 10 22 n/cm 2 over the lifetime of the reactor. This exposure results in damage to the graphite structure. In this work, molecular dynamic and ab initio molecular static calculations will be used to: (1) simulate radiation damage in graphite under various irradiation and temperature conditions, (2) generate the thermal neutron scattering cross sections for damaged graphite, and (3) examine the resulting microstructure to identify damage formations that may produce the high-temperature Wigner effect. The impact of damage on the neutronic, operational and safety behavior of the reactor will be assessed using reactor physics calculations. In addition, tests will be performed on irradiated graphite samples to search for the high-temperature Wigner effect, and phonon density of states measurements will be conducted to quantify the effect on thermal neutron scattering cross sections using these samples.

  18. Design of the Next Generation Nuclear Plant Graphite Creep Experiments for Irradiation in the Advanced Test Reactor

    International Nuclear Information System (INIS)

    Grover, S. Blaine

    2009-01-01

    The United States Department of Energy's Next Generation Nuclear Plant (NGNP) Program will be irradiating six gas reactor graphite creep experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). The ATR has a long history of irradiation testing in support of reactor development and the INL has been designated as the new United States Department of Energy's lead laboratory for nuclear energy development. The ATR is one of the world's premiere test reactors for performing long term, high flux, and/or large volume irradiation test programs. These graphite irradiations are being accomplished to support development of the next generation reactors in the United States. The graphite experiments will be irradiated over the next six to eight years to support development of a graphite irradiation performance data base on the new nuclear grade graphites now available for use in high temperature gas reactors. The goals of the irradiation experiments are to obtain irradiation performance data at different temperatures and loading conditions to support design of the Next Generation Nuclear Plant Very High Temperature Gas Reactor, as well as other future gas reactors. The experiments will each consist of a single capsule that will contain seven separate stacks of graphite specimens. Six of the specimen stacks will have half of their graphite specimens under a compressive load, while the other half of the specimens will not be subjected to a compressive load during irradiation. The six stacks will be organized into pairs with a different compressive load being applied to the top half of each pair of specimen stacks. The seventh stack will not have a compressive load on the graphite specimens during irradiation. The specimens will be irradiated in an inert sweep gas atmosphere with on-line temperature and compressive load monitoring and control. There will also be the capability of sampling the sweep gas effluent to determine if any oxidation or

  19. Calculation of intermediate neutron flux in the radial reflectors of graphite reactors, comparison with experiments

    International Nuclear Information System (INIS)

    Brisbois, J.; Vergnaud, T.; Oceraies, Y.

    1967-12-01

    In a graphite pile, EDF or Inca type reactor, it is necessary to know the value of the intermediate neutron flux at the output of the lateral reflector in order to determine more precisely the neutron flux at the level of ionisation chambers. A sub critical pile of graphite and natural uranium was built, allowing to reconstitute the geometry of the radiation sources and the disposition of inferior and lateral protections of these piles. This pile is supplied with thermal neutrons coming from the Nereide light water type reactor. Some measurements of intermediate neutron flux have been made in this pile in order to establish a formalism for neutron flux calculation in slowing down in a whole core-lateral reflector, from the distribution of the thermal neutrons flux in the core. The flux calculation is done by age theory in three dimensions, in two homogenous media, separated by an axially semi infinite and laterally finite plane. One of these media includes a distribution of source. The constants are modified in order to take into account the presence of empty channels in the stacking. These calculations are done by the Malaga code. The checking of the formalism has been made in a greater complex geometry of these reactors that introduces an uncertainty factor in the comparison of results. We can however tell that we estimate correctly the variation of the intermediate neutrons flux in the core as well as its descending in a holed lateral reflector. The ratio between the calculation and the experiment is inferior to 2 or 3. Most of the time to a factor 2 [fr

  20. Study on disposal method of graphite blocks and storage of spent fuel for modular gas-cooled reactor. Joint research

    Energy Technology Data Exchange (ETDEWEB)

    Sumita, Junya; Sawa, Kazuhiro; Kunitomi, Kazuhiko [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment; Tsuchie, Yasuo; Urakami, Masao [Japan Atomic Power Co., Tokyo (Japan)

    2003-02-01

    This report describes the result of study on disposal method of graphite blocks in future block-type reactor. Present study was carried out within a framework of joint research, ''Research of Modular High Temperature Gas-cooled Reactors (No. 3)'', between Japan Atomic Energy Research Institute (JAERI) and the Japan Atomic Power Company (JAPCO), in 2000. In this study, activities in fuel and reflector graphite blocks were evaluated and were compared with the disposal limits defined as low-level of radioactive waste. As a result, it was found that the activity for only C-14 was higher than disposal limits for the low-level of radioactive waste and that the amount of air in the graphite is important to evaluate precisely of C-14 activity. In addition, spent fuels can be stored in air-cooled condition at least after two years cooling in the storage pool. (author)

  1. Experiences in the emptying of waste silos containing solid nuclear waste from graphite- moderated reactors

    International Nuclear Information System (INIS)

    Wall, S.; Schwarz, T.

    2003-01-01

    Before reactor sites can be handed over for ultimate decommissioning, at some sites silos containing waste from operations need to be emptied. The form and physical condition of the waste demands sophisticated retrieval technologies taking into account the onsite situation in terms of infrastructure and silo geometry. Furthermore, in the case of graphite moderated reactors, this waste usually includes several tonnes of graphite waste requiring special HVAC and dust handling measures. RWE NUKEM Group has already performed several contracts dealing with such emptying tasks. Of particular interest for the upcoming decommissioning projects in France might be the activities at Vandellos, Spain and Trawsfynnyd, UK. Retrieval System for Vandellos NPP is discussed. Following an international competitive tender exercise, RWE NUKEM won the contract to provide a turn-key retrieval system. This involved the design, manufacture and installation of a system built around the modules of a 200 kg capacity version of the ARTISAN manipulator system. The ARTISAN 200 manipulator, with remote slave arm detach facility, was deployed on a telescopic mast inserted into the silos through the roof penetrations. The manipulator deployed a range of tools to gather the waste and load it into a transfer basket, deployed through an adjacent penetration. After commissioning, the system cleared the vaults in less than the scheduled period with no failures. At the Trawsfynnyd Magnox plants two types of intermediate level waste (ILW) accumulated on site; namely Miscellaneous Activated Components (MAC) and Fuel Element Debris (FED). MAC is predominantly components that have been activated by the reactor core and then discharged. FED mainly consists of fuel cladding produced when fuel elements were prepared for dispatch to the reprocessing facility. RWE NUKEM Ltd. was awarded a contract to design, supply, commission and operate equipment to retrieve, pack and immobilize the two waste streams. Major

  2. Pre-conceptual Development and characterization of an extruded graphite composite fuel for the TREAT Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Luther, Erik; Rooyen, Isabella van; Leckie, Rafael; Papin, Pallas; Nelson, Andrew; Hunter, James

    2015-03-01

    In an effort to explore fuel systems that are more robust under accident scenarios, the DOE-NE has identified the need to resume transient testing. The Transient Reactor Test (TREAT) facility has been identified as the preferred option for the resumption of transient testing of nuclear fuel in the United States. In parallel, NNSA’s Global Threat Reduction Initiative (GTRI) Convert program is exploring the needs to replace the existing highly enriched uranium (HEU) core with low enriched uranium (LEU) core. In order to construct a new LEU core, materials and fabrication processes similar to those used in the initial core fabrication must be identified, developed and characterized. In this research, graphite matrix fuel blocks were extruded and materials properties of were measured. Initially the extrusion process followed the historic route; however, the project was expanded to explore methods to increase the graphite content of the fuel blocks and explore modern resins. Materials properties relevant to fuel performance including density, heat capacity and thermal diffusivity were measured. The relationship between process defects and materials properties will be discussed.

  3. Hydrogen isotope exchange and conditioning in graphite limiters used in the Tokamak Fusion Test Reactor

    International Nuclear Information System (INIS)

    LaMarche, P.H.; Dylla, H.F.; McCarthy, P.J.; Ulrickson, M.

    1986-01-01

    Isotopic exchange experiments performed in the Tokamak Fusion Test Reactor (TFTR) are used to examine the outgassing and diffusive properties of graphite used as the plasma limiter. Changeover from hydrogen to deuterium for different periods ranges from approx.600 to 60 plasma discharges, which appears to be correlated in the limiter temperature. We present a simple analytical model that predicts a fast transient (approx.10 plasma discharges) changeover, where the deuterium fueling dilutes the adsorbed and near surface hydrogen, and a slowly changing term where bulk hydrogen diffuses to the surface. Using this model we can extract an activation energy for diffusion of 0.15 +- 0.02 eV. We hypothesize that interpore diffusion for this porous (approx.15%) material is consistent with our observations

  4. A preliminary definition of the parameters of an experimental natural - uranium, graphite - moderated, helium - cooled power reactor

    International Nuclear Information System (INIS)

    Baltazar, O.

    1978-01-01

    A preliminary study of the technical characteristic of an experiment at 32 MWe power with a natural uconium, graphite-moderated, helium cooled reactor is described. The national participation and the use of reactor as an instrument for the technological development of future high temperature gas cooled reactor is considered in the choice of the reactor type. Considerations about nuclear power plants components based in extensive bibliography about similar english GCR reactor is presented. The main thermal, neutronic an static characteristic and in core management of the nuclear fuel is stablished. A simplified scheme of the secondary system and its thermodynamic performance is determined. A scheme of parameters calculation of the reactor type is defined based in the present capacity of calculation developed by Coordenadoria de Engenharia Nuclear and Centro de Processamento de Dados, IEA, Brazil [pt

  5. Failure prediction of full-size reactor components from tensile specimen data on NBG-18 nuclear graphite

    Energy Technology Data Exchange (ETDEWEB)

    Hindley, Michael P., E-mail: makke@mweb.co.za [Pebble Bed Modular Reactor (Pty) Ltd., P.O. Box 9396, Centurion 0046 (South Africa); Blaine, Deborah C.; Groenwold, Albert A.; Becker, Thorsten H. [Department of Mechanical and Mechatronic Engineering, Stellenbosch University, Private Bag X1, Matieland 7602 (South Africa)

    2015-04-01

    Highlights: • Predicts failure on a full scale reactor component and compare it to experiments. • Shows the effect of volume on NBG-18 nuclear graphite failure prediction. • Provide independent verification of a previously published methodology. • Describe the influence of multiple locations of high stress on failure prediction. - Abstract: This paper concerns itself with predicting the failure of a full-size NBG-18 nuclear graphite reactor component based only on test data obtained from standard tensile test specimens. A full-size specimen structural test was developed to simulate the same failure conditions expected during a normal operation of the reactor in order to validate the failure prediction. The full-size specimen designed for this test is almost a hundred times larger than the tensile test specimen, has a completely different geometry and experiences a different loading condition to the standard tensile test specimen. Failure of the full-size component is predicted realistically, but conservatively.

  6. Treatment and Disposal of the Radioactive Graphite Waste of High-Temperature Gas-Cooled Reactor Spent Fuel

    International Nuclear Information System (INIS)

    Li Junfeng

    2016-01-01

    High-temperature gas-cooled reactors (HTGRs) represent one of the Gen IV reactors in the future market, with efficient generation of energy and the supply of process heat at high temperature utilised in many industrial processes. HTGR development has been carried out within China’s National High Technology Research and Development Program. The first industrial demonstration HTGR of 200 MWe is under construction in Shandong Province China. HTGRs use ceramic-coated fuel particles that are strong and highly resistant to irradiation. Graphite is used as moderator and helium is used as coolant. The fuel particles and the graphite block in which they are imbedded can withstand very high temperature (up to ~1600℃). Graphite waste presents as the fuel element components of HTGR with up to 95% of the whole element beside the graphite blocks in the core. For example, a 200 MWe reactor could discharge about 90,000 fuel elements with 17 tonnes irradiated graphite included each year. The core of the HTGR in China consists of a pebble bed with spherical fuel elements. The UO 2 fuel kernel particles (0.5mm diameter) (triple-coated isotropic fuel particles) are coated by several layers including inner buffer layer with less dense pyrocarbon, dense pyro-carbon, SiC layer and outer layer of dense pyro-carbon, which can prevent the leaking of fission products (Fig. 1). Spherical fuel elements (60mm diameter) consist of a 50mm diameter inner zone and 5mm thick shell of fuel free zone [3]. The inner zone contains about 8300 triple-coated isotropic fuel particles of 0.92mm in diameter dispersed in the graphite matrix

  7. The effects of neutron irradiation on various fuels used in gas graphite reactor systems

    International Nuclear Information System (INIS)

    Englander, M.

    1964-01-01

    The behaviour of natural uranium based fuels in form of rods and tubes has been examined after irradiation in several French reactors. Two categories of uranium alloys have thus been studied: on one hand alloys containing from 0,5 to 3 p.100 by weight of molybdenum, and on the other hand alloys obtained by addition to nuclear purity uranium, of less than 1500 ppm of metallic elements such as iron, aluminium, chromium and silicon. The tests have been carried out with two types of elements: one canned with a magnesium alloy and cooled by carbon dioxide under pressure (in G 2 G 3), the other canned with aluminium and cooled by heavy water (in EL 3). Each of these elements had the same outside form as the usual elements in these reactors, but the enrichment and thickness of the fuel were adapted in order to meet different irradiation conditions. The post-irradiation examinations described, thereafter involved techniques of metrology, of radiography, of density measurements before and after isochron annealings, as well as macro-graphies or optical and electronic micrographies. The experimental results thus obtained reflect the changes in the internal and external structures of the full-size fuel elements; they are discussed in terms of the combined effects of pressure, temperature and burn-up on the morphological state, on the isotropy and on the mechanical characteristics of the initial polycrystalline aggregate. An analysis of the results makes it possible to deduce the various advantages of un-enriched metallic fuels designed to operate with a hot-point of around 600 C in reactors of the gas-graphite type, and for a length of time corresponding to an output of 4500 MW day/metre ton. (author) [fr

  8. Some economic aspects of natural uranium graphite gas reactor types. Present status and trends of costs in France

    International Nuclear Information System (INIS)

    Gaussens, J.; Tanguy, P.

    1964-01-01

    The first part of this report defines the economic advantages of natural uranium fuels, which are as follows: the restricted number and relatively simple fabrication processes of the fuel elements, the low cost per kWh of the finished product and the reasonable capital investments involved in this type of fuel cycle as compared to that of enriched uranium. All these factors combine to reduce the arbitrary nature of cost estimates, which is particularly marked in the case of enriched uranium due to the complexity of its cycle and the uncertainties of plutonium prices). Finally, the wide availability of yellowcake, as opposed to the present day virtual monopoly of isotope separation, and the low cost of natural uranium stockpiling, offer appreciable guarantees in the way of security of supply and economic and political independence as compared with the use of enriched uranium. As far as overall capital investments are concerned, it is shown that, although graphite-gas reactor costs are higher than those of light water reactors in certain capacity ranges, the situation becomes far less clear when we start taking into account, in the interest of national independence, the cost of nuclear fuel production equipment in the case of each of these types of reactor. Finally, the marginal cost of the power capacity of a graphite-gas reactor is low and its technological limitations have receded (owing particularly to the use of prestressed concrete). It is a well known fact that the trend is now towards larger power station units, which means that the rentability of natural uranium graphite reactors as compared to other types of reactors will become more and more pronounced. The second section aims at presenting a realistic short and medium term view of the fuel, running, and investment costs of French natural uranium graphite gas, reactors. Finally, the economic goals which this type of reactor can reach in the very near future are given. It is thus shown that considerable

  9. Interactions of D-T neutrons in graphite and lithium blankets of fusion reactors

    International Nuclear Information System (INIS)

    Ofek, R.

    1986-05-01

    The present study deals with integral experiment and calculation of neutron energy spectra in bulks of graphite which is used as a reflector in blankets of fusion reactors, and lithium, the material of the blanket on which lithium is bred due to neutron interactions. The collimated beam configuration enables - due to the almost monoenergeticity and unidirectionality of the neutrons impinging on the target - to identify fine details in the measured spectra, and also facilitates the absolute normalization of the spectra. The measured and calculated spectra are generally in a good agreement and in a very good agreement at mesh points close to the system axis. A few conclusions may be drawn: a) the collimated beam source configuration is a sensitive tool for measuring neutron energy spectra with a high resolution, b) the method of unfolding proton-recoil spectra measured with a NE-213 scintillator should be improved, c) MCNP and DOT 4.2 may be used as complementary codes for neutron transport calculations of fusion blankets and deep-penetration problems, d) the updating of the cross-section libraries and checking by integral experiments is highly important for the design of fusion blankets. The present study may be regarded as an important course in the research and development of tools for the design of fusion blankets

  10. Experimental Study of the Effect of Graphite Dispersion on the Heat Transfer Phenomena in a Reactor Cavity Cooling System

    Energy Technology Data Exchange (ETDEWEB)

    Vaghetto, Rodolfo; Capone, Luigi; Hassan, Yassin A

    2011-05-31

    An experimental activity was performed to observe and study the effects of graphite dispersion and deposition on thermal-hydraulic phenomena in a reactor cavity cooling system (RCCS). The small-scale RCCS experimental facility (16.5 x 16.5 x 30.4 cm) used for this activity represents half of the reactor cavity with an electrically heated vessel. Water flowing through five vertical pipes removes the heat produced in the vessel and releases it into the environment by mixing with cold water in a large tank. The particle image velocimetry technique was used to study the velocity field of the air inside the cavity. A set of 52 thermocouples was installed in the facility to monitor the temperature profiles of the vessel, pipe walls, and air. Ten grams of a fine graphite powder (average particle size 2 m) was injected into the cavity through a spraying nozzle placed at the bottom of the vessel. The temperatures and air velocity field were recorded and compared with the measurements obtained before the graphite dispersion, showing a decrease of the temperature surfaces that was related to an increase in their emissivity. The results contribute to the understanding of RCCS capability in an accident scenario.

  11. Modelling 3D crack propagation in ageing graphite bricks of Advanced Gas-cooled Reactor power plant

    Directory of Open Access Journals (Sweden)

    Thi-Tuyet-Giang Vo

    2015-10-01

    Full Text Available In this paper, crack propagation in Advanced Gas-cooled Reactor (AGR graphite bricks with ageing properties is studied using the eXtended Finite Element Method (X-FEM. A parametric study for crack propagation, including the influence of different initial crack shapes and propagation criteria, is conducted. The results obtained in the benchmark study show that the crack paths from X-FEM are similar to the experimental ones. The accuracy of the strain energy release rate computation in a heterogeneous material is also evaluated using a finite difference approach. Planar and non-planar 3D crack growth simulations are presented to demonstrate the robustness and the versatility of the method utilized. Finally, this work contributes to the better understanding of crack propagation behaviour in AGR graphite bricks and so contributes to the extension of the AGR plants’ lifetimes in the UK by reducing uncertainties.

  12. Graphite Technology Development Plan

    Energy Technology Data Exchange (ETDEWEB)

    W. Windes; T. Burchell; M.Carroll

    2010-10-01

    The Next Generation Nuclear Plant (NGNP) will be a helium-cooled High Temperature Gas Reactor (HTGR) with a large graphite core. Graphite physically contains the fuel and comprises the majority of the core volume. Graphite has been used effectively as a structural and moderator material in both research and commercial high-temperature gas-cooled reactors. This development has resulted in graphite being established as a viable structural material for HTGRs. While the general characteristics necessary for producing nuclear grade graphite are understood, historical “nuclear” grades no longer exist. New grades must be fabricated, characterized, and irradiated to demonstrate that current grades of graphite exhibit acceptable non-irradiated and irradiated properties upon which the thermomechanical design of the structural graphite in NGNP is based. This Technology Development Plan outlines the research and development (R&D) activities and associated rationale necessary to qualify nuclear grade graphite for use within the NGNP reactor.

  13. Failure Predictions for Graphite Reflector Bricks in the Very High Temperature Reactor with the Prismatic Core Design

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Gyanender, E-mail: sing0550@umn.edu [Department of Mechanical Engineering, University of Minnesota, 111, Church St. SE, Minneapolis, MN 55455 (United States); Fok, Alex [Minnesota Dental Research in Biomaterials and Biomechanics, School of Dentistry, University of Minnesota, 515, Delaware St. SE, Minneapolis, MN 55455 (United States); Department of Mechanical Engineering, University of Minnesota, 111, Church St. SE, Minneapolis, MN 55455 (United States); Mantell, Susan [Department of Mechanical Engineering, University of Minnesota, 111, Church St. SE, Minneapolis, MN 55455 (United States)

    2017-06-15

    Highlights: • Failure probability of VHTR reflector bricks predicted though crack modeling. • Criterion chosen for defining failure strongly affects the predictions. • Breaching of the CRC could be significantly delayed through crack arrest. • Capability to predict crack initiation and propagation demonstrated. - Abstract: Graphite is used in nuclear reactor cores as a neutron moderator, reflector and structural material. The dimensions and physical properties of graphite change when it is exposed to neutron irradiation. The non-uniform changes in the dimensions and physical properties lead to the build-up of stresses over the course of time in the core components. When the stresses reach the critical limit, i.e. the strength of the material, cracking occurs and ultimately the components fail. In this paper, an explicit crack modeling approach to predict the probability of failure of a VHTR prismatic reactor core reflector brick is presented. Firstly, a constitutive model for graphite is constructed and used to predict the stress distribution in the reflector brick under in-reactor conditions of high temperature and irradiation. Fracture simulations are performed as part of a Monte Carlo analysis to predict the probability of failure. Failure probability is determined based on two different criteria for defining failure time: A) crack initiation and B) crack extension to near control rod channel. A significant difference is found between the failure probabilities based on the two criteria. It is predicted that the reflector bricks will start cracking during the time range of 5–9 years, while breaching of the control rod channels will occur during the period of 11–16 years. The results show that, due to crack arrest, there is a significantly delay between crack initiation and breaching of the control rod channel.

  14. Impact of radiolysis and radiolytic corrosion on the release of {sup 13}C and {sup 37}Cl implanted into nuclear graphite: Consequences for the behaviour of {sup 14}C and {sup 36}Cl in gas cooled graphite moderated reactors

    Energy Technology Data Exchange (ETDEWEB)

    Moncoffre, N., E-mail: nathalie.moncoffre@ipnl.in2p3.fr [Université de Lyon, Université Lyon 1, CNRS/IN2P3, UMR5822, Institut de Physique Nucléaire de Lyon (IPNL) (France); Toulhoat, N. [Université de Lyon, Université Lyon 1, CNRS/IN2P3, UMR5822, Institut de Physique Nucléaire de Lyon (IPNL) (France); CEA/DEN, Centre de Saclay (France); Bérerd, N.; Pipon, Y. [Université de Lyon, Université Lyon 1, CNRS/IN2P3, UMR5822, Institut de Physique Nucléaire de Lyon (IPNL) (France); Université de Lyon, Université Lyon, IUT Lyon-1 département chimie (France); Silbermann, G. [Université de Lyon, Université Lyon 1, CNRS/IN2P3, UMR5822, Institut de Physique Nucléaire de Lyon (IPNL) (France); EDF – DPI - DIN – CIDEN, DIE - Division Environnement, Lyon (France); Blondel, A. [Université de Lyon, Université Lyon 1, CNRS/IN2P3, UMR5822, Institut de Physique Nucléaire de Lyon (IPNL) (France); Andra, Châtenay-Malabry (France); Galy, N. [Université de Lyon, Université Lyon 1, CNRS/IN2P3, UMR5822, Institut de Physique Nucléaire de Lyon (IPNL) (France); EDF – DPI - DIN – CIDEN, DIE - Division Environnement, Lyon (France); and others

    2016-04-15

    Graphite finds widespread use in many areas of nuclear technology based on its excellent moderator and reflector qualities as well as its strength and high temperature stability. Thus, it has been used as moderator or reflector in CO{sub 2} cooled nuclear reactors such as UNGG, MAGNOX, and AGR. However, neutron irradiation of graphite results in the production of {sup 14}C (dose determining radionuclide) and {sup 36}Cl (long lived radionuclide), these radionuclides being a key issue regarding the management of the irradiated waste. Whatever the management option (purification, storage, and geological disposal), a previous assessment of the radioactive inventory and the radionuclide's location and speciation has to be made. During reactor operation, the effects of radiolysis are likely to promote the radionuclide release especially at the gas/graphite interface. Radiolysis of the coolant is mainly initiated through γ irradiation as well as through Compton electrons in the graphite pores. Radiolysis can be simulated in laboratory using γ irradiation or ion irradiation. In this paper, {sup 13}C, {sup 37}Cl and {sup 14}N are implanted into virgin nuclear graphite in order to simulate respectively the presence of {sup 14}C, {sup 36}Cl and nitrogen, a {sup 14}C precursor. Different irradiation experiments were carried out using different irradiation devices on implanted graphite brought into contact with a gas simulating the coolant. The aim was to assess the effects of gas radiolysis and radiolytic corrosion induced by γ or He{sup 2+} irradiation at the gas/graphite interface in order to evaluate their role on the radionuclide release. Our results allow inferring that radiolytic corrosion has clearly promoted the release of {sup 14}C, {sup 36}Cl and {sup 14}N located at the graphite brick/gas interfaces and open pores.

  15. Tables of formulae for calculating the mechanics of stacks in gas-graphite reactors

    International Nuclear Information System (INIS)

    1968-01-01

    This collection of formulae only gives, for nuclear graphite stacks. The mechanical effects due to the strains, thermal or not, of steel structures supporting or surrounding graphite blocks. Equations have been established by mean of experiments made at Chinon with large pile models. Thus, it is possible to calculate displacement, strain and stress in the EDF type stacks of horizontal triangular block lattice. (authors) [fr

  16. Enforcement actions: Significant actions resolved reactor licensees. Volume 14, No. 2, Part 2, Quarterly progress report, April--June 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (April--June 1995) and includes copies of letters, Notices, and Orders sent by the Nuclear Regulatory Commission to reactor licensees with respect to these enforcement actions. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication.

  17. Enforcement actions: Significant actions resolved. Reactor licensees: Volume 14, No. 1, Part 1, Quarterly progress report January--March 1995

    International Nuclear Information System (INIS)

    1995-01-01

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (January--March 1995) and includes copies of letters, Notices, and Orders sent by the Nuclear Regulatory Commission to reactor licensees with respect to these enforcement actions. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication

  18. Enforcement actions: Significant actions resolved reactor licensees. Volume 14, No. 2, Part 2, Quarterly progress report, April--June 1995

    International Nuclear Information System (INIS)

    1995-08-01

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (April--June 1995) and includes copies of letters, Notices, and Orders sent by the Nuclear Regulatory Commission to reactor licensees with respect to these enforcement actions. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication

  19. Enforcement actions: Significant actions resolved reactor licensees. Quarterly progress report, October--December 1994, Volume 13, No. 4, Part 1

    International Nuclear Information System (INIS)

    1995-02-01

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (October--December 1994) and includes copies of letters Notices, and Orders sent by the Nuclear Regulatory Commission to reactor licensees with respect to these enforcement actions. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication

  20. Enforcement actions: Significant actions resolved, reactor licensees. Quarterly progress report, July--September 1994; Volume 13, Number 3, Part 1

    International Nuclear Information System (INIS)

    1994-12-01

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (July--September 1994) and includes copies of letters, Notices, and Orders sent by the Nuclear Regulatory Commission to reactor licensees with respect to these enforcement actions. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication

  1. Enforcement actions: Significant actions resolved reactor licensees. Quarterly progress report, October--December 1994, Volume 13, No. 4, Part 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-02-01

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (October--December 1994) and includes copies of letters Notices, and Orders sent by the Nuclear Regulatory Commission to reactor licensees with respect to these enforcement actions. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication.

  2. Enforcement actions: Significant actions resolved reactor licensees. Volume 13, No. 1, Part 1: Quarterly progress report, January--March 1994

    International Nuclear Information System (INIS)

    1994-06-01

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (January--March 1994) and includes copies of letters, Notices, and Orders sent by the Nuclear Regulatory Commission to reactor licensees with respect to these enforcement actions. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to these described in this publication

  3. Computational prediction of dust production in graphite moderated pebble bed reactors

    Science.gov (United States)

    Rostamian, Maziar

    The scope of the work reported here, which is the computational study of graphite wear behavior, supports the Nuclear Engineering University Programs project "Experimental Study and Computational Simulations of Key Pebble Bed Thermomechanics Issues for Design and Safety" funded by the US Department of Energy. In this work, modeling and simulating the contact mechanics, as anticipated in a PBR configuration, is carried out for the purpose of assessing the amount of dust generated during a full power operation year of a PBR. A methodology that encompasses finite element analysis (FEA) and micromechanics of wear is developed to address the issue of dust production and its quantification. Particularly, the phenomenon of wear and change of its rate with sliding length is the main focus of this dissertation. This work studies the wear properties of graphite by simulating pebble motion and interactions of a specific type of nuclear grade graphite, IG-11. This study consists of two perspectives: macroscale stress analysis and microscale analysis of wear mechanisms. The first is a set of FEA simulations considering pebble-pebble frictional contact. In these simulations, the mass of generated graphite particulates due to frictional contact is calculated by incorporating FEA results into Archard's equation, which is a linear correlation between wear mass and wear length. However, the experimental data by Johnson, University of Idaho, revealed that the wear rate of graphite decreases with sliding length. This is because the surfaces of the graphite pebbles become smoother over time, which results in a gradual decrease in wear rate. In order to address the change in wear rate, a more detailed analysis of wear mechanisms at room temperature is presented. In this microscale study, the wear behavior of graphite at the asperity level is studied by simulating the contact between asperities of facing surfaces. By introducing the effect of asperity removal on wear rate, a nonlinear

  4. Nuclear graphite ageing and turnaround

    International Nuclear Information System (INIS)

    Marsden, B.J.; Hall, G.N.; Smart, J.

    2001-01-01

    Graphite moderated reactors are being operated in many countries including, the UK, Russia, Lithuania, Ukraine and Japan. Many of these reactors will operate well into the next century. New designs of High Temperature Graphite Moderated Reactors (HTRS) are being built in China and Japan. The design life of these graphite-moderated reactors is governed by the ageing of the graphite core due to fast neutron damage, and also, in the case of carbon dioxide cooled reactors by the rate of oxidation of the graphite. Nuclear graphites are polycrystalline in nature and it is the irradiation-induced damage to the individual graphite crystals that determines the material property changes with age. The life of a graphite component in a nuclear reactor can be related to the graphite irradiation induced dimensional changes. Graphites typically shrink with age, until a point is reached where the shrinkage stops and the graphite starts to swell. This change from shrinkage to swelling is known as ''turnaround''. It is well known that pre-oxidising graphite specimens caused ''turnaround'' to be delayed, thus extending the life of the graphite, and hence the life of the reactor. However, there was no satisfactory explanation of this behaviour. This paper presents a numerical crystal based model of dimensional change in graphite, which explains the delay in ''turnaround'' in the pre-oxidised specimens irradiated in a fast neutron flux, in terms of crystal accommodation and orientation and change in compliance due to radiolytic oxidation. (author)

  5. Compressive impact strength of high temperature gas-cooled reactor graphite

    International Nuclear Information System (INIS)

    Ugachi, Hirokazu; Ishiyama, Shintaro; Eto, Motokuni; Ishihara, Masahiro

    1991-01-01

    To investigate the effect of strain rate on fracture behavior for coarse grained nuclear graphite, PGX, a hydraulic servo type impact testing machine has been constructed and compressive impact strength test was performed at various strain up to more than 100(1/s). From the results, the following conclusions were derived. (1) Compressive impact strength of graphite increases with increasing of strain rate in the range of 10 -3 to 100(1/s). (2) Compressive impact strength decreases drastically for strain rates more than 100(1/s). (3) Compressive impact strength dose not depend on specimen volume. (author)

  6. Unique differences in applying safety analyses for a graphite moderated, channel reactor

    International Nuclear Information System (INIS)

    Moffitt, R.L.

    1993-06-01

    Unlike its predecessors, the N Reactor at the Hanford Site in Washington State was designed to produce electricity for civilian energy use as well as weapons-grade plutonium. This paper describes the major problems associated with applying safety analysis methodologies developed for commercial light water reactors (LWR) to a unique reactor like the N Reactor. The focus of the discussion is on non-applicable LWR safety standards and computer modeling/analytical variances of standards. The approaches used to resolve these problems to develop safety standards and limits for the N Reactor are described

  7. LWR (light water reactor) pressure vessel irradiation surveillance dosimetry. Quarterly progress report, January-March 1980

    International Nuclear Information System (INIS)

    Guthrie, G.L.; McElroy, W.N.

    1980-12-01

    The report describes progress made in the Light Water Reactor Pressure Vessel Irradiation Surveillance Dosimetry Program during the reporting period. The primary objective of the multi-laboratory program is to prepare an updated and improved set of dosimetry, damage correlation, and associated reactor analysis ASTM Standards for LWR-PV irradiation surveillance programs. Supporting this objective are a series of analytical and experimental validation and calibration studies in 'Standard, Reference, and Controlled Environment Benchmark Fields', reactor 'Test Regions', and operating power reactor 'Surveillance Positions'

  8. A review of the behaviour of graphite under the conditions appropriate for protection of the first wall of a fusion reactor

    International Nuclear Information System (INIS)

    Birch, M.; Brocklehurst, J.E.

    1987-12-01

    The material used as a first wall protection in fusion reactor systems will be exposed to 14 MeV neutrons from the fusion reaction and suffer surface bombardment by other energetic particles in the plasma. Graphite is a potential candidate for the first wall material. Calculations are performed of the damaging power of 14 MeV neutrons so that existing graphite irradiation data can be utilised. Such data at high irradiation temperatures are reviewed for a wide range of graphite types, characterised by specific examples, and the application of the data to design calculations is discussed. The erosion/corrosion effect of the plasma at the graphite surface is also considered. Limitations in the state of knowledge are identified, and particular areas of further work are recommended. (author)

  9. Graphite for fusion energy applications

    International Nuclear Information System (INIS)

    Eatherly, W.P.; Clausing, R.E.; Strehlow, R.A.; Kennedy, C.R.; Mioduszewski, P.K.

    1987-03-01

    Graphite is in widespread and beneficial use in present fusion energy devices. This report reflects the view of graphite materials scientists on using graphite in fusion devices. Graphite properties are discussed with emphasis on application to fusion reactors. This report is intended to be introductory and descriptive and is not intended to serve as a definitive information source

  10. Hydrogen isotope trapping on graphite collectors during an isotope exchange experiment in the Tokamak Fusion Test Reactor

    International Nuclear Information System (INIS)

    Kilpatrick, S.J.; Ulrickson, M.; Dylla, H.F.; Manos, D.M.; Ramsey, A.T.; Nygren, R.; Hirooka, Y.; Wampler, W.R.

    1989-03-01

    A rotatable collector probe was used to expose several graphite samples to a deuterium-to-hydrogen-to-deuterium exchange experiment in the Tokamak Fusion Test Reactor (TFTR) at the start of the 1988 operations period. This experiment proved the utility of helium conditioning discharges in accelerating the changeover process. Samples included portions of a tile taken from the inner bumper limiter (POCO AXF-5Q graphite) of TFTR during the recent machine opening, and coupons which had been conditioned in the Plasma Interactive Surface Component Experimental Station (PISCES) by exposure to a helium plasma. The samples were exposed to different groups of the /approximately/100 1.4 MA discharges that comprised the experiment. They were removed and analyzed for retained deuterium and impurities by nuclear reaction analysis and Rutherford backscattering spectrometry. Codeposited carbon layers had been formed with thicknesses up to several tenths of a micron. The inferred percentages of trapped hydrogenic species were in general agreement with spectroscopic data. The computed carbon fluence per D + discharge, 1.2 /times/ 10 17 C/cm 2 , is compared to recent measurements on limiter tiles removed from TFTR. 22 refs., 3 figs., 1 tab

  11. Hydrogen isotope trapping on graphite collectors during an isotope exchange experiment in the tokomak fusion test reactor

    International Nuclear Information System (INIS)

    Kilpatrick, S.J.; Nygren, R.; Wampler, W.R.; Ulrickson, M.; Dylla, H.F.; Manos, D.M.; Ramsey, A.T.; Hirooka, Y.

    1988-01-01

    A rotatable collector probe was used to expose several graphite samples to a deuterium-to-hydrogen-to-deuterium exchange experiment in the Tokamak Fusion Test Reactor (TFTR) at the start of the 1988 operations period. This experiment proved the utility of helium conditioning discharges in accelerating the changeover process. Samples included portions of a tile taken from the inner bumper limiter (POCO AXF-5Q graphite) of TFTR during the recent machine opening, and coupons which had been conditioned in the Plasma Surface Interaction Experimental Facility (PISCES) by exposure to a helium plasma. The samples were exposed to different groups of the /approximately/100 1.4MA discharges that comprised the experiment. They were removed and analyzed for retained deuterium and impurities by nuclear reaction analysis and Rutherford backscattering spectrometry. Codeposited carbon layers had been formed with thicknesses up to several tenths of a micron. The inferred percentages of trapped hydrogenic species were in general agreement with spectroscopic data. The computed carbon fluence per D + discharge, 1.2 /times/ 10 17 C/cm 2 , is compared to recent measurements on limiter tiles removed from TFTR. 21 refs., 3 figs., 1 tab

  12. Temperature and radiolytic corrosion effects on the chlorine behaviour in nuclear graphite: consequences for the disposable of irradiated graphite from UNGG reactors; Effets de la temperature et de la corrosion radiolytique sur le comportement du chlore dans le graphite nucleaire: consequences pour le stockage des graphites irradies des reacteurs UNGG

    Energy Technology Data Exchange (ETDEWEB)

    Vaudey, C.E.

    2010-10-15

    This work concerns the dismantling of the UNGG reactor which have produced around 23 000 t of graphite wastes that ave to be disposed of according to the French law of June 206. These wastes contain two long-lived radionuclides ({sup 14}C and {sup 36}Cl) which are the main long term dose contributors. In order to get information about their inventory and their long term behaviour in case of water ingress into the repository, it is necessary to determine their location and speciation in the irradiated graphite after the reactor shutdown. This work concerns the study of {sup 36}Cl. The main objective is to reproduce its behaviour during reactor operation. For that purpose, we have studied the effects of temperature and radiolytic corrosion independently. Our results show a rapid release of around 20% {sup 36}Cl during the first hours of reactor operation whereas a much slower release occurs afterwards. We have put in evidence two types of chlorine corresponding to two different chemical forms (of different thermal stabilities) or to two locations (of different accessibilities). We have also shown that the radiolytic corrosion seems to enhance chlorine release, whatever the irradiation dose. Moreover, the major chemical form of chlorine is inorganic. (author)

  13. Advanced reactor safety research quarterly report, October-December 1982. Volume 24

    Energy Technology Data Exchange (ETDEWEB)

    None

    1984-04-01

    This report describes progress in a number of activities dealing with current safety issues relevant to both light water reactors (LWRs) and breeder reactors. The work includes a broad range of experiments to simulate accidental conditions to provide the required data base to understand important accident sequences and to serve as a basis for development and verification of the complex computer simulation models and codes used in accident analysis and licensing reviews. Such a program must include the development of analytical models, verified by experiment, which can be used to predict reactor and safety system performance under a broad variety of abnormal conditions. Current major emphasis is focused on providing information to NRC relevant to (1) its deliberations and decisions dealing with severe LWR accidents and (2) its safety evaluation of the proposed Clinch River Breeder Reactor.

  14. Oak Ridge reactor shutdown maintenance and surveillance quarterly report, July, August, and September 1989

    International Nuclear Information System (INIS)

    Hamrick, T.P.; Coleman, G.H.; Laughlin, D.L.

    1990-06-01

    The Department of Energy ordered the Oak Ridge Reactor to be placed in permanent shutdown on July 14, 1987. Maintenance activities, both mechanical and instrument, were essentially routine in nature. Shutdown activities are discussed for this reporting period

  15. High flux isotope reactor quarterly report April, May, and June of 1976

    Energy Technology Data Exchange (ETDEWEB)

    McCord, R. V.; Corbett, B. L.

    1976-11-01

    Despite four end-of-cycle shutdowns during the reporting period, the reactor operated 95.6 percent of the time. This increased the on-stream time for the year to 95.3 percent. A test of the reactor bay in-leakage determined that an exhaust flow rate of 3,050 cfm is required to maintain a vacuum of 0.1 in. of water in this area.

  16. Chapter 10: Calculation of the temperature coefficient of reactivity of a graphite-moderated reactor

    International Nuclear Information System (INIS)

    Brown, G.; Richmond, R.; Stace, R.H.W.

    1963-01-01

    The temperature coefficients of reactivity of the BEPO, Windscale and Calder reactors are calculated, using the revised methods given by Lockey et al. (1956) and by Campbell and Symonds (1962). The results are compared with experimental values. (author)

  17. Immobilization of carbon-14 from reactor graphite waste by use of self-sustaining reaction in the C-Al-TiO2 system

    International Nuclear Information System (INIS)

    Karlina, O.K.; Klimov, V.L.; Ojovan, M.I.; Pavlova, G.Yu.; Dmitriev, S.A.; Yurchenko, A.Yu.

    2005-01-01

    As a result of long-term neutron irradiation, the long-lived 14 C is produced in the reactor graphite. The exothermic self-sustaining reaction 3C(graphite) + 4Al + 3TiO 2 = 3TiC + 2Al 2 O 3 was proposed for processing of such waste. In doing so, the carbon, including the 14 C, is chemically bound in the stable TiC. The reaction products in the C-Al-TiO 2 system were investigated both by thermodynamic simulation and experimentally in the course of this work

  18. Description of the french graphite reactor and of the experiments performed in 1956

    International Nuclear Information System (INIS)

    Bussac, J.; Leduc, C.; Zaleski, C.P.

    1957-01-01

    This paper is an introduction to the experiments performed on the G1 reactor, experiments fully described in the papers following (670 'B to P'). The main results are given together with some comments. The neutronic parameters of the core, a description of the most important structures, and a few words of the tests leading to normal operation of the reactor under load complete our survey. (author) [fr

  19. High thermal conductivity of graphite fiber silicon carbide composites for fusion reactor application

    International Nuclear Information System (INIS)

    Snead, L.L.; Balden, M.; Causey, R.A.; Atsumi, H.

    2002-01-01

    The benefits of using CVI SiC/graphite fiber composites as low tritium retaining, high thermal conductivity composites for fusion applications are presented. Three-dimensional woven composites have been chemically vapor infiltrated with SiC and their thermophysical properties measured. One material used an intermediate grade graphite fiber in all directions (Amoco P55) while a second material used very high thermal conductive fiber (Amoco K-1100) in the high fiber density direction. The overall void was less than 20%. Strength as measured by four-point bending was comparable to those of SiC/SiC composite. The room temperature thermal conductivity in the high conductivity direction was impressive for both materials, with values >70 W/m K for the P-55 and >420 W/m K for the K-1100 variant. The thermal conductivity was measured as a function of temperature and exceeds the highest thermal conductivity of CVD SiC currently available at fusion relevant temperatures (>600 deg. C). Limited data on the irradiation-induced degradation in thermal conductivity is consistent with carbon fiber composite literature

  20. Advanced reactor safety research. Quarterly report, April-June 1982. Volume 22

    Energy Technology Data Exchange (ETDEWEB)

    None

    1983-10-01

    Overall objective of this work is to provide NRC a comprehensive data base essential to (1) defining key safety issues, (2) understanding risk-significant accident sequences, (3) developing and verifying models used in safety assessments, and (4) assuring the public that power reactor systems will not be licensed and placed in commercial service in the United States without appropriate consideration being given to their effects on health and safety. This report describes progress in a number of activities dealing with current safety issues relevant to both light water and breeder reactors. The work includes a broad range of experiments to simulate accidental conditions to provide the required data base to understand important accident sequences and to serve as a basis for development and verification of the complex computer simulation models and codes used in accident analysis and licensing reviews. Such a program must include the development of analytical models, verified by experiment, which can be used to predict reactor and safety system performance under a broad variety of abnormal conditions. Current major emphasis is focused on providing information to NRC relevant to (1) its deliberations and decisions dealing with severe LWR accidents, and (2) its safety evaluation of the proposed Clinch River Breeder Reactor.

  1. Radio-active pollution near natural uranium-graphite-gas reactors

    International Nuclear Information System (INIS)

    Chassany, J.; Pouthier, J.; Delmar, J.

    1967-01-01

    The results of numerous evaluations of the contamination are given: - Reactors in operation during maintenance operations. - Reactors shut-down during typical repair operations (coolants, exchangers, interior of the vessel, etc. ) - Following incidents on the cooling circuit and can-rupture. They show that, except in particular cases, it is the activation products which dominate. Furthermore, after ten years operation, the points at which contamination liable to emit strong doses accumulates are very localized and the individual protective equipment has not had to be reinforced. (authors) [fr

  2. Measurement of the stored energy in the NRX reactor reflector graphite

    International Nuclear Information System (INIS)

    Hilton, H.B.; Larson, E.A.G.

    1959-07-01

    With the co-operation of workers at Windscale and Harwell, whose assistance is hereby gratefully acknowledged, the stored energy content of the inner reflector graphite of NRX has been measured. Measurements made at three different elevations and at different positions through the reflector show that there is, at present, no danger to NRX from an accidental release of the energy. The energy stored in the reflector in 1958 is less by a factor five to ten than the stored energy as measured in 1953. It appears that there has been a continual release of stored energy since 1954 when, after the rehabilitation, the maximum power was raised to 40 MW. Additional thermocouples have been installed in the inner reflector, and future stored energy measurements are being scheduled. (author)

  3. Light-Water-Reactor Safety Research Program: quarterly report, July--September 1976

    Energy Technology Data Exchange (ETDEWEB)

    None

    1976-12-01

    The report summarizes the Argonne National Laboratory work performed during July, August, and September 1976 on water-reactor-safety heat-transfer and flow problems. The following research and development areas are covered: (1) loss-of-coolant accident research: heat transfer and fluid dynamics; (2) transient fuel response and fission-product release program; (3) mechanical properties of zircaloy containing oxygen; and (4) steam-explosion studies.

  4. Nuclear reactor safety. Quarterly progress report, October 1--December 31, 1977

    International Nuclear Information System (INIS)

    Jackson, J.F.; Stevenson, M.G.

    1978-02-01

    Progress in reactor safety research is summarized. LWR studies include TRAC code development for thermal-hydraulic analysis of accidents, containment systems evaluation, and safety experiments. LMFBR studies include SIMMER code development and applications, modeling of core disruptive accidents, and safety test facilities studies. HTGR safety studies cover fission product release and transport, structural evaluation, phenomena modeling, systems analysis, and accident delineation. GCFR studies are focussed on core disruptive testing

  5. Graphite moderator annealing of the experimental reactor for irradiation (0.5 MW); Recozimento do moderador de grafite do reator experimental de irradiacao (0.5MW)

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira Avila, Carlos Alberto de; Pires, Luis Fernando Goncalves [Centro Tecnologico do Exercito, Rio de Janeiro, RJ (Brazil). Instituto de Projetos Especiais

    1995-12-31

    This work describes an operational procedure for the annealing of the graphite moderator in the 0,5 MW Experimental Reactor for Irradiation. A theoretical methodology has been developed for calculating the temperature field during the annealing process. The equations for mass, momentum, and energy conservation for the coolant as well as for the energy conservation in the moderator are solved numerically. The energy stored in the graphite and released in the annealing is accounted for by the use of a modified source term in the energy conservation equation for the moderator. A good agreement has been found for comparisons of the calculations with annealing data from the BEPO reactor. The major parameters affecting annealing have also been determined. (author). 8 refs, 11 figs.

  6. Capability Study For Using the Impulse Graphite Reactor For Activation Analysis of Geological Materials

    International Nuclear Information System (INIS)

    Azarov, V.A.; Silaev, M.E.

    1998-01-01

    The IGR reactor facility available in the Institute of Atomic Energy NNC RK is mainly used for testing the going and newly developed fuel compositions and reactor materials. In connection with a decrease of the demand in investigations like that there was considered the capability to use the reactor for solving another research and, particularly, applied problems. A mineral exploration is one of the urgent objectives in the Republic of Kazakstan, and in Semipalatinsk region in particular. To perform the exploration like that it's required, in addition to rough field investigations, the methods of analysis for element composition of geological materials, the difference of which is in their effectiveness, quality and low first cost. Activation methods of analysis allow to provide with a high analysis quality and effectiveness. Therefore, there was proposed to study the capability to use the IGR reactor for the activation analysis of geological materials. To solve this goal the following activity in three basic trends is required: 1. To create the needed theoretical and, on its basis, the methodical base for performing the analytical activity; 2. To create the experimental and technical and organizational infrastructure for the investigations, providing with a high productivity and low prime cost of work; 3. To conduct works on marketing and to use the going methodical and technical base on the market of services. Major objectives for the creation of the theoretical and methodical base for analysis are: a) the study of neutron and physical IGR reactor characteristics under various operation modes; b) the study of the radiation effect on the results of activation analysis; c) the simulation of the temperature mode for irradiation of samples in the reactor and experimental model survey; d) the study of the capability to use non-traditional elements and materials as neutron reactor flux monitors; e) the development of the technique for the experimental and computational

  7. HTGR Fuels and Core Development Program. Quarterly progress report for the period ending August 31, 1976. [Graphite and fuel irradiation; fission product release

    Energy Technology Data Exchange (ETDEWEB)

    1976-09-24

    The work reported includes studies of reactions between core materials and coolant impurities, basic fission product transport mechanisms, core graphite development and testing, the development and testing of recyclable fuel systems, and physics and fuel management studies. Materials studies include irradiation capsule tests of both fuel and graphite. Experimental procedures and results are discussed and, where appropriate, the data are presented in tables, graphs, and photographs.

  8. Thermal-hydraulic instabilities in pressure tube graphite - moderated boiling water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Tsiklauri, G.; Schmitt, B.

    1995-09-01

    Thermally induced two-phase instabilities in non-uniformly heated boiling channels in RBMK-1000 reactor have been analyzed using RELAP5/MOD3 code. The RELAP5 model of a RBMK-1000 reactor was developed to investigate low flow in a distribution group header (DGH) supplying 44 fuel pressure tubes. The model was evaluated against experimental data. The results of the calculations indicate that the period of oscillation for the high power tube varied from 3.1s to 2.6s, over the power range of 2.0 MW to 3.0 MW, respectively. The amplitude of the flow oscillation for the high powered tube varied from +100% to -150% of the tube average flow. Reverse flow did not occur in the lower power tubes. The amplitude of oscillation in the subcooled region at the inlet to the fuel region is higher than in the saturated region at the outlet. In the upper fuel region and outlet connectors the flow oscillations are dissipated. The threshold of flow instability for the high powered tubes of a RBMK reactor is compared to Japanese data and appears to be in good agreement.

  9. Effects of core models and neutron energy group structures on xenon oscillation in large graphite-moderated reactors

    International Nuclear Information System (INIS)

    Yamasita, Kiyonobu; Harada, Hiroo; Murata, Isao; Shindo, Ryuichi; Tsuruoka, Takuya.

    1993-01-01

    Xenon oscillations of large graphite-moderated reactors have been analyzed by a multi-group diffusion code with two- and three-dimensional core models to study the effects of the geometric core models and the neutron energy group structures on the evaluation of the Xe oscillation behavior. The study clarified the following. It is important for accurate Xe oscillation simulations to use the neutron energy group structure that describes well the large change in the absorption cross section of Xe in the thermal energy range of 0.1∼0.65 eV, because the energy structure in this energy range has significant influences on the amplitude and the period of oscillations in power distributions. Two-dimensional R-Z models can be used instead of three-dimensional R-θ-Z models for evaluation of the threshold power of Xe oscillation, but two-dimensional R-θ models cannot be used for evaluation of the threshold power. Although the threshold power evaluated with the R-θ-Z models coincides with that of the R-Z models, it does not coincide with that of the R-θ models. (author)

  10. Study of the thermal drop at the uranium-can interface for fuel elements in gas-graphite reactors

    International Nuclear Information System (INIS)

    Faussat, A.

    1964-01-01

    The report reviews the tests now under way at the CEA, for determining the thermal contact resistance at the uranium-can interface for fuel elements used in gas-graphite type reactors. These are laboratory tests carried out with equipment based on the principle of a heat flow across a stack of test pieces having planar contact surfaces. The following points emerge from this work: - for a metallic uranium element canned in magnesium, of the type G-2 or EDF-2, a value of 0.2 deg C/W/cm 2 seems reasonable for can temperatures of 400 deg C and above. - this value is independent of the micro-geometric state of the uranium surface in a range of roughness which easily includes those observed on tubes and rods produced industrially. - for the internal cans of elements cooled internally and externally, the value of the contact resistance for temperatures of under 400 deg C as a function of the stresses in the can has not yet been measured exactly. (authors) [fr

  11. Contribution to the study of can deformations in the fuel elements of gas-graphite reactors during thermal cycling

    International Nuclear Information System (INIS)

    Gauthron, M.; Boudouresques, B.; Delpeyroux, P.

    1964-01-01

    The cans of fuel cartridges used in reactors of the gas-graphite type have either longitudinal fins of variable thickness, short herring-bone fins, or else a mixture of the two. An important test of the strength of these cartridges is their behaviour during thermal cycling carried out in cells reproducing in-pile conditions. It has been observed during with rapid cooling that there occurs a shortening at the base of the fins which can be accompanied in particular by a compression effect at the fin type, which has a tendency to curl, and by a tractive force acting on the body of the can at the ends of the longitudinal fins; this last phenomenon can result in a fracturing of the welds at the extremities or of the ends of the cartridge. This report presents first of all the way in which the stress diagram can be drawn for a can touching the fuel, and then the effect of the ratchet along a fin fixed to a bar with or without grooves. Finally the importance is shown of the test cycling variables (temperature, heating and cooling rates). (authors) [fr

  12. Graphites for nuclear applications; Les graphites pour les applications nucleaires

    Energy Technology Data Exchange (ETDEWEB)

    Bonal, J.P.; Gosmain, L. [CEA Saclay, Dept. des Materiaux pour le Nucleaire (DMN), Lab. de Microscopie et d' Etudes de l' Endommagement, 91 - Gif-sur-Yvette (France)

    2006-03-15

    Being an excellent neutron moderator, graphite is used as a structural material in many nuclear reactor types. By the end of the 50's, the French gas-cooled reactor development needed manufacturing of a nuclear-grade graphite. Graphite irradiation can lead to in-lattice energy accumulation, dimensional changes and physical properties modification. Moreover, the radiolytic corrosion induced by the coolant (CO{sub 2}) may generate mechanical properties degradation. Today, French gas-cooled reactors are all in their decommissioning phase that requires the knowledge of the radiological inventory of the irradiated graphites. At present time, graphite is still foreseen as a future material for hydrogen production by high temperature gas cooled nuclear plants. In the future, graphite will be the necessary moderator material for high temperature reactors with thermal neutron spectrum dedicated to hydrogen and electricity production. (authors)

  13. NEUTRONIC REACTOR

    Science.gov (United States)

    Anderson, H.L.

    1960-09-20

    A nuclear reactor is described comprising fissionable material dispersed in graphite blocks, helium filling the voids of the blocks and the spaces therebetween, and means other than the helium in thermal conductive contact with the graphite for removing heat.

  14. Some economic aspects of natural uranium graphite gas reactor types. Present status and trends of costs in France; Quelques aspects economiques de la filiere uranium naturel - Graphite - gaz. Etat actuel et tendance des couts en France

    Energy Technology Data Exchange (ETDEWEB)

    Gaussens, J.; Tanguy, P. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires; Leo, B. [Electricite de France (EDF), 75 - Paris (France)

    1964-07-01

    The first part of this report defines the economic advantages of natural uranium fuels, which are as follows: the restricted number and relatively simple fabrication processes of the fuel elements, the low cost per kWh of the finished product and the reasonable capital investments involved in this type of fuel cycle as compared to that of enriched uranium. All these factors combine to reduce the arbitrary nature of cost estimates, which is particularly marked in the case of enriched uranium due to the complexity of its cycle and the uncertainties of plutonium prices). Finally, the wide availability of yellowcake, as opposed to the present day virtual monopoly of isotope separation, and the low cost of natural uranium stockpiling, offer appreciable guarantees in the way of security of supply and economic and political independence as compared with the use of enriched uranium. As far as overall capital investments are concerned, it is shown that, although graphite-gas reactor costs are higher than those of light water reactors in certain capacity ranges, the situation becomes far less clear when we start taking into account, in the interest of national independence, the cost of nuclear fuel production equipment in the case of each of these types of reactor. Finally, the marginal cost of the power capacity of a graphite-gas reactor is low and its technological limitations have receded (owing particularly to the use of prestressed concrete). It is a well known fact that the trend is now towards larger power station units, which means that the rentability of natural uranium graphite reactors as compared to other types of reactors will become more and more pronounced. The second section aims at presenting a realistic short and medium term view of the fuel, running, and investment costs of French natural uranium graphite gas, reactors. Finally, the economic goals which this type of reactor can reach in the very near future are given. It is thus shown that considerable

  15. Tables of formulae for calculating the mechanics of stacks in gas-graphite reactors; Formulaire pour le calcul de la mecanique des empilements des reacteurs graphite-gaz

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1968-07-01

    This collection of formulae only gives, for nuclear graphite stacks. The mechanical effects due to the strains, thermal or not, of steel structures supporting or surrounding graphite blocks. Equations have been established by mean of experiments made at Chinon with large pile models. Thus, it is possible to calculate displacement, strain and stress in the EDF type stacks of horizontal triangular block lattice. (authors) [French] Le domaine de ce formulaire est strictement limite aux effets mecaniques, pour les empilements, des deformations, thermiques ou autres, des structures metalliques de soutien (aire - support et corset). On propose un ensemble de relations qui ont ete etablies a la suite des essais de CHINON sur des maquettes de grande taille. Ces relations permettent le calcul des mouvements, des deformations et des contraintes dans les empilements du type EDF, a reseau horizontal triangulaire regulier. (auteurs)

  16. Nuclear power reactors

    International Nuclear Information System (INIS)

    1982-11-01

    After an introduction and general explanation of nuclear power the following reactor types are described: magnox thermal reactor; advanced gas-cooled reactor (AGR); pressurised water reactor (PWR); fast reactors (sodium cooled); boiling water reactor (BWR); CANDU thermal reactor; steam generating heavy water reactor (SGHWR); high temperature reactor (HTR); Leningrad (RMBK) type water-cooled graphite moderated reactor. (U.K.)

  17. Graphite Technology Development Plan

    Energy Technology Data Exchange (ETDEWEB)

    W. Windes; T. Burchell; R. Bratton

    2007-09-01

    This technology development plan is designed to provide a clear understanding of the research and development direction necessary for the qualification of nuclear grade graphite for use within the Next Generation Nuclear Plant (NGNP) reactor. The NGNP will be a helium gas cooled Very High Temperature Reactor (VHTR) with a large graphite core. Graphite physically contains the fuel and comprises the majority of the core volume. Considerable effort will be required to ensure that the graphite performance is not compromised during operation. Based upon the perceived requirements the major data needs are outlined and justified from the perspective of reactor design, reatcor performance, or the reactor safety case. The path forward for technology development can then be easily determined for each data need. How the data will be obtained and the inter-relationships between the experimental and modeling activities will define the technology development for graphite R&D. Finally, the variables affecting this R&D program are discussed from a general perspective. Factors that can significantly affect the R&D program such as funding, schedules, available resources, multiple reactor designs, and graphite acquisition are analyzed.

  18. Oxidation Resistant Graphite Studies

    Energy Technology Data Exchange (ETDEWEB)

    W. Windes; R. Smith

    2014-07-01

    The Very High Temperature Reactor (VHTR) Graphite Research and Development Program is investigating doped nuclear graphite grades exhibiting oxidation resistance. During a oxygen ingress accident the oxidation rates of the high temperature graphite core region would be extremely high resulting in significant structural damage to the core. Reducing the oxidation rate of the graphite core material would reduce the structural effects and keep the core integrity intact during any air-ingress accident. Oxidation testing of graphite doped with oxidation resistant material is being conducted to determine the extent of oxidation rate reduction. Nuclear grade graphite doped with varying levels of Boron-Carbide (B4C) was oxidized in air at nominal 740°C at 10/90% (air/He) and 100% air. The oxidation rates of the boronated and unboronated graphite grade were compared. With increasing boron-carbide content (up to 6 vol%) the oxidation rate was observed to have a 20 fold reduction from unboronated graphite. Visual inspection and uniformity of oxidation across the surface of the specimens were conducted. Future work to determine the remaining mechanical strength as well as graphite grades with SiC doped material are discussed.

  19. Neutronic reactor

    International Nuclear Information System (INIS)

    Carleton, J.T.

    1977-01-01

    A graphite-moderated nuclear reactor includes channels between blocks of graphite and also includes spacer blocks between adjacent channeled blocks with an axis of extension normal to that of the axis of elongation of the channeled blocks to minimize changes in the physical properties of the graphite as a result of prolonged neutron bombardment. 3 claims, 6 figures

  20. Notifiable events in systems for fission of nuclear fuels - nuclear power plants and research reactors with maximum output exceeding 50 kW of thermal normal rating - in the Federal Republic of Germany. Quarterly report, 2nd quarter of 1996

    International Nuclear Information System (INIS)

    1996-01-01

    There were 32 notifiable events in nuclear power plants in Germany in the second quarter of 1996. The report lists and characterises all the 32 events notified in the reporting period. The events did not involve any radioactivity release exceeding the maximum permissible limits during this period, so that there were no radiation hazards to the population or the environment. One event was classified at level 1 of the INES event scale (Anomaly). Research reactor operators in Germany reported 5 notifiable events in the reporting period. The report lists and characterises these events. These events did not involve any radioactivity release exceeding the maximum permissible limits during this period, so that there were no radiation hazards to the population or the environment. All events notified were classified into the lowest categories of safety significance of the official event scales (N, or below scale). (orig./DG) [de

  1. Nuclear reactors

    International Nuclear Information System (INIS)

    Barre, Bertrand

    2015-10-01

    After some remarks on the nuclear fuel, on the chain reaction control, on fuel loading and unloading, this article proposes descriptions of the design, principles and operations of different types of nuclear reactors as well as comments on their presence and use in different countries: pressurized water reactors (design of the primary and secondary circuits, volume and chemistry control, backup injection circuits), boiling water reactors, heavy water reactors, graphite and boiling water reactors, graphite-gas reactors, fast breeder reactors, and fourth generation reactors (definition, fast breeding). For these last ones, six concepts are presented: sodium-cooled fast reactor, lead-cooled fast reactor, gas-cooled fast reactor, high temperature gas-cooled reactor, supercritical water-cooled reactor, and molten salt reactor

  2. Radio-active pollution near natural uranium-graphite-gas reactors; La pollution radioactive aupres des piles uranium naturel - graphite - gaz

    Energy Technology Data Exchange (ETDEWEB)

    Chassany, J.; Pouthier, J.; Delmar, J. [Commissariat a l' Energie Atomique, Chusclan (France). Centre de Production de Plutonium de Marcoule

    1967-07-01

    The results of numerous evaluations of the contamination are given: - Reactors in operation during maintenance operations. - Reactors shut-down during typical repair operations (coolants, exchangers, interior of the vessel, etc. ) - Following incidents on the cooling circuit and can-rupture. They show that, except in particular cases, it is the activation products which dominate. Furthermore, after ten years operation, the points at which contamination liable to emit strong doses accumulates are very localized and the individual protective equipment has not had to be reinforced. (authors) [French] Les resultats de nombreuses evaluations de la contamination sont donnes: - Piles en marche pendant les operations d'entretien - Piles a l'arret au cours des chantiers caracteristiques (refrigerants, echangeurs, interieur du caisson, etc.) - A la suite d'incidents sur le circuit de refroidissement et de rupture de gaine. Ils montrent que, sauf cas particulier, ce sont essentiellement les produits d'activation qui dominent. Par ailleurs apres 10 ans de fonctionnement, les points d'accumulation de la contamination susceptibles de delivrer des debits de dose importants restent tres localises et les moyens de protection individuels utilises n'ont pas du etre renforces. (auteurs)

  3. The Impact of Alkaliphilic Biofilm Formation on the Release and Retention of Carbon Isotopes from Nuclear Reactor Graphite.

    Science.gov (United States)

    Rout, S P; Payne, L; Walker, S; Scott, T; Heard, P; Eccles, H; Bond, G; Shah, P; Bills, P; Jackson, B R; Boxall, S A; Laws, A P; Charles, C; Williams, S J; Humphreys, P N

    2018-03-13

    14 C is an important consideration within safety assessments for proposed geological disposal facilities for radioactive wastes, since it is capable of re-entering the biosphere through the generation of 14 C bearing gases. The irradiation of graphite moderators in the UK gas-cooled nuclear power stations has led to the generation of a significant volume of 14 C-containing intermediate level wastes. Some of this 14 C is present as a carbonaceous deposit on channel wall surfaces. Within this study, the potential of biofilm growth upon irradiated and 13 C doped graphite at alkaline pH was investigated. Complex biofilms were established on both active and simulant samples. High throughput sequencing showed the biofilms to be dominated by Alcaligenes sp at pH 9.5 and Dietzia sp at pH 11.0. Surface characterisation revealed that the biofilms were limited to growth upon the graphite surface with no penetration of the deeper porosity. Biofilm formation resulted in the generation of a low porosity surface layer without the removal or modification of the surface deposits or the release of the associated 14 C/ 13 C. Our results indicated that biofilm formation upon irradiated graphite is likely to occur at the pH values studied, without any additional release of the associated 14 C.

  4. Special graphites

    International Nuclear Information System (INIS)

    Leveque, P.

    1964-01-01

    A large fraction of the work undertaken jointly by the Commissariat a l'Energie Atomique (CEA) and the Pechiney Company has been the improvement of the properties of nuclear pile graphite and the opening up of new fields of graphite application. New processes for the manufacture of carbons and special graphites have been developed: forged graphite, pyro-carbons, high density graphite agglomeration of graphite powders by cracking of natural gas, impervious graphites. The physical properties of these products and their reaction with various oxidising gases are described. The first irradiation results are also given. (authors) [fr

  5. 1st quarterly report 1977

    International Nuclear Information System (INIS)

    1977-06-01

    The present report describes the activities carried out in the 1st quarter of 1977 at the Gesellschaft fuer Kernforschung in Karlsruhe or on its behalf in the framework of the fast breeder project (PSB). The problems and main results of the partial projects fuel rod development, materials testing, reactor physics, reactor safety and reactor technology are presented. (RW) [de

  6. Feasibility Study of Supercritical Light Water Cooled Fast Reactors for Actinide Burning and Electric Power Production, 3rd Quarterly Report

    Energy Technology Data Exchange (ETDEWEB)

    Mac Donald, Philip Elsworth

    2002-06-01

    The use of light water at supercritical pressures as the coolant in a nuclear reactor offers the potential for considerable plant simplification and consequent capital and O&M cost reduction compared with current light water reactor (LWR) designs. Also, given the thermodynamic conditions of the coolant at the core outlet (i.e. temperature and pressure beyond the water critical point), very high thermal efficiencies of the power conversion cycle are possible (i.e. up to about 45%). Because no change of phase occurs in the core, the need for steam separators and dryers as well as for BWR-type re-circulation pumps is eliminated, which, for a given reactor power, results in a substantially shorter reactor vessel and smaller containment building than the current BWRs. Furthermore, in a direct cycle the steam generators are not needed.

  7. Graphite technology development plan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1986-07-01

    This document presents the plan for the graphite technology development required to support the design of the 350 MW(t) Modular HTGR within the US National Gas-Cooled Reactor Program. Besides descriptions of the required technology development, cost estimates, and schedules, the plan also includes the associated design functions and design requirements.

  8. Quarterly technical report on water reactor safety programs sponsored by the Nuclear Regulatory Commission's Division of Reactor Safety Research, July--September 1975

    International Nuclear Information System (INIS)

    1976-02-01

    Light water reactor safety activities performed during July through September 1975 are summarized. The isothermal blowdown test series of the Semiscale Mod-1 test program has provided data for evaluation of break flow phenomena and analyses of piping flow regimes and pump performance. In the LOFT Program, measurement uncertainties were evaluated. The Thermal Fuels Behavior Program completed two power-cooling-mismatch tests on PWR-type fuel rods to investigate critical heat flux characteristics. Model development and verification efforts of the Reactor Behavior Program included development of the SPLEN1 computer code, subroutines for the FRAP-T code, verification of RELAP4, and results of the Halden Recycle Plutonium Experiment

  9. Characterization of porosity via secondary reactor. Quarterly technical progress report, 1 October 1992--31 December 1992

    Energy Technology Data Exchange (ETDEWEB)

    Calo, J.M.

    1992-12-31

    In this quarterly technical Progress report, we summarize the progress which has been achieved with the development of the small angle scattering capability to be used in the current project. In particular, the following was accomplished during the reporting period. The parameter estimation code, MARQFIT, has been tested and is fully operational. The code has been applied to small angle neutron scattering (SANS) data on coals swollen with deuterated solvents. Application of the FPPS model to these data indicated that the large sphere distribution apparently requires a mean greater than 1000{Angstrom}. This was attributed to the influence of interparticle voids. Specific surface areas were also estimated for these coals. Application of this model to the coal chars used in the current project will not be subject to the same effects.

  10. Characterization of radioactive graphite and concrete of the reactor ULYSSE/INSTN at CEA/Saclay to be dismantled

    International Nuclear Information System (INIS)

    Van Lauwe, Aymeric; Ridikas, Danas; Damoy, Francois; Blideanu, Valentin; Fajardo, Christophe; Aubert, Marie-Cecile; Foulon, Francois

    2006-01-01

    Decommissioning and dismantling of nuclear installations after their service life are connected with the necessity of the disassembling, handling and disposing of a large amount of radioactive material. In order to optimize the disassembling operations, to reduce the undesirable volume to the minimum and to successfully plan the dismantling and disposal of radioactive materials to storage facilities, the radiological characterisation of the material present in the reactor and around its environment should be accurately evaluated. The present work has been done in the framework of the decommissioning and dismantling of the experimental reactor ULYSSE that is presently operating in INSTN/Saclay and will be closed in the middle of 2006. A methodology, already successfully used for another research reactor, is proposed for determining accurately the long-term induced activity of the materials present in the active reactor core and its surroundings. The comparison of theoretical predictions, based on Monte Carlo technique, with experimental values validated the approach and the methodology used in the present study. The goal is to plan efficiently the disassembling and dismantling of the system and to optimise the mass flow going to different waste repositories. We show that this approach might reduce substantially the total cost of decommissioning. (authors)

  11. Combined sift and methanation in a fluidized-bed reactor. Quarterly progress report, 1 July 1980-30 September 1980

    Energy Technology Data Exchange (ETDEWEB)

    Streeter, R.C.

    1980-10-01

    Four bench-scale reactor tests were completed. One test employed the older life-test apparatus to evaluate two samples of a Ru/Ni-on-titania catalyst from Johnson Matthey. The remaining three bench-scale tests were conducted using the newer bench-scale reactor with feed gas H/sub 2//CO ratios of 2/1 and 1/1. The tests at H/sub 2//CO = 2/1 (no steam) completed a series designed to show the effect of temperature on carbon formation potential. The results were inconclusive, however, due to one temperature upset and occasional plugging of the reactor tubes with carbon deposits. Nevertheless, the data did indicate that the catalysts were able to remain active for longer periods of time at the higher temperatures despite significant carbon buildup. The bench-scale test at H/sub 2//CO = 1/1 was carried out at 950/sup 0/F in the absence of steam. Not surprisingly, therefore, significant carbon deposition was again experienced. This series of tests will be continued to examine the effect of increasing steam concentrations on carbon formation potential. A 5-day PEDU test (Test SM-4) was conducted using the UCI catalyst. The catalyst showed very high activity in steady-state periods of 36 hours at H/sub 2//CO = 1/1 (without steam) and 39 hours at H/sub 2//CO = 1/1 (with a steam/gas ratio of 0.2). Most importantly, the carbon content of the catalyst did not increase throughout the course of the test. The only drawback was that the catalyst tended to compact in a hard layer on the inner walls of the distributor, interfering with temperature control near the reactor inlet.

  12. AGC-2 Graphite Preirradiation Data Package

    Energy Technology Data Exchange (ETDEWEB)

    David Swank; Joseph Lord; David Rohrbaugh; William Windes

    2012-10-01

    The NGNP Graphite R&D program is currently establishing the safe operating envelope of graphite core components for a Very High Temperature Reactor (VHTR) design. The program is generating quantitative data necessary for predicting the behavior and operating performance of the new nuclear graphite grades. To determine the in-service behavior of the graphite for pebble bed and prismatic designs, the Advanced Graphite Creep (AGC) experiment is underway. This experiment is examining the properties and behavior of nuclear grade graphite over a large spectrum of temperatures, neutron fluences and compressive loads. Each experiment consists of over 400 graphite specimens that are characterized prior to irradiation and following irradiation. Six experiments are planned with the first, AGC-1, currently being irradiated in the Advanced Test Reactor (ATR) and pre-irradiation characterization of the second, AGC-2, completed. This data package establishes the readiness of 512 specimens for assembly into the AGC-2 capsule.

  13. Uranium Oxide Aerosol Transport in Porous Graphite

    Energy Technology Data Exchange (ETDEWEB)

    Blanchard, Jeremy; Gerlach, David C.; Scheele, Randall D.; Stewart, Mark L.; Reid, Bruce D.; Gauglitz, Phillip A.; Bagaasen, Larry M.; Brown, Charles C.; Iovin, Cristian; Delegard, Calvin H.; Zelenyuk, Alla; Buck, Edgar C.; Riley, Brian J.; Burns, Carolyn A.

    2012-01-23

    The objective of this paper is to investigate the transport of uranium oxide particles that may be present in carbon dioxide (CO2) gas coolant, into the graphite blocks of gas-cooled, graphite moderated reactors. The transport of uranium oxide in the coolant system, and subsequent deposition of this material in the graphite, of such reactors is of interest because it has the potential to influence the application of the Graphite Isotope Ratio Method (GIRM). The GIRM is a technology that has been developed to validate the declared operation of graphite moderated reactors. GIRM exploits isotopic ratio changes that occur in the impurity elements present in the graphite to infer cumulative exposure and hence the reactor’s lifetime cumulative plutonium production. Reference Gesh, et. al., for a more complete discussion on the GIRM technology.

  14. Irradiation Creep in Graphite

    Energy Technology Data Exchange (ETDEWEB)

    Ubic, Rick; Butt, Darryl; Windes, William

    2014-03-13

    An understanding of the underlying mechanisms of irradiation creep in graphite material is required to correctly interpret experimental data, explain micromechanical modeling results, and predict whole-core behavior. This project will focus on experimental microscopic data to demonstrate the mechanism of irradiation creep. High-resolution transmission electron microscopy should be able to image both the dislocations in graphite and the irradiation-induced interstitial clusters that pin those dislocations. The team will first prepare and characterize nanoscale samples of virgin nuclear graphite in a transmission electron microscope. Additional samples will be irradiated to varying degrees at the Advanced Test Reactor (ATR) facility and similarly characterized. Researchers will record microstructures and crystal defects and suggest a mechanism for irradiation creep based on the results. In addition, the purchase of a tensile holder for a transmission electron microscope will allow, for the first time, in situ observation of creep behavior on the microstructure and crystallographic defects.

  15. Neutronic reactor

    International Nuclear Information System (INIS)

    Wende, C.W.J.

    1976-01-01

    The method of operating a water-cooled neutronic reactor having a graphite moderator is described which comprises flowing a gaseous mixture of carbon dioxide and helium, in which the helium comprises 40--60 volume percent of the mixture, in contact with the graphite moderator. 2 claims, 4 figures

  16. Obtention of nuclear grade graphite

    International Nuclear Information System (INIS)

    Ferreira, M.L.

    1984-01-01

    The impurity level of natural graphite found in some of the most important mines of the State of Minas Gerais - Brasil is determined. It is also concerned with the development and use of natural graphite in nuclear reactors. Standard methods for chemical and instrumentsal analysis such as Spectrografic Determination by Emission, Spectrografic Determination by X-Rays, Spectrografic Determination by Atomic Asorption, Photometric Determination, and also chemical and physical methods for separation of impurities as well standard method for Estimating the Thermal Neutron Absorption Cross Section of graphite were employed. Some aditionals methods of purification to the ordinary treatment such as the use of metanol and halogens are also described. (Author) [pt

  17. The ISIS operation: Robotics repair work on the CHINON A3 natural uranium, carbon dioxide cooled, graphite moderated reactor

    International Nuclear Information System (INIS)

    Hilmoine, R.M.E.

    1989-01-01

    After describing the upper internal support structures of the CHINON A3 reactor, the problems resulting from their degradation due to corrosion and to the difficulties of the ISIS operation are presented here. The repair method is as follows: all tools and repair parts reach the working area by the feeding-pipes drilled through the 7 m thick concrete vessel surrounding the reactor core; the robots handle into the reactor, the tool heads and the repair parts which are automatically positioned and welded around the corroded structure, thus restoring the support of measurement devices. The parts are either linked together or to the existing structure by means of 2 studs of 12 mm in diameter. The different phases to sort out a problem are: in-core topography, reconforming of the full-scale mock-up with the repair area, learning on this mock-up and in-core repair. The technical specificities of the robots used are the following: they have an 11 meter long, 0.22 meter across telescopic mast with jointed arms reaching a radius of 2.7 m. Then the useful load is 70 daN and the repeatability 0.1 mm. Different tool heads can be handled by the robot: telemeter and laser reconstruction: it allows to locate the in core points and to materialize them on the mock-up by a laser crossed-beams locating technique; scouring: it cleans the corroded parts of the structures before welding; welding: it allows the parts handling and the carried studs welding; screwing; tensile test: carried out when the stud welds are defective. A high level computerized control system is organized around a central unit which calculates the displacements of robots and synchronises the actions of different tools by communicating with several local units. A 100,000 hour designing, a 200,000 hour building and assembling and a 450,000 hour operating on working area were necessary to repair 15 out of the 102 corroded structures by fitting and welding 205 repair parts. 10 figs

  18. Quarterly technical progress report on water reactor safety programs sponsored by the Nuclear Regulatory Commission's Division of Reactor Safety Research, October--December 1976

    International Nuclear Information System (INIS)

    Ferguson, J.B.

    1977-04-01

    Light water reactor safety research performed October through December 1976 is discussed. An analysis to determine the effect of emergency core coolant (ECC) injection location and pump speed on system response characteristics was performed. An analysis to evaluate the capability of commonly used critical heat flux (CHF) correlations to calculate the time of the first CHF in the Semiscale core during a loss-of-coolant experiment (LOCE) was performed. A test program and study to determine the effect thermocouples mounted on the outside fuel rod surfaces would have on the departure from nucleate boiling (DNB) phenomena in the LOFT core during steady state operation were completed. A correlation for use in predicting DNB heat fluxes in the LOFT core was developed. Tests of an experimental transit time flowmeter were completed. A nuclear test was performed to obtain fuel rod behavior data from four PWR-type rods during film boiling operation representative of PWR conditions. Preliminary results from the postirradiation examination of Test IE-1 fuel rods are given. Results of Irradiation Effects Tests IE-2 and IE-3 are given. Gap Conductance Test GC 2-1 was performed to evaluate the effects of fuel density, initial gap width, and fill gas composition on the pellet-cladding gap conductance

  19. Study of a nuclear graphite waste 14C decontamination process by CO2 gasification

    International Nuclear Information System (INIS)

    Pageot, Justin

    2014-01-01

    The decommissioning of French gas cooled nuclear reactors (UNGG), all arrested since 1994, will generate 23,000 tons of graphite waste classified Low Level and Long Lived and notably containing 14 C. The aim of this thesis is to study a new method for selective extraction of this radionuclide by CO 2 gasification.The multi-scale organization of virgin and irradiated graphite has been studied by a coupling between microspectrometry Raman and transmission electron microscopy. With the neutron fluence, the structure degrades and the nano-structure can be greatly changed. In extreme cases, the lamellar nano-structure nuclear graphite has become nano-porous. Furthermore, these damages are systematically heterogeneous. An orientation effect of 'crystallites', shown experimentally by ion implantation, could be a cause of these heterogeneities.This study also showed that from a specific fluence, there is an important development of nano-porous zones coinciding with a dramatic 14 C concentration increase. This radionuclide could be preferentially concentrated in the nano-porous areas which are potentially more reactive than the remaining laminar areas which could be less rich in 14 C. This process by CO 2 gasification was firstly tested on 'analogous' non-radioactive materials (mechanically milled graphite). These tests confirmed, for temperatures between 950 and 1000 C, the selective and complete elimination of nano-porous areas.Tests were then carried out on graphite waste from Saint-Laurent-des-Eaux A2 and G2 reactors. The results are promising with notably the quarter of 14 C inventory extracted for a weight loss of only few percent. Up to 68 % of 14 C inventory was extracted, but with an important gasification. Thus, this treatment could allow extracting selectively a share of 14 C inventory (mobile or linked to nano-porous areas) and allows imagining alternative scenarios for graphite waste managing. (author) [fr

  20. Sealing nuclear graphite with pyrolytic carbon

    International Nuclear Information System (INIS)

    Feng, Shanglei; Xu, Li; Li, Li; Bai, Shuo; Yang, Xinmei; Zhou, Xingtai

    2013-01-01

    Pyrolytic carbon (PyC) coatings were deposited on IG-110 nuclear graphite by thermal decomposition of methane at ∼1830 °C. The PyC coatings are anisotropic and airtight enough to protect IG-110 nuclear graphite against the permeation of molten fluoride salts and the diffusion of gases. The investigations indicate that the sealing nuclear graphite with PyC coating is a promising method for its application in Molten Salt Reactor (MSR)

  1. Removal of 14C from Irradiated Graphite for Graphite Recycle and Waste Volume Reduction

    International Nuclear Information System (INIS)

    Dunzik-Gougar, Mary Lou; Windes, Will; Marsden, Barry

    2014-01-01

    The aim of the research presented here was to identify the chemical form of 14 C in irradiated graphite. A greater understanding of the chemical form of this longest-lived isotope in irradiated graphite will inform not only management of legacy waste, but also development of next generation gas-cooled reactors. Approximately 250,000 metric tons of irradiated graphite waste exists worldwide, with the largest single quantity originating in the Magnox and AGR reactors of UK. The waste quantity is expected to increase with decommissioning of Generation II reactors and deployment of Generation I gas-cooled, graphite moderated reactors. Of greatest concern for long-term disposal of irradiated graphite is carbon-14 14 C, with a half-life of 5730 years.

  2. Artificial graphites

    International Nuclear Information System (INIS)

    Maire, J.

    1984-01-01

    Artificial graphites are obtained by agglomeration of carbon powders with an organic binder, then by carbonisation at 1000 0 C and graphitization at 2800 0 C. After description of the processes and products, we show how the properties of the various materials lead to the various uses. Using graphite enables us to solve some problems, but it is not sufficient to satisfy all the need of the application. New carbonaceous material open application range. Finally, if some products are becoming obsolete, other ones are being developed in new applications [fr

  3. OECD high temperature reactor project Dragon

    International Nuclear Information System (INIS)

    1975-01-01

    Information is presented concerning the Dragon reactor support studies and fuel irradiation programs, HTGR and fuel graphite studies, primary circuit materials, reactor safety evaluation, and administration

  4. Rapid analysis of 14C and 3H in graphite and concrete for decommissioning of nuclear reactor

    DEFF Research Database (Denmark)

    Hou, Xiaolin

    2005-01-01

    /g graphite and 0.11 and 0.06Bq/g concrete, respectively. The cross contamination of C-14 and tritium in the preparation of samples is less than 0.2%. The interference of other radionuclides in the determination of C-14 and tritium in graphite is insignificant. The analytical accuracy, investigated...

  5. Progress in radioactive graphite waste management

    International Nuclear Information System (INIS)

    2010-07-01

    Radioactive graphite constitutes a major waste stream which arises during the decommissioning of certain types of nuclear installations. Worldwide, a total of around 250 000 tonnes of radioactive graphite, comprising graphite moderators and reflectors, will require management solutions in the coming years. 14 C is the radionuclide of greatest concern in nuclear graphite; it arises principally through the interaction of reactor neutrons with nitrogen, which is present in graphite as an impurity or in the reactor coolant or cover gas. 3 H is created by the reactions of neutrons with 6 Li impurities in graphite as well as in fission of the fuel. 36 Cl is generated in the neutron activation of chlorine impurities in graphite. Problems in the radioactive waste management of graphite arise mainly because of the large volumes requiring disposal, the long half-lives of the main radionuclides involved and the specific properties of graphite - such as stored Wigner energy, graphite dust explosibility and the potential for radioactive gases to be released. Various options for the management of radioactive graphite have been studied but a generally accepted approach for its conditioning and disposal does not yet exist. Different solutions may be appropriate in different cases. In most of the countries with radioactive graphite to manage, little progress has been made to date in respect of the disposal of this material. Only in France has there been specific thinking about a dedicated graphite waste-disposal facility (within ANDRA): other major producers of graphite waste (UK and the countries of the former Soviet Union) are either thinking in terms of repository disposal or have no developed plans. A conference entitled 'Solutions for Graphite Waste: a Contribution to the Accelerated Decommissioning of Graphite Moderated Nuclear Reactors' was held at the University of Manchester 21-23 March 2007 in order to stimulate progress in radioactive graphite waste management

  6. NGNP Graphite Selection and Acquisition Strategy

    Energy Technology Data Exchange (ETDEWEB)

    Burchell, T.; Bratton, R.; Windes, W.

    2007-09-30

    The nuclear graphite (H-451) previously used in the United States for High-Temperature Reactors (HTRs) is no longer available. New graphites have been developed and are considered suitable candidates for the Next-Generation Nuclear Plant (NGNP). A complete properties database for these new, available, candidate grades of graphite must be developed to support the design and licensing of NGNP core components. Data are required for the physical, mechanical (including radiation-induced creep), and oxidation properties of graphites. Moreover, the data must be statistically sound and take account of in-billet, between billets, and lot-to-lot variations of properties. These data are needed to support the ongoing development1 of the risk-derived American Society of Mechanical Engineers (ASME) graphite design code (a consensus code being prepared under the jurisdiction of the ASME by gas-cooled reactor and NGNP stakeholders including the vendors). The earlier Fort St. Vrain design of High-Temperature Reactor (HTRs) used deterministic performance models for H-451, while the NGNP will use new graphite grades and risk-derived (probabilistic) performance models and design codes, such as that being developed by the ASME. A radiation effects database must be developed for the currently available graphite materials, and this requires a substantial graphite irradiation program. The graphite Technology Development Plan (TDP)2 describes the data needed and the experiments planned to acquire these data in a timely fashion to support NGNP design, construction, and licensing. The strategy for the selection of appropriate grades of graphite for the NGNP is discussed here. The final selection of graphite grades depends upon the chosen reactor type and vendor because the reactor type (pebble bed or prismatic block) has a major influence on the graphite chosen by the designer. However, the time required to obtain the needed irradiation data for the selected NGNP graphite is sufficiently

  7. (Irradiation creep of graphite)

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, C.R.

    1990-12-21

    The traveler attended the Conference, International Symposium on Carbon, to present an invited paper, Irradiation Creep of Graphite,'' and chair one of the technical sessions. There were many papers of particular interest to ORNL and HTGR technology presented by the Japanese since they do not have a particular technology embargo and are quite open in describing their work and results. In particular, a paper describing the failure of Minor's law to predict the fatigue life of graphite was presented. Although the conference had an international flavor, it was dominated by the Japanese. This was primarily a result of geography; however, the work presented by the Japanese illustrated an internal program that is very comprehensive. This conference, a result of this program, was better than all other carbon conferences attended by the traveler. This conference emphasizes the need for US participation in international conferences in order to stay abreast of the rapidly expanding HTGR and graphite technology throughout the world. The United States is no longer a leader in some emerging technologies. The traveler was surprised by the Japanese position in their HTGR development. Their reactor is licensed and the major problem in their graphite program is how to eliminate it with the least perturbation now that most of the work has been done.

  8. Graphite moderated 252Cf source

    International Nuclear Information System (INIS)

    Sajo B, L.; Barros, H.; Greaves, E. D.; Vega C, H. R.

    2014-08-01

    The thorium molten salt reactor is an attractive and affordable nuclear power option for developing countries with insufficient infrastructure and limited technological capability. In the aim of personnel training and experience gathering at the Universidad Simon Bolivar there is in progress a project of developing a subcritical thorium liquid fuel reactor. The neutron source to run this subcritical reactor is a 252 Cf source and the reactor will use high-purity graphite as moderator. Using the MCNP5 code the neutron spectra of the 252 Cf in the center of the graphite moderator has been estimated along the channel where the liquid thorium salt will be inserted; also the ambient dose equivalent due to the source has been determined around the moderator. (Author)

  9. Irradiation testing of internally pressurized and/or graphite coated Zircaloy-4 clad fuel rods in the NRX Reactor (AWBA Development Program)

    International Nuclear Information System (INIS)

    Hoffman, R.C.; Sherman, J.

    1978-11-01

    Irradiation tests on 0.612 inch O.D. by 117-inch long Zircaloy-4 clad fuel rods were performed to assess the effects on fuel rod performance of (1) internal helium pre-pressurization to 500 psi as fabricated, (2) the presence of a graphite barrier coating on the inside cladding surface, and (3) combined pre-pressurization and graphite coating. Periodic dimensional examinations were performed on the test rods, and the results were compared with data obtained from two previously irradiated test rods--both unpressurized and uncoated and one intentionally defected. These comparisons indicate that both pre-pressurization and graphite coating can substantially improve fuel element performance capability

  10. Radiation behaviour of graphite for HTGR

    International Nuclear Information System (INIS)

    Shtrombakh, Ya.I.; Platonov, P.A.; Gurovich, B.A.; Alekseev, V.M.

    1996-01-01

    The paper presents the results of investigations of different graphite materials, among with the standard reactor graphite manufacturing by electrode technology and a number of advanced graphites of new generation. During the investigation of radiation stability of standard reactor graphite the basic mechanisms of radiation damage of its structure were studied. With the help of transmission electron microscopy deformations and cracking of filler and binder were detected in the vicinity of the boundaries, separating these two components. Cracking begins with crystallite splitting and ends in full fracture of boundary layers. Such process of degradation can be explained by disjoint deformations resulting from difference in growth rate of filler and binder crystallites, in its turn caused by considerable difference between their sizes. It has been concluded that radiation stability of graphite may be improved by creating such graphite materials, in which the difference in sizes of crystallites of different structure components would be the minimal possible. When developing production technology of isotropic graphite for high temperature reactors, some progress was made towards the solution of this problem. Despite considerable swelling at high temperature this type of graphite appeared to be substantially less susceptible to the degradation of the structure and to deterioration of physico-mechanical properties. In addition to graphites manufactured by tradition technology, the graphite was investigated, in which pyrocarbon precipitated from gas phase under 1000 deg. C was used as binder. Carbon precipitated in such a way was non-graphitized at high temperatures and therefore it demonstrated sharp shrinkage under irradiation at high temperature, and shrinkage rate correlated with pyrocarbon quota in graphite structure. (author). 5 refs, 18 figs, 1 tab

  11. Seismic Study of TMSR Graphite Core Structure

    International Nuclear Information System (INIS)

    Tsang, Derek; Huang Chao Chao

    2014-01-01

    Graphite plays an important role in the thorium based molten salt reactor (TMSR) nuclear energy system. The graphite core acts as reflector, moderator and structural material in the TMSR core. The graphite core assembly has hundreds of graphite bricks interconnected with graphite keys and dowels. In other words, the graphite core is a kind of discrete stack structure with highly nonlinear dynamic behaviour, and it will show totally different dynamics responses comparing with welded structure or bolted structure when subjected to the seismic loading. Hence it is important to investigate the dynamics characteristics of the TMSR graphite core assembly and to meet the seismic design requirement. The most popular way to investigate the nonlinearity of graphite core is to do finite element analyses. Due to the large number of nonlinear behaviour caused by contacts, collisions and impacts between the graphite bricks and keys, the computational costs on seismic analysis of the whole core would be very high. Many methods have been developed in the past 20 years to conquer this difficulty. In this work substructure method and finite element method have been used to study the dynamic behaviour of a stack of graphite bricks under seismic loading. The numerical results of these two methods will be compared. The results show that the super element method is an efficient method for graphite core seismic analyses. (author)

  12. Production of nuclear graphite in France

    International Nuclear Information System (INIS)

    Legendre, P.; Mondet, L.; Arragon, Ph.; Cornuault, P.; Gueron, J.; Hering, H.

    1955-01-01

    The graphite intended for the construction of the reactors is obtained by the usual process: confection of a cake from coke of oil and tar, cooked (in a electric oven) then the product of cook is graphitized, also by electric heating. The use of the air transportation and the control of conditions cooking and graphitization have permitted to increase the nuclear graphite production as well as to better control their physical and mechanical properties and to reduce to the minimum the unwanted stains. (M.B.) [fr

  13. Reactor

    International Nuclear Information System (INIS)

    Toyama, Masahiro; Kasai, Shigeo.

    1978-01-01

    Purpose: To provide a lmfbr type reactor wherein effusion of coolants through a loop contact portion is reduced even when fuel assemblies float up, and misloading of reactor core constituting elements is prevented thereby improving the reactor safety. Constitution: The reactor core constituents are secured in the reactor by utilizing the differential pressure between the high-pressure cooling chamber and low-pressure cooling chamber. A resistance port is formed at the upper part of a connecting pipe, and which is connect the low-pressure cooling chamber and the lower surface of the reactor core constituent. This resistance part is formed such that the internal sectional area of the connecting pipe is made larger stepwise toward the upper part, and the cylinder is formed larger so that it profiles the inner surface of the connecting pipe. (Aizawa, K.)

  14. Change in properties of graphite on stake of Obninsk NPP

    International Nuclear Information System (INIS)

    Virgul'ev, Yu.S.; Gundorov, V.V.; Kalyagina, I.P.; Belinskaya, N.T.; Dolgov, V.V.; Komissarov, O.V.; Stuzhnev, Yu.A.

    1997-01-01

    The results of testing the graphite from the AM-1 reactor masonry at the Obninsk NPP for its operation period are discussed. It is shown that the masonry graphite state after 42 years of the reactor operation remains satisfactory in the most cells inspected. Separate cells requiring a repair resulted from oxidation are characterized by strength decreased by several times. The laws of radiation changes in graphite properties are analyzed. The conclusion on possibility of the further masonry operation is drawn

  15. Reactor

    International Nuclear Information System (INIS)

    Ikeda, Masaomi; Kashimura, Kazuo; Inoue, Kazuyuki; Nishioka, Kazuya.

    1979-01-01

    Purpose: To facilitate the construction of a reactor containment building, whereby the inspections of the outer wall of a reactor container after the completion of the construction of the reactor building can be easily carried out. Constitution: In a reactor accommodated in a container encircled by a building wall, a space is provided between the container and the building wall encircling the container, and a metal wall is provided in the space so that it is fitted in the building wall in an attachable or detatchable manner. (Aizawa, K.)

  16. Review: BNL Tokamak graphite blanket design concepts

    International Nuclear Information System (INIS)

    Fillo, J.A.; Powell, J.R.

    1976-01-01

    The BNL minimum activity graphite blanket designs are reviewed, and three are discussed in the context of an experimental power reactor (EPR) and commercial power reactor. Basically, the three designs employ a 30 cm or thicker graphite screen. Bremsstrahlung energy is deposited on the graphite surface and re-radiated away as thermal radiation. Fast neutrons are slowed down in the graphite, depositing most of their energy, which is then radiated to a secondary blanket with coolant tubes, as in types A and B, or removed by intermittent direct gas cooling (type C). In types A and B, radiation damage to the coolant tubes in the secondary blanket is reduced by one or two orders of magnitude, while in type C, the blanket is only cooled when the reactor is shut down, so that coolant cannot quench the plasma. (Auth.)

  17. Neutronic reactor

    International Nuclear Information System (INIS)

    Lewis, W.R.

    1978-01-01

    Disclosed is a graphite-moderated, water-cooled nuclear reactor including a plurality of rectangular graphite blocks stacked in abutting relationship in layers, alternate layers having axes which are normal to one another, alternate rows of blocks in alternate layers being provided with a channel extending through the blocks, said channeled blocks being provided with concave sides and having smaller vertical dimensions than adjacent blocks in the same layer, there being nuclear fuel in the channels

  18. Corrosion of graphitic high temperature reactor materials in steam/helium mixtures at total pessures of 3-55 bar and temperatures of 900-1150 C (1173-1423K)

    International Nuclear Information System (INIS)

    Hinssen, H.K.; Loenissen, K.J.; Katscher, W.; Moormann, R.

    1993-03-01

    In course of accident examination for (HTR), experiments on the corrosion behavior of graphitic reactor materials in steam have been performed a total pressures of 3-55bar and temperatures of 900-1150 C (1173-1423K); these experiments and their evaluation are documented here. Reactor materials examined are the structure graphite V483T2 and the fuel element matrices A3-27 and A3-3. In all experiments, the steam partial pressure was 474mbar (inert gas helium). The dependence of reaction rates and density profiles on burn-off, total pressure and temperature has been examined. Experimental reaction rates depending on burn-off are fitted by theoretical curves, a procedure, which allows rate comparison for a well defined burn-off. Comparing rates as a function of total pressure, V483T2 shows a linear dependence on 1√p total , whereas for matrix materials a pressure independent rate was found for p total 4mm for A3-3. (orig.) [de

  19. NST Quarterly

    International Nuclear Information System (INIS)

    1995-01-01

    NST Quarterly reports current development in nuclear science and technology in Malaysia. It keeps readers informed on the progress of research, services, application of nuclear science and technology, and other technical news. It highlights MINT activities and also announces coming events

  20. Development of electrically heated rods with resistive element of graphite or carbon/carbon composites for simulating transients in nuclear reactors

    International Nuclear Information System (INIS)

    Polidoro, H.A.

    1987-01-01

    Thermo-hydraulic problems, in nuclear plants are normally analysed by the use of electrically heated rods. The direct or indirect heater rods are limited in their use because, for high temperatures and high heat flux, the heating element temperature approach its melting point. The use of platinum or tantalum is not economically viable. Graphite and carbon/carbon composites are alternative materials because they are good electrical conductors and have good mechanical properties at high temperatures. Graphite and carbon/carbon composites were used to make heating elements for testing by indirect heating. The swaging process used to reduce the cladding diameter prevented the fabrication of graphite heater rods. Carbon/carbon composite used to make heating elements gave good results up to a heat flux of 100 W/cm 2 . It is easy to verify that this value can be exceeded if the choice of the complementary materials for insulator and cladding improved. (author) [pt

  1. Nuclear graphite wear properties and estimation of graphite dust production in HTR-10

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Xiaowei, E-mail: xwluo@tsinghua.edu.cn; Wang, Xiaoxin; Shi, Li; Yu, Xiaoyu; Yu, Suyuan

    2017-04-15

    Highlights: • Graphite dust. • The wear properties of graphite. • Pebble bed. • High Temperature Gas-cooled Reactor. • Fuel element. - Abstract: The issue of the graphite dust has been a research focus for the safety of High Temperature Gas-cooled Reactors (HTGRs), especially for the pebble bed reactors. Most of the graphite dust is produced from the wear of fuel elements during cycling of fuel elements. However, due to the complexity of the motion of the fuel elements in the pebble bed, there is no systematic method developed to predict the amount the graphite dust in a pebble bed reactor. In this paper, the study of the flow of the fuel elements in the pebble bed was carried out. Both theoretical calculation and numerical analysis by Discrete Element Method (DEM) software PFC3D were conducted to obtain the normal forces and sliding distances of the fuel elements in pebble bed. The wearing theory was then integrated with PFC3D to estimate the amount of the graphite dust in a pebble bed reactor, 10 MW High Temperature gas-cooled test Reactor (HTR-10).

  2. Radiolytic graphite oxidation revisited

    International Nuclear Information System (INIS)

    Minshall, P.C.; Sadler, I.A.; Wickham, A.J.

    1996-01-01

    The importance of radiolytic oxidation in graphite-moderated CO 2 -cooled reactors has long been recognised, especially in the Advanced Gas-Cooled Reactors where potential rates are higher because of the higher gas pressure and ratings than the earlier Magnox designs. In all such reactors, the rate of oxidation is partly inhibited by the CO produced in the reaction and, in the AGR, further reduced by the deliberate addition of CH 4 . Significant roles are also played by H 2 and H 2 O. This paper reviews briefly the mechanisms of these processes and the data on which they are based. However, operational experience has demonstrated that these basic principles are unsatisfactory in a number of respects. Gilsocarbon graphites produced by different manufacturers have demonstrated a significant difference in oxidation rate despite a similar specification and apparent equivalence in their pore size and distribution, considered to be the dominant influence on oxidation rate for a given coolant-gas composition. Separately, the inhibiting influence of CH 4 , which for many years had been considered to arise from the formation of a sacrificial deposit on the pore walls, cannot adequately be explained by the actual quantities of such deposits found in monitoring samples which frequently contain far less deposited carbon than do samples from Magnox reactors where the only source of such deposits is the CO. The paper also describes the current status of moderator weight-loss predictions for Magnox and AGR Moderators and the validation of the POGO and DIFFUSE6 codes respectively. 2 refs, 5 figs

  3. AGC-3 Graphite Preirradiation Data Analysis Report

    Energy Technology Data Exchange (ETDEWEB)

    William Windes; David Swank; David Rohrbaugh; Joseph Lord

    2013-09-01

    This report describes the specimen loading order and documents all pre-irradiation examination material property measurement data for the graphite specimens contained within the third Advanced Graphite Capsule (AGC-3) irradiation capsule. The AGC-3 capsule is third in six planned irradiation capsules comprising the Advanced Graphite Creep (AGC) test series. The AGC test series is used to irradiate graphite specimens allowing quantitative data necessary for predicting the irradiation behavior and operating performance of new nuclear graphite grades to be generated which will ascertain the in-service behavior of the graphite for pebble bed and prismatic Very High Temperature Reactor (VHTR) designs. The general design of AGC-3 test capsule is similar to the AGC-2 test capsule, material property tests were conducted on graphite specimens prior to loading into the AGC-3 irradiation assembly. However the 6 major nuclear graphite grades in AGC-2 were modified; two previous graphite grades (IG-430 and H-451) were eliminated and one was added (Mersen’s 2114 was added). Specimen testing from three graphite grades (PCEA, 2114, and NBG-17) was conducted at Idaho National Laboratory (INL) and specimen testing for two grades (IG-110 and NBG-18) were conducted at Oak Ridge National Laboratory (ORNL) from May 2011 to July 2013. This report also details the specimen loading methodology for the graphite specimens inside the AGC-3 irradiation capsule. The AGC-3 capsule design requires "matched pair" creep specimens that have similar dose levels above and below the neutron flux profile mid-plane to provide similar specimens with and without an applied load. This document utilized the neutron flux profile calculated for the AGC-3 capsule design, the capsule dimensions, and the size (length) of the selected graphite and silicon carbide samples to create a stacking order that can produce "matched pairs" of graphite samples above and below the AGC-3 capsule elevation mid-point to

  4. Fusion Power Program. Quarterly progress report, January-March 1979

    Energy Technology Data Exchange (ETDEWEB)

    1979-08-01

    This quarterly report summarizes the Argonne National Laboratory work performed for the Office of Fusion Energy during the January-March 1979 quarter in the following research and development areas: materials; energy storage and transfer; tritium containment, recovery and control; advanced reactor design; atomic data; reactor safety; fusion-fission hybrid systems; alternate applications of fusion energy; and other work related to fusion power.

  5. First quarter 2005 sales data

    International Nuclear Information System (INIS)

    2005-04-01

    This press release brings information on the AREVA group sales data. First quarter 2005 sales for the group were 2,496 millions of euros, up 3,6% year-on-year from 2,41 millions. The change in foreign exchange rates between the two periods show a negative impact of 22 millions euros, which is much lower than in the first quarter of 2004. It analyzes also in more details the situation of the front end, the reactors and service division, the back end division, the transmission and distribution division and the connectors division. (A.L.B.)

  6. Determination of a geometry-dependent parameter and development of a calculation model for describing the fission products transport from spherical fuel elements of graphite moderated gas-cooled reactors

    Energy Technology Data Exchange (ETDEWEB)

    Weissfloch, Reinhard

    1973-07-15

    The fuel elements of high-temperature reactors, coated with pyrolitic carbon and covered with graphite, release fission products like all other fuel elements. Because of safety reasons, the rate of this release has to be kept low and has also to be predictable. Measured values from irradiation tests and from post-irradiation tests about the actual release of different fission products are presented. The physical and chemical mechanism, which determines the release, is extraordinarily complex and in particular not clearly defined. Because of the mentioned reasons, a simplified calculation model was developed, which only considers the release-mechanisms phenomenologically. This calculation model coincides very well in its results with values received in experiments until now. It can be held as an interim state on the way to a complete theory.

  7. Feasibility Study of Supercritical Light Water Cooled Reactors for Electric Power Production, Progress Report for Work Through September 2003, 2nd Annual/8th Quarterly Report

    Energy Technology Data Exchange (ETDEWEB)

    Philip E. MacDonald

    2003-09-01

    The supercritical water-cooled reactor (SCWR) is one of the six reactor technologies selected for research and development under the Generation-IV program. SCWRs are promising advanced nuclear systems because of their high thermal efficiency (i.e., about 45% vs. about 33% efficiency for current Light Water Reactors, LWRs) and considerable plant simplification. SCWRs are basically LWRs operating at higher pressure and temperatures with a direct once-through cycle. Operation above the critical pressure eliminates coolant boiling, so the coolant remains single-phase throughout the system. Thus the need for recirculation and jet pumps, a pressurizer, steam generators, steam separators and dryers is eliminated. The main mission of the SCWR is generation of low-cost electricity. It is built upon two proven technologies, LWRs, which are the most commonly deployed power generating reactors in the world, and supercritical fossil-fired boilers, a large number of which is also in use around the world.

  8. Feasibility Study of Supercritical Light Water Cooled Fast Reactors for Actinide Burning and Electric Power Production Progress Report for Year 1, Quarter 2 (January - March 2002)

    Energy Technology Data Exchange (ETDEWEB)

    Mac Donald, Philip Elsworth; Buongiorno, Jacopo; Davis, Cliff Bybee; Weaver, Kevan Dean

    2002-03-01

    The use of light water at supercritical pressures as the coolant in a nuclear reactor offers the potential for considerable plant simplification and consequent capital and O&M cost reduction compared with current light water reactor (LWR) designs. Also, given the thermodynamic conditions of the coolant at the core outlet (i.e. temperature and pressure beyond the water critical point), very high thermal efficiencies of the power conversion cycle are possible (i.e. up to about 45%). Because no change of phase occurs in the core, the need for steam separators and dryers as well as for BWR-type re-circulation pumps is eliminated, which, for a given reactor power, results in a substantially shorter reactor vessel and smaller containment building than the current BWRs. Furthermore, in a direct cycle the steam generators are not needed.

  9. Fabrication of TREAT Fuel with Increased Graphite Loading

    Energy Technology Data Exchange (ETDEWEB)

    Luther, Erik Paul [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Leckie, Rafael M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dombrowski, David E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Papin, Pallas A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-02-05

    As part of the feasibility study exploring the replacement of the HEU fuel core of the TREAT reactor at Idaho National Laboratory with LEU fuel, this study demonstrates that it is possible to increase the graphite content of extruded fuel by reformulation. The extrusion process was use to fabricate the “upgrade” core1 for the TREAT reactor. The graphite content achieved is determined by calculation and has not been measured by any analytical method. In conjunction, a technique, Raman Spectroscopy, has been investigated for measuring the graphite content. This method shows some promise in differentiating between carbon and graphite; however, standards that would allow the technique to be calibrated to quantify the graphite concentration have yet to be fabricated. Continued research into Raman Spectroscopy is on going. As part of this study, cracking of graphite extrusions due to volatile evolution during heat treatment has been largely eliminated. Continued research to optimize this extrusion method is required.

  10. Third quarter 2005 sales figures

    International Nuclear Information System (INIS)

    2005-01-01

    With manufacturing facilities in over 40 countries and a sales network in over 100, AREVA offers customers technological solutions for nuclear power generation and electricity transmission and distribution. The group also provides interconnect systems to the telecommunications, computer and automotive markets. This document presents the sales figures of the group for the third quarter of 2005: sales revenues in the front end division, in the reactor and services division, in the back end division and in the transmission and distribution division

  11. Progress in radioactive graphite waste management. Additional information

    International Nuclear Information System (INIS)

    2010-06-01

    Radioactive graphite constitutes a major waste stream which arises during the decommissioning of certain types of nuclear installations. Worldwide, a total of around 250 000 tonnes of radioactive graphite, comprising graphite moderators and reflectors, will require management solutions in the coming years. 14 C is the radionuclide of greatest concern in nuclear graphite; it arises principally through the interaction of reactor neutrons with nitrogen, which is present in graphite as an impurity or in the reactor coolant or cover gas. 3 H is created by the reactions of neutrons with 6 Li impurities in graphite as well as in fission of the fuel. 36 Cl is generated in the neutron activation of chlorine impurities in graphite. Problems in the radioactive waste management of graphite arise mainly because of the large volumes requiring disposal, the long half-lives of the main radionuclides involved and the specific properties of graphite - such as stored Wigner energy, graphite dust explosibility and the potential for radioactive gases to be released. Various options for the management of radioactive graphite have been studied but a generally accepted approach for its conditioning and disposal does not yet exist. Different solutions may be appropriate in different cases. In most of the countries with radioactive graphite to manage, little progress has been made to date in respect of the disposal of this material. Only in France has there been specific thinking about a dedicated graphite waste-disposal facility (within ANDRA): other major producers of graphite waste (UK and the countries of the former Soviet Union) are either thinking in terms of repository disposal or have no developed plans. A conference entitled 'Solutions for Graphite Waste: a Contribution to the Accelerated Decommissioning of Graphite Moderated Nuclear Reactors' was held at the University of Manchester 21-23 March 2007 in order to stimulate progress in radioactive graphite waste management

  12. Feasibility Study of Supercritical Light Water Cooled Fast Reactors for Actinide Burning and Electric Power Production, Progress Report for Work Through September 2002, 4th Quarterly Report

    Energy Technology Data Exchange (ETDEWEB)

    Mac Donald, Philip Elsworth

    2002-09-01

    The use of light water at supercritical pressures as the coolant in a nuclear reactor offers the potential for considerable plant simplification and consequent capital and O&M cost reduction compared with current light water reactor (LWR) designs. Also, given the thermodynamic conditions of the coolant at the core outlet (i.e. temperature and pressure beyond the water critical point), very high thermal efficiencies of the power conversion cycle are possible (i.e. up to about 45%). Because no change of phase occurs in the core, the need for steam separators and dryers as well as for BWR-type re-circulation pumps is eliminated, which, for a given reactor power, results in a substantially shorter reactor vessel and smaller containment building than the current BWRs. Furthermore, in a direct cycle the steam generators are not needed. If no additional moderator is added to the fuel rod lattice, it is possible to attain fast neutron energy spectrum conditions in a supercritical water-cooled reactor (SCWR). This type of core can make use of either fertile or fertile-free fuel and retain a hard spectrum to effectively burn plutonium and minor actinides from LWR spent fuel while efficiently generating electricity. One can also add moderation and design a thermal spectrum SCWR. The Generation IV Roadmap effort has identified the thermal spectrum SCWR (followed by the fast spectrum SCWR) as one of the advanced concepts that should be developed for future use. Therefore, the work in this NERI project is addressing both types of SCWRs.

  13. Research reactors

    International Nuclear Information System (INIS)

    Kowarski, L.

    1955-01-01

    It brings together the techniques data which are involved in the discussion about the utility for a research institute to acquire an atomic reactor for research purposes. This type of decision are often taken by non-specialist people who can need a brief presentation of a research reactor and its possibilities in term of research before asking advises to experts. In a first part, it draws up a list of the different research programs which can be studied by getting a research reactor. First of all is the reactor behaviour and kinetics studies (reproducibility factor, exploration of neutron density, effect of reactor structure, effect of material irradiation...). Physical studies includes study of the behaviour of the control system, studies of neutron resonance phenomena and study of the fission process for example. Chemical studies involves the study of manipulation and control of hot material, characterisation of nuclear species produced in the reactor and chemical effects of irradiation on chemical properties and reactions. Biology and medicine research involves studies of irradiation on man and animals, genetics research, food or medical tools sterilization and neutron beams effect on tumour for example. A large number of other subjects can be studied in a reactor research as reactor construction material research, fabrication of radioactive sources for radiographic techniques or applied research as in agriculture or electronic. The second part discussed the technological considerations when choosing the reactor type. The technological factors, which are considered for its choice, are the power of the reactor, the nature of the fuel which is used, the type of moderator (water, heavy water, graphite or BeO) and the reflector, the type of coolants, the protection shield and the control systems. In the third part, it described the characteristics (place of installation, type of combustible and comments) and performance (power, neutron flux ) of already existing

  14. Reactor

    International Nuclear Information System (INIS)

    Fujibayashi, Toru.

    1976-01-01

    Object: To provide a boiling water reactor which can enhance a quake resisting strength and flatten power distribution. Structure: At least more than four fuel bundles, in which a plurality of fuel rods are arranged in lattice fashion which upper and lower portions are supported by tie-plates, are bundled and then covered by a square channel box. The control rod is movably arranged within a space formed by adjoining channel boxes. A spacer of trapezoidal section is disposed in the central portion on the side of the channel box over substantially full length in height direction, and a neutron instrumented tube is disposed in the central portion inside the channel box. Thus, where a horizontal load is exerted due to earthquake or the like, the spacers come into contact with each other to support the channel box and prevent it from abnormal vibrations. (Furukawa, Y.)

  15. Reactor

    International Nuclear Information System (INIS)

    Evans, R.M.

    1976-01-01

    Disclosed is a neutronic reactor having a moderator, coolant tubes traversing the moderator from an inlet end to an outlet end, bodies of material fissionable by neutrons of thermal energy disposed within the coolant tubes, and means for circulating water through said coolant tubes characterized by the improved construction wherein the coolant tubes are constructed of aluminum having an outer diameter of 1.729 inches and a wall thickness of 0.059 inch, and the means for circulating a liquid coolant through the tubes includes a source of water at a pressure of approximately 350 pounds per square inch connected to the inlet end of the tubes, and said construction including a pressure reducing orifice disposed at the inlet ends of the tubes reducing the pressure of the water by approximately 150 pounds per square inch. 1 claim, 16 figures

  16. AGC-2 Graphite Preirradiation Data Analysis Report

    Energy Technology Data Exchange (ETDEWEB)

    William Windes; W. David Swank; David Rohrbaugh; Joseph Lord

    2013-08-01

    This report described the specimen loading order and documents all pre-irradiation examination material property measurement data for the graphite specimens contained within the second Advanced Graphite Capsule (AGC-2) irradiation capsule. The AGC-2 capsule is the second in six planned irradiation capsules comprising the Advanced Graphite Creep (AGC) test series. The AGC test series is used to irradiate graphite specimens allowing quantitative data necessary for predicting the irradiation behavior and operating performance of new nuclear graphite grades to be generated which will ascertain the in-service behavior of the graphite for pebble bed and prismatic Very High Temperature Reactor (VHTR) designs. Similar to the AGC-1 specimen pre-irradiation examination report, material property tests were conducted on specimens from 18 nuclear graphite types but on an increased number of specimens (512) prior to loading into the AGC-2 irradiation assembly. All AGC-2 specimen testing was conducted at Idaho National Laboratory (INL) from October 2009 to August 2010. This report also details the specimen loading methodology for the graphite specimens inside the AGC-2 irradiation capsule. The AGC-2 capsule design requires “matched pair” creep specimens that have similar dose levels above and below the neutron flux profile mid-plane to provide similar specimens with and without an applied load. This document utilized the neutron flux profile calculated for the AGC-2 capsule design, the capsule dimensions, and the size (length) of the selected graphite and silicon carbide samples to create a stacking order that can produce “matched pairs” of graphite samples above and below the AGC-2 capsule elevation mid-point to provide specimens with similar neutron dose levels.

  17. Modeling Fission Product Sorption in Graphite Structures

    International Nuclear Information System (INIS)

    Szlufarska, Izabela; Morgan, Dane; Allen, Todd

    2013-01-01

    The goal of this project is to determine changes in adsorption and desorption of fission products to/from nuclear-grade graphite in response to a changing chemical environment. First, the project team will employ principle calculations and thermodynamic analysis to predict stability of fission products on graphite in the presence of structural defects commonly observed in very high-temperature reactor (VHTR) graphites. Desorption rates will be determined as a function of partial pressure of oxygen and iodine, relative humidity, and temperature. They will then carry out experimental characterization to determine the statistical distribution of structural features. This structural information will yield distributions of binding sites to be used as an input for a sorption model. Sorption isotherms calculated under this project will contribute to understanding of the physical bases of the source terms that are used in higher-level codes that model fission product transport and retention in graphite. The project will include the following tasks: Perform structural characterization of the VHTR graphite to determine crystallographic phases, defect structures and their distribution, volume fraction of coke, and amount of sp2 versus sp3 bonding. This information will be used as guidance for ab initio modeling and as input for sorptivity models; Perform ab initio calculations of binding energies to determine stability of fission products on the different sorption sites present in nuclear graphite microstructures. The project will use density functional theory (DFT) methods to calculate binding energies in vacuum and in oxidizing environments. The team will also calculate stability of iodine complexes with fission products on graphite sorption sites; Model graphite sorption isotherms to quantify concentration of fission products in graphite. The binding energies will be combined with a Langmuir isotherm statistical model to predict the sorbed concentration of fission products

  18. Modeling Fission Product Sorption in Graphite Structures

    Energy Technology Data Exchange (ETDEWEB)

    Szlufarska, Izabela [University of Wisconsin, Madison, WI (United States); Morgan, Dane [University of Wisconsin, Madison, WI (United States); Allen, Todd [University of Wisconsin, Madison, WI (United States)

    2013-04-08

    The goal of this project is to determine changes in adsorption and desorption of fission products to/from nuclear-grade graphite in response to a changing chemical environment. First, the project team will employ principle calculations and thermodynamic analysis to predict stability of fission products on graphite in the presence of structural defects commonly observed in very high- temperature reactor (VHTR) graphites. Desorption rates will be determined as a function of partial pressure of oxygen and iodine, relative humidity, and temperature. They will then carry out experimental characterization to determine the statistical distribution of structural features. This structural information will yield distributions of binding sites to be used as an input for a sorption model. Sorption isotherms calculated under this project will contribute to understanding of the physical bases of the source terms that are used in higher-level codes that model fission product transport and retention in graphite. The project will include the following tasks: Perform structural characterization of the VHTR graphite to determine crystallographic phases, defect structures and their distribution, volume fraction of coke, and amount of sp2 versus sp3 bonding. This information will be used as guidance for ab initio modeling and as input for sorptivity models; Perform ab initio calculations of binding energies to determine stability of fission products on the different sorption sites present in nuclear graphite microstructures. The project will use density functional theory (DFT) methods to calculate binding energies in vacuum and in oxidizing environments. The team will also calculate stability of iodine complexes with fission products on graphite sorption sites; Model graphite sorption isotherms to quantify concentration of fission products in graphite. The binding energies will be combined with a Langmuir isotherm statistical model to predict the sorbed concentration of fission

  19. Graphite moderated {sup 252}Cf source

    Energy Technology Data Exchange (ETDEWEB)

    Sajo B, L.; Barros, H.; Greaves, E. D. [Universidad Simon Bolivar, Nuclear Physics Laboratory, Apdo. 89000, 1080A Caracas (Venezuela, Bolivarian Republic of); Vega C, H. R., E-mail: fermineutron@yahoo.com [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico)

    2014-08-15

    The thorium molten salt reactor is an attractive and affordable nuclear power option for developing countries with insufficient infrastructure and limited technological capability. In the aim of personnel training and experience gathering at the Universidad Simon Bolivar there is in progress a project of developing a subcritical thorium liquid fuel reactor. The neutron source to run this subcritical reactor is a {sup 252}Cf source and the reactor will use high-purity graphite as moderator. Using the MCNP5 code the neutron spectra of the {sup 252}Cf in the center of the graphite moderator has been estimated along the channel where the liquid thorium salt will be inserted; also the ambient dose equivalent due to the source has been determined around the moderator. (Author)

  20. Graphite oxidation and damage under irradiation at high temperatures in an impure helium environment

    Science.gov (United States)

    Goodwin, Cameron S.

    The High Temperature Gas-Cooled Reactor (HTGR) is a Generation IV reactor concept that uses a graphite-moderated nuclear reactor with a once-through uranium fuel cycle. In order to investigate the mechanism for corrosion of graphite in HTGRs, the graphite was placed in a similar environment in order to evaluate its resistance to corrosion and oxidation. While the effects of radiation on graphite have been studied in the past, the properties of graphite are largely dependent on the coke used in manufacturing the graphite. There are no longer any of the previously studied graphite types available for use in the HTGR. There are various types of graphite being considered for different uses in the HTGR and all of these graphite types need to be analyzed to determine how radiation will affect them. Extensive characterization of samples of five different types of graphite was conducted. The irradiated samples were analyzed with electron paramagnetic resonance spectroscopy, Raman spectroscopy, x-ray diffraction, x-ray photoelectron spectroscopy and gas chromatography. The results prove a knowledge base for considering the graphite types best suited for use in HTGRs. In my dissertation work graphite samples were gamma irradiated and also irradiated in a mixed field, in order to study the effects of neutron as well as gamma irradiation. Thermal effects on the graphite were also investigated by irradiating the samples at room temperature and at 1000 °C. From the analysi of the samples in this study there is no evidence of substantial damage to the grades of graphite analyzed. This is significant in approving the use of these graphites in nuclear reactors. Should significant damage had occurred to the samples, the use of these grades of graphite would need to be reconsidered. This information can be used to further characterize other grades of nuclear graphite as they become available.

  1. Carbon-14 Content of Carbonaceous Deposits in Oldbury Core Graphite

    International Nuclear Information System (INIS)

    Metcalfe, M.P.; Tzelepi, A.; Gill, J.

    2016-01-01

    Graphite specimens taken from the surface of Magnox reactor core components have been studied by differential thermal oxidation and counting of off-gases to quantify the contribution or otherwise of carbonaceous deposits to the C-14 inventory of the core graphite. While present within the open porosity of the graphite, such deposits formed from polymerization reactions in the CO 2 /CO atmosphere of the reactor and from the decomposition of methane are concentrated predominantly on the outer surfaces of components. An improved understanding of their C-14 content could influence handling of material during decommissioning and could influence treatment options. (author)

  2. Heat Transfer During Evaporation of Cesium From Graphite Surface in an Argon Environment

    Directory of Open Access Journals (Sweden)

    Bespala Evgeny

    2016-01-01

    Full Text Available The article focuses on discussion of problem of graphite radioactive waste formation and accumulation. It is shown that irradiated nuclear graphite being inalienable part of uranium-graphite reactor may contain fission and activation products. Much attention is given to the process of formation of radioactive cesium on the graphite element surface. It is described a process of plasma decontamination of irradiated graphite in inert argon atmosphere. Quasi-one mathematical model is offered, it describes heat transfer process in graphite-cesium-argon system. Article shows results of calculation of temperature field inside the unit cell. Authors determined the factors which influence on temperature change.

  3. Study on practical of eddy current testing of core and core support graphite components in HTTR

    International Nuclear Information System (INIS)

    Ishihara, Masahiro; Iyoku, Tatsuo; Ooka, Norikazu; Shindo, Yoshihisa; Kawae, Hidetoshi; Hayashi, Motomitsu; Kambe, Mamoru; Takahashi, Masaaki; Ide, Akira.

    1994-01-01

    Core and core support graphite components in the HTTR (High Temperature Engineering Test Reactor) are mainly made of nuclear-grade IG-110 and PGX graphites. Nondestructive inspection with Eddy Current Testing (ECT) is planned to be applied to these components. The method of ECT has been already established for metallic components, however, cannot be applied directly to the graphite ones, because the characteristics of graphite are quite different in micro-structure from those of metals. Therefore, ECT method and condition were studied for the application of the ECT to the graphite components. This paper describes the study on practical method and conditions of ECT for above mentioned graphite structures. (author)

  4. The wear properties of nuclear grade graphite IG-11 under different loads

    International Nuclear Information System (INIS)

    Luo Xiaowei; Zhang Lihong; Yu Suyuan

    2004-01-01

    The influence of normal load on wear performance of graphite used in a 10 MW high temperature gas-cooled reactor was investigated. The experiments included the wear between graphite and graphite specimens, and the wear between graphite and stainless steel specimens. The worn surfaces and abrasive particles were analysed with SEM and the wear mechanism was discussed. The sizes of abrasive particles were counted. (author)

  5. Graphite moderator lifecycle behaviour. Proceedings of a specialists meeting

    International Nuclear Information System (INIS)

    1996-08-01

    The meeting provided the forum for graphite specialists representing operating and research organizations worldwide to exchange information in the following areas: the status of graphite development; operation and safety procedures for existing and future graphite moderated reactors; graphite testing techniques; review of the experiences gained and data acquired on the influence of neutron irradiation and oxidizing conditions on key graphite properties; and to exchange information useful for decommissioning activities. The participants provided twenty-seven papers on behalf of their countries and respective technical organizations. An open discussion followed each of the presentations. A consistently reoccurring theme throughout the specialists meeting was the noticeable reduction in the number of graphite experts remaining the nuclear power industry. Graphite moderated power reactors have provided a significant contribution to the generation of electricity throughout the past forty years and will continue to be a prominent energy source for the future. Yet, many of the renowned experts in the field of nuclear graphites are nearing the end of their careers without apparent replacement. This, coupled with changes in the focus on nuclear power by some industrialized countries, has prompted the IAEA to initiate an evaluation on the feasibility and interest by Member States of establishing a central archive facility for the storage of data on irradiated graphites. Refs, figs, tabs

  6. Pyrolysis and its potential use in nuclear graphite disposal

    International Nuclear Information System (INIS)

    Mason, J.B.; Bradbury, D.

    2001-01-01

    Graphite is used as a moderator material in a number of nuclear reactor designs, such as MAGNOX and AGR gas cooled reactors in the United Kingdom and the RBMK design in Russia. During construction the moderator of the reactor is usually installed as an interlocking structure of graphite bricks. At the end of reactor life the graphite moderator, weighing typically 2,000 tonnes, is a radioactive waste which requires eventual management. Radioactive graphite disposal options conventionally include: In-situ SAFESTORE for extended periods to permit manual disassembly of the graphite moderator through decay of short-lived radionuclides. Robotic or manual disassembly of the reactor core followed by disposal of the graphite blocks. Robotic or manual disassembly of the reactor core followed by incineration of the graphite and release of the resulting carbon dioxide Studsvik, Inc. is a nuclear waste management and waste processing company organised to serve the US nuclear utility and government facilities. Studsvik's management and technical staff have a wealth of experience in processing liquid, slurry and solid low level radioactive waste using (amongst others) pyrolysis and steam reforming techniques. Bradtec is a UK company specialising in decontamination and waste management. This paper describes the use of pyrolysis and steam reforming techniques to gasify graphite leading to a low volume off-gas product. This allows the following options/advantages. Safe release of any stored Wigner energy in the graphite. The process can accept small pieces or a water-slurry of graphite, which enables the graphite to be removed from the reactor core by mechanical machining or water cutting techniques, applied remotely in the reactor fuel channels. In certain situations the process could be used to gasify the reactor moderator in-situ. The low volume of the off-gas product enables non-carbon radioactive impurities to be efficiently separated from the off-gas. The off-gas product can

  7. Advanced Proliferation Resistant, Lower Cost, Uranium-Thorium Dioxide Fuels for Light Water Reactors (Progress report for work through June 2002, 12th quarterly report)

    International Nuclear Information System (INIS)

    Mac Donald, Philip Elsworth

    2002-01-01

    The overall objective of this NERI project is to evaluate the potential advantages and disadvantages of an optimized thorium-uranium dioxide (ThO2/UO2) fuel design for light water reactors (LWRs). The project is led by the Idaho National Engineering and Environmental Laboratory (INEEL), with the collaboration of three universities, the University of Florida, Massachusetts Institute of Technology (MIT), and Purdue University; Argonne National Laboratory; and all of the Pressurized Water Reactor (PWR) fuel vendors in the United States (Framatome, Siemens, and Westinghouse). In addition, a number of researchers at the Korean Atomic Energy Research Institute and Professor Kwangheon Park at Kyunghee University are active collaborators with Korean Ministry of Science and Technology funding. The project has been organized into five tasks: Task 1 consists of fuel cycle neutronics and economics analysis to determine the economic viability of various ThO2/UO2 fuel designs in PWRs; Task 2 will determine whether or not ThO2/UO2 fuel can be manufactured economically; Task 3 will evaluate the behavior of ThO2/UO2 fuel during normal, off-normal, and accident conditions and compare the results with the results of previous UO2 fuel evaluations and U.S. Nuclear Regulatory Commission (NRC) licensing standards; Task 4 will determine the long-term stability of ThO2/UO2 high-level waste; and Task 5 consists of the Korean work on core design, fuel performance analysis, and xenon diffusivity measurements

  8. Abrasion behavior of graphite pebble in lifting pipe of pebble-bed HTR

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Ke; Su, Jiageng [Institute of Nuclear and New Energy Technology, Advanced Nuclear Energy Technology Cooperation Innovation Center, The Key Laboratory of Advanced Nuclear Engineering and Safety, Ministry of Education, Beijing 10084 (China); Zhou, Hongbo [Institute of Nuclear and New Energy Technology, Advanced Nuclear Energy Technology Cooperation Innovation Center, The Key Laboratory of Advanced Nuclear Engineering and Safety, Ministry of Education, Beijing 10084 (China); Chinergy Co., LTD., Beijing 100193 (China); Peng, Wei; Liu, Bing [Institute of Nuclear and New Energy Technology, Advanced Nuclear Energy Technology Cooperation Innovation Center, The Key Laboratory of Advanced Nuclear Engineering and Safety, Ministry of Education, Beijing 10084 (China); Yu, Suyun, E-mail: suyuan@tsinghua.edu.cn [Center for Combustion Energy, The Key Laboratory for Thermal Science and Power Engineering, Ministry of Educations, Tsinghua University, Beijing 10084 (China)

    2015-11-15

    Highlights: • Quantitative determination of abrasion rate of graphite pebbles in different lifting velocities. • Abrasion behavior of graphite pebble in helium, air and nitrogen. • In helium, intensive collisions caused by oscillatory motion result in more graphite dust production. - Abstract: A pebble-bed high-temperature gas-cooled reactor (pebble-bed HTR) uses a helium coolant, graphite core structure, and spherical fuel elements. The pebble-bed design enables on-line refueling, avoiding refueling shutdowns. During circulation process, the pebbles are lifted pneumatically via a stainless steel lifting pipe and reinserted into the reactor. Inevitably, the movement of the fuel elements as they recirculate in the reactor produces graphite dust. Mechanical wear is the primary source of graphite dust production. Specifically, the sources are mechanisms of pebble–pebble contact, pebble–wall (structural graphite) contact, and fuel handling (pebble–metal abrasion). The key contribution to graphite dust production is from the fuel handling system, particularly from the lifting pipe. During pneumatic lift, graphite pebbles undergo multiple collisions with the stainless steel lifting pipe, thereby causing abrasion of the graphite pebbles and producing graphite dust. The present work explored the abrasion behavior of graphite pebble in the lifting pipe by measuring the abrasion rate at different lifting velocities. The abrasion rate of the graphite pebble in helium was found much higher than those in air and nitrogen. This gas environment effect could be explained by either tribology behavior or dynamic behavior. Friction testing excluded the possibility of tribology reason. The dynamic behavior of the graphite pebble was captured by analysis of the audio waveforms during pneumatic lift. The analysis results revealed unique dynamic behavior of the graphite pebble in helium. Oscillation and consequently intensive collisions occur during pneumatic lift, causing

  9. On estimating the fracture probability of nuclear graphite components

    International Nuclear Information System (INIS)

    Srinivasan, Makuteswara

    2008-01-01

    The properties of nuclear grade graphites exhibit anisotropy and could vary considerably within a manufactured block. Graphite strength is affected by the direction of alignment of the constituent coke particles, which is dictated by the forming method, coke particle size, and the size, shape, and orientation distribution of pores in the structure. In this paper, a Weibull failure probability analysis for components is presented using the American Society of Testing Materials strength specification for nuclear grade graphites for core components in advanced high-temperature gas-cooled reactors. The risk of rupture (probability of fracture) and survival probability (reliability) of large graphite blocks are calculated for varying and discrete values of service tensile stresses. The limitations in these calculations are discussed from considerations of actual reactor environmental conditions that could potentially degrade the specification properties because of damage due to complex interactions between irradiation, temperature, stress, and variability in reactor operation

  10. Advanced Proliferation Resistant, Lower Cost, Uranium-Thorium Dioxide Fuels for Light Water Reactors (Progress report for work through June 2002, 12th quarterly report)

    Energy Technology Data Exchange (ETDEWEB)

    Mac Donald, Philip Elsworth

    2002-09-01

    The overall objective of this NERI project is to evaluate the potential advantages and disadvantages of an optimized thorium-uranium dioxide (ThO2/UO2) fuel design for light water reactors (LWRs). The project is led by the Idaho National Engineering and Environmental Laboratory (INEEL), with the collaboration of three universities, the University of Florida, Massachusetts Institute of Technology (MIT), and Purdue University; Argonne National Laboratory; and all of the Pressurized Water Reactor (PWR) fuel vendors in the United States (Framatome, Siemens, and Westinghouse). In addition, a number of researchers at the Korean Atomic Energy Research Institute and Professor Kwangheon Park at Kyunghee University are active collaborators with Korean Ministry of Science and Technology funding. The project has been organized into five tasks: · Task 1 consists of fuel cycle neutronics and economics analysis to determine the economic viability of various ThO2/UO2 fuel designs in PWRs, · Task 2 will determine whether or not ThO2/UO2 fuel can be manufactured economically, · Task 3 will evaluate the behavior of ThO2/UO2 fuel during normal, off-normal, and accident conditions and compare the results with the results of previous UO2 fuel evaluations and U.S. Nuclear Regulatory Commission (NRC) licensing standards, · Task 4 will determine the long-term stability of ThO2/UO2 high-level waste, and · Task 5 consists of the Korean work on core design, fuel performance analysis, and xenon diffusivity measurements.

  11. Graphite oxidation and structural strength of graphite support column in VHTR

    International Nuclear Information System (INIS)

    Park, Byung Ha; No, Hee Cheno; Kim, Eung Soo; Oh, Chang H.

    2009-01-01

    The air-ingress event by a large pipe break is an important accident considered in design of very high-temperature gas-cooled reactors (VHTR). Core-collapse prediction is a main safety issue. Structural failure model are technically required. The objective of this study is to develop structural failure model for the supporting graphite material in the lower plenum of the GT-MHR (gas-turbine-modular high temperature reactor). Graphite support column is important for VHTR structural integrity. Graphite support columns are under the axial load. Critical strength of graphite column is related to slenderness ratio and bulk density. Through compression tests for fresh and oxidized graphite columns we show that compressive strength of IG-110 was 79.46 MPa. And, the buckling strength of IG-110 column was expressed by the empirical formula: σ 0 =σ straight-line - C L/r, σ straight-line =91.31 MPa, C=1.01. The results of uniform and non-uniform oxidation tests show that the strength degradation of oxidized graphite column is expressed in the following non-dimensional form: σ/σ 0 =exp(-kd), k=0.111. Also, from the results of the uniform oxidation test with a complicated-shape column, we found out that the above non-dimensional equation obtained from the uniform oxidation test is applicable to a uniform oxidation case with a complicated-shape column. (author)

  12. Radiation damage in graphite

    CERN Document Server

    Simmons, John Harry Walrond

    1965-01-01

    Nuclear Energy, Volume 102: Radiation Damage in Graphite provides a general account of the effects of irradiation on graphite. This book presents valuable work on the structure of the defects produced in graphite crystals by irradiation. Organized into eight chapters, this volume begins with an overview of the description of the methods of manufacturing graphite and of its physical properties. This text then presents details of the method of setting up a scale of irradiation dose. Other chapters consider the effect of irradiation at a given temperature on a physical property of graphite. This

  13. Status of Chronic Oxidation Studies of Graphite

    Energy Technology Data Exchange (ETDEWEB)

    Contescu, Cristian I. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mee, Robert W. [Univ. of Tennessee, Knoxville, TN (United States)

    2016-05-01

    Graphite will undergo extremely slow, but continuous oxidation by traces of moisture that will be present, albeit at very low levels, in the helium coolant of HTGR. This chronic oxidation may cause degradation of mechanical strength and thermal properties of graphite components if a porous oxidation layer penetrates deep enough in the bulk of graphite components during the lifetime of the reactor. The current research on graphite chronic oxidation is motivated by the acute need to understand the behavior of each graphite grade during prolonged exposure to high temperature chemical attack by moisture. The goal is to provide the elements needed to develop predictive models for long-time oxidation behavior of graphite components in the cooling helium of HTGR. The tasks derived from this goal are: (1) Oxidation rate measurements in order to determine and validate a comprehensive kinetic model suitable for prediction of intrinsic oxidation rates as a function of temperature and oxidant gas composition; (2) Characterization of effective diffusivity of water vapor in the graphite pore system in order to account for the in-pore transport of moisture; and (3) Development and validation of a predictive model for the penetration depth of the oxidized layer, in order to assess the risk of oxidation caused damage of particular graphite grades after prolonged exposure to the environment of helium coolant in HTGR. The most important and most time consuming of these tasks is the measurement of oxidation rates in accelerated oxidation tests (but still under kinetic control) and the development of a reliable kinetic model. This report summarizes the status of chronic oxidation studies on graphite, and then focuses on model development activities, progress of kinetic measurements, validation of results, and improvement of the kinetic models. Analysis of current and past results obtained with three grades of showed that the classical Langmuir-Hinshelwood model cannot reproduce all

  14. Study of the thermal drop at the uranium-can interface for fuel elements in gas-graphite reactors; Etude de la chute thermique au contact uranium-gaine pour des elements combustibles de reacteur de la filiere graphite-gaz

    Energy Technology Data Exchange (ETDEWEB)

    Faussat, A. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires; Levenes, G.; Michel, M. [Societe Industrielle de Combustible Nucleaire (France)

    1964-07-01

    The report reviews the tests now under way at the CEA, for determining the thermal contact resistance at the uranium-can interface for fuel elements used in gas-graphite type reactors. These are laboratory tests carried out with equipment based on the principle of a heat flow across a stack of test pieces having planar contact surfaces. The following points emerge from this work: - for a metallic uranium element canned in magnesium, of the type G-2 or EDF-2, a value of 0.2 deg C/W/cm{sup 2} seems reasonable for can temperatures of 400 deg C and above. - this value is independent of the micro-geometric state of the uranium surface in a range of roughness which easily includes those observed on tubes and rods produced industrially. - for the internal cans of elements cooled internally and externally, the value of the contact resistance for temperatures of under 400 deg C as a function of the stresses in the can has not yet been measured exactly. (authors) [French] Le rapport fait le point des essais actuellement en cours au CEA pour determiner la resistance thermique de contact uranium-gaine pour des reacteurs de la filiere graphite-gaz. Ces essais sont effectues en laboratoire sur des appareils bases sur le principe d'une circulation de flux de chaleur a travers un empilement d'eprouvettes dont les faces en contact sont planes. De l'etude, il ressort essentiellement que: - pour un element a uranium metallique et gaine de magnesium type G-2 ou EdF-2, on peut admettre la valeur de 0,2 deg C/W/cm{sup 2} pour des temperatures de gaines de 400 deg C et plus. - cette valeur ne depend pas de l'etat de surface microgeometrique de l'uranium pour un domaine de rugosites couvrant largement celles que l'on observe sur des tubes et barreaux fabriques en serie. - pour les gaines internes d'elements a refroidissement interne et externe la valeur de la resistance de contact reste a preciser pour les temperatures inferieures a 400 deg C, en

  15. Ion irradiation to simulate neutron irradiation in model graphites: Consequences for nuclear graphite

    Science.gov (United States)

    Galy, N.; Toulhoat, N.; Moncoffre, N.; Pipon, Y.; Bérerd, N.; Ammar, M. R.; Simon, P.; Deldicque, D.; Sainsot, P.

    2017-10-01

    Due to its excellent moderator and reflector qualities, graphite was used in CO2-cooled nuclear reactors such as UNGG (Uranium Naturel-Graphite-Gaz). Neutron irradiation of graphite resulted in the production of 14C which is a key issue radionuclide for the management of the irradiated graphite waste. In order to elucidate the impact of neutron irradiation on 14C behavior, we carried out a systematic investigation of irradiation and its synergistic effects with temperature in Highly Oriented Pyrolitic Graphite (HOPG) model graphite used to simulate the coke grains of nuclear graphite. We used 13C implantation in order to simulate 14C displaced from its original structural site through recoil. The collision of the impinging neutrons with the graphite matrix carbon atoms induces mainly ballistic damage. However, a part of the recoil carbon atom energy is also transferred to the graphite lattice through electronic excitation. The effects of the different irradiation regimes in synergy with temperature were simulated using ion irradiation by varying Sn(nuclear)/Se(electronic) stopping power. Thus, the samples were irradiated with different ions of different energies. The structure modifications were followed by High Resolution Transmission Electron Microscopy (HRTEM) and Raman microspectrometry. The results show that temperature generally counteracts the disordering effects of irradiation but the achieved reordering level strongly depends on the initial structural state of the graphite matrix. Thus, extrapolating to reactor conditions, for an initially highly disordered structure, irradiation at reactor temperatures (200 - 500 °C) should induce almost no change of the initial structure. On the contrary, when the structure is initially less disordered, there should be a "zoning" of the reordering: In "cold" high flux irradiated zones where the ballistic damage is important, the structure should be poorly reordered; In "hot" low flux irradiated zones where the ballistic

  16. Thermal Properties of G-348 Graphite

    Energy Technology Data Exchange (ETDEWEB)

    McEligot, Donald M. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Swank, W. David [Idaho National Lab. (INL), Idaho Falls, ID (United States); Cottle, David L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Valentin, Francisco I. [City Univ. (CUNY), NY (United States)

    2017-04-01

    Fundamental measurements have been obtained in the INL Graphite Characterization Laboratory to deduce the temperature dependence of thermal conductivity for G-348 isotropic graphite, which has been used by City College of New York in thermal experiments related to gas-cooled nuclear reactors. Measurements of thermal diffusivity, mass, volume and thermal expansion were converted to thermal conductivity in accordance with ASTM Standard Practice C781-08 (R-2014). Data are tabulated and a preliminary correlation for the thermal conductivity is presented as a function of temperature from laboratory temperature to 1000C.

  17. Thermal Properties of G-348 Graphite

    Energy Technology Data Exchange (ETDEWEB)

    McEligot, Donald [Idaho National Lab. (INL), Idaho Falls, ID (United States); Swank, W. David [Idaho National Lab. (INL), Idaho Falls, ID (United States); Cottle, David L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Valentin, Francisco I. [City College of New York, NY (United States)

    2016-05-01

    Fundamental measurements have been obtained in the INL Graphite Characterization Laboratory to deduce the temperature dependence of thermal conductivity for G-348 isotropic graphite, which has been used by City College of New York in thermal experiments related to gas-cooled nuclear reactors. Measurements of thermal diffusivity, mass, volume and thermal expansion were converted to thermal conductivity in accordance with ASTM Standard Practice C781-08. Data are tabulated and a preliminary correlation for the thermal conductivity is presented as a function of temperature from laboratory temperature to 1000C.

  18. Irradiation creep performance of graphite relevant for pebble bed HTRs

    International Nuclear Information System (INIS)

    Kleist, G.; O'Connor, M.F.

    1980-01-01

    Irradiation - induced creep in the core reflector component graphite of high temperature reactors is of primary importance to the core designer since it provides a mechanism for the relief of internal stresses arising from differential Wigner shrinkage and thermal expansion. The experimental determination of the extent of this creep for conditions relevant to the reactor is thus imperative

  19. Characterization of graphite dust produced by pneumatic lift

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Ke [Guangdong Provincial Key Laboratory of Thermal Management Engineering and Materials, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, Guangdong (China); Peng, Wei; Liu, Bing [Institute of Nuclear and New Energy Technology of Tsinghua University, Advanced Nuclear Energy Technology Cooperation Innovation Center, The Key Laboratory of Advanced Nuclear Engineering and Safety, Ministry of Education, Beijing 100084 (China); Kang, Feiyu [Guangdong Provincial Key Laboratory of Thermal Management Engineering and Materials, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, Guangdong (China); Yang, Xiaoyong; Li, Weihua [Institute of Nuclear and New Energy Technology of Tsinghua University, Advanced Nuclear Energy Technology Cooperation Innovation Center, The Key Laboratory of Advanced Nuclear Engineering and Safety, Ministry of Education, Beijing 100084 (China); Yu, Suyuan, E-mail: suyuan@tsinghua.edu.cn [Center for Combustion Energy, The Key Laboratory for Thermal Science and Power Engineering, Ministry of Educations, Tsinghua University, Beijing 100084 (China)

    2016-08-15

    Highlights: • Generation of graphite dust by pneumatic lift. • Determination of morphology and particle size distribution of graphite dust. • The size of graphite dust in this study is compared to AVR and THTR-300 results. • Graphite dust originates from both filler and binder of the matrix graphite. - Abstract: Graphite dust is an important safety concern of high-temperature gas-cooled reactor (HTR). The graphite dust could adsorb fission products, and the radioactive dust is transported by the coolant gas and deposited on the surface of the primary loop. The simulation of coagulation, aggregation, deposition, and resuspension behavior of graphite dust requires parameters such as particle size distribution and particle shape, but currently very limited data on graphite dust is available. The only data we have are from AVR and THTR-300, however, the AVR result is likely to be prejudiced by the oil ingress. In pebble-bed HTR, graphite dust is generally produced by mechanical abrasion, in particular, by the abrasion of graphite pebbles in the lifting pipe of the fuel handling system. Here we demonstrate the generation and characterization of graphite dust that were produced by pneumatic lift. This graphite dust could substitute the real dust in HTR for characterization. The dust, exhibiting a lamellar morphology, showed a number-weighted average particle size of 2.38 μm and a volume-weighted average size of 14.62 μm. These two sizes were larger than the AVR and THTR results. The discrepancy is possibly due to the irradiation effect and prejudice caused by the oil ingress accident. It is also confirmed by the Raman spectrum that both the filler particle and binder contribute to the dust generation.

  20. Modelling deformation and fracture of Gilsocarbon graphite subject to service environments

    Science.gov (United States)

    Šavija, Branko; Smith, Gillian E.; Heard, Peter J.; Sarakinou, Eleni; Darnbrough, James E.; Hallam, Keith R.; Schlangen, Erik; Flewitt, Peter E. J.

    2018-02-01

    Commercial graphites are used for a wide range of applications. For example, Gilsocarbon graphite is used within the reactor core of advanced gas-cooled reactors (AGRs, UK) as a moderator. In service, the mechanical properties of the graphite are changed as a result of neutron irradiation induced defects and porosity arising from radiolytic oxidation. In this paper, we discuss measurements undertaken of mechanical properties at the micro-length-scale for virgin and irradiated graphite. These data provide the necessary inputs to an experimentally-informed model that predicts the deformation and fracture properties of Gilsocarbon graphite at the centimetre length-scale, which is commensurate with laboratory test specimen data. The model predictions provide an improved understanding of how the mechanical properties and fracture characteristics of this type of graphite change as a result of exposure to the reactor service environment.

  1. Bottom reflector for power reactors

    International Nuclear Information System (INIS)

    Elter, C.; Kissel, K.F.; Schoening, J.; Schwiers, H.G.

    1982-01-01

    In pebble bed reactors erosion and damage due fuel elements movement on the surface of the bottom reflector should be minimized. This can be achieved by chamfering and/or rounding the cover edges of the graphite blocks and the edges between the drilled holes and the surface of the graphite block. (orig.) [de

  2. Development of integrated waste management options for irradiated graphite

    Directory of Open Access Journals (Sweden)

    Alan Wareing

    2017-08-01

    Full Text Available The European Treatment and Disposal of Irradiated Graphite and other Carbonaceous Waste project sought to develop best practices in the retrieval, treatment, and disposal of irradiated graphite including other irradiated carbonaceous waste such as structural material made of graphite, nongraphitized carbon bricks, and fuel coatings. Emphasis was given on legacy irradiated graphite, as this represents a significant inventory in respective national waste management programs. This paper provides an overview of the characteristics of graphite irradiated during its use, primarily as a moderator material, within nuclear reactors. It describes the potential techniques applicable to the retrieval, treatment, recycling/reuse, and disposal of these graphite wastes. Considering the lifecycle of nuclear graphite, from manufacture to final disposal, a number of waste management options have been developed. These options consider the techniques and technologies required to address each stage of the lifecycle, such as segregation, treatment, recycle, and ultimate disposal in a radioactive waste repository, providing a toolbox to aid operators and regulators to determine the most appropriate management strategy. It is noted that national waste management programs currently have, or are in the process of developing, respective approaches to irradiated graphite management. The output of the Treatment and Disposal of Irradiated Graphite and other Carbonaceous Waste project is intended to aid these considerations, rather than dictate them.

  3. Development of integrated waste management options for irradiated graphite

    Energy Technology Data Exchange (ETDEWEB)

    Wareing, Alan; Abrahamsen-Mills, Liam; Fowler, Linda; Jarvis, Richard; Banford, Anthony William [National Nuclear Laboratory, Warrington (United Kingdom); Grave, Michael [Doosan Babcock, Gateshead (United Kingdom); Metcalfe, Martin [National Nuclear Laboratory, Gloucestershire (United Kingdom); Norris, Simon [Radioactive Waste Management Limited, Oxon (United Kingdom)

    2017-08-15

    The European Treatment and Disposal of Irradiated Graphite and other Carbonaceous Waste project sought to develop best practices in the retrieval, treatment, and disposal of irradiated graphite including other irradiated carbonaceous waste such as structural material made of graphite, nongraphitized carbon bricks, and fuel coatings. Emphasis was given on legacy irradiated graphite, as this represents a significant inventory in respective national waste management programs. This paper provides an overview of the characteristics of graphite irradiated during its use, primarily as a moderator material, within nuclear reactors. It describes the potential techniques applicable to the retrieval, treatment, recycling/reuse, and disposal of these graphite wastes. Considering the lifecycle of nuclear graphite, from manufacture to final disposal, a number of waste management options have been developed. These options consider the techniques and technologies required to address each stage of the lifecycle, such as segregation, treatment, recycle, and ultimate disposal in a radioactive waste repository, providing a toolbox to aid operators and regulators to determine the most appropriate management strategy. It is noted that national waste management programs currently have, or are in the process of developing, respective approaches to irradiated graphite management. The output of the Treatment and Disposal of Irradiated Graphite and other Carbonaceous Waste project is intended to aid these considerations, rather than dictate them.

  4. Glassy carbon coated graphite for nuclear applications

    International Nuclear Information System (INIS)

    Delpeux S; Cacciaguerra T; Duclaux L

    2005-01-01

    Taking into account the problems caused by the treatment of nuclear wastes, the molten salts breeder reactors are expected to a great development. They use a molten fluorinated salt (mixture of LiF, BeF 2 , ThF 4 , and UF 4 ) as fuel and coolant. The reactor core, made of graphite, is used as a neutrons moderator. Despite of its compatibility with nuclear environment, it appears crucial to improve the stability and inertness of graphite against the diffusion of chemicals species leading to its corrosion. One way is to cover the graphite surface by a protective impermeable deposit made of glassy carbon obtained by the pyrolysis of phenolic resin or polyvinyl chloride precursors. The main difficulty in the synthesis of glassy carbon is to create exclusively, in the primary pyrolysis product, a micro-porosity of about twenty Angstroms which closes later at higher temperature. Therefore, the evacuation of the volatile products occurring mainly between 330 and 600 C, must progress slowly to avoid the material to crack. In this study, the optimal parameters for the synthesis of glassy carbon as well as glassy carbon deposits on nuclear-type graphite pieces are discussed. Both thermal treatment of phenolic and PVC resins have been performed. The structure and micro-texture of glassy carbon have been investigated by X-ray diffraction, scanning and transmission electron microscopies and helium pycno-metry. Glassy carbon samples (obtained at 1200 C) show densities ranging from 1.3 to 1.55 g/cm 3 and closed pores with nano-metric size (∼ 5 to 10 nm) appear clearly on the TEM micrographs. Then, a thermal treatment to 2700 C leads to the shrinkage of the entangled graphene ribbons, in good agreement with the proposed texture model for glassy carbon. Glassy carbon deposits on nuclear graphite have been developed by an impregnation method. The uniformity of the deposit depends clearly on the surface texture and the chemistry of the graphite substrate. The deposit regions where

  5. A systematic study of acoustic emission from nuclear graphites

    International Nuclear Information System (INIS)

    Neighbour, G.B.; McEnaney, B.

    1996-01-01

    Acoustic emission (AE) monitoring has been identified as a possible method to determine internal stresses in nuclear graphites using the Kaiser effect, i.e., on stressing a graphite that has been subject to a prior stress, the onset of AE occurs at the previous peak stress. For three nuclear graphites (PGA, IM1-24 and VNEC), AE was monitored during both monotonic and cyclic loading to failure in tensile, compressive and flexural test modes. For unirradiated graphites, the Kaiser effect was not found in cyclic loading, but a Felicity effect was observed, i.e., the onset of AE occurred below the previously applied peak stress. The Felicity effect was attributed to time-dependent relaxation and recovery processes and was characterized using a new parameter, the Recovery ratio. It was shown that AE can be used to monitor creep strain and creep recovery in graphites at zero load. The AE-time responses from these experiments were fitted to equations similar to those used for creep strain-time at elevated temperatures. The number of AE counts from irradiated graphites were greater than those from unirradiated graphites, subject to similar stresses, due to increases in porosity caused by radiolytic oxidation. A Felicity effect was also observed on cyclic loading of irradiated graphites, but no evidence for a Kaiser effect was found for irradiated graphites loaded monotonically to failure. Thus internal stresses in irradiated graphites could not be measured using AE. This was attributed to relaxation and recovery processes that occur between removing the irradiated graphite from the reactor and AE testing. This work indicated that AE monitoring is not a suitable technique for measuring internal stresses in irradiated graphite. (author). 19 refs, 6 figs, 6 tabs

  6. Fort St. Vrain graphite site mechanical separation concept selection

    International Nuclear Information System (INIS)

    Berry, S.M.

    1993-09-01

    One of the alternatives to the disposal of the Fort St. Vrain (FSV) reactor spent nuclear fuel involves the separation of the fuel rods composed of compacts from the graphite fuel block assembly. After the separation of these two components, the empty graphite fuel blocks would be disposed of as a low level waste (provided the appropriate requirements are met) and the fuel compacts would be treated as high level waste material. This report deals with the mechanical separation aspects concerning physical disassembly of the FSV graphite fuel element into the empty graphite fuel blocks and fuel compacts. This report recommends that a drilling technique is the preferred choice for accessing the, fuel channel holes and that each hole is drilled separately. This report does not cover any techniques or methods to separate the triso fuel particles from the graphite matrix of the fuel compacts

  7. Quarterly coal report

    Energy Technology Data Exchange (ETDEWEB)

    Young, P.

    1996-05-01

    The Quarterly Coal Report (QCR) provides comprehensive information about U.S. coal production, distribution, exports, imports, receipts, prices, consumption, and stocks to a wide audience, including Congress, Federal and State agencies, the coal industry, and the general public. Coke production, consumption, distribution, imports, and exports data are also provided. The data presented in the QCR are collected and published by the Energy Information Administration (EIA) to fulfill data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275), as amended. This report presents detailed quarterly data for October through December 1995 and aggregated quarterly historical data for 1987 through the third quarter of 1995. Appendix A displays, from 1987 on, detailed quarterly historical coal imports data, as specified in Section 202 of the Energy Policy and Conservation Amendments Act of 1985 (Public Law 99-58). Appendix B gives selected quarterly tables converted to metric tons.

  8. From Core to Capture: Graphite Management by Gasification and Carbon Capture & Storage (CCS)

    International Nuclear Information System (INIS)

    Goodwin, J.; Bradbury, D.; Black, S.; Tomlinson, T.; Livesey, B.; Robinson, J.; Lindberg, M.; Newton, C.; Jones, A.; Wickham, A.

    2016-01-01

    Radioactive graphite waste arises principally from the moderators of graphite/gas-cooled reactors at the end of life of the reactors. Commercial power producing reactors (for example, Magnox, AGR and RBMK) have graphite moderators, each containing several thousand tonnes of graphite, with the UK having the largest inventory of over 90,000 tonnes. Additionally, there are smaller quantities of graphite arising from other sources such as fuel element components. The current long term strategy for management of reactor graphite in the UK is for these wastes to be conditioned for disposal followed by transfer to a geological disposal facility (GDF). With this baseline position, these wastes will account for about 30% of the ILW inventory in a GDF. As the volume of the graphite waste is so large, it is not currently economic to retrieve and process the graphite in advance of the availability of a geological disposal facility. Recent work by the NDA has ascribed a much smaller “incremental” volume of 2% due to graphite, calculated on the basis that the GDF has to be a certain size anyway in order to dissipate the decay heat from high level waste

  9. Role of nuclear grade graphite in controlling oxidation in modular HTGRs

    Energy Technology Data Exchange (ETDEWEB)

    Windes, Willaim [Idaho National Lab. (INL), Idaho Falls, ID (United States); Strydom, G. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kane, J. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Smith, R. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-11-01

    The passively safe High Temperature Gas-cooled Reactor (HTGR) design is one of the primary concepts considered for Generation IV and Small Modular Reactor (SMR) programs. The helium cooled, nuclear grade graphite moderated core achieves extremely high operating temperatures allowing either industrial process heat or electricity generation at high efficiencies. In addition to their neutron moderating properties, nuclear grade graphite core components provide excellent high temperature stability, thermal conductivity, and chemical compatibility with the high temperature nuclear fuel form. Graphite has been continuously used in nuclear reactors since the 1940’s and has performed remarkably well over a wide range of core environments and operating conditions. Graphite moderated, gas-cooled reactor designs have been safely used for research and power production purposes in multiple countries since the inception of nuclear energy development. However, graphite is a carbonaceous material, and this has generated a persistent concern that the graphite components could actually burn during either normal or accident conditions [ , ]. The common assumption is that graphite, since it is ostensibly similar to charcoal and coal, will burn in a similar manner. While charcoal and coal may have the appearance of graphite, the internal microstructure and impurities within these carbonaceous materials are very different. Volatile species and trapped moisture provide a source of oxygen within coal and charcoal allowing them to burn. The fabrication process used to produce nuclear grade graphite eliminates these oxidation enhancing impurities, creating a dense, highly ordered form of carbon possessing high thermal diffusivity and strongly (covalently) bonded atoms.

  10. Method for producing dustless graphite spheres from waste graphite fines

    Science.gov (United States)

    Pappano, Peter J [Oak Ridge, TN; Rogers, Michael R [Clinton, TN

    2012-05-08

    A method for producing graphite spheres from graphite fines by charging a quantity of spherical media into a rotatable cylindrical overcoater, charging a quantity of graphite fines into the overcoater thereby forming a first mixture of spherical media and graphite fines, rotating the overcoater at a speed such that the first mixture climbs the wall of the overcoater before rolling back down to the bottom thereby forming a second mixture of spherical media, graphite fines, and graphite spheres, removing the second mixture from the overcoater, sieving the second mixture to separate graphite spheres, charging the first mixture back into the overcoater, charging an additional quantity of graphite fines into the overcoater, adjusting processing parameters like overcoater dimensions, graphite fines charge, overcoater rotation speed, overcoater angle of rotation, and overcoater time of rotation, before repeating the steps until graphite fines are converted to graphite spheres.

  11. New insights into canted spiro carbon interstitial in graphite

    Science.gov (United States)

    EL-Barbary, A. A.

    2017-12-01

    The self-interstitial carbon is the key to radiation damage in graphite moderator nuclear reactor, so an understanding of its behavior is essential for plant safety and maximized reactor lifetime. The density functional theory is applied on four different graphite unit cells, starting from of 64 carbon atoms up to 256 carbon atoms, using AIMPRO code to obtain the energetic, athermal and mechanical properties of carbon interstitial in graphite. This study presents first principles calculations of the energy of formation that prove its high barrier to athermal diffusion (1.1 eV) and the consequent large critical shear stress (39 eV-50 eV) necessary to shear graphite planes in its presence. Also, for the first time, the gamma surface of graphite in two dimensions is calculated and found to yield the critical shear stress for perfect graphite. Finally, in contrast to the extensive literature describing the interstitial of carbon in graphite as spiro interstitial, in this work the ground state of interstitial carbon is found to be canted spiro interstitial.

  12. Air oxidation behavior of carbon and graphite materials for HTGR

    International Nuclear Information System (INIS)

    Kawakami, Haruo

    1986-01-01

    Most components in the core of high temperature gas-cooled reactors are made of carbon and graphite which are efficient neutron moderators, and have high strength at high temperature. The demerit of these materials in HTGR use is that these are readily oxidized by the impurity oxidants in helium coolant in the normal operating condition, and by air in the case of an air ingress accident. In order to examine the candidate materials for the experimental very high temperature gas-cooled reactor in Japan, the air oxidation experiment on some carbon and graphite was carried out. The materials tested were isotropic fine grain graphite (1G-11, 1G-110), anisotropic molded graphite (PGX, TS-1621), and anisotropic molded carbon (ASR-ORB, ASR-IRB, P3JHA-B). The uniform oxidation in the temperature range from 430 to 650 deg C and the non-uniform oxidation in the temperature range from 700 to 1000 deg C were tested. The oxidation of graphite by air was enhanced by the impurities in the graphite such as Co, Ni and V. The reaction rate of PGX graphite was nearly proportional to oxygen partial pressure. Below 650 deg C, the ratio of reaction products CO/CO 2 increased as temperature rose, but above 800 deg C, CO was oxidized to CO 2 . (Kako, I.)

  13. Survey of Dust Production in Pebble Bed Reactors Cores

    Energy Technology Data Exchange (ETDEWEB)

    Joshua J. Cogliati; Abderafi M. Ougouag; Javier Ortensi

    2011-06-01

    Graphite dust produced via mechanical wear from the pebbles in a pebble bed reactor is an area of concern for licensing. Both the German pebble bed reactors produced graphite dust that contained activated elements. These activation products constitute an additional source term of radiation and must be taken under consideration during the conduct of accident analysis of the design. This paper discusses the available literature on graphite dust production and measurements in pebble bed reactors. Limited data is available on the graphite dust produced from the AVR and THTR-300 pebble bed reactors. Experiments that have been performed on wear of graphite in pebble-bed-like conditions are reviewed. The calculation of contact forces, which are a key driving mechanism for dust in the reactor, are also included. In addition, prior graphite dust predictions are examined, and future areas of research are identified.

  14. A graphite nanoeraser

    DEFF Research Database (Denmark)

    Liu, Ze; Bøggild, Peter; Yang, Jia-rui

    2011-01-01

    We present here a method for cleaning intermediate-size (up to 50 nm) contamination from highly oriented pyrolytic graphite and graphene. Electron-beam-induced deposition of carbonaceous material on graphene and graphite surfaces inside a scanning electron microscope, which is difficult to remove...

  15. Graphite targets at LAMPF

    International Nuclear Information System (INIS)

    Brown, R.D.; Grisham, D.L.

    1983-01-01

    Rotating polycrystalline and stationary pyrolytic graphite target designs for the LAMPF experimental area are described. Examples of finite element calculations of temperatures and stresses are presented. Some results of a metallographic investigation of irradiated pyrolytic graphite target plates are included, together with a brief description of high temperature bearings for the rotating targets

  16. Electrochemical treatment of graphite

    International Nuclear Information System (INIS)

    Podlovilin, V.I.; Egorov, I.M.; Zhernovoj, A.I.

    1983-01-01

    In the course of investigating various modes of electroche-- mical treatment (ECT) it has been found that graphite anode treatment begins under the ''glow mode''. A behaviour of some marks of graphite with the purpose of ECT technique development in different electrolytes has been tested. Electrolytes have been chosen of three types: highly alkaline (pH 13-14), neutral (pH-Z) and highly acidic (pH 1-2). For the first time parallel to mechanical electroerosion treatment ECT graphite and carbon graphite materials previously considered chemically neutral is proposed. ECT of carbon graphite materials has a number of advantages as compared with electroerrosion and mechanical ones this is treatment rate and purity (ronghness) of the surface. A sMall quantity of sludge (6-8%) under ECT is in highly alkali electrolytes

  17. Oxidizability and explosibility of pure graphite powder

    International Nuclear Information System (INIS)

    L Rahmani; D Roubineau; S Cornet

    2005-01-01

    Full text of publication follows: While graphite is widely considered a heat-resistant material, e.g. able to screen metallic shielding from thermal damage, and graphite powder is used as a fire extinguisher agent where water or carbon dioxide should not, it still can react with air and - being carbon - give forth a significant amount of heat. Whether this makes it a hazard in operations such as dismantling nuclear reactors that contain hundreds of tons of graphite, including a small percentage of powder, is a question that has to be answered, considering that dismantling implies the use of such potential fire initiators as thermal cutters and electrical equipment. For this reason EDF commissioned the Centre National de Prevention et Protection (CNPP) to carry out explosibility tests on unirradiated, nuclear grade (i.e. with about 100 ppm of impurities) graphite powder. CNPP tests were so designed as to simulate realistic conditions that might result from a severe mishap during a dismantling operation, such as the crash of heavy equipment on graphite blocks coupled with the bruise of a high power electrical cable. EDF-CNPP tests complement others, done either in Italy most notably on irradiated graphite dust contaminated with various pollutants, or in the UK where the ability of settled graphite dust to propagate an initial gas explosion into an adjacent volume was assessed. EDF-CNPP tests comprise two steps. Step one was intended to produce a qualitative understanding of how nuclear grade graphite behaves while heated in air. In a first series of experiments graphite samples were heated up to 900 C during two and a half hours and their mass loss measured: it was found that while fine powder is wholly oxidised, coarser powder and chunks retained about two thirds of their initial mass. Oxidation kinetics, as assessed by oven temperature shoot-up, begins at 580 C and is quite low, compared with that of iron powder. In a second series of experiments a graphite piece

  18. Oxidizability and explosibility of pure graphite powder

    International Nuclear Information System (INIS)

    Rahmani, L.; Roubineau, D.; Cornet, S.

    2005-01-01

    Full text of publication follows: While graphite is widely considered a heat-resistant material, e.g. able to screen metallic shielding from thermal damage, and graphite powder is used as a fire extinguisher agent where water or carbon dioxide should not, it still can react with air and - being carbon - give forth a significant amount of heat. Whether this makes it a hazard in operations such as dismantling nuclear reactors that contain hundreds of tons of graphite, including a small percentage of powder, is a question that has to be answered, considering that dismantling implies the use of such potential fire initiators as thermal cutters and electrical equipment. For this reason EDF commissioned the Centre National de Prevention et Protection (CNPP) to carry out explosibility tests on unirradiated, nuclear grade (i.e. with about 100 ppm of impurities) graphite powder. CNPP tests were so designed as to simulate realistic conditions that might result from a severe mishap during a dismantling operation, such as the crash of heavy equipment on graphite blocks coupled with the bruise of a high power electrical cable. EDF-CNPP tests complement others, done either in Italy most notably on irradiated graphite dust contaminated with various pollutants, or in the UK where the ability of settled graphite dust to propagate an initial gas explosion into an adjacent volume was assessed. EDF-CNPP tests comprise two steps. Step one was intended to produce a qualitative understanding of how nuclear grade graphite behaves while heated in air. In a first series of experiments graphite samples were heated up to 900 C during two and a half hours and their mass loss measured: it was found that while fine powder is wholly oxidised, coarser powder and chunks retained about two thirds of their initial mass. Oxidation kinetics, as assessed by oven temperature shoot-up, begins at 580 C and is quite low, compared with that of iron powder. In a second series of experiments a graphite piece

  19. Studies of the role of molten materials in interactions with UO2 and graphite

    International Nuclear Information System (INIS)

    Fink, J.K.; Heiberger, J.J.; Leibowitz, L.

    1979-01-01

    Graphite, which is being considered as a lower reactor shield in gas-cooled fast reactors, would be contacted by core debris during a core disruptive accident. Information on the interaction of graphite, UO 2 , and stainless steel is needed in assessing the safety of the GCFR. In an ongoing study of the interaction of graphite, UO 2 , and stainless steel, the effects of the steel components have been investigated by electron microprobe scans, x-ray diffraction, and reaction-rate measurements. Experiments to study the role of the reaction product, FeUC 2 , in the interaction suggested that FeUC 2 promotes the interaction by acting as a carrier to bring graphite to the reaction site. Additional experiments using pyrolytic graphite show that while the reaction rate is decreased at 2400 K, at higher temperatures the rate is similar to that using other grades of graphite

  20. Measurements of anomalous neutron transport in bulk graphite

    International Nuclear Information System (INIS)

    Bowman, C.D.; Smith, G.A.; Vogelaar, B.; Howell, C.R.; Bilpuch, E.G.; Tornow, W.

    2003-01-01

    The neutron absorption of bulk granular graphite has been measured in a classical exponential diffusion experiment. Our first measurements of April 2002 implementing both exponential decay and pulsed die-away experiments and using the TUNL pulsed accelerator at Duke University as a neutron source indicated a capture cross section for graphite a striking factor of three lower than the measured value for carbon of 3.4 millibarns. Therefore a new exponential experiment with an improved geometry enabling greater accuracy has been performed giving an apparent cross section for carbon in the form of bulk granular graphite of less than 0.5 millibarns. This result confirms our first result and is also consistent with less than one part per million of boron in our graphite. The bulk density of the graphite is 1.02 compared with the actual particle density of 1.60 indicating a packing fraction of 0.64 or a void fraction of 0.36. We suspect that the apparent suppression of absorption in bulk graphite may be associated with the strong coherent diffraction of neutrons that dominates neutron transport in graphite. Coherent diffraction has never been taken into account in graphite reactor design and no neutron transport code including general use codes such as MCNP incorporate diffraction effects even though diffraction dominates many practical thermal neutron transport problems. (orig.)

  1. Irradiation creep of graphite

    International Nuclear Information System (INIS)

    Kennedy, C.R.

    1990-01-01

    Displacement damage of graphite by neutron irradiation causes graphite to change dimensions. This dimensional instability requires careful attention when graphite is used as as moderator and reflector material in nuclear devices. Natural gradients in flux and temperature result in time-varying differential growth generating stresses similar to thermal stresses with an ever increasing temperature gradient. Graphite, however, does have the ability to creep under irradiation, allowing the stress intensity to relax below the fracture strength of the material. Creep strain also serves to average the radiation-induced strains, thus contributing to the stability of the core. As the dimensional instability is a function of temperature, so are the creep characteristics of graphite, and it is of interest to generalize the available data for extension to more extreme conditions of fluence and temperature. Irradiation creep of graphite is characterized by two stages of creep; a primary stage that saturates with time and a secondary stage that is generally assumed to be linear and constant with time. Virtually all past studies have not considered primary creep in detail primarily because there is limited available data at the very low fluences required to saturate primary creep. It is the purpose of this study to carefully examine primary creep in detail over the irradiation temperature range of 150 to 1000 degree C. These studies also include the combined effects of creep, differential growth, and structural changes in graphite by irradiation. 3 refs., 5 figs

  2. Graphite Oxidation Simulation in HTR Accident Conditions

    Energy Technology Data Exchange (ETDEWEB)

    El-Genk, Mohamed

    2012-10-19

    Massive air and water ingress, following a pipe break or leak in steam-generator tubes, is a design-basis accident for high-temperature reactors (HTRs). Analysis of these accidents in both prismatic and pebble bed HTRs requires state-of-the-art capability for predictions of: 1) oxidation kinetics, 2) air helium gas mixture stratification and diffusion into the core following the depressurization, 3) transport of multi-species gas mixture, and 4) graphite corrosion. This project will develop a multi-dimensional, comprehensive oxidation kinetics model of graphite in HTRs, with diverse capabilities for handling different flow regimes. The chemical kinetics/multi-species transport model for graphite burning and oxidation will account for temperature-related changes in the properties of graphite, oxidants (O2, H2O, CO), reaction products (CO, CO2, H2, CH4) and other gases in the mixture (He and N2). The model will treat the oxidation and corrosion of graphite in geometries representative of HTR core component at temperatures of 900°C or higher. The developed chemical reaction kinetics model will be user-friendly for coupling to full core analysis codes such as MELCOR and RELAP, as well as computational fluid dynamics (CFD) codes such as CD-adapco. The research team will solve governing equations for the multi-dimensional flow and the chemical reactions and kinetics using Simulink, an extension of the MATLAB solver, and will validate and benchmark the model's predictions using reported experimental data. Researchers will develop an interface to couple the validated model to a commercially available CFD fluid flow and thermal-hydraulic model of the reactor , and will perform a simulation of a pipe break in a prismatic core HTR, with the potential for future application to a pebble-bed type HTR.

  3. Understanding Creep Mechanisms in Graphite with Experiments, Multiscale Simulations, and Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Eapen, Jacob [North Carolina State Univ., Raleigh, NC (United States); Murty, Korukonda [North Carolina State Univ., Raleigh, NC (United States); Burchell, Timothy [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2014-06-02

    Disordering mechanisms in graphite have a long history with conflicting viewpoints. Using Raman and x-ray photon spectroscopy, electron microscopy, x-ray diffraction experiments and atomistic modeling and simulations, the current project has developed a fundamental understanding of early-to-late state radiation damage mechanisms in nuclear reactor grade graphite (NBG-18 and PCEA). We show that the topological defects in graphite play an important role under neutron and ion irradiation.

  4. Application of a method for assessing probability of graphite core brick failure

    International Nuclear Information System (INIS)

    Judge, R.C.B.

    1996-01-01

    At the IAEA Specialist Meeting on the Status of Graphite Development for Gas Cooled Reactors, held in Japan 1991, the author presented a conceptual probabilistic approach to assessing graphite core brick integrity. This took account of variabilities in material properties and operational environment. The original concept has since been developed to the stage where it can be applied. This paper describes the implementation of the method to derive probabilities of failure for AGR graphite core bricks. (author). 2 refs, 4 figs, 1 tab

  5. Gas cooled reactor experience and programs in France

    International Nuclear Information System (INIS)

    Rastoin, J.; Brisbois, J.

    1978-01-01

    After discussing the state of development of natural uranium graphite-gas cooled reactors in France, the current program focused on electricity generating high temperature reactors and the future program based on heat generating applications are presented

  6. Operational safety and reactor life improvements of Kyoto University Reactor

    International Nuclear Information System (INIS)

    Utsuro, M.; Fujita, Y.; Nishihara, H.

    1990-01-01

    Recent important experience in improving the operational safety and life of a reactor are described. The Kyoto University Reactor (KUR) is a 25-year-old 5 MW light water reactor provided with two thermal columns of graphite and heavy water as well as other kinds of experimental facilities. In the graphite thermal column, noticeable amounts of neutron irradiation effects had accumulated in the graphite blocks near the core. Before the possible release of the stored energy, all the graphite blocks in the column were successfully replaced with new blocks using the opportunity provided by the installation of a liquid deuterium cold neutron source in the column. At the same time, special seal mechanisms were provided for essential improvements to the problem of radioactive argon production in the column. In the heavy-water thermal column we have accomplished the successful repair of a slow leak of heavy water through a thin instrumentation tube failure. The repair work included the removal and reconstructions of the lead and graphite shielding layers and welding of the instrumentation tube under radiation fields. Several mechanical components in the reactor cooling system were also exchanged for new components with improved designs and materials. On-line data logging of almost all instrumentation signals is continuously performed with a high speed data analysis system to diagnose operational conditions of the reactor. Furthermore, through detailed investigations on critical components, operational safety during further extended reactor life will be supported by well scheduled maintenance programs

  7. Recent developments in graphite

    International Nuclear Information System (INIS)

    Cunningham, J.E.

    1983-01-01

    Overall, the HTGR graphite situation is in excellent shape. In both of the critical requirements, fuel blocks and support structures, adequate graphites are at hand and improved grades are sufficiently far along in truncation. In the aerospace field, GraphNOL N3M permits vehicle performance with confidence in trajectories unobtainable with any other existing material. For fusion energy applications, no other graphite can simultaneously withstand both extreme thermal shock and neutron damage. Hence, the material promises to create new markets as well as to offer a better candidate material for existing applications

  8. Criticality Studies of Graphite Moderated Production Reactors

    Science.gov (United States)

    1980-01-01

    optimum fuel channel pitch has been determined, fuel burnup and iso- topic analyses were performed. Similar calculations were performed for several...absorbing impurities tend to cause the optimum lattice to decrease. Consequently, burnup calculations were not made at the higher lattice spacings; rather...the burnup calculations were made at the reference pitch and at the 20.3 cm pitch used in Calder Hall. 5.5 Plutonium Production The accumulation of

  9. Metal burning in graphite-moderated reactors

    International Nuclear Information System (INIS)

    Wichner, R.P.; Ball, S.J.; Daw, C.S.; Thomas, J.F.

    1997-01-01

    Pinto beans, sweet corn, and zucchini squash (Cucurbita pepo var. black beauty) were grown in a randomized complete-block field/pot experiment at a site that contained the highest observed levels of surface gross gamma radioactivity within Los Alamos Canyon (LAC) at Los Alamos National Laboratory. Soils as well as washed edible and nonedible crop tissues were analyzed for various radionuclides and heavy metals. Most radionuclides, with the exception of 3 H and tot U, in soil from LAC were detected in significantly higher concentrations (p -1 . This dose was below the International Commission on Radiological Protection permissible dose limit (PDL) of 100 mrem y -1 from all pathways; however, the addition of other internal and external exposure route factors may increase the overall dose over the PDL. Also, the risk of an excess cancer fatality, based on 74 mrem y -1 , was 3.7 x 10 -5 (37 in a million), which is above the Environmental Protection Agency's (acceptable) guideline of one in a million. 25 refs

  10. Thermogravimetric and Differential Scanning Calorimetric Behavior of Ball-Milled Nuclear Graphite

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eung Seon; Kim, Min Hwan; Kim, Yong Wan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Park, Yi Hyun; Cho, Seung Yon [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    An examination was made to characterize the oxidation behavior of ball-milled nuclear graphite powder through a TG-DSC analysis. With the ball milling time, the BET surface area increased with the reduction of particle size, but decreased with the chemisorptions of O{sub 2} on the activated surface. The enhancement of the oxidation after the ball milling is attributed to both increases in the specific surface area and atomic scale defects in the graphite structure. In a high temperature gas-cooled reactor, nuclear graphite has been widely used as fuel elements, moderator or reflector blocks, and core support structures owing to its excellent moderating power, mechanical properties and machinability. For the same reason, it will be used in a helium cooled ceramic reflector test blanket module for the ITER. Each submodule has a seven-layer breeding zone, including three neutron multiplier layers packed with beryllium pebbles, three lithium ceramic pebbles packed tritium breeder layers, and a reflector layer packed with 1 mm diameter graphite pebbles to reduce the volume of beryllium. The abrasion of graphite structures owing to relative motion or thermal cycle during operation may produce graphite dust. It is expected that graphite dust will be more oxidative than bulk graphite, and thus the oxidation behavior of graphite dust must be examined to analyze the safety of the reactors during an air ingress accident. In this study, the thermal stability of ball-milled graphite powder was investigated using a simultaneous thermogravimeter-differential scanning calorimeter.

  11. Moderator for nuclear reactor

    International Nuclear Information System (INIS)

    Milgram, M.S.; Dunn, J.T.; Hart, R.S.

    1995-01-01

    This invention relates to a moderator for a nuclear reactor and more specifically, to a composite moderator. A moderator is designed to slow down, or thermalize, neutrons which are released during nuclear reactions in the reactor fuel. Pure or almost pure materials like light water, heavy water, beryllium or graphite are used singly as moderators at present. All these materials, are used widely. Graphite has a good mechanical strength at high temperatures encountered in the nuclear core and therefore is used as both the moderator and core structural material. It also exhibits a low neutron-capture cross section and high neutron scattering cross section. However, graphite is susceptible to attach by carbon dioxide and/or oxygen where applicable, and releases stress energy under certain circumstances, although under normal operating conditions these reactions can be controlled. (author). 1 tab

  12. Porosity effects in the neutron total cross section of graphite

    International Nuclear Information System (INIS)

    Santisteban, J. R; Dawidowski, J; Petriw, S. N

    2009-01-01

    Graphite has been used in nuclear reactors since the birth of the nuclear industry due to its good performance as a neutron moderator material. Graphite is still an option as moderator for generation IV reactors due to its good mechanical and thermal properties at high operation temperatures. So, there has been renewed interest in a revision of the computer libraries used to describe the neutron cross section of graphite. For sub-thermal neutron energies, polycrystalline graphite shows a larger total cross section (between 4 and 8 barns) than predicted by existing theoretical models (0.2 barns). In order to investigate the origin of this discrepancy we measured the total cross section of graphite samples of three different origins, in the energy range from 0.001 eV to 10 eV. Different experimental arrangements and sample treatments were explored, to identify the effect of various experimental parameters on the total cross section measurement. The experiments showed that the increase in total cross section is due to neutrons scattered around the forward direction. We associate these small-angle scattered neutrons (SANS) to the porous structure of graphite, and formulate a very simple model to compute its contribution to the total cross section of the material. This results in an analytic expression that explicitly depends on the density and mean size of the pores, which can be easily incorporated in nuclear library codes. [es

  13. Carbon-14 Graphitization Chemistry

    Science.gov (United States)

    Miller, James; Collon, Philippe; Laverne, Jay

    2014-09-01

    Accelerator Mass Spectrometry (AMS) is a process that allows for the analysis of mass of certain materials. It is a powerful process because it results in the ability to separate rare isotopes with very low abundances from a large background, which was previously impossible. Another advantage of AMS is that it only requires very small amounts of material for measurements. An important application of this process is radiocarbon dating because the rare 14C isotopes can be separated from the stable 14N background that is 10 to 13 orders of magnitude larger, and only small amounts of the old and fragile organic samples are necessary for measurement. Our group focuses on this radiocarbon dating through AMS. When performing AMS, the sample needs to be loaded into a cathode at the back of an ion source in order to produce a beam from the material to be analyzed. For carbon samples, the material must first be converted into graphite in order to be loaded into the cathode. My role in the group is to convert the organic substances into graphite. In order to graphitize the samples, a sample is first combusted to form carbon dioxide gas and then purified and reduced into the graphite form. After a couple weeks of research and with the help of various Physics professors, I developed a plan and began to construct the setup necessary to perform the graphitization. Once the apparatus is fully completed, the carbon samples will be graphitized and loaded into the AMS machine for analysis.

  14. Melting temperature of graphite

    International Nuclear Information System (INIS)

    Korobenko, V.N.; Savvatimskiy, A.I.

    2001-01-01

    Full Text: Pulse of electrical current is used for fast heating (∼ 1 μs) of metal and graphite specimens placed in dielectric solid media. Specimen consists of two strips (90 μm in thick) placed together with small gap so they form a black body model. Quasy-monocrystal graphite specimens were used for uniform heating of graphite. Temperature measurements were fulfilled with fast pyrometer and with composite 2-strip black body model up to melting temperature. There were fulfilled experiments with zirconium and tungsten of the same black body construction. Additional temperature measurements of liquid zirconium and liquid tungsten are made. Specific heat capacity (c P ) of liquid zirconium and of liquid tungsten has a common feature in c P diminishing just after melting. It reveals c P diminishing after melting in both cases over the narrow temperature range up to usual values known from steady state measurements. Over the next wide temperature range heat capacity for W (up to 5000 K) and Zr (up to 4100 K) show different dependencies of heat capacity on temperature in liquid state. The experiments confirmed a high quality of 2-strip black body model used for graphite temperature measurements. Melting temperature plateau of tungsten (3690 K) was used for pyrometer calibration area for graphite temperature measurement. As a result, a preliminary value of graphite melting temperature of 4800 K was obtained. (author)

  15. GRAFEC: A New Spanish Program to Investigate Waste Management Options for Radioactive Graphite - 12399

    Energy Technology Data Exchange (ETDEWEB)

    Marquez, Eva; Pina, Gabriel; Rodriguez, Marina [CIEMAT, Av. Complutense, 22, 28040-MADRID (Spain); Fachinger, Johannes; Grosse, Karl-Heinz [Furnaces Nuclear Application Grenoble SAS (FNAG), 4, avenue Charles de Gaulle, 38800 Le Pont de Claix (France); Leganes Nieto, Jose Luis; Quiros Gracian, Maria [ENRESA, C/ Emilio Vargas,7 - 28043 - MADRID (Spain); Seemann, Richard [ALD Vacuum Technologies GmbH, Wilhelm-Rohn-Strasse 35, 63450 Hanau (Germany)

    2012-07-01

    Spain has to manage about 3700 tons of irradiated graphite from the reactor Vandellos I as radioactive waste. 2700 tons are the stack of the reactor and are still in the reactor core waiting for retrieval. The rest of the quantities, 1000 tons, are the graphite sleeves which have been already retrieved from the reactor. During operation the graphite sleeves were stored in a silo and during the dismantling stage a retrieval process was carried out separating the wires from the graphite, which were crushed and introduced into 220 cubic containers of 6 m{sup 3} each and placed in interim storage. The graphite is an intermediate level radioactive waste but it contains long lived radionuclides like {sup 14}C which disqualifies disposal at the low level waste repository of El Cabril. Therefore, a new project has been started in order to investigate two new options for the management of this waste type. The first one is based on a selective decontamination of {sup 14}C by thermal methods. This method is based on results obtained at the Research Centre Juelich (FZJ) in the Frame of the EC programs 'Raphael' and 'Carbowaste'. The process developed at FZJ is based on a preferential oxidation of {sup 14}C in comparison to the bulk {sup 12}C. Explanations for this effect are the inhomogeneous distribution and a weaker bounding of {sup 14}C which is not incorporated in the graphite lattice. However these investigations have only been performed with graphite from the high temperature reactor Arbeitsgemeinschaft Versuchsreaktor Juelich AVR which has been operated in a non-oxidising condition or research reactor graphite operated at room temperature. The reactor Vandellos I has been operated with CO{sub 2} as coolant and significant amounts of graphite have been already oxidised. The aim of the project is to validate whether a {sup 14}C decontamination can also been achieved with graphite from Vandellos I. A second possibility under investigation is the

  16. Gravity Effects on the Free Vibration of a Graphite Column

    International Nuclear Information System (INIS)

    Ki, Dong-Ok; Kim, Jong-Bum; Park, Keun-Bae; Lee, Won-Jae

    2006-01-01

    The gravity effects on the free vibration of a graphite column are studied. Graphite block is a key component of a HTGR (High Temperature Gas Cooled Reactor). The major core elements, such as the fuel blocks and neutron reflector blocks, of HTTR (High Temperature Test Reactor, Japan) and GT-MHR (Gas Turbine- Modular Helium Reactor, USA) consist of stacked hexagonal graphite blocks forming a group of columns. The vibration of the columns induced by earthquakes may lead to solid impacts between graphite blocks and structural integrity problems. The study of free vibration characteristics of the graphite block column is the first step in the core internal structure dynamic analysis. Gravity force bring a negative stiffness term to the transverse vibration analysis of heavy long column structures, and results in natural frequency reductions. Generally it is not considered in the not so tall structure cases, because the gravity term makes the analysis and design complicated. Therefore it is important to check whether the gravity effect is severe or not

  17. Impact-Contact Analysis of Prismatic Graphite Blocks Using Abaqus

    International Nuclear Information System (INIS)

    Kang, Ji Ho; Kim, Gyeong Ho; Choi, Woo Seok

    2010-12-01

    Graphite blocks are the important core components of the high temperature gas-cooled reactor. As these blocks are simply stacked in array, collisions among neighboring components may occur during earthquakes or accidents. The final objective of the research project is to develop a reliable seismic model of the stacked graphite blocks from which their behavior can be predicted and, thus, they are designed to have sufficient strength to maintain their structural integrity during the anticipated occurrences. The work summarized in this report is a first step toward the big picture and is dedicated to build a realistic impact-contact dynamics model of the graphite block using a commercial FEM package, Abaqus. The developed model will be further used to assist building a reliable lumped dynamics model of these stacked graphite components

  18. Characterization of nuclear graphite elastic properties using laser ultrasonic methods

    Science.gov (United States)

    Zeng, Fan W.; Han, Karen; Olasov, Lauren R.; Gallego, Nidia C.; Contescu, Cristian I.; Spicer, James B.

    2015-05-01

    Laser ultrasonic methods have been used to characterize the elastic behaviors of commercially-available and legacy nuclear graphites. Since ultrasonic techniques are sensitive to various aspects of graphite microstructure including preferred grain orientation, microcrack orientation and porosity, laser ultrasonics is a candidate technique for monitoring graphite degradation and structural integrity in environments expected in high-temperature, gas-cooled nuclear reactors. Aspects of materials texture can be assessed by studying ultrasonic wavespeeds as a function of propagation direction and polarization. Shear wave birefringence measurements, in particular, can be used to evaluate elastic anisotropy. In this work, laser ultrasonic measurements of graphite moduli have been made to provide insight into the relationship between the microstructures and the macroscopic stiffnesses of these materials. In particular, laser ultrasonic measurements have been made using laser line sources to produce shear waves with specific polarizations. By varying the line orientation relative to the sample, shear wave birefringence measurements have been recorded. Results from shear wave birefringence measurements show that an isostatically molded graphite, such as PCIB, behaves isotropically, while an extruded graphite, such as H-451, displays significant ultrasonic texture. Graphites have complicated microstructures that depend on the manufacturing processes used, and ultrasonic texture in these materials could originate from grain orientation and preferred microcrack alignment. Effects on material isotropy due to service related microstructural changes are possible and the ultimate aim of this work is to determine the degree to which these changes can be assessed nondestructively using laser ultrasonics measurements.

  19. Design Procedure of Graphite Components by ASME HTR Codes

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Ji-Ho; Jo, Chang Keun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    In this study, the ASME B and PV Code, Subsection HH, Subpart A, design procedure for graphite components of HTRs was reviewed and the differences from metal materials were remarked. The Korean VHTR has a prismatic core which is made of multiple graphite blocks, reflectors, and core supports. One of the design issues is the assessment of the structural integrity of the graphite components because the graphite is brittle and shows quite different behaviors from metals in high temperature environment. The American Society of Mechanical Engineers (ASME) issued the latest edition of the code for the high temperature reactors (HTR) in 2015. In this study, the ASME B and PV Code, Subsection HH, Subpart A, Graphite Materials was reviewed and the special features were remarked. Due the brittleness of graphites, the damage-tolerant design procedures different from the conventional metals were adopted based on semi-probabilistic approaches. The unique additional classification, SRC, is allotted to the graphite components and the full 3-D FEM or equivalent stress analysis method is required. In specific conditions, the oxidation and viscoelasticity analysis of material are required. The fatigue damage rule has not been established yet.

  20. Aircraft Nuclear Propulsion Project Quarterly Progress Report for Period Ending December 31, 1956

    Energy Technology Data Exchange (ETDEWEB)

    NA, NA [ORNL

    1957-03-12

    This quarterly progress report of the Aircraft Nuclear Propulsion Project at ORNL records the technical progress of research on circulating-fuel reactors and other ANP research at the Laboratory. The report is divided into five major parts: 1) Aircraft Reactor Engineering, 2) Chemistry, and 3) Metallurgy, 4) Heat Transfer and Physical Properties, Radiation Damage, and Fuel Recovery and Reprocessing, and 5) Reactor Shielding.

  1. Topological investigation of nuclear graphite using small angle scattering

    Science.gov (United States)

    Rai, Durgesh K.; Khaykovich, Boris; Campbell, Anne A.; Ilvasky, Jan; Katoh, Yutai; Snead, Lance L.

    Nuclear power reactors require high performance materials that withstand high temperatures and neutron damage over long period of times. Graphite is widely used for high temperature fission reactor applications. It has a complex multiphase microstructure, which is affected by neutron irradiation. The irradiation-induced microstructures result in significant thermophysical property changes, affecting service lifetimes. It is important to understand these life-limiting phenomena at many different length scales. We present the results from small angle scattering (SAS) studies on graphite samples, which vary in doses and irradiation temperatures. The neutron and synchrotron SAS measurement data indicates that the graphite morphology consists of surface fractal structures. The samples were found to be uniform across several decades of length scale, while exhibiting different surface fractal dimensions, for different irradiation doses and temperature conditions. The surface fractal dimension changes at HFIR at ORNL, DOE User Facility; APS at ANL, DOE User Facility; Office of Nuclear Energy NSUF.

  2. Critical experiments on enriched uranium graphite moderated cores

    International Nuclear Information System (INIS)

    Kaneko, Yoshihiko; Akino, Fujiyoshi; Kitadate, Kenji; Kurokawa, Ryosuke

    1978-07-01

    A variety of 20 % enriched uranium loaded and graphite-moderated cores consisting of the different lattice cells in a wide range of the carbon to uranium atomic ratio have been built at Semi-Homogeneous Critical Experimental Assembly (SHE) to perform the critical experiments systematically. In the present report, the experimental results for homogeneously or heterogeneously fuel loaded cores and for simulation core of the experimental reactor for a multi-purpose high temperature reactor are filed so as to be utilized for evaluating the accuracy of core design calculation for the experimental reactor. The filed experimental data are composed of critical masses of uranium, kinetic parameters, reactivity worths of the experimental control rods and power distributions in the cores with those rods. Theoretical analyses are made for the experimental data by adopting a simple ''homogenized cylindrical core model'' using the nuclear data of ENDF/B-III, which treats the neutron behaviour after smearing the lattice cell structure. It is made clear from a comparison between the measurement and the calculation that the group constants and fundamental methods of calculations, based on this theoretical model, are valid for the homogeneously fuel loaded cores, but not for both of the heterogeneously fuel loaded cores and the core for simulation of the experimental reactor. Then, it is pointed out that consideration to semi-homogeneous property of the lattice cells for reactor neutrons is essential for high temperature graphite-moderated reactors using dispersion fuel elements of graphite and uranium. (author)

  3. Operation of Finnish nuclear power plants. Quarterly report, 1st quarter 1996

    International Nuclear Information System (INIS)

    Sillanpaeae, T.

    1996-09-01

    Quarterly Reports on the operation of Finnish nuclear power plants describe events and observations relating to nuclear and radiation safety which the Finnish Centre for Radiation and Nuclear Safety (STUK) considers safety significant. Safety improvements at the plants are also described. The report also includes a summary of the radiation safety of plant personnel and of the environment and tabulated data on the plants' production and load factors. In the first quarter of 1996, the Finnish nuclear power plant units were in power operation except for a brief break in production due to a reactor scram at TVO II. The load factor average of all plant units was 100.5 %. Events in the first quarter of 1996 were classified level 0 on the International Nuclear Event Scale (INES)

  4. Understanding the reaction of nuclear graphite with molecular oxygen: Kinetics, transport, and structural evolution

    Science.gov (United States)

    Kane, Joshua J.; Contescu, Cristian I.; Smith, Rebecca E.; Strydom, Gerhard; Windes, William E.

    2017-09-01

    For the next generation of nuclear reactors, HTGRs specifically, an unlikely air ingress warrants inclusion in the license applications of many international regulators. Much research on oxidation rates of various graphite grades under a number of conditions has been undertaken to address such an event. However, consequences to the reactor result from the microstructural changes to the graphite rather than directly from oxidation. The microstructure is inherent to a graphite's properties and ultimately degradation to the graphite's performance must be determined to establish the safety of reactor design. To understand the oxidation induced microstructural change and its corresponding impact on performance, a thorough understanding of the reaction system is needed. This article provides a thorough review of the graphite-molecular oxygen reaction in terms of kinetics, mass and energy transport, and structural evolution: all three play a significant role in the observed rate of graphite oxidation. These provide the foundations of a microstructurally informed model for the graphite-molecular oxygen reaction system, a model kinetically independent of graphite grade, and capable of describing both the observed and local oxidation rates under a wide range of conditions applicable to air-ingress.

  5. Cesium diffusion in graphite

    International Nuclear Information System (INIS)

    Evans, R.B. III; Davis, W. Jr.; Sutton, A.L. Jr.

    1980-05-01

    Experiments on diffusion of 137 Cs in five types of graphite were performed. The document provides a completion of the report that was started and includes a presentation of all of the diffusion data, previously unpublished. Except for data on mass transfer of 137 Cs in the Hawker-Siddeley graphite, analyses of experimental results were initiated but not completed. The mass transfer process of cesium in HS-1-1 graphite at 600 to 1000 0 C in a helium atmosphere is essentially pure diffusion wherein values of (E/epsilon) and ΔE of the equation D/epsilon = (D/epsilon) 0 exp [-ΔE/RT] are about 4 x 10 -2 cm 2 /s and 30 kcal/mole, respectively

  6. Kinetics of Chronic Oxidation of NBG-17 Nuclear Graphite by Water Vapor

    Energy Technology Data Exchange (ETDEWEB)

    Contescu, Cristian I [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Burchell, Timothy D [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mee, Robert [Univ. of Tennessee, Knoxville, TN (United States)

    2015-05-01

    This report presents the results of kinetic measurements during accelerated oxidation tests of NBG-17 nuclear graphite by low concentration of water vapor and hydrogen in ultra-high purity helium. The objective is to determine the parameters in the Langmuir-Hinshelwood (L-H) equation describing the oxidation kinetics of nuclear graphite in the helium coolant of high temperature gas-cooled reactors (HTGR). Although the helium coolant chemistry is strictly controlled during normal operating conditions, trace amounts of moisture (predictably < 0.2 ppm) cannot be avoided. Prolonged exposure of graphite components to water vapor at high temperature will cause very slow (chronic) oxidation over the lifetime of graphite components. This behavior must be understood and predicted for the design and safe operation of gas-cooled nuclear reactors. The results reported here show that, in general, oxidation by water of graphite NBG-17 obeys the L-H mechanism, previously documented for other graphite grades. However, the characteristic kinetic parameters that best describe oxidation rates measured for graphite NBG-17 are different than those reported previously for grades H-451 (General Atomics, 1978) and PCEA (ORNL, 2013). In some specific conditions, certain deviations from the generally accepted L-H model were observed for graphite NBG-17. This graphite is manufactured in Germany by SGL Carbon Group and is a possible candidate for the fuel elements and reflector blocks of HTGR.

  7. Operation of Finnish nuclear power plants. Quarterly report, 2nd quarter 1997

    International Nuclear Information System (INIS)

    Tossavainen, K.

    1997-12-01

    Quarterly Reports on the operation of Finnish nuclear power plants describe events and observations relating to nuclear and radiation safety which STUK - Radiation and Nuclear Safety Authority considers safety significant. Safety improvements at the plants are also described. The Report also includes a summary of the radiation safety of plant personnel and of the environment and tabulated data on the plants' production and load factors. The Finnish nuclear power plant units were in power operation in the second quarter of 1997, except for the annual maintenance outages of Olkiluoto plant units and the Midsummer outage at Olkiluoto 2 due to reduced demand for electricity. There were also brief interruptions in power operation at the Olkiluoto plant units due to three reactor scrams. All plant units are undergoing long-term test operation at upgraded reactor power level which has been approved by STUK The load factor average of all plant units was 88.7 %. One event in the second quarter of 1997 was classified level 1 on the INES. The event in question was a scram at Olkiluoto 1 which was caused by erroneous opening of switches. Other events in this quarter were level 0. Occupational doses and radioactive releases off-site were below authorized limits. Radioactive substances were measurable in samples collected around the plants in such quantities only as have no bearing on the radiation exposure of the population. (orig.)

  8. Effects of Oxidation on Oxidation-Resistant Graphite

    Energy Technology Data Exchange (ETDEWEB)

    Windes, William [Idaho National Lab. (INL), Idaho Falls, ID (United States); Smith, Rebecca [Idaho National Lab. (INL), Idaho Falls, ID (United States); Carroll, Mark [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-05-01

    The Advanced Reactor Technology (ART) Graphite Research and Development Program is investigating doped nuclear graphite grades that exhibit oxidation resistance through the formation of protective oxides on the surface of the graphite material. In the unlikely event of an oxygen ingress accident, graphite components within the VHTR core region are anticipated to oxidize so long as the oxygen continues to enter the hot core region and the core temperatures remain above 400°C. For the most serious air-ingress accident which persists over several hours or days the continued oxidation can result in significant structural damage to the core. Reducing the oxidation rate of the graphite core material during any air-ingress accident would mitigate the structural effects and keep the core intact. Previous air oxidation testing of nuclear-grade graphite doped with varying levels of boron-carbide (B4C) at a nominal 739°C was conducted for a limited number of doped specimens demonstrating a dramatic reduction in oxidation rate for the boronated graphite grade. This report summarizes the conclusions from this small scoping study by determining the effects of oxidation on the mechanical strength resulting from oxidation of boronated and unboronated graphite to a 10% mass loss level. While the B4C additive did reduce mechanical strength loss during oxidation, adding B4C dopants to a level of 3.5% or more reduced the as-fabricated compressive strength nearly 50%. This effectively minimized any benefits realized from the protective film formed on the boronated grades. Future work to infuse different graphite grades with silicon- and boron-doped material as a post-machining conditioning step for nuclear components is discussed as a potential solution for these challenges in this report.

  9. High-temperature gas-cooled reactor technology development program. Annual progress report for period ending December 31, 1980

    International Nuclear Information System (INIS)

    1981-08-01

    Research activities are described concerning HTGR chemistry; fueled graphite development; prestressed concrete pressure vessel development; structural materials; HTGR graphite studies; HTR core evaluation; reactor physics; shielding; application and project assessments; and HTR Core Flow Test Loop studies

  10. High-temperature gas-cooled reactor technology development program. Annual progress report for period ending December 31, 1980

    Energy Technology Data Exchange (ETDEWEB)

    1981-08-01

    Research activities are described concerning HTGR chemistry; fueled graphite development; prestressed concrete pressure vessel development; structural materials; HTGR graphite studies; HTR core evaluation; reactor physics; shielding; application and project assessments; and HTR Core Flow Test Loop studies.

  11. Solid State Reactor Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Mays, G.T.

    2004-03-10

    The Solid State Reactor (SSR) is an advanced reactor concept designed to take advantage of Oak Ridge National Laboratory's (ORNL's) recently developed graphite foam that has enhanced heat transfer characteristics and excellent high-temperature mechanical properties, to provide an inherently safe, self-regulated, source of heat for power and other potential applications. This work was funded by the U.S. Department of Energy's Nuclear Energy Research Initiative (NERI) program (Project No. 99-064) from August 1999 through September 30, 2002. The initial concept of utilizing the graphite foam as a basis for developing an advanced reactor concept envisioned that a suite of reactor configurations and power levels could be developed for several different applications. The initial focus was looking at the reactor as a heat source that was scalable, independent of any heat removal/power conversion process. These applications might include conventional power generation, isotope production and destruction (actinides), and hydrogen production. Having conducted the initial research on the graphite foam and having performed the scoping parametric analyses from neutronics and thermal-hydraulic perspectives, it was necessary to focus on a particular application that would (1) demonstrate the viability of the overall concept and (2) require a reasonably structured design analysis process that would synthesize those important parameters that influence the concept the most as part of a feasible, working reactor system. Thus, the application targeted for this concept was supplying power for remote/harsh environments and a design that was easily deployable, simplistic from an operational standpoint, and utilized the new graphite foam. Specifically, a 500-kW(t) reactor concept was pursued that is naturally load following, inherently safe, optimized via neutronic studies to achieve near-zero reactivity change with burnup, and proliferation resistant. These four major areas

  12. On modes and kinetics of nuclear graphite oxidation in massive air or steam ingress

    International Nuclear Information System (INIS)

    El-Genk, M. S.; Tournier, J. M. P.

    2010-01-01

    A massive air or steam ingress in High and Very-High Temperature Reactors (HTRs and VHTRs) nominally operating at 600-950 deg. C is a design-basis accident requiring the development and validation of models for predicting the graphite oxidation and erosion and examining the potential of a fission products release and a loss in integrity of the graphite core and reflector blocks. Isotropic and porous nuclear graphite is of many types with similarities but also differences in microstructure; volume porosity, impurities; type and size of filler coke particles; graphitization; heat treatment temperature and thermal and physical properties. These as well as temperature affect the prevailing mode and kinetics of the graphite oxidation and burn-off rate. This paper reviews the fabrication procedures, characteristics, chemical kinetics and modes of oxidation of nuclear graphite for future model developments. (authors)

  13. Rules for design of nuclear graphite core components - some considerations and approaches

    International Nuclear Information System (INIS)

    Svalbonas, V.; Stilwell, T.C.; Zudans, Z.

    1977-01-01

    In the High Temperature Gas reactor (HTGR) core a large number of elements are constructed of nuclear graphite. This paper discusses the attendant difficulties, and presents some approaches, for ASME code safety-consistent design and analysis. The statistical scatter of material properties, which complicates even the definitions of allowable stress, as well as the brittle, anisotropic, inhomogeneous nature of the graphite was considered. It was found that analytic statistical methods used to arrive at a definition of minimum ultimate strength were totally unrealistic It was concluded on the basis of presently available evidence that the distinctions between secondary and primary stresses are inappropriate to graphite structures. The proposed overall design criteria and stress limits for graphite structure were reviewed. The use of the homologous stress concept is graphite fatigue calculations was reviewed. The overall design philosophy for brittle materials is applied to HTGR core structure design including such areas as graphite oxidation, component proof tests, experimental seismic modeling and fracture analysis. (Auth.)

  14. Investigation on Conversion of I-Graphite from Decommissioning of Chernobyl NPP into a Stable Waste Form Acceptable for Long Term Storage and Disposal

    International Nuclear Information System (INIS)

    Zlobenko, Borys; Fedorenko, Yriy; Yatzenko, Victor; Shabalin, Borys; Skripkin, Vadim

    2016-01-01

    For Ukraine, the main radiocarbon ( 14 C) source is irradiated graphite from Chernobyl Nuclear Power Plant. The ChNPP is a decommissioned nuclear power station about 14 km northwest of the city of Chernobyl, and 110 km north of Kyiv. The ChNPP had four RBMK reactor units. The commissioning of the first reactor in 1977 was followed by reactor No. 2 (1978), No. 3 (1981), and No.4 (1983). Reactors No.3 and 4 were second generation units, whereas Nos.1 and 2 were first-generation units. RBMK is an acronym for ''High Power Channel-type Reactor'' of a class of graphite-moderated nuclear power reactor with individual fuel channels that uses ordinary water as its coolant and graphite as its moderator. The combination of graphite moderator and water coolant is found in no other type of nuclear reactor

  15. Micro Raman Spectroscopy and Electron Probe Microanalysis of Graphite Spherulites and Flakes in Cast Iron

    Science.gov (United States)

    Pradhan, S. K.; Nayak, B. B.; Mohapatra, B. K.; Mishra, B. K.

    2007-10-01

    In this investigation, the evolution and formation of graphitized microstructure of cast iron has been studied by using micro Raman spectroscopy and electron probe microanalysis (EPMA). The samples were prepared by carbothermic reduction of iron ore powder by plasma smelting in an extended arc thermal plasma reactor. Magnesium was added in the ladle to spherodize the graphite. Elemental mapping of the sample across the spherulites and flakes was performed by EPMA. Raman scattering data were collected at different positions across graphite spherulites and flakes. Micro Raman analysis shows graphite peaks at 1350 cm-1 (D), 1580 cm-1 (G), and higher order graphite peaks for both spherulites and flakes. Additional peaks between 200 and 800 cm-1 are found to be present only in the case of spherulites. These extra peaks originate from cementite (Fe3C) present in and around the spherulites. It is inferred from the available experimental data that graphite spherulites are formed in areas richer in cementite.

  16. Graphite-based photovoltaic cells

    Science.gov (United States)

    Lagally, Max; Liu, Feng

    2010-12-28

    The present invention uses lithographically patterned graphite stacks as the basic building elements of an efficient and economical photovoltaic cell. The basic design of the graphite-based photovoltaic cells includes a plurality of spatially separated graphite stacks, each comprising a plurality of vertically stacked, semiconducting graphene sheets (carbon nanoribbons) bridging electrically conductive contacts.

  17. Assessments of the stresses and deformations in an RBMK graphite moderator brick

    International Nuclear Information System (INIS)

    Jones, C.J.; Davies, M.A.; Marsden, B.J.; Bougaenko, S.E.; Baldin, V.D.; Demintievski, V.N.; Rodtchenkov, B.S.; Sinitsyn, E.N.

    1996-01-01

    The RBMK reactors, designed by RDIPE (Moscow), are graphite moderated and cooled by light water. Graphite dimensions and thermo-mechanical properties change significantly in a complex manner during reactor life due to fast neutron damage and these changes have implications on the safe operation of all graphite moderated reactors. A joint programme of work is being carried out between AEA Technology (UK) and RDIPE (Russia) to assess the life of the RBMK graphite stack under normal operating conditions. The programme has included the modelling of graphite dimensional changes due to irradiation through reactor life and the assessment of the implications of these changes on the stresses and deformations in the graphite stack. Calculations have been carried out to assess the deformations of a moderator brick over a period from start of life up to 30 years of operation. The assessment have also included an analysis of the stresses in the bricks so that the time to brick failure could be determined. This paper describes the RBMK core design, the data and assessment methodology used in the analysis of the RBMK core and presents some results from analyses of the Leningrad Unit 1 RBMK reactor. (author). 2 refs, 8 figs

  18. On the Thermal Conductivity Change of Matrix Graphite Materials after Neutron Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young-Woo; Yeo, Seunghwan; Kim, Eung-Seon; Sah, Injin; Park, Daegyu; Kim, Youngjun; Cho, Moon Sung [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    In this work, the variations of the thermal conductivity of the A3-3 matrix graphite after neutron irradiation is discussed as well as of the IG-110 graphite for comparison. Neutron irradiation of the graphite specimens was carried out as a part of the first irradiation test of KAERI's coated particle fuel specimens by use of Hanaro research reactor. This work can be summarized as follows: 1) In the evaluation of the specific heat of the graphite materials, various literature data were used and the variations of the specific heat data of all the graphite specimens are observed well agreed, irrespectively of the difference in specimens (graphite and matrix graphite and irradiated and un-irradiated). 2) This implies that it should be reasonable that for both structural graphite and fuel matrix graphite, and even for the neuron-irradiated graphite, any of these specific heat data set be used in the calculation of the thermal conductivity. 3) For the irradiated A3-3 matrix graphite specimens, the thermal conductivity decreased on both directions. On the radial direction, the tendency of variation upon temperature is similar to that of unirradiated specimen, i.e., decreasing as the temperature increases. 4) In the German irradiation experiments with A3-27 matrix graphite specimens, the thermal conductivity of the un-irradiated specimen shows a decrease and that of irradiated specimen is nearly constant as the temperature increases. 5) The thermal conductivity of the irradiated IG-110 was considerably decreased compared with that of un-irradiated specimens The difference of the thermal conductivity of un-irradiated and irradiated IG-110 graphite specimens is much larger than that of un-irradiated and irradiated A3-3 matrix graphite specimens.

  19. Atlantic Richfield Hanford Company process technology and process development. Quarterly report, July 1976--September 1976

    Energy Technology Data Exchange (ETDEWEB)

    1976-11-01

    This quarterly report is the second in a series intended to provide information on research and engineering activities being performed to improve the processing of irradiated reactor fuels, the production of plutonium, and the management of resultant chemical wastes.

  20. EMSL Quarterly Highlights Report: 1st Quarter, FY08

    Energy Technology Data Exchange (ETDEWEB)

    Showalter, Mary Ann

    2008-01-28

    The EMSL Quarterly Highlights Report covers the science, staff and user recognition, and publication activities that occurred during the 1st quarter (October 2007 - December 2007) of Fiscal Year 2008.

  1. EMSL Quarterly Highlights Report: 1st Quarter, Fiscal Year 2009

    Energy Technology Data Exchange (ETDEWEB)

    Showalter, Mary Ann; Kathmann, Loel E.; Manke, Kristin L.

    2009-02-02

    The EMSL Quarterly Highlights Report covers the science, staff and user recognition, and publication activities that occurred during the 1st quarter (October 2008 - December 2008) of Fiscal Year 2009.

  2. EMSL Quarterly Highlights Report: FY 2008, 3rd Quarter

    Energy Technology Data Exchange (ETDEWEB)

    Showalter, Mary Ann

    2008-09-16

    The EMSL Quarterly Highlights Report covers the science, staff and user recognition, and publication activities that occurred during the 1st quarter (October 2007 - December 2007) of Fiscal Year 2008.

  3. Second quarterly report 1976

    International Nuclear Information System (INIS)

    1976-11-01

    The report describes activities carried out in the framework of the Fast Breeder Project at Karlsruhe Nuclear Research Centre or on its behalf. There are contributions to the following issues: fuel rod development, materials analysis and development, corrosion tests and coolant analyses, physical experiments, reactor theory, the safety of fast reactors, instrumentation and signal processing for core monitoring, environmental effects, sodium technology experiments, thermo- and fluid-dynamic studies in gases, studies on the layout of gas-cooled breeder reactors, studies on the layout of sodium-cooled breeder reactors. (HR) [de

  4. Surface area-burnoff correlation for the steam--graphite reaction

    International Nuclear Information System (INIS)

    Stark, W.A. Jr.; Malinauskas, A.P.

    1977-01-01

    The oxidation of core graphite by steam of air represents a problem area of significant concern in safety analyses for the high temperature gas cooled reactor (HTGR). Core and core-support graphite integrity and strength deteriorate with oxidation of the graphite, and oxidation furthermore could affect the rate of fission product release under upset conditions. Consequently, modeling of core response during steam or air ingress conditions requires an expression for the rate of graphite interaction with those impurities. The steam--graphite reaction in particular is a complex interaction of mass transport within the graphite with chemi-sorption and reaction on accessible surfaces; experimental results from graphite to graphite are highly variable, and the description of the reaction is not yet completely consistent. A simple etch pit model relating surface area to burnoff has been proposed and shown to provide reasonable correlation with experimental data obtained from steam oxidation studies of nuclear grade H-327 graphite. Unaccounted differences between theory and experiment arise at burnoffs exceeding 3 to 5 percent. The model, while not complete nor comprehensive, is consistent with experimental observations of graphite oxidation by O 2 (air), CO 2 , or H 2 O, and could have some utility in safety analysis

  5. South African Crime Quarterly

    African Journals Online (AJOL)

    South African Crime Quarterly is an inter-disciplinary peer-reviewed journal that promotes professional discourse and the publication of research on the subjects of crime, criminal justice, crime prevention, and related matters including state and non-state responses to crime and violence. South Africa is the primary focus for ...

  6. English Leadership Quarterly, 1993.

    Science.gov (United States)

    Strickland, James, Ed.

    1993-01-01

    These four issues of the English Leadership Quarterly represent those published during 1993. Articles in number 1 deal with parent involvement and participation, and include: "Opening the Doors to Open House" (Jolene A. Borgese); "Parent/Teacher Conferences: Avoiding the Collision Course" (Robert Perrin); "Expanding Human…

  7. Quarterly fiscal policy

    NARCIS (Netherlands)

    Kendrick, D.A.; Amman, H.M.

    2014-01-01

    Monetary policy is altered once a month. Fiscal policy is altered once a year. As a potential improvement this article examines the use of feedback control rules for fiscal policy that is altered quarterly. Following the work of Blinder and Orszag, modifications are discussed in Congressional

  8. Survey of dust production in pebble bed reactor cores

    Energy Technology Data Exchange (ETDEWEB)

    Cogliati, Joshua J., E-mail: Joshua.Cogliati@inl.gov [Idaho National Laboratory, Reactor Physics Analysis and Design, 2525 N Fremont Ave, Idaho Falls, ID (United States); Ougouag, Abderrafi M., E-mail: Abderrafi.Ougouag@inl.gov [Idaho National Laboratory, Reactor Physics Analysis and Design, 2525 N Fremont Ave, Idaho Falls, ID (United States); Ortensi, Javier, E-mail: Javier.Ortensi@inl.gov [Idaho National Laboratory, Reactor Physics Analysis and Design, 2525 N Fremont Ave, Idaho Falls, ID (United States)

    2011-06-15

    Highlights: > We review potential sources of the graphite dust found in the German pebble bed reactors. > Available literature on graphite wear coefficients in pebble bed core-like conditions is reviewed. > Limited conclusions and remaining open questions are discussed. - Abstract: Graphite dust produced via mechanical wear from the pebbles in a pebble bed reactor is an area of concern for licensing. Both the German pebble bed reactors produced graphite dust that contained activated elements. These activation products constitute an additional source term of radiation and must be taken under consideration during the conduct of accident analysis of the design. This paper discusses the available literature on graphite dust production and measurements in pebble bed reactors. Limited data is available on the graphite dust produced from the AVR and THTR-300 pebble bed reactors. Experiments that have been performed on wear of graphite in pebble-bed-like conditions are reviewed. The calculation of contact forces, which are a key driving mechanism for dust in the reactor, are also included. In addition, prior graphite dust predictions are examined, and future areas of research are identified.

  9. Strength degradation of oxidized graphite support column in VHTR

    International Nuclear Information System (INIS)

    Park, Byung Ha; No, Hee Cheon

    2010-01-01

    Air-ingress events caused by large pipe breaks are important accidents considered in the design of Very High Temperature Gas-Cooled Reactors (VHTRs). A main safety concern for this type of event is the possibility of core collapse following the failure of the graphite support column, which can be oxidized by ingressed air. In this study, the main target is to predict the strength of the oxidized graphite support column. Through compression tests for fresh and oxidized graphite columns, the compressive strength of IG-110 was obtained. The buckling strength of the IG-110 column is expressed using the following empirical straight-line formula: σ cr,buckling =91.34-1.01(L/r). Graphite oxidation in Zone 1 is volume reaction and that in Zone 3 is surface reaction. We notice that the ultimate strength of the graphite column oxidized in Zones 1 and 3 only depends on the slenderness ratio and bulk density. Its strength degradation oxidized in Zone 1 is expressed in the following nondimensional form: σ/σ 0 =exp(-kd), k=0.114. We found that the strength degradation of a graphite column, oxidized in Zone 3, follows the above buckling empirical formula as the slenderness of the column changes. (author)

  10. Research of oxidation properties of graphite used in HTR-10

    International Nuclear Information System (INIS)

    Luo Xiaowei; Jean-Charles, R.

    2006-01-01

    The oxidation of graphite influences the graphite performance. There are many factors to influence the graphite oxidation. In 10 MW High Temperature Gas-cooled Reactor(HTR-10), the graphite IG-11 was used as moderator and structure material. The dependence of oxidation behaviour on temperature for the graphite IG-11, was investigated by thermogravimetric analysis in the temperature range of 400 to 1200 degree C. The oxidant was dry air (water content -6 ) with a flow rate of 20 ml/min. The oxidation time was 4 hours. The oxidation results exhibited three regimes: in the 400-600 degree C range, the activation energy was 158.56 kJ/mol and oxidation was controlled by chemical reaction; in the 600-800 degree C range, the activation energy was 72.01 kJ/mol and oxidation kinetics were controlled by in-pore diffusion; when the temperature was over 800 degree C, the activation energy was very small and oxidation was controlled by the boundary layer. Due to CO production, the oxidation rate increased at high temperatures. The effect of burn-off on activation energy was also investigated. In the 600-800 degree C range, the activation energy decreased with burn-off. Results in low temperature tests were very dispersible because the oxidation behaviour at low temperatures was sensitive to inhomogeneous distribution of impurities and some impurities can catalyse graphite oxidation. (authors)

  11. Studies on mechanical properties of graphites for HTGR

    International Nuclear Information System (INIS)

    Oku, T.; Eto, M.; Fujisaki, K.; Yoda, S.; Ishiyama, S.; Sugihara, T.

    1982-01-01

    Recent research on the mechanical properties of HTGR graphites at JAERI is reviewed. The mechanical properties of graphites are required for predicting the stresses induced in the core graphite structures during reactor operation and for evaluating non-failure probabilities of the graphite structures. In this paper, effects of irradiation, stress and oxidation on the mechanical properties and fatigue properties of petroleum coke semi-isotropic and isotropic graphites for HTGRs are primarly described. Young's modulus and bend strength before and after neutron irradiation have been measured to examine irradiation effects on a fracture criterion of graphites. Two kinds of relationships are found between the bend strength and Young's modulus, depending upon the irradiation temperature. Changes in Young's modulus after irradiation are found to be different from those after irradiation creep deformation. Young's modulus under compressive stress is equivalent to that at the onset of unloading. Oxidation gives rise to the decreases in density and modulus, and also brings about a strength degradation. Tension-compression fatigue strengths are obtained and arranged successfully using statistical trivariant method with tension-tension fatigue strength data

  12. Graphite to Inconel brazing using active filler metal

    International Nuclear Information System (INIS)

    King, J.F.; Baity, F.W.; Walls, J.C.; Hoffman, D.J.

    1989-01-01

    Ion cyclotron resonant frequency (ICRF) antennas are designed to supply large amounts of auxiliary heating power to fusion-grade plasmas in the Toroidal Fusion Test Reactor (TFTR) and Tore Supra fusion energy experiments. A single Faraday shield structure protects a pair of resonant double loops which are designed to launch up to 2 MW of power per loop. The shield consists of two tiers of actively cooled Inconel alloy tubes with the front tier being covered with semicircular graphite tiles. Successful operation of the antenna requires the making of high integrity bonds between the Inconel tubes and graphite tiles by brazing. This paper discusses this process

  13. On disruption of reactor core of the Chernobylsk-4 reactor (retrospective analysis of experiments and facts)

    International Nuclear Information System (INIS)

    Platonov, P.A.

    2007-01-01

    Fragments of graphite blocks from the damaged Chernobyl NPP, unit 4 are studied, the results are analyzed. The temperature of the graphite blocks at the moment of accident release from the reactor is evaluated. Results of studying the fragments of fuel channel and fuel dispersion are considered. The fuel heat content at the moment of the explosion is evaluated and some conclusions are made about the character of the reactor core destruction [ru

  14. Next Generation Nuclear Plant Phenomena Identification and Ranking Tables (PIRTs) Volume 5: Graphite PIRTs

    Energy Technology Data Exchange (ETDEWEB)

    Burchell, Timothy D [ORNL; Bratton, Rob [Idaho National Laboratory (INL); Marsden, Barry [University of Manchester, UK; Srinivasan, Makuteswara [U.S. Nuclear Regulatory Commission; Penfield, Scott [Technology Insights; Mitchell, Mark [PBMR (Pty) Ltd.; Windes, Will [Idaho National Laboratory (INL)

    2008-03-01

    Here we report the outcome of the application of the Nuclear Regulatory Commission (NRC) Phenomena Identification and Ranking Table (PIRT) process to the issue of nuclear-grade graphite for the moderator and structural components of a next generation nuclear plant (NGNP), considering both routine (normal operation) and postulated accident conditions for the NGNP. The NGNP is assumed to be a modular high-temperature gas-cooled reactor (HTGR), either a gas-turbine modular helium reactor (GTMHR) version [a prismatic-core modular reactor (PMR)] or a pebble-bed modular reactor (PBMR) version [a pebble bed reactor (PBR)] design, with either a direct- or indirect-cycle gas turbine (Brayton cycle) system for electric power production, and an indirect-cycle component for hydrogen production. NGNP design options with a high-pressure steam generator (Rankine cycle) in the primary loop are not considered in this PIRT. This graphite PIRT was conducted in parallel with four other NRC PIRT activities, taking advantage of the relationships and overlaps in subject matter. The graphite PIRT panel identified numerous phenomena, five of which were ranked high importance-low knowledge. A further nine were ranked with high importance and medium knowledge rank. Two phenomena were ranked with medium importance and low knowledge, and a further 14 were ranked medium importance and medium knowledge rank. The last 12 phenomena were ranked with low importance and high knowledge rank (or similar combinations suggesting they have low priority). The ranking/scoring rationale for the reported graphite phenomena is discussed. Much has been learned about the behavior of graphite in reactor environments in the 60-plus years since the first graphite rectors went into service. The extensive list of references in the Bibliography is plainly testament to this fact. Our current knowledge base is well developed. Although data are lacking for the specific grades being considered for Generation IV (Gen IV

  15. Source Term Analysis of the Irradiated Graphite in the Core of HTR-10

    Directory of Open Access Journals (Sweden)

    Xuegang Liu

    2017-01-01

    Full Text Available The high temperature gas-cooled reactor (HTGR has potential utilization due to its featured characteristics such as inherent safety and wide diversity of utilization. One distinct difference between HTGR and traditional pressurized water reactor (PWR is the large inventory of graphite in the core acting as reflector, moderator, or structure materials. Some radionuclides will be generated in graphite during the period of irradiation, which play significant roles in reactor safety, environmental release, waste disposal, and so forth. Based on the actual operation of the 10 MW pebble bed high temperature gas-cooled reactor (HTR-10 in Tsinghua University, China, an experimental study on source term analysis of the irradiated graphite has been done. An irradiated graphite sphere was randomly collected from the core of HTR-10 as sample in this study. This paper focuses on the analytical procedure and the establishment of the analytical methodology, including the sample collection, graphite sample preparation, and analytical parameters. The results reveal that the Co-60, Cs-137, Eu-152, and Eu-154 are the major γ contributors, while H-3 and C-14 are the dominating β emitting nuclides in postirradiation graphite material of HTR-10. The distribution profiles of the above four nuclides are also presented.

  16. Harwell Graphite Calorimeter

    International Nuclear Information System (INIS)

    Linacre, J.K.

    1970-01-01

    The calorimeter is of the steady state temperature difference type. It contains a graphite sample supported axially in a graphite outer jacket, the assembly being contained in a thin stainless steel outer can. The temperature of the jacket and the temperature difference between sample and jacket are measured by chromel-alumel thermocouples. The instrument is calibrated by means of an electric heater of low mass positioned on the axis of the sample. The resistance of the heater is known and both current through the heater and the potential across it may be measured. The instrument is filled with nitrogen at a pressure of one half atmosphere at room temperature. The calorimeter has been designed for prolonged operation at temperatures up to 600°C, and dose rates up to 1 Wg -1 , and instruments have been in use for periods in excess of one year

  17. Investigation on structural integrity of graphite component during high temperature 950degC continuous operation of HTTR

    International Nuclear Information System (INIS)

    Sumita, Junya; Shimazaki, Yosuke; Shibata, Taiju

    2014-01-01

    Graphite material is used for internal structures in high temperature gas-cooled reactor. The core components and graphite core support structures are so designed as to maintain the structural integrity to keep core cooling capability. To confirm that the core components and graphite core support structures satisfy the design requirements, the temperatures of the reactor internals are measured during the reactor operation. Surveillance test of graphite specimens and in-service inspection using TV camera are planned in conjunction with the refueling. This paper describes the evaluation results of the integrity of the core components and graphite core support structures during the high temperature 950degC continuous operation, a high temperature continuous operation with reactor outlet temperature of 950degC for 50 days, in high temperature engineering test reactor. The design requirements of the core components and graphite core support structures were satisfied during the high temperature 950degC continuous operation. The dimensional change of graphite which directly influences the temperature of coolant was estimated considering the temperature profiles of fuel block. The magnitude of irradiation-induced dimensional change considering temperature profiles was about 1.2 times larger than that under constant irradiation temperature of 1000degC. In addition, the programs of surveillance test and ISI using TV camera were introduced. (author)

  18. Tungsten Deposition on Graphite using Plasma Enhanced Chemical Vapour Deposition

    International Nuclear Information System (INIS)

    Sharma, Uttam; Chauhan, Sachin S; Sharma, Jayshree; Sanyasi, A K; Ghosh, J; Choudhary, K K; Ghosh, S K

    2016-01-01

    The tokamak concept is the frontrunner for achieving controlled thermonuclear reaction on earth, an environment friendly way to solve future energy crisis. Although much progress has been made in controlling the heated fusion plasmas (temperature ∼ 150 million degrees) in tokamaks, technological issues related to plasma wall interaction topic still need focused attention. In future, reactor grade tokamak operational scenarios, the reactor wall and target plates are expected to experience a heat load of 10 MW/m 2 and even more during the unfortunate events of ELM's and disruptions. Tungsten remains a suitable choice for the wall and target plates. It can withstand high temperatures, its ductile to brittle temperature is fairly low and it has low sputtering yield and low fuel retention capabilities. However, it is difficult to machine tungsten and hence usages of tungsten coated surfaces are mostly desirable. To produce tungsten coated graphite tiles for the above-mentioned purpose, a coating reactor has been designed, developed and made operational at the SVITS, Indore. Tungsten coating on graphite has been attempted and successfully carried out by using radio frequency induced plasma enhanced chemical vapour deposition (rf -PECVD) for the first time in India. Tungsten hexa-fluoride has been used as a pre-cursor gas. Energy Dispersive X-ray spectroscopy (EDS) clearly showed the presence of tungsten coating on the graphite samples. This paper presents the details of successful operation and achievement of tungsten coating in the reactor at SVITS. (paper)

  19. EDF - Quarterly Financial Information

    International Nuclear Information System (INIS)

    Trivi, Carole; Boissezon, Carine de; Hidra, Kader

    2014-01-01

    EDF's sales in the first quarter of 2014 were euro 21.2 billion, down 3.9% from the first quarter of 2013. At constant scope and exchange rates, sales were down 4.2% due to mild weather conditions, which impacted sales of electricity in France, gas sales abroad and trading activities in Europe. UK sales were nonetheless sustained by B2B sales due to higher realised wholesale market prices. In Italy, sales growth was driven by an increase in electricity volumes sold. The first quarter of 2014 also saw the strengthening of the Group's financial structure with the second phase of its multi-annual hybrid funding programme (nearly euro 4 billion equivalent) as well as the issue of two 100-year bonds in dollars and sterling aimed at significantly lengthening average debt maturity. 2014 outlook and 2014-2018 vision: - EDF Group has confirmed its financial objectives for 2014; - Group EBITDA excluding Edison: organic growth of at least 3%; - Edison EBITDA: recurring EBITDA target of euro 1 billion and at least euro 600 million in 2014 before effects of gas contract re-negotiations; - Net financial debt / EBITDA: between 2x and 2.5x; - Pay-out ratio of net income excluding non-recurring items post-hybrid: 55% to 65%. The Group has reaffirmed its goal of achieving positive cash flow after dividends, excluding Linky, in 2018

  20. Structural disorder of graphite and implications for graphite thermometry

    Directory of Open Access Journals (Sweden)

    M. Kirilova

    2018-02-01

    Full Text Available Graphitization, or the progressive maturation of carbonaceous material, is considered an irreversible process. Thus, the degree of graphite crystallinity, or its structural order, has been calibrated as an indicator of the peak metamorphic temperatures experienced by the host rocks. However, discrepancies between temperatures indicated by graphite crystallinity versus other thermometers have been documented in deformed rocks. To examine the possibility of mechanical modifications of graphite structure and the potential impacts on graphite thermometry, we performed laboratory deformation experiments. We sheared highly crystalline graphite powder at normal stresses of 5 and 25  megapascal (MPa and aseismic velocities of 1, 10 and 100 µm s−1. The degree of structural order both in the starting and resulting materials was analyzed by Raman microspectroscopy. Our results demonstrate structural disorder of graphite, manifested as changes in the Raman spectra. Microstructural observations show that brittle processes caused the documented mechanical modifications of the aggregate graphite crystallinity. We conclude that the calibrated graphite thermometer is ambiguous in active tectonic settings.

  1. Bromine intercalated graphite for lightweight composite conductors

    KAUST Repository

    Amassian, Aram

    2017-07-20

    A method of fabricating a bromine-graphite/metal composite includes intercalating bromine within layers of graphite via liquid-phase bromination to create brominated-graphite and consolidating the brominated-graphite with a metal nanopowder via a mechanical pressing operation to generate a bromine-graphite/metal composite material.

  2. Irradiation damage in graphite due to fast neutrons in fission and fusion systems

    International Nuclear Information System (INIS)

    2000-09-01

    Gas cooled reactors have been in operation for the production of electricity for over forty years, encompassing a total of 56 units operated in seven countries. The predominant experience has been with carbon dioxide cooled reactors (52 units), with the majority operated in the United Kingdom. In addition, four prototype helium cooled power plants were operated in the United States and Germany. The United Kingdom has no plans for further construction of carbon dioxide units, and the last helium cooled unit was shutdown in 1990. However, there has been an increasing interest in modular helium cooled reactors during the 1990s as a possible future nuclear option. Graphite is a primary material for the construction of gas cooled reactor cores, serving as a low absorption neutron moderator and providing a high temperature, high strength structure. Commercial gas cooled reactor cores (both carbon dioxide cooled and helium cooled) utilise large quantities of graphite. The structural behaviour of graphite (strength, dimensional stability, susceptibility to cracking, etc.) is a complex function of the source material, manufacturing process, chemical environment, and temperature and irradiation history. A large body of data on graphite structural performance has accumulated from operation of commercial gas cooled reactors, beginning in the 1950s and continuing to the present. The IAEA is supporting a project to collect graphite data and archive it in a retrievable form as an International Database on Irradiated Nuclear Graphite Properties, with limited general access and more detailed access by participating Member States. Because of the large size of the database, the complexity of the phenomena and the number of variables involved, a general understanding of graphite behaviour is essential to the understanding and use of the data

  3. Initial prediction of dust production in pebble bed reactors

    Directory of Open Access Journals (Sweden)

    M. Rostamian

    2011-09-01

    Full Text Available This paper describes the computational simulation of contact zones between pebbles in a pebble bed reactor. In this type of reactor, the potential for graphite dust generation from frictional contact of graphite pebbles and the subsequent transport of dust and fission products can cause significant safety issues at very high temperatures around 900 °C in HTRs. The present simulation is an initial attempt to quantify the amount of nuclear grade graphite dust produced within a very high temperature reactor.

  4. Chemical stabilization of graphite surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Bistrika, Alexander A.; Lerner, Michael M.

    2018-04-03

    Embodiments of a device, or a component of a device, including a stabilized graphite surface, methods of stabilizing graphite surfaces, and uses for the devices or components are disclosed. The device or component includes a surface comprising graphite, and a plurality of haloaryl ions and/or haloalkyl ions bound to at least a portion of the graphite. The ions may be perhaloaryl ions and/or perhaloalkyl ions. In certain embodiments, the ions are perfluorobenzenesulfonate anions. Embodiments of the device or component including stabilized graphite surfaces may maintain a steady-state oxidation or reduction surface current density after being exposed to continuous oxidation conditions for a period of at least 1-100 hours. The device or component is prepared by exposing a graphite-containing surface to an acidic aqueous solution of the ions under oxidizing conditions. The device or component can be exposed in situ to the solution.

  5. Impedance of electrochemically modified graphite.

    Science.gov (United States)

    Magdić, Katja; Kvastek, Krešimir; Horvat-Radošević, Višnja

    2014-01-01

    Electrochemical impedance spectroscopy, EIS, has been applied for characterization of electrochemically modified graphite electrodes in the sulphuric acid solution. Graphite modifications were performed by potential cyclization between potentials of graphite oxide formation/reduction, different number of cycles, and prolonged reduction steps after cyclization. Impedance spectra measured at two potential points within double-layer region of graphite have been successfully modeled using the concept of porous electrodes involving two different electrolyte diffusion paths, indicating existence of two classes of pores. The evaluated impedance parameter values show continuous changes with stages of graphite modification, indicating continuous structural changes of pores by number of potential cycles applied. Differences of impedance parameter values at two potential values indicate the potential induced changes of solution properties within the pores of modified graphite.

  6. Operation of Finnish nuclear power plants. Quarterly report, 3rd quarter 1997

    International Nuclear Information System (INIS)

    Tossavainen, K.

    1998-04-01

    Quarterly reports on the operation of Finnish nuclear power plants describe events and observations relating to nuclear and radiation safety that the Radiation and Nuclear Safety Authority of Finland (STUK) considers safety significant. Safety improvements at the plants are also described. The Report also includes a summary of the radiation safety of plant personnel and of the environment and tabulated data on the plants' production and load factors. The Finnish nuclear power plant units were in power operation in the third quarter of 1997, except for the annual maintenance outages of Loviisa plant units which lasted well over a month in all. There was also a brief interruption in electricity generation at Olkiluoto 1 for repairs and at Olkiluoto 2 due to a disturbance at the turbine plant. All plant units were in long-term test operation at upgraded reactor power level approved by STUK. The load factor average of all plant units was 87.6 %. One event in the third quarter was classified level 1 on the International Nuclear Event Scale (INES). It was noted at Loviisa 2 that one of four pressurized water tanks in the plant unit's emergency cooling system had been inoperable for a year. Other events in this quarter were INES level 0. Occupational doses and radioactive releases off-site were below authorized limits. Radioactive substances were measurable in samples collected around the plants in such quantities only as have no bearing on the radiation exposure of the population. (orig.)

  7. A German research project about applicable graphite cutting techniques

    International Nuclear Information System (INIS)

    Holland, D.; Quade, U.; Bach, F.W.; Wilk, P.

    2001-01-01

    In Germany, too, quite large quantities of irradiated nuclear graphite, used in research and prototype reactors, are waiting for an environmental way of disposal. While incineration of nuclear graphite does not seem to be a publicly acceptable way, cutting and packaging into ductile cast iron containers could be a suitable way of disposal in Germany. Nevertheless, the cutting of graphite is also a very difficult technique by which a large amount of secondary waste or dust might occur. An applicable graphite cutting technique is needed. Therefore, a group of 13 German partners, consisting of one university, six research reactor operators, one technical inspection authority, three engineering companies, one industrial cutting specialist and one commercial dismantling company, decided in 1999 to start a research project to develop an applicable technique for cutting irradiated nuclear graphite. Aim of the project is to find the most suitable cutting techniques for the existing shapes of graphite blocks with a minimum of waste production rate. At the same time it will be learned how to sample the dust and collect it in a filter system. The following techniques will be tested and evaluated: thermal cutting, water jet cutting, mechanical cutting with a saw, plasma arc cutting, drilling. The subsequent evaluation will concentrate on dust production, possible irradiation of staff, time and practicability under different constraints. This research project is funded by the German Minister of Education and Research under the number 02 S 7849 for a period of two years. A brief overview about the work to be carried out in the project will be given. (author)

  8. Heat exchanger using graphite foam

    Science.gov (United States)

    Campagna, Michael Joseph; Callas, James John

    2012-09-25

    A heat exchanger is disclosed. The heat exchanger may have an inlet configured to receive a first fluid and an outlet configured to discharge the first fluid. The heat exchanger may further have at least one passageway configured to conduct the first fluid from the inlet to the outlet. The at least one passageway may be composed of a graphite foam and a layer of graphite material on the exterior of the graphite foam. The layer of graphite material may form at least a partial barrier between the first fluid and a second fluid external to the at least one passageway.

  9. Blunt indentation of core graphite

    International Nuclear Information System (INIS)

    Hartley, M.; McEnaney, B.

    1996-01-01

    Blunt indentation experiments were carried out on unoxidized and thermally oxidised IM1-24 graphite as a model to simulate local point stresses acting on graphite moderator bricks. Blunt indentation of unoxidized graphite initiates cracks close to the region of maximum tensile stress at the edge of the indentation. Cracks propagate and converge to form a cone of material. Failure is catastrophic, typically forming three pieces of graphite and ejecting the cone referred to above. The failure mode under indentation loading for highly oxidised graphite (weigh loss > 40%) is different from that for the unoxidized graphite. There is no longer a distinct crack path, the indentation is much deeper than in the case of the unoxidized graphite, and there is a region of crushed debris beneath the indentation, producing a crater-like structure. The reduction in the compressive fracture stress, σ cf , under indentation loading with increasing fractional weight loss on oxidation, x, can be fitted to σ cf /σ 0 = exp-[5.2x] where σ 0 is the compressive fracture stress of the unoxidized graphite. This indicates that the effect of thermal oxidation on indentation fracture stress is more severe than the effects of radiolytic oxidation on conventional strengths of nuclear graphites. (author). 8 refs, 12 figs

  10. Measurements of impurity migration in graphite at high temperatures using a proton microprobe

    International Nuclear Information System (INIS)

    Shroy, R.E.; Soo, P.; Sastre, C.A.; Schweiter, D.G.; Kraner, H.W.; Jones, K.W.

    1978-01-01

    The migration of fission products and other impurities through the graphite core of a High Temperature Gas Cooled Reactor is of prime importance in studies of reactor safety. Work in this area is being carried out in which graphite specimens are heated to temperatures up to 3800 0 C to induce migration of trace elements whose local concentrations are then measured with a proton microprobe. This instrument is a powerful device for such work because of its ability to determine concentrations at a part per million (ppm) level in a circular area as small as 10 μm while operating in an air environment. Studies show that Si, Ca, Cl, and Fe impurities in graphite migrate from hotter to cooler regions. Also Si, S, Cl, Ca, Fe, Mn, and Cr are observed to escape from the graphite and be deposited on cooler surfaces

  11. Carbowaste: treatment and disposal of irradiated graphite and other carbonaceous waste

    International Nuclear Information System (INIS)

    Von Lensa, W.; Rizzato, C.; Baginski, K.; Banford, A.W.; Bradbury, D.; Goodwin, J.; Grambow, B.; Grave, M.J.; Jones, A.N.; Laurent, G.; Pina, G.; Vulpius, D.

    2014-01-01

    The European Project on 'Treatment and Disposal of Irradiated Graphite and other Carbonaceous Waste (CARBOWASTE)' addressed the retrieval, characterization, treatment, reuse and disposal of irradiated graphite with the following main results: - I-graphite waste features significantly depend on the specific manufacture process, on the operational conditions in the nuclear reactor (neutron dose, atmosphere, temperature etc.) and on radiolytic oxidation leading to partial releases of activation products and precursors during operation. - The neutron activation process generates significant recoil energies breaking pre-existing chemical bonds resulting in dislocations of activation products and new chemical compounds. - Most activation products exist in different chemical forms and at different locations. - I-graphite can be partly purified by thermal and chemical treatment processes leaving more leach-resistant waste products. - Leach tests and preliminary performance analyses show that i-graphite can be safely disposed of in a wide range of disposal systems, after appropriate treatment and/or conditioning. (authors)

  12. A discussion of possible mechanisms affecting fission product transport in irradiated and unirradiated nuclear grade graphite

    International Nuclear Information System (INIS)

    Firth, M.J.

    1977-09-01

    137 Cs, 85 Sr, and sup(110m)Ag adsorption experiments were conducted on three graphite powders with differing amounts of specific basal and edge surface areas. No direct proportionality was found between the specific amounts of the isotopes adsorbed and either of the surface characteristics. There appears to be some correlation with the specific basal surface area despite the fact that each isotope behaves differently. Factors that might influence the adsorption behaviour of Cs and Ag during reactor irradiation and heat treatment of nuclear grade graphites are discussed. These include the form of Cs with the graphite surface. A model based on Cs adsorption at vacancy clusters is used to analyse adsorption experiments. A possible explanation for the behaviour of Ag through the migration of graphite impurities from the bulk of the graphite to the pore surface is also discussed. (author)

  13. Thermal migration of deuterium implanted in graphite: Influence of free surface proximity and structure

    Energy Technology Data Exchange (ETDEWEB)

    Le Guillou, M. [Institut de Physique Nucléaire de Lyon, CNRS/IN2P3 UMR 5822, Université Claude Bernard Lyon 1, Université de Lyon, F-69622 Villeurbanne cedex (France); Moncoffre, N., E-mail: n.moncoffre@ipnl.in2p3.fr [Institut de Physique Nucléaire de Lyon, CNRS/IN2P3 UMR 5822, Université Claude Bernard Lyon 1, Université de Lyon, F-69622 Villeurbanne cedex (France); Toulhoat, N. [Institut de Physique Nucléaire de Lyon, CNRS/IN2P3 UMR 5822, Université Claude Bernard Lyon 1, Université de Lyon, F-69622 Villeurbanne cedex (France); CEA/DEN – Centre de Saclay, F-91191 Gif-sur-Yvette cedex (France); Pipon, Y. [Institut de Physique Nucléaire de Lyon, CNRS/IN2P3 UMR 5822, Université Claude Bernard Lyon 1, Université de Lyon, F-69622 Villeurbanne cedex (France); Institut Universitaire Technologique, Université Claude Bernard Lyon 1, Université de Lyon, F-69622 Villeurbanne cedex (France); Ammar, M.R. [CNRS, CEMHTI UPR3079, Université Orléans, CS90055, F-45071 Orléans cedex 2 (France); Rouzaud, J.N.; Deldicque, D. [Laboratoire de Géologie de l’Ecole Normale Supérieure, Paris, UMR CNRS ENS 8538, F-75231 Paris cedex 5 (France)

    2016-03-15

    This paper is a contribution to the study of the behavior of activation products produced in irradiated nuclear graphite, graphite being the moderator of the first French generation of CO{sub 2} cooled nuclear fission reactors. This paper is focused on the thermal release of Tritium, a major contributor to the initial activity, taking into account the role of the free surfaces (open pores and graphite surface). Two kinds of graphite were compared. On one hand, Highly Oriented Pyrolitic Graphite (HOPG), a model well graphitized graphite, and on the other hand, SLA2, a porous less graphitized nuclear graphite. Deuterium ion implantation at three different energies 70, 200 and 390 keV allows simulating the presence of Tritium at three different depths, corresponding respectively to projected ranges R{sub p} of 0.75, 1.7 and 3.2 μm. The D isotopic tracing is performed thanks to the D({sup 3}He,p){sup 4}He nuclear reaction. The graphite structure is studied by Raman microspectrometry. Thermal annealing is performed in the temperature range 200–1200 °C up to 300 h annealing time. As observed in a previous study, the results show that the D release occurs according to three kinetic regimes: a rapid permeation through open pores, a transient regime corresponding to detrapping and diffusion of D located at low energy sites correlated to the edges of crystallites and finally a saturation regime attributed to detrapping of interstitial D located at high energy sites inside the crystallites. Below 600 °C, D release is negligible whatever the implantation depth and the graphite type. The present paper clearly puts forward that above 600 °C, the D release decreases at deeper implantation depths and strongly depends on the graphite structure. In HOPG where high energy sites are more abundant, the D release is less dependent on the surface proximity compared to SLA2. In SLA2, in which the low energy sites prevail, the D release curves are clearly shifted towards lower

  14. Thermal migration of deuterium implanted in graphite: Influence of free surface proximity and structure

    Science.gov (United States)

    Le Guillou, M.; Moncoffre, N.; Toulhoat, N.; Pipon, Y.; Ammar, M. R.; Rouzaud, J. N.; Deldicque, D.

    2016-03-01

    This paper is a contribution to the study of the behavior of activation products produced in irradiated nuclear graphite, graphite being the moderator of the first French generation of CO2 cooled nuclear fission reactors. This paper is focused on the thermal release of Tritium, a major contributor to the initial activity, taking into account the role of the free surfaces (open pores and graphite surface). Two kinds of graphite were compared. On one hand, Highly Oriented Pyrolitic Graphite (HOPG), a model well graphitized graphite, and on the other hand, SLA2, a porous less graphitized nuclear graphite. Deuterium ion implantation at three different energies 70, 200 and 390 keV allows simulating the presence of Tritium at three different depths, corresponding respectively to projected ranges Rp of 0.75, 1.7 and 3.2 μm. The D isotopic tracing is performed thanks to the D(3He,p)4He nuclear reaction. The graphite structure is studied by Raman microspectrometry. Thermal annealing is performed in the temperature range 200-1200 °C up to 300 h annealing time. As observed in a previous study, the results show that the D release occurs according to three kinetic regimes: a rapid permeation through open pores, a transient regime corresponding to detrapping and diffusion of D located at low energy sites correlated to the edges of crystallites and finally a saturation regime attributed to detrapping of interstitial D located at high energy sites inside the crystallites. Below 600 °C, D release is negligible whatever the implantation depth and the graphite type. The present paper clearly puts forward that above 600 °C, the D release decreases at deeper implantation depths and strongly depends on the graphite structure. In HOPG where high energy sites are more abundant, the D release is less dependent on the surface proximity compared to SLA2. In SLA2, in which the low energy sites prevail, the D release curves are clearly shifted towards lower temperatures when D is located

  15. Residual stress measurements in polycrystalline graphite with micro-Raman spectroscopy

    International Nuclear Information System (INIS)

    Krishna, Ram; Jones, Abbie N.; Edge, Ruth; Marsden, Barry J.

    2015-01-01

    Micro-Raman microscopy technique is applied to evaluate unevenly distributed residual stresses in the various constituents of polygranular reactor grades graphite. The wavenumber based Raman shift (cm −1 ) corresponds to the local residual stress and measurements of stress dependent first order Raman spectra in graphite have enabled localized residual stress values to be determined. The bulk polygranular graphite of reactor grades – Gilsocarbon, NBG-18 and PGA – are examined to illustrate the residual stress variations in their constituents. Binder phase and filler particles have shown to be under compressive and tensile stresses, respectively. Among the studied graphite grades, the binder phase in Gilsocarbon has the highest residual stress and NBG-18 has the lowest value. Filler particles in Gilsocarbon have the highest residual stress and PGA showed the lowest, this is most likely due to the morphology of the coke particles used in the manufacturing and applied processing techniques for fabrications. Stresses have also been evaluated along the peripheral of pores and at the tips of the cracks. Cracks in filler and binder phases have shown mixed behaviour, compressive as well as tensile, whereas pores in binder and filler particles have shown compressive behaviour. The stresses in these graphitic constituents are of the order of MPa. Non-destructive analyses presented in this study make the current state-of-the-art technique a powerful method for the study of stress variations near the graphite surface and are expected to increase its use further in property determination analysis of low to highly fluence irradiated graphite samples from the material test reactors. - Highlights: • Micro-Raman spectroscopy can measure significantly small residual stresses. • Gilsocarbon, NBG-18 and PGA graphite were evaluated for residual stresses. • Residual stresses in the constituents of graphite were evaluated. • Binder and filler particles are often found under

  16. Testing of Small Graphite Samples for Nuclear Qualification

    Energy Technology Data Exchange (ETDEWEB)

    Julie Chapman

    2010-11-01

    Accurately determining the mechanical properties of small irradiated samples is crucial to predicting the behavior of the overal irradiated graphite components within a Very High Temperature Reactor. The sample size allowed in a material test reactor, however, is limited, and this poses some difficulties with respect to mechanical testing. In the case of graphite with a larger grain size, a small sample may exhibit characteristics not representative of the bulk material, leading to inaccuracies in the data. A study to determine a potential size effect on the tensile strength was pursued under the Next Generation Nuclear Plant program. It focuses first on optimizing the tensile testing procedure identified in the American Society for Testing and Materials (ASTM) Standard C 781-08. Once the testing procedure was verified, a size effect was assessed by gradually reducing the diameter of the specimens. By monitoring the material response, a size effect was successfully identified.

  17. The irradiation creep characteristics of graphite to high fluences

    International Nuclear Information System (INIS)

    Kennedy, C.R.; Cundy, M.; Kleist, G.

    1988-01-01

    High-temperature gas-cooled reactors (HTGR) have massive blocks of graphite with thermal and neutron-flux gradients causing high internal stresses. Thermal stresses are transient; however, stresses generated by differential growth due to neutron damage continue to increase with time. Fortunately, graphite also experiences creep under irradiation allowing relaxation of stresses to nominally safe levels. Because of complexity of irradiation creep experiments, data demonstrating this phenomenon are generally limited to fairly low fluences compared to the overall fluences expected in most reactors. Notable exceptions have been experiments at 300/degree/C and 500/degree/C run at Petten under tension and compression creep stresses to fluences greater than 4 /times/ 10 26 (E > 50 keV) neutrons/m 2 . This study complements the previous results by extending the irradiation temperature to 900/degree/C. 2 refs., 3 figs

  18. Graphitic packing removal tool

    Science.gov (United States)

    Meyers, Kurt Edward; Kolsun, George J.

    1997-01-01

    Graphitic packing removal tools for removal of the seal rings in one piece. he packing removal tool has a cylindrical base ring the same size as the packing ring with a surface finish, perforations, knurling or threads for adhesion to the seal ring. Elongated leg shanks are mounted axially along the circumferential center. A slit or slits permit insertion around shafts. A removal tool follower stabilizes the upper portion of the legs to allow a spanner wrench to be used for insertion and removal.

  19. Core catcher for nuclear reactor core meltdown containment

    International Nuclear Information System (INIS)

    Driscoll, M.J.; Bowman, F.L.

    1978-01-01

    A bed of graphite particles is placed beneath a nuclear reactor core outside the pressure vessel but within the containment building to catch the core debris in the event of failure of the emergency core cooling system. Spray cooling of the debris and graphite particles together with draining and flooding of coolant fluid of the graphite bed is provided to prevent debris slump-through to the bottom of the bed

  20. Notifiable events in systems for fission of nuclear fuels - nuclear power plants and research reactors whose maximum output exceeds 50 kW of thermal rating - in the Federal Republic of Germany. Quarterly report on the 2nd quarter of 1995

    International Nuclear Information System (INIS)

    1995-01-01

    The report presents the survey of notifiable events in nuclear power plants and research reactors in the Federal Republic of Germany that occurred in the given reporting period. The survey lists notifiable events both according to the German classification system of safety significance, S (immediate notification), E (prompt notification), as well as events classified under the INES system, (level 1 and higher), and notifiable events that have been re-classified after review. (orig.) [de

  1. Fuel performance improvement program. Quarterly/annual progress report, October 1977--September 1978

    International Nuclear Information System (INIS)

    Crouthamel, C.E.

    1978-10-01

    This quarterly/annual report reviews and summarizes the activities performed in support of the Fuel Performance Improvement Program (FPIP) during Fiscal Year 1978 with emphasis on those activities that transpired during the quarter ending September 30, 1978. Significant progress has been made in achieving the primary objectives of the program, i.e., to demonstrate commercially viable fuel concepts with improved fuel - cladding interaction (FCI) behavior. This includes out-of-reactor experiments to support the fuel concepts being evaluated, initiation of instrumented test rod experiments in the Halden Boiling Water Reactor (HBWR), and fabrication of the first series of demonstration rods for irradiation in the Big Rock Point Reactor

  2. Verifications of fracture criterion of graphite by means of acoustic emission

    International Nuclear Information System (INIS)

    Kurumada, Akira; Sato, Sennosuke; Fukaya, Katsuaki.

    1985-01-01

    The graphite-fracture criterion, which is presented by authors, in 1984, contains basically a concept of restriction of crack propagation under predominant compressive stress, but the concept was not always confirmed phenomenally. In this paper such latent crack initiations for several kinds of graphite are detected by means of an acoustic emission (AE) technique during the compressive and diametral compressive testings and a verification for the fracture criterion is given. A proof testing for acceptance/rejection of production graphite for a high temperature gas cooled reactor using by AE is also discussed. (author)

  3. Investigation on wear behavior of graphite baII under different pneumatic conveying environments

    International Nuclear Information System (INIS)

    Chen Zhipeng; Zheng Yanhua; Shi Lei; Yu Suyuan

    2014-01-01

    An experimental platform was built in the Institute of Nuclear and New Energy Technology (INET) to investigate the wear behavior of the graphite ball under the operational condition of the high temperature gas-cooled reactor (HTGR) fuel handling system. In this experimental platform, a series of experiments were carried out under different pneumatic conveying environments with the graphite balls, which were made of the material same as the fuel element matrix graphite (A3) of the 10 MW high temperature gas cooled reactor (HTR-10). The effect of the pneumatic conveying condition on the wear rate of graphite ball has been investigated, and the results include: (1) There is an obvious linear relationship between the wear rate and the feeding velocity of graphite ball elevated in the stainless steel elevating tube, and the wear rate will increase with the increase of the feeding velocity. (2) The wear rate of graphite ball under helium environment is significantly greater than that under air and nitrogen environments, which is caused by the different effects of various gas environments on mechanical properties of graphite. (author)

  4. Nuclear Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hogerton, John

    1964-01-01

    This pamphlet describes how reactors work; discusses reactor design; describes research, teaching, and materials testing reactors; production reactors; reactors for electric power generation; reactors for supply heat; reactors for propulsion; reactors for space; reactor safety; and reactors of tomorrow. The appendix discusses characteristics of U.S. civilian power reactor concepts and lists some of the U.S. reactor power projects, with location, type, capacity, owner, and startup date.

  5. Beryllium and graphite performance in ITER during a disruption

    International Nuclear Information System (INIS)

    Hassanein, A.; Ehst, D.A.; Gahl, J.

    1993-09-01

    Plasma disruptions are considered one of the most limiting factors for successful operation of magnetic fusion reactors. During a disruption, a sharp, rapid release of energy strikes components such as the divertor or limiter plates. Severe surface erosion and melting of these components may then occur. The amount of material eroded from both ablation and melting is important to the reactor design and component lifetime. The anticipated performance of both beryllium and graphite as plasma-facing materials during such abnormal events is analyzed and compared. Recent experimental data obtained with both plasma guns and electron beams are carefully evaluated and compared to results of analytical modeling, including vapor shielding effect. Initial results from plasma gun experiments indicate that the Be erosion rate is about five times larger than that for a graphite material under the same disruption conditions. Key differences between simulation experiments and reactor disruption on the net erosion rate, and consequently on the lifetime of the divertor plate, are discussed in detail. The advantages and disadvantages of Be over graphite as a divertor plasma-facing material are discussed

  6. Glass-Graphite Composite Materials

    International Nuclear Information System (INIS)

    Mayzan, M.Z.H.; Lloyd, J.W.; Heath, P.G.; Stennett, M.C.; Hyatt, N.C.; Hand, R.J.

    2016-01-01

    A summary is presented of investigations into the potential of producing glass-composite materials for the immobilisation of graphite or other carbonaceous materials arising from nuclear power generation. The methods are primarily based on the production of base glasses which are subsequently sintered with powdered graphite or simulant TRISO particles. Consideration is also given to the direct preparation of glass-graphite composite materials using microwave technology. Production of dense composite wasteforms with TRISO particles was more successful than with powdered graphite, as wasteforms containing larger amounts of graphite were resistant to densification and the glasses tried did not penetrate the pores under the pressureless conditions used. Based on the results obtained it is concluded that the production of dense glassgraphite composite wasteforms will require the application of pressure. (author)

  7. Russian-American venture designs new reactor

    International Nuclear Information System (INIS)

    Newman, P.

    1994-01-01

    Russian and American nuclear energy experts have completed a joint design study of a small, low-cost and demonstrably accident-proof reactor that they say could revolutionize the way conventional reactors are designed, marketed and operated. The joint design is helium-cooled and graphite-moderated and has a power density of 3 MWt/cubic meter, which is significantly less than the standard American reactor. A prototype of this design should be operating in Chelyabinsk by June 1996

  8. Study of the nuclear graphite contact with the eutectic liquid (ZrF{sub 4} - NaF-LiF) and its protection by the vitreous carbon; Etude du contact du graphite nucleaire avec le liquide eutectique (ZrF{sub 4} -NaF-LiF) et sa protection par le carbone vitreux

    Energy Technology Data Exchange (ETDEWEB)

    Bernardet, V.; Duclaux, L. [Universite de Savoie, LCME, Polytech Savoie, 73 - Le Bourget du Lac (France); Renaudin, G.; Dubois, M.; Guerin, K.; Avignant, D. [LMI, CNRS, 63 - Aubiere (France); Renaudin, S.; Delpeux, S. [CRMD, CNRS, 45 - Orleans (France)

    2008-07-01

    In the reactors of fourth generation called molten slats reactors, the graphite core is on contact with liquid fluoride salts used as fuel and coolant. The aim of the study is to better understand the interaction between the graphite and the molten salt and to determine methods to protect the graphite to limit its corrosion by the fuel. The molten salts of this study is composed of NaF and LiF and ZrF{sub 4}. The fluoride salts reactivity and diffusion have been characterized for the nuclear graphite. Microscopy and spectroscopy Raman have been used to characterize the adhesion. (A.L.B.)

  9. Initial Comparison of Baseline Physical and Mechanical Properties for the VHTR Candidate Graphite Grades

    Energy Technology Data Exchange (ETDEWEB)

    Carroll, Mark C. [Idaho National Lab. (INL), Idaho Falls, ID (United States). VHTR Program

    2014-09-01

    High-purity graphite is the core structural material of choice in the Very High Temperature Reactor (VHTR) design, a graphite-moderated, helium-cooled configuration capable of producing thermal energy for power generation as well as process heat for industrial applications that require temperatures higher than the outlet temperatures of present nuclear reactors. The Baseline Graphite Characterization Program is establishing accurate as-manufactured mechanical and physical property distributions in nuclear-grade graphites by providing comprehensive data that captures the level of variation in measured values. In addition to providing a thorough comparison between these values in different graphite grades, the program is also carefully tracking individual specimen source, position, and orientation information in order to provide comparisons both in specific properties and in the associated variability between different lots, different billets, and different positions from within a single billet. This report is a preliminary comparison between each of the grades of graphite that are considered “candidate” grades from four major international graphite producers. These particular grades (NBG-18, NBG-17, PCEA, IG-110, and 2114) are the major focus of the evaluations presently underway on irradiated graphite properties through the series of Advanced Graphite Creep (AGC) experiments. NBG-18, a medium-grain pitch coke graphite from SGL from which billets are formed via vibration molding, was the favored structural material in the pebble-bed configuration. NBG-17 graphite from SGL is essentially NBG-18 with the grain size reduced by a factor of two. PCEA, petroleum coke graphite from GrafTech with a similar grain size to NBG-17, is formed via an extrusion process and was initially considered the favored grade for the prismatic layout. IG-110 and 2114, from Toyo Tanso and Mersen (formerly Carbone Lorraine), respectively, are fine-grain grades produced via an isomolding

  10. The reaction of unirradiated and irradiated nuclear graphites with water vapor in helium

    International Nuclear Information System (INIS)

    Imai, Hisashi; Nomura, Shinzo; Kurosawa, Takeshi; Fujii, Kimio; Sasaki, Yasuichi

    1980-10-01

    Nuclear graphites more than 10 brands were oxidized with water vapor in helium and then some selected graphites were irradiated with fast neutron in the Japan Materials Testing Reactor to clarify the effect of radiation damage of graphite on their reaction behaviors. The reaction was carried out under a well defined condition in the temperature range 800 -- 1000 0 C at concentrations of water vapor 0.38 -- 1.30 volume percent in helium flow of total pressure of 1 atm. The chemical reactivity of graphite irradiated at 1000 +- 50 0 C increased linearly with neutron fluence until irradiation of 3.2 x 10 21 n/cm 2 . The activation energy for the reaction was found to decrease with neutron fluence for almost all the graphites, except for a few ones. The order of reaction increased from 0.5 for the unirradiated graphite to 1.0 for the graphite irradiated up to 6.0 x 10 20 n/cm 2 . Experiment was also performed to study a superposed effect between the influence of radiation damage of graphite and the catalytic action of barium on the reaction rate, as well as the effect of catalyser of barium. It was shown that these effects were not superposed upon each other, although barium had a strong catalytic action on the reaction. (author)

  11. NRC quarterly [status] report

    International Nuclear Information System (INIS)

    1987-01-01

    This report covers the third quarter of calendar year 1987. The NRC licensing activity during the period of this report included the issuance of a full-power license for Beaver Valley 2 on August 14, 1987, and operating license restricted to five percent power for South Texas Unit 1 on August 21, 1987. Additional licensing delay for Shoreham is projected due to complex litigation. Also, licensing delay may occur for Comanche Peak Unit 1, because the duration of the hearing is uncertain. Although a license authorizing fuel loading and precriticality testing for Seabrook Unit 1 has been issued, there is a projected delay for low-power licensing. Full-power licensing for Seabrook Unit 1 will be delayed due to offsite emergency preparedness issues. The length of the delay is not known at this time. With the exception of Seabrook and Shoreham, regulatory delays in this report are not impacted by the schedules for resolving off-site emergency preparedness issues

  12. Archives: South African Crime Quarterly

    African Journals Online (AJOL)

    Items 1 - 29 of 29 ... Archives: South African Crime Quarterly. Journal Home > Archives: South African Crime Quarterly. Log in or Register to get access to full text downloads. Username, Password, Remember me, or Register · Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives. 1 - 29 of 29 ...

  13. Ethology in animal quarters.

    Science.gov (United States)

    Meyerson, B J

    1986-01-01

    This contribution will be concerned with the interaction between environment, adaptability optimization and behaviour. Animal laboratory experiments demand repeated measurements under identical environmental conditions. This is a prerequisite for the conventional statistical methodology used in order to clarify causal relationships involved in various biological functions. The understanding of biological functions is a necessary fundament for knowledge to prevent illness and to achieve a palliative or specific therapy. It is reasonable to assume that the routines in the quarters are very artificial, considering an animal's normal living conditions. The experimental situation as well as animal maintenance involves a process of adaptation. Adaptability depends on type of animal, degree of domestification etc. However, even with respect to choice of suitable species, strain and genetic manipulation, the process of adaptation becomes an important variable for ethical and practical points of view. The more emphasis on constancy, the more do we run the risk of increasing the span between normal and laboratory conditions and subsequently increase the factor and problem of adaptation. This vicious circle should be broken rather by finding optimal conditions than by a middle course determined by experimental requirements, economical frames and general notions about what may be good for the animal. Optimization must involve an understanding of how the experiment and the way of maintenance of the animal in the animal quarters influence adaptability. This understanding requires a systematic exploring of what physio-chemical and psychological factors are of importance. We will probably never be able to control the variability in the degree of adaptation.(ABSTRACT TRUNCATED AT 250 WORDS)

  14. Acoustic emission from polycrystalline graphites

    International Nuclear Information System (INIS)

    Ioka, I.; Yoda, S.; Oku, T.; Miyamoto, Y.

    1987-01-01

    Acoustic emission was monitored from polycrystalline graphites with different microstructure (pore size and pore volume) subjected to compressive loading. The graphites used in this study comprised five brands, that is, PGX, ISEM-1, IG-11, IG-15, and ISO-88. A root mean square (RMS) voltage and event counts of acoustic emission for graphites were measured during compressive loading. The acoustic emission was measured using a computed-based data acquisition and analysis system. The graphites were first deformed up to 80 % of the average fracture stress, then unloaded and reloaded again until the fracture occured. During the first loading, the change in RMS voltage for acoustic emission was detected from the initial stage. During the unloading, the RMS voltage became zero level as soon as the applied stress was released and then gradually rose to a peak and declined. The behavior indicated that the reversed plastic deformation occured in graphites. During the second loading, the RMS voltage gently increased until the applied stress exceeded the maximum stress of the first loading; there is no Kaiser effect in the graphites. A bicrystal model could give a reasonable explanation of this results. The empirical equation between the ratio of σ AE to σ f and σ f was obtained. It is considered that the detection of microfracture by the acoustic emission technique is effective in macrofracture prediction of polycrystalline graphites. (author)

  15. Hypervelocity impacts into graphite

    Science.gov (United States)

    Latunde-Dada, S.; Cheesman, C.; Day, D.; Harrison, W.; Price, S.

    2011-03-01

    Studies have been conducted into the characterisation of the behaviour of commercial graphite (brittle) when subjected to hypervelocity impacts by a range of projectiles. The experiments were conducted with a two-stage gas gun capable of launching projectiles of differing density and strength to speeds of about 6kms-1 at right angles into target plates. The damage caused is quantified by measurements of the crater depth and diameters. From the experimental data collected, scaling laws were derived which correlate the crater dimensions to the velocity and the density of the projectile. It was found that for moderate projectile densities the crater dimensions obey the '2/3 power law' which applies to ductile materials.

  16. Chemical analysis of high purity graphite

    International Nuclear Information System (INIS)

    1993-03-01

    The Sub-Committee on Chemical Analysis of Graphite was organized in April 1989, under the Committee on Chemical Analysis of Nuclear Fuels and Reactor Materials, JAERI. The Sub-Committee carried out collaborative analyses among eleven participating laboratories for the certification of the Certified Reference Materials (CRMs), JAERI-G5 and G6, after developing and evaluating analytical methods during the period of September 1989 to March 1992. The certified values were given for ash, boron and silicon in the CRM based on the collaborative analysis. The values for ten elements (Al, Ca, Cr, Fe, Mg, Mo, Ni, Sr, Ti, V) were not certified, but given for information. Preparation, homogeneity testing and chemical analyses for certification of reference materials were described in this paper. (author) 52 refs

  17. Nuclear Reactor Sharing Program

    International Nuclear Information System (INIS)

    1994-01-01

    The Ohio State University Research Reactor (OSURR) is licensed to operate at a maximum power level of 500 kW. A pool-type reactor using flat-plate, low enriched fuel elements, the OSURR provides several experimental facilities including two 6-inch i.d. beam ports, a graphite thermal column, several graphite-isotope-irradiation elements, a pneumatic transfer system (Rabbit), various dry tubes, and a Central Irradiation Facility (CIF). The core arrangement and accessibility facilitates research programs involving material activation or core parameter studies. The OSURR control room is large enough to accommodate laboratory groups which can use control instrumentation for monitoring of experiments. The control instrumentation is relatively simple, without a large amount of duplication. This facilitates opportunities for hands-on experience in reactor operation by nuclear engineering students making reactor parameter measurements. For neutron activation analysis and analyses of natural environmental radioactivity, the NRL maintains the gamma ray spectroscopy system (GRSS). It is comprised of two PC-based 8192-channel multichannel analyzers (MCAs) with all the required software for quantitative analysis. A 3 double-prime x 3 double-prime NaI(Tl), a 14 percent Ge(Li), and a High Purity Germanium detector are currently available for use with the spectroscopy system

  18. Graphite structure and magnetic parameters of flake graphite cast iron

    Science.gov (United States)

    Vértesy, G.; Uchimoto, T.; Takagi, T.; Tomáš, I.; Kage, H.

    2017-11-01

    Different matrix and graphite morphologies were generated by a special heat treatment in three chemically different series of flake graphite cast iron samples. As cast, furnace cooled and air cooled samples were investigated. The length of graphite particles and the pearlite volume of samples were determined by metallographic examination and these parameters were compared with the nondestructively measured magnetic parameters. Magnetic measurements were performed by the method of Magnetic Adaptive Testing, which is based on systematic measurement and evaluation of minor magnetic hysteresis loops. It was shown that linear correlation existed between the magnetic quantities and the graphite length, and also between the magnetic quantities and the relative pearlite content in the investigated cast iron. A numerical expression was also determined between magnetic descriptors and relative pearlite content, which does not depend on the detailed experimental conditions.

  19. Eutectic solidification mode of spheroidal graphite cast iron and graphitization

    Directory of Open Access Journals (Sweden)

    Hideo Nakae

    2007-02-01

    Full Text Available The shrinkage and chilling tendency of spheroidal graphite (abbreviated SG cast iron is much greater than that of the flake graphite cast iron in spite of its higher amount of C and Si contents. Why? The main reason should be the difference in their graphitization during the eutectic solidification. In this paper, we discuss the difference in the solidification mechanism of both cast irons for solving these problems using unidirectional solidification and the cooling curves of the spheroidal graphite cast iron. The eutectic solidification rate of the SG cast iron is controlled by the diffusion of carbon through the austenite shell, and the final thickness is 1.4 times the radius of the SG, therefore, the reduction of the SG size, namely, the increase in the number, is the main solution of these problems.

  20. Reactor Safety Research Programs

    Energy Technology Data Exchange (ETDEWEB)

    Edler, S. K.

    1981-07-01

    This document summarizes the work performed by Pacific Northwest Laboratory (PNL) from January 1 through March 31, 1981, for the Division of Reactor Safety Research within the U.S. Nuclear Regulatory Commission (NRC). Evaluations of nondestructive examination (NDE) techniques and instrumentation are reported; areas of investigation include demonstrating the feasibility of determining the strength of structural graphite, evaluating the feasibility of detecting and analyzing flaw growth in reactor pressure boundary systems, examining NDE reliability and probabilistic fracture mechanics, and assessing the integrity of pressurized water reactor (PWR) steam generator tubes where service-induced degradation has been indicated. Experimental data and analytical models are being provided to aid in decision-making regarding pipeto- pipe impacts following postulated breaks in high-energy fluid system piping. Core thermal models are being developed to provide better digital codes to compute the behavior of full-scale reactor systems under postulated accident conditions. Fuel assemblies and analytical support are being provided for experimental programs at other facilities. These programs include loss-ofcoolant accident (LOCA) simulation tests at the NRU reactor, Chalk River, Canada; fuel rod deformation, severe fuel damage, and postaccident coolability tests for the ESSOR reactor Super Sara Test Program, Ispra, Italy; the instrumented fuel assembly irradiation program at Halden, Norway; and experimental programs at the Power Burst Facility, Idaho National Engineering Laboratory (INEL). These programs will provide data for computer modeling of reactor system and fuel performance during various abnormal operating conditions.

  1. Quarterly Progress Report (April 1 to June 30, 1950)

    Energy Technology Data Exchange (ETDEWEB)

    Brookhaven National Laboratory

    1950-07-01

    This is the second of a series of Quarterly Progress Reports. While most of the departments have summarized their work or used a form comparable to abstracts, the Chemistry Department has given both abstracts and complete reports on its work. The major part of the progress in the Reactor Science and Engineering Department is being presented simultaneously in a separate classified report. There are reports from the following departments: (1) physics department; (2) instrumentation and health physics department; (3) accelerator project; (4) chemistry department; (5) reactor science and engineering department; (6) biology department; and (7) medical department.

  2. An analytical study on porosity changes of nuclear graphites under high temperature irradiations

    International Nuclear Information System (INIS)

    Arai, T.

    1996-01-01

    A quantitative description of the changing pore structure, based on some radiation damage mechanisms, may introduce a physically appropriate method for lifetime assessment of graphite fuel and moderator components. Recently Brocklehurst and Kelly have analyzed well-characterized data on dimensional changes of UK reactor graphites to quantify volumetric and linear pore generation terms. The analysis (B/K theory) has demonstrated that a crystal strain parameter X T , depending on irradiation temperature and fluence, is suitable for defining structure factors, which relate changes in microstructure with those in macroscopic properties of a family of nuclear graphites. Graphite components in high temperature reactors are subjected to higher temperatures well above 1000 deg. C, which accelerate pore generation. Their mechanical integrity will suffer from the deterioration, resulting in a reduced lifetime. Previous design considerations on the dimensional change behavior have been based on an empirical approach using measured data obtained in a number of irradiation experiments. A large variety of experimental data have been utilized to develop a general phenomenological model(Graphite Damage Model, GDM) for predicting engineering properties of nuclear graphites. The present study tries to combine the B/K theory with the GDM prediction with a view to characterizing porosity changes at high temperatures of some graphites from different manufacturing routes. The dimensional change data in the literature are analyzed by the GDM to obtain their analytical presentation as a function of temperature and fluence. The results are used to derive an X T function and pore volume change as a function of X T for each grade of graphite. The resulting porosity changes are compared between different kinds of graphites. 13 refs, 6 figs, 3 tabs

  3. Verification and validation of the THYTAN code for the graphite oxidation analysis in the HTGR systems

    International Nuclear Information System (INIS)

    Shimazaki, Yosuke; Isaka, Kazuyoshi; Nomoto, Yasunobu; Seki, Tomokazu; Ohashi, Hirofumi

    2014-12-01

    The analytical models for the evaluation of graphite oxidation were implemented into the THYTAN code, which employs the mass balance and a node-link computational scheme to evaluate tritium behavior in the High Temperature Gas-cooled Reactor (HTGR) systems for hydrogen production, to analyze the graphite oxidation during the air or water ingress accidents in the HTGR systems. This report describes the analytical models of the THYTAN code in terms of the graphite oxidation analysis and its verification and validation (V and V) results. Mass transfer from the gas mixture in the coolant channel to the graphite surface, diffusion in the graphite, graphite oxidation by air or water, chemical reaction and release from the primary circuit to the containment vessel by a safety valve were modeled to calculate the mass balance in the graphite and the gas mixture in the coolant channel. The computed solutions using the THYTAN code for simple questions were compared to the analytical results by a hand calculation to verify the algorithms for each implemented analytical model. A representation of the graphite oxidation experimental was analyzed using the THYTAN code, and the results were compared to the experimental data and the computed solutions using the GRACE code, which was used for the safety analysis of the High Temperature Engineering Test Reactor (HTTR), in regard to corrosion depth of graphite and oxygen concentration at the outlet of the test section to validate the analytical models of the THYTAN code. The comparison of THYTAN code results with the analytical solutions, experimental data and the GRACE code results showed the good agreement. (author)

  4. Small propulsion reactor design based on particle bed reactor concept

    International Nuclear Information System (INIS)

    Ludewig, H.; Lazareth, O.; Mughabghab, S.; Perkins, K.; Powell, J.R.

    1989-01-01

    In this paper Particle Bed Reactor (PBR) designs are discussed which use 233 U and /sup 242m/Am as fissile materials. A constant total power of 100MW is assumed for all reactors in this study. Three broad aspects of these reactors is discussed. First, possible reactor designs are developed, second physics calculations are outlined and discussed and third mass estimates of the various candidates reactors are made. It is concluded that reactors with a specific mass of 1 kg/MW can be envisioned of 233 U is used and approximately a quarter of this value can be achieved if /sup 242m/Am is used. If this power level is increased by increasing the power density lower specific mass values are achievable. The limit will be determined by uncertainties in the thermal-hydraulic analysis. 5 refs., 5 figs., 6 tabs

  5. Estimation of radioactivity of graphite blocks in Tokai Power Station using statistical method

    International Nuclear Information System (INIS)

    Nakano, Masaaki; Mikami, Hisashi; Ichige, Hideaki; Tsukada, Shinichi

    2011-01-01

    Tokai Power Station (graphite moderated, gas-cooled reactor, GCR) stopped its commercial operation in March 1998 and is decommissioning now. Since graphite blocks in Tokai reactor core are major low level wastes (LLWs), the realistic and reasonable method to estimate radioactivity of graphite blocks is required for final disposal and its licensing procedure. In general, LLWs, which were installed in or around a reactor core, have large radioactivity, theoretical calculations can be applied to the estimation of the radioactivity. This paper describes the concept of the method using statistical approach to determine the radioactivity of the graphite blocks in the reactor core. This method directly considers the variations of input calculation conditions, for example, compositions of impurity elements, irradiation neutron flux and irradiation period. In this paper, the variations of the compositions of impurity elements were statistically considered with the mean value and the standard deviation that were determined with element analyses. Many activation calculations were performed with the compositions that were determined with pseudorandom numbers, the mean value and the standard deviation. The calculated radioactivities distribute also statistically and a mean value and a standard deviation of radioactivity can be determined. The distribution of calculated radioactivities shows consistency to radiochemical analyses of graphite blocks from the reactor core and this shows that the method is applicable to the estimation of the graphite block radioactivity. Furthermore, this method can be considered to reduce over-excess estimation margin and can obtain reasonable radioactivity rather than using maximum or conservative values of all input conditions. This method is now being developed and approved as one of basic procedure for determining the radioactivity of wastes by Standards Committee of the Atomic Energy Society of Japan. (author)

  6. Graphite oxidation in HTGR atmosphere

    International Nuclear Information System (INIS)

    Growcock, F.B.; Barry, J.J.; Finfrock, C.C.; Rivera, E.; Heiser, J.H. III

    1982-01-01

    On-going and recently completed studies of the effect of thermal oxidation on the structural integrity of HTGR candidate graphites are described, and some results are presented and discussed. This work includes the study of graphite properties which may play decisive roles in the graphites' resistance to oxidation and fracture: pore size distribution, specific surface area and impurity distribution. Studies of strength loss mechanisms in addition to normal oxidation are described. Emphasis is placed on investigations of the gas permeability of HTGR graphites and the surface burnoff phenomenon observed during recent density profile measurements. The recently completed studies of catalytic pitting and the effects of prestress and stress on reactivity and ultimate strength are also discussed

  7. Evaluation of co-cokes from bituminous coal with vacuum resid or decant oil, and evaluation of anthracites, as precursors to graphite

    Science.gov (United States)

    Nyathi, Mhlwazi S.

    2011-12-01

    Graphite is utilized as a neutron moderator and structural component in some nuclear reactor designs. During the reactor operaction the structure of graphite is damaged by collision with fast neutrons. Graphite's resistance to this damage determines its lifetime in the reactor. On neutron irradiation, isotropic or near-isotropic graphite experiences less structural damage than anisotropic graphite. The degree of anisotropy in a graphite artifact is dependent on the structure of its precursor coke. Currently, there exist concerns over a short supply of traditional precursor coke, primarily due to a steadily increasing price of petroleum. The main goal of this study was to study the anisotropic and isotropic properties of graphitized co-cokes and anthracites as a way of investigating the possibility of synthesizing isotropic or near-isotropic graphite from co-cokes and anthracites. Demonstrating the ability to form isotropic or near-isotropic graphite would mean that co-cokes and anthracites have a potential use as filler material in the synthesis of nuclear graphite. The approach used to control the co-coke structure was to vary the reaction conditions. Co-cokes were produced by coking 4:1 blends of vacuum resid/coal and decant oil/coal at temperatures of 465 and 500 °C for reaction times of 12 and 18 hours under autogenous pressure. Co-cokes obtained were calcined at 1420 °C and graphitized at 3000 °C for 24 hours. Optical microscopy, X-ray diffraction, temperature-programmed oxidation and Raman spectroscopy were used to characterize the products. It was found that higher reaction temperature (500 °C) or shorter reaction time (12 hours) leads to an increase in co-coke structural disorder and an increase in the amount of mosaic carbon at the expense of textural components that are necessary for the formation of anisotropic structure, namely, domains and flow domains. Characterization of graphitized co-cokes showed that the quality, as expressed by the degree of

  8. Graphite oral tattoo: case report

    OpenAIRE

    Moraes, Renata Mendonça; Gouvêa Lima, Gabriela de Morais; Guilhermino, Marinaldo; Vieira, Mayana Soares; Carvalho, Yasmin Rodarte; Anbinder, Ana Lia

    2015-01-01

    Pigmented oral lesions compose a large number of pathological entities, including exogenous pigmentat oral tattoos, such as amalgam and graphite tattoos. We report a rare case of a graphite tattoo on the palate of a 62-year-old patient with a history of pencil injury, compare it with amalgam tattoos, and determine the prevalence of oral tattoos in our Oral Pathology Service. We also compare the clinical and histological findings of grafite and amalgam tattoos. Oral tattoos affect women more f...

  9. Research reactors: design, safety requirements and applications

    International Nuclear Information System (INIS)

    Hassan, Abobaker Mohammed Rahmtalla

    2014-09-01

    There are two types of reactors: research reactors or power reactors. The difference between the research reactor and energy reactor is that the research reactor has working temperature and fuel less than the power reactor. The research reactors cooling uses light or heavy water and also research reactors need reflector of graphite or beryllium to reduce the loss of neutrons from the reactor core. Research reactors are used for research training as well as testing of materials and the production of radioisotopes for medical uses and for industrial application. The difference is also that the research reactor smaller in terms of capacity than that of power plant. Research reactors produce radioactive isotopes are not used for energy production, the power plant generates electrical energy. In the world there are more than 284 reactor research in 56 countries, operates as source of neutron for scientific research. Among the incidents related to nuclear reactors leak radiation partial reactor which took place in three mile island nuclear near pennsylvania in 1979, due to result of the loss of control of the fission reaction, which led to the explosion emitting hug amounts of radiation. However, there was control of radiation inside the building, and so no occurred then, another accident that lead to radiation leakage similar in nuclear power plant Chernobyl in Russia in 1986, has led to deaths of 4000 people and exposing hundreds of thousands to radiation, and can continue to be effect of harmful radiation to affect future generations. (author)

  10. Joint Force Quarterly. Issue 41, 2nd Quarter, April 2006

    Science.gov (United States)

    2006-04-01

    operating in the Pacific, Exercise Panamax ’05 (4th Combat Camera Squadron/Rick Sforza); Marines securing area along Amazon River , Exercise UNITAS ’04...companies participated, a million more people would be actively looking for threats. Aguas de Amazonas , a subsidiary of Suez Environnement, a...9 Richard B. Myers, “A Word from the Chair- man,” Joint Force Quarterly 37 (2d Quarter 2005), 5. 10 Wald, 26. 11 “Suez—Aguas de Amazonas Water for

  11. Irradiation damage in graphite. The works of Professor B.T. Kelly

    International Nuclear Information System (INIS)

    Marsden, B.J.

    1996-01-01

    The irradiation damage produced in graphite by energetic neutrons (>100eV) has been extensively studied because of the use of graphite as a moderator in thermal nuclear reactors. In recent times, graphite has been adopted as the protective tiling of the inner wall of experimental fusion systems and property changes due to fusion neutrons have become important. The late Professor B.T. Kelly reviewed the work carried out on the irradiation behaviour of graphite since the 1940s. This work is particularly timely as the scale of research into the effects of fission neutrons has been greatly reduced and many of the active researchers have retired. In recent years, new programmes of work are being formulated for the use of graphite in both the field of high temperature reactor systems and fusion systems. It is therefore important that the knowledge gained by Professor Kelly and other workers is not lost but passed on to future generations of nuclear scientists and engineers. This paper reviews Professor Kelly's last work, it also draws on the experience gained during many long discussions with Brian during the years he worked closely with the present graphite team at AEA Technology. It is hoped to publish his work in full in the near future. (author). 13 refs, 14 figs, 3 tabs

  12. Non-destructive evaluation on mechanical properties of nuclear graphite with porous structure

    International Nuclear Information System (INIS)

    Shibata, Taiju; Hanawa, Satoshi; Sumita, Junya; Tada, Tatsuya; Sawa, Kazuhiro; Iyoku, Tatsuo

    2005-01-01

    As a research subjects of 'Research and development for advanced high temperature gas cooled reactor fuels and graphite components,' we started the study of development of non-destructive evaluation methods for mechanical properties of graphite components. The micro-indentation and ultrasonic wave methods are focused to evaluate the degradation of graphite components in VHTR core. For the micro-indentation method, the test apparatus was designed for the indentation test on graphite specimens with some stress levels. It is expected the stress condition is evaluated by the indentation load-depth characteristics and hardness. For the ultrasonic wave method, ultrasonic wave testing machine and probes were prepared for experiments. It is expected that the stress and inner porous conditions are evaluated by the wave propagation characteristics with wave-pore interaction model. R and D plan to develop the non-destructive evaluation method for graphite is presented in this paper. (This study is the result of contract research in the fiscal year of 2004, Research and development for advanced high temperature gas cooled reactor fuels and graphite components,' which is entrusted to the Japan Atomic Energy Research Institute from the Ministry of Education, Culture, Sports, Science and Technology of Japan.) (author)

  13. Effect of compressive prestress on the Young's modulus and strength of isotropic graphite

    International Nuclear Information System (INIS)

    Oku, T.; Ota, S.; Eto, M.; Gotoh, Y.

    1996-01-01

    It is well known that properties, such as Young's modulus, strength and so on, change when compressive or tensile prestresses are applied to graphite materials at room temperature. It is important from the designer's standpoint in the sense that it should be taken into consideration for the structural design of the graphite components if there is an effect of prestresses at high temperature on the mechanical properties. In this study compressive prestresses were applied to an isotropic fine-grained graphite at room temperature (RT) and high temperature (2010 deg. C). As a result decrease in Young's modulus due to high temperature prestressing was 56% which was much larger than the 6.4% that was due to RT prestressing. This finding was considered to be due primarily to difference in degree of preferred orientation of crystallites in the graphite on the basis of Bacon anisotropy factor (BAF) from X-ray diffraction measurement of the prestressed specimens. Furthermore, high temperature compressive prestressing produced an increase in the strength of the isotropic graphite, although room temperature prestressing produced no such effect. The results obtained here suggest that isotropic graphite which is subjected to high-temperature compressive stress becomes anisotropic. It is concluded that it should be considered in the design stage of the reactors that the anisotropy may change after long term operation of high temperature gas-cooled reactors. (author). 6 refs, 8 figs, 3 tabs

  14. Fuel performance improvement program. Quarterly/annual progress report, April--September 1977. [BWR; PWR

    Energy Technology Data Exchange (ETDEWEB)

    Crouthamel, C.E. (comp.)

    1977-11-01

    The Fuel Performance Improvement Program has as its objective the identification and demonstration of fuel concepts with improved power ramp performance. The program contains a combination of out-of-reactor studies, in-reactor experiments and in-reactor demonstrations. Fuel concepts initially being considered include annular pellets, cladding internally coated with graphite and packed-particle fuels. The performance capability of each concept will be compared to a reference fuel of contemporary pellet design by irradiations in the Halden Boiling Water Reactor. Fuel design and process development is being completed and fuel rod fabrication will begin for the Halden test rods and for the first series of in-reactor demonstrations. The in-reactor demonstrations are being performed in the Big Rock Point reactor to show that the concepts pose no undue risk to commercial operation.

  15. Feasibility of Ultrasonic Inspection for Nuclear Grade Graphite

    International Nuclear Information System (INIS)

    Park, Jae Seok; Lee, Jong Po; Yoon, Byung Sik; Jang, Chang Heui

    2008-01-01

    Graphite material has been recognized as a very competitive candidate for reflector, moderator, and structural material for very high temperature reactor (VHTR). Since VHTR is operated up to 900-950 .deg. C , small amount of impurity may accelerate the oxidation and degradation of carbon graphite, which results in increased porosity and lowered fracture toughness. In this study, ultrasonic wave propagation properties were investigated for both as-received and degradated material, and the feasibility of ultrasonic testing (UT) was estimated based on the result of ultrasonic property measurements. The ultrasonic properties of carbon graphite were half, more than 5 times, and 1/3 for velocity, attenuation, and signal-to-noise (S/N) ratio respectively. Degradation reduces the ultrasonic velocity slightly by 100 m/s, however the attenuation is about 2 times of as-receive state. The results of probability of detection (POD) estimation based on S/N ratio for side-drilled-hole (SDHs) of which depths were less than 100 mm were merely affected by oxidation and degradation. This result suggests that UT would be reliable method for nondestructive testing of carbon graphite material of which thickness is not over 100 mm. In accordance with the result produced by commercial automated ultrasonic testing (AUT) system, human error of ultrasonic testing is barely expected for the material of which thickness is not over 80 mm

  16. IAEA international database on irradiated nuclear graphite properties

    International Nuclear Information System (INIS)

    Burchell, T.D.; Clark, R.E.H.; Stephens, J.A.; Eto, M.; Haag, G.; Hacker, P.; Neighbour, G.B.; Janev, R.K.; Wickham, A.J.

    2000-02-01

    This report describes an IAEA database containing data on the properties of irradiated nuclear graphites. Development and implementation of the graphite database followed initial discussions at an IAEA Specialists' Meeting held in September 1995. The design of the database is based upon developments at the University of Bath (United Kingdom), work which the UK Health and Safety Executive initially supported. The database content and data management policies were determined during two IAEA Consultants' Meetings of nuclear reactor graphite specialists held in 1998 and 1999. The graphite data are relevant to the construction and safety case developments required for new and existing HTR nuclear power plants, and to the development of safety cases for continued operation of existing plants. The database design provides a flexible structure for data archiving and retrieval and employs Microsoft Access 97. An instruction manual is provided within this document for new users, including installation instructions for the database on personal computers running Windows 95/NT 4.0 or higher versions. The data management policies and associated responsibilities are contained in the database Working Arrangement which is included as an Appendix to this report. (author)

  17. Damage tolerance of nuclear graphite at elevated temperatures

    Science.gov (United States)

    Liu, Dong; Gludovatz, Bernd; Barnard, Harold S.; Kuball, Martin; Ritchie, Robert O.

    2017-06-01

    Nuclear-grade graphite is a critically important high-temperature structural material for current and potentially next generation of fission reactors worldwide. It is imperative to understand its damage-tolerant behaviour and to discern the mechanisms of damage evolution under in-service conditions. Here we perform in situ mechanical testing with synchrotron X-ray computed micro-tomography at temperatures between ambient and 1,000 °C on a nuclear-grade Gilsocarbon graphite. We find that both the strength and fracture toughness of this graphite are improved at elevated temperature. Whereas this behaviour is consistent with observations of the closure of microcracks formed parallel to the covalent-sp2-bonded graphene layers at higher temperatures, which accommodate the more than tenfold larger thermal expansion perpendicular to these layers, we attribute the elevation in strength and toughness primarily to changes in the residual stress state at 800-1,000 °C, specifically to the reduction in significant levels of residual tensile stresses in the graphite that are `frozen-in' following processing.

  18. Modelling fracture of aged graphite bricks under radiation and temperature

    Directory of Open Access Journals (Sweden)

    Atheer Hashim

    2017-05-01

    Full Text Available The graphite bricks of the UK carbon dioxide gas cooled nuclear reactors are subjected to neutron irradiation and radiolytic oxidation during operation which will affect thermal and mechanical material properties and may lead to structural failure. In this paper, an empirical equation is obtained and used to represent the reduction in the thermal conductivity as a result of temperature and neutron dose. A 2D finite element thermal analysis was carried out using Abaqus to obtain temperature distribution across the graphite brick. Although thermal conductivity could be reduced by up to 75% under certain conditions of dose and temperature, analysis has shown that it has no significant effect on the temperature distribution. It was found that the temperature distribution within the graphite brick is non-radial, different from the steady state temperature distribution used in the previous studies [1,2]. To investigate the significance of this non-radial temperature distribution on the failure of graphite bricks, a subsequent mechanical analysis was also carried out with the nodal temperature information obtained from the thermal analysis. To predict the formation of cracks within the brick and the subsequent propagation, a linear traction–separation cohesive model in conjunction with the extended finite element method (XFEM is used. Compared to the analysis with steady state radial temperature distribution, the crack initiation time for the model with non-radial temperature distribution is delayed by almost one year in service, and the maximum crack length is also shorter by around 20%.

  19. Short-term energy outlook: Quarterly projections. Second quarter 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-05-02

    The Energy Information Administration (EIA) prepares quarterly, short-term energy supply, demand, and price projections for publication in February, May, August, and November in the Short-Term Energy Outlook (Outlook). An annual supplement analyzes the performance of previous forecasts, compares recent projections with those of other forecasting services, and discusses current topics related to the short-term energy markets. (See Short-Term Energy Outlook Annual Supplement, DOE/EIA-0202.) The forecast period for this issue of the Outlook extends from the second quarter of 1995 through the fourth quarter of 1996. Values for the first quarter of 1995, however, are preliminary EIA estimates (for example, some monthly values for petroleum supply and disposition are derived in part from weekly data reported in the Weekly Petroleum Status Report) or are calculated from model simulations using the latest exogenous information available (for example, electricity sales and generation are simulated using actual weather data). The historical energy data, compiled into the second quarter 1995 version of the Short-Term Integrated Forecasting System (STIFS) database, are mostly EIA data regularly published in the Monthly Energy Review, Petroleum Supply Monthly, and other EIA publications. Minor discrepancies between the data in these publications and the historical data in this Outlook are due to independent rounding. The STIFS database is archived quarterly and is available from the National Technical Information Service.

  20. Decommissioning strategy for reactor AM, Russian Federation

    International Nuclear Information System (INIS)

    Suvorov, A.P.; Mukhamadeev, R.I.

    2002-01-01

    This paper presents the results of studies into the various aspects of decommissioning the oldest Russian research reactor, the AM reactor. Experimental and calculation results of a study to determine the inventory of long lived radioactive materials at the AM reactor are presented, along with a comparison to comparable data for other similar reactors. An analysis, by calculation, of the decay time needed to allow manual dismantling of the reactor vessel and stack, without remote operated equipment, defined it as 90 years. The possibility of burning most of the irradiated graphite to decrease the amount of long lived radioactive wastes was confirmed. The problems associated with the dismantling of the reactor components, contaminated with radioactive corrosion products, were analyzed. A decommissioning strategy for reactor AM was formed which is deferred dismantling, placing most of the radiological areas into long term safe enclosure. An overall decommissioning plan for reactor AM is given. (author)

  1. NST Quarterly - issue April 2002

    International Nuclear Information System (INIS)

    2002-01-01

    NST Quarterly reports current development in Nuclear Science and Technology in Malaysia. In this issue it highlights MINT activity in radiocarbon dating and discusses the topic - Radiation energy technologies are finding new niches in the marketplace

  2. NST Quarterly. July 1996 issue

    International Nuclear Information System (INIS)

    1996-01-01

    NST Quarterly reports current development in Nuclear Science and Technology in Malaysia. In this issue it highlights MINT activities in in-vitro mutagenesis of ornamental plants, soil erosion studies and animal feed production from agricultural waste

  3. NST Quarterly - January 1998 issue

    International Nuclear Information System (INIS)

    1998-01-01

    NST Quarterly reports current development in Nuclear Science and Technology in Malaysia. In this issue it highlights MINT activities in proposal of national networking for biotechnology culture collection centre (NNBCCC)

  4. Effect of steam oxidation on the tensile strength of HTGR structural graphites

    International Nuclear Information System (INIS)

    Romano, A.J.; Chow, J.G.Y.

    1977-01-01

    The core support system of the General Atomic Company design High Temperature Gas-Cooled Reactor (HTGR) contains type PGX graphite as core support blocks. The change in ultimate tensile strength of PGX graphite specimens with oxidation (burnoff) has been determined in a safety-related experimental program at Brookhaven National Laboratory(BNL). It is shown that Fe, an impurity in PGX graphite, plays a key role in the rate of oxidation. The subsequent failure of the graphite specimens is dependent upon the total weight loss due to oxidation. The results indicate that the loss in tensile strength is exponentially related to the percent burnoff (weight loss), and that grain orientation of the specimen has a significant effect

  5. LIMITED OXIDATION OF IRRADIATED GRAPHITE WASTE TO REMOVE SURFACE CARBON-14

    Directory of Open Access Journals (Sweden)

    TARA E. SMITH

    2013-04-01

    Full Text Available Large quantities of irradiated graphite waste from graphite-moderated nuclear reactors exist and are expected to increase in the case of High Temperature Reactor (HTR deployment [1,2]. This situation indicates the need for a graphite waste management strategy. Of greatest concern for long-term disposal of irradiated graphite is carbon-14 (14C, with a half-life of 5730 years. Fachinger et al. [2] have demonstrated that thermal treatment of irradiated graphite removes a significant fraction of the 14C, which tends to be concentrated on the graphite surface. During thermal treatment, graphite surface carbon atoms interact with naturally adsorbed oxygen complexes to create COx gases, i.e. “gasify” graphite. The effectiveness of this process is highly dependent on the availability of adsorbed oxygen compounds. The quantity and form of adsorbed oxygen complexes in pre- and post-irradiated graphite were studied using Time of Flight Secondary Ion Mass Spectrometry (ToF-SIMS and X-ray Photoelectron Spectroscopy (XPS in an effort to better understand the gasification process and to apply that understanding to process optimization. Adsorbed oxygen fragments were detected on both irradiated and unirradiated graphite; however, carbon-oxygen bonds were identified only on the irradiated material. This difference is likely due to a large number of carbon active sites associated with the higher lattice disorder resulting from irradiation. Results of XPS analysis also indicated the potential bonding structures of the oxygen fragments removed during surface impingement. Ester- and carboxyl- like structures were predominant among the identified oxygen-containing fragments. The indicated structures are consistent with those characterized by Fanning and Vannice [3] and later incorporated into an oxidation kinetics model by El-Genk and Tournier [4]. Based on the predicted desorption mechanisms of carbon oxides from the identified compounds, it is expected that a

  6. Rules for design of nuclear graphite core components - some considerations and approaches

    International Nuclear Information System (INIS)

    Svalbonas, V.; Stilwell, T.C.; Zudans, Z.

    1978-01-01

    The use of graphite as a structural element presents unusual problems both for the designer and stress analysist. When the structure happens to be a nuclear reactor core, these problems are significantly magnified both by the environment and the attendant safety requirements. In the high temperature gas reactor (HTGR) core a large number of elements are constructed of nuclear graphite. This paper discusses the attendant difficulties, and presents some approaches, for ASME code safety-consistent design and analysis. The statistical scatter of material properties, which complicates even the definitions of allowable stress, as well as the brittle, anisotropic, inhomogeneous nature of the graphite was considered. The study of this subject was undertaken under contract to the U.S. Nuclear Regulatory Commission. (Auth.)

  7. Statistical Comparison of the Baseline Mechanical Properties of NBG-18 and PCEA Graphite

    Energy Technology Data Exchange (ETDEWEB)

    Mark C. Carroll; David T. Rohrbaugh

    2013-08-01

    High-purity graphite is the core structural material of choice in the Very High Temperature Reactor (VHTR), a graphite-moderated, helium-cooled design that is capable of producing process heat for power generation and for industrial process that require temperatures higher than the outlet temperatures of present nuclear reactors. The Baseline Graphite Characterization Program is endeavoring to minimize the conservative estimates of as-manufactured mechanical and physical properties by providing comprehensive data that captures the level of variation in measured values. In addition to providing a comprehensive comparison between these values in different nuclear grades, the program is also carefully tracking individual specimen source, position, and orientation information in order to provide comparisons and variations between different lots, different billets, and different positions from within a single billet. This report is a preliminary comparison between the two grades of graphite that were initially favored in the two main VHTR designs. NBG-18, a medium-grain pitch coke graphite from SGL formed via vibration molding, was the favored structural material in the pebble-bed configuration, while PCEA, a smaller grain, petroleum coke, extruded graphite from GrafTech was favored for the prismatic configuration. An analysis of the comparison between these two grades will include not only the differences in fundamental and statistically-significant individual strength levels, but also the differences in variability in properties within each of the grades that will ultimately provide the basis for the prediction of in-service performance. The comparative performance of the different types of nuclear grade graphites will continue to evolve as thousands more specimens are fully characterized from the numerous grades of graphite being evaluated.

  8. Destruction of nuclear graphite using closed chamber incineration

    International Nuclear Information System (INIS)

    Senor, D.J.; Hollenberg, G.W.; Morgan, W.C.; Marianowski, L.G.

    1994-01-01

    Closed chamber incineration (CCI) is a novel technique by which irradiated nuclear graphite may be destroyed without the risk of radioactive cation release into the environment. The process utilizes an enclosed combustion chamber coupled with molten carbonate fuel cells (MCFCs). The transport of cations is intrinsically suppressed by the MCFCs, such that only the combustion gases are conducted through for release to the environment. An example CCI design was developed which had as its goal the destruction of graphite fuel elements from the Fort St. Vrain reactor (FSVR). By employing CCI, the volume of high level waste from the FSVR will be reduced by approximately 87 percent. Additionally, the incineration process will convert the SiC coating on the FSVR fuel particles to SiO 2 , thus creating a form potentially suitable for direct incorporation in a vitrification process stream. The design is compact, efficient, and makes use of currently available technology

  9. The characteristics of TiC and oxidation resistance and mechanical properties of TiC coated graphite under corrosive environment

    International Nuclear Information System (INIS)

    Yoda, Shinichi; Oku, Tatsuo; Ioka, Ikuo; Umekawa, Shokichi.

    1982-07-01

    Core region of the Very High Temperature Gas Cooled Reactor (VHTR) consists mainly of polycrystalline graphite whose mechanical properties degradated by corrosion resulting from such impurities as O 2 , H 2 O, and CO 2 in coolant He gas. Mechanical properties and oxidation resistance of TiC coated graphite under corrosive condition were examined in order to evaluate the effects of TiC coating on preventing the graphite from its degradation in service condition of the VHTR. Characteristics of TiC coating was also examined using EPMA. Holding the specimen at 1373 K for 6 hr produced strong interface between TiC coating and the graphite, however, microcracks on TiC coating was observed, the origin of which is ascribed to mismatch in thermal expansion between TiC coating and the graphite. Oxidation rate of TiC coated graphite was one-thirds of that of uncoated graphite, which demonstrated that TiC coating on the graphite improved the oxidation resistance of the graphite. However, debonding of TiC coating layer at the interface was observed after heating for 3 to 4 hr in the oxidation condition. Changes in Young's modulus of TiC coated graphite were a half of that of uncoated graphite. Flexural strength of TiC coated graphite remained at the original value up to about 4 hr oxidation, therafter it decreased abruptly as was the trend of uncoated graphite. It is concluded that TiC coating on graphite materials is very effective in improving oxidation resistance and suppressing degradation of mechanical properties of the graphite. (author)

  10. A core-monitoring based methodology for predictions of graphite weight loss in AGR moderator bricks

    International Nuclear Information System (INIS)

    McNally, K.; Warren, N.; Fahad, M.; Hall, G.; Marsden, B.J.

    2017-01-01

    Highlights: • A statistically-based methodology for estimating graphite density is presented. • Graphite shrinkage is accounted for using a finite element model. • Differences in weight loss forecasts were found when compared to the existing model. - Abstract: Physically based models, resolved using the finite element (FE) method are often used to model changes in dimensions and the associated stress fields of graphite moderator bricks within a reactor. These models require inputs that describe the loading conditions (temperature, fluence and weight loss ‘field variables’), and coded relationships describing the behaviour of graphite under these conditions. The weight loss field variables are calculated using a reactor chemistry/physics code FEAT DIFFUSE. In this work the authors consider an alternative data source of weight loss: that from a longitudinal dataset of density measurements made on small samples trepanned from operating reactors during statutory outages. A nonlinear mixed-effect model is presented for modelling the age and depth-related trends in density. A correction that accounts for irradiation-induced dimensional changes (axial and radial shrinkage) is subsequently applied. The authors compare weight loss forecasts made using FEAT DIFFUSE with those based on an alternative statistical model for a layer four moderator brick for the Hinkley Point B, Reactor 3. The authors compare the two approaches for the weight loss distribution through the brick with a particular focus on the interstitial keyway, and for the average (over the volume of the brick) weight loss.

  11. Quarterly environmental data summary for fourth quarter 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    The Quarterly Environmental Data Summary (QEDS) for the fourth quarter of 1997 is prepared in support of the Weldon Spring Site Remedial Action Project Federal Facilities Agreement. The data presented constitute the QEDS. The data were received from the contract laboratories, verified by the Weldon Spring Site verification group and, except for air monitoring data and site KPA generated data (uranium analyses), merged into the data base during the fourth quarter of 1997. Air monitoring data presented are the most recent complete sets of quarterly data. Air data are not stored in the data base and KPA data are not merged into the regular data base. Significant data, defined as data values that have exceeded defined ``above normal`` level 2 values, are discussed in this letter for Environmental Monitoring Plan (EMP) generated data only. Above normal level 2 values are based, in ES and H procedures, on historical high values, DOE Derived Concentration Guides (DCGs), NPDES limits and other guidelines. The procedures also establish actions to be taken in response to such data. Data received and verified during the fourth quarter were within a permissible range of variability except for those which are detailed.

  12. Short-term energy outlook: Quarterly projections, fourth quarter 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-14

    The Energy Information Administration (EIA) prepares quarterly short-term energy supply, demand, and price projections for printed publication in January, April, July, and October in the Short-Term Energy Outlook. The details of these projections, as well as monthly updates on or about the 6th of each interim month, are available on the internet at: www.eia.doe.gov/emeu/steo/pub/contents.html. The forecast period for this issue of the Outlook extends from the fourth quarter of 1997 through the fourth quarter of 1998. Values for the fourth quarter of 1997, however, are preliminary EIA estimates (for example, some monthly values for petroleum supply and disposition are derived in part from weekly data reported in EIA`s Weekly Petroleum Status Report) or are calculated from model simulations that use the latest exogenous information available (for example, electricity sales and generation are simulated by using actual weather data). The historical energy data, compiled in the fourth quarter 1997 version of the Short-Term Integrated Forecasting System (STIFS) database, are mostly EIA data regularly published in the Monthly Energy Review, Petroleum Supply Monthly, and other EIA publications. Minor discrepancies between the data in these publications and the historical data in this Outlook are due to independent rounding. The STIFS model is driven principally by three sets of assumptions or inputs: estimates of key macroeconomic variables, world oil price assumptions, and assumptions about the severity of weather. 19 tabs.

  13. Graphite Formation in Cast Iron

    Science.gov (United States)

    Stefanescu, D. M.

    1985-01-01

    In the first phase of the project it was proven that by changing the ratio between the thermal gradient and the growth rate for commercial cast iron samples solidifying in a Bridgman type furnace, it is possible to produce all types of graphite structures, from flake to spheroidal, and all types of matrices, from ferritic to white at a certain given level of cerium. KC-135 flight experiments have shown that in a low-gravity environment, no flotation occurs even in spheroidal graphite cast irons with carbon equivalent as high as 5%, while extensive graphite flotation occurred in both flake and spheroidal graphite cast irons, in high carbon samples solidified in a high gravity environment. This opens the way for production of iron-carbon composite materials, with high carbon content (e.g., 10%) in a low gravity environment. By using KC-135 flights, the influence of some basic elements on the solidification of cast iron will be studied. The mechanism of flake to spheroidal graphite transition will be studied, by using quenching experiments at both low and one gravity for different G/R ratios.

  14. Experience with graphite in JET

    International Nuclear Information System (INIS)

    Pick, M.A.; Celentano, G.; Deksnis, E.; Dietz, K.J.; Shaw, R.; Sonnenberg, K.; Walravens, M.

    1987-01-01

    During the current operational period of JET more than 50% of the internal area of the machine is covered in graphite tiles. This includes the 15 m 2 of carbon tiles installed in the new toroidal limiter, the 40 poloidal belts of graphite tiles covering the U-joints and bellows as well as a two metre high ring (-- 20 m 2 ) or carbon tiles on the inner wall of the Torus. A ring of tiles in the equatorial plane (3 tiles high) consists of carbon-carbon fibre tiles. Test bed results indicated that the fine grained graphite tiles cracked at ∼ 1 kW/cm 2 for 2s of irradiation whereas the carbon-carbon fibre tiles were able to sustain a flux, limited by the irradiation facility, of 3.5 kW for 3s without any damage. The authors report on the generally positive experience they have had had with the installed graphite during the present and previous in-vessel configurations. This includes the physical integrity of the tiles under severe conditions such as high energy run-away electron beams, plasma disruptions and high heat fluxes. They report on the importance of the precise positioning of the inner wall and x-point tiles at the very high power fluxes of JET and the effect of deviations on both graphite and carbon-fibre tiles

  15. Quarterly coal report, July--September 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-02-01

    The Quarterly Coal Report (QCR) provides comprehensive information about US coal production, distribution, exports, imports, receipts, prices, consumption, and stocks. Coke production consumption, distribution, imports, and exports data are also provided. This report presents detailed quarterly data for July through September 1997 and aggregated quarterly historical data for 1991 through the second quarter of 1997. Appendix A displays, from 1991 on, detailed quarterly historical coal imports data. 72 tabs.

  16. Nuclear Reactor RA Safety Report, Vol. 4, Reactor

    International Nuclear Information System (INIS)

    1986-11-01

    RA research reactor is thermal heavy water moderated and cooled reactor. Metal uranium 2% enriched fuel elements were used at the beginning of its operation. Since 1976, 80% enriched uranium oxide dispersed in aluminium fuel elements were gradually introduced into the core and are the only ones presently used. Reactor core is cylindrical, having diameter 40 cm and 123 cm high. Reaktor core is made up of 82 fuel elements in aluminium channels, lattice is square, lattice pitch 13 cm. Reactor vessel is cylindrical made of 8 mm thick aluminium, inside diameter 140 cm and 5.5 m high surrounded with neutron reflector and biological shield. There is no containment, the reactor building is playing the shielding role. Three pumps enable circulation of heavy water in the primary cooling circuit. Degradation of heavy water is prevented by helium cover gas. Control rods with cadmium regulate the reactor operation. There are eleven absorption rods, seven are used for long term reactivity compensation, two for automatic power regulation and two for safety shutdown. Total anti reactivity of the rods amounts to 24%. RA reactor is equipped with a number of experimental channels, 45 vertical (9 in the core), 34 in the graphite reflector and two in the water biological shield; and six horizontal channels regularly distributed in the core. This volume include detailed description of systems and components of the RA reactor, reactor core parameters, thermal hydraulics of the core, fuel elements, fuel elements handling equipment, fuel management, and experimental devices [sr

  17. Estimation of Graphite Dust Production in ITER TBM

    International Nuclear Information System (INIS)

    Kang, Ji Ho; Kim, Eung Seon

    2013-01-01

    This scheme uses simple equations and the calculation time is much less than others. However, the contact equation requires a specially tuned material properties and instability of system matrix were reported. Second, only a couple of pebbles were modeled using FEM(Finite Element Method) and appropriate boundary and loading conditions are imposed. This scheme gives a detailed information of stress distribution of the pebbles and the stability of calculation is well established. However, the calculation cost is fairly high and only a few pebble can be analyzed in detail at a time with specifically assigned contact conditions. In this study, a prediction model of graphite dust production in ITER(International Thermonuclear Experimental Reactor) TBM(Test Blanket Module) using FEM was introduced and the amount of dust production for an operation cycle was estimated. In this study, graphite dust generation in the reflector zone of ITER TBM was estimated using FE analysis. A unit-cell model was defined to simulate normal contact forces and slip distances on contact points between the center pebble and the surrounding pebbles. The dust production was calculated using Archard equation. The simulation was repeated with different friction coefficient of graphite material to investigate the effect of friction on the dust production. The calculation result showed that the amount of dust production was 2.22∼3.67e-4 g/m 3 which was almost linearly proportional to the friction coefficient of graphite material. The amount of graphite dust production was considered too much small for a dust explosion

  18. Short-term energy outlook. Quarterly projections, first quarter 1995

    International Nuclear Information System (INIS)

    1995-02-01

    The Energy Information Administration (EIA) prepares quarterly, short-term energy supply, demand, and price projections for publication in February, May, August, and November in the Short-Term Energy Outlook (Outlook). The forecast period for this issue of the Outlook extends from the first quarter of 1995 through the fourth quarter of 1996. Values for the fourth quarter of 1994, however, are preliminary EIA estimates or are calculated from model simulations using the latest exogenous information available (for example, electricity sales and generation are simulated using actual weather data). The historical energy data, compiled into the first quarter 1995 version of the Short-Term Integrated Forecasting System (STIFS) database, are mostly EIA data regularly published in the Monthly Energy Review, Petroleum Supply Monthly, and other EIA publications. Minor discrepancies between the data in these publications and the historical data in this Outlook are due to independent rounding. The STIFS database is archived quarterly and is available from the National Technical Information Service. The cases are produced using the Short-Term Integrated Forecasting System (STIFS). The STIFS model is driven principally by three sets of assumptions or inputs: estimates of key macroeconomic variables, world oil price assumptions, and assumptions about the severity of weather. Macroeconomic estimates are produced by DRI/McGraw-Hill but are adjusted by EIA to reflect EIA assumptions about the world price of crude oil, energy product prices, and other assumptions which may affect the macroeconomic outlook. The EIA model is available on computer tape from the National Technical Information Service

  19. The retardation effect of structural graphite on the release of fission products in case of hypothetical accidents of HTRs

    International Nuclear Information System (INIS)

    Iniotakis, N.; Decken, C.B. von der

    1982-01-01

    In case of a hypothetical core heat up accident of an HTR the structural graphite of the reactor causes under certain circumstances a very important retardation of the release of fission products into the containment building of the plant. A model is presented which describes the transport phenomena in the graphite structure extensively taking into account specially the macro-structure of the graphite. It is shown by parameter variations under which conditions one can expect a large retardation effect and quantitative values of this retardation, which can be very important, are given. (author)

  20. Graphite Microstructural Characterization Using Time-Domain and Correlation-Based Ultrasonics

    Energy Technology Data Exchange (ETDEWEB)

    Spicer, James [Johns Hopkins Univ., Baltimore, MD (United States)

    2017-12-06

    Among techniques that have been used to determine elastic modulus in nuclear graphites, ultrasonic methods have enjoyed wide use and standards using contacting piezoelectric tranducers have been developed to ensure repeatability of these types of measurements. However, the use of couplants and the pressures used to effectively couple transducers to samples can bias measurements and produce results that are not wholly related to the properties of the graphite itself. In this work, we have investigated the use of laser ultrasonic methods for making elastic modulus measurements in nuclear graphites. These methods use laser-based transmitters and receivers to gather data and do not require use of ultrasonic couplants or mechanical contact with the sample. As a result, information directly related to the elastic responses of graphite can be gathered even if the graphite is porous, brittle and compliant. In particular, we have demonstrated the use of laser ultrasonics for the determination of both Young’s modulus and shear modulus in a range of nuclear graphites including those that are being considered for use in future nuclear reactors. These results have been analyzed to assess the contributions of porosity and microcracking to the elastic responses of these graphites. Laser-based methods have also been used to assess the moduli of NBG-18 and IG-110 where samples of each grade were oxidized to produce specific changes in porosity. These data were used to develop new models for the elastic responses of nuclear graphites and these models have been used to infer specific changes in graphite microstructure that occur during oxidation that affect elastic modulus. Specifically, we show how ultrasonic measurements in oxidized graphites are consistent with nano/microscale oxidation processes where basal plane edges react more readily than basal plane surfaces. We have also shown the use of laser-based methods to perform shear-wave birefringence measurements and have shown

  1. Mechanical properties of graphites and carbon materials

    International Nuclear Information System (INIS)

    Jouquet, Gilbert.

    1977-01-01

    The mechanical behavior of graphites and artificial carbons is related to the structure of these materials. The influence of structural modifications in a graphite monocrystal on the deformation and fracture properties is studied [fr

  2. Fast breeder reactors

    International Nuclear Information System (INIS)

    Waltar, A.E.; Reynolds, A.B.

    1981-01-01

    This book describes the major design features of fast breeder reactors and the methods used for their design and analysis. The foremost objective of this book is to fulfill the need for a textbook on Fast Breeder Reactor (FBR) technology at the graduate level or the advanced undergraduate level. It is assumed that the reader has an introductory understanding of reactor theory, heat transfer, and fluid mechanics. The book is expected to be used most widely for a one-semester general course on fast breeder reactors, with the extent of material covered to vary according to the interest of the instructor. The book could also be used effectively for a two-quarter or a two-semester course. In addition, the book could serve as a text for a course on fast reactor safety since many topics other than those appearing in the safety chapters relate to FBR safety. Methodology in fast reactor design and analysis, together with physical descriptions of systems, is emphasized in this text more than numerical results. Analytical and design results continue to change with the ongoing evolution of FBR design whereas many design methods have remained fundamentally unchanged for a considerable time

  3. Gas-cooled reactor programs: high-temperature gas-cooled reactor technology development program. Annual progress report for period ending December 31, 1981

    Energy Technology Data Exchange (ETDEWEB)

    1982-06-01

    Information is presented concerning HTGR chemistry; fueled graphite development; irradiation services for General Atomic Company; prestressed concrete pressure vessel development; HTGR structural materials; graphite development; high-temperature reactor physics studies; shielding studies; component flow test loop studies; core support performance test; and application and project assessments.

  4. Gas-cooled reactor programs: high-temperature gas-cooled reactor technology development program. Annual progress report for period ending December 31, 1981

    International Nuclear Information System (INIS)

    1982-06-01

    Information is presented concerning HTGR chemistry; fueled graphite development; irradiation services for General Atomic Company; prestressed concrete pressure vessel development; HTGR structural materials; graphite development; high-temperature reactor physics studies; shielding studies; component flow test loop studies; core support performance test; and application and project assessments

  5. RECOVERY OF VALUABLE MATERIAL FROM GRAPHITE BODIES

    Science.gov (United States)

    Fromm, L.W. Jr.

    1959-09-01

    An electrolytic process for recovering uranium from a graphite fuel element is described. The uraniumcontaining graphite body is disposed as the anode of a cell containing a nitric acid electrolyte and a 5 amp/cm/sup 2/ current passed to induce a progressive disintegration of the graphite body. The dissolved uranium is quickly and easily separated from the resulting graphite particles by simple mechanical means, such as centrifugation, filtration, and decontamination.

  6. Graphitic matrix materials for spherical HTR fuel elements

    International Nuclear Information System (INIS)

    Schulze, R.E.; Schulze, H.A.

    1981-02-01

    The report comprises the graphical documentation of irradiation results on graphitic matrix materials for spherical HTR fuel elements. The plotted results are based on data analyses of the series of exposures in the High Flux Reactor Petten (HFR). The documentation includes information about the changes of - the dimensions - the dynamic modulus of elasticity - the coefficient of thermal expansion of the materials after irradiation with fast neutrons. The irradiation experiments and the data analyses are part of the matrix development and irradiation programme, whose objective, realization and results obtained are summarized. (orig./IHOE) [de

  7. Short-term energy outlook, Quarterly projections. Third quarter 1993

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-08-04

    The Energy Information Administration (EIA) prepares quarterly, short-term energy supply, demand, and price projections for publication in February, May, August, and November in the Short-Term Energy Outlook (Outlook). An annual supplement analyzes the performance of previous forecasts, compares recent cases with those of other forecasting services, and discusses current topics related to the short-term energy markets. (See Short-Term Energy Outlook Annual Supplement, DOE/EIA-0202.) The forecast period for this issue of the Outlook extends from the third quarter of 1993 through the fourth quarter of 1994. Values for the second quarter of 1993, however, are preliminary EIA estimates (for example, some monthly values for petroleum supply and disposition are derived in part from weekly data reported in the Weekly Petroleum Status Report) or are calculated from model simulations using the latest exogenous information available (for example, electricity sales and generation are simulated using actual weather data). The historical energy data are EIA data published in the Monthly Energy Review, Petroleum Supply Monthly, and other EIA publications. Minor discrepancies between the data in these publications and the historical data in this Outlook are due to independent rounding.

  8. Applied Meteorology Unit (AMU) Quarterly Report First Quarter FY-04

    Science.gov (United States)

    Bauman, William; Wheeler, Mark; Labert, Winifred; Jonathan Case; Short, David

    2004-01-01

    This report summarizes the Applied Meteorology Unit (AMU) activities for the First Quarter of Fiscal Year 2004 (October - December 2003). Tasks reviewed are: (1) Objective Lightning Probability Forecast, (2) Mesonet Temperature and Wind Climatology, (3) Severe Weather Forecast Decision Aid and (4) Anvil Transparency Relationship to Radar Reflectivity

  9. Short-term energy outlook, quarterly projections, first quarter 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-01

    The forecast period for this issue of the Outlook extends from the first quarter of 1998 through the fourth quarter of 1999. Values for the fourth quarter of 1997, however, are preliminary EIA estimates (for example, some monthly values for petroleum supply and disposition are derived in part from weekly data reported in EIA`s Weekly Petroleum Status Report) or are calculated from model simulations that use the latest exogenous information available (for example, electricity sales and generation are simulated by using actual weather data). The historical energy data, compiled in the first quarter 1998 version of the Short-Term Integrated Forecasting System (STIFS) database, are mostly EIA data regularly published in the Monthly Energy Review, Petroleum Supply Monthly, and other EIA publications. Minor discrepancies between the data in these publications and the historical data in this Outlook are due to independent rounding. The STIFS model is driven principally by three sets of assumptions or inputs: estimates of key macroeconomic variables, world oil price assumptions, and assumptions about the severity of weather. Macroeconomic estimates are adjusted by EIA to reflect EIA assumptions which may affect the macroeconomic outlook. By varying the assumptions, alternative cases are produced by using the STIFS model. 24 figs., 19 tabs.

  10. Short-term energy outlook: Quarterly projections, Third quarter 1992

    International Nuclear Information System (INIS)

    1992-08-01

    The Energy Information Administration (EIA) prepares quarterly, short-term energy supply, demand, and price projections for publication in February, May, August, and November in the Short-Term Energy Outlook (Outlook). An annual supplement analyzes the performance of previous forecasts, compares recent cases with those of other forecasting services, and discusses current topics related to the short-term energy markets. (See Short-Term Energy Outlook Annual Supplement, DOE/EIA-0202.) The principal users of the Outlook are managers and energy analysts in private industry and government. The forecast period for this issue of the Outlook extends from the third quarter of 1992 through the fourth quarter of 1993. Values for the second quarter of 1992, however, are preliminary EIA estimates (for example, some monthly values for petroleum supply and disposition are derived in part from weekly data reported in the Weekly Petroleum Status Report) or are calculated from model simulations using the latest exogenous information available (for example, electricity sales and generation are simulated using actual weather data). The historical energy data are EIA data published in the Monthly Energy Review, Petroleum Supply Monthly, and other EIA publications. Minor discrepancies between the data in these publications and the historical data in this Outlook are due to independent rounding

  11. Diagnosis of electric equipment at the Dalat Nuclear Research Reactor

    International Nuclear Information System (INIS)

    Nguyen Truong Sinh

    1999-01-01

    The Dalat Nuclear Research Reactor (DNRR) is a pool type of its kind in the world: Soviet-designed core and control system harmoniously integrated into the left-over infrastructure of the former American-made TRIGA MARK II reactor, which includes the reactor tank and shielding, graphite reflector, beam tubes and thermal column. The reactor is mainly used for radioisotope and radiopharmaceutical production, elemental analysis using neutron activation techniques, neutron beam exploitation, silicon doping, and reactor physics experimentation. For safe operation of the reactor maintenance work has been carried out for the reactor control and instrumentation, reactor cooling, ventilation, radiomonitoring, mechanical, normal electric supply systems as well as emergency electric diesel generators and the water treatment station. Technical management of the reactor includes periodical maintenance as required by technical specifications, training, re-training and control of knowledge for reactor staff. During recent years, periodic preventive maintenance (PPM) has been carried out for the electric machines of the technological systems. (author)

  12. The fuel of nuclear reactors

    International Nuclear Information System (INIS)

    1995-03-01

    This booklet is a presentation of the different steps of the preparation of nuclear fuels performed by Cogema. The documents starts with a presentation of the different French reactor types: graphite moderated reactors, PWRs using MOX fuel, fast breeder reactors and research reactors. The second part describes the fuel manufacturing process: conditioning of nuclear materials and fabrication of fuel assemblies. The third part lists the different companies involved in the French nuclear fuel industry while part 4 gives a short presentation of the two Cogema's fuel fabrication plants at Cadarache and Marcoule. Part 5 and 6 concern the quality assurance, the safety and reliability aspects of fuel elements and the R and D programs. The last part presents some aspects of the environmental and personnel protection performed by Cogema. (J.S.)

  13. Compressive loading unloading behavior of nuclear graphite grades of different forming method and raw cokes

    International Nuclear Information System (INIS)

    Chi, Sehwan; Hong, Seongdeok; Kim, Yongwan

    2012-01-01

    Nuclear graphite is used for core structural components and neutron moderators in high temperature gas-cooled reactors. As graphite is a brittle material fail at relatively low strains (e.g., ∼0.5% in tension and ∼2% in compression), cracking of these components can occur throughout the life of the reactor under the influence of thermal and mechanical stresses. While a lot of studies have been performed on the fracture of graphite, most studies have been concerned on crack initiation and propagation, with little concerns on the damage processes that lead to the very first stage of crack initiation. In this study, the graphite damage processes before the main crack formation were investigated based on the microstructure change during load relaxation. For this, 4-1/3 notched flexure strength test specimens made of nuclear graphite grades IG-110, NBG-18 and PCEA of different forming methods (isotropic molding, vibrational molding and extrusion, respectively) and ingredients (coke, binder) were subjected to 10 cyclic compressive loading-unloading, and the changes in the microstructure of notch-tip areas were examined by X-ray tomography

  14. HTR Fuel Waste Management: TRISO separation and acid-graphite intercalation compounds preparation

    International Nuclear Information System (INIS)

    Guittonneau, Fabrice; Abdelouas, Abdesselam; Grambow, Bernd

    2010-01-01

    Considering the need to reduce waste production and greenhouse emissions and still keeping high energy efficiency, various 4th generation nuclear energy systems have been proposed. As far as graphite-moderated reactors are concerned (future high temperature fast or thermal reactors), one of the key issues is the large volumes of irradiated graphite encountered. With the objective to reduce volume of waste in the HTR concept, it is very important to be able to separate the fuel from low level activity graphite representing a large volume. The separated TRISO particles can then be reprocessed for waste separation or disposed off in geological repository. In addition, preparation of acid-GICs from the separated graphite may constitute a way to recycle this waste. We used HTR-type compact fuel with ZrO 2 TRISO particles to test two separation methods: low (H 2 SO 4 + H 2 O 2 ) and high (H 2 SO 4 + HNO 3 ) temperature acid treatments. In both cases the TRISO separation was complete but some TRISO layers oxidized at high temperature. At low temperature, the desegregation of graphite grains is facilitated by intercalation of sulfuric acid between the graphene layers. The acid-GIC obtained consists of pure phases of high quality suggesting their potential industrial recycling.

  15. Quarterly coal report, April--June 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    The Quarterly Coal Report (QCR) provides comprehensive information about US coal production, distribution, exports, imports, receipts, prices, consumption, and stocks to a wide audience. Coke production, consumption, distribution, imports, and exports data are also provided. This report presents detailed quarterly data for April through June 1997 and aggregated quarterly historical data for 1991 through the first quarter of 1997. Appendix A displays, from 1991 on, detailed quarterly historical coal imports data. Appendix B gives selected quarterly tables converted to metric tons. To provide a complete picture of coal supply and demand in the US, historical information has been integrated in this report. 8 figs., 73 tabs.

  16. Superconductivity in graphite intercalation compounds

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Robert P. [Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 0HE (United Kingdom); Weller, Thomas E.; Howard, Christopher A. [Department of Physics & Astronomy, University College of London, Gower Street, London WCIE 6BT (United Kingdom); Dean, Mark P.M. [Department of Condensed Matter Physics and Materials Science, Brookhaven National Laboratory, Upton, NY 11973 (United States); Rahnejat, Kaveh C. [Department of Physics & Astronomy, University College of London, Gower Street, London WCIE 6BT (United Kingdom); Saxena, Siddharth S. [Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 0HE (United Kingdom); Ellerby, Mark, E-mail: mark.ellerby@ucl.ac.uk [Department of Physics & Astronomy, University College of London, Gower Street, London WCIE 6BT (United Kingdom)

    2015-07-15

    Highlights: • Historical background of graphite intercalates. • Superconductivity in graphite intercalates and its place in the field of superconductivity. • Recent developments. • Relevant modeling of superconductivity in graphite intercalates. • Interpretations that pertain and questions that remain. - Abstract: The field of superconductivity in the class of materials known as graphite intercalation compounds has a history dating back to the 1960s (Dresselhaus and Dresselhaus, 1981; Enoki et al., 2003). This paper recontextualizes the field in light of the discovery of superconductivity in CaC{sub 6} and YbC{sub 6} in 2005. In what follows, we outline the crystal structure and electronic structure of these and related compounds. We go on to experiments addressing the superconducting energy gap, lattice dynamics, pressure dependence, and how these relate to theoretical studies. The bulk of the evidence strongly supports a BCS superconducting state. However, important questions remain regarding which electronic states and phonon modes are most important for superconductivity, and whether current theoretical techniques can fully describe the dependence of the superconducting transition temperature on pressure and chemical composition.

  17. Graphite nanoreinforcements in polymer nanocomposites

    Science.gov (United States)

    Fukushima, Hiroyuki

    Nanocomposites composed of polymer matrices with clay reinforcements of less than 100 nm in size, are being considered for applications such as interior and exterior accessories for automobiles, structural components for portable electronic devices, and films for food packaging. While most nanocomposite research has focused on exfoliated clay platelets, the same nanoreinforcement concept can be applied to another layered material, graphite, to produce nanoplatelets and nanocomposites. Graphite is the stiffest material found in nature (Young's Modulus = 1060 GPa), having a modulus several times that of clay, but also with excellent electrical and thermal conductivity. The key to utilizing graphite as a platelet nanoreinforcement is in the ability to exfoliate this material. Also, if the appropriate surface treatment can be found for graphite, its exfoliation and dispersion in a polymer matrix will result in a composite with not only excellent mechanical properties but electrical properties as well, opening up many new structural applications as well as non-structural ones where electromagnetic shielding and high thermal conductivity are requirements. In this research, a new process to fabricate exfoliated nano-scale graphite platelets was established (Patent pending). The size of the resulted graphite platelets was less than 1 um in diameter and 10 nm in thickness, and the surface area of the material was around 100 m2/g. The reduction of size showed positive effect on mechanical properties of composites because of the increased edge area and more functional groups attached with it. Also various surface treatment techniques were applied to the graphite nanoplatelets to improve the surface condition. As a result, acrylamide grafting treatment was found to enhance the dispersion and adhesion of graphite flakes in epoxy matrices. The resulted composites showed better mechanical properties than those with commercially available carbon fibers, vapor grown carbon fibers

  18. Water cooled reactor technology: Safety research abstracts no. 1

    International Nuclear Information System (INIS)

    1990-01-01

    The Commission of the European Communities, the International Atomic Energy Agency and the Nuclear Energy Agency of the OECD publish these Nuclear Safety Research Abstracts within the framework of their efforts to enhance the safety of nuclear power plants and to promote the exchange of research information. The abstracts are of nuclear safety related research projects for: pressurized light water cooled and moderated reactors (PWRs); boiling light water cooled and moderated reactors (BWRs); light water cooled and graphite moderated reactors (LWGRs); pressurized heavy water cooled and moderated reactors (PHWRs); gas cooled graphite moderated reactors (GCRs). Abstracts of nuclear safety research projects for fast breeder reactors are published independently by the Nuclear Energy Agency of the OECD and are not included in this joint publication. The intention of the collaborating international organizations is to publish such a document biannually. Work has been undertaken to develop a common computerized system with on-line access to the stored information

  19. Steady State Analysis of Small Molten Salt Reactor : Effect of Fuel Salt Flow on Reactor Characteristics

    OpenAIRE

    YAMAMOTO, Takahisa; MITACHI, Koshi; SUZUKI, Takashi

    2005-01-01

    The Molten Salt Reactor (MSR) is a thermal neutron reactor with graphite moderation and operates on the thorium-uranium fuel cycle. The feature of the MSR is that fuel salt flows inside the reactor during the nuclear fission reaction. In the previous study, the authors developed numerical model with which to simulate the effects of fuel salt flow on the reactor characteristics. In this study, we apply the model to the steady-state analysis of a small MSR system and estimate the effects of fue...

  20. South African Crime Quarterly: Submissions

    African Journals Online (AJOL)

    Author Guidelines. SACQ is a quarterly journal published by the Crime and Justice Programme of the Institute for Security Studies. The journal is published in hard copy and is available on our website: www.issafrica.org. The journal is widely read nationally and internationally by criminal justice practitioners, researchers ...

  1. South African Crime Quarterly 56

    African Journals Online (AJOL)

    Edited by Chandré Gould and Andrew Faull

    We are very pleased to announce that the Institute for Security Studies (ISS) has partnered with the University of Cape Town (UCT) as co-custodians of the South African Crime Quarterly (SACQ). We believe that the UCT. Centre of Criminology's commitment to advancing policy-relevant research and analysis on public ...

  2. NST Quarterly - issue October 2001

    International Nuclear Information System (INIS)

    2001-01-01

    NST Quarterly reports current development in Nuclear Science and Technology in Malaysia. In this issue it reviews GM technology and GMOs - genetically modified organisms. The topics discussed includes the implication of GM in practice, the controversy and the prospect of GM technology. Radioactive pig - something like a ball or plug which cleanses the inner walls of the pipeline, also briefly presented

  3. NST Quarterly - April 2000 issue

    International Nuclear Information System (INIS)

    1999-01-01

    NST Quarterly reports current development in Nuclear Science and Technology in Malaysia. In this issue it highlights MINT activities in genetic engineering. The articles summarized the improvement of orchids and tulips through genetic engineering and generating new varieties for the floriculture industry. It also reported, MINT won gold and silver at the International Invention 2000, 12-16 April 2000, Geneva

  4. Molten salt reactors. Synthesis of studies realized between 1973 and 1983. Carbon-materials file

    International Nuclear Information System (INIS)

    1983-03-01

    The study of a molten salt fueled reactor requires a thorough examination of carbon containing materials for moderator, reflectors and structural materials. Are examined: texture, structure, physical and mechanical properties, chemical purity, neutron irradiation, salt-graphite and salt-lead interactions for different types of graphite. [fr

  5. Vapor pressure of plutonium carbide adsorbed on graphite

    International Nuclear Information System (INIS)

    Tallent, O.K.; Wichner, R.P.; Towns, R.L.; Godsey, T.T.

    1984-09-01

    An investigation was conducted to obtain data needed to make realistic estimates of plutonium contamination in the primary coolant system in High Temperature Gas-Cooled Reactors (HTGRs). The vapor pressure of plutonium over plutonium sesquicarbide (Pu 2 C 3 ) adsorbed on the surface of H-451 graphite was found to be defined by adsorption isotherms at test temperatures of 1000, 1200, and 1400 0 C. The vapor pressures at low concentrations of Pu 2 C 3 on the surface of the graphite were up to three orders of magnitude below that of pure Pu 2 C 3 at a given temperature. The heat of adsorption increases with decreasing Pu 2 C 3 surface coverage with the measured value at 0.05 μmol Pu 2 C 3 /m 2 being 107.9 kcal/mol. The Pu 2 C 3 concentration required for monolayer surface coverage on the graphite was found to be 3.27 μmol/m 2

  6. Graphite core stability during 'care and maintenance' and 'safe storage'

    International Nuclear Information System (INIS)

    Wickham, A.J.; Marsden, B.J.; Sellers, R.M.; Pilkington, N.J.

    1998-01-01

    The current decommissioning strategy for the graphite-moderated reactors operated by Magnox Electric plc, Nuclear Electric Ltd and Scottish Nuclear Ltd is to delay dismantling and to initiate a monitored period of care and maintenance followed by a period of safe storage totaling up to 135 years. This philosophy has the considerable advantage of permitting the majority of radionuclides to decay, thereby minimising personnel dose during dismantling which itself will require far less complex remote-handling equipment. It also defers the disposal of the graphite and other components so that the provision of a deep land-based repository can be achieved. A comprehensive review of all relevant data on the chemical, physical and mechanical properties of the graphite and its potential reactions, including radioactivity transport, has been undertaken in order to demonstrate that there are no potential mechanisms which might lead to degradation of the core during the storage period. It is concluded that no significant experimental work is necessary to support the safe storage philosophy although, since the ingress of rainwater over long periods of time cannot be assumed incredible, a number of anomalies in chemical leaching rates may be worthy of re-examination. No other potential chemical reactions, such as the radiolytic formation of nitric acid leading to corrosion problems, are considered significant. (author)

  7. Erosion of graphite cloth under bombardment with 20 keV hydrogen and helium ions

    International Nuclear Information System (INIS)

    Guseva, M.I.; Busharov, N.P.; Krasulin, Yu.L.; Rozina, I.A.

    1978-01-01

    Erosion of the WCA graphite cloth under the bombardment with 20 keV H 2 + and He + ions at temperatures up to 1200 deg C has been investigated. The cloth is suggested to use for the protection of the first wall of the UWMAK2 reactor from plasma effect. It has been established, that the determining factor of the surface damage degree is cloth temperature. Various temperatures of the cloth result in domination of one of the following erosion processes: blistering-effect when intruding helium ions, chemical atomization of the graphite cloth by the hydrogen ions, physical atomization of the cloth by the bombarding ions

  8. Fabrication of uranium carbide/beryllium carbide/graphite experimental-fuel-element specimens

    International Nuclear Information System (INIS)

    Muenzer, W.A.

    1978-01-01

    A method has been developed for fabricating uranium carbide/beryllium carbide/graphite fuel-element specimens for reactor-core-meltdown studies. The method involves milling and blending the raw materials and densifying the resulting blend by conventional graphite-die hot-pressing techniques. It can be used to fabricate specimens with good physical integrity and material dispersion, with densities of greater than 90% of the theoretical density, and with a uranium carbide particle size of less than 10 μm

  9. Quarterly, Bi-annual and Annual Reports

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Quarterly, Bi-annual and Annual Reports are periodic reports issued for public release. For the deep set fishery these reports are issued quarterly and anually....

  10. Nigerian Quarterly Journal of Hospital Medicine: Submissions

    African Journals Online (AJOL)

    Nigerian Quarterly Journal of Hospital Medicine: Submissions. Journal Home > About the Journal > Nigerian Quarterly Journal of Hospital Medicine: Submissions. Log in or Register to get access to full text downloads.

  11. Archives: Nigerian Quarterly Journal of Hospital Medicine

    African Journals Online (AJOL)

    Items 1 - 50 of 50 ... Archives: Nigerian Quarterly Journal of Hospital Medicine. Journal Home > Archives: Nigerian Quarterly Journal of Hospital Medicine. Log in or Register to get access to full text downloads.

  12. Areva revenue and data for the first quarter of 2008

    International Nuclear Information System (INIS)

    2008-01-01

    First quarter 2008 revenue was up 12.1% year-on-year, to 2.769 billion euros. Like-for-like (at constant exchange rates and consolidation scope), growth came to 14.5%. Foreign exchange had a negative impact of 2.5%, or -69 million euros, mainly due to currency translation tied to the US dollar drop compared with the euro. The consolidation scope had a positive impact of +0.7% or 18 million euros, chiefly as a result of the consolidation of VEI Distribution (specializing in medium voltage distribution) and Passoni and Villa (world leader in the manufacture of high voltage bushings) in the Transmission and Distribution division. The main growth engines for first quarter revenue were the Reactors and Services division and the Back End division, with growth of 29.7% (+36.8% LFL1) and 13.8% (+14.1% LFL1) respectively. Outside France, revenue rose to 1.857 billion euros, compared with 1.753 billion euros in the first quarter of 2007. This represents 67% of total revenue. As a reminder, the group points out that: - revenue can vary significantly from one quarter to the next in the nuclear businesses, and quarterly operations should therefore not be taken as a reliable basis for annual projections; - the foreign exchange impact mentioned in this release comes from the translation of subsidiary accounts into the group's unit of account, and primarily reflects the US dollar in relation to the euro. AREVA also points out that its foreign exchange hedging policy for commercial operations aims to shield profitability from fluctuations in exchange rates in relation to the euro

  13. Voronoi-Tessellated Graphite Produced by Low-Temperature Catalytic Graphitization from Renewable Resources.

    Science.gov (United States)

    Zhao, Leyi; Zhao, Xiuyun; Burke, Luke T; Bennett, J Craig; Dunlap, Richard A; Obrovac, Mark N

    2017-09-11

    A highly crystalline graphite powder was prepared from the low temperature (800-1000 °C) graphitization of renewable hard carbon precursors using a magnesium catalyst. The resulting graphite particles are composed of Voronoi-tessellated regions comprising irregular sheets; each Voronoi-tessellated region having a small "seed" particle located near their centroid on the surface. This suggests nucleated outward growth of graphitic carbon, which has not been previously observed. Each seed particle consists of a spheroidal graphite shell on the inside of which hexagonal graphite platelets are perpendicularly affixed. This results in a unique high surface area graphite with a high degree of graphitization that is made with renewable feedstocks at temperatures far below that conventionally used for artificial graphites. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Quarterly coal report, July--September 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-02-01

    The Quarterly Coal Report (QCR) provides comprehensive information about US coal production, distribution, exports, imports, receipts, prices, consumption, and stocks to a wide audience, including Congress, Federal and State agencies, the coal industry, and the general public. Coke production, consumption, distribution, imports, and exports data are also provided. This report presents detailed quarterly data for July through September 1998 and aggregated quarterly historical data for 1992 through the second quarter of 1998. 58 tabs.

  15. Graphite structure and magnetic parameters of flake graphite cast iron

    Czech Academy of Sciences Publication Activity Database

    Vértesy, G.; Uchimoto, T.; Takagi, T.; Tomáš, Ivan; Kage, H.

    2017-01-01

    Roč. 442, Nov (2017), s. 397-402 ISSN 0304-8853 R&D Projects: GA ČR GB14-36566G Institutional support: RVO:68378271 Keywords : magnetic NDE * magnetic adaptive testing * cast iron * graphite structure * pearlite content Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 2.630, year: 2016

  16. Graphite oxidation and structural strength of bottom support system in VHTR

    International Nuclear Information System (INIS)

    Park, Byung Ha

    2009-02-01

    The air-ingress event by a large pipe break is an important accident considered in design of very high-temperature gas-cooled reactors (VHTR). Core collapse prediction is a main safety issue. Graphite oxidation model and structural failure model are technically required. In this study, one main target is to develop graphite oxidation model based on Arrhenius model for graphite oxidation reaction. Kinetic parameters of IG-430 were measured. Temperature was controlled at the range of 540 to 800 .deg. C to estimate activation energy. Oxygen concentration was controlled over the range of 0 to 0.34 mole fraction to find order of reaction. It turns out that activation energy Ea was 258.15 ± 1.5 kJ/mol and order of reaction was 0.37 ± 0.04. The other main target is to develop the structural failure model. Graphite support column is important for VHTR structural integrity. Graphite support columns are under the axial load. Critical strength of graphite column is related to slenderness ratio and bulk density. Through compression tests for fresh and oxidized graphite columns we show that compressive strength of IG-110 was 79.46 MPa. And, the buckling strength of IG-110 column was expressed by the empirical formula. σ 0 = σ straight-line -C r L σ straight-live = 91.31 MPa, C=1.01 The results of uniform and non-uniform oxidation tests show that the strength degradation of oxidized graphite column is expressed in the following non-dimensional form: σ 0 /σ = exp(-kd), k=0.111 Also, from the results of the uniform oxidation test with a complicated-shape column, we found out that the above non-dimensional equation obtained from the uniform oxidation test is applicable to a uniform oxidation case with a complicated-shape column

  17. 3rd quarterly report 1976 of the Fast Breeder Project

    International Nuclear Information System (INIS)

    1976-12-01

    The report describes activities which were performed within the framework of the Fast Breeder Project at the Gesellschaft fuer Kernforschung mbH Karlsruhe (GfK) or on behalf of the GfK during the third quarter. It contains contributions on the following subjects: Fuel rod development, material studies and development, corrosion tests and coolant analyses, physical experiments, reactor theory, safety of fast breeders, instrumentation and signal processing for core monitoring, environmental impacts, sodium technology tests, thermo- and fluid-dynamic tests in gas, tests concerning gas-cooled breeders. (HR) [de

  18. High-temperature process heat reactor with solid coolant and radiant heat exchange

    International Nuclear Information System (INIS)

    Alekseev, A.M.; Bulkin, Yu.M.; Vasil'ev, S.I.

    1984-01-01

    The high temperature graphite reactor with the solid coolant in which heat transfer is realized by radiant heat exchange is described. Neutron-physical and thermal-technological features of the reactor are considered. The reactor vessel is made of sheet carbon steel in the form of a sealed rectangular annular box. The moderator is a set of graphite blocks mounted as rows of arched laying Between the moderator rows the solid coolant annular layings made of graphite blocks with high temperature nuclear fuel in the form of coated microparticles are placed. The coolant layings are mounted onto ring movable platforms, the continuous rotation of which is realizod by special electric drives. Each part of the graphite coolant laying consecutively passes through the reactor core neutron cut-off zones and technological zone. In the core the graphite is heated up to the temperature of 1350 deg C sufficient for effective radiant heat transfer. In the neutron cut-off zone the chain reaction and further graphite heating are stopped. In the technological zone the graphite transfers the accumulated heat to the walls of technological channels in which the working medium moves. The described reactor is supposed to be used in nuclear-chemical complex for ammonia production by the method of methane steam catalytic conversion

  19. Nuclear Rocket Program quarterly progress report: Fourth quarter

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    1965-12-31

    This document summarizes the progress of the ANL Nuclear Rocket Study during the fourth quarter of Calendar Year 1965. It is intended as a report of the status of the rocket program in the period following the publication of ANL-7111 (December 1965). The present document is one of a series of program reports which are issued on a regular quarterly basis. During the period of time encompassed by the present document, a major portion of the ANL nuclear rocket effort, as well as primary program emphasis, was placed upon the development of fuel elements and fuel-element systems. Concentration on these aspects of the rocket development effort reflects a general recognition on the part of ANL and the sponsoring agency that the solution of the problem of fuel-element fabrication constitutes the most critical phase of the program.

  20. Quarterly financial reports | IDRC - International Development ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Quarterly Financial Report for the period ending 31 December 2011 · Quarterly Financial Report for the period ending 30 September 2011 · Quarterly Financial Report for the period ending 30 June 2011 · Summary of Expense Reductions to Accommodate Budget 2012 Appropriation Reduction (PDF) · What we do · Funding ...

  1. 32 CFR 643.127 - Quarters.

    Science.gov (United States)

    2010-07-01

    ... Additional Authority of Commanders § 643.127 Quarters. The assignment and rental of quarters to civilian employees and other nonmilitary personnel will be accomplished in accordance with AR 210-50. Responsibility of the Corps of Engineers for the establishment of rental rates for quarters rented to civilian and...

  2. 10 CFR 34.29 - Quarterly inventory.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Quarterly inventory. 34.29 Section 34.29 Energy NUCLEAR... RADIOGRAPHIC OPERATIONS Equipment § 34.29 Quarterly inventory. (a) Each licensee shall conduct a quarterly physical inventory to account for all sealed sources and for devices containing depleted uranium received...

  3. Fuel element for high-temperature nuclear power reactors

    International Nuclear Information System (INIS)

    Schloesser, J.

    1974-01-01

    The fuel element of the HTGR consists of a spherical graphite body with a spherical cavity. A deposit of fissile material, e.g. coated particles of uranium carbide, is fixed to the inner wall using binders. In addition to the fissile material, there are concentric deposits of fertile material, e.g. coated thorium carbide particles. The remaining cavity is filled with a graphite mass, preferably graphite powder, and the filling opening with a graphite stopper. At the beginning of the reactor operation, the fissile material layer provides the whole power. With progressing burn-up, the energy production is taken over by the fertile layer, which provides the heat production until the end of burn-up. Due to the relatively small temperature difference between the outer wall of the outer graphite body and the maximum fuel temperature, the power of the fuel element can be increased. (DG) [de

  4. Joint Force Quarterly. Issue 77, 2nd Quarter 2015

    Science.gov (United States)

    2015-04-01

    Keystone course at National Defense University (DOD/Daniel Hinton) 52 JPME Today / Writing Faculty Papers for JPME JFQ 77, 2nd Quarter 2015 issue...Special Purpose, Embodied, Conversational Intelligence with Environmental Sensors ( SPECIES ) agent. His agent-based sys- tem builds on existing...assess human states, to include whether or not the human is being truthful. Derrick’s prototype SPECIES agent was built to interview potential

  5. Joint Force Quarterly. Issue 76, 1st Quarter 2015

    Science.gov (United States)

    2015-01-01

    a car, the doctors, sales - men, lawyers, pilots, military officers (my father was enlisted in the Army), police, firefighters, and store managers...effective, as demonstrated by regular changes in JFQ 76, 1st Quarter 2015 Duvall and Renfro 67 arms sales policies to Taiwan, it is the two approaches...pandemic commonly known as Swine Flu, which had not appeared in society in equal magnitude since 1918, spread from the state of Veracruz , Mexico, to

  6. Joint Force Quarterly. Issue 57, 2nd Quarter 2010

    Science.gov (United States)

    2010-04-01

    d quarter 2010 / JFQ 35 LOVINS fatalities in Afghanistan in 2009. Should that conflict follow an Iraq-like profile , its casualty rates could rise...Middle Eastern terrorism. It had been hoped that the invasion of Iraq would produce a domino supported violent antigovernment terrorists in Colombia ...products (all pharmaceutical ) against chemical, biological, and radiological attacks. 22 Available at <www.dhs.gov/xabout/laws/ gc_1219263961449.shtm#1

  7. Applied Meteorology Unit (AMU) Quarterly Report Fourth Quarter FY-04

    Science.gov (United States)

    Bauman, William; Wheeler, Mark; Lambert, Winifred; Case, Jonathan; Short, David

    2004-01-01

    This report summarizes the Applied Meteorology Unit (A MU) activities for the fourth quarter of Fiscal Year 2004 (July -Sept 2004). Tasks covered are: (1) Objective Lightning Probability Forecast: Phase I, (2) Severe Weather Forecast Decision Aid, (3) Hail Index, (4) Shuttle Ascent Camera Cloud Obstruction Forecast, (5) Advanced Regional Prediction System (ARPS) Optimization and Training Extension and (5) User Control Interface for ARPS Data Analysis System (ADAS) Data Ingest.

  8. Reactor physics of CANFLEX

    International Nuclear Information System (INIS)

    Sim, K. S.; Min, Byung Joo.

    1997-07-01

    Characteristic of reactor physics for CANFLEX-NU fuel core were calculated using final fuel design data. The results of analysis showed that there was no impact on reactor operations and safety. The above results of calculations and analysis were described in the physics design for CANFLEX-NU core. Various fuel models were evaluated for selecting high burnup fuel using recovered uranium. It is judged to be worse effects for reactor safety. Hence, the use of graphite within fuel was proposed and its results showed to be better. The analysis system of reactor physics for design and analysis of high burnup fuel was evaluated. Lattice codes and core code were reviewed. From the results, the probability of WIMS-AECL and HELIOS is known to be high for analysis of high burnup fuel. For the core code, RFSP, it was evaluated that the simplified 2 group equation should be replaced by explicit 2 group equation. This report also describes about the status of critical assemblies in other countries. (author). 58 refs., 41 tabs., 126 figs

  9. H Reactor

    Data.gov (United States)

    Federal Laboratory Consortium — The H Reactor was the first reactor to be built at Hanford after World War II.It became operational in October of 1949, and represented the fourth nuclear reactor on...

  10. French activities on gas cooled reactors

    International Nuclear Information System (INIS)

    Bastien, D.

    1996-01-01

    The gas cooled reactor programme in France originally consisted of eight Natural Uranium Graphite Gas Cooled Reactors (UNGG). These eight units, which are now permanently shutdown, represented a combined net electrical power of 2,375 MW and a total operational history of 163 years. Studies related to these reactors concern monitoring and dismantling of decommissioned facilities, including the development of methods for dismantling. France has been monitoring the development of HTRs throughout the world since 1979, when it halted its own HTR R and D programme. France actively participates in three CRPs set up by the IAEA. (author). 1 tab

  11. A study of the relationship between microstructure and oxidation effects in nuclear graphite at very high temperatures

    Science.gov (United States)

    Lo, I.-Hsuan; Tzelepi, Athanasia; Patterson, Eann A.; Yeh, Tsung-Kuang

    2018-04-01

    Graphite is used in the cores of gas-cooled reactors as both the neutron moderator and a structural material, and traditional and novel graphite materials are being studied worldwide for applications in Generation IV reactors. In this study, the oxidation characteristics of petroleum-based IG-110 and pitch-based IG-430 graphite pellets in helium and air environments at temperatures ranging from 700 to 1600 °C were investigated. The oxidation rates and activation energies were determined based on mass loss measurements in a series of oxidation tests. The surface morphology was characterized by scanning electron microscopy. Although the thermal oxidation mechanism was previously considered to be the same for all temperatures higher than 1000 °C, the significant increases in oxidation rate observed at very high temperatures suggest that the oxidation behavior of the selected graphite materials at temperatures higher than 1200 °C is different. This work demonstrates that changes in surface morphology and in oxidation rate of the filler particles in the graphite materials are more prominent at temperatures above 1200 °C. Furthermore, possible intrinsic factors contributing to the oxidation of the two graphite materials at different temperature ranges are discussed taking account of the dominant role played by temperature.

  12. Study on the properties of the fuel compact for High Temperature Gas-cooled Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chung-yong; Lee, Sung-yong; Choi, Min-young; Lee, Seung-jae; Jo, Young-ho [KEPCO Nuclear Fuel, Daejeon (Korea, Republic of); Lee, Young-woo; Cho, Moon-sung [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    High Temperature Gas-cooled Reactors (HTGR), one of the Gen-IV reactors, have been using the fuel element which is manufactured by the graphite matrix, surrounding Tristructural-isotropic (TRISO)-coated Uranium particles. Factors with these characteristics effecting on the matrix of fuel compact are chosen and their impacts on the properties are studied. The fuel elements are considered with two types of concepts for HTGR, which are the block type reactor and the pebble bed reactor. In this paper, the cylinder-formed fuel element for the block type reactor is focused on, which consists of the large part of graphite matrix. One of the most important properties of the graphite matrix is the mechanical strength with the high reliability because the graphite matrix should be enabled to protect the TRISO particles from the irradiation environment and the impact from the outside. In this study, the three kinds of candidate graphites and the two kinds of candidate binder (Phenol and Polyvinyl butyral) were chosen and mixed with each other, formed and heated to measure mechanical properties. The objective of this research is to optimize the materials and composition of the mixture and the forming process by evaluating the mechanical properties before/after carbonization and heat treatment. From the mechanical test results, the mechanical properties of graphite pellets was related to the various conditions such as the contents and kinds of binder, the kinds of graphite and the heat treatments. In the result of the compressive strength and Vicker's hardness, the 10 wt% phenol binder added R+S graphite pellet was relatively higher mechanical properties than other pellets. The contents of Phenol binder, the kinds of graphite powder and the temperature of carbonization and heat treatment are considered important factors for the properties. To optimize the mechanical properties of fuel elements, the role of binders and the properties of graphites will be investigated as

  13. Influence of Particle Size on Properties of Expanded Graphite

    Directory of Open Access Journals (Sweden)

    Kurajica, S

    2010-02-01

    Full Text Available Expanded graphite has been applied widely in thermal insulation, adsorption, vibration damping, gasketing, electromagnetic interference shielding etc. It is made by intercalation of natural flake graphite followed by thermal expansion. Intercalation is a process whereby an intercalant material is inserted between the graphene layers of a graphite crystal. Exfoliation, a huge unidirectional expansion of the starting intercalated flakes, occurs when the graphene layers are forced apart by the sudden decomposition and vaporization of the intercalated species by thermal shock. Along with production methodologies, such as the intercalation process and heat treatment, the raw material characteristics, especially particle size, strongly influence the properties of the final product.This report evaluates the influence of the particle size of the raw material on the intercalation and expansion processes and consequently the properties of the exfoliated graphite. Natural crystalline flake graphite with wide particle diameter distribution (between dp = 80 and 425 µm was divided into four size-range portions by sieving. Graphite was intercalated via perchloric acid, glacial acetic acid and potassium dichromate oxidation and intercalation procedure. 5.0 g of graphite, 7.0 g of perchloric acid, 4.0 g of glacial acetic acid and 2.0 g of potassium dichromate were placed in glass reactor. The mixture was stirred with n = 200 min–1 at temperature of 45 °C during 60 min. Then it was filtered and washed with distilled water until pH~6 and dried at 60 °C during 24 h. Expansion was accomplished by thermal shock at 1000 °C for 1 min. The prepared samples were characterized by means of exfoliation volume measurements, simultaneous differential thermal analysis and thermo-gravimetry (DTA/TGA, X-ray diffraction (XRD, Fourier transform infrared spectroscopy (FTIR, BET measurements and scanning electron microscopy (SEM.X-ray diffraction indicated a change of distance

  14. Quarterly coal report, October--December 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-05-01

    The Quarterly Coal Report (QCR) provides comprehensive information about US coal production, distribution, exports, imports, receipts, prices, consumption, and stocks to a wide audience, including Congress, Federal and State agencies, the coal industry, and the general public. Coke production, consumption, distribution, imports, and exports data are also provided. This report presents detailed quarterly data for October through December 1996 and aggregated quarterly historical data for 1990 through the third quarter of 1996. Appendix A displays, from 1988 on, detailed quarterly historical coal imports data. To provide a complete picture of coal supply and demand in the US, historical information has been integrated in this report. 8 figs., 72 tabs.

  15. Quarterly coal report, October--December 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    The Quarterly Coal Report (QCR) provides comprehensive information about US coal production, distribution, exports, imports, receipts, prices, consumption, and stocks to a wide audience, including Congress, Federal and State agencies, the coal industry, and the general public. Coke production, consumption, distribution, imports, and exports data are also provided. This report presents detailed quarterly data for October through December 1998 and aggregated quarterly historical data for 1992 through the third quarter of 1998. Appendix A displays, from 1992 on, detailed quarterly historical coal imports data. 58 tabs.

  16. Quarterly coal report, April--June, 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-11-01

    The Quarterly Coal Report (QCR) provides comprehensive information about US coal production, distribution, exports, imports, receipts, prices, consumption, and stocks to a wide audience, including Congress, Federal and State agencies, the coal industry, and the general public. Coke production, consumption, distribution, imports, and exports data are also provided. This report presents detailed quarterly data for April through June 1998 and aggregated quarterly historical data for 1992 through the first quarter of 1998. Appendix A displays, from 1992 on, detailed quarterly historical coal imports data. 58 tabs.

  17. NST Quarterly - January 1997 issue

    International Nuclear Information System (INIS)

    1997-01-01

    NST Quarterly reports current development in Nuclear Science and Technology in Malaysia. In this issue it highlights MINT activities in local heat shrinkable copolymer and electron beam technology for purification of flue gases. It announces an International Nuclear Conference themed ' a new era in nuclear science and technology - the challenge of the 21 century ' will be held in Kuala Lumpur, Malaysia from 29 to 30 Sept 1997

  18. 3. quarter 2006 sales revenue

    International Nuclear Information System (INIS)

    2006-10-01

    This document presents the sales revenue of the 3. quarter 2006 for the Group AREVA. The sales revenues for the first nine months of 2006 are up by 8,1% to 7,556 millions euros; the nuclear operations are up by 5,2% reflecting strong performance in the front end division; the transmission and distribution division is up by 14%. (A.L.B.)

  19. Research reactors; Les piles de recherche

    Energy Technology Data Exchange (ETDEWEB)

    Kowarski, L. [Commissariat a l' Energie Atomique, Paris (France). Centre d' Etudes Nucleaires]|[Organisation europeenne pour la Recherche Nucleaire, Geneve (Switzerland)

    1955-07-01

    It brings together the techniques data which are involved in the discussion about the utility for a research institute to acquire an atomic reactor for research purposes. This type of decision are often taken by non-specialist people who can need a brief presentation of a research reactor and its possibilities in term of research before asking advises to experts. In a first part, it draws up a list of the different research programs which can be studied by getting a research reactor. First of all is the reactor behaviour and kinetics studies (reproducibility factor, exploration of neutron density, effect of reactor structure, effect of material irradiation...). Physical studies includes study of the behaviour of the control system, studies of neutron resonance phenomena and study of the fission process for example. Chemical studies involves the study of manipulation and control of hot material, characterisation of nuclear species produced in the reactor and chemical effects of irradiation on chemical properties and reactions. Biology and medicine research involves studies of irradiation on man and animals, genetics research, food or medical tools sterilization and neutron beams effect on tumour for example. A large number of other subjects can be studied in a reactor research as reactor construction material research, fabrication of radioactive sources for radiographic techniques or applied research as in agriculture or electronic. The second part discussed the technological considerations when choosing the reactor type. The technological factors, which are considered for its choice, are the power of the reactor, the nature of the fuel which is used, the type of moderator (water, heavy water, graphite or BeO) and the reflector, the type of coolants, the protection shield and the control systems. In the third part, it described the characteristics (place of installation, type of combustible and comments) and performance (power, neutron flux ) of already existing

  20. Environmentally benign graphite intercalation compound composition for exfoliated graphite, flexible graphite, and nano-scaled graphene platelets

    Energy Technology Data Exchange (ETDEWEB)

    Zhamu, Aruna; Jang, Bor Z.

    2014-06-17

    A carboxylic-intercalated graphite compound composition for the production of exfoliated graphite, flexible graphite, or nano-scaled graphene platelets. The composition comprises a layered graphite with interlayer spaces or interstices and a carboxylic acid residing in at least one of the interstices, wherein the composition is prepared by a chemical oxidation reaction which uses a combination of a carboxylic acid and hydrogen peroxide as an intercalate source. Alternatively, the composition may be prepared by an electrochemical reaction, which uses a carboxylic acid as both an electrolyte and an intercalate source. Exfoliation of the invented composition does not release undesirable chemical contaminants into air or drainage.

  1. Double plasma arc in a graphite tube - application of discharge atmospheres

    International Nuclear Information System (INIS)

    Arens, C.; Nickel, H.; Mazurkiewicz, M.; Vukanovic, D.

    1981-01-01

    With a view to safety and economic efficiency element-specific limits are required for permissible impurities in reactor graphite. This leads to the necessity of developing suitable methods of analysis. Emission spectroscopy has proved to be a method of analysis featuring a high detection capability and offering the possibility of determining several elements simultaneously. A prolongation of the particle residence time in the plasma (and, thus, an increase in radiation intensity) was the objective when developing a novel spectrochemical source of excitation. The method uses two d.c. arcs burning in a horizontally arranged graphite tube. The double plasma arc in a graphite tube has proved to be an excellent source of excitation for the analysis of powder and solutions. (orig./IHOE)

  2. Updating irradiated graphite disposal: Project 'GRAPA' and the international decommissioning network.

    Science.gov (United States)

    Wickham, Anthony; Steinmetz, Hans-Jürgen; O'Sullivan, Patrick; Ojovan, Michael I

    2017-05-01

    Demonstrating competence in planning and executing the disposal of radioactive wastes is a key factor in the public perception of the nuclear power industry and must be demonstrated when making the case for new nuclear build. This work addresses the particular waste stream of irradiated graphite, mostly derived from reactor moderators and amounting to more than 250,000 tonnes world-wide. Use may be made of its unique chemical and physical properties to consider possible processing and disposal options outside the normal simple classifications and repository options for mixed low or intermediate-level wastes. The IAEA has an obvious involvement in radioactive waste disposal and has established a new project 'GRAPA' - Irradiated Graphite Processing Approaches - to encourage an international debate and collaborative work aimed at optimising and facilitating the treatment of irradiated graphite. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. A review of irradiation induced creep in graphite under CAGR conditions

    International Nuclear Information System (INIS)

    Brocklehurst, J.E.; Kelly, B.T.

    1989-06-01

    Graphite irradiation induced creep data have been reviewed in detail and compared with the existing model used for stress calculations under Commercial Advanced Gas Cooled Reactor conditions. The relationship between creep and elastic modulus is well established and allows the creep behaviour of any graphite in any orientation to be predicted. The model predicts the initial build up of creep strain in different graphites extremely well. However, there are differences between prediction and experiment in creep at high doses; a creep test on a pre-irradiated specimen showed rather more creep ductility than predicted, whilst in experiments under a constant stress applied for the whole period of irradiation, the creep rates decreased to lower values than predicted. It is suggested that to obtain better estimates of brick stresses future irradiation experiments should aim to generate creep data under realistic variations in applied stress level, or rather creep strain history. (author)

  4. Evaluation of the oxidation behavior and strength of the graphite components in the VHTR, (1)

    International Nuclear Information System (INIS)

    Eto, Motokuni; Kurosawa, Takeshi; Nomura, Shinzo; Imai, Hisashi

    1987-04-01

    Oxidation experiments have been carried out mainly on a fine-grained isotropic graphite, IG-110, at temperatures between 1173 and 1473 K in a water vapor/helium mixture. In most cases water vapor concentration was 0.65 vol% and helium pressure, 1 atm. Reaction rate and burn-off profile were measured using cylindrical specimens. On the basis of the experimental data the oxidation behavior of fuel block and core support post under the condition of the VHTR operation was estimated using the first-order or Langmuir-Hinshelwood equation with regard to water vapor concentration. Strength and stress-strain relationship of the graphite components with burn-off profiles estimated above were analyzed on the basis of the model for stress-strain relationship and strength of graphite specimens with density gradients. The estimation indicated that the integrity of the components would be maintained during normal reactor operation. (author)

  5. Quality assurance for the IAEA International Database on Irradiated Nuclear Graphite Properties

    International Nuclear Information System (INIS)

    Wickham, A.J.; Humbert, D.

    2006-06-01

    Consideration has been given to the process of Quality Assurance applied to data entered into current versions of the IAEA International Database on Irradiated Nuclear Graphite Properties. Originally conceived simply as a means of collecting and preserving data on irradiation experiments and reactor operation, the data are increasingly being utilised for the preparation of safety arguments and in the design of new graphites for forthcoming generations of graphite-moderated plant. Under these circumstances, regulatory agencies require assurances that the data are of appropriate accuracy and correctly transcribed, that obvious errors in the original documentation are either highlighted or corrected, etc., before they are prepared to accept analyses built upon these data. The processes employed in the data transcription are described in this document, and proposals are made for the categorisation of data and for error reporting by Database users. (author)

  6. Pyrolytic graphite gauge for measuring heat flux

    Science.gov (United States)

    Bunker, Robert C. (Inventor); Ewing, Mark E. (Inventor); Shipley, John L. (Inventor)

    2002-01-01

    A gauge for measuring heat flux, especially heat flux encountered in a high temperature environment, is provided. The gauge includes at least one thermocouple and an anisotropic pyrolytic graphite body that covers at least part of, and optionally encases the thermocouple. Heat flux is incident on the anisotropic pyrolytic graphite body by arranging the gauge so that the gauge surface on which convective and radiative fluxes are incident is perpendicular to the basal planes of the pyrolytic graphite. The conductivity of the pyrolytic graphite permits energy, transferred into the pyrolytic graphite body in the form of heat flux on the incident (or facing) surface, to be quickly distributed through the entire pyrolytic graphite body, resulting in small substantially instantaneous temperature gradients. Temperature changes to the body can thereby be measured by the thermocouple, and reduced to quantify the heat flux incident to the body.

  7. ISX-A graphite limiter experiment

    International Nuclear Information System (INIS)

    Langley, R.A.; Colchin, R.J.; Isler, R.C.; Murakami, M.; Simpkins, J.E.; Cecchi, J.L.; Corso, V.L.; Dylla, H.F.; Ellis, R.A. Jr.; Nishi, M.

    1979-01-01

    Graphite limiters were installed and tested in the ISX-A tokamak as part of the ISX-A surface physics program and the TFTR materials research program. The puropse of the experiment was to compare plasma performance using graphite limiters as opposed to the standard ISX-A stainless steel limiters. Heaters were installed in the graphite limiters so that the effects of operation at elevated temperatures could be evaluated

  8. Graphitic Carbon Nitride Materials for Energy Applications

    OpenAIRE

    Belen Jorge, A.; Dedigama, I.; Mansor, N.; Jervis, R.; Corà, F.; McMillan, P. F.; Brett, D.

    2015-01-01

    Polymeric layered carbon nitrides were investigated for use as catalyst support materials for proton exchange membrane fuel cells (PEMFCs) and water electrolyzers (PEMWEs). Three different carbon nitride materials were prepared: a heptazine-based graphitic carbon nitride material (gCNM), poly (triazine) imide carbon nitride intercalated with LiCl component (PTI-Li+Cl-) and boron-doped graphitic carbon nitride (B-gCNM). Following accelerated corrosion testing, all graphitic carbon nitride mate...

  9. Dynamics of graphite flake on a liquid

    Science.gov (United States)

    Miura, K.; Tsuda, D.; Kaneta, Y.; Harada, R.; Ishikawa, M.; Sasaki, N.

    2006-11-01

    One-directional motion, where graphite flakes are driven by a nanotip on an octamethylcyclotetrasiloxane (OMCTS) liquid surface, is presented. A transition from quasiperiodic to chaotic motions occurs in the dynamics of a graphite flake when its velocity is increased. The dynamics of graphite flakes pulled by the nanotip on an OMCTS liquid surface can be treated as that of a nanobody on a liquid.

  10. Graphite-to-metal bonding techniques

    International Nuclear Information System (INIS)

    Lindquist, L.O.; Mah, R.

    1977-11-01

    The results of various bonding methods to join graphite to different metals are reported. Graphite/metal bonds were tested for thermal flux limits and thermal flux cycling lifetimes. The most successful bond transferred a heat flux of 6.50 MW/m 2 in more than 500 thermal cycles. This bond was between pyrolytic graphite and copper with Ti-Cu-Sil as the bonding agent

  11. Utilizing the slowing-down-time technique for benchmarking neutron thermalization in graphite

    International Nuclear Information System (INIS)

    Zhou, T.; Hawari, A. I.; Wehring, B. W.

    2007-01-01

    Graphite is the moderator/reflector in the Very High Temperature Reactor (VHTR) concept of Generation IV reactors. As a thermal reactor, the prediction of the thermal neutron spectrum in the VHTR is directly dependent on the accuracy of the thermal neutron scattering libraries of graphite. In recent years, work has been on-going to benchmark and validate neutron thermalization in 'reactor grade' graphite. Monte Carlo simulations using the MCNP5 code were used to design a pulsed neutron slowing-down-time experiment and to investigate neutron slowing down and thermalization in graphite at temperatures relevant to VHTR operation. The unique aspect of this experiment is its ability to observe the behavior of neutrons throughout an energy range extending from the source energy to energies below 0.1 eV. In its current form, the experiment is designed and implemented at the Oak Ridge Electron Linear Accelerator (ORELA). Consequently, ORELA neutron pulses are injected into a 70 cm x 70 cm x 70 cm graphite pile. A furnace system that surrounds the pile and is capable of heating the graphite to a centerline temperature of 1200 K has been designed and built. A system based on U-235 fission chambers and Li-6 scintillation detectors surrounds the pile. This system is coupled to multichannel scaling instrumentation and is designed for the detection of leakage neutrons as a function of the slowing-down-time (i.e., time after the pulse). To ensure the accuracy of the experiment, careful assessment was performed of the impact of background noise (due to room return neutrons) and pulse-to-pulse overlap on the measurement. Therefore, the entire setup is surrounded by borated polyethylene shields and the experiment is performed using a source pulse frequency of nearly 130 Hz. As the basis for the benchmark, the calculated time dependent reaction rates in the detectors (using the MCNP code and its associated ENDF-B/VI thermal neutron scattering libraries) are compared to measured

  12. Graphite-based detectors of alkali metals for nuclear power plants

    International Nuclear Information System (INIS)

    Kalandarishvili, A.G.; Kuchukhidze, V.A.; Sordiya, T.D.; Shartava, Sh.Sh.; Stepennov, B.S.

    1993-01-01

    The coolants most commonly used in today's fast reactors are alkali metals or their alloys. A major problem in nuclear plant design is leakproofing of the liquid-metal cooling system, and many leak detection methods and safety specifications have been developed as a result. Whatever the safety standards adopted for nuclear plants in different countries, they all rely on the basic fact that control of the contamination and radiation hazards involved requires reliable monitoring equipment. Results are presented of trials with some leak detectors for the alkali-metal circuits of nuclear reactors. The principal component affecting the detector performance is the sensing element. In the detectors graphite was employed, whose laminar structure enables it to absorb efficiently alkali-metal vapors at high temperatures (320--500 K). This produces a continuous series of alkali-metal-graphite solid solutions with distinct electrical, thermal, and other physical properties. The principle of operation of the detectors resides in the characteristic reactions of the metal-graphite system. One detector type uses the change of electrical conductivity of the graphite-film sensor when it is exposed to alkali-metal vapor. In order to minimize the effect of temperature on the resistance the authors prepared composite layers of graphite intercalated with a donor impurity (cesium or barium), and a graphite-nickel material. The addition of a small percentage of cesium, barium, or nickel produces a material whose temperature coefficient of resistance is nearly zero. Used as a sensing element, such a material can eliminate the need for thermostatic control of the detector

  13. The Fracture Toughness of Nuclear Graphites Grades

    Energy Technology Data Exchange (ETDEWEB)

    Burchell, Timothy D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Erdman, III, Donald L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lowden, Rick R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hunter, James A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hannel, Cara C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-04-01

    New measurements of graphite mode I critical stress intensity factor, KIc (commonly referred to as the fracture toughness) and the mode II critical shear stress intensity, KIIc, are reported and compared with prior data for KIc and KIIc. The new data are for graphite grades PCEA, IG-110 and 2114. Variations of KIc and acoustic emission (AE) data with graphite texture are reported and discussed. The Codes and Standards applications of fracture toughness, KIc, data are also discussed. A specified minimum value for nuclear graphite KIc is recommended.

  14. AC induction field heating of graphite foam

    Science.gov (United States)

    Klett, James W.; Rios, Orlando; Kisner, Roger

    2017-08-22

    A magneto-energy apparatus includes an electromagnetic field source for generating a time-varying electromagnetic field. A graphite foam conductor is disposed within the electromagnetic field. The graphite foam when exposed to the time-varying electromagnetic field conducts an induced electric current, the electric current heating the graphite foam. An energy conversion device utilizes heat energy from the heated graphite foam to perform a heat energy consuming function. A device for heating a fluid and a method of converting energy are also disclosed.

  15. Characterization of commercial expandable graphite fire retardants

    Energy Technology Data Exchange (ETDEWEB)

    Focke, Walter Wilhelm, E-mail: walter.focke@up.ac.za; Badenhorst, Heinrich; Mhike, Washington; Kruger, Hermanus Joachim; Lombaard, Dewan

    2014-05-01

    Highlights: • Expandable graphite is less well-ordered than its graphite bisulfate progenitor. • It includes graphite oxide as a randomly interstratified phase. • CO{sub 2}, CO and SO{sub 2} are released during thermal-driven exfoliation. - Abstract: Thermal analysis and other techniques were employed to characterize two expandable graphite samples. The expansion onset temperatures of the expandable graphite's were ca. 220 °C and 300 °C respectively. The key finding is that the commercial products are not just pure graphite intercalation compounds with sulfuric acid species intercalated as guest ions and molecules in between intact graphene layers. A more realistic model is proposed where graphite oxide-like layers are also randomly interstratified in the graphite flakes. These graphite oxide-like layers comprise highly oxidized graphene sheets which contain many different oxygen-containing functional groups. This model explains the high oxygen to sulfur atomic ratios found in both elemental analysis of the neat materials and in the gas generated during the main exfoliation event.

  16. Study of corrosion resistance graphite in oxygen

    International Nuclear Information System (INIS)

    Zelenskij, V.F.; Odejchuk, N.P.; Petel'guzov, I.A.; Ryzhov, V.P.; Yakovlev, V.K.

    2011-01-01

    The paper presents the results of the corrosion resistance of MPG, ARV and GSP graphite grades in oxygen at temperatures of 400, 600 and 800 o C. The oxidation kinetics of graphites is defined. It is shown, that interaction process of graphites with oxygen is characterized by a decrease of sample weights. The description of installation for carrying out of tests and a technique of carrying out of tests and researches is resulted. It is shown that the best corrosion resistance in the investigated temperature range has GSP graphite with density of 1.8-1.9 g/cm 3 of NSC KIPT production.

  17. Low temperature vapor phase digestion of graphite

    Energy Technology Data Exchange (ETDEWEB)

    Pierce, Robert A.

    2017-04-18

    A method for digestion and gasification of graphite for removal from an underlying surface is described. The method can be utilized to remove graphite remnants of a formation process from the formed metal piece in a cleaning process. The method can be particularly beneficial in cleaning castings formed with graphite molding materials. The method can utilize vaporous nitric acid (HNO.sub.3) or vaporous HNO.sub.3 with air/oxygen to digest the graphite at conditions that can avoid damage to the underlying surface.

  18. Applied Meteorology Unit (AMU) Quarterly Report - Fourth Quarter FY-09

    Science.gov (United States)

    Bauman, William; Crawford, Winifred; Barrett, Joe; Watson, Leela; Wheeler, Mark

    2009-01-01

    This report summarizes the Applied Meteorology Unit (AMU) activities for the fourth quarter of Fiscal Year 2009 (July - September 2009). Tasks reports include: (1) Peak Wind Tool for User Launch Commit Criteria (LCC), (2) Objective Lightning Probability Tool. Phase III, (3) Peak Wind Tool for General Forecasting. Phase II, (4) Update and Maintain Advanced Regional Prediction System (ARPS) Data Analysis System (ADAS), (5) Verify MesoNAM Performance (6) develop a Graphical User Interface to update selected parameters for the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLlT)

  19. Short-term energy outlook, quarterly projections, second quarter 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-04-01

    The Energy Information Administration (EIA) prepares quarterly short-term energy supply, demand, and price projections. The details of these projections, as well as monthly updates, are available on the Internet at: www.eia.doe.gov/emeu/steo/pub/contents.html. The paper discusses outlook assumptions; US energy prices; world oil supply and the oil production cutback agreement of March 1998; international oil demand and supply; world oil stocks, capacity, and net trade; US oil demand and supply; US natural gas demand and supply; US coal demand and supply; US electricity demand and supply; US renewable energy demand; and US energy demand and supply sensitivities. 29 figs., 19 tabs.

  20. Applied Meteorology Unit (AMU) Quarterly Report. First Quarter FY-05

    Science.gov (United States)

    Bauman, William; Wheeler, Mark; Lambert, Winifred; Case, Jonathan; Short, David

    2005-01-01

    This report summarizes the Applied Meteorology Unit (AMU) activities for the first quarter of Fiscal Year 2005 (October - December 2005). Tasks reviewed include: (1) Objective Lightning Probability Forecast: Phase I, (2) Severe Weather Forecast Decision Aid, (3) Hail Index, (4) Stable Low Cloud Evaluation, (5) Shuttle Ascent Camera Cloud Obstruction Forecast, (6) Range Standardization and Automation (RSA) and Legacy Wind Sensor Evaluation, (7) Advanced Regional Prediction System (ARPS) Optimization and Training Extension, and (8) User Control Interface for ARPS Data Analysis System (ADAS) Data Ingest

  1. Applied Meteorology Unit (AMU) Quarterly Report Third Quarter FY-08

    Science.gov (United States)

    Bauman, William; Crawford, Winifred; Barrett, Joe; Watson, Leela; Dreher, Joseph

    2008-01-01

    This report summarizes the Applied Meteorology Unit (AMU) activities for the third quarter of Fiscal Year 2008 (April - June 2008). Tasks reported on are: Peak Wind Tool for User Launch Commit Criteria (LCC), Anvil Forecast Tool in AWIPS Phase II, Completion of the Edward Air Force Base (EAFB) Statistical Guidance Wind Tool, Volume Averaged Height Integ rated Radar Reflectivity (VAHIRR), Impact of Local Sensors, Radar Scan Strategies for the PAFB WSR-74C Replacement, VAHIRR Cost Benefit Analysis, and WRF Wind Sensitivity Study at Edwards Air Force Base

  2. H-division quarterly report, October--December 1977

    International Nuclear Information System (INIS)

    1978-01-01

    The Theoretical EOS Group develops theoretical techniques for describing material properties under extreme conditions and constructs equation-of-state (EOS) tables for specific applications. Work this quarter concentrated on a Li equation of state, equation of state for equilibrium plasma, improved ion corrections to the Thomas--Fermi--Kirzhnitz theory, and theoretical estimates of high-pressure melting in metals. The Experimental Physics Group investigates properties of materials at extreme conditions of pressure and temperature, and develops new experimental techniques. Effort this quarter concerned the following: parabolic projectile distortion in the two-state light-gas gun, construction of a ballistic range for long-rod penetrators, thermodynamics and sound velocities in liquid metals, isobaric expansion measurements in Pt, and calculation of the velocity--mass profile of a jet produced by a shaped charge. Code development was concentrated on the PELE code, a multimaterial, multiphase, explicit finite-difference Eulerian code for pool suppression dynamics of a hypothetical loss-of-coolant accident in a nuclear reactor. Activities of the Fluid Dynamics Group were directed toward development of a code to compute the equations of state and transport properties of liquid metals (e.g. Li) and partially ionized dense plasmas, jet stability in the Li reactor system, and the study and problem application of fluid dynamic turbulence theory. 19 figures, 5 tables

  3. Effects of porosity and temperature on oxidation behavior in air of selected nuclear graphites

    International Nuclear Information System (INIS)

    Chen Dongyue; Li Zhengcao; Miao Wei; Zhang Zhengjun

    2012-01-01

    Nuclear graphite endures gas oxidation in High Temperature Gas-cooled Reactor (HTGR), which may threaten the safety of reactor. To study the oxidation behavior of nuclear graphite, weight loss curve is usually measured through Thermo Gravimetric Analysis (TGA) method. In this work, three brands of nuclear graphite for HTGR (i.e., HSM-SC, IG-11, and NBG-18) are oxidized under 873 and 1073 K in open air, and their weight loss curves are obtained. The acceleration of oxidizing rate is observed for both HSM-SC and IG-11, and is attributed to the large porosity increase during oxidation process. For HSM-SC, the porosity increase comes from preferential binder oxidation, and thus its binder quality shall be improved to obtain better oxidation resistance. Temperature effects on oxidation for HSM-SC are also studied, which shows that oxidizing gas tends to be exhausted at graphite surface at high temperature instead of penetrate into the interior of bulk. (author)

  4. Diffusion bonding as joining technique for fusion reactor components

    Energy Technology Data Exchange (ETDEWEB)

    Ceccotti, G.C.; Magnoli, L.

    1992-11-01

    The development of joining techniques for fusion reactor divertors has been undertaken at ENEA (Italian Agency for Energy, New Technologies and the Environment) IFEC Saluggia. Joints were made by the diffusion bonding technique between graphite composite material with DS copper and with molybdenum TZM alloy, respectively. The inter-layers, when necessary, were obtained by metallization with an electronic gun. The same technique is employed in joining Be/SS, DS copper/Be, TZM/Be and graphite/Be for the first wall or plasma facing components of fusion reactors. In this case, a suitable inter-layer material can avoid the problems occuring with the more traditional brazing processes.

  5. First quarter 2005 sales data; Chiffre d'affaires du 1. trimestre 2005

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-04-15

    This press release brings information on the AREVA group sales data. First quarter 2005 sales for the group were 2,496 millions of euros, up 3,6% year-on-year from 2,41 millions. The change in foreign exchange rates between the two periods show a negative impact of 22 millions euros, which is much lower than in the first quarter of 2004. It analyzes also in more details the situation of the front end, the reactors and service division, the back end division, the transmission and distribution division and the connectors division. (A.L.B.)

  6. The uncertain future for nuclear graphite disposal: Crisis or opportunity?

    International Nuclear Information System (INIS)

    Wickham, A.J.; Neighbour, G.B.; Dubourg, M.

    2001-01-01

    Over the last twenty years, numerous proposals have been made for the long-term treatment of radioactive graphite waste. These plans have ranged from sea dumping through incineration to land-based disposal, sometimes preceded by a variable period of 'safe-storage' within the original reactor containment, to allow for the decay of shorter-lived isotopes ahead of dismantling. A number of novel chemical or physical pre-treatments of the graphite, with the objective of facilitating its subsequent disposal or improving the environmental consequences of the chosen disposal route, have also been suggested. There are patents issued on systems for transmutation of long-lived isotopes to reduce the radiological consequences of disposal of intact graphite, and for separation of certain isotopes such as carbon-14 from the matrix in an incineration process. Although these far-reaching proposals are not apparently cost-effective, scope for cost-recovery does exist, i.e., in terms of disposal of the separated carbon-14 in cements used for immobilisation of other radioactive solid waste materials. More recently, political and environmental factors have further complicated the issue. Nuclear regulators are challenging the proposed length of 'safe-storage' schemes on the basis that essential knowledge on the reactor materials may be lost in the interim. International agreements such as OSPAR have effectively eliminated the possibility for disposal at sea, whilst public opinion is strongly expressed against any expansion of existing land-based disposal sites or the creation of new ones. As a particular example, the United Kingdom authorities recently denied to the official body charged with the development of a deep repository the necessary planning consents to develop an exploratory rock-structure laboratory on the most favoured site. The current drive towards minimising or eliminating any radioactivity release to the environment has the unintended consequence of causing the waste

  7. Characterization of radiation damage induced by swift heavy ions in graphite

    Energy Technology Data Exchange (ETDEWEB)

    Hubert, Christian

    2016-05-15

    Graphite is a classical material in neutron radiation environments, being widely used in nuclear reactors and power plants as a moderator. For high energy particle accelerators, graphite provides ideal material properties because of the low Z of carbon and its corresponding low stopping power, thus when ion projectiles interact with graphite is the energy deposition rather low. This work aims to improve the understanding of how the irradiation with swift heavy ions (SHI) of kinetic energies in the range of MeV to GeV affects the structure of graphite and other carbon-based materials. Special focus of this project is given to beam induced changes of thermo-mechanical properties. For this purpose the Highly oriented pyrolytic graphite (HOPG) and glassy carbon (GC) (both serving as model materials), isotropic high density polycrystalline graphite (PG) and other carbon based materials like carbon fiber carbon composites (CFC), chemically expanded graphite (FG) and molybdenum carbide enhanced graphite composites (MoC) were exposed to different ions ranging from {sup 131}Xe to {sup 238}U provided by the UNILAC accelerator at GSI in Darmstadt, Germany. To investigate structural changes, various in-situ and off-line measurements were performed including Raman spectroscopy, x-ray diffraction and x-ray photo-electron spectroscopy. Thermo-mechanical properties were investigated using the laser-flash-analysis method, differential scanning calorimetry, micro/nano-indentation and 4-point electrical resistivity measurements. Beam induced stresses were investigated using profilometry. Obtained results provided clear evidence that ion beam-induced radiation damage leads to structural changes and degradation of thermal, mechanical and electrical properties of graphite. PG transforms towards a disordered sp2 structure, comparable to GC at high fluences. Irradiation-induced embrittlement is strongly reducing the lifetime of most high-dose exposed accelerator components. For

  8. Quarterly coal report, January--March 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-08-01

    This Quarterly Coal Report (QCR) provides comprehensive information about U.S. coal production, distribution, exports, imports, receipts, prices, consumption, and stocks to a wide audience,including Congress, Federal and State agencies, the coal industry, and the general public. Coke production, consumption, distribution, imports, and exports data are also provided. The data presented in the QCR are collected and published by the Energy Information Administration (EIA) to fulfill data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275), as amended. This report presents detailed quarterly data for January through March 1997 and aggregated quarterly historical data for 1991 through the fourth quarter of 1996. Appendix A displays, from 1988 on, detailed quarterly historical coal imports data, as specified in Section 202 of the Energy Policy and Conservation Amendments Act of 1985 (Public Law 99-58). Appendix B gives selected quarterly tables converted to metric tons.

  9. Quarterly coal report, October--December 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-05-01

    The Quarterly Coal Report (QCR) provides comprehensive information about US coal production, distribution, exports, imports, receipts, prices, consumption, and stocks to a wide audience, including Congress, Federal and State agencies, the coal industry, and the general public. Coke production, consumption, distribution, imports, and exports data are also provided. The data presented in the QCR are collected and published by the Energy Information Administration (EIA) to fulfill data collection and dissemination responsibilities. This report presents detailed quarterly data for october through December 1997 and aggregated quarterly historical data for 1991 through the third quarter of 1997. Appendix A displays, from 1991 on, detailed quarterly historical coal imports data, as specified in Section 202 of the energy Policy and Conservation Amendments Act of 1985 (Public Law 99-58). Appendix B gives selected quarterly tables converted to metric tons. To provide a complete picture of coal supply and demand in the US, historical information has been integrated in this report. 8 figs., 73 tabs.

  10. Quarterly coal report, October--December 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-05-23

    The Quarterly Coal Report (QCR) provides comprehensive information about US coal production, distribution, exports, imports, receipts, prices, consumption, and stocks to a wide audience, including Congress, Federal and State agencies, the coal industry, and the general public. Coke production, consumption, distribution, imports, and exports data are also provided. The data presented in the QCR are collected and published by the Energy Information Administration (EIA) to fulfill data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275), as amended. This report presents detailed quarterly data for October through December 1994 and aggregated quarterly historical data for 1986 through the third quarter of 1994. Appendix A displays, from 1986 on, detailed quarterly historical coal imports data, as specified in Section 202 of the Energy Policy and Conservation Amendments Act of 1985 (Public Law 99-58). Appendix B gives selected quarterly tables converted to metric tons.

  11. Quarterly coal report, January--March 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-24

    The Quarterly Coal Report (QCR) provides comprehensive information about US coal production, distribution, exports, imports, receipts, prices, consumption, and stocks to a wide audience, including Congress, Federal and State agencies, the coal industry, and the general public. Coke production, consumption, distribution, imports, and exports data are also provided. The data presented in the QCR are collected and published by the Energy Information Administration (EIA) to fulfill data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275), as amended. This report presents detailed quarterly data for January through March 1995 and aggregated quarterly historical data for 1987 through the fourth quarter of 1994. Appendix A displays, from 1987 on, detailed quarterly historical coal imports data, as specified in Section 202 of the Energy Policy and Conservation Amendments Act of 1985 (Public Law 99-58). Appendix B gives selected quarterly tables converted to metric tons.

  12. Quarterly coal report, January--March 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-08-24

    The Quarterly Coal Report (QCR) provides comprehensive information about US coal production, distribution, exports, imports, receipts, prices, consumption, and stocks to a wide audience, including Congress, Federal and State agencies, the coal industry, and the general public. Coke production, consumption, distribution, imports, and exports data are also provided. The data presented in the QCR are collected and published by the Energy Information Administration (EIA) to fulfill data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275), as amended. This report presents detailed quarterly data for January through March 1994 and aggregated quarterly historical data for 1986 through the fourth quarter of 1993. Appendix A displays, from 1986 on, detailed quarterly historical coal imports data, as specified in Section 202 of the Energy Policy and Conservation Amendments Act of 1985 (Public Law 99-58). Appendix B gives selected quarterly tables converted to metric tons.

  13. Fuel Performance Improvement Program. Quarterly progress report, April--June 1977. [BWR, PWR

    Energy Technology Data Exchange (ETDEWEB)

    Rowe, D.S. (comp.)

    1977-07-01

    The Fuel Performance Improvement Program has as its objective the identification and demonstration of fuel concepts with improved power ramp performance. Improved fuels are being sought to allow reduction or elimination of fuel related operating guidelines on nuclear power plants such that the fuel may be power maneuvered within the rates allowed by the system technical specifications. The program contains a combination of out-of-reactor studies, in-reactor experiments and in-reactor demonstrations. Fuel concepts initially being considered include annular-pellets, cladding internally coated with graphite and packed-particle fuels. The performance capability of each concept is being compared to a reference fuel of contemporary pellet design through test reactor experiments.

  14. Effect of eccentric location of the RBMK CPS displacer graphite block in the shielding sheath

    International Nuclear Information System (INIS)

    Dostov, A.I.

    2001-01-01

    Temperature conditions and accumulation of Wigner energy in the graphite block of the RBMK reactor CPS (control power system) displacer is examined. It is shown, that at eccentric location of the block in the shielding sheath average temperature of the block drops sharply. Due to the design demerit quantity of the stored energy in the block may be so great, that its release will result in melting of the displacer tube. (author)

  15. Effects of Boron and Graphite Uncertainty in Fuel for TREAT Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Vaughn, Kyle; Mausolff, Zander; Gonzalez, Esteban; DeHart, Mark; Goluoglu, Sedat

    2017-03-01

    Advanced modeling techniques and current computational capacity make full core TREAT simulations possible, with the goal of such simulations to understand the pre-test core and minimize the number of required calibrations. But, in order to simulate TREAT with a high degree of precision the reactor materials and geometry must also be modeled with a high degree of precision. This paper examines how uncertainty in the reported values of boron and graphite have an effect on simulations of TREAT.

  16. Oxidation kinetics of innovative carbon materials with respect to severe air ingress accidents in HTRs and graphite disposal or processing

    International Nuclear Information System (INIS)

    Schloegel, Baerbel

    2010-01-01

    Currently future nuclear reactor concepts of the Fourth Generation (Gen IV) are under development. To some extend they apply with new, innovative materials developed just for this purpose. This thesis work aims at a concept of Generation IV Very High Temperature Reactors (VHTR) in the framework of the European project RAPHAEL (ReActor for Process heat, Hydrogen And ELectricity generation). The concept named ANTARES (AREVA New Technology based on advanced gas-cooled Reactors for Energy Supply) was developed by AEVA NP. It is a helium cooled, graphite moderated modular reactor for electricity and hydrogen production, by providing the necessary process heat due to its high working temperature. Particular attention is given here to oxidation kinetics of newly developed carbon materials (NBG-17) with still unknown but needed information in context of severe air ingress accident in VHTR's. Special interest is paid to the Boudouard reaction, the oxidation of carbon by CO 2 . In case of an air ingress accident, carbon dioxide is produced in the primary reaction of atmospheric oxygen with reflector graphite. From there CO 2 could flow into the reactor core causing further damage by conversion into CO. The purpose of this thesis is to ascertain if and to what degree this could happen. First of all oxidation kinetic data of the Boudouard reaction with NBG-17 is determined by experiments in a thermo gravimetric facility. The measurements are evaluated and converted into a common formula and a Langmuir-Hinshelwood similar oxidation kinetic equation, as input for the computer code REACT/THERMIX. This code is then applied to analyse severe air ingress accidents for several air flow rates. The results are discussed for two accident situations, in which a certain graphite burn off is achieved. All cases show much more damage to the graphite bottom reflector than to the reactor core. Thus the bottom reflector will lose its structural integrity much earlier than the core itself will

  17. Computational and experimental prediction of dust production in pebble bed reactors, Part II

    Energy Technology Data Exchange (ETDEWEB)

    Hiruta, Mie; Johnson, Gannon [Department of Mechanical Engineering, University of Idaho, 1776 Science Center Drive, Idaho Falls, ID 83401 (United States); Rostamian, Maziar, E-mail: mrostamian@asme.org [Department of Mechanical Engineering, University of Idaho, 1776 Science Center Drive, Idaho Falls, ID 83401 (United States); Potirniche, Gabriel P. [Department of Mechanical Engineering, University of Idaho, 1776 Science Center Drive, Idaho Falls, ID 83401 (United States); Ougouag, Abderrafi M. [Idaho National Laboratory, 2525 N Fremont Avenue, Idaho Falls, ID 83401 (United States); Bertino, Massimo; Franzel, Louis [Department of Physics, Virginia Commonwealth University, Richmond, VA 23284 (United States); Tokuhiro, Akira [Department of Mechanical Engineering, University of Idaho, 1776 Science Center Drive, Idaho Falls, ID 83401 (United States)

    2013-10-15

    Highlights: • Custom-built high temperature, high pressure tribometer is designed. • Two different wear phenomena at high temperatures are observed. • Experimental wear results for graphite are presented. • The graphite wear dust production in a typical Pebble Bed Reactor is predicted. -- Abstract: This paper is the continuation of Part I, which describes the high temperature and high pressure helium environment wear tests of graphite–graphite in frictional contact. In the present work, it has been attempted to simulate a Pebble Bed Reactor core environment as compared to Part I. The experimental apparatus, which is a custom-designed tribometer, is capable of performing wear tests at PBR relevant higher temperatures and pressures under a helium environment. This environment facilitates prediction of wear mass loss of graphite as dust particulates from the pebble bed. The experimental results of high temperature helium environment are used to anticipate the amount of wear mass produced in a pebble bed nuclear reactor.

  18. Impact on breeding rate of different Molten Salt reactor core structures

    International Nuclear Information System (INIS)

    Wang Haiwei; Mei Longwei; Cai Xiangzhou; Chen Jingen; Guo Wei; Jiang Dazhen

    2013-01-01

    Background: Molten Salt Reactor (MSR) has several advantages over the other Generation IV reactor. Referred to the French CNRS research and compared to the fast reactor, super epithermal neutron spectrum reactor type is slightly lower and beading rate reaches 1.002. Purpose: The aim is to explore the best conversion zone layout scheme in the super epithermal neutron spectrum reactor. This study can make nuclear fuel as one way to solve the energy problems of mankind in future. Methods: Firstly, SCALE program is used for molten salt reactor graphite channel, molten salt core structure, control rods, graphite reflector and layer cladding structure. And the SMART modules are used to record the important actinides isotopes and their related reaction values of each reaction channel. Secondly, the thorium-uranium conversion rate is calculated. Finally, the better molten salt reactor core optimum layout scheme is studied comparing with various beading rates. Results: Breading zone layout scheme has an important influence on the breading rate of MSR. Central graphite channels in the core can get higher neutron flux irradiation. And more 233 Th can convert to 233 Pa, which then undergoes beta decay to become 233 U. The graphite in the breading zone gets much lower neutron flux irradiation, so the life span of this graphite can be much longer than that of others. Because neutron flux irradiation in the uranium molten salt graphite has nearly 10 times higher than the graphite in the breading zone, it has great impact on the thorium-uranium conversion rates. For the super epithermal neutron spectrum molten salt reactors, double salt design cannot get higher thorium-uranium conversion rates. The single molten salt can get the same thorium-uranium conversion rate, meanwhile it can greatly extend the life of graphite in the core. Conclusions: From the analysis of calculation results, Blanket breeding area in different locations in the core can change the breeding rates of thorium

  19. Improvement on the electrochemical characteristics of graphite anodes by coating of the pyrolytic carbon using tumbling chemical vapor deposition

    International Nuclear Information System (INIS)

    Han, Young-Soo; Lee, Jai-Young

    2003-01-01

    The electrochemical characteristics of graphite coated with pyrolytic carbon materials using tumbling chemical vapor deposition (CVD) process have been studied for the active material of anodes in lithium ion secondary batteries. Coating of pyrolytic carbons on the surface of graphite particles, which tumble in a rotating reactor tube, was performed through the pyrolysis of liquid propane gas (LPG). The surface morphology of these graphite particles coated with pyrolytic carbon has been observed with scanning electron microscopy (SEM). The surface of graphite particles can well be covered with pyrolytic carbon by tumbling CVD. High-resolution transmission electron microscopy (HRTEM) image of these carbon particles shows that the core part is highly ordered carbon, while the shell part is disordered carbon. We have found that the new-type carbon obtained from tumbling CVD has a uniform core (graphite)-shell (pyrolytic carbon) structure. The electrochemical property of the new-type carbons has been examined using a charge-discharge cycler. The coating of pyrolytic carbon on the surface of graphite can effectively reduce the initial irreversible capacity by 47.5%. Cyclability and rate-capability of theses carbons with the core-shell structure are much better than those of bare graphite. From electrochemical impedance spectroscopy (EIS) spectra, it is found that the coating of pyrolytic carbon on the surface of graphite causes the decrease of the contact resistance in the carbon electrodes, which means the formation of solid electrolyte interface (SEI) layer is suppressed. We suggest that coating of pyrolytic carbon by the tumbling CVD is an effective method in improving the electrochemical properties of graphite electrodes for lithium ion secondary batteries

  20. Effect of graphite target power density on tribological properties of graphite-like carbon films

    Science.gov (United States)

    Dong, Dan; Jiang, Bailing; Li, Hongtao; Du, Yuzhou; Yang, Chao

    2018-05-01

    In order to improve the tribological performance, a series of graphite-like carbon (GLC) films with different graphite target power densities were prepared by magnetron sputtering. The valence bond and microstructure of films were characterized by AFM, TEM, XPS and Raman spectra. The variation of mechanical and tribological properties with graphite target power density was analyzed. The results showed that with the increase of graphite target power density, the deposition rate and the ratio of sp2 bond increased obviously. The hardness firstly increased and then decreased with the increase of graphite target power density, whilst the friction coefficient and the specific wear rate increased slightly after a decrease with the increasing graphite target power density. The friction coefficient and the specific wear rate were the lowest when the graphite target power density was 23.3 W/cm2.

  1. Millimeter-Wave Thermal Analysis Development and Application to GEN IV Reactor Materials

    Energy Technology Data Exchange (ETDEWEB)

    Wosko, Paul; Sundram, S. K.

    2012-10-16

    New millimeter-wave thermal analysis instrumentation has been developed and studied for characterization of materials required for diverse fuel and structural needs in high temperature reactor environments such as the Next Generation Nuclear Plant (NGNP). A two-receiver 137 GHz system with orthogonal polarizations for anisotropic resolution of material properties has been implemented at MIT. The system was tested with graphite and silicon carbide specimens at temperatures up to 1300 ºC inside an electric furnace. The analytic and hardware basis for active millimeter-wave radiometry of reactor materials at high temperature has been established. Real-time, non contact measurement sensitivity to anisotropic surface emissivity and submillimeter surface displacement was demonstrated. The 137 GHz emissivity of reactor grade graphite (NBG17) from SGL Group was found to be low, ~ 5 %, in the 500 – 1200 °C range and increases by a factor of 2 to 4 with small linear grooves simulating fracturing. The low graphite emissivity would make millimeter-wave active radiometry a sensitive diagnostic of graphite changes due to environmentally induced stress fracturing, swelling, or corrosion. The silicon carbide tested from Ortek, Inc. was found to have a much higher emissivity at 137 GHz of ~90% Thin coatings of silicon carbide on reactor grade graphite supplied by SGL Group were found to be mostly transparent to millimeter-waves, increasing the 137 GHz emissivity of the coated reactor grade graphite to about ~14% at 1250 ºC.

  2. Flexible PVC flame retarded with expandable graphite

    CSIR Research Space (South Africa)

    Focke, WW

    2014-02-01

    Full Text Available The utility of expandable graphite as a flame retardant for PVC, plasticized with 60 phr of a phosphate ester, was investigated. Cone calorimeter results, at a radiant flux of 35 kW m 2, revealed that adding only 5 wt.% expandable graphite lowered...

  3. Mechanical properties of graphite and carbon materials

    International Nuclear Information System (INIS)

    Jouquet, G.

    1976-01-01

    The elastic properties of the graphite monocrystal, the role of internal characteristics (texture, porosity) on the mechanical behavior of carbons, effects caused by the gaseous environment and neutron irradiation, and the resistance of graphites to cyclic mechanical stresses are discussed [fr

  4. Significance of primary irradiation creep in graphite

    CSIR Research Space (South Africa)

    Erasmus, C

    2013-05-01

    Full Text Available Traditionally primary irradiation creep is introduced into graphite analysis by applying the appropriate amount of creep strain to the model at the initial time-step. This is valid for graphite components that are subjected to high fast neutron flux...

  5. Comparative Analysis of Carbon Plasma in Arc and RF Reactors

    International Nuclear Information System (INIS)

    Todorovic-Markovic, B.; Markovic, Z.; Mohai, I.; Szepvolgyi, J.

    2004-01-01

    Results on studies of molecular spectra emitted in the initial stages of fullerene formation during the processing of graphite powder in induction RF reactor and evaporation of graphite electrodes in arc reactor are presented in this paper. It was found that C2 radicals were dominant molecular species in both plasmas. C2 radicals have an important role in the process of fullerene synthesis. The rotational-vibrational temperatures of C2 and CN species were calculated by fitting the experimental spectra to the simulated ones. The results of optical emission study of C2 radicals generated in carbon arc plasma have shown that rotational temperature of C2 species depends on carbon concentration and current intensity significantly. The optical emission study of induction RF plasma and SEM analysis of graphite powder before and after plasma treatment have shown that evaporation of the processed graphite powder depends on feed rate and composition of gas phase significantly. Based on the obtained results, it was concluded that in the plasma region CN radicals could be formed by the reaction of C2 species with atomic nitrogen at smaller loads. At larger feed rate of graphite powder, CN species were produced by surface reaction of the hot carbon particles with nitrogen atoms. The presence of nitrogen in induction RF plasma reduces the fullerene yield significantly. The fullerene yield obtained in two different reactors was: 13% in arc reactor and 4.1% in induction RF reactor. However, the fullerene production rate was higher in induction RF reactor-6.4 g/h versus 1.7 g/h in arc reactor

  6. Reactor shutdown: nuclear power plant performance

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    The article essentially looks at the performance of nine of Sweden's nuclear reactors. A table lists the percentage of time for the first three quarters of 1981 that the reactors were operating, and the number of hours out of service for planned or other reasons. In particular, one station - Ringhals 3 - was out of action because of a damaged tube in the associated steam generator. The same fault occurred with another reactor - Ringhals 4 - before this was brought into service. The reasons for the failure and its importance are briefly discussed. (G.P.)

  7. Use of thorium for high temperature gas-cooled reactors

    Energy Technology Data Exchange (ETDEWEB)

    Guimarães, Cláudio Q., E-mail: claudio_guimaraes@usp.br [Universidade de São Paulo (USP), SP (Brazil). Instituto de Física; Stefani, Giovanni L. de, E-mail: giovanni.stefani@ipen.br [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil); Santos, Thiago A. dos, E-mail: thiago.santos@ufabc.edu.br [Universidade Federal do ABC (UFABC), Santo André, SP (Brazil)

    2017-07-01

    The HTGR ( High Temperature Gas-cooled Reactor) is a 4{sup th} generation nuclear reactor and is fuelled by a mixture of graphite and fuel-bearing microspheres. There are two competitive designs of this reactor type: The German “pebble bed” mode, which is a system that uses spherical fuel elements, containing a graphite-and-fuel mixture coated in a graphite shell; and the American version, whose fuel is loaded into precisely located graphite hexagonal prisms that interlock to create the core of the vessel. In both variants, the coolant consists of helium pressurised. The HTGR system operates most efficiently with the thorium fuel cycle, however, so relatively little development has been carried out in this country on that cycle for HTGRs. In the Nuclear Engineering Centre of IPEN (Instituto de Pesquisas Energéticas e Nucleares), a study group is being formed linked to thorium reactors, whose proposal is to investigate reactors using thorium for {sup 233}U production and rejects burning. The present work intends to show the use of thorium in HTGRs, their advantages and disadvantages and its feasibility. (author)

  8. Reactor Physics

    Energy Technology Data Exchange (ETDEWEB)

    Ait Abderrahim, A

    2001-04-01

    The Reactor Physics and MYRRHA Department of SCK-CEN offers expertise in various areas of reactor physics, in particular in neutronics calculations, reactor dosimetry, reactor operation, reactor safety and control and non-destructive analysis of reactor fuel. This expertise is applied in the Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 reactor dosimetry, and the preparation and interpretation of irradiation experiments by means of neutron and gamma calculations. The activities of the Fuzzy Logic and Intelligent Technologies in Nuclear Science programme cover several domains outside the department. Progress and achievements in these topical areas in 2000 are summarised.

  9. Reactor Physics

    International Nuclear Information System (INIS)

    Ait Abderrahim, A.

    2001-01-01

    The Reactor Physics and MYRRHA Department of SCK-CEN offers expertise in various areas of reactor physics, in particular in neutronics calculations, reactor dosimetry, reactor operation, reactor safety and control and non-destructive analysis of reactor fuel. This expertise is applied in the Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 reactor dosimetry, and the preparation and interpretation of irradiation experiments by means of neutron and gamma calculations. The activities of the Fuzzy Logic and Intelligent Technologies in Nuclear Science programme cover several domains outside the department. Progress and achievements in these topical areas in 2000 are summarised

  10. Reactor Physics

    Energy Technology Data Exchange (ETDEWEB)

    Ait Abderrahim, A

    2002-04-01

    SCK-CEN's Reactor Physics and MYRRHA Department offers expertise in various areas of reactor physics, in particular in neutron and gamma calculations, reactor dosimetry, reactor operation and control, reactor code benchmarking and reactor safety calculations. This expertise is applied in the Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 materials testing reactor dosimetry, and the preparation and interpretation of irradiation experiments by means of neutron and gamma calculations. The activities of the Fuzzy Logic and Intelligent Technologies in Nuclear Science programme cover several domains outside the department. Progress and achievements in these topical areas in 2001 are summarised.

  11. Quarterly coal report, April--June 1990

    Energy Technology Data Exchange (ETDEWEB)

    1990-11-02

    The Quarterly Coal Report provides comprehensive information about US coal production, exports, imports, receipts, consumption, and stocks to a wide audience, including Congress, Federal and State agencies, the coal industry, and the general public. This issue presents detailed quarterly data for April 1990 through June 1990, aggregated quarterly historical data for 1982 through the second quarter of 1990, and aggregated annual historical data for 1960 through 1989 and projected data for selected years from 1995 through 2010. To provide a complete picture of coal supply and demand in the United States, historical information and forecasts have been integrated in this report. 7 figs., 37 tabs.

  12. A New Method to Measure Crack Extension in Nuclear Graphite Based on Digital Image Correlation

    Directory of Open Access Journals (Sweden)

    Shigang Lai

    2017-01-01

    Full Text Available Graphite components, used as moderators, reflectors, and core-support structures in a High-Temperature Gas-Cooled Reactor, play an important role in the safety of the reactor. Specifically, they provide channels for the fuel elements, control rods, and coolant flow. Fracture is the main failure mode for graphite, and breaching of the above channels by crack extension will seriously threaten the safety of a reactor. In this paper, a new method based on digital image correlation (DIC is introduced for measuring crack extension in brittle materials. Cross-correlation of the displacements measured by DIC with a step function was employed to identify the advancing crack tip in a graphite beam specimen under three-point bending. The load-crack extension curve, which is required for analyzing the R-curve and tension softening behaviors, was obtained for this material. Furthermore, a sensitivity analysis of the threshold value employed for the cross-correlation parameter in the crack identification process was conducted. Finally, the results were verified using the finite element method.

  13. Methane generated from graphite--tritium interaction

    International Nuclear Information System (INIS)

    Coffin, D.O.; Walthers, C.R.

    1979-01-01

    When hydrogen isotopes are separated by cryogenic distillation, as little as 1 ppM of methane will eventually plug the still as frost accumulates on the column packings. Elemental carbon exposed to tritium generates methane spontaneously, and yet some dry transfer pumps, otherwise compatible with tritium, convey the gas with graphite rotors. This study was to determine the methane production rate for graphite in tritium. A pump manufacturer supplied graphite samples that we exposed to tritium gas at 0.8 atm. After 137 days we measured a methane synthesis rate of 6 ng/h per cm 2 of graphite exposed. At this rate methane might grow to a concentration of 0.01 ppM when pure tritium is transferred once through a typical graphite--rotor transfer pump. Such a low methane level will not cause column blockage, even if the cryogenic still is operated continuously for many years

  14. Microstructural Characterization of Next Generation Nuclear Graphites

    Energy Technology Data Exchange (ETDEWEB)

    Karthik Chinnathambi; Joshua Kane; Darryl P. Butt; William E. Windes; Rick Ubic

    2012-04-01

    This article reports the microstructural characteristics of various petroleum and pitch based nuclear graphites (IG-110, NBG-18, and PCEA) that are of interest to the next generation nuclear plant program. Bright-field transmission electron microscopy imaging was used to identify and understand the different features constituting the microstructure of nuclear graphite such as the filler particles, microcracks, binder phase, rosette-shaped quinoline insoluble (QI) particles, chaotic structures, and turbostratic graphite phase. The dimensions of microcracks were found to vary from a few nanometers to tens of microns. Furthermore, the microcracks were found to be filled with amorphous carbon of unknown origin. The pitch coke based graphite (NBG-18) was found to contain higher concentration of binder phase constituting QI particles as well as chaotic structures. The turbostratic graphite, present in all of the grades, was identified through their elliptical diffraction patterns. The difference in the microstructure has been analyzed in view of their processing conditions.

  15. Promoted Ru on high-surface area graphite for efficient miniaturized production of hydrogen from ammonia

    DEFF Research Database (Denmark)

    Sørensen, Rasmus Zink; Klerke, Asbjørn; Quaade, Ulrich

    2006-01-01

    Promoted Ru/C catalysts for decomposition of ammonia are incorporated into micro-fabricated reactors for the first time. With the reported preparation technique, the performance is increased more than two orders of magnitude compared to previously known micro-fabricated reactors for ammonia decom...... studies of both ammonia synthesis and decomposition, and it is shown how proper promotion can facilitate ammonia decomposition at temperatures below 500 K.......Promoted Ru/C catalysts for decomposition of ammonia are incorporated into micro-fabricated reactors for the first time. With the reported preparation technique, the performance is increased more than two orders of magnitude compared to previously known micro-fabricated reactors for ammonia...... decomposition. The catalytic activities for production of hydrogen from ammonia are determined for different promoters and promoter levels on graphite supported ruthenium catalysts. The reactivity trends of the Ru/C catalysts promoted with Cs and Ba are in excellent agreement with those known from earlier...

  16. Reactor safeguards

    CERN Document Server

    Russell, Charles R

    1962-01-01

    Reactor Safeguards provides information for all who are interested in the subject of reactor safeguards. Much of the material is descriptive although some sections are written for the engineer or physicist directly concerned with hazards analysis or site selection problems. The book opens with an introductory chapter on radiation hazards, the construction of nuclear reactors, safety issues, and the operation of nuclear reactors. This is followed by separate chapters that discuss radioactive materials, reactor kinetics, control and safety systems, containment, safety features for water reactor

  17. Reactor operation

    CERN Document Server

    Shaw, J

    2013-01-01

    Reactor Operation covers the theoretical aspects and design information of nuclear reactors. This book is composed of nine chapters that also consider their control, calibration, and experimentation.The opening chapters present the general problems of reactor operation and the principles of reactor control and operation. The succeeding chapters deal with the instrumentation, start-up, pre-commissioning, and physical experiments of nuclear reactors. The remaining chapters are devoted to the control rod calibrations and temperature coefficient measurements in the reactor. These chapters also exp

  18. Applied Meteorology Unit (AMU) Quarterly Report - Fourth Quarter FY-10

    Science.gov (United States)

    Bauman, William; Crawford, Winifred; Barrett, Joe; Watson, Leela; Wheeler, Mark

    2010-01-01

    Three AMU tasks were completed in this Quarter, each resulting in a forecast tool now being used in operations and a final report documenting how the work was done. AMU personnel completed the following tasks (1) Phase II of the Peak Wind Tool for General Forecasting task by delivering an improved wind forecasting tool to operations and providing training on its use; (2) a graphical user interface (GUI) she updated with new scripts to complete the ADAS Update and Maintainability task, and delivered the scripts to the Spaceflight Meteorology Group on Johnson Space Center, Texas and National Weather Service in Melbourne, Fla.; and (3) the Verify MesoNAM Performance task after we created and delivered a GUI that forecasters will use to determine the performance of the operational MesoNAM weather model forecast.

  19. The fracture of graphite; La rupture des graphites

    Energy Technology Data Exchange (ETDEWEB)

    Rouby, D. [Institut National des Sciences Appliquees (INSA), Groupe d' Etudes de Metallurgie Physique et de Physique des Materiaux, UMR CNRS 5510, 69 - Villeurbanne (France); Monchaux, St. [Institut National des Sciences Appliquees (INSA), Dept. Science et Genie des Materiaux, 69 - Villeurbanne (France); Tahon, B. [Laboratoire SGL Carbon SAS, 74 - Passy (France)

    2006-03-15

    By mechanical loading, the behaviour of poly-granular graphites for industrial uses is globally brittle: when a pre-existing flaw becomes critical a crack initiates and then propagates more or less catastrophically. This scheme implies several features which are described in the present paper. First, as the crack will be initiated at a critical flaw, the ultimate stress appears as largely dispersed and the strength is not an intrinsic material's parameter. Secondly, the processing route introduces in the material some microstructure anisotropy, largely influencing the strength dispersion. Finally, the crack propagation is controlled by a bridging mechanism of the lips which depends on the microstructure. This effect can be described by the so-called crack growth resistance curve: the R-curve. (authors)

  20. Application of INAA for chemical quality control analysis of C-C composite and high purity graphite by determining trace elemental concentrations

    International Nuclear Information System (INIS)

    Shinde, Amol D.; Reddy, A.V.R.; Acharya, R.; Venugopalan, Ramani

    2015-01-01

    Carbon based materials like graphite and C-C composites are used for various scientific and technological applications. Owing to its low neutron capture cross section and good moderating properties, graphite is used as a moderator or reflector in nuclear reactors. For high temperature reactors like CHTR, graphite and C-C composites are proposed as structural materials. Studies are in progress to use C-C composites as prospective candidate instead of graphite due to their excellent mechanical and thermal properties. The advantage of carbon-carbon composite is that the microstructure and the properties can be tailor made. Impurities like rare earth elements and neutron poisons which have high neutron absorption cross section and elements whose activation products of have longer half-lives like 60 Co (5.27 y), 65 Zn (244.3 d) and 59 Fe (44.5 d) are not desired in structural materials. For chemical quality control (CQC) it is necessary to evaluate accurately the impurity concentrations using a suitable non-destructive analytical technique. In the present work, two carbon/carbon composite samples and two high purity graphite samples were analyzed by Instrumental Neutron Activation Analysis (INAA) using high-flux reactor neutrons. Samples, sealed in Al foil, were irradiated in tray-rod position of Dhruva reactor, BARC at a neutron flux of ∼ 5 x 10 13 cm -2 s -1 . Radioactive assay was carried out using high resolution gamma ray spectrometry using 40% HPGe detector